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Formal and Informal Model Selection with
Incomplete Data
Geert Verbeke, Geert Molenberghs and Caroline Beunckens

Abstract. Model selection and assessment with incomplete data pose chal-
lenges in addition to the ones encountered with complete data. There are
two main reasons for this. First, many models describe characteristics of the
complete data, in spite of the fact that only an incomplete subset is observed.
Direct comparison between model and data is then less than straightforward.
Second, many commonly used models are more sensitive to assumptions than
in the complete-data situation and some of their properties vanish when they
are fitted to incomplete, unbalanced data. These and other issues are brought
forward using two key examples, one of a continuous and one of a categor-
ical nature. We argue that model assessment ought to consist of two parts:
(i) assessment of a model’s fit to the observed data and (ii) assessment of the
sensitivity of inferences to unverifiable assumptions, that is, to how a model
described the unobserved data given the observed ones.

Key words and phrases: Interval of ignorance, linear mixed model, missing
at random, missing not at random, multivariate normal, sensitivity analysis.

1. INTRODUCTION

In many longitudinal and multivariate settings, not
all designed measurements are collected. The implica-
tions of incompleteness need to be carefully consid-
ered and incorporated in the modeling process. Early
work was largely concerned with algorithmic and com-
putational solutions to the induced lack of balance
or other design deviations (Afifi and Elashoff, 1966;
Hartley and Hocking, 1971). Nowadays, general algo-
rithms such as expectation-maximization (EM, Demp-
ster, Laird and Rubin, 1977), and data imputation
and augmentation procedures (Rubin, 1987), combined
with powerful computing resources and flexible soft-
ware implementations, are available. Thus, emphasis
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should be on assessing the impact of missing data on
subsequent statistical inference.

We use terminology of Little and Rubin (2002,
Chapter 6). A nonresponse process is missing com-
pletely at random (MCAR) if missingness is indepen-
dent of unobserved and observed data and missing at
random (MAR) if, conditional on the observed data,
missingness is independent of the unobserved mea-
surements. A process that is neither MCAR nor MAR
is termed nonrandom (MNAR).

Given MAR, a valid analysis ignoring the missing-
value mechanism can be obtained, within a likeli-
hood or Bayesian framework, provided the parame-
ters describing the measurement process are function-
ally independent of those describing the missingness
process. This is termed ignorability (Rubin, 1976, Lit-
tle and Rubin, 2002) and simplifies modeling (Diggle,
1989; Verbeke and Molenberghs, 2000). Such direct-
likelihood and direct Bayesian analyses are increas-
ingly preferred over ad hoc methods such as last obser-
vation carried forward (LOCF), complete case analy-
sis (CC) or single imputation (Molenberghs et al.,
2004; Mallinckrodt et al., 2003a, 2003b; Jansen et al.,
2006a). Practically, tools like the linear and general-
ized linear mixed-effects models (Verbeke and Molen-
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berghs, 2000; Molenberghs and Verbeke, 2005) can be
used.

Nevertheless, in spite of the flexibility and elegance a
direct-likelihood method brings, there are fundamental
issues when selecting a model and assessing its fit to
the observed data, which do not occur with complete
data. These are the central theme of this paper. The
issues discussed occur already in the MAR case, but
they are compounded further under MNAR. One can
never fully rule out MNAR. However, it is usually dif-
ficult to justify the particular choice of MNAR model
(Jansen et al., 2006b). For example, different MNAR
models may fit the observed data equally well, but en-
gender quite different implications for the unobserved
measurements and conclusions drawn. Without addi-
tional information, one can only distinguish between
such models using their fit to the observed data, and
so goodness-of-fit tools alone do not provide a rele-
vant means of choosing between such models, natu-
rally leading to sensitivity analysis, broadly defined as
an instrument to assess the impact on statistical infer-
ences from varying the, often untestable, assumptions
in an MNAR model (Vach and Blettner, 1995; Co-
pas and Li, 1997; Scharfstein, Rotnitzky, and Robins,
1999; Molenberghs and Kenward, 2007).

The ideas will be developed by means of two run-
ning examples with their model families, introduced
in Section 2, along with initial analyses. Issues arising
when analyzing incomplete data, under MAR as well
as MNAR, are listed in Section 3. Ways of tackling the
problems are the subject of Section 4.

2. RUNNING EXAMPLES AND THEIR INITIAL
ANALYSES

2.1 The Orthodontic Growth Data

For 11 girls and 16 boys, the distance from the cen-
ter of the pituitary to the maxillary fissure was recorded
at ages 8, 10, 12 and 14 (Pothoff and Roy, 1964). Lit-
tle and Rubin (2002) deleted 9 of the [(11 + 16) × 4]
observations, thereby producing 9 incomplete subjects
with a missing measurement at age 10. Their missing-
ness generating mechanism was such that subjects with
a low value at age 8 are more likely to have a missing
value at age 10. Data tabulations and graphical displays
can be found in Verbeke and Molenberghs (2000) and
Molenberghs and Kenward, (2007).

Jennrich and Schluchter (1986), Little and Rubin
(2002) and Verbeke and Molenberghs (1997, 2000)
fitted eight linear mixed models, of the form Yi =

Xiβ +Zibi +εi , where Yi is the (4×1) response vec-
tor, Xi is a (4 × p) design matrix for the fixed effects,
β is a vector of unknown fixed regression coefficients,
Zi is a (4 × q) design matrix for the random effects, bi

is a zero-mean (q × 1) vector of normally distributed
random parameters, with covariance matrix D, εi is a
zero-mean normally distributed (4 × 1) random error
vector, with covariance matrix �, and bi and εi are in-
dependent. The mean Xiβ will be a function of age,
sex, and/or the interaction between both.

Model 1 leaves the group by time model and the co-
variance matrix unstructured. Through model simpli-
fication steps, details of which can be found in Ver-
beke and Molenberghs (2000), passing via nonparallel
(Model 2) and parallel (Model 3) straight mean pro-
files, Model 7 is retained, featuring nonparallel straight
mean profiles and a compound-symmetry covariance
structure. Little and Rubin (2002) fitted the same mod-
els to the trimmed, incomplete, version of the dataset,
using direct-likelihood methods, and were led to the
same Model 7. A quite different picture would emerge,
were simple, ad hoc methods used (Molenberghs and
Kenward, 2007). As is commonly known in the re-
search community, analyses like last observation car-
ried forward (LOCF), complete case analysis, and sim-
ple forms of mean imputation produce distorted mean
and/or covariance structures. This message is in line
with the unreliable performance of such simple meth-
ods, as opposed to direct likelihood, thanks to the latter
method’s validity under MAR. It is often argued that
the price to pay is the need to fit a model to the entire
longitudinal sequence through, for example, a linear
mixed model, even in circumstances where scientific
interest focuses on the last planned measurement occa-
sion. However, for balanced longitudinal data, where
the number of subjects is sufficiently large compared
to the number of times, a full multivariate normal
(Model 1) can often be considered, not making as-
sumptions beyond the ones made by, say, multivari-
ate analysis of variance (MANOVA), ANOVA per time
point or, equivalently, a t test per time point. This is
illustrated in Table 1, using Model 1 fitted to the com-
plete and trimmed growth data. Means for boys at the
ages 8 and 10 are displayed. Whenever the data are bal-
anced, the means are the same regardless of which es-
timation method is used. Standard errors are asymp-
totically equal, and even in our small sample differ-
ences are negligible. CC overestimates the means since
the subjects removed from analysis have lower-than-
average means, and LOCF underestimates the mean
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TABLE 1
The orthodontic growth data

