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1 Abstract
Most 3D animation software comes with various mesh deformers for character
rigging, based on long known and widely used algorithms, like skeletal subspace
deformation or freeform deformation. We demonstrate how these methods can
be improved upon and made more flexible while still working interactively as
part of complicated character rigs, using the same workflow as before.

We first consider the interpolation of affine transformations, and the solu-
tion of differential equations, whose properties will be taken advantage of in the
algorithms we implemented. Next we consider the problem of shape interpo-
lation, and discuss a representation for mesh deformations that encodes them
in affine transformations per triangle, such that they can be interpolated and
edited in ways difficult to achieve otherwise. Then we discuss skeletal subspace
deformation and recent methods to get rid of its well known artifacts while still
being nearly as efficient. Additionally we demonstrate how to automatically
compute bone-vertex weights for skeletal deformation that give good looking
deformations by default, which helps avoid manual editing and corrections to
such weights. Next we demonstrate an alternative to freeform deformation that
is more flexible and generic, in that it permits arbitrary and overlapping cages,
which make it possible to model cages according to the shape of the character
meshes.

We show their application in animated short movie, Big Buck Bunny, and
discuss the problems they solved, and how the methods discussed can be im-
proved and extended further.
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3 Character Rigging
Character rigging or articulation is the process of turning a static model into an
animatable character, providing high level controls for the animator. A three
dimensional mesh model alone does not provide any information on what the
skeletal structure is, how the character smiles, how its arms bend or how its
fat jiggles. Rigging adds structure to characters such that high level controls
can be animated, rather than individual vertex positions, abstracting away the
details and allowing the animator to create poses quickly.

3.1 Animation Production Pipeline
The process of character rigging is just one step in the pipeline of tasks in an
animation production. In a sufficiently large production, character rigging can
be a full time job, from creating the initial rig, to supporting animators as they
use it, extending and improving the rig for any issues that arise in the animation
process.

Before rigging starts, the character model must be finished, after going
through initial designs, sketches and modelling. Depending on the importance
and screen time of the character, the rig may be more flexible and provide more
possibilities, to make it suitable for the animations it will be used in. Once
the rig is finished, it is used by animators to animate characters in shots of the
movie. After those animations are finished, the character will then be rendered
in the environment.

Depending on the complexity, there may be a difference between what the
animators works with, and how the characters look in the final frames. The rig
as used by the animator may be an approximation and have features disabled
that are used for the final result, like subdivision surfaces, displacement and
physics simulation for muscles, hair or cloth. This is to ensure the rig runs at
interactive speed on the animator’s workstation, the required framerate typically
being around 24-30 frames per second.

Since animators work with character rigs day in day out, a user friendly
and easy to control setup is important. For the rigger implementing a rig is
not unlike making a user interface: the rig must be easy to use and efficient,
providing enough control while abstracting away the unimportant parts. Simple
rigs rely purely on the features provided by the animation program, while more
complicated ones often involve custom behaviour through scripting for complete
control.

3.2 Character Rigs
A rigged character may be thought of having a number of inputs that the ani-
mator can control. We call these animation channels, and the inputs may be for
example positions, rotations, boolean values or arbitrary floating point values,
corresponding to skeleton bone positions or rotations, facial expressions or any
other control that the rig may provide. Based on the values of these channels
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Figure 1: A character rig, showing how a number of control objects are used to
pose the model, simplifying the manipulation by only requiring the animator to
work with a high level representation rather than the mesh or in this case even
the underlying skeleton.

at the current frame, the rig then outputs the posed character model. The in-
puts of these channels are animated over time by specifying keyframe values at
different points in time, often using animation curves (figure 2).

In other words, in if we generalize this view, we can say the rig is like a
computer program, taking a number of inputs and producing an output. Since
these can become quite complicated, a good organization is necessary. A lay-
ered model is typically used, and different setups are possible depending on the
algorithms or the specific character. The organization that we will be using in
this text is as in figure 3.

First are the user interface controls used by the animator, in which we include
skeleton bones and joints or other buttons or numeric sliders part of the rig.
These provide input for the animation channels. Next there is the skeleton, a
hierarchical structure consisting of bones and joints. The position of these is
either directly specified by the user, or indirectly computed through constraints.
Examples of such constraints range from inverse kinematics, tracking a target, to
simply copying a location from one bone to another. These constraints between
bones and other elements in the scene can for example be used to make the
character’s eyes look at a certain point, or to constraint the position of a hand
to a table.

Next we we compute the deformed mesh through a series of deformers. These
include skeleton bones deforming the mesh or freeform deformations. We also
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Figure 2: Based on a character in rest pose and various inputs, the character
rig computers the posed character.

include here shape keys, which is a deformation specified as vertex displace-
ments, which have been sculpted beforehand and are included as part of the rig.
These deformers can be directly controlled by the animator, or automatically
as part of the rig. The result is a mesh that has been deformed from its rest
position into a new pose.

If some type of physics simulation is used, this usually happens after the
geometric deformation applied above. Algorithms exist for muscle and fat sim-
ulation, collisions, and other effects. Depending on the complexity they are
often computed offline.

Once we have the resulting mesh, more detail is often added to produce the
final rendered mesh. Characters in animated films often use subdivision surfaces
or NURBS, combined with displacement mapping for extra detail. This permits
the animation and simulation to be done on lower resolution meshes, introducing
the fully detailed model just before rendering.

3.3 Topics Covered
We will focus here on geometric methods for mesh deformation within a charac-
ter rig. Skeleton setup, constraints and kinematics that drive such deformations
will not be covered, nor will physics based methods that are applied after initial
mesh deformation be treated here. Rather we will focus on geometric deform-
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Figure 3: Successive stages in which an animated character is built up for the
final image.

ers, starting from classical algorithms, investigating their limitations, and then
providing solutions that give new possibilities and better results at realtime
framerates.
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4 Mathematical Toolbox
The algorithms in this text share a number of mathematical tools. Here we
give an overview of the two most important ones: interpolation of transforma-
tions, and discrete differential operators and equations. This section gives an
introduction to these, and holds as a reference for the implementation of the
algorithms outlined later on.

4.1 Transformation Interpolation
Interpolation or blending is a central operation in character animation. The
most common scenario is interpolation over time, from keyframe to keyframe,
pose to pose. The fact that this interpolation can be done automatically is
one of the most obvious advantages of 3D character animation over keyframe
interpolation using pen and paper, where this has to be done manually. Even
in 2D animation using computers, the problem is ill posed, as 2D keyframe
drawings for example provide no direct information of their relation, or how
the shape would look from a different viewpoint. Hence we can see that in 3D
character animation, the ability mix and match poses, add extra deformations,
etc, is one of the big advantages. We do note though that also in high quality
3D character animation much manual time is spent on the inbetween frames, to
achieve effects like slow-in / slow-out, follow through or overlapping action [19].

Additionally within a single frame, the final mesh shape is a result of many
channel values, specifying bone transformations, shape keys, each partly influ-
encing the final position of a mesh vertex. In mesh skinning a deformed mesh
vertex blends between multiple bone transformations, for shape keys a mesh
vertex blends between different vertex key positions. Many algorithms in char-
acter animation involve interpolation of affine transformations, and careful use
the of the correct algorithms is needed to achieve a good quality/speed balance.
For this reason, we will give an overview of methods and issues related to this
topic.

4.1.1 Linear Transformations in 3D

We will look at linear transformations, involving a 3x3 matrix and a translation
vector. Such transformations can also be stored in a 3x4 matrix, or using
homogeneous coordinates as 4x4 matrix with the last row is restricted to be
[0 0 0 1]. Straightforward interpolation of such matrices does not yield good
results, for example a direction element-by-element interpolation between the
matrices will not preserve rigidity when interpolating between two rotations,
so we will have to find more advanced methods. Linear 3D transformations
can be decomposed into translation, scale/shear and rotation, commonly using
polar decomposition [29]. The interpolation of such a transformation is then
reduced to decomposition, separate interpolation of the three components and
composition.
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Figure 4: An affine transformation decomposed into scale/shear, rotation and
translation.

Additionally, interpolation is often required to be not simply linear or at
constant speed, but effects like ease in and ease out using smooth curves are
used. We will not discuss these here, but simply assume to be interpolating
two transformations M1 and M2 at constant speed, with t being the blending
parameter. As interpolation operations are executed many times per frame in
animation playback, next to quality, efficiency is also a concern to achieve in-
teractive performance.

Interpolation of translation can be done by a simple linear blending of two
vectors. Similarly, interpolating a scale/shear matrix can also be done by inter-
polating them element-by-element, with sufficiently plausible results [29]. Rota-
tion is the most difficult, and different rotation representations and algorithms
are often used instead of the matrix representation for improved results. We list
here common rotations representations, with opinions on their strengths and
weaknesses for our purpose. When it comes to mesh deformation and interpola-
tion, the choice of representation is up to the programmer without much effect
on the user interface, and so we can choose the most efficient representation.

11



4.1.2 Rotation Matrix

A 3x3 matrix with unit length rows and columns that are each mutually or-
thogonal represent a rotation. This representation is essential in decomposing
and composing affine transformations. Direct interpolation of the matrix ele-
ments causes the resulting matrices not be be rotation matrices anymore, since
the unit length and orthogonality of the rows and columns is clearly lost. This
means the shape being transformed will lose rigidity and collapse.

While conversion to other representations is often used to get better inter-
polation, standard skeletal subspace deformation effectively does simple linear
interpolation between matrices, being still the most common and simple way to
do skinning. While it does result in artifacts like loss of rigidity and volume,
the need for no complicated or slow computations makes this still popular.

4.1.3 Euler Angles

Euler angles are three values representing successive rotations around an axis.
Multiple orderings are possible, for example XYZ, ZYX or YZY. Direct interpo-
lation of these three values often yields unintuitive results, because each angle
is interpolated separately. This does not take their interaction into account.
Often it is desirable for the full rotation to take the shortest path over a sphere
between the two rotations, and using euler angles the results are not guaranteed
to be even close to that. Another disadvantage is that they suffer from the so
called gimbal lock, where at either angle 0 or π

2 on one of the axes (depending
on the rotation order), a degree of freedom is lost. Changing the value for that
axis then has no effect. Alternatively, it means that the rotation at that point
can be represented by an infinite amount of different values for that axis.

