
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Formal and informal model selection with incomplete data

Peer-reviewed author version

VERBEKE, Geert; MOLENBERGHS, Geert & BEUNCKENS, Caroline (2008) Formal

and informal model selection with incomplete data. In: STATISTICAL SCIENCE,

23(2). p. 201-218.

DOI: 10.1214/07-STS253

Handle: http://hdl.handle.net/1942/8526



Formal and Informal Model Selection with Incomplete
Data

Geert Verbeke ∗ Geert Molenberghs † Caroline Beunckens †

Summary

Model selection and assessment with incomplete data pose challenges in addition to
the ones encountered with complete data. There are two main reasons for this. First,
many models describe characteristics of the complete data, in spite of the fact that only
an incomplete subset is observed. Direct comparison between model and data is then
less than straightforward. Second, many commonly used models are more sensitive to
assumptions than in the complete data situation and some of their properties vanish
when they are fitted to incomplete, unbalanced data. These and other issues are brought
forward using two key examples, one of a continuous and one of a categorical nature. We
argue that model assessment ought to consist of two parts: (i) assessment of a model’s
fit to the observed data and (ii) assessing the sensitivity of inferences to unverifiable
assumptions, i.e., to how a model described the unobserved data given the observed
ones.
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1 Introduction

In many longitudinal and multivariate settings, not all designed measurements are collected. The

implications of incompleteness need to be carefully considered and incorporated in the modeling

process. Early work was largely concerned with algorithmic and computational solutions to the

induced lack of balance or other design deviations (Afifi and Elashoff 1966, Hartley and Hocking

1971). Nowadays, general algorithms such as expectation-maximization (EM, Dempster, Laird,

and Rubin 1977), and data imputation and augmentation procedures (Rubin 1987), combined with

powerful computing resources and flexible software implementations, are available. Thus, emphasis

should be on assessing the impact of missing data on subsequent statistical inference.

We use terminology of Little and Rubin (2002, Chapter 6). A non-response process is missing com-

pletely at random (MCAR) if missingness is independent of unobserved and observed data and missing

at random (MAR) if, conditional on the observed data, missingness is independent of the unobserved

measurements. A process that is neither MCAR nor MAR is termed non-random (MNAR).

Given MAR, a valid analysis ignoring the missing value mechanism can be obtained, within a likelihood

or Bayesian framework, provided the parameters describing the measurement process are functionally

independent of these describing the missingness process. This is termed ignorability (Rubin 1976,

Little and Rubin 2002) and simplifies modeling (Diggle 1989, Verbeke and Molenberghs 2000).

Such direct-likelihood and direct Bayesian analyses are increasingly prefered over ad hoc methods

such as last observation carried forward (LOCF), complete case analysis (CC), or single imputation

(Molenberghs et al 2004, Mallinckrodt et al 2003ab, Jansen et al 2006a). Practically, tools like the

linear and generalized linear mixed-effects models (Verbeke and Molenberghs 2000, Molenberghs and

Verbeke 2005) can be used.

Nevertheless, in spite of the flexibility and elegance a direct-likelihood method brings, there are

fundamental issues when selecting a model and assessing its fit to the observed data, which do not

occur with complete data. These are the central theme of this paper; already in the MAR case, but

they are compounded further under MNAR. One can never fully rule out MNAR. However, it is usually
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difficult to justify the particular choice of MNAR model (Jansen et al 2006b). For example, different

MNAR models may fit the observed data equally well, but engender quite different implications

for the unobserved measurements and conclusions drawn. Without additional information, one can

only distinguish between such models using their fit to the observed data, and so goodness-of-fit

tools alone do not provide a relevant means of choosing between such models, naturally leading to

sensitivity analysis, broadly defined as an instrument to assess the impact on statistical inferences

from varying the, often untestable, assumptions in an MNAR model (Vach and Blettner 1995, Copas

and Li 1997, Scharfstein, Rotnitzky, and Robins 1999, Molenberghs and Kenward 2007).

The ideas will be developed by means of two running examples with their model families, introduced

in Section 2, along with initial analyses. Issues arising when analyzing incomplete data, under MAR as

well as MNAR, are enlisted in Section 3. Ways of tackling the problems are the subject of Section 4.

2 Running Examples and Their Initial Analyses

2.1 The Orthodontic Growth Data

For 11 girls and 16 boys, the distance from the center of the pituitary to the maxillary fissure was

recorded at ages 8, 10, 12, and 14 (Pothoff and Roy 1964). Little and Rubin (2002) deleted 9 of the

[(11 + 16) × 4] observations, thereby producing 9 incomplete subjects with a missing measurement

at age 10. Their missingness generating mechanism was such that subjects with a low value at age

8 are more likely to have a missing value at age 10. Data tabulations and graphical displays can be

found in Verbeke and Molenberghs (2000) and Molenberghs and Kenward (2007).

Jennrich and Schluchter (1986), Little and Rubin (2002), and Verbeke and Molenberghs (1997, 2000)

fitted eight linear mixed models, of the form: Y i = Xiβ+Zibi+εi, where Y i is the (4×1) response

vector, Xi is a (4 × p) design matrix for the fixed effects, β is a vector of unknown fixed regression

coefficients, Zi is a (4 × q) design matrix for the random effects, bi is a zero-mean (q × 1) vector

of normally distributed random parameters, with covariance matrix D, εi is a zero-mean normally

distributed (4 × 1) random error vector, with covariance matrix Σ, and bi and εi are independent.
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The mean Xiβ will be a function of age, sex, and/or the interaction between both.

Model 1 leaves the group by time model and the covariance matrix unstructured. Through model

simplification steps, details of which can be found in Molenberghs and Verbeke (2000), passing via

non-parallel (Model 2) and parallel (Model 3) straight mean profiles, Model 7 is retained, featuring

non-parallel straight mean profiles and a compound-symmetry covariance structure. Little and Rubin

(2002) fitted the same models to the trimmed, incomplete, version of the dataset, using direct-

likelihood methods, and were led to the same Model 7. A quite different picture would emerge, were

simple, ad hoc , methods used (Molenberghs and Kenward, 2007). As is commonly known in the

research community, analyses like last observation carried forward (LOCF), complete case analysis,

and simple forms of mean imputation produce distorted mean and/or covariance structures. This

message is in line with the unreliable performance of such simple methods, as opposed to direct

likelihood, thanks to the latter method’s validity under MAR. It is often argued that the price to pay

is the need to fit a model to the entire longitudinal sequence through, for example, a linear mixed

model, even in circumstances where scientific interest focuses on the last planned measurement

occasion. However, for balanced longitudinal data, where the number of subjects is sufficiently large

compared to the number of times, a full multivariate normal (Model 1), can often be considered, not

making assumptions beyond the ones made by, say, multivariate analysis of variance (MANOVA),

ANOVA per time point or, equivalently, a t test per time point. This is illustrated in Table 1, using

Model 1 fitted to the complete and trimmed growth data. Means for boys at the ages 8 and 10 are

displayed. Whenever the data are balanced, the means are the same regardless of which estimation

method is used. Standard errors are asymptotically equal, and even in our small sample differences

are negligible. CC overestimates the means since the subjects removed from analysis have lower-

than-average means, and LOCF underestimates the mean at age 10, since the age 8 measurement

is carried forward.

