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Abstract

Cumulative advantage principle is a specific law underlying several
social, particularly, bibliometric and scientometric processes. This
phenomenon was described by single- and multiple-urn models (Price
(1976), Tague {1981)). A thecretical model for cumulative advantage
growth was developed by Schubert and Glaenzel (1984). This paper
presents an exact measure of the cumulative advantage effect based

on conditional expectations. For a given bibliometric random variable
X (e.g. publication activity, citation rate) the cumulative advantage
function is defined as pu(k) = E((X-k}[(X-k} 2 G}/E(X}. The ‘extent of
advantage' is studied on the basis of limit properties of this
function. The behavior of u(k) is discussed for the urn-model
distributions, particularly for its most prominent representants,

the negative-binomial and the Waring distribution. The discussion

is i1lustrated by several examples from bibliometric distributions.

1. INTRODUCTION

The phenomenon of cumulative advantage is intimately connected with social
processes. It is in effect whenever a new event is influenced by previous
successes or failures. Therefore the principle is also called success-breeds-
success-phenomenon. It was shown (e.g. Price (1976), Tague (1981)) that the
cumulative advantage principle {c.a.p.) underlies saveral bibliometric/
scientometric phenomena. Other bibliometric phenomena may just as well be
independent of any success and failure influences. Given a set of empirical
data it is not always easy to decide whether c.a.p. is underlying or not.
Therefore an effective measure and, first of all, a definition of the
cunulative advantage principle is needed. A verbal description was given by
de Solla Price {1976) :
"A paper which has been cited many times is more likely to be cited again than
one which has been 1ittie cited. An author of many papers is more likely to
publish again than one who has been less profilic. A journal which has been
frequently consulted for some purpose is more likely to be turned to again
than one of previously infreguent use. Words become common or remain rare.
A millionaire gets extra income faster and easier than a beggar."

The present paper attempts to give an exact mathematical description and a
quantitative measure of this phenomenon, The mathematical results are applied
to bibliometric distributions of several types.
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2. THE STOCHASTIC MODEL

In order to visualize thebackground and mechanism of the cumulative advantage
principle a stochastic process introduced by Schubert & Glaenzel {1984) is used.
We recall the model in brief :

Consider an infinite array of units indexed in succession by the non-negative
numbers, The content of the i-th unit is denoted by Xjs the (finite) content of

all units by x. Then the fraction ¥; = inX'(i 2 0) expresses the {classical}

probability with which an element is contained by the i-th unit. The stochastic
process is formed by the change of the content of the units. The change is
postulated to obey the following three rules :

{1) Substance may enter the system from the external enviromnment through the
0-th unit at a given rate.

{2) Substance may be transferred from any unit to the adjoining ones at a given
rate.

{3) Substance may leak out from any unit into the external environment at a
given rate,

It is clear that the content of the units has a specific distribution at any
time. We assume that at the beginning only the 0-th unit contains elements,
i.e. the entire population is concentrated in the 0-th unit. We further assume
that the process has a non-degenerated 1imit distribution as time tends to
infinity, Fig.i shows the scheme of substance flow of this process.
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Fig.1 : Scheme of substance flow in the stochastical cumulative advantage model

Cumulative advantage means that an element being in a unit with a high index is
more likely to reach a unit with a still higher index than an element of a unit
with a low index. The step from the i-th to the {i+1}-th anit can be considered
as a success, a step in the reverse direction as a failure. A cumulation of
successes and failures during the time elapsed is determined by the transfer
rates and results in a specific 1imit distribution. Since, in general,
empirical data give information about the stationary 1imit distribution, it
seems reasonable to define a cumulative advantage measure on this limit
distribution.

3. THE CUMULATIVE ADVANTAGE FUNCTION

The c.a.p. is partially reflected by the expected remaining life function
originally defined for renewal processes {e.g. Kotz & Shanbagh (1980))., For

a non-negative integer-valued random variable X, it is defined as

s{k) = E?X-k X 2 k), k = 0,1,2,..., provided the expectation is finite. In
the frame of the stochastic process of the preceding section s{k) is the
expected index of the unit to be reached by an element provided the k-th unit
had already been reached. A cumulative advantage then corresponds to an
increasing function s(k). Unfortunately, for our purpose the expected
remaining 1ife function must be rejected because this function depends on

the expectation. Thus it measures not only the "acquired" advantage rate but
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the "innate" advantage, too.

In order to overcome this shortcoming we define the cumulative advantage
function (c.a.f.) as

uik) = E((X-k)ll-:{;((;k) 2 0)

This function obviously meets our requirements, The analysis of the c.a.f.
should cover (1) the monotonicity and (2) the limit at infinity.

Ad (1). Two cases are of particular interest in our present analysis : if u is
monotone or if p can be splitted into two monotone parts. Other special patterns
(e.?., periodical behavior) could be the topic of a separate study.