Nevertheless, the advantage is that for artists they are reasonably easy to
understand, with each animation curve corresponding to a rotation around one
axis. Animation packages often provide a workaround for the gimbal lock by
offering multiple choices of axis rotation order. However, for skinning and shape
interpolation we have not seen a good reason to use this representation.

4.1.4 Quaternions

A quaternion is defined as an extensions to complex numbers involving four
rather than two values. Unit quaternions can be used to represent rotations.
Assume a rotation around an axis v with an angle θ, then the quaternion q is:

q = (vsin( θ2 ), cos( θ2 ))

The most common rotation interpolation algorithm in computer graphics,
spherical linear interpolation (slerp) uses quaternions. This provides a rotation
over the shortest path on a sphere with a constant speed, which is mostly com-
monly desired. It does involve comparatively slow trigonometric calculations,
which makes it traditionally used for bones, that vary typically from tens to
hundreds, rather the for example per vertex in mesh skinning, which vary from

12



Figure 5: Two possible directions to rotate from one point to another, decided
by the sign of one of the quaternions used for blending.

thousands to tens of thousands in a typical character rig. Using quaternion
multiplication, inversion and exponentiation we can define slerp as [24]:

slerp(q0, q1, t) = q0(q−1
0 q1)t

To ensure that the shortest path is taken, we must however do another check
to ensure the shortest path instead of the long way around the sphere is used.
This is done by taking the dot product of the two quaternions, and if it is
negative, to use −q1 instead of q1 in the above formula. A number of variations
to the slerp algorithm exist trading properties like constant speed for better
performance.

A simpler way to do quaternion blending is by component-by-component
interpolation of the four values. While this does not guarantee constant speed, it
does still guarantee the shortest path to be taken while keeping the speed nearly
constant [17]. Additionally, we often wish to blend more than two rotations.
More complicated algorithms with better properties exist, but for simplicity
and speed, we simply do a linear blend of all quaternions and weights in our
implementation.

4.1.5 Matrix Exponential/Logarithm

The matrix exponential map is another representation that can be used [12].
Taking the matrix exponential and logarithm provides a conversion to and from
this representation, which is also a 3x3 matrix. Linear interpolation of this ma-
trix element-by-element has good properties, however, it has more parameters
than a quaternion and hence is of no benefit to us. Interestingly, this operation
can also to done on a full affine transformation matrix including scale and shear,
however this representation has singularities which quaternions and a separate
scale/shear matrix avoid.
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4.2 Differential Operators
Many of the algorithms presented here will involve the solution of Laplace’s
equation and related operators. In this section we will give a short summary
of the relevant mathematical theory, which will later be expanded upon when
we arrive at the algorithms that use them. For an in depth analysis of discrete
differential geometry for computer graphics, we refer the reader to [2].

4.2.1 Laplace’s Equation

The Laplace operator (the laplacian) in three dimensions, with cartesian coor-
dinates x, y and z, is defined as:

4φ = ∂2φ
∂x + ∂2φ

∂y + ∂2φ
∂z

The scalar function φ(x, y, z) is defined over a three dimensional volume.
This operator can be used in two dimensions with an analogous definition,
dropping the z component. Useful in our application, this operator can also
be extended to work on surfaces, which yields the so called Laplace-Beltrami
operator. Next to a three dimensional volume, we will use such an operator on
the surface of a mesh. But regardless of the domain, these operators share many
properties, and we will simply consider the definition over a three dimensional
volume in this chapter.

Using the laplacian, Laplace’s equation can be written as:

4φ = 0

In order for a unique solution to be found, boundary conditions are used to
specify values at the boundary of the domain. For example if we wish to solve
this equation in a three dimensional volume, the boundary of this volume could
be given fixed values, and the internal values would then be derived from the
solution of this equation.

Solutions to these equations are called harmonic functions. These functions
are smooth away from the boundary, specifically C∞ continuous. Such conti-
nuity is visually pleasing, and means there are no sudden sharp discontinuities
in the result. For example in the design of smooth surfaces such continuity is
often sought for, and if we are deforming or interpolating surfaces it is desirable
to have smooth results as a default as well.

Closely related to this is Poisson’s equation, where f is a scalar function over
the domain, generalizing Laplace’s equation:

4φ = f
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Figure 6: Solutions to Laplace’s equation on a plane, with different boundary
conditions.

4.2.2 Operators and Properties

We define a number of additional operators and properties that will be used
later on in this text. Again considering a scalar function φ(x, y, z), the gradient
is defined as:

∇φ = (
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z
)

The divergence is defined on a vector field F (x, y, z) as:

∇ · F =
∂Fx

∂x
+
∂Fy

∂y
+
∂Fz

∂z

Their connection with the laplacian is:

∇ · (∇φ) = 4φ

Since these operators are quite abstract, let’s look at an example from physics
for an interpretation. Suppose we have a volume with heat sources and sinks.
We can specify those sources and sinks as having a fixed temperature. These
are the boundary conditions. The scalar function φ then is the temperature
at each point in the volume. At a given point, the gradient of this function
gives the direction in which heat increases most (i.e. towards the heat sources).
The divergence of the gradient then indicates how much the given point in the
volume acts as a source or sink of heat. If the divergence is zero everywhere
(except at the specified sources and sinks), it means an equilibrium is reached,
and without changes in the specified sources and sinks, the temperature will
stay the same at all points. Since the divergence of the gradient is the laplacian,
that means an equilibrium is reached when Laplace’s equation is satisfied (figure
7).
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Figure 7: A real life example of the heat equation.

4.2.3 Applications

These operators have many applications in physics. For example in fluid dy-
namics as part of the Navier–Stokes equations which are central to the theory,
or in the heat equation describing the distribution of heat in a given region.
In computer graphics they have also been shown to be useful for simulating
these effects [32], but also in other areas such as rendering [16], mesh process-
ing [31]and character animation [13], since efficient methods exist to solve such
equations.

4.2.4 Discrete Operators

When applying these equations to numerical simulation in physics or computer
graphics, the relevant functions and operators are discretized. The values of
the functions then become defined at certain points on the domain rather than
at every position over a continuous region, and the operators, rather than be-
ing defined as the limit over an infinitely small region, are defined as linear
combinations of the values at these points.

For example on the surface of a mesh, we may define the function values at
the vertices and interpolate their values on the triangles. In general, quantities
may be defined on different elements of the mesh, like vertices, edges, triangles,
tetrahedra or grid cells, but in this text we will solely deal with quantities defined
on vertices connected by edges, and triangles between these edges. Applying
the operator to a function then corresponds to multiplying a vector of these
values by a sparse matrix. How exactly to create these different sparse matrices
will not be discussed here with the exception of the laplacian operator whose
implementation will be discussed in the next section, see for example [25] for an
in depth overview.

For reference, in the formulas in this text we will assume the operators to
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be discretized as sparse matrices as follows:

Operator Symbol Input Output

Laplacian 4 Scalar on Vertices Scalar on Vertices
Gradient ∇ Scalar on Vertices Vector on Triangles
Divergence ∇· Vector on Triangles Scalar on Vertices

4.2.5 Discrete Laplacian

The continuous laplacian operator is defined as:

4u = ∂2u
∂x + ∂2u

∂y + ∂2u
∂z

Our goal here is to define a laplacian operator on a graph, with a value u
at every vertex. As this is a continuous definition with infinitesimal numbers it
needs to be discretized. In the case of finite element simulation on uniformly
scaled grids, the discretization is particularly simple. Assuming the quantity
u is defined at the grid vertices, the following formula defines the laplacian at
vertex vi with n neighbouring vertices vj and j = 1 . . . n:

1
n

n∑
j=1

(uj − ui)

The collection of these for all vertices, each being linear, can be expressed in
the form of a sparse matrix. The sparse matrix is defined such that multiplying
a vector u of length n with it will give a vector with the result of the above
formula. Linear equations involving large, sparse matrices can be efficiently
solved using the appropriate solver, the choice of which we will detail in the
section 8.

When dealing with regular grids, this simple definition is sufficient. When
the field u is defined on an arbitrary mesh which does not have equally sized
elements, we must use better weighting. While giving each neighbouring vertex
a uniform weighting like in the definition above works, it does not take the
shape of the elements into account. For example if we are solving the heat
equation, we evidently need to take the distance between the points in space
into account, to compute the correct equilibrium, so that nearby points will
have more influence then points further away. From a mathematical point of
view, we wish to preserve the properties of the continuous counterpart as much
as possible.

For solving the laplacian on a manifolds mesh surfaces, the so called cotan-
gent weights are the common choice. It has been shown that no single weighting
scheme can preserve all properties of the continuous laplacian [35], however in
our case we simply choose cotangent weights as they satisfy the properties we
are most interested in. This leads to the formula for each vertex:

17



Figure 8: Voronoi area around a vertex on the left, and the angles used for the
cotangent weights on the right.

ui − 1
Ai

n∑
j=1

wij(ui−uj)

The area Ai is the voronoi area around the vertex, see figure 8. To deal with
poorly shaped triangles, we follow the rules outlined in [23] for the computation
of this area. The weights wij = wji are defined as:

wij = 1
2 (cotαij + cotβij)

The angles αij and βij are defined as in figure 8, at the triangle corners
opposite the edge between vi and vj .

4.2.6 Boundary Conditions and Constraints

If we are going to solve Laplace’s or Poisson’s equation, some boundary condi-
tions will need to be specified, in order for the solution to be unique. We will be
using so called Dirichlet boundary conditions here, that is, some vertices in the
graph will be given fixed values for ui (other types of boundary conditions can
specify fixed derivatives for example). For the laplacian of a single connected
graph, we need to lock down at least one degree of freedom that exists in it. We
can see this in the equation for a regular grid for example: if we add the same
real number r to all the elements in the solution u, Laplace’s equation is still
satisfied. In practice we will always give one or more vertices a fixed value both
to ensure this degree of freedom is removed, and to control the solution for our
purpose. Another way to say this is that we add constraints to the solution.