Analyzing the trimmed data, the results from the direct-likelihood analyses, valid under MAR, diverge

from the frequentist MANOVA and ANOVA analyses, the latter valid only under MCAR. MANOVA

effectively reduces to CC, owing to its inability to take incomplete sequences into account. ANOVA
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produces correct inferences only at occasions with complete data.

2.2 The Slovenian Public Opinion Survey

In 1991 Slovenians voted for independence from former Yugoslavia in a plebiscite. To prepare for

this result, the Slovenian government collected data in the Slovenian Public Opinion Survey (SPO),

a month prior to the plebiscite. Rubin, Stern, and Vehovar (1995) studied the three fundamental

questions, for the one time added to the usual SPO questions and, in comparing it to the plebiscite’s

outcome, drew conclusions about the missing data process. Molenberghs, Kenward, and Goetghe-

beur (2001) used these data to introduce sensitivity analysis methodology. Details can be found in

Molenberghs and Verbeke (2005) and Molenberghs and Kenward (2007). The three questions were:

(1) Are you in favor of Slovenian independence? (2) Are you in favor of Slovenia’s secession from

Yugoslavia? (3) Will you attend the plebiscite? Question (3) is relevant due to the political decision

that not attending was treated as an effective NO to question (1). The primary estimand, the pro-

portion θ of people that will be considered as voting YES, follows from those answering yes to both

the attendance and independence question. An overview of various analyses is given in Molenberghs

and Kenward (2007).

These authors used the model proposed by Baker, Rosenberger, and DerSimonian (BRD, 1992)

for two-way contingency tables subject to non-monotone missingness. Organize the two outcomes,

together with their missingness indicators, as a four-way contingency table with counts Zr1,r2,jk,

where j, k = 0, 1 reference the two categories for the response variables and r1, r2 = 0, 1 refer to

the two missingness indicators. The counts are not fully observable and should be seen as a device

to facilitate modeling. Such modeling takes place in terms of cell probabilities νr1,r2,jk with the

same indexing system as the counts Zr1,r2,jk. Rewrite the probabilities governing the incomplete

patterns as modified version of the complete-pattern probabilities ν11,jk, i.e., ν10,jk = ν11,jkβjk,

ν01,jk = ν11,jkαjk, and ν00,jk = ν11,jkαjkβjkγ. The α (β) parameters describe missingness in the

independence (attendance) question, and γ captures the interaction between both. BRD considered

nine models, based on setting αjk and βjk constant in one or more indices: BRD1: (α, β); BRD4:
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(α, βk); BRD7: (αk, βk); BRD2: (α, βj); BRD5: (αj , β); BRD8: (αj , βk); BRD3: (αk, β); BRD6:

(αj , βj); BRD9: (αk, βj). Interpretation is straightforward, for example, BRD1 is MCAR, and in

BRD4 missingness in the first variable is constant, while missingness in the second variable depends

on its value. BRD6–BRD9 saturate the observed data degrees of freedom; the lower numbered ones

do not, leaving room for non-trivial fit to the observed data.

Rubin, Stern, and Vehovar (1995) conducted several analyses of the data. Their main emphasis

was on determining the proportion θ of the population that would attend the plebiscite and vote

for independence. The three other combinations of these two binary outcomes would be treated as

voting “no”. Pessimistic/optimistic bounds are obtained by setting all incomplete data than can

be considered a yes (no), as yes (no); they equal [0.694; 0.905]. A complete case analysis produces

θ̂ = 0.928 and an available case analysis θ̂ = 0.929. It is noteworthy that both estimates fall outside

the pessimistic–optimistic interval and should be disregarded, since these seemingly straightforward

estimators do not take the decision to treat absences as no’s into account and thus discard available

information. MAR based on two questions leads to θ̂ = 0.892 and, using the middle question as

auxiliary, θ̂ = 0.883 is found. In contrast, their MNAR analysis produces θ̂ = 0.782. The plebiscite

value is θ = 0.885. Rubin, Stern, and Vehovar (1995) concluded, owing to the proximity of the MAR

analysis to the plebiscite value, that MAR in this and similar cases is a plausible assumption.

Molenberghs, Kenward, and Goetghebeur (2001) and Molenberghs et al (2007) fitted the BRD

models and Table 2 summarizes the results. BRD1 produces θ̂ = 0.892, exactly the same as the first

MAR estimate obtained by Rubin, Stern, and Vehovar (1995). This is because both models assume

MAR and use information from the two main questions.

3 Complexity of Model Selection and Assessment With Incomplete

Data

Model selection and assessment are well established components of statistical analysis, whether in

cross-sectional or correlated settings; they are surrounded by several strands of intuition. First, it
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is researchers’ common understanding that “observed'expected” for a well fitting model, usually

understood to imply that observed and fitted profiles ought to be sufficiently similar in a longitudinal

study, observed and fitted counts in contingency tables, etc. Second, for the special case of samples

from normal distributions, the estimators for the mean vector and the variance-covariance matrix

are independent, in small and large samples alike. Third, in the same situation, the least squares

and maximum likelihood estimators are identical for mean parameters and asymptotically equal for

covariance parameters. Fourth, in a likelihood-based context, deviances and related information

criteria are considered appropriate tools for model assessment. Fifth, saturated models are uniquely

defined and at the top of the model hierarchy. For contingency tables, a saturated model exactly

reproduces the observed counts.

While it has been reasonably well known that these five points hold for well-balanced designs and

complete sets of data, their failure with incomplete data is perhaps not as much part of operational

knowledge as it should. Therefore, we find it useful to provide illustrations by means of the running

examples and by general considerations.

3.1 The “observed'expected” Relationship

Figure 1 shows the observed and fitted mean structures for Models 1, 2, 3, and 7, fitted to the

complete and incomplete versions of the growth dataset, respectively. Observed and fitted means for

Model 1 coincide in the complete, balanced case, but do not for the trimmed data. The discrepancy

is seen for the mean at age 10, the only one for which there is missingness.