Ad {2). Concerning the limit, 5 different types can be distinguished. Put
¢ = Tim (k)
kre
l.c=w= (cumulative advantage principle)
2.1 ¢c <= (limited influence of advantage)
3.c=1 {no advantage at z11)
4. 0 < ¢ <1 (limited influence of disadvantage)
5.c=0 {cumulative “"disadvantage” principle)

Note that p(0) = 1 and (k) = 0 for all k. Before applying this function to
any particular distribution it would be wortiwhile having a look at the
relationship between the cumulative advantage principle and the tail properties
of distributions.

Theorem 1 :
tet Pk denote the probability P{X=k} and put pk+1/pk = Qs 1im q, = 9.
koo

Assume that c is the same as above. Then the following eguivalent statements
hold :

1Yc=10 e q =1
(2Y0<cC e 00 < g <1
(3)c=0 - q=0.

FProof :

The proof is based on characterization theorems by Gupta (1975) and Glaenzel
& al. (1984). According to these results the distribution p, is uniquely
determined both by the expected remaining life function and by the c.a.f.
and E{X). Thus we have :

k-1 M d

: u -, +
pk = 0 1+ d kel +kd
i=0 Hi Hge1

where d = 1/E{X). Hence

L T I e R
Ty T Ay - T

is obtained. The right hand factor of the above equation always tends to 1,
independently of the actual limit ¢ = u_. Therefore the folilowing
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approximation can be studied instead :

Hence the statement can directly be derived.

Now we show the close relationship between the tail of a distribution and the
limit value of the c.a.f.

A distribution is said to have a proper tail, if it asymptotically obeys
"Zipf's Law", e.g., if

lim { = pi)ku = const
ke =k

for some real o > 0 (see Glaenzel & Schubert (1988)). This already implies the
convergence pk+1/pk s (1 +1/k)® + 1. This consideration and the Theorem 1 leads
to the following important result :

Theorem 2 :

Let X be a non-negative integer-valued random variable the distribution of which
has a proper tail with the characteristic exponent o > 1. Then the cumulative
advantage principle underlies the distribution of X, i.e., u{k} + = as k + «,

4, THE URN MODEL DISTRIBUTIONS

The connection between the cumulative advantage principle and some
representatives of the urn model distributions has already been shown and
discussed in the papers by Price (1976) and Tague (1981}. In the following
the c.a.f. introduced in the preceding section will be applied to the
distributions of the classical Polya-Eggenberger urn model. First of all we
recall how this single-urn model works. Let an urn contain a certain number
of black and white balls. White usually means success, black means failure.
A ball is drawn from the urn at random. Together with the drawn ball a certain
fixed number of white or black balls is replaced inte the urn, according as
the color of the drawn ball was white or black, respectively. The number of
added balls can be positive, zero or negative. The process of drawing and
replacing balls is continued according to the chosen model. Two models, a
"finite” (1) and an "infinite" (2) one are used.

(1) The process is stopped after the n-th ball is drawn.
{2) The process is stopped if the n-th black ball (failure) is drawn.

Random events are the number of the drawn white balls (successes). The built-in
cumulative advantage-disadvantage phenomenon is obvious. The proof of the
following statement can be found in the literature {(e.g. Johnson & Kotz (1977)).

Proposition :

The distribution of a non-negative integer-valued random variable X can be
obtained from the urn model, if

T{a+B)l{a41) B {B+k-1)(T+k-1)

PO=K) = MaTT(ovew] (aedve) * ~(aapvrsk-TIK

where o, B and T are parameters such that Pk is a probability for every k 2 0.
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The connection with the cumulative advantage principle can be demonstrated by
two examples. Model (2) is assumed, i.e,, baTls are drawn until a certain number
of black balls occur.

1. Waring distribution : the number of added balls after each drawing is.
positive. Procedure is stopped when the first black ball is drawn. Thus
the number of drawn white balls is influenced only by successes but not
by failures. This is a pure cumulative advantage distribution.

2. Negative-binomial distribution. No balls are added when replacing the drawn
one. Procedure is stopped after the n-th black ball was drawn. No cumulative
advantage effect.

Now we have a look at the c.a.f. of these distributions. An important property
of the c.a.f. of urn model distribution is reflected by Theorem 2 which is a
result of a theorem by Glaenzel & Schubert (1985) :

Theorem 3 :

The cumulative advantage function of a distribution of the Polya-Eggenberger
urn model is always asymptotically linear, provided the expectation is finite,
in particular :

uk) = k/8t + 1 -a (t-1/8)(1 - 1/t}/(a+1), k> 1 .