Implementing this is quite simple. Given a laplacian matrix 4 constructed
from a connected graph of n vertices, and provided a subset of graph vertices
that need to be constrained. Suppose we wish to fix the value of vertex vi in
the graph to a value ci with 1 ≤ i ≤ n. Given a right hand side vector f we
have a Poisson equation.
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4φ = f

We remove the row and column i from the matrix resulting in4′, and remove
the element i from the vector f resulting in f ′. Assume 4′i is the column i of
4 with the element from row i removed, we get:

4′φ = f ′−fi4′i

This effectively eliminates the vertex vi from the system and compensates
for it in the right hand side of the equation. This procedure can be repeated for
each constrained vertex.
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5 Shape Interpolation
A typical character rig includes shape keys, a collection of vertex displacements
from the rest shape. Some other terms used are morph targets or key shapes. In
character setups, they can be controlled by animation channels or automatically
as part of a mechanism in the rig. For example shape keys corresponding to facial
expressions like close eyelids, smile, frown, can be created without using bones,
where there is no obvious correspondence to a bone in the skeleton, and instead
be directly sculpted. Additionally, animators might specify vertex positions as
keyframes to achieve just the right pose that the rig does not (easily) permit,
or if it is faster to animate vertex positions than setup a full rig for a character
or object that only needs a minor amount of animation.

5.1 Applications
5.1.1 Expressions

The most typical application is for facial expressions. This goes from small
specific deformations like “open mouth” or “left eyelid close”, to full expressions
like “happy”, “sad”, “evil grin”, .. .

5.1.2 Corrective Shapes

Another application is to correct or improve deformations generated in other
ways. For example simple skeleton deformation leads to certain artifacts, which
might be countered by having a shape key activated when this happens, cor-
recting for the error. Or if skin self intersects due to fat colliding, a shape key
can then deform the mesh to avoid intersection. These shapes can be driven by
the character rig, based on bone angles for example. This avoids slower physical
simulations or other more advanced skinning methods. It also gives artists more
control over the exact deformation, for example if a specific cartoony deforma-
tion is desired.

5.1.3 Example Based

When a database with character deformation examples is available, these can be
used to ensure the character deforms similarly when animated. Scanning tech-
nology makes it possible to acquire example poses, which can be used to drive
the deformation realistically by learning from these examples, see for example
[4].

5.2 Pose Space Deformation
A well known framework to automatically drive shape keys is pose space defor-
mations (PSD) and its variations [21, 18]. The workflow for riggers is as follows.
Using a character that is already bound to a skeleton, it is put into a pose that
needs a correction or improvement. The animator then sculpts the shape key
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in that pose, and repeats this process for different poses. When the character is
animated, it will automatically hit those shape keys as the bones are posed with
similar angles, and smoothly falloff as it gets further away from that pose. But
not only bone angles can be used to drive shape keys, any animation channel
including custom values defined by the rigger like “eyelid close” could be taken
into account, providing an intuitive way to add controls to the rig, specifying
deformation by example.

The method is based on scattered data interpolation with radial basis func-
tions, providing an efficient method to interpolate data from varying poses
smoothly. This algorithm may be used with different shape interpolation meth-
ods as discussed in the next sections. There we will however assume interpola-
tion weights for each shape key to be given per vertex or triangle, whether they
are computed using pose space deformation or any other method.

5.3 Object Space Interpolation
The simplest way to implement blending between multiple shape keys is blending
the vertex positions in object space. This works well as long as the deformations
are not too large, and for facial expressions this is often the case. However under
rotations the mesh can ’collapse’ or produce other nonsensical inbetween results.
Additionally, deformations may combine poorly, adding many deformations on
top of others is problematic then. Note that for these to work correct with bone
deformations, they must be applied first, followed by the bone deformations,
since they are not invariant to rotation and scale.

5.4 Tangent Space Interpolation
An alternative is to blend between the deformations in a local space at the
vertex, formed by the normal and two tangent directions (tangent space). The
vertex displacement is then transformed into tangent space, interpolated and
transformed into object space again. Such methods avoid some of the issues of
simple linear interpolation. This means for example that the if the base mesh
is rotated, the deformation will still be correct. However, this representation
still doesn’t recognize rotations for example, and will cause shrinking when
interpolating between a base shape and a shape that is rotated. It provides more
flexibility in the ordering of deformations add some additional computation cost,
but by itself does not improve interpolation and extrapolation quality.

5.5 Differential Interpolation
A different way to encode the transformations is per triangle instead of per
vertex. For each triangle we can encode the difference in the transformation from
one shape key to another. It turns out that when disregarding the translation
component and using only a 3x3 matrix per triangle, the shape key can be
fully reconstructed, except for the global translation. This means that we can
interpolate and extrapolate affine transformations rather than just translations.
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Two approaches for this have been proposed, poisson mesh interpolation [37]
and deformation gradients [33], which have later been shown to be equivalent
[9]. Here we will follow the exposition in the last paper shortened to the parts
most relevant to the implementation. While these methods are significantly
slower than the above mentioned ones, they provide superior interpolation and
extrapolation results.

Consider scalar functions φi over the surface of the mesh, one for each vertex
vi with i = 1...n, and position pi. It is defined to be 1.0 at the vertex vi and 0.0
at all other vertices, with the value interpolated over edges and triangles, such
that each point on the surface can be retrieved as:

p(x) =
∑
φi(x) · pi

In other words, the values of φi(x) for the three vertices pi in a triangle give
the barycentric weights for the point x in that triangle, and these will reproduce
the original position when used as weight to interpolate the vertex positions.
We can then take the gradient of this function to get:

∇p(x) =
∑
∇φi(x) · pT

i

Note that x is a three dimensional vector and that we have three vertices with
non-zero values of φi in each triangle, so the gradient becomes a 3x3 matrix Gj
constant for each triangle j = 1..m. We now still need to know how to compute
∇φi for each triangle tj. Let us consider a coordinate frame formed by that
triangle, with axes:

[p1 − p3,p2 − p3,n]

Here p1, p2 and p3 are the vertex positions of the triangle, and n is the
normal of the triangle. Since we know φivaries linearly over the triangle (they
are barycentric weights), and if we compute the derivatives w.r.t. to an x defined
in this coordinate frame, the solution becomes particularly simple. Since φi is
linear, the derivative is constant and we may compute it with:

∇φi = (φi(1, 0, 0)− φi(0, 0, 0), φi(0, 1, 0)− φi(0, 0, 0), φi(0, 0, 1)− φi(0, 0, 0))

So the value of ∇φi for the three vertices is:

∇φ1 = (1, 0, 0)

∇φ2 = (0, 1, 0)

∇φ3 = (0,−1,−1)

Rewriting this in matrix form, Gj can now be computed as:
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Gj =
(
pT

1 ,p
T
2 ,p

T
3

)
·

 1 0 −1
0 1 −1
0 0 0


Now the next step is to bring in a shape key with vertex positions p′i. The

so called deformation gradient T can now be computed as the transformation
from the gradient Gj to G′j:

GjTj = G′j

Tj = G-1
j G
′
j

So to recap, what have we computed? With Gj, we have the gradient of the
vertex positions with respect to a position on the surface, which is constant on
each triangle. The deformation gradient then is the change in this gradient for
a particular shape key, which is a 3x3 transformation matrix. That means we
have a new representation which we can manipulate in interesting ways that
would otherwise be very difficult to do. For example, we can now interpolate
these matrices T rather than vertex positions. Or we can remove the scale/shear
component from that matrix to make a deformation rigid.

But, we’re not there yet, while we now know how to compute deformation
gradients from vertex positions, how do we go the other way around to retrieve
vertex positions? We can think of these deformation gradients transforming
each triangle individually, with the result that the vertex positions between tri-
angles do not match up anymore The solution is then to devise a way to stitch
all those transformed triangles back together such that the transformation of
each triangles is preserved as much as possible. It turns out we can do this by
solving Poisson’s equation!

The gradient ∇p(x) as defined here corresponds to a gradient operator on
the function p(x) over a mesh surface [25]. Note how the quantities correspond
with the discrete gradient operator on a mesh as defined in section 4. There
the operator took a scalar as input and resulted in a vector as output. Here we
take a vector as input and output a matrix. The link is that what we do here
is basically applying the operator to each scalar component in the vector and
then get three vectors back, used as columns in the matrix.

For simplicity, we will now deal with sparse matrices and vectors for the full
mesh. The vector p′ contains the vertex positions we wish to compute, and the
vector G′ consists of gradient matrices, which have been computed in some way,
by manipulating the original gradient matrices to achieve some result. Ideally
we could solve the following equation:

∇p′ = G′
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Remember that the gradient is a discrete operator that corresponds to a
sparse matrix. If we can now invert the sparse matrix ∇, we could retrieve
the positions. However, this matrix is not invertible in general (it’s not even
square), and as a result we will resort to a least squares solution that gets the
result as close as possible. We could write this as:

∇TD∇p′ = ∇TDG′

The diagonal matrix D is used for weighting of the least squares solution by
triangle area. Another way of getting to this result is by applying the divergence
operator to both sides, which gives a Poisson equation that is fully equivalent
to the above formula:

4p′ = ∇ ·G′

Hence, we have arrived at the solution. The laplacian is computed as in
section 4, the divergence is computed as ∇TD. In practice we will solve this
equation three times with a different right hand side, once for each spatial di-
mensions. A single vertex must be constrained to a given position, as noted
in section 4, which in this case corresponds to a global translational degree of
freedom.