3.2 The Mean–variance Relationship in a Normal Distribution

To gain insight into the effect of the covariance structure on the mean structure, consider variations

to Model 1, fitted to boys at ages 8 and 10. Retain an unstructured group-by-age mean structure,

and pair it with three residual covariance structures: Model 1: unstructured; Model 7b: CS; Model

8b: independence. Fit these models to complete and incomplete data. For the complete data, the

choice of covariance structure is immaterial, but the choice is crucial when data are incomplete.
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While at age 8 the point estimate remains 22.88 in all three cases, it varies from 23.17 for Model 1,

over 23.52 for Model 7b, to 24.14 for Model 8b; the latter coincides with and hence is as bad as CC

at age 10.

3.3 The Least Squares–Maximum Likelihood Difference

The difference between ordinary least squares and maximum likelihood is an issue, different from but

related to the previous two. Table 1 reiterates that the MLE and the frequentist OLS differ for the

incomplete data. Let us illustrate this well known result for a bivariate normal (Section 3.3.1) and a

contingency table (Section 3.3.2).

3.3.1 A Bivariate Normal Population

Consider a bivariate normal population:

 Yi1

Yi2


 ∼ N





 µ1

µ2


 ,


 σ2

1 σ12

σ12 σ2
2





 , (1)

from which i = 1, . . . , N subjects are sampled. Assume that d subjects complete the study and

N − d drop out after the first measurement.

In a frequentist available case method, using OLS, the parameters in (1) are estimated using the

available information (Little and Rubin 2002, Verbeke and Molenberghs 2000): µ1 and σ2
1 are

estimated using allN subjects, whereas only the remaining d contribute to the other three parameters.

For the mean parameters, this produces: µ̂1 =
(∑N

i=1 yi1

)
/N and µ̃2 =

(∑d
i=1 yi2

)
/d. Little and

Rubin (2002) present an explicit expression for the MLE, starting from the conditional density of

the second outcome given the first one: Yi2|yi1 ∼ N(β0 + β1yi1, σ
2
2|1), producing the maximum

likelihood estimator µ2:

µ̂2 =
1
N





d∑

i=1

yi2+
N∑

i=d+1

[
y2 + β̂1(yi1 − y1)

]


 . (2)

Here, y1 is the mean of the measurements at the first occasion among the completers. Several

observations can be made. The difference between ML and OLS estimators vanishes only under

MCAR and/or when Yi1 and Yi2 are uncorrelated.
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Turning to the orthodontic growth data set, a correction like (2) applies to the age of ten. From

Figure 1(b), it is clear that those remaining on study have larger measurements than those removed,

hence the downward correction in the likelihood estimator. The likelihood even over-corrects in this

case, owing to a small sample size, since the estimated correlation between the ages 8 and 10 is

substantially larger than the correlation between ages 10 and 12. We return to these points in the

next section. There are also important consequences for model checking, since the observed-expected

relationship is no longer straightforward. We return to this in Section 4.

Additionally, the coefficient β1 depends on the variance components and hence a misspecified variance

structure may lead to bias in µ̂2. This underscores the breakdown of the independence of the mean

and variance estimators.

The adequate performance of Model 7b owes to the fact that the expected mean of a missing age

10 measurements gives equal weight to all surrounding measurements, rather than overweighting the

age 8 measurement due to an accidentally high correlation. The zero correlations in Model 8b, do

not allow for such a correction, hence its coincidence with CC.

3.3.2 An Incomplete Contingency Table

Consider an incomplete 2 × 2 contingency table:

Z1,11 Z1,12

Z1,21 Z1,22

Z0,1

Z0,2

,

where Zr,jk refers to the number of subjects in the completers (r = 1) and dropout (r = 0) groups,

respectively, with response profile (j, k). Since for the dropouts only the first outcome is observed,

only summaries Zr=0,j are observable. Using all available data, the probability of success at the

first time is estimated as: π̂1 = (Z1,1+ + Z0,1+)/N , where subscript ’+’ refers to summing. Using

available cases only, the estimator for the success probability at the second time is: π̃2 = Z1,+1/d.

Thus, OLS does not use information from incomplete subjects, whereas the MLE does:

π̂2 =
Z1,+1 + Z0,1 · Z1,11

Z1,1+
+ Z0,2 · Z1,21

Z1,2+

N
. (3)
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3.4 Deviances and Saturated Models

Revisiting Table 2, a deviance comparison between BRD1 and any of BRD2–5 and of the latter with

BRD6–9, shows the earlier models fit poorly. We are thus left with BRD6–9 as candidates. Now,

all four produce exactly the same likelihood at maximum, owing to saturation. Nevertheless, the

estimates for θ differ between these four models, since θ is a function, not only of the model fit to

the observed data, but also of the model’s prediction of the unobserved data, given what has been

observed. Here, and in what follows, we will use ‘fit’ to indicate, broadly, the relationship between

observed data and a model, with ‘prediction’ reserved for the relationship between unobserved data

and a model. The concepts of ‘fit/prediction’ and ‘saturation’ can be seen either as relative to

the observed or the complete data, posing challenges for model selection and fit assessment. In

particular, a model that saturate all degrees of freedom, would by definition be non-identifiable.

All models BRD6–9 being of the MNAR type, it is tempting to conclude that all evidence points

to MNAR as the most plausible missing data mechanism. This notwithstanding, one cannot even

so much as formally exclude MAR. Indeed, Molenberghs et al (2007) have shown that, for every

MNAR model, there is an associated MAR counterpart that reproduces the fit to the observed

data but predicts the unobserved data given the observed ones in a fashion consistent with MAR.

These counterparts can be seen as versions of their parent model, constrained to retain fit but force

prediction to be MAR. The corresponding estimates for the proportion θ in favor of independence are

presented in the last column of Table 2. Let us zoom in on BRD1, 2, 7, and 9. Only BRD7 and BRD9

saturate the observed-data degrees of freedom. The incomplete data as observed, as fitted by each

of the four models, and as fitted by these four models’ MAR counterparts, are displayed in Tables 4

and 5. The fits of models BRD7, BRD9, and their MAR counterparts coincide with the observed

data: every model produces exactly the same fit as does its MAR counterpart. Since BRD1 is MCAR

and hence MAR, it is the only one coinciding with its MAR counterpart. Further, while BRD7 and

BRD9 produce a different prediction of the complete data, BRD7(MAR) and BRD9(MAR) coincide,

owing to saturation. An observation for model assessment and selection is that the five models

BRD6, BRD7, BRD8, BRD9, and BRD6(MAR)≡BRD7(MAR)≡BRD8(MAR)≡BRD9 at the same
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time saturate the observed data degrees of freedom and exhibit a dramatically different prediction of

the full data, and hence for θ: 0.741, 0.764, 0.867, 0.819, and 0.892.

