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Abstract 
 

The assessment of sample size in clinical trials comparing the means requires a 

variance estimate of the main efficacy variable. If there is uncertainty on the variance 

estimate when factors such as the difference between centers/cultures are unknown, 

the internal pilot study with EM algorithm and the conditional rejection probability 

(CRP) principles are appropriate to perform a sample size re-assessment (SSR) 

without unblinding the treatment status. These two methods fully preserve the Type I 

error rate. In order to compare these tow methods, both methodologies are applied in a 

randomized trial dataset and by a simulation study the mean squared error (MSE) of 

the variance estimator is used to quantify the amount by which the variance estimator 

differs from the true value of the variance and hence decide for the most appropriate 

method to perform a SSR. Finally, we conclude that the conditional rejection 

probability principle (CRP) is a better approach for re-calculation of the sample size 

in the considered clinical trial. 

 

Key words: sample size reassessment (SSR), internal pilot study, conditional rejection 

probability (CRP) 
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Chapter 1 

Introduction 
Sample size is a key design input for any randomized clinical trial. Unfortunately, it is 

often computed in the face of inadequate knowledge about the variance ( 2σ ). 

Economic pressures, possibly combined with competition for patients, then encourage 

trial investigators to make optimistic estimates of this design parameter, a tendency 

that frequently results in underpowered studies. An underpowered trial is extremely 

undesirable; for it places human subjects at risk with a low probability of reaching a 

positive scientific conclusion and can result in abandoning an effective compound [1]. 

Therefore, in recent years there has been a considerable amount of research on clinical 

trials where the sample size is re-estimated after the clinical trial is underway, on the 

basis of updated information about 2σ . 

 

Different methods for sample size re-calculation have been proposed. The internal 

pilot study design introduced by Stein [2] in 1945 use a pre-specified rule to 

re-calculate the sample size from the interim variance estimate at a pre-planned 

interim analysis. The method of Stein fully preserves the type I error rate, but it only 

uses the first-stage variance estimate for the final decision. More recently, internal 

pilot study designs which use the complete data for variance estimation in the final 

test have been considered for the t-test [3-6] and implemented the EM algorithm for 

carrying it out [7], while having a negligible effect on the type I error rate. All internal 

pilot study designs have in common that the sample size re-calculation is only based 

on the blinded or unblinded estimate for the unknown nuisance parameter which is 

inserted in a pre-specified rule. No pre-specification of a re-calculation rule is needed 

in the adaptive designs [12], which are based on conditional error functions. These 

designs allow all kinds of data-dependent modifications at pre-planned interim 

analyses while ensuring control of the type I error rate. Another alternative method to 
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adjust the sample size due to misspecified nuisance parameters is given by 

group-sequential designs with an error spending function and information time 

monitoring [8]. Since the group sequential testing is based on normal approximations 

for the test statistics, the type I error rate is approximately controlled for large sample 

sizes only. Muller and Schafer [10] have introduced the conditional rejection 

probability (CRP)-principle as a general theoretical instrument for design 

modifications at any time during the course of the trial. With this principle, all types 

of design modifications known from adaptive designs can also be implemented in 

every standard design without inflation of the type I error rate. In contrast to adaptive 

designs, where pre-specification of a conditional error function is a fundamental 

design element; the CRP-principle uses the “natural” conditional error function. This 

“natural” conditional error function is implicit in every design [9]. If the variance is 

unknown and t-distributed test statistics are used, the CRP depends on the unknown 

variance [11] as shown in the methodology part. 

 

The data is described in Chapter 2 and the objective of this trial is mentioned in 

Chapter 3. In this report, the sample size re-calculation mainly depends on the 

unknown variance. Therefore, the possible methods for sample size reassessment 

based on the nuisance variance parameter are described in detail in Chapter 4; then a 

comparison of these methods will be reported. In Chapter 6, we extend the 

exploration of the methods by a simulation study. Finally, the conclusion and 

discussion will be made in Chapter 7. 
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Chapter 2 

Data Description 
To demonstrate a clinical meaningful difference in the relief of back pain between the 

control and treatment group, the Medtronic Bakken research Center (BRC) in 

Maastricht cooperates with medical specialists to perform a clinical trial. The data 

comes from a prospective, randomized, controlled and multi-center study on a Spinal 

Stabilization System. Data collection is performed at baseline (pre-operative visit) and 

6 month post-surgery patient’s back pain score on a visual analogue scale (VAS). In 

this study, patients with a complex lumbar disc disease indicated for a single level 

herniectomy are considered. The null-hypothesis and the alternative hypothesis of this 

study are formulated as follows, respectively.   
 

H0: ∆ VAS Treatment = ∆ VAS Control  

HA: ∆ VAS Treatment ≠ ∆ VAS Control 
 
Where ∆ VAS Treatment is the average change in VAS score (baseline - 6 months) in the 

treated patient group and ∆ VAS Control is the average change in the control group. The 

null hypothesis will be rejected in favor of the alternative if the average change in 

VAS score in the treatment group is determined to be different than the average 

change in VAS score in the control group at a significance level of 0.05.  

 

Based on non-published single-center data, in a conservative way, it is expected that 

the average reduction between baseline and six months will be 3.5 (SD=2.5) points 

for the treatment group, and 2.5 (SD=3.0) points for the control group patients. A 

minimal sample size of 240 analyzable patients is required to demonstrate with 80% 

power a difference in back pain reduction that is significant at the 95% level, 

comparing treated and control groups. 
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Chapter 3 

Objective 
In the planning of a clinical trial, historical data from one center is used to determine 

the required sample size. Uncertainty on the variance estimate arises when factors 

such as the difference between centers/cultures are unknown. Sample size 

reassessment (SSR) is an increasingly popular strategy for designing and conducting 

clinical trials. In particular, SSR based on updating the variance estimate is a prudent 

practice accepted by the regulatory authorities to assure adequate power for a study. 

 

The objective of this report is to evaluate and define the most appropriate 

methodology for sample size reassessment. Among several issues, the most 

appropriate time in the study to perform a SSR is expected to be defined, while 

considering that a blind procedure is preferred from the regulatory standpoint, because 

it better preserves the study integrity. 
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Chapter 4 

Methodology 
In this section, different methods for sample size re-calculation will be discussed. The 

best methods will be selected to apply into the real data by the discussion based on the 

literate review. 

 

4.1 Internal Pilot Studies with the EM Algorithm for Sample Size 

Reassessment 

Calculation of the required sample size is a key step in the design of a clinical trial. 

The sample size is determined by the type I and type II error rates, the minimum 

relevant clinical difference, and the variance of the primary outcome variable. When 

planning a clinical trial, the required value of the variability measure for the main 

efficacy variable is generally unknown. It is common practice to use an estimate of 

the variance from previous trials for sample size calculation. However, an estimation 

based on previous trials may not be representative of the trials being designed, e.g. 

different patients types, different treatment, different circumstances and so on.  

“Internal pilot studies” were recommended to overcome this problem by using data 

from the first “few” patients entered in the trial to estimate the variance of the main 

efficacy variable and thus to recalculate the required sample size. An EM algorithm is 

implemented to calculate an estimate of the within-group variance without unblinding 

the treatment status at the interim stage and hence to re-estimate the sample size [7]. 