The algorithm now proceeds as follows. We compute the gradient matrices
for all shape keys, convert them to a quaternion and a scale/shear matrix, and
cache them for later use. Then we interpolate those gradient matrices per trian-
gle based on the current animation channel values of the shape keys. For a given
mesh, we detect the connected components, of which there might be multiple,
and construct a separate laplacian matrix for each. For each component, we
plug the resulting matrices into the Poisson equation, and constrain an arbi-
trarily chosen vertex to location (0, 0, 0). Next we solve for the new positions,
caching the solution of the matrix factorization for later reuse (see section 8 for
more details). Now we position the components, by transforming them such
that the averaged vertex position center remains in the same place.

We provide this interpolation method as an alternative to simple object space
interpolation of vertex positions. Additionally, for each shape key, we offer the
extra option to remove scaling or rotation from the shape key. This is useful to
make a shape key rigid for example. Results of the implementation are shown
below.
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Figure 9: From left to right: original mesh, a given shape key, extrapolation of
the shape key in object space, and the differential method. Note how simple
object space blows up the mesh and does not provide an intuitive results, while
the differential method gives in a more expected results.

Figure 10: From left to right: original pose, shape key, interpolation in object
space, and differential interpolation. Note how the object space interpolation
loses rigidity and shrinks inbetween the two poses.
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6 Skeleton Based Deformation

6.1 Skeletal Subspace Deformation
The standard method to do skeleton deformation is using skeletal subspace
deformation (SSD) [24]. Consider a vertex with position v influenced by n
bones from the skeleton with weight bi and transformation relative to the rest
transformation Mi in object space for i = 1...n. Then the new vertex position
is:

v′ =
∑
i

bi(Miv)

∑
i

bi = 1

So, we are transforming the vertex position by each transformation and
then interpolating the result. The per vertex bone weights may be computed
automatically, based on the distance from the bone for example, though in
many cases these will be manually edited by the user for optimal results. We
will discuss automatic weight computation in a later section.

Even given good weights, this method tends to give certain artifacts. As we
can see in the following pictures, the mesh quickly collapses and loses volume
when the bones are rotated to angles more than about 45 degrees relative to each
other. Looking at an example with a rotation of a bone twisting around its own
axis, we can see why this has been named the “candywrapper effect”, see figure
11. Users can work around this by using corrective shape keys, or by introducing
more bones around the collapsing joint. Most animation packages or games still
use this interpolation method with these artifacts, and indeed require the user
to solve the problem. Here we will look at automatic algorithms to counter
these effects.

6.2 Improved Transformation Blending
There are different reasons for these artifacts, one being related to the transfor-
mation blending. A simple rewriting of the SSD equation reveals the problem:

v′ = (
∑
i

biMi)v

We can see that it is equivalent to interpolation of transformation matri-
ces component-by-component, which does not preserve rigidity as explained in
section 4. The solution to this problem is to use a better but slower interpola-
tion method. We can decompose the matrices Mi into translation, rotation and
scale/shear. Since this is a per vertex operation, we need to use a quick method
for interpolation of rotation, and so we use linear interpolation of quaternion
vectors, which provide a shortest path interpolation with constant speed, as
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Figure 11: Two examples of loss of volume when using SSD. A simple 90 degree
rotation of a bone on the left demonstrates what could be a collapsing elbow,
and the same bone on the right twisted shows even worse artifacts, known as
the candywrapper effect.

explained in section 4. Scale/shear uses element-by-element interpolation of the
3x3 matrix. It is tempting to simply use linear interpolation of the translations
too, but this does not work well.

Note that while bones are usually only rotated and not translated relative to
their parent, the child bones are translated indirectly by rotation of the parent
in object space. Since the matrix M contains the relative transformation in
object space, the translation component is the center of rotation around which
the bone rotates. Linear interpolation between the centers of rotation does not
work well at all. The child bones will rotate around a different center, and this
is were the issue is. If we consider a blend between the transformation of a
single parent bone and a child bone, we’re blending transformations with dif-
ferent centers of rotation. In such a case we must carefully select the center of
rotation, otherwise the result will drift away from the expected position.

Recently a method [17] was proposed for dealing with this issue using dual
quaternions, that provides a good trade off between quality and speed. A dual
quaternion in the context of 3D transformations, consists of two quaternions,
one for rotation which is identical to a usual rotation quaternion, and one for
translation. Crucial for this representation is that it non-linearly interpolates
the center of rotation to match the non-linear interpolation of rotations. The
maths that prove this are quite involved, suffice it to say that the formula result
from these derivations is still almost as efficient as simple SSD. We can see many
artifacts are removed compared to simple SSD skinning, as show in figure 12
and 13.

Such transformation blending does have a disadvantage compared to stan-
dard SSD, due exactly to the fact that rigidity is preserved. At an angle of 180
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Figure 12: The same deformation as in figure 11, but using dual quaternions.
For this simple case, nearly all the volume loss is gone.

Figure 13: The same pose with dual quaternions and SSD created by twisting
the spine to make the character look sideways, note the unintended loss of
volume for SSD.
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degrees, there is no single shortest path to take, the rotation could go any way
around. A small change in rotation can then cause a completely different short-
est path, and so will give a completely different result. In this case the SSD
result collapses onto a single point, but still gives a continuous results with-
out popping. We do note that for typical skeletons, such a joint configuration
is highly implausible anyway, and that we have only observed this in contrived
cases (it’s clearly impossible to rotate a joint like an elbow more that 180 degrees
backwards). An interesting solution could involve a rotation representation and
blending that actually includes information on which way the bone was turned,
and even how many times it was turned around its axis, although we predict
such a method could be quite incompatible and difficult to implement in exist-
ing animation systems. Another solution is to resort to some sort of simulation,
which will take the previous frame into account and so will take the shorter
path from frame to frame.

6.3 Using Curves
A curve based approach is often used for modelling the spine which consists of
many bones, but we can generalize this idea to more joints. We can think of this
as improving transformation blending by doing it at the bone level. Consider
an area of the mesh being influenced by two connected bones. We can create
inbetween bones that interpolate the transformation of the original bones using
better transformation blending, without the per vertex cost, since the result of
this affects many vertices. The per vertex weights then need to be changed to
refer to those smaller bones. An application of this idea for joints like elbows
or knees, is to think of the bone joints being control points of a bezier spline
or other smooth curve, and subdivide the bones into smaller ones according to
this according to the curve. Next to improved quality, curve control parameters
give interesting possibilities for users to tweak the look of the deformation as
well.

6.4 Differential Interpolation
Just like for shape interpolation, we can take a differential approach using de-
formation gradients [36]. This is done by making per triangle bone weights (we
simple average the weights of the three vertices), and interpolating the bone
transformations there. We then reconstruct for the vertex positions just like
shape interpolation. In fact, we only need to do a single reconstruction, since
we can combine shape interpolation and skeletal deformation in a single step.

Let us look at how this works. First we compute the gradient matrices for
the base vertex positions, denoted as Gj for each triangle j = 1 . . .m. This can
be done only once for the first time and cached for later reuse. Next we go over
all bones influencing this triangle through the weights of its vertices. We can do
weighted interpolation of their matrices using any of the methods described in
section 4, here we used linear quaternion blending. This will result in a matrix
M ′j for each triangle. This then results in:
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G′j = GjM
′
j

From these new gradient matrices, we can retrieve the new vertex positions
as described in section 8. An interesting extensions to this algorithm would be to
add volume preservation. One solution is to apply the algorithm to tetrahedra
instead of triangles, a faster alternative is to extend the existing graph with
extra edges to take volume into account.

6.5 Volume-Preserving Deformations
An interesting new skinning method was proposed in [5]. Suppose we have a
spatial deformation function f . In the case of SSD for example, this spatial
function for each vertex is simply the result of the matrix interpolation. If the
divergence of the associated velocity field, i.e. the gradient of f is zero every-
where, then the deformation can be proved to be both fold-over free (no self
intersection) and volume preserving [5]. This can be exploited as follows. We
can think of the transformation from bone rest transformation to the deformed
transformation as a continuous motion, with the gradient of f being the velocity.
The paper presents a method to make the gradient divergence free, and then in-
tegrates using this new gradient towards the final position, with user adjustable
parameters for how much volume should be preserved. While this method in-
volves velocities, it is still purely kinematic, and a few integration steps are
computed for each vertex in every frame starting from the rest position. The
computation is still relatively efficient.

6.6 Using Dynamics
Here we have only considered skeletal deformation methods that are purely
kinematic in nature. That is, from a given skeletal pose at a single frame, the
result can be computed directly. By using dynamics including motion over time
and forces, we can get more physically based results. For example self collision
can be avoided explicitly if collision is integrated into the dynamics simulation.
Physics based approach are often added offline after kinematic animation is
finished as such methods are typically slower. Another issue is that such ap-
proaches are more difficult to control for animators. Part of this is due to some
of the inherent complexity that is involved in physics simulation, another part
is due to the fact that editing the pose at one frame has an effect on following
frames, and so control is not as local as it is for purely kinematic approaches.
Still, dynamics can solve many issues that purely kinematic approaches have
to work around. Kinematics and dynamics are not mutually exclusive, since a
kinematic deformation is often the first step after which dynamics are added.

6.7 Computing Vertex Weights
Manually editing vertex weights is a time consuming task, and we wish to at
least automatically compute a set of weights that give good deformations. These

30



Figure 14: Rest pose and new pose using the computed weights.

can then be further changed by the artist to fix remaining issues and change
the look. One such automatic method is enveloping, where each bone has a
surrounding ellipsoid. If the vertex falls within the volume of the ellipsoid of
a bone, it is influenced by that bone. The weights are then computed based
on the distance of the vertex to the bone. If multiple bones influence a vertex,
the weights are normalized to sum to 1.0. This method and other heuristics
might be improved by smoothing out weights, or removing “outlier” weights on
vertices that are directly connected to other vertices with weights. We will use
a method that arguably gives much better results than such heuristics without
the user having to tweak any settings for the algorithm.

