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Abstract

Recent technologic developments in mobile location aware devices allow
the movement of objects to be captured and stored in databases. The type
of data describing this movement is called a trajectory.

A trajectory can be observed from a geometric point of view, a curve
through space, but also from a semantic point of view, by using background
information to interpret its course. This allows us to define semantically en-
riched trajectories [dMR05, SPD+08], which are annotated with background
information resulting in a list of stops and moves, stops being locations of
importance to understand the meaning of trajectories, and moves describing
the transitions between these stops.

Essentially, these semantically enriched trajectories show movement be-
havior. As any type of behavior shows patterns, it is interesting to find
these in movement. One option to analyze trajectories is association analy-
sis, a group of techniques with the purpose of finding rules describing found
patterns.

Apriori [AIS93] is one of the most important association analysis tools.
This algorithm has already been adapted to process sequential data, a class
of data models trajectories belong to, resulting in AprioriAll [AS95].

The goal of this work is to describe an Apriori implementation that is
adapted to the specifications of semantically enriched trajectories. Our al-
gorithm focuses on the specific nature of trajectories by defining a special
data model, inspired on the Mobility Patterns introduced in [dMR05]. This
model will include the use of wildcards in defining frequent sequences as to
increase its flexibility and semantics.
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Nederlandstalige samenvatting

Inleiding

De ontwikkeling van GPS en tracking systemen heeft in combinatie met
database technologie de mogelijkheid gecreëerd om bewegingen van objecten
te observeren en op te slaan. De bewegingen, beschreven als trajecten, worden
op zulk een grote schaal vergaard, dat het moeilijk is om deze te analyseren.
Er bestaat echter een geheel van technieken dat toegespitst is op het anal-
yseren van en zoeken van patronen in een grote hoeveelheid data, namelijk
data mining.

Beweging wordt beschreven door middel van trajecten. Deze kunnen
vanuit verschillende standpunten worden bekeken, vanuit een geometrisch
standpunt, maar ook vanuit een semantisch standpunt, waarop meer gefo-
cust wordt op het motief of gedrag dat de beweging veroorzaakt.

Data mining is een onderdeel van Knowledge Discovery in Databases [HK00,
TSK05], een erg uitgebreid geheel van technieken, met als doel grote hoeveel-
heden data te onderzoeken zodat patronen kunnen worden gevonden. Eén
groep technieken dat deel uit maakt van data mining is associatie analyse,
dewelke associaties of correlaties zoekt in data.

In deze thesis trachten we een associatie analyse techniek te definiëren die
gericht is op het zoeken van patronen in een semantische benadering van
trajecten en zich daartoe richt op het specifieke karakter van dit type data.

Mobiliteitsdata

Mobiliteitsdata, bestaande uit trajecten, beschrijven de beweging van ob-
jecten. Trajecten worden geformuleerd als een continue functie die voor elk
tijdstip coördinaten geeft in de beschouwde dimensies, zoals beschreven in
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Definitie 1 en getoond in Figuur 2.1. Wanneer we echter deze trajecten willen
beschrijven in een database, is dit model van een continue functie moeilijk
bruikbaar.

Daarom wordt een traject meestal voorgesteld als een reeks van traject
samples, voorgesteld in Definitie 2 en Figuur 2.2. Deze punten zijn van de
vorm (xi, yi, ti), dewelke coördinaten en een timestamp bevatten die een mo-
mentopname van het traject beschrijven. Op basis van deze traject samples
kan met behulp van lineaire interpolatie een benadering worden opgesteld
van het traject, zoals Figuur 2.3 weergeeft.

Een traject kan vanuit verschillende standpunten worden beschouwd, va-
nuit een strikt ruimtelijk standpunt, waarbij enkel de geometrische aspecten
van het traject worden in acht genomen, maar ook vanuit een semantisch
standpunt, waar de motieven die tot het traject leiden het traject worden
beschouwd. Door gebruik te maken van achtergrondinformatie kan een tra-
ject in een zekere context worden ‘gëınterpreteerd’. Een mogelijk voorbeeld
is het traject van een toerist in een stad, waar met behulp van kennis van
bezienswaardigheden en andere toeristische locaties het traject niet wordt
aanzien als een geheel van coördinaten, maar eerder een opeenvolging van
locaties.

Het is deze semantische interpretatie van trajecten waar we op concen-
treren. Er werden reeds algoritmen beschreven die toelaten een traject
bestaande uit traject samples om te zetten naar een semantisch verrijkt model
[dMR05, SPD+08]. Dit model bestaat uit een lijst van stops en moves waarin
in volgorde de locaties worden opgesomd. We beschouwen twee technieken
gericht op het verrijken van trajecten: SMoT en CB-SMoT.

Het SMoT algoritme [ABK+07], omschreven in Listing 2.1 en gedemon-
streerd in Figuur 2.4, tracht een traject te interpreteren met behulp van een
applicatie, dewelke in essentie een opsomming is van candidate stops, locaties
die voor deze specifieke toepassing interessant zouden kunnen zijn en toelaten
het traject te interpreteren. Elk van deze locaties wordt voorzien van een
minimum duur, deze laat toe een onderscheid te maken tussen een ‘bezoek’
of een ‘toevallig voorbij gaan’ van een candidate stop. Het resultaat is een
lijst van stops en een lijst van moves.

CB-SMoT, voorgesteld in [PBKA08] en beschreven in Listing 2.2, is een
gelijkaardig algoritme, met het verschil dat deze de verantwoordelijkheid van
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het bepalen van de candidate stops niet meer volledig bij de gebruiker plaatst,
maar ook zelf naar potentiële stops op zoek gaat. Dit wordt mogelijk door
er vanuit te gaan dat indien een bewegend object een interessante locatie be-
nadert of heeft bereikt, deze zal vertragen, en dat bijgevolg de sample punten
dichter bij elkaar zullen liggen. Door clustering toe te passen op deze punten
kunnen gebieden met een vertraagde snelheid worden herkend, zoals Figuur
2.5 weergeeft. Deze kunnen dan worden herkend als een gedefinieerde can-
didate stop, of als een nieuwe ‘unknown’ stop, waarbij het aan de gebruiker
wordt overgelaten om te beslissen of deze ‘unknown’ stop al dan niet als een
echte stop beschouwd moet worden.

In het verdere verloop van de thesis, en ook de implementatie, zullen we
enkel gebruik maken van SMoT, gezien deze sneller is dan CM-SMoT, en we
geen behoefte hebben aan de mogelijkheden van CB-SMoT.

Sequentiële patronen zoeken

Een volgende stap is de notie van semantisch verrijkte trajecten gebruiken
als basis voor het zoeken van patronen.

Associatie analyse heeft, vanuit een traditioneel standpunt, het doel fre-
quente itemsets te vinden. Door analyse van transacties, dewelke worden
omgezet naar itemsets, kunnen we groepen van items identificeren die samen
regelmatig voorkomen. Het doel van deze analyse en het zoeken van de fre-
quente itemsets, is het formuleren van associatie regels, van de vorm

A → B(sup = x, con = y),

die de ontdekte kennis omschrijft. Een regel omschrijft dat een niet-lege
itemset A in een transactie, de aanwezigheid van een niet lege itemset B
impliceert. Elke regel wordt geassocieerd met een support sup en confidence
con, dewelke respectievelijk uitdrukken hoe interessant en hoe betrouwbaar
deze regel is. Het definiëren van een minimum support en confidence laten
de gebruiker toe het analyseproces te manipuleren. Minimum support wordt
dan ook gebruik om te bepalen of een itemset al dan niet frequent is, gezien
deze aangeeft in hoeveel transacties de itemset minimaal aanwezig moet zijn.

Een bekend algoritme dat toelaat frequente itemsets in transacties te zoeken
is Apriori [AIS93], waarvan de pseudocode beschreven is in Listing 3.1. Indien
men frequente itemsets probeert te vinden, is een näıeve optie alle mogelijke
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itemsets te genereren en dan voor elke itemset te bepalen of deze al dan niet
frequent is. Dit zou echter betekenen dat tot 2k − 1 itemsets moeten worden
gegenereerd. Het Apriori algoritme probeert dit echter te vermijden door ge-
bruik te maken van het Apriori Principe, wat toelaat stapsgewijs kandidaat
frequente itemsets van grootte k op te bouwen met behulp van de frequente
itemsets van grootte k − 1. Deze kandidaten worden dan geëvalueerd opdat
de infrequente itemsets worden verwijderd, en de frequente als basis kun-
nen worden gebruikt voor het bepalen van de kandidaten van grootte k + 1.
Uiteindelijk, wanneer geen kandidaten meer kunnen worden gegenereerd, is
de collectie van frequente itemsets bepaald.

De principes die we omschreven hebben voor itemsets, zouden we willen
toepassen op onze trajecten. Het datamodel dat we hiervoor gebruiken, het
equivalent van de itemset, is de sequentie. Een sequentie kan beschouwd
worden als set van itemsets waarbij een volgorde op deze itemsets wordt
gedefinieerd. Net zoals bij itemsets bestaat er ook een notie van subsequentie,
waarbij een sequentie in een andere sequentie vervat zit.

We hebben dus aangegeven dat we onze semantisch verrijkte trajecten
omzetten naar sequenties, om hierop associatie analyse op toe te passen. Dit
omzetten leidt tot een sequentie van singleton-itemsets, waarbij elke item-
set een stop bevat. Het doel van deze analyse is het zoeken van frequente
sequenties, dewelke voldoen aan de door de gebruiker opgegeven minimum
support.

Er werden reeds enkele associatie analyse algoritmen ontwikkeld die toege-
spitst zijn op het zoeken van frequente sequenties, bijvoorbeeld AprioriAll en
GSP. AprioriAll, voorgesteld in [AS95] en omschreven in Listing 3.2, bouwt
verder op de principes van het voorgestelde Apriori. Ook deze werkt met
een stapsgewijze generatie van kandidaat frequente sequenties, waarvan dan
wordt gecontroleerd of deze al dan niet frequente zijn. Tussen de kandi-
daat generatie en de support controle moet er echter een nieuwe stap worden
gevoegd, die er voor te zorgen dat het Apriori Principe wordt gerespecteerd.
De kandidaat generatie laat namelijk toe dat kandidaten worden gecreëerd
die infrequente subsequenties bevatten, wat natuurlijk het Principe tegen-
spreekt.

Het GSP algoritme [SA96] bouwt verder op het bestaande AprioriAll,
maar voegt enkele uitbreidingen toe die de mogelijkheden van de gebruiker
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vergroten. Zo definieert GSP ‘sliding window’, ‘time constraints’ en ‘tax-
onomies’.

AprioriAll laat reeds toe patronen te vinden, maar de mogelijkheden zijn
beperkt, gezien deze niet de volle semantiek van trajecten kunnen bevatten.
We zullen een eigen sequentie definiëren, gëıspireerd op [dMR05], een werk
dat zich concentreert op het formuleren en toepassen van reguliere expressies
om sequenties te evalueren. Het introduceren van wildcards, vergelijkbaar
met deze gebruik in reguliere expressies, laat toe een zekere flexibiliteit te
introduceren in de sequenties, bijvoorbeeld A.$.B wat aangeeft dat een ob-
ject van A naar een willekeurige locatie beweegt om van daaruit naar B te
bewegen. Gebaseerd op dit type zullen we vervolgens een eigen Stops en
Moves Apriori voorstellen.

De eerste stap is het definiëren van een eigen sequentie datamodel, Definitie
10. In dit model beschouwen we een sequentie niet langer als een opeenvol-
ging van itemsets, maar als een opeenvolging van items. Ook beschouwen we
een striktere definitie van een subsequentie 11. Deze twee aanpassingen zor-
gen ervoor dat onze sequenties vergelijkingen vertonen met strings, en dat
dit ons toelaat algoritmen te gebruiken die hierop gedefinieerd zijn. Zoals
vermeld zullen we ook wildcards introduceren, die toelaten het karakter van
semantisch verrijkte trajecten te benadrukken en ook enige flexibiliteit bij
het omschrijven van sequenties toe te laten. Een voorbeeld van zulk een
traject is

Hotel1.Museum1.Monument1.Hotel1.

In eerste instantie maken we bij het beschrijven van Stops and Moves Apri-
ori, waarvan de pseudocode in Listing 3.3 wordt getoond, geen gebruik van
wildcards, zodat een vergelijking met AprioriAll mogelijk wordt. Omdat ons
datamodel sterk aanleunt met het begrip van strings, kunnen we gebruik
maken van bestaande string technieken om ons algoritme te versterken. We
volgen het bestaande AprioriAll als een basis voor Stops and Moves Apriori,
met als gevolg dat ook hier een stapsgewijze generatie plaats vindt van kandi-
daat frequente sequenties en frequente sequenties. Een eerste observatie is dat
in Stops and Moves Apriori het Apriori Principe niet moet worden opgelegd,
gezien dit blijft gelden voor alle genereerde kandidaten. Een tweede obser-
vatie is de mogelijkheid om het Boyer-Moore algoritme, beschreven in Listing
3.4 te gebruiken voor het bepalen van substrings, dewelke een vermindering
van het aantal berekeningen oplevert.
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Het nadeel van deze techniek, is dat het aantal gevonden frequente se-
quenties vrij beperkt is, gezien de strikte notie van substring die gehand-
haafd wordt. Vandaar de introductie van de enkelvoudige wildcard $, zoals
beschreven in Definitie 13, dewelke in kandidaat frequente sequenties kan wor-
den opgenomen en semantisch kan worden beschouwd als ‘een willekeurige
stop’. Het introduceren van deze wildcard laat toe meer flexibiliteit te im-
porteren in de frequente sequenties. Deze flexibiliteit komt echter tegen een
bepaalde prijs, we kunnen namelijk Boyer-Moore niet langer gebruiken voor
het zoeken van subsequenties, maar moeten inspiratie zoeken bij het eval-
ueren van regulier expressies.

Een volgende stap is het introduceren van een meervoudige wildcard, om-
schreven in Definitie 14, namelijk $+, dewelke één of meerdere willekeurige
items vertegenwoordigt. Het gebruik van deze wildcard laat een nog grotere
flexibiliteit toe. Daarnaast kunnen we ook de wildcard $∗ introduceren, om
zo aan te geven dat deze kan worden gëınterpreteerd als nul, één of meerdere
willekeurige items.

Welke meerwaarden brengen deze technieken met zich mee? Zonder het
gebruik van wildcards hebben we een algoritme dat een striktere klasse van
resultaten oplevert, maar dat hiervoor een kleiner aantal berekeningen moet
uitvoeren. Het gebruik van wildcards laat een grotere flexibiliteit toe, met
als gevolg dat alle resultaten die AprioriAll zou vinden ook gevonden worden,
en dit aan een vergelijkbaar aantal berekeningen. Het grote voordeel echter
is de grotere semantische uitdrukkingskracht van de gevonden frequente se-
quenties, gezien we met het gebruik van wildcards ook informatie krijgen
over het aantal willekeurige items dat zich tussen de andere items bevinden,
maar ook dat we nu de mogelijkheid hebben om aan te duiden dat twee items
elkaar onmiddellijk opvolgen.

