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4.5 Performance at choice facet level (‘CHAID approach’) . . . . . . . . . 56
4.6 Performance at choice facet level (‘full approach’) . . . . . . . . . . . . 57
4.7 Performance at choice facet level (‘feature selection approach’) . . . . 57
4.8 Description of the most important attributes for each approach for the

first five dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.9 Description of the most important attributes for each approach for the

remaining four dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.10 Model performance on training data: activity pattern level . . . . . . 63
4.11 Model performance on test data: activity pattern level . . . . . . . . . 64
4.12 Model performance on training data: trip matrix level . . . . . . . . . 65
4.13 Model performance on test data: trip matrix level . . . . . . . . . . . 65
4.14 Number of trips at trip matrix level: test set in detail . . . . . . . . . 66

v



vi List of Tables

5.1 Average number of activities in the predicted sequences (standard de-
viation between brackets) . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Performance at choice facet level (bagging & boosting on One R models) 77

5.3 Performance at choice facet level (bagging & boosting on FS models) . 78

5.4 Performance at choice facet level (‘feature selection approach’) . . . . 78

5.5 Model performance on training data: activity pattern level . . . . . . 79

5.6 Model performance on test data: activity pattern level . . . . . . . . . 80

5.7 Model performance on training data: trip matrix level . . . . . . . . . 81

5.8 Model performance on test data: trip matrix level . . . . . . . . . . . 82

5.9 Number of trips at trip matrix level: test set in detail . . . . . . . . . 83

6.1 Simulated 1, 5 and 10% critical points of the HL, T, TW and TCR test
statistics for the null hypothesis of the setting in the first simulation
study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Simulated rejection percentages of the HL, T, TW and TCR tests for
two alternative models . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3 Simulated 1, 5 and 10% critical points of the HL, T, TW and TCR test
statistics for the null hypothesis of the second setting in the first sim-
ulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4 Simulated rejection percentages of the HL, T, TW and TCR tests for
the alternative functional form model . . . . . . . . . . . . . . . . . . 97

6.5 Test results GVHD data: p-values for four null models with diagnosis
D, age donor A and sex match S. Left part (2 left columns) from le
Cessie and van Houwelingen (1995); right part (4 right columns) from
a parametric bootstrap simulation with 1000 runs . . . . . . . . . . . . 99

6.6 Test results POPS data: p-values for three null models with gestational
age A and birth weight W . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.7 General topics of the explanatory variables . . . . . . . . . . . . . . . 102

6.8 Test results HIS data: p-values for four null models . . . . . . . . . . . 103

6.9 Test results Mod012 data: p-values and goodness-of-fit measures on
different null models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.10 Rejection rates for different values of β27 . . . . . . . . . . . . . . . . . 108

7.1 Distribution of different transport modes over the data sets . . . . . . 122

7.2 Selection of the different variables for the three Dutch the data sets . . 122

7.3 Parameter estimates of the semi-linear model on Dutch data - Public . 125

7.4 Performance values for the models on Dutch data - Public Transport . 127



List of Tables vii

7.5 Parameter estimates of the semi-linear model on Dutch data - Slow . . 129
7.6 Performance values for the models on Dutch data - Slow Transport . . 131
7.7 Parameter estimates of the semi-linear model on Dutch data - Car Driver132
7.8 Performance values for the models on Dutch data - Car Driver . . . . 135
7.9 Parameter estimates of the semi-linear model on Southeast Florida

Public Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.10 Performance values for the models on Southeast Florida - Public Trans-

port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.11 Parameter estimates of the semi-linear model on Southeast Florida

Slow Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.12 Performance values for the models on Southeast Florida - Slow Transport141

A.1 Independent variables used in the ‘mode for work’ choice facet of Al-
batross . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.2 Independent variables used in the ‘activity selection’, ‘travel party’ and
‘duration’ choice facets of Albatross . . . . . . . . . . . . . . . . . . . 158

A.3 Classification of activity duration . . . . . . . . . . . . . . . . . . . . . 160
A.4 Independent variables used in the ‘start time’ choice facet of Albatross 161
A.5 Travel time/duration ratios used to estimate travel times based on

activity duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
A.6 Independent variables used in the ‘trip chaining’ choice facet of Alba-

tross: Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
A.7 Independent variables used in the ‘trip chaining’ choice facet of Alba-

tross: Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
A.8 Independent variables used in the ‘transport mode for other than work

activities’ choice facet of Albatross . . . . . . . . . . . . . . . . . . . . 167
A.9 Definition of location orders in Albatross . . . . . . . . . . . . . . . . . 170
A.10 Independent variables used in the ‘location’ choice facets of Albatross 171





List of Figures

3.1 Albatross’ scheduling engine . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Example of a decision tree . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1 Classification tree on the mod012 Car driver data . . . . . . . . . . . . 106
6.2 Simulated power curves for the HIS simulation study. Each test HL, T, TW , TCR

has three curves: an upper curve for level 0.10, a middle curve for level
0.05 and a lower curve for level 0.01. Each curve connects the rejection
rates for β26 ∈ {0.0, 0.1, 0.2}, for a particular test at a specific level . . 109

7.1 Final tree on Dutch public transport data . . . . . . . . . . . . . . . . 127
7.2 Final tree on Dutch slow transport data . . . . . . . . . . . . . . . . . 130
7.3 Final tree on Dutch car driver data . . . . . . . . . . . . . . . . . . . . 134
7.4 Final tree on Southeast Florida public transport data . . . . . . . . . . 138
7.5 Final tree on Southeast Florida slow transport data . . . . . . . . . . . 140

8.1 Performance of ‘simple’ activity-based models . . . . . . . . . . . . . . 145
8.2 Performance of bagging and boosting on activity-based models . . . . . 146
8.3 Performance of Different Methods on Mode Choice Models: Dutch Data

- Public Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.4 Performance of Different Methods on Mode Choice Models: Dutch Data

- Slow Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.5 Performance of Different Methods on Mode Choice Models: Dutch Data

- Car Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.6 Performance of Different Methods on Mode Choice Models: Southeast

Florida - Public Transport . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.7 Performance of Different Methods on Mode Choice Models: Southeast

Florida - Slow Transport . . . . . . . . . . . . . . . . . . . . . . . . . . 154

ix





Chapter 1

Introduction

This chapter provides an introduction to activity-based and to mode-choice mod-
els and an overview of this dissertation. Section 1.1 shortly reports the history of
transportation modelling, while Section 1.2 gives a short discussion on ‘complexity or
parsimony’ and on the problems that motivate this dissertation. Section 1.3 describes
the organisation of the subsequent chapters.

1.1 History of Activity-Based Models

Modelling traffic patterns has always been a major area of concern in transportation
research. Since 1950, due to the rapid increase in car ownership and car use in
Western Europe and in the US; several models of transport mode, route choice and
destination have been used by transportation planners. These models were necessary
to predict travel demand on the long run and to support investment decisions in new
road infrastructure that originated from this increased level of car use. In these days,
travel was assumed to be the result of four subsequent decisions that were modelled
separately. Those models are also referred to, within transportation literature, as
Four-Step models.

1.1.1 The Trip-Based Approach: The Four-Step Model

The four-step model (Ruiter and Ben-Akiva, 1978) has been the primary tool for fore-
casting future demand of regional transportation services. It was introduced piece-
wise in the late 1950s, and was significantly modified since its first implementations.

1



2 Chapter 1

Despite these modifications, the model still hangs on to the original standard frame-
work.

The framework uses trips as an independent entity of analysis. This, however,
leads to a number of serious limitations (Jovicic, 2001). A trip is defined as a one-
way person movement by one of more modes of travel. Each trip has an origin and a
destination. In the first step of the four-step model, i.e. generation, the model predicts
the total number of trips generated and attracted to each zone in the study area. In
the second step, i.e. distribution, the data, produced during the trip generation step,
are used and the number of trips that will occur between one zone and another is
predicted. These inter-zonal flows are represented in origin-destination (trip) tables.
The third step of the modelling process is known as mode choice. This step assesses
which transport mode is used for each trip. Once the number of trips and their origins
and destinations are known, the last step (assignment), starts with allocating trips to
particular routes in the transport network (McNally, 2000).

The major advantage is the simplification that is incorporated into these models,
which made urban passenger travel demand forecasting relatively easy. The simpli-
fying assumptions facilitated the quantitative analysis of travel demand, while this is
in fact a result of complex travel behaviour.

However, many of these aggregate four-step models failed to make accurate predic-
tions. The major drawback clearly is the focus on individual trips, where the spatial
and temporal interrelationships between all trips and the characteristics of trips are
ignored. Furthermore, the overall behaviour is represented as a range of constraints
that define transport choice, while in fact it is an outcome of both real human deci-
sion making and a complex choice process. The last drawback clearly is the complete
negation of travel as a demand derived from activity participation decisions.

1.1.2 The Tour-Based Approach

The original four-step models were replaced by theories about utility-maximising be-
haviour and individual choice behaviour. Multinomial logit models and more so-
phisticated techniques such as the nested logit and probit models formed the core
of transportation modelling practice from the mid seventies onwards. Most of these
techniques were implemented in so-called tour-based systems (Daly et al., 1983). In
the tour-based model, trips are explicitly connected in tours, i.e. chains that start
and end at the same home or work base. This is done by introducing spatial con-
straints and by directions of movement. By means of this property, the lack of the
spatial interrelationship, which was so apparent in the four-step trip based models, is
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dealt with. It is undisputable that much progress has been made in this research area
compared to the aggregated four-step models. Nevertheless, these models did not es-
cape criticism either. Especially in the eighties and early nineties, it was claimed by
several researchers that very limited insight was offered into the relationship between
travel and non-travel aspects. Indeed, travel has an isolated existence in these models
and the question why people undertake trips is completely neglected. This is where
activity based travel demand comes into play.

1.1.3 The Activity-Based Approach

The fundamental contributions of Hägerstrand (1970), Chapin (1974) and Fried et
al. (1977) are the undisputed intellectual roots of activity analysis. Hägerstrand has
put forward the time-geographic approach that characterises a list of constraints on
activity participation. Chapin has identified patterns of behaviour across time and
space. Fried et al. (1977) have dealt with the social structure and the question of why
people participate in activities. These contributions came together in a study of Jones
et al. (1983), where activities and travel behaviour were integrated. This was the first
initial attempt to model complex travel behaviour. The major idea behind activity-
based models is that travel demand is derived from the activities that individuals
and households need or wish to perform. Travel is merely seen as just one of the
attributes. Moreover, decisions with respect to travel are driven by a collection of
activities that form an agenda for participation. Travel should therefore be modelled
within the context of the entire agenda, or in other words, as a component of an
activity scheduling decision. The concept of activity scheduling is an important one.

In short, travel patterns are the manifestation of the implementation of activity
programs over time and space. In turn, activity patterns emerge as the interplay
between the institutional context, the urban/physical environment, the transportation
system and individuals’ and households’ needs to realise particular goals in life and to
pursue activities (Ben-Akiva and Bowman, 1998). At least some of this complexity
of travel decisions should be captured to make transportation models more reliable.

In order to summarise the above, we would like to cite the work of McNally
(2000), who has nicely listed 5 themes which characterise the activity-based modelling
framework:

� Travel is derived from the demand for activity participation.

� Sequences or patterns of behaviour, and not individual trips are the relevant
unit of analysis.

� Household and other social structures influence travel and activity behaviour.
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� Spatial, temporal, transportation and interpersonal interdependencies constrain
activity/travel behaviour.

� Activity-based approaches reflect the scheduling of activities in time and space.

Activity-based approaches to transportation forecasting therefore aim at predict-
ing which activities are conducted where, when, for how long, with whom, the trans-
port mode involved and ideally also the implied route decisions.

Recently, models of time allocation to activities, activity duration and travel be-
haviour have been developed, sometimes in conjunction with travel behaviour models,
such as activity-based transport models. Time use studies generally provide informa-
tion on what individuals do over the course of a day, or, in some cases, over several
consecutive days. Given the importance of activity participation in shaping travel be-
haviour, it is not surprising that in recent years there has been an increased interest
in time use studies among travel behaviour researchers and travel demand modelers
(Pas, 2002). The field of time use research has been reviewed by Pas and Harvey
(1991) and they also examined the implications of this work for travel demand anal-
ysis and modelling. Conclusions indicated that mutual benefits would accrue from
greater interaction between these related fields of research. This is why, during the
past few years, the concept of time has moved from relative obscurity to centre stage
in travel demand analysis and modelling. A large number of research efforts have been
undertaken by travel behaviour researchers to develop models of how people use their
time. In many ways, this research can be seen as taking the activity-based approach
to travel analysis and modelling to a new level, since these models aim to predict
what people do with their time, that is activity participation, which is the underlying
rationale for travel and the basis for the activity-based approach (Golob, 1997; Fujii
et al., 1997; Lu and Pas, 1997; Bhat, 1996; Yamamoto and Kitamura, 1997).

Activity-based transportation models have certainly set the standard for the last
decade of modelling travel demand. The models can be classified in a number of
ways. Now we will focus on these comprehensive activity-based models of travel
behaviour: a differentiation will be made between constraints-based, simultaneous
(utility-maximisation) and sequential (computational process) models of activity schedul-
ing behaviour. Constraints-based models have their roots in time geography, utility-
maximisation models stem from microeconomic theory and psychology, while compu-
tational process models have been inspired by psychological decision process theories
(Joh, 2004).
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Constraints-based Models

These models typically examine whether particular activity patterns can be realised
within a specific time-space environment. These models require as input activity
programs, which describe a set of activities of a certain duration that can be performed
at certain times. The space-time environment is defined in terms of locations, their
attributes, available transport modes and travel times between locations for various
transport modes. One of the attributes of interest is the opening hours of the facilities
at that location. To examine the feasibility of a certain program, a combinatorial
algorithm is typically used to generate all possible activity sequences. The feasibility
of each sequence is then tested by checking whether (i) the interval between the end
time of the previous activity and the start time of the next activity is sufficient to
travel between location; (ii) the activity can start after the earliest possible start
time and be finished before the latest possible end time and (iii) conditions about the
sequencing of activities are not violated. The number of feasible activity schedules is
often used as a measure of the flexibility that the time-space environment offers.

One of the first models in this tradition is Lenntorp’s (1976) PESASP model. A
similar model is CARLA, which basically is a combinatorial algorithm for generating
feasible activity patterns (Jones et al., 1983). BSP (Huigen, 1986) and MASTIC
(Dijst and Vidakovic, 1997) are also similar models, and Kwan’s Gisicas (1997) can
be classified as a constraints-based model as well, although it makes also references
to computational process models. Given an activity agenda, this GIS-based system
begins scheduling by fitting activities on the agenda into the free time a person has,
and orders them into a sequence. Activities with higher priority are ordered first, and
the time constraints for performing certain activities are also taken into account.

A limitation of constraints-based models is that they lack the necessary mecha-
nisms to predict adjustment behaviour of individuals. When faced with a changed
time-space environment, individuals are likely to adjust/reschedule their activity pro-
grams. Constraints-based models, however, do not attempt to predict such behaviour.

Simultaneous Models (Utility-Maximisation Models)

Simultaneous models are based on observations of activity-travel patterns. The pre-
diction is mainly done by means of utility-maximising econometric techniques (at first
multinomial logit models were used, while later on nested logit models of increasing
complexity were developed). These models assume that individuals evaluate a number
of complete, one-day activity-travel patterns and choose the pattern that maximises
their utility. In behavioural terms, these models do a rather moderate job, since they
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only adopt the assumption of utility-maximising behaviour.
One of the first known simultaneous models is Starchild, developed by Recker et

al. (1986). It often has been referred to as the first operational activity-based model,
but it was designed for research purposes and certainly not for general application.
The primary weakness of Starchild is that it was designed to use data that, although
essential to the theory of activity-based models, still is not available today. The only
data set which was available for this model was a single activity diary data set that was
collected to investigate the effects of carpooling (McNally, 2000). Another important,
perhaps the most advanced, simultaneous model is the Daily Activity Schedule Model
(Ben-Akiva et al., 1996; Bowman, 1998). A prototype was developed for the Boston
area (Bowman and Ben-Akiva, 1995), and later implemented for travel forecasting
in Portland (Bowman et al., 1998). The main difference here is that activity-travel
patterns are treated in order of hierarchy. If a person completes a number of activities
a day for instance, one of them is chosen to be the primary activity of the day. This
means -in terms of the daily activity schedule model- that the utility of a primary
activity (along with the travel that this activity brings along) is higher than the utility
of secondary activities. Well-known methodologies such as nested logit models are
used in this framework. Other examples of nested logit models -although considerably
less complicated- include the work of Wen and Koppelman (1999) and the PETRA
project (Fosgerau, 1998), which was funded by the Danish Transport Council and the
Danish Energy Research Program.

The above models are all based on revealed preference data. In contrast, CO-
BRA (Wang and Timmermans, 2000) has been based on conjoint choice experiments.
Although their study demonstrated the potential of the newly proposed methodolo-
gies, it is doubtful whether conjoint experiments suffice to build a comprehensive
activity-based model.

The Prism-Constrained Activity Travel Simulator (PCATS) has been developed
by Kitamura and Fujii (1998). It is a system that simulates activity-travel behaviour,
while considering prism constraints, availability of travel modes, and recognition of
potential activity locations. Unlike the previous models that model the choice of
activity pattern as a nested structure, PCATS assumes that individuals maximise the
utility associated within the open periods, subject to the above constraints.

Bhat and Singh (2000) developed the Comprehensive Activity-Travel Generation
for Workers (CATGW) model system. The activity-travel pattern is divided into
several periods. Each of these patterns has its own characteristics and for every
component a series of models is suggested to predict them. Although these have
been largely published as isolated modelling efforts, when used in combination, it
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will result in a comprehensive modelling approach. Misra et al. (2003) extended this
model to handle non-workers’ activity schedules. Very recently, the Comprehensive
Econometric Micro-simulator for Daily Activity-travel Patterns (CEMDAP) has been
developed by Bhat et al. (2004). This system differs from its predecessors in that it
is one of the first to comprehensively simulate the activity-travel patterns of workers
as well as non-workers along a continuous time frame.

Sequential Models (Computational Process Models)

The models reviewed in the previous section simultaneously consider facets of travel
patterns. The process, however, by which individuals arrive at their choices is not
modelled at all. Sequential models (also called computational process models) repre-
sent an attempt of modelling this scheduling process. The utility-maximising frame-
work, which is the most important assumption in the models described above, is now
completely disregarded. After all, a lot of researchers have argued that people do not
always necessarily arrive at ‘optimal’ choices, but rather use heuristics that may be
context-dependent. In its most simple form, these modelling approaches use a set of
simple IF-THEN rules, which take on the following form: IF (condition=X) THEN
(perform action Y). Dependent on the context or the situation an individual faces,
another outcome or another decision is taken. Such a set of rules makes up the model.

The first conceptual framework for understanding the process by which people
organise their activities is Scheduler (Gärling et al., 1989). Individuals and households
are assumed to try and attain certain goals. Activities are defined as means, which
the environment offers to attain these goals. The model Gisicas developed by Kwan
(1997), can be best seen as an implementation of Scheduler. However, both Gisicas
and Scheduler are not truly fully operational models (Timmermans, 2001).

Another model system that bears some resemblance with computational process
modelling is AMOS, a dynamic micro-simulator of household activities and travel over
time and space (Pendyala et al., 1995, 1998). Although AMOS was designed with
a rather specific policy application in mind and is not valid for general prediction,
it nevertheless makes a good contribution in moving activity based transportation
models toward operation status (McNally, 2000). Very recently, the model has been
made operational for the State of Florida under the name FAMOS: Florida’s Activity
Mobility Simulator (Pendyala, 2004). The simulator is intended to serve as a com-
prehensive multi-modal activity-based micro-simulation model system that simulates
activity and travel patterns at the level of the individual traveller.

Certain aspects of AMOS are very similar to Smash (Ettema et al., 2000). This
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model concentrates on the process of activity scheduling. The scheduling process is
assumed to be a sequential process consisting of a number of consecutive steps. This
model was primarily developed as a process model and hence it does not offer much
as a planning tool.

One of the most advanced operational process models in the transportation liter-
ature to date is Albatross (Arentze and Timmermans, 2000). Albatross has received
significant attention and appreciation in literature (e.g. Axhausen, 2000; Arentze et
al., 2003; Janssens et al., 2004a); it is the latest, most comprehensive and only fully
operational computational process model at this moment. It can be considered as
a multi-agent rule-based system that predicts activity patterns (see also Chapter 3).
Several important extensions are realised in the second version of Albatross. The
most important extension concerns the generation of schedule skeletons on a contin-
uous time scale, which in the original version was taken as a given.

1.2 Complexity or Parsimony

Whether complex or parsimonious models should be preferred over the other is an old
question. It has been investigated before in the data mining literature, in statistics,
and perhaps even in all sciences (see e.g. Nock, 2002; Domingos, 1998; Zhang and
Mühlenbein, 1995). Occam’s razor (a plea for simplicity, see also Chapter 4) even
dates back to the Middle Ages (Tornay, 1938).

The answer to this question all depends on the aim of the research. If your goal
is to have a model with a high predictive performance and a large generalisability,
perhaps complex models will serve this goal best. While, when coping with a large
number of predictors, someone else might only be interested in a smaller subset of
this predictor space that exhibits the strongest effects that influence a particular
outcome. In order to get the ‘big picture’, that person is willing to sacrifice some of
the small details. These small details can be disturbing, or, in real life, one simply
does not have the time to check all different kinds of predictors in order to come up
with a decision. Two small examples may illustrate this. Consider e.g. a doctor at
an emergency room where a patient is just rushed in in the throes of a heart attack.
Although this doctor’s decision can save or cost a life, he/she does not have the luxury
of extensive deliberation: just a few measurements will point to the action that will be
undertaken (Gigerenzer et al., 1999). Another example is situated at the stock market.
Pedestrians and fund experts were asked in which domestic and international company
they would invest their money. Most of the surveyed pedestrians had to make their
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choice solely on name recognition of the company. For the period considered in
the study, the recognition knowledge of the pedestrians turned out to be even more
profitable than the considered opinions of the experts! Thus, parsimonious models
may provide a solution when one is only interested in the major effects that influence
the outcome. These parsimonious models can be obtained by just applying simpler
models or by using variable selection. This question of complexity and parsimony and
which will serve better in what transportation context, is a central theme throughout
this manuscript.

Recently, there is an increasing interest in the computational process model ap-
proach in order to model activity-diary data. Of these sequential models, the original
Albatross system (Arentze and Timmermans, 2000) was the most complex and only
fully operational model when this research was started. It aims to predict which
activities will be conducted where, when, for how long, with whom and with which
transport mode. These decisions determine the nine different choice facets of the
model and a sequential execution of them provides activity patterns. Every choice
facet can be regarded as a response variable with its own set of predictors that needs
to be modelled (see also Chapter 3).

More specifically, this dissertation discusses two particular issues. With respect
to the original Albatross model, the first issue concerns the following: ‘Do simpler,
and hence more parsimonious models perform better, or approximately as well as
complex models in the context of activity-diary data?’ This question will be regarded
at choice facet level, thus for each of the nine dimensions separately, but also at a more
aggregate level, at the level of the activity patterns. The data that were used to derive
the original Albatross system are also used for the analyses provided in this part of
the dissertation. In Moons et al. (2001, 2002a, 2005a, 2005b), two possible ways of
simplification are examined and Chapter 4 summarises the results, while Chapter 5
is more concerned with a combination of simple classifiers.

The second issue is situated in one particular facet of activity-based models, i.e.
the choice of transport mode. Several data sets (Dutch data, data from the San
Francisco Bay area and from Southeast Florida) are used for this purpose. The ques-
tion addressed within this framework focusses on the performance of nonlinear and
semi-linear models, when compared to linear models (see Moons et al., 2004b, 2004c).
These different types of models (data mining techniques and statistical models) are
compared to each other by means of three diagnostic measures in Chapter 7.
In Chapter 6, a new goodness-of-fit statistic is developed that measures the discrep-
ancy between a parametric linear logistic regression model and the classification tree
as its nonlinear, unrestricted nonparametric counterpart (see Moons et al., 2002b,
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2004a, 2005c). If the linear model is rejected by the test statistic, a close examination
of the nonlinear model can help to improve the linear null model. These semi- and
nonlinear models often lead to more parsimonious, but on the other hand also to
more complex models (in terms of model definition, not in terms of the number of
parameters).

To give some clear recommendations on the choice of a particular model is, of
course, always difficult. Which model would be preferable over another? This question
raises many questions, while, at first, the choice of a model depends, naturally, on
the starting point of the modeler him-/herself. One can have as starting point to
have interpretable models, while another prefers to have models with a very accurate
prediction. This can lead already to very different choices. Therefore, these typical
characteristics of the different models will also be discussed.

1.3 Organisation of the Subsequent Chapters

In Chapter 2, we present most of the data sets that are used throughout this manuscript.
The data of the first Albatross system are described in Section 2.1. Because of the
large amount of variables used, we will only consider the different dimensions of the
system in Chapter 2, while the explanation and tabulation of all variables used is
given in the Appendix. All the remaining data sets described in Chapter 2 are used
to predict the choice of transport mode. The San Francisco Bay data are introduced
in Section 2.2. Section 2.3 presents Dutch transport mode data for work related
trips only. The data that are obtained from a household travel survey conducted in
Southeast Florida are described in Section 2.4.

In Chapter 3, the original Albatross system will be reviewed (Arentze and Tim-
mermans, 2000). The nine dimensions that describe which activity is conducted,
where, when, with whom, for how long and which transport mode are discussed. Also
the three different levels at which different models can be compared are introduced
here.

In order to test whether more parsimonious models would result in models that
are comparable in performance to the existing model structure, two possible ways to
simplify the original Albatross structure are provided in Chapter 4. The first way
deals with simple models, i.e. the application of Zero R, One R (Holte, 1993) and
Näıve Bayes (Langley et al., 1992, amongst others) within the context of the Albatross
system and the comparison of the performance of these three simple heuristics with
that of the originally used CHAID algorithm (Kass, 1980). A second manner in trying
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to simplify the structure is by applying a variable selection technique before using a
recursive partitioning method (Kononenko, 1994; Quinlan, 1993). The results of this
model are compared to the results of the technique without the feature selection.

Two other techniques that have often proven to ameliorate the results of a known
classification technique are bagging and boosting (Breiman, 1996; Freund and Schapire,
1997). The results of both techniques are evaluated in the context of activity-diary
data. Chapter 5 gives a short introduction to both techniques and reports the findings
within the Albatross model.

In Chapters 3 - 5, the nine different outcomes of the nine different dimensions
of the Albatross system are examined. In the subsequent chapters, we will focus on
one particular aspect of the activity-diary data, i.e. on mode choice. The history
of transportation modelling has shown that this particular part has always played a
very important role.

The second part of this manuscript focuses on the second issue as discussed in
Section 1.2. In Chapter 6, we propose a new lack-of-fit test statistic that contrasts
the hypothesised model with a saturated model based on a sample space partitioning
driven by the recursive partitioning algorithm as used in classification trees (Breiman
et al., 1984). These classification trees are nonparametric in nature and they can deal
with large and complex data sets, a quality that other goodness-of-fit tests often lack.
Simulation studies as well as studies in multidimensional settings will be presented to
exemplify the proposed test procedures and, where possible, it will be compared to
other, existing, lack-of-fit tests.

While investigating the question of complexity or parsimony in mode choice models
in Chapter 7, we made use of semi- and nonlinear models. A very elegant extension to
linear models has been provided by fractional polynomials as proposed by Royston and
Altman (1994). The behaviour of fractional polynomials in this context is investigated
on five data sets and the results are compared to that of a linear model and to those of
nonlinear models. These nonlinear models are all nonparametric in nature. Support
vector machines (Vapnik, 1996), that proven to be very good for prediction purposes
and classification and regression trees (Breiman et al., 1984) are the nonparametric
models applied here.