The method can be interpreted in terms of the heat equation. To compute
the weight for a bone, we give it a temperature 1.0, and we set the temperature
for all other bones to 0.0. Then the heat equation can give us the heat in equi-
librium over the volume inside the mesh, which is a smooth harmonic function.
Solving this equation for each bone, we get per vertex SSD blending weights for
that bone. Rather than deriving the formulas from the heat equation as in [6],
here we will use the Laplace equation with boundary conditions for consistency
with the harmonic coordinates algorithm explained the next section.

For simplicity and speed, we do not solve the equation over a 3D volume, but
instead on the surface of the mesh. This means we avoid embedding the mesh
and bones in a 3D grid, or constructing a tetrahedral mesh. The disadvantage
is that the weights will not be smooth between vertices that are nearby in 3D
space but not over the surface. This would be useful for disconnected compo-
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Figure 15: Resulting weights for a left upper arm.

nents, for example eyes in a head might get disconnected during deformations
because the weights at the eye sockets do not match well.

We will solve for the weights of each bone independently, solving one instance
of Laplace’s equation each time. Assume we are computing the vector of vertex
weights bj for bone Bj with j = 1..m. We have to compute the weights for the
vertices vi for i = 1...n. For each bone, we first detect which vertices are visible,
meaning there are no triangles between the bone and the vertex, so as to avoid
bones effecting spatially nearby but unrelated parts of the mesh. We do this
by tracing a ray from the vertex to the closest point on the bone. This means
(number of bones)×(number of vertices) rays must be traced, so for efficiency we
reuse a raytracing acceleration structure, as was already available for rendering.
Note that this simple visibility detection using only a single ray and direct line
of sight will give a fairly rough initial guess, including gaps. This is no problem
however, as the solution of Laplace’s equation will fill in the gaps and smooth
out the result. The original paper used a three dimensional distance field as
available from a skeleton fitting method their algorithm is part of, however using
the existing raytracing code made the implementation considerably smaller, and
gives nearly identical results.

The laplacian is defined over the graph of mesh vertices, with the solution
at each vertex being influenced by its surrounding vertices. Here we virtually
extend this graph, by adding one extra vertex for each bone, connected to the
mesh vertices visible from that bone. Since for best results the laplacian matrix
should use weighting, so must we define compatible weights for these extra bone

32



Figure 16: Resulting weights for a spine bone.

vertices. We simply weight the connection between the vertex associated with
bone Bj and the mesh vertex vi inversely proportional to the square of the
distance dij to the closest point on the bone:

wij = 1
(dij)2

Now assume 4 to be the extended laplacian operator including these extra
bone vertices. We now solve the following equation, under the boundary condi-
tions that these extra bone vertices have fixed weights, being either 1.0 or 0.0
depending on which bone we are solving for.

4bj = 0

In practice, we may rewrite this as a Poisson equation using the laplacian
operator from the original mesh without extra vertices, folding the boundary
conditions into the right hand side, as explained in section 4. Doing this gives
us the heat equilibrium equation used in [6]. The result is a harmonic function
for each bone, which have a number of desirable properties [13], being:

• They are C∞ over the surface of the mesh, at least as much as the dis-
cretization allows, and so will give smooth weights.

• The weights are all within the range 0..1. This follows from the property
that harmonic functions reach their extrema at the boundaries, and since
these are 0.0 and 1.0 here, all values are in this range.
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• The weights at each vertex sum to 1.0. [13]

• The weights are local, decreasing as vertices get further away from the
bone. This follows from the fact that a harmonic function reaches its
extrema at the boundaries. The maximum 1.0 is reached at current bone
vertex, and it decreases to the minimum 0.0 at all the other bone vertices.

Compared to enveloping, we do not need to define a bone’s radius of influence.
If some region of the mesh does not have associated bones, the influence of the
nearest bones will be automatically extrapolated into this region, leaving no
parts of the mesh behind when deforming.

We can see that the solution of these equations give good results, see fig-
ure 14, 15 and 16. Solving for these harmonic weights is clearly slower than
enveloping, but efficient methods to solve laplacian systems exist, and this is
a one time cost only, saving the user much time fixing up weights. Especially
combined with dual quaternions or differential interpolation, we feel that these
weights give a good initial deformation that requires few manual corrections,
but still can be further tweaked by the user, whereas usually the user would
have to start by fixing the automatically generated weights, and only after that
customize them for the particular character they are deforming.
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7 Other Deformation Methods

7.1 Overview
Various other methods exist to deform meshes besides skeletons based deforma-
tion. The classical example is freeform deformation (FFD) [26], which places
a grid around the mesh. This grid has a number of control points that when
moved have local effect the mesh. Their influence can be higher order, with
higher order offering smoother results but less direct control.

The initial versions only allowed regular grids, but this has been extended
to allow more flexible control point arrangements to fit the mesh better. An
example of this is. Additionally, a wide range of other deformations exist, like
curve based deformation, WIRE, .. [24].

These methods are commonly available in animation packages, and they are
used as part of rigs in various ways, to improve on SSD, add muscle bulging,
facial manipulation, and so on. We have implemented a recent method that is
quite flexible in the placement of control points and cage structure, balancing the
weighting from different control points smoothly, using again Laplace’s equation.
It can also handle multiple deformers, and ensure strict non-overlapping control
of the mesh such that the deformers do not ’fight’ and require counter-animation.

7.2 Harmonic Coordinates
A recent paper by Pixar presented a method to extend lattice deformation to
arbitrary volumes [13]. Such methods are not completely new, as for example
mean value weights [14] before demonstrated how smooth vertex - control point
weights could be computed inside a cage mesh. The big advantage of such a
method is that the cage can be modelled to fit the character, rather than having
to use multiple overlapping lattices. The mean value control point weights
can be computed using simple, closed form equations. This method however
has some unacceptable disadvantages for character animation, namely that the
influence of control points to a vertex solely depends on the direct distance from
the vertex to the control point. This means that spatially nearby but unrelated
control points will still influence the vertex, for example a control point for one
the legs would influence the other leg too. Additionally the weights may become
negative, resulting in unintuitive behavior as moving a control point will move
some vertices in the opposite direction.

The harmonic coordinates method solves these issue by solving Laplace’s
equation, rather than relying on closed form solutions, providing both non-
negative weights and local influence relative to the cage. Later, an alternative
method called positive mean value weights has also been proposed [22], with
similar properties and also without a closed form solution, but faster GPU ac-
celerated computation. Even more recently, another closed form method [?] has
been proposed that does suffer from negative weights and non local influence,
but that interestingly is shape preserving, yielding purely rigid deformations.
We note that using deformation gradients, it is also possible to turn any deforma-
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tion into a rigid one, by extracting the rotation component from the deformation
gradient and solving for the vertex coordinates, albeit at higher computational
cost.

7.2.1 Formulation

Like the weight computation method for bones described in the previous chapter,
this method takes advantage of the properties of harmonic functions, leading to
the name harmonic coordinates. Conceptually the method is very similar, with
two main differences:

• The equation is solved on a 3D volume surrounding the mesh rather than
the mesh surface. This results in a higher computation time, but on the
other hand makes it work well for disconnected components. Additionally,
the solution becomes independent of the particular mesh or its deforma-
tion, so the cage can be reused for different resolution models or even
different characters.

• Rather than bones we must find weights for control points.

We assume a closed cage mesh surrounding the character, with m vertices that
we will call control points. We want to compute for each position p within
the cage, harmonic coordinates or weights hj(p) for the control points Cj with
j = 1...m. When used for interpolating the control point position at some p,
they must yield that position:

p =
∑
hj(p)Cj

Analogous to bone weights, we will solve one instance of Laplace’s equation
for each control point Cj . We start by defining the weights on the boundary
of the cage. The scalar function hj(p) is 1.0 at the corresponding control point
Cj and 0.0 at all the other control points. On the triangles between the control
points, the weights are linearly interpolated like barycentric coordinates. Having
fixed the weights on the boundary, we must now compute the weights inside the
cage.

Some properties of harmonic functions such as C∞ smoothness and non-
negativity have been discussed in the chapter on computing vertex weights for
bones. These hold here as well, and we mention two more that are relevant for
the cage based formulation, the proof of which can be found in [13].

• The above mentioned formula p =
∑
hj(p)Cj holds for all points p inside

the cage. For bone weights this is not generally possible, since the bones
are inside the character instead of surrounding it, and so the mesh vertex
positions can not interpolate the bone transformations. Here however it
means that the vertex positions will not pop when the vertex positions are
reconstructed from the control points and associated weights, but rather
stay in exactly the same place.
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• The weights are a strict generalization of barycentric weights, i.e. if the
cage would consist of a single triangle, the weights would be identical.

7.2.2 Solving

To solve Laplace’s equation we construct a three dimensional grid, embedding
the cage. The resolution k of this grid will influence the accuracy of the result.
A higher resolution will yield more exact results, but the number of grid vertices
scales cubically with the the resolution, such that we will have to solve for the
solution at k3 grid vertices. The graph for the laplacian matrix consists of all
grid vertices that are within the cage, and intersections of the grid edges with
the cage triangles. Grid vertices out of the cage are not used. It is the values
at the internal grid vertices that we wish to find for each control point Ci.
The intersections of grid edges with the cage triangles are given fixed values,
interpolated from the control point vertices with barycentric interpolation in
the triangles.

Again, proper weighting for the laplacian is required. The edge between two
vertices in the graph is given a weight inversely proportional to the distance
between them. Between internal grid vertices the weight is constant for each
dimension, while between an internal grid vertex and an intersection with the
cage the distance will vary.

We then solve Laplace’s equation with the weighting and boundary condi-
tions as described above, the result of which is the weight for each vertex. Note
that up to this point, we have weights at all grid points, but we have not used
the character mesh yet. So, the solution is independent on the character mesh,
only depending on the cage.

Next we have to compute the values for each vertex of the character. We
do this through a lookup in the grid, finding the grid cell in which this vertex
lies. Then we use bilinear interpolation of the weights at the 8 nearest grid
vertices. Special care must be taken near the cage, when not all 8 grid vertices
are within the cage, and hence were not solved for. In this case we normalize
the weights to sum to one, although this violates the property that the weights
should reproduce the original position. A better method could be used, such
as using mean value weights for the convex polyhedron made up by the grid
vertices withing the cage and the intersection points of edges with the cage.