Principle Method Boys at age 8 Boys at age 10

Original ML 22.88 (0.56) 23.81 (0.49)
REML ≡ MANOVA 22.88 (0.58) 23.81 (0.51)
ANOVA per time 22.88 (0.61) 23.81 (0.53)

Observed ML 22.88 (0.56) 23.17 (0.68)
REML 22.88 (0.58) 23.17 (0.71)
MANOVA 24.00 (0.48) 24.14 (0.66)
ANOVA per time 22.88 (0.61) 24.14 (0.74)

CC ML 24.00 (0.45) 24.14 (0.62)
REML ≡ MANOVA 24.00 (0.48) 24.14 (0.66)
ANOVA per time 24.00 (0.51) 24.14 (0.74)

LOCF ML 22.88 (0.56) 22.97 (0.65)
REML ≡ MANOVA 22.88 (0.58) 22.97 (0.68)
ANOVA per time 22.88 (0.61) 22.97 (0.72)

Likelihood, MANOVA and ANOVA analyses for the original data
and the trimmed data (observed, CC and LOCF). Means for boys
at ages 8 and 10 are displayed.

at age 10, since the age-8 measurement is carried for-
ward.

Analyzing the trimmed data, the results from the
direct-likelihood analyses, valid under MAR, diverge
from the frequentist MANOVA and ANOVA analy-
ses, the latter valid only under MCAR. MANOVA
effectively reduces to CC, owing to its inability to
take incomplete sequences into account. ANOVA pro-
duces correct inferences only at occasions with com-
plete data.

2.2 The Slovenian Public Opinion Survey

In 1991 Slovenians voted for independence from for-
mer Yugoslavia in a plebiscite. To prepare for this re-
sult, the Slovenian government collected data in the
Slovenian Public Opinion Survey (SPO), a month prior
to the plebiscite. Rubin, Stern and Vehovar (1995) stud-
ied the three fundamental questions, for the one time
added to the usual SPO questions and, in comparing
it to the plebiscite’s outcome, drew conclusions about
the missing data process. Molenberghs, Kenward and
Goetghebeur (2001) used these data to introduce sen-
sitivity analysis methodology. Details can be found
in Molenberghs and Verbeke (2005) and Molenberghs
and Kenward (2007). The three questions were: (1) Are
you in favor of Slovenian independence? (2) Are you
in favor of Slovenia’s secession from Yugoslavia? (3)
Will you attend the plebiscite? Question (3) is rele-
vant due to the political decision that not attending was
treated as an effective NO to question (1). The primary

estimand, the proportion θ of people that will be con-
sidered as voting YES, follows from those answering
yes to both the attendance and independence questions.
An overview of various analyses is given in Molen-
berghs and Kenward (2007).

These authors used the model proposed by Baker,
Rosenberger and DerSimonian (BRD, 1992) for two-
way contingency tables subject to nonmonotone miss-
ingness. Organize the two outcomes, together with
their missingness indicators, as a four-way contingency
table with counts Zr1,r2,jk , where j, k = 0,1 refer-
ence the two categories for the response variables and
r1, r2 = 0,1 refer to the two missingness indicators.
The counts are not fully observable and should be
seen as a device to facilitate modeling. Such model-
ing takes place in terms of cell probabilities νr1,r2,jk

with the same indexing system as the counts Zr1,r2,jk .
Rewrite the probabilities governing the incomplete pat-
terns as modified version of the complete-pattern prob-
abilities ν11,jk , that is, ν10,jk = ν11,jkβjk , ν01,jk =
ν11,jkαjk and ν00,jk = ν11,jkαjkβjkγ . The α (β) pa-
rameters describe missingness in the independence (at-
tendance) question, and γ captures the interaction be-
tween both. BRD considered nine models, based on
setting αjk and βjk constant in one or more indices:
BRD1: (α,β); BRD4: (α,βk); BRD7: (αk, βk); BRD2:
(α,βj ); BRD5: (αj , β); BRD8: (αj , βk); BRD3: (αk,

β); BRD6: (αj , βj ); BRD9: (αk, βj ). Interpretation is
straightforward; for example, BRD1 is MCAR, and
in BRD4 missingness in the first variable is constant,
while missingness in the second variable depends on its
value. BRD6–BRD9 saturate the observed data degrees
of freedom; the lower-numbered ones do not, leaving
room for nontrivial fit to the observed data.

Rubin, Stern and Vehovar (1995) conducted several
analyses of the data. Their main emphasis was on de-
termining the proportion θ of the population that would
attend the plebiscite and vote for independence. The
three other combinations of these two binary outcomes
would be treated as voting “no.” Pessimistic/optimistic
bounds are obtained by setting all incomplete data
that can be considered a yes (no), as yes (no); they
equal [0.694;0.905]. A complete case analysis pro-
duces θ̂ = 0.928 and an available case analysis θ̂ =
0.929. It is noteworthy that both estimates fall outside
the pessimistic–optimistic interval and should be dis-
regarded, since these seemingly straightforward esti-
mators do not take the decision to treat absences as
no’s into account and thus discard available informa-
tion. MAR based on two questions leads to θ̂ = 0.892
and, using the middle question as auxiliary, θ̂ = 0.883
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TABLE 2
The Slovenian Public Opinion Survey

Model Structure d.f. loglik ̂θ C.I. ̂θMAR

BRD1 (α,β) 6 −2495.29 0.892 [0.878; 0.906] 0.8920

BRD2 (α,βj ) 7 −2467.43 0.884 [0.869; 0.900] 0.8915
BRD3 (αk,β) 7 −2463.10 0.881 [0.866; 0.897] 0.8915
BRD4 (α,βk) 7 −2467.43 0.765 [0.674; 0.856] 0.8915
BRD5 (αj ,β) 7 −2463.10 0.844 [0.806; 0.882] 0.8915

BRD6 (αj ,βj ) 8 −2431.06 0.819 [0.788; 0.849] 0.8919
BRD7 (αk,βk) 8 −2431.06 0.764 [0.697; 0.832] 0.8919
BRD8 (αj ,βk) 8 −2431.06 0.741 [0.657; 0.826] 0.8919
BRD9 (αk,βj ) 8 −2431.06 0.867 [0.851; 0.884] 0.8919

Model 10 (αk,βjk) 9 −2431.06 [0.762; 0.893] [0.744; 0.907] 0.8919
Model 11 (αjk,βj ) 9 −2431.06 [0.766; 0.883] [0.715; 0.920] 0.8919
Model 12 (αjk,βjk) 10 −2431.06 [0.694; 0.905] — 0.8919

Analysis, restricted to the independence and attendance questions. Summaries on each of the Models BRD1–BRD9 are presented. In addition,
intervals of ignorance and intervals of uncertainty for the proportion θ (confidence interval) attending the plebiscite following from fitting.

is found. In contrast, their MNAR analysis produces
θ̂ = 0.782. The plebiscite value is θ = 0.885. Rubin,
Stern and Vehovar (1995) concluded, owing to the
proximity of the MAR analysis to the plebiscite value,
that MAR in this and similar cases is a plausible as-
sumption.