Additional problems can occur, such as predicted complete tables with negative counts, as reported

by BRD, Molenberghs et al (1999), and Molenberghs and Kenward (2007).

4 Model Selection and Assessment with Incomplete Data

The five issues laid out at the start of Section 3 and illustrated using both examples, essentially

originate from the fact that, when fitting models to incomplete data, one needs to manage two

aspects rather than a single one, as schematically represented in Figure 2: the contrast between data

and model is supplemented with a second contrast between their complete and incomplete versions.

Ideally, we would want to consider the situation depicted in Figure 2(b), where the comparison is

fully made at the complete level. Since the complete data are, by definition, beyond reach, it is

tempting but dangerous to settle for the situation in Figure 2(c). This would happen when we would

conclude Model 1 fit poorly to the orthodontic growth data, as elucidated by Figure 1(b). Such a

conclusion would ignore that the model fit is actually a prediction at the complete-data level, i.e.,

16 boys and 11 girls, rather than the observed 11 boys and 7 girls, at the age of 10. In other words,

one would fail to consider the model’s prediction conditional on what is observed in the data. Thus,

a fair model assessment should be confined to the situations laid out in Figure 2(b) and (d) only.

We will start out by the simpler (d) and then return to (b).

Assessing whether Model 1 fits the incomplete version of the growth dataset well can be done by

comparing the observed means at the age of 10 to their model fit. This implies we have to confine

model fit to those children actually observed at the age of 10.

Turning to the analysis of the SPO, the principle behind Figure 2(d) would lead to the conclusion that

the five models BRD6, BRD7, BRD8, BRD9, and BRD6(MAR)≡ BRD7(MAR)≡BRD8(MAR)≡BRD9

perfectly fit the observed data. As we stated earlier, though, the models are drastically different in

their complete-data level prediction (Table 4) and the corresponding estimates of the proportion
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in favor of independence, which ranges over [0.74;0.89]. This points to the need for supplement-

ing model assessment, even when done in the preferable situation of Figure 2(d), with a form of

sensitivity analysis.

In conclusion, there are two important aspects in selection and assessment when data are incomplete.

First, the model needs to fit the observed data well. This aspect alone is already quite a bit more

complicated than in the complete/balanced case, as shown in Section 3. We will expand on this first

aspect in Section 4.1. Second, sensitivity analysis is advisable to assess in how far the model selected

and conclusions reached are sensitive to the explicit or implicit assumptions a model makes about

the incomplete data, given the observed ones, because such assumptions typically have an impact

on the inferences of interest. This aspect is elaborated upon in Section 4.2.

4.1 Model Fit to Observed Data

As stated before, model fit to the observed data can be done by means of either what we will label

Scenario I, as laid out in Figure 2(b), or by means of Scenario II of Figure 2(d).

Indeed, one of the dangers, associated with not considering these scenarios, can be clearly illustrated

using the orthodontic growth data. Let us take Model 1. When the OLS fit is considered, only valid

under MCAR, one would conclude there is a perfect fit to the observed means, also at the age of

10. The estimate from ML would apparently show a discrepancy, since the observed mean refers to

a reduced sample size while the fitted mean, similar to (2), is based on the entire design. Thus, it is

tempting but incorrect to operate under the scenario of Figure 2(c).

Under Scenario I, for the SPO data, we conclude BRD6–9 or their MAR counterpart fit perfectly.

There is nothing wrong with such a conclusion, as long as we realize there is more than one model

with this very same property, while at the same time they lead to different substantive conclusions.

If one would have started with a single one from amongst these models without considering any of

the others there is a real danger when the conclusions are based on that particular model only. For

example, if one would so choose BRD9, the conclusion would be that θ̂ = 0.867 with 95% confidence
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interval [0.851; 0, 884]. Ignoring the other perfectly fitting models does not make sense, unless there

are very strong substantive reasons to do so.

These considerations suggest that the fit of a model to an incomplete set of data requires caution and

perhaps extension and/or modification of the classical model assessment paradigms. In particular, it

is of interest to consider assessment under Scenario II.

Gelman et al (2005) proposed a Scenario II method. The essence of their approach, belonging to the

family of so-called posterior predictive model checking, is as follows. First, a model, saturated or non-

saturated, is fitted to the observed data. Under the fitted model, and assuming ignorable missingness,

datasets simulated from the fitted model should ‘look similar’ to the actual data. Therefore, multiple

sets of data are sampled from the fitted model, and compared to the dataset at hand. Because what

one actually observes consists of, not only the actually observed outcome data, but also realizations

of the missingness process, comparison with the simulated data would also require simulation from,

hence full specification of, the missingness process. This added complexity is avoided by augmenting

the observed outcomes with imputations drawn from the fitted model, conditional on the observed re-

sponses, and by comparing the so-obtained completed dataset with the multiple versions of simulated

complete datasets. Such a comparison will usually be based on relevant summary characteristics such

as time-specific averages or standard deviations. As suggested by Gelman et al (2005), this so-called

data-augmentation step could be done multiple times, along multiple-imputation ideas from Rubin

(1987). However, in cases with a limited amount of missing observations, the between-imputation

variability will be far less important than the variability observed between multiple simulated datasets.

This is in contrast to other contexts to which the technique of Gelman et al (2005) has been applied,

e.g., situations where latent unobservable variables are treated as ‘missing.’

Let us first apply the method to the orthodontic growth data. The first model considered as-

sumes a saturated mean structure, as in Model 1, with a compound-symmetric covariance structure

(Model 1a). Twenty datasets are simulated from the fitted model, and time-specific sample aver-

ages are compared to the averages obtained from augmenting the observed data based on the fitted

model. The results are shown in the top panel of Figure 3. The sample average at age 10, for the
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girls, is relatively low compared to what would be expected under the fitted model. Since the mean

structure is saturated, this may indicate lack of fit of the covariance structure. We therefore extend

the model by allowing for sex-specific covariance structures (Model 1b). The results under this new

model are presented in the bottom panel of Figure 3. The observed data are now less extreme

compared to what is expected under the fitted model. Formal comparison of the two models, based

on a likelihood ratio test, indeed rejects the first model in favor of the second one (p = 0.0003),

with much more between-subject variability for the girls than for the boys, while the opposite is true

for the within-subject variability.

