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Abstract

We review some concentration measures proposed in the literature and
present a set of principles that good concentration measures must
fulfill. We moreover look into some of the consequences of these
principles,

The transfer principle is extended to yield a new family of principles,
denoted E(p), but a concentration measure can only satisfy E(p} for

at most one p. We discuss briefly the issue of sensitivity to

transfers and show that Heine's dispersion measures are related to

some well-known concentration measures.

1. INTRODUCTION

Concentration theory or the measurement of inequality deals with rankings of
distributions, In economics and sociology people use this theory to answer
questions like the following. Is the distribution of income in country X now
more equal than it was in the past? Are third world countries characterized
by greater inequality than western countries? Do taxes lead to greater
equality in the distribution of wealth? [1]

In informetrics and Tinguistics one can ask similar questions. Is the
distribution of journals that publish papers on physics more concentrated
than the distribution of journals dealing with sociology? (cf. the Bradford
distribution). Are citations to mathematics papers more unequally distributed
than citations to chemical papers? Give a number to characterize the
difference in word occurrence between the works of Mark Twain and the works
of James Joyce, Are borrowings in a university library more unequally
distributed over the available books than in a pubtic library?

This list of questions and areas of application for a general theory of
concentration is by no means exhaustive, In general we will use the
terminolegy of sources and items. In the examples taken from sociology the
sources are the income classes, the items the people belonging to these
classes; according to the point of view taken by the investigator sources
might also be people, in which case an item is a certain amount of money.

{*) Permanent address.



98 L. Egghe and R. Rousseau

For the Bradford distribution the sources are journals and the items are papers,
but in the case of citation analysis, the sources are papers and the items
citations. In the linguistic example sources are words and items occurrences
of words. Finally, for the library example, sources are books and items are
borrowings., We recall that especially in linguistic studies, one often uses
the terms types and tokens instead of sources and jtems. We will denote the
number of items in the i-th source by x.. The total number of sources is
denoted N, where N > 1, and the relativd number of items in the i-th source,
Xy

i.e. _N'l"' , is denoted 2.

I X

k=t K
To develop a theory of concentration one has to find 2 mathematical formulation
for the intuitive meaning of "concentration" or "inequality”. This means that
we will study functions f of N variables : f(x1,...,xN). In the spirit of [2]
we will develop a set of principles such a function must satisfy in order to

be an acceptable measure of concentratich, Let us already mention two obvious
requirements.

(a) If there is a perfect concentration, i.e. all Xy = 0 except one,Nthen
f(xt,...,xN) attains its maximal value, given a fixed value for £ x
i=1
{b) If all x; are equal (and different from zero) so that there is a perfect
equality, f(xi,...,xN) must be zero.

it

Other natural, but more intricate principles will be investigated further on.

Equivalent to the problem of finding good concentration measures, there is the
problem of finding good dispersion measures. Indeed, a dispersion measure can
be viewed as the opposite of a concentration measure : it measures the way in
which a certain distribution is not concentrated, i.e. is dispersed, If
g(xi,...,xN) denotes a measure of dispersion, principles {a) and (b) become

the following :

(a') If we have no dispersion {i.e., perfect concentration) then
g(x1,...,xN) = 0,

(b') If we have perfect dispersion (i.e. no concentration) then g(x.i....,xN)
N

attains its maximal value, given a fixed total of = X, items.
i=i
If the maximal value in condition {a) is taken to be 1 then & first suggestion
for a dispersion measure g is to put g = 1 - f. This suggestion and related
ones will be studied in & more general context.

In the next section we will review some concentration measures, which were
proposed in the literature, Section three gives the relation between some of
these measures and the discrete Lorenz curve; we will also show that several
of these proposed concentration measures are of the form : a measure of
deviation (or scatter) about the arithmetic mean y divided by u. In section
four we propose a number of principles, i.e. requirements that good
concentration measures must fulfili. We also check which measures satisfy these
principles. Sections five and six deal with related or equivalent requirements.
Section seven considers the important issue of sensitivity to transfers and
finally, section eight considers dispersion measures and their relation with
concentration measures.
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2. CONCENTRATION MEASURES

2.1, It is intuitively clear that the classical notions of standard
deviation (o) and variance (c?), where

N N
2 _1 2 1. .
0" =g I (X,~M)" =g I X;-M
Wyo Nier
Ly T (xexy)? (1)
= T T (x-x 1
2N k=t gt K%

(and p denotes the mean of the distribution), bear some relation on the
notion of concentration, But, as we will show, they do not satisfy
essential conditions for good concentraticn measures,

The above equalities in (1) are readily seen and are well-known.

2,2. The coefficient of variation
v=2 2
7 (2)

was introduced to deal with relative values instead of absolute ones
(cf. the argumentation in [31, p.164 and following). In a similar way
we can consider

V2=9; (3)
u
or Gaston's measure ([4], p.148)
2
18
= = 4
Ga = 5 {4)
or Allison's modified squared variation coefficient [3)]
2
_o_ =4
A—T (5)

2.3. From linguistics we consider the Yule characteristic, defined as

2 2
g ©
T
In [5] Johnson advocates the use of Simpson's index [6] in stylistic
studies.
n
£ A1) %
J = i=1 (7)

nin-

where x. is the number of words that cccur i times and n is the total
number of words that occur in the text under study. Simpson‘s index is
nothing but the number of identical pairs divided by the number of all
possible pairs.

2.4, The Schutz coefficient (relative mean deviation) [7)
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2.5.

2.6.
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1 N

N 2 |X.i‘u1
p - (8)
I TR

According to Gastwirth [8], this measure was first proposed by Yntema [9]
and Pietra in the 1930's.

Pratt's measure and the Gini index. ‘
In order to define Pratt's measture we first assume that the xi's {hence
also the ai's) are ordered decreasingly, Putting
N
g= £ i a'i s (%)
i=1
Pratt's measure C is defined as {[10]) :

N+1

2 (- q)
.22, (10)
Gini's index is then
_ N-1
G="C. {11)

It should be recalled however that the Gini index was introduced in
econometrics [11] long before Pratt's measure was defined, Relation (11)
was established in 1979 by Carpenter [12]. The usual definition of Gini's
index uses the so-called Lorenz curve (see further). Using only absolute
frequencies (xi's), Pratt's measure can be rewritten as :

N N
(N1} T x. -2 £ ix,
i=1 ' =y ]
C = N (12)
(N-1)( = xi)
i=1
or also as :
c=M__ 2 gix (13)
W1 -y 5

We also propose the following generalized Pratt measure (see section
three for an explanation of this terminology) :

N N
1 r1/r
{ I z ;o= Xy
AT 5 4 % -l
P(r) - u ] r > 0 (14)

Theil's measure [13].
This inequality measure is defined as :

med oy &y &
% E G Gh (15)

(cf. the notion of entropy in information theory).
We further remark that in this formula one sets 0.1n{0) = 0.



2.7.

2.8,

2.9.

2.10.
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The variance of the Togarithm.

; N N Tn (xj) 2
L= N.if {Tn(x;) - jEI - .
y NN 2
= Eﬁz k§1 151 {(In X = In xz) (186)

which is only defined if all X #0.

Atkinson's index.
In {11 Atkinson introduced a family of concentration measures defined
as !
b o
Me) =1 - (g2 (PO, (17)
T

- gy M=
.

where e > 0 and e #
If all Xs # 0, A{1) is defined as lim A(e), which is nothing but
el

m {18)

as is easily seen.
Here GM(xi)i denotes the geometric mean of the X i=1,...,N. Remark

that 1im A{e) = 0. The formula for the Atkinson index as presented in
e+0
(£2), p.873) seems to be in error,

The CON-index [14].

In the authors' own words, this index is the standard deviation of the
percentage shares divided by the maximum possible standard deviation in
a system of size N,

This yields :

CON (19)
Since ai
CON (20)

{using (1) and (2)).

Formuia (20) shows that CON is only a variant of the coefficient of
variation.

Lotka's a.