 

To introduce this approach, let us consider clinical trials comparing two groups with a 

normally distributed outcome variable. Suppose the independent and identically 

distributed observations in group j, j=1, 2, be obtained from normal distributions with 
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unknown mean jµ  and common unknown variance 2σ . The pre-study estimate of 

the true variance 2σ  based on literature reviews, previous experience and so on, is 

denoted 2
0s . This initial estimate 2

0s  was used to determine the preplanned sample 

size N0 required in each group to detect the difference ∆= Aµ - Bµ  to be statistically 

significant at level α  with power β−1 . In order to reach the specified power, the 

sample size for per treatment is at least 2 2σ 22
1),1(2)2/1,1(2 /)( ∆+ −−−− βα nn tt , where Pvt −1,  

denotes the value exceeded by a vt  random variable with probability P. Since the 

factor 2
1),1(2)2/1,1(2 )( βα −−−− + nn tt  depends on the sample size it is usually replace by 

2
12/1 )( βα −− + zz  where Pz −1  denotes the value exceeded by a standard normal random 

variable with probability P. Hence the planned total sample size per group at the start 

of the trial could be obtained from  

                      2

2
12/1

2
0

0

)(2
∆

+
= −− βα zzs

N                       (1) 

In order to determine the size of the internal pilot study, Sandvik et al. [13] proposed a 

method. We will give a brief description of that method. Let nint denote the size of the 

sample from which the initial variance estimate 2
0s  is calculated and the probability 

of including more patients in the internal pilot study than is needed for the entire 

study (2N0 patients) should not be exceed P. The probability P is determined by the 

investigators. Using the fact that 22
0int /)1( σsn −  has a 2

1−initnχ  distribution, from the 

inequality 

p
A

nsn
P initinit <

−
>

−
)

1)1(
( 2

2
0

σ
                               (2) 

We obtain )1(/)1( 12
1int int

PnA n −−= −
−χ . Therefore, the total sample size 00 22 NAn =  of 

the internal pilot study could be obtained. Then these data from the internal pilot 

study are used to estimate the within-group variance 2σ  denoted 2
1s . With the EM 
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algorithm and the initial parameters proposed by Gould and Shih [14], we obtain a 

reliable estimate without unblinding the treatment group at the interim stage. 

 

A brief description of the EM algorithm is given. Let )0(1=iτ  denotes the treatment 

group membership indicator, if sample member i is in group 1 (group 2). And zi, 

i=1,…, 02n  denotes the interim observations. Given the independent random 

variables 1τ ,…, 
02nτ  with θτ == )1( iP , zi has a normal distribution with density 

    
222 ))(1()()(2/(12 1),,,( YiiXii uzuz

YXii ezf −−+−−= ττσ

σ
σµµτ             (3) 

Therefore, the expectation of iτ  given zi is 

)2/()2)(( 2

/)1(1
1)(

σµµµµθθ
τ

iYXYX zii
e

zE
−+−−+

=              (4) 

and the log likelihood of the interim observations is  

2
1

22

2

2

))(1()(
log

2 σ

µτµτ
σ

∑
=

−−+−
+=

n

i
YiiXii zz

nl          (5) 

The EM algorithm procedure is an iterative algorithm that cycle between the so-called 

E- and M-steps. The E-step consists of substituting current estimates of YX µµ ,  and 

2σ  into Equation (4) to obtain temporary values for the expectations of the iτ . The 

M-step consists of obtaining maximum likelihood estimate of YX µµ ,  and 2σ  in 

Equation.(5) with provisional expectations. The two steps are repeated until the value 

of 2σ  stabilizes. The resulting value is the estimate 2
1s  of 2σ . The initial values of 

YX µµ ,  and 2σ are chosen as recommended by Gould and Shih [14], 

c
baX −=

∧

0,µ , 
c
baY +=

∧

0,µ , b=
∧

0σ  

Where c=5.71, a and b denote the intercept and the slope obtained from a simple 

linear regression fitted to the points ))),2/()5.0((( )(0
1

izni −Φ− , i=1,…, 02n . 1−Φ  defines 
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the inverse of the standard normal distribution function and z(i) are the ordered data at 

the interim evaluation. When we fit a linear regression with the ordered data at the 

interim evaluation to obtain the initial value for EM algorithm, it is blinded which 

means we do not know the patient is from treatment group or control group.  

 

After recalculation of the required sample size N1 in each group, additional 

observations are taken to bring the total sample size in each group up to N1, the 

smallest integer greater than or equal to 

                     )
)(2

,max( 2

2
1),1(22/1),1(2

2
1

0
00

∆

+ −−−− βα nn tts
n               (6) 

The hypothesis H0 is rejected if 

2/1),1(2

2/1

2
1

12 αµµ −−

∧∧

>−⎟
⎠
⎞

⎜
⎝
⎛

NYX t
s

N                 (7) 

where s2 is the usual pooled estimate of the variance , YX

∧∧

µµ ,  are calculated using all 

N1 observations from each group respectively. 

 
Gould & Shih [18] investigate the effect on Type I error rate using the approach 

discussed above. The details displayed in the Reference [18]. The investigation finds 

that there is a negligible effect on the type I error rate. And also the simulation studies 

in Shi [20], Gould & Shih [18] showed that there was high precision in estimating the 

true within-group variance, and that study power was attained to desired level while 

the type I error rate was not materially affected by the interim estimation of and 

updating the sample size [19]. 

 

Additionally, two situations were investigated by Shih and Long [15] which are likely 

to arise in practice. These are the occurrence of variance heterogeneity and of block 

effects, for example in multi-center trials. Simulations in this situation have shown 

that the EM procedure is robust against both [15]. It has been suggested that the EM 

procedure can be straightforwardly generalized to multi-center trials.  
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4.2 Conditional Rejection Probability (CRP) Principle for SSR  

Another alternative method to adjust the sample size is the conditional rejection 

probability (CRP) proposed by Muller and Schafer [10] that is a general theoretical 

instrument for design modifications at any time during the course of the trial. With 

CRP principle, all types of design modifications such as the sample size modification, 

to include an interim analysis for early stopping when no formal rule for early 

stopping was foreseen, to increase or reduce the number of planned interim analysis, 

or to change test statistic, the outcome measure, …without inflation of the type I error 

rate. 

 

To show the concept in simple terms, consider the case of a two-armed comparative 

study of an experimental treatment (E) and a control treatment (C). Let θ  denote 

some measure of advantage of E over C, and suppose that we want to test the 

null-hypothesis H0: 0=θ  against H1: 0≠θ 0:( 1 >+ θH  and )0:1 <− θH . Let t 

denote the number of observations at a given calendar time, or, more generally, an 

information time parameter such as the number of events observed in a survival study, 

and let T(t) denote a suitable test statistic computed at time point t. Suppose that a 

group sequential test has been fixed in the study protocol with analyses at time points 

ti, i=1,…,m, and with continuation intervals [ai, bi] for T(ti). At the ith analysis, we 

plan to reject H0 in favor of H1, if T(ti)<ai and T(ti)> bi , respectively.  

 

Suppose that at a time point τ  one decides to include an interim look and that τ  

lies in the interval ll tt <≤− τ1 . At the interim data inspection, first of all the value of the 

test statistic )(τT is determined from the data. Let x denote this value. Next, let R− 

and R+ denote the events that H0 will be rejected in favor of −
1H and +

1H  respectively, 

at one of the future interim analyses tl, tl+1,…, tm−1 or at the final analysis according to 

the group sequential design of the trial. The event R+ can be written as the union of 
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disjoint events ∑
=

++ =
m

i
IRR

1

, where { iii btTR >=+ )(  and ],[)( jjj batT ∈  for all j with 

}ijl <≤ . The conditional probabilities of these events given that xT =)(τ  are called 

conditional rejection probabilities (CRP). They are calculated under the null 

hypothesis and are then denoted by ))(()( 00 xTRPx == ++ τε  and ))(()( 00 xTRPx == −− τε . 

