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Abstract

Based on the duality techniques in a previous paper (L. Egghe,

The duality of informetric systems with applications to the
empirical Taws), we study general relationships between Bradfordian
and Lotka taws. This results in new Bradfordian laws which are

equivalent with the well-known Lotka laws y(n) = j% (¢ > 1). The
n

method also sheds some light on the question why o < 2 is more
common than o > 2. Also, the general law of Leimkuhler, as found
by Rousseau, is reproved and shown to be equivalent with the above
mentioned laws. Fitting methods are applied and give close results.

I. INTRODUCTION AND REVIEW OF KNOWN RESULTS
I.1. Bibliographies, duality
I.1.1. Bibliographies

We will use the formalism from [6], A bibliography (in [6] we used the term

IPP for the same thing but we prefer here the more concrete term "bibliography")
is a triple (S,I,V) where S and I are sets {resp. of sources and items) and
where V¥ is a relation from § into I. S and I can be countable (examples : all
practical bibliographies) or continuous intervals. In the latter case one

speaks about continuous bibliographies.: a continuous bibliography is a tripel
(S,1,V) where S and I are intervals : S = [0,T], I = [0,A] and where V is a
strictly increasing differentiable function from S into I such that ¥(0)} = 0
and V(T) = A. In this setting, vr € S, V(r) € I is the cumulative number of
items in the sources s, for s € [T-r,T].

Continuous bibliographies are close models for large bibliographies and
certainly contain (in the sub-set sense) all the discrete ones. They also

give more insight in both the dual theory of bibliographies (see [6]) as well
as in Bradford's law (see again [6]1). In the sequel we will only be dealing

with continuous bibiiographies. We repeat the concept of duality in continuous
bibliographies {or IPP's, as they are called there}, as this was introduced in
61.

I.1.2. Duality - intuitively

It is clear that any bibliometric principle on bibliographies must be dealing
with sources and items. A probabilistic principle of this kind was formulated

(*) Permanent address.
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by D. De Solla Price [3] in his so called "success-breeds-success” principle.

Duality in bibliometrics is another squrce-item principle which finds its
origin in geometrh, Here one has a natural duality between Tines and points
in this way that any result on points vs. lines gives rise to a new result
obtained from the former by interchanging the words "points" and "lines",
In fact the duality principle in geometry has given rise to a whole subject
of geometry called projective geometry.

1.1.3. Duality - mathematical

let {$,I,V) be any continuous bibliography, where $ = [0,T] and I = [D,A].
The dual bibliography of {5,1,¥) is the bibliography (cf. [6]) :

(10,41, [0,T], U) (1)
where
Uiy = 1 - v a-1) (2)

for every 1 € [0,A] (\I'1 denotes the inverse function of V, which exists since
¥ is strictly increasing). Let o and p be the following functions :

u'{i) (3}

[s
i

and

J]

Py = V' (r) (4)

resp. for every 1 € [0,A] and for every r € [0,T] (' denctes the derivative),
P expressed in function of i gives

ps = v(v(i)) (s)

In [6] the following easy lemma is proved (for completeness reasons we repeat
the short proof).

Lemma :

1
Py = UA--i {6)

for every i € [0,A].
Proof :

For the used results from mathematical analysis we refer the reader to [1].
For every i € [0,A], using {2) one has
1

Ui} = —g—
vV (A-1))

o1
=T El
Pa-i

by {5). Hence (3) gives

o
i 7 By

or, what is the same,
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1
p_=_._
LI o
for every i € [0,A). o
This lemma, together with the definition of V, 9y and p; gives now the
following result : ‘

oy = the density function in the coordinate i € I of the sources per

item {(7)
p; = the density function in the coordinate A-i € I of the items per
source. (8)

Readers not interested in the above derivations can suffice by reading
formulas (6), (7) and (8). They suffice to follow the rest of this paper.