Molenberghs, Kenward and Goetghebeur (2001) and
Molenberghs et al. (2007) fitted the BRD models and
Table 2 summarizes the results. BRD1 produces θ̂ =
0.892, exactly the same as the first MAR estimate ob-
tained by Rubin, Stern and Vehovar (1995). This is be-
cause both models assume MAR and use information
from the two main questions.

3. COMPLEXITY OF MODEL SELECTION AND
ASSESSMENT WITH INCOMPLETE DATA

Model selection and assessment are well-established
components of statistical analysis, whether in cross-
sectional or correlated settings; they are surrounded by
several strands of intuition. First, it is researchers’ com-
mon understanding that “observed�expected” for a
well-fitting model, usually understood to imply that ob-
served and fitted profiles ought to be sufficiently simi-
lar in a longitudinal study, observed and fitted counts in
contingency tables, etc. Second, for the special case of
samples from normal distributions, the estimators for
the mean vector and the variance-covariance matrix are
independent, in small and large samples alike. Third,
in the same situation, the least squares and maximum
likelihood estimators are identical for mean parameters
and asymptotically equal for covariance parameters.

Fourth, in a likelihood-based context, deviances and
related information criteria are considered appropriate
tools for model assessment. Fifth, saturated models are
uniquely defined and at the top of the model hierarchy.
For contingency tables, a saturated model exactly re-
produces the observed counts.

While it has been reasonably well known that these
five points hold for well-balanced designs and com-
plete sets of data, their failure with incomplete data is
perhaps not as much part of operational knowledge as
it should be. Therefore, we find it useful to provide il-
lustrations by means of the running examples and by
general considerations.

3.1 The “Observed�Expected” Relationship

Figure 1 shows the observed and fitted mean struc-
tures for Models 1, 2, 3 and 7, fitted to the complete and
incomplete versions of the growth dataset, respectively.
Observed and fitted means for Model 1 coincide in the
complete, balanced case, but do not for the trimmed
data. The discrepancy is seen for the mean at age 10,
the only one for which there is missingness.

3.2 The Mean–Variance Relationship in a Normal
Distribution

To gain insight into the effect of the covariance
structure on the mean structure, consider variations to
Model 1, fitted to boys at ages 8 and 10. Retain an
unstructured group-by-age mean structure, and pair it
with three residual covariance structures: Model 1: un-
structured; Model 7b: CS; Model 8b: independence. Fit
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FIG. 1. The orthodontic growth data. Fitted mean profiles for a selected set of models. (a) Initial, complete data. (b) Trimmed, incomplete
data; MAR analysis; the small symbols at age 10 are the observed group means for the complete dataset.



206 G. VERBEKE, G. MOLENBERGHS AND C. BEUNCKENS

these models to complete and incomplete data. For the
complete data, the choice of covariance structure is im-
material, but the choice is crucial when data are incom-
plete. While at age 8 the point estimate remains 22.88
in all three cases, it varies from 23.17 for Model 1, over
23.52 for Model 7b, to 24.14 for Model 8b; the latter
coincides with and hence is as bad as CC at age 10.

3.3 The Least Squares–Maximum Likelihood
Difference

The difference between ordinary least squares and
maximum likelihood is an issue, different from but re-
lated to the previous two. Table 1 reiterates that the
MLE and the frequentist OLS differ for the incomplete
data. Let us illustrate this well-known result for a bi-
variate normal (Section 3.3.1) and a contingency table
(Section 3.3.2).

3.3.1 A bivariate normal population. Consider a bi-
variate normal population:(

Yi1
Yi2

)
∼ N

((
μ1
μ2

)
,

(
σ 2

1 σ12

σ12 σ 2
2

))
,(1)

from which i = 1, . . . ,N subjects are sampled. As-
sume that d subjects complete the study and N − d

drop out after the first measurement.
In a frequentist available case method, using OLS,

the parameters in (1) are estimated using the avail-
able information (Little and Rubin, 2002, Verbeke and
Molenberghs, 2000): μ1 and σ 2

1 are estimated using
all N subjects, whereas only the remaining d con-
tribute to the other three parameters. For the mean pa-
rameters, this produces μ̂1 = (

∑N
i=1 yi1)/N and μ̃2 =

(
∑d

i=1 yi2)/d . Little and Rubin (2002) present an ex-
plicit expression for the MLE, starting from the con-
ditional density of the second outcome given the first
one: Yi2|yi1 ∼ N(β0 +β1yi1, σ

2
2|1), producing the max-

imum likelihood estimator μ2:

μ̂2 = 1

N

{
d∑

i=1

yi2+
N∑

i=d+1

[y2 + β̂1(yi1 − y1)]
}
.(2)

Here, y1 is the mean of the measurements at the first
occasion among the completers. Several observations
can be made. The difference between ML and OLS es-
timators vanishes only under MCAR and/or when Yi1
and Yi2 are uncorrelated.

Turning to the orthodontic growth dataset (see Ta-
ble 3), a correction like (2) applies to the age of 10.
From Figure 1(b), it is clear that those remaining on
study have larger measurements than those removed,

TABLE 3
The orthodontic growth data

Data Mean Covar Boys at age 8 Boys at age 10

Complete unstr. unstr. 22.88 23.81
unstr. CS 22.88 23.81
unstr. simple 22.88 23.81

Incomplete unstr. unstr. 22.88 23.17
unstr. CS 22.88 23.52
unstr. simple 22.88 24.14

Comparison of mean estimates for boys at ages 8 and 10, complete
and incomplete data, using direct likelihood, an unstructured mean
model, and various covariance models.

hence the downward correction in the likelihood esti-
mator. The likelihood even overcorrects in this case,
owing to a small sample size, since the estimated corre-
lation between the ages 8 and 10 is substantially larger
than the correlation between ages 10 and 12. We re-
turn to these points in the next section. There are also
important consequences for model checking, since the
observed-expected relationship is no longer straight-
forward. We return to this in Section 4.

Additionally, the coefficient β1 depends on the vari-
ance components and hence a misspecified variance
structure may lead to bias in μ̂2. This underscores the
breakdown of the independence of the mean and vari-
ance estimators.