We conclude with a summary on the major results in Chapter 8. The final conclu-
sions with respect to transport modelling are divided into four different characteristics,
relevant in transportation studies. All models are compared on grounds of predictive
performance, interpretability, robustness and sensitiveness for policy measures.
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Chapter 2

Motivating Examples

In this chapter, most data sets that are used throughout this manuscript, are intro-
duced. The first series of data sets contains data from the original Albatross system,
with its nine different choice facets (see Chapter 3). These data will be used to predict
activity diaries in Chapters 4 and 5. Since we do not want this chapter to become
too elaborate, we will discuss the different variables used in the nine dimensions in
the Appendix. However, all information needed to comprehend the nature of the
Albatross system is available here.

All the other data sets are used in Chapters 6 and 7. The second data set is
collected in the San Francisco Bay area by the Metropolitan Transport Committee,
here the selection of transport mode is studied more in particular. The same is true
for the Dutch data set and for the fourth data set that was collected in Southeast
Florida in 1999. Other data sets are introduced whenever the need arises.

2.1 The Albatross Data

We wish to thank the Urban Planning Group for the kind permission to use their data.

The activity diary data presented here, were used to derive the original Albatross
system. The data were collected in February 1997 for a random sample of 1649
respondents in the municipalities of Hendrik-Ido-Ambacht and Zwijndrecht (South
Rotterdam region) in the Netherlands. The activity diary asked respondents, for
each successive activity, to provide information about the nature of the activity, the
day, start and end time, the location where the activity took place, the transport
mode (chain) and the travel time per mode, if relevant, accompanying individuals

13
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(alone, other member of household, other), and whether the activity was planned.
Open time intervals were used to report the start and end times of activities. A pre-
coded scheme was used for activity reporting. More details can be found in Arentze
and Timmermans (2000).

The original induction algorithm, CHAID (see Chapter 4), requires that a limited
number of discrete categories is defined for each variable. For the nominal variables,
such as the socio-economic variables, the response categories are given. For continuous
variables, such as for example travel times, one has to choose a method of discretis-
ing. Consistently, an equal frequency-interval has been used. This method divides a
continuous variable into n parts, where each part contains approximately the same
number of cases. Note that the induction algorithms may redefine the categories of
continuous variables by merging contiguous categories.

The data were cleaned using a large set of rules incorporated in a dedicated com-
puter program, called Sylvia (Arentze et al., 1999). These cleaned activity-travel
diaries are used throughout this manuscript. Each case is described in terms of a set
of independent variables summarised in Tables 2.1 and A.1 to A.10.

2.1.1 General Characteristics

Table 2.1 summarises the general variables that were used for each choice facet of the
model.

Table 2.1: General characteristics used in the various choice facets of Albatross

Name Description Categories

Day Day of the week 1: Monday . . . 7: Sunday

Csec Socio-economic class of the household 1: low . . . 4: high

Cage Age of the oldest person in the household 1 :< 25; 2 : 25− 44; 3 : 45− 64; 4 :> 64

Ccomp Household type 1: single, no work; 2: single, work

3: double, one work; 4: double, two work;

5: double, no work

Cchild Presence of children in the household 1: none; 2: younger than 6

3: 6-12; 4: older than 12

Gend Gender of the person 1: male; 2: female

Ncar Ratio between number of cars and number of adults 1: less than one; 2: one or more

Hwork1 Hours official work of the person per week 0 : 0; 1 : 1− 24; 2 : 25− 32;

3 : 33− 38; 4 :> 38

Hwork Hours official work of the household per week 0 : 0; 1 : 1− 32; 2 : 33− 38;

3 : 39− 60; 4 :> 60
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These include known household and person characteristics that can be relevant for
the segmentation of the sample, including socio-economic variables, such as household
type, age group, child index and socio-economic class; information about the (normal)
activity program at a weekly basis with regard to time engaged in work at the house-
hold or person level; and car availability at the household level, indicated by a ratio
between the number of cars and the number of adult members, so that for example
a single-adult household with one car is equivalent to a double-adult household with
two cars.

Furthermore, each dimension has its own list of more specific variables. They will
be described in detail in Tables A.1 to A.10 in the Appendix.

2.1.2 Mode for Work

The ‘Mode for Work’ choice facet includes two different types of predictors (see Table
A.1). A first series of variables describes the activity program at the level of the
person’s schedule skeleton and that of the partner, while a second series of covariates
determines the work-chain for which the choice of transport mode needs to be made.
These latter series include work and travel time information.

No extra constraints have to be taken into account in this dimension, the only
constraint variable included is the number of cars. Obviously, if this number is zero,
the car-driver mode is not a possible alternative. However, the car would also be
infeasible in cases where there is only one car available that, in a previous step, has
been assigned to a work-chain of the partner that is overlapping in time.

2.1.3 Activity Selection, Travel Party and Duration

The first set of variables in these three dimensions are program related (see Table
A.2). They describe the time engaged in work activities, work-related travel and all
different sorts of flexible activities. Note that at the present step, the travel time
information for work-related trips is known, since the transport mode choice for the
primary work activity is made in the previous step. The main idea for including these
program-level variables is that they portray important conditions, such as the activity
load of the current program, the possibility to combine activities, etc.

Furthermore, there are some variables at schedule level and some specific variables
for each choice facet that determine some constraints. E.g. a shopping activity cannot
be selected and planned in the schedule if the maximum time available within the
opening hours of possible facilities for the activity is shorter than the duration of the
activity itself.
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2.1.4 Activity Start Time

For the specification of start time, the system distinguishes six episodes of the day, be-
ing before 10 AM, between 10 and 12 AM, between 12 and 2 PM, between 2 and 4 PM,
between 4 and 6 PM and after 6 PM. For shopping, service and leisure activities, the
opening hours of the facilities further restrict possible start times. Since the location
is still unknown, the maximum opening hours of the municipality where the household
lives, are used. For social activities, there are no timing constraints. In summary, the
following information is available to describe the cases at program/schedule level:

� activity skeleton (selection, timing and location of fixed activities)

� mode for work activities

� selection, travel party and duration of flexible activities

� the start-time range and schedule position of processed activities.

The included household and person attributes are the same as in previous steps.
Note that at this stage the schedule is complete in terms of the selection of activities
to be done that day. At the schedule and activity level, there is a considerable overlap
with independent variables used in the previous steps. Variables are added not only to
cover the extra information given by the previous travel party and duration decisions,
but also to describe specific conditions for start time decisions (see Table A.4).

2.1.5 Trip Chaining

For every free activity in the schedule, this component of the system determines
whether it is possible to make a connection with an other out-of-home activity pre-
ceding the activity (After Stop), succeeding the activity (Before Stop) or both (In-
Between Stop). The single stop option where the home location is both the origin of
the trip to the activity location and the destination of the return trip is considered
feasible in every case.

Each time an activity is added, the system defines three activity sets comprising
the activities in the current schedule with which an After Stop, Before Stop and In-
Between Stop can be realised, respectively. If any of the three sets includes more
than one activity, the case is not considered for further analysis, because the trip
chaining choice facet can only handle cases that involve a uni-dimensional choice.
We emphasise that the chance of having multiple trip-connection possibilities of the
same type within the given start-time interval is generally small so that only a small
fraction of cases needs to be excluded for this reason. Adding an activity means that
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it is inserted in the observed schedule position. When next activities are considered,
the added activity is considered in turn a candidate for establishing a trip connection
in the same way as the activities in the schedule skeleton are. Thus, travel connections
can be realised between flexible activities. It follows that the following information is
available in this step:

� activity skeleton (selection, timing and location of fixed activities)

� mode for work activities

� selection, travel party, duration and start-time range of flexible activities

� the schedule position of activities that have been processed in this stage.

A connection is considered feasible only if there is a start-time and duration choice
possible such that the activities can be connected in time by travelling between the
locations. The set of variables that were used to describe the cases at the program-
level, schedule-level and activity-level are summarised in Tables A.6 and A.7.

2.1.6 Activity Transport Mode

The final two decisions that need to be modelled concern transport mode and lo-
cation choice. The mode used for the primary work activity is chosen in the first
scheduling step. Furthermore, the locations of the fixed activities are considered
given. Therefore, this subsection focuses on the transport mode for other-than-work
and short-duration-work activities, while the location choice for flexible activities, will
be regarded upon in the next subsections.

Transport mode decisions are made at the level of a tour. We consider car driver,
car passenger, public transport and slow transport (walk or bike) as the categories
of the dependent variable. A tour consists of a trip from home, a return trip and, in
cases where the tour involves multiple activities at different locations, in addition one
or more trips between out-of-home locations. The system assumes that individuals do
not change mode across trips of the same tour reflecting the notion that possibilities
to change mode are generally limited. The single-mode assumption is supported by
the fact that only 4.4% of the tours in our data set involved multiple modes. In the
future, one has to take into account that individuals may use multiple modes at the
level of trips, but the present model does not account for a mode chain. Deterministic
rules are used to determine the main mode and this is considered as the mode for the
trip. Land-use, facility-opening hours and mode-specific travel time data of the study
area are used to determine feasibility and relative speed of the mode alternatives.
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The independent variables necessary to determine the transport mode describe
the cases at household/individual, activity-program and tour level. As for the house-
hold/individual level, the same variables are used as in Table 2.1. The activity-
program and tour-level variables are summarised in Table A.8.

2.1.7 Locations

After the mode for each tour has been specified, location decisions are sequentially
made for each flexible out-of-home activity. When these decisions have to be made,
all the other activity dimensions are known: schedule position, travel party, dura-
tion start time, trip chaining, transport mode and location of fixed activities. The
location-choice set is dynamically defined as locations that are feasible given activity-
timing constraints, activity-duration constraints, available facilities, opening hours
of available facilities and speed of travel. Social activities are an exception as these
activities are not dependent on (public) facilities. Therefore, all reachable locations
are considered feasible in that case.

Just as in previous dimensions, each case is described at different levels including
the household/individual, activity program/schedule, tour and activity level. The
variables used to determine household/individuals are the same as in Table 2.1, while
the other variables are described in Table A.10.

2.2 San Francisco Bay Area

The San Francisco Bay Area household travel survey (Purvis, 2003) has become estab-
lished among the surveys in activity-based transport. It has already been conducted
several years: in 1946/47, 1965, 1981, 1990, 1996 and recently in 2000. The de-
mographic and travel behaviour data used here come from the detailed survey that
was conducted by the region’s metropolitan planning organisation (the Metropolitan
Transportation Commission) across more than 5800 San Francisco Bay Area house-
holds for two day’s trip making (including weekend days) in 1996. The travel survey
was conducted in the nine counties of the San Francisco Bay Area. It is one of the
few time-use and travel surveys that includes information on both commuters and
non-commuters. Detailed information on both in-home and out-of-home activities
and trips undertaken by an individual was recorded in the survey. While information
on all trips and segments (in the case of chained trips) was collected, in-home activity
information was requested only for those activities that were longer than 30 minutes
in duration.
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For our analysis, we opted to use a subset of the 1996 data. This original data
set contains 34864 observations and 127 variables. After deleting all observations
with missing data, there are 24752 records left. With 127 explanatory variables, it is
almost impossible to investigate for each covariate the nature of the relationship (lin-
ear, quadratic, etc.) and considering all possible two-way interactions is also hardly
feasible. Therefore, in the logistic regression models that we consider in Chapter 6,
we limited ourselves to 26 variables that describe the different activity trips. As de-
pendent variable in these analyses, we considered a binary variable indicating whether
people were using the car as transport mode or not. Only trips by ‘adults’ (i.e. per-
sons over 19 years of age) were considered. The independent variables are described
in Table 2.2.

They comprise variables describing the reported person and household character-
istics as well as typical activity/trip specific features.
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Table 2.2: Description of Independent Variables for the San Francisco Bay Area Data

Name Type Description

Person Characteristics

Commuter Status (x1) Binary 0: non-commuter, 1: commuter

Gender (x2) Binary 1: male, 2: female

Age (x3) Continuous in years

License (x4) Binary 0: no, 1: yes

Employed (x5) Binary 0: no, 1: yes

Student (x6) Binary 1: yes, 2: no

Day Activities (x7) Continuous Total number of activities in a day

Day Trips (x8) Continuous Total number of trips in a day

Race (x9) Binary 0: other, 1: white/Caucasian

Household Characteristics

Householdsize−1 (x10) Continuous Inverse of the household size

Workers (x11) Continuous Number of workers in household

Number of Vehicles (x12) Continuous Number of vehicles in household

Number of Bicycles (x13) Continuous Number of bicycles in household

Own-Rent (x14) Binary 1: own house, 2: rent

Type of Home (x15) Nominal 1: single family, detached unit; 2: duplex;

3: apartment; 4: condo or townhouse;

5: mobile home/trailer; 6: hotel/motel;

7: group quarters; 8: other

Carpool to Work (x16) Binary 1: yes, 2: no

Years Residence (x17) Continuous Number of years at current residence

Auto Own (x18) Continuous Number of automobiles in household

divided by number of members that are > 5 years

Income per Member (x19) Continuous Household income (in 1996 dollars)

divided by household size

Activity/Trip Characteristics

Start Hour (x20) Continuous Activity/Trip start time (hour)

Start Minute (x21) Continuous Activity/Trip start time (minutes)

End Hour (x22) Continuous Activity/Trip end time (hour)

End Minute (x23) Continuous Activity/Trip end time (minutes)

Duration (x24) Continuous Duration of activity/trip (minutes)

Origin Type (x25) Nominal 1: home; 2: work; 3: school; 4: other

Destination Type (x26) Nominal 1: home; 2: work; 3: school; 4: other
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2.3 Dutch Data

As discussed in the first section and in the Appendix, we consider the activity diary
data used to derive the original Albatross system. In this separate data set, in order
to predict the transport mode used, only the work tours are considered. Some of
the variables in Table A.1 are left out, others have turned back into their original
continuous nature (instead of categorical) and some other variables are added. After
cleaning the activity-travel diaries, 1025 cases were remaining and 39 variables. A
binary variable that equals 1 if the mode choice is either car (being a car driver, not a
passenger), slow transport or public transport, and zero otherwise will again be used
as dependent variable (on three different data sets). Tables 2.3 and 2.4 summarise
the 39 general and some specific explanatory variables that were used to model the
data.

Note that AP represents the activity pattern of the concerned person on the day
in which the concerned tour is embedded, while C is the concerned tour.

These general variables include known household and person characteristics that
might be relevant for the segmentation of the sample, including socio-economic vari-
ables, such as household type, age group, child index and socio-economic class; infor-
mation about the (normal) activity program at a weekly basis with regard to time
engaged in work at the household or person level; and car availability at the house-
hold level, indicated by a ratio between the number of cars and the number of adult
members, so that for example a single-adult household with one car is equivalent to
a double-adult household with two cars. For a more detailed description we refer to
Arentze and Timmermans (2000).

2.4 Southeast Florida

This data set is obtained from a household travel survey conducted in Southeast
Florida in 1999. The survey was a part of the Southeast Florida Regional Travel
Characteristics Study, which included an on-board transit survey, a visitor survey, a
truck movement survey, and a work place survey in addition to the household survey.
The household survey consisted of three steps, comprising: a CATI (computer-aided
telephone interview) recruitment of survey participants, distribution by mail of survey
instruments and travel diaries, and a CATI retrieval of the demographic data and
travel diaries.

A total of 7500 households agreed to participate in the survey as a result of the
CATI recruitment, and the survey instruments and travel diaries were mailed out for
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Table 2.3: Description of Independent Variables for the Dutch Data: Part I

Name Type Description Categories

Person/Household Characteristics

Day (x1) Nominal Day of the week 1: monday - 7: sunday

Csec (x2) Binary Socio-economic class of 1: low socio-econ. class,

the household 0: other

Cage (x3) Ordinal Age of oldest person in 1 :< 25; 2 : 25− 44;

the household 3 : 45− 64; 4 :> 64

Ccomp (x4) Binary Household composition and work 0: no; 1: yes

status: At least one person

works in household

Cchild (x5) Binary Presence of children in 1: 3 children or more,

the household 0: 2 or less

Gend (x6) Binary Gender of the person 1: male, 2: female

Ncar (x7) Binary Ratio between number of cars 1 :< 1, 2 :≥ 1

and number of driving licenses

in the household

Hwork1 (x8) Continuous Hours official work of person

per week

Hwork (x9) Continuous Hours official work of household

per week

Activity/Tour Characteristics

Nsec (x10) Ordinal Number of non-work, 0 : 0; 1 : 1; 2 : 2;

out-of-home activities in AP 3 : 3− 4; 4 :> 4

Avcar (x11) Binary Car available in terms of 0: no; 1: yes

availability driving license

and car in household

Two (x12) Continuous Total time of work in AP (in min.)

Ttot (x13) Continuous Total time of primary and

secondary work in AP (in min.)

Yserv (x14) Binary There is at least one shopping 0: no, 1: yes

or service activity in AP

YSoLei (x15) Binary Same for out-of-home social/ 0: no, 1: yes

leisure activity

Ybget (x16) Binary Same for bring/get person or 0: no, 1: yes

goods activity

CBT (x17) Continuous Earliest possible begin time of C

CET (x18) Continuous Latest possible end time of C

Cdur (x19) Continuous Difference between CET and CBT



Motivating Examples 23

Table 2.4: Description of Independent Variables for the Dutch Data: Part II

Name Type Description Categories

Cnout (x20) Ordinal Number of out-of-home 1 : 1; 2 : 2

activities in C 3 : 3− 4; 4 :> 4

Ctwo (x21) Continuous Total time of work in C (in min.)

Cttot (x22) Continuous Total time of primary and

secondary work in C (in min.)

CyServ (x23) Binary There is at least one shopping 0: no, 1: yes

or service activity in C

CySoLei (x24) Binary Same for out-of-home social/ 0: no, 1: yes

leisure activity

CyBget (x25) Binary Same for bring/get person or 0: no, 1: yes

goods activity

Aty1 (x26) Nominal Type of the first activity in C 1: work; 2: bget; 3: grocery;

4: service; 5: non-grocery;

6: leisure; 7: social; 8: other

Awith (x27) Nominal Person with whom first activity 0: none; 1: only others

in C is conducted inside the household;

2: others outside the household

Pbrget (x28) Binary Partner has a bring/get 0: no, 1: yes

activity during tour C

Pserv (x29) Binary There is a grocery, shopping 0: no, 1: yes

or service activity in the

partner’s AP during tour C

Transport Characteristics

Ttbike (x30) Continuous Shortest travel time by bike + 0.1 (to overcome problems

for tour C (in min.) with logarithms)

Rcabi (x31) Continuous Travel time ratio between

car and bike (in %)

Rpubi (x32) Continuous Travel time ratio between

public transport and bike (in %)

Rpuca (x33) Continuous Travel time ratio between

public transport and car (in %)

Textra2 (x34) Continuous Extra travel time to reach

a location of order 2

(minutes bike time)

Textra3 (x35) Continuous Same for order 3

Textra4 (x36) Continuous Same for order 4

Ptmax (x37) Continuous Maximum bike travel time

across activities in the

partner’s AP during tour C

YavSlo (x38) Binary Minimum sum of duration 0: no, 1: yes

of activities in C plus

minimum bike travel time ≤
maximum duration of C (=Cdur)

YavPu (x39) Binary Same for public transport 0: no, 1: yes

travel time
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each person in the household including visitors and infants. Parents were asked to fill
out children’s travel diaries. Of these, 5168 households and 11426 persons completed
the survey. The survey day was set on one of the weekdays between Tuesday and
Thursday for each household, and all travel-related activities were recorded for an
entire 24-hour survey day. The detailed description of the survey and tabulations of
simple statistics can be found in the survey report (The Corradino Group, 2000). The
activity engagement and time allocation behaviour represented by these data are also
analysed in Meka et al. (2002) and in Yamamoto et al. (2003).

In the analyses performed in Chapter 7, we focused on the activity data file.
In total, 41955 activities were reported and after deleting the missing values, 14527
observations were remaining. The variables that describe household, person as well
as activity characteristics can be found in Table 2.5.
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Table 2.5: Description of Independent Variables for the Southeast Florida Data sets

Name Type Description Categories

Hhldsize (v1) Continuous Number of persons

in the household

Hhldemp (v2) Ordinal Number of workers 0–13

in the household

Numchild (v3) Ordinal Number of children 0–5

in the household

Numlic (v4) Ordinal Number of licensed drivers 0–13

in the household

Hvehicle (v5) Ordinal Number of vehicles available 0–9

in the household

Meminc (v6) Continuous Annual income of the person (×5000)

Memage (v7) Continuous Age of the person

Employed (v8) Nominal Employed? 1: yes, 2: no

Acttype (v9) Nominal Activity type 1: home, 2: work, 3: shop, 4: social

recreation, 5: school, 6: other, 7: unknown

Actdur (v10) Continuous Duration of the activity + 0.1 (to overcome problems with logarithms)

(in minutes)

Finadm (v11) Nominal Final activity? 1: if final activity, 0: otherwise

Midhmd (v12) Nominal Mid-day activity? 1: if mid-day home activity, 0: otherwise

Aggaty (v13) Nominal Aggregated activity 1: home, 2: subsistence (home and school),

purpose category 3: maintenance (shopping), 4: leisure

(social recreation), 5: other and unknown

Ampkdum (v14) Nominal AM peak? 1: if activity pursued in AM

peak (7:15–9:15 AM), 0: otherwise

Midddum (v15) Nominal Mid-day peak? 1: if activity pursued in mid-day

(9:16 AM–3:15 PM), 0: otherwise

Pmpkdum (v16) Nominal PM peak? 1: if activity pursued in PM

peak (3:16–6:15 PM), 0: otherwise

Ofpkdum (v17) Nominal Off peak? 1: if activity pursued in off

peak (6:16 PM–7:14 AM), 0: otherwise
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Chapter 3

The Albatross System

In this chapter, the Albatross system will be introduced. At first, we will revise a
short part of the history as provided in Chapter 1 and elaborate somewhat more on
activity-based models, so as to put the Albatross model in the right perspective.
It should be noted that throughout this manuscript we work with the original data.
In the meantime, however, an extended set of rules, based on a larger data set, has
been derived (Arentze and Timmermans, 2002, 2004), though, when this research was
started, the larger data set was not yet available.

3.1 Introduction

3.1.1 History

During the last decade, interest in spatial interaction patterns in transportation re-
search and spatial sciences alike has shifted away from trips and tours to the analysis
of complex daily activity-travel patterns (e.g. Bhat and Koppelman, 1999). This shift
in interest was motivated by both methodological and policy considerations. It was
realised that travel patterns are a manifestation of activity participation at different
points in space (e.g. Axhausen and Gärling, 1992). A focus on daily activity patterns
as opposed to single trips and multi-stop, multi-purpose tours was felt to lead to po-
tentially better predictions of travel demand in time and space. The activity-based
approach would allow one to better capture the interdependencies of activity partici-
pation and travel, within a particular spatial and institutional context. Furthermore,
it would allow one to assess the impact of such new policy areas as teleworking and
teleshopping that were virtually impossible to tackle with conventional models (see
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e.g. Timmermans et al., 2002).

From a methodological perspective, the new focus on timing and duration of ac-
tivities led to the application of statistical methods, including hazard (Bhat, 1996)
and Tobit models that were rather new to the field. Moreover, and perhaps more
challenging, were the attempts to develop more comprehensive models of activity-
travel behaviour. These models typically attempt to predict various facets of travel
behaviour. In addition to the traditional facets of destination, transport mode choice,
and perhaps trip chaining (multi-purpose trips), activity-based models consider activ-
ity choice, timing, duration, travel party and route choice. Moreover, various types
of constraints (spatial, temporal, institutional, spatial-temporal) were incorporated
in the modelling efforts, and in some cases the decision-making unit was the house-
hold as opposed to the individual (e.g. Gliebe and Koppelman, 2000; Zhang et al.,
2002). This increased complexity (more choice facets, more choice alternatives, pref-
erences and constraints, coordination of multiple persons, inter-temporal and spatial
dependencies, etc) caused a major challenge for the modelling community.

The multitude of modelling attempts seems to converge now into two modelling
approaches (disregarding constraints-based models for a while, since they have not
achieved that much attention lately). First, the discrete choice utility-maximisation
models, originally developed for trip and tour data, were extended to include more
facets. Examples of such utility-maximisation models include the Daily Activity
Schedule model (Bowman, 1998), the CATGW model system (Bhat, 1999), PCATS
(Kitamura and Fujii, 1998), and Patricia (Borgers et al., 2002), to name a few. Sec-
ond, arguing that individuals do not necessarily maximise their utility, rule-based
computational process models of activity scheduling behaviour have been developed.
Unlike the econometric models, computational process models do not rely on algebraic
equations but on a set of Boolean decision rules or neural networks to predict observed
activity-travel patterns. Examples of such models include Scheduler (Gärling et al.,
1989), AMOS (Pendyala et al., 1995), Albatross (Arentze and Timmermans, 2000,
2002), and Aurora (Joh et al., 2001d), although the latter model uses a combination of
algebraic equations and decision heuristics. A more detailed state-of-the-art review is
given in Timmermans et al. (2002). These competing modelling approaches each have
their specific advantages and pitfalls. Protagonists of computational process models
argue that the utility-maximisation, econometric models do not reflect the true be-
havioural mechanisms underlying travel decisions and these models are based on too
rigourous assumptions about travel behaviour (e.g. Gärling et al., 1998). Likewise,
advocates of econometric approaches argue that computational process models lack
rigour, ease of interpretation, and the ability to statistically assess the significance of
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the decision rules. This leads to the paradox that although computational process
models have been developed to better reflect the behavioural mechanism underlying
activity-travel decisions, they are often viewed as black boxes, consisting of a large
number of decision rules of which the specific influence on the final outcome of the
model is impossible to identify. This discussion should be placed in the context of
the purpose of the model. If the goal is to better understand behavioural mechanisms
underlying travel behaviour, rules that better reflect actual decision-making seem
paramount. On the other hand, if the goal is to predict travel patterns, the situation
seems less clear as behaviourally more sound models do not necessarily also predict
better. Unfortunately there is a lack of comparative studies in which the predictive
performance of competing models, derived from the same data, is compared. Conse-
quently, the discussion about future directions and pros and cons of the competing
modelling approaches from a predictive point of view remains almost philosophical in
nature.

3.1.2 The Albatross System

Recently, several studies indicate an increasing interest in the computational process
model approach in order to model activity-diary data. These models derive choice
rules (Boolean expressions) from activity-travel diary data. This process of rule in-
duction is similar to the process of parameter estimation in algebraic, econometric
models.

Albatross, the most complex fully-operational computational process model to
date, was developed for the Dutch Ministry of Transportation (Arentze and Tim-
mermans, 2000). It originally derives decision rules using a CHAID-based induction
algorithm. This means that the set of condition variables, assumed to influence some
facet of activity-travel behaviour, are successively split based on the chi-square mea-
sure, such as to find as homogeneous sets of conditions as possible until some stop
criterion is met. This process can be represented in terms of a decision tree, which
indicates which combination of condition states leads to a particular action (see e.g.
Arentze et al., 2000a, for more details).

The first task of an activity-based system is to generate individual activity pro-
grams. The process of activity program generation is of course dependent on several
short term decisions such as the nature of a particular activity (mandatory or not),
the urgency of completing a particular activity on a specific day and the desire to
meet particular activity and time-related objectives. Other long-term decisions such
as marital status, the number of children and the choice of residence are also likely
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Figure 3.1: Albatross’ scheduling engine

to have an important impact on the activity program generation. After the activity
programs have been generated, the next step is to schedule these activities. This
means that further dimensions have to be added to each activity.

