
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Managing client bandwidth in the presence of both real-time and non

real-time network traffic

Non Peer-reviewed author version

WIJNANTS, Maarten & LAMOTTE, Wim (2008) Managing client bandwidth in the

presence of both real-time and non real-time network traffic. In: 3RD

INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEM SOFTWARE

AND MIDDLEWARE AND WORKSHOPS, VOLS 1 AND 2. p. 442-450..

DOI: 10.1109/COMSWA.2008.4554454

Handle: http://hdl.handle.net/1942/8513



Managing Client Bandwidth in the Presence of
Both Real-Time and non Real-Time Network Traffic

Maarten Wijnants Wim Lamotte
Hasselt University and Interdisciplinary institute for BroadBand Technology (IBBT)

Expertise Centre for Digital Media and transnationale Universiteit Limburg
Wetenschapspark 2, BE-3590 Diepenbeek, Belgium

{maarten.wijnants,wim.lamotte}@uhasselt.be

Abstract—Managing client downstream bandwidth is an issue
that is rapidly gaining in importance due to the increasing extent
to which multimedia content is being exploited in networked
applications. Depending on its characteristics, this multimedia
content is exchanged in either a real-time or non real-time
manner. In this paper, we present the NIProxy, a network
intermediary which introduces different types of intelligence in
the transportation network in an attempt to improve the Quality
of Experience (QoE) provided to users of networked applications.
In particular, we concentrate on the NIProxy’s bandwidth distri-
bution functionality and we report on how support for non real-
time network traffic was incorporated through the adoption of
buffering as well as rate control techniques. Using representative
experimental results, we demonstrate the NIProxy’s capability
to successfully manage client downstream bandwidth in the
presence of both real-time and non real-time network traffic.
In addition, the presented experimental results are compared
to the default scenario in which the NIProxy is not involved,
revealing a considerable improvement in the user’s QoE in case
the NIProxy’s bandwidth management functionality is leveraged.

I. INTRODUCTION

In recent years, the amount of bandwidth consumed by
networked applications has risen substantially. This is mainly
due to an increasing incorporation of multimedia content into
these types of applications. As an example, many recent net-
worked applications have abandoned textual chat and instead
now exploit a more immersive form of user communication
like, for instance, real-time voice streaming or even video chat.
The main reason for doing so is that it will normally provide
the user with a better experience. However, considerable
bandwidth is required to exchange such multimedia data over
a transportation network. In fact, even despite the emergence
of broadband client network connections (such as xDSL and
broadband cable), clients do not always dispose of sufficient
downstream bandwidth to receive all network traffic generated
by the networked application(s) they are using.

To mitigate this problem, techniques and mechanisms are
needed which can manage the client’s available downstream
bandwidth by distributing it over the different network flows
in which the client is interested. In addition, this bandwidth
distribution should occur in an intelligent and effective manner,
so that the user’s experience is maximized. Furthermore, while
it is certainly possible to implement a unique bandwidth
management solution for each distinct networked application,
it is economically more favorable to develop a solution which
can be reused by multiple applications. One might term such
a solution communication middleware.

One possible way to categorize network traffic is to distin-
guish between real-time and non real-time network flows.
With real-time network traffic, we refer to network flows
transporting content or media with real-time characteristics,
such as interactive audio and video. As a result, real-time
network traffic is very sensitive to delay and needs to be
delivered to the destination “in time”. Real-time network
flows are typically continuous, long-lived streams that are
transmitted using a relatively simple transport-layer protocol
such as the User Datagram Protocol (UDP) or the Real-time
Transport Protocol (RTP). In contrast, non real-time network
traffic does not suffer from strict constraints on its delivery
time, although in many situations it is still preferable to receive
the content it transports as soon as possible. On the other
hand, while real-time network traffic can typically cope with
small amounts of packet loss, non real-time content should
usually be delivered reliably and free of errors. This explains
the popularity of more advanced transport-layer protocols like,
for instance, the Transmission Control Protocol (TCP) for
transmitting non real-time content. Non real-time network
traffic is often bursty and relatively short-lived in nature and
typically carries information such as file or P2P data.

The subject of this paper is the NIProxy, a network in-
termediary which is capable of managing client downstream
bandwidth and hence can be considered as an example of
communication middleware. The NIProxy and its bandwidth
distribution algorithm were previously introduced in [1]. How-
ever, the previously proposed version of the NIProxy could
only successfully cope with real-time network traffic. In this
paper, we report on how the NIProxy’s bandwidth management
mechanism was extended with support for non real-time
network flows. In addition, another contribution of this paper
is that we thoroughly investigated the impact of this extension
on the usability and effectiveness of the NIProxy.

The remainder of this paper is organized as follows. We
begin by presenting an overview of the NIProxy system,
discussing its aims and its general mode of operation, in
section II. In section III, we discuss the NIProxy’s client
bandwidth distribution functionality and we describe how we
extended it so that it could also successfully cope with non
real-time network traffic. The implementational issues entailed
by this extension are reported on next in section IV. Section
V is devoted to the evaluation of the NIProxy’s bandwidth
management mechanism and presents some representative
experimental results. Finally, we briefly review related work in



section VI and we draw our conclusions and suggest possible
future research directions in section VII.

II. THE NIPROXY: SYSTEM OVERVIEW

The NIProxy is a network intermediary (a “proxy server”)
to which clients need to connect if they want to exploit
its features. The NIProxy’s main goal is to enhance the
experience and satisfaction of users of networked applications
by improving data and content delivery to clients. To achieve
this objective, the NIProxy introduces additional awareness
or context in the transportation network. Hence the term
NIProxy, which is an abbreviation for Network Intelligence
Proxy. Another term which we would like to introduce at this
point is Quality of Experience (QoE), which we will use in the
remainder of this paper to more formally denote the experience
provided to the user.

