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Abstract

In repeated dose-toxicity studies, many outcomes are repeatedly measured on the
same animal, to study the toxicity of a compound of interest. This is only one example
in which one is confronted with the analysis of many outcomes, possibly of a different
type. Probably the most common situation is that of an amalgamation of continuous
and categorical outcomes. A possible approach towards the joint analysis of two longi-
tudinal outcomes of a different nature is the use of random-effects models [1]. Whereas
a random-effects model can easily be extended to jointly model many outcomes of a
different nature, computational problems arise as the number of outcomes increases. To
avoid maximization of the full likelihood expression, Fieuws and Verbeke [2] proposed
a pairwise modeling strategy in which all possible pairs are modeled separately, using
a mixed model, yielding several different estimates for the same parameters. These
latter estimates are then combined into a single set of estimates. Also inference, based
on pseudo-likelihood principles, is indirectly derived from the separate analyses. In this
paper, we extend the approach of Fieuws and Verbeke [2] in two ways: the method
is applied to different types of outcomes and the full pseudo-likelihood expression is
maximized at once, leading directly to unique estimates as well as direct application
of pseudo-likelihood inference. This is very appealing when interested in hypothesis
testing. The method is applied to data from a repeated dose-toxicity study designed
for the evaluation of the neurofunctional effects of a psychotrophic drug. The relative
merits of both methods are discussed.

Keywords: Mixed outcomes, High-dimensional joint model, Pseudo-likelihood, Longi-
tudinal data

1



1 Introduction

When a pharmaceutical sponsor aims to brings a new medicinal product to market, it has to be

ensured that the product is safe for intended and accidental use alike. To properly assess the

toxicity of the substance of interest, animals are evaluated on many different outcomes and

exposed during several days to a wide variety of testing conditions, including repro-toxicity and

carcinogenicity. Based on such experiments, one can then establish the dose-response relation-

ship and test whether the substance causes adverse effects. Since such repeated dose-toxicity

studies involve considerable amounts of time and money, as well as experimental animals, the

most appropriate and efficient statistical models, accounting for all possible correlations in the

data, should be used for analysis. This raises some challenges. First, the number of outcomes

in safety experiments is typically large, implying the necessity of a flexible, high-dimensional

joint model. Second, the outcomes in these experiments are often of a mixed continuous and

discrete nature. For example, both the malformation status of a live fetus, generally recorded

as a binary outcome, and the birth weight, measured on a continuous scale, are important

variables in the context of teratogenesis. Perhaps the most common heterogeneous situation

is that of a continuous, often assumed normally distributed, and a binary or ordinal outcome.

Finally, since measurements are routinely recorded repeatedly over time, the association stem-

ming from the longitudinal nature has to be accounted for. We are thus confronted with

multivariate repeated measures, potentially of a different type.

While multivariate methods for the analysis of continuous outcomes are well established [3],

methods that jointly analyze discrete and continuous outcomes and adequately account for

the correlation structure in the data are less widespread. Broadly there are two approaches [4].

A first approach is based on a conditioning argument that allows the joint distribution to be

factored into a marginal component and a conditional one, where the conditioning can be done

either on the discrete or on the continuous outcome. Conditional models have been discussed

in several contexts [5-10]. A drawback of mixed outcome models based on factorization is that
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they may be difficult to apply for quantitative risk assessment because there is no direct access

to the marginal distributions [11]. Also, factorization models do not easily extend to the setting

of three or more outcomes. Also, the correlation among the two outcomes itself cannot be

directly estimated. A second approach directly formulates a joint model for both outcomes. In

this context, one often starts from a bivariate continuous variable, one component of which is

explicitly observed and the other one observed in dichotomized, or generally discretized, version

only. Effectively, this comes down to assuming a continuous latent variable to be underlying

the discrete explicit variable. The binary event is then assumed to occur if the latent variable

exceeds some threshold value. Catalano and Ryan [12] note that latent-variable models provide

a useful and intuitive way to motivate the distribution of the discrete outcome. A common

method assumes an unobservable normally-distributed random variable underlying the binary

outcome, resulting in a probit-type model. Alternatively, Geys et al. [13] presented a model

based on a Plackett-Dale approach, where a bivariate Plackett distribution is assumed. Instead

of using a latent variable, one can directly specify the joint distribution for both outcomes via a

mixed model, by specification of the marginal distributions, conditional on a correlated random

effect [1]. In this paper, the latter approach is considered. The bivariate joint distribution

of a continuous and binary outcome is specified via a mixed model, by assuming a general

form of a mixed model where the residual error structure and the link function are allowed to

change with the nature of the various outcomes. The correlation among the two outcomes is

specified through the random-effects structure. An advantage of the mixed model approach

is that additional correlation structures in the data, such as a longitudinal data structure, can

be modeled within the same framework.

A difficulty arises when a really large number outcomes are of interest, as in safety studies.

