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Abstract: We present a fully functional prototype to convincingly restore eye contact between two video chat partici-
pants, with a minimal amount of constraints. The proposed six-fold camera setup is easily integrated into the
monitor frame, and is used to interpolate an image as if its virtual camera captured the image through a trans-
parent screen. The peer user has a large freedom of movement, resulting in system specifications that enable
genuine practical usage. Our software framework thereby harnesses the powerful computational resources
inside graphics hardware, to achieve real-time performance up to 30 frames per second for 800×600 resolu-
tion images. Furthermore, an optimal set of finetuned parameters are presented, that optimizes the end-to-end
performance of the application, and therefore is still able to achieve high subjective visual quality.

1 INTRODUCTION

Peer-to-peer interactive video chat is becoming in-
creasingly popular, but still has some major draw-
backs which prevent a definitive breakthrough in the
common public. One of the most important reasons is
that the participant is not able to simultaneously look
at the screen and the camera, leading to the loss of
eye contact (?). We therefore present a fully func-
tional prototype (see Fig. 1) that corrects the eye gaze
of the peers by using multiple cameras, solving typi-
cal problems for genuine practical usage.

Previous solutions such as (?) either implement
their framework on commodity CPUs, resulting in a
very low framerate when sufficient visual quality is
required. On the opposite side, solutions such as (?;
?) involve the use of expensive dedicated hardware,
or have an unpractical camera setup. Others optimize
parts of the application, such as multi-camera video
coding (?; ?) for efficient data communication and
real-time view synthesis (?; ?; ?) on graphics hard-
ware, but neither of them integrate and optimize the
end-to-end performance for eye gaze-corrected video
chat. The end-to-end performance for camera interpo-
lation is optimized in (?), but they assume a rectified
two-fold camera setup and no illumination changes

Figure 1: Peer setup of our prototype.

due to the use of the Middlebury dataset (?).

Our prototype uses a practical camera setup that
can be easily integrated in the monitor frame, and its
framework harnesses the powerful computational re-
sources inside the Graphics Processing Unit (GPU)
to achieve real-time performance on commodity PCs.
Section 2 of the paper describes the system archi-
tecture in detail, which proposes the use of several
carefully selected and slightly adapted algorithms that
are appropriate for implementation on graphics hard-



Figure 2: Data flow and overview of our system architecture.

ware. The end-to-end system thereby achieves both
high speed and quality with only few constraints. We
also provide a number of GPU specific optimizations
in Section 3 to ensure real-time application perfor-
mance. Section 4 discusses the results of the proto-
type, Section 5 ultimately concludes the paper, and
Section 6 deals with future work.

2 SYSTEM ARCHITECTURE

As depicted in Fig. 2, the main functionality of our
system consists of four consecutive processing mod-
ules that are completely running on a GPU. In an ini-
tial step, images I1, . . . , IN are fetched from N cameras
C1, . . . ,CN that are closely aligned along the screen.
The first module performs lens correction and image
segmentation, as a form of preprocessing, to enhance
both the quality and speed of the consecutive view in-
terpolation.

This second module interpolates an image Iv, as
seen with a virtual camera Cv that is positioned behind
the screen and produces a consistent depth map Zv.
The image Iv is computed as if camera Cv captured
the image through a completely transparent screen.

However, the synthesized image still has a num-
ber of noticeable artifacts in the form of erroneous
patches and speckle noise. The third refinement mod-
ule is therefore specifically designed to tackle these
problems by detecting photometric outliers based on
the accompanying depth map.

In a final step, the depth map Zv is also analyzed
to dynamically adjust the system and thereby avoids
heavy constraints on the user’s movements.

Next to the main processing on graphics hardware
that synthesizes Iv, the camera Cv needs to be cor-
rectly positioned to restore eye contact between the
participants. An eye tracking module thereby concur-
rently runs on CPU and determines the user’s eye po-
sition that will be used for correct placement of the
virtual camera at the other peer.

By sending the eye coordinates to the other peer,

the input images I1, . . . , IN do not have to be sent over
the network, but can be processed at the local peer.
This results in a minimum amount of required data
communication – i.e. the eye coordinates and the in-
terpolated image – between the two participants.

2.1 Preprocessing

Camera lenses, certainly when targeting the low-
budget range, induce a radial distortion that is best
corrected. Our system relies on the use of the Brown-
Conrady distortion model (?) to easily undistort the
input images pixel-based on the GPU.