Let us now turn to the SPO data. In a contingency table case, the above approach can be simplified

to comparing the model prediction of the complete data, such as presented in Tables 4 and 5,

with their counterpart obtained from extending the observed, incomplete data to their complete

counterpart by means of the fitted model. Here, we have to distinguish between saturated and

non-saturated models. For saturated models, such as BRD6–9 and their MAR counterparts, this is

simply the same table as the model’s prediction of the full data and again, all models are seen to

fit perfectly. Of course, this statement needs further qualification. It still merely means that these

models fit the incomplete data perfectly, while each one of them tells a different, unverifiable story

about the unobserved data given the observed ones. In contrast, for the non-saturated models, such

as BRD1–5 and their MAR counterparts, a so-completed table is different from the predicted one.

To illustrate this, the completed tables are presented in Tables 4 (MAR7 and MAR9) and 5 (MAR1

and MAR2).

A number of noteworthy observations can be made. First, BRD1≡BRD1(MAR) exhibits the poorest

fit (i.e., the largest discrepancies between this completed table and the model fit, with an intermediate

quality fit for a model with 7 degrees of freedom, such as BRD2, and a perfect fit for BRD7,

BRD9, and their MAR counterparts. Second, compare the data completed using BRD1 (Table 5)

to its prediction of BRD1: the data for the group of completers is evidently equal to the original

data (Table 4) since here no completion is necessary; the complete data for the subjects without

observations is entirely equal to the model fit, since here there are no data to start from; the complete
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data for the two partially classified tables takes a position in between and hence is not exactly equal

to the model prediction. Third, note that the above statement is in need of amendment for BRD2

and BRD2(MAR). Now, the first subtable of partially classified subjects exhibits an exact match

between completed data and model prediction, while this is not true for the second subtable. The

reason is that BRD2 allows missingness on the second question to depend on the first one, leading

to saturation of the first subtable, whereas missingness on the first question is independent of one’s

opinion on either question.

While the method is elegant and gives us a handle regarding the quality of the model fit to the

incomplete data, while contemplating the completed data and the full model prediction, the method

is unable to distinguish between the saturated models BRD6–9 and the MAR counterpart, as any

method would. This naturally begs the question as to what other methods can be used. In full

generality, the literature on model assessment, goodness-of-fit, and diagnostic tools is vast. A

relatively early, encompassing reference is D’Agostino and Stephens (1986). Work, devoted to the

case of longitudinal data, was done by Beckman, Nachtsheim, and Cook (1987) and Lesaffre and

Verbeke (1998). These authors used global and local influence analysis, techniques nicely reviewed in

Chatterjee and Hadi (1988), and useful also for sensitivity analysis (see next section). For the specific

case of categorical outcomes, work has been done in the context of logistic regression (Hosmer and

Lemeshow 1989) and conventional contingency table analysis (Agresti 2002), among others. The

problem is that many methods are difficult to apply and/or misleading when data are incomplete,

thus reducing the analyst’s options in this setting. This was the rationale for Gelman’s method, as

mentioned earlier. An important exception is the family of techniques for contingency tables, where

such simple and well known tools as the likelihood ratio and Pearson’s χ2 goodness-of-fit can be

used, at the condition they are applied to the observable cells, of course. Let us apply these to the

SPO data. The likelihood ratio test statistics for BRD1, BRD2, BRD7, and BRD9 are 128.46, 72.74,

0, and 0, respectively, on 2, 1, 0, and 0 degrees of freedom, respectively. The corresponding Pearson

χ2 values are 107.9, 50.9, 0, and 0, respectively. This simply confirms our earlier conclusion that

BRD1 and BRD2 fit extremely poorly, while the fit of BRD7 and BRD9 is perfect. Of course, this
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confirmation still does not allow us to make a statement as to the latter models’ quality in terms

of predicting the unobserved portion of the data, a phenomenon pointing to the need for sensitivity

analysis, a topic taken up next.

4.2 Sensitivity Analysis

In the previous section, we have seen how one can proceed to assess model fit, either under Scenario I

or using Scenario II. It is important to reiterate this comprises the fit to the observed data only, and

strictly makes no statement about the model in as far as it describes, or predicts, the unobserved

given the observed data. To address the latter issue, a variety of sensitivity analysis routes have

been proposed. For our purposes, one could informally define a sensitivity analysis as a way of

exploring the impact of a model and/or selected observations on the inferences made when data are

incomplete. However, the concept of sensitivity analysis is both older and broader. In Section 4.2.1,

we will provide a brief perspective on this vast field, to return to the growth and SPO studies in

Section 4.2.2.

4.2.1 A Perspective on Sensitivity Analysis

Sensitivity analysis, generically defined as assessment of how scientific conclusions depend on model

assumptions, influential observations and subjects, and the like, has a long history in statistics. Early

instances include Cornfield’s work in the context of causal inference (Holland 1986) and the study of

the independent censoring assumption’s impact in time-to-event analyses, to which a large part of a

joint US Air Force, National Cancer Institute, and Florida State University sponsored conference was

devoted (Proschan and Serfling 1974, and several contributions therein, in particular by Fisher and

Kanarek). A different strand is formed by input/output sensitivity in industrial applications (Haug,

Choi, and Komkov 1986).

Even when confining attention to the field of incomplete data, research is vast and disparate. This

is not a negative point, rather it reflects broad awareness of the need for such sensitivity analy-

sis. Earlier work on incomplete data was virtually exclusively focused on the formulation of ever
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more complex models. Both the pattern-mixture model framework (Little, 1993, 1994a) and the

shared-parameter framework (Wu and Carroll, 1988, Wu and Bailey 1988, 1989) have provided use-

ful vehicles for model formulation. In a pattern-mixture model, the outcome distribution is modeled

conditional on the observed response pattern, as opposed to the selection model framework, used

throughout this manuscript, where the unconditional outcome distribution is the centerpiece, some-

times supplemented with a model describing the non-response process, given the outcomes. In a

shared-parameter model, the outcome and non-response processes are considered independent, given

a set of common latent variables or random effects, which are assumed to drive both processes simul-

taneously. A particularly versatile research line is geared towards the formulation of semi-parametric

approaches (Robins, Rotnitzky, and Zhao 1994, Scharfstein, Rotnitzky, and Robins 1999). Whereas

in the parametric context one is often interested in quantifying the impact of model assumptions, the

semi-parametric and non-parametric modelers aim at formulating models that have a high level of

robustness against the impact of the missing data mechanism. A number of authors have aimed at

quantifying the impact of one or a few observations on the substantive and missing data mechanism

related conclusions (Verbeke et al 2001, Copas and Li 1997, Troxel, Harrington, and Lipsitz, 1998).