The NIProxy currently introduces network as well as ap-
plication awareness in the network. Under network aware-
ness we understand that the NIProxy has knowledge of the
current state of the transportation network, and in particu-
lar clients’ network connections. The NIProxy acquires this
kind of awareness by periodically probing the network link
that connects clients to their NIProxy instance, which yields
network-related measurements such as the current end-to-
end throughput, latency and packet loss rate of each client’s
network connection. With application awareness on the other
hand we refer to the fact that the NIProxy has knowledge of
the networked application(s) it is serving. To obtain this kind
of awareness, the NIProxy relies on the client software. In
particular, the NIProxy expects the client software to forward
application-related information to the NIProxy instance to
which the client is connected. The kind of information actually
forwarded will likely depend on the requirements of the
networked application and on its type (e.g. a multiplayer
computer game versus an instant messenger). One example of
knowledge which could constitute the NIProxy’s application
awareness is information regarding the relative importance of
the different network streams that are being exchanged as part
of a networked application. After all, from a client’s point of
view, it is very likely that not all (types of) network streams
are equally significant.

Based on its dual awareness, as stated before, the NIProxy
attempts to optimize the QoE provided to users of networked
applications. More specifically, the NIProxy currently provides
two QoE-increasing mechanisms. First of all, the NIProxy
supports automatic and dynamic client bandwidth manage-
ment, meaning it is capable of intelligently partitioning a
client’s downstream bandwidth among the different network
flows in which the client is interested. Secondly, the NIProxy
can also be considered as a multimedia service provision
platform, since it is capable of applying services on network
flows containing multimedia content on behalf of its connected
clients. An important feature of the NIProxy is that its two
QoE-increasing mechanisms are complementary as well as
interoperable. The mechanisms are complementary in the
sense that they are both capable of improving the user’s QoE,

but each in a different manner. Furthermore, by not treating
the mechanisms as isolated entities but instead allowing them
to interact and collaborate with each other, the NIProxy is
able to improve the user QoE to a higher extent than could be
achieved by applying the two mechanisms separately.

The focus in this paper is on the NIProxy’s first QoE-
improving mechanism, automatic client bandwidth manage-
ment. For detailed information regarding the NIProxy’s under-
lying ideas and principles, its dual awareness, its multimedia
service provision functionality and a description of its software
architecture, we would like to refer the interested reader to [1].

III. CLIENT BANDWIDTH MANAGEMENT

One of the two QoE-improving mechanisms currently sup-
ported by the NIProxy is client bandwidth management. In
this section, we will describe how the NIProxy approaches
the problem of managing client downstream bandwidth and
we will discuss how respectively real-time and non real-
time network flows are dealt with. As will be explained, the
NIProxy’s bandwidth distribution mechanism treats these two
types of network traffic differently, which should not come as
a surprise since they have completely differing characteristics.

A. Arranging network flows in a stream hierarchy

The NIProxy manages client downstream bandwidth by
organizing all network flows in which the client is interested
in a stream hierarchy. This stream hierarchy can on the one
hand express relationships between network flows, but on the
other hand can just as well be used to differentiate between
them (or between collections of flows, e.g. audio versus video).
More specifically, the stream hierarchy has a tree-like structure
that is composed of both internal and leaf nodes. The internal
hierarchy nodes implement a certain bandwidth distribution
strategy, whereas the leaf nodes always correspond to an actual
network flow (e.g. a particular video stream). A number of
different types of internal nodes are available to construct the
stream hierarchy; these are described next.

The most simple type of internal node is the mutex node.
As its name implies, this node behaves like a mutex, with
in this case the shared resource being the bandwidth that has
been reserved for the node, while the entities that compete for
this resource correspond to the child nodes. In other words,
a mutex node ensures that at all times at most one of its
children is assigned bandwidth. The decision of which child
node should be allocated the bandwidth available to the mutex
node is a function of both the available bandwidth itself and
the bandwidth requirements of the children. More specifically,
the bandwidth is assigned to the child which has the highest
bandwidth requirements that are still smaller than or equal to
the bandwidth available to the mutex. If no such child node
exists, no child will be assigned any bandwidth.

A second type of internal node is the priority node, which
distributes bandwidth over its children according to their
current priority value. The approach taken here is rather
static, in that the bandwidth available to the priority node
is first assigned to the child with the highest priority value;



any bandwidth that remains is subsequently assigned to the
child with the second highest priority, and so on, until either
all bandwidth has been allocated or all children have been
considered.

The third and most dynamic type of internal node, the
weight node, operates in two consecutive phases. In the
first phase, bandwidth is partitioned among child nodes
based on their maximal bandwidth consumption and cur-
rent weight value. In particular, each child ci receives
BWi = wi ∗MaxBWi ∗ f bandwidth. In this formula, wi ∈
[0, 1] corresponds to the current weight value of the child,
MaxBWi corresponds to amount of bandwidth which the
child can maximally consume, and f is a scaling factor
which enforces that

∑
i BWi <= BW , with BW denoting

the total amount of bandwidth available to the weight node.
In particular, the scaling factor f is calculated as follows:

f =
BW∑

i(wi ∗MaxBWi)

After executing phase 1, it is possible that some of the
bandwidth available to the weight node remains unused. In
particular, this situation will arise when one or more child
nodes consume less bandwidth than the amount BWi that has
been reserved for them. If this is the case, the weight node
will attempt to distribute the excess bandwidth using a second
phase, in which it is assigned to the child nodes on a one-by-
one basis, in order of decreasing weight value. In other words,
the second phase allows child nodes to exploit any unused
bandwidth to switch to a higher bandwidth consumption,
hereby favoring children with a higher weight value.