Figure 3: The preprocessing module segments the input
camera image.

Each input image Ii with i ∈ {1, . . . ,N} is conse-
quently segmented into a binary foreground silhou-
ette Si (see Fig. 3), to allow the consecutive view in-
terpolation to adequately lever the speed and quality
of the synthesis process. Two methods of segmenta-
tion are supported; Greenscreening according to (1),
where RIi ,GIi and BIi are the red, green and blue com-
ponents of Ii. For clarity the pixel location (x,y) has
been omitted.

Si =

{
1 : GIi > τg · (RIi +GIi +BIi)
0 : GIi ≤ τg · (RIi +GIi +BIi)

(1)

The second method is able to subtract a real-life back-
ground (?) according to (2), where IBi is the static
background picture and τg, τ f , τb, τa are experimen-
tally determined thresholds which are subjected to pa-
rameter finetuning. For shadow removal, the cosine of
the angle ÎiIBi between the color component vectors of
the image pixel Ii(x,y) and the static background pixel
IBi(x,y) is determined. As a final step, the silhouette



Figure 4: The view interpolation module generates a virtual
image and joint depth map.

Figure 5: Concept of the plane sweep algorithm.

is further enhanced by a single erosion and dilation
(?).

Si =


1 : ‖Ii− IBi‖> τ f or

‖Ii− IBi‖ ≥ τb and cos(ÎiIBi)≤ τa
0 : ‖Ii− IBi‖< τb or

‖Ii− IBi‖ ≤ τ f and cos(ÎiIBi)> τa
(2)

Both methods are evaluated on a pixel basis and
require very little processing power, while still being
robust against moderate illumination changes.

2.2 View Interpolation

To interpolate the desired viewpoint (see Fig. 4) we
adopt and slightly modify a plane sweeping approach
based on (?). As depicted in Fig. 5, the 3D space
is discretized into M planes {D1, . . . ,DM} parallel to
the image plane of the virtual camera Cv. For each
plane D j, every pixel fv of the virtual camera image
Iv is back-projected on the plane D j by (3), and repro-
jected to the input images Ii according to (4). Here
T j is a translation and scaling matrix that defines the
depth and extent of the plane D j in world space. The

Figure 6: Reprojection from virtual to input images.

relationship between these coordinate spaces is repre-
sented in Fig. 6.

f = V−1
v ×P−1

v ×T j× fv (3)
fi = Pi×Vi× f (4)

Points on the plane D j that project outside a fore-
ground silhouette in at least one of the input images,
are immediately rejected – e.g. point g in Fig. 5 – and
all further operations are automatically discarded by
the GPU hardware. This provides a means to lever
both speed and quality because segmentation noise
will, with a high probability, not be available in all
N cameras. Otherwise, the mean (i.e. interpolated)
color ψ and a jointly defined custom matching cost κ

are computed as in (5).

ψ =
N

∑
i=1

Ii

N
, κ =

N

∑
i=1

‖ψ− Ii‖2

3N
(5)

As opposed to (?), we propose the use of all input
cameras to compute the matching cost. The plane is
swept for the entire search range {D1, . . . ,DM}, and
the minimum cost – together with the corresponding
interpolated color – is per pixel selected on a Winner-
Takes-All basis, resulting in the virtual image Iv and a
joint depth map Zv (see Fig. 4).

2.3 Joint View/Depth Refinement

The interpolated image calculated in the previous sec-
tion still contains erroneous patches (see Fig. 4, mag-
nified in Fig. 7) and speckle noise due to illumination
changes, partially occluded areas and natural homo-
geneous texturing of the human face. These errors
are even more apparent in the depth map Zv and we
therefore propose a photometric outlier detection al-
gorithm that detects and restores the patches in Zv.

To suppress the spatial high frequency speckle
noise, we consequently run a low-pass Gaussian fil-
ter over the depth map.

In a final step, the refined depth map is used to re-
color the interpolated image with the updated depth



Figure 7: Joint view/depth refinement module concept.

values. As opposed to other geometrically correct
approaches (?), we thereby significantly enhance the
subjective visual quality.

