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Abstract

The last two decades have seen a lot of development in the area of surrogate
marker validation. One of these approaches places the evaluation in a meta-
analytic framework, leading to definitions in terms of trial- and individual-
level association (Buyse et al. 2000). A drawback of this methodology is that
different settings have led to different measures at the individual level. Using
information theory, Alonso et al. (2006) proposed a unified framework, leading
to a new definition of surrogacy, that offers interpretational advantages, and is
applicable in a wide range of situations. In the present work, we illustrate how
this information-theoretic approach can be used to evaluate surrogacy when
both endpoints are of a time-to-event type. Two meta-analyses, in early and
advanced colon cancer, respectively, are then used to evaluate the performance
of time to cancer recurrence as a surrogate for overall survival.
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1 Introduction

Information theory is a relatively new branch of the mathematical theory of proba-

bility and statistics, made mathematically rigorous only from 1940s onwards. The

term information theory does not have a unique definition. Broadly speaking, in-

formation theory deals with the study of problems concerning any system. In fact,

it has been applied in a variety of fields and plays a prominent role in modern
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communication theory, which formulates a communication system as a stochastic or

random process.

The theory has its mathematical roots connected with the idea of disorder or en-

tropy used in thermodynamics and statistical mechanics. Some of the first attempts

for formalizing these information-theoretic ideas were undertaken by Nyquist (1924)

and by Hartley (1928), who recognized the logarithmic nature of the measure of in-

formation. A major contribution in this area came in 1948 when Shannon published

a remarkable paper on the properties of information sources and the communication

channels used to transmit the output of these sources.

The fundamental quantities of information theory, entropy, relative entropy, and

mutual information, are defined as functionals of probability distributions and can

be placed within a probabilistic framework. R. A. Fisher’s (1925) measure of the

amount of information supplied by data about an unknown parameter is well known

to statisticians. This measure is the first use of information in mathematical sta-

tistics and was introduced especially for the theory of statistical estimation. A

quarter of a century later, Kullback and Leibler (1951) studied another measure of

information from a statistical point of view, involving two probability distributions

associated with the same experiment. Other proposals to measure information have

appeared in the literature over the last 20 years.

Alonso et al. (2006) used information-theoretic ideas to introduce a new and simple

definition of surrogacy that possesses an appealing interpretation. This link between

information theory and surrogate marker evaluation allows us to approach the val-

idation problem in a unified way when the true and surrogate endpoints are of a

different nature. In the present work, we illustrate how this information-theoretic

approach can be applied when both the surrogate and the true endpoint are of a



3

time-to-event type.

Section 2 summarizes some of the main developments that have appeared in the

surrogate marker literature over the last twenty years. In Section 3, we introduce

the information-theoretic approach to surrogate marker evaluation. In Section 4, the

methodology presented in Section 3 is applied to evaluate time to cancer recurrence

as a surrogate marker for overall survival in early and advanced colon cancer.

2 Surrogate Marker Validation

The endpoint chosen to evaluate the efficacy of a new treatment is one of the most

important factors influencing the complexity and duration of modern clinical trials.

Frequently, the most sensible and relevant clinical endpoint, the so-called “true”

endpoint (T ), is difficult to use in a clinical trial, for example, when its use would

imply risky manipulations of the patient or would increase the duration and/or

cost of the study. In such situations, an attractive and sensible solution is to re-

place the “problematic” true endpoint by another one that can be measured more

conveniently, a so-called “surrogate” endpoint (S).

In a seminal paper, Prentice (1989) provided a definition and a set of criteria that

have formed the basis for a lot of subsequent work. Freedman et al (1992) introduced

the proportion of treatment explained to quantify how much of the treatment effect

on the true endpoint is captured by the surrogate endpoint. Buyse et al (1998)

decomposed the proportion of treatment explained into the relative effect and the

adjusted association, and argued in favor of these quantities instead. These proposals

were formulated assuming that the validation of a surrogate is based on data from

a single randomized clinical trial. This, however, leads to problems with untestable

assumptions and too low a statistical power. To overcome these problems, Albert et
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al (1998) suggested to combine information from several groups of patients, such as,

for example, multi-center trials or meta-analyses. Approaches following these ideas

were implemented by Daniels et al (1997), Gail et al (2000), and Buyse et al (2000).