The adequate performance of Model 7b owes to the
fact that the expected mean of a missing age-10 mea-
surement gives equal weight to all surrounding mea-
surement, rather than overweighting the age-8 mea-
surement due to an accidentally high correlation. The
zero correlations in Model 8b do not allow for such a
correction, hence its coincidence with CC.

3.3.2 An incomplete contingency table. Consider an
incomplete 2 × 2 contingency table:

Z1,11 Z1,12

Z1,21 Z1,22

Z0,1

Z0,2
,

where Zr,jk refers to the number of subjects in the
completers (r = 1) and dropouts (r = 0) groups, re-
spectively, with response profile (j, k). Since for the
dropouts only the first outcome is observed, only sum-
maries Zr=0,j are observable. Using all available data,
the probability of success at the first time is esti-
mated as π̂1 = (Z1,1+ + Z0,1+)/N , where subscript
“+” refers to summing. Using available cases only, the
estimator for the success probability at the second time
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is π̃2 = Z1,+1/d . Thus, OLS does not use information
from incomplete subjects, whereas the MLE does:

π̂2 = (Z1,+1 + Z0,1 · Z1,11/Z1,1+
(3)

+ Z0,2 · Z1,21/Z1,2+)/N.

3.4 Deviances and Saturated Models

Revisiting Table 2, a deviance comparison between
BRD1 and any of BRD2–5 and of the latter with
BRD6–9, shows the earlier models fit poorly. We are
thus left with BRD6–9 as candidates. Now, all four pro-
duce exactly the same likelihood at maximum, owing
to saturation. Nevertheless, the estimates for θ differ
between these four models, since θ is a function, not
only of the model fit to the observed data, but also of
the model’s prediction of the unobserved data, given
what has been observed. Here, and in what follows,
we will use “‘fit” to indicate, broadly, the relationship
between observed data and a model, with “prediction”
reserved for the relationship between unobserved data
and a model. The concepts of “fit/prediction” and “sat-
uration” can be seen as relative to either the observed
or the complete data, posing challenges for model se-
lection and fit assessment. In particular, a model that
saturates all degrees of freedom would by definition be
nonidentifiable.

All models BRD6–9 being of the MNAR type, it is
tempting to conclude that all evidence points to MNAR
as the most plausible missing-data mechanism. This
notwithstanding, one cannot even so much as formally
exclude MAR. Indeed, Molenberghs et al. (2007) have
shown that, for every MNAR model, there is an asso-
ciated MAR counterpart that reproduces the fit to the
observed data but predicts the unobserved data given
the observed ones in a fashion consistent with MAR.
These counterparts can be seen as versions of their
parent model, constrained to retain fit but force pre-
diction to be MAR. The corresponding estimates for
the proportion θ in favor of independence are pre-
sented in the last column of Table 2. Let us zoom in
on BRD1, 2, 7 and 9. Only BRD7 and BRD9 saturate
the observed-data degrees of freedom. The incomplete
data as observed, as fitted by each of the four mod-
els, and as fitted by these four models’ MAR counter-
parts, are displayed in Tables 4 and 5. The fits of mod-
els BRD7, BRD9 and their MAR counterparts coincide
with the observed data: every model produces exactly
the same fit as does its MAR counterpart. Since BRD1
is MCAR and hence MAR, it is the only one coinciding
with its MAR counterpart. Further, while BRD7 and
BRD9 produce a different prediction of the complete

TABLE 4
The Slovenian public opinion survey

Observed data and fit of BRD7, BRD7(MAR), BRD9 and
BRD9(MAR) to incomplete data

1439 78

16 16

159

32
144 54 136

Prediction of BRD7 to complete data
≡ Completed data using BRD7 fit

1439 78

16 16

3.2 155.8

0.0 32.0

142.4 44.8

1.6 9.2

0.4 112.5

0.0 23.1

Prediction of BRD9 to complete data
≡ Completed data using BRD9 fit

1439 78

16 16

150.8 8.2

16.0 16.0

142.4 44.8

1.6 9.2

66.8 21.0

7.1 41.1

Prediction of BRD7(MAR) and BRD9(MAR) to complete data
≡ Completed data using BRD7(MAR) ≡ BRD9(MAR) fit

1439 78

16 18

148.1 10.9

11.8 20.2

141.5 38.4

2.5 15.6

121.3 9.0

2.1 3.6

Analysis restricted to the independence and attendance questions.
Models BRD7, BRD9, BRD7(MAR) and BRD9(MAR). Observed
data; fit to the observed data; prediction of the full data; completion
of the observed data, using the model fit.

data, BRD7(MAR) and BRD9(MAR) coincide, ow-
ing to saturation. An observation for model assessment
and selection is that the five models BRD6, BRD7,
BRD8, BRD9 and BRD6(MAR) ≡ BRD7(MAR) ≡
BRD8(MAR) ≡ BRD9 at the same time saturate the
observed-data degrees of freedom and exhibit a dra-
matically different prediction of the full data, and
hence for θ : 0.741, 0.764, 0.867, 0.819 and 0.892.

Additional problems can occur, such as predicted
complete tables with negative counts, as reported by
BRD, Molenberghs et al. (1999) and Molenberghs and
Kenward (2007).

4. MODEL SELECTION AND ASSESSMENT WITH
INCOMPLETE DATA

The five issues laid out at the start of Section 3 and
illustrated using both examples, essentially originate
from the fact that, when fitting models to incomplete
data, one needs to manage two aspects rather than a
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TABLE 5
The Slovenian public opinion survey

Fit of BRD1 and BRD1(MAR) to incomplete data

1381.6 101.7

24.2 41.4

182.9

8.1
179.7 18.3 136.0

Prediction of BRD1 and BRD1(MAR) to complete data

1381.6 101.7

24.2 41.4

170.4 12.5

3.0 5.1

176.6 13.0

3.1 5.3

121.3 9.0

2.1 3.6

Completed data using BRD1≡BRD1(MAR) fit

1439 78

16 16

148.1 10.9

11.9 20.1

141.5 38.4

2.5 15.6

121.3 9.0

2.1 3.6

Fit of BRD2 and BRD2(MAR) to incomplete data

1402.2 108.9

15.6 22.3

159.0

32.0
181.2 16.8 136.0

Prediction of BRD2 to complete data

1402.2 108.9

15.6 22.3

147.5 11.5

13.2 18.8

179.2 13.9

2.0 2.9

105.0 8.2

9.4 13.4

Prediction of BRD2(MAR) to complete data

1402.2 108.9

15.6 22.3

147.7 11.3

13.3 18.7

177.9 12.5

3.3 4.3

121.2 9.3

2.3 3.2

Completed data using BRD2 fit

1439 78

16 16

147.5 11.5

13.2 18.8

142.4 44.7

1.6 9.3

105.0 8.2

9.4 13.4

Completed data using BRD2(MAR) fit

1439 78

16 16

147.7 11.3

13.3 18.7

141.4 40.2

2.6 13.8

121.2 9.3

2.3 3.2

Analysis restricted to the independence and attendance questions. Models BRD1, BRD2, BRD1(MAR) and BRD2(MAR). Fit to the observed
data; prediction of the full data; completion of the observed data, using the model fit.
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FIG. 2. Model assessment when data are incomplete. (a) Two di-
mensions in model (assessment) exercise when data are incomplete.
(b) Ideal situation. (c) Dangerous situation, bound to happen in
practice. (d) Comparison of data and model at coarsened, observ-
able level.

single one, as schematically represented in Figure 2:
the contrast between data and model is supplemented
with a second contrast between their complete and in-
complete versions.