We finally remark that Rao [15] pointed out that when data follow Lotka'

distribution :

101

s
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A
fly) = = (21)

Yy
the exponent o could be used as a measure of concentration. We recall that
in (21§ f{y) denotes the number of sources with y items.

3. THE EXPRESSION 'MEASURE OF DEVIATION' DIVIDED BY THE MEAN.
THE LORENZ DISTRIBUTION

Many concentration measures are of the form : a measure of deviation about the
meah divided by the mean. This is obvious for the coefficient of variation,
Schutz' coefficient and Theil's measure. Here we will show that other measures
are also of this form,

3.1. Proposition

The Gini index €& is equal to
N N

"1‘2' T Ix %
2N~ k=1 %=

1
T {22)
showing that G is also of the special form we are investigating here.
Proof :

By (9), (10) and (11)

N
Z(E,El - = ka)
oo N1e L k=1
N N
N N
z [ ]
T X - I kX
A=A
N
(k§1 xk)
N
13 () - 2K)
z N+1) - X
e k (%)
] .
> 3 | )} (
Now, £ = |x, -x| =2 T (x -x,} (as x 2z x_ for k <®)
k=t g=t K % ke KR k= "e

2 [kg1 {(N+1)xk - 2k xk} .

Substituting this in (*) above gives :
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M=

BT Ix-x,)
z X, - X
T

3.2. Remark

N
The factor -—1-2 I |xk-x£| is known in the Titerature as the Gini mean
N™ k=

1 2=1

difference. It has recently been used [16] as the basis for a measure of
association which generalizes the Pearson product-moment corvelation
coefficient, Kendall's tau and Spearman's rank correlation coefficient.

3.3. Corollary NN
1
—t L L X =%
HNTY oy gy kR
T .

Pratt's measure = (23)

We remark that formulae (22) and (23) are independent of the special ranking
we have used to define G and C,

Proposition 3.1, Corollary 3.3 and the fact that

! oy { )
I I (X, -X
S K OE

1 2}1/2
-k ; (using (1))

-z
¥ =

=|G

suggest to introduce a generalized Pratt measure (in the same way one could
also consider a generalized Gini index) as :
N N
1 r
{ oz Ix.-x,1")
1) gt g R H
H

1/r

B{r) = L, r>0

{cf. [2], p.870). This gives a whole family of concentration measures depending
on the parameter r, For r = 1, P{1) = C; for r = 2, P(2) = (NgT)1/2 V.

The next result shows that although A(e)} has a somewhat similar form it is
more a measure of skewness divided by the mean.
3.4. Proposition

A{e) has the form : arithmetic mean minus the generaiized (1-e)-mean, divided
by the arithmetic mean. Here the generalized (1-e)-mean is given by

N
& xi-e)yl/(i-e) (24)

Proof :
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_q iy1-eyT-e
A(e) =1 (N ‘FE (T) )
PRI x1—e)'1l-é
TR
PN et
TG S S S L
) i=1
. :

Remark that also A{1) has a similar form.

In the sequel of this section we will investigate another relation, namely
that between the discrete Lorenz distribution and some of the proposed
concentration measures,

3.5. The discrete Lorenz distribution

If there are N classes (sources) and there is perfect equality, then every
class contains ﬁ-of the total number of items. The cumulative relative

frequency distribution of this situation is called the discrete Lorenz
distribution of equality and is given by the diagonal points of Fig.l.

4

S
A
S

/M
1/N

1

/!

=Y

0123
Fig.1

When data points (xi)i=1 y are ordered decreasingly we can also consider
sesey

the cumulative relative frequency of the X; {dencted by * in Fig.1}. This

distribution is then the discrete Lorenz distribution of the data. The sum of
the differences between these two discrete distributions is then :

(ag -1} + -2) (s ) -
31 'N' a1+32 N + e ji‘l aj-ﬂ 4+ e "-N
) i
=N a, +{N-1) dy + e+ (N=-(i-1)) By *+ ae 1 ay - l—%~—

"M =
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= (R 1) 2y o e+ (M) =) ag + aee s (1) =N) 2y = 5T
N N
. N+1
=(N+t) T 2, - T i a, -
Pt B i T
K “

The greatest difference between the Lorenz distribution of equality and an
observed ¢ne is obtained when a; = 1, a, = ... = a, = 0. Then the difference
equals ! 2 N

iy _ N+1 _ N-1
RARURE Ul s S 2K

i

M=

1

Normalizing (*) to obtain a value which is always in the interval [0,1] yields

2 (!El - q)
I]-I

This shows the following proposition.

3.5, Proposition

Pratt's measure C is the normalized sum of the differences between the ¢bserved
Lorenz distribution and the discrete Lorenz distribution of equality.

Also Schutz' coefficient can be related to the Lorenz distribution.

3.7. Proposition (cf. [8], Lemma 3)

Schutz' coefficient is equal to the maximal difference between the observed
discrete Lorenz distribution and the Lorenz distribution of equality.

Proof : N
D= i=1
i L ’
(2 = x,/N
j=1 9

which should be equal to

i X .
max { % -Nl—-%) .
Ioa=t 5oy
k
k=1

S50, we have to show that
J N
max [2 (% X5 - ju)] = ¥ ka - i
J i=1 k=1
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To show this, we first remark that for every k € {1,2,...,N}

k N

L (x-w=- I {x;-m) . (*)
i=1 i=k+1

Choose now j € {1,...,N} such that X3 z2uifisjand X; <uifi> 3, Such a

j always exists, if the x;'s are ordered decreasingly (which can always be
achieved via a permutation and a relabeling). Then

3
i=1
=2 z (x..l -u
i=1
h] N
= I (x;-u)- I (x5 =) (by (*))
i=1 i=j+
J N
= £ |x.-ul+ E !xi - u! (definition of j)
i=t ] i=j+1

£ |x-u .
i=t !

N
Hence, the above max is certainly not smaller than I Exk-ul. But, using (*)

J
again we have also, for every i € {1,...,N} :

.i
|2 (% - i)l
k=1

i N N
=| £ (xk-u)- I (xk-u}lgz
k=1 k='i+1 k:

Hence, we have proved that

J N
max (2 (I x; - ju)) = X lxk-ul .
J i=1 k=1

4, CONCENTRATION PRINCIPLES

In this section f(x1,...,xN) denotes a general concentration measure.

4.1, (C1) If all x; are equal, say to ¢ # 0, then f(x1,...,xN) attains its
minimal vaiue, equal to 0.

This is a perfectly natural condition, as already explained in the introductory
section. Remark also that {C1) implies that a concentration measure is never
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negative. All measures considered in Section 2 obviously satisfy this
condition (Even Lotka's « is then zero). Indeed it is in order to satisfy C1
that one uses Pratt's measure C (formula (10}) instead of q {(formula (9)),

4,2, (C2) For every (x1,...,xN) and every permutation m : {1,...,N} + {1,...,N}
we require that f(x1,...,xN) = f(xﬁ(1),...,xH(N)).

This principle expresses that e.g. poverty (or richness) of a nation is not a
labelled property : it is only determined by the overall configuration. Also
this principle is satisfied by all measures considered in Section 2, as is
readily seen,

4,3, Scale invariance : (C3)
This principle says that for every (x1,...,xN) and ¢ > 0 :
f(cx1,...,cxN) = f(x1,...,xN)

1t expresses the requirement that a good concentration measure should not be
influenced by the units. Returning to the case of income distributions this
means that there must not be a difference whether we calculate the income in
dolTars, yen or rupees,

The standard deviation (o) and the variance (02) do not satisfy this important
requirement, neither do Gaston's measure {Ga), Allison's modified squared
coefficient of variation {A) and Simpson's index (J)}. From now on these measures
witl not be considered anymore.

However, concerning Allison's modified squared coefficient of variation, we
should point out that Allison was fully aware of the fact that it is not scale
invariant for the observed data {in his case, these data were publication
numbers). He shows however that A is scale invariant for the underlying latent
rate of publication {[3], [17]}.

4.4. (C4) "When the richest source gets richer, inequality rises".