The percentage is the last type of internal node. With
this type of internal node, each child has a percentage value
pi ∈ [0, 1] associated with it and bandwidth is partitioned so
that each child receives its corresponding percentage pi ∗ BW
of the total bandwidth BW that is available to the percentage
node. In case any bandwidth remains unused (which will
occur if one or more children consume less bandwidth than
the amount they have been assigned), the percentage node
mimics the operation of a weight node in that it executes a
second phase in which the excess bandwidth is allocated to
the different child nodes successively, in order of decreasing
percentage value. Note that, in order to achieve a correct and
optimal bandwidth distribution, the percentage values of the
different children of a percentage node should sum up to 1.

B. Real-time network traffic

As stated in the introduction, real-time network traffic has
stringent reception delay constraints and hence needs to be re-
ceived by the destination in time. Consequently, the operations
that can be performed on it by communication middleware like
the NIProxy are limited. For instance, techniques like mid-
stream buffering or reduced-rate transmission are typically not
applicable, because they could result in the real-time content
becoming obsolete due to late arrival at the destination.

Because of the arguments presented in the previous para-
graph, care was taken when designing the NIProxy’s band-

width distribution mechanism to ensure that managing real-
time network traffic introduces very little to no additional
delay. In particular, to manage real-time network traffic, the
NIProxy uses discrete stream hierarchy leaf nodes. A discrete
leaf node does not perform any operations on its associated
network flow; instead, it is capable of setting the flow’s
bandwidth consumption to a discrete number of values. The
simplest type of discrete leaf node supports only two band-
width consumption levels, i.e. 0 and the associated stream’s
maximum bandwidth usage, and is hence limited to turning the
network stream on or off. More complex discrete leaf nodes
supporting a number of additional bandwidth consumption
levels can however also be devised. For instance, scalable
or multi-layer encoded real-time network flows consist of a
base layer, which provides the transported content at a certain
basic quality, and one or more enhancement layers, which each
enhance the reception quality of the content in a particular
manner. Although this type of network traffic in theory enables
control over the transmission rate, a source will typically
transmit all layers of the scalable network stream, leaving it
up to the destination to select and receive only the layers it
currently requires or is capable of processing. Consequently,
a suitable discrete leaf node for this type of network traffic
would support a discrete number of increasing bandwidth
levels, each one corresponding to permitting the forwarding
of an additional layer to the destination.

C. Non real-time network traffic

In contrast to real-time network traffic, non real-time net-
work flows normally do not impose hard constraints on their
delivery delay. Despite it is often still desirable for this type of
network traffic to be received by the destination with as little
delay as possible, the NIProxy consequently has a bit more
latitude in managing it.

The NIProxy’s bandwidth distribution mechanism handles
non real-time network flows by associating them with a
continuous leaf node in the client’s stream hierarchy. Contrary
to a discrete leaf node, a continuous leaf node is capable of
setting a network stream’s transmission rate to a continuous
range of values (i.e. any value lying in the interval [0, maximal
stream bandwidth usage]). It does so by locally buffering the
content that is transported by the non real-time network flow
and by subsequently forwarding the buffered data to the client
at a rate that conforms to the exact amount of bandwidth
currently reserved for this network flow.

D. Constructing the stream hierarchy

Constructing the stream hierarchy and ensuring it remains
up-to-date falls under the responsibility of the client itself. In
particular, the client is responsible for first of all determining
a suitable general structure for its stream hierarchy and sec-
ondly for ensuring all necessary network flows are adequately
incorporated in it. Selecting a suitable hierarchy layout can be
considered as a way of providing the NIProxy with application
awareness: it indicates how the different network streams in
which the client is interested relate to each other, in terms of



Fig. 1. Example client stream hierarchy preferring audio to video traffic.

significance for the client. For instance, to inform the NIProxy
that it attaches greater importance to audio as compared
to video, the client could, for instance, construct a stream
hierarchy resembling the one depicted in figure 1. In this
example, we indicate the client’s preference for audio by using
some differentiating internal node to distinguish between audio
and video network traffic and by subsequently assigning the
grouping audio node a higher value than its video counterpart.
The choice of which type of internal node to use in this
example as root of the hierarchy and as grouping audio and
video node (i.e. priority, weight or percentage) depends on
the user’s preferences and possibly some other application-
related information, and hence the responsibility for making
this decision also lies with the client.

The second responsibility of the client, i.e. ensuring concrete
network flows are added to its stream hierarchy, is facilitated
by the availability of a stream blocking mechanism on the
NIProxy. In particular, as is discussed in detail in [1], the client
can instruct the NIProxy to block certain types of network
streams (e.g. audio, video, P2P data, etcetera). Now whenever
the NIProxy intercepts a network flow which (i) conceptually
belongs to a network traffic type of which the client has
indicated it should be blocked and (ii) which the NIProxy’s
bandwidth distribution mechanism does not know yet, a short
description of the network flow is generated and subsequently
this description is forwarded to the client instead of the flow
itself. Upon arrival of such a description, the client needs to
decide how the blocked network flow should be treated by
the NIProxy in the future. In particular, the client can either
specify that future network packets belonging to this flow
should always be forwarded or dropped by the NIProxy, or it
can decide to correctly incorporate the blocked network flow
in its stream hierarchy. By adhering to the latter alternative,
the NIProxy’s bandwidth distribution mechanism will start
taking the new network flow into account when calculating the
distribution of the client’s available downstream bandwidth,
which makes it the recommended approach since it guarantees
the most correct and optimal bandwidth management results.