While (generalized) linear mixed models are very flexible when modeling multivariate data,

computational issues arise with increasing numbers of outcomes. Fieuws and Verbeke [2]

note that the higher the number of outcomes, the higher the dimension of the random-effects

vector when modeling the correlation between the different outcomes via a random effect,
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and the more likely computational problems will arise during the estimation process. Diggle

et al. [14] indicate that numerical maximum likelihood methods are only feasible for models

with a limited number of random effects, say, ≤ 5. This is especially true when the outcomes

are of different data types, because switching to heterogeneous settings will increase the

complexity of the likelihood. In this paper, a method is proposed to fit a high-dimensional

joint model, when full likelihood methods fail due to computational complexity. Fieuws and

Verbeke [2] presented a pairwise model-fitting procedure to circumvent the computational

complexities in the setting of many continuous outcomes, replacing the maximization of the

full likelihood distribution by maximization of each pairwise density separately. This method

is based on pseudo-likelihood ideas [15], and is very general and flexible. Pseudo-likelihood

methodology is dotted around many fields of application. It has been very advantageously used

in a spatial data context, where the full likelihood function is typically cumbersome. But the

methodology can be found elsewhere, too [11,16]. The pairwise estimation method achieves

important computational economies and, at the same time, it yields unbiased estimates and

valid standard errors [2]. Two extensions of the pairwise model-fitting procedure as proposed

by Fieuws and Verbeke [2] are considered in this paper. First, a pseudo-likelihood approach is

used for jointly analyzing many outcomes of a mixed type. Second, an alternative estimation

procedure is used, maximizing the pseudo-likelihood function at once, rather than maximizing

all pairwise likelihoods separately.

In this paper, focus is on the risk assessment of a chemical, based on a repeated dose-toxicity

study. A description of the data is given in Section 2. In Section 3, it is explained how mixed

models can be used to jointly describe one continuous and one binary outcome. The extension

towards many continuous and many binary outcomes is given in Section 4. In Section 5, the

results are presented.
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2 Irwin’s Toxicity Study

The data considered here come from a three-day repeated dose-toxicity study for the eval-

uation of the neurofunctional effects of a psychotrophic drug. The purpose of this study is

to determine and assess the effects of the chemical on general activity and behavior of rats,

based on Irwin’s method [17]. This method includes a series of non-invasive observational and

interactive measurements to assess the behavioral and neurofunctional integrity of the rat.

Male rats were dosed during 3 consecutive days by gavage, and several behavioral obser-

vations were recorded. During three consecutive days, 15 rats in the dosed group received

40 mg/kg/day of a chemical substance. There were five rats in the vehicle group (0 mg/kg/day).

On days 0, 1 and 2, at 2, 4, 6, 8, and 24 hours after daily oral administration of the chemical

substance, all rats were examined for possible neurotoxic effects. Three animals from the

exposed group were killed on day 1 because of severe signs of toxicity, and are ignored in the

analysis.

Eight variables that were measured during the experiment are described in Table 1, and pre-

sented in Figure 1. Each panel shows the average profile in the control group (dashed line)

and treatment group (full line) for the specified response. The flags represent the correspond-

ing standard error. The possible effects of a psychotrophic compound when dosed repeatedly

at a high concentration are e.g. hypothermia, i.e., a subnormal body temperature, and an

increased pupil diameter. The side effect of the compound on pupil size seems to be large

on the first day, but decreases thereafter. Such autonomic side-effects are indeed most often

very rapidly corrected or adjusted by the body itself. From the figure, the adaptive process is

clearly visible after repeated dosing. The effects seen in pinna reflex and vocalisation might

be related to the sedative effect of the compound. The increase of the toe pinch, locomotor

activity and positional passivity in the dosed group might be related to an increased sensitivity

of the sensory nerves, i.e., pain sensation.

Interest is in testing whether there is a treatment effect on the outcomes. Also, the association
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between the motor-affective and the autonomic outcomes is of interest.

3 A Bivariate Model for Longitudinal outcomes

Assume we have two sequences of ni outcomes for subject i (i = 1, . . . , N). We denote the

sequences for subject i by Yi1 = (Yi11, Yi12, . . . , Yi1ni
)′ and Yi2 = (Yi21, Yi22, . . . , Yi2ni

)′. All

outcomes Yikj from the same sequence are either continuous (k = 1, say) or binary, and the

jth outcomes of both sequences are recorded at the same time.

Random-effects models are, arguably, the most frequently used models to analyze longitudinal

and multivariate data. A mixed model also allows incorporation of different types of outcomes

of different nature in a uniform and natural way [1]. Let us first define the model in the

general setting of two outcomes (possibly of different type). For the bivariate response vector

Yi = (Y′
i1,Y

′
i2)

′ we can assume a generalized linear mixed model of the form

Yi = µi(ηi) + εi = h(Xiβ + Zibi) + εi, (1)

where µi is thus specified in terms of fixed and random effects and εi is the residual error

structure. The model is written in its most general form, as a decomposition in terms of the

mean and an appropriate error term, where both mean and error term are allowed to change

with the nature of the outcomes.The components of the residual error structure εi have the

appropriate distribution with variance depending on the mean-variance relationship of the

various outcomes, and can contain in addition a correlation matrix Ri and an overdispersion

parameter. The components of the inverse link function h(.) depend on the nature of the

outcomes in Yi. For example, one can choose the identity link for a continuous component,

and the logit link for a binary component. Xi and Zi are (2ni× p) and (2ni× q)-dimensional

matrices of known covariate values corresponding to subject i, and β a p-dimensional vector

of unknown fixed regression coefficients. Furthermore, bi ∼ N(0,D) are the q-dimensional

random effects.
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Because of interest in the correlation structure of the data, a general first-order approximate

expression for the variance-covariance matrix of Yi is derived [1]