1.2. Bradford's law for continuous bibliographies

Let (S = [0,T}, T = [0,A], ¥) be any continuous bibliography. We say that this
bib;iography satisfies Bradford's law if there exist constants C and K > 1
such that

oy = C.K' (9)

for every i € [0,A] (¢cf. [6]). This definition is equivalent with the more
ciassic one where one specifies the number of Bradford groups : for this,
see [7]. The definition above has the advantage not to deal with (and hence
being independent of} the number p of Bradford groups. This in turn implies
that (9) is a fixed function for the bibliography (i.e. K is constant,
contrary with the p-dependent versions where this so-called Bradford
multiplicator k(pg is p-dependent}, For this reason, the above formulation
of Bradford's law is called the group-free version of Bradford's law. Remark
that we need the fine structure of a continuous bibliography in order to
define this concept. In {7] there is proved an explicit formula for K, in
absolute known bibliography constants as well as in function of k(p) for
every p.

As is well-known {cf. [4]), Bradford’s law is equivalent with Lotka's Iaw
¥3) =5 (10)
J

(for every j 2 1). Here y{j) denotes the number of sources with j items and

B is a constant, We refer also to {4] and [7] for the fact that the above
laws are also equivalent with the so-called law of Leimkuhler (sometimes also
called the Bradford-Zipf law) : if R = U-1, then

R(r) =a In (1 +br) (1)

for every r € [0,T], where a and b are constants.

I.3. Qutline of this article

This paper deals with the question : can the above mentioned duality techmnique
be used to determine generalized Leimkuhler or Bradford laws, starting from
the common general law of Lotka :

(3) J% (12)
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for every j € [0,Al, where ¢ > 1 and B is a constant.

It is well-known that a lot of bibliographies, satisfy Lotka's law for a certain
a > 1. Let us just mention [14] (and other work of Pao and others) for many
pertinent examples. In [18], Rousseau shows that, if we have (12), then we
have the following generalized law of Leimkuhler {in our notation)
2-a
R = 5 120 4 251 )T

where B and o are as in (8) and where Yy 15 the number of items in.the most
important source,

(13)

In this paper, we will reprove formula (13) and we will add to these twa
formulas the Bradford equivalent. Furthermore, we will show that we have
equivalence of {12), {13) and the newly established generalized law of
Bradford.

That this theory conforms well with discrete data has been shown (by
theoretical example) in [18}, and further, more practical investigations will
follow at the end of this article. They will show that formula {13} (and hence
our approach with continuous bibliographies) fits very well the data of
practical bibliographies.

Incidentally we will also find an explanation why o in formula {12} cannot be
far above 2. Stated in other terms, a Groos droop {o < 2) in the Leimkuhler
curves is more common than the opposite effect (o > 2}, as is also found to
be true in practice {see e.g. [4] and [2]).

II. BASIC EQUATIONS

Let us take a general continuoys bibliography ({0,T], [0,Al, ¥} and denote by
p(j) the number of sources with j items. Then the following equations follow
immediately from (7) and (8) :

Item-relationship :
P

i
I w(3) jdi = i, for every i € [0,A] . (1)
1

Source-relationship :
i i
{"A-f'di': { w(d) dj, for every i € [0,A] . (15)

Equation ({5} is a difficult-to-handle integral equation, while equation (14)
is easy. Luckily, we have the following result.

Theorem II,2 : Given equation (6) then equations (14) and (15) are equivalent.
Proof

For the used results from mathematical analysis (here and in the sequel) we
refer the reader to [1].
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a. {14) is equivalent with the system

V(pi) ogpi = 1 (16)

pu=1
Indeed, (14) = (16} follows by derivation and from
Po
J w(§) dj = 0 (i.e. py = 1) and (16) = (14) is shown as follows :
1

integrating (16) yields
i
.g'NP-iu) P.il-p.iu-dj =i +C

Hence

ki
J o owi) jdj =i +¢C
=1
From this it follows that C = 0 (take i = 0).
Finally we have

05
.1f W(j) jdj =1,
being (14}.
. {15) is equivalent with the system

O'A"I. = ll*(p.l) D.i
. (17}
po =1
This is shown in the same way as above.
. Given (6), it is trivial to see that (16}« (17). Hence also (14)+=(15). D

In view of the previous results we can skip equation (15) and work with the
system

1

oy = , for every i € {0,A) {6)
T
i
Py
I w(j) jdj = i, for every i € [0,A] {14)
1

These equations are basic for this article and will yield most of our
results.
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IIT. EXCLUSION OF CERTAIN LOTKA LAWS ¢, GIVEN A BIBLIOGRAPHY

This paragraph does not deal with the problem of fitting practical data with

a certain Lotka Tlaw. It will however shed some Tight on why certain Lotka laws
are not very much encountered in practice.