Based on the discussion so far, it should be apparent that
adaptations are required to the client software before a client
of a particular networked application can exploit the benefits
of the NIProxy. However, the amount of modification effort
required is reduced considerably thanks to the availability of an
accompanying support library called the Network Intelligence
Layer (NILayer). In particular, the NILayer exports a number
of low-level functions and operations which can be employed
by application developers to, for instance, connect the client
software to a NIProxy instance and to provide the NIProxy

with application awareness. As an example, the NILayer
provides functionality through which clients can easily create
and maintain their stream hierarchy. The NILayer has been
designed to be application-independent and is consequently
highly reusable, this way ensuring that the functionality of
the NIProxy can be exploited by a wide range of networked
applications. More information regarding the NILayer can
again be found in our previous work [1].

E. Managing client bandwidth using the stream hierarchy

Once the client’s stream hierarchy has been constructed
and assuming it is kept up-to-date, managing the client’s
available downstream bandwidth simply involves assigning the
correct amount of bandwidth to the root node of the stream
hierarchy. The stream hierarchy’s internal nodes, starting with
the root node, will subsequently commence apportioning this
bandwidth according to the particular bandwidth distribution
technique each implements. Eventually, portions of the client’s
available downstream bandwidth will reach one or more leaf
nodes in the client’s stream hierarchy. In case we are dealing
with a discrete leaf node, the leaf node will set the bandwidth
usage of its associated network flow to the highest discrete
bandwidth consumption level that is smaller than or equal
to the amount of bandwidth it has been assigned. If we are
dealing with a continuous leaf node on the other hand, its
associated network flow will be forwarded to the client at a rate
which exactly matches the amount of bandwidth that has been
reserved for this node. In order to be able to cope with dynamic
events like, for instance, network flows turning dead or shifts
in stream importance, the NIProxy periodically repeats the
entire bandwidth distribution process for each client that is
currently connected to it, this way at all times guaranteeing
a correct client bandwidth distribution. Practical examples of
how the NIProxy manages a client’s available downstream
bandwidth based on its stream hierarchy, together with the
produced results, will be presented in section V.

IV. IMPLEMENTATION

To add support for non real-time network traffic to the
NIProxy’s bandwidth management mechanism, we first of
all had to implement the continuous stream hierarchy leaf
node discussed in section III-C. In contrast to its discrete
counterpart, this type of leaf node requires some form of
buffering and rate control functionality, since it needs to be
capable of setting the bandwidth consumption of its associated
network flow to a continuous range of values. Therefore,
we have implemented the continuous leaf node so that it (i)
buffers the data which the NIProxy intercepts on its associated
non real-time network flow, (ii) allows this buffered data to
trickle through to the client at a rate equalling the amount
of bandwidth that has been assigned to the node by the
NIProxy’s bandwidth distribution mechanism and (iii) purges
processed data (i.e. data that has been forwarded to the client)
from its buffer. In effect, the continuous leaf node has been
implemented so its operation and behavior resemble those of
a leaky bucket.



Another issue that had to be addressed was the determi-
nation of the maximal bandwidth consumption of non real-
time network traffic1. For real-time network flows, this issue
is resolved by simply registering the rate at which the flow
arrives at the NIProxy. A similar approach could however
not be employed for non real-time network traffic, since non
real-time content is possibly buffered by the NIProxy and
forwarded to the client at a rate that differs from the rate
at which it was intercepted. We therefore opted to set the
maximal bandwidth consumption of a non real-time network
flow to the current amount of data (in bytes) which the
NIProxy has already received on this flow, but which has not
yet been transmitted to the client. In other words, the maximal
bandwidth usage of continuous leaf nodes at all times equals
the current amount of data stored in their associated buffer.

A final implementation decision we had to make concerned
the granularity at which we were going to support non real-
time network traffic. We opted to manage non real-time net-
work traffic at a rather coarse level, namely at the level of non
real-time network flows. This means that all non real-time data
that is transferred over the same flow will be treated identically
by the NIProxy. Alternatively, we could have decided to enable
the incorporation of each individual non real-time content
object in the client’s stream hierarchy (i.e. even if some
of these objects are transported on the same non real-time
network stream). However, we believe such fine-grained, low-
level support will be useful and meaningful only for a handful
of networked applications, while it on the contrary will be
considered burdensome by the vast majority. In particular,
the fine-grained alternative has the important disadvantage
that it will rapidly result in the management of the stream
hierarchy becoming complicated and tedious for the client.
This is due to the characteristics of non real-time network
traffic, which is typically composed of a number of relatively
small content objects that are being requested and transmitted
in a bursty fashion. As a result, the client would need to update
its stream hierarchy very frequently. In addition, calculating
the client’s downstream bandwidth distribution would start
consuming more time due to the increased size of its stream
hierarchy. Finally, it is worth noting that the subtle level of
control provided by the fine-grained alternative can just as
well be achieved by the approach we adhered to, albeit at
the cost of some additional overhead: in case a networked
application requires control over the bandwidth consumption
of individual non real-time content objects, it could transfer
each object over a separate non real-time network flow.