Vi = Var(Y i) ' ∆iZiDZ ′
i∆

′
i + Σi, (2)

with

∆i =

(
∂µi

∂ηi

) ∣∣∣
bi=0

,

and

Σi ' Ξ
1/2
i A

1/2
i Ri(α)A

1/2
i Ξ

1/2
i ,

where Ai is a diagonal matrix containing the variances following from the generalized linear

model specification of Yik (k = 1, 2), given the random effects bi = 0, i.e., with diagonal

elements v(µik|bi = 0). Likewise, Ξi is a diagonal matrix with the overdispersion parameters

along the diagonal. The first term at the right hand side of 2 corresponds to the random-

effects structure h(Xiβ + Zibi); the second term at the right hand side of (2) captures the

variance-covariances in the residual error εi.

From (2) it is clear that the correlation between the outcomes can be modeled either using

the residual variance of Yi or through specification of the random-effects structure Zibi.

When there are no random effects in (1), a marginal model is obtained. When there are no

residual correlations in Ri(α) this results in a so-called conditional independence model or

purely random-effects model.

More specifically, in what follows, we formulate a possible joint model for continuous and

binary outcomes, while accounting for the longitudinal structure of the outcomes, using a con-

ditional independence random-intercepts model with a general variance-covariance matrix D

and residual correlation matrix Ri(α) = I. Also, the special cases of two continuous and two

binary responses are discussed.
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3.1 One continuous and one binary response

As a first case, denote the sequence of continuous outcomes for subject i by Yi1 and its

binary counterpart as Yi2. Yi1j and Yi2j represent, respectively, the jth continuous and binary

outcome for subject i. The model can be written in the following form:

(
Yi1j

Yi2j

)
=

(
α0 + α1Xij + bi1

exp(β0+β1Xij+bi2)

1+exp(β0+β1Xij+bi2)

)
+

(
εi1j

εi2j

)
, (3)

where the random effects bi1 and bi2 are normally distributed as

(
bi1

bi2

)
∼ N

{(
0

0

)
,

(
τ 2
1 ρτ1τ2

ρτ1τ2 τ 2
2

)}
(4)

and where εi1j and εi2j are independent. The random effects bi1 and bi2 are used to accommo-

date the longitudinal structure in the data. Because of interest in inference for the correlation,

the variance-covariance matrix of the continuous and binary endpoints needs to be calculated.

The variances of Yi1j and Yi2j can be derived from (2), in which

Zij =

(
1 0

0 1

)
, ∆ij = Ai =

(
1 0

0 vi2j

)
,

D =

(
τ 2
1 ρτ1τ2

ρτ1τ2 τ 2
2

)
, Ξij =

(
σ2 0

0 1

)
,

and where vi2j = πi2j(bi2 = 0)[1− πi2j(bi2 = 0)], with πi2j = exp(β0 + β1Xij)/[1 + exp(β0 +

β1Xij)]. As a result, the approximate variance-covariance matrix of the two measurements for

subject i at time point j is equal to:

Vij =

(
τ 2
1 + σ2 ρτ1τ2vi2j

ρτ1τ2vi2j v2
i2jτ

2
2 + vi2j

)
.

The correlation ρY1Y2 among the continuous and binary outcomes is induced by the incorpo-

ration of a correlation ρ among the two random effects, and is approximately equal to

ρY1Y2 =
ρτ1τ2vi2j√

τ 2
1 + σ2

√
v2

i2jτ
2
2 + vi2j

.
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This could be, at first sight, further approximated by

ρY1Y2 =
ρτ1τ2√

τ 2
1 + σ2

√
τ 2
2 + π2/3

,

where π2/3 is the variance of the standard logistic density. However, the basis for this latter

approximation is not very strong and caution is needed with this [18]. Consequently, we will

not attribute great importance to it. Note that this correlation is always smaller or equal to the

correlation ρ among the two random effects. In the case of conditional independence (ρ = 0),

the approximate marginal correlation function ρY1Y2 also equals zero. In case ρ = 1, this

model reduces to a shared-parameter model, with scale parameter λ equal to τ1/τ2. Standard

software, such as the SAS procedure NLMIXED, can be used to obtain parameter estimates

for this bivariate model.

3.2 Two binary responses

Similarly, when both sequences of outcomes are binary, a generalized linear mixed model

(GLMM) can be assumed with correlated random effects:

(
Yi2j

Yi2j

)
=

(
exp(α0+α1Xij+bi1)

1+exp(α0+α1Xij+bi1)
exp(β0+β1Xij+bi2)

1+exp(β0+β1Xij+bi2)

)
+

(
εi2j

εi2j

)
, (5)

where the random effect bi1 and bi2 are normally distributed as in (4), and where εi1j and

εi2j are independent. It is assumed that Var(εi1j) = vi1j = πi1j(bi1 = 0)[1 − πi1j(bi1 = 0)]

and Var(εi2j) = vi2j = πi2j(bi2 = 0)[1− πi2j(bi2 = 0)]. The approximate variance-covariance

matrix of the two binary measurements for subject i at time point j is equal to:

Vij =

(
v2

i1jτ
2
1 + vi1j ρτ1τ2vi1jvi2j

ρτ1τ2vi1jvi2j v2
i2jτ

2
2 + vi2j

)
,

and the correlation between the two outcomes in this case is approximately equal to:

ρY1Y2 =
ρτ1τ2vi1jvi2j√

v2
i1jτ

2
1 + vi1j

√
v2

i2jτ
2
2 + vi2j

.

