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Abstract 
 

In this study the co-infection of HCV and HIV is investigated by joint modeling of the two 

infections using serological data from Italy and Spain. The seroprevalence and force of infection 

of the diseases are estimated over exposure time using the alternating regression model (ALR) 

and shared random effect models. The marginal (ALR) and random effect models are fitted with 

the logit and complementary log-log (clog-log) links. On the basis of the AIC values, Weibull 

model was chosen as the best fitting model.  Significant co-infection of HCV and HIV is 

observed. Known risk factors such as sharing of syringes and age at first injection were 

confirmed as risk factors.   

 

Keywords:  co-infection: HCV: HIV: Alternating regression model (ALR): Shared random effect 

Models: Seroprevalence: Force of Infection: 

  

4 
 



 

Table of Contents 

Abstract ..................................................................................................................... 4 

1.  Introduction ......................................................................................................... 7 

2. Data Description ................................................................................................... 8 

3.0. Statistical Methodology .................................................................................... 9 

3.1. Exploratory Data Analyses..................................................................................... 9 

3.2. Statistical Analyses .................................................................................................. 9 
3.2.1 Prevalence and force of infection ................................................................................... 9 

3.2.2. Marginal model (Alternating Logistic regression model (ALR)) ............................... 10 

3.2.3. Generalized Linear Mixed model (GLMM) ................................................................ 11 

3.2.3 Model Selection ............................................................................................................ 14 

3.3. Software used. ........................................................................................................ 14 

4.0 Application to the Data .................................................................................... 15 

4.1 Descriptive Data Analyses ..................................................................................... 15 

4.2. Modeling the Prevalence and Force of Infection adjusting for the exposure 
time ................................................................................................................................ 18 

4.2.1 Alternating Logistic Regression models (ALR) ........................................................... 18 

4.2.2 Random effect Model ................................................................................................... 21 

4.2.3. Influence of other risk behavior factors ....................................................................... 23 

4.2.4. Marginal versus Shared random-effect Models ........................................................... 25 

5. Conclusion ........................................................................................................... 27 

References ............................................................................................................... 29 

Appendix ................................................................................................................. 31 
 

  

5 
 



 

List of tables 

 

Table 1: Descriptive statistics of HCV and HIV seroprevalence and demographic variables ................... 15 
Table 2: Distribution of HCV and HIV in relation to risk behavior factors-the Spain’s study .................. 17 
Table 3: Parameter Estimates [95% CL] for ALR regression model of the Italy’s study .......................... 18 
Table 4: Parameter Estimates [95% CL] for ALR regression model of the Spain’s study ......................... 19 
Table 5: Parameter Estimates [95% CL] for  GLMM regression model of the Italy’s study ..................... 22 
Table 6: Parameter Estimates [95% CL] for GLMM regression model of the Spain’s study .................... 22 
Table 7: Parameter Estimates [95% CL] of  the Italy data (Final models) ................................................ 24 
Table 8: Parameter Estimates [95% CL] of the Spain  data (Final models) .............................................. 25 
 

List of figures 

Figure 1: Seroprevalence of HCV and HIV by exposure time .................................................................... 16 
Figure 2: overall prevalence of HCV versus overall prevalence of HIV Italy (left panel) and Spain (right 
panel) .......................................................................................................................................................... 17 
Figure 3: Estimated prevalence of HCV (left panels) and HIV (right panels) by exposure time obtained 
from the Weibull and logistic models-Italy & Spain data ........................................................................... 20 
Figure 4: Force of Infection of HCV (left panels) and HIV (right panels) diseases by exposure time using 
the logistic and Weibull models-Italy data ................................................................................................. 21 
Figure 5: Estimated prevalence of HCV (left panels) and HIV (right panels) by exposure time-the 
marginalized GLMM model ........................................................................................................................ 23 
Figure 6: Estimated prevalence of HCV (left panels) and HIV (right panels) by exposure time 
marginalized for all models ........................................................................................................................ 26 

 
 

 

  

6 
 



 

1.  Introduction 

Hepatitis C (HCV) is a blood-borne viral infection that affects the liver. The World Health 
Organization (WHO) estimates that about 170 million people worldwide, and 8.9 million people 
in Europe, are infected with HCV (WHO, 2000) 12.  HCV is transmitted primarily by large or 
repeated exposures to contaminated blood (usually through the skin by a needle puncture). The 
strict screening procedures for blood products have succeeded in reducing the number of new 
infections in the developed world. But they remain groups in population that are at higher risk of 
contraction of HCV infection, most notably, IDUs (EMCDDA, 2004). 

Injecting drug users (IDUs) are a hidden population for which entry to and exit from the 
population are hard to define and measure. According to the 2004 European Monitoring Centre 
for Drugs and Drug Addiction (EMCDDA) monograph, IDUs are the largest risk group for HCV 
infection in Europe. During their injecting career IDUs are exposed to infections like HCV and 
HIV due to their frequency of injection, sharing syringes or sharing other paraphernalia materials 
( Ziv et al, 2008). It is estimated that one in 10 new HIV infections worldwide is attributable to 
injecting drug use14. 