The latter suggested a multi-trial approach that led to a new definition of surrogacy

in terms of the quality of both trial-level and individual-level association between

the surrogate and the true endpoint. In their approach, the quality of a surrogate

at the trial level is assessed by means of a coefficient of determination R2
trial. At

the individual level, the squared correlation R2
ind between the surrogate and true

endpoint, after adjustment for both the trial effects and the treatment effects, is

used.

In this meta-analytic scenario, several individual-level measures have been proposed.

In the binary-binary setting, Renard et al. (2002) used the correlation between two

latent variables R2
ind = corr(S̃,T̃ ) to define individual-level surrogacy and alterna-

tively defined R2
ind = ψ, the global odds ratio between both endpoints estimated

from a bivariate Plackett-Dale model. When the true endpoint is a survival time

and the surrogate is a longitudinal sequence, Renard et al (2003), using Henderson’s

model, proposed to study the individual level based on a time function defined as

R2
ind(t) = corr[W1(t),W2(t)]

2, where [W1(t),W2(t)] is a latent bivariate Gaussian

process. When both responses are measured longitudinally, the so-called variance

reduction factor (VRF), a canonical-correlation based quantity θp, and R2
Λ have been

proposed to evaluate surrogacy (Alonso et al. 2006, Burzykowski, Molenberghs and

Buyse 2005). Additionally, the VRF, θp and R2
Λ can be incorporated into a more gen-

eral framework allowing for interpretation in terms of canonical correlations of the

error vectors, based on which these authors defined different families of individual-

level parameters. Other proposals have been suggested in other settings.

All of these examples clearly show one of the main limitations of the meta-analytic
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methodology so far: different settings require different definitions. For some of

these settings, researchers have proposed to estimate the association between both

endpoints at a certain latent level, which, while mathematically convenient, can

be clinically less relevant or difficult to interpret. Moreover, in all of the previous

cases a joint model for both endpoints needs to be fitted. This can represent a very

serious computational burden in many practical situations and, in addition, most

of these models are not implemented in standard software packages rendering the

methodology difficult to apply.

To overcome these limitations, Alonso et al. (2006) used information theory to

create a unified framework, leading to a definition of surrogacy with an intuitive

interpretation and applicable in a wide range of situations. Their approach also

enhances insight into the chances of finding a good surrogate endpoint in a given

situation. They further showed that some of the previous proposals follow as special

cases of this information-theoretic approach. In the following section, we outline

this methodology.

3 Information-theoretic Approach

Alonso et al. (2006) propose to term S a good surrogate for T at the individual

level if uncertainty about T is reduced by a “large” amount when S is known; the

corresponding definition for the trial level is that a good surrogate implies that the

uncertainty about the effect of treatment on T is reduced by knowledge about the

effect of treatment on S. These definitions, in spite of being based on formal concepts

rooted in information theory, are simple and intuitive. Note that the general idea

behind surrogacy is to reduce the uncertainty, or equivalently, to gain information

about a “problematic” true endpoint through the use of a surrogate. At the trial

level the situation is similar: we want to gain information about the unobserved
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treatment effect on the true endpoint using the treatment effect on the surrogate.

To quantify the proportion of the uncertainty about the true endpoint that the

surrogate can explain, these authors proposed to use the so-called R2
h, defined as:

R2
h =

EP(T |Z) − EP(T |Z, S)

EP(T |Z)
.

where EP(X) =
1

(2πe)n
e2h(X) denotes the so-called power entropy of the ran-

dom variable X with density function f and h denotes its entropy defined as

h(X) = E[− log f(X)]. Note that Z represents treatment allocation. When the

conditional distribution of T (and/or S), given Z differs substantially from the mar-

ginal distribution of T (and/or S), it follows that a substantial portion of the total

variability in the outcome is explained by treatment.

R2
h satisfies a number of useful properties: (i) 0 ≤ R2

h ≤ 1; (ii) R2
h = 0 if and

only if (T, S) are independent; (iii) R2
h is symmetric in (T, S); (iv) R2

h is invariant

under bijective transformations of T and S, in the sense that there is a ‘one-to-

one onto’ mapping between S and T ; (v) When R2
h −→ 1 for continuous models,

there is usually some degeneracy appearing in the distribution of (T, S), i.e., often

T = φ(S) for some nontrivial function φ. The latter means that then there exists a

deterministic relationship between T and S. In a meta-analytic framework with N

clinical trials, one could have different, trial-specific R2
hi. In this setting, a plausible

approach is to use a meta-analytic R2
h defined as R2

h =
∑N

i=1 αiR
2
hi, where αi > 0

for all i and
∑N

i=1 αi = 1. The αi’s could be chosen to represent (un)weighted

averages of the trial-specific individual-level surrogacies R2
hi, to produce an overall

individual-level surrogacy. Many choices for the αi’s are possible, giving rise to

a family of measures. Clearly, these calculations require data on S and T to be

available from all trials. Similar families have been proposed to evaluate individual

level surrogacy in other settings (Burzykowski, Molenberghs, and Buyse 2005). In
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the following section, we will apply these ideas to analyze the two case studies.