V. EVALUATION

This section harbors some representative experimental re-
sults which comprehensively demonstrate that support for non
real-time network traffic was included successfully in the
NIProxy’s bandwidth distribution mechanism. In particular,
we will describe the bandwidth distribution results produced

1Remember from section III that the maximal bandwidth usage of network
flows plays an important role in calculating a client’s bandwidth distribution.

during two distinct experiments. The first experiment only
involved non real-time network traffic, while in the second
experiment the NIProxy had to manage client downstream
bandwidth in the presence of both real-time and non real-
time network traffic. In both experiments, the results produced
by the NIProxy’s bandwidth management mechanism are
compared to the default scenario in which the functionality
of the NIProxy is not exploited and it is investigated whether
the introduction of the NIProxy led to an improvement of
the user’s QoE. We begin this section however by briefly
describing the application which we employed to generate the
presented experimental results.

A. Test setup

To evaluate the NIProxy’s bandwidth distribution function-
ality, we used a simple test application which allows the user
to set up both real-time and non real-time network streams
with remote hosts. As example of real-time network traffic,
we used video since it is the most demanding type of real-
time multimedia content, especially in terms of network band-
width requirements. Consequently, after a real-time network
connection has been set up with some remote host, the latter
will immediately start streaming video to the local client
(using RTP). In contrast, setting up a non real-time network
connection with a remote host does by itself not result in the
local client receiving data on this new connection. Instead, the
user needs to request some content items (i.e. files) on the non
real-time network stream before the remote host will actually
start transmitting data over it. In other words, we relied on a
simple form of P2P file sharing to generate the non real-time
network traffic in the presented experiments. Exchanging the
non real-time content is done using TCP, since this protocol
offers a number of features which make it very suitable for
this kind of communication (e.g. reliable and in-order delivery
of transmitted data). Finally, the file sources are implemented
so that they transmit files sequentially, hereby following the
order in which requests are received.

B. Experiment 1: Managing non real-time network traffic

The goal of the first experiment was to determine whether
the NIProxy is capable of successfully managing the down-
stream bandwidth available to a client in case only non real-
time network traffic is being exchanged. To simulate such a
scenario, we employed the just described test application to
create two separate P2P TCP connections between a client and
the same remote host, which we will denote by P2P stream
1 and P2P stream 2 during the remainder of this discussion.
After the TCP connections had been set up, the following files
were requested:

• large.png: 209286 bytes; requested on P2P stream 1
• small.png: 102879 bytes; requested on P2P stream 1
• slide.ppt: 416768 bytes; requested on P2P stream 2

The files were requested in the order they are enumerated, with
2 second delay intervals applying between each two consec-
utive requests. Finally, we constrained the client’s available
downstream bandwidth to 20 kilobytes per second (KBps)



(a) Without NIProxy (b) With NIProxy (priority node) (c) With NIProxy (weight node)

Fig. 2. Network traces (stacked graphs) indicating all network traffic received by the client during the three different executions of the first experiment.

(a) (b)

Fig. 3. Exact stream hierarchies used during the second and third execution
of the first experiment.

during the experiment. Although this may appear like an un-
realistically low value, it allows us to keep the demonstration
simple and the generated results compact. In addition, in case
there would be contention from real-time network traffic, it
might very well be possible that only such a small amount of
the client’s total downstream bandwidth would be reserved for
receiving non real-time content.

The experiment described above was repeated a number of
times, each time under different circumstances. First of all,
we executed the experiment without involving the NIProxy.
Next, the experiment was executed two more times, with the
client in both these cases leveraging the NIProxy’s bandwidth
management functionality. The difference between these two
iterations lay in the type of internal node used to differentiate
between the two involved P2P streams in the client’s stream
hierarchy: in the first case a priority node was used, while in
the second case we employed a weight node.

During each of the three executions of the experiment, we
recorded the network traffic received by the client. The results
are shown as stacked graphs in figure 2. The exact client
stream hierarchy used by the NIProxy during the second and
third execution of the experiment are depicted in figures 3(a)
and 3(b) respectively.

Some remarks regarding the network traces shown in figure
2 are in place. First of all, figure 2(a) indicates that, even
in case the NIProxy was not involved in the experiment, the
client’s available downstream bandwidth was more or less
respected. This can be attributed to TCP’s built-in congestion
control mechanism2. Secondly, as is illustrated in figures 2(b)
and 2(c), the rate control functionality of the continuous stream
hierarchy leaf node appears to work very effectively, since
the bandwidth consumption of the resulting network traffic is
perfectly flat (notice the heavy contrast with the irregularities
exhibited in figure 2(a)). Third, figures 2(b) and 2(c) also
illustrate that the NIProxy’s bandwidth distribution mechanism
leaves a small percentage of the client’s available downstream

2TCP dynamically determines and adjusts its transmission rate to prevent
network congestion (in an attempt to guarantee high network performance).