Note, again, that in most cases no constant correlation would be obtained.
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3.3 Two continuous responses

When both outcomes are continuous, a linear mixed model can be assumed with correlated

random effects. The correlation between the two outcomes in this case is equal to:

ρY1Y2 =
ρτ1τ2√

τ 2
1 + σ2

1

√
τ 2
2 + σ2

2

.

So far, focus was on a joint model for two longitudinal sequences. In the next section,

the perspective will be broadened to the joint analysis of many, potentially a high number

of, outcomes. To avoid computational problems when the number of responses increase, a

pseudo-likelihood method is proposed.

4 Extension to High-dimensional Data

Assume we have m sequences Yik = (Yik1, Yik2, . . . , Yikni
), k = 1, . . . , m, of ni outcomes for

individual i. The sequences Yik can be either continuous or binary. The m sequences can

then be simultaneously modeled by specifying a joint distribution for the random effects, in

analogy with Section 3, but with an m×q-dimensional random effects vector bi. The marginal

likelihood contribution for subject i then becomes

Li(Θ|Yi1,Yi2, . . . ,Yim) =

∫

IRmq

ni∏
j=1

fij(yi1j, yi2j, . . . , yimj|bi,Θ)f(bi|D)dbi,

with Θ = (β, α,D). However, computational problems often arise when m increases, owing

to the m × q-dimensional integral, especially when outcomes are of a different type. In this

case, rather than considering the full likelihood contribution for each subject i, one can avoid

the computational complexity by using a pseudo-likelihood approach, similar to the pairwise

modeling approach proposed by [2]. The full likelihood contribution for subject i is replaced

by the pseudo-likelihood function

PLi =
m−1∏

k=1

m∏

l=k+1

Likl(Θ|Yik,Yil) =
m−1∏

k=1

m∏

l=k+1

∫

IR2q

ni∏
j=1

fij(yikj, yilj|bkl
i ,Θ)f(bkl

i |D)dbkl
i ,
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where each contribution Likl is equal to the bivariate likelihood function for outcomes k and l.

In this way, we have simplified the m×q-dimensional integration problem to 2×q-dimensional

integrations. In practice, this is achieved by restructuring the data in all possible pairs of

outcomes, and assuming, as a working assumption, that, conditional on the random effects,

all combinations of pair (k, l) and subject i are independent. A SAS program is given in the

appendix. Inference for Θ follows from pseudo-likelihood theory, and is based on a sandwich-

type robust variance estimator [15]. The asymptotic multivariate normal distribution for Θ̂ is

given by

√
N(Θ̂−Θ) ∼ N(0, J(Θ)−1K(Θ)J(Θ)−1), (6)

where J = J(Θ) is a matrix with elements defined by

Jpq = −
m−1∑

k=1

m∑

l=k+1

E

(
∂2lnLikl(Θ|Yik,Yil)

∂θp∂θq

)
,

and K = K(Θ) is a symmetric matrix with elements

Kpq = −
m−1∑

k=1

m∑

l=k+1

E

(
∂lnLikl(Θ|Yik,Yil)

∂θp

∂lnLikl(Θ|Yik,Yil)

∂θq

)
.

An important advantage of the pseudo-likelihood approach is the close connection with likeli-

hood, which enabled Geys et al. [19] to construct pseudo-likelihood ratio test statistics that

have easy-to-compute expressions and intuitively appealing limiting distributions. Since it is

well-known that Wald tests can yield erroneous results, especially when a variable has a large

effect in the model [19], the pseudo-likelihood ratio test statistic is preferable in this situa-

tion. Suppose we are interested in testing the null hypothesis H0 : γ = γ0, where γ is an

r-dimensional subvector of the p-dimensional vector of regression parameters β and write β

as (γT , δT )T . Then, the pseudo-likelihood ratio test statistic, defined by

G∗2
a = 2

[
PL(β̂N)− PL(γ0, δ̂(γ0))

]
/λ̄, (7)

is approximately χ2
r distributed. In (7), β̂N is the pseudo-likelihood parameter estimate of β

and δ̂(γ0) denotes the maximum pseudo-likelihood estimator in the subspace where γ = γ0.
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Furthermore, λ̄ is the mean of the eigenvalues of (Jγγ)−1Σγγ , where Jγγ is the r×r submatrix

of the inverse of J and Σγγ is the submatrix of Σ = J−1KJ−1.

In what comes next, the proposed methodology is compared with the approach as proposed

by Fieuws and Verbeke [2]. They use the pseudo-likelihood function

PLi =
m−1∏

k=1

m∏

l=k+1

Likl(Θk,l|Yik,Yil), (8)

where Θk,l represents the vector of parameters in the bivariate model for the pair of outcomes

(k, l). While this method was proposed for outcomes of the same type, it is not restricted to

this setting, and can handle simultaneously continuous and binary outcomes. With this pseudo-

likelihood function, the bivariate likelihood functions can be maximized separately, resulting in

different parameter estimates for different pairs of outcomes Θ∗ = (Θ1,2,Θ1,3, . . . ,Θm−1,m).