4 Analysis of the Case Studies

In the present section we will use the meta-analytic framework described in section

2 to evaluate the performance of time to cancer recurrence as surrogate marker for

overall survival using data from two meta-analyses in early colon cancer (Sargent

2005) and advanced colon cancer (MAGIC 2004).

This meta-analytic approach identifies two dimensions in the surrogate marker prob-

lem, i.e., the trial and individual dimension. The information-theoretic measure R2
h

can be used to measure either the individual- or trial-level surrogacy (depending on

the context); the calculations at each of the levels are similar but different. This

approach has advantages over previously introduced measures, such as the R2
trial

and R2
ind introduced by Buyse et al. (2000), because it can be applied to a wide

variety of data types.

We will therefore approach the problem using the information-theoretic methodology

introduce in Section 3 and use the R2
h to quantify the individual-level and trial-level

surrogacies. It is important to point out that, when applied at the trial level, and

assuming a linear functional relationship between the pairs of trial-specific treatment

effects on the true and surrogate endpoints, respectively, the R2
h equals the R2

trial.

This equality allows us to give a new interpretation to the R2
trial. Indeed, the

R2
trial can now be interpreted as the proportion of all the uncertainty about the

treatment effect on the true endpoint that will be explained by the treatment effect

on the surrogate. When a more complex functional form is necessary to describe

the relationship between both treatment effects at the trial level, the R2
trial becomes

inapplicable, given the fact that the linear mixed model behind the calculations
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might be overly simple, and hence the R2
h is a viable alternative to quantify surrogacy

at the trial level as well. This illustrates that the surrogacy measures proposed by

Buyse et al. (2000) can be seen as special cases of the more general framework based

on the information-theoretic approach previously presented.

4.1 Advanced Colon Cancer

The analysis was based on data coming from 10 clinical trials in advanced colon

cancer (MAGIC 2004). To evaluate trial level surrogacy two different approaches

were used. In the first approach, two independent proportional hazard models were

fitted at the first stage within each trial for the surrogate and the true endpoint,

respectively. These models only included the treatment variable indicator, Z, as a

covariate. In the second stage, the maximum likelihood estimates of the trial specific

treatment effects on true endpoint (β̂i) and the surrogate (α̂i) were used to estimate

the R2
trial, which is the same as the version of the R2

h used at the trial level in this

case. The latter fact has been established in Alonso and Molenberghs (2006).

In the second approach, the association between both endpoints was taken into ac-

count by fitting a shared gamma frailty model within each trial at the first stage.

The previous procedure is equivalent to using a Clayton copula with margins mod-

elled using a proportional hazard regression. Here again, in the second stage, the

maximum likelihood estimates of the trial-specific treatment effects were used to

quantify the trial-level surrogacy.

To evaluate the individual-level surrogacy, we first defined a time-dependent covari-

ate S(t) which takes value 0 until the surrogate endpoint occurs and 1 thereafter.

The following two models were fitted:

hij(t) = hi0(t)exp{βiZij},
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hij(t) = hi0(t)exp{βSiZij + γiSij(t)},

where i denotes the trial and j denotes the subject. Using these two models, Alonso

et al. (2006) showed that under some general conditions R2
h can be estimated using

the so-called likelihood reduction factor (LRF) introduced in Alonso et al. (2004).

Table 1 displays the results for both the trial- and the individual-level surrogacy.

At the trial level some convergency problems were encountered, when fitting the

Clayton copula model to data from one particular trial and therefore the results

shown in the table are calculated excluding this trial. Both approaches used to

quantify trial-level surrogacy, i.e., using separate models on the one hand and the

Clayton copula on the other hand, lead to similar point estimates. These point

estimates hint on the presence of a large association at the trial level. However, the

wide confidence intervals obtained in both cases do not rule out a weaker association.