It is interesting to note that the c.a.f. of a Waring distribution is linear
and completely independent of the characteristic tail parameter o :

p{k) = k/N+1, The c.a.f. of a negative-binomial distribution has the
asymptotic equation pu{k) =~ 1/N, i.e., the limit value does not depend on the
parameter q. Based of a comparison with the classification of Section 3 we can
state that a negative binomial distribution reflects a limited infiuence of
advantage if N < 1, a Timited influence of disadvantage if N > 1 and no
advantage, if N = 1 (geometric distribution). A cumulative "disadvantage"
principle underlies the Poisson and all finite urn model distributions

(u(k) = 0, if k » 1). Figure 2 illustrates the behavior of the c.a.f. by
means of four urn model distributions with different parameters.
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5. APPLICATION TO BIBLIOMETRIC DISTRIBUTIONS

In this section we 1llustrate on bibliometric examples how a cumulative
advantage effect can be detected and interpreted on the basis of the c.a.f.
Four basic types of scientometric distributions were chosen for the analysis.
Two of them are related to the reference/citation process, the other two
distributions are connected with the publication/authorship process, The first
pair of distributions (a citation rate and a reference distribution} are taken
from the SCI database of the Institute of Scientific Information (Philadelphia,
USA). The data are restricted to papers (of the 5-year time period 1981—85§
with at least one Hungarian co-author. Citation rates has been counted for the
same time period, references were considered without any restrictions. In order
to obtain a homogeneous population, only research papers were taken into account.
Thus, among others, the items "review or bibliography" were deliberately
omitted because they would cause an artificially long tail of the reference
distributions. Citation rates are, of course, expected to reflect a cumulative
advantage effect, Fig.3 shows the diagram, c.a.f., u(k} vs. citations k for

k s 50. As expected, an increasing c.a.f. is obtained. The points (k,u(k})

form an almost perfect straight line., Thus the underlying cumulative advantage
principle is unambiguous.
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Fig.3 : c.a.f. of the citation rate distribution of Hungarian papers
published in 1981-85

Reference data are not expected to reflect any effect of cumulative advantage.
The decreasing c.a.f. at the beginning seems to confirm this assumption (see
Fig.4). The behavior of the function for greater k (k > 30), however, contra-
dicts the assumption. This phenomenon suggests the following explanation :
The reference distribution is influenced by two tendencies. One relates to
papers with only a few references. Only as many related papers as absolutely
necessary and relevant are cited. When the most important references are
included, further, less relevant cnes are "repulsed". Thus in the beginning of
the distribution a disadvantage is observed, The second tendency can be
considered as some kind of “chain reaction". In this case, papers aim at
complteteness., Each cited paper uncovers a whole set of further references and
some of them may be added to the reference list. The latter "2nd generation”
references may attract a 3rd generation and so on. This leads to a kind of
cumutative advantage. The distribution can be found in Table 1.

The data of the second pair of samples are taken from the data base MEDLARS.
A1l papers concerning the research of the cancer medicament "Endoxan" were
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Fig.4 : c.a.f. of the reference distribution of Hungarian papers
published in 1981-85

selected (for the 5-year period 1982-1986), The first sample, publication
activity data, is a classical example for the cumulative advantage principle.
The topic of the papers is very specific, therefore the author population is
rather homogeneous. The second sample is the distribution of the number of
authors of the same set of papers. The frequency distributions of both
samples are presented in Table 2. The cumulative advantage function can be
found in Fig.5. Although neither distribution has a proper tail, the c.a.f.
clearly shows a cumulative advantage for the publication activity distribution
and a disadvantage for the authorship distribution. In the case the
productivity this phenomenon may be caused by the shortness of the time period
{a relative long time is needed for the observations of the patients). The
lacking tail of the author distribution can be explained by the fact that
generally small groups of scientists are invelved in this research, thus the
number of potential authors is very limited. On the other hand, the distribution
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Fig.b : c.a.f. of authorship (a)} and publication activity (b) of
837 "Endoxan" papers and 2604 authors (1982-86)
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Table 1 : The absolute frequency distribution of citation rates (X) and
references of (¥) 10256 Hungarian papers published in 1981-85

k X Yk
0 5521 232
1 1850 56
2 857 129
3 562 189
4 368 269
5 245 299
6 173 338
7 118 365
B8 94 421
9 71 401
10 69 47
" 44 392
12 39 a1
13 40 393
14 25 406
15 22 399
16 3 409
17 17 323
18 8 342
19 9 300
20 6 284
21 8 259
22 7 2N
23 7 22
24 7 247
25 5 2n
26 4 190
27 6 172
28 3 163
29 5 145
3 4 135
31 3 121
32 3 126
33 2 120
34 0 108
35 1 84
36 0 81
37 1 72
38 1 66
39 2 63
40 1 52
41 1 53
42 1 37
43 3 39
44 0 29
45 1 4
46 0 20
47 1 K|
43 0 28
49 0 20
50 1 22
> 50 9 254
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Table 2 : The absolute frequency distribution of publication activity (X) and
authorship {y) of 837 “"Endoxan" papers published in 1982-86 (2604

authars)
k Xk Yk
1 2247 9
2 250 171
3 66 177
4 23 150
5 " 9
6 4 A
7 2 40
8 0 19
9 0 11
10 1 13
1" 0 2
12 0 1

is not extremely skewed, because most papers of this topic are team work.

Single author papers are not too frequently observed. If we compare the behavior
of the latter two distributions with the theoretical considerations of Section
4, we can claim, that the productivity distribution may probably be

approximated by a Waring distribution, while a negative binomial distribution
may give a good approximation for the authorship distribution.
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