The estimates of the parameters Θ of the joint model are then derived by taking averages over

estimates obtained from the different bivariate models, or Θ̂ = AΘ̂∗ (for an appropriate weight

matrix A). The covariance matrix of Θ is given by AΣ(Θ∗)A′, where Σ(Θ∗) is the covariance

matrix of Θ∗. This method further simplifies the computationally very challenging problem,

making the approach quite attractive. A possible disadvantage is that no (pseudo)-likelihood is

directly available in terms of the parameter of interest, Θ, since all pairwise GLMMs are fitted

separately. Also, one might lose some efficiency as a consequence of repeatedly estimating

the same parameters. Especially when estimating the model under the hypothesis that the

effect in different responses is the same, the loss in efficiency could be large when estimating

all pairwise models separately.

In conclusion, both the proposed method and the pair-wise method have important advantages.

While the first one is slightly more principled, avoids post hoc combination of various estimates

of the same parameter, and ensures that resulting covariance matrices are positive definite,

it is also computationally considerably more complex, both in terms of computation time

requirements, as well as with regard to convergence. For a typical dataset, the proposed

method would take about 5 times longer than the pair-wise technique. As such, the two
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methods can be seen as complementary, rather than in competition.

5 Analysis of Irwin’s Toxicity Study

In this section, the data introduced in Section 2 are analyzed. Recall that the purpose of this

study is to assess the effects of the investigational chemical on general activity and behavior.

Eight outcomes, as described in Table 1, were selected and a joint model for them was

estimated.

As before, we denote by Yikj the jth outcome of the kth response for subject i. The model

for each response k is specified as

h−1
k (µij) = ηikj = β0k + β1kgi + β2ktij + β3kdij + β4ktijdij + β5kgitij + β6kgidij + bik,

where h−1
k is the identity link in case of a continuous outcome (k = 5, . . . , 8) and the logit link

in case of a binary outcome (k = 1, . . . , 4), gi is an indicator variable taking value 1 for the

rats in the treatment group and 0 otherwise, tij is the time after exposure within a day, and

dij is the day of exposure. The model is sufficiently general to adapt to the diverse responses

and to answer the research questions of interest. The time effect describes the effect of the

drug some time after exposure while the day effect describes the effect of repeated exposures.

The interaction term of time and day allows for a systematic increase or decrease in the slope

of the time-effect at consecutive days. Correlations between the responses at different time

points are modeled by way of a general variance-covariance matrix for the random intercepts

bik:

bi =




bi1

bi2

...

bi8



∼ N








0

0
...

0




,




τ 2
1 ρ12τ1τ2 · · · ρ18τ1τ8

ρ12τ1τ2 τ 2
2 · · · ρ28τ2τ8

...
...

. . .
...

ρ18τ1τ8 ρ28τ2τ8 · · · τ 2
8








.

Owing to the computational complexity, the full likelihood is replaced by a pseudo-likelihood

function, as described in Section 4.
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The parameter estimates and standard errors, based on the proposed pseudo-likelihood func-

tion (6) and based on the pairwise estimation method (8), are displayed in Table 2. Based

on the pseudo-likelihood estimates, it can be seen that almost all responses show a significant

effect of treatment (Treat). Only for the autonomic variables ‘pupil size’ and ‘temperature,’

does the treatment effect change significantly from day to day. For the locomotor activity and

pinna reflex, the time trend is different among the treatment and vehicle group. Comparing top

and bottom panels of Table 2, it can be seen that the parameter estimates and the standard

errors of the fixed effects are very similar for the two fitting procedures. Observe that there

are slightly larger differences between the two fitting procedures for the parameter estimates

corresponding with the binary response, as compared with the continuous responses. It is also

for these parameter that the parameter estimates among the different pairwise models show

more variability. Figure 2 shows the estimated (marginal) profiles, based on the proposed

pseudo-likelihood estimates. For most responses, the model fits the data quite well.

Table 3 shows the estimated variance-covariance matrix of the random effects, based on,

respectively, the pseudo-likelihood and pairwise estimation methods. These correlations can be

interpreted as the association between the individual deviations from the overall profile. Values

on the diagonal are the (approximate) intra-class correlations corresponding to each outcome.

Several of the random effects are highly correlated, such as pupil size and temperature, as

well as grip strength and vocalization. The estimates based on the two estimation procedures

are similar, although larger differences as compared with the fixed-effects parameters are seen.

Also, the pseudo-likelihood methods seems to result more often in a significant correlation

as compared with the pairwise fitting procedure. Based on the estimated variance-covariance

matrix of the random effects, one can estimate the correlation between the different outcomes.

Results are displayed in Table 4. As indicated before, we see that these correlations are much

smaller when compared with the correlation between the random effects.

Finally, it is of interest to test some specific effects, such as: (i) whether there is a treatment
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effect for each response separately; (ii) whether there is an overall effect (overall responses);

(iii) whether there is a treatment effect for groups of variables (such as the motor-affective

responses); (iv) whether there is a difference among groups of variables (such as a difference

among the sensoro-motor responses pinna reflex and toe pinch).