When the problematic trial was taken into account, the approach using independent

Cox models produced a R̂2
trial = 0.82 (CI = [0.40; 0.95]) and at the individual level

R̂2
h = 0.84 (CI = [0.82; 0.85]). Clearly, the inclusion of this trial seems to have an

important impact on the individual-level surrogacy while less so at the trial level.

A closer exploration of the trial producing convergency problems showed that in

this study the time between cancer recurrence and death was considerably smaller.

However, whether this trial is included or not we always observed a large value of

R2
h indicating that the surrogate can explain a large proportion (more than 76%) of

our uncertainty about the true endpoint.

4.2 Early Colon Cancer

This meta-analysis contains data coming from more than ten thousands patients

included in 10 early colon cancer trials Sargent et al. (2006).
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Table 1: Advanced Colon Cancer excluding the trial generating convergency prob-
lems. Trial-level and individual-level measures of surrogacy.

Parameter Estimate [95% C.I.]

Trial-level measures

R̂2
h ≡ R̂2

trial
(separate models) 0.82 [0.41; 0.96]

R̂2
trial

(Clayton copula) 0.88 [0.52; 0.97]
Individual-level measures

R̂2
h 0.76 [0.74; 0.78]

Percent censored 21%

Table 2: Early Colon Cancer. Trial-level and individual-level surrogacy.

Parameter Estimate [95% C.I.]

Trial-level measures

R̂2
h ≡ R̂2

trial (separate models) 0.85 [0.53; 0.96]

R̂2
trial

(Clayton copula) 0.82 [0.44; 0.95]
Individual-level measures

R̂2
h 0.84 [0.83; 0.85]

Percent censored 55%

Like in the previous case study, the analysis was again based on data coming from

10 clinical trials in early colon cancer. The same approaches used in the previous

example were applied to evaluate the trial- and individual-level surrogacy. Table 2

summarizes the results. Here again, a very strong association was observed at the

individual level. The large value obtained for the R2
h indicates that time to cancer

recurrence can explain more than 84% of the uncertainty about the survival of the

patient. Once again, large point estimates for R2
trial were observed, notwithstanding

the wide confidence intervals hamper our interpretation of these point estimates.
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5 Discussion

Based on a meta-analytic paradigm, Alonso et al. (2006) introduced an information-

theoretic approach to evaluate surrogacy. This approach leads to a simple yet mean-

ingful definition of surrogacy and offers a unified approach to surrogate marker eval-

uation.

While the R2 measures, coming from the framework of Buyse et al. (2000), do

not readily generalize to settings with non-normal outcomes, the R2
h applies to a

wide variety of settings (normal, binary, categorical, and longitudinal outcomes)

and reduces, in all of these specific settings, to the quantities previously introduced

in the literature. This provides a theoretical basis for the scattered set of proposals

made earlier in the literature.

In the present work, we have used this information-theoretic approach to evaluate

the performance of time to cancer recurrence as surrogate marker for overall survival

using data from two meta-analyses in early colon cancer (Sargent 2005) and advanced

colon cancer (MAGIC 2004). In both cases, a very strong association was found at

the individual level, clearly showing that the surrogate can explain more than 76%

and 84% of our total uncertainty about the overall survival for advanced and early

colon cancer, respectively.

At the trial level, even though large point estimates of the R2
trial were obtained, the

associated confidence intervals were relatively wide, hampering interpretation.

A number of additional issues require attention. First, when there are more than two

arms in the clinical trials under consideration, one has the choice between calculating

the validation measures using all arms simultaneously. Indeed, the information-

theoretic developments carry through when Z represents a nominal covariate or,

equivalently, a set of dummies, rather than a sole binary variable. Alternatively, the
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measures can be calculated for every pair of arms deemed of interest. Second, when

several trials are included into a meta-analysis, it is implicitly assumed that the

arms are properly ordered. Such a situation arises, for example, when in all trials

the control arms, on the one hand, and the active arms, on the other hand, are

similar. Otherwise, application of the methodology can become quite cumbersome,

or even arbitrary. Third, even though the measures provide a quantification of

surrogacy, there remains the important question as to how large is large. It is tough

to provide hard guidance and, arguably, decisions will have to be taken based on a

number of quantitative and qualitative arguments combined. Finally, note that, by

parsimoniously using information, the information-theoretic approaches may lead

to tighter confidence intervals than in the hierarchical-model framework. This is an

advantage, in addition to increased generality and flexibility.
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