The index 0 means 0=θ . Now, after the values of )(0 x−ε  and )(0 x+ε  have been 

determined at the interim look, one is allowed to change the design to any design with 

conditional type I error rates equal to )(0 x−ε  and )(0 x+ε  for testing the null 

hypothesis H0 against −
1H and +

1H  respectively. The CRPs are the only information, 

which is carried over into the second part of the study. This process will preserve the 

intended type I error rate. A proof that the procedure holds the pre-specified Type I 

error level is showed in the Reference [10].  

 

A SAS/IML program for the computation of the conditional rejection probability can 

be obtained from the Muller and Schafer [10]. The upper and lower characteristic drift 

values denoted by ±δ  can be calculated from the SAS macro. These drift values are 

used to calculate the additional sample size for each group 

rrn /)1(/ 2222 +∆= σδ  

where δ  is a characteristic drift value, ∆ is the mean difference between two group, 

and r is the randomization ratio. 2σ  is the variance estimate. Since this is a nuisance 

variable, one may use the interim variance estimate of 2
1s  to replace it. 

 

The proposed method allows the researcher to include an interim look at any time 

during the study in progress, to inspect the data of all patients who have completed 

their follow-up so far, including data group by treatment, and to change the design 

taking into account the results of the interim look and any other external or internal 

information. Design changes may include increase or reduction of the sample size and 

of the number and the time points of interim analyses, and even changes of the type of 
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statistical test, of the outcome variable, or of the null-hypothesis. Also the method 

does not require the necessity to pre-specify a sample size rule. And the pre-specified 

type I error will be maintained. However, to re-calculate the sample size we need to 

command an unplanned interim analysis. Before starting the trial, an efficient design 

for the experiment has to be set up, including the interim analyses based on ethical 

and economic consideration. This always needs careful consideration.  

 

4.3 Information Based Interim Monitoring 

We have known that sample size is a key design input for any randomized clinical 

trial. At the design phase of a randomized clinical trial the total number of participants 

needed to achieve a certain level of significance and power depends frequently on 

nuisance parameters like variance, baseline response rate, or regression coefficients 

other than the main effect. In practical applications, nuisance parameter values are 

often unreliable guesses founded on little or no available past history. As a result, if 

the initial guesses for the nuisance parameters are far from the truth, then the study 

may be under or over powered to detect the desired treatment difference. Therefore, in 

recent years there has been a considerable amount of research on more flexible 

clinical trials where the sample size is re-estimate after the clinical trial is underway, 

on the basis of updated information about variance and effect size. The ‘Information 

Based Interim Monitoring’ in which the sample size is recalculated to achieve desired 

information can be applied here [16, 17]. 

 

To give the description of this approach, we start with the discussion of a single 

unified nuisance-parameter-free information-based approach for designing and 

monitoring clinical trials. This single unified nuisance-parameter-free 

information-based approach is applicable to studies involving dichotomous response, 

continuous response, time to event response and longitudinal response, in the 

presence of one or more nuisance parameters, including covariates. To show the 



 12

concept in simple terms, consider the case of a two-armed comparative study of an 

experimental treatment (E) and a control treatment (C). Let δ  denote some measure 

of advantage of E over C, and suppose that we want to test the null-hypothesis  

H0: 0=δ  

at the α  level of significance. Suppose a two-sided test is to be conducted and is 

required to have power equal to β−1  against the alternative hypothesis 

H1: 0≠δ  

 

A typical way to carry out a two-sided fixed-information test of the null hypothesis is 

to fit the underlying model to all the data available at the end of the study, compute 

the Wald test statistic 

)(
∧

∧

=
δ

δ

se
T                           (12) 

and reject H0 if 

2/αzT ≥                            (13) 

where zu is the (1 - u)th  quantile of the standard normal distribution and se(
∧

δ ) is an 

estimate of the standard error of 
∧

δ . The term information (or Fisher information) has 

a strict technical meaning which is related to the variance of
∧

δ [16].  Now the true 

variance of 
∧

δ  is usually not known. For all practical purposes, however, the Fisher 

information available at the end the study can be well approximated by the inverse of 

the estimated variance of 
∧

δ , or [se(
∧

δ )]−2. Throughout this development, this 

approximation should be used as though it were the actual Fisher information [16]. 

 

The amount of Fisher information (I), needed in order for the test inequality (13) to 

achieve a power of β−1  can be derived by standard statistical methods as 

2
2/

⎥
⎦

⎤
⎢
⎣

⎡ +
=

a

zz
I

δ
βα                         (14) 
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where I is approximated by 

2

)(
−∧

⎥⎦
⎤

⎢⎣
⎡≈ δseI                         (15) 

Thus, in a fixed information study one would gather data until the inverse square of 

the standard error of the estimate of δ  equaled the right hand side of equation (14), 

and would then perform the hypothesis test. 

 

For the normal response with unknown variance, we continue to enroll subjects into 

the clinical trial until we have gathered a sufficient number. Let us say nE on treatment 

group and nC on control group, so as to satisfy the fixed information requirement 

2
2/

122
2

)( ⎥
⎦

⎤
⎢
⎣

⎡ +
≥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+≡⎥⎦

⎤
⎢⎣
⎡

−
∧∧−∧

aCE

zz
nn

se
δ

σσδ βα              (16) 

We then perform the hypothesis test using the test statistic in which 
∧

δ = uE – uC as 

long as (16) is satisfied, the study will have the desired β−1  power. In the case of 

re-estimation based on the revised estimates of nuisance parameters like the variance 

of the response variable, the traditional group sequential methodology is utilized 

without any modification, with Fisher information playing the role of sample size. 

The maximum information required to provide β−1  power for a group sequential 

level-α  test to detect a difference aδ  is determined at the design stage by the 

formula 

IF
zz

I
a

*
2

max ⎥
⎦

⎤
⎢
⎣

⎡ +
=

δ
βα                      (17) 

where IF is the inflation factor whose value depends on α , β , the number of interim 

looks, and a pre-specified α -spending function. Observe that the computation of Imax 

by Equation (17) does not involve any unknown nuisance parameters whereas the 

computation of Nmax requires specification of the nuisance parameter 2σ . 
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IF
zz

N
a

*4
2

2/2
max ⎥

⎦

⎤
⎢
⎣

⎡ +
=

δ
σ βα                  (18) 

The study is monitored at administratively convenient times with information at the 

jth interim look being estimated by 

2)]([ −
∧

= jj seI δ                      (19) 

The information fraction at look j is thus t j = I j /Imax, the cumulative amount of type I 

error that may be spent by look j is given by )( jtα , and the corresponding stopping 

boundary is derived by inverting this cumulative error as discussed in Reference [16]. 

In a maximum information trial the maximum sample size, Nmax, need not be fixed in 

advance. The study remains open with a floating sample size until either Imax, the 

primary determinant of statistical power, is attained or a stopping boundary is crossed 

[17]. And the final total sample size will be the max ),( 0 manNn , where n0 is the planned 

sample size for our trial. 