We suppose, in this section, that y (the general Lotka law) is continuous and
defined on the interval [1,»[. This does not mean that we have sources with an
unlimited number of items. We just suppose the existence of the continuous

function, being an extension of the used one. The function ¢ is then, in
practice, restricted to the interval [1,ym[, where Y is the number of items

in the most productive source. We alsoc suppose ¢ > 0 on [1,»[. A1l the
functions (12) satisfy these two requirements.

We have the following result.

Theorem I11.1 : If ¥ is a continuous positive function defined on the interval
[1,[, and if ¢ and p are defined as in section I, then the
following assertions are equivalent :

( 1) The function o; exists.,

( ii) The function o5 exists.

(144) A >:fw(j) 343 (18)
Proof : (i) = (ii)
Foliows readily from (6).
(iii) = (i)
If ? y(j) jdj s A for every x € [1,=[, then
1 @ X
{ v(j) jdj = 1im { v(j) jdj s A,

a contradiction to (iii). Hence, there is a Xg € [t,=[ such that

*p
A< { P(J) jdj (19)
Let i € [0,A] be fixed but arbitrary. Hence
1 *
{ (i) jdj =07 sAL { p(3) jdj (20)

Furthermore, the function
X
X > { V(i) jdj

is continuous. S0 we have the existence of x; € [0,A] such that
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X
is= J; v(i) dj

{cf. [1]1). It then suffices to define

for every i € [0,A].
(i) = (iii)
Since py exists, for every i € [0,A], we have by {14} :
°a
A= 1! ¥(3) dj (21)

But, since ¢ > 0 on [1,=[ and since ¢ is continuous, we have that

Jowli) jdi> o0 (22)
Pa

{suppose [¥(j) jdj = 0. Then the function j = ¥{3) j is 0 almost everywhere
p
A
on [pA,w[, in the Lebesgue-sense. But § is continuous. Hence j + ¢{j) j is
identically 0 on [py,=[. Hence ¥ = 0 on lep»=l, 2 contradiction {see [1] for

the used results)). (This argument is not needed further on in the proof).
Hence (21) and (22) imply

A< { V(i) jdj . =

This result has an interesting consequence.
Corollary III.2 : Suppose that {S,I,¥) is an arbitrary bibliography.
Suppose we take

wu)L% (12)

for j € [1,=[. Then this function can never fit our bibliography (as a iaw of
Lotka), if

a2 p+2 (23)
Here A is the total number of items.
Proef :
A function y as above does not fit our bibliography if the function i + Py

cannot be constructed from it (through (14)). This implies, according to
theorem I11.1 that

?Mﬂjusn
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For the function ¢ as above, this yields easily

aa-g+2. ]
The practical value of formula (23} will be investigated in another paper,
but it is already clear from the above that high values of o are not expected
very much. Stated in terms of Leimkuhler curves (cf. [4], [181), this gives
an explanation of the fact that more often one finds a Groos droop (o < 2)
than the opposite effect (o > 2). In any case we also have the following,
surprising resylt :
Coroliary IIT.3 : If the Lotka function

W) ==

J

(j € {1,»[) fits a biblicgraphy, then

o <3
Proof. H
From corollary 11I.2 we readily have
o < % + 2
But B = y(1) and A is the total number of items, So, certainly
B<A.
Hence
a<3. o

In some practical fitting procedures {such as the one of Pao [141) one
sometimes encounters a > 3. In view of our theory above, this can only be so
if we Tower A, i.e. if we do not use the whole bibliography. This is indeed
what is done in the Pao fitting procedure.

IV, THE NEW LAW OF BRADFORD THAT IS IMPLIED BY LOTKA'S LAW y{j) = J%
b
After the preparation above it is now easy to find the general law
of Bradford that is implied by the laws of Lotka :

w(§) -J%

for every § € {1,»[. In fact, in the next section we will show that this law
of Bradford is equivalent with (12).