Wanneer alle frequente sequenties werden bepaald, kunnen we deze als
uitvoer aannemen, maar het is ook mogelijk om de kennis van deze sequenties
in de vorm van regels uit de drukken. Een voorwaarde is natuurlijk dat de
uitdrukkingskracht van deze regels de semantiek van onze sequenties volledig
weergeeft. Door het definiëren van een predicaat passes() dat het direct
opvolgen van items weergeeft en een sequentiële conjunctieve connector ~∧
die de volgorde aangeeft, kunnen regels worden gevormd die de semantiek
van een regel uitdrukt.
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Implementatie

Om de werking van Stops and Moves Apriori te demonstreren, wordt deze
gëımplementeerd, zowel in een versie die niet gebruik maakt van wildcard,
als deze met enkelvoudige en deze met meervoudige wildcards.

De data die als invoer zal dienen voor onze algoritmen bestaat uit een
collectie van trajecten opgeslagen in de vorm van traject samples. Deze
bevatten echter nog geen semantische waarde en zullen bijgevolg door een
reeds bestaande implementatie van het SMoT algoritme, in combinatie van
een applicatie, worden omgezet naar een lijst van stops. In de implementatie
zal deze lijst worden ingelezen en worden omgezet naar een sequentie, het
data type waar onze implementatie is op gericht.

Zoals aangegeven, maakt de implementatie gebruik van het principe achter
het Boyer-Moore algoritme om subsequenties te vinden in sequenties. De
implementatie van Boyer-Moore zak uiteindelijk een aangepaste versie zijn
zodat deze de verrijkte trajecten kan verwerken.

Vervolgens wordt Stops and Moves Apriori met enkelvoudige wildcards
gëımplementeerd. Deze kan echter geen gebruik meer maken van Boyer-
Moore, waarbij dan ook het grootste verschil met de vorige implementatie
wordt gegeven. We opteren voor een aangepaste versie van reguliere expressie
validatie die dan wel een groter aantal berekeningen nodig heeft.

Ten slotte wordt de implementatie met meervoudige wildcards voorgesteld.
Ook hier hebben we vooral aandacht voor het bepalen of een sequentie al
dan niet een subsequentie is, gezien dit het grootste verschil beschrijft met
de vorige implementatie.

Conclusie en toekomstig onderzoek

De omschrijving en implementatie geven de werking van onze Stops and
Moves Apriori aan. We zijn erin geslaagd een algoritme te definiëren dat
het karakter van semantisch verrijkte trajecten niet enkel weergeeft, maar
ook gebruikt als middel om het aantal berekeningen te verminderen. Onze
drie mogelijkheden laten de gebruiker toe om zelf de klasse van resultaten te
bepalen.
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In de toekomst kunnen we proberen de uitbreidingen voorgesteld in GSP
ook te introduceren in Stops and Moves Apriori, indien deze een meerwaarde
brengen. Daarnaast zou het ook mogelijk zijn om niet enkel te richten op
associatie analyse, maar ook andere types van data mining en deze toe te
passen op semantisch verrijkte trajecten.
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Chapter 1

Introduction

With the development of global positioning systems, tracking systems and
digital mapping technology, combined with existing database technology, it
has become possible to record and store large amounts of mobility data.
However, because of the scale on which this data has been gathered and also
its nature, it has become difficult to analyze and study them.

When it comes to analyzing large amounts of data, database technology
already has an answer, namely data mining. However, this framework is
mainly focused on analyzing traditional data, and not mobility data. There-
fore the need has arisen to expand this existing framework in such a way, as
to develop and improve tools which allow that mobility data to be processed
and analyzed.

This thesis focuses on the combination of both the trajectories and data
mining. Before we describe our goal more precisely, an analysis of these two
subjects can help define our purpose and motivation.

1.1 Background

1.1.1 Moving Object Data

Essentially, a trajectory is data on the movement of an object. It describes
the movement of a single object in the real world as a continuous function
of time. Given a time instant t, the function returns the position at time t
of the object in a d-dimensional space. This can be modeled as a function
o : R → Rd.
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Figure 1.1: Demonstration of how a two-dimensional real-world trajectory
can be transformed into trajectory samples.

However, when used in applications, instead of a continuous function,
movement is often transformed into a data model where it is represented
as a set of observations or control points, with every observation described
as a tuple (x, y, t) where combining x and y gives the coordinate, and t the
timestamp at which instant in time the coordinate was recorded. As a con-
sequence of this model, we do not have the exact coordinate for every instant
of time. However, we are able to interpolate between two known coordinates,
and get an approximation of the trajectory. We can conclude that the use
of control points to describe a trajectory does not reduce the quality of the
trajectory, as observed in [KMdW06].

Numerous applications exist that generate and process moving object data.
Examples of these applications can be found in biology, ecology, telecommu-
nications, city planning and tourism. For example, in the field of tourism, we
can observe the movement of tourists and how they move. By analyzing the
collected data we can discover information that would give us perspective on
transportation needs, marketing opportunities or background information on
city development.

Applications and techniques that focus on mining these trajectories already
exist. However, these techniques have one major drawback: in many cases,
the result of the mining process lacks the desired level of information. In
other words, although we have results, they are low in semantic contents.
Therefore, after the analysis of the data, the results of this process need to
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be translated to a semantically richer model.

This lack of semantics was the inspiration to describe a semantically en-
riched model [ABK+07] for representing trajectories. Instead of transforming
the results after the analysis, the input can de transformed prior to mining in
order to concentrate more on the actual semantics during the process. This
model is a keystone for the input of the mining process described in this
thesis, as we try to emphasize and focus on the semantics of the trajectories.

1.1.2 Knowledge Discovery in Databases

As a guideline for the following descriptions and definitions of important
notions and concepts, we use the books written by Han and Kamber [HK00]
and Tan, Steinbach and Kumar [TSK05].

Data mining is the process of automatically analyzing large amounts of
data, with the purpose of finding new, non-trivial and useful information,
often in the form of patterns or prediction models. It is part of the Knowl-
edge Discovery in Databases process, referred to as KDD, a process with the
purpose of transforming raw data in useful information.

As Figure 1.2 shows, it is possible to divide the KDD process into three
phases:

• preprocessing

• data mining

• postprocessing

We will now give a brief description of every phase.

Preprocessing

The first phase is the preprocessing phase, with the purpose of preparing
the data for processing. It entails data cleaning, integration, selection and
transformation.
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Figure 1.2: Overview of the phases of Knowledge Discovery in Databases.

Considering our tourism example, this phase could have the following sce-
nario. The first phase is data cleaning, which entails the removal of noise
from the dataset, data which can not be used, for example trajectories con-
sisting of a single point, or incorrect data, maybe because of a technical
malfunction during data acquisition. An example of incorrect data could be
a tourist that moves through Paris with a speed of 400 km/h. As such a
trajectory is unlikely to be correct, it would be removed from the dataset.
After the data cleaning, several different datasets may be merged, as we may
wish to use datasets from different sources e.g., if data is stored at multiple
locations.

Now that we have a single dataset, we might only want to take into ac-
count trajectories that are situated in the Paris area, so the user is given
the opportunity to select which trajectories he wishes to mine. Finally, our
selected trajectories may not be in the preferred format, depending on the
kind of analysis we wish to perform. This does not only entail formatting
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the trajectories into a model specified to the type of mining, but also to take
the specifications of the user into account. For example, timestamps give
a very exact indication of time, but perhaps the user wishes to transform
these timestamps so they only represent years, seasons, months or days of
the week.

Data mining

The second phase is data mining, a series of algorithms allowing us to
analyze the preprocessed data. There are four major categories in which
these techniques can be divided:

• association analysis

• classification and prediction

• clustering

• anomaly detection

Association analysis Association rule mining finds interesting association
or correlation relationships in a large set of data items [HK00]. By analyzing
these large amounts of data, also referred to as transactions, we are able to
formulate association rules, for example A → B(sup = x%, con = y%). Each
rule consists of a antecedent and a consequent, respectively A and B in our
example. The actual meaning of A → B is that the presence of B is implied
by the presence of A. Every rule is associated with a support and confidence,
respectively represented by x and y, measuring the interestingness of a given
rule. The support of a rule expresses how many of the transaction contain
the rule, giving an indication of its usefulness. For example, it is possible that
2% of the transactions in our set contain A and B. Confidence expresses how
many of the transactions containing A, also contain B, giving an indication
of its reliability. For example, a confidence of 60% means that a transaction
containing A, has a 60% chance of also containing B. These two measures
are important as we will often need to define a minimum support and a
minimum confidence threshold for the rules we wish to find.

One of the best-known examples of association analysis, is its use on shop-
ping baskets. Here the content of large amounts of baskets is analyzed in
order to try to understand the buying behavior of customers and formulat-
ing this behavior into rules. Once the analysis has been completed, its results
can be used for various of purposes, going from marketing campaigns aimed
at specific markets or products to determining the layout of a shop.

5



A textbook example of a rule found in basket analysis is Diapers →
Beer(sup = 0, 5%, con = 60%) which tells us that 0,5% of the transac-
tions contain both Diapers and Beer, and that in 60% of the transactions
that contain Diapers also the item Beer can be found. This rule therefore
describes a strong correlation between both Diapers and Beer.

Association analysis can be interesting from a trajectory point of view to
find rules defining mobility behavior. Rules describing how tourists move in
a city, what locations they visit or which hotels they prefer.

Classification and prediction These two forms of data analysis can re-
spectively be used to extract models describing important data classes or to
predict future data trends. The main difference between the two is that classi-
fication predicts categorical labels, whereas prediction focuses on continuous-
valued functions [HK00].
The classification process consists of two phases. The first phase is a learning
process, where, depending on the technique being used, a model is created,
describing a predetermined set of classes. In order to construct such a model,
a training set is used, consisting of a set of tuples whose categorical labels
are known in advance. The output of this phase can either be a set of clas-
sification rules or a classification tree. Figure 1.3 gives an example of how a
possible classification tree might look like. As classification uses a training
set with predefined labels, this phase is also called supervised learning. The
second phase tests the constructed model by applying a test set, another set
of tuples of which the label is known, in order to determine its accuracy.
Prediction is similar to classification, but it uses regression to model the
continuous-valued functions.
Examples of classification can be found in many different fields: approving
bank loan applications and detecting spam e-mails while examples of predic-
tion can be found in transport management and weather forecasts.

Classification could also be applied to mobility data. For example, consider
the case where we would collect trajectory data not only of tourists, but
also of different types of people, all moving in the city. By analyzing these
trajectories, we could possibly create a classification model allowing us to
classify different types of people, to determine whether they are students,
tourists or people working or living in the city. Such a model would not only
allow us to classify people based on their movements, but would also describe
each type’s specific behavior, e.g., his/her transportation needs.
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Figure 1.3: Example classification tree: determining whether a customer will
buy a computer based on his age, credit rating and whether he is a student
or not. [HK00]

Clustering Cluster analysis groups data objects based only on information
found in the data that describes the objects and their relationships. The goal
is that the objects within a group be similar (or related) to one another and
different from (or unrelated to) the objects in other groups [TSK05]. Its
principle is similar to that of classification, but clustering does not need
predetermined classes, it determines the class labels on its own, hence the
term unsupervised learning. It determines the similarity between the objects,
and maximizes the similarity within a cluster, and minimizes the similarity
between clusters.

An example of how clustering works, is given in Figure 1.4, taken from
[TSK05]. This is an example of a possible input for clustering where items
are projected on a two-dimension plane, where the X- and Y-axis both repre-
sent some feature of these items. Using these selected features, clusters can
be formed based on the similarity principle mentioned previously. As the
example demonstrates, it is possible for the user to determine the amount of
clusters, depending on the actual clustering technique used.

Clustering can also be applied on trajectories, as Figure 1.5, taken from
[GP08], demonstrates. It shows how in a collection of trajectories two clusters
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Figure 1.4: Example of input and result of clustering. [TSK05]

can be found based on their geometrical properties.

Anomaly detection Clustering does not only allow the grouping of ob-
jects according similarity, it also allows us to determine when an object be-
longs to no group. When an object is dissimilar from any other, this object
might be of interest to us, particularly when the purpose of our mining is to
find outliers. An example of the use of this technique is fraud detection with
credit cards.

Postprocessing

The third and final phase is the postprocessing phase of the KDD process.
This phase has two goals. First, we have to make sure that the results given
to the user are of interest to him. Possibly some filtering is needed, because
a part of the result might be common knowledge or even the number of
results too large. Thus, this phase might include an analysis of the results
to conclude if results may be omitted. Filtering results is very important, as
demonstrated in [J0̈7], as sometimes a part of the mining results are common
knowledge. However, previously cited work focuses on the filtering of results
during the mining process.

The second goal is representation, converting the results of the mining
process into a format the user wants and understands. Choosing the right
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Figure 1.5: Example of trajectory clustering, clustering based on the geo-
metric properties of trajectories. [HK00]

representation is of course of great importance as it is the output of our KDD
process. One option is summarizing the results in a textual report. However,
as visualized results are often more clear and easy to understand, this will
often be the preferred format of representation, if visualization is possible.
An example of such a representation is the classification tree in Figure 1.3,
but could also be charts, diagrams, . . . . Visualization is also important to
trajectories and derived patterns, as [AA06] demonstrates.

1.2 Problem statement, Motivation and Con-

tribution

1.2.1 Problem

As mentioned, trajectory mining was previously focused on raw trajecto-
ries, where the semantics were added, based on background information, as
a postprocessing phase. However, during this process, there was little focus
on the semantics, losing the opportunity to involve the actual meaning of
these trajectories in the mining. By introducing the notion of semantically
enriched trajectories, we are given the opportunity to mine trajectories using
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their semantics and generate results that emphasize their meaning.

1.2.2 Motivation

The possibilities from analyzing trajectories are endless. Consider a tourist
application where trajectories of tourists visiting a city are recorded. By an-
alyzing these in their raw form, we might be able to recognize large amounts
of trajectories which are similar to each other. However, if we would observe
these from a semantic point of view, we wouldn’t just focus on its size, direc-
tion, location, . . . , but we would focus on what a tourist actually encounters
on his trajectory.

Consider a tourist roaming the streets of Brussels. While he explores the
city and visits museums, shops, bars, restaurants, monuments and hotels, we
record his/her movement. This movement is then translated, by the process
mentioned before, into a list of interesting touristic locations. Consider the
fact that we record the movement, not of a single tourist, but of a large
group of tourists. Not only would this enable us to get an overview of the
locations tourists find interesting, but also which combinations of locations
are visited within the same day or which hotels attract which type of tourist.
For example if an analysis would reveal that a considerable group of tourists
visits the exact same museums on the same day, and these visits are in
a particular order. We can take advantage of this fact by introducing a
special ticket combining these museums, by providing transportation or by
promoting this set of museums to other tourists.

1.2.3 Contribution

Our goal is to find patterns hidden in mobility data. This data, essentially
composed of large amount of trajectories, is transformed into a semantically
enriched format [dMR05, SPD+08] allowing us to emphasize its actual mean-
ing. This format focuses on background information, allowing us to use this
background information during the entire process of analysis, as opposed to
using this information to interpret the found results after the analysis.

The contribution of this thesis lies on trying to use the specific character-
istics of semantically enriched trajectories to define an association analysis
technique that is able to find frequent trajectories. In order to succeed, we
observe and define a data model capable of representing the semantics of se-
mantically enriched trajectories, and adapt an algorithm known as Apriori,
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introduced in Chapter 3, which is the basis of our own algorithm, referred to
as Stops and Moves Apriori. Our data model is defined in such a way, as to
allow the use of efficient techniques that will have a direct influence on the
performance of our algorithm. Finally, we observe the results of our mining
process, and analyze how these could be presented to the user.