Ideally, we would want to consider the situation de-
picted in Figure 2(b), where the comparison is fully
made at the complete level. Since the complete data
are, by definition, beyond reach, it is tempting but dan-
gerous to settle for the situation in Figure 2(c). This
would happen when we would conclude Model 1 fit
poorly to the orthodontic growth data, as elucidated by
Figure 1(b). Such a conclusion would ignore that the
model fit is actually a prediction at the complete-data
level, that is, 16 boys and 11 girls, rather than the ob-
served 11 boys and 7 girls, at the age of 10. In other
words, one would fail to consider the model’s predic-
tion conditional on what is observed in the data. Thus,
a fair model assessment should be confined to the situ-

ations laid out in Figure 2(b) and (d) only. We will start
out by the simpler (d) and then return to (b).

Assessing whether Model 1 fits the incomplete ver-
sion of the growth dataset well can be done by compar-
ing the observed means at the age of 10 to their model
fit. This implies we have to confine model fit to those
children actually observed at the age of 10.

Turning to the analysis of the SPO, the princi-
ple behind Figure 2(d) would lead to the conclusion
that the five models BRD6, BRD7, BRD8, BRD9
and BRD6(MAR) ≡ BRD7(MAR) ≡ BRD8(MAR) ≡
BRD9 perfectly fit the observed data. As we stated ear-
lier, though, the models are drastically different in their
complete-data level prediction (Table 4) and the corre-
sponding estimates of the proportion in favor of inde-
pendence, which ranges over [0.74; 0.89]. This points
to the need for supplementing model assessment, even
when done in the preferable situation of Figure 2(d),
with a form of sensitivity analysis.

In conclusion, there are two important aspects in se-
lection and assessment when data are incomplete. First,
the model needs to fit the observed data well. This as-
pect alone is already quite a bit more complicated than
in the complete/balanced case, as shown in Section 3.
We will expand on this first aspect in Section 4.1. Sec-
ond, sensitivity analysis is advisable to assess in how
far the model selected and conclusions reached are sen-
sitive to the explicit or implicit assumptions a model
makes about the incomplete data, given the observed
ones, because such assumptions typically have an im-
pact on the inferences of interest. This aspect is elabo-
rated upon in Section 4.2.

4.1 Model Fit to Observed Data

As stated before, model fit to the observed data can
be done either by means of what we will label Sce-
nario I, as laid out in Figure 2(b), or by means of Sce-
nario II of Figure 2(d).

Indeed, one of the dangers associated with not con-
sidering these scenarios can be clearly illustrated us-
ing the orthodontic growth data. Let us take Model 1.
When the OLS fit is considered, only valid under
MCAR, one would conclude there is a perfect fit to
the observed means, also at the age of 10. The esti-
mate from ML would apparently show a discrepancy,
since the observed mean refers to a reduced sample size
while the fitted mean, similar to (2), is based on the en-
tire design. Thus, it is tempting but incorrect to operate
under the scenario of Figure 2(c).

Under Scenario I, for the SPO data, we conclude
BRD6–9 or their MAR counterpart fit perfectly. There
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is nothing wrong with such a conclusion, as long as
we realize there is more than one model with this very
same property, while at the same time they lead to
different substantive conclusions. If one would have
started with a single one from among these models
without considering any of the others, there is a real
danger when the conclusions are based on that partic-
ular model only. For example, if one would so choose
BRD9, the conclusion would be that θ̂ = 0.867 with
95% confidence interval [0.851;0.884]. Ignoring the
other perfectly fitting models does not make sense, un-
less there are very strong substantive reasons to do so.

These considerations suggest that the fit of a model
to an incomplete set of data requires caution and per-
haps extension and/or modification of the classical
model assessment paradigms. In particular, it is of in-
terest to consider assessment under Scenario II.

Gelman et al. (2005) proposed a Scenario II method.
The essence of their approach, belonging to the fam-
ily of so-called posterior predictive model checking, is
as follows. First, a model, saturated or nonsaturated,
is fitted to the observed data. Under the fitted model,
and assuming ignorable missingness, datasets simu-
lated from the fitted model should “look similar” to
the actual data. Therefore, multiple sets of data are
sampled from the fitted model, and compared to the
dataset at hand. Because what one actually observes
consists of, not only the actually observed outcome
data, but also realizations of the missingness process,
comparison with the simulated data would also require
simulation from, hence full specification of, the miss-
ingness process. This added complexity is avoided by
augmenting the observed outcomes with imputations
drawn from the fitted model, conditional on the ob-
served responses, and by comparing the so-obtained
completed dataset with the multiple versions of sim-
ulated complete datasets. Such a comparison will usu-
ally be based on relevant summary characteristics such
as time-specific averages or standard deviations. As
suggested by Gelman et al. (2005), this so-called data-
augmentation step could be done multiple times, along
multiple-imputation ideas from Rubin (1987). How-
ever, in cases with a limited amount of missing ob-
servations, the between-imputation variability will be
far less important than the variability observed between
multiple simulated datasets. This is in contrast to other
contexts to which the technique of Gelman et al. (2005)
has been applied, for example, situations where latent
unobservable variables are treated as “missing.”

Let us first apply the method to the orthodon-
tic growth data. The first model considered assumes

a saturated mean structure, as in Model 1, with a
compound-symmetric covariance structure (Model 1a).
Twenty datasets are simulated from the fitted model,
and time-specific sample averages are compared to the
averages obtained from augmenting the observed data
based on the fitted model. The results are shown in
the top panel of Figure 3. The sample average at age
10, for the girls, is relatively low compared to what
would be expected under the fitted model. Since the
mean structure is saturated, this may indicate lack of
fit of the covariance structure. We therefore extend the
model by allowing for sex-specific covariance struc-
tures (Model 1b). The results under this new model
are presented in the bottom panel of Figure 3. The ob-
served data are now less extreme compared to what is
expected under the fitted model. Formal comparison
of the two models, based on a likelihood ratio test, in-
deed rejects the first model in favor of the second one
(p = 0.0003), with much more between-subject vari-
ability for the girls than for the boys, while the opposite
is true for the within-subject variability.