This principle is a very natural one : it has two requirements : the first is
the one mentioned above and the second is its dual : when the poorest source
gets poorer then too inequality increases. In a mathematical formulation this
becomes the following.

(C4a) If Xy = max {x1,...,xN} and if there exists a k # i such that X #40,
then, for h > 0,

f(x1,...,xi+h,...,xN) > f(x1,...,xN) .
(C4b) If X = min {x1,...,xN} and 0 < h = X; then
f(x1,...,xj-h,...,xN) > f(x1,...,xN) .

The principles {C4a} and (C4b) can be expressed in a different way as shown in
the next propositions.
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4.5, Propositions

A. (C4a) is equivalent with (C4a') ;
(C4a'). If Xq = max {x1,...,xN} and if there exists a k # i such that X # 0,

then, for h > 0, f(xi,...,xi-h,...,xN) < f(x1,...,xN) as long as
xi-h 2 Xe» for every t # 1.

B. (C4b) is equivalent with (C4b'} :
(Cab'), If Xj = min {x;,...,xy} and 0 < h then

f(x1,...,xj+h,...,xN) < f(x1,...,xN) as long as xj+h g N for
every t £ j.

Proocf :

A. The implication (C4A) = [C4a') is trivial.
Suppose now that (C4a') is satisfied, then

f(x1,...,xi,...,xN) = f(xi""’(xi+h)' h,...,xN)
< f(x1,...,x1+h,....xN} ,

as x; = (xi+h) - hz x, for every t # 1. This shows the implication
(C8a') = (Cda).

The proof of part B is similar and is left to the reader,

Lotka's o does not satisfy Cd4a or C4b for a change in one source destroyes
the Lotka distribution.

We will now check whether the remaining concentration measures satisfy this prin-

cople. For convenience we only check (C4a); (C4b) can be dealt with in a similar
way.

4.6. Proposition Ve {hence also V, K and the CON-index) satisfy (C4a)}.

Proof :
If x; = max (xj), then we essentially have to show that
J
(x1.+h)2 + 5 x? £ xg
hjf'«',h >
(v +q) u

This is equivalent with the requirement that

W (2 xd e 2 xjh e 02) > (N 4 2 kb« h) (2 XD)

J J
or, using the fact that b xg < uzNz. that
J
2 uZNinh + uNK2 2 2 unN.(x xJ?) + h2u2Ne .
J

2

As uin = (g x.).xi 2 E X5 this proves that V2 satisfies (C4a).

J
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4.7. Proposition. Schutz' coefficient, Pratt's measure and the Gini index
satisfy (C4a).

Proof :
This follows immediately from their interpretation using the discrete Lovrenz
curve (Section 3). Indeed, adding h to x; yields a cumulative relative
distribution which lies strictly above the original one. Hence Schutz'
coefficient, Pratt's measure and the Gini index increase.
4.8. Proposition, Theil's measure satisfies (Cda),
Proof
We consider the function

X, +h X: +h

X Xk i i
fih) = £ (—{) In{—f) +—F In (—)
k#i U+N IJ"'N H +N II""N'

anc(i §how it to be increasing in h. For this we calculate f'(h) and show that
f'(h) > 0.

-ka ka Nu +h -ka

Nx
k
ft{h) = ¢ n | )+ ¥ . .
K (Ng+m?2  IVERT T R TG T g ny?

N(Ny+h) -N(xi+h) X; + h N(x1.+h) Ny +h

+ In ( ) + . .
(Nu + h)* e TR - NOx; #h)

N(Nu +h) = N(x, +h)
(N + h)®

So, we have to show that

N(x, +h) ]

i Mg
(- %) [1+ 10 (e | > % 1+ ]

k#i
As Tn (N(x.+h)) > In (ka). for every k # i, this inequality is obviously
satisfied.
4.9, Proposition. The variance of logarithms, L, satisfies (Céa).
Proof :
¢ NN 2

L= v kii 9,51 {(Tn x, =1 x0)° .
When x, is replaced by x; +h all terms in this sum stay the same or increase,
hence 'L increases. !
4.10. Proposition. Atkinson's index A{e) satisfies (C4a).
Proof :

Let e # 1, then we consider the function
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(= x1-e . (x_i +h)1-e)1/“-e)

£(n) = 321

1/T1-e) h
N (U""N')

and show it to be decreasing for h z 0.
Taking the derivative yields :

T, -T

£ < oyl gy

N {u ""N)
with
e
T1 =(z x;.'e + (xi +h)1-—e)T$_ (><1.+h)'e (u +£-)
J#

and

1
T, = {= x}_e + (xi +h)1'e)T:é-.]g[ .
J#
This means we have to show that

i-e 1-gy~1 -a h 1
(z X +(xi+h) )] (xi+h) (u+N)-N<0

J#
or
WN+h < (2 x® w (e m) T8 (x, +h)E .
j# I } ’
Now,
WN+h={(zx.)+h= % x1-e & . {x, +h)
i gl
<(x1.+h)e.lz.x1."e +(x1+h) {as e > 0)
J#
_ 1-e 1-e e
=(z X +(x_i+h) ).(xi+h) .

J#i

This proves Proposition 4.10 if e # 1.
For the case e = 1, we consider the function

1/N
1IN Mx,+h I x.)
g(h) - (X1---(Xi +h)s-.XN) . j J j#i J
u+% u+ﬁ
Then,
1 - h X
(T x,+h T x,) I oxs (uAgt-{Ix,+h T x.}",
o'(h) = R L A T
(u+§)ﬁ"r

Now, we have to show that
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-1 h

(Mx, +h T x,) ' . 0 %x,.(p+y) =1<0
FRE I VTR R

or

Nu, T x,+h, I x, <NIx,+hN T x,.
j# I g 3§ j#

As u s X and N > 1, this is obvious.
This finishes the proof of Proposition 4.10.

Finally, we have to show that the generalized Pratt measure satisfies(Cda).
As the proof we will present is rather long we postpone it to the appendix.
Here we only state the proposition.

4.11. Proposition. The generalized Pratt measure, P{r) satisfies(C4a)}, for
rzl.

An important consequence of (Cda) is that if f satisfies (Cda), f depends
explicitly on all sources. Indeed, if f would be independent of the i-th
source, one could add items to it untill it becomes the richest (without
changing the value of ), An additional increase in items would still yield
the same value for f, but this would contradict principle (Cda).

4.12. (C5) The principle of nominal increase.
This principle requires that an equal, nominal increase in each source
strictly decreases the global inequality. More formally this becomes :
for every (x1,...,xN), where not all x, are equal, and h > 0 :

f(x1+h,...,xN+h) < f(x1,...,xN).

The principle of nominal increase is equivalent with the requirement that the
function F(h) = f(x1+h,...,xN+h) is strictly decreasing on [0,+=[.

Indeed, if an inequality measure satisfies this requirement then :
vh >0 : f(x1+h,...,xN+h) < f(x1,...,xN) .

Conversely, if h1 <hy, and if f satisfies the principle of nominal increase,
then

f(x1+h2,...,xN+h2)
= f(x,l +h1 + (hz-h1),...,:‘(N +!':1 + (hz-h1)) < 'I"(x1 +h1....,xN+h1) .

It is easy to see that V, v2, K, CON and D satisfy (C5).Adding a fixed value to
each class again destroyes a Lotka distribution, so that Lotka's o does not
satisfy this principle. Consequently, this measure will not be considered

anymore in the following.
The next propositions show that P(r) {and hence also C and G and once more V),
Th, L and A(e) satisfy{(C5).

4.13. Proposition. The generalized Pratt measure satisfies the principle of
nominal increase,
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Proof :

As N
T |x, -x.|r)1/r
= i j

NN-T7 .54 52
P(r) = 1=1 3';

N
T

we see that adding h to each x_ does not change the nominator. The denominator
on the other hand, increases #hom W to p+h. This shows that P(r) satisfies (C5).