According to WHO, the number of people living with Human immune deficiency virus (HIV) 
worldwide in 2007 was estimated as 33.2 million. The EMCDDA estimated that, in the EU, there 
could be as many as 200,000 people living with HIV who are current or past drug injectors. The 
number of newly diagnosed cases of HIV among injecting drug users is estimated to be currently 
around 3,500 per annum in the EU, which still represents a considerable public health problem. 
A far more negative picture presents itself for rates of infection with HCV, which remain almost 
universally high among drug injectors: it is estimated that 1 million some-time injectors are 
infected with HCV, including a significant proportion that are no longer using drugs 11. 

Literatures suggest that the natural history of HCV could be influence by a co-infection with 
HIV or hepatitis B (Ziv et al, 2008, Namata et al. 2008, EMCDDA, 2004). As those co-
infections frequently occur in IDU population, there is a need to study the co-infection of HCV 
and HIV in IDUs population. The association between the risk factors, the disease status and 
transmission parameters can be studied using cross-sectional serological data.  

This study aims at joint modeling of HCV and HIV from serological cross-sectional data. 
Identifying the potential risk factors for the transmission of HCV and HIV infections and 
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estimation of the seroprevalence and force of infection of the diseases over exposure time is also 
the target of the study. 
 
The remainder of this thesis is organized as follows:  Section 2 provides a description of the data 
set while the statistical methodologies used in actualizing the objectives of the study are 
explained in Section 3. Main results of the analyses are presented in Section 4 whereas the 5th 
section of the study is devoted for discussion. 
 

2. Data Description 

The data sets considered in this study are used in Harriet et al. 2008, Ziv et al.(2008) and others. 
The cross-sectional datasets consist of two seroprevalence samples of injecting drug users 
(IDUs) from Italy (N=1224) and Spain (N=629). The cross-sectional surveys were collected by 
taking serological tests and face-to-face interviews. All IDUs participated in the study were 
interviewed, information about demographic characteristic and injecting behavior were collected. 
Information about IDU status was collected by asking questions like “did you ever inject drugs?” 
and “did you inject drugs in the last 12 months?” The second question is a subset of the first one 
and only available for the Spain data. Hence this study focuses only on ever injectors. 

Traditionally, for many infectious diseases, the force of infection is modeled as a function of the 
individual’s age which is considered to be the exposure time. The exposure time (duration) is the 
length of the injecting career and it is considered to be the length of time (in years) in which the 
IDUs are in the risk group. It is defined as the difference between the age at test and the age at 
first injection. In this study we considered the continuous version of the exposure time unlike in 
the studies of Ziv et al, (2008) and Harriet et al, (2008) where exposure time was categorized.  

A positive HCV status in IDU seems to be associated with syringes sharing , sharing of other 
injecting paraphernalia, number of injecting years, age at initial drug use, frequency of injecting, 
and older age [Harriet et al., 2008 , Ziv et al.,2008, Stark et al.,1997, crofts et al.,1999a, Keppler 
and Stover, 1999]. Because of its high prevalence in IDUs and high infectivity, even short-term 
recreational injecting drug use may lead to HCV infection, (Novick, 2000). The possible 
influence of these risk factors on the prevalence of HCV and HIV is also of interest. Information 
about other risk factors like sharing syringes, sharing injecting paraphernalia and frequency of 
injections is only available for the Spain data. 
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3.0. Statistical Methodology 

3.1. Exploratory Data Analyses 
 

We started with an exploratory data analysis to gain insight into the dataset. Descriptive statistics 
were used to examine a possible association between the two diseases, and to investigate the 
common risk factors for both infections. Univariate associations between the two infections were 
assessed using Pearson chi-square test of independence and graphs. 

3.2. Statistical Analyses 
 

In the following sections statistical methods used to model the prevalence,  and the force of 

Infection, of seropositives IDUs are discussed. 

π(t)

λ(t)

3.2.1 Prevalence and force of infection 

 

 The prevalence of a disease in a statistical population is given as the ratio of seropositives at a 
given exposure time to the total number of individuals in the population. The force of infection is 
the risk per time unit for an uninfected (that is the seronegative) IDU to become infected. Under 
the assumption of lifelong immunity and that the disease is in a steady state, the seroprevalence 
and the force of infection can be estimated from seroprevalence data (Grenfell and Anderson, 
1985).  

Let be the prevalence of a disease (HCV or HIV) at duration . Then the force of infection is 

given by  

π(t) t

π (t)λ(t)=
1-π(t)
′

 

Where is the derivative of the prevalence with respect to duration (exposure time).  is 

the cumulative distribution function of exposure time at infection. 

π (t)′ π(t)

In this study Logistic regression model and a model fitted with the frame work of generalized 
linear models (GLM) with binomial error (McCullagh and Nelder, 1989) which was discussed by 
Beker (1989), Diamond and MCDonald (1992) and Keiding et al (1996) who used 
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complementary log-log link function in order to parameterize the prevalence and force of 
infection as a Weibull model are fitted.  