Let us now turn to the SPO data. In a contingency
table case, the above approach can be simplified to
comparing the model prediction of the complete data,
such as presented in Tables 4 and 5, with their counter-
part obtained from extending the observed, incomplete
data to their complete counterpart by means of the fit-
ted model. Here, we have to distinguish between satu-
rated and nonsaturated models. For saturated models,
such as BRD6–9 and their MAR counterparts, this is
simply the same table as the model’s prediction of the
full data and again, all models are seen to fit perfectly.
Of course, this statement needs further qualification. It
still merely means that these models fit the incomplete
data perfectly, while each one of them tells a different,
unverifiable story about the unobserved data given the
observed ones. In contrast, for the nonsaturated mod-
els, such as BRD1–5 and their MAR counterparts, a so-
completed table is different from the predicted one. To
illustrate this, the completed tables are presented in Ta-
bles 4 (MAR7 and MAR9) and 5 (MAR1 and MAR2).

A number of noteworthy observations can be made.
First, BRD1≡BRD1(MAR) exhibits the poorest fit
(i.e., the largest discrepancies between this completed
table and the model fit), with an intermediate quality fit
for a model with 7 degrees of freedom, such as BRD2,
and a perfect fit for BRD7, BRD9, and their MAR
counterparts. Second, compare the data completed us-
ing BRD1 (Table 5) to its prediction of BRD1: the data
for the group of completers are evidently equal to the
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FIG. 3. The orthodontic growth data. Sample averages for the augmented data (bold line type), compared to sample averages from 20
simulated datasets, based on the method of Gelman et al. (2005). Both models assume a saturated mean structure and compound symmetric
covariance. Model 1a assumes the same covariance structure for boys and girls, while Model 1b allows gender-specific covariances.

original data (Table 4) since here no completion is nec-
essary; the complete data for the subjects without ob-
servations are entirely equal to the model fit, since here
there are no data to start from; the complete data for
the two partially classified tables take a position in be-
tween and hence are not exactly equal to the model pre-
diction. Third, note that the above statement is in need
of amendment for BRD2 and BRD2(MAR). Now, the
first subtable of partially classified subjects exhibits an
exact match between completed data and model predic-
tion, while this is not true for the second subtable. The
reason is that BRD2 allows missingness on the second

question to depend on the first one, leading to satura-
tion of the first subtable, whereas missingness on the
first question is independent of one’s opinion on either
question.

While the method is elegant and gives us a handle
regarding the quality of the model fit to the incomplete
data, while contemplating the completed data and the
full model prediction, the method is unable to distin-
guish between the saturated models BRD6–9 and the
MAR counterpart, as any method would. This naturally
begs the question as to what other methods can be used.
In full generality, the literature on model assessment,
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goodness-of-fit, and diagnostic tools is vast. A rela-
tively early, encompassing reference is D’Agostino and
Stephens (1986). Work devoted to the case of longi-
tudinal data was done by Beckman, Nachtsheim and
Cook (1987) and Lesaffre and Verbeke (1998). These
authors used global and local influence analysis, tech-
niques nicely reviewed in Chatterjee and Hadi (1988),
and useful also for sensitivity analysis (see next sec-
tion). For the specific case of categorical outcomes,
work has been done in the context of logistic regression
(Hosmer and Lemeshow, 1989) and conventional con-
tingency table analysis (Agresti, 2002), among others.
The problem is that many methods are difficult to ap-
ply and/or misleading when data are incomplete, thus
reducing the analyst’s options in this setting. This was
the rationale for Gelman’s method, as mentioned ear-
lier. An important exception is the family of techniques
for contingency tables, where such simple and well-
known tools as the likelihood ratio and Pearson’s χ2

goodness-of-fit can be used, at the condition they are
applied to the observable cells, of course. Let us apply
these to the SPO data. The likelihood ratio test statis-
tics for BRD1, BRD2, BRD7 and BRD9 are 128.46,
72.74, 0 and 0, respectively, on 2, 1, 0 and 0 degrees
of freedom, respectively. The corresponding Pearson
χ2 values are 107.9, 50.9, 0 and 0, respectively. This
simply confirms our earlier conclusion that BRD1 and
BRD2 fit extremely poorly, while the fit of BRD7 and
BRD9 is perfect. Of course, this confirmation still does
not allow us to make a statement as to the latter mod-
els’ quality in terms of predicting the unobserved por-
tion of the data, a phenomenon pointing to the need for
sensitivity analysis, a topic taken up next.

4.2 Sensitivity Analysis

In the previous section, we have seen how one can
proceed to assess model fit, either under Scenario I
or using Scenario II. It is important to reiterate this
comprises the fit to the observed data only, and strictly
makes no statement about the model in as far as it de-
scribes, or predicts, the unobserved given the observed
data. To address the latter issue, a variety of sensitivity
analysis routes have been proposed. For our purposes,
one could informally define a sensitivity analysis as a
way of exploring the impact of a model and/or selected
observations on the inferences made when data are in-
complete. However, the concept of sensitivity analysis
is both older and broader. In Section 4.2.1, we will pro-
vide a brief perspective on this vast field, to return to
the growth and SPO studies in Section 4.2.2.

4.2.1 A perspective on sensitivity analysis. Sensi-
tivity analysis, generically defined as assessment of
how scientific conclusions depend on model assump-
tions, influential observations and subjects, and the
like, has a long history in statistics. Early instances in-
clude Cornfield’s work in the context of causal infer-
ence (Holland, 1986) and the study of the independent
censoring assumption’s impact in time-to-event analy-
ses, to which a large part of a joint U.S. Air Force,
National Cancer Institute and Florida State University
sponsored conference was devoted (Proschan and Ser-
fling, 1974, and several contributions therein, in par-
ticular by Fisher and Kanarek). A different strand is
formed by input/output sensitivity in industrial appli-
cations (Haug, Choi and Komkov, 1986).

Even when confining attention to the field of in-
complete data, research is vast and disparate. This is
not a negative point: rather it reflects broad aware-
ness of the need for such sensitivity analysis. Earlier
work on incomplete data was virtually exclusively fo-
cused on the formulation of ever more complex mod-
els. Both the pattern-mixture model framework (Lit-
tle, 1993, 1994a) and the shared-parameter frame-
work (Wu and Carroll, 1988; Wu and Bailey, 1988,
1989) have provided useful vehicles for model for-
mulation. In a pattern-mixture model, the outcome
distribution is modeled conditional on the observed
response pattern, as opposed to the selection-model
framework, used throughout this manuscript, where
the unconditional outcome distribution is the center-
piece, sometimes supplemented with a model describ-
ing the nonresponse process, given the outcomes. In
a shared-parameter model, the outcome and nonre-
sponse processes are considered independent, given
a set of common latent variables or random effects,
which are assumed to drive both processes simultane-
ously. A particularly versatile research line is geared
toward the formulation of semiparametric approaches
(Robins, Rotnitzky and Zhao, 1994; Scharfstein, Rot-
nitzky and Robins, 1999). Whereas in the parametric
context one is often interested in quantifying the im-
pact of model assumptions, the semiparametric and
nonparametric modelers aim at formulating models
that have a high level of robustness against the impact
of the missing-data mechanism. A number of authors
have aimed at quantifying the impact of one or a few
observations on the substantive and missing data mech-
anism related conclusions (Verbeke et al. 2001; Copas
and Li, 1997; Troxel, Harrington and Lipsitz, 1998).