2.3.1 Erroneous Patch Filtering

To detect erroneous patches, we propose a filter kernel
as depicted in Fig. 8a. For every pixel zv of depth
map Zv, a two dimensional depth consistency check
is performed for its neighbourhood λ according to (6),
where ε is a very small constant to represent the depth
consistency. λ thereby defines the radius of the filter
kernel, and the maximum size of patches that can be
detected.

‖Zv(x−λ,y)−Zv(x+λ,y)‖< ε or
‖Zv(x,y−λ)−Zv(x,y+λ)‖< ε

(6)

If the area passes the consistency check in one of
the dimensions, the depth pixel zv – and therefore the
joint image pixel fv – is flagged as an outlier if zv
does not exhibit the same consistency by exceeding a
given threshold τo. Eq. (7) shows the outlier test when
a depth consistency is noticed in the X-dimension, an
analogous test is used in case of consistency in the
Y -dimension.∥∥∥∥Zv(x,y)−

Zv(x−λ,y)+Zv(x+λ,y)
2

∥∥∥∥> τo (7)

After performing the proposed filter kernel, the
center of patches – as conceptually represented in
Fig. 8b and Fig. 8c – are detected. Consistently, a
standard morphological grow algorithm is executed in
a loop, which causes the detected center to grow only
if the neighbouring pixels exhibit the same depth con-
sistency as the initial outliers. As depicted in Fig. 8d,
the complete patch is thereby detected. As a final
step for the patch filtering, the morphological grow
is reversed and the detected patch is filled with reli-
able depth values from its neighbourhood. Since all
of these operations are implemented on a pixel basis,
they are inherently appropriate for implementation on
a GPU, achieving a tremendous speedup compared to
a generic CPU algorithm.

Figure 8: (a) The proposed filter kernel, and (b–d) the out-
lier detection concept.

2.3.2 Speckle Noise Filtering

Due to the nature of the human face, a significant
amount of large homogeneous texture regions are
present. As indicated by (?) these areas cause the
depth map to contain spatial high frequency speckle
noise. The noise is most effectively filtered by a low-
pass filter, but eliminates the geometrical correctness
of the depth map. Therefore as opposed to methods
such as (?), we rather enhance the subjective visual
quality instead of geometrical accuracy.

A standard 2D isotropic Gaussian filter is applied
on the depth map and thanks to its separable convo-
lution properties, it can even be highly optimized on
graphics hardware.

2.3.3 Recoloring

All of the previous steps involve changing the depth
map Zv, which is normally – due to the plane sweep
– jointly linked to the image color in Iv. To restore
this link, the image Iv is recomputed with an updated
T j matrix, according to the filtered depth information.
Since erroneous patches and speckle noise are now
filled or leveled with consistent – rather than geomet-
rically correct – depth values, the recolored image is
interpreted as plausible and thereby subjectively re-
garded as higher quality.

2.4 Movement Analysis

To avoid heavy constraints on the participant’s move-
ment, a large depth range has to be scanned. This ac-
tually infers a lot of redundant computations, since the
head of the user only spans a small range. We there-
fore propose to dynamically limit the effective depth
range to {Dmin, . . . ,Dmax} similar to (?), through a
movement analysis on the normalized depth map his-
togram. This implicitly causes a quality increase of
the plane sweep, as the probability of a mismatch due
to homogeneous texture regions is significantly re-
duced. Moreover, all M depth planes can be focused
as {D1 = Dmin, . . . ,DM = Dmax}, which leverages the
dynamic range and thereby significantly increases the
accuracy of the depth scan. Three separate cases can



be distinguished, as the user moves in front of the
screen:

• Forward: If the user moves forward, he will exit
the active scanning range. Therefore, the his-
togram will indicate an exceptionally large num-
ber of detected depth pixels towards Dmin.

• Stable: The histogram indicates a clear peak in
the middle, this resolves to the fact that the user’s
head remains in the same depth range.

• Backward: Analog to forward movement of the
user, the depth histogram will indicate a peak to-
wards Dmax.

As depicted in Fig. 9a to f, we fit a Gaussian distri-
bution function G(µ,σ) with center µ and standard de-
viation σ on the histogram. The effective depth range
is updated according to (8) and (9), where b1, b2 are
constant forward and backward bias factors that can
be adopted to the inherent geometry of the scanned
object. D′min represents the previous minimal depth,
and ∆ = D′max−D′min for denormalization.