1.3 Outline

This thesis is organized according to the following structure. First, in
Chapter 2, the data that forms the base and input of our mining process, the
mobility data, is described. Also in this chapter, techniques allowing trajecto-
ries to be transformed into a semantically enriched data model, namely the
SMoT [ABK+07] and the CB-SMoT [PBKA08] algorithm, are introduced,
together with a comparison between these two.

In Chapter 3, we introduce our own data model and give an overview of
the process to adapt the existing Apriori method to allow it being applied
to enriched trajectory data. The process summing up the needed adapta-
tions will be a step-by-step approach. We start by introducing our Stops
and Moves Apriori, first without wildcards, and expand this algorithm to in-
clude single- and multi-matching wildcards. Further observations are made
of how the output of the Apriori algorithm, namely frequent sequences, can
be transformed into rules.

Next, in Chapter 4 we describe the implementation of our Stops and Moves
Apriori. Here the more technical details of the implementation of the tech-
nique will be summed up, together with an example of the technique applied
on existing data.

Finally, Chapter 5 concludes this thesis, summarizing up the result, and
proposes future works.
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Chapter 2

Mobility data

2.1 Trajectories

2.1.1 Definitions

When an object moves in two- or three-dimensional space, the path of
its movement describes a trajectory. In the real world, trajectories are a
continuous function of time, where every instant in time t returns a tuple
α(t) = (α1, α2, . . . , αd) of d coordinates representing the position of an object
at time t in a d-dimensional space. We can formalize this by a function
α : R → Rd, where R is the set of real numbers. In the following definition
[KO07] of a trajectory, we limit ourselves to movement in the two-dimensional
plane R2. Using this definition, R × R2 expresses time-space space, where
the first R represents time, and R2 space.

Definition 1. Let I ⊆ R be an interval. A trajectory T is the graph of a
piecewise smooth (with respect to t) mapping

α : I ⊆ R → R2 : t 7→ α(t) = (αx(t), αy(t)),

that is, T = {(t, αx(t), αy(t)) ∈ R×R2 | t ∈ I}. The set I is called the time
domain of T .

However, from an application perspective, this model is impractical. Record-
ing and storing a trajectory as a continuous function could be very difficult
since in real-life these are often obtained by using mobile location aware
devices such as GSM and GPS equipment, where at regular intervals the co-
ordinates are registered. This does not allow the trajectories to be recorded
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Figure 2.1: An example of a trajectory.

with the needed frequency. Therefore we use trajectory samples. Trajec-
tory samples are a sequence of coordinates describing the trajectory. Each
of these coordinates is then linked to a timestamp, thus creating an ordinal
relation on the coordinates. More formally, trajectory samples can be defined
as follows. Like the previous definition, this restricts itself to the real plane
R2 to represent the coordinates of the moving object.

Definition 2. A trajectory sample is a list of time-space points 〈(x0, y0, t0),
. . . , (xN , yN , tN)〉, where xi, yi, ti ∈ R2 for i = 0, ... N and t0 < t1 < ... <
tN .

Definition 3. Let S = 〈(t0, x0, y0), . . . , (tN , xN , yN)〉 be a sample of a tra-
jectory and let T = {(t, αx(t), αy(t)) ∈ R ×R2 | t ∈ I} be a trajectory. We
say that the trajectory T is consistent with the sample S, if t0, t1, . . . tN ∈ I
and αx(ti) = xi, αy(ti) = yi for i = 0, ...N .

Based on this trajectory sample, an approximation of the original trajec-
tory can be reconstructed using the linear-interpolation model. Assuming a
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Figure 2.2: An example of a trajectory sample based on the trajectory de-
picted in Figure 2.1.

constant lowest speed between two consecutive sample points, this model al-
lows us to construct a trajectory that is consistent with the trajectory sample.
For a sample S = 〈(x0, y0, t0), . . . , (xN , yN , tN)〉, the trajectory LIT (S) :=

N−1⋃
i=0

{(t, (ti+1 − t)xi + (t− ti)xi+1

ti+1 − ti
,
(ti+1 − t)yi + (t− ti)yi+1

ti+1 − ti
) | ti ≤ t ≤ ti+1}

describes its the linear-interpolation trajectory. The functions that are used
to determine the x- and y-coordinates are differentiable except maybe at the
instances of time t0, t1, . . . , tN .

The trajectories and trajectory samples used in the mining process are
stored in a database, or more precisely in a relation, which is a part of the
database. More formally, this database and its relation can be described as
follows. We assume the existence of an infinite set Labels = {a, b, . . . , a1, b2,
. . . , a2, b2, . . . } of trajectory labels.
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Figure 2.3: An example of a linear-interpolation trajectory based on the
trajectory sample depicted in Figure 2.2.

Definition 4. A trajectory relation R is a finite set of tuples (ai, Ti), i =
1, . . . , r where Ti is a trajectory and ai ∈ Labels uniquely identifies this tra-
jectory and thus can only appear once. Similarly, a trajectory sample relation
R is a finite set of tuples (ai, ti,j, xi,j, yi,j) with i = 1, . . . , r and j = 0, . . . , Ni

such that ai ∈ Labels cannot appear twice in combination with the same
t-value and that 〈(ti,0, xi,0, yi,0), (ti,1, xi,1, yi,1), . . . , (ti,N , xi,N , yi,N)〉 is a tra-
jectory sample.
A trajectory (sample) database is a finite collection {R1, R2, . . . , RM} of tra-
jectory (sample) relations.

In this section, we have defined the trajectories and trajectory samples
based on coordinates. From a semantic point of view, this is a low-level
representation, as it does not give information on the geographic or seman-
tic characteristics of the trajectories. This nature can be retrieved using
background information. We refer to this class of trajectories as raw trajec-
tories. Besides these raw trajectories, we could also distinguish semantically
enriched trajectories, which we will focus on in the next section.
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2.2 Semantically enriching trajectory data

Most of the mining techniques that were developed for trajectories, use
raw trajectories. But as we have already pointed out in Chapter 1, there
are advantages gained from lifting a raw trajectory into a model that con-
centrates on its semantics. In this section, we will focus on this model, and
also on techniques to transform raw trajectories into semantically enriched
trajectories.

2.2.1 Enriched trajectories

The model of semantically enriched trajectories, proposed in [dMR05,
SPD+08], attempts to combine raw trajectory data and background geo-
graphic information, e.g., city maps indicating touristic locations, geographi-
cal maps indicating rivers, districts or cities. Instead of defining a trajectory
as a sequence of coordinates combined with a timestamp, they propose to
transform the trajectory into a sequence of stops and moves. These stops and
moves would in turn incorporate geographic background information making
it unnecessary to reestablish the link between the raw trajectories and its
background geographical information.

The principle is simple, the stops represent areas that are considered im-
portant to the trajectory, the moves represent the part of the trajectory
between stops (and the start and end point) of the trajectory.

As an introduction to the definitions of stops and moves, we will first
introduce the notions of an application and candidate stop:

Definition 5. A candidate stop C is a tuple (Rc, ∆c), where Rc is a topo-
logically closed polygon in R2 and ∆c is a strict positive real number. The
set Rc is called the geometry of the candidate stop and ∆c is called its min-
imum duration. The candidate stops are dependent of specific applications.
An application is a finite set {C1 = (Rc1 , ∆c1), C2 = (Rc2 , ∆c2), ..., CN =
(RcN

, ∆cN
)} of candidate stops with non-overlapping geometries Rc1 , Rc2 , ...

RcN
.

These candidate stops are application dependent and could be anything
from roads, buildings or parks, as long as they can be represented by a
polygon. With each of these polygons, representing objects, we associate a
minimum duration enabling us to distinguish a stop from a pass-through.
These minimum durations can differ from candidate to candidate and from
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application to application. So we can conclude that determining the candi-
date stops is a semi-manually process, as the background information can be
gathered automatically, but user input is still necessary.

Our running example of an application, is this of a city, where we focus
on its touristic nature. The candidate stops, all represented by polygons
can be information kiosks, hotels, restaurants, museums, parks, shops or
squares. The moving objects are tourists that move around in this city.
These trajectories can later be transformed to a ordered list of locations.

Having defined applications and candidate stops, we can now proceed by
defining stops and moves:

Definition 6. A stop of trajectory sample T with respect to an application
A is a tuple (Rk, tj, tj+n) such that a maximal subtrajectory S of T with
S = {(xi, yi, ti)|(xi, yi) ∈ Rk} = {(xj, yj, tj), (xj+1, yj+1, tj+1), ..., (xj+n,
yj+n, tj+n)}, where Rk is the geometry of Ck and |tj+n − tj| ≥ ∆k.

When a person walks through our tourist city, his/her trajectory will in-
tersect many of our candidate stops. When this person remains within the
polygon representing the candidate stops for a period of consecutive time
points longer than the minimum duration of this candidate stop, we add
that stop to our sequence. We now know that our person remained in this
stop, and did not just pass through it. It can be considered an important
part of our moving objects trajectory.

Once all stops are determined, the list of moves can be composed.

Definition 7. A move of a trajectory sample T with respect to an application
A is:

1. a maximal contiguous subtrajectory of T in between two temporally
consecutive stops of T

2. a maximal contiguous subtrajectory of T in between the starting point
of T and the first stop of T

3. a maximal contiguous subtrajectory of T in between the last stop of T
and the last point of T

4. the trajectory T itself, if T has no stops.
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Because stops are derived from a series of samples intersecting a candidate
stop, we can observe that the start and end point of the subtrajectory com-
posed of these samples will also lie within a candidate stop. These points
will respectively be used for the end/start points of the preceding/following
moves.

2.2.2 Enriching trajectories: SMoT

The first algorithm enabling us to enrich trajectories is SMoT, Stops and
Moves of Trajectories, which was proposed and elaborated on in [ABK+07].
This technique encapsulates the idea of stops and moves, but also shows us
some of the disadvantages of the Stops and Moves of Trajectories model.

The input of this algorithm is the given trajectories that are the subject
of our mining process and the application consisting of candidate stops. As
we will check whether points intersect with candidate stops, we will define
a buffer around each polygon. This will allow us to intersect with small
polygons, lines and points more easily, and allow a small margin of error
(due to measurement imprecision) concerning coordinates.

Starting from the first point of the trajectory, the algorithm checks if this
point intersects a candidate stop and its surrounding buffer, if not, the next
point is considered. But if the point does intersect a candidate stop, the time
point of this point is recorded. The next points are also checked and if the
time spent within the polygon of the candidate stop becomes greater than
its minimum duration, this stop is recorded. Between each of the recorded
stops, moves are inserted to connect consecutive stops.

To demonstrate how SMoT exactly works, we observe an example of a
possible input in Figure 2.4. Consider a trajectory, consisting of sample
points, and an application, a map containing polygons, each a candidate
stop, which could, for example, represent a touristic object. Each of these
objects is also associated with a minimum duration. Based on these two,
the trajectory can be transformed in two lists, a list of stops and a list of
moves. We can observe that the first sample point s0 intersects with Hotel1,
as do all the sample points up to s6. As the time between s0 and s6 is larger
than the minimum duration of Hotel1, these points become the first stop
of our list. The next sample point, s7 does not intersect with a candidate
stop and is therefore ignored. Based on the pseudo-code, we can see that
after the creation of a stop, we first check sample points up to the point
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Listing 2.1: SMoT pseudo-code

1 Input : T // s e t o f t r a j e c t o r i e s
2 A // app l i c a t i o n
3 Output : S // s e t o f s tops
4 M // s e t o f moves
5 Method :
6 S = new Stops ( ) ; M = new Moves ( ) ;
7 f o r each t r a j e c t o r y t ∈ T do
8 i = 0 ; prev iousStop = nu l l ;
9 whi l e ( i ≤ s i z e ( t ) ) do

10 i f (∃(RC ,∆C) ∈ A |
11 geometry ( t [ i ] ) i n t e r s e c t s RC ) // us ing s p a t i a l index
12 enterTime = time ( t [ i ] ) ; i++;
13 whi l e ( i n t e r s e c t s ( t [ i ] ,RC ) ) do
14 i++;
15 endwhi le
16 i−−; //Go one step back (went out s id e RC )
17 leaveTime = time ( t [ i ] ) ;
18 i f ( leavet ime−enter t ime >= ∆C )
19 stop = ( t ,RC , enterTime , leaveTime ) ;
20 S . add ( stop ) ;
21 move = ( t , previousStop , stop ,
22 prev iousStop . leaveTime , enterTime )
23 M. add (move ) ;
24 prev iousStop = stop ;
25 end i f
26 end i f
27 i++;
28 j = 1 ;
29 whi l e ( ( i+j ≤ s i z e ( t ) ) and ( t [ i+j ]− t [ i ]<min∆C

(A) ) ) do
30 j++;
31 endwhi le
32 i f (@(RC ,∆C) ∈ A | geometry ( t [ i+j −1]) i n t e r s e c t s RC )
33 i = i+j ;
34 end i f
35 endwhi le
36 i f ( t [ i −1] not ∈ prev iousStop ) // t do not end with a stop
37 move = ( t , previousStop , nu l l ,
38 prev iousStop . leaveTime , time ( t [ i −1]))
39 M. add (move ) ;
40 end i f
41 endfor
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Figure 2.4: An example of input from application and sampled trajectory.

where the duration of the run is larger than the smallest minimum duration,
if we still do not intersect a candidate stop, we can ignore the entire run
of sample points, as they will not contain a possible stop. In our example
we will thus evaluate several sample points, for example up to s9. As s9

intersects Museum1, we go back up to s7 ignore this sample point as it does
not intersect with a candidate stop. The subtrajectory from s8 up to s14

intersects a candidate stop, and consequently we also add a move to the list
of moves, namely from s6 up to s8. Next, the subtrajectory from s15 up to
s17 cannot de transformed into a stop, even if s16 intersects a candidate stop,
because the minimum duration of Transportation1 is not reached. The next
stops are Bar1, derived from s17 up to s22, and Museum2, derived from s25

up to s31. The sample points in between two stops, from s14 to s17 and from
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s22 to s25 are transformed into two moves. Finally, another move is added
containing all remaining sample points, s25 up to s31, are transformed into
a move, as no run of samples reaches the minimum duration of a candidate
stop. The two lists, the stops and moves, are outputted.

2.2.3 Enriching trajectories: CB-SMoT

Although the idea of SMoT is very simple and reasonably easy to ac-
complish, the drawback of this technique is the high dependency of users
to specify the interesting geographic objects that are considered candidate
stops. This dependency raises some issues. First, human interaction in error-
prone, by reducing the need for interaction, errors can be avoided. Second,
specifying all interesting candidate stops can be difficult, as with some ap-
plications, a user cannot always foresee how the patterns will evolve.

A solution can be found in the CB-SMoT technique, proposed in [PBKA08],
which instead of completely relying on the input of users, tries to find the
potential stops on its own, after which these are matched to candidate stops
given by the user. In addition to finding potential stops that match candi-
date stops, it is also able to find potential stops where no candidate stop was
defined, essentially discovering new candidate stops. The idea behind this
technique relies on the understanding that if a geographic object is consid-
ered important to the trajectory of a moving object, this moving object slows
down as it nears the geographic object. As it slows down, the points repre-
senting the trajectory become denser. By using a clustering technique, we
are able to pinpoint areas where the moving object slows down, and identify
these as stops.

As mentioned above, clustering techniques are used to find areas where the
moving object slows down. To be more exact, DBSCAN [EKSX96], a density
based algorithm, is used, as our clustering technique, modified to the needs
of trajectory data. One of these modifications is the notion that only the
distance of points within a single trajectory can be measured. This distance is
not the Euclidean distance, but the total length of the subtrajectory between
the two points. The measure of defining clusters is modified to a certain
extend to take this into account.