The activity scheduling process happens sequentially at micro level. Figure 3.1
provides a schematic representation of the Albatross scheduling model. All relevant
choice sets are considered through different agents of the Albatross model system:
which activity is conducted, where, when, with whom, for how long and which trans-
port mode is used. In order to schedule the activities, household interactions between
individuals as well as constraints have to be taken into account in the system. These
constraints can be of different types: (i) situational constraints (e.g. persons cannot
be at different locations at the same time), (ii) institutional constraints (e.g. opening
hours influence the activity which can be conducted), (iii) household constraints (e.g.
bringing children to school limits the choice set of activities which can be conducted),
(iv) spatial constraints (e.g. particular activities cannot be performed at particular
locations) and (v) time constraints (each activity requires a minimum amount of time
in order to be completed).

The activity scheduling agent of Albatross is based on an assumed sequential
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execution of decision trees to predict activity-travel patterns. The model first executes
a set of decision rules to predict whether or not a particular activity will be inserted
in the schedule. At the same time, the transport mode for the primary work activity
is chosen. If the activity is added, the travel party and the duration of the activity
are determined, based on another sets of rules, before a next activity is considered.
The order in which activities are evaluated is pre-defined as: daily shopping, services,
non-daily shopping, social and leisure activities. Time constraints are used in this
step to determine the feasibility of the chosen activities. Subsequently, in order of
priority, a general notion of time of the day (e.g. early morning, around noon, . . . ) is
determined for each activity. Based on this, for each activity, a preliminary position is
determined in the schedule. Hereafter, trip links (i.e. trip chaining decisions) between
activities are considered, which means that when tours are included in the schedule,
they are identifiable as sequences of one or more out-of-home activities that start at
home and end at home. These trip chaining decisions are not only important for
timing activities but also for organising trips into tours. For each tour a transport
mode is then determined. Note that if the activity is the primary work activity,
then the transport mode was already chosen, if not, the choice of transport mode
is made here in the scheduling process. Finally, the location of each activity is set.
Possible interactions between mode and location choices are taken into account by
using location information as conditions of mode selection rules. Institutional, spatial
and time constraints are adopted in this step to determine which locations are feasible.

The general statistics for the decision tables for each of the choice facets can be
found in Table 3.1. This table describes the statistics on the training set. A 75-25%
split was made on the data set as a whole, where the first 75% are used to build the
nine different models, whereas the remaining 25% was left to validate them.

The predictions for each model are based on a simulation procedure. This involves
building an activity pattern for each person-day by successively making a decision on
each choice dimension. A decision involves selecting a choice alternative based on the
predicted probability distribution across alternatives on the choice facet concerned.

Instead of using the original CHAID-based induction algorithm, many other in-
duction algorithms can be used to derive the set of decision rules for the nine different
choice facets of the Albatross system. In the next chapters we will try to gain a better
understanding in the influence of the use of respectively simple heuristics to derive the
set of rules (Chapter 4), a smaller set of decision rules (trimmed decision tree) (see
also Chapter 4) and the use of bagging and boosting (Chapter 5) on the predictive
performance of sequential models of activity scheduling behaviour in general and the
Albatross system in particular.
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Table 3.1: General statistics for each choice facet

Dimensions Number of cases Minimum cases Number of

per column independent variables

Mode for work 858 15 32

Selection 14190 30 40

With-whom 2970 15 39

Duration 2970 15 41

Start time 2970 15 63

Trip chain 2651 15 53

Mode other 2602 15 35

Location 1 2112 15 28

Location 2 1027 15 28

However, in order to be able to compare these different models with the original
CHAID-based induction algorithm and amongst each other, we need to have some
evaluation criteria. These will be defined in the next section.

3.2 Model Comparison

Model performance tests can be conducted at three levels: the choice facet level,
the activity pattern level and the trip matrix level. Recall that the Albatross system
consists of nine different choice facets or dimensions and that each of them determines
a different response variable. For every dimension, a separate model needs to be build.
At the choice facet level, the attributes that remained in the final (decision tree) model
for each approach will be discussed. The increase in predictive performance will also
be calculated for each decision tree. At the activity pattern level, sequence alignment
methods (Joh et al., 2001a, 2001b, 2001c, 2002a) are used to assess the correspondence
between the observed and predicted activity sequences. At the trip matrix level,
correlation coefficients are calculated to measure the degree of correspondence between
the observed and the predicted Origin-Destination matrices.
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3.2.1 Choice Facet Level

In general, the performance of a particular model at choice facet level will be repre-
sented in a table. It will normally look as follows (see Table 3.2):

Table 3.2: Performance at choice facet level

Dimension ] alts ] attrs ] leafs e eratio

Mode for work 4

Selection 2

With-whom 3

Duration 3

Start time 6

Trip chain 4

Mode other 4

Location 1 7

Location 2 6

The first column of these tables presents the 9 choice facets of Albatross. The
second column lists the number of alternatives (levels of the dependent variable),
while the third column gives the total number of attributes/independent variables
that were considered to build the final decision tree. The fourth column depicts the
total number of leafs of the decision tree. Column five reports the probability of a
correct prediction, as defined in equation (3.1), and in the last column the predictive
performance is compared to a null model (equations (3.2) & (3.3)). In the Albatross
system, the null model assigns a new case to a category of the Y-variable with a
probability, equal to the number of observed cases in the category divided by the
total number of cases in the data set.

Following Arentze and Timmermans (2003), the probability of correctly predicting
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the choice for any given case j in the training sample space equals:

e = P (correct prediction for random case j)

=
∑

k

P (correct prediction for case j|j belongs to leaf node k)

×P (j belongs to leaf node k)

=
∑

k

∑

i

P (choice i is observed and choice i is predicted for case j|

j belongs to leaf node k)× P (j belongs to leaf node k)

=
∑

k

∑

i

(fik

fk

)2

× fk

n
(due to probabilistic assignment rule)

=
1
n

∑

k

∑
i(fik)2

fk
(3.1)

where,
n is the total number of cases,
fk is the number of cases at leaf node k, and
fik is the number of cases at leaf node k with observed choice i.

Note that the sample space will be partitioned, either by the simple heuristics or
by a recursive partitioning method. For the ease of notation, we denote every final
split as a leaf node.

By comparing e with a simple prediction based on the frequency distribution
of the choice possibilities in the sample, a measure of relative performance can be
derived. The probability of correctly predicting the choice for a random case j,
without applying any splitting criterion, can be found as:

e0 =
1
n2

∑

i

(fi)2 (3.2)

where, fi is the overall frequency of choice i in the training sample.
The quotient

eratio =
e− e0

1− e0
(3.3)

then indicates the increase in predictive performance as a ratio of the maximum
increase that is possible given the information known in the sample. This is the
measure that is provided in the last column of Table 3.2.
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3.2.2 Activity Pattern Level

The assessment of goodness-of-fit at the activity pattern level requires the choice of
an appropriate measure. Since observed and predicted sequences of activities will be
compared, this measure needs to be able to capture the multi-facet aspect of activity
patterns. In addition, and more critically, the measure should also be flexible in that
it allows the inclusion of categorical and sequential information. Most of the facets
of activity patterns, such as activity type and mode choice, are categorical in nature,
but the facet of activity scheduling implies sequential information. The model should
be successful in predicting the sequence of activity choices. In addition to the problem
of being able to capture sequential information, the measure should also be sensitive
to activity patterns of unequal length. The Sequence Alignment Method (SAM),
introduced by Wilson (1998) in time use research, has the potential to capture all
this. The SAM is one of various sequence comparison methods, originally introduced
in disciplines such as molecular biology, chromatography, etc. The interesting feature
of the SAM is that it employs ‘biological’ distance rather than geometric (Euclidean)
distance as the basic concept of comparison. Biological distance can be defined as the
amount of effort that is needed to equalise two strings of information and this is taken
as an indicator of the (dis)similarity between strings (Kruskal, 1983). Unfortunately,
the conventional SAM can only handle uni-dimensional strings. The uni-dimensional
SAM can capture the intra-sequential relationships between elements of an attribute,
but not the inter-relationships between elements of different attributes. Therefore, the
Albatross system provides a multidimensional extension of the conventional sequence
alignment method.

The system uses several sequence alignment methods to measure the goodness-
of-fit. These methods measure the dissimilarity of the 2 sequences in terms of the
effort required to make the two sequences identical by using insertion, deletion and
substitution operators. In this way, sequences of unequal length can be compared.
Insertion and deletion operations incur the same cost of one unit, while substitution
of an element requires twice that cost. The lower the SAM measure, the more similar
the sequences are.

The first set of four measures, that will be provided as goodness-of-fit measures,
indicate the uni-dimensional SAM for the activity pattern attributes (being activity
type, travel party, location and transport mode) separately. The UDSAM indicates
a weighted sum of uni-dimensional SAM costs across the four dimensions, whereby
activity type was given a weight of 2 units and the other attributes a weight of one
unit, and the MDSAM indicates the multidimensional SAM using the same weights.
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The MDSAM (Joh et al., 2001a, 2002a) differs from the UDSAM in that it takes
possible correlations between choice facets into account by allowing the alignment
procedure to implement joint operations.

3.2.3 Trip Matrix Level

At the trip matrix level, the observed and predicted Origin-Destination (OD) matrices
are compared. The basic unit for generating an OD-matrix is a trip. It contains the
frequency of trips for each combination of origins (rows) and destinations (columns).
Assuming that each tour starts from home and ends at home, within the 24-hour time
frame, return trips (trips of which the destination is ‘home’) do not yield extra infor-
mation and are, therefore, not included in the generated OD-matrices. Furthermore,
trips with unknown origin or unknown destination, due to a missing value, are left out
too. Obviously, in the predicted set missing values occur in exceptional cases only.
This means that the number of valid cases will differ in the predicted and observed
set, even if the model would predict the number of tours/trips accurately.

The Albatross system consists of 20 zones (i.e. origins and destinations) that are
used as basis for each OD-matrix (see Table 3.3). Different matrices are generated
varying a third dimension on which the interactions are broken down. This third
dimension can include:

1. No third dimension

2. Transport mode (car driver, slow mode, car passenger, public transport, un-
known transport mode)

3. Day of the week (weekday, Saturday, Sunday)

4. Primary activity (working activity outdoors, medical visit, bring-get activity,
non-leisure activity outdoors, non-grocery shopping, grocery shopping, leisure
activity outdoors, social visit outdoors, service activity, other activity outdoors,
inhome activity).

Note that the number of cells and hence, the degree of disaggregation, differs between
the matrices. For example, the OD-matrix by mode has 5 × 20 × 20 = 2000 cells,
while the OD-matrix by activity type has 11× 20× 20 = 4400 cells.

The measure that will be used for determining the degree of correspondence be-
tween the observed and predicted matrices is the correlation coefficient. It will be
calculated between observed and predicted matrix entries in general and for three
trip matrices that are disaggregated, each time in a different way, based on some
selected trip facets. The facets considered include transport mode, day-of-the-week
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Table 3.3: Zones for OD-matrices in Albatross

Region Zone Postal code

Rotterdam-Noord 1 302,303,304,305

2 306

3 301

Rotterdam-Zuid 4 308

5 307

6 298

Hendrik-Ido-Ambacht 7 3341

8 3342

9 3343

Zwijndrecht 10 3331

11 3332

12 3333

13 3334

14 3335

15 3336

Paependrecht, Sliedrecht, Dordrecht 16 335,336

17 3311,3312

18 3314,3316,3317

19 3313,3315,3318,

3319,3328,3329

Elsewhere 20 other
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and activity (purpose), as discussed above. What is now meant by a correlation co-
efficient between matrices? In all cases, the cells of the OD-matrices are rearranged
into a single vector across categories and the correlation coefficient will be calculated
by comparing the corresponding elements in the observed and the predicted vector.
Thus, for the OD-matrices disaggregated on the day of the week, the cells of the matri-
ces on weekday, Saturday and Sunday are rearranged into three separate vectors, and
these three vectors are combined into one single vector. This occurs for the observed
and the predicted matrices, and the correlation coefficient between this observed and
predicted vector is the performance measure at trip matrix level. An advantage of
the use of the correlation coefficient is that it is insensitive to the difference in scale
between column frequencies (i.e. the difference in the total number of trips).



Chapter 4

Use of Simple Models in the

Analysis of Activity-Diary

Data

4.1 Introduction

In the past few years, activity-based forecasting of travel demand has become a major
field of interest in transportation research. The aim of activity-based models is to
predict which activities will be conducted where, when, for how long, with whom
and with which transport mode. A comparison of a rule-based model and utility-
maximising models on activity-travel patterns has been carried out (Arentze et al.,
2000b) and the rule-based system seems to be very flexible. The rule-based system
also performs well in predicting transport choice behaviour if we used an induction
technique (Wets et al., 2000 and Doherty, 2001). Although these rule-based models
perform very well, they also show some limitations. Most of them are based on
quite complex rule sets. However, already in the Middle Ages, there was a call for
trying to simplify things: William of Occam’s razor states that ‘Nunquam ponenda est
pluralitas sin necesitate’, meaning ‘Entities should not be multiplied beyond necessity’
(Tornay, 1938). It was born in the Middle Ages as a criticism of scholastic philosophy,
whose theories grew ever more elaborate without any corresponding improvement
in predictive power. In the intervening centuries it has come to be seen as one of
the fundamental tenets of modern science and today it is often invoked by learning

39
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theorists as a justification for preferring simpler models over more complex ones.
However, Domingos (1998) learned us that it is tricky to interpret Occam’s razor in
the right way. The interpretation ”Simplicity is a goal in itself” is essentially correct,
while ”Simplicity leads to greater accuracy” is not.

On the one hand, research in the field of psychology shows that there is empir-
ical evidence that simple models, based on fast and frugal heuristics that employ a
minimum of time, knowledge and computation to make adaptive choices in real envi-
ronments (Gigerenzer et al., 1999), often predict human behaviour very well. This is
simply because nowadays, people do not have the time to try to attain some optimal
state in making choices, most choices have to be made very quickly (e.g. at the stock
market, in a hospital). These heuristics have been tested extensively in psychologi-
cal environments, and they have proved to work well, so now we will illustrate their
use in a transport environment. Moons et al. (2001) examined the performance of
simple classifiers for the transport mode dimension of the Albatross model system.
We discovered that the predictive performance of these simple heuristics was only
slightly less than that of a more complex induction algorithm. This chapter addresses
the question what results these simple algorithms will give once they are built in the
activity-diary scheme of Albatross.

On the other hand, a less drastic way of simplification is proposed as a second
solution to the complex rule sets that are often derived from activity-diary data.
While a larger number of rules may be valuable when one wishes to better understand
the data, from a predictive perspective a large number of rules may imply that the
decision tree induction algorithm has over-fitted the data. The obtained decision tree
structure (set of decision rules) may then be very unstable and sensitive to highly
correlated covariates.

Feature selection offers a solution to reducing the number of irrelevant attributes
and as a consequence often the size of the decision tree will also be reduced. The key
notion underlying feature selection is that the number of decision rules (size of the
tree) is reduced by selecting and deleting irrelevant features (explanatory variables),
based on some statistical measure. The impact of feature selection on the predictive
performance of rule-based models is however not a priori clear. On the one hand,
because the irrelevant conditions are deleted, feature selection may not have a sub-
stantial negative effect on predictive performance. However, a smaller decision tree
may also result in a higher probability of misclassification, leading to worse predictive
performance. It is against this background that the present chapter also reports the
findings of a methodological study that was conducted to gain a better understanding
of the influence of a smaller set of decision rules (trimmed decision tree) on the predic-
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tive performance of sequential models of activity scheduling behaviour in general and
the Albatross model in particular. Moons et al. (2002a, 2002c, 2005b) investigated
the influence of irrelevant attributes on the performance of the decision tree for the
transport mode, the travel party, the activity duration and the location agent of the
Albatross model system. We found that a trimmed decision tree, involving consider-
able less decision rules, did not result in a significant drop in predictive performance
compared to the original larger set of rules that was derived from the activity-travel
diaries. Similar techniques have been applied in completely different research do-
mains: marketing (Buckinx et al., 2004), artificial intelligence (Koller and Sahami,
1996; Kohavi et al., 1994), bioinformatics (Zheng et al., 2003), etc. In this chapter,
the question ‘To what extent can this result be generalised to the full set of decision
trees, representing different choice facets, that make up the complete Albatross model
system?’ is inspected.

This chapter explores thus two examples of fast and frugal heuristics and the
application of feature selection to decision rule induction and it compares their per-
formance in Albatross. The predictive performance will also be evaluated at activity
pattern level, where observed and generated sequences of activities are compared and
at trip matrix level where the correlation coefficients that determine the strength of
the associations between the observed and predicted origin-destination matrices are
judged against each other.

In the next section, we will briefly introduce the different methods used in our
analysis. At first, we will describe the simple heuristics, 1R and Näıve Bayes, while
secondly the CHAID algorithm, used to determine the original set of rules of the Al-
batross system, is introduced. Finally, the C4.5 decision tree algorithm is introduced,
together with the Relief-F feature selection method, since these two algorithms can
be easily combined.

4.2 Methods

4.2.1 Simple Classifiers

There are in the literature some indications that very simple rules may achieve a
surprisingly high accuracy on many data sets. For example, Rendell and Seshu (1990)
occasionally remark that many real world data sets have ‘few peaks (often just one)’
and are therefore ‘easy to learn’. Further evidence is provided by studies of pruning
methods (e.g. Buntine and Niblett, 1992; Clark and Niblett, 1989; Mingers, 1989),
where the accuracy is rarely seen to decrease as pruning becomes more severe. This is
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even so when the rules are pruned to the extreme, using only one or two variables. The
most compelling initial indication that very simple rules often perform well, occurs in
Weiss et al. (1990). In four of the five data sets studied, classification rules involving
two or fewer attributes outperformed the more complex rules.

Therefore, in the next section, we will use two simple classifiers, 1R and Näıve
Bayes, in order to set up the set of rules for each of the dimensions in the Albatross
system and we will compare their performance to that of the standardly used CHAID
algorithm.

One R

Holte developed a very simple classifier that provides a rule based on the value of a
single attribute. This algorithm, which he called ‘One R’, may compete with state-
of-the-art techniques used in the field (Holte, 1993). It turns out that simple rules
frequently achieve surprisingly high accuracy. Perhaps this is because the structure
underlying many real-world data sets is quite rudimentary and just one variable is
sufficient to determine the outcome of an instance reasonably accurate.

Like other algorithms, One R takes as input a set of several attributes and a
categorical output variable. Its goal is to infer a rule that predicts the class of the
dependent variable given the values of the independent variables. The One R algo-
rithm chooses the most informative single attribute and bases the rule solely on this
attribute. Full details can be found in Holte’s paper, but the basic idea is given below.
The algorithm assumes that the attributes are discrete. If not, they must be discre-
tised. Any method for turning a range of values into disjoint intervals must take care
to avoid creating large numbers of rules with many small intervals. This is known
as the problem of ‘overfitting’, because such rules are overly specific to the data set
and do not generalise well. Holte achieves this by requiring all intervals (except the
rightmost) to contain more than a predefined number of examples in the same class
of the outcome variable. Empirical evidence (Holte et al., 1989) led to a value of six
for data sets with large number of instances and three for smaller data sets (with less
than 50 instances).
The accuracy is measured by the number of correctly classified instances.
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For each attribute a, form a rule as follows:

For each value v from the domain of a,

Let c be the most frequent class in the set of

instances where a has value v.

Add the following clause to the rule for a:

if a has value v then the class is c

Calculate the classification accuracy of this rule.

Use the rule with the highest accuracy.

Holte (1993) performed a comprehensive study on the performance of the One R al-
gorithm and results on sixteen data sets, that are frequently used by machine learning
researchers, were reported. It turned out that despite its simplicity, the One R algo-
rithm did astonishingly well in comparison with state-of-the-art induction algorithms.
The rules that can be derived from the One R procedure are often a viable alternative
to more complex structures. This strongly encourages a ‘simplicity first’ methodology
in which the baseline performance is established using simple, rudimentary techniques
before progressing to more sophisticated learning schemes, which inevitably generate
output that is harder to interpret.

Näıve Bayes

The Näıve Bayes classifier (Good, 1965; Duda and Hart, 1973; Langley et al., 1992),
named after Bayes’ rule and its näıve assumption of independence, is built on a con-
ditional independence model of each attribute given the class. Again, this algorithm
assumes that the attributes are discrete. If not, they must be discretised.It can be
used to predict the class value of the outcome variable for a new instance. Formally,
the probability of a class value Ci for an instance X = [A1, . . . , An], consisting of n
attribute values, is given by

P (Ci|X)

= P (X|Ci)·P (Ci)
P (X) by Bayes rule

∝ P (A1, . . . , An|Ci) · P (Ci) proportional, since P(X) is the same for all values

=
∏n

j=1 P (Aj |Ci) · P (Ci) by conditional independence assumption

The above probability is computed for each class and the prediction is made for the
class with the largest posterior probability. Instead of using just one attribute, as One
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R does, this model thus uses all attributes and allows them to make contributions to
the decision that are equally important and independent of one another, given the
class. The model was shown to be surprisingly robust to obvious violations of this
independence assumption, yielding accurate classification models even when there are
clear conditional dependencies (Langley et al., 1992; Domingos and Pazzani, 1996).
It works particularly well when it is combined with variable selection procedures that
serve to eliminate redundant and hence non-independent attributes.

Standard Albatross Classifier: CHAID

The popular technique of automatic interaction detection (AID) was described by
Morgan and Sonquist (1963a, 1963b), amongst others. The technique used here,
CHAID, is an offshoot of AID designed for a categorical dependent variable (Kass,
1980).
In AID, the data are successively bisected using a predictor, preserving the ordered
nature of the categories where appropriate.
AID operates on an interval scaled dependent variable and maximises the between-
group sum of squares at each bisection. In contrast, CHAID operates on a nominal
scaled dependent variable and maximises the significance of a chi-squared statistic at
each partition, which need not to be a bisection.
Standard AID is liable to misuse and it never really takes into account the sampling
variability inherent in the data. CHAID tackles this problem by embedding the par-
titioning problem in a significance testing framework. This allows the formation and
examination of multi-way splits which often lead to the conclusion that a predictor is
indivisible according to the criterion.
The selection procedure of AID favours predictors with more categories since the max-
imisation criterion extends over more possibilities. A consequence of using significance
testing in the decision-making process of CHAID is to nullify this bias.

CHAID proceeds in steps: it first detects the best partition for each predictor.
Then the predictors are compared and the best one is chosen. The data are subdivided
according to this chosen predictor. Each of these subgroups are then re-analysed
independently, to produce further subdivisions for analysis.

Let the dependent variable Y have d ≤ 2 response categories, and a particular
predictor under analysis X have c ≤ 2 categories. A subproblem in the analysis
is to reduce the given c × d contingency table to the most significant j × d table
by combining (in an allowable manner) categories of the predictor. Conceptually,
one may first calculate statistics, T

(i)
j , the usual χ2 statistics for the i-th method
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of forming a j × d table (j = 2, 3, . . . , c; the range of i depending on the type of
predictor). Then, if T ∗j = maxi T

(i)
j is the χ2 statistic for the best j × d table, choose

the most significant T ∗j . The full algorithm is as follows:

Step 1. For each predictor in turn: cross-tabulate the categories of the predictor

with the categories of the dependent variable and do steps 1a and 1b.

Step 1a. Find the pair of categories of the predictor (only considering allowable

pairs as determined by type of the predictor) whose 2× d sub-table is least

significantly different. If this significance does not reach a critical value, merge

the two categories, consider this merger as a single compound category, and

repeat this step.

Step 1b. For each compound category consisting of three or more of the

original categories, find the most significant binary split (constrained by the

type of predictor) into which the merger may be resolved. If the significance

is beyond a critical value, implement the split and return to step 1a.

Step 2. Calculate the significance of each optimally merged predictor, and isolate

the most significant one. If this significance is greater than a criterion value,

subdivide the data according to the (merged) category of the chosen predictor.

Step 3. For each partition of the data that has not yet been analysed, return to

step 1. This step may be modified by excluding from further analysis partitions

with a small number of observations (to ensure the validity of the significance test).

The traditional χ2-based test of independence between two categorical variables
is used to determine the significance of each partitioning (in steps 1a, 1b, 2) (e.g.
using the 0.05 α-level). In step 2, the significance level of each optimally merged j×d

contingency table is adjusted by a multiplier. These Bonferroni multipliers imply a
more conservative test to account for the fact that several ways of splitting have been
evaluated. The value of these Bonferroni multipliers depends on the number of ways
in which c categories can be merged into j groups, and thus they are different for
different type of predictors.
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The three different types allowed by CHAID are:

1. Monotonic predictors. As in AID, a monotonic predictor is one whose categories
lie on an ordinal scale. This implies that only contiguous categories may be
grouped together. The Bonferroni multiplier is easily derived in this case:

Bmonotonic =
(

c− 1
j − 1

)
.

2. Free predictors. Again as in conventional AID, a free predictor is one whose cat-
egories are purely nominal. This implies that any grouping of categories is per-
missible. By rephrasing it as an appropriate occupancy problem, Feller (1968)
derived the multiplier to be:

Bfree =
j−1∑

i=0

(−1)i (j − i)c

i!(j − i)!
.

3. Floating predictors. In many practical cases, the categories of a predictor lie
on an ordinal scale with the exception of a single category that either does
not belong with the rest, or whose position on the ordinal scale is unknown.
Kass (1980) calls this category a ‘floating’ category and the predictor a floating
predictor. This situation typically arises when an investigation allows for an
unknown or missing category.

Except for the floating category, grouping is only allowed for contiguous cat-
egories as for the monotonic predictors. The floating category, however, may
stand alone or be combined with any other category or group of categories. The
Bonferroni multiplier comes from an extension of the monotonic case:

Bfloating =
(

c− 2
j − 2

)
+ j

(
c− 2
j − 1

)
=

j − 1 + j(c− j)
c− 1

×Bmonotonic.

This partitioning can now be turned into a decision table (which is necessary as input
for the Albatross system). Arentze and Timmermans (2000) propose a probabilistic
rule for assigning responses to columns. If fjk is the observed frequency of the k-th
response in the j-th column of a particular contingency table and nj =

∑
k fjk is the

total number of cases assigned to the j-th column, then the probability of assigning
any (new) case that falls in the j-th column to response k equals fjk

nj
.

The χ2-criterion finds a very accurate decision table and, at the same time, a
parsimonious decision table for prediction. The criterion implies a partitioning of
the sample space that maximises the difference in response distributions between
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columns. It yields a very accurate decision table in the sense that for none of the
columns it is possible to define an additional one-way or multi-way split that would
yield significantly different responses. The criterion results in a parsimonious deci-
sion table in that every implemented split is indeed significant. Alternative measures,
such as entropy (see e.g. 4.2.2) are also appropriate, but the advantage of χ2 is that
its distribution is known so that significance testing is possible. On the other hand,
there are also some negative points. First, there is no guarantee that the produced
partitioning is optimal. Splits are considered for one independent variable at the
time, and therefore, are not considered in interaction or reconsidered dependent on
later decisions. Furthermore, despite the significance testing, the process may still
capitalise on chance. At the level of each explanatory variable, the Bonferroni adjust-
ments make sure that the search for possible ways to implement splits is taken into
account. However, the test does not take into account that multiple predictors have
been tested. In practice, however, the Bonferroni adjustments are very conservative
so that it is unlikely that the differences in data are based on chance.