The linear predictor of the logistic regression model is  where t represents 

the exposure time (duration). Here is the marginal parameter for the intercept of each disease 

and β

t ojη(t)=logit(π )=β +β tj

ojβ

j  represents the log (odds ratio) between the t+1th  and the tth exposure time effect of the jth 

disease. exp{η(t)}
1+exp{η(t)}

 and 
ˆ ˆexp(β +0j
(β0j

β t)1jˆ
ˆ ˆ1+exp +β t)1j

β  are the prevalence and force of infection of the 

logistic regression model respectively. 

The linear predictor of a Weibull model is given by ( ) oj jη t =β +β log(t)

jβ -1
0j j)=exp(β )β t

 with prevalence of 

 and force of infection of . In the case that other 

covariates are included in the model, the linear predictor becomes 

( )π t =1-exp[-exp{η(t)}] λ(t

( ) ojη t =β

xp(Zγ)] λ(t)=exp(

j j+β log(t)+Zγ

jβ̂ -1
0j j

ˆ ˆβ )β t *ex

 where 

Z is the design matrix and is the parameter vector to be estimated. In this case the prevalence 

and force of infection will be, and  

respectively. 

jγ

( )π t =1-exp[-exp{η(t)}*e jˆp(Zγ )

Each IDU form a cluster for which the response is a vector of two repeated measurements (the 
serological status of HCV and HIV). The association between the two infections can be 
investigated by models that can handle the correlation between observations from the same IDU. 
This can be modeled using marginal models or by joint modeling of the binary responses.  

3.2.2. Marginal model (Alternating Logistic regression model (ALR)) 

 

Marginal models are population-averaged models characterized with a marginal mean function. 
The models are used to study the association structure of the repeated measures, and the effect of 
the covariates accounting for the association between the two infections. The association 
structure is typically captured using a set of association parameters, such as correlation and odds 
ratio (Molenberghs and Verbeke, 2005).  
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The model has the form  

E(Y ) =μij i   and  ,where Yij is the vector of observed responses for the ith IDU at 

infection j and μi is the vector of mean responses for the ith IDU. The model for  is specified 

via a vector of link function. , the marginal logit link can be used for binary 

outcomes.  is a vector of regression parameters and Xi is a known design covariate matrix. 

i i i jη (μ )=X β

iμ

i i iη (μ )=logit(μ )

jβ

Since the scientific interest of this study is to model the dependence structure, Alternating 
Logistic Regressions (ALR) algorithm of Carey, Zeger, and Diggle (1993) that models the 
association structure between pairs of responses with log odds ratios is preferable. Using ALR, 
inferences can be made not only about marginal parameters but also about pair-wise association. 
It has been stated that the odds ratio is a straightforward measure to capture association between 
binary outcomes (Molenberghs and Lesaffre, 1994). The ALR algorithm alternates between a 
GEE step to update the model for the mean and a logistic regression step to update the log odds 
ratio model. Upon convergence, the ALR algorithm provides estimates of the regression 
parameters for the mean,β , the regression parameters for the log odds ratios, , their standard 

errors, and their covariance (Molenberghs and Verbeke 2005).  

α

 The odds ratio (  between responses  and   of the  IDU can be expressed as: )ijOR i1Y i2Y thi

ij
P(HCV=1,HIV=1)*P(HCV=0,HIV=0)OR =
P(HCV=1,HIV=0)*P(HCV=0,HIV=1)

 

The odds ratio between  and response greater than one indicates positive association and 

less than one indicates negative association. In the simplest case , is a constant pair 

wise log odds ratio.  

thk thj

ijlog(OR )=α

3.2.3. Generalized Linear Mixed model (GLMM) 

 

The generalized linear mixed model is the most frequently used random effects model for 
discrete outcomes. It is a rather straightforward extension of the generalized linear model for 
univariate data to the context of clustered measurements. In a random effects models it is 
assumed that there is natural heterogeneity across the subjects (IDUs) and that this heterogeneity 
can be modeled by a probability distribution which implies that the regression coefficients are 
varying from one subject(IDU) to the another (Molenberghs and Verbeke, 2005). 
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A joint random effects model that account for the correlation between the two infections can be 
fitted by a shared random effect frame work as given in the next section. 

3.2.3.1. Joint Modeling of HCV and HIV 
 

The joint modeling was chosen because it allows fitting a single model to both response 
variables (HCV and HIV) simultaneously while taking the correlation between the two into 
account. The joint modeling approach is warranted by the Pearson chi-square test of 
interdependence between the two infection (p-value <0.0001) and patterns observed in Figure 2. 
Possible consequences of analyzing correlated data as if it were independent are inconsistent 
inferences concerning regression parameters due to underestimated standard errors and 
inefficient estimators. 

To correlate the two diseases, we can share a random effect between observations from the same 
IDU. The overall prevalence of HCV and HIV can be modeled taking in to account the 
association between the two diseases using the shared random effect model. The shared random 
effect assumes the same set of random effects for both outcomes.   

The shared effect model can be formulated as  

ij1 o1 11j ilogit(π )=β +β +b  

ij2 o2 12j ilogit(π )=β +β +b  

Where ib  is an IDU specific random effect . The case with  implies that the 

diseases are independent at an IDU level. This model has stronger assumption about the 
association between the two outcomes. For our data this assumption is well supported by the chi-
square test of independence and the pattern revealed in Figure 2. 