Theorem IV.1 : Let ($,I,V) be a bibliography that satisfies Lotka's Taw (12)
for a certain o # 2. Let A be the total number of items. Then

1
- (2o, 7 (24)

and

1
- (M2 gy By T (25)
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for every i € [0,A]. Hence, the general law of Bradford (o # 2} is of the form

A3
o5 = (A + 1A)) (26)

(instead of {9} which is the function if o = 2},
Proof :

(26) follows from (25) and (25) follows from (24), using (6). Hence all we
have to do is to prove equation (24)}. From (14), we find

Hence
e CRERERL

This implies

1
o, = (1&al , 4yZ (27)
if
1@oa) 4 150 (28)

for every i € [0,A]. But since our bibliography satisfies (12}, we have, by
corollary III.2 that

a < % + 2
Hence , if a > 2
MZa) L 150 (29)
Now there are two cases :
(i) o < 2. Then
iZa) sy 50 (30)
always, for every i € [0,Al.

(i1} « > 2. Then

Mzeo) , g o min  (20) ) (31)
i€[0,A]
Hence, {29) and {(3t) imply
ii%igl +1>0

for every i € [0,A].
In conclusion : (28) is always satisfied and hence also (27}, o
Remark : From formula (25) it follows that lim o5 is an exponential function,

a2
Hence our theory for o # 2 gives the classical Bradford situation {when o = 2)
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as a limiting case (cf. (9)).

This is the first time that Bradford's law for the general Lotka Taw (12} is
proved. In [4] we tried to put up a qualitative model for Bradford's law in
case of formule (12}. Although not perfect we predicted that {with our
notation g, for the Bradford function) :

0.

ifad?2: El must increase with i
i
c!

ifa>?2 :'El must decrease with i

i
and (as js well-known and trivial to prove} : if o = 2 (hence in case we have
the classical Bradford law (9))} :

o)
El is a constant {independent of i} .
i
The theorem above confirms these qualitative predictions of [4].
Corollary IV.2 : In case our bibliography satisfies (12) then the corresponding
law of Bradford o5 satisfies

El increases with 1 if a < 2

d.
= decreases with i if a > 2

-— is constant if a = 2 .

Proof :

Suppose that o # 2. Formula (26) yields

Vo : "3
CH A2A3(A1-+1A2)

Hence

Now, substituting the values of Ays Ay and A, in terms of A, B and o {using
(25)) yields :

o!
1

1
5, " Wz 7B 1w (32)

This is an increasing function #f @ < 2 and a decreasing one if a > 2. If
o = 2, the result is well-known : Formula (9) yields

—

=InK, a constant. o

_s}_a
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V. THE LAW OF LEIMKUHLER R THAT EVOLVES FROM ¢(j) = 4%-AND PROOF OF THE
EQUIVALENCE OF THE FUNCTIONS y, o AND R J

This law of Leimkuhler has already been shown by R. Rousseau in [18]. With our
method we can give a second proof of it. Also, having the generalized Bradford
law at our disposition, we will also be able to show equivalences between the
laws ¢, o and R.

Theorem V.1 : {Rousseau {18]) : Suppose we have a bibliography (S,I,V) that
satisfies Lotka's law

w(d) —Ba (12)
J
Then 24
- B [ 2= _ ,1-a  a=1 T-o
R(r) = o [.Vm (.Vm + 5 r} ] (13)
where Y is the number of items in the most productive source.
Proof :
In our forma]igm, we clearly have :
1
r={g., di' (33)
0 )
and
R(r} =i (34}
But, using theorem IV¥.1, formula (26) :
1+A 1+A
i (A, + 1A} > - 3
IU d.il = 1 2 1
0 i AZ(I + A3J

So, using {33) and (34) above and recalculating, we find

s Ty
R(r) = i LAy 7+ A0+ Adr) 7 - A (35)

Hence, using the meaning of At’ Az and A3 in terms of A, B and o (formula (25)),
we get, after reworking :

1-a 2-a
R(r) = o5 (AL gy L (ME) )28 e T8y (36

By the very definition of the dual Bradford function p; we have that Y = Pa

(A being the total number of items and hence also the end of the iteminterval
[0,A]). Using theorem IV.1 again (now formula (24)), we find

1
o = (MF) , qy70 (37)

Hence, combining (36) and (37), yields :

2-a
(yl-e - -1-&0—‘ U

Rr) = 57 ™ - U
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being exactly the function as found by Rousseau in [18]. Here r € [0,T],
T being the total number of sources. o