A number of early references pointing to the afore-
mentioned sensitivities and responses thereto include
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Rosenbaum and Rubin (1983), Nordheim (1984), Lit-
tle (1994b), Rubin (1994), Laird (1994), Vach and
Blettner (1995), Fitzmaurice, Molenberghs, and Lip-
sitz (1995), Molenberghs et al. (1999), Kenward (1998)
and Kenward and Molenberghs (1998). Rosenbaum
and Rubin (1983) is a pivotal reference for its propensi-
ty-scores basis, a technique useful with incomplete
data and beyond. A propensity score is, roughly, the
probability of an observation being missing or an in-
dication thereof. The method has been used as a basis
for missing-data developments in general and sensitiv-
ity analysis in particular. For example, it is strongly
connected to more recent inverse probability weight-
ing methods, as well as to certain forms of multiple
imputation (Rubin, 1987).

Apart from considering pattern-mixture models
(PMM) for their own sake, they have been considered
by way of a useful contrast to selection models, ei-
ther (1) to answer the same scientific question, such
as marginal treatment effect or time evolution, based
on these two rather different modeling strategies, or
(2) to gain additional insight by supplementing the
selection model results with those from a PMM ap-
proach. Pattern-mixture models also have a special role
in some multiple-imputation based sensitivity analy-
ses. Examples of PMM applications can be found in
Cohen and Cohen (1983), Muthén, Kaplan, and Hol-
lis (1987), Allison (1987), McArdle and Hamagani
(1992), Little and Wang (1996), Little and Yau (1996),
Hedeker and Gibbons (1997), Hogan and Laird (1997),
Ekholm and Skinner (1998), Molenberghs, Michiels
and Kenward (1998), Michiels, Molenberghs and Lip-
sitz (1999), Verbeke, Lesaffre and Spiessens (2001),
Michiels et al. (2002), Thijs et al. (2002) and Rizopou-
los, Verbeke and Lesaffre (2007). Whereas the earlier
references primarily focus on the use of the framework
as such, the later ones [emanate] a gradual shift to-
ward sensitivity analysis applications. Molenberghs et
al. (1998) and Kenward, Molenberghs and Thijs (2003)
studied the relationship between selection models and
PMMs. The earlier paper presents the PMM’s counter-
part of MAR, whereas the later one states how pattern-
mixture models can be constructed such that dropout
does not depend on future points in time.

Turning to the shared-parameter (SPM) framework,
one of its main advantages is that it can easily handle
nonmonotone missingness. Nevertheless, these mod-
els are based on very strong parametric assumptions,
such as normality of the shared random effect(s). Of
course, sensitivities abound in the selection and PMM
frameworks as well, but the assumption of unobserved,

random or latent effects further compounds the issue.
Various authors have considered model extensions. An
overview is given by Tsonaka, Verbeke and Lesaffre
(2007), who consider shared-parameter models with-
out any parametric assumptions for the shared para-
meters. A theoretical assessment of the sensitivity with
respect to these parametric assumptions is presented in
Rizopoulos, Verbeke and Molenberghs (2008).

Beunckens et al. (2007) proposed a so-called latent-
class mixture model, bringing together features of all
three frameworks. Information from the location and
evolution of the response profiles, a selection-model
concept, and from the dropout patterns, a pattern-
mixture idea, is used simultaneously to define latent
groups and variables, a shared-parameter feature. This
brings several appealing features. First, one uses in-
formation in a more symmetric, elegant way. Second,
apart from providing a more flexible modeling tool,
there is room for use as a sensitivity analysis instru-
ment. Third, a strong advantage over existing meth-
ods is the ability to classify subjects into latent groups.
If done with due caution, it can enhance substan-
tive knowledge and generate hypotheses. Fourth, while
computational burden increases, fitting the proposed
method is remarkably stable and acceptable in terms of
computation time. Clearly, neither the proposed model
nor any other alternative can be seen as a tool to defin-
itively test for MAR versus MNAR, as discussed ear-
lier. This is why the method’s use predominantly lies
within the sensitivity analysis context. Such a sensitiv-
ity analysis is of use both when it modifies the results
of a simpler analysis, for further scrutiny, as well as
when it confirms these.

As stated earlier, a quite separate, extremely im-
portant line of research starts from a semiparamet-
ric standpoint, as opposed to the parametric take on
the problem that has prevailed throughout this sec-
tion. Within this paradigm, weighted generalized esti-
mating equations (WGEE), proposed by Robins, Rot-
nitzky and Zhao (1994) and Robins and Rotnitzky
(1995), play a central role. Rather than jointly mod-
eling the outcome and missingness processes, the cen-
terpiece is inverse probability weighting of a subject’s
contribution, where the weights are specified in terms
of factors influencing missingness, such as covariates
and observed outcomes. These ideas are developed in
Robins, Rotnitzky and Scharfstein (1998) and Scharf-
stein, Rotnitzky and Robins (1999). Robins, Rotnitzky
and Scharfstein (2000) and Rotnitzky et al. (2001) em-
ploy this modeling framework to conduct sensitivity
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analysis. They allow for the dropout mechanism to de-
pend on potentially unobserved outcomes through the
specification of a nonidentifiable sensitivity parameter.
An important special case for such a sensitivity pa-
rameter, τ say, is τ = 0, which the authors term ex-
plainable censoring, which is essentially a sequential
version of MAR. Conditional upon τ , key parameters,
such as treatment effect, are identifiable. By varying
τ , sensitivity can be assessed. As such, there is simi-
larity between this approach and the interval of igno-
rance concept, touched upon in the second paragraph
of the next section. There is a connection with pattern-
mixture models too, in the sense that, for subjects with
the same observed history until a given time t − 1, the
distribution for those who drop at t for a given cause
is related to the distribution of subjects who remain on
study at time t .

Fortunately, it is often possible in problems of miss-
ing data, to bring in assumptions that are external to
this study, in the sense of them being untestable from
its data, but that are implied by the scientific body of
knowledge surrounding the problem. An example is the
so-called exclusion restriction in certain problems of
causal inference. When such assumptions are brought
in, the missing-data distribution can become identifi-
able or, at least, the universe of possibilities may be re-
duced in size. In particular, such knowledge may pro-
vide external evidence against MAR. Key references
include Angrist, Imbens and Rubin (1996), Little and
Yau (1996) and Frangakis and Rubin (2002). Their
work is geared toward both study design and analysis
methodology that can integrate such external knowl-
edge.