2
ib ~N(0,σ )b

2
bσ =0

A model with complementary log-log link function that implies Weibull model was also fitted. 
Weibull model is fitted by using log of the exposure time. 
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3.2.3.3 Marginalization of the GLMM  
 

The regression coefficients of the GLMM need to be interpreted conditionally on the random 
effect b ,that is the parameters have IDU-specific interpretation. Incase population-averaged 
interpretations are of interest, additional computations are needed (Molenberghs and Verbeke, 
2005).  

The marginal expectation of the outcome  at time t for the HCV disease using the logit link is 

given by 
ijY

i

i

               E[Y ]=E[E[Y |b ]]ij ij i
exp(β +b +β t)o 1              =E

1+exp(β +b +β t)o 1
exp(β +β t)o 1           E

1+exp(β +β t)o 1

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤

≠ ⎢ ⎥
⎢ ⎥⎣ ⎦

 

The marginal mean can be derived from the GLMM output by integrating out the random effect 
based on numerical integration techniques or based on numerical averaging. It is often much 
easier to use numerical averaging by sampling a large number M of the random effects vectors 

ib  from their fitted distribution 2
bN(0,σ ) (Molenberghs and Verbeke, 2005). 

 The estimate,  at specific exposure time, is given by  i jÊ(Y ) t

i
ij

1 i

ˆ ˆexp(β +b +β t)1 o 1Ê(Y )= ˆ ˆ1+exp(β +b +β t)o 1

M

iM =
∑  

We randomly generate M=920 (Italy) and M=470 (Spain) realized values of the random effect b
taken from a normal distribution with mean zero and variance of 2

bσ  given in respective tables of 

the random effect models (Table 5 and 6) for the Italy and Spain data under both  the logistic and 
Weibull regression models. 

For example, considering the logistic regression model of the Italy data, an estimate for the 
unconditional mean at a given exposure time,t obtained from the 920 conditional mean is 

1000
i

i=1 i

exp[-0.4772+b +0.1633t]1Ê[Y(t)]=
920 1+exp[-0.4772+b +0.1633t]∑ , for the HCV disease. 
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Graphical representations of these averages are given in Figure 5 and 6 of section four. The SAS 
code used for the generation of the random effect, b and used to plot the marginalized predicted 
seroprevalence plots of Figure 5 and 6 is given in the Appendix. 

3.2.3 Model Selection  

 

Model selection criteria provide a useful tool in selecting a suitable model from a candidate class 
to characterize the underlying data. Since models with different link function are not nested, the 
Akaike’s information criterion (AIC) (Akaike, 1974) can used to select the best model. A model 
with the smallest AIC value is chosen to be the best (Ziv et al, 2006). The selected model was 
further used to examine the influence of other risk factors on the transmission of HCV and HIV.  

3.3. Software used. 
We mainly employed the GENMOD and NLMIXED procedures of SAS version 9.1 for the 
analysis. For this study, the type I error was controlled at a 5% level of significance. 
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4.0 Application to the Data 

4.1 Descriptive Data Analyses  

The overall seroprevalence and the demographic characteristic of IDUs from Italy and Spain data 
are presented in Table 1. The overall prevalence of HCV is 63% and 73.29% for Italy and Spain 
respectively. The overall prevalence of HIV is 7.68% and 25.59% for Italy and Spain 
respectively. For Italy, 62.78% of the males and 64.08% of the females are HCV seropositives. 
For Spain, 74.41% of the males and 70.12% of the females are HCV seropositives.  Pearson chi-
square test for independence shows that there is no difference in proportion of HCV 
seropositives between males and females. 6.95% of the males and 11.33% of the females from 
the Italy data and 23.82% of the males and 30.49% of the females from the Spain data are HIV 
seropositives. The average age at interview is 34.33(SD=7.67) and 26.11(SD=3.13) for Italy and 
Spain respectively. The average age at first injection is 21.44(SD=5.15) and 19.39(SD=3.81) for 
Italy and Spain respectively. The mean exposure time is 13.78(SD=7.94) years and 6.50 
(SD=4.52) years for the Italy and Spain data respectively.  

Table 1: Descriptive statistics of HCV and HIV seroprevalence and demographic variables 

Variable Italy Spain 
Total HCV+ (N, %) 772, 63.33% 461 , 73.29% 
Total HIV+ (N, %) 93, 7.68% 161,  25.59% 
Gender   
Male(N,%HCV+) (1013, 62.78%) (465,74.41) 
Female(N,HCV+) (206, 64.08%) (164,70.12) 
Chi-square(p-value) 0.1229(0.7259) 1.1381(0.2861) 
Male(N,%HIV+) (1007, 6.95%) (466, 23.82) 
Female(N,HIV+) (203, 11.33%) (164, 30.49) 
Chi-square(p-value) 4.5653(0.0326) 2.8351(0.0922) 
Age at Interview(mean, SD) (34.33,7.67) (26.11,3.13) 
Age at first injection(Mean, SD) (21.44,5.15) (19.39,3.81) 
OR(Estimate, (95%CL)) 9.0785(3.9322,20.9602) 4.7276(2.6858,8.3216) 