A number of early references pointing to the aforementioned sensitivities and responses there to

include Rosenbaum and Rubin (1983), Nordheim (1984), Little (1994b), Rubin (1994), Laird (1994),

Vach and Blettner (1995), Fitzmaurice, Molenberghs, and Lipsitz (1995), Molenberghs et al (1999),

Kenward (1998), and Kenward and Molenberghs (1999). Rosenbaum and Rubin (1983) is a pivotal

reference for its propensity-scores basis, a technique useful with incomplete data and beyond. A

propensity score is, roughly, the probability of an observation being missing or an indication thereof.

The method has been used as a basis for missing-data developments in general and sensitivity analysis

in particular. For example, it is strongly connected to more recent inverse probability weighting

methods, as well as to certain forms of multiple imputation (Rubin 1987).

Apart from considering pattern-mixture models (PMM) for their own sake, they have been considered

by way of a useful contrast to selection models, either (1) to answer the same scientific question,

such as marginal treatment effect or time evolution, based on these two rather different modeling
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strategies, or (2) to gain additional insight by supplementing the selection model results with those

from a PMM approach. Pattern-mixture models also have a special role in some multiple imputation

based sensitivity analyses. Examples of PMM applications can be found in Cohen and Cohen (1983),

Muthén, Kaplan, and Hollis (1987), Allison (1987), McArdle and Hamagani (1992), Little and Wang

(1996), Little and Yau (1996), Hedeker and Gibbons (1997), Hogan and Laird (1997), Ekholm and

Skinner (1998), Molenberghs, Michiels, and Kenward (1998), Michiels, Molenberghs, and Lipsitz

(1999), Verbeke, Lesaffre, and Spiessens (2001), Michiels et al (2002), Thijs et al (2002), and

Rizopoulos, Verbeke, and Lesaffre (2007). Whereas the earlier references primarily focus on the

use of the framework as such, the later ones emanate a gradual shift towards sensitivity analysis

applications. Molenberghs et al (1998) and Kenward, Molenberghs, and Thijs (2003) studied the

relationship between selection models and PMMs. The earlier paper presents the PMM’s counterpart

of MAR, whereas the later one states how pattern-mixture models can be constructed such that

dropout does not depend on future points in time.

Turning to the shared-parameter (SPM) framework, one of its main advantages is that it can easily

handle non-monotone missingness. Nevertheless, these models are based on very strong parametric

assumptions, such as normality of the shared random effect(s). Of course, sensitivities abound in the

selection and PMM frameworks as well, but the assumption of unobserved, random, or latent effects,

further compounds the issue. Various authors have considered model extensions. An overview is

given by Tsonaka, Verbeke, and Lesaffre (2007), who consider shared parameter models without

any parametric assumptions for the shared parameters. A theoretical assessment of the sensitivity

with respect to these parametric assumptions is presented in Rizopoulos, Verbeke, and Molenberghs

(2007).

Beunckens et al (2007) proposed a so-called latent-class mixture model , bringing together features of

all three frameworks. Information from the location and evolution of the response profiles, a selection

model concept, and from the dropout patterns, a pattern-mixture idea, is used simultaneously to

define latent groups and variables, a shared-parameter feature. This brings several appealing features.

First, one uses information in a more symmetric, elegant way. Second, apart from providing a
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more flexible modeling tool, there is room for use as a sensitivity analysis instrument. Third, a

strong advantage over existing methods is the ability to classify subjects into latent groups. If done

with due caution, it can enhance substantive knowledge and generate hypotheses. Fourth, while

computational burden increases, fitting the proposed method is remarkably stable and acceptable

in terms of computation time. Clearly, neither the proposed model nor any other alternative can

be seen as a tool to definitively test for MAR versus MNAR, as discussed earlier. This is why the

method’s use predominantly lies within the sensitivity analysis context. Such a sensitivity analysis is

of use both when it modifies the results of a simpler analysis, for further scrutiny, as well as when it

confirms these.

As stated earlier, a quite separate, extremely important line of research starts from a semi-parametric

standpoint, as opposed to the parametric take on the problem that has prevailed throughout this

chapter. Within this paradigm, weighted generalized estimating equations (WGEE), proposed by

Robins, Rotnitzky, and Zhao (1994) and Robins and Rotnitzky (1995) play a central role. Rather

than jointly modeling the outcome and missingness processes, the centerpiece is inverse probability

weighting of a subject’s contribution, where the weights are specified in terms of factors influencing

missingness, such as covariates and observed outcomes. These ideas are developed in Robins, Rot-

nitzky and Scharfstein (1998) and Scharfstein, Rotnitzky, and Robins (1999). Robins, Rotnitzky, and

Scharfstein (2000) and Rotnitzky et al (2001) employ this modeling framework to conduct sensitiv-

ity analysis. They allow for the dropout mechanism to depend on potentially unobserved outcomes

through the specification of a non-identifiable sensitivity parameter. An important special case for

such a sensitivity parameter, τ say, is τ = 0, which the authors term explainable censoring, which

is essentially a sequential version of MAR. Conditional upon τ , key parameters, such as treatment

effect, are identifiable. By varying τ , sensitivity can be assessed. As such, there is similarity between

this approach and the interval of ignorance concept, touched upon in the second paragraph of the

next section. There is a connection with pattern-mixture models too, in the sense that, for subjects

with the same observed history until a given time t− 1, the distribution for those who drop at t for

a given cause is related to the distribution of subjects who remain on study at time t.
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Fortunately, it is often possible in problems of missing data, to bring in assumptions that are external

to this study, in the sense of them being untestable from its data, but that are implied by the scientific

body of knowledge surrounding the problem. An example is the so-called exclusion restriction in

certain problems of causal inference. When such assumptions are brought in, the missing data

distribution can become identifiable or, at least, the universe of possibilities may be reduced in size.

In particular, such knowledge may provide external evidence against MAR. Key references include

Angrist, Imbens, and Rubin (1996), Little and Yau (1996), and Frangakis and Rubin (2002). Their

work is geared towards both study design and analysis methodology that can integrate such external

knowledge.

Thus clearly, the field of sensitivity analysis, for incomplete data and beyond, is both blessed with a

long and rich history and vibrantly alive. We will now narrow our focus to a few methods that have

particular use in addressing issues raised by the growth and SPO cases.

It is clear that the amount of work in this field is vast. Classifying sensitivity analysis methods by

means of a useful taxonomy is easier said than done. One could categorize according to the model

family to which they are directed within which they are cast. Alternatively, one can distinguish

between context-free techniques and methods that make use of substantive considerations. Some

methods make simplifying assumptions and specific choices. For example, a number of sensitivity

analysis tools are based upon considering a scalar or low-dimensional sensitivity parameter, often

positioned within the original model at one of many possible locations. Such choices are entirely

reasonable, and ought to be seen as a pragmatic compromise between the desire to explore sensitivity

whilst keeping the ensuing analysis practically feasible and interpretable.