 

Such a strategy is well suited for use in conjunction with a group sequential approach 

where the data are routinely monitored anyway [17]. We have the ability to estimate the 

nuisance parameters during the interim analysis and, if it seems that the original 

design will not meet the goals of the study, we may extend the study, increase the 

sample size. Although in this approach one can control the level of the test, the 

subsequent power of the test may be greatly affected if the values of the nuisance 

parameters are guessed incorrectly. It is also reasonable to adopt information based 

monitoring for sample size adjustment without any intention of early stopping [16]. 

However, we have to specify the interim boundaries which is the α  in the each stage 

and therefore the interim analysis need to be commanded in the protocol. 

 

4.4 Discussion of the Methods 

In the planning of a clinical trial, historical data from one center is used to determine 
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the required sample size. Uncertainty on the variance estimate arises when factors 

such as the difference between centers/cultures are unknown. The SSR methods we 

considered here both have pros and cons. Therefore, the discussion needs to be done. 

 

First of all, we start with the discussion of the “Information Based Interim 

Monitoring” approach. As we discussed before that subsequent power of the test may 

be greatly affected if the values of the nuisance parameters are guessed incorrectly. 

And we do not only intent to increase the total sample size, but also want to know if 

the sample size is big enough for our trial, then we may decrease the sample size. 

However the “Information Based Interim Monitoring” always increase the total 

sample size, it is not suitable in this case. 

 

Secondly, based on the discussion of the internal pilot study with EM algorithm, this 

approach suggested that it could be straightforwardly generalized to multi-center trials. 

The simulations in the situation, which include variance heterogeneity and of block 

effects such as multi-center trials have shown that the EM procedure is robust against 

both situations, see Reference [15]. Furthermore the re-estimated final sample size can 

be not only increased but also decreased. Therefore, this approach is suitable in our 

case. However, for this approach there is a negligible effect on the Type I error. 

 

Thirdly, another alternative method to adjust the sample size is the conditional 

rejection probability (CRP). The proposed method allows the researcher to include an 

interim look at any time during the study in progress. Design changes include increase 

or reduction of the sample size. At the same time, the method does not require the 

necessity to pre-specify a sample size rule. And the pre-specified type I error will be 

maintained [10]. The procedure for the sample size adjustment based on interim 

estimates of nuisance parameter like variance is proposed before. Therefore, to 

re-estimate the sample size we recommend performing an unplanned interim look. 

The interim analysis will be arranged not for the purpose of considering early 

stopping but to recalculate the same size. This always needs careful considerations, 
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which is the interim analysis for a decision to change the design requires high data 

quality, i.e. complete and valid data. However, this method still can be considered in 

our case. 

 

Since we do not always want to increase the sample size, we also want to use the 

reduction of the sample size due to the economic consideration. Therefore based on 

the discussion before, we could conclude that the internal pilot study with EM 

algorithm and CRP principle can be applied in the real data.  

 

4.5 Missingness 

Missing or incomplete data are a common scenario occurring in many studies. An 

observation is considered as incomplete case if the value of any of the variables is 

missing. Even with the best design and monitoring, the observations can be 

incomplete usually due to the following possible reasons: missing by design; 

censoring and drop-out; or non-response etc. Most statistical packages exclude 

incomplete cases from analysis by default. This approach is easy to implement but has 

serious problems. Firstly, the loss of any information on incomplete cases may lower 

the desired efficiency in the study. Secondly; they may lead to substantial biases in 

analyses. Thus, missing data are important to consider in the analyses.  

 

Missingness frequently complicates the analysis of longitudinal data. In many clinical 

trials and other setting, the standard methodology used to analyze incomplete 

longitudinal data is based on such methods as complete case analysis (CC), simple 

form of imputation (unconditional or conditional mean imputation). This is often done 

without questioning the possible influence of these assumptions on the final results 
[21]. 

 

In this subsection, we intend to review briefly some simple methods used in practice 
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in handling missingness problems, though some are invalid statistically. Validity of 

many of these methods revolves round MCAR assumptions or more strict 

assumptions. A popular solution for dealing with incomplete longitudinal data is the 

use of likelihood-based methods due to their validity under the assumption of missing 

at random (MAR). Therefore, multiple imputations will be introduced in this 

subsection. 

4.5.1. Complete Case Analysis (CC) 

In the CC analysis, the analysis is restricting to those subjects with no missing data on 

variable of interest and assumes MCAR. This method thus uses the entire subjects 

which have complete observations. This method has clear advantages. It is simple to 

describe and almost any software computer package can be used to analyze it since 

there is no missing data. The major disadvantage of this method is that it ignores the 

possible systematic differences between complete cases and incomplete cases hence 

leads to substantial loss of information and getting biased results especially when the 

missingness mechanism is MAR rather than MCAR.  

4.5.2. Imputation Techniques  

An alternative way to obtain a data set on which the complete data method can be 

used is to fill in rather than delete [21]. Among those methods used are Unconditional 

Mean Imputation (UMI) and Buck’s method or Conditional mean imputation. The 

ideal behind a missing value unconditional mean imputation is to replace a missing 

value with the average of the observed values on the same variable over the other 

subjects. The term unconditional refers to the fact that one does not use information on 

the subject for which an imputation is generated. The method is useful for the 

continuous outcome but problematic in binary outcome. 

4.5.3. Multiple Imputation Techniques 

Multiple imputation methods proposed by Rubin [21] is a technique to replace missing 
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values with a set of M plausible values, that is, values generated from the distribution 

of one’s data. This is an alternative technique to direct likelihood and Weighted GEE 

and, at least in its basic form, requires the missing mechanism to be MAR. However, 

the technique can equally be applied under the MNAR assumption [21]. The multiple 

imputation technique has three basic phases: 

 

1) The missing values are filled in M times to obtained M complete data sets; 

2) The M complete data sets are analyzed by using standard procedure; 

3) The results from M analyses are combined to a single inference. 
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Chapter 5 

Result 

5.1 Internal Pilot Studies with the EM Algorithm for SSR 

As we discussed before, there are two methods suitable in this case. Therefore, we 

applied the two methods into the dataset. A randomized clinical trial should be 

planned to compare two groups: one is control group and the other one is treatment 

group. We suppose that the independent and identically distributed observations be 

obtained from normal distribution with mean values ∆ VAS Treatments, ∆VAS Control and 

unknown but common standard deviation (S.D.)σ . It was decided that a two-sample 

t-test should be used to compare the two groups with a significant level of α =0.05. 

The null hypothesis H0: ∆VAS TREATMENT  = ∆VAS Control should be tested against the 

two-sided alternative HA: ∆VAS TREATMENT ≠ ∆VAS Control. The sample size should be 

high enough to detect a clinically relevant difference of at least ∆diff =1 point of the 

efficacy variable between the two groups, with a power of at least 8.01 =− β . 

However the value of σ  is general unknown. From a previous study with 52int =n  

patients an estimated S.D. of treatment group and control group are s1=1.43 and 

s2=1.63 respectively. Using this information, it was calculated that 240 patients 

should be included into the trial, with N0=120 patients in each group. Then the 

investigators set P=0.1, 0.05, 0.03 and 0.01 to determine the different sample size for 

the internal pilot study. The P is the probability of including more patients in the 

internal pilot study than is needed for the entire study (2N0 patients).  Then from 

internal pilot study data, the estimate S.D. is obtained at the interim stage and with 

that 1s  the total sample size is re-estimated. The result is shown in the Table 1. 
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Table 1: The Results of SSR. Using Internal Pilot Study with EM 

P A Internal Pilot 

SS(2n0) 

The Estimate 

S.D. 