Thus clearly, the field of sensitivity analysis, for in-
complete data and beyond, is both blessed with a long
and rich history and vibrantly alive. We will now nar-
row our focus to a few methods that have particular
use in addressing issues raised by the growth and SPO
cases.

It is clear that the amount of work in this field is vast.
Classifying sensitivity analysis methods by means of
a useful taxonomy is easier said than done. One could
categorize according to the model family to which they
are directed within which they are cast. Alternatively,
one can distinguish between context-free techniques
and methods that make use of substantive consider-
ations. Some methods make simplifying assumptions
and specific choices. For example, a number of sensi-
tivity analysis tools are based upon considering a scalar
or low-dimensional sensitivity parameter, often posi-
tioned within the original model at one of many possi-
ble locations. Such choices are entirely reasonable, and

ought to be seen as a pragmatic compromise between
the desire to explore sensitivity while keeping the en-
suing analysis practically feasible and interpretable.

4.2.2 Sensitivity analysis for the growth and SPO
studies. Verbeke et al. (2001), Thijs, Molenberghs and
Verbeke (2000), Molenberghs et al. (2001), Van Steen
et al. (2001) and Jansen et al. (2003) advocated the
use of local influence-based methods for sensitivity
analysis purposes. Details can be found in Verbeke and
Molenberghs (2000), Molenberghs and Verbeke (2005)
and Molenberghs and Kenward (2007). The essence of
the method is that (i) a subject-specific perturbation is
added to the model, for example, by replacing the pa-
rameter describing MNAR missingness in the model
by Diggle and Kenward (1994) with a subject-specific
perturbation:

logit[P(dropout at occasion j |yi,j−1, yi,j )]
(4)

= ψ0 + ψ1yi,j−1 + ωiψ2yij ,

(ii) then observing that ωi ≡ 0 corresponds to MAR,
and (iii) finally studying the impact of small pertur-
bations of ωi around zero. Indeed, a model like (4)
is necessary, since for an MNAR model, not only the
measurements need to be modeled (e.g., using a lin-
ear mixed model); also the dropout mechanism needs
to be modeled as a function of the measurements and,
in some cases, covariates. Technically, this is done by
formally studying the curvature of the likelihood sur-
face. Details can be found in the aforementioned refer-
ences, as well as in Verbeke and Molenberghs (2000)
and Molenberghs and Verbeke (2005). In a variety of
examples, the above authors showed that one or a few
observations are sometimes able to drive the conclu-
sions about the missing-data mechanism. We applied
the method to the orthodontic growth data, assuming
either Model 1 or Model 7. The results are qualitatively
the same and we present the Model 1 results only. Sub-
jects #3 (girl) and #13, #23 and #27 (boys) come out as
very influential. In addition, some influence is seen for
#6 and #9 (girls), and #16 (boy). As can be seen from
Figure 4, all of these are incomplete, which is differ-
ent from other applications of the method. Of course,
all but one of these are positioned relatively low, and
one cannot conclude definitively whether either their
incompleteness status or the location of their profile
is determining their influence. The influence measure
informally described above and denoted by Ci is pre-
sented in Figure 5. Even though the Ci measure ex-
hibits very high peaks, removing the highly influential
subjects does not alter the substantive conclusions.
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FIG. 4. The orthodontic growth data. Individual profiles of the incomplete version of the data, with highly and moderately influential
subjects highlighted by more and less boldface line type, respectively.

Molenberghs, Kenward and Goetghebeur (2001) and
Kenward, Goetghebeur and Molenberghs (2001) sug-
gested the use of so-called regions of ignorance, com-
bining uncertainty owing to finite sampling with uncer-
tainty resulting from incompleteness. Broadly speak-
ing, they consider overspecified models which then
produce nonunique solutions of the likelihood equa-
tions. For a single (vector) parameter, the resulting so-
lution is called the interval (region) of ignorance. When
uncertainty stemming from finite sampling is added,

by superimposing ignorance regions with confidence
regions, a wider interval (region) of uncertainty is ob-
tained. A formal basis for such an approach was pro-
vided by Vansteelandt et al. (2006). For the SPO data,
this comes down to considering models with nine or
more degrees of freedom.

The estimated intervals of ignorance and intervals of
uncertainty are shown in Table 2. Model 10 is defined
as (αk, βjk) with

βjk = β0 + βj + βk,(5)

FIG. 5. The orthodontic growth data. Local influence measures.
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while Model 11 assumes (αjk, βj ) and uses

αjk = α0 + αj + αk.(6)

Finally, Model 12 is defined as (αjk, βjk), a combi-
nation of both (5) and (6). Model 10 shows an inter-
val of ignorance which is very close to [0.741, 0.892],
the range produced by the models BRD1–BRD9, while
Model 11 is somewhat sharper and just fails to cover
the plebiscite value. However, it should be noted that
the corresponding intervals of uncertainty contain the
true value.

Interestingly, Model 12 virtually coincides with the
nonparametric range even though it does not saturate
the complete-data degrees of freedom. To do so, not
two but in fact seven sensitivity parameters would have
to be included. Thus, it appears that a relatively sim-
ple sensitivity analysis is sufficient to increase the in-
sight in the information provided by the incomplete
data about the proportion of valid YES votes.

5. CONCLUDING REMARKS

In this paper, we have illustrated the complexities
arising when fitting models to incomplete data. By
means of two case studies, the continuous longitudi-
nal orthodontic growth data and the discrete Slovenian
Public Opinion Survey data, five generic issues were
brought to the forefront: (i) the classical relationship
between observed and expected features is convoluted
since one observes the data only partially while the
model describes all data; (ii) the independence of mean
and variance parameters in a (multivariate) normal is
lost, implying increased sensitivity, even under MAR;
(iii) also the well-known agreement between the (fre-
quentist) OLS and maximum likelihood estimation
methods for normal models is lost, as soon as the
missing-data mechanism is not of the MCAR type,
with related results holding in the nonnormal case; (iv)
in a likelihood-based context, deviances and related
information criteria cannot be used in the same way
as with complete data since they provide no informa-
tion about a model’s prediction of the unobserved data;
and, in particular, (v) several models may saturate the
observed-data degrees of freedom, while providing a
different prediction of the complete data, that is, they
only coincide in as far as they describe the observed
data; as a consequence, different inferences may result
from different saturated models.

Based on these considerations, it is argued that
model assessment should always proceed in two steps.
In the first step, the fit of a model to the observed data

should be assessed carefully, while in the second step
the sensitivity of the conclusions to the unobserved
data given the observed data should be addressed. In
the first step, one should ensure that the required as-
sessment be done under one of two allowable scenar-
ios, as represented by Figure 2(b) and (d), thereby care-
fully avoiding the scenario of Figure 2(c), where the
model at the complete-data level is compared to the
incomplete data; apples and oranges as it were. The
method proposed by Gelman et al. (2005) offers a con-
venient route to model assessment.
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