Figure 1 shows the empirical distribution for the seroprevalence of HCV and HIV by exposure 
time for Italy and Spain. Higher prevalence of HCV than HIV is observed in both countries. The 
plots indicate that the seroprevalence of HCV increases rapidly till the exposure year of around 
30 and 10 for the Italy and Spain data respectively. Relatively lower prevalence of HIV is 
observed in the Italy data compared to that of Spain.  
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a. prevalence of HCV by duration, Italy 
 

b. prevalence of HIV by duration, Italy 

 
c. prevalence of HCV by duration, Spain 

 
d. prevalence of HIV by duration, Spain 

 
  

Figure 1: Seroprevalence of HCV and HIV by exposure time 

 The association between the two diseases was examined by odds ratio, its corresponding 
confidence interval and the patterns revealed in Figure 2. The estimates of the odd ratio listed in 
Table 1 shows that an IDU who is infected by HCV is 9.08 and 4.73 times more likely to be 
infected by HIV than an IDU who is not infected by HIV for Italy and Spain studies respectively. 
23.21% and 7.13% of the IDUs are co-infected by HCV and HIV for the Spain and Italy studies 
respectively. These proportions are much higher than what is expected under the assumption of 
independence. We expected 18.92% and 4.84% of co-infection for Spain and Italy respectively. 
The Pearson chi-square test of interdependence was significant (p-value<0.0001) and indicates 
that IDUs who are infected by one of the disease are more likely to be infected with the other 
disease too. 

Figure 2 shows an upward relationship between HCV and HIV. As shown in Figure 2, HCV 
prevalence of below 40%  for Italy and 60% for Spain have a respective HIV prevalence of near 
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zero, while for HCV prevalence of above these values  a positive relationship between HCV and 
HIV prevalence is observed. This relationship is more observed in the Spain data. 

 
  

The influence of the risk behavior factors on the prevalence of HCV and HIV is explored by 
proportion and Pearson chi-square test of independence as shown in Table 2. The prevalence of 
HCV and HIV is higher among IDUs who share syringes. Pearson chi-square test of 
independence indicates that sharing syringes is a significant risk factor for the transmission of 
HCV and HIV. Although the proportion of IDUs who share other paraphernalia is higher among 
HCV and HIV seropositives, it is not a significant risk factor for the transmission of the two 
infections. Daily injectors are at a higher risk for HCV and HIV infection (higher proportion). 
Frequency of injections is found to be a significant risk factor for the HCV transmission. 

Figure 2: overall prevalence of HCV versus overall prevalence of HIV Italy (left panel) and Spain (right 
l)

Table 2: Distribution of HCV and HIV in relation to risk behavior factors-the Spain’s study 

Variable HCV+ (%) p-value HIV+ (%) p-value 
Sharing Syringes  <0.0001  <0.0001 
No 65.28  16.07  
yes 87.35  40.24  
Sharing other paraphernalia  0.2916  0.3988 
No 72.7  24.67  
yes 76.92  28.06  
Frequency of injection  0.005  0.6295 
Daily 82.4  28.31  
1-6 days a week 72.3  24.76  
Less weekly 64  27.48  
Never  72  22.03  
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4.2. Modeling the Prevalence and Force of Infection adjusting for the exposure time 
 

In this section, statistical methods that were discussed in section three are applied to the Italy and 
Spain data. For each data set the GLM with the logit and clog-log links are fitted using marginal 
and random effect models. The best link function was selected by the AIC value. 

4.2.1 Alternating Logistic Regression models (ALR) 

 

Firstly, the ALR model was fitted by adjusting for the duration (exposure time). The pair wise 
log odds ratio was assumed to be constant. Conclusions were given using   the empirical based 
estimates of the exchangeable working correlation structure. Parameter estimates (95% CL) are 
shown in Table 3 and 4 for the Italy and Spain data respectively. 

Table 3: Parameter Estimates [95% CL] for ALR regression model of the Italy’s study 

  Model 1(logit link) Model 2 (Clog-log link) 
Disease Parameter Estimate [95% CL] Estimate [95% CL] 
HCV 

01β  -0.4343[-0.7609, -0.1077] -1.1990 [-1.5352, -0.8628] 

11β (duration) 0.1399[0.1110,0.1688] 0.6806[0.5500, 0.8113] 

HIV 
02β  -3.9486[-4.5169, -3.3803] -6.3192[-7.7745, -4.8639] 

12β (duration) 0.1071[0.0785, 0.1358] 1.5177[1.0201, 2.0153] 

Log(OR) α  0.9745[0.0436, 1.9055] 0.9459[0.0148, 1.8769] 
AIC  659.9848 656.7683 

 