4.2.2 Sensitivity Analysis for the Growth and SPO Studies

Verbeke et al (2001), Thijs, Molenberghs, and Verbeke (2000), Molenberghs et al (2001), Van

Steen et al (2001), and Jansen et al (2003) advocated the use of local influence based methods for

sensitivity analysis purposes. Details can be found in Verbeke and Molenberghs (2000), Molenberghs

and Verbeke (2005), and Molenberghs and Kenward (2007). The essence of the method is that (i)
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a subject-specific perturbation is added to the model, e.g., by replacing the parameter describing

MNAR missingness in the model by Diggle and Kenward (1994) with a subject-specific perturbation:

logit[P(dropout at occasion j|yi,j−1, yi,j)] = ψ0 + ψ1yi,j−1 + ωiψ2yij, (4)

(ii) then observing that ωi ≡ 0 corresponds to MAR, and (iii) finally studying the impact of small

perturbations of ωi around zero. Indeed, a model like (4) is necessary, since for an MNAR model,

not only the measurements need to be modeled (e.g., using a linear mixed model), also the dropout

mechanism needs to be modeled as a function of the measurements and, in some cases, covariates.

Technically, this is done by formally studying the curvature of the likelihood surface. Details can

be found in the aforementioned references, as well as in Verbeke and Molenberghs (2000) and

Molenberghs and Verbeke (2005). In a variety of examples, the above authors showed that one or

a few observations are sometimes able to drive the conclusions about the missing data mechanism.

We applied the method to the orthodontic growth data, assuming either Model 1 or Model 7. The

results are qualitatively the same and we present the Model 1 results only. Subjects #3 (girl), and

#13, #23, and #27 (boys) come out as very influential. In addition, some influence is seen for #6

and #9 (girls), and #16 (boy). As can be seen from Figure 4, all of these are incomplete, which

is different from other applications of the method. Of course, all but one of these are positioned

relatively low, and one cannot conclude definitively whether either their incompleteness status or the

location of their profile is determining their influence. The influence measure informally described

above and denoted by Ci is presented in Figure 5. Even though the Ci measure exhibits very high

peaks, removing the highly influential subjects does not alter the substantive conclusions.

Molenberghs, Kenward, and Goetghebeur (2001) and Kenward, Goetghebeur, and Molenberghs

(2001) suggested the use of so-called regions of ignorance, combining uncertainty owing to finite

sampling with uncertainty resulting from incompleteness. Broadly speaking, they consider overspeci-

fied models which then produce non-unique solutions of the likelihood equations. For a single (vector)

parameter, the resulting solution is called the interval (region) of ignorance. When uncertainty stem-

ming from finite sampling is added, by superimposing ignorance regions with confidence regions, a

wider interval (region) of uncertainty is obtained. A formal basis for such an approach was provided
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by Vansteelandt et al (2006). For the SPO data, this comes down to considering models with nine

or more degrees of freedom.

The estimated intervals of ignorance and intervals of uncertainty are shown in Table 2. Model 10 is

defined as (αk, βjk) with

βjk = β0 + βj + βk, (5)

while Model 11 assumes (αjk, βj) and uses

αjk = α0 + αj + αk, (6)

Finally, Model 12 is defined as (αjk, βjk), a combination of both (5) and (6). Model 10 shows an

interval of ignorance which is very close to [0.741,0.892], the range produced by the models BRD1–

BRD9, while Model 11 is somewhat sharper and just fails to cover the plebiscite value. However, it

should be noted that the corresponding intervals of uncertainty contain the true value.

Interestingly, Model 12 virtually coincides with the non-parametric range even though it does not

saturate the complete-data degrees of freedom. To do so, not 2 but in fact 7 sensitivity parameters

would have to be included. Thus, it appears that a relatively simple sensitivity analysis is sufficient

to increase the insight in the information provided by the incomplete data about the proportion of

valid YES votes.

5 Concluding Remarks

In this paper, we have illustrated the complexities arising when fitting models to incomplete data.

By means of two case studies, the continuous longitudinal orthodontic growth data and the discrete

Slovenian Public Opinion Survey data, five generic issues were brought to the forefront: (i) the

classical relationship between observed and expected features is convoluted since one observes the

data only partially while the model describes all data; (ii) the independence of mean and variance

parameters in a (multivariate) normal is lost, implying increased sensitivity, even under MAR; (iii)

also the well-known agreement between the (frequentist) OLS and maximum likelihood estimation
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methods for normal models is lost, as soon as the missing data mechanism is not of the MCAR type,

with related results holding in the non-normal case; (iv) in a likelihood-based context, deviances and

related information criteria cannot be used in the same way as with complete data since they provide

no information about a model’s prediction of the unobserved data and, in particular, (v) several

models may saturate the observed-data degrees of freedom, while providing a different prediction

of the complete data, i.e., they only coincide in as far as they describe the observed data; as a

consequence, different inferences may result from different saturated models.

Based on these considerations, it is argued that model assessment should always proceed in two

steps. In the first step, the fit of a model to the observed data should be assessed carefully, while

in the second step the sensitivity of the conclusions to the unobserved data given the observed data

should be addressed. In the first step, one should ensure that the required assessment be done under

one of two allowable scenarios, as represented by Figures 2(b) and (d), thereby carefully avoiding the

scenario of Figure 2(c), where the model at the complete data level is compared to the incomplete

data; apples and oranges as it were. The method proposed by Gelman et al (2005) offers a convenient

route to model assessment.
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Table 1: The Orthodontic Growth Data. Likelihood, MANOVA, and ANOVA analyses for the original

data and the trimmed data (observed, CC, and LOCF). Means for boys at ages 8 and 10 are displayed.

Principle Method Boys at Age 8 Boys at Age 10

Original ML 22.88 (0.56) 23.81 (0.49)

REML ≡ MANOVA 22.88 (0.58) 23.81 (0.51)

ANOVA per time 22.88 (0.61) 23.81 (0.53)

Observed ML 22.88 (0.56) 23.17 (0.68)

REML 22.88 (0.58) 23.17 (0.71)

MANOVA 24.00 (0.48) 24.14 (0.66)

ANOVA per time 22.88 (0.61) 24.14 (0.74)

CC ML 24.00 (0.45) 24.14 (0.62)

REML ≡ MANOVA 24.00 (0.48) 24.14 (0.66)

ANOVA per time 24.00 (0.51) 24.14 (0.74)

LOCF ML 22.88 (0.56) 22.97 (0.65)

REML ≡ MANOVA 22.88 (0.58) 22.97 (0.68)

ANOVA per time 22.88 (0.61) 22.97 (0.72)
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Table 2: The Slovenian Public Opinion Survey. Analysis, restricted to the independence and at-

tendance questions. Summaries on each of the Models BRD1–BRD9 are presented. In addition,

intervals of ignorance and intervals of uncertainty for the proportion θ (confidence interval) attend-

ing the plebiscite following from fitting.