4.14. Proposition. Theil's measure satisfies the principle of nominal increase.
Froof :
It suffices to show that the function

N x1.+h x1.+h

is decreasing in h. Hence we will show that F'(h) < 0, for every h > 0,

PO - 2~ i L 4 1)
! = X n + .
i=t (u+h) W

We suppose now that not all X; are equal and that they are ordered increasingly.
Let j be the largest index in {1,...,N} such that x:j £ p (so j < N}). Since
N

£ {u-x:) = 0 we have :
i= 1

J N
o (u-x) == T (M-xs) . (*)

But

(e h 2 ) i i x1.+h
u+h)=.Fr(h) = _21 {u X.-l)“n (m) +1)
1=

: (4 - x: M (—ﬁx"+h) }
+ T -x.}(1In 1} .
jger TR

Hence, by the definition of j, we have the following majorization :

J X.+h
(u+hPF*(h) < k3 = x)0n (L) + 1)+

P ex0n G0 L)
b u-x:){1n + 1
i=j+ ! h

with equality only if X = ... = :.<j < x‘i+1 = ... =

Using (*) this gives :
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L0

2 ., j xJ.+h xj+1+h
(u+h)® F'(h) 2 'i>=:1 (l-l"'xi)“n (m) - 1n (—I-T—"’—h—)) <0,

for every h > 0.
This finishes the proof of the propesition.
4,15, Proposition, The variance of logarithms satisfies the principle of
nominal increase,
Proof :

We have to show that :

1 N n ( ) N 1In (x.+-h))2
Z (In{x;+h) - £ ————1%-——
¥ 1 i
1 N N 1n xj 2

or

N N ’
T E {In{x,+h) - In {x.+h))
i=1 j=t 1 J

N N 2
< T (Inx,-tTnx.), h>0.
i=1 j=t 1 J

This inequality is obviously satisfied as Tn is an increasing concave function.
Finally also Atkinson's index satisfies the principle of nominal increase,
4.16. Proposition, Ale), e > 0, satisfies the principle of nominal increase.
Proof :
We will show that the function
1
N
1 (1 T (x-i +h)1'E).1'_e

‘E)Fe_ = i=1

P
NI, (x+h)

i=1

1 Nxgrh
Fih = g = Gw)
j=

is increasing in h (h z 0), This will prove the proposition for e # 1.
Calculating F'{h) yields :
T =T,
{x;+ hy)?

N

Fi(ny = Y
NTe

4

j

KM

1
with
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N s N N
Te= g (X 0gem ™ (5 (e)x «n) ™). 2 (x; +m)
i=1 i=1 i=1
and
1
T, = ( (. +h)1-e)T:é-.N
i=1 !
Then :
B '16_ N 1-e Té" N e ¥
N €(x (x1.+h) yi-e  (x,+h)*., = (x_i+h)
F'(h) = i= i=f 1 i=1 - N
R 2 X 1-e
(£ (x,+h)) T (x1.+h)
i=t 1=1
Now, to prove that F(h) is increasing, we have to show that F'(h) > 0, or :
N o N N 1-e
z (-xi+h) « E (x;+h) >N. = (x,+h) .
i=1 : j=1t ! i=t !

This follows from Tchebycheff's inequality {(18], p.43), but for the reader's
convenience, we include a complete proof for the particular case we need,

N
(xi +h).. I

N N
N (xj-i-h)‘l"‘e -z
i i=1 Jj=1

(x,+n)"¢

3=1 5"
NN

=2 0T (uem® s (e h)x, +h)79)
ist j=  J ! J

N. N
Tor ((x +n)ie (x; +0)(x; +h)™®)
j=1 i=1 J

k3 ((xgh) 1™ = (xah)xgem)™® o (xg o) 1€ = (o oh) (g 40) )

1
o —

-1 I (O o) - Grya ) (0 )7 = (g en™®)
This expression 1s only smaller than 0 for every (% +l'|).I if the power of
(x_i +h) is such that it reverses the order, i.e, when -e < 0 or e > 0, As this
is always the case, this proves the proposition for e # 1.
N T {x +hy!/N
For the case e = 1 we have to show that the function — =)
b3

{x.+h)
i=t !

increases, or that its derivative :
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N

1

N N
/N 1 2
1 (x_i +h) . [1'51 (X_i +h) . .E (?c\']"ﬂ'i) - N ]

i=
T " >0.
(x (xi +h))
i=1
This again is a consequence of Tchebycheff's inequality ([18], p.43).

4.17. (C6) The transfer principle

This principle, originating from Dalton ({19]) states that if we make a
strictly positive transfer from a poorer source to a richer, this must lead
to a strictly positive increase in the index of inequality. Fermulated in a
precise mathematical way this is : if X; S xj and 0 < h =2 X then

f(x1,...,xi,...,xj,...,xN) < f(x1,...,xi-h,...,xj+h,...,xN) (25)
We remark that such a transfer leaves the arithmetic mean unchanged.

Again it is easy to show that o, hence uz. v, Vz, K and CON satisfy the
principle of transfers, The fact that the generalized Pratt measure P(r)

(and hence also C, G and again V) satisfies the transfer principle will follow
from our investigations in Section 6. Here we wi]l show that Schutz' coefficient
and the variance of logaritims do not satisfy(C6}.Theil's measure and the
Atkinsen index on the other hand do satisfy the transfer principle.

Schutz' coefficient does not satisfy the transfer principle for changes

MUWalq wdxjsmhtMtxj+hismm1hrtMnu,on mmhtMtxi-his

larger than p, obviously leave D invariant. So, the relative mean deviation
is not a good measure of concentration.

Also, the variance of Togarithms does not always satisfy the transfer
principle.
4,18, Example

Take N = 4; X = 1, Xy = 2, Xg = 24, Xy = 25and 1 =3, J =4, h=1. Then

L = 2,0936 and after the transfer L becomes 2.0929, so that in this case L
decreases instead of showing an increase,

Allison ([2], p.868) writes that this effect happens when x5 and xj are both

larger than e (~ 2,718} times the geometric mean, We were unable to verify
this assertion,

We also remark that for N = 2, L does satisfy the principle of transfers (see
appendix). But, of course, this remark is unimportant in practice.

4,19, Proposition. Theil's measure satisfies the principle of transfers.
Froof :

We have to show that

xi-h
u

X.+h X xj
Y o+ (xj+h) In (--'J-——-u 1> x, In (T) + Xy Tn (T) .

(xi- h) 1n ( ;
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or (xiﬂ h) 1n (xi- h) + (x;+h) In {x,+h) > X n Xj + %y In X+

This follows immediately from the fact that the function t In t is convex.

4.20. Proposition. Ale} satisfies the transfer principle, for every e > 0.

Proof :
For every 0 < e £ 1, the function H{t) = tl-e
for every h > 0, and X5 S X

is increasing and concave, hence,

d
H(x_i) - H(x,i -h) z H(xj+h) - F!(xj) (*)
As
Bt
1-e,T-e -2, 1-e
(N =)} - (kzl X )
Afe) = I
NT:E.U

(*) and the fact that J(t)} = t1/(1'2) is increasing shows that such a transfer
diminishes the second term of the nominator, hence A{e) itself increases.

If e > 1, the function H1(t) = t1'e is decreasing and convex, hence, for h > 0

and x, £ X,
1 J

Hylx; = h) = Hylx;) 2 H1(xj) - H1(xj +h) {**)
N 1-e T!-e“

This shows that the term { & Xy ) increases, but as J1(t) =t is decreasing
k=1

1

in this case, ( g x;'e)1:€ decreases as a whole, which shows that A(e)
increases. .
Finally, as (xi- h)(xj-+h) < xixj also A(1) satisfies the transfer principle.
In the next sections we will study some consequences and extensions of the
transfer principle. Here however, we already note one important consequence.
4.21. Theorem
If f satisfies the transfer principle (C6), then

f(n,0,...,0) = \ max  Flxg,...,%)

r X . =n
k=1 K

Indeed, one can transfer one unit at the time from a poorer source to a richer
one, By the transfer principle, the function f increases during this process.
It stops when one source contains all the items. As a consequence, it 15 at
that moment that f attains its maximal value.