For both countries a significant effect of duration (time of exposure) is observed under the logit 
and clog-log link functions. Comparing the AIC values of the logistic and Weibull regression 
models, Weibull distribution with clog- log link has lower values for both datasets which makes 
it a better choice. The pair wise log odds ratio were found to be significant, 0.9459[95% CL: 
0.0148, 1.8769] and 0.7377[95% CL: 0.0983, 1.3771] for Italy and Spain respectively implying 
strong common pair wise association between clusters.  
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Table 4: Parameter Estimates [95% CL] for ALR regression model of the Spain’s study 

  Model 1(logit link) Model 2 (Clog log link) 
Disease Parameter Estimate [95% CL] Estimate [95% CL] 
HCV 

01β  -0.3765[-0.7245, -0.0285] -0.6131[-0.8606, -0.3656] 

11β (duration) 0.2638[0.1949, 0.3326] 0.6229[0.4872, 0.7587] 

HIV 
02β  -2.6253[-3.0908, -2.1598] -3.0720[-3.7404, -2.4036] 

12β (duration) 0.2130[0.1640, 0.2619] 1.0395[0.7357, 1.3434] 

Log(OR) α  0.8061[0.1635, 1.4487] 0.7377[0.0983, 1.3771] 
AIC  503.0867 499.4283 

 

The predicted plots for the prevalence and force of infection are given in Figure 2 and 3 for the 
Italy and Spain data respectively. For HCV, the plot of  the estimated prevalence of the two 
models indicate a rapid increase in prevalence from starting time of drug injection to the 
exposure time of around 30(15) years after which the prevalence stabilize for the Italy (Spain) 
studies. A maximum seroprevalence of HCV is shown in IDUs with longer duration of 
injections. An increase in prevalence of HCV is accompanied by increase in prevalence of HIV. 
This indicates the co-infection of HCV and HIV. The longer they inject drugs, the higher their 
chance to be infected by both infections. 

  

19 
 



HCV-Italy HIV-Italy

 

HCV-Spain HIV-Spain 
 

Figure 3: Estimated prevalence of HCV (left panels) and HIV (right panels) by exposure time obtained from the 
Weibull and logistic models-Italy & Spain data 
 

Force of infection of HCV is very high at the beginning of the injecting career and leveling off 
with the duration the injecting career, Figure 4. The predicted force of infection obtained from 
the Weibull model seems constant after duration of around 10(5) years while that of the logistic 
regression start increasing after this point for the Italy (Spain) data. Weibull model estimates a 
relatively constant force of infection of HIV for both countries. For HCV, the smaller the 
duration of exposure to injection, the higher the force of infection in both counties. From the 
predicted Force of infection by the Weibull model, HIV seems to have a constant force of 
infection.  
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HCV-Italy HIV-Italy 

 
HCV-Spain 

 
HIV-Spain 

 
Figure 4: Force of Infection of HCV (left panels) and HIV (right panels) diseases by exposure time using the 
logistic and Weibull models-Italy data 

 

4.2.2 Random effect Model 

A fixed effect and random effect models are fitted to test for the significance of 2
bσ . For the Italy 

data, the AIC values of the random effect models are equal to 1305.3 and 1287.4 for the logit and 
clog-log links while the AIC values of the fixed effect models with the respective links are 
1308.0 and 1288.9 respectively. For the Spain data, the AIC value of the random effect models 
are 990.3 and 928.5 for the logit and clog-log links respectively. The AIC values of the fixed 
effect models for the Spain data are 993.2 and 930.3 for the logit and clog-log links respectively. 
The smaller AIC value of the random effects indicates that observations are correlated on the 
IDU level. 
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Parameter estimates 95% CL, standard error of the random effect and AIC values of the random 
effect model for both links are given in Table 5 and 6. 

Table 5: Parameter Estimates [95% CL] for  GLMM regression model of the Italy’s 
study 

  Model 1(logit link) Model 2 (Clog-log link) 
Disease Parameter Estimate [95% CL] Estimate [95% CL] 
HCV 

01β  -0.4772[-0.8662, -0.0883] -1.5442[-2.0717, -1.0166] 

11β (duration) 0.1633[0.1231, 0.2035] 0.8852[0.6082, 1.1622] 

HIV 
02β  -4.6095[-5.6245, -3.5945] -6.6371[-8.1822, -5.0920] 

12β (duration) 0.1231[0.0835, 0.1628] 1.5651[1.0537, 2.0765] 

bσ   1.0690[0.4272, 1.7108] 0.6736[0.1828, 1.1644] 

AIC  1305.3 1287.4 
 

For both countries a significant relation is observed between the seroprevalence of the two 
diseases and exposure time.  