Remark : As shown in [18], the function R (formula (13)), shows a Groos droop
for o < 2 and has no Groos droop for o > 2 (as predicted also in [4]), If
there is a Groos droop, the inflection point is given by

1-a
- M=) | | 7
or, using (37) :

_ B M-
e =22 Ym (38)

{see [18], where also practical calculations are made).
So far we came across the following functions, for o £ 2 ;
(01d} general Lotka :
¥(3) = j‘;, e (12)

{new) general Bradford :

1

op = (MZ) gy _ 2y 7S (25)

or
4

o = (20 - i By T (39)
and
{new) general Leimkuhler : )

-k
O Y L - B L (13)

These three laws constitute a new closed circuit of equivalent laws :

Theorem V.2 : The general laws of Lotka, Bradford and Leimkuhler are
equivalent,

Proof : Lotka = Bradford :

This is in fact theorem IV.1.

Bradford = Leimkuhler :

This is what is shown in theorem V.1 (see the proof).

Leimkyhler = Bradford :

Formula (13), which is given, is simply rewritten as :
R(r)=C [D - (E + Fr)%) (40)

where C, D, £, F and G are constants.
From formulas (33) and {34) we have
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i
i=C[D'(E+F-£GitdiI)G] (41)
This yields :
_1
i - -
[ o, di'= <
o P
Hence
Ao
N O (42)

which is of the form {39).
Bradford = Lotka :

We have given (25) (or (39)), hence also Pys using (6). This o; is of the form
(see e.g. (24)) :

o5 = (1 + hi)! (43)
where H and I are constants.
Using the universally valid equation (14) :
Py
{ W(i) jdj =i (14)

we also have, by derivation

Wloy) pyof =1 (44)
But, using {44) :

o} = IH (1 + hi)!!

Py 7 '1£—HH1" % (45)

Using again {43) we see that

1
1+H'i=p".r

i
We substitute this in equation (45) yielding

1
'eT

i {46)

p: =1IH p

(44}, (43) and (46) now yield

- 1

_ 1

T
T
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Hence, we have the form
Wi = 2 (12)
J
(o # 2), being Lotka's law. o
Remark : Both the (new} general Bradford law (25) or (39) and the {new}
general Leimkuhler law (13) have 3 parameters, namely o, B and A (or ¥, being

pa)e In the (o1d) general Lotka law (12) we see only 2 parameters explicitely,

namely o and B. But alsoc here, A is present in an implicit way : J is
restricted to the interval [1,ym] = [1,pA].

VI. FITTING THE GENERALIZED LEIMKUHLER LAW AND EXAMPLES

In this last section it is our purpose to see whether (and how) the
theoretically calculated general law of Leimkuhler

2=-q

1-a _ 1-o )T:E]
RS

R(r) = ?1_3&- [y,f,'u -y, (13)

is fitting practical {hence non-continuous or discrete) bibliographies.

0f course, this is a double problem : what o and B should be used : o and B
come from Lotka's law :

¥3) J% (12)

and hence we face the problem : find o such that bozh laws (12} and {13) fit
our practical data. From this, B follows easily since

Y, ¥

m moy
T= v(j) =B .Z a
J=1 j=t i
and hence
T
B~ ¥(ay (47)

where z(a) is the classical zéta-function. B can then be derived from a table
of c(u)'1 which is appearing for instance in [10], p.444.

On fitting Lotka's law {12) to practical data, there have been a lot of papers :
{91, (101, [12], [13], (14], [19). In them few methods to derive a good o have
been constructed, some better than others. It is our feeling that this point
needs more investigation : some of it will be done in a forthcoming paper.