The Final SS 

(2N1) 

0.01 0.65903 158 3.2347165 334 

0.03 0.71218 170 3.1895157 324 

0.05 0.74269 178 3.1858782 324 

0.1 0.79321 190 3.1911841 326 

 

From Table 1, we could see that when the sample size of the internal pilot study 

increased, the estimated S.D. decreased. That is because the more information we 

obtained the variability will be smaller. Therefore the final total sample size decreased. 

However since there is 10% of patients with missing information in the dataset for 

internal pilot study (composed by 190 patients), so in actually there is only 170 

patients for the internal pilot study, and the estimated S.D. goes up to 3.2011841. To 

detect the effect on the type I error rate, the adjust type I error was calculated. The 

results are displayed in Table 2. It can confirm that this approach has a negligible 

effect on the type I error and the study power was attained to the desired level. 

 

Table 2: The Result for Internal Pilot Study with EM and Adjust Alpha 

P A Internal Pilot SS(2N0) The Final SS (2N1) adjα  Power 

0.01 0.65903 158 334 0.0484 0.8 

0.03 0.71218 170 324 0.0490 0.8 

0.05 0.74269 178 324 0.0493 0.8 

0.1 0.79321 190 326 0.0496 0.8 

 

5.2 Conditional Rejection Probability (CRP) Principle for SSR 

The second method which is the conditional rejection probability principle can be 

applied to the problem of the sample size recalculation using interim estimates of 

parameters. In order to re-estimate the sample size, we have to specify an unplanned 

interim analysis. Suppose we have 158 patients, and then we need to specify an 
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unplanned interim analysis at time point of 0.658. The boundaries of this design are 

asymmetric and can be obtained from the SAS/IML program SPEND. The lower 

nominal alpha levels at information 0.658 and 1 are 0.01 and 0.025, respectively, and 

the upper nominal alpha level is 0.01 and 0.025, respectively. The lower and upper 

characteristic draft values which is calculated from the SAS/IML program SPEND for 

8.01 =− β  are -2.846686=−δ  and 2.8466857=+δ . To adapt the sample size to the 

interim variance estimate of 844671.012
1 =s , one may insert the 

value 844671.012 =σ , 0.1=∆  and 2.8466857=δ  into the sample size 

formula rrn /)1(/ 2222 +∆= σδ , resulting in 80=n  patients per group. This means that 

160 additional patients will have to be randomized to achieve a conditional 

power 8.0≥  under the design. And the different interim analyses were conducted at 

the different time points. The result was shown in Table 3. 

 

Table 3: The Results of SSR. Using CRPs 

SS of Interim 

Analysis 

Time of Interim 

Analysis 

The Estimate 

S.D. 

Additional SS The Final 

SS(2N1) 

158 0.658 3.2931249 80*2 318 

170 0.708 3.2459700 76*2 322 

178 0.742 3.2419075 75*2 328 

190 0.792 3.2480500 76*2 342 

 

From Table 3, the estimated S.D. decreased when the sample size for the interim 

analyses increased resulting in the additional sample size for the design decreased. 

However, the total sample size is sum of the sample size for the interim analyses and 

additional sample size for the design, even if the additional sample size decreased, 

since the sample size for the interim analyses increased, the total sample size still 

increased for later interim analyses. One thing we have to notice is that there is 10% 

missingness in the final dataset, therefore the estimated S.D. increase to 3.2480500. 
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5.3 Missingness 

The missing or incomplete data are an important factor in our study. In statistical 

terminology, missingness in the data is assumed to be three types: 1) Missing 

completely at Random (MCAR); 2) Missing at random and 3) Missing not at random 

(MNAR). In order to check the missing data mechanism, the complete case, simple 

imputation and multiple imputations are applied here. 

 

The data used in this analysis suffer some missingness which is the main objective of 

this analysis where attention is basically given to handling of missingness. In 

longitudinal data, missing values are inevitable, so much attention have being given to 

series of approaches that can be used in analyzing such data. Among several 

approaches that are found widely in applied statistics are complete case analysis (CC), 

unconditional mean imputation (UMI). Most standard techniques that are available 

today and supported by literatures is multiple imputation [21]. 

 

From the pattern of the missingness presented in Table 4 we observe that different 

missing pattern. The most of the profiles are complete (90%), only 0.5% exhibit 

missingness at the baseline and follow up 6 months. The remaining 9.5% representing 

the patients have one missing value. Since only one patient misses both two 

measurements, this patient can be said to be relatively negligible. 

 

Table 4: Overview of Missingness Pattern and Frequency with Which They Occur 

 Measure Occasion 

Pattern Baseline 6M Freq. Percentage 

Complete O O 170 90% 

M M 1 0.5% 

O M 16 8% Missingness 

 M O 3 1.5% 

• ‘O’ indicates observed, and ‘M’ indicate missing 
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The analyses start with simple methods and extend to standard methods of handling 

missingness such as multiple imputations since CC and UMI based on the assumption 

of MCAR, while MI is based on MAR assumption. The results of the simple methods 

and multiple imputation for internal pilot study with EM are shown in Table 5.  

 

In the simple methods, it is observed that estimated S.D. for CC is higher than that of 

UMI. This may be as a result of less observation where information is reduced by 

deleting the patients with missing values. The UMI produce a parameter estimate that 

is pretty close to the MI. This may arise as a result of dealing with complete 

observations where information is exaggerated by adding unavailable values. Though 

this method is not totally suitable to handle missingness problem, however, it gives 

insights into what could be expected when using methods like multiple imputation. 

 

Table 5: The Results of SSR. Using CC,UMI and MI for Internal Pilot Study with EM 

P Internal Pilot 

SS (2N0) 

The Final SS Using 

CC (S.D.) 

The Final SS Using 

UMI (S.D.) 

The Final SS Using 

MI (S.D.) 

0.1 190 326(3.201184) 316(3.1461626) 316(3.1461626) 

 

The same procedure was used to deal with the missingness in CPRs. The results of the 

simple methods and multiple imputation of for CRPs are shown in Table 6 blow. The 

similar result was obtained, in the simple methods; it is observed that estimated S.D. 

for CC is higher than that of UMI. The estimated S.D. for the UMI is close to the MI.  

 

Table 6: The Results of SSR. Using CC,UMI and MI for CRPs 

SS of Interim 

Analysis 

Time of Interim 

Analysis 

The Final SS 

Using CC (S.D.)

The Final SS Using 

UMI (S.D.) 

The Final SS 

Using MI (S.D.) 

190 0.792 342(3.2580500) 336(3.2011117) 340(3.23112) 

 

The mean profiles of the VAS score for two groups after using CC, UMI, MI methods 

were drawn in Figure1. The results obtained from Figure 1 shows that these analyses 
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are strongly believed to be valid under MCAR for CC and simple imputations and 

MAR for MI, since the mean for two groups are no difference using CC, UMI and MI 

when dealing the missingness. 

 

 
Figure 1: Mean Profiles :( a) CC          (b) UMI                   (c) MI 

 

To detect the type of the missingness, model on dropout is fitted with previous 

observation as a covariate. Table 7 shows that the probability of dropout is a function 

of previous observation. This implies that the probability of patient dropping out from 

the study depend on his/her previous observations (observed values). In conclusion, 

we may say that there is evidence for Missing at Random (MAR) of this dropout 

pattern. 