Table 6: Parameter Estimates [95% CL] for GLMM regression model of the Spain’s 
study 
  Model 1(logit link) Model 2 (Clog-log link) 
Disease Parameter Estimate [95% CL] Estimate [95% CL] 
HCV 

01β  -0.3907[-0.8009, 0.0195] -0.6678[-1.0417, -0.2938] 

11β (duration) 0.2963[0.2176, 0.3750] 0.7298[0.4823, 0.9772] 

HIV 
02β  -3.0422[-3.7411, -2.3433] -3.2561[-4.0109, -2.5013] 

12β (duration) 0.2463[0.1765, 0.3161] 1.0839[0.7442, 1.4236] 

bσ   0.9511[0.4114, 1.4907] 0.5964[0.2017, 0.9910] 

AIC  990.3 928.5 
  

We generated a random sample of 920 random effects from a normal distribution with mean zero 
and variance of (1.069)2, and (0.6736)2 for the logit and clog-log of the Italy data respectively. 
For the Spain’s study 470 random effects were simulated from a normal distribution with mean 
zero and variance of (0.9511)2 and (0.5964)2 for the logit and clog-log links respectively.  The 
predicted seroprevalence plot of HCV and HIV are shown in Figure 5 for both countries.
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HCV-Italy HIV-Italy 

 

 

Figure 5: Estimated prevalence of HCV (left panels) and HIV (right panels) by exposure time-the marginalized GLMM 
model 

 

The patterns observed in Figure 5 are similar to the ones observed in predicted prevalence plots 
of the ALR models. Plots from both link functions follow the data very well. 

4.2.3. Influence of other risk behavior factors 

 

The models discussed so far (the logistic and Weibull) only adjusted for the exposure time as a 
risk factor. Using these models we could identify the best link function and estimate the 
prevalence and force of infection. In this section we extend the Weibull model (with the smallest 
AIC) so that we can adjust for potential risk factors like age at first injection, sharing needles, 
and sharing other paraphernalia. Information about sharing needles and other paraphernalia is 
only available for the Spain data.  
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Table 7 shows the parameter estimates, the log odds ratio estimate of the ALR model and 
standard error of the random effect model of the Italy’s study. Age at first injection is found to be 
a significant risk factor only for HIV infection. This indicates that the prevalence of HIV for 
IDUs who started injecting drugs in relatively older age is higher than those who started to inject 
in relatively younger ages. The log odds ratio is significant at 1% level of significance (P-value 
for alpha is 0.0568). 

Table 7: Parameter Estimates [95% CL] of  the Italy data (Final models) 
  ALR(clog-log) GLMM(clog-log) 
Disease  Parameter Estimate[95% CL] Estimate[95% CL] 
HCV 

01β  -1.6442[-2.2705, -1.0179] -2.0981[-3.0031,-1.1931] 

11β (duration) 0.7212[0.5808, 0.8616] 0.9296[0.6365, 1.2227] 

21β (age at 1st injection) 
0.0162[-0.0026, 0.0350] 0.02051[-0.0038, 0.0448] 

HIV 
02β  -8.4402[-10.4542, -6.4262] -8.8631[-11.2915, -6.4348] 

12β (duration) 1.7922[1.2743, 2.3102] 1.8552[1.2716, 2.4387] 

22β (age at 1st injection) 
0.0647[0.0155, 0.1139] 0.0681[0.0175, 0.1187] 

  α=0.8916[-0.0260, 1.8092] 
bσ =0.6582[0.1569, 1.1596] 

 

For the Spain data, available risk factors were put in the previous ALR and GLMM models. 
Variables selection was done by removing a covariate with the highest p-value (most 
insignificant) sequentially. That is among the non significant p-values, the one with highest p-
value was removed and the model was refitted with the rest covariates. Sharing syringes and 
exposure time are the only covariates left in the final model. Sharing syringes is found to a 
significant risk factor for the transmission of HCV and HIV. Using estimates of the ALR model, 
the risk of HCV for IDUs who share syringes is 1.47(exp (0.3)) times higher than the risk for 
those who don’t share syringes. The risk of HIV for IDUs who share syringes is 2.16 (exp (0.77)) 
time the risk of those who don’t share syringes. Hence for the Spain data sharing syringes can be 
claimed to the main route for the co-infection of HCV and HIV. 
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Table 8: Parameter Estimates [95% CL] of the Spain  data (Final models) 
  ALR(clog-log) GLMM(clog-log) 
Disease  Parameter Estimate[95% CL] Estimate[95% CL] 
HCV 

01β  0.4916[-0.7620, -0.2213] -0.6746[-1.0449,-0.3042] 

11β (duration) 0.1068[0.0681, 0.1454] 0.5984[0.3680, 0.8288] 

21β (Sharing Syringes) 
0.3900[0.1461, 0.6339] 0.4103[0.1139,0.7067] 

HIV 
02β  -2.850[-3.2958, -2.4052] -3.4512[-4.2174,-2.6850] 

12β (duration) 0.1609[0.1221, 0.1997] 0.9783[0.6425,1.3142] 

22β ( Sharing Syringes) 
0.7703[0.3879, 1.1526] 0.7991[0.4073,1.1910] 

  α=0.6556[0.0252, 1.2859] 
bσ =0.4013[-0.0978,0.9005] 

 

4.2.4. Marginal versus Shared random-effect Models 
 

In this subsection we compare result from the ALR and the shared random effect models. Here 
the intention is not to compare models of different families, but to assess possible similarities or 
differences of the obtained estimates. Estimates of the covariates, standard errors and 95% 
confidence limits given in Tables 7 and 8 for the Italy and Spain studies respectively are used. 