Results are displayed in Table 5. We will illustrate the pseudo-likelihood ratio test for the first

null hypothesis. The log-pseudo-likelihood for the full model is equal to −11759. To test for

the effect of treatment on all responses, this log-pseudo-likelihood needs to be compared with

a reduced model without treatment-effect and without interactions of treatment with time

and day. The log-pseudo-likelihood for this reduced model equals −12554. The corresponding

likelihood-ratio test is equal to G∗2
a = 1590/7.96 = 200, compared with a χ2

24 this results

in a p-value< 0.0001, rejecting the reduced model of no treatment effect. The second panel

shows in Table 5 there is a significant treatment effect on locomotor activity, pinna reflex, toe

pinch, grip strength, pupil size, temperature and vocalization. The third panel indicates that

all effects are important. For the motor-affective responses, the treatment seems to have no

effect on the time and day effect. Finally, there is no significant difference among the variable

pinna reflex and toe pinch.

Extending the model with a random slope is difficult in this setting from a computational

perspective, in the sense of both computation time and severe convergence problems. Also

with the estimation method proposed by [2], reaching convergence for an extended model,

including random intercept and random slope, is a less than trivial task in this data example.

6 Discussion

In this paper, a method to jointly analyze many outcomes that are measured at several time

points on the same individual and that are possibly of a different type is proposed. The method

is an extension of the proposal made by Fieuws and Verbeke [2]. The basis of the method is

to use a generalized linear mixed model, allowing the link function and residual error structure

15



to differ for the various outcomes and assuming correlated random effects to account for the

correlation between the outcomes. When many outcomes are of interest, this results in a

high-dimensional integration problem, which is computationally no longer feasible. Therefore,

a pseudo-likelihood function is used instead of the full likelihood. The principal idea of the

pseudo-likelihood methodology is to replace the computationally cumbersome likelihood by a

function set up as the product of easy-to-compute functions, but which is no longer equal to

the full likelihood. In our setting, the pseudo-likelihood function is defined as the product of all

pairwise bivariate models. This pseudo-likelihood yields unbiased estimates and valid standard

errors. An important advantage of the proposed method is that it directly yields unique

parameter estimates of the joint model and that it allows to directly use the pseudo-likelihood

ratio statistic, which is very appealing for inference.

We put particular emphasis on the joint analysis of several continuous and several binary

outcomes, but the method is in no way restricted to this setting, and can be used for arbitrary

combinations of outcome types.

In the Irwin study, three animals from the exposed group were killed on day 1 because of severe

signs of toxicity, and were further ignored in the analysis. While it is tempting to assume that

the missing observations are MAR owing to the reason of observed toxicity, one has to be

careful since it impossibly to definitively make assumptions about the proper missing data

mechanism. Therefore, it is prudent to consider ways of conducting sensitivity analysis [21].

To this end, we supplement our analysis with one where the incomplete animals are added,

too. The results are shown in Table 6; they indicate that there are no substantial changes in

the conclusions, and therefore that we can be rather confident about the results. In general,

because the pseudo-likelihood’s behavior under the assumption of MAR is presently not fully

understood from a methodological standpoint, one should be careful with the analysis of

incomplete data. Indeed, even if the missing data are MAR, it remains to be seen whether the

mechanism is ignorable. While ignorability would follow under likelihood inference [22], this is

16



not generally true for non-likelihood methods such as generalized estimating equations (GEE,

[23]) and pseudo-likelihood. However, while the GEE case received considerable attention

[24,25], the case of pseudo-likelihood is open and is currently being investigated. For all of

these reasons, proper treatment of the missing-data issues is important but evidently outside

the scope of this paper.
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Table 1: Irwin’s Toxicity Study. Description and classification of the 8 responses of interest,

of which 4 are binary and 4 are continuous.

Variable Type Description Classification

1 Locomotor Activity Binary Characterized by abnor-

mal biting, restlessness,

writhing

Behavioral; sponta-

neous activity

2 Pinna Reflex Binary Animal’s twitch reflex

upon being touched on

the auricle

Behavioral; sensoro-

motor response

3 Toe Pinch Binary Animal’s response to

pain upon having the

toe squeezed

Behavioral; sensoro-

motor response

4 Positional Passivity Binary Animal’s struggle re-

sponse to sequential

handling

Behavioral; motor-

affective response

5 Grip Strength Continuous Animal’s fore limb grip

strength

Neurological; muscle

tone

6 Pupil Size Continuous Animal’s pupil diameter Autonomic

7 Temperature Continuous Animal’s body temper-

ature

Autonomic

8 Vocalization Continuous Animal’s incidence of

squeaking during ma-

nipulation

Behavioral; motor-

affective response
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Figure 1: Irwin’s Toxicity Study. Four binary and four continuous outcomes of interest, are

presented. The full and dashed lines correspond to mean profiles of, respectively, the treatment

and vehicle group. The flags represent the corresponding standard error.
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Figure 2: Irwin’s Toxicity Study. Estimated (marginal) profiles for the four binary and four

continuous outcomes of interest. The full and dashed lines correspond to observed mean

profiles of, respectively, the treatment and vehicle group. The flags represent the corresponding

standard error. The dotted lines correspond to the estimated mean profiles.23



Table 3: Irwin’s Toxicity Study. Estimated correlation matrix of the random effects, based on

the pseudo-likelihood approach (top panel) and on the pairwise estimation method (bottom

panel). Values on the diagonal are the (approximate) intra-class correlations corresponding to

each outcome. Correlations significantly different from zero, according to a Wald test, at the

0.01 significance level are indicated with a ‘∗’, significant correlations at the 0.05 significance

level are indicated with a ‘+’.