4.2.2 Decision Tree Induction and Feature Selection

Decision Tree Induction: C4.5

Decision tree induction can be best understood as being similar to parameter esti-
mation methods in econometric models. The goal of tree induction is to find the
set of Boolean rules that best represents the empirical data. The original Albatross
system was derived using a Chi-square based approach (see subsection 4.2.1). In
this subsection, however, the trees were re-induced using the C4.5 method (Quinlan,
1993) because this method can be easily combined with the Relief-F feature selection.
Arentze et al. (2000a) found approximately equal performance in terms of goodness-
of-fit of the two methods in a representative case study. The C4.5 algorithm works
as follows. Given a set of I choice observations taken from activity-travel diary data,
consider their values on n different explanatory variables or attributes xi1, xi2, . . . xin

and on the response variable yi ∈ {1, 2, . . . , p} for i = 1, . . . I. Starting from the root
node, each node will be split subsequently into internal or terminal nodes. A leaf node
is terminal when it has no offspring nodes. An internal node is split by considering
all allowable splits for all variables and the best split is the one with the most homo-
geneous daughter nodes. More detailed information on recursive partitioning can be
found in Chapter 6. The C4.5 algorithm recursively splits the sample space on X into
increasingly homogeneous partitions in terms of the response variable Y , until the
leaf nodes contain only cases from a single response class. Increase in homogeneity
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achieved by a candidate split is measured in terms of an information gain ratio. As
stated in Quinlan (1993), the information theory on which the gain ratio criterion is
based can be explained in the following statement:

Definition 4.2.1 Information of a message
The information conveyed by a message depends on its probability and can be measured
in bits as minus the logarithm to base 2 of that probability.

For example, if there are four equally probable messages, the information conveyed
by any of them is −log2(1/4) = 2 bits.

Definition 4.2.2 Information of a message that a random case belongs to a certain
class

− log2

( freq(C, T )
|T |

)
bits

with T a training set of cases, C a class, freq(C, T ) the number of cases in T that
belongs to class C and |T | the number of cases in T.

Based on these definitions, the average amount of information needed to identify the
class of a case in a training set (also called entropy) can be deduced as follows:

Definition 4.2.3 Entropy of a training set

info(T ) = −
k∑

i=1

freq(Ci, T )
|T | × log2

( freq(Ci, T )
|T |

)
bits

with T a training set of cases, k the number of classes, Ci a class i, freq(Ci, T ) the
number of cases in T that belongs to class Ci and |T | the number of cases in T.

Entropy can also be measured after that T has been partitioned in n sets using
the outcome of a test carried out on attribute X. This yields:

Definition 4.2.4 Entropy after the training set has been partitioned on a test X

infoX(T ) =
n∑

i=1

|Ti|
|T | × info(Ti)

Using these two measurements, the gain criterion can be defined as follows:

Definition 4.2.5 Gain criterion

gain(X) = info(T )− infoX(T )
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The gain criterion measures the information gained by partitioning the training set
using the test X. In ID3, the ancestor of C4.5, the test selected is the one which
maximises this information gain because one may expect the remaining subsets in
the branches will be the most easy to partition. Note, however, that by no means
this is certain because we have looked ahead only one level deep in the tree. The
gain criterion has only proved to be a good heuristic. Although the gain criterion
performed quite well in practice, the criterion has one serious deficiency, i.e. it tends
to favour tests with many outcomes. Therefore, in C4.5, a somewhat adapted form
of the gain criterion is used. This criterion is called the gain ratio criterion. In this
criterion, the gain attributable to tests with many outcomes is adjusted using some
kind of normalisation. In particular, the split info(X) measurement has to be defined.

Definition 4.2.6 Split info of a test X

split info(X) = −
n∑

i=1

|Ti|
|T | × log2

( |Ti|
|T |

)

This indicates the information generated by partitioning T into n subsets. Using this
measure, the gain ratio is defined as follows:

Definition 4.2.7 Gain ratio

gain ratio(X) =
gain(X)

split info(X)

This ratio represents how much of the gained information is useful for classification.
In case of very small values of split info(X) (in case of trivial splits), the ratio will
tend to infinity. Therefore, C4.5 will select the test which maximises the gain ratio,
but subject to the constraint that the information gain must be at least as large as
the average information gain over all possible tests. After building the tree, pruning
strategies are adopted. This means that the decision tree is simplified by discarding
one or more sub-branches and replacing them with leaves.
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Feature Selection: Relief-F

Feature or variable selection strategies are often implied to explore the effect of irrel-
evant attributes on the performance of classifier systems. A feature selection method
ranks all the attributes (features) in descending order of relevance. This relevance
can be measured in several ways, leading to two large subclasses in feature selection
methods: the filter and the wrapper approach. The fundamental difference between
them is the evaluation criterion used to select or rank attributes. For wrappers, the
selection or ranking results from the estimation of the performance on the associated
induction algorithm, while the filter approach only makes use of the characteristics of
the data itself. Both methods have been compared extensively (Hall, 1999a, 1999b;
Koller and Sahami, 1996). In this analysis, the filter approach, more specifically the
Relief-F feature selection method, is opted for since it can handle multiple classes of
the dependent variable (the nine different choice facets that we are predicting range
from two to seven classes) and above that it is easily combined with the C4.5 induction
algorithm.

Feature selection strategies can be regarded as one way of coping with the correla-
tion between the attributes. This is relevant because the structure of trees is sensitive
to the problem of multi-collinearity, which implies that some variables would be re-
dundant (given the presence of other variables). Redundant variables do not affect
the impacts of the remaining variables in the tree model, but it would simply be bet-
ter if they were not used for splitting. Therefore, a good feature selection method for
this analysis would search for a subset of relevant features that are highly correlated
with the class variable that the tree-induction algorithm is trying to predict, while
mutually having the lowest possible correlations.

Relief (Kira and Rendall, 1992), the predecessor of Relief-F, is a distance-based
feature weighting algorithm. It orders attributes according to their importance. To
each attribute it assigns the initial value of zero that will be adapted with each
run through the instances of the data set. The features with the highest values are
considered to be the most relevant, while those with values close to zero or with
negative values are judged irrelevant. Thus Relief imposes a ranking on features by
assigning each a weight. The weight for a particular feature reflects its relevance
in distinguishing the classes. In determining the weights, the concepts of near-hit
and near-miss are central. A near-hit of instance i is defined as the instance that is
closest to i (based on Euclidean distance between two instances in the n-dimensional
variable space) and which is of the same class (concerning the output or dependent
variable), while a near-miss of i is defined as the instance that is closest to i (based on
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Euclidean distance) and which is of a different class (concerning the output variable).
The algorithm attempts to approximate the following difference of probabilities for
the weight of a feature X:

WX = P (different value of X|nearest instance of different class)

− P (different value of X|nearest instance of same class).

So, Relief works by random sampling an instance and locating its nearest neighbour
from the same and opposite response class. The concept of a nearest neighbour is
defined in terms of the Euclidean distance, so in an n-dimensional sample space,
determined by the variables X1, . . . , Xn, the following distance measure will be used:

d(i, j) =
(∑n

k=1(xik − xjk)2
) 1

2
, where i = (xi1, . . . , xin) and j are two n-dimensional

vectors.
By removing the context sensitivity provided by the ”nearest instance” condition,

attributes are treated as mutually independent, and the previous equation becomes:

ReliefX = P (different value of X|different class)

− P (different value of X|same class).

Relief-F (Kononenko, 1994) is an extension of Relief that can handle multiple classes
and noise caused by missing values, outliers, etc. To increase the reliability of Relief’s
weight estimation, Relief-F finds the k nearest hits and misses for a given instance,
where k is a parameter that can be specified by the user. For multiple class problems,
Relief-F searches for nearest misses from each different class (with respect to the
given instance) and averages their contribution. The average is weighted by the prior
probability of each class.

4.3 Analysis and Results

The overall aim of this study is to investigate whether a simplification of the rule
sets underlying the Albatross model leads to a significant loss in predictive power.
This simplification can be obtained in two ways: either by the application of simple
classifiers or by reducing the set of decision rules through the application of a feature
selection method (Moons et al., 2005a). The original model consists of nine choice
facets. For each of these choice facets, a set of decision rules was extracted from
activity-travel diaries. To predict activity-travel patterns, these decision trees are
executed sequentially in the Albatross system according to some scheduling process
model (see Chapter 3). We will investigate the effect of simpler rules for each choice
facet.
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4.3.1 Study Design

We have split the original data set into two subsets. A training set, containing the first
75% of the cases, on which the different models will be built and optimised for each
choice facet. The remaining 25% of the cases make up the validation or test set that
can be used to compute the accuracies (percentage of correctly classified instances),
etc. These percentages are arbitrary but are common practice in validation studies
(see e.g. Wets et al., 2000).

Note that for reasons of comparison, the Zero R classifier has also been added in
the analyses. This algorithm automatically classifies new cases to the majority class.
For the second way of simplification, we will first build decision trees for each of the
nine choice facets, using the C4.5 algorithm (Quinlan, 1993). This approach will be
called the full approach. Next, we will first identify the relevant attributes for each
of the nine choice facets separately, and then build the C4.5 trees incorporating only
a subset of the most relevant attributes. This approach will be called the feature
selection approach. In our first analysis (the ‘full’ approach), the C4.5 trees were
induced based on one simple restriction: the final number of cases in a leaf node must
meet a minimum. For eight out of the nine choice facets, this minimum was set to 15
(except for the very large data set of the ‘select’-dimension, where this number was
set to 30). In the second analysis (the feature selection approach), all the irrelevant
attributes were first removed from the data by means of Relief-F feature selection (FS)
method with the k parameter set equal to 10. Next, the C4.5 trees were built based
on the same restriction as in the ‘full’ approach, though only the remaining relevant
attributes were used. To determine the selection of variables, the following procedure
was adopted. Several decision trees were built, each time removing one more irrelevant
attribute, as they appeared lowest in the ranking that has been provided by the FS
method. For each of these decision trees, the accuracy was calculated and compared
to the accuracy of the decision tree of the full approach. The smallest decision tree,
which resulted in a maximum decrease of 2% in accuracy compared to the decision
tree including all features, was chosen as the final model for a single choice facet in
the feature selection approach. This strategy was applied to all nine dimensions of
the Albatross model.

To use a decision tree for prediction (note that the result of all different methods
can be regarded as a decision tree), a rule needs to be specified that assigns a class Yi to
each case classified by the tree. Instead of just using the commonly used deterministic
assignment rule of the decision tree, a probabilistic assignment rule was used since this
might result in a better prediction of the aggregate distributions in the activity diary
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data. Each rule was assigned a probability distribution that was derived from the
frequency distribution over the different alternatives in the training set for each leaf.
These corresponding probabilities will be reflected in the predicted activity schedules.
For each choice facet, this set of probabilistic rules gives us the decision tables that
are used in the analysis. A simplified example of a decision tree and its corresponding
probability distributions are presented in the Figure 4.1.

Figure 4.1: Example of a decision tree

4.3.2 General Results

At first, we will take a closer look at the average length of the observed and predicted
sequences of activities. In the observed patterns, the average number of activities
equals 5.160 for the training set and 5.155 for the test set. This average length offers
room for 1-3 flexible activities complemented with 2-4 in-home activities. Consid-
erable variation occurs, however, as indicated by the standard deviation of approxi-
mately 3 activities. Some descriptive statistics of the predicted patterns are shown in
Table 4.1.
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Table 4.1: Average number of predicted activities in the sequences (standard deviation
between brackets)

Training Set Test Set

Zero R 5.217 5.199

(3.241) (3.333)

One R 5.198 5.178

(3.182) (3.128)

Näıve Bayes 5.071 5.088

(3.210) (3.100)

CHAID 5.463 5.363

(2.970) (2.783)

Full approach 5.286 5.286

(2.953) (2.937)

Feature selection approach 5.014 4.907

(3.033) (2.921)

On average, when comparing the simple classifiers, Zero R and One R overestimate
the number of activities, however, this overestimation is somewhat less pronounced
on the test set. Näıve Bayes on the other hand tends to underestimate the number of
activities a little bit. All models seem to overestimate the variance a little, both on
the training set and on the test set. We observe that in general the ‘full’ approach as
well as the CHAID approach predict activity sequences that are somewhat too long,
while those of the feature selection approach are rather a little bit too short. The
variation is again overestimated by all three approaches.

The results of these different methods will now be compared at three levels of ag-
gregation (see Chapter 3): the choice facet level, the activity pattern level and the trip
matrix level. At the choice facet level, we will discuss the attributes that remained
in the final decision tree model of each of the two approaches. The probability of
a correct prediction and a measure of relative performance are also calculated for
each decision tree. At the activity pattern level, sequence alignment methods (Joh, et
al., 2001a, 2001b, 2001c, 2002a) were used to assess the correspondence between the
observed and predicted activity sequences. At the trip matrix level, correlation coef-
ficients are calculated to measure the degree of correspondence between the observed
and the predicted Origin-Destination matrices.
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4.3.3 Choice Facet Level

Tables 4.2 to 4.7 provide the results of the analyses conducted to assess model perfor-
mance at the choice facet level. As stated in Chapter 3, the first column of these tables
presents the nine choice facets of Albatross. The second column lists the number of
alternatives (levels of the Y-variable), while the third column gives the total number
of attributes that were considered to build the final decision tree. The fourth column
depicts the total number of leafs of the decision tree, i.e. the number of probabilistic
rules in the decision table. Column five reports the probability of a correct prediction
and in the last column a measure of relative performance, where the probability of
a correct prediction is compared to the probability of a correct prediction under a
null model. This null model assigns a new case to a category of the Y-variable with
a probability, equal to the number of observed cases in the category divided by the
total number of cases in the data set.

Table 4.2: Performance at choice facet level (‘Zero R approach’)

Dimension ] alts ] attrs ] leafs e eratio

Mode for work 4 0 1 0.525 0.000

Selection 2 0 1 0.669 0.000

With-whom 3 0 1 0.355 0.000

Duration 3 0 1 0.334 0.000

Start time 6 0 1 0.172 0.000

Trip chain 4 0 1 0.533 0.000

Mode other 4 0 1 0.388 0.000

Location 1 7 0 1 0.375 0.000

Location 2 6 0 1 0.200 0.000

The results of the previous analyses show that, in general, the standardly used
CHAID approach outperforms the other approaches on the dimensions separately.
Overall, Näıve Bayes performs better than One R on predictive power. There is not
much difference between the two partitioning algorithms, CHAID and C4.5 (or the
‘full’ approach), on some choice facets CHAID performs better, on other ones C4.5.
The C4.5 generally needs less variables to build the trees. Also the complexity of
both trees is comparable.
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Table 4.3: Performance at choice facet level (‘One R approach’)

Dimension ] alts ] attrs ] leafs e eratio

Mode for work 4 1 6 0.595 0.147

Selection 2 1 5 0.677 0.025

With-whom 3 1 5 0.408 0.082

Duration 3 1 3 0.348 0.020

Start time 6 1 4 0.227 0.067

Trip chain 4 1 2 0.699 0.354

Mode other 4 1 4 0.413 0.040

Location 1 7 1 3 0.435 0.096

Location 2 6 1 3 0.234 0.043

Table 4.4: Performance at choice facet level (‘Näıve Bayes approach’)

Dimension ] alts ] attrs ] leafs e eratio

Mode for work 4 3 96 0.641 0.245

Selection 2 2 42 0.674 0.016

With-whom 3 3 140 0.458 0.160

Duration 3 3 60 0.370 0.053

Start time 6 3 64 0.318 0.176

Trip chain 4 2 4 0.765 0.497

Mode other 4 3 60 0.450 0.102

Location 1 7 2 15 0.475 0.161

Location 2 6 3 12 0.281 0.102

Table 4.5: Performance at choice facet level (‘CHAID approach’)

Dimension ] alts ] attrs ] leafs e eratio

Mode for work 4 32 23 0.648 0.259

Selection 2 40 106 0.724 0.166

With-whom 3 39 57 0.509 0.239

Duration 3 41 61 0.413 0.119

Start time 6 63 86 0.398 0.273

Trip chain 4 53 30 0.833 0.642

Mode other 4 35 65 0.528 0.229

Location 1 7 28 62 0.575 0.320

Location 2 6 28 34 0.354 0.193
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Table 4.6: Performance at choice facet level (‘full approach’)

Dimension ] alts ] attrs ] leafs e eratio

Mode for work 4 3 8 0.598 0.155

Selection 2 15 35 0.686 0.052

With-whom 3 19 72 0.499 0.223

Duration 3 28 148 0.431 0.145

Start time 6 28 121 0.408 0.285

Trip chain 4 4 8 0.802 0.576

Mode other 4 15 63 0.524 0.222

Location 1 7 8 30 0.540 0.264

Location 2 6 15 47 0.372 0.214

Table 4.7: Performance at choice facet level (‘feature selection approach’)

Dimension ] alts ] attrs ] leafs e eratio

Mode for work 4 2 6 0.595 0.147

Selection 2 1 1 0.669 0.000

With-whom 3 4 51 0.467 0.173

Duration 3 4 38 0.368 0.051

Start time 6 8 1 0.172 0.000

Trip chain 4 10 13 0.811 0.596

Mode other 4 11 60 0.508 0.196

Location 1 7 6 15 0.513 0.222

Location 2 6 8 14 0.312 0.141

The results also indicate that feature selection generally generates considerably less
complex decision trees than the full approach. One exception is the ’trip chaining’
choice facet, which more leafs in the final tree with FS than in the tree without
feature selection. A logical consequence of this result is that the measure of relative
performance of the models with FS is smaller.

Another analysis at the choice facet level is concerned with comparing the most
important attributes for the ‘full’ and the FS approach. In Tables 4.8 and 4.9, the
maximally four most relevant attributes for predicting each choice facet are described
for each approach. For the definition of the variables, we refer to the Appendix. The
attributes on which the tree makes its first splits are considered to be more relevant
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than attributes on which splits are based further down in the partitioning process.

For the Mode for work facet, clearly only transport characteristics are important.
For the One R and the feature selection approach even only the shortest travel time
by bike seems to be relevant for the prediction of the transport mode for work. This
might seem odd at first sight, but one has to bear in mind that the biking facilities in
the Netherlands are very good, and thus if there is the possibility of going to work by
bike, a lot of people will do so. In the other approaches, the variable selection seems to
point especially at the distinction between bike as transport mode or car. There has to
be added that the data set is quite skewed in favour of car as most frequent transport
mode for work, this possibly gives an explanation why variables that are concerned
with public transport do not appear among the four most important variables in
predicting this choice facet. The one variable that is needed to make the splits in the
feature selection approach (Tbike) does not occur in the list of the three variables
needed to build the tree in the ‘full’ approach, however, this variable is fairly high
correlated with one variable of the ‘full’ approach: ρ(Tbike, Rcabi) = -0.72.

In case of the Selection choice facet, the activity type and the day of the week
appear to be important features as they are the only variables that appear on two
different approaches. The FS approach uses the unconditional probabilities of the
Zero R method. The reason for applying a single rule can be that the distribution
of the choice variable in this data set is very skew. 79% of the entire data set can
be explained by this default rule. Another reason might be that C4.5 only splits its
decisions based on the modal class and not on the total frequency distribution over
the classes of the response variable. If this latter would have been the case, there
would be at least a split on the activity type, since the chance on a ‘yes’-response
varies highly over the different types of activities. The CHAID approach points more
at person and household characteristics. In the ‘full’ approach, we observe that the
probability of a correct prediction is not much higher than compared to the Zero R and
the FS approach, although fifteen variables were used to build the tree. So probably
there is information lacking to predict this choice facet accurately. Most methods take
the activity type into consideration (especially grocery shopping appeared to have a
high impact in the schedule making in the ‘full’ approach), which seems logical and
apart from this, also the time component is a very crucial one. Surprisingly, these are
not the variables that occur highest in the ranking of the feature selection method.
However, we have to bear in mind that the C4.5 algorithm (in the ‘full’ approach)
does not take any correlation into account (e.g. ρ(yAvail3, Atype) = 0.22), so it can
select correlated attributes to build the tree if they increase the homogeneity of the
split.
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Table 4.8: Description of the most important attributes for each approach for the
first five dimensions

Choice facet Attribute One R Näıve Bayes CHAID Full approach FS approach

Mode for work Rcabi ∗
PTTMax ∗

Ncar ∗ ∗
Tbike ∗ ∗ ∗ ∗
Rpubi ∗
Rpuca ∗ ∗
Ccomp ∗

Selection yAvail3 ∗
Tmax(4) ∗
yDshop ∗
Atype ∗ ∗ ∗
day ∗ ∗
Nsec ∗
Gend ∗

Ccomp ∗
With-whom yAvail4 ∗

Atype ∗ ∗ ∗ ∗
yLeis ∗

yCar(2) ∗
Ccomp ∗ ∗

day ∗ ∗ ∗
Cchild ∗ ∗
yCar(4) ∗

Duration yAvail35 ∗
Awith5 ∗ ∗ ∗ ∗ ∗
yAvail25 ∗

Tleis ∗
day ∗ ∗

Atype ∗ ∗ ∗
Csec ∗ ∗
Two ∗

Start time Btwo(1) ∗ ∗
Tmax(1) ∗
Tmax(2) ∗ ∗ ∗ ∗ ∗
Tmax(3) ∗ ∗ ∗

Iact ∗ ∗
Tmax(4) ∗ ∗
Atype ∗
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Table 4.9: Description of the most important attributes for each approach for the
remaining four dimensions

Choice facet Attribute One R Näıve Bayes CHAID Full approach FS approach

Trip chain yIBstop ∗ ∗ ∗
yAstop ∗ ∗ ∗ ∗ ∗
yBstop ∗ ∗ ∗ ∗
Optime ∗ ∗
Onwith ∗

Other mode Awith1 ∗ ∗ ∗
Rcabi ∗ ∗
Gend ∗ ∗ ∗

TTbike ∗ ∗
Hwork1 ∗

Csec ∗
Ccomp ∗ ∗
Avcar ∗
Two ∗

Location 1 AvCmin ∗ ∗ ∗
AvCext10 ∗ ∗

Mode ∗ ∗ ∗ ∗ ∗
AvCext20 ∗

Atype ∗ ∗ ∗
AvCext5 ∗

Location 2 AvCext5 ∗ ∗ ∗
Mode ∗ ∗ ∗ ∗ ∗
Atype ∗

AvCext10 ∗
AvCext20 ∗
AvCmax ∗ ∗ ∗

Nout ∗ ∗
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As for the With-whom facet, the attributes that play a role in the choice whether
the activity is performed alone or with others (a three-level variable), are more general
(household) characteristics. It seems reasonable that the composition of the house-
hold, the presence of children, the day of the week and the activity type attributes
play a prominent role in building the trees. The three variables in the feature selection
approach all re-appear in the ‘full’ approach, which needs nineteen features to build
its complete model. Again, the variables in the last two approaches do not match
because of the possible high correlations between the most important variables in the
‘full’ approach and those of the feature selection approach, e.g. ρ(Ccomp, yAvail4) =
0.67.

The next choice facet is Duration. Strangely enough the travel party and the activ-
ity type are the leading attributes in the most approaches, while also time concerning
variables play a role in e.g. CHAID and the ‘full’ approach. Three variables make up
the Näıve Bayes classifier, four attributes are necessary to build the feature selection
model, while twenty-eight were needed in the C4.5 approach and even forty-one in
the CHAID.

Slightly different results were obtained for Start time. In both approaches time
concerning features were fundamental. The ‘full’ approach needed twenty-eight vari-
ables to build the model, CHAID even sixty-three, while for the feature selection
approach only thirteen were necessary. In addition to the differences shown in the ta-
ble, two relevant variables in the FS approach did not come up in the ‘full’ approach,
i.e. the total time of work 1 including travel and the total time of work 1 and work
2, where work 1 stands for the primary work or school activity and work 2 denotes a
voluntary work activity. Regarding the four most important variables, all approaches
coincide largely with each other. The variables included in these trees can be regarded
as being robust for the prediction of the start time dimension.

The next choice facet is Trip chain. Variables indicating whether there was time
enough to include the activity in the corresponding place in the schedule are noticed to
be valuable in building the tree and this accounts for all approaches. These attributes
can be regarded as being robust for predicting the ‘trip chain’ dimension. Only two
additional variables in each approach were needed to build the full models. For the
feature selection approach, these variables described the number of mandatory out-of-
home activities other than the work activity and whether there is travel party available
in the schedule before activity X (this latter variable is also important in the CHAID
approach), while in the ‘full’ approach the two extra variables denoted whether the
first activity is a grocery activity and whether there is a bring/get activity at all in
the total schedule.
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For the simple classifiers, household characteristics appear to be the most relevant
variables, while features measuring the travel times by bike and by car, as well as the
travel party and the gender were used to predict the mode for other than work trips
in the ‘full’ and the FS approach. Regarding the transport modes chosen, we come
to the same conclusions as with the mode for work choice facet. The day of the week,
the socio-economic status of the household and the total time of work 1 and work 2
in the schedule appear to be valuable features that are not incorporated in the ‘full’
model induction tree. These variables are rather highly correlated with variables in
the ‘full’ approach e.g. ρ(Csec, Ncar)= −0.51.

Almost the same four crucial variables occurred in the decision tree approaches
to predict the Location 1 dimension and most of them were related to the feasibility
of the location-selection heuristic given the schedule. Apart from these time related
variables, also the activity type and the transport mode were prominent variables.
All variables that appeared to be important in the feature selection approach, were
also found in the ‘full’ approach, together with 4 other features. These variables are
reasonably robust in predicting the location.

Finally, for the Location 2 facet, also time related variables stayed the most im-
portant ones. The transport mode, the activity type and the number of out-of-home
activities also play an important role in building the CHAID classifier. Six variables
were necessary to model the feature selection approach, while 15 (among which the
previous six) were needed in the full approach.

In summary, at the choice facet level, the methods do not differ dramatically in
their predictive performance. The variables selected as being most important for
some choice facets do not differ that much. However, a difference can be discerned in
some other trees. These differences can then often be explained by high correlations
between variables.

4.3.4 Activity Pattern Level

The performance of the two model approaches at the activity pattern level was as-
sessed by comparing observed and predicted sequences of activities. Several sequence
alignment methods (SAM) were used to measure the goodness of fit. SAM mea-
sures per dimension are added as indicators of the performance of the models on each
dimension separately. In general, the lower these measures are, the less effort was
needed to equalise the observed and the predicted sequences, and thus the better the
prediction is. Note that SAM measures represent the costs of alignment of flexible
elements of patterns only. In order to measure the dissimilarity between the observed
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and the predicted schedules, the ‘full’ approach, e.g., will require more deletion, while
the FS approach will demand for more insertion. Since both have the same cost, this
normally would result in not too much difference between the SAM measures, unless
the predicted activities deviate heavily from the observed ones. Table 4.10 indicates
the results on the training set.