The pseudo-code in Listing 2.2 shows how CB-SMoT is defined. To fully
understand the algorithm, we need to explain some of the functions and no-
tions used. The first function we would like to clarify, is quantile(µ(T ), σ(T ),

21



Listing 2.2: CB-SMoT pseudo-code

1 \ t e x tb f { Input } : T // s e t o f t r a j e c t o r i e s
2 A // app l i c a t i o n
3 a // area f o r the quan t i l e func t i on
4 minTime //minimum time f o r c l u s t e r i n g
5 \ t e x tb f {Output } : S // s e t o f s tops
6 M // s e t o f moves
7 \ t e x tb f {Method } :
8 S = new Stops ( ) ; M = new Moves ( ) ;
9 f o r each t r a j e c t o r y T ∈ T do

10 s e t clusters as empty ;
11 Eps = quant i l e (µ(T ) , σ(T ) , a ) ;
12 f o r each unprocessed po int p ∈ T do
13 neighbors = l i n e a r−neighborhood (p ,Eps ) ;
14 i f p i s a core po int with r e sp e c t to minTime , Eps
15 f o r each neighbor n ∈ neighbors do
16 add to neighbors every unprocessed po int
17 ∈ l i n ea r ne i ghborhood (n , Eps ) ;
18 add to clusters neighbors ;
19 s e t po in t s in neighbors as proce s s ed ;
20 endfor
21 end i f
22 endfor
23 f o r each c l u s t e r C ∈ clusters do
24 f o r each (RC ,∆C) ∈ A |
25 C i n t e r s e c t s RC f o r a durat ion time time ≥ ∆C do
26 sub = sub t r a j e c t o r y (RC , C ) ;
27 stop = (T ,RC , enterTime (sub , leaveTime (sub ) ) ) ;
28 S . add (stop ) ;
29 endfor
30 f o r each sub t r a j e c t o r y s ∈ C that i s not stop
31 i f leaveTime (s) − enterTime (s) ≥ minTime
32 stop = (T ,Unknown , enterTime (sub , leaveTime (sub ) ) ) ;
33 S . add (stop ) ;
34 end i f
35 endfor
36 f o r each sub t r a j e c t o r y s ∈ C not converted in to stop
37 s1 = stop preced ing s ; s2 = stop f o l l ow i ng s ;
38 move = ( t , s1 ,s2 , leaveTime (s1 ) , enterTime (s2 ) ) ;
39 M. add (move ) ;
40 endfor
41 endfor
42 endfor
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a). This is used to calculate the Eps-value, the value that represents the ab-
solute distance used to calculate the neighborhood of a point. Without going
into too much detail, as the exact calculating of Eps lies outside the scope of
this thesis and we refer to the original paper [PBKA08], we can say that Eps
is computed by using µ(T ), which is the arithmetic mean of the distances
between the points of T , σ(T ) the standard deviation of these distances and
a, a value between 0 and 1, which should provide an approximation of the
proportion of points that generate potential stops in relation to the total
amount of points in the trajectory and is provided by the user.
The second function that needs some explanation is linear neighborhood(n,
Eps). Using the previously describe Eps-value, this function composes the
collection containing all points near the point n.
Finally, we describe the notion of core point. This is defined to be a point
p = (x, y, t) of trajectory T of which the time span of its linear-neighborhood
exceeds minTime. Or, if pn and pm are respectively the first and last point
of the linear-neighborhood of p, then p is a core point if |tn−tm| > minTime.

Figure 2.5 demonstrates how the algorithm works. It works in two phases.
First, it identifies areas that could be regarded as interesting by detecting
whether the moving object slows down. These are indicated in the figure
by the grey ellipses. Detecting slower movement can be achieved by the
clustering mentioned before. Once all clusters have been identified, we match
these clusters onto candidate stops selected by the user. For these clusters
to become stops, they still have to comply with the minimum duration of
the matching candidate stops. Stop1, Stop2 and Stop3 are for example three
stops that could be recognized in this way. However, there is one cluster that
could not be matched onto a candidate stop. As this cluster and a potentially
interesting stop cannot be ignored, it is labeled as an ‘unknown stop’ and
output to the user whom is able to reject or accept this ‘unknown stop’ as a
stop of the trajectory.

2.2.4 A comparison of SMoT and CB-SMoT

Applicability

SMoT As SMoT uses user-defined candidate stops, these stops become
the weakness and strength of this technique. In a type of application where
the candidate stops can be easily identified or where new candidate stops
are considered irrelevant, this technique can be applied. For example, in an
application where movement of tourists is analyzed, the candidate stops are
the collection of sights, hotels, bars, . . . . Most of them can be extracted
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Figure 2.5: CB-SMoT uses an application and sampled trajectory as input
to determine stops and moves.

from city plans and therefore easily recognized. Other possible candidate
stops could merely be the result of traffic congestion, and possibly irrelevant
to our application.

CB-SMoT However, in case of an application where the number of can-
didate stops is very large (e.g., junctions in a city), it is difficult or even im-
possible to pinpoint these exactly (e.g., resting points for migrating birds).
It is also possible that the user considers every possible candidate stop as
interesting (e.g., analysis of traffic congestion in a city). In both cases CB-
SMoT can be more interesting than the SMoT technique because even if a
certain candidate stops where not included in the application, CB-SMoT will
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recognize them and point them out as ‘Unknown stop’.

Quality

SMoT The entire algorithm is dependent on the quality of its input, on
the definition of its candidate stops and the minimum durations. Since all
these are user-defined, we can conclude that the quality is determined by the
user. As users are more prone to errors, this might influence the quality.

CB-SMoT Candidate stops can be determined dynamically, by calculating
when an object slows down. The fact that it focuses on speed makes it on
one hand less error-prone than SMoT, as this is independent on user input.
On the other hand, when speed is not the best way to determine stops, errors
can be made as uninteresting stops can be inserted in the list, and interesting
stops can be ignored.

For example, consider a touristic application where we track the move-
ments of tourists in a city. If a tourist moves slowely or stands still, s/he
might be waiting for transportation, as in this case the points are densely
situated so this would be recognized as a stop. However, if he would walk in
a park, a historical center or a museum at a fast pace, these points would be
less dense, and might not be recognized as a stop.

Speed

SMoT A good measure to compare the speed between these two algorithm,
is to determine their complexity. We use the pseudo-code provided in Listing
2.1 as a guideline to define the complexity of SMoT.
Consider N to be the number of trajectories and M to be the average number
of sample points a trajectory is composed of. We start at Line 7, where a
for-loop is defined, which is executed N times, as the code from Lines 8-
40 is executed for each trajectory. Another loop is defined at Line 9, this
will run M times, as this loop is used to evaluate each sample point in
the trajectory. Lines 10-11 define an if-test determining whether a point
intersects a candidate stop. Instead of evaluating this for each candidate, a
spatial index is used. Because of this index, this instruction can be evaluated
in constant time. The loop defined from Lines 13-15 uses the same variable
used by the loop defined at Line 9, so the amount of loops here result in a
lower amount of loops in the loop at Line 9. Consider K to be the average
amount of sample points intersecting a candidate stop. This would mean
that the amount of loops at Line 9 is reduced by a factor K and that the
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loop at Line 13 is performed K times. Thus far we have N · M
K
·K. Another

loop is defined from Lines 29-31. As this is an optimization, we can to neglect
its influence, as it has roughly the same effect as the loop at Line 13. We can
conclude that the complexity of SMoT is O(N · M

K
·K) or reduced, O(N ·M).

CB-SMoT To determine the complexity of CB-SMoT, We define variables
for which we use the same literals as before to make it possible to compare
both complexities. Consider the variables N , the number of trajectories
and M , the average amount of sample points in a trajectory. As a basis to
determine the complexity, we use the pseudo-code in Listing 2.2. We use a
different method than previous complexity calculation, as we build up from
the lower levels up to the higher levels, to determine the overall complexity.
Consider the Lines 15-20, this has complexity O(M ·(M+M)), as the amount
of neighbors, used by the for-loop at Line 15, will be of the order of the
amount of items of the trajectory, which defines the upper limit of the number
of neighbors, and both Lines 16 and 19 evaluate every point in the set of
neighbors. Lines 12-22 have a complexity of M · (M +M · (M +M)), as Line
13 will evaluate all points in t to determine their distance to p. Together with
Lines 15-20, they are performed for every point p ∈ t, which is M times.
Lines 24-29 have a complexity of M · M , as for each point in cluster C has
to be evaluated whether it intersects a candidate stop, taking an order of
M steps, as M defines the upper limit of the number of points in C. We
presume a spatial index is defined on the candidate stops to allow retrieval
in constant time. If a point intersects a candidate stop, the subtrajectory
of this intersection is generated, taking another M steps, as the maximum
number of points intersecting a candidate stop is M , hence the complexity
M ·M .
Lines 30-35 have a complexity of M as every subtrajectory is evaluated, and
we consider the amount of subtrajectories to be an order of M , as M defines
its upper limit.
The complexity of Lines 36-40 is M , as we also evaluate every subtrajectory.
For the Lines 23-41 this totals to a complexity of O(M · ((M ·M)+M +M))
as the Lines 24-40 are performed M times, as we consider clusters to be of
order M .
As the Lines 10-41 are performed N times, we can conclude the complexity
to be O(N · ((M · (M + M · (M + M))) + (M · ((M · M) + M + M)))) or
reduced, O(N ·M3). If we would compare this with the complexity of SMoT,
which is O(N · M), we can conclude that SMoT needs fewer computations
than CB-SMoT.
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Conclusion

In this thesis, we focus on semantically enriched trajectories. In essence, it
is of no importance how these are generated, as it is mainly the type of data
that concerns us. However, in the implementation we prefer to use SMoT, as
we do not need the features provided by CB-SMoT. So, any future references
to enrichment, will refer to SMoT.
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Chapter 3

Mining sequential data

In Chapter 2, we have introduced our sequential data, namely a trajectory
stored as trajectory samples, which is transformed into a semantically en-
riched format, so every trajectory eventually is represented as a list of stops
and a list of moves. This model is interesting, as it emphasizes the semantics
of the trajectories.

As we wish to use this data as the input of our mining process, our semanti-
cally enriched trajectories need to be transformed into a usable data model.
The output list of stops is formatted into a sequence, which essentially is
an ordered list of itemsets, in this case composed of stops. The advantage
of considering trajectories as sequences, is that by doing so it allows us to
introducing previous research, as this type of data has been the subject of
previous studies, where sequences represented DNA sequences, purchase his-
tory, event based data concerning security systems or web page history. The
order defining these sequences is often of a temporal nature, as in trajectories,
but a spatial ordering is also possible, as in DNA sequences.

Thus, trajectories are transformed into sequences, which can be used for
our mining process. However, as we have mentioned in Chapter 1, most
of the developed mining techniques are traditionally applied on itemsets,
e.g., shopping baskets, where a ordinal relation is of no importance, or non-
existent. Therefore the existing techniques need to be adapted, something
many studies have focused on in the past. In this chapter we use this previous
research, together with the principles behind trajectories to define mining
techniques allowing us to find frequent sequences and consequently mobility
patterns.
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Before we focus on our own contribution, mining mobility data, we will
first introduce important concepts concerning association analysis and in
particular the Apriori algorithm.

3.1 Association analysis

3.1.1 Introduction

Association analysis, as explained in Section 1.1.2, is a group of algorithms
used to analyze large amounts of transactions stored in databases with the
purpose of finding frequent itemsets or association rules [HK00, TSK05].

As we wish to explain the notion of association analysis in detail, we need to
introduce a few concepts. When I = {i1, i2, ..., id} is the set of all items found
in the transactions and T = {t1, t2, ..., tn} is the set of all transactions, then
every transaction can be represented as a non-empty subset of I, called an
itemset. One itemset Ik can contain another itemset Il, meaning that every
item present in Il, is also present in Ik. Finally, every itemset X is associated
with a support count σ with respect to a collection transactions, indicating
the number of transactions containing this itemset, or more formally:

σ(X) = |{ti|X ⊆ ti, ti ∈ T}|

Support count σ is used to recognize frequent itemsets, which are itemsets
that have a support count that exceeds the minimum support count. Once
the frequent itemsets are found, they form the basis to formulate rules, the
eventual goal of the analysis.

Table 3.1: Example of set of transactions represented as itemsets.
T1 {Salt, Bread, Pepper}
T2 {Bread, Pepper}
T3 {Salt, Pepper, Lemons,Milk}
T4 {Pepper, Lemons, Milk}
T5 {Salt, Pepper, Milk}

A rule is always of the form A → B(sup = x, con = y), where A and B are
disjoint itemsets. Such a rule states that if a transaction contains all items
present in itemset A, this transaction will also include all items in itemset
B. For example:

{Salt, Pepper} → {Milk}
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states that if a transaction contains the items ‘Salt’ and ‘Pepper’, it will also
contain the item ‘Milk’. Every rule has a support sup and confidence con,
respectively expressing the interestingness and reliability of a rule. For a
rule to be of interest, it preferably applies to a large portion of our analyzed
itemsets. To express this interestingness, support measures the percentage
of the transactions where both A and B are present, or more formal:

support(A → B) =
σ(A ∪B)

N

where N is the number of transactions used for analysis. On the other hand,
for a rule to be reliable, the implication expressed by our rule should be valid
for as many transactions as possible. Confidence expresses this reliability by
measuring the percentage of transactions containing the itemset A that also
contains B, or more formal:

confidence(A → B) =
σ(A ∪B)

σ(A)
.

Support and confidence are two important tools for the user in the search
for rules describing patterns in the collection transactions, since association
analysis uses a minimum support and confidence, formulated by the user, to
collect all rules that are of interest to him. The resulting set of rules will only
include rules that fall within this set of minima of support and confidence.

As an example of the introduced notions and concepts, consider the item-
sets representing transactions T depicted in Table 3.1. To give examples of
the notions mentioned in the previous paragraph, we can conclude that I =
{Salt, Bread, Pepper, Lemons,Milk} is the set of items. The support count
of the itemset {Lemons, Milk} equals 2, as it is the subset of two transac-
tions. A support count results in a support of 40%, as this is calculated by
dividing the support count, which equals 2, by the number of transactions,
which equals 5. In case the minimum support is set to 40% or less, this
itemset would be considered frequent.

Consider the rule {Salt, Pepper} → {Milk}. It has a support of 40%, as
two transactions contain ‘Salt’, ‘Pepper’ and ‘Milk’ and a confidence of 66%,
as 2 transactions contain ‘Salt’, ‘Pepper’ and ‘Milk’, while 3 contain ‘Salt’
and ‘Pepper’.
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3.1.2 Apriori

Association analysis concentrates on finding frequent itemsets, which are
used to generate association rules. One naive possibility to find these fre-
quent itemsets, is to generate all possible candidates and determine for each
whether it is frequent. By comparing the candidate to each transaction to
check whether all items contained in the candidate are present in the trans-
action, we can establish the support count of the candidate. If the support
count is larger than what the user defined to be the minimum support, the
candidate is considered frequent. However, the drawback of generating all
possible candidates is that up to 2k − 1 itemsets, with k being the number
of distinct items present in the transactions, need to be generated, requiring
a large amount of computations and comparisons. However, the Apriori al-
gorithm [AIS93] tries to avoid generating these candidates by applying the
Apriori Principle.