PL Method 1 2 3 4 5 6 7 8

1 Locom Act 0.08∗

2 Pinna Reflex 0.36 0.29∗

3 Toe Pinch -0.34 -0.58∗ 0.38∗

4 Vertical Hind 0.11 0.15 -0.56+ 0.24+

5 Grip Strength 0.39 -0.23 0.76∗ -0.09 0.25∗

6 Pupil Size 0.50 0.25 -0.37 0.40 -0.21 0.40∗

7 Temperature -0.42 -0.43 0.36 -0.55+ 0.12 -0.82∗ 0.37∗

8 Vocalization -0.69∗ -0.32 -0.34 -0.08 -0.60∗ -0.03 0.24∗ 0.53∗

Pairwise Method 1 2 3 4 5 6 7 8

1 Locom Act 0.08∗

2 Pinna Reflex 0.41 0.23∗

3 Toe Pinch -0.37 -0.56+ 0.39∗

4 Vertical Hind 0.12 0.13 -0.53 0.24+

5 Grip Strength 0.42 -0.22 0.75∗ -0.09 0.25∗

6 Pupil Size 0.52 0.24 -0.39 0.39 -0.21 0.40∗

7 Temperature -0.43 -0.41 0.37 -0.54+ 0.11 -0.82∗ 0.37∗

8 Vocalization -0.68+ -0.31 -0.34 -0.08 -0.61∗ -0.03 0.24∗ 0.53∗

24



Table 4: Irwin’s Toxicity Study. Estimated correlation matrix of the outcomes, based on the

pseudo-likelihood approach.

1 2 3 4 5 6 7 8

1 Locom Act 1

2 Pinna Reflex 0.02 1

3 Toe Pinch -0.02 -0.03 1

4 Vertical Hind 0.01 0.01 -0.05 1

5 Grip Strength 0.05 -0.03 0.08 -0.02 1

6 Pupil Size 0.07 0.04 -0.05 0.10 -0.07 1

7 Temperature -0.06 -0.07 0.05 -0.13 0.04 -0.31 1

8 Vocalization -0.12 -0.06 -0.05 -0.02 -0.22 -0.01 0.11 1

Table 5: Irwin’s Toxicity Study. Results of hypothesis testing.
Test Response Null Hypothesis G∗2a df p-value

Treatment effect Responses 1-8 β1i = β5i = β6i = 0,∀i 199.75 24 < 0.0001

Treatment effect Response 1 β11 = β51 = β61 = 0 13.60 3 0.003

Treatment effect Response 2 β12 = β52 = β62 = 0 18.69 3 <0.001

Treatment effect Response 3 β13 = β53 = β63 = 0 16.51 3 <0.001

Treatment effect Response 4 β14 = β54 = β64 = 0 7.23 3 0.065

Treatment effect Response 5 β15 = β55 = β65 = 0 72.02 3 <0.001

Treatment effect Response 6 β16 = β56 = β66 = 0 115.51 3 <0.001

Treatment effect Response 7 β17 = β57 = β67 = 0 72.02 3 <0.001

Treatment effect Response 8 β18 = β58 = β68 = 0 9.77 3 0.021

Treat effect All β11 = β12 = . . . = β18 = 0 78.61 8 <0.001

Time effect All β21 = β22 = . . . = β28 = 0 15.27 8 0.054

Day effect All β31 = β32 = . . . = β38 = 0 16.71 8 0.033

Time*day effect All β41 = β42 = . . . = β48 = 0 44.42 8 <0.001

Treat*time effect All β51 = β52 = . . . = β58 = 0 80.56 8 <0.001

Treat*day effect All β61 = β62 = . . . = β68 = 0 59.78 8 <0.001

Treat effect Motor-affective β14 = β18 = 0 18.37 2 <0.001

Time effect Motor-affective β24 = β28 = 0 1.58 2 0.455

Day effect Motor-affective β34 = β38 = 0 2.14 2 0.342

Time*day effect Motor-affective β44 = β48 = 0 0.78 2 0.677

Treat*time effect Motor-affective β54 = β58 = 0 0.53 2 0.767

Treat*day effect Motor-affective β64 = β68 = 0 0.44 2 0.804

Difference Sensoro-motor βi2 = βi3,∀i 15.58 7 0.029
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Appendix: SAS code

We show how models of a mixed type can be analyzed using standard statistical software. We
focus on the SAS procedure PROC NLMIXED, and show how this programs can be used to
jointly analyze two continuous and two binary longitudinal outcomes.

Assume we have data of the following form:

Obs id time name resp

1 1 0 LocActivity 1.000
2 1 0 PinnaReflex 1.000
3 1 0 GripStrength 0.976
4 1 0 Pupil Size 0.675

5 1 1 LocActivity 1.000
6 1 1 PinnaReflex 0.000
7 1 1 GripStrength 0.846
8 1 1 Pupil Size 0.698

9 2 0 LocActivity 0.000
10 2 0 PinnaReflex 1.000
11 2 0 GripStrength 0.778
12 2 0 Pupil Size 0.701
...