Table 4.10: Model performance on training data: activity pattern level

Measure Mean Mean Mean Mean Mean Mean

Distance Distance Distance Distance Distance Distance

(CHAID) (Zero R) (One R) (Näıve Bayes) (Full) (FS)

SAM (activity type) 2.878 3.108 3.047 2.963 2.929 2.962

SAM (with) 3.209 3.500 3.363 3.246 3.205 3.189

SAM (location) 3.238 3.240 3.200 3.092 3.188 3.074

SAM (mode) 4.626 4.986 4.874 4.809 4.706 4.558

UDSAM 16.829 17.943 17.531 17.074 16.957 16.746

MDSAM 8.497 8.883 8.732 8.581 8.558 8.340

We can observe that overall the Zero R approach resulted in predicted sequences
that were the furthest away from the observed sequences in any way, as could be
expected. The One R approach has the second highest values on the SAM measures.
The Näıve Bayes approach has a lower value than the CHAID and the ‘full’ approach
for the uni-dimensional SAM for the location facet, though for all other measures
the CHAID and the ‘full’ approach provide lower values. These two approaches are
again comparable in performance. In general, the feature selection approach seems to
predict the sequences better than the ‘full’ approach, except for the uni-dimensional
SAM for the activity type facet.
Let us now consider one column in specific, e.g. the feature selection column. The
average alignment cost according to the the MDSAM is approximately 8.3 units on
the training set for the Albatross model. This is approximately 50% of the weighted
sum of alignment costs across dimensions (UDSAM). This points at the fact that
(since the MDSAM measure allows for joint operations to be performed) a reasonable
amount of association between elements across the dimensions exists.
As the first three measures indicate, the alignment costs per dimension vary between
2.9 and 3.5 implying that, on average, the efforts of 1 substitutions and/or 2 in-
sertion/deletion operations suffice to make two strings identical (on that dimension).
The mode dimension is an exception in the sense that for this dimension the alignment



64 Chapter 4

costs are relatively high.
The results on the test data (see Table 4.11) indicate in general even lower SAM-

measures when compared to the training data, especially for the One R, the CHAID
and the ‘full’ approach. While the feature selection approach seems to outperform
the other methods on the training data, the CHAID approach performs better on the
test data, although the difference with the FS approach is small. Overall, the relative
performance of the models seems comparable on the training and on the test set.

Table 4.11: Model performance on test data: activity pattern level

Measure Mean Mean Mean Mean Mean Mean

Distance Distance Distance Distance Distance Distance

(CHAID) (Zero R) (One R) (Näıve Bayes) (Full) (FS)

SAM (activity type) 2.777 3.130 3.027 3.022 2.903 2.929

SAM (with) 3.168 3.464 3.312 3.225 3.210 3.208

SAM (location) 3.127 3.251 3.184 3.107 3.166 3.033

SAM (mode) 4.626 5.018 4.592 4.781 4.497 4.600

UDSAM 16.475 17.993 17.142 17.156 16.678 16.699

MDSAM 8.333 8.951 8.474 8.671 8.374 8.373

This again confirms the our primary belief that people make their decisions on
only a few simple heuristics instead of on a complex set.

4.3.5 Trip Matrix Level

At trip matrix level, we compare the number of trips made from a certain origin to
a certain destination. Correlations were calculated between observed and predicted
matrix entries in general and for trip matrices that are disaggregated each time in a
different way based on some selected trip facets. The facets considered include trans-
port mode, day-of-the-week and activity (purpose). The variation of the correlation
coefficient within the columns can be largely explained by the variation in the number
of cells between matrices. Recall that the general OD matrix has 400 cells, the OD
matrix by day 1200, by mode 2000 and finally by activity 4400. As could be expected,
the fit decreases with an increasing number of cells, i.e. the level of disaggregation of
interactions.

In Table 4.12 the performance of the six different models on the training data
set is given, while Table 4.13 illustrates the performance on the test data set. Both
tables indicate that all correlation coefficients are similar. In the general case, the
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Table 4.12: Model performance on training data: trip matrix level

Matrix ρ(o, p) ρ(o, p) ρ(o, p) ρ(o, p) ρ(o, p) ρ(o, p)

(CHAID) (Zero R) (One R) (Näıve Bayes) (Full) (FS)

None 0.956 0.938 0.936 0.949 0.962 0.957

Mode 0.887 0.841 0.880 0.874 0.885 0.887

Day 0.959 0.943 0.939 0.953 0.959 0.956

Primary activity 0.892 0.806 0.834 0.867 0.899 0.883

‘full’ approach provides the highest correlation, although the difference with the FS
approach does not exceed the 1% level. The highest correlation coefficient when the
disaggregation is on transport mode is given by the CHAID and the FS approach.
In the case of origin and destinations matrices with a difference made by day and by
primary activity, the ‘full’ approach performs a little bit better than the FS approach.
The test set is the most relevant data set for comparison of the models, therefore, we
will focus on this latter one.

Table 4.13: Model performance on test data: trip matrix level

Matrix ρ(o, p) ρ(o, p) ρ(o, p) ρ(o, p) ρ(o, p) ρ(o, p)

(CHAID) (Zero R) (One R) (Näıve Bayes) (Full) (FS)

None 0.937 0.925 0.928 0.917 0.942 0.947

Mode 0.836 0.787 0.862 0.842 0.856 0.849

Day 0.944 0.925 0.937 0.919 0.950 0.946

Primary activity 0.830 0.766 0.801 0.800 0.861 0.840

Table 4.14 shows that, for the disaggregation on day, the number of entries (trips
made from a certain origin to a particular destination) made at weekdays tends to be
overestimated by all methods, the number of trips predicted by the feature selection
method agrees best with the observed number. The Näıve Bayes method overesti-
mates the number of trips made on a Saturday, but underestimates them on Sunday.
CHAID overestimates the trips undertaken at weekend days, while all other methods
underestimate them. By taking a look at the disaggregation on primary activity,
one can observe that the number of trips undertaken for a medical visit, a bring/get
activity, a non-leisure or a leisure out-of-home activity is underestimated, while the
number of service trips, social visits and other ‘out-of-home’ activities happens to
be overestimated by all approaches. The number of work trips (out-of-home) is un-
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Table 4.14: Number of trips at trip matrix level: test set in detail

Matrix Observed Predicted

Zero R One R Näıve Bayes CHAID C4.5 (‘full’) feature selection

Day

Weekday 2359 2572 2510 2414 2454 2564 2413

Saturday 356 276 277 380 416 331 262

Sunday 287 203 248 172 297 214 157

Primary activity

Work out 970 901 937 944 960 942 971

Medical visit 44 32 34 30 36 36 38

Bring/get 538 485 497 508 526 524 502

Non-leisure out 106 83 89 91 94 89 85

Non-grocery 251 287 204 320 231 260 220

Grocery 319 281 316 321 398 399 264

Leisure out 466 329 440 264 447 371 269

Social visit out 241 353 378 304 352 331 280

Service 59 243 95 133 96 121 168

Other out 18 63 52 61 36 48 46

Transport mode

Car 1609 1580 1609 1465 1771 1573 1466

Slow 814 1020 1013 1031 999 1038 920

Public 79 83 81 102 83 113 107

Car passenger 294 356 321 357 305 375 333

derestimated by all but the feature selection approach. The number of non-grocery
shopping trips is overestimated by the Zero R, Näıve Bayes and the ‘full’ approach
and underestimated by the others, and finally, the number of trips undertaken for gro-
cery shopping is overestimated by the Näıve Bayes, CHAID and ‘full’ C4.5 approach,
while underestimated by the other analyses. What the different transport modes are
concerned, one notices that the number of trips undertaken as a car driver is correctly
predicted by the One R approach, overestimated by the CHAID approach and under-
estimated by the remaining approaches, while the use of any other transport mode
appears to be overestimated.

The relative performance can be indicated by a ratio of the fit scores of Table
4.13 between the three simple models and CHAID and we also compared the ‘full’
approach to the feature selection approach. As it appears, the ratios for the simple
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models range from 92.3 to 103% on the test set, those of the FS approach from 97.6
% to 100.5 % dependent on the OD-matrix. When test scores and training scores are
compared, we can even see an increase in performance for the One R model. The
Zero R model shows an increase in performance on the general OD matrix and on
the OD matrix aggregated on primary activity. The Nı̈ve Bayes model shows a little
decline in relative performance on all but the transport mode aspect. Compared to
the ‘full’ approach, the ratio of the fit scores of the FS approach in the general case
is even higher on the test set, when compared to the training set.

The stability of the performance can be expressed as a ratio between test set and
training set scores. For all models, the ratios range between 92.27-99.79% depending
on the matrix. Therefore, we conclude that the extent to which over-fitting has
occurred is approximately the same and at an acceptable level for all models. We
would expect the performance of the test set to be worse, though this does not seem
to be true.

4.4 Conclusion

In the last decade, computational process models that predict travel behaviour based
on activity diary data have been suggested in the literature. These models usually
perform very well, though, very often, they are based on a very complex set of rules.
Moreover, research in the field of psychology has learned us that simple models often
predict human behaviour very well. In fact, the call for simplicity is a question of all
ages. Occam’s razor, that has to be situated already in the Middle Ages, being an
important example.

In addition, one has to be careful in interpreting these previous studies, they only
support the proposition ‘Simplicity is a goal in itself’, not that simplicity would lead
to greater accuracy or better models. It is in this light that this chapter should
be regarded. We regarded two ways of simplifying the complex set of rules used
to determine the Albatross system. On the one hand, we used simple classifiers
to predict the nine dimensions, while on the other hand we performed two similar
analyses: one with and one without irrelevant variables, while in the second analyses,
at same time we cut back in the number of variables. The results of the tree-induction
algorithms can namely be heavily influenced by the inclusion of irrelevant attributes.
On the one hand, this may lead to over-fitting, while one the other hand, it is not
evident whether the inclusion of irrelevant attributes would lead to a substantial loss
in accuracy and/or predictive performance. The aim of the study reported in this
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chapter therefore was to further explore this issue in the context of the Albatross
model system, currently the most comprehensive operational computational, rule-
based process model of travel demand.

The results of the simple classifiers do indicate that the ‘simpler’ models do not
perform better, but, on the other hand, it is also not the case that they are inferior to
the complex CHAID approach. It is rather logical that the model that always takes
the majority class (Zero R) does not perform that well, conversely, the models that
make up their decisions based on one or a few variables are not in any case second to
the complex analysis. This comes as a welcome bonus.

The results of the analyses conducted at the three different levels of performance,
indicate that, also in the second way of simplification, the simpler models do not
necessary perform worse. In fact, more or less the same results were obtained at the
activity pattern level and at the trip matrix level. At the choice facet level, one can
observe that a strong reduction in the size of the trees as well as in the number of
predictors is possible without adversely affecting predictive performance too much.
Thus, at least in this study, there is no evidence of substantial loss in predictive power
in the sequential use of decision trees to predict activity-travel patterns.

The results indicate that using feature selection in a step prior to tree induction
can improve the performance of the resulting model. It should be noted, however, that
predictive performance and simplicity are not the only criteria. The most important
criterion is that the model needs to be responsive to policy sensitive attributes and
for that reason policy sensitive attributes, such as for example service level of the
transport system, should have a high priority in the selection of attributes if the model
is to be used for predicting the impact of policies. The feature selection method allows
one to identify and next eliminate correlated factors that prevent the selection of the
attributes of interest during the construction of the tree, so that the resulting model
will be more robust to policy measures.

Similarly, the results of a trimmed decision tree should be assessed in terms of
behavioural mechanisms. On the one hand, if one has strong theoretical reasons for
including particular conditions, they should be kept in the decision tree.

These findings endorse the primary belief that people rely for their choices on
some simple heuristics. In reality, one is limited in both knowledge and time and it is
infeasible to go over all the different possibilities and then trying to make an optimal
choice. Since, in the Albatross system, we are trying to predict nine different choices
on travel behaviour made by human beings, this might give an idea on why these
simple models do not necessarily perform worse than the complex models. In fact,
this is not totally true. If simple models are able to predict the choices of a human
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being, this can mean two things: either the environment itself is perceived as simple,
or the complex choice process can be described by simple models. Since activity-based
transport modelers keep developing systems with an increasing complexity in order to
try to understand the travel behaviour undertaken by humans, we acknowledge that
the environment is not simple. However, whether it is perceived as simple by human
beings, remains an open question.
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Chapter 5

Bagging and Boosting within

an Activity-Based Model

5.1 Introduction

In the previous chapters, we tried to obtain simple models for the nine choice facets
that resulted in a fairly good prediction of the Albatross model. Two different ways of
simplification were considered: on the one hand, simple classifiers were used, while on
the other hand a more parsimonious version of a complex model has been determined
by first applying a variable selection technique and then a tree induction algorithm.
As could be observed, this latter method resulted in a reasonably good fit of the
model. Therefore, in this chapter, we will try to improve the feature selection models
from Chapter 4 by means of bagging and boosting techniques. Wickramaratna et al.
(2001) and Maclin and Opitz (1997), however, suggest to use bagging and boosting
especially with weak classifiers, so therefore, both techniques will also be applied to
the One R models of the previous chapter.

Bagging and boosting are both very powerful learning ideas introduced in the last
decade (see, e.g. Breiman, 1996, 1998). They are developed in order to improve the
prediction. Both methods combine the output of several classifiers to produce an
accurate prediction. Bagging does so by re-sampling the training set and averaging
the result of the classifier on each of these bagged samples. In this way, bagging
reduces the variance of the prediction and it improves its stability. Boosting, on the
other hand, combines the predictions acquired on repeatedly modified versions of the
data through a weighted majority vote to produce the final prediction. More details
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can be found in the next section.

5.2 Methods

5.2.1 Bagging

Before treating bagging more into detail, we will make a side jump to bootstrapping,
since this is a very important aspect of bagging.

The bootstrap is a general tool for assessing statistical accuracy (Efron, 1979). The
basic idea is to randomly draw data sets with replacement from the training data,
each sample the same size as the original training set. This is done B times, producing
B bootstrap data sets. Then we refit the model to each of the bootstrap data sets
and examine the behaviour of the fits over the B replications.

Suppose that the tree induction algorithm leads to the prediction f̂(x) at input
x. Bootstrap aggregation or bagging (Breiman, 1996) averages this prediction over a
collection of bootstrap samples, thereby reducing its variance and improving the sta-
bility of the prediction. For each bootstrap sample, we fit our model, giving prediction
f̂?b(x). The bagging estimate is then defined by

f̂bag(x) =
1
B

B∑

b=1

f̂?b(x). (5.1)

Each bootstrap tree will typically involve other features than the original, and might
have a different number of terminal nodes. The bagged estimate is now the average
prediction at x from these B trees. Actually, a tree produces a classifier Ĝ(x) for a
d-class response. Hence it is useful to consider an underlying indicator-variable f̂(x),
with value one and d − 1 zeroes, such that Ĝ(x) = arg maxi f̂(x). Then the bagged
estimate f̂bag(x) (5.1) is a d-vector (p1, p2, . . . , pd), with pi equal to the proportion
of trees predicting class i at x. Treating these as estimates of the class probabilities,
our predicted class is the one with the most ‘votes’ from the B trees, Ĝbag(x) =
arg maxi f̂bag(x).

5.2.2 Boosting

In this section, we will describe the most popular boosting algorithm due to Freund
and Schapire (1997), called ‘AdaBoost’. Following Hastie et al. (2001), consider a
d-class output variable y, a vector of predictor variables x and a classifier G(x) that
produces a prediction taking values {1, . . . , d}. The error rate on the training sample
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is

err =
1
N

N∑

i=1

I(yi 6= G(xi)).

The purpose of boosting is to sequentially apply the classification algorithm to re-
peatedly modified versions of the data, thereby producing a sequence of classifiers
Gm(x), m = 1, . . . ,M. The predictions of all these classifiers are then combined
through a weighted majority vote to produce the final prediction:

G(x) = arg max
y∈Y

M∑
m=1

αmI(y 6= Gm(x)), (5.2)

where Y denotes the set of possible outcomes for the response variable. Here α1, . . . , αM

are computed by the boosting algorithm, they weigh the contribution of each respec-
tive Gm(x). Their effect is to give higher influence to more accurate classifiers in the
sequence. The data modifications at each boosting step consist of applying weights
w1, . . . , wN to each of the training observations (xi, yi), i = 1, 2, . . . , N . Initially, all
the weights are set equal to wi = 1

N , so that the first step simply trains the classi-
fier on the data in the usual manner. For each successive iteration m = 2, 3, . . . , M ,
the observation weights are individually modified and the classification algorithm is
re-applied to the weighted observations. At step m, those observations that were mis-
classified by the classifier Gm−1(x) induced at the previous step have their weights
increased by a factor exp(αm), whereas the weights are decreased for those that were
classified correctly. So, as the iterations proceed, observations that are difficult to
classify correctly receive ever-increasing influence. Each successive classifier is hereby
forced to concentrate on those training observations that are missed by previous ones
in the sequence. The algorithm is shown in detail below:
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1. Initialize the observation weights wi = 1
N , i = 1, . . . , N

2. For m = 1, . . . , M:

(a) Fit a classifier Gm(x) to the training data using weights wi.

(b) Compute errm =
∑N

i=1 wiI(yi 6=Gm(xi))∑N
i=1 wi

(c) Compute αm = log
[

1−errm

errm

]

(d) Set wi ← wi · exp[αm · I(yi 6= Gm(xi))], i = 1, . . . , N .

3. Output G(x) = arg max
∑M

m=1 αmI(y 6= Gm(x))

Since its introduction, much has been written to explain the success of AdaBoost
in producing accurate classifiers. Most of this work was centred on the use of classi-
fication trees as base learner G(x), where improvements are often dramatic. In fact,
Breiman (1998) referred to AdaBoost with trees as the ‘best off-the-shelf classifier in
the world’.

Both techniques have been used extensively in the literature, especially in statis-
tics, learning theory and in artificial intelligence (see, e.g. Nock and Lefaucheur, 2002;
Friedman et al., 2000; Oza and Russell, 2001).

5.3 Analysis and Results

In this chapter we want to investigate whether an improvement of a simple model
by means of bagging and boosting will lead to a better performance of the Albatross
model. The nine dimensions are represented by the decision tables derived from the
combination of trees with AdaBoost and trees combined with bagging. Under ‘trees’,
we understand both the One R and the feature selection models. We will investigate
the effect of bagging and boosting for each level of comparison. In order to compare
performances, the results of the One R and the feature selection approach in Chapter
4 are added for each analysis.

Note that for the bagging algorithm, we use 50 bootstrap samples, so B equals
fifty. The bootstrap samples are determined as follows: at first, we considered all
training cases and then selected only these variables that were used in the feature
selection approach. This reduced data set was then used for bootstrapping. Probably,
different results would be obtained if the selection of variables was carried out after
bootstrapping was applied to the whole training data set. However, the number of
rules in the decision tables could then have become very large, consider e.g. the
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‘mode 2’ dimension where eleven variables can be chosen. Nevertheless, this can be
an interesting topic for further research. In this way, we could also determine if the
selected variables are robust in predicting the dimensions.
For the boosting algorithm, the number of iterations (M) is set equal to 10 in the
analyses.

At first we will take a look at some descriptive statistics, while in the following
subsections the performance of the model will be investigated subsequently at choice
facet level, activity pattern level and at trip matrix level.

Table 5.1: Average number of activities in the predicted sequences (standard deviation
between brackets)

Training Set Test Set

Predicted Predicted

One R-Bagging 4.769 4.782

(2.956) (3.029)

One R-Boosting 4.715 4.712

(2.971) (2.885)

One R 5.198 5.178

(3.182) (3.128)

FS-Bagging 5.064 5.092

(3.205) (3.147)

FS-Boosting 5.037 4.975

(3.230) (3.163)

Feature selection 5.014 4.907

(3.033) (2.921)

Some descriptive statistics of the predicted patterns are shown in Table 5.1. As
in Chapter 4, the average number of activities in the observed patterns equals 5.160
for the training set and 5.115 for the test set, with a standard deviation of 2.807
and 2.709, respectively. This average length offers room for 1-3 flexible activities
complemented with 2-4 in-home activities. Considerable variation occurs, however,
as indicated by the standard deviation of approximately 3 activities. On average,
bagging and boosting seem to underestimate the number of activities, even though
the application of One R itself causes an overestimation. Bagging and boosting on
the FS approach clearly improves the predicted number of activities both on training
and on test set. Both techniques overestimate the variance a little, but here bagging
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and boosting applied to the One R models seem to give a better prediction.
Wickramaratna et al. (2001) and Maclin and Opitz (1997) state that bagging and
boosting should primarily be used with weak classifiers. The combination of weak
classifiers tends to ameliorate the performance, while the combination of rather pow-
erful classifiers (such as tree induction algorithms) may end up in providing worse
results. To investigate whether we can subscribe to their viewpoint, the performance
of bagging and boosting on the three levels will be investigated.

5.3.1 Choice Facet Level

Tables 5.2 and 5.3 yield the results at choice facet level. As can be observed, the
number of attributes used and the number of leafs in the feature selection bagging
and boosting analyses are the same. This is because these bagging and boosting
models do not result in one particular tree, but they only provide a prediction for
each training case. In order to obtain rules in the decision table format, we considered
all training cases and regarded only at the variables that were selected after feature
selection. Then for each combination of categories amongst these selected variables,
we averaged the prediction outcome, which lead us to a probabilistic statement for
each rule. E.g., consider the ‘Mode for work’ choice facet. After the feature selection
procedure, two relevant variables remain: Tbike and Rpubi. Tbike and Rpubi both
have four categories, this leads to 4× 4 = 16 rules. For each of these combination of
categories i and j (i, j ∈ {1, . . . 4}), we select the number of training cases (= fij). The
dependent variable for this choice facet can take four different categories. Thus, for
each rule we can determine the number of cases that have a certain outcome predicted
(= fijk) with k ∈ {1, . . . , 4}. The ratio of these frequencies leads to probabilities for
each possible outcome on each rule. In this way, we can still derive decision tables,
so that the Albatross system can be used.

As can be observed, there is not much difference in the results of bagging and
boosting. The probability of correctly predicting the outcome variable is higher using
the boosting learning method compared to bagging in the ‘Mode for work’, the ‘Activ-
ity selection’, ‘Trip Chaining’ and the ‘Location 1’ dimension, in the other dimensions
bagging outperforms boosting in the One R models. For the feature selection mod-
els, boosting shows a slightly better performance than bagging on three dimensions:
the ‘Mode for work’, ‘Activity selection’ and ‘Location 2’, but both methods clearly
perform better than the original analysis. The increase in performance as a ratio of
the maximum increase that is possible given a null model (see Chapter 4) is as a
consequence also larger (or equal) in these dimensions for the boosting method. Note
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Table 5.2: Performance at choice facet level (bagging & boosting on One R models)

Dimension ] alts ] attrs ] leafs e eratio

Bagging

Mode for work 4 2 13 0.605 0.169

Selection 2 1 1 0.678 0.026

With-whom 3 2 35 0.430 0.117

Duration 3 4 255 0.418 0.126

Start time 6 3 63 0.318 0.176

Trip chain 4 1 2 0.699 0.354

Mode other 4 7 1175 0.724 0.549

Location 1 7 1 3 0.435 0.096

Location 2 6 3 16 0.296 0.120

Boosting

Mode for work 4 3 54 0.640 0.243

Selection 2 1 1 0.734 0.196

With-whom 3 1 5 0.408 0.082

Duration 3 1 3 0.348 0.020

Start time 6 1 4 0.227 0.067

Trip chain 4 4 14 0.807 0.586

Mode other 4 1 4 0.413 0.040

Location 1 7 3 43 0.501 0.202

Location 2 6 1 3 0.234 0.043

One R

Mode for work 4 1 6 0.595 0.147

Selection 2 1 5 0.677 0.025

With-whom 3 1 5 0.408 0.082

Duration 3 1 3 0.348 0.020

Start time 6 1 4 0.227 0.067

Trip chain 4 1 2 0.699 0.354

Mode other 4 1 4 0.413 0.040

Location 1 7 1 3 0.435 0.096

Location 2 6 1 3 0.234 0.043
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that the null model for the bagging may deviate somewhat compared to all the other
analyses, since the magnitude of the training set for bagging equals fifty times the
original training set (sampling with replacement). For comparison purposes, we have
added Tables 4.3 and 4.7 from Chapter 4, these denote the results without bagging
and boosting.

Table 5.3: Performance at choice facet level (bagging & boosting on FS models)

Dimension ] alts ] attrs ] leafs ebagg. eratio,bagg. eboost. eratio,boost.

Mode for work 4 2 16 0.611 0.188 0.614 0.188

Selection 2 1 1 0.672 0.011 0.673 0.011

With-whom 3 4 415 0.566 0.327 0.564 0.324

Duration 3 4 359 0.452 0.177 0.451 0.175

Start time 6 8 1375 0.704 0.642 0.703 0.641

Trip chain 4 10 512 0.896 0.777 0.894 0.773

Mode other 4 11 2026 0.931 0.887 0.930 0.886

Location 1 7 6 83 0.564 0.301 0.561 0.299

Location 2 6 8 532 0.708 0.635 0.710 0.638

Table 5.4: Performance at choice facet level (‘feature selection approach’)

Dimension ] alts ] attrs ] leafs e eratio

Mode for work 4 2 6 0.595 0.147

Selection 2 1 1 0.669 0.000

With-whom 3 4 51 0.467 0.173

Duration 3 4 38 0.368 0.051

Start time 6 8 1 0.172 0.000

Trip chain 4 10 13 0.811 0.596

Mode other 4 11 60 0.508 0.196

Location 1 7 6 15 0.513 0.222

Location 2 6 8 14 0.312 0.141

We can conclude that there is not much difference between bagging and boosting
on the choice facet level, though both approaches clearly perform better than the One
R and the feature selection procedures on each of these dimensions separately.
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5.3.2 Activity Pattern Level

In this subsection, we investigate whether the bagging and boosting models are suc-
cessful in predicting the sequences of activity choices.

Table 5.5: Model performance on training data: activity pattern level

Measure Mean Distance Mean Distance Mean Distance

(Bagging) (Boosting) (approach without)

One R

SAM (activity type) 2.783 2.773 3.047

SAM (with) 3.126 3.114 3.363

SAM (location) 2.882 2.789 3.200

SAM (mode) 4.452 4.352 4.874

UDSAM 16.027 15.802 17.531

MDSAM 7.993 7.898 8.732

Feature selection

SAM (activity type) 2.975 2.980 2.962

SAM (with) 3.217 3.258 3.189

SAM (location) 3.113 3.115 3.074

SAM (mode) 4.454 4.464 4.558

UDSAM 16.735 16.798 16.746

MDSAM 8.293 8.292 8.340

In Table 5.5 one can observe that the SAM measures on the One R boosting (and
bagging) models are lower than those of the FS bagging and boosting models, despite
the fact that the predicted number of activities was better in these latter cases. Apart
from the uni-dimensional SAM measure disaggregated on activity type, for which the
CHAID approach showed the best results, all other SAM measures on the training
data were lowest for the regular feature selection approach in Chapter 4. If one com-
bines the results of Chapter 4 with the results of the analyses performed here, the
best results overall are clearly shown by the One R boosting model. For the feature
selection models, bagging apparently led to predicted sequences that were closer to
the the observed sequences when compared to boosting, while for the One R models
the opposite was true.
Consider now e.g. the One R boosting column more in detail: the average alignment
cost according to the the MDSAM is approximately 7.9 units on the training set
for the Albatross model. Their ratio indicates that this figure equals approximately
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Table 5.6: Model performance on test data: activity pattern level

Measure Mean Distance Mean Distance Mean Distance

(Bagging) (Boosting) (approach without)

One R

SAM (activity type) 2.821 2.805 3.027

SAM (with) 3.204 3.088 3.312

SAM (location) 2.889 2.844 3.184

SAM (mode) 4.347 4.189 4.592

UDSAM 16.081 15.732 17.142

MDSAM 7.944 7.782 8.474

Feature selection

SAM (activity type) 2.988 3.022 2.929

SAM (with) 3.270 3.342 3.208

SAM (location) 3.158 3.096 3.033

SAM (mode) 4.588 4.540 4.600

UDSAM 16.990 17.022 16.699

MDSAM 8.471 8.356 8.373

49.98% of the weighted sum of alignment costs across dimensions (UDSAM). This
means that a considerable degree of association between elements across dimensions
exists.
As the first four measures of bagging and boosting show, the alignment costs per
dimension vary between 2.8 and 4.4 implying that, on average, the efforts of 1-2 sub-
stitutions and/or 1-3 insertion/deletion operations are sufficient to make the observed
and the predicted strings identical.