Apriori Principle If an itemset is frequent, then all of its subsets must
also be frequent.

The idea behind this principle enables us to reduce the amount of candi-
dates and thus also the amount of comparisons. It states that if a candidate
itemset {A, B, C} is frequent, {A, B}, {B, C} and {A, C} should be frequent
too. If {A, B} and {B, C} have a support of 10% and {A, C} has a support
of 5%, it impossible for {A, B, C} to have a support higher than 5%.

This principle is an example of an anti-monotone property, a group of
properties that state that if a set does not pass a test, all of its supersets will
also fail this test. It is this anti-monotonicity that gives the apriori algorithm
its strength.

To demonstrate how the Apriori algorithm uses this property, a step-by-
step demonstration will be given using the given pseudo-code presented in
Listing 3.1 as a guideline. First observe the input of the algorithm, a set
of transactions T , where each transaction is represented as an itemset, and
minsup the minimum support that is expected of the outputted frequent
itemsets. The first step (Line 9) is generating all frequent itemsets of size
one, meaning all frequent itemsets that consist out of a single item. To
determine these itemsets, an itemset is generated for every possible item
that is then checked whether it is frequent or not by calculating its support
count. If this support count is greater than the minimum support, it is added
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to the set F1, otherwise it is discarded. F1 will form the basis of our next
step where we try to determine the frequent itemsets of size 2.

First, the function apriori gen(Fk−1) composes the set of candidate item-
sets C2 using the set F1 (Line 12). Candidates are composed my combining
every itemset in F1 with an itemset of the same collection. Then, for each
transaction t in T is determined which of the candidates in C2 are subsets of
t by using the function subset(Ck, t) (Line 14). For each of the candidates
that are a subset of t, the support count is calculated. After all transactions
have been checked, and the support of every candidate has been determined,
it is decided which of the candidates have the set minimum support. These
frequent 2-itemsets are added to the set of outputted frequent itemsets (Line
19).

In the next phase we use the frequent 2-itemsets to determine those of size
three (Line 10). This process goes on until no frequent itemset can be added
to the outputted set of frequent itemsets. The output of our algorithm is
the union of all sets of frequent itemsets determined over the course of its
execution.

3.2 Related Work

3.2.1 Sequential data

Having defined the idea behind Apriori, it would be interesting if we could
apply this to semantically enriched trajectories, while respecting and using
their ordinal relation. As mentioned in the introduction, one step in the
direction of reaching this goal is to model our mobility data into sequences.
At this point we need to clearly define this model.

Traditionally, when sequences are observed in literature, as described in
[AS95], they are defined as follows:

Definition 8. An itemset is a non-empty set of items. A sequence is an
ordered list of itemsets. We denote an itemset i by (i1i2 . . . im) where ij is
an item. We denote a sequence s by 〈s1s2 . . . sn〉, where sj is an itemset.

An example of a sequence representing video rental history could be 〈(Glad-
iator, The Shining) (Good Bye Lenin) (Stardust, Lucky Number Slevin)〉.
This example represents a video rental sequence, and can be interpreted as
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Listing 3.1: The pseudo-code of the original Apriori presented in [TSK05]

1 Input : T // s e t o f t r an s a c t i on s
2 minsup //minimal support f o r f r equent i t emse t s
3
4 Output : R // s e t o f f r equent i t emse t s
5
6 Method :
7 k = 1 ;
8 N =number o f t r an s a c t i on s in T ;
9 Fk = {i | i ∈ I ∧ σ({i})

N ≥ minsup} ;
10 repeat
11 k = k + 1 ;
12 Ck = apriori gen(Fk−1) ;
13 f o r each t r an sa c t i on t ∈ T do
14 Ct = subset(Ck, t) ;
15 f o r each candidate i t emset c ∈ Ct do
16 σ(c) = σ(c) + 1 ;
17 endfor
18 endfor
19 Fk = {c | c ∈ Ck ∧ σ(c)

N ≥ minsup} ;
20 un t i l Fk = ∅
21 R =

⋃
Fk ;
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the rental history of a person who first rented Gladiator and The Shining
together, after which s/he rented Good Bye Lenin, and finally Stardust and
Lucky Number Slevin, again at the same time.

Previously we presented the notion of a subset, but a similar concept also
exists in sequential data, namely subsequences. Traditionally a sequence is
defined as follows:

Definition 9. 〈a1a2 . . . an〉, is a subsequence of sequence 〈b1b2 . . . bm〉, with
a1, . . . , an, b1, . . . , bm being itemsets, if there exist integers i1 < i2 < · · · < in
such that a1 ⊆ bi1 , a2 ⊆ bi2 , . . . , an ⊆ bin .

3.2.2 AprioriAll

Applying an Apriori-inspired algorithm on sequential data has already
been investigated, resulting in the AprioriAll [AS95] and the GSP [SA96]
algorithms. AprioriAll uses the same structure provided in the Apriori algo-
rithm, as the pseudo-code in Listing 3.2 demonstrates. But as it concentrates
on sequences, it differs on two particular points from the original algorithm,
namely candidate generation and support count measuring.

Before any analysis can be performed, a transformation of the input se-
quences is needed. Consider a sequence, a list of itemsets possibly represent-
ing transactions. The transformation will replace every itemset by the set
of frequent itemsets it contains. If by doing so transactions become empty,
these transactions are removed. If a sequence becomes empty, this is also
removed from the input. Every itemset is also represented by a literal, a
unique identifier representing every possible composition of an itemset. For
example, consider the sequence 〈{A, B}{B, C}}, assuming all items in this
sequence are frequent, this would be transformed into, 〈{1, 2, 3}{2, 4, 5}〉,
with 1 representing {A}, 2 {B}, 3 {A, B}, 4 {C} and 5 {B, C}. However, in
following examples, we will not use this transformed format, as this makes
some concepts more difficult to understand.

The first phase we should concentrate on, is candidate generation, a phase
performed by the function apriori− gen(Fk−1). In this phase the candidates
of size k are generated using the frequent sequences of size k − 1. Here,
the size of a sequence is interpreted as the amount of items making up the
sequence, regardless of the amount of itemsets containing the items. For
example, 〈{A}{B}〉 and 〈{A}{C}〉 are both sequences of size 3. Combining
these two in a sequence of size 4 would result in the sequences 〈{A}{B}{C}〉
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Listing 3.2: Pseudo-code AprioriAll

1 Input : T // s e t o f t r a j e c t o r i e s
2 minsup //minimal support f o r f r equent i t emse t s
3
4 Output : R // s e t o f f r equent sequences
5
6 Method :
7 k = 1 ;
8 N =number o f sequences in T ;
9 Fk = {i | i ∈ I ∧ σ({i})

N ≥ minsup} ;
10 repeat
11 k = k + 1 ;
12 Ck = apriori− gen(Fk−1) ;
13 f o r each data sequence t ∈ T do
14 Ct = subsequence(Ck, t) ;
15 f o r each candidate k−subsequences c ∈ Ct do
16 σ(c) = σ(c) + 1 ;
17 endfor
18 endfor
19 Fk = {c | c ∈ Ck ∧ σ(c)

N ≥ minsup} ;
20 un t i l Fk = ∅
21 R =

⋃
Fk ;
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and 〈{A}{C}{B}〉. Candidates are generated by matching the first k − 2
items, if these match, a candidate in generated by adding the last itemset of
the second sequence, to the first sequence.

Once all candidates are generated, some have to be pruned, as they do not
comply with the Apriori Principle. To check whether a candidate of size k
complies with the Apriori Principle, we remove each item once and check if
the sequence consisting out of the remaining items belongs to the frequent
sequences of size k − 1. Consider our generated candidate 〈{A}{B}{A}{B}
{C}〉, if we want it to comply with the Apriori Principle, all subsequences of
size 4 should be frequent, being 〈{B}{A}{B}{C}〉, 〈{A}{A}{B}{C}〉, 〈{A}
{B}{B}{C}〉, 〈{A}{B}{A}{C}〉 and 〈{A}{B}{A}{B}〉. If one of these
would prove not to be frequent, the candidate is discarded.

The second important phase is the support count measuring. Here, the
function subsequence(Ck, t) is used to determine the candidates that are
contained in a trajectory, after which the support count of the found candi-
dates is increased. To find all candidate subsequences contained in a specific
sequence, AprioriAll uses the method proposed in [AS95], which employs a
hash-tree containing all candidates.

The hash-tree used in the subsequence matching, stores all candidate sub-
sequences. Using this tree allows us to minimize the amount of matching
needed to determine the support count of our candidates. The tree is built
up from leaf nodes, containing a table of sequences, and interior nodes, con-
taining a hash-table referring to other interior nodes or leaf nodes.

To add a candidate to the hash-tree, we start at the root, at depth 1, and
go down each interior node until we reach a leaf node. To determine at depth
d of the tree, which branch should be followed, we apply a hash function to
the dth item of the sequence. As an interior node contains a hash-table, the
result of the hash function will point at a bucket containing the next node.
If we would reach a leaf node, the candidate should simply be added, unless
the node has reached it maximum capacity. In this case we replace the leaf
node by a new interior node, to which the new candidate is added together
with all sequences previously contained in the old leaf node.

The constructed tree can then be used to determine all candidates con-
tained in a sequence. At leaf nodes, containing a table of sequences, we
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evaluate for each candidate in the table whether it is contained in the se-
quence. The resulting candidates will be added to the output. At interior
nodes, reached by hashing an item i, we hash every item in the itemsets
following the itemset containing i and apply this process recursively on the
nodes contained in the buckets. At the root of the tree we hash on every
item in the sequence, and access the nodes in the buckets accordingly.

3.2.3 GSP

Following the AprioriAll, another algorithm was introduced, called GSP,
Generalized Sequential Patterns [SA96]. Overall, this algorithm uses the
same techniques as AprioriAll, as it focuses on improving and expanding the
AprioriAll principles to fulfill the expanding needs of sequential data. The
most important features introduced in GSP are described in the following
section.

Sliding windows The first feature introduced by the GSP algorithm is
the sliding window constraint. This constraint was originally introduced to
allow the mining algorithm to map an itemset that is part of a sequence on
several other sequences regarded as a whole as long as the time frame of these
multiple sequences fall within the limits of the stated time window. Or more
formally as described in [SA96], a data sequence d = 〈d1, ..., dm〉 contains a
sequence s = 〈s1, ..., sn〉 it there exist integers l1 ≤ u1 < l2 ≤ u2 < ... < ln ≤
un such that

1. si is contained in ∪ui
k=li

dk, 1 ≤ i ≤ n, and

2. transaction-time(dui
) - transaction-time(dli) ≤ window-size, 1 ≤ i ≤ n

where transaction-time(d), d being an itemset or a transaction, denotes the
time at which this itemset was recorded.

Time constraints The second two constraints involve the elapsed time be-
tween two consecutive stops, namely maxspan and minspan. The definition
as given in [SA96], in combination with the definition of a sliding window:
a data sequence d = 〈d1, ..., dm〉 contains a sequence s = 〈s1, ..., sn〉 it there
exist integers l1 ≤ u1 < l2 ≤ u2 < ... < ln ≤ un such that

1. si is contained in ∪ui
k=li

dk, 1 ≤ i ≤ n, and

2. transaction-time(dui
) - transaction-time(dli) ≤ window− size, 1 ≤ i ≤

n
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3. transaction-time(dli) - transaction-time(dui−1
) > minspan, 2 ≤ i ≤ n

4. transaction-time(dui
) - transaction-time(dli−1

) ≤ maxspan, 2 ≤ i ≤ n

The first two conditions are those of the sliding window. They are mentioned
here as they are related to the conditions of time constraints.

Taxonomies In this thesis, we have always regarded the items as being
events unrelated to other events. However, there are applications where
the items are related or comparable to each other of different levels. These
relations can be expressed in a taxonomy, a is-a hierarchy featuring several
levels expressing how items are related to each other. Taxonomies can be
interesting as it is a multiple level approach to finding patterns.

A sequence s contains the item i ∈ I, if i is in s or i is an ancestor of some
item in s.

Figure 3.1: A possible hierarchy on touristic places of interest.
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Mining on different levels can be achieved quite easily. By replacing an
item by the item and all its upper levels, the algorithm will automatically
reduce the depth of rules if this does not reach the necessary support. For
example consider the sequence 〈{Hotel1}{Bar1}{Museum1}〉, if we would
like to mine on different levels of the taxonomy, we would need to transform
this sequence to 〈{Location, Accommodation, Hotel, Hotel1} {Location,
Entertainment, Bar, Bar1} {Location, Culture, Museum, Museum1}〉.
As the mining process proceeds, it is possible that lower levels are dropped
during the candidate generation and support count measuring. It could be
possible that the previous sequence does not get enough support, but that the
sequence 〈{Location, Accommodation, Hotel} {Location, Entertainment,
Bar, Bar1) {Location, Culture, Museum, Museum1}〉 does get enough sup-
port simply because Hotel1 was dropped from the first itemset.

Having studied AprioriAll and GSP, we can conclude that although we
are able to find frequent sequences, these do not reflect the nature of our
trajectories. Therefore we will define our own data model that we will use
as a basis for our Stops and Moves Apriori.

3.3 Stops and Moves Apriori

3.3.1 Sequential data

If we would focus on our type of data, semantically enriched trajectories,
the traditional model can be considered unnecessary complex, as the ordinal
relation is defined on the stops, which are our items. If we would like to
describe our data with this notion of sequences, we could consider them to
be a list of singleton itemsets, where each itemset contains a stop. However,
to simplify the representation, we could regard a sequence as an ordered list
of items.

Because the traditional model is inadequate for representing our seman-
tically enriched trajectories, we will define our own model. The inspiration
for this model comes from the paper Mobility Patterns [dMR05], which pro-
poses a language of regular expressions to describe patterns in semantically
enriched trajectories. These patterns are intended for query-purposes, as
they define a filter that can be applied to a collection of trajectories to re-
trieve a set of matching trajectories. As the concept of Mobility Patterns is
designed to encapsulate the notion and semantics of trajectories, it becomes
a very good basis for our own model.
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The idea we would like to introduce, is a semantic model that embodies
the notion of strict sequentiality, but also the notion of wildcards, as we wish
to include some flexibility in our frequent sequences. Our notation is also
derived from Mobility Patterns, as we use ‘.’ to represent sequentiality in
trajectories. The wildcards are represented by $. We will now define our
sequence data model.

Definition 10. Consider S = {s1, s2, . . . , sd} to be the set of all stops found
in the enriched trajectories. A sequence is a multiset of elements from S,
where an ordinal relation is defined on its elements.

An example of such a sequence could be Museum1.Monument1.Hotel1.

We use the term multiset instead of set, as a set will only allow one mem-
bership per element, where a multiset does not have this restriction. Consider
the possibility that a trajectory passes the same stop twice or more, as it re-
turns to the same location after visiting other stops. An example of such a
sequence could be

Hotel1.Museum1.Monument1.Hotel1

where Hotel1 has multiple occurrences in the sequence. As with traditional
sequences, our model also defines the notion of subsequences.

Definition 11. A sequence si of size m is a subsequence of sequence sj, if
si[0] = sj[n], si[1] = sj[n + 1], . . . , si[m] = sj[n + m].

For example, both Museum1.Monument1.Hotel1 and Hotel1.Museum1

are subsequences of Hotel1.Museum1.Monument1.Hotel1, while Hotel1.Ho-
tel1 is not.

The goal of applying association analysis on sequences is to find the fre-
quent sequences hidden in the trajectories. Once these are found, they can
be translated into rules, describing this newfound knowledge.