In this data set, the variable ‘id’ is the subject’s indicator and ‘time’ is time at which the experiment
is conducted. The binary responses (Locomotor Activity and Pinna Reflex) and continuous responses
(Grip Strenght and Pupil Size) are summarized in one variable (‘resp’).

This dataset is first restructured in pairs of outcomes for each subject and at each time point:

Obs id time name1 resp1 name2 resp2 pair

1 1 0 LocActivity 1.000 PinnaReflex 1.000 1
2 1 0 LocActivity 1.000 GripStrenght 0.976 2
3 1 0 LocActivity 1.000 PupilSize 0.675 3
4 1 0 PinnaReflex 1.000 GripStrenght 0.976 4
5 1 0 PinnaReflex 1.000 PupilSize 0.675 5
6 1 0 GripStrength 0.976 PupilSize 0.675 6

7 1 1 LocActivity 1.000 PinnaReflex 0.000 1
8 1 1 LocActivity 1.000 GripStrength 0.846 2
9 1 1 LocActivity 1.000 Pupil Size 0.698 3

10 1 1 PinnaReflex 0.000 GripStrength 0.846 4
11 1 1 PinnaReflex 0.000 Pupil Size 0.698 5
12 1 1 GripStrength 0.846 Pupil Size 0.698 6
...
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Finally, we create indicator variables ‘id11’, ‘id12’, ... indicating whether the first response in the
considered pair is the 1th, 2d, ... response in the dataset (LocActivity, PinaReflex, GripStrength,
PupilSize), and the same for the second response in the considered pair. Also an indicator variable
‘idpair1’, ‘idpair2’, ... is made, indicating whether the observation refers to pair 1, 2, ... Using the
latter dataset, we analyze the data using the following program:

proc nlmixed hess;

/*Specify LL1*/
if name1="LocActivity" then do;

eta1 = beta11 + beta21*ime + u1;
p1 = exp(eta1)/(1+exp(eta1));
ll1 = (resp1)*log(p1) + (1-resp1)*log(1-p1);

end;
if name1="PinnaReflex" then do;

eta1 = beta12 + beta22*time + u1;
p1 = exp(eta1)/(1+exp(eta1));
ll1 = (resp1)*log(p1) + (1-resp1)*log(1-p1);

end;
if name1="GripStrenght" then do;

mean1 = beta13 + beta23*time + u1;
ll1 = -0.5*log(3.14159265358) -log(sigma3) -0.5*(resp1-mean1)**2/(sigma3**2);

end;
if name1="Pupil Size" then do;

mean1 = beta14 + beta24*time + u1;
ll1 = -0.5*log(3.14159265358) -log(sigma4) -0.5*(resp1-mean1)**2/(sigma4**2);

end;

/*Specify LL2*/
if name2="LocActivity" then do;

eta2 = beta11 + beta21*time + u2;
p2 = exp(eta2)/(1+exp(eta2));
ll2 = (resp2)*log(p2) + (1-resp2)*log(1-p2);

end;
if name2="PinnaReflex" then do;

eta2 = beta12 + beta22*time + u2;
p2 = exp(eta2)/(1+exp(eta2));
ll2 = (resp2)*log(p2) + (1-resp2)*log(1-p2);

end;
if name2="GripStrenght" then do;

mean2 = beta13 + beta23*time + u2;
ll2 = -0.5*log(3.14159265358) -log(sigma3) -0.5*(resp2-mean2)**2/(sigma3**2);

end;
if name2="Pupil Size" then do;

mean2 = beta14 + beta24*time + u2;
ll2 = -0.5*log(3.14159265358) -log(sigma4) -0.5*(resp2-mean2)**2/(sigma4**2);

end;
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ll=ll1+ll2;

sigmab1=(id11*tau1+id12*tau2+id13*tau3+id14*tau4);
sigmab2=(id21*tau1+id22*tau2+id23*tau3+id24*tau4);
rhob=(idpair1*rho12+idpair2*rho13+idpair3*rho14

+idpair4*rho23+idpair5*rho24+idpair6*rho34;

model resp1 ~ general(ll);
random u1 u2 ~normal([0,0],[sigmab1**2,rhob*sigmab1*sigmab2,sigmab2**2])

subject=id*pair;
ods output parameterestimates=parmest;
run;

In should be noted that for each line in the dataset a contribution to the likelihood function is
calculated, based on the two components in the pair of outcomes, where each component comes from
a normal distribution or from a Bernouilli distribution. The correlation among the two outcomes is
modeled via bivariate normally distributed random effects. Due to the nonlinear parameter estimation
procedure, a careful selection of starting values may be required.

The parameter estimates are written to the output-file ‘parmest’. To calculate the robust variance
estimator corresponding to these parameter estimates, the matrices J(Θ) and K(Θ) have to be
estimated. These are obtained from the program

proc nlmixed hess tech=none ;
parms /data=parmest;

Specificaton of likelihood...

by id;
ods output parameterestimates=gradientid hessian=hessianid;
run;

The file ‘gradientid’ contains the gradient-vector, and is used to calculate the pairwise-products
matrix K(Θ). The uncorrected Hessian-matrix, stored into the output-file ‘hessian’, refers to the
matrix J(Θ) in (6). The program can be provided upon request.
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