bandwidth unused. This unallocated bandwidth is used as
safety buffer to guarantee a certain amount of resilience to
sudden surges in the bandwidth consumption of the network
flows which the client is currently receiving. However, this
feature is solely useful in the presence of real-time network
traffic, since non real-time network traffic is rate-controlled by
the NIProxy before it is forwarded to the client, meaning it
will never be subject to such surges. This immediately also
explains why it took slightly longer to receive the requested
files in the two executions of the experiment involving the
NIProxy. It is worth noting however that, although currently
not implemented, parametrization of the size of the safety
buffer could easily be supported, even on a per client basis.
As a result, it would become possible to disable the NIProxy’s
safety buffer (i.e. set its size to zero) in situations in which
only non real-time network traffic is being exchanged, this way
effectively eliminating the disadvantage of increased reception
times for non real-time content. A final remark relates to the
curve separating the bandwidth consumption of the two P2P
streams in figure 2(c), whose shape might seem somewhat
surprising at first sight. In particular, as can be seen in this
figure, the amount of bandwidth assigned to P2P stream 1
gradually increased over time, even though P2P stream 2 had
a higher weight value associated with it during the entire
experiment. This evolution is explained by the fact that the
maximal bandwidth usage of network streams plays an impor-
tant role in the way weight nodes calculate bandwidth distribu-
tions (see section III-A). Since file slide.ppt initially (i.e.
immediately after it was requested) was allocated much more
bandwidth compared to the files requested on P2P stream 1,
the maximal bandwidth consumption of P2P stream 2 initially
also decreased much faster. As the experiment progressed,
the growing difference in maximal bandwidth consumption
of both P2P streams increasingly outweighed their associated
weight values, which explains why gradually more bandwidth
was allocated to P2P stream 1.

Based on the discussion thus far, it might seem like the
inclusion of the NIProxy in the experiment had a rather
negative impact instead of a positive one (since it resulted
in an increase in the time required to receive the requested
files). However, an important advantage of the NIProxy which
has not yet been mentioned until now is its ability to easily
introduce differentiation between the different network flows
in which the client is interested. As an example, suppose
the two non real-time network connections requested in this
experiment corresponded to respectively a low- and high-



priority P2P communication channel. Consequently, the client
would expect files requested on P2P stream 2 to be delivered
with a higher priority (i.e. faster) compared to files requested
on P2P stream 1. This kind of behavior can easily be achieved
using the NIProxy’s bandwidth distribution mechanism. It
suffices to create a stream hierarchy in which the two P2P
streams are adequately differentiated from each other using
some sort of internal node. Moreover, since the NIProxy
supports multiple types of bandwidth distribution techniques
(i.e. internal stream hierarchy nodes), the differentiation can
even be tuned to the specific requirements of the client or the
application.

The bandwidth distribution produced by the NIProxy during
the second and third iteration of the experiment was based on
the example requirement described in the previous paragraph,
respectively using a priority and a weight node to differentiate
between the two non real-time network streams. By now the
added value of incorporating the NIProxy in the experiment
should become apparent: comparing figures 2(b) and 2(c)
with figure 2(a) indicates that file slide.ppt, which was
requested on the high-priority P2P connection, was received
sooner in case the bandwidth management functionality of
the NIProxy was exploited (the achieved gain respectively
equalled 11 and 2 seconds). Consequently, leveraging the
NIProxy’s bandwidth distribution mechanism resulted in the
application behaving as expected by the user. Although we
did not perform any formal user tests, we think it is intuitively
apparent that this in turn yielded an improvement of the user’s
QoE.

Before concluding the discussion of the first experiment,
it is worth noting that the results produced by the NIProxy’s
bandwidth distribution mechanism could presumably also be
achieved by modifying the client software of the employed test
application. In particular, in the current implementation of the
client software, the only mechanism available to attach priority
to content items is to request them in an appropriate order.
By refining this implementation, it could become possible
to produce results comparable to the ones delivered by the
NIProxy. However, leveraging the functionality provided by
the NIProxy allows the implementation of the client software
to be kept simple, which will likely result in a significant
reduction in application development time. Additionally, mod-
ifying the client software so that it supports more advanced
bandwidth management is not a reusable solution since it
embeds the functionality in one particular application. In
contrast, the NIProxy’s bandwidth management mechanism
can be exploited by a broad range of networked applications,
even concurrently, making it a much more favorable solution
from an economic point of view.

C. Experiment 2: Managing both real-time and non real-time
network traffic

While the first experiment focused solely on non real-time
network traffic, the objective of the second experiment was
to validate whether the NIProxy is also capable of managing
client downstream bandwidth in the presence of both real-

time and non real-time network flows. To create a scenario
involving both these types of network traffic, we employed
the test application to set up (i) a real-time video connection
between a client and two remote hosts H1 and H2 and (ii) a
non real-time communication channel between the client and
remote host H1 as well as another remote host representing a
dedicated file server (FS). The non real-time connections were
used to request the following files:

• geom.3ds: 484652 bytes; requested from file server
• img.png: 23419 bytes; requested from remote host H1

The files were requested by the client in immediate succession,
in order of enumeration. Furthermore, to allow us to fully
demonstrate the capabilities of the NIProxy’s bandwidth dis-
tribution mechanism, we defined some additional constraints
and requirements. In particular, we determined that the video
stream emitted by remote host H1 had a higher significance for
the requesting client than H2’s video stream and that priority
should be given to files requested on the non real-time network
connection with the file server compared to files requested
from remote host H1. One possible reasoning behind this latter
constraint might be, for instance, that the dedicated file server
contains files that are crucial for the execution of the appli-
cation, meaning they should be received as soon as possible,
while the other non real-time connection simply allows the
local client and host H1 to exchange files in a P2P manner
(and hence is far less important). Finally, we also imposed the
requirement that non real-time communication should receive
a “fair” amount of the total downstream bandwidth available
to the client. In particular, we would like at least 30 percent
of the client’s downstream bandwidth to be designated to the
reception of non real-time network traffic.

As was the case in section V-B, the just described experi-
ment was repeated three times. We again began by executing
the experiment without including the NIProxy, whereas during
the second and third execution of the experiment the client did
exploit the NIProxy’s bandwidth management functionality.
These latter two iterations differed from each other in that
during the last execution the video transcoding service of
the NIProxy was enabled. As its name indicates, this service
allows the NIProxy to reduce the bandwidth requirements
of video streams by on-the-fly transcoding them to a lower
quality. An in depth description of the video transcoding
service can be found in our previous work [1], where it was
introduced to illustrate the NIProxy’s second QoE-improving
mechanism, multimedia service provision.