Model Structure d.f. loglik θ̂ C.I. θ̂MAR

BRD1 (α, β) 6 -2495.29 0.892 [0.878;0.906] 0.8920

BRD2 (α, βj) 7 -2467.43 0.884 [0.869;0.900] 0.8915

BRD3 (αk, β) 7 -2463.10 0.881 [0.866;0.897] 0.8915

BRD4 (α, βk) 7 -2467.43 0.765 [0.674;0.856] 0.8915

BRD5 (αj , β) 7 -2463.10 0.844 [0.806;0.882] 0.8915

BRD6 (αj , βj) 8 -2431.06 0.819 [0.788;0.849] 0.8919

BRD7 (αk, βk) 8 -2431.06 0.764 [0.697;0.832] 0.8919

BRD8 (αj , βk) 8 -2431.06 0.741 [0.657;0.826] 0.8919

BRD9 (αk, βj) 8 -2431.06 0.867 [0.851;0.884] 0.8919

Model 10 (αk, βjk) 9 -2431.06 [0.762;0.893] [0.744;0.907] 0.8919

Model 11 (αjk, βj) 9 -2431.06 [0.766;0.883] [0.715;0.920] 0.8919

Model 12 (αjk, βjk) 10 -2431.06 [0.694;0.905] — 0.8919

Table 3: The Orthodontic Growth Data. Comparison of mean estimates for boys at ages 8 and

10, complete and incomplete data, using direct likelihood, an unstructured mean model, and various

covariance models.

Data Mean Covar Boys at Age 8 Boys at Age 10

Complete unstr. unstr. 22.88 23.81

unstr. CS 22.88 23.81

unstr. simple 22.88 23.81

Incomplete unstr. unstr. 22.88 23.17

unstr. CS 22.88 23.52

unstr. simple 22.88 24.14
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Table 4: The Slovenian Public Opinion Survey. Analysis restricted to the independence and atten-

dance questions. Models BRD7, BRD9, BRD7(MAR), and BRD9(MAR). Observed data; fit to the

observed data; prediction of the full data; completion of the observed data, using the model fit.

Observed data &

fit of BRD7, BRD7(MAR), BRD9, and BRD9(MAR) to incomplete data

1439 78

16 16

159

32
144 54 136

Prediction of BRD7 to complete data

≡ Completed data using BRD7 fit

1439 78

16 16

3.2 155.8

0.0 32.0

142.4 44.8

1.6 9.2

0.4 112.5

0.0 23.1

Prediction of BRD9 to complete data

≡ Completed data using BRD9 fit

1439 78

16 16

150.8 8.2

16.0 16.0

142.4 44.8

1.6 9.2

66.8 21.0

7.1 41.1

Prediction of BRD7(MAR) and BRD9(MAR) to complete data

≡ Completed data using BRD7(MAR)≡BRD9(MAR) fit

1439 78

16 18

148.1 10.9

11.8 20.2

141.5 38.4

2.5 15.6

121.3 9.0

2.1 3.6
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Table 5: The Slovenian Public Opinion Survey. Analysis restricted to the independence and atten-

dance questions. Models BRD1, BRD2, BRD1(MAR), and BRD2(MAR). Fit to the observed data;

prediction of the full data; completion of the observed data, using the model fit.

Fit of BRD1 and BRD1(MAR) to incomplete data

1381.6 101.7

24.2 41.4

182.9

8.1
179.7 18.3 136.0

Prediction of BRD1 and BRD1(MAR) to complete data

1381.6 101.7

24.2 41.4

170.4 12.5

3.0 5.1

176.6 13.0

3.1 5.3

121.3 9.0

2.1 3.6

Completed data using BRD1≡BRD1(MAR) fit

1439 78

16 16

148.1 10.9

11.9 20.1

141.5 38.4

2.5 15.6

121.3 9.0

2.1 3.6

Fit of BRD2 and BRD2(MAR) to incomplete data

1402.2 108.9

15.6 22.3

159.0

32.0
181.2 16.8 136.0

Prediction of BRD2 to complete data

1402.2 108.9

15.6 22.3

147.5 11.5

13.2 18.8

179.2 13.9

2.0 2.9

105.0 8.2

9.4 13.4

Prediction of BRD2(MAR) to complete data

1402.2 108.9

15.6 22.3

147.7 11.3

13.3 18.7

177.9 12.5

3.3 4.3

121.2 9.3

2.3 3.2

Completed data using BRD2 fit

1439 78

16 16

147.5 11.5

13.2 18.8

142.4 44.7

1.6 9.3

105.0 8.2

9.4 13.4

Completed data using BRD2(MAR) fit

1439 78

16 16

147.7 11.3

13.3 18.7

141.4 40.2

2.6 13.8

121.2 9.3

2.3 3.2



Model Selection With Missing Data 36

(a)

(b)

Figure 1: The Orthodontic Growth Data. Fitted mean profiles for a selected set of models. (a)

Initial, complete data. (b) Trimmed, incomplete data; MAR analysis; the small symbols at age 10

are the observed group means for the complete data set.
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(a) model

complete incomplete

raw complete

data incomplete

(b) model

complete incomplete

raw complete ∗
data incomplete

(c) model

complete incomplete

raw complete

data incomplete ∗

(d) model

complete incomplete

raw complete

data incomplete ∗

Figure 2: Model assessment when data are incomplete. (a) Two dimensions in model (assessment)

exercise when data are incomplete. (b) Ideal situation. (c) Dangerous situation, bound to happen

in practice. (d) Comparison of data and model at coarsened, observable level.
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(a) Model 1a: Equal covariance structure

(b) Model 1b: Gender-specific covariance structure

Figure 3: The Orthodontic Growth Data. Sample averages for the augmented data (bold line type),

compared to sample averages from 20 simulated datasets, based on the method of Gelman et al

(2005). Both models assume a saturated mean structure and compound symmetric covariance.

Model 1a assumes the same covariance structure for boys and girls, while Model 1b allows gender-

specific covariances.
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Figure 4: The Orthodontic Growth Data. Individual profiles of the incomplete version of the data,

with highly and moderately influential subjects highlighted by more and less boldface line type,

respectively.
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Figure 5: The Orthodontic Growth Data. Local influence measures.