D1 = Dmin = D′min +(µ−b1 ·σ)∆ (8)
DM = Dmax = D′min +(µ+b2 ·σ)∆ (9)

As the user performs forward or backward move-
ment, the center µ of the Gaussian fit changes and dy-
namically adapts the effective scan range of the sys-
tem. The image will briefly distort in this unstable
case (see extreme cases in Fig. 9a and c), but will
quickly recover as the depth scan is adapted for ev-
ery image iteration. A real-time high framerate there-
fore increases the responsiveness of the system, and is
able to achieve fast restabilization. Normal moderate
speed movement will thereby not be visually noticed
by the participants.

2.5 Concurrent Eye Tracking

To restore the eye contact between the video chat par-
ticipants, the camera Cv needs to be correctly po-
sitioned. Eye tracking can be performed more ro-
bust and efficiently on CPU, and is therefore executed
concurrently with the main processing of the system.
Afterall, the N input images are implicitly available
on system memory before they are sent to the video
memory of the GPU.

Face and eye candidates are detected in every
input image as described in (?), but we optimized
the detection process by predicting the eye positions
based on previous frames and using a hierarchical ap-
proach to search for eye pixels. An epipolar cross
check is consequently used to estimate the most re-
liable eye candidates in all images. The two best eye

Figure 9: Overview of the depth histogram-based move-
ment analysis in normalized coordinates.

candidates are ultimately used to triangulate their 3D
positions.

The 3D eye position is then mirrored towards the
screen, resulting in the correct virtual viewpoint that
is needed to restore the eye contact between the sys-
tem users. The coordinates are adjusted in a man-
ner that places the two screens in a common space,
as if the two screens were pasted against each other.
Hence, this creates the immersive effect of a virtual
window into the world of the other participant.

2.6 Networking

Our prototype system sends the eye coordinates over
the network, and therefore the requested image Iv can
be computed locally at the peer that captures the rel-
evant images. These cross computations bring the
required network communication to a minimum, by
avoiding the transfer of N input images. The total
peer-to-peer communication thereby exists out of the
synthesized images and the eye coordinates.

Real-time speed can therefore easily be achieved
over various types of networks without the need of
any compression. Due to the segmentation result Sv,
the system can be efficiently equipped with Region-
of-Interest coding, to enable the use over low-data rate



networks as well.

3 OPTIMIZATIONS

Our framework harnesses the powerful computational
resources of the graphics hardware to ensure real-
time performance. The use of carefully selected and
adapted algorithms allows us to exploit the GPU for
general-purpose computations, a technique that is of-
ten referred to as General-Purpose GPU (GPGPU).

GPGPU is traditionally only capable of utilizing a
part of the GPU resources due to its computer graph-
ics nature (?). We optimized the preprocessing to by-
pass this constraint, which leverages the GPU utiliza-
tion and execution speed without any noticeable loss
of quality.

Being an additional advantage, the histogram for
movement analysis is approximated by reducing its
number of bins, since only the correct Gaussian dis-
tribution fit is required.

As this approximation infers dynamic looping in-
side the GPU, we have built-in support for dynamic
GPU programming to be able to optimize and unroll
loops at run-time.

3.1 Improved Utilization

Standard lens distortion is generally corrected on a
pixel-basis level, but can be approximated by apply-
ing an equivalent geometrical undistortion to small
image tiles. Since a GPU pipeline exists out of a ge-
ometry and pixel processing stage, the lens correction
can hence be ported from the pixel to the geometry
stage. Initially, the computational complexity of the
undistortion is inverse proportional to the granularity
of the tessellation, resulting in a speedup without any
visual quality loss if the tile size is chosen correctly.
Next to this fact, the pixel processing stage is clear to
perform the consecutive segmentation processing in a
single pipeline pass, which significantly leverages the
utilization of the GPU.

3.2 Accelerated Histogramming

For the movement analysis, the essential part is de-
riving the parameters µ and σ to adjust the dynamic
range of the depth scan. As depicted in Fig. 9d to l,
we are able to approximate the histogram by reduc-
ing the number of bins, without a large impact on the
Gaussian parameters. Heavily reducing the number
of bins (see Fig. 9j to l) causes the center µ to be-
come less accurate, as it is shifted towards the center
of the effective scan range. An optimal trade-off point

Figure 11: Workload profiling.

can therefore be defined, since the accuracy loss will
cause the responsiveness of the system to decrease.