Network traces illustrating the network traffic received by
the client during the different executions of the experiment
are shown in figure 4, while figure 5 depicts the stream
hierarchy based on which the NIProxy distributed the client’s
downstream bandwidth during the second and third execution.
Important to notice in this latter figure is the influence of the
constraints identified at the beginning of this section on the
layout of the stream hierarchy. In other words, we attempted
to construct the stream hierarchy in such a manner that the
specified constraints and requirements were satisfied. Further-



(a) Without NIProxy (b) With NIProxy (video transcoding disabled) (c) With NIProxy (video transcoding enabled)

Fig. 4. Network traces (stacked graphs) indicating all network traffic received by the client during the three different executions of the second experiment.

Fig. 5. Stream hierarchy used during the second and third execution of the
second experiment.

more, notice that there are actually two leaf nodes associated
with each video source in the displayed stream hierarchy. The
leftmost node of each pair corresponded with the original
version (OV) of the video stream (i.e. the video stream as
it was transmitted by the video source), while the rightmost
node corresponded with the transcoded, lower-quality version
(TV) of this stream (i.e. the version generated by the NIProxy’s
video transcoding service). The rightmost video leaf nodes are
displayed using a dashed outline, since they were only present
in the client’s stream hierarchy during the third execution
of the experiment (when the video transcoding service was
enabled).

Figure 4(a) reveals that, during the first execution of the
experiment, the simultaneous reception of both real-time and
non real-time network traffic resulted in a number of important
issues. First of all, the contention for the client’s available
downstream bandwidth yielded a wrongful penalization of the
non real-time network traffic. In particular, whereas the video
sources kept on transmitting at a constant rate, irrespective
of the downstream bandwidth actually available to the client,
the non real-time TCP connections automatically adapted
their transmission rate to prevent over-encumbrance of the
client’s network connection. Consequently, the non real-time
network traffic needed to content itself with the amount of
downstream bandwidth left unused by the real-time traffic,
which is in disaccord with our requirement specifying that the
non real-time communication should receive a fair share of the
total downstream bandwidth available to the client. Secondly,
although the real-time video flows claimed the majority of the
client’s available downstream bandwidth, they still suffered
from the contention from the non real-time traffic. In partic-
ular, small amounts of packet loss were introduced and the
reception of the real-time video traffic became more irregular,
which in turn resulted in a deteriorated video playback at

client-side.
Looking at figure 4(b), we see that the issues described

in the previous paragraph did not occur in case the client
exploited the bandwidth distribution functionality of the
NIProxy. More specifically, by relying on a percentage node
to differentiate between real-time and non real-time network
traffic, we were able to guarantee the non real-time network
traffic a certain amount of the client’s downstream bandwidth
capacity during the entire experiment (i.e. at least 30 percent)3.
The outcome was a much faster reception of the requested
files, however at the expense of the least important video
stream being turned off as long as there was non real-time
data available to forward to the client. Secondly, thanks to the
NIProxy successfully rate-controlling non real-time network
traffic when forwarding it to the client, the reception of real-
time video traffic at client-side remained unaffected and, as
a result, no deterioration in video playback was noticed.
Finally, as can be deducted from figure 4(c), enabling the
video transcoding service of the NIProxy had the additional
advantage of allowing the real-time video traffic to consume
its assigned percentage of the client’s downstream capacity
to a greater extent. In particular, thanks to the availability
of the video transcoding service, the NIProxy’s bandwidth
distribution algorithm was now able to forward the transcoded
version of H2’s video stream at the moment the non real-time
network traffic was initiated. This is explained by the fact that
the transcoded version has lower bandwidth requirements than
its original counterpart, and hence forwarding it did not result
in the non real-time traffic being denied its fair share of the
available downstream bandwidth.

To summarize, the advantage of incorporating the NIProxy
in the experiment discussed in this section was twofold.
First of all, it resulted in the client’s downstream bandwidth
being distributed correctly over the different real-time and non
real-time network flows in which the client was interested.
Secondly, it enabled us to satisfy the requirements specified at
the beginning of the section with minimal effort (i.e. without
requiring substantial modifications to the client software).
Based on these observations, we believe it is fair to say
that the introduction of the NIProxy in this experiment again
had a positive influence on the user’s QoE, even though we

3Notice that, when no non real-time data needed to be received, the video
traffic consumed more than its allocated bandwidth percentage. This is due to
the percentage node distributing any bandwidth left unused by its children in a
second phase, as explained in section III-A; in this case, the excess bandwidth
was assigned to the video root node.



cannot confirm this conclusion with results from formal user
tests. Finally, it also worth noting that the experimental results
presented in this section once more illustrate the added value
of supporting interaction between the NIProxy’s bandwidth
distribution mechanism and its service provision functionality.
As we already stated in [1], enabling collaboration between its
two QoE-increasing mechanisms is one of the most important
features of the NIProxy, since it allows the NIProxy to improve
the user QoE to an extent that could not be achieved by
applying the two mechanisms separately.