4.22. 1t could also be argued that a good measure of concentration should vary
between 0 and 1 :
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Principle (B) : For all (x1,...,xN)
0 s f(x1""’xN) £ 1

However, this principle is only a mathematical convenience. It should not imply
any preference, as simple transformations can produce any desired bounds. If a
measure T is positive and does not satisfy the requirement that f < 1, then we
can use the transformation

.F
frrv7

This yields an increasing function of f with values in the interval [0,1].
The transformed function satisfies (C1} to (C6) if f does.

4,23, We conclude that the following measures satisfy all our concentration
principles and hence might be considered to be good concentration
measures in the case the number of sources stays fixed : the coefficient of

variation (V) and its square (Vz), the Yule characteristic (K), the CON-index,
Pratt's measure {C) and the Gini index (G), the generalized Pratt index, P(r},
for r 2 1, Theil's measure and Atkinson's index.

4.24. Remark

The principles we have studied in this section can be described in a more
abstract mathematical framework. Then they are a consequence of the fact that
good concentration measures must be strictly Schur-convex and scale invariant.
For the reader interested in this mathematical theory we refer to [20].

5. REQUIREMENTS RELATED TO THE TRANSFER PRINCIPLE
5.1. An equivalent formulation

Instead of taking from a poorer source to give to a richer in order to increase
the inequality, one may also consider the opposite, Does giving to the poor what
has been taken from the rich diminish the inequality? And, is this in some sense
equivatent with the transfer principle as expressed in (25)7 The exact answer is
given in Theorem 5.2. We thank professor I.K. Ravichandra Rao for suggesting

us to investigate this matter.

5.2. Theorem
If f satisfies(C2)then the transfer principle :
0<x15xj;0<l1sxi- (25)

f(x1,...,x .,x.,...,xN) < f(x1,...,x1-h....,xj+h,...,xN)

joreeaXy
is equivalent with the following

0<xisxj, |(x1.+h)-(xj-h)|<xj-x1.-> (26)

f(xt,....xi+h.....xj-h,....xN) < f(x1,...,xi,....xj,...,xN)
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Proof :
A, (25) = (26)

(i) If0 < (xj+h) - (x1.+h) < X5 = X then x, +h < xj-h and h > 0. Hence (25)
implies that

f(x1,...,x1. +h,...,xj -h,...,xN) < f(x1,...,xi,...,xj,...,xN) .

(ii) If 0 = (xi +h) - (xj-h) < %y - X4 then obviously X +hz xj-h. Moreover,
(xi+h) - (x.-h) < X5 = % implies that h < X5 = %y or 0 < X3 - h - Xy e
Then {25) implies that

1’()(1,...,x_i +h""’xi

{with (xj -h-x1.) in the role of h).

—h,...,xN) < f(x1,...,xj,...,xi,...,xN} .

This proves part A. {Remark that we have used the fact.that f satisfies {te).
B. {26) = (25)
IfF0<h éx_i, and X3 < xJ. then
|x,i-xj| = x5 7% < (xj+h) - (x;-h) .
By (26), this implies that
f(x1,...,x1.,...,xj,...,xN)
= f(X1 ,...,(X.i'h) + h,...,(xj+h) - h,...,XN)
< f(x1,...,xi -h,...,xj +h,...,xN) .

This proves part B.

5.3. Remark

It is easy to see that (25) and (26) are also equivalent with
0<x1.ng;05(;(J.oh)-(:n(,i+h)<xj-xi (27)
- f{x1,...,x1. L (PN P h,...,xN) < f(x1,...,xi,...,x.,...,xN)

J J

Indeed, {26) = (27) (trivial) and (27) = (25) as in part B of the preceding
proof. Finally, (25) = {26) (part A of Theorem 5.2).

The transfer principle is also equivalent with the following,
5.4. Proposition. The transfer principle is equivalent with the requirement
that for X 8 xj the function
Alh) = f'(x1,,..,x1. “RyuuasX, +h,...,xN)

J
is strictly increasing on [0,x;].
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Proof :
If f satisfies the transfer principle and h1 < 112 then
f(x1,...,x1.-hz.....xj+h2,...,xN)
= f(X1,...,Xi - h.' - (hz"h1);-- -sxj+h1 + (hz—h1),...,XN)
> f(xi,...,xi -h1,...,xj +h1,...,xN) .
Conversely, if A(h) is strictly increasing then vh € ]O,Xi}
F{Xya0eesX; -h,...,x.+h,...,xN) > f(XT""’xi""’xj""’XN) .

J
The transfer principle entails the following interesting consequences,

5.5. Proposition
{ i) If f satisfies the transfer principle then
f(x, +h,x2-n}_lr,...,xN-Nl_1T) > £(xq5-00%)
where 0 < h 5 {N-1).min {x2,...,xN} and
Xq = max {Xyy.ee sy} (28)

(ii) If f satisfies the transfer principle then
h h
f(x1 - h,x, +N'—T"“’XN+N7T) > f(x1,...,xN)
where x, = min {x1,....xN} and 0 < h < X4 {29)

Procf :

We will only show (i), (ii) follows in a similar way.
By the transfer principle, we have to following inequalities :

h h
Xy eeaty) < FOxy 2ETrs Xp -y Xgaeeoaky)
h h 2h h h
IERS o PR Xgse e aXy) < F(Xg 4 g Xy = o x3-ﬂ-_f""’xN)

(N-2)h h h
U R = e PR = SIRETL IR, = S

h
NRECRAIEC RS = SR e =
Combining these (N-1) inequalities yields the required result,

It is remarkable that, although in practice, (28) is almost the same as {C4a),
the proof that P(r) satisfies (C4a) is not trivial while the proof that P(r)
satisfies (2B8) is easy, as can be seen from the following direct proof.

5.6. Proposition. The generalized Pratt measure P(r) satisfies (28).

Proof :
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We have to show that

| "2z LRI
¥ Oro|x,-X. +2 I (x,+h - X, > L LI |X:-X
j=2 jeo 1 3 R R e

r
;]

which yields
N N
N _ r _ r
151 (x1-rh =T xi) > 151 (x1 xi) .

This inequality is obviously satisfied,

The main difficulty in proving {C4a) for P(r) {or any other measure) lies
mainly in the fact that in this principle _2 X5 does not remain constant (as
opposed to the situation in (28)). This 151:;wever a very natural situation
{in econometrics : the total wealth of a country is not constant in time; in

bibliometrics : the total number of articles in a bibliography over a fixed
time interval, is not constant in time, and so on).

6. THE EXTENDED TRANSFER PRINCIPLE

In this section we introduce a family of principles, related to, and in fact
extending the transfer principle.

6.1. The E(p) principle

If (x1,...,xN) is transformed into (xi,...,xﬁ) such that

N N
I X, = X X!
i=t ' =t
and
N N p, NN
b 1x.-xj[ < ¥ ¥ Ix%-xﬂp, p21
i=t j=t ' i=1 j=1 J

then f(xl,-..,XN) < f(xis---:xﬁ)-

v, Vz, K and CON obviously satisfy E(2); C and G satisfy E{1) {by Propositign
3.1 and Corollary 3.3); P(r) trivially satisfies E(r), for every r 2 1,

The next proposition shows that E(p) is indeed a generalization of the transfer

principle.

6.2. Proposition. If a concentration measure f satisfies E(p) for some p z 1,
then it satisfies the transfer principle,

Proof :

By induction on the number of sources (N).
Suppose that (xk)k_1 N is ordered decreasingly and let (x&)k_1 N
Slycawsy Slpeees
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denote the sequence (x1,...,x. +h.....x.-h,...,xN) where i < jand 0 < h 5 x..
We have to show that 1 d 3
N
z
k=1

n M=

I P Pl I P
X, =X < I [Ix'-x! (*)
1 k "% k=1 =1 k"2

For N = 2, this inequality becomes

p - p

(x1—x2) < (x1 x2+2h} ,

which is obviously satisfied.
We suppose now that {*) is satisfied for N and we will show that then (*) is
also satisfied when N is replaced by N+1, We suppose the vectors to be
decreasing.
a) If x.‘l = Xy +h and XI:M = xj-h, then (*) is trivially satisfied for N+1.
b) We now suppose that Xj # xgthor xy o # X; -h.

b1} Suppose XNet 7 X - h, hence xy 4 < X -h {and XNe1 = xl{m).
Deleting XN+ gives the following N-sequence :
(x1,...,x1. +h,...,xj - h,...,xN) {denoted (xli)k=1,...,N)' Then

N+1 N+1
Eor o |x -xlP
k=1 2=1
N N
= ¥ X |x,~x,P+2 T (x -x )P
k=1 2=1 k & k=1 k "N+
'y s | |P I( P (**)
< T T olxt-x!P+2I{x, -x ..t ek
k=1 2=1 k e 1 "N+l

- p _ p - p
(x_i XN+1) +...+(xj XN_H) .. +(xN XN+1)]

{(using the induction hypothesis).