Table 5.6 learns that the SAM-measures on the test set are a little bit higher
when compared to the training data. Though, overall, the relative performance of
both models seems comparable on the training and on the test set. Again the One
R boosting model performs best, and if the uni-dimensional SAM disaggregated on
activity type is disregarded for a moment, this best performance is across both Chap-
ter 4 and 5. This particular uni-dimensional SAM measure is lowest for the CHAID
approach. This clearly depicts that although the performance on each dimension sep-
arately does not show the highest accuracy value on the One R boosting analysis,
the sequential execution of each of these dimensions can be best in predicting the
sequences of activities. Thus, a best performance on dimensions separately does not
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need to lead to a best performance when they are executed together and visa versa.
Now, we will investigate whether the same is true at trip matrix level.

5.3.3 Trip Matrix Level

At trip matrix level, the observed and predicted origin-destination (OD) matrices
are compared via a correlation coefficient. This coefficient measures the relation
between the observed and predicted number of trips. Recall that the variation of the
correlation coefficient within the columns is largely explained by the variation in the
number of cells between matrices. As one might expect, the fit decreases with an
increasing number of cells, i.e. the level of disaggregation of interactions. Table 5.7
illustrates the performance of the four different models on the training data set. With
the exception of the One R bagging correlation coefficients disaggregated on day and
on primary activity, bagging and boosting do not seem to outperform the original One
R or feature selection approaches. For the training data, the regular feature selection
approach gives the best results among these six analyses. One can observe that for
the feature selection approach the deviation from the original values becomes larger
with an increasing level of disaggregation. Though, in general, one can state that the
results do not differ very much from the original values.

Table 5.7: Model performance on training data: trip matrix level

Matrix ρ(o, p) ρ(o, p) ρ(o, p)

(Bagging) (Boosting) (approach without)

One R

None 0.935 0.935 0.936

Mode 0.876 0.872 0.880

Day 0.950 0.937 0.939

Primary activity 0.837 0.834 0.834

Feature selection

None 0.952 0.955 0.957

Mode 0.885 0.879 0.887

Day 0.952 0.955 0.956

Primary activity 0.863 0.846 0.883

In Table 5.8 the performance on the test data set is provided. This test set is the
most relevant data set for comparison of the models.
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Table 5.8: Model performance on test data: trip matrix level

Matrix ρ(o, p) ρ(o, p) ρ(o, p)

(Bagging) (Boosting) (approach without)

One R

None 0.925 0.930 0.928

Mode 0.877 0.883 0.862

Day 0.927 0.929 0.937

Primary activity 0.807 0.803 0.801

Feature selection

None 0.951 0.950 0.947

Mode 0.863 0.861 0.849

Day 0.948 0.950 0.946

Primary activity 0.818 0.798 0.840

So, if we take a more detailed look at the test set, Table 5.9 learns us that the
number of trips conducted at weekdays is underestimated by bagging and boosting
in the One R approach, while bagging and boosting in the feature selection approach
overestimates this number. The trips undertaken at weekend days are underestimated
by all analyses. Considering the disaggregation on primary activity, one can observe
that the number of trips undertaken for a medical visit, a bring/get activity, a non-
leisure or a leisure out-of-home activity is underestimated, while the number of service
trips and social visits or other out-of-home activities is overestimated. The number of
work trips (out-of-home) happens to be overestimated by the feature selection bagging
approach and underestimated by the other three. The number of trips undertaken for
non-grocery shopping is underestimated by the One R analyses and overestimated by
the FS analyses, and finally, the number of grocery shopping trips is overestimated
by the One R boosting approach and underestimated by the other analyses. If one
finally takes a closer look at the different transport modes, one can observe that the
number of trips undertaken as a car driver or car passenger are overestimated by
the FS approaches and underestimated by the One R analyses. The number of trips
undertaken by bike or on foot is overall overestimated, while the number of trips by
public transport is seriously underestimated.
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Table 5.9: Number of trips at trip matrix level: test set in detail

Matrix Observed Predicted

One R Bagging One R Boosting FS Bagging FS Boosting

Day

Weekday 2359 2356 2318 2507 2498

Saturday 356 208 251 278 252

Sunday 287 171 124 190 137

Primary activity

Work out 970 924 890 994 955

Medical visit 44 32 31 31 37

Bring/get 538 501 492 493 497

Non-leisure out 106 88 84 86 87

Non-grocery 251 243 149 279 259

Grocery 319 257 327 243 213

Leisure out 466 284 278 314 318

Social visit out 241 255 261 302 306

Service 59 111 125 186 169

Other out 18 58 65 51 52

Transport mode

Car 1609 1446 1522 1643 1688

Slow 814 1182 1141 989 848

Public 79 9 4 20 18

Car passenger 294 100 2 309 316

In general, bagging and boosting on the analyses conducted in the previous chap-
ter apparently do improve the results at trip matrix level, especially for the feature
selection approach. If these results are compared to those of Chapter 4, one can ob-
serve that the highest general correlation coefficient of the regular feature selection
approach is improved by applying the techniques of bagging and boosting. The corre-
lation coefficient when disaggregated for transport mode was highest for the regular
One R approach, it has been improved here by both bagging and boosting and by
bagging the feature selection models. The highest correlation coefficient when the
OD matrices are disaggregated on day was provided by the ‘full’ C4.5 model, and
the same coefficient was obtained by boosting the feature selection technique. Only
the correlation coefficient on primary activity could not be improved. Again this
shows that although the performance on each dimension separately does not show
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the highest accuracy value of all analyses, the sequential execution of each of these
dimensions can be best in predicting the number of trips made from a particular ori-
gin to a certain destination. Hence, as a consequence, in this case, one can conclude
that a combination of simple or relatively simple models can provide better decision
rules and hence perform better than the more complex models.

The relative performance is measured by the ratio of the fit scores between the
bagging and boosting models on the one hand and the One R and the feature selec-
tion approach (see Chapter 4) on the other hand. It appears that the ratios range
from 98.93 to 101.74% on the test set for One R bagging, from 99.15% to 102.44%
for One R boosting, from 97.38% to 101.65% for FS bagging and from 95 to 101.41%
for FS boosting, depending on the OD-matrix. When we compare the test scores and
training scores, one can even observe an increase in performance on the transport
mode dimension for all methods and for the day dimension for the feature selection
and for the primary activity dimension for the One R analyses as well.

The stability of the performance is here indicated by the ratio between the test
and training set scores. For all four models, the ratios range between 94.33-101.26%
depending on the matrix. Therefore, one may conclude that, again, over-fitting occurs
approximately in a similar way and it is at an acceptable level for both models.

5.4 Conclusion

Bagging and boosting have been introduced in the last ten years as being very pow-
erful learning ideas that improve the accuracy of the prediction. Bagging does so by
lowering the variance of the prediction, while boosting provides an averaged prediction
by means of voting the results of different classifiers.

In Chapter 4, two different ways were proposed to simplify complex models. On
the one hand, simple heuristics were used, while on the other hand, a complex model
was simplified by means of variable selection that was used before the model was
built. The aim of this chapter was to investigate whether an improvement of a simple
model by means of bagging and boosting will lead to a better performance of the
Albatross model. For that reason, we chose two simple models: one simple heuristic
(the One R approach) and hence a more weak classifier, and the model that was built
after feature selection has been applied (the feature selection approach), a somewhat
stronger classifier. Bagging and boosting techniques have been applied to both simple
models and the results of both methods when applied to the Albatross system are
rather promising. The outcomes are compared at three levels: at choice facet level,
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at activity pattern level and at trip matrix level. At choice facet level, both methods
clearly performed better than the original analysis (the One R and the feature selec-
tion approach in Chapter 4). In six out of the nine dimensions, the models derived
from applying bagging and boosting after feature selection provided even the highest
accuracies overall. At activity pattern level, the best results are obtained from boost-
ing the One R approach. Considering the few number of rules that were necessary to
make up these nine models for the dimensions of the Albatross system, one can truly
state here that a combination of simple models can perform better than a complex
model. And the same applies at trip matrix level, especially bagging and boosting ap-
plied to the feature selection models seem to provide nice results. One may conclude
that even though the bagging and boosting models do not necessarily show the best
performance on all dimensions separately, the sequential execution of these models
can lead to a best performance at activity pattern or at trip matrix level.

Wickramaratna et al. (2001) and Maclin and Opitz (1997) suggested to use bag-
ging and boosting only with weak classifiers. Combining weak classifiers tends to
ameliorate the performance, however a combination of rather powerful classifiers (such
as tree induction algorithms) might end up in providing worse results is what they
stated. Boosting also tends to be more susceptible to noise and it quickly over-fits
the data, therefore, applying it to simpler models might result in a better combined
classifier. On the other hand, it is only logical that a combination of weak classifiers
outperforms the weak classifier itself, whereas a combination of not-so-weak classifiers
can introduce noise in the prediction. The analyses performed in this chapter showed
that combining the boosting algorithms with the One R algorithm did result in a
better performance at activity pattern level, while combining bagging and boosting
with the feature selection technique did provide nice results at trip matrix level. Thus
we can not completely endorse to their viewpoint.

Of course, one might then ask the philosophical question if there does not exist a
‘best’ classifier, one whose performance cannot be beaten, not even by bagging and
boosting . . . . Though, even the performance of this ‘best’ classifier can drop down in
the sequential execution of the Albatross system. This remains an open question.
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Chapter 6

Lack-of-fit on Mode Choice

Models

6.1 Introduction

Over the last decade, two major changes have taken place in transportation analysis.
On the one hand (as described in Chapter 3), activity-based models became more and
more important when modelling travel demand. The research interest shifted away
from trips and tours to the analysis of complex activity travel patterns. This change
grew from the primary belief that travel is a derived demand and more emphasis is
put now on the activities behind it that induce this movement in space and time.
Travel is no longer seen as an isolated facet of the decision making process, it is now
regarded as the result of activity patterns in space and time. The connection between
people/household characteristics and activity/trip features is thus of great concern
to transport modelers and for this purpose, logit models are very frequently used in
transportation analysis in order to model the probability of choosing a particular mode
choice above the others. On the other hand, the transportation analyst encounters
far more large data sets to model when compared to e.g. 15 years ago. This is
partly a consequence of the fact that more variables are considered to be relevant
now. Not only transportation characteristics and demographical variables will play
an important role, also activity features will come into play. This leads to a growth of
the data sets in magnitude, but thanks to the improvement of the survey techniques
(e.g. Virgil, Janssens et al., 2004b; Chase, Doherty and Miller, 2000), data sets grew
also more and more elaborate in depth. The assessment of the model fit on such
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complex data sets requires special attention.
Focusing on the special case of a binary response Y (e.g. preference of a certain

mode choice above others in mode choice models), a well-established model is the
logistic regression model in which a logit link is used, see Yamamoto et al., 2000;
Kockelman, 1997; among others. It has also been applied manifold in the research
area of activity-based (and hence mode choice) modelling, e.g. Ben-Akiva and Lerman
(1985) and Bhat (1998). The reasons are manifold: the possibility of determining
prognoses for the event of interest, the ease of interpretation of the parameters in
terms of odds ratios, the availability of standard software tools, etc.

There exist several methods to assess the adequacy of parametric models, see e.g.
Hart (1997). For generalised linear models, a well-known method is based on the
deviance, which is the likelihood ratio test contrasting the hypothesised model with
a saturated model, or the Pearson test statistic (Pearson, 1900). Both are asymptot-
ically chi-square distributed. This is a valid test procedure in case all variables are
categorical, but in case of continuous explanatory variables, the number of distinct
covariate patterns (which serve as cells in a contingency table) grows with the sample
size and the test is no longer valid. Categorising all continuous variables might solve
this problem, but at the cost of power and, more importantly, it is not clear how
classes should be constructed. Note that in the Albatross data sets (Chapter 2 and
Appendix) all variables are categorised as well, since this was a condition to use the
CHAID induction algorithm. However, perhaps a better model fit can be found if all
variables could retain their original nature?

The onset to the use of lack-of-fit tests for logistic regression models with continu-
ous predictors was given by Hosmer and Lemeshow (1980). Many other methods and
approaches were examined, some of them in very general likelihood or moment esti-
mation methods, see e.g. Azzalini et al. (1989); others using order selection criteria
(Eubank and Hart, 1992); or nonparametric concepts like smoothing (Kuchibhatla
and Hart, 1996; le Cessie and van Houwelingen, 1991, 1993, 1995); or orthogonal
series approximation (Aerts et al., 1999, 2000), among others.

Most of the above mentioned methods have been shown to be rather easily im-
plementable and to have good power characteristics, especially for low dimensional
sample spaces. In case there are many explanatory variables however, most of these
methods are faced with problems related to the so-called curse of dimensionality and
often also related to practical difficulties of implementation. As a consequence, they
lose many of their desirable properties when there are three or more explanatory
variables, as discussed e.g. in Aerts et al. (2000).

Hosmer and Lemeshow’s approach (HL) is based on a Pearson-like statistic by
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forming 10 equally sized groups (deciles of risk). The choice of 10 is somewhat ar-
bitrary but simulations have shown that to be a reasonable rule of thumb. The null
model has a large impact on this test statistic, since the groups are based on the fitted
probabilities under this null model. In this way they solve the aforementioned prob-
lem of categorising and in the meantime they implicitly deal with the dimensionality
problem. It is well-known however that this is at the cost of power.

A recent article by Pulkstenis and Robinson (2002) on the goodness-of-fit for
the logistic regression setting proposes a methodology similar to that of Hosmer and
Lemeshow. The grouping is also based on the deciles of risk, but it is made within the
cross-classification of all categorical covariates in the model. A possible disadvantage
of this method, similar to the Hosmer and Lemeshow’s approach, is that it still uses
the null model to define the groups. The test statistic in these methods uses the fitted
probabilities under the null model in order to determine whether or not there is a lack-
of-fit in the proposed model. Since we are investigating lack-of-fit, one might expect
a more powerful procedure using another grouping method, based on a nonrestricted
model.

Here, we propose a new method resembling the HL test statistic in that it also
uses a Pearson-like statistic but now contrasting the hypothesised model with a satu-
rated model based on a sample space partitioning driven by the recursive partitioning
algorithm as used in classification trees (see e.g. Breiman et al., 1984 and Zhang and
Singer, 1999). Classification trees are nonparametric in nature and they can deal with
large and complex data sets.

Studies in multidimensional settings as well as simulation studies will be presented
to exemplify the test procedures presented next.

6.2 A Tree-Based Lack-of-Fit Test

Consider the general setting: binary response data on n subjects and a logistic regres-
sion setting with q potential covariates. Let π = P (Y = 1), then the null hypothesis
H0 states

H0 : logit(π) = log
( π

1− π

)
= βX (6.1)

as the correct model for our data, where X is a n × (p + 1) matrix consisting of
the n measurements on the p (≤ q) covariates x1, . . . , xp in the p last columns (the
first column of X consists of ones). The alternative hypothesis H1 is not a specific
alternative model. We are interested in so called omnibus tests for H0 with power
against a wide range of alternative models.
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6.2.1 Pearson Statistic

First, consider the case all q explanatory variables are categorical. An I × 2 contin-
gency table can then be constructed for the observed counts with I indicating the
total number of possible combinations of the q categorical variables along the rows.
Let ni be the number of subjects in covariate pattern i, yi the number of observed
events and π̂i the fitted probability under the null model in the i-th of all I possible
combinations. The Pearson goodness-of-fit test statistic (Pearson, 1900) is given by:

X2 =
I∑

i=1

(yi − niπ̂i)2

niπ̂i(1− π̂i)
. (6.2)

The test has an approximate chi-square null distribution with I − p − 1 degrees of
freedom (df) and the null hypothesis of no lack-of-fit is rejected when the test statistic
exceeds the corresponding upper α critical value.

6.2.2 Hosmer-Lemeshow Test

Consider again the null hypothesis (6.1) but now one or more explanatory variables
are measured on a continuous scale. Since Pearson’s chi-square test is not applicable
anymore when continuous covariates are present, Hosmer and Lemeshow (1980) pro-
posed a new statistic where the grouping strategy is based on the values of estimated
probabilities. One first orders all responses according to their fitted probabilities
under the null model and then classifies them into g groups. Hosmer et al. (1988)
advocate the use of g = 10 ‘deciles of risk’ groups. More precisely, the first group
contains those subjects (10 % of the sample size) with the smallest estimated prob-
abilities, etc. Their test statistic has the same form as the Pearson test statistic,
although the grouping is different. The formula is identical to (6.2) but now I = g,
the number of groups and π̂i = 1

ni

∑ni

j=1 π̂0
j is the average of the probabilities π̂0

j for all
covariate values (xj1, . . . , xjp) in group i, fitted under the null model. Also note that
the HL statistic is restricted to the case q = p. Indeed the categorisation is based on
the null model, implying no other variables are used at any place in the construction
of the HL test.

As mentioned before, since the test statistic is based on the fitted probabilities
under the null model, we expect in general a rather moderate power performance
for this test. Because of its particular way of grouping, the cells in the contingency
table are nicely balanced but random. Therefore the HL statistic has a complicated
nontrivial null distribution. Hosmer and Lemeshow (1980) showed that, based on
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simulations, the asymptotic distribution is approximately chi-square with g−2 degrees
of freedom where g is the number of groups.

6.2.3 A Tree-Based Test

Similar in nature to the HL test statistic, the proposed tree-based (TB) test statistic
is obtained by calculating the Pearson chi-square statistic based on a 2× g table. We
propose to construct groups based on the recursive partitioning algorithm underlying
classification trees (see Moons et al., 2002b, 2004a, 2005c). The choice of g, the num-
ber of groups, will affect the power characteristics of the method. Given a particular
grouping approach, the TB test statistic T is defined in the same way as in (6.2).
Whereas the partition for the HL test is based on the null model, our approach is
based on recursive partitioning as applied in classification trees, which can be consid-
ered as a flexible nonparametric alternative model. This will have a beneficial effect
on the power characteristics of the test statistic.

In general, we expect this approach to be more powerful than the HL test due to the
fact that the structure of the individual covariate patterns is based on a classification
tree. The test statistic actually measures the discrepancy between the parametric
null model and the classification tree as its unrestricted nonparametric counterpart.
It also covers the case that q > p. Indeed, the classification tree can be based on all
or part of the q potential explanatory variables.

Recursive Partitioning

There are several methods to perform recursive partitioning on a data set and basically
the algorithms can be classified into 2 groups: those that yield binary trees and those
that result in multiway splits. CART (Breiman et al., 1984) and Quest (Loh and
Shih, 1997) are members of the first group, while the second group includes e.g.
C4.5 (Quinlan, 1993), Cruise (Kim and Loh, 2001) and CHAID (Kass, 1980) (see
also Chapter 4). Classification and regression trees (CART, see e.g. Breiman et al.,
1984), that we use here, is thus just one way of partitioning. It is available in many
software packages and it is often used as standard reference. In summary, a tree
consists of different layers of nodes. It starts from the root node in the first layer,
the first parent node. In a binary tree, a parent node is split into 2 daughter nodes
on the next layer. Each of these 2 daughter nodes become in turn parent nodes.
This recursive partitioning algorithm continues until a node is terminal and has no
offspring (determined by a stopping criterion). Nodes in deeper layers are getting
more and more homogeneous, less ‘impure’, with respect to the response. An internal
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node is split by considering all allowable splits for all variables and the best split is
that one with the most homogeneous daughter nodes. The ‘goodness’ of a split can
be defined as the reduction in impurity

∆i(τ) = i(τ)− P (τL)i(τL)− P (τR)i(τR)

with i(τ) denoting the impurity of the node τ and P (τL) (and P (τR)) the proba-
bility that a subject falls into the left (resp. right) daughter node τL (resp. τR)
of node τ . A popular example of such an impurity measure is the entropy measure
i(τ) = −pτ log(pτ )− (1− pτ ) log(1− pτ ), with pτ = P (Y = 1|τ). In the pruning pro-
cess, the initial tree is then pruned recursively, leading to a sequence of pruned and
nested subtrees. From this sequence of trees, we choose the subtree with g terminal
nodes. These final nodes define the groups for our test statistic. For more details
on classification trees and the recursive partitioning and pruning process, we refer to
Breiman et al. (1984) and Zhang and Singer (1999).

Modified TB Tests

Whereas the Hosmer and Lemeshow procedure leads by definition to balanced groups,
the tree-based method typically results in unbalanced groups. So, certain final nodes
might contain only a few observations and this might de-stabilise the distributional
properties of the tree-based test statistic. A simple remedy is to adapt the stopping
rule used in the recursive partitioning algorithm, namely not to split a node any
further if it contains less than a certain percentage of the full sample size. Additional
to that, we studied two variations of statistic (6.2). A first modification is a weighted
Pearson statistic

TW =
g∑

i=1

wi
(yi − niπ̂i)2

niπ̂i(1− π̂i)

with weight wi = gni/N , giving less weight to small groups. If we take wi = 1 the
test statistic reduces to the original version T . Also, for the HL test N/ni = g such
that wi = 1 (but with a different grouping).

As a second modification, the TB test can be based on the Cressie and Read
(1984) family of power divergence statistics, i.e.

TCR =
2

λ(λ + 1)

g∑

i=1

{
yi

(( yi

niπ̂i

)λ

− 1
)

+ (ni − yi)
(( ni − yi

ni(1− π̂i)

)λ

− 1
)}

with −∞ < λ < ∞. For λ = 1 it equals the Pearson based formulation (6.2).
Cressie and Read (1984) recommend the statistic with λ = 2

3 , which they found



Lack-of-fit 93

less susceptible to effects of sparseness. (Although, under certain circumstances, this
figure has been countered by Garćıa-Pérez and Núñez-Antón (2004).) We will compare
the three versions of the TB test in the simulations and the data examples.

6.2.4 Distributional Properties

As for the HL test, the distribution of the TB tests cannot be obtained from a straight-
forward application of the usual theory for chi-square goodness-of-fit tests. Indeed the
categorisation, the sample space partitioning, is random. Moore and Spruill (1975)
considered the distribution of chi-square test statistics in this situation and their main
result is that the distribution, under appropriate regularity conditions, is that of a
chi-square distribution with the usual reduction in degrees of freedom due to esti-
mated parameters plus a weighted sum of independent chi-square random variables
each with one degree of freedom where the weights are eigenvalues of a particular
matrix.

As in the case of the HL method, it is very hard to turn this theoretical result
into a practical form. Even if one would be able to fully specify this distribution in
all detail, it would be difficult to estimate all unknown parameters and to implement
it in practice. Alternatively one could try, similar to what Hosmer and Lemeshow
did, to empirically investigate the null distribution in different settings and to derive
a simple, practical and reasonable approximation. From the simulations, part of
which are presented in the next section, we learned that a chi-square distribution
with 2× g − p degrees of freedom is a reasonable choice.

One does not need to rely on the asymptotic distribution of the TB statistics to
conduct the test. A null distribution can always be simulated by a parametric boot-
strap method (see e.g. Section 4.2.3 in Davison and Hinkley, 1997). This approximate
Monte Carlo approach is illustrated in the data examples and in the second simulation
study.

6.3 Simulation Study 1: Two Covariates

In this section, we examine the null distribution of the TB tests. We compare the
power characteristics of the T , TW and TCR tests with the HL test and with an oracle
test (a likelihood ratio test, testing the null model against the true alternative, only
known by an ‘oracle’).
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6.3.1 Setting 1

This first setting shows the power of the tree-based test on one particular misspeci-
fication: one forgot to take a variable into account. This setting is very important,
since this occurs quite often in reality, especially for higher order terms of a variable
(quadratic is shown here) or for an interaction variable. First, we examine the null
distribution.

The Null Model

Consider Yi ∼ Ber(π(xi, zi)), i = 1, . . . , 100, where xi and zi are fixed values, uni-
formly distributed on (−6, 6). The null hypothesis is given by logit(π(xi, zi)) =
β0 + β1xi + β2zi, β0 = 0.0, β1 = 0.8 and β2 = 0.3. We consider four test statistics:
the HL test, with partitioning up to 10 groups as advised by Hosmer and Lemeshow
(1980); the TB test T , the weighted version TW , and the Cressie-Read version TCR.
All three versions of the TB statistic are based on final trees pruned up to 7 final
nodes. Simulated critical points (1000 runs) of the null distributions are presented in
Table 6.1, together with exact critical points of the χ2 approximations.

Table 6.1: Simulated 1, 5 and 10% critical points of the HL, T, TW and TCR test
statistics for the null hypothesis of the setting in the first simulation study

Null model

Test 0.10% 0.05% 0.01%

HL 12.46 15.97 28.85

χ2(8) 13.36 15.51 20.09

T 20.86 25.13 32.45

TW 16.40 18.93 23.68

TCR 19.76 22.97 27.60

χ2(12) 18.55 21.03 26.22

The simulations illustrate that the null distributions are reasonably well approxi-
mated by the χ2 distribution with 10-2=8 degrees of freedom for the HL test and by
the χ2 distribution with (7×2)−2 = 12 degrees of freedom for the TB test statistics.
The χ2

2g−p approximation seems to work fairly well. There are some deviations from
the approximate distributions for the tree-based statistics (especially the T version)
as well as for the HL test statistic. We recommend to use a bootstrap simulation of
the null distribution, next to this approximate chi-square distribution.
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Table 6.2: Simulated rejection percentages of the HL, T, TW and TCR tests for two
alternative models

Interaction Model

β3 = 0.10 β3 = 0.20 β3 = 0.30

Test(0.10) Test(0.05) Test(0.10) Test(0.05) Test(0.10) Test(0.05)

HL 27.14 14.29 68.47 51.20 83.17 72.95

T 36.33 24.90 93.17 84.54 100 100

TW 45.71 32.04 97.19 94.58 100 100

TCR 40.20 26.73 96.18 91.16 100 100

Oracle Test 77.02 73.08 99.59 99.59 100 100

Quadratic Model

β3 = 0.10 β3 = 0.20 β3 = 0.30

Test(0.10) Test(0.05) Test(0.10) Test(0.05) Test(0.10) Test(0.05)

HL 13.83 5.01 17.60 6.80 24.45 9.62

T 29.66 15.43 89.2 78.4 99.80 99.20

TW 47.70 32.06 95.40 91.40 100 99.80

TCR 36.47 23.85 94.40 86.60 99.80 99.80

Oracle Test 86.97 84.52 99.59 99.59 100 99.80

Power Characteristics

We study the power characteristics for two alternative models: an interaction model
logit(π(xi, zi)) = β0 + β1xi + β2zi + β3xizi with β0, β1, β2 as in the previously stated
null hypothesis and a quadratic model logit(π(xi, zi)) = β0 + β1xi + β2zi + β3x

2
i with

β0, β1, β2 as stated before. For both models we take β3 = 0.1, 0.2 and 0.3 and all
simulated rejection rates are based on 500 runs.

The results in Table 6.2 clearly indicate that, as expected, all rejection rates
increase with the value of β3. All TB tests show much higher power results than the
HL test. The performance of the HL test is particularly poor for the quadratic model.
From the TB tests, the weighted version has the highest power, in both models. The
TCR test is also improving the T test, but less pronounced. All results are (not
surprisingly) far below the rejection rates of the oracle test, especially for alternatives
close to the null. This is the price to pay for an omnibus type of test. For alternatives
further away from the null value, the TB tests reach higher powers, closer to that of
the oracle test.
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6.3.2 Setting 2

In this second setting, we will focus on a change in functional form of one of the
variables in the null model.