Definition 12. A sequential rule is of the form A → B (sup = x, con = y),
where A and B are two sequences, implies that if a sequence s contains the
subsequence A, s also contains the subsequence B, which follows A. Every
rules is associated with a support sup and confidence con.

This is a very limited form of representing patterns, as the ordinal rela-
tion available in sequences gives us new opportunities. We will elaborate on
sequential rules later in this chapter.
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Listing 3.3: Pseudo-code Stops and Moves Apriori.

1 Input : T // s e t o f t r a j e c t o r i e s
2 minsup //minimal support f o r f r equent i t emse t s
3
4 Output : R // s e t o f f r equent sequences
5
6 Method :
7 k = 1 ;
8 N =number o f sequences in T ;
9 Fk = {i | i ∈ I ∧ σ({i})

N ≥ minsup} ;
10 repeat
11 k = k + 1 ;
12 Ck = apriori− gen(Fk−1) ;
13 f o r each data sequence t ∈ T do
14 Ct = subsequence(Ck, t) ;
15 f o r each candidate k−subsequences c ∈ Ct do
16 σ(c) = σ(c) + 1 ;
17 endfor
18 endfor
19 Fk = {c | c ∈ Ck ∧ σ(c)

N ≥ minsup} ;
20 un t i l Fk = ∅
21 R =

⋃
Fk ;

3.3.2 Description

In the next section we define our own Stops and Moves Apriori based on the
principles of AprioriAll and combining these with our sequence data model.
Initially we will not include the use of wildcards, as we will first focus on the
differences with AprioriAll. The structure of our Apriori, as shown by the
pseudo-code in Listing 3.3, will be exactly the same to AprioriAll. However,
the apriori gen(Fk−1) and subsequence(Ck, t), both essential functions, will
be defined differently.

The data model we defined has an advantage, namely the fact that it
resembles that of a string. To be more exact, our definition of a subsequence
is similar to that of a substring. This creates possibilities of introducing
string-based algorithms.
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Candidate generation

During the candidate generation phase, which is performed with the help
of the function apriori gen(Fk−1), two frequent subsequences of size k−1 are
matched to form a subsequence of size k. First subsequences as represented
as strings on which a string-matching algorithm is performed to determine if
both subsequences are equal. The matching is performed linearly, by com-
paring k − 2 characters.

Formally the candidate generation can be described as follows: let A =
A1. ... .An and B = B1. ... .Bn be two subsequences of size n. If A2 = B1, ...,
An = Bn−1 a new sequence of size n + 1 is generated A1.B1.B2. ... .Bn and
added to the collection of candidates.

For example, consider the subsequences A.B.C and B.C.D. Using the
string-matching algorithm, we check whether the second item of the first
subsequence equals the first item of the second subsequence and whether
the third item of the first subsequence equals the second item of the second
subsequence. Since this is the case in our example, A.B.C and B.C.D would
result in the creation of the candidate subsequence A.B.C.D.

A first concern is whether the Apriori Principle is respected. The Prin-
ciple applies to all our generated candidates, which is a direct result of our
definition of a subsequence and the principle of our candidate generation.
Every candidate of size k, with k > 1, has only two subsequences of size
k − 1, namely those used from the collection of frequent sequences to gener-
ate the candidate. As we know that these sequences are frequent, the Apriori
Principle applies to all generated candidates. Therefore there is no need for
pruning, which was the case in AprioriAll and also GSP, as a subsequence
was defined less strict.

The Apriori Principle holds, but was there an increase in efficiency because
of the adaptations? Well, because pruning is no longer necessary, this step
is eliminated resulting in a decrease in needed computations. The first step
- and only in case of the Stops and Moves Apriori - is practically identical
as for each pair of frequent sequences of size n − 1 a n-sized candidate is
generated in linear time. So the improvement in complexity is that of the
pruning phase.
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To measure a potential increase in efficiency, the complexity of our can-
didate generation should be compared to that of the AprioriAll. AprioriAll
generates candidates of size k by comparing the first k−2 itemsets of the fre-
quent sequences of size k−1. If these match, a k-sized candidate is generated
by taking the sequence of size k − 2 that occurs in both frequent sequences,
to which both (k − 1)th items are added. Consider N to be the number
of frequent sequences of size k − 1, then the complexity of generating the
candidates can be described as N · N · (k − 2), as the collection of frequent
sequences is read twice, and k − 2 comparisons are needed. This complex-
ity corresponds with that of Stops and Moves Apriori, as the candidates are
generated in similar fashion.

However, the fact we no longer need to prune candidates containing infre-
quent subsequences does result in a reduction of needed computations. To
determine the complexity of the pruning phase, we use the variables N to be
the number of frequent sequences of size k−1, and C to be the number of can-
didates of size k. The complexity can then be described as O(C ·k ·N ·(k−1)),
which can be reduced to O(M ·N · k2) as for each candidate we check if the
sequence generated by removing one of the k itemsets, is a frequent sequence
of size k − 1.

We can thus conclude that generating the candidates has a similar com-
plexity in Stops and Moves Apriori and AprioriAll, but that pruning of infre-
quent candidates, which is only necessary in AprioriAll, requires O(M ·N ·k2)
computations.

Support count measuring

During this phase, we determine for each sequence which candidates it
contains as to measure the support count of each candidate. We use the
function subsequence(Ck, t), where Ck is the collection of candidates and t
is the sequence representing a trajectory. As our focus is mainly on speed,
we should concentrate on two important elements. First, the amount of
matching should be limited, and second, the matching should be performed
as efficient as possible.

To limit the amount of matching to be performed, we can use the same
technique used by the AprioriAll, namely a hash-tree containing all candi-
dates, allowing us the retrieve a small portion of the candidates that are then
matched to the sequence.
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The hash-tree has two types of nodes, leaf nodes, containing a table of
candidate subsequences, and interior nodes, containing a hash-table where
every bucket leads to a node at lower level. The root is defined to be at
depth 1. To add a candidate subsequence to the tree, we start at the root
and apply a hash function to its first item. If the node the bucket leads to is a
leaf node that has not reached maximum capacity, the subsequence is added
to the table, if it has reached maximum capacity, this leaf node is replaced
by a interior node and the new subsequence, together with the subsequences
from the old leaf node are added to the child nodes of the new interior node
using the hash function. If however the node is a interior node, we apply the
hash function to the next item, which we repeat recursively until we reach a
leaf node. Generally, we can conclude that in a node at depth d we hash the
dth item to reach the node at depth d + 1 until we reach a leaf node.

The next step is to use the tree to determine which subsequences are
contained in a sequence. There is a different approach depending on the
type of node we have reached. If the node is a leaf node, we match every
subsequence in the table to the sequence, and add all matching subsequences
to the result. If the node is an interior node that we reached by hashing the
ith item, we apply the hash function on every item following the ith item,
and move down every selected branch. By recursively applying the hash
function, we might eventually reach a leaf node. At the root we apply the
hash function on every item in the sequence, and follow each selected branch.

We have limited the amount of matching needed to determine the sub-
sequences contained in a sequence, but as mentioned, there are still a few
comparisons to be performed. During the candidate generation, we had to
match two frequent sequences of size i − 1 to generate a candidate of size
i. However, here we had fixed positions for comparisons, something we no
longer have. That is why we need a different approach.

We already stated that the analogy of our sequences to strings might allow
us to use string-based techniques. From this point of view, there was one
interesting algorithm used for substring matching, namely the Boyer-Moore
algorithm, which could prove a fast way to match whether a candidate sub-
sequence is contained in a sequence.

Boyer-Moore

The Boyer-Moore string search algorithm was first proposed in [BM77].
This algorithm was developed to speed up the search of a substring or pat-
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tern in a string by avoiding checking every character of the string. Instead
of matching the first character of the pattern with the first character of the
string, it starts by matching the last character of the pattern with the cor-
responding character in the string. As Boyer-Moore is intended to be used
on strings instead of sequences, a translation has to occur prior to support
count measuring, as the candidates and the sequences need to be formatted
into strings.

To demonstrate how the Boyer-Moore string search works, three observa-
tions can be made. They form the basis of the algorithm and encapsulate
the idea behind it.

However, before the observations can be described, a few of the variables
used need to be introduced together with their purpose.

• pattern length: the length of the pattern that is searched for in a
string.

• pattern(j): the j-th character in the pattern

• delta1 and delta2: two tables used to determine the cursor jumps during
the matching process. How these are calculated will be explained later.

Observation 1 If the character in the string that is being focused on,
later referred to as c, does not appear in the pattern, the first characters, of
which the amount corresponds to the length of the pattern, referred to as
pattern length, do not need to be checked. It is impossible that the pattern
will occur within these characters. As a consequence, we can move our cursor
pattern length positions, and focus on the next pattern length characters of
the string. For example:

Pattern: E.C.A.G.E.C

Sequence: C.A.A.B.C.D.G.F.E.C.E.G.A.C.E.C.A.G.E.C

As D does not occur in the pattern, there is no need to check the charac-
ters that precede D, since it is impossible that pattern can match. Therefore
we can concentrate on the next six characters.

Pattern: E.C.A.G.E.C

Sequence: C.A.A.B.C.D.G.F.E.C.E.G.A.C.E.C.A.G.E.C
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Observation 2 If the character in the string does appear in the pattern,
with its position being delta (counting from the right side), we can move our
cursor delta position, as to align the corresponding characters of both the
string and the pattern. For example:

Pattern: E.C.A.G.E.C

Sequence: C.A.A.B.C.D.G.F.E.C.E.G.A.C.E.C.A.G.E.C

As G does occur in the pattern, we cannot move our cursor pattern length
positions. We have to match the positions of the C in the pattern and the
string by moving the pattern two positions.

Pattern: E.C.A.G.E.C

Sequence: C.A.A.B.C.D.G.F.E.C.E.G.A.C.E.C.A.G.E.C

Observation 3a If we have already matched a part of the pattern to the
string and encounter a mismatch, we can move our cursor m + k characters
to the right, where m equals the number of characters of the string that were
already matched and k is either 1, if the mismatched does not occur in the
pattern or the mismatched character’s rightmost occurrence in the pattern
is in the part of the patterns that has already been matched, or if it is in
the unmatched part of the pattern, k equals the rightmost position of the
mismatched character minus m, the amount of characters that were already
checked. By doing so, we align these two equal characters.

Pattern: E.C.A.G.E.C

Sequence: C.A.A.B.C.D.G.F.E.C.E.G.A.C.E.C.A.G.E.C

A does not match the E from the pattern, so we can move our cursor and
pattern one position as we have already matched 1 character, plus 1 extra
position, as the rightmost occurrence of E is to the left of A. So we move our
pattern two positions.

Pattern: E.C.A.G.E.C

Sequence: C.A.A.B.C.D.G.F.E.C.E.G.A.C.E.C.A.G.E.C

Observation 3b More general, if some characters of the pattern were
matched onto the string, and a mismatch occurs, it is possible that this
part of our pattern, this subpattern, recurs in the pattern, referred to as
a ‘plausible recurrence’. Therefore by moving our pattern as to align the
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rightmost recurrence of the subpattern in the pattern, left of our original
subpattern, with the part of the string that was matched, some comparisons
can be avoided. After shifting the pattern, the cursor also needs shifting to
the right.

Pattern: E.C.A.G.E.C

Sequence: C.A.A.B.C.D.G.F.E.C.E.G.A.C.E.C.A.G.E.C

We are able to match E.C when a mismatch occurs, as G and C don’t match.
By shifting the pattern 4 positions we align E.C with the second occurrence
of this subpattern.

Pattern: E.C.A.G.E.C

Sequence: C.A.A.B.C.D.G.F.E.C.E.G.A.C.E.C.A.G.E.C

Algorithm The notation pattern(j) will refer to the jth character of the
pattern. Two tables are needed for the algorithm, delta1 and delta2. The size
of delta1 equals the number of characters in the alphabet. As observation
1 and observation 2 indicated, if a character does not occur in the pattern
or it occurs in the pattern but there is a mismatch, we are able to shift
the focus a number of characters to the right. That is why we need delta1.
For every character it contains an integer, if the character does not occur
in the pattern, this integer equals the length of the pattern. However, if it
does occur, this integer equals the length of the pattern minus j, j being the
maximum possible shift so the characters in the pattern and string are equal.
A single item in delta1 is referred to as delta1(char).

The table delta1 can be constructed as follows: create a table that contains
an entry for every possible character. Initialize each entry to pattern length.
As we process every character c of the pattern, we replace the entry with
pattern length - position of c, replacing the entry where needed.

delta2 also contains integers, namely for every character in the pattern,
so delta2(j) refers to the pattern’s character at position j. If it was able to
match a certain part of the pattern to the string, but there was a mismatch,
the pattern and also the focus need to be shifted. When a part of the
pattern recurs within the pattern, and that part has already been matched,
as demonstrated in observation 3a and 3b, the recurring part of the pattern
and the corresponding part of the string can be positioned opposite of each
other to ensure they already match. This shifting is calculated in advance
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and inserted in delta2. Each integer is the sum of the shift of our pattern
and the shift of our focus.

These two tables are used during the process of the algorithm to calculate
the maximal shift of our pattern and focus, and to minimize the needed time
for our pattern search. The Tables 3.2 and 3.3 give example of delta1 and
delta2 calculated for the previously explained example.

Table 3.2: delta1 as calculated for the example.
A 3
B 6
C 0
D 6
E 1
F 6
G 2

Table 3.3: delta2 as calculated for the example.
A 0
C 4
E 0
G 4

The algorithm starts by preprocessing pattern and inserting the corre-
sponding data in delta1 and delta2. These tables are later used during pat-
tern matching, as it allows it to calculate the shifts of the pattern and focus.
After having calculated the two tables, the pattern and string are given as
input. The pseudo-code demonstrates the progress of the pattern search
process.

The algorithm either returns −1 or a positive integer. The −1 indicates
that the pattern was not found in the string, while the positive integer in-
dicates the pattern was found and represents the leftmost location of the
pattern in the string. Therefore, if the output is different from −1, the sup-
port count of the pattern can be increased. Naturally, the output could also
be a boolean, as we don’t need the leftmost location of the pattern, only
confirmation that the pattern occurs in the sequence.
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Listing 3.4: Boyer-Moore string search algorithm.

1 Input : string // s t r i n g to be searched f o r matching pattern
2 pattern // pattern to be searched in s t r i n g
3
4 Output : output // i n t e g e r
5 // i f output = −1, no match was found
6 // i f output > 0 , match was s u c c e s s f u l
7
8 Method :
9 stringlength = length o f s t r i n g ;

10 patternlength = length o f pattern ;
11 output = −1;
12 i = patternlength ;
13 stop = false ;
14 whi l e i ≤ stringlength and stop = false
15 j = patternlength ;
16 continue = true ;
17 whi l e continue and not stop
18 i f j = 0
19 stop = true ;
20 output = j + 1 ;
21 e l s e
22 i f string(i) = pattern(i)
23 j = j − 1 ;
24 i = i− 1 ;
25 e l s e
26 i = i + max(delta1(string(i)), delta2(j)) ;
27 continue = false ;
28 end i f
29 end i f
30 endwhi le
31 endwhi le
32 re turn output ;
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After having introduced Boyer-Moore as a matching algorithm to use in
our support count measuring, does this have an influence on the amount of
computations needed to perform our mining? To answer that question, we
can compare the complexity of the support count measuring of AprioriAll
and Stops and Moves Apriori.