Consider the vectors A = (x}. - XN4qo xJ. -xN+1) and

B = (x1. \LEE R X4 = h-xN+1). Note that all components are non-negative.
It is easy to see that [18], p.B9 is applicable to A and B and hence
(since o{.) = |.|P is convex)

p p ] ] p
O R L ACRLM WOLE U RLEL WY
Substituting this in (**) gives

N+1 N+ : [p
I OE [x, -x

k=t 2=t K %
N N

< E T px-xP 42 0(x,-x ) LA R
k=1 2=1 k "% 1 "N+l
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. +(x.i +h-xN+1)p P (xj-h-xN+1)p e + {xN-xN+1)p]

N+1 N+
= ¥ ¥ |x|'(-x91]p.
k=1 £=1

b2} Suppose X{ # x; + h.
This proof is exactly the same as the one of (b1).

This finishes the proof of Proposition 6.2.

6.3. Corollary

The generalized Pratt measure, P(r}, r 2 1, satisfies the transfer principle
and hence, so does V, C and G.

6.4. Remark

There does not exist a function f(x1....,xN) that satisfies E(p} for every
pE ND. In fact, we can show [21] that if a function f satisfies E(p) for some

fixed p, it can not satisfy E(q), for all q # p, at least if N 2 3, which is
always the case in practical applications, (If N = 3 then the above is also
true except for (p,q) = (2,4) or (p,q) = (4,2}; indeed : if N = 3 then

E(2) = E(4) : see [21]).

6.5, Definition

As a kind of limiting property for the principles E(p) we also formulate a
principle E(=} as follows :

If (x1,...;xN) is transformed into (xi....,xﬁ) such that

N N
F X, = £ x;
i=t v =1 ]

and

max |x; - x| < max |x§-x}|
IS
then

f(x1....,xN) < f(xi,...,xﬁ) .

Now, one might conjecture that alsa E{~) implies the transfer principle. That
this is not so can be seen as follows. We define a measure P(=) by
1
P(=) = < max |x, - x.]
big 1
It is easily seen that the measure P(=) is a limiting measure of the measures
P{r) since

N
im{ g |x r)1/r = max [x.| .
r~mi=!l'! i .l
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This argument also explains why the notation E(»} is used above.

For this measure P(«) we show the following.

6.6. Proposition. P(=) satisfies E{x) but it does not satisfy the transfer
principle, if N 2 4,

Procf :

P{=) satisfies E(=) trivially. To see that P(=) does not satisfy the transfer

principle, an example suffices.

Take N =

Xy = 1, Xy = 2, Xg = 3, X4 = 5

|
o

xi =1, xé =1, xé =4, X& =
{hence i =2, 3 =3, h=1). Then
P(){1,2,3,5) % P()(1,1,4,5) .

6.7. Remark 1

It is easily seen that, if N = 3, E(») = E{1) (see also [21]). Hence only in
this trivial case, E(} implies the transfer principle, since E(1) does.

Remark 2

The facts that E(p) implies the transfer principle and E(«} does not (if N z 3),
do not contradict each other. Indeed, although E{=) is a limiting case of the
E(p)'s, this does not mean that E{=) inherits all properties of the E{p)'s.
The problem lies in the fact that if

max |x, - X3 | <max |x; - %] Y
i,d 1,

then there is a p > 0 such that

ok -x P < oz |xt-xtP
ig o v eyt

but this p depends on the particular difference max |x -x! - max |x - X; |.
. 1,

So, the only thing that can be said is, that if f satisfies E{p) for every p

larger than some fixed p, then f satisfies E{=). However ne function of this

kind exists {cf. Remark "6.4).

It is possible that a measure satisfies the transfer principle and, in fact,

all other principles C1 - C6, without satisfying any of the E(p}'s, p 2 1.
This is shown - several times - by the next results.

6.8. Proposition. Theil's measure does not satisfy any of the E(p} principles,
pzl.
Proof :

Let N =3, X = (x1,x2,x3) = (2,47,134) and X' = (xi,xé,xé) = (8,34,141). He will
first show that, for every r 2 1 :
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3 3
R iﬁ"ﬁr<.§ ]q-ﬁf . (*)
i,d=1 1,j=1

For this, it suffices to show that, for every r 2 1 :

45" + 1327 + 87" < 26" + 133" + 1077,

We put :
A = (a1,a2,a3) = (132,87,45)
and
B = (bi,bz,b3) = (133a,1072,260)
264 3 3
where o = . The parameter o ensures that £ a, = £ b,.
%6 ERR R

Furthermore : 4y = b1 and ay +a, £ b1 + b2. As also 3y 22,2 2y, b1 2 bz 2 b3
and r = 1, we can apply [18], p.89 once more, showing that, for every r 2 1 :
1327 + 87" + 45" < (1330)" + (1070)" + (260)" .
Hence
132" + 877 + 487 < 133" + 107" + 26" , ,

3
which shows that (*} is satisfied. We also have I X; = I

x,i = 183, but
i=1 i=1

Th{X) = 0.472 > Th(X'} = 0.448 ,
showing that Th does not satisfy E(p), for every p 2 1.

6.9. Proposition. Atkinson's index A(e) does not satisfy E{p), for every p 2 1.
Proof :

We will show this only for e = 0.5, e = 1, e =2 and e = 3. We begin with the
same example as in Proposition 6.8. Since

vZ + /BT + /T38 = 19.846 < VB + /34 + /TAT = 20.534

we see that A(0.5) does not satisfy E(p), for every p2 1.

Also, since
(2).(47).(138}) = 12596 < (8).(34).{141) = 38352 ,

we see that A(1) does not satisfy E(p), for every p 2 1.

Finally, choose X = (x,[)?gl and X' = (x{)?=1, such that, for every pz 1 :

g [x, - x|P < g Ix}-x:|P *)

g=t I g T

and such that

N N
I X = I X

KT (**)

i
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(and no x; or x; is zero).

When N = 2, this can be realized by taking X = {x,x) and X' on the line segment
Joining {2x,0) and (0,2x), but X' # X and not on the x-axis or y-axis, see
figure 2,

¥
(0,2x)

(x,2} =X

0 (2x,0)
Fig.2

Since (*) is also valid for p = 2, we have, by (1) in 2.1, that {continuing
with N = 2) :

x% + xg < x1'2 + xéz (*%%)
We now show that (**) and (***} imply that

i 1 1 1

ZrtIlTtr

X1 Xz X1 X2

Indeed :
2,.2 Y
CL1 X% X
P S 2,2
1 %2 X% X1%p

But Xy + Xy = x1' + xé, hence

x? + 2x1x2 + x% = x1'2 + inxé + X5
So, (***) implies

X4Xo > xixé R {wwn)

This yields

This, in turn, together with (*) and (**) yields that A(3) does not satisfy
E(p) for every p z 1. Also,

L, Mt K g
x1 Xz X1x2 X1X2 X1 XZ

by (**) and (****). This shows, together with (*) and {**) that A{2) does not
satisfy E(p) for every p z 1.
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6.10. Remark

In [21], it is shown that, when N = 3, E(1) = E(=). Consequently, we have that
Th and A{e) do not satisfy E{=} also.