3.3 Dynamic GPU Programming

Similar to the dynamic looping needed to variate the
number of bins in the histogramming, looping inside
the GPU is very often required. To enhance the ex-
ecution speed, our framework has built-in support to
generate and compile the GPU programming code at
run-time. Hereby, the loops can always be unrolled
and internally fully optimized.

4 RESULTS

Our optimal prototype setup is built with N = 6 auto-
synchronized Point Grey Research Grasshopper cam-
eras mounted on an aluminum frame, so they can be
closely aligned to the screen (See Fig. 1). The pre-
sented camera setup avoids large occlusions, and has
the potential to generate high quality views since no
image extrapolation is necessary. We have used the
Multi-Camera Self-Calibration toolbox (?) to cal-
ibrate the camera setup offline, but a built-in cam-
era setup into the screen would avoid this procedure
due to fixed calibration parameters. Our software
framework runs on an Intel Xeon 2.8GHz, equipped
with 2GB system memory and an NVIDIA GeForce
8800GTX graphics card. Communication with the
GPU is done through OpenGL, and it is programmed
with the high level language Cg.

Final quality results are shown in Fig. 10, under
moderate variable illumination conditions, but with
a fixed set of finetuned practical system parameters
grouped in Table 1. Some small artifacts along the
ears and chin, together with minor ghosting around
the neck, can still be noticed due to limitations of
the joint view and depth refinement. Nonetheless,
the images maintain their integrity and are regarded



Figure 10: Eye-gaze corrected images with variable illumination and fixed optimal parameters.

as high subjective visual quality, while they convinc-
ingly seem to be making eye contact with the reader.

Module Parameter Value
Preprocessing τg 0.355

τ f 0.010
τb 0.002
τa 0.998

View Interpolation N 6
M 35

Joint View/Depth λ 20
Refinement ε 0.2

τo 0.3
Movement Analysis b1 2.0

b2 2.0
#bins 15

Table 1: Set of optimized system parameters.

A detailed workload profiling for the main pro-
cessing modules can be seen in Fig. 11, with image
and camera resolutions of 800× 600 pixels. A large
amount of time is needed to perform the six input im-
age download and synthesized image readback to and
from the GPU. Hence, the typical data locality im-
portance is illustrated, and the core reason to imple-
ment all main processing steps on graphics hardware
is motivated. The rather large weight for the prepro-
cessing is mainly due to the N = 6 times execution on
all input images. Furthermore, a significant amount
of processing is concentrated in the refinement and
movement analysis, as it levers the quality indepen-
dent of the amount of input images.

Summing up the different timings of the individ-
ual modules, we can reach a confident speed of 30fps,
but in our experimental setup is limited by 15Hz sup-
port in the cameras and Firewire controller hardware.
We foresee these specifications as for genuine prac-
tical usage, since the end-to-end system is optimized
for minimum practical constraints.

5 CONCLUSION

We have presented a system prototype for practical
eye-gaze correction between two video chat partici-
pants, with a minimal amount of constraints. A six-
fold camera setup that is closely aligned along the
screen, is proposed for possible integration into the
monitor frame. Besides the convenient camera place-
ment, the presented setup also avoids large occlu-
sions, and has the potential to generate higher qual-
ity views compared to camera setups that require con-
stant image extrapolation.

Our software framework harnesses the compu-
tational resources of the graphics hardware through
GPGPU, and is able to achieve real-time performance.
A framerate of 30fps can be achieved for 800× 600
image resolutions, but our experimental setup is lim-
ited by 15 Hz cameras. Thanks to a movement analy-
sis, the system provides the user with a large freedom
of movement.

We have improved the end-to-end performance of
the system, by introducing optimizations that have no
noticeable loss of visual quality. A fixed set of fine-
tuned parameters is able to generate interpolated im-
ages with high subjective visual quality – rather than
being geometrically correct – under variable condi-
tions. Moreover, the system specifications thereby en-
able genuine practical usage of convincing eye-gaze
corrected video chat.

6 FUTURE WORK

Future work will focus on improving the movement
analysis. Furthermore, multiple objects can be intelli-
gently distinguished by combing silhouette informa-
tion, enabling eye-gaze corrected multi-party video
conferencing.

In the largest extent, background objects can be
recognized and interpolated with correct motion par-
allax, providing a true immersive experience for the
participants.
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