The Null Model

Consider again Yi ∼ Ber(π(xi, zi)), i = 1, . . . , 100, where xi and zi are fixed values,
xi uniformly distributed on (−6, 6) and zi uniformly distributed on (1, 20). The null
model yields logit(π(xi, zi)) = β0 + β1xi + β2zi, β0 = 0.0, β1 = 0.8 and β2 = 0.3.
We consider again the four test statistics: the HL test, with partitioning up to 10
groups; and the three versions of the the TB test pruned up to 5 ànd 7 final nodes.
In this way, we can investigate if an increase in the number of final nodes causes an
improvement in the approximation of the null distribution and/or a change in the
power characteristics. Table 6.3 shows the simulated critical points (1000 runs) of the
null distributions together with the exact critical points of the χ2 approximations.

Table 6.3: Simulated 1, 5 and 10% critical points of the HL, T, TW and TCR test
statistics for the null hypothesis of the second setting in the first simulation study

Null model

Test 0.10% 0.05% 0.01%

HL 10.66 14.79 34.53

χ2(8) 13.36 15.51 20.09

5 final nodes

T 11.95 15.16 22.23

TW 10.05 11.87 16.44

TCR 12.55 15.32 20.11

χ2(8) 13.36 15.51 20.09

7 final nodes

T 17.56 20.48 35.49

TW 15.19 17.36 24.44

TCR 17.64 20.04 26.99

χ2(12) 18.55 21.03 26.22

The simulated null distributions are reasonably well approximated by the respec-
tive χ2 distributions. One cannot say for certain that the results with seven final
nodes are better approximated than those with five final nodes. The null distribution
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Table 6.4: Simulated rejection percentages of the HL, T, TW and TCR tests for the
alternative functional form model

Test(0.10) Test(0.05)

HL 18.29 5.49

5 final nodes

T 31.40 20.80

TW 17.40 9.00

TCR 30.20 20.20

7 final nodes

T 38.01 27.64

TW 27.03 14.63

TCR 38.41 27.44

Oracle Test 88.56 85.81

of the Cressie-Read version of the tree-based statistic appears to be closest to the χ2

distribution. Still, there are some deviations, especially at the 1% critical point of the
T and the HL statistic. Therefore, we still recommend to use a bootstrap simulation
of the null distribution, next to this approximate chi-square distribution.

Power Characteristics

The alternative model for this functional form setting is given by logit(π(xi, zi)) =
β0 +β1xi +β2 log(zi), with β0, β1 and β2 as specified in the accompanying null model.
The assumption in this setting is thus that an incorrect functional form is used for
one of the explanatory variables.

The results in Table 6.4 indicate that the power of the test increases with an
increasing number of final nodes. The proposed tree-based tests clearly have rejection
rates that are much higher when compared to the Hosmer and Lemeshow test. The
TCR and the T test show the best results. All rejection rates are far below the results
of the oracle test, but then again, the tree-based statistic is an omnibus type of test,
not tailored for a particular alternative model.

6.3.3 Further Discussion

The simulation results shown in this section are a selection of a wide range of settings
and models we studied. The TB test shown here is based on g = 5 and g = 7 final
nodes whereas the HL used g = 10 deciles of risk groups. We also considered the
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TB test with the same number of 10 groups or final nodes. The results were quite
comparable with the ones shown in Table 6.1-6.4. With the choices g = 5 and g = 7
we show that the TB test is able to have, even based on a smaller g × 2 table, a
substantially higher power than the HL with the recommended g = 10 deciles of risk.
In the examples below, as in the second setting above, we varied the number of final
nodes. In general, it has an effect on the power of the TB test. For a larger sample
size and for a more complex null model, we recommend to use a larger number of final
nodes. Finding the optimal number of final nodes from a theoretical point of view is
of course related to the distributional properties of the TB statistic and it is expected
to be a difficult theoretical problem. This is not the focus here. This issue is of more
interest to the theoretician than the practitioner. Our experience says that the latter
will rarely find it necessary to take g larger than 20 or so, regardless of sample size.

Simulations not shown here include settings in which the true unknown model
contains more variables than the null model (q > p). Simulations do very convincingly
confirm that the HL test has completely no power to detect such kind of deviations
from the null model, whereas the TB test does show good power, at least if the tree
is constructed incorporating the missing covariates.

A small technical complication is that the sequence of pruned subtrees might not
contain a subtree with exactly g final nodes (because a larger subbranch is pruned
away). The pruning algorithm could be modified but our experience is that it rarely
happens. Simulations showed that the algorithm leading to a final tree with number
of final nodes at least equal to but as close as possible to g sometimes results in a tree
with g + 1 final nodes but it had a negligible effect on the final tree and the value of
the TB test statistics.

6.4 Data Examples

In this section, some bio-statistical data sets will be introduced, because goodness-of-
fit tests have a large background in this type of literature. In this way, we are able to
compare our proposed tree-based tests to some existing test statistics.

In order to have a data set that is comparable in complexity to the data sets
that are often used in transportation research, we have also added an example on the
Belgian Health Interview Survey data. And finally, a last example illustrates the TB
test in the context of transportation research. In this example, we also show the use
of the tree-based test statistic as a model selection tool.
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6.4.1 Example 1: The GVHD Data

This data set comes from a clinical trial with 166 patients receiving a bone marrow
transplant from an HLA-identical family donor. It is a subset of data from a study
described in Gratama et al. (1992) and it was used by le Cessie and van Houwelingen
(1995) to illustrate a lack-of-fit test based on a score test in a random effects model.

The patients had one of the three following diagnoses: (a) severe aplastic anemia,
(b) acute non-lymphoblastic leukemia, or (c) acute lymphoblastic leukemia and who
had a complete serology of four herpes-type viruses for donor and recipient. The
outcome of interest is the occurrence of grades II-IV acute graft versus host disease
(GVHD). Possible risk factors for GVHD considered here are the age of the donor,
the age of the recipient , diagnosis of the disease of the recipient (three categories
as described above), sex of the donor and sex of the recipient. A variable derived
from these latter two variables is whether the sex of the donor matches the sex of the
recipient (sex match). The age of the donor and recipient are treated as continuous
variables, the other variables as categorical.

As an illustration we examine the goodness of fit of the same sequence of models
as chosen by le Cessie and van Houwelingen (1995). Table 6.5 shows the p-values
obtained by le Cessie and van Houwelingen CHi (i = 1, 2 according to two different
distance measures), together with those obtained by Hosmer-Lemeshow (HL, using
deciles of risk), the TB test T , the weighted version TW and the Cressie-Read version
TCR (all with pruning up to 7 terminal nodes). All p values in the last four columns
were obtained by a parametric bootstrap (1000 runs).

Table 6.5: Test results GVHD data: p-values for four null models with diagnosis
D, age donor A and sex match S. Left part (2 left columns) from le Cessie and
van Houwelingen (1995); right part (4 right columns) from a parametric bootstrap
simulation with 1000 runs

Null model CH1 CH2 HL T TW TCR

D .058 .028 .694 .032 .039 .025

D, A .140 .050 .182 .104 .081 .096

D, A, S .390 .046 .721 .266 .228 .235

D, A, S, A2 - .260 .229 .365 .334 .340

The table shows that the TB tests yield p values comparable to those obtained by
the test of le Cessie and van Houwelingen (1995). The Hosmer-Lemeshow test clearly
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suffers from lack of power to reject poor null models. The modified tree-based tests
TW and TCR confirm their better power characteristics.

6.4.2 Example 2: The POPS Data

The POPS dataset originates from the Project on Preterm and Small-for-Gestational-
Age Infants in the Netherlands (POPS), a Dutch follow-up study on preterm infants
by Verloove and Verwey (1988), and was extensively analysed by le Cessie and van
Houwelingen (1991, 1993). Data were collected on 1338 infants, born in 1983 in The
Netherlands with a gestational age of less than 32 completed weeks and/or a birth
weight of less than 1500 g. After deleting the observations with missing data, a data
set of 1310 infants remained. We consider the situation after 2 years. The response
variable indicates whether or not the infant has died within 2 years or has survived
but with a major handicap. The explanatory variables are gestational age and weight
of the babies at birth. As an illustration, we consider three null models with at least
one quadratic effect. Table 6.6 shows the results for the TB test and compares them
with the results from several other tests from literature. We restricted attention to
the TB test using the Cressie-Read statistic.

Table 6.6: Test results POPS data: p-values for three null models with gestational
age A and birth weight W

Null model CH BR ACH1 ACH2 BS BN TCR HL

A, A2, W .02 .01 - - .000 .006 .012 .125

A, W, W 2 - - - - .000 .000 .044 .002

A, A2, W, W 2 .45 .06 .07 .02 .126 .138 .090 .207

The last four columns show p-values for two Bayesian motivated tests, a singleton
test BS and a nested test BN (Aerts et al., 2004) using a sequence of alternative
models including up to fifth order main and interaction effects (using orthogonal
polynomials), the TB test TCR based on the Cressie-Read statistic with pruning up
to 15 terminal nodes, and the HL test based on deciles of risk. All p values were
simulated using the parametric bootstrap (1000 runs).

The first four columns show some results from other test statistics proposed in
literature: a kernel based goodness of fit method (CH) proposed by le Cessie and
van Houwelingen (1991, 1993), the Brown statistic (BR, Brown (1982), and an order
selection score test (ACH1) and the value of a score based AIC criterion (ACH2) as
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reported by Aerts et al. (2000).

The p-values in Table 6.6 show that there is clear evidence against any model
without both quadratic terms (model 1 and 2). Only the HL test does not reject
model 1. As also discussed in Aerts et al. (2000), there is some evidence against
model 3 with both quadratic terms, but the different test results disagree.

6.4.3 Example 3: The HIS Data

The Belgian Health Interview Survey (HIS) was conducted in 1997. The main ob-
jective of this survey was to determine the population’s health, life style and use of
health services. A total sample of 10,000 interviews (0.1% of the Belgian popula-
tion) was planned, equally spread over the year 1997. A detailed description of the
sampling scheme used in the HIS was published in Quataert et al. (1998). Using
classification trees in comparison to logistic regression, Hens et al. (2002) examined
the profiles of persons who are at risk to obtain certain diseases or who do not re-
spond to prevention programs as e.g. cervix cancer screening via smears. The Belgian
communities are responsible for cervix cancer screening as a part of the preventative
health care. According to the Belgian National Cancer Registry (Haelterman, 1999),
cervix cancer is the fifth most common cancer among women in Belgium in the period
of 1993-1995. Therefore it is not surprising that for health policy goals cervix cancer
is an important point of attention. In an early stage cervix cancer can already be
detected by means of a simple smear. Because early detection decreases the mortality
substantially, women between 25 to 64 years old should have a smear every 3 to 5
years, according to the European guidelines (Coleman et al. (1993), Advisory Com-
mittee on Cancer Prevention (2000), Arbyn et al. (2001). The question investigated
in Hens et al. (2002) was in what respect the group of women, aged 25-64, not having
a smear is different from the group of women that did have a smear taken in the past
three years. Special interest goes out to whether an invitation letter increases the
probability of undergoing screening. For more details on this application, we refer to
Hens et al. (2002).

Here, as an illustration, we examine the lack of fit of some logistic regression mod-
els, similar to the ones used in Hens et al. (2002). From the HIS data file, only women
aged between 25 and 64 were selected. Women without uterus are excluded from the
analysis, leading to 2893 subjects. After deleting all observations with missing data,
there are 1945 observations left. The binary response variable is ‘screening status’ (a
smear taken in the last three years, yes or no). The general topics of the explanatory
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variables are shown in Table 6.7.1

Table 6.7: General topics of the explanatory variables

Lifestyle Physical Activity

Nutritional Habits

Alcohol Consumption

Smoking

Health Problems Subjective Complaints

Chronical Conditions

Mental Health

Functional Limitations

Prevention and Health Promotion Vaccination

Cardiovascular Prevention

Aids Prevention

Use of Health Care Contacts with GP

Contacts with specialists

Contacts with dentist

Paramedics

Alternative Methods

Hospital Admissions

Use of Medication

Health and Society Social Health

Access to Health Care

With 85 explanatory variables (essentially all of them are categorical) it is almost
impossible to investigate for each covariate the nature of the relationship (linear,
quadratic, etc.). Moreover, there are 7140 possible two-way interactions, consider-
ing all of them is hardly feasible. The logistic models we consider here, contain
the following 25 explanatory variables: Age Category (ordinal, 9 categories), Income
(ordinal, 5 categories), Household Type (nominal, 5 categories), Consumed Bread (bi-
nary), Snack Eating (ordinal, 3 categories), Province (nominal, 11 categories), Hos-
pital Admission (binary), Blood Pressure Control (binary), Profession (nominal, 9
categories), Lack of Physical Activity (binary), BMI Category (ordinal, 6 categories),
Cholesterol Control (binary), Frequency Heavy Drinking (ordinal, 6 categories ), Milk
Consumption (binary), Daily Drinker (binary), Medication (binary), Appreciation

1The full questionnaire can be consulted at

http://www.iph.fgov.be/epidemio/epien/crospen/hisen/table.htm.
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Social Relationships (binary), Invitation Letter (binary), Knowledge HIV protection
(binary), Frequency Dentist Visits (ordinal, 5 categories), Preventive Tooth Control
(binary), HIV Screening (binary), Breakfast Eating (ordinal, 4 categories), Marital
Status (nominal, 4 categories) and Educational Level (ordinal, 5 categories). Most
of the explanatory variables in the models are variables indicating an awareness of
the patient towards his own health status, e.g. cholesterol control, heavy drinking
moments, blood pressure control, etc. Other predictor variables are of a demographic
nature, e.g. age, income and province. Appreciation of social relationships seems
to have a small influence in the models. For health policy purposes the effect of a
screening invitation is of great importance. This specific explanatory variable indi-
cates whether a person received an invitation letter advising her to have a cervix
cancer screening. For more details, we again refer to Hens et al. (2002).

Our first model (referred to as model 1) contains the above explanatory variables
with a single linear effect for all ordinal variables. As a second model (model 2), we
consider model 1 extended with a quadratic effect for Age Category, Frequency Heavy
Drinker, Income, Breakfast Eating and Educational Level. A third model (model 3)
incorporates the interaction effects Age × Breakfast Eating, Age × Educational Level,
Breakfast eating × Educational level, Educational level × Province and Educational
Level × Household Type. As a last model, model 4, we reconsider the model with
only main effects (as in model 1), but now with all explanatory variables as nominal
(saturated main effects model).

This is clearly a setting with a lot of variables and observations, a setting where
many other lack-of-fit tests would encounter serious problems, also in the practical
implementation of the method. The HL test and the TB test can be used in the same
fashion as in the other two examples. For all analyses we took 20 final nodes, for both
test statistics. Simulated p-values, based on 500 bootstrap replications, are shown in
Table 6.8.

Table 6.8: Test results HIS data: p-values for four null models

Hosmer Lemeshow Tree-based test

Null model statistic p-value statistic p-value

Model 1 30.63 0.03 68.51 0.00

Model 2 10.45 0.94 65.36 0.00

Model 3 14.19 0.69 60.53 0.02

Model 4 12.09 0.83 59.94 0.10
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The results of the weighted and the Cressie-Read version of the tree-based test
are not included, since the results are very similar to the ordinary version. Model 1 is
rejected by both tests. The Hosmer-Lemeshow test however fails in rejecting model 2
and 3, which are clearly rejected by the tree-based test. There is not much evidence
against model 4, by either lack-of-fit test. This example illustrates the use of the
tree-based tests in complex logistic regression models and confirms the higher power
as compared to the Hosmer-Lemeshow test.

6.4.4 Example 4: Dutch Car Driver data

The paper by le Cessie and van Houwelingen (1993) brought to our attention that
these tests can function as goodness-of-fit statistics on one hand, in that they show
the power of a certain test to detect a specific lack-of-fit, while on the other hand, the
tests can serve as model selection criteria to choose a certain model out of a series
as well. Thus, in this section, we examine the use of the weighted tree-based test
statistic (TW ) as a model selection tool on the Dutch Car Driver data (see section
2.3 in Chapter 2). A series of logistic regression models is fit, and we will investigate
the power of the TW statistic to reject a model that is not sufficiently suited to fit
the data. We compare the power of TW to that of the HL statistic as well as to some
well-established model selection criteria, such as Akaike’s Information Criterion (AIC)
(Akaike, 1973) and the Bayesian Information Criterion (BIC) (Schwartz, 1978). As
we mentioned above, not the approximate null distribution, but the null distribution
based on the parametric bootstrap (500 runs) was used to obtain the p-values. We
choose 10 groups for both statistics in this second example, since this data set is
much smaller and more final nodes in the classification tree are not necessary to
make the sample segmentation. An overview of the models that were used and the
corresponding p-values of the HL and the TW statistics as well as the AIC and the
BIC values can be found in Table 6.9.

We started with the model that was chosen by applying the forward stepwise
regression technique. The model that came up as resulting model from this technique
was chosen as initial model. This initial model contains 25 variables, 12 categorical
and 13 continuous ones. A general remark is that transport characteristics are most
important to determine the choice of the vehicle that is used to make the trip. In
second place we have person and household characteristics, while activity and tour
characteristics appear to be less relevant to the decision of mode choice. The first
initial model has just a single linear effect for all the variables. The results on the
weighted tree-based statistic clearly indicate that this first model is not adequate
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Table 6.9: Test results Mod012 data: p-values and goodness-of-fit measures on differ-
ent null models

Variables used in model HL TW AIC BIC

Statistic P-value Statistic P-value

Model 1: x2, x4, x6, x7, x8, x9 6.09 0.648 64.71 0 926.98 1050.29

x11, x13, x14, x17, x19, x20, x21, x22

x25, x27, x28, x30, x31, x32, x33, x36

x37, x38, x39

Model 2: Model 1 + interaction x31 × x7 4.47 0.800 64.77 0.002 928.91 1057.16

Model 3: Model 2 + interactions 14.33 0.058 64.89 0.006 925.42 1063.53

x7 × x30 and x7 × x38

Model 4: Model 3 + interactions 5.31 0.670 45.02 0.028 910.23 1058.90

x30 × x14 and x30 × x33

Model 5: Model 4 + interactions 5.63 0.616 45.14 0.034 912.38 1070.22

x38 × x36 and x14 × x38

Model 6: Model 5 + interactions 7.35 0.434 39.63 0.044 910.41 1078.11

x14 × x9 and (x30 × x33)2

Model 7: Model 6 + interactions 8.46 0.358 38.62 0.048 902.98 1080.55

x33 × x28 and x38 × x13

Model 8: Model 7 + interactions 8.62 0.328 35.64 0.066 896.94 1084.38

x38 × x20 and x20 × x17

Model 9: Model 8 + interaction x20 × x32 9.55 0.274 35.14 0.074 898.56 1090.92

enough to fit this large amount of data. Hosmer and Lemeshow’s statistic cannot
reject this model. Now, this initial model will be chosen as a starting-point model to
add quadratic effects as well as interactions. These terms were suggested by the tree
built on the same variables that were used to make up the initial model. A different
split on the same variable in a left and a right part of the tree might suggest an
interaction term for instance, while a second split on the same variable might indicate
a quadratic effect (see Figure 6.1).

As we expected, in general, the value of the tree-based test statistic decreased as
more variables come into play, however, there is evidence that until the seventh model,
none of the models performs good enough. The Hosmer and Lemeshow statistic, on
the contrary, fails in rejecting each of these models. Strangely enough, its value
decreases first and increases again afterwards, when more variables are added to
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Figure 6.1: Classification tree on the mod012 Car driver data

the models and this behaviour cannot be explained. But this is clearly a setting
with a large number of variables, a setting where many of the goodness-of-fit tests
would encounter serious problems, also in the practical implementation of the method.
Therefore, it is our belief that the Hosmer and Lemeshow was not developed for such
applications, while the tree-based statistic was especially designed for this type of
large data-mining situations that we will encounter more and more in the future.
The Akaike Information Criterion reaches its minimal value at model 8, while the
Bayesian Information Criterion attains its minimal value at the first model. This
fourth example illustrates that the use of the tree-based test as an instrument for
model selection behaves very similar to Akaike’s AIC criterion. Indeed, model 8, the
model selected by AIC, is the first model (in the sequence of nested models) that is
not rejected by the tree-based test (at the 5% level). Compared to AIC, the use of the
tree-based test for model selection is of course computationally much more extensive.
On the other hand, when selecting a final model from a family of candidate models,
the tree-based test might indicate, by its p-value, that the model selected by AIC is
still inappropriate and needs to be further adapted and extended and it can give a
suggestion how.
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These four data examples illustrate the use of the different tree-based tests in
(complex) logistic regression models and they confirm the higher power when com-
pared to the Hosmer and Lemeshow test.

6.5 Simulation Study 2: High Dimensional Data

Examples

6.5.1 Example 1: San Francisco Bay Data

This first example discusses the results of a small simulation study in a high dimen-
sional covariate space based on the San Francisco Bay data (Purvis, 2003, see Section
2.2 in Chapter 2). It covers the use of the weighted tree-based test statistic (TW ) as
a goodness-of-fit statistic. We want to investigate the power to detect an interaction
term. In order to get more insight on this power behaviour, we considered the 24752
× 27 design matrix X (first column consists of ones) and we generated new response
values according to the null model and the model extended with one interaction term
Age × Auto Own

logitP (Y = 1) = β0 +
26∑

j=1

βjxj + β27x3 × x18

with β27 ∈ {0.05, 0.5, 50, 500, 1000, 1500}× 10−4. This interaction variable can deter-
mine whether there is a difference in car use amongst young drivers that possess a
car compared to older drivers. Within each simulation run, the p-values were simu-
lated based on 1000 bootstrap null samples for the HL test and the TW test. Next,
percentage rejections (determined on 500 runs) were calculated at 0.10, 0.05 and 0.01
significance levels. The HL statistic was based on 10 groups (the deciles of risk), while
the tree-based test TW is based on a final tree pruned up to 15 final nodes.

Table 6.10 shows that, as expected, the rejection rates of the tree-based statistic
increase with the value of β27. If more emphasis is put on the forgotten term, it will
be detected better as it should. The tree-based test clearly outperforms the Hosmer
and Lemeshow test here. The performance of the latter one is extremely poor, they
show very low, almost no power in detecting a forgotten interaction term.
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Table 6.10: Rejection rates for different values of β27

10−4× β27 = 0.05 β27 = 0.5

test(0.10) test(0.05) test(0.01) test(0.10) test(0.05) test(0.01)

HL 10.0 5.6 1.4 9.2 6.4 1.0

TW 10.6 5.8 0.6 13.2 7.0 0.8

10−4× β27 = 50 β27 = 500

test(0.10) test(0.05) test(0.01) test(0.10) test(0.05) test(0.01)

HL 12.8 4.8 0.8 14.0 7.4 2.4

TW 18.2 9.0 1.0 59.0 44.4 19.8

10−4× β27 = 1000 β27 = 1500

test(0.10) test(0.05) test(0.01) test(0.10) test(0.05) test(0.01)

HL 10.2 4.4 0.4 4.8 2.4 1.8

TW 91.0 87.0 68.0 94.0 88.2 65.0

6.5.2 Example 2: The HIS Data

Inspired by the HIS example, this section discusses the results of a small simulation
study in a high dimensional covariate space (based on the HIS data). We consider the
setting of model 1 as discussed in the previous section, with 25 explanatory variables
and model 1 serves as null model. The analysis in the previous section showed that
model 3 with some interaction terms was not rejected. But how large is the power
to detect an interaction term in this specific situation? To get some more insight on
this power behaviour, we took the 1945 × 26 design matrix X (first column existing
of ones) and generated new response values according to the fitted model 1 (the null
model) and model 1 extended with one interaction term Age Category × Income

logit{P (Yi = 1)} = β0 +
25∑

`=1

β`x`i + β26(x1i × x2i)

with β26 ∈ {0.0, 0.1, 0.2}. Figure 6.2 shows the results based on 150 simulation runs.
Within each simulation run, p-values were simulated based on 100 bootstrap null
samples for the HL test and for the three versions of the TB test. Next, percentage
rejections were calculated at significance levels 0.10, 0.05 and 0.01. Typically a larger
number of bootstrap samples is needed to accurately estimate p values and associated
power, but we believe our results are indicative in their comparison between the
different tests.
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Figure 6.2: Simulated power curves for the HIS simulation study. Each test
HL, T, TW , TCR has three curves: an upper curve for level 0.10, a middle curve for
level 0.05 and a lower curve for level 0.01. Each curve connects the rejection rates
for β26 ∈ {0.0, 0.1, 0.2}, for a particular test at a specific level

Each test HL, T, TW , TCR has three curves: an upper curve corresponding with
level 0.10, a middle curve with level 0.05 and a lower curve for level 0.01. Each curve
connects the rejection rates for β26 ∈ {0.0, 0.1, 0.2}, for a particular test at a specific
level. This figure shows a very poor power behaviour for the Hosmer-Lemeshow
test, in this simulation setting. The tree-based tests show reasonable power curves,
increasing with the value of the alternative. The three versions of the TB test are
very comparable, with some slight advantage for the weighted version.

6.6 Conclusion

A tree-based test statistic can be used to assess the goodness-of-fit of a logistic regres-
sion model containing continuous covariates or a mixture of continuous and categorical
covariates. It is a nice example showing how a nonparametric method can be used to
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confirm or improve a parametric model. If the tree-based test rejects the parametric
null model, a closer inspection of the classification tree might reveal a particular de-
viation of the null model. A different split on the same variable in a left and a right
part of the tree might suggest an interaction term for instance.

Simulations indicate that the proposed tree-based test statistic has, compared to
the Hosmer-Lemeshow test, very promising power characteristics in detecting incor-
rectly modelled variables, omitted interaction effects as well as higher order effects,
even in a high dimensional covariate space. Further theoretical research is needed to
investigate the asymptotical null distribution in more detail. In small sample studies
the proposed rule of thumb appears to work reasonably well, though on higher di-
mensional data sets, the asymptotic distribution can be quite wrong. For all practical
purposes, however, one can rely on the bootstrap approach.

The Hosmer-Lemeshow test has been generalised to repeated binary observations
using generalised estimating equations by Horton et al. (1999) and to clustered binary
data by Geys et al. (2002). Also tree-based models have been developed for these
settings, see e.g. Zhang and Singer (1999). Future research will take a closer look at
extensions of the tree-based test to multivariate, longitudinal or clustered responses.
Also the application of other classifiers using multi-way instead of binary splits is a
possible avenue for future research.



Chapter 7

Use of Nonlinear Models in

Determining Mode Choice

7.1 Introduction

Activity-based models now held a prominent place when modelling travel demand,
but the transportation analyst is faced with a new problem: he/she encounters a
much wider variety of types of models to choose from. However, the use of statistics
in this field is still dominated by linear models, a legacy of pre-computer times. And
apart from this, many users of multiple regression (based on data sets that include
at least one continuous covariate) include only linear terms in the covariate(s). If
curvature in the relationship between the outcome variable is suspected, the model
may be extended to include a quadratic term, but cubic or higher order polynomials
are rarely used. Nonparametric and spline smoothers are powerful and flexible tools
which indeed pose few limitations on the functional form, however many users do not
require such sophistication, but they do need models that are reasonably flexible, easy
to understand and parsimonious. Consequently, over the last decennia, nonlinear as
well as semi-linear statistical models became popular in other fields such as medicine.
They have been applied widely in pharmacokinetics and -dynamics, epidemiology,
survival analysis, clinical trials, . . . (Royston and Altman, 1994; Royston et al., 1999;
Faes et al., 2003). Though, also the nonlinear machine learning techniques have their
application in various areas, such as pattern recognition, medicine, bioinformatics,
cryptography, . . . (Ben-Yacoub, 1999; Burges, 1998; Veropoulos et al., 1999; Brown
et al., 1999; Chen et al., 2001) The idea of this chapter is to investigate what the
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semi-linear and nonlinear models could add to transportation analysis. We know, e.g.
that the income is inversely related to the probability of using slow transport. But
whether this inverse relationship is cubic, quadratic, linear, or determined by some
square root is not sure? This is only a small problem that can be solved by fractional
polynomials. For some variables, one does not even have a clue what their relationship
to the response variable might be. Therefore, these semi- and nonlinear models can
provide a solution. Note that by nonlinear models we mean also nonparametric models
here, hence nonlinear means nonlinear in the covariates. ‘Do these models perform
better or worse than the widely used logit model or do they yield better results?’ -
that is the key question throughout this chapter.