 

Table 7: Parameter Estimates (Standard Errors) of the Dropout Model 

Parameter Estimate (s.e.) Pr > ChiSq

Intercept -2.6559 (0.7108) 0.0002 

PREV -0.0521(0.02508) 0.0422 
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Chapter 6 

Simulation Study 
From the result showed in the last section, both internal pilot study with EM and CRP 

methods are believed to be valid .In this section, the simulations were done in order to 

select the best method in this particular trial. We simulate a longitudinal data that 

consists of the baseline and follow up 6 months of the patient's back-pain score on a 

Visual Analogue Scale (VAS). The score was conducted on the beginning and 6 

months after surgical operation simultaneously. Therefore, the difference of the 

baseline and 6 months of the patient's back-pain score on a VAS is equal to 

VASbaseline-VASFU6M. And the true variance of this difference will be 

),(2)()()( FBFBFB VVCovVVarVVarVVVar −+=− , therefore, given the different values of 

variance for VASbaseline and VASFU6M, we will obtain the different values of the 

variance for that difference VAS. Based on the true variance, the planned the sample 

can be calucated using the equation (1). 1000 runs were made based on the given 

variance for VASbaseline and VASFU6M, then two methods is used to re-estimate the 

variance. Using that re-estimated variance, the total sample size is re-calculated. Table 

8 summarizes the results of the planned sample size and final total sample size 

respectively and re-estimated variance based on the simulated data using two 

methods.  

 

Table 8: The Results of Estimated S.D. for Internal Pilot Study with EM and CRPs 

SS of Interim 

Analysis 

The Planned SS 

(True σ ) 

The Final SS Using 

EM(S.D.) 

The Final SS Using 

CRPs(S.D.) 

190 538(4.14108681) 520 (4.0755494) 530(4.12835462) 

190 350(3.33889203) 312(3.07732632) 346(3.3106852) 

190 226(2.67361179) 210(2.4804382) 274 (2.6453087) 

190 100(1.77431677) 190(1.6413256) 230 (1.7643982) 
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The simulation has shown that the difference between re-estimated variance and true 

value in CRPs is smaller than the values in internal pilot study with EM. However, we 

could not conclude the CRPs is better than internal pilot study with EM, since when 

we re-estimate the variance, there is variability for this parameter estimator. 

Consequently the mean squared error (MSE) of an estimator, which is one of many 

ways to quantify the amount by which an estimator differs from the true value of the 

quantity being estimated, is considered to compare in our case. The results are 

displayed in Table 9. 

 

Table 9: The Results of MSE for Internal Pilot Study with EM and CRPs 

SS of Interim 

Analysis 

The Planned the SS 

(True σ ) 

The Final SS Using 

EM(MSE) 

The Final SS Using 

CRPs(MSE) 

190 538(4.14108681) 520 (1.1288848) 530 (1.107625) 

190 350(3.33889203) 312 (0.7941365) 346 (0.716325) 

190 226(2.67361179) 210 (0.4843295) 274 (0.3716128) 

190 100(1.77431677) 190 (0.103782) 230 (0.0858109) 

 

From Table 9, we could find the values of MSE for CRPs is smaller than the MSE 

value in internal pilot study with EM. Hence, we could conclude the conditional 

rejection principle is better to use for recalculating the sample size in our trial. 

 

Once the unplanned interim analysis is recommended, an important issue is to 

determine the most appropriate time to perform the interim analysis. A simulation 

analysis with 1000 runs is made based on a given variance for VASbaseline and VASFU6M, 

and with 240 patients in each simulation. Since an unplanned interim analysis is 

recommended, the study power is also one thing we need to specify here which equals 

the desired power of 80%. Moreover as we discussed before the type I error rate will 

not be inflated in this approach. The result for the estimated S.D. based on the interim 

analysis and the final sample size is shown Table 11. 
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Table 11: The Result for Different Interim Analysis Based on the Different Variance 

True σ  

Time of 

Interim 

Analysis 

SS of 

Interim 

Analysis 

The 

Estimate 

S.D. 

MSE. 
Additional 

SS 

The Final 

SS(2N1) 

4.14108681 0.1 24 3.5570415 2.400608 110*2 244 

 0.2 48 3.7865983 2.123282 110*2 276 

 0.3 72 3.8313465 2.007334 114*2 292 

 0.4 96 3.9968759 1.745249 121*2 336 

 0.5 120 4.0567875 1.466706 140*2 400 

 0.6 144 4.0887694 1.383880 140*2 424 

 0.7 168 4.1065841 1.178655 165*2 498 

 0.8 192 4.1283546 1.107625 169*2 530 

 0.9 216 4.1353987 1.067421 168*2 550 

1.77431677 0.1 24 1.6121088 0.335972 22*2 58 

 0.2 48 1.6822311 0.196261 26*2 100 

 0.3 72 1.7053298 0.158579 26*2 124 

 0.4 96 1.7205747 0.133036 26*2 148 

 0.5 120 1.7453701 0.117292 24*2 168 

 0.6 144 1.7470832 0.107148 20*2 184 

 0.7 168 1.7547216 0.092197 23*2 214 

 0.8 192 1.7643982 0.085074 20*2 232 

 0.9 216 1.7701385 0.076534 21*2 258 

 

From Table 11, we can see, the more patients you take into account in the interim 

analysis, the estimated S.D. will be closer to the trueσ . At the time point 0.5 to 

including an unplanned interim analysis, the estimated S.D. is closer to the true σ . 

Moreover the estimated S.D. is closer to the true σ  for the later interim analysis 

times. And MSE is also smaller for the later interim analysis. Therefore, to choose the 

most appropriate time to include an unplanned interim analysis, there is no strict 

criterion. However, it is better to consider this unplanned interim analysis after the 

time point 0.5. 
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Chapter 7 

Conclusion and Discussion 
An internal pilot study with EM algorithm and a general principle for statistical 

design adaptations during the course of an experiment have been presented 

respectively. The first proposed method used the data from the first ‘few’ patients 

entered in the trial to estimate the variance and thus to recalculate the required sample 

size. And this method is robust the occurrence of variance heterogeneity and of block 

effects, for example in multi-center trials. However, this approach has a negligible 

effect on the Type I error rate. The other proposed method is called CRPs, which 

allows the researcher to include an interim look at any time during the study in 

progress, to re-estimate the sample size. The pre-specified Type I error level will be 

maintained. The method can be applied repeated during the course of the trial. It is 

based upon calculation of the conditional rejection probability (CRP) of the initial 

study design under the null hypothesis. Both methods can allow the increase or 

reduction of the sample size. 