One important part of the computation is building a hash-tree and retriev-
ing all candidates. However, as we use the same technique in both AprioriAll
and Stops and Moves Apriori, we choose not to elaborate on this, as the com-
plexity would be the same in both algorithms.

However, once the collection of k-sized candidates has been determined,
we have to match these with our sequences to determine their support count.
AprioriAll uses a matching algorithm with takes O(k ·M) computations, as
each of the k items in the candidate needs a maximum of M comparisons,
with M being the average length of a sequence, to find before a match can
be made. As Stops and Moves Apriori uses the Boyer-Moore algorithm to
match, matching these only takes O(M

k
) computations, which is an improve-

ment. If we would consider C to be the total number of candidates, than
the complexity of the matching phase in Stops and Moves Apriori becomes
O(N · C · M

k
) compared to the O(N · C · k · M) of AprioriAll, where C, the

total number of candidates of size k gives an upper limit to the amount of
candidates retrieved from the hash-tree.

After having compared AprioriAll and Stops and Moves Apriori, we can
conclude that the most important advantages of Stops and Moves Apriori is
that pruning is no longer needed, and the use of Boyer-Moore, both reducing
the amount of needed computations.

However, do these improvements come at a price? The most significant
drawback is the limited amount of frequent sequences found as opposed to
AprioriAll, which is a direct consequence of our definition of a sequence.
By defining a subsequence so strictly, we leave a large portion of potential
patterns out. However, in the following section we try to solve this by intro-
ducing wildcards as a way to a more flexible approach to subsequences and
thus also frequent sequences.
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3.3.3 Wildcards

We choose a two-step approach to introducing and defining our notion of
wildcards. We start with single-matching wildcards and expand this defini-
tion to multi-matching wildcards in an attempt to make a more transparent
transition.

Single-matching wildcards

Stops and Moves Apriori is already able to find frequent sequences, but as
mentioned, sometimes these results are not satisfactory. It could be interest-
ing to widen the class of outputted patterns, and lift some of the restrictions
we are faced with at this point. Some of these restrictions are a direct result
of our definition of sequences, primarily of the way we defined a subsequence.

For an example of these drawbacks and restrictions, observe the three
trajectories shown in Figure 3.2. Translated in textual form, these could
become

1. Hotel1.Museum1.Bar1.Museum2

2. Hotel2.Museum1.Bar2.Museum2

3. Hotel3.Museum1.Bar1.Museum2

If a minimum support of 70% is set, the collection of found frequent sequences
would be limited to {〈Museum1〉, 〈Museum2〉}.

But as we can observe from the graphical representation, there is one very
significant pattern that was not found, namely the fact that when an object
visits Museum1 it will also visit Museum2. We will now try to find a way
to find this class of frequent sequences.

What measures can be made to allow us to mine for this type of pattern?
One option originates from the ideas, proposed in the paper [GRS99], to
increase the user-controlled focus in the pattern mining process by using reg-
ular expressions as to limit uninteresting result, and the principles behind
Mobility Patterns [dMR05], which use a form of regular expressions adapted
to trajectories as a querying tool. The regular expressions are a tool provided
to the user as to constraint and direct the nature and the amount of results
generated by the mining or querying process.
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Figure 3.2: Visual representation of example of patterns ignored without the
use of single-match wildcards.

However, our intention is not to constraint the results, but to allow more
flexibility while mining for patterns. The use of regular expressions did in-
spire us to use wildcards while generating candidate sequences. By using
these, we gain the advantages provided by regular expressions, as it is a
simple and comprehensible way of expressing the flexibility we want in our
candidate sequences.

Definition 13. Consider S = {s1, s2, . . . , sd} to be the set of all stops found
in the enriched trajectories and $ to be a single-matching wildcard, which
can represent any stop s ∈ S. A sequence using single-matching wildcards is
a sequence composed of elements of S ∪ {$}.
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This wildcard makes it possible to find patterns that could be interesting
to the user, for example of the form

A.$.C.D,

implying a frequent sequence that goes from A through any possible stop,
after which it goes through C and finally through D.

This expansion can be achieved by two simple measures. First, when
generating the collection of frequent item sequences of size 1, the wildcard
$ is added. In further steps of candidate generation this will be treated like
a regular item. Secondly during the evaluation whether the candidates are
frequent or not, $ is treated as a wildcard that could represent any item.

One issue that arises from introducing this wildcard is whether the Apri-
ori Principle is still respected. In a sense, this is still the case, if the notion
behind the wildcards is taken into account. Consider the candidate sequence
A.$.C. If we would like the Apriori Principle to be respected for this se-
quence, then following sequences need to be frequent: A, $, C, A.$ and $.C.
We know that A.$ and $.C are frequent, otherwise the candidate would not
have been generated, and this also applies to A, $, C and A.$. But it could
be possible that the sequence B.C, which could be regarded a subsequence of
A.$.C, is not frequent, as thus we could conclude that the Apriori Principle
does not hold. However, when determining whether the subsequences of a
candidate are frequent, the wildcards in these subsequences should be re-
garded as such. The support count of this subsequence should be the sum of
the support counts of the subsequences where the wildcard has been replaced
by all possible items. As a consequence, we can conclude that the Apriori
Principle still holds.

To demonstrate this interpretation, consider the collection of sequences S
depicted in Table 3.4. The frequent sequences of size 2, with a support of 50%
would be F2 = {A.B, B.C, C.D, D.E, A.$, B.$, C.$, D.$, $.B, $.C, $.D, $.E,
$.$}. One of the generated candidates would be A.B.$, which is generated by
combining A.B, and B.$. By respecting the nature of the wildcard, we can
conclude that they both are frequent with a support count of respectively 2
and 3.

The introduction of wildcards in candidate subsequences makes Boyer-
Moore difficult to use for pattern matching, since the two tables used to
minimize the number of comparisons cannot be generated properly when
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Table 3.4: Example of set of sequences.
S1 {A.B.C.D}
S2 {B.C.D.E}
S3 {A.B.D.E}

using our wildcard. Instead we take our inspiration from resolving regular
expressions, as the introduction of wildcards originates from the notion of
Mobility Patterns, which is a form or regular expressions.

Multi-matching wildcards

Going a step further, we can introduce multi-matching wildcards. The
single-matching wildcards described in the previous section can represent any
item, but it is restricted to one single item. However, this restriction leaves
out an interesting class of patterns. For example, observe the sequences
A.B.C.F , A.B.C.D.F and A.B.C.D.E.F . There is clearly a pattern visible
amongst the sequences namely all three sequences start with A.B.C and end
with F . As for a certain application this type of pattern might be considered
interesting, these patterns should be recognized and outputted. Modifying
our Stops and Moves Apriori to be able to recognize frequent sequences
containing multi-matching wildcards is the next step in our process.

Definition 14. Consider S = {s1, s2, . . . , sd} to be the set of all stops found
in the enriched trajectories and $+ to be a multi-matching wildcard, which
can represent one or more stops s ∈ S. A sequence using multi-matching
wildcards is a sequence composed of elements of S ∪ {$+}.

The adaptations needed, are mainly situated in the support count phase,
as candidate generation is identical to that proposed with single-matching
wildcards. During the evaluation of the support count, the algorithm checks
whether a candidate frequent sequence can be mapped on a data sequence.
It is this mapping that should be adapted in a way to allow for the multi-
matching wildcards.

If we would like to match a candidate regular sequence onto a sequence,
there is an approach that allows us to recursively resolve whether these
two match. Consider a matching-function find(candidate, sequence), which
matches the candidate onto the sequence by comparing the first item of the
candidate with the first item of the sequence, if they match, we compare the
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Figure 3.3: Visual representation of example of patterns ignored without the
use of multi-match wildcards.

second item of the candidate with the second item of the sequence, and so
on, until all items have been matched. If we would encounter a mismatch, we
move the cursor of the sequence 1 position, so we would compare the first item
of the candidate with the second item of the sequence. When we encounter a
wildcard in the candidate, we recursively call the matching-function, where
candidate is the remainder of the candidate after the wildcard, and sequence
is the remainder of the sequence after the item that was mapped onto the
wildcard.

For example, consider the candidate frequent sequence B.$+.E.$+.G and
the sequence A.B.C.D.E.F.G.H. Matching this candidate onto the sequence
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would start by comparing B with A. As this fails, the cursor of the sequence
is moved, resulting in a successful match between B of the pattern and B of
the sequence. Next we encounter $+ in the candidate, resulting in a recursive
call, where E.$+.G is matched onto D.E.F.G.H. As E and does not match
onto D, E and E are matched. Again a $+ is encountered, so G is matched
onto G.H. As this candidate is a subsequence of G.H, it can be concluded
that B.$+.E.$+.G matches onto A.B.C.D.E.F.G.H.

Again, we can ask the question whether the Apriori Principle is respected
during the candidate generation, but as the candidate generation is based on
exact the same principles as with single-matching wildcards.

Will the results of Stops and Moves Apriori with the use of multi-matching
wildcards differ from those of AprioriAll? As mentioned before, Apriori-
All already enables us to mine semantically enriched trajectories, where we
would describe each stop as a singleton itemset. There is however a dif-
ference in the type of frequent sequences that can be described. Consider
the example of a sequence A.B.C.D.E and A.B.E, if we would transform
these to the traditional model they would become 〈{A}{B}{C}{D}{E}〉
and 〈{A}{B}{E}〉. Focusing on the two traditional sequences, the frequent
sequence 〈{A}{B}{E}〉 is found. However, a frequent sequence using our
own definition of sequences, with the same semantics, cannot be found. For
example A.B.$+.E, can be mapped on the first sequence, but not the second,
and A.$+.E can be mapped on both the sequences, but does not express the
presence of B in the pattern. We can thus conclude that both algorithms
will not present the same results.

However, this problem can be avoided by introducing the wildcard $∗,
which can represent ‘zero, one or more’ items. But also in this case some
difference occurs, as the traditional model is not able to reflect the fact that
one item directly follows another, which is the case in our model. Again,
consider previous examples A.B.C.D.E and A.B.E and their transformed
versions 〈{A}{B}{C}{D}{E}〉 and 〈{A}{B}{E}〉. There does not exist
any traditional frequent sequence that expresses A.B.$∗.E, which states, if a
sequence contains A directly followed by B, it will also contain E. On the
other hand, will every result from the AprioriAll be included in the result
of Stops and Moves Apriori? The answer is yes, as every result outputted
by AprioriAll can be transformed into an equivalent frequent sequence of
our own definition, by inserting a $∗ between every item. For example the
frequent sequence 〈{A}{B}{E}〉 can be transformed into A.$∗.B.$∗.E and
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will also have the same support count, as they both are contained in all
sequences that contain an A, followed by a B, followed by an E.

Again, if we want to find out if there was some increase of efficiency, and
thus a reduction of computations, we have to compare the complexity of
AprioriAll and Stops and moves Apriori with multi-matching wildcards. We
start with candidate generation. As this is similar to that of the ‘No wild-
cards’ version, we can conclude this is also similar to AprioriAll. Pruning,
however, is still not needed, as the Apriori Principle is respected. And fi-
nally we have the support count measuring, which has a different matching
algorithm to that of the ‘No wildcards’ version. The matching algorithm has
the same complexity than that of AprioriAll, which is O(k ·M), with k being
the size of the candidate, and M being the average length of a sequence.

3.4 Generating rules from frequent sequences

Once all frequent itemsets have been found, these itemsets need to be trans-
formed into rules, as these are the end product of our association analysis
process and a tool to formulate the newly found knowledge.

3.4.1 Traditional rule formulation

In traditional association analysis, that is to say in case of itemsets instead
of sequences, rules are formed in a two-step process. First, for every frequent
itemset I we generate all non-empty subsets S of I. Secondly we generate
rules by formulating for every S of I the rule S → (I − S). If the rule
evaluates within the stated minimum confidence, this rule is outputted. To
measure the confidence of a rule based on the support count of a frequent
itemset we use the following formula:

confidence(A → B) =
σ(A ∪B)

σ(A)

In this formula σ(A ∪ B) signifies the support count of the itemset that
contains both the items of A and B and σ(A) the support count of the
itemset equal to A. Of course the minimum support of the rules does not
need to be evaluated, as these rules are based on frequent itemsets, which
already satisfy the minimum support. The collection of outputted rules are
the strong rules, which satisfy both our minimum support and confidence.
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3.4.2 Sequential rule formulation

In order to be able to formulate rules regarding frequent sequences, some
changes are needed that take the specific characteristics of sequences into
account. As there are three types of possible frequent sequences, frequent
sequences without wildcards, frequent sequences with single-matching wild-
cards and frequent sequences with multi-matching wildcards, and each of
these will be evaluated for needed alterations.

Without wildcards

This type of frequent sequences has the strictest mapping. Given the fact
that wildcards do no occur within the frequent sequences, the formulating of
rules can be achieved in a relatively simple manner.

For each frequent sequence s of size t we generate t − 1 possible subse-
quences s1, . . . , st−1 consisting out of the first n consecutive items with n
ranging from 1 to t− 1. For each of these subsequences si we generate a rule
stating that si → (s− si) and check whether the confidence of this rule falls
within the minimum confidence. Measuring the confidence of a rule is similar
to how this is measured with frequent itemsets, thus based on the support
count.

For example, consider the frequent sequence

Hotel1.Museum1.Bar1.Museum2.

Translating this frequent sequence into a set of rules can be achieved by gen-
erating the subsequences of this frequent sequence, generating the candidate
rules derived from these subsequences and checking whether these candidate
rules comply with the minimum confidence. Table 3.5 demonstrates the pro-
cess of generating subsequences and rules.

Table 3.5: Deriving rules from frequent sequences.
Subsequences Rules

Hotel1 Hotel1 →
Museum1.Bar1.Museum2

Hotel1.Museum1 Hotel1.Museum1 →
Bar1.Museum2

Hotel1.Museum1.Bar1 Hotel1.Museum1.Bar1

→ Museum2
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The semantics of this type of rules can be described as following. Consider
a rule and sequence, if the antecedent of this rules is present is the sequence,
there is a possibility the consequent of the rule will follow the antecedent.
The chance of this also being the case is described in the confidence of this
rule.

Single-level rules with single-matching wildcards

The next type of frequent sequences we wish to observe, are the frequent
sequences that contain single-matching wildcards, for example

Hotel1.Museum1.$.Museum2

. These are less strict as the frequent sequences without wildcards, but
because of the fact that a frequent sequence is mapped on a subsequence of
the same size, there are no extra alterations needed to those proposed in the
technique for formulating rules on frequent sequences without wildcards.

Table 3.6: Deriving rules from frequent sequences with single-matching wild-
cards.

Subsequences Rules
Hotel1 Hotel1 →

Museum1.$.Museum2

Hotel1.Museum1 Hotel1.Museum1 →
$.Museum2

Hotel1.Museum1.$ Hotel1.Museum1.$
→ Museum2

Consider the given example Hotel1.Museum1.$.Museum2, Table 3.6 de-
scribes how rules can be derived from this frequent sequence.