7. SENSITIVITY TO TRANSFERS

7.1. The transfer principle describes an increase of funder the transformation
(xi,...,xi,...,xj,...,xN) - (x1,...,xi- h,...,xj-rh,...,xN)

where X5 S xj and 0 < h £ Xgs but it does not say anything about the degree of

increase in function of other parameters. One such parameter could be the
difference between X, and X; or the place where the transfer occurs (when the

N sources are ordered in some natural way}. Considerations on this kind of
sensitivity are given e.g. by Atkinson ([11) and Allison ({21, [31).

In this context we first offer the following proposition.

7.2. Propesition, If, for every 1 and j, G, j(t) = f(x1,...,xi,...,x.,...,xN)
»
is only function of t = xj = Xis Xy Z Xy then the following
are equivalent :

(a) the functions Gi,j(t) are strictly increasing, for every i,j;
{b) f satisfies the transfer principle.

Proof :

If the functions Gi,j(t) are strictly increasing then obviously

f(x1,....xi- ByoeusXs + h,....xN) > f(x1,...,xi,...,x.,...,xN) .

J J
, tz - t1
Conversely, if 0 = t1 < tz, take X5 and xj such that X3 2 ———1r——-and
t, -t
2

X; =Xy = t1 and put h = 1, then, by the transfer principle :

J

Gi,j(ﬁ) = f(x1,...,xi,...,xj,...,xN)

t- Y t2 %
< f(xT,...,xi T Xy +——+2—~—,...,XN) = Gi,j(tz) .
This proves the proposition.

7.3. The expression f(x1,...,xi- h,...,xj +h,...,xN) can also be studied as

a function 6f "the place"where the transfer cccurs. As there are actually
two places where chaqges occur, the simplest way to proceed is to consider f

as a function of 3—%J-. This approach makes the most sense when the sources

have some intrinsic ordering (i.e. are not just ordered from largest to
smallest), as is the case when studying the income distribution of a country,
where sources are income classes.
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The problem of sensitivity of a concentration measure depends largely on the
specific situation to which the measure is applied. For instance, Allison [3]
argues - in the case of publications or citations - in favor of a measure that
is equally sensitive to differences at all levels of the distribution. The
coefficient of variation satisfies this requirement.

We will now review the sensitivity of some of the good concentration measures
we have found in section 4. We leave an exhaustive investigation for further
research. In what follows, Af denotes the difference between

f(x1,...,x1. —h,...,xj+h,...,xN) and f(x1,...,x .....,xN). 0<hsx

J
4
X_i = xj.

PRI

i it

7.4, Sensitivity of \!2

2

Ay i‘:? (g =h= & (gen=w? = (k=0 = (x5 =007

_ 2h )
"@Z ((xj X;) +h}

This expression depends linearly on the difference between x. and X but is
independent of the place where the transfer occurs. J

7.5. Sensitivity of Theil's measure

ATh = Niﬁ [(xi - h) ]n(xi -h) + (xj+h) ln(xj +h) - X3 n Xy = X5 n xJ.]

1 (. 1 xi-h : xj+h xj+h)
= . 1n + X, In +h 1n .
A A S
To estimate the meaning of this difference we will show that
lim _.___.QI_"_X_ 1.
0 1 i
h 1n (%)
ﬂi xi
X: = h X, +h X; +h
i b
x; 1n x: )+xj Tn (= )+h‘[n(.£%.___ﬁ)
T1im x.J
0 h 1n (i-J;-)
i
= {using L'Hépital's rule)
oxe 2 -
LY . Xj i xJ.+h i (:&,i h)(x_i +xj)
. {x.i - h)-xi (xj "’h,oxj xi -h (xj +h)(x1 - h)Z
lim

X,
k0 Tn (T‘:')
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X
-1+1+1n(§']7)+0
. X, - =1.
n (<)
X5

Hence, for small h, ATh depends linearly on the difference between In X5 and
n x,.
1

7.6. Sensitivity of Pratt's measure

lLet j < i, hence X; < xj. Then

_ N+ 2

N
C1 = N:T - m kE1 kxk (for'mu'la (13))

and Ca, after a transfer of h from X to xj :

N
L 2 :
A S S e S

where (xl'()k is the transformed, ordered sequence consisting of X; -h, xj +h
and x ., k # 1, k # J.

Suppose now that Xg- h has a rank equal to i+s and that the rank of xj +h 1is
j=r {r,s # 0), then

a€ =G, - G4

_ 2 . : . .

= TRy LHGrdxg e+ Gmrstdxg g+ een + (=10%g_y + 3 ]
- L) {xg e h) o+ Goredxg o+ e+ 5 %]
0y Gy g+ e+ (s)xg ()

- [i Xie * (1'+1)x-+2 + o + (H4ser)x,

i jag * Li48)(xg = M)1)

= IWTT%T:TT [h{i+s=j+r) - Xjop = Kjopsd T ver T Xjog K EXG Xy ¥

ane T . - N
Xipg ~ § x1]

In the special case where there is no shift in rank

_ 2h {(i-j)
5C = SRTRAT ¢
as is readily seen.

For typically shaped income distributions the Pratt measure (and the Gini index)
tends to be most sensitive to transfers around the middlé of the distribution.
On the other -hand, for publication patterns, the Pratt measure is most
sensitive among Tow producers.
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The Atkinson index A(e) and the generalized Pratt index P(r) are in fact
families of concentration measures. According to the value of the parameter

e or r the sensitivity changes. They have the advantage that.the value of the
parameter can be adapted to the specific case under consideration.

8. DISPERSION MEASURES

8.1. Roughly speaking, dispersion measures are the opposite of concentration
measures. Making adequate changes to the principles for concentration
measures (such as, using < instead of >)one obtains a set of principles
good dispersion measures must fulfill.

8.2. A general strategy to construct dispersion measures from concentration
measures is the following. Let f be a concentration measure taking
values in the interval [0,1], Then h = 1 -f is a dispersion measure.
So, implicitly, we already know a large set of dispersion measures.

8.3. Independently of the above remarks, Heine ([22]) studied some measures
of dispersion. In our notation, the three measures he introduced are
given as follows. Let (x1,...,xN) be ordered in increasing order (this

assumption is alsp made in [22]).

A. The adapted Gini index D

6
N xj
IfFN#1and N# T x., then, with a, = .
i=t J y_” .
k=1 K
N
2 ¥ X
L kay K
D.=1- % (w- & a.)l{ ) (30)
G i1 N 1 i
J (N-1)( T x, - N)
k=1
B. Singleton's index DS'
If N # 1, Do = g2 " (N-1) a (31)
> VS TWET i1 i

(It can readily be verified that formula (31) is the same as Heine's more
intricate formyla (7) in [221).

C. The normalized entropy index Ce-

N N
ITN# £ X5 and N+1 # & Xis then
i=t i=i
E-E .
D. = min (32)
2 Emax - Emin

with
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N
E=- 151 a_i 1092 ai (33)
N N-1 N
Epin = 1092 (T x;) = (1 = ==} Jog, (M+1 - I x;)  (38)
i=1 ¥ X i=1
j=1
and
N N
b3 X5 K T x.-kK
= i=1 1 -
Epax = ~(N-K} . ——— log, (——)
N. £ X; N = X5
i=1 i=1
N N
T ¥ -K+N I x;-K+N
K i=1 1o (1=‘[ ) (35)
TN % N
K. T x N. £ x,
i=1 i=1

N N

where K = £ X (mod N), i.e. K is the rest of = X5 after division by N.
i=1 i=t

Although intricate, Dp can immediately be determined from the raw data

{x1,...,xN). The use of log, shows its relation with information theory
(but this is not essential).
8.4, In [22], Heine gives properties of the measures DG’ DS and DE. We note
however that DG, Ds and DE are not new measures. Instead, we can relate
them to well-known concentration measures.

8.5, Proposition. Ds = {-C.

Procf :

By {10)
2 (E?El - q}
€2

N
where q is now equal to £ (N-i+1) a;, since (x1,...,xN] is now ordered in
increasing order. i=1

So N
N+1-2 & (N—i)ai-Z
c - i=1
-1
2 3 (nh)
=1 - T (N-i)a
Wi=1 i
N-1
=1 W7 .Z {N-i)a = 1-DS
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The next proposition shows that DG and DS are essentially the same.