For a random-intercept logistic regression model, with normally distributed random intercepts 
like the one we fitted, it can be shown that the marginal model is well approximated by the 
shared random effect model, but with parameters satisfying 

GLMM
2 2

bALR

β̂ c σ +1>1
β̂

≈ , where 2
bσ  is the variance of the random effects and 16 3c=

15π
(Diggle et al, 

2002)7. This ratio implies that an estimate of the shared random effect model is not smaller than 
the ALR model. When the random-intercept variance is zero, the ratio will be one. For our study, 
these approximate factors are 1.120 and 1.0463 for the Italy and Spain studies respectively. 
These values provide good agreement between the two models. In absolute term estimates of the 
ALR models are lesser than their corresponding estimates of the GLMM.  

The observed agreement between the two models is well revealed in Figure 6. Plots of the logit 
and clog-log links of the ALR and GLMM models overlaps in all panels with minor difference in 
higher durations for HIV exposure. The minor difference between corresponding plots might 
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show the effect of the random intercept. Both the ALR and GLMM models well predict the 
seroprevalence of HCV and HIV. 

 

HCV-Italy 

 

HIV-Italy 

 
HCV-Spain HIV-Spain

 
Figure 6: Estimated prevalence of HCV (left panels) and HIV (right panels) by exposure time 
marginalized for all models 
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5. Conclusion 
 

This study focused on joint modeling of HCV and HIV using serological data from Italy and 

Spain. Marked differences have been observed in the prevalence of HIV in IDUs across Italy and 

Spain, where as the prevalence of HCV infection is very high in both countries (Table 1).  
 

Confection of HCV and HIV is investigated by fitting marginal and shared random effect model 

using the logit and clog-log links. The ALR model estimates the odds ratio to be infected by the 

two diseases. Shared random effect is one way of studying the correlation between two responses 

of the same IDU. 
 

Firstly, we discussed the logistic regression and Weibull models under the marginal and shred 

random effect models by correcting for the exposure time (duration). The logistic regression 

model computed through GLM, appeared to be the poorest (highest AIC) one compared to the 

Weibull model for both countries. As shown in Figure 6 most of the graphs follow the data sets 

accurately. The same pattern is observed between the corresponding plots of ALR and the 

marginalized once. For both countries, HCV has the highest force of infection in the beginning 

of the injection career and decrease for IDUs with relatively long career. This might reflect high 

incidence in the years prior to recruitment of the sample. 

To make decision about how to approach the problem of prevention and intervention in the IDUs 

group, one needs to have a deeper understanding on how different factors that lead to 

transmission act together, and which factors are the most influential for continued incidence and 

high prevalence (EMCDDA, 2004). Hence influence of other risk factors on the transmission of 

the two infections was the other target of the study. The age at first injection is shown to be a risk 

factor for HIV infection in Italy with an increasing force of infection for older ages at first 

injection. For the Italy’s study, Prevalence has a positive association with the exposure time and 

age at first infection. This means that injecting drug users who start injecting at an older age have 

a higher risk of becoming infected soon after the beginning of their injecting career. The reason 

might be that they mix with older age groups of injecting drug users who have a higher 

prevalence already, or that they precede faster to high risk injecting behavior. Information about 

sharing syringes is only available for the Spain data. Sharing syringes is confirmed to be a 
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significant risk factor for the transmission of both HCV and HIV. The prevalence of HCV and 

HIV among IDUs who share syringes is higher than those who don’t share as expected from the 

exploratory data analysis.  

In conclusion, a significant co infection of HCV and HIV is observed in serological data of Italy 

and Spain. Known risk factors such as sharing of syringes and age at first injection were 

confirmed as risk factors.   
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Appendix 
 

********Marginalization of NLMIXED*********; 
/*Logit-Italy*/ 
data logit_Italy; 
do subject=1 to 920 by 1; 
do disease= 0 to 1 by 1; 
do b=1.0690*rannor(-1); 
do t=0 to 40 by 1; 
if disease=0 then y=exp(-0.4772+b+0.1633*t)/(1+exp(-0.4772+b+0.1633*t)); 
else y=exp(-4.6094+b+0.1231*t)/(1+exp(-4.6094+b+0.1231*t)); 
    output; 
   end; 
  end; 

end; 
end; 
  
proc sort data=logit_Italy; 
by t disease;run; 
 
proc means data=logit_Italy; 
var y; 
by t disease; 
output out=out;run; 
 
proc print data=out; 
where _stat_='MEAN';run; 
 
proc gplot data=out; 
plot y*t=disease/haxis=axis1 vaxis=axis2 legend=legend1; 
axis1 label=(h=2 'Exposure time(years)') value=(h=1.5) 
 order=(0 to 40 by 5)minor=none; 
axis2 label=(h=2 A=90  'Prevalence') value=(h=1.5) 
 order=(0 to 1 by 0.1)minor=none; 
 legend1 label=(h=1.5 'Disease:') 
  value=(h=1.5 'HCV'  'HIV'); 
  title h=2.5 'Marginalized NLMIXED for Italy-logit'; 
  symbol1 c=black i=join w=5 l=1 mode=include; 
  symbol2 c=black i=join w=5 l=2 mode=include; 
  where _stat_='MEAN'; 
  run; 
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