7.2.3 Dynamic Binding

For integration with other deformation tools, a problem still remains. When the
vertices are deformed by another operation before it, the control point weights
no longer yield the original vertex position, which causes poor deformation re-
sults. A solution is to keep the weights for the whole volume around, and when
deforming, lookup the weights again with bilinear interpolation in the grid. This
is still efficient, and the solution can be compressed a lot by not storing weights
below a certain small threshold, which keeps the number of control point weights
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Figure 17: Facial deformation using harmonic coordinates.

per grid vertex reasonably low, as control points have a local influence. While
the weights can be compressed a lot, the resulting grid at a high resolution still
requires considerable amounts of memory. The disadvantage is that now ver-
tices are required to stay within the cage even during animation, which may be
hard to ensure in practice. An useful improvement would be a way to smoothly
extend these coordinates outside of the volume, and this is provided by positive
mean value coordinates, however how far these are to be extended volume must
still be known a priori.

7.2.4 Results

Running the solver takes up a few seconds for cage resolutions of 24..25 and a
few minutes for resolutions of 26..27 with cages of up to a few hundred vertices,
the latter being sufficient for full characters. The solving is a one time operation
after which the weights are stored. We solve Laplace’s equation using a sparse
direct solver, as explained in section 8.

This deformation has been tested in two ways, as a method to do high level
facial deformations, and as a method to do skeletal deformation on’ characters.
The facial deformation cage provided interesting possibilities for squash and
stretch in facial deformations, and as can be seen in figure 17. But the combi-
nation with skeletal deformation was particularly effective for ’fat’ characters,
where the skeletal bones do not match the mesh as well as a thinner character.
The character was setup such that the cage is deformed by the skeleton, with
the cage in turn deforming the character mesh. This provided a way for the
influence of bones to be smoothed out, giving less self intersections and smooth
higher order influences of bones, where as direct use of a skeleton would have
required many corrective bones or shape keys. An example of such a cage an
character can be seen in figure 18. As can be seen, the cage is used for the full
body deformation. The detailed parts of the mesh are rigged to be deformed
with regular skeletal deformation as the resolution required for solving at such
small scale compared to the rest of the body would have been too high. Since
these areas fit well to a skeleton this was not so much a problem, but an adaptive
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Figure 18: Character deformed by a the cage shown on the right.

grid would make it possible to also use cage deformation for these areas.

7.3 Inverse Deformation Tools
When editing skeletons, both forward kinematics and inverse kinematics are
usually used. Instead of specifying for each bone how it is rotated, we can in-
stead specify the position of each joint, and then automatically solve for the
bone rotations. We can make the analogy in mesh deformation tools. Skele-
tal deformation or freeform deformation are more like forward kinematics, in
that they control the vertex positions bone by bone or control point by control
point. For example bones might be driven by inverse kinematics too at the
skeletal level, but we can also do an operation analogous to inverse kinematics
on the mesh itself. This is typically done by specifying the location for a subset
of the vertices, and then automatically solving for the other vertex positions,
preserving the original shape of the mesh as much as possible.

Recently a wide range of algorithms that tackle this problem have been
proposed, for example [31, 27, 39], each trying to get better quality results with
better performance. At this moment these algorithms are fast enough to run
at interactive rates. How such tools integrate in a character animation pipeline
however is not obvious. These algorithms offer great flexibility to the animator,
with the possibility to edit the pose at the vertex level, and without the need to
setup a skeleton. On the other hand, a character rig typically abstracts the mesh
away by offering higher level controls to the animator. Hence it is interesting to
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see how such tools can integrate with a classical character rigging setup. Four
such applications in this context are:

• Animation of characters or props for which it is faster to use these mesh
deformation tools than making a rig. If the character is only visible in a
small part of the animation, or if a prop requires only simple animation,
there is little point in developing a full rig, and these tools provide a quick
way to articulate a character.

• Creation of shape keys by the rigger. Since mesh deformation tools are
not limited to skeletal structures and require little setup time, they can
be used to sculpt facial poses, or any other deformations that would be
integrated into the rig.

• Extra control for the animator. On top of the controls provided by the
rig, and extra layer of deformation could be used that allows the animator
to get the shape just right, or to achieve an uncommon shape that was
not taken into account when creating the rig.

• An alternative way to control the animation channels. For example in first
the bone joints might be manipulated, while in another next on might
manipulate mesh vertices. A two way coupling is then useful, so that
manipulating the vertices would update the bone rotations and vice versa.
The cascading solver proposed in [28] provides an integrated way of solving
inverse kinematics on both a mesh and skeleton.

7.3.1 As Rigid As Possible

While a great variety of algorithms have been proposed and more advanced
algorithms exist, we here describe a method [30] that is particularly simple,
and allows us to reuse parts of the implementation of previous algorithms. The
method attempts keep the deformation as rigid as possible relative to the original
mesh. Such methods are necessarily non-linear and require multiple iterations
to get to a solution. The input to the algorithm is a starting position of all
vertices, and a new position for a subset of the vertices, as specified by the user.
We will refer to this subset of vertices as constrained vertices. Our goal is then
to find the positions of the other vertices, keeping the mesh as rigid as possible.

The methods works by preserving the rigidity of cells. Here each cell Ci
consists of a vertex vi at position pi and the edges it is connected to. Let the
neighbouring vertices be denoted vj . Now assume that the vertex positions
respectively at rest and after a deformation are denoted as pi and p′i. Then we
can say the deformation of a cell is rigid, if a rotation matrix Ri exists such that
the following sum is zero:∑

j

wij ‖ (p′i − p′j)−Ri(pi − pj) ‖
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This means there is a rotation matrix that when applied to the original
edges yields the deformed edges (disregarding translation). In practice we wish
to minimize this quantity, while keeping the matrix Ri as rigid as possible. The
weights wij give a different weight to each edge, the proper choice of which will
be discussed later.

We now give an algorithm to minimize this quantity for all cells in the mesh,
while obeying the constraints provided by the constrained vertex positions. Both
Ri and p′i will be solved for. This is done in multiple interleaved iterations,
first computing the rigid rotation matrices Ri for each, then computing the pi
that obey these rotations as much as possible, then again the matrices Ri from
the new positions, .. until convergence. Since this is an iterative algorithm,
we need an initial guess of the vertex positions and cell rotations. There are
different options, for example an estimate could be made based on a simpler
linear deformation, though here we simply assume the current mesh shape to
be the starting point.

We will not repeat the full derivation from [30] here, but rather the formulas
most relevant to implementation. Computing the rotation matrix for a cell Ci
is as follows. Given original vertex positions p and current vertex positions p′,
we compute the covariance matrix Si from the vertex positions.

Si =
∑
j

wij(pi − pj) · (p′i − p′j)T

The rigid matrix Ri then follows from the singular value decomposition of
the covariance matrix Si = UiΣiVi.

Ri = UiV
T
i

Next we plug these matrices into the right hand side of a Poisson equation
to get the vertex positions. The elements in the right hand side vector f are
computed for each vertex vi as:∑

j

wij

2 (Ri +Rj) · (pi − pj)

We then solve:

4p′ = f

The constrained vertices correspond to the boundary conditions on this sys-
tem, and the solution gives the new vertex positions.

We have implemented this method as a way to sculpt example poses that may
be integrated into the rig, not such much as an animator’s tool. Any number of
vertices may be constrained explicitly or implicitly by the fact that they are set
as hidden. While the user is moving, the solver is continuously doing iterations,
to keep the tool responsive without waiting for the full solution to be converged.
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8 Implementation Issues

8.1 Non Manifold Meshes
While the definition of contangent weights is over a manifold surface, in practice
we may still encounter non-manifold meshes, which might have three faces using
one edge for example. In this case, we have extended the contangent weights
for this purpose without much mathematical motivation, as follows. Remember
the cotangent weights as specified in section :

ui − 1
Ai

n∑
j=1

wij(ui−uj)

wij = 1
2 (cotαij + cotβij)

Rather than computing the voronoi area and weights per vertex, we accu-
mulate them per face, which generalizes to non manifold meshes, and avoids us
having to use a mesh representation with vertex to face connectivity informa-
tion. We loop over each face and do:

• Compute voronoi area divided by two for each vertex of the face.

• For each vertex in the face:

– Compute cotangent of the angle.

– Add cotangent multiplied by the voronoi area, to the corresponding
matrix elements of the two opposite vertices. One of the vertices gets
a negated weight, depending on the face orientation.

Construction of the laplacian matrix in this way is equivalent and extends to
non-manifold meshes. Support for such non-manifoldness can be exploited by
the artist to achieve better results. For example simple volume preservation
may be preserved by creating internal faces, as used in [38] for example. This
comes at little extra solving time, however they must be manually created by
the user.

Our solver currently ignores loose edges, which would be easier to create
than internal faces. Additionally, automatic creation of such internal edges
could provide a simple solution for volume preservation with little extra solving
time and effort by the user.

8.2 Multiple Disconnected Components
Since meshes do not necessarily exist as a single connected component, which we
have assumed before for the most part, we have to take this issue into account.
Given that the laplacian is translation independent, we must constrain at least
on vertex per component. So we detect disconnected components explicitly and

42



solve a separate linear system of equations for each of them. This however has
the disadvantage that components are in no way related, and will not influence
each other, which isn’t always desirable. Eyes should preferably stay in their
sockets, and rings should stay on fingers, even if they are modelled as separate
components. One solution is to push the problem to the user, and let them make
sure that these components are connected in the mesh or manually adjust the
weights, which is what we assume in our implementation. Another possibility
would be to connect these components automatically in some way, although it
is probably still desirable for the user to be able to specify which ones should be
connected and which ones not, without having to resort to changing the mesh
model as is required now.