8.6. Proposition
N

ITNL X5 s
i=1

N
z x1
_ N i=1
DG-- N 0 .DS
I x.=-N ¥ x, -N
i=1 i=t !
Procf :
7 N
Nty Nt 2 BN
DG =1 - [ I g- F r a.
i=1 i=1 j=1
(£ x;-N)(N-1)
i=1
N
2 I X
.=1 1

N-1
N-1 s i
1 - + T {N-i}a.
z . N
[ i=1 1][( £ % - N(N-1)
i=1

N N
I X L X
Sy =t U i ]
N s N
oy S
N
L X
_ N i=t !
aiale * 0 1
T Xx. -N ¥ %. - N
i=t ! i=) !

8.7. Corollary. DG < DS‘ with equality only if all X, are equal.
Proof :

Since 0 s C £ 1, we have also 0 = DS £ 1. Hence

N
X
N > D N =, ( i=1 -1)
N =" 7N S
Exi-N ):xi-N in-N
i=1 i=1 i=1
with equality only if DS =1, i.e. C =0, i.e. when all X; are equal.
Hence N
;1 “ N
1=
Dg 2 Dg (— ) -y = Dg -

131
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The following corollaries are easy conseguences from Propositions 8.5 and 8.6
and the: relation between Pratt's measure and the Gini index,

8.8. Corollary
G=‘|"—N————C,ifc#0

and

DG 1o =0

8.9. Corollary

N
L X,

PR R L I I
6 % T
T x. -N
i=1 1

8.10. Corollary, C s 1 ~ Dgs with equality only if C = 0.

Proof :

» IfC#0.

t
ﬁ"D

|
o
'
O

I x.-N

i=1
When € = 0, then all x; are equal and hence Dg = 1. In this case : C =1 - D,
The previous results show that DG nor Ds are new measures, hence their

properties can be deduced from Sections 3 and 4 : no special investigation is
needed. Furthermore, the same holds for DE'

8.11, Proposition

Th=1InN-E,
hence
0, - In g—- t?Ef'Emin
max min
Proof :

N x X
1 i i
™= 1_51 (T) n (—u)

LI}

N
T oa;

B In (aiN)
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N
ImK-{- £ a, Ina,)
s i i

Th

=InN-E.

So we conclude that Heine [22] is only dealing with the dispersion version of C
(or G) and Th. As we have shown before that these are good concentration
measures, DG’ Ds and DE are good dispersion measures.

9, CONCLUSION; SUGGESTIONS FOR FURTHER RESEARCH

In this paper we have reviewed some concentration measures proposed in the
literature. We have presented a set of principles - (C1) to (C6) - that good
concentration measures must fulfill and have investigated some of the
consequences of these principles. The transfer principle was extended to yield
a new family of principles, denoted E(p), but a concentration measure can only
satisfy E(p) for at most one p. We discussed briefly the issue of sensitivity
to transfers and have shown how Heine's dispersion measures are related to some
well-known concentration measures.

Suggestions for further research :

1. The principles we have investigated are stated with respect to a fixed number
of sources, What then is the behavior of a good concentration measure with
respect to a varying number of sources? (cf. [141).

2. In [23], Egghe calculated and interpreted Pratt's measure for some classical
bibliometric distributions, including the geometric distribution. A similar
investigation, using other concentration measures might be interesting.

3. What are the implications of using different concentration measures and what
is the "most desirable" level of inequality, in particular in connection
with science policy decisions (cf. [24]).

4, A more refined study of sensitivity to transfers is certainly needed.

5. In [25] Stephen Cole raises the issue that the Gini index (hence also
Pratt's measure) simultaneously measures two concepts. One is consensus
in a field and the other is dispersion 6f recognition. Is this remark also
valid with respect to other uses of the Gini index than in the field of
sociology of science. Does it apply to any concentration measure?

6. The measures of concentration we have studied in this paper are only
one-dimensional representations of the complex notion “"concentration.
Does there exist useful, interpretable, more-dimensional extensions of
the measures we know?
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APPENDIX

1. If N =2, L satisfies the transfer principle,
Proof :
L(x1,x2)
= % [(n x, - % (In x, +1n xz))2 +{1n x, - % (1n X +1n xz))zl

[1nz:n(‘I -2 1n x,.]n Xp + ]n2x2 + ]n2x2 -21n x1.ln Xy + 1n2x1]

n
o —

=—14 (In x4~ 1n xz)z
1,2 5
=3 In® (=) .
7 X5
similarly, (taking x, s x,)
y .2 % °h
L(x.l-h, Xp +h) = 7 In (xz—_,_ﬁ) .

Xy Xy h Xy X -h X |
As Yé'> YZ“TH’ also In (E) > In (-i-z—_rh-), hence (“'I (-)E) < 0.)

2 %t 2 X h
In (E) <1n (')-(E—;-ﬁ)
ar

Mxvxﬂ <LU1-h,x2+h).

2. The generalized Pratt measure, P(r), satisfies (C4a), for r 2 1

The following proof is due to Q. Burrell who provided us with a simpler proof
than the one we had originally. We thank him for his help.

Proof :

ult)

We note first that if a function z(t) is a quotient, say VET

of z'(t) is the same as that of v{tJu'(t) - v'{tu(t).

» then the sign

According to our principle (C2) we may order the sources in non-decreasing
order of productivity :

0= X < X5 £ ... S L
Then {C4a) becomes : if X1 # 0, then, for h > 0
f(x1,...,xN_1,xN-+h) > f(x1,...,xN)

Now :
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N N
( 1 T T X =X r')1/r-
_ 2NIN-T) k=1 f=1 | |
P{r) u
r-)1/r'

1
(NTWT I (%, -x,)
- AR
u

N-1
1 r rovi/r
( { z {x,-x,)  + £ {y=-x%x,)'}H
NR=TT 4 o a1 NF L L
1

-
{z x,+y)
NI

1

F(y) , where y = Xy -

Now, P(r) satisfies (C4a) if F(y) is an increasing function of y, or
equivalently, if

p N1 r
(xk-xl) +£§1 (y-xg)

z
(x xl+y)r
=1

is increasing in y.
Then, by the remark made in the beginning of this proof,

N-1 o N=t i
sgn G'(y) = sgn {( ? X, +y) X (y-x,) r
1

N-1 N-1
-( x (x, =x ) + = (y-x)"rlc x,+y) 13
128<kaN-1 K X 1 % 1%
1F ke e (™ - (x - x,)"
=sgn {(Z x,+y}) T (y-x - b) X, =%
1 % 1 % 150<ksh-1 & %
N1
+ X {y-x)N1 .
=1

Reverting to y = Xy the expression within the braces can be rewritten as :

N N-1 pe ,
(Cz %) = Og-x)"7) - = (x =x,)
k=1 2=1 180<ksN
That this is positive is most easily seen by writing the two expressions in
arrays as follows :

XN(XN'XN-I)r-1 + xN(xN--xN_z)]r"'I o xN(xN--xz)'"1 + Xy (g - %y

r-1
+ oy (g =2y q) + ..

)r"1
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* ...
+ %y (% - . v xy (%0 - %)Y
(AL s 1IVNTH s
while the second is best written as :
(XN-xN_l)r + (xN—xN_z)r .. + (xN-xz)r + (XN-x1)r
r r
+ (KN-1 -xN_z) + ... + (xN_1 -x1)

r r
+ (x3-x2) + (x3-x1)
+ (xz-x1)lr

Because the xi's are ordered non-decreasingly, all of the above terms are

non-negative and every term in the top array is at least as large as the one
in the corresponding position below (blanks in the lower array being taken as
zeroes), e.g. if k > j then
r-1 r-1 r
xk(xN-xj) z (xk xj)(xN-xj) 2 (xk-xj) .

Ihis)shows that G{y}, hence F(y) is increasing in y, so that P{r) satisfies
Cda).