 

In longitudinal data, missing values are inevitable, so much attention have being given 

to series of approaches that can be used in analyzing such data. The data used in this 

trial suffer some missingness. Therefore, to handle the missingness is important in our 

trial. The two approaches widely used are complete case analysis (CC) and 

unconditional mean imputation (UMI). Most standard techniques that are available 

today and supported by literatures are multiple imputations [21]. However, the results 

obtained from these analyses are strongly believed to be valid under MCAR for CC 

and simple imputations and MAR for standard methods such multiple imputations. To 

detect the type of the missingness, model on dropout is fitted with previous 

observation as a covariate. From the model, we may say that there is evidence for 

Missing at Random (MAR) of this dropout pattern. 
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Finally, in order to compare the two methods for SSR, a simulation analysis was 

studied here. By comparing the MSE of the variance estimator, we could conclude the 

conditional rejection probability principle (CRPs) is better to use for recalculating the 

sample size in our trial. From the simulations, even we cannot give the strict criterion 

to choose the most appropriate time to include an unplanned interim analysis. We may 

suggest that it is better to consider this unplanned interim analysis after half of the 

initial sample size has been reached. Therefore, in our trial, the recalculated sample 

size would be 318, which means the additional 78 patients should be include into the 

trials. However, one thing we should notice is that design changes during the course 

of the trial always need careful considerations, especially when an unplanned interim 

look is preformed. We recommend that before an interim look is performed the exact 

procedure should be fixed in the study protocol or in an amendment. If a design 

modification is made, a protocol amendment should be made immediately including 

the reasons for changing the design and the complete description of the new design.  
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Appendix 
data varcov1;/*The D matrix of the random slope and intercept*/ 

           input m1-m2; 

           cards; 

         5.7787 4.2046  

         4.2046 5.7787  

   ; 

        /* Store the mean vector in a data set */ 

        data means1; 

           input m1; 

           cards; 

        0 

        0 

        ; 

run; 

 

%macro generate(means=,varcov=,means1=,varcov1=,nsam=,indi=);/*Macro 

to generate sample*/ 

 

%do sample=1 %to &nsam; 

 

proc iml worksize=100; 

   use &varcov1;            /* read variance-covariance matrix */ 

   read all into cov; 

   use &means1;             /* read means */ 

   read all into mu; 

   v=nrow(cov);            /* calculate number of variables */ 

   n=240; 

   seed = &sample; 

   l=t(root(cov));         /* calculate cholesky root of cov matrix */ 

   z=normal(j(v,n,seed));/* generate nvars*samplesize normals */ 

   x=l*z;                  /* premultiply by cholesky root */ 

   x=repeat(mu,1,n)+x;    /* add in the means */ 

   tx=t(x); 

   create samplee from tx;  /* write out sample data to sas dataset */ 

   append from tx; 

 

data samplee; 

set samplee; 

sample=&sample; 

base=col1; 

fu6m=col2; 
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id=_n_; 

drop col1 col2; 

run; 

  

   PROC APPEND BASE= summaryw DATA=samplee  FORCE;run; 

    proc datasets nolist; 

      delete sample; 

      quit; 

%end; 

data verttlevels; 

set summaryw; 

array yy(2) base fu6m; 

do i=1 to 2; 

time=i; 

error=yy(i); 

output; 

end; 

run; 

data verttlevels1; 

set verttlevels; 

trt=0; 

if id>95 then trt=1; 

beta0= 10.7969; 

beta1=-1.5307; 

beta2=-5.2014; 

beta3=1.5509; 

response=beta0+beta1*trt+(beta2)*time+beta3*trt*time+error; 

keep response sample id time trt; 

run; 

data base; 

set verttlevels1; 

baseline=response; 

where time=1; 

drop response; 

run; 

proc sort data=base; 

by sample id; 

run; 

data foub; 

set verttlevels1; 

folloup=response; 

where time=2; 

drop response; 

run; 
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proc sort data=foub; 

by sample id; 

run; 

data final&indi; 

merge base foub; 

by sample id ; 

diff=baseline-folloup; 

drop time; 

run; 

proc datasets nolist; 

delete base foub verttlevels verttlevels1 samplee summaryw; 

quit; 

%mend; 

%generate(means=means,varcov=Ar1rho,means1=means1,varcov1=varcov1,nsa

m=5,indi=2); 

/*EM SSR*/ 

%macro ssem(nsim=,dsname=,simulate=,varname=); 

    /*Defining local macro variables*/ 

    %local maxdiffs        /*Max difference for std between iterations*/ 

            maxdiffm       /*Max difference for means between iterations*/ 

            maxiter        /*Max number of iterations*/ 

      c          /*Constant to ealeulate initial values*/ 

            theta         /*Probability sample member in treatment groupX*/ 

           simulate       /*Simulate data or read data froma SAS dataset*/ 

            dsname        /*Data set name if data were reading from a SAS 

dataset*/ 

            varname       /*variable name to analyse if data were reading 

from a SAS dataset*/ 

             nsim         /*Number of simulations*/ 

            ngroup        /*Sample size Per group*/ 

             myx          /*Mean for treatment group X*/ 

             myy          /*Mean for treatment group Y*/ 

             std          /*Standard deviation for simulated data*/ 

            pages         /*Specifies the page size of SAS output*/ 

           lines;        /*Specifies the line size of SAS output*/ 

/*Initialisation*/ 

%let maxdiffs=0.001;       /*Reeommended by Gould and Shih*/ 

%let maxdiffm=0.001;       /*Reeommended by Gould and Shih*/ 

%let maxiter=1000;          /*Reeommended  by Gould and Shih*/ 

%let  c=5.71;               /*Reeommended  by Gould and Shih*/ 

%let theta=0.5;            /*P(sample member in treatment group X)=theta 

*/ 

%let pages=80; 
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%let lines=120; 

 

proc  iml; 

  do nsim=1 to  &nsim; 

      /*Generating variates for simulation or reading from SAS dataset*/ 

      %if &simulate=1 %then %do; 

                                ngroup=&ngroup; 

                                 z=j(2*ngroup,1,.) 

                                 do j=1 to ngroup; 

                                    z[j,1]=&myx+&std*rannor(-1); 

                                    end; 

                                 do j=ngroup+1 to 2*ngroup; 

                                    z[j,1]=&myy+&std*rannor(-1); 

                                    end; 

                                %end; 

                        %else %do; 

                                    use &dsname; 

                                    read all var{&varname} into z 

where(&varname^=.); 

                                    ngroup=nrow(z)/2; 

                            %end; 

 /*Sorting z*/ 

  help=z; 

  z[rank(z),1]=help; 

/*Initial valueo for the EM algorithm from linear regression*/ 

 q=j(2*ngroup,1,.); 

 expect=j(2*ngroup,1,.); 

 iter=1;   /*First iteration*/ 

do i=1 to 2*ngroup; 

        q[i,1]=probit((i-0.5)/(2*ngroup)); 

      end; 

      qbar=q[:]; 

      zbar=z[:]; 

      b=(t(q)*z-2*ngroup*qbar*zbar)/(t(q)*q-2*ngroup*qbar**2); 

      a=zbar-b*qbar; 

 

      s_e=b; 

      var_e=s_e**2; 

      myx_e=a-b/&c; 

      myy_e=a+b/&c; 

/*Start EM algorithm*/ 

      do until(iter>&maxiter|(diffs<=&maxdiffs & diffmyx<=&maxdiffm & 

diffmyy<=&maxdiffm)); 
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/*E step*/ 

do i=1 to 2*ngroup; 

   

expect[i,1]=1/(1+(1-&theta)/&theta*exp((myx_e-myy_e)*(myx_e+myy_e-2*z

[i,1])/(2*var_e))); 

          end; 

/*M step*/ 

/*Maximum likelihood estimates*/ 

myx_m=(t(z)*expect)/sum(expect); 

myy_m=(t(z)*(j(2*ngroup,1)-expect))/(2*ngroup-sum(expect)); 

var_m=(t((z-myx_m*j(2*ngroup,1))##2)*expect+t((z-myy_m*j(2*ngroup,1))