8.3 Linear System Solving
Solving sparse systems of linear equations is a well studied problem with many
applications. Given that A is a sparse matrix, i.e. a matrix that has only a few
non zero elements per row or column and a vector b, we wish to find the vector
x such that:

Ax = b

Various approaches exist, the relevant ones being [8]:

• Conjugate gradient: an iterative method that can be implemented in terms
of sparse matrix-vector multiplications, which can be parallelized well.

• Multigrid: also an iterative method, that requires the domain to be avail-
able in a number of coarse-to-fine resolutions. By solving first at the
coarse resolution level, the solution can be reached quicker at the fine
resolution since the error can be diffused faster at the coarse resolution.
Again, multigrid methods tend to be well parallelizable. Multigrid typ-
ically scales better than conjugate gradient methods, as error diffusion
becomes slow at high resolution for the latter.

• Sparse Direct Solvers: these factorize the matrix A into upper and lower
triangular matrix, examples of which are LU or Cholesky factorization.
The solution is then computed by back and forward substitution, which
computes the solution row after row. An advantage is that the factoriza-
tion can be reused for the next solve. This can make solving again faster
than other methods, since factorization is the slowest step, and back and
forward substitution can be implemented efficiently. However, the latter
algorithms are hard if not impossible to parallelize efficiently on current
systems.

We use the sparse direct solver SuperLU for our implementation, which at least
in this comparison [8], can be seen to have the fastest solution time once the
matrix is factorized. The disadvantage is that this step cannot take advantage
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of multiple threads. As can be seen in the statistics from the referenced paper,
SuperLU is still 8x faster on meshes with 10k vertices, which corresponds to the
resolution of the meshes we have encountered in the production of an animated
short movie.

A bigger problem showed up in the implementation of harmonic coordinates.
While the SuperLU solvers was very fast for reasonable grid resolutions, for
higher ones like 28×28×28, corresponding to 16777216 grid vertices, the matrix
factorization did not fit in memory even on a system with 8 GB ram, causing
heavy disk swapping and very slow performance. We estimate a multigrid solver
would scale better to such a resolution, also allowing the solution to be solved
only local in the region near the control point. With the need for such large
resolutions, adaptive grid resolution where it is required would probably be the
best solution, which can be used also with sparse direct solvers.

8.4 Using the Graphics Card
Fast linear (re-)solvers exist on the CPU, but the vast number of floating pointer
operations per second that current graphics cards offer are interesting to improve
performance even further. For example games commonly do mesh skinning on
the graphics card in vertex shaders, to improve performance and avoid data
transfer. We would like to do the same thing for differential skinning methods.
Solving a linear system of equations with a parallel processor is more compli-
cated however.

The most successful linear system solving method implemented on the GPU
are conjugate gradient and multigrid [7][10]. Methods like cholesky factorization
may also be implemented on the GPU [15]. However backward and forward
substitution are difficult to parallelize. The computations for each row/column
depend on the previous one. Parallelizing the computations within each row
appears to require too much communication overhead between threads to be
efficient.

And this is where the problem lies. Ideally we would like to do the same as
the CPU, factorize the matrix in advance and solve again quickly afterwards.
But conjugate gradient and multigrid need to start from scratch each time. Even
with the vast amount of FLOPS on the GPU, the extra computations required
are not (yet) offset by the increased computational power. Nevertheless, given
the increase in the number of cores rather than per-core performance in both
CPU’s and GPU’s, we expect multigrid methods to become faster over time.

We note that some algorithms [39, 34] have successfully used linear system
solving on the GPU, by storing the full inverse matrix as a dense matrix. Clearly
this scales poorly to high resolution meshes, but as long as the number of vertices
is low enough (up to 1k in the referenced papers), a multiplication with such
a dense matrix is still very fast due to the high bandwidth and FLOPS in the
GPU.
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8.5 Mesh Size and Multiresolution
The methods in this text that depend on solving sparse linear systems cannot
run in realtime (24-25 fps) as part of a larger rig with very high resolution.
The character we used all had 10k or less vertices, which we believe is not an
uncommon amount for animated movies. It would however be interesting to
apply multiresolution solving methods to optimize both the cases that already
fast and to allow more complex meshes.

We do not though that the use of subdivision surface and displacement
mapping are very common in animation productions, and that they allow both
faster performance and leave less vertices to manipulate for the rigger. Hence in
some way multiresolution is already a part of many animation pipelines anyway,
as very high resolution are difficult to manipulate, which works out in favor of
these more computationally intensive skinning methods.

If there are more vertices in the mesh than there is detail in the deformations,
it is also possible to solve the problem for a subspace of the original mesh. That
is, we can use a lower resolution representation that is linked to the original
high resolution mesh in some way, found for example by clustering vertices or
faces which deform similarly in a set of example poses. The solution of the low
resolution model can then be transferred to the high resolution, see for example
[11, 34].

8.6 Order of Deformations
To get correct results, the order of deformations matters. For example in a
classical setup, shape keys will be applied before skeletal deformation. This
is because the simple interpolation of vertex displacements in object space for
shape keys is not invariant to rotation of the mesh, and so if it would be applied
after SSD, they would displace in the wrong direction compared to the surface. If
the displacements are stored in tangent space or if we use deformation gradients,
this is less of a problem, and the order can be switched more easily, although
this will still give different results.

8.7 Editing Deformed Meshes
It is often useful to edit a mesh while it is deformed. For example corrective
shape keys could be edited while the mesh is deformed by an armature, to im-
mediately see the results. Depending on the ordering of deformation operations,
this may pose a problem. If shape keys are applied before some other deforma-
tion, and we are transforming the vertex coordinates as if they were undeformed,
we will get unintuitive results. A deformation that rotates the mesh will cause
moving the vertices in one direction them to go in another, which has been
dubbed crazyspace since it how vertices will move is unpredictable for the user.
If we want the result of the deformations to correspond exactly to what the user
is editing, we need to have an inverse deformation function. That is we need
to be able to compute original vertex coordinates x such that given deformed
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coordinates y are the result. If f is a deformation function, that means we need
to compute:

x = f−1(y)

For typical SSD, also with dual quaternions or curves interpolation, or har-
monic coordinates with static binding the solution is simple. Each vertex is
deformed by a 4x4 matrix in a given pose, so all we need to do is invert that
matrix. For FFD or dynamically bound harmonic coordinates there is however
no trivial inverse, in fact these functions are not bijective in general, and so
multiple solutions might be possible. A solution to this problem is to iteratively
minimize ‖f(y) − x‖ in some generic way, for example using Powell’s method
[20].

Our implementation only provides correct deformed editing for the simple
linear cases without using a generic minimization methods, which were found to
be too slow when applied to full meshes. With some effort this implementation
could be optimized to only do computations for vertices that are actually being
edited, and a faster and more stable optimization method rather than the simple
Newton-Raphson method we tested could be implemented.
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9 Conclusion

9.1 Results
The animated short movie Big Buck Bunny [3] used some of the algorithms and
implementation discussed in this text, and all algorithms were implemented in
the 3D animation software Blender [1]. The automatic method to compute
harmonic vertex weights was used as the first weight assignment, which was
improved by manual painting later. It was found that this method permitted
adding many bones more easily for example for facial animations, whereas much
manual painting made this a less appealing option before. Dual quaternions
were use for transformation blending in skeletal subspace deformation on all
characters, requiring fewer corrective shape keys. Cage based deformation based
on harmonic coordinates was used for the body of the “fat” characters, and for
facial deformation on most characters. A setup with a skeleton controlling the
cage deforming the character, quickly gave better results than the manually
created corrective bones and shape keys that were laboriously added before.

9.2 Future Work
We have demonstrated how differential equations can be used both to compute
influence weights, and to yield deformations that are either shape and volume
preserving depending on the domain in which the equations are solved. We
believe many improvements are still possible in terms of scalability and per-
formance. Multiresolution solving, adaptive resolution and GPU acceleration
would make these methods more interactive and scalable to complex characters.
It should also be possible to construct an adaptive volumetric laplacian graph
that can guarantee volume preservation and at the same time solve the issue
of translation independence between loose components, while avoiding the high
grid resolution required by harmonic coordinates.

Further, we think physical simulation methods would be the logical next step
to improve upon this system, where the interesting challenge is to keep them
interactive and easily controlled by the user, while still automating deformations
that would be difficult to animate manually.
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10 Samenvatting

10.1 Character Rigging
Character rigging of articulatie is het proces waarbij een statisch model omgezet
wordt in een model dat geanimeerd kan worden, met controls voor de animator.
In plaats van bijvoorbeeld individuele vertex posities te manipuleren, wordt een
structuur aan het model toegevoegd met controls voor lachen, het verplaatsen
van handen of het buigen van spieren.

Het maken van character rigs kan een full time job zijn in de productie van
een animatie. De rig moet eenvoudig te gebruiken zijn en de irrelevante details
verbergen van de animator, wat belangrijk is aangezien naast het animatie pro-
gramma, de character rig in feite de user interface is waar hij dag in dag uit
mee werkt.

Een character rig neem een aantal geanimeerde waarden en de originele
mesh als invoer, en produceert dan een vervormde mesh in de pose gemaakt
door de animator. In dit werk zullen we methodes bespreken voor het ver-
vormen van een mesh, van zijn rust pose tot vervormde pose met puur ge-
ometrische/kinematische methoden, zonder animatie van skeletale structuur
of fysische simulatie en rendering te beschouwen. Uitgaande van bestaande,
klassieke methode tonen we aan hoe deze verbeterd kunnen worden zonder grote
aanpassing in de character rig setups.

10.2 Mathematische Tools
Affiene transformaties zijn een belangrijk element in het vervormen van mod-
ellen. De interpolatie, extrapolatie en manipulatie ervan zal worden gebruikt in
de verschillende algoritmen die we bespreken. Correcte interpolatie vereist een
decompositie van deze transformaties in verschillende componenten: rotatie,
schaling en translatie. Individuele interpolatie van deze componenten levert
beter resultaat op in enkele algoritmen die we bespreken. Vooral de interpo-
latie van rotaties is belangrijk, en deze kan bijvoorbeeld beter met quaternions
uitgevoerd dan door direct matrices te interpoleren.