In this paper we will suffice by investigating whether some o and B that yield
a well fitting Lotka law (12} (to the practical data) will also yield a well
fitting general Leimkuhler law. We will give three exampies.
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Example 1 :

The Pao data on computational musicology [11]1. For this, the maximum
likelihood method of Nicholls [9] yields a = 2,2000 and B/T =0.6709 giving
a good fit of (12). The fit for {13) with this o and B is as follows :

r R(r) R(r)
observed calculated (13)

1 40 35.8

2 74 65.2
3 g5 90.4

4 11 112.5

5 125 132.2
6 138 150.0

7 151 166.3

8 . tod 181.3
9 176 195.3.
10 188 208.3
1" 200 220.6
12 212 232.1
13 222 243.1
14 232 253.5
15 242 263.4
16 252 272.9
17 260 282.0
18 268 290.7
19 276 299.1
20 283 307.1
26 325 350.3
36 383 408.1
46 433 454.7
56 475 494.0
66 515 528.1
76 545 568.4
86 575 h85.6
96 606 610.3
106 027 633.1
126 667 673.9
146 707 709.8
166 747 741.8
186 775 770.8
206 795 784.4
226 8156 809.9
250 839 849,1
300 889 899.5
350 939 943.3
400 989 982.3
450 1039 1017.4
500 1089 1049.4

The fit is very good. Using the Kolmogorov-Smirnov test one has that the
maximal relative deviation is

Dmax = 0.0412

while the critical value {at the 5 % level) is approximately 136 _ 9. 0608.
V500

Hence, the model
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0.6799.x 500 [40-0.2 _ (40—1.2 N 1.2 _)0.1667] (48)

X

R(r) =

is accepted.

Example 2 :

The Murphy data (8] (see also [16] or [141). For this, the least square method
of Nicholls [9] yields o = 2,104 and B/T = 0.6424, The fit of the corresponding
Lotka-function (12) is very good (see [9]). With this « and B we have also a
good it for the generalized Leimkuhler function (13).

r R(r) R(r)
observed calculated (13)
1 5 4.9
2 9 9.5
3 13 13.9
4 17 18.1
5 21 22.1
6 25 26,0
7 29 29.7
8 33 33.3
9 37 36.7
10 40 40.0
1" 43 43.3
12 46 46.4
13 49 49.4
14 52 52.3
15 55 55.2
16 58 57.9
17 61 60.6
18 64 63.2
19 66 65.8
20 68 68.3
30 88 0.2
40 108 108.2
50 118 123.6
70 138 148.9
90 158 169.3
110 178 186.6
130 198 201.5
150 218 214.7
170 238 226.5

Here D = 0.0665 but the 5 % critical value is approximately 1230 = 0 1043,
V70

Again we can accept our general Leimkuhler function :

-0.1047 -1.1047 - 1.10:7 r)0'0948]

R(r)= 0.??24 x 170

(5 - (5

(49)
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Example 3 :

The Radhakrishnan-Kernizan data [15], see also [14]. In this case the Nicholls
least squares method yields o = 3.4880, B/T = 0.8864 and the maximum Tikelihood
method gives o = 3.4000, B/T = 0,8782, Both methods give a fit to Lotka's law
(12} (although not very splendid) but a very bad fit to R(r) ((13)). In a
forthcoming paper, I develop a simple method different from the Nicholls
methods that in these cases can yield a better fit. Our method yields

a = 2.9907, B/T = 0.8306. We have a much better fit of the Lotka function (12)
and furthermore, (13) is also a well-fitting function.

r R(r) R(r)
observed calculated (13)

1 7 6.4

2 13 12.0

3 18 17.0

4 22 21.6

5 26 25.8

6 30 29.8

7 34 33.5

8 38 37.1

9 41 40.4

10 44 43.7

11 a7 46.8

12 50 49,8

13 53 52.7

14 56 55.5

15 59 58.2

20 69 70.8

30 89 92.3

40 109 110.7

50 129 127.0

100 180 161.5

200 280 283.5

300 380 354.2

We have Dmax = 0,086 which is at about the 1 % level. Hence we obtain a 1 %-
level fit here (contrary to the other methods). The law in question here is
R(r) = Q;S%Z%ﬂﬁﬂ?gl [7-1.0442 - 2.0442 | U"E%igﬂég3UT r_){].5108]

{50}

Remark : The simpler model of {13), namely (11}, valid if Lotka's a = 2,
contains two parameters, As is well-known this function is able to fit the core
and middle part of the Leimkuhler observed cumulative distribution {cf. also
[5] for extensive calculations on this respect). Fomula {13), contains three
parameters and, according to the above theory and examples, seems to be able

to fit also the last part of the Leimkuhler observed cumulative distribution
{Groos droop or the opposite effect, which is present whenever o # 2).
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