##2)*(j(2*ngroup,1)-expect))/(2*ngroup);  

s_m=sqrt(var_m); 

/*Initialisation for the next iteration*/ 

diffs=abs(s_m-s_e); 

diffmyx=abs(myx_m-myx_e); 

diffmyy=abs(myy_m-myy_e); 

s_e=s_m; 

var_e=var_m; 

myx_e=myx_m; 

myy_e=myy_m; 

iter=iter+1; 

end;     /*End EM algorithm,do until*/ 

iter=iter-1;   /*Number of iterations*/ 

/*Creating a SAS file*/ 

if nsim=1 then create output var{nsim s_m diffs diffmyx diffmyy iter 

ngroup}; 

 append; 

end; 

quit; /*quit proc iml*/ 

/*Set print options*/ 

options pageno=1 nodate ls=&lines ps=&pages; 

title4 'VARIANCE ESTIMATION FOR SAMPLE SIZE RE_ESTIMATION'; 

title7; 

%if &simulate=1 

    %then %do; 

                footnote "SIMULATED DATA:MEAN GROUP X=&myx, 

                           MEAN GROUP Y=&myy,STD=&std"; 

          %end; 

    %else %do; 

              footnote "SAS DATASET:%upcase(&dsname), 

                         VARIABLE:%upcase(&varname)"; 

          %end; 

 



 37

/*Printing results*/ 

proc report data=outPut nowindows headline headskip split='!' spacing=2 

ls=&lines  ps=&pages; 

  column nsim s_m('_DIFFERENCE OF_' diffs diffmyx diffmyy)iter ngroup; 

  define nsim         /order width=10 left'SIMULATION'; 

  define  s_m         /width=10    'STD DEV'; 

  define diffs       /width=10 f=8.4  'STD DEV'; 

  define diffmyx     /width=12 f=8.4  'MEAN GROUP X'; 

  define diffmyx     /width=12 f=8.4  'MEAN GROUP Y'; 

  define iter        /width=10  'NO.OF!ITERATIONS'; 

  define ngroup      /width=16  "'PATIENTS'!PER GROUP AT!INTERIM 

ANALYSIS"; 

run; 

 

%if &nsim>1 

        %then %do; 

                  /*Statistics of the estimated standard deviation*/ 

                    proc means data=output noprint; 

                      var s_m; 

                      output out=stat n=nsd mean=mwsd std=stdsd min=minsd 

max=maxsd; 

                       run; 

                    title7 'SUMMARIES OF THE ESTIMATED STANDARD DEVIATION'; 

                    proc report data=stat center nowindows headline headskip 

split='!' spacing=2 ls=&lines ps=&pages; 

                    column nsd mwsd stdsd minsd maxsd; 

                    define nsd       /width=13 left'SIMULATIONS'; 

                    define mwsd      /width=15 'MEAN OF STD DEV'; 

                    define stdsd     /width=8  'STD'; 

                    define minsd     /width=8  'MIN'; 

                    define maxsd     /width=8  'MAX'; 

                 run; 

              %end; 

      title; 

    footnote; 

data output1; 

set output; 

keep S_M; 

run; 

%mend ssem; 

%ssem(nsim=1,dsname=sample10,simulate=2,varname=diff) 

PROC IML; 

START SPEND(time, spend_low, spend_upp, beta, alpha_low, alpha_upp, 

delta_low, delta_upp); 
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epsilon=0.00000001; 

Faktor=1.05; 

 

m=NCOL(time); 

time=(1/time[1])*time; 

cv_low=SQRT(time)#PROBIT(spend_low); 

cv_upp=SQRT(time)#PROBIT(1-spend_upp); 

 

DO k=2 TO m; 

 tscale=time[1,2:k]-time[1,1:k-1]; 

 size=0; 

 cl=SQRT(time[k])*PROBIT(spend_low[k]-spend_low[k-1]); 

 cu=cv_low[k]; 

 DO UNTIL (spend_low[k]-epsilon<size & size<=spend_low[k]); 

  cv_low[k]=(cl+cu)/2; 

  bound=cv_low[1,1:k]//cv_upp[1,1:k]; 

  CALL SEQ(prob,bound) TSCALE=tscale EPS=epsilon; 

  size=SUM(prob[1,1:k]); 

  IF size<spend_low[k] THEN cl=cv_low[k]; ELSE cu=cv_low[k]; 

 END; 

 size=0; 

 cl=cv_upp[k]; 

 cu=SQRT(time[k])*PROBIT(1-(spend_upp[k]-spend_upp[k-1])); 

 DO UNTIL (spend_upp[k]-epsilon<size & size<=spend_upp[k]); 

  cv_upp[k]=(cl+cu)/2; 

  bound=cv_low[1,1:k]//cv_upp[1,1:k]; 

  CALL SEQ(prob,bound) TSCALE=tscale EPS=epsilon; 

  size=1-prob[2,k]-SUM(prob[1,1:k-1]); 

  IF size<spend_upp[k] THEN cu=cv_upp[k]; ELSE cl=cv_upp[k]; 

 END; 

END; 

 

bound=cv_low//cv_upp; 

size=0; 

dl=(PROBIT(1-spend_low[m])+PROBIT(1-beta))/SQRT(time[m]); 

du=dl; 

fdl=1; 

fdu=1; 

DO UNTIL (beta-epsilon<size & size<=beta); 

 delta_low=(dl+du)/2; 

 bound_delta=bound+delta_low*(time//time); 

 CALL SEQ(prob,bound_delta) TSCALE=tscale EPS=epsilon; 

 size=1-SUM(prob[1,1:m]); 
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 IF size<beta 

  THEN DO; du=delta_low; fdu=0; END; 

  ELSE DO; dl=delta_low; fdl=0; END; 

 IF fdl=1 THEN dl=du/Faktor; 

 IF fdu=1 THEN du=dl*Faktor; 

END; 

size=0; 

dl=(PROBIT(1-spend_upp[m])+PROBIT(1-beta))/SQRT(time[m]); 

du=dl; 

fdl=1; 

fdu=1; 

DO UNTIL (beta-epsilon<size & size<=beta); 

 delta_upp=(dl+du)/2; 

 bound_delta=bound-delta_upp*(time//time); 

 CALL SEQ(prob,bound_delta) TSCALE=tscale EPS=epsilon; 

 size=prob[2,m]+SUM(prob[1,1:m-1]); 

 IF size<beta 

  THEN DO; du=delta_upp; fdu=0; END; 

  ELSE DO; dl=delta_upp; fdl=0; END; 

 IF fdl=1 THEN dl=du/Faktor; 

 IF fdu=1 THEN du=dl*Faktor; 

END; 

cv_low=(time##(-0.5))#cv_low; 

cv_upp=(time##(-0.5))#cv_upp; 

alpha_low=PROBNORM(cv_low); 

alpha_upp=1-PROBNORM(cv_upp); 

delta_low=-SQRT(time[m])*delta_low; 

delta_upp=SQRT(time[m])*delta_upp; 

FINISH; 

time={0.791 1}; 

spend_low={0.01 0.025}; 

spend_upp={0.01 0.025}; 

beta=0.2; 

 

CALL SPEND(time, spend_low, spend_upp, beta, alpha_low, alpha_upp, 

delta_low, delta_upp); 

 

PRINT alpha_low alpha_upp delta_low delta_upp; 

 

QUIT; 
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