Een andere minder voor de hand liggende mathematische methode die we
zullen gebruiken zijn differentiaal vergelijkingen. Meer specifiek vergelijkingen
met de Laplaciaan, Gradient en Divergentie operators op 3D volumes en mesh
oppervlakken. Deze operators en bepaalde vergelijkingen waarin zij voorkomen
hebben nuttige eigenschappen, zoals C∞ smoothness. Voor het oplossen van
zulke vergelijkingen in de praktijk zullen we de operators discretizeren, bijvoor-
beeld over de vertices of driehoeken in een mesh, of over een 3D grid met cellen.
Dit levert dan een verzameling van lineaire vergelijkingen op die efficiënt kunnen
opgelost worden. Verder van belang zijn ook de boundary conditions, waarmee
constraints kunnen worden toegevoegd worden om de oplossing te manipuleren.

53



10.3 Shape Interpolatie
Interpolatie van verschillende vooraf gemaakte deformaties (shape keys) van een
mesh wordt veel gebruikt in character rigging, voor verschillende doeleinden. Dit
gaat van volledige gezichtsexpressies tot het buigen van spieren of correcties van
deformaties met andere algoritmen. Deze shape keys worden vaak manueel door
de animator gecontroleerd, maar kunnen ook automatisch geactiveerd worden
als onderdeel van de rig, gebaseerd op de huidige pose van het skelet.

Eenvoudige interpolatie van de vertex posities wordt gewoonlijk gebruikt.
Een alternatief is interpolatie in tangent space, waardoor het resultaat on-
afhankelijk wordt van de globale rotatie van het model. Wij bespreken een
derde methode die in plaatse van vertex translaties, de deformatie encodeert in
affiene transformaties per driehoek. Op deze manier kan een rotatie daadwerke-
lijk als een rotatie worden geïnterpoleerd, wat de interpolatie en extrapolatie
van grote deformaties meer intuïtieve resultaten geeft. De resulterende vertex
posities verkrijgen vereist het oplossen van een differentiaal vergelijking, dewelke
resulteert uit de formulatie van het probleem in termen van kleinste kwadraten.
Deze methode is significant trager dan eenvoudige lineaire interpolatie van trans-
laties, maar kan interactief worden uitgevoerd door gebruik te maken van het
feit dat de vergelijkingen snel opnieuw opgelost kunnen worden eens zij eenmaal
zijn opgelost.

10.4 Skelet Gebaseerde Deformatie
Deformatie van een mesh met een skelet bestaande uit individuele bones is
de standaard methode voor het animeren van modellen. De typische meth-
ode die wordt gebruikt is skeletal subspace deformation (SSD), maar deze lijdt
aan het ineenzakken van modellen en verlies van volume rond de verbindingen
tussen twee bones. Een eenvoudige analyse van het probleem toont aan dat SSD
neerkomt op lineaire interpolatie van affiene transformaties, en als zodanig kan
een methode die deze transformaties correct interpoleert rekening houdend met
rotaties een betere oplossingen geven. Een recente methode, dual quaternions,
biedt een efficiënte oplossing op het probleem van het kiezen van een centrum
van rotatie, wat tot nu toe het gebruik van betere transformatie interpolatie
onpraktisch maakte. Verder is het eveneens mogelijk curves te gebruiken voor
betere interpolatie, of interpolatie per driehoek uit te voeren met de methode
uit de vorige sectie om de problem van SSD op te lossen.

Voor SSD en aanverwante methoden is het nodige de invloed van de bones
op elke vertex te specifiëren. Dit gebeurt gewoonlijk eerst automatisch waarna
deze manueel aangepast worden. Wij formuleren een methode gebaseerd op de
oplossing van een Laplace’s vergelijking over het oppervlak van de mesh. Deze
resulteert in gewichten die zorgen dat de invloed van bones smooth met elkaar
blenden. Voor elke bone wordt de vergelijking opgelost door de ’temperatuur’
van deze bone op 1.0 te zetten en alle andere bones op 0.0, zodat deze tem-
peratuur zich vanuit die bone verspreid over de mesh. Dit wordt gedaan door
deze als boundary conditions van de vergelijking te specifiëren. Er wordt van
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raytracing gebruik gemaakt om te bepalen welke bones welke delen van de mesh
direct beïnvloeden. Het resultaat is dat de mesh automatisch aan een skelet kan
gebonden worden, met een goede standaard deformatie, waarin weinig manuele
correcties gemaakt moeten worden.

10.5 Andere Deformatie Methoden
Freeform deformation is een veelgebruikte methode voor het vervormen van
meshes, waarbij een cage wordt geplaatst rond een model. De manipulatie van
de controlepunten van de cage resulteert dan in deformaties van het model.
We bespreken een veralgemening van deze methode gebaseerd op differenti-
aal vergelijkingen, genaamd harmonic coordinates. Deze methode maakt het
mogelijk de cage arbitraire vormen en controlepunten te geven, in plaats van
restricties op te leggen op de vorm. De invloed van verschillende controlepunten
of zelfs overlappende cages wordt automatisch gebalanceerd door de oplossing
van de differentiaal vergelijking.

De methode discretiseert Laplace’s vergelijking over een 3D grid binnen de
cage. De invloed van elk controlepunt wordt individueel berekend met het
oplossen van de vergelijking door de gewichten op deze punten op 1.0 te zetten,
en 0.0 op alle andere punten. De oplossing geeft dan de waarden op de tussen-
liggende punten. Eens de oplossing berekend is op alle punten in de cage kan
voor elke vertex in de mesh de invloed van de controlepunten berekend wor-
den. Er kan aangetoond worden dat als we deze gewichten gebruiken voor het
interpoleren met de posities van de controlepunten, de oorspronkelijke positie
gereproduceerd wordt van alle punten in de kooi. Bij het vervormen van de cage
wordt de nieuwe positie van een vertex dan berekend door eenvoudigweg met de
berekende gewichten en nieuwe posities van de controlepunten te interpoleren.

Het resultaat is dus een alternatief voor freeform deformatie dat flexibeler is,
en gebruikt kan worden om een cage te maken rond volledige character meshes,
in plaats van het typische combineren van overlappende reguliere grids. Er
kunnen bijvoorbeeld flexibele gezichtsuitdrukkingen gemaakt worden met deze
methode, door een cage te modelleren rond het hoofd van het model. Ook kan
bijvoorbeeld de volledige mesh vervormd worden met freeform deformatie, door
een skelet de cage te laten vervormen, die dan weer de finale mesh vervormt.

In de laatste jaren heeft ook een een type deformatie methode veel aandacht
gekregen, waarbij de mesh gemanipuleerd worden door bepaalde vertices van
de meshes te manipuleren die dan indirect de rest van de mesh mee vervormen,
op een natuurlijke wijze. Dit is in feite inverse kinematics voor meshes. We
hebben een specifieke methode geïmplementeerd die nauw gerelateerd is met
de methodes die we reeds besproken hebben. De methode is gebaseerd op het
behoudt van rigiditeit in de mesh. Een affiene transformatie wordt berekend
per vertex door de vervorming van de omliggende vertices te in acht te nemen,
en deze transformatie wordt dan telkens rigide gemaakt. Om de vertex posities
te constrainen wordt Laplace’s vergelijking met boundary conditions gebruikt,
terwijl deze tevens de rigide transformaties zo goed mogelijk probeert te re-
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specteren. Op deze manier worden om beurt de transformatie rigide gemaakt
en de posities van de tussenliggende vertices opgelost, tot convergentie. Deze
methode blijkt vooral nuttig voor het maken van shape keys die dan in een rig
gebruikt kunnen worden, aangezien ze niet efficiënt genoeg is voor het realtime
oplossen als onderdeel van een volledige character rig.

10.6 Implementatie Details
De implementaties van de algoritmen die we besproken hebben een aantal as-
pecten gemeen. Het oplossen van alle differentiaal vergelijkingen wordt met een
sparse direct solver uitgevoerd, gebaseerd op LU decompositie van sparse ma-
trices. Er wordt geen gebruik gemaakt van de grafische kaart, en we verwachten
dat met het gebruik van multiresolutie verwachten de GPU benut kan worden
en de vermelde algoritmen geoptimaliseerd kunnen worden.

Voor het oplossen van de differentiaal vergelijkingen over mesh oppervlakken,
worden ook non-manifold meshes en meerdere losse componenten ondersteund.
Non-manifold meshes worden ondersteund door de standaard Laplaciaan oper-
ator over mesh oppervlaken te veralgemenen.

10.7 Conclusie
De geanimeerde kortfilm Big Buck Bunny maakt gebruikt van enkele algoritmen
en implementaties besproken in deze tekst. De automatische vertex gewichten
voor skeletale deformaties werden gebruikt als vertrekpunt voor alle modellen,
waardoor minder manuele correcties nodig waren. Dual quaternions werden
gebruikt voor skeletale deformatie op alle modellen, wat resulteerde in minder
manuele correcties voor het verlies van volume bijvoorbeeld. Harmonic coordi-
nates werd gebruikt voor de deformatie van zwaarlijvige karakters, aangezien
dit minder scherpe deformaties geeft en zo zelf-intersecties vermijd. Tevens wer-
den deze gebruikt voor gezichten voor het maken van expressies en squash and
stretch deformaties.

Een belangrijke verbetering die aan het systeem gedaan zou kunnen worden
is op het vlak van performantie, door het gebruik van multiresolutie en GPU
acceleratie. Voor de modellen in Big Buck Bunny die 1000 tot 10000 vertices
hadden was dit niet nodig, maar, voor meer gedetailleerde modellen, complexere
rigs en meerdere karakters in een scene zijn performantie verbeteringen handig.
Verder zou het expliciet voorkomen van verlies van volume, en efficiënte fysisch
gebaseerd simulaties de resultaten verder verbeteren, indien deze op interactieve
snelheid kunnen werken voor complexe rigs.
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