VI. RELATED WORK

The topic of automatic bandwidth distribution, and network
resource management in general, has already received consid-
erable attention from the research community. For instance,
the Differentiated Services (DiffServ) networking architec-
ture supports end-to-end allocation of networking resources,
possibly even across separate domains, through a so-called
Bandwidth Broker (BB) entity. Interesting work in this BB
context includes, for instance, the GARA architecture [2],
the ARM approach [3], the transcoding protocol described
in [4] and the QoS management framework proposed in
[5]. Examples of network resource management in network
architectures other than DiffServ are for instance presented in
[6], [7], [8] and [9]. The NIProxy distinguishes itself from
these approaches in that the latter are concerned with Quality
of Service (QoS) provision (i.e. guaranteeing that the require-
ments of data flows are satisfied), whereas the NIProxy’s
bandwidth distribution mechanism pursues the more high-level
goal of maximizing the multimedia experience provided to
users of networked applications. To accomplish this objective,
the NIProxy extensively exploits its application awareness,
a type of context that is often left unconsidered in related
systems. Moreover, another unique feature of the NIProxy
is that it integrates bandwidth management and multimedia
service provision in a single system in such a manner that
interoperation between both mechanisms becomes possible.
Finally, while the NIProxy focuses solely on managing down-
stream bandwidth, we would like to point out that it is just as
well possible to manage the uplink capacity of network links;
an example hereof is given in [10].

VII. CONCLUSIONS AND FUTURE WORK

Networked applications are increasingly exploiting multi-
media content and, as a result, the issue of client downstream
bandwidth management is gaining importance at an equally
steady rate. Depending on its characteristics, multimedia con-
tent is transmitted over the transportation network using either
real-time or non real-time network flows. In this paper, we
have reported on our continued development of the NIProxy,
a network intermediary which aims to improve the QoE
provided to users of networked applications by incorporating
additional awareness in the network. More specifically, we
have focused on automatic client bandwidth management, one
of the two QoE-improving mechanisms currently supported
by the NIProxy, and we have described how it was extended

with support for non real-time network traffic (the previously
proposed version of the NIProxy could only successfully cope
with real-time network streams). Through the presentation
of representative experimental results, we have demonstrated
that this addition resulted in an increased applicability and
effectiveness of the NIProxy, since it is now capable of
successfully managing client downstream bandwidth in the
presence of real-time as well as non real-time network traffic.
In addition, the presented experimental results also indicate
that incorporating the NIProxy in networked applications
yields a considerably positive influence on the QoE of their
users, meaning its set forth objective is achieved.

As part of future work, we intend to investigate the impact
of employing the NIProxy to manage client downstream
bandwidth in a more realistic networked application generating
both real-time and non real-time network traffic. In particular,
we plan to incorporate the NIProxy in an in-house developed
Networked Virtual Environment (NVE) application which sup-
ports both real-time voice and video chat and which relies on
non real-time network communication to exchange different
types of geometry information (IBR data, 3D models, ...) that
are required to render the virtual world at client-side.

ACKNOWLEDGMENTS

This research is part of the IBBT E2E QoE project. Part of
this research is also funded by the EFRD.

REFERENCES

[1] M. Wijnants and W. Lamotte, “The NIProxy: a Flexible Proxy Server
Supporting Client Bandwidth Management and Multimedia Service
Provision,” in Proceedings of the IEEE International Symposium on a
World of Wireless, Mobile and Multimedia Networks (WoWMoM 2007),
Helsinki, Finland, June 2007.

[2] I. Foster, M. Fidler, A. Roy, V. Sander, and L. Winkler, “End-to-End
Quality of Service for High-End Applications,” Computer Communica-
tions, vol. 27, no. 14, pp. 1375–1388, 2004.

[3] A. Ramanathan and M. Parashar, “Active Resource Management for The
Differentiated Services Environment,” in Proceedings of the 3rd Annual
International Workshop on Active Middleware Services (AMS 2001), San
Francisco, USA, August 2001, pp. 78–86.

[4] R. Kumar, J. Rao, A. Turuk, S. Chattopadhyay, and G. K. Rao, “A
Protocol to Support QoS for Multimedia Traffic over Internet with
Transcoding,” in Proceedings of the HiPC Trusted Internet Workshop
(TIW 2002), Bangalore, India, December 2002.

[5] E. Kusmierek, B.-Y. Choi, Z. Duan, and Z.-L. Zhang, “An Integrated
Network Resource and QoS Management Framework,” in Proceedings
of the IEEE Workshop on IP Operations and Management (IPOM 2002),
Dallas, USA, October 2002, pp. 68–72.

[6] S. Floyd and V. Jacobson, “Link-sharing and Resource Management
Models for Packet Networks,” IEEE/ACM Transactions on Networking,
vol. 3, no. 4, pp. 365–386, August 1995.

[7] V. Hnatyshin and A. S. Sethi, “Architecture for Dynamic and Fair Dis-
tribution of Bandwidth,” International Journal of Network Management,
vol. 16, no. 5, pp. 317–336, September/October 2006.

[8] F. M. Anjum and L. Tassiulas, “Fair Bandwidth Sharing among Adaptive
and Non-Adaptive Flows in the Internet,” in Proceedings of the IEEE
Conference on Computer Communications (INFOCOM 1999), New
York, USA, March 1999, pp. 1412–1420.

[9] M. Furini and D. Towsley, “Real-Time Traffic Transmission over the
Internet,” IEEE Transactions on Multimedia, vol. 3, no. 1, pp. 33–40,
March 2001.

[10] S. Chandra, C. S. Ellis, and A. Vahdat, “Differentiated Multimedia Web
Services using Quality Aware Transcoding,” in Proceedings of the IEEE
Conference on Computer Communications (INFOCOM 2000), Tel Aviv,
Israel, March 2000.