Single-level rules with multi-matching wildcards

The third type of frequent sequences, are the sequences that contain multi-
matching wildcards. For example A.B.E.$+.G and A.C.$+.E.G.$+.H both
contain multi-matching wildcards. Compared to the single-matching wild-
cards in the previous class of frequent sequences, these wildcards can match
one or more items, making them far more flexible than previous patterns, as
a frequent sequence of a certain length does no longer be matched on a subse-
quence of the same length. This flexibility makes them the most interesting
of the three and therefore we will focus on its potential.
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If we would observe the frequent sequence A.C.$+.E.G.$+.H, how would
we derive rules as to describe the knowledge expressed by this frequent se-
quence. If we would apply the previously proposed technique for generating
rules based on frequent sequences, we would conclude in two rules, namely
A.C.$+ → $+.E.G.$+.H and A.C.$+.E.G.$+ → $+.H. This last rule states
that if a trajectory passes the stops A and C consecutively, and afterwards
also passes E and G consecutively, it will eventually pass H.

As our emphasis in this thesis lies on semantics, we might be able to im-
prove the readability of the rules. Especially the use of the wildcard symbol
$+ can be avoided. We wish to propose a series of predicates and a conjunc-
tive operator that would enable us to capture the simple semantics of a rule.
The predicate we propose is passes(). This predicate should only contain one
or more consecutive items, thus no wildcards. We also propose the use of a
conjunctive operator ~∧ implying a ordinal relation between two propositions.
This operator lets us respect the ordinal nature of sequential patterns.

The example used before A.C.$+.E.G.$+.H delivered two rules, namely
A.C.$+ → $+.E.G.$+.H and A.C.$+.E.G.$+ → $+.H. If we would use our
proposed predicates and operator, these rules would respectively be trans-
lated to

passes(A.C) → passes(E.G) ~∧ passes(H) and

passes(A.C) ~∧ passes(E.G) → passes(H).

We have defined our Stops and Moves Apriori, we have described three
versions, one without wildcards, one with single-matching wildcards and fi-
nally one with multi-matching wildcards. Next, we want to implement these
three algorithms as to demonstrate how they work and test these on actual
data.
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Chapter 4

Implementation

The following chapter contains more technical details on the implementa-
tion of Stops and Moves Apriori. It demonstrates the concepts introduced in
this thesis, and how they can be implemented. First we describe the input,
namely the trajectories, and how these are stored in the database. Next we
observe the enrichment process, after which we describe the actual mining
process and the eventual output.

4.1 Input Description

4.1.1 Trajectories

The input used to evaluate and demonstrate our implementation, is a
large collection of trajectories, which are stored in the database as trajectory
samples. The table contains a record for each sample, and is defined by the
following structure:

• trajectory identifier: indicates which trajectory the sample belongs to.

• a sample identifier: indicates the order of the samples within the tra-
jectories.

• X-coordinate: X-coordinate describes the exact location in a two-dimen-
sional space.

• Y-coordinate: Y-coordinate describes the exact location in a two-dimen-
sional space.

• timestamp: the exact time at which the sample was recorded.
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and other less important variables. These trajectories are transformed into
semantically enriched trajectories. Figure 4.1 gives a visual representation of
our collection of trajectories.

4.1.2 Application

Besides trajectories, we also need an application, which forms the basis
of determining the actual stops. We decided it would be best to divide the
area over which the trajectories were defined into different districts, as Figure
4.1 shows. These are artificially generated, and not based on any real-world
background information. Each of these districts represents a candidate stop
to the trajectories that intersect these districts. Every candidate is also
associated to a minimum duration, which was set to one minute. We chose a
very low minimum, as to maximize the lengths of the semantically enriched
trajectories.

This application is also stored in the database, where every candidate stop
is associated with an identifier, a name and a geometry.

4.2 Semantic Enrichment Process

The enrichment process transforms trajectory samples into a list of stops
by using the background information to interpret the actual semantics of the
trajectory. The samples and the application are retrieved from the database.

To perform this transformation, an existing implementation of the SMoT
algorithm was used. As described in Chapter 2, the algorithm generates
a list of stops for each trajectory. For each stop a record is added to the
table ‘Stops’ in the database, resulting in a semantically enriched trajectory
composed of several records. The structure of this database is:

• trajectory id: indicates to which trajectory the stop belongs

• candidate stop id: refers to the id used in the application database as
a unique identifier of the candidate stop

• candidate stop name: the name of the candidate stop retrieved from
the application database

• candidate stop type: the type of the candidate stop retrieved from the
application database
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Figure 4.1: A visual representation of the input trajectories and candidate
stops as visualized by OpenJUMP.

• time of entering: a timestamp that indicates when the moving object
entered the stop

• time of leaving: a timestamp that indicates when the moving object
left the stop

4.3 Mining Semantically Enriched Trajecto-

ries

The description of our Stops and Moves Apriori defines three possible
types of frequent sequences that could be interesting. We implement the
three versions: no wildcards, single-matching wildcards and multi-matching
wildcards. For each implementation we describe a different class, which all
use the general framework we created.
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At the end of this chapter we will make a comparison between the three
implementations on execution time, number of frequent sequences found and
memory usage. A crucial part of this implementation is the sequence class,
as it is use the model trajectories and frequent sequences. Before we start
discussing the algorithms, we introduce our Sequence class.

4.3.1 Sequence

Our Sequence class uses the principle of a double-linked list to compose
a sequence of Stop objects. An important function is getStopIds(), which
returns an array of integers containing the identifiers of the stops contained
in the sequence. This array is used during the matching of two sequences.

The Stop class is a typical data class containing all important variables
concerning stops and the appropriate functions to manage these variables. It
has one special variable, as it is also used to represent wildcards in candidate
frequent sequences, which is a Boolean indicating whether it is a wildcard or
not.

4.3.2 DatabaseManager

As our stops are stored in the database, there is the need for a class that
coordinates the communication between the application and the database.
The DatabaseManager class is able to set up this connection and also to
retrieve the stops from the database which are then formatted into sequences.

4.3.3 No Wildcards

The first class to be implemented, is the Stops and Moves Apriori without
the use of wildcards, described in Chapter 3. To mine a collection of trajec-
tories, these first have to be reconstructed using the stops in the database.
After reconstruction the function execute(double minsup, Vector 〈Sequence〉
seq) is called where minsup is the minimum support and seq is the collection
of sequences, which were inserted in a Vector. We use the pseudo-code de-
scribed in 3.3 as a blueprint for the structure of this function. We implement
the functions mentioned in the pseudo-code: generateFrequentSingleItem-
Sequences(double minsup, Vector seq), generateCandidates(Vector v, int k)
and identifySubsequences(Vector candidates, Sequence s).
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generateFrequentSingleItemSequences(double minsup, Vector seq).
One of the first things to do is to determine the frequent sequences of size
1, as these form the basis for following candidate generation. To determine
this collection, we have to calculate the support of each stop, and compare
this with the minimum support minsup.
We introduce a hash-table that contains an integer value for each distinct
stop, where this integer value equals the support count of the stop. This
support count is calculated by reading each sequence of seq. Every time we
encounter a stop that was not encountered in this sequences, we increase the
integer value of this stop. After all sequences have been processed, we can
calculate the support of each stop based on the hash-table and generate a
sequence of size 1 for every frequent value. The collection of these sequences
is then outputted.

generateCandidates(Vector v, int k). This function is responsible for
the candidate generation of k+1-sized candidates using the (k)-sized frequent
sequences. The latter is referred to as v in the function declaration, and k
refers to the size of the frequent sequences. This function has two parts, one
which generates candidates of size 2 when k = 1, and one for all candidate
larger than 2.
This difference is made as the first group does not need matching, while the
second needs to match k − 1 items.
The first collection is composed by taking every sequence of size 1 and con-
catenating two sequences. The collection is then outputted.
The second collection, with k > 1, needs some matching. If the k − 1 items
match, the last item of one sequence, is added to the other sequence, as
to generate sequences of size k + 1. Finaly, the collection of all generated
sequences is then outputted.

identifySubsequences(Vector candidates, Sequence s). The implemen-
tation of this function includes the Boyer-Moore algorithm presented in
Chapter 3. The output is the collection of candidates from the Vector
candidates that are present in s. These are the candidates of which the
support count has to be increased.
First we build a hash-tree containing all candidates by using the principle
mentioned before. The hash-function uses the modulo function to distribute
the candidates evenly. We described our hashing function to be:

stop− id %

⌊
number of distinct candidate stops

2

⌋
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Using this function we were able to build a hash-tree containing candidates,
which then can be used to find the candidates using the sequences.
To allow us to determine whether a sequence is contained in another sequence,
we used Boyer-Moore. The implementation of the algorithm follows the
specification described in the pseudo-code in Listing 3.4. The only changes
to be made, is that instead of processing strings, which are in essence an
array of characters, the algorithm had to process arrays of integers, which is
of course exactly the same. To transform a sequence into an array of integer
we use the previously mentioned function getStopIds().

As mentioned, our implementation uses the same structure as described
in the pseudo-code, so the algorithm will end in the same way. After the
support of every candidate has been calculated, and none of the candidates
reach the minimum support, the collection of found frequent sequences is
outputted.

4.3.4 Single-matching wildcards

This class does not only use the same framework as the ‘No wildcards’
class, it extends it. We redefine the previously mentioned functions generate-
FrequentSingleItemSequences(double minsup, Vector seq) and identifySub-
sequences(Vector candidates, Sequence s).

generateFrequentSingleItemSequences(double minsup, Vector seq).
This function calls the function generateFrequentSingleItemSequences(double
minsup, Vector seq) of the ‘No wildcard’-class, and adds a new stop to the
collection, namely a stop containing a single-matching wildcard.

identifySubsequences(Vector candidates, Sequence s). The purpose
of this function is to determine the collection of candidates contained in a
sequence. Again, we build a hash-tree to which all candidates are added
and we use the same hash-function as previously described. However, in this
case the hash-function treats the wildcards in a different way as we provide
a special branch for the wildcards. The reason why this branch is special, is
because it is always selected during the retrieval of the candidates. So, if we
are at a node, for example the root node, we always go down the branch of
the wildcards, regardless of hash-value.

After all candidates are selected, we can proceed with matching the can-
didates onto sequences. The matching is performed by reading the sequence
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and checking whether the item read, matches the first item of the candidate.
If these match, the second is matched, and so on until all items have been
matched. If at some point they do not match, the algorithm goes back to the
first item and tries to match it with the next item of the sequence. During
this matching, the wildcard in naturally mapped on any item.

4.3.5 Multi-matching wildcards

To implement Stops and Moves Apriori using multi-matching wildcards, we
extend the single-matching wildcards class and redefine some of its functions,
namely generateFrequentSingleItemSequences(double minsup, Vector seq)
and identifySubsequences(Vector candidates, Sequence s).

generateFrequentSingleItemSequences(double minsup, Vector seq).
This function calls the function generateFrequentSingleItemSequences(double
minsup, Vector seq) of the ‘No wildcard’-class, and adds a new stop to the
collection, namely a stop containing a multi-matching wildcard.

identifySubsequences(Vector candidates, Sequence s) if we would
compare this function with the corresponding function of the ‘Single-matching
wildcards’-class, we would find two differences: the hash-tree and the match-
ing technique.

As we did with single-matching wildcards, we need to treat the wildcard
in a special way. Again, we provide a special branch for the wildcards which
is always selected during the retrieval. However, the node is also special as
we do not only hash the identifier of the next stop, but of all following stops.
Every branch which is selected, needs to be considered.

We also need to define another matching technique for which we opted
to use recursion. When matching a candidate onto a sequence, we start
with the first item of the candidate and match it with the first item of the
sequence, if they match we compare the second of both, and so on. If a
mismatch occurs, we move our cursor one position and try to match the
first item of the candidate with the second item of the sequence. In case we
encounter a multi-matching wildcard in our sequence, we recursively call the
same function and try to match the remainder of the candidate, after the
wildcard, on the remainder of the sequence, after the last matched onto the
wildcard. If this recursive call succeeds, the candidate can be mapped onto
the sequence.
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4.4 Output Description

The output of the mining process is composed of a list of all frequent
sequences found in the database, as shown in Figure 4.2. Depending on the
type of application ran, this list might include frequent sequences containing
single- or multi-matching wildcards.

Figure 4.2: Screenshot showing the results of Stops and Moves Apriori using
single-matching wildcards.

4.5 Comparison

Following charts give a comparison of the described algorithms on execu-
tion time, number of frequent sequences and memory usage. The first chart,
Figure 4.3, demonstrates that a decrease of the minimum support leads to
an increase in the number of results and also that the use of multi-matching
wildcards delivers more results as opposed to single-matching wildcards, and
single-matching wildcards as opposed to no wildcards.
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Figure 4.3: A comparison between the different implementations: number
frequent sequences vs. minimum support.

The second comparison is that of memory usage. As we can see, the
difference between the minimum supports is not very large, so the influence
is quite limited. There is a difference between the different implementations,
as the use of multi-matching wildcards will demand the most memory, and
using no wildcards demands the least.

Finally we also compared the execution time of the different implementa-
tions at different minimum supports. Here there is a clear influence of the
minimum support on the execution time. This is actually a very logical re-
sult, as a lower minimum support will allow more frequent sequences to be
discovered.
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Figure 4.4: A comparison between the different implementations: memory
usage vs. minimum support.

Figure 4.5: A comparison between the different implementations: execution
time vs. minimum support.
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Chapter 5

Conclusions

Here we conclude our study of mobility patterns. Our initial goal was to
find an association analysis tool enabling us to mine semantically enriched
trajectories. First we observed how raw trajectories could be transformed
into semantically enriched trajectories which focus on their actual meaning by
interpreting them using background information. A trajectory is transformed
into lists of stops and moves describing the locations of interest this trajectory
visits.

The list of stops is then formatted into a sequence, which is the data
type allowing us to represent data containing ordered items. As we studied
existing algorithms, we found the AprioriAll algorithm, an algorithm that
could be applied on sequences. However, this does not focus on the specific
characteristics of our semantically enriched trajectories.

As we want to focus on the nature of semantically enriched trajectories, we
need to describe our own data model that incorporates these characteristics.
As an inspiration we could use the notion of Mobility Patterns, as this is
language of regular expressions purposely described to be a querying tool on
trajectories. The resulting data model uses a stricter notion of subsequences
and allowed the use of wildcards to define candidate frequent sequences.

We described three versions of Stops and Moves Apriori, namely one with-
out the use of wildcards, one using single-matching wildcards and one using
multi-matching wildcards. The version that does not use wildcards has the
advantage that is could apply Boyer-Moore, a string search algorithm, to
match a subsequence onto a sequence, resulting in an decrease of the amount
of needed computations, and thus increasing its efficiency. This was made
possible by defining our sequences similar to strings.
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The next version enables the use of single-matching wildcards, denoted by
$, in frequent sequences as to allow some flexibility. This single-matching
wildcard, denoted by $+ can represent any other item, resulting is less strict
frequent sequences. One step further, we introduce multi-matching wild-
cards, which are used in frequent sequences to represent ‘one or more’ items.
We conclude that this algorithm has similar complexity to AprioriAll, but if
we would wish to find the same frequent sequences, we have to introduce $∗,
a multi-matching wildcard that can represent ‘zero, one or more items’.

We can conclude that our definition of Stops and Moves Apriori captures
the nature of our semantically enriched trajectories more than AprioriAll.
The definition of our data model and the inclusion of single- and multi-
matching wildcards create a stronger semantic context in which results can
be placed.

5.1 Future work

We have presented the GSP algorithm, which introduces some new fea-
tures, sliding window, time constraints and taxonomies, to sequence mining.
However, those are not reflected into our algorithm, but they are of interest,
especially the use of taxonomies.

In this thesis, we have only focused on Apriori-type algorithms as a basis for
our sequential mining. However, it might be interesting to research whether
other existing algorithm could be adapted to the use on semantically enriched
trajectories.
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