In the previous chapter and in this, we will focus on one particular aspect of
modelling activity diary data, i.e. the choice of transport mode. This chapter will
concentrate on different kinds of nonlinear models. Some of these models have their
background in the statistical literature (fractional polynomials), while others (support
vector machines, CART) stem from the data mining/machine learning community.

Linear models (logistic regression) are well established in the field of statistical
modelling. There are two different ways to extend these models, parametrically, by
means of statistical models, and non-parametrically, by means of machine learning
algorithms. A first parametric extension to linear models that provides more flexibility
can be found in fractional polynomials. The advantage of this extension is that it offers
a better prediction, because of its flexibility and it is still interpretable, just as linear
models. Fractional polynomials are therefore often called a semi-linear modelling
approach.

Apart from this parametrical extension, there are also other models from statistical
learning theory that have proven to be very useful in other research fields. Some ex-
amples are: classification and regression trees (CART, Breiman et al., 1984), support
vector machines (SVM’s, Vapnik, 1996), neural networks (Haykin, 1994), multivari-
ate adaptive regression splines (MARS, Friedman, 1991), . . .. CART are only partly
interpretable and rather unstable, two solutions for this are applied in Chapter 5.
Boosting should ameliorate the accuracy, while bagging stabilises the trees. SVM’s
are very good for prediction purposes, though it is rather a black box approach and
the results are not interpretable. Neural networks, MARS, and Bayesian networks
are other possible extensions, but in this chapter, we will confine the number of ex-
tensions to fractional polynomials on the one hand and to support vector machines
and CART on the other hand, since these techniques have not been explored yet in
the field of mode choice modelling.

We will try to find a way to compare the performance of both types of models by
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means of a small adjustment on a well-known goodness-of-fit measure.

The next section discusses the semi-linear modelling approach: fractional polyno-
mials and the nonlinear machine learning algorithm: support vector machines.

7.2 Models

7.2.1 Fractional Polynomials

Linear models have been used extensively, almost routinely, by applied statisticians
and researchers (Royston and Altman, 1994). However, often is the relationship be-
tween a dependent variable and one or more continuous covariates curved. Usually,
one attempts to represent curvature in regression models by means of polynomials of
the covariates, typically quadratics. Cubic or higher order polynomials are used/useful
only rarely. In general, low order polynomials offer a limited family of shapes, while
high order polynomials may fit poorly at the extreme values of the covariates. Various
attempts have been made to devise more acceptable models. Box and Tidwell (1962)
developed an appropriate linearisation of each variable in a multiple regression model,
though for models with more than one covariate, there are considerable difficulties in
estimating the powers reliably. A cubic spline can be seen as the link between con-
ventional polynomials and the modern methods of nonparametric smoothing. Splines
are developed as for interpolation purposes (Whittaker, 1923). Later, the smoothing
spline was developed as a method for fitting curves to data (Reinsch, 1967; Silver-
man, 1985). Nonparametric smoothers are an attempt to ‘let the data show us the
appropriate form’ (Hastie and Tibshirani, 1990) rather than imposing a limited range
of forms on the data. Nonparametric and spline smoothers are flexible and powerful
tools that impose few limitations on the functional form, though the fitting process
may be computationally intensive.
In this manuscript, we search for models that are reasonably flexible and more im-
portantly, easy to understand and parsimonious.

Fractional polynomials (Royston and Altman, 1994; Royston et al., 1999; Faes et
al., 2003; . . . ), an extended family of curves whose power terms are restricted to a
small predefined set of values, may provide a solution for this. They provide much
more flexible shaped curves than conventional polynomials, but in cases where the
extension is not necessary, this family essentially reduces to conventional polynomials.
A particular feature of the fractional polynomials is that they provide a wide class
of functional forms, with only a small number of terms (Royston and Altman, 1994;
Sauerbrei and Royston, 1999).
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Let x be a continuous covariate, a fractional polynomial of degree m is then defined
to be

φm(x, ζ,p) = ζ0 +
m∑

i=1

ζiHi(x),

where m is a positive integer, p = (p1, . . . , pm) a real-valued vector of powers with
p1 ≤ . . . ≤ pm and ζ = (ζ1, . . . , ζm) coefficients. We set H0(x) = 1, p0 = 0 and then,
for i = 1, . . . , m

Hi(x) =





x(pi) if pi 6= pi−1

Hi−1(x) ln(x) if pi = pi−1

The round bracket notation indicates the Box-Tidwell transformation:

x(pi) =





xpi if pi 6= 0

ln(x) else

This full definition includes possible ’repeated powers’ which involve powers of ln(x).
E.g. a fractional polynomial of the third degree (m = 3) with powers (1,1,2) is of the
form ζ0 + ζ1x + ζ2x ln(x) + ζ3x

2. Experience suggests (Royston and Altman, 1994)
that pi ∈ {−2,−1,− 1

2 , 0, 1
2 , 1, 2, max(3,m)} is sufficiently rich to cover many practical

cases adequately.
In this chapter, we will consider fractional polynomials of the first and second

degree applied to a multiple logistic regression setting with r continuous and s cat-
egorical covariates. For m = 1, this means that for every continuous covariate a
fractional polynomial of degree one will be fitted. The model equation then yields:

logit(πx) = log
( πx

1− πx

)
= β0 +

r∑

k=1

βkx
(pi)
i +

s∑

l=1

γlzl

hereby are the x-variables continuous covariates and the z-variables are categorical.

For m = 2, all continuous covariates will have the form of a fractional polynomial of
degree two. This means that first

logit(πx) = β0 +
2∑

j=1

β1jHj(x1) +
r∑

k=2

βkxk +
s∑

l=1

γlzl

will be fitted. I.e. the relationship between the dependent variable and all x-variables
will be taken as a straight line, except for y and x1. At step 2, we fix the fractional
polynomial function of the first variable (not the coefficients !), and repeat the same
for the second variable, etc. After xr is reached, the first iteration is completed, the
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model now only consists of β0 and fractional polynomials of the second degree and
it no longer contains the term

∑
k βkxk. In the first step of the second iteration,

the constant term and the fractional polynomial models for variables x2, . . . xr and
the categorical covariates are fixed, while a new fractional polynomial function for
variable x1 is defined, etc. This iteration continues again until variable xr is reached.
Subsequent iterations are analogous. Convergence is attained when the fractional
polynomial functions for each of the continuous variables do not change from one
iteration to the next. This iterative procedure used to fit a model with multiple
covariates is closely related to back-fitting (see, e.g. Breiman and Friedman, 1985) and
it is described in general in Section 3.5 of Royston and Altman (1994). The iterative
procedure used in the following analyses to fit a model with multiple covariates follows
the suggested strategy as described in Roystan and Altman (1994, p. 436–437), which
has been implemented in the R package mfp. It is based on their experience that
the conditional relationships between dependent variable and predictors in multiple
covariate models are not often sufficiently complex to require fractional polynomials
with m > 2. The algorithm is a type of stepwise regression, much like that described
by Hastie and Tibshirani (1990, p. 260–261). When considering variable xi at each
iteration, we only consider mi ≤ 2. We choose mi = 2 if the fit of the p̃i-model for
mi = 2 is significantly better than the p̃i-model for mi = 1. This is called the test for
simplification: test the fractional polynomial of degree two against the best fractional
polynomial of degree one at alpha level (α = 0.1) on two degrees of freedom. If this
test is significant, choose mi = 2, otherwise choose mi = 1. Similarly for mi = 1, we
only choose pi = p̃i in preference to pi = 1 if p̃i is a significantly better fit according
to the criterion set in the non-linearity test. This tests the fractional polynomial
of degree one in x against a straight line on one degree of freedom. Finally, in the
inclusion test, if pi = 1 is obtained, we omit xi (at this iteration) if the resulting
increase in deviance is not statistically significant (df = 1). Likewise, at each step
we omit zi if the increase in deviance is not significant. Any omitted variables are
retested in the next iteration. Convergence is achieved when the set of fractional
polynomial functions (and omitted variables) does not change.

All significance tests are carried out using an approximate P-value calculation
based on a difference in deviances (-2 × loglikelihood) having a chi-squared distri-
bution. Therefore, each of the tests in this procedure maintains a significance level
only approximately equal to select. For a given significance level, it provides some
protection against over-fitting, in that it protects against choosing over complex mfp
models.
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7.2.2 Support Vector Machines

Support vector machines (SVM’s) are learning systems that use a hypothesis space of
linear functions in a high dimensional feature space, trained with a learning algorithm
from optimisation theory that implements a learning bias derived from statistical
learning theory (Hastie et al., 2001). This learning strategy, that has been introduced
by Vapnik and co-workers (1996), is a principled and very powerful method that in
the few years since its introduction has already outperformed most other systems in
a wide variety of applications.

In order to clearly understand the procedure of support vector machines, one first
has to discuss the technique for constructing an optimal separating hyperplane between
two classes that are perfectly separable by a linear boundary. Then extensions to the
nonseparable case, where the classes overlap are considered and these techniques are
then generalised to what is known as support vector machines. The SVM produces
nonlinear boundaries by constructing a linear boundary in a large, transformed version
of the feature space. These nonlinear boundaries then define the maximum margin
hyperplane.
Now, consider N pairs or the training data (x1, y1), (x2, y2), . . . , (xN , yN ), with xi ∈
Rp and yi ∈ {−1, 1} (for logit models, usually yi ∈ {0, 1}).
Define a hyperplane by

{x : f(x) = xT β + β0 = 0},

where β is a unit vector: ‖β‖ = 1. The optimal separating hyperplane separates the
two classes and maximises the distance to the closest point from either class (Vapnik,
1996). Not only does this provide a unique solution to the separating hyperplane
problem, but by maximising the margin between the two classes on the training data,
this leads to better classification performance on the test data. Dropping the norm
constraint on β, this hyperplane can be found by solving the following optimisation
problem:

minβ,β0
1
2‖β‖2

subject to yi(xT
i β + β0) ≥ 1, i = 1, . . . , N.

(7.1)

This is a convex optimisation problem, which can be solved using Lagrange multipliers
αi. The Lagrange function then equals

L = min
β,β0

1
2
‖β‖2 −

N∑

i=1

αi[yi(xT
i β + β0)− 1].



Nonlinear Models 117

Setting the derivatives to zero, we obtain:

β =
N∑

i=1

αiyixi (7.2)

0 =
N∑

i=1

αiyi, (7.3)

and substituting these in the previous equation, one obtains the so-called Wolfe dual

L =
N∑

i=1

αi − 1
2

N∑

i=1

N∑

j=1

αiαjyiyjx
T
i xj , (7.4)

subject to αi ≤ 0. In addition, the solution must satisfy the Karush-Kuhn-Tucker
conditions, which include (7.2), (7.3), (7.4) and

αi[yi(xT
i β + β0)− 1] = 0 ∀i. (7.5)

From this equation, one can see that

� if αi > 0, then yi(xT
i β + β0) = 1, or in other words, xi is on the boundary of

the margin;

� if yi(xT
i β +β0) > 1, xi is not on the boundary of the margin, and hence αi = 0.

The band that is 1
‖β‖ units away from the hyperplane on either side is what is called

the margin. Thus the margin indicates the distance of the support points to the hy-
perplane.
One can observe from (7.2) that the solution vector β is defined in terms of a linear
combination of the support points (vectors) xi, these are the points that are defined
to be on the boundary of the margin via αi = 0. Likewise, β0 is obtained by solving
(7.5) for any of the support points.
This optimal separating hyperplane produces a function f̂(x) = xT β̂ + β̂0, for classi-
fying new observations (from the test sample):

Ĝ(x) = signf̂(x).

Although none of the training cases fall in the margin (by construction), this will
not be the case for the test observations. Intuition learns that a large margin on the
training data will lead to good separation of the test data.

When the data are not separable, there will be no feasible solution to this problem,
and an alternative formulation is necessary. This alternative formulation will be
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provided by the support vector machine that allow for an overlap, but minimise a
measure of the extent of this overlap.

One way to deal with this overlap is still to maximise the margin (i.e. to minimise
‖β‖), but to allow for some points to be on the wrong side of the margin. Define the
slack variables ξi. The value ξi in the constraint yi(xT

i β + β0) ≥ 1− ξi is the propor-
tional amount by which the prediction f(xi) = (xT

i β + β0) is on the wrong side of its
margin. Hence by bounding the sum

∑
ξi, we bound the total proportional amount

by which the predictions fall on the wrong side of their margin. A misclassification
occurs when ξi > 1, thus bounding

∑
ξi at a value, say W , bounds the total number

of training misclassifications at W .
Dropping again the norm constraint on β, the equivalent form of (7.1) becomes

min ‖β‖ subject to





yi(xT
i β + β0) ≥ 1− ξi, ∀i,

ξi ≥ 0,
∑

ξi ≤ constant
(7.6)

This is the usual way the support vector classifier is defined for the nonseparable
case (Hastie et al., 2001; Cristianini and Shawe-Taylor, 2000). By the nature of the
criterion (7.6), one can observe that points well inside their class margin will not play
a big role in shaping the boundary. We can re-express (7.6) again by means of the
Lagrange multipliers αi, µi and γ, and the Lagrange function becomes:

L =
1
2
‖β‖2 + γ

N∑

i=1

ξi −
N∑

i=1

αi[yi(xT
i β + β0)− (1− ξi)]−

N∑

i=1

µiξi.

Again, setting the respective derivatives equal to zero, one obtains

β =
N∑

i=1

αiyixi, (7.7)

0 =
N∑

i=1

αiyi, (7.8)

αi = γ − µi, ∀i, (7.9)

as well as the positivity constraints, αi, µi, ξi ≥ 0, ∀i. Substituting (7.7) - (7.9) in the
Lagrange function, we obtain again the Wolfe dual function

L =
N∑

i=1

αi − 1
2

N∑

i=1

N∑

j=1

αiαjyiyjx
T
i xj .

The solution must, in addition to (7.7) - (7.9), also satisfy the Karush-Kuhn-Tucker
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conditions, that also include the following constraints:

αi[yi(xT
i β + β0)− (1− ξi)] = 0, (7.10)

µiξi = 0, (7.11)

yi(xT
i β + β0)− (1− ξi) ≥ 0, (7.12)

for i = 1, . . . , N. Together these equations (7.7) - (7.12) define a unique solution to
the optimisation problem (7.6).

From (7.7), one can observe that the solution for β looks like

β̂ =
N∑

i=1

α̂iyixi,

with nonzero coefficients α̂i only for those observations i for which the constraints
in (7.12) are exactly met (due to (7.10)). These observations are called the support
vectors, since β̂ is represented in terms of them alone. Among these support vectors,
some of them will lie on the edge of the margin (ξi = 0), and hence from (7.11) and
(7.9) will be characterised by 0 < αi < γ; the remainder (ξi > 0) have αi = γ. From
(7.10), one can see that any of these margin points (0 < αi, ξi = 0) can be used to
solve for β0, and one typically uses an average of all these solutions for numerical
stability.

Given the solutions β̂0 and β̂, the decision function (the support vector classifier)
can be written again as

Ĝ(x) = sign [f̂(x)]

= sign [xT β̂ + β̂0].

The tuning parameter of this procedure is γ. Larger values of γ focus attention more
on (correctly classified) points near the decision boundary, while smaller values involve
data points further away. Either way, misclassified points are given weight, no matter
how far away.

The support vector classifier that has been described so far, finds linear bound-
aries in the input feature space. As with other linear methods, one can make the
procedure more flexible by enlarging the feature/covariate space using basis expan-
sions such as polynomials or splines. Generally linear boundaries in the enlarged
space achieves better training-class separation, and translate to nonlinear boundaries
in the original space. Once the basis functions hm(x),m = 1, . . . ,M are selected,
the procedure is the same as before. One fits the SV classifier using input fea-
tures h(xi) = (h1(xi), . . . , hM (xi)), i = 1, . . . , N and produces the (nonlinear function
f̂(x) = h(x)T β̂ + β̂0. The classifier is Ĝ(x) = sign [f̂(x)] as before.
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The support vector machine is an extension of this idea, where the dimension of
the enlarged space is allowed to get very large, infinite in some cases. It might seem
that the computations become prohibitive. We can represent the latter optimisation
problem and its solution in a special way that only involves the input features via
inner products. The Wolfe dual function then has the form

L =
N∑

i=1

αi − 1
2

N∑

i=1

N∑

j=1

αiαjyiyj〈h(xi), h(xj)〉. (7.13)

The solution can now be written as

f(x) = h(x)T β + β0 (7.14)

=
N∑

i=1

αiyi〈h(x), h(xi)〉+ β0. (7.15)

As before, given αi, β0 can be determined by solving f(xi) = 0 in (7.15) for all xi for
which 0 < αi < γ.

As can be observed, both (7.13) and (7.15) involve h(x) only through inner prod-
ucts. Thus, the transformation h(x) does not need to be specified, only the knowledge
of the kernel function

K(x, x′) = 〈h(x), h(x′)〉
that computes the inner product in the transformed space is required. Note that K

should be symmetric positive (semi-) definite function. Three popular choices for K

in the SVM literature, that are also implemented in the R package e1071, are

d-th degree polynomial: K(x, x′) = (κ + γ〈x, x′〉)d,

Radial basis: K(x, x′) = exp(−‖x−x′‖2
γ ),

Neural network: K(x, x′) = tanh(κ1〈x, x′〉+ κ2).

The role of the parameter γ is clearer in an enlarged feature space, since perfect
separation is typically achievable there. A large value of γ will discourage any positive
ξi, and lead to an over-fit wiggly boundary in the original feature space. A small value
of γ will encourage a small value of ‖β‖, which in turn causes f(x) and hence the
boundary to be smoother. (Often a value of 1 for γ seems to work fine in practice.)
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7.2.3 Classification And Regression Trees (CART)

This subsection will be very brief, since CART has already been introduced in Chap-
ter 6 in the subsection on recursive partitioning. In general, it describes a way of
partitioning the parameter space, just as C4.5 is manner of recursive partitioning (see
also Chapter 4). The general settings of C4.5 and CART are thus very much alike.
The main difference in partitioning, as discussed in Chapter 6, is that C4.5 allows for
multi-way splits and CART (Breiman et al., 1984) only allows for binary splits to be
conducted.
Classification trees are used for categorical dependent variables, while regression trees
are applied to continuous y-variables. In this chapter, only classification trees are con-
sidered. The Gini-index (for multiclass responses) i(τ) =

∑
j 6=i P (Y = j|τ)P (Y =

i|τ), (i, j ∈ {1, . . . , J}) or the entropy measure (for binary responses, see Chapter 6)
can be used as a splitting criterion. Several methods exist for controlling the tree:
the minimum number of observations that must exist in a node in order for a split to
be attempted (this is set to 20 in the performed analyses), the minimum number of
observations in any terminal leaf node (usually about a third of the minimum split
size), the maximum depth of the tree, etc. For more detail, we refer to Breiman et
al. (1984).

7.3 Data and Model Comparison

7.3.1 The Data

The data sets used in this chapter are derived from the Albatross data set (Dutch data,
see Chapter 2, Section 2.3): transport mode for work and from the Southeast Florida
data set as described in Chapter 2, Section 2.4. For both data sets, only a limited
number of covariates has been considered. This was done, on the one hand, because of
practical issues (computational complexity: the magnitude of the data set combined
with a large number of explanatory variables can cause problems for obtaining the
results in a reasonable amount of time (see e.g. in the analyses on the Southeast
Florida data set in the next section); too many variables with missing values, etc.).
But, on the other hand, Chapter 4 learned us also that some variables can be irrelevant
and that they can disturb the performance of the models. Thus, respectively the 20
and 17 ‘best’ (according the the Relief-F feature selection algorithm) variables have
been chosen to perform the analyses.

The first data set (Dutch data) contains 1025 observations. It has been split into
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two different data sets: one for the prediction of using ‘slow’ transport in order to
go to work and one for the prediction of using public transport. Both being a car
passenger and all different kinds of public transport are considered as public transport
in this case. For the Southeast Florida data set, that contains 14527 cases, the same
split into slow and public transport has been made, and here a car passenger, taking
the bus, metro-rail, metro-mover, tri-rail, jitney, school bus and taxi are considered
as public transport. The distribution of the different transport modes over the data
sets can be found in Table 7.1.

Table 7.1: Distribution of different transport modes over the data sets

Number of cases Slow Public Car driver Other

Dutch data 1025 18.93% 12.29% 68.78% 0.00%

Southeast Florida 14527 2.71% 9.67% 87.13% 0.49%

Table 7.2 shows for each of the three Dutch data sets which twenty selected vari-
ables are used to determine the three possible transport modes. For a description of
the variables, we refer to Chapter 2.

Table 7.2: Selection of the different variables for the three Dutch the data sets

Variable Public Slow Car Driver Variable Public Slow Car Driver

x1 ∗ ∗ ∗ x22 ∗
x3 ∗ ∗ ∗ x23 ∗ ∗ ∗
x5 ∗ ∗ x24 ∗
x6 ∗ ∗ ∗ x25 ∗ ∗ ∗
x7 ∗ ∗ ∗ x26 ∗ ∗ ∗
x10 ∗ ∗ ∗ x27 ∗ ∗ ∗
x14 ∗ ∗ ∗ x30 ∗ ∗ ∗
x15 ∗ ∗ ∗ x31 ∗ ∗
x16 ∗ ∗ ∗ x32 ∗ ∗
x19 ∗ x33 ∗ ∗
x20 ∗ ∗ ∗ x38 ∗ ∗ ∗
x21 ∗ x39 ∗ ∗ ∗

In the analyses of the Southeast Florida data sets, variable v17 is completely
determined by v14 − v16 and v13 is a simplification of v9, thus either one of the
variables will be used in the analyses, while v17 will, of course, be left out to ensure



Nonlinear Models 123

the validity of the model.
All data sets are split in a training and a test set. The training set contains a

random sample comprising 70% of the total data set, while the remaining 30% makes
up the test set, as commonly used in practice. The training set will be used to build
the model, the test set is used for validation.

7.3.2 How to Compare Non-Parametric Machine Learning Al-

gorithms and Statistical Parametric Models?

In order to make an ‘honest’ comparison between the results of the machine learning
algorithm (that only provide accuracies as a result of the classification) and the semi-
linear models, we have to come up with some kind measure that can be used for both
machine learning and for statistical models.

Two classical diagnostics that are often used in logistic regression are sensitivity
and specificity. The sensitivity is defined as probability that a positive case (y = 1)
is predicted, given that it is observed, hence

Sensitivity = P (ypredicted = 1|yobserved = 1).

In the same way, the specificity is the conditional probability on a negative (y =
0) predicted case, given that the observed case is also negative. The prevalence is
determined by the number of positive observed cases respective to the total number
of cases, such that the accuracy can be written as:

Accuracy = Prevalence× Sensitivity + (1− Prevalence)× Specificity.

Thus, if the parametric models can be turned into some sort of classification, we
can use the above equation as well. So define

yi,predicted = 1 if πi ≥ cut-off

= 0 if πi < cut-off.

As stated in Neter et al. (1996) using 0.5 as cut-off does not always work for the best.
Using 0.5 is only appropriate when it is equally likely in the population of interest
that outcomes zero and one will occur. This certainly is not the case here. Therefore,
since we do not know whether the data set is a random sample from the population
in Southeast Florida, Neter et al. (1996) suggest to take the following proportion as
a cut-off value

cut-off =
∑Ntrain

i=1 yi

Ntrain.
,
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i.e. the proportion of ‘successes’ at the training set. This can be seen as a Bayesian
estimate (the use of prior information) for the number of ‘successes’.

For the purpose of information, the Akaike Information Criterion (AIC) (Akaike,
1973) and the Bayesian Information Criterion (BIC) (Schwartz, 1978) are also added
for parametrical models. Let p be the number of variables used in the model, N be
the number of cases in the data set and L be the likelihood function, then

AIC = −2 log L + 2× p

BIC = −2 log L + log(N)× p

For the application to mode choice models, the sensitivity can be regarded as the
most important diagnostic of the three. The fact is that the main purpose of the
models in the next section is the prediction of the positive cases. That the negative
cases are predicted well comes in handy, though the aim is on the prediction of the
positive cases. Suppose that the data set is very skewed and that you have a rather
low prevalence (as is the case in the following data sets). If most negative cases are
predicted well, but none of the positive cases is correctly predicted, then you have a
very high specificity and accuracy, but this was not the intention of the model.

7.4 Results

In this chapter, our focus is on the application of semi- and nonlinear models in the
context of mode choice models. The use of fractional polynomials, as a parametrical
extension to linear models will be investigated on the one hand, and on the other, the
use of two non-parametrical techniques, support vector machines and classification
and regression trees, will be explored as well. The performance of these models will
be compared to that of the widely used logit model (see Moons et al., 2004b, 2004c).

For the parametric models, ordinal categorical variables have been considered as
nominal (saturated main effects model) as well as continuous. Each time, the best
results are presented in the next subsections.

For the support vector machines, the kernels used in training and predicting are
those kernels described in Section 7.2: the linear optimal separating hyperplane, the
polynomial kernel of degree 3 (to provide some extra nonlinearity compared to the
linear hyperplane), the radial basis kernel and finally, the neural net kernel.
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7.4.1 Dutch Data: Public Transport

Parametric Models

The multiple linear logistic regression model, expressing the saturated main effects,
has an AIC value of 536.59 and a BIC value of 719.65. The sensitivity on the training
set equals 0.739, the specificity 0.703 and the accuracy 0.708 (cut-off value of 0.128).
On the test set, the sensitivity even increases up to 0.824, the specificity yields 0.648
and the accuracy 0.668. The final multiple fractional polynomial (mfp) model (also
considering ordinal variables as nominal) is defined by:

logit(π(x)) = β0 + β1(x6 = 2) + β2(x7 = 2) + β3(x10 = 3) + β4(x16 = 1) + β5(x27 = 1)

+β6(x27 = 2) + β7x
3
30 + β8 ln(x30)x3

30 + β9(x39 = 1)

The continuous variables x19, x21 and x22 do not appear in this final model, while
covariate x30 has repeating powers (3,3) for its fractional polynomial.
The parameter estimates and their standard errors can be found in Table 7.3. Taking
the ordinal variables as a single linear effect does not improve the model.

Table 7.3: Parameter estimates of the semi-linear model on Dutch data - Public

Parameter Estimate Standard error

β0 -2.906 0.290

β1 0.828 0.265

β2 -0.997 0.263

β3 -1.517 1.087

β4 -1.501 0.466

β5 1.814 0.486

β6 0.775 0.251

β7 1.066 ×10−6 0.220

β8 -1.373 ×10−6 0.336

β9 0.629 0.276

One can observe that, when all remaining variables are kept constant, the proba-
bility of choosing public transport to go to work is higher if the traveller is a women,
if the activity is conducted with other people and if the sum of the duration of the
activities plus the minimum public transport travel time is less or equal then the max-
imum duration. On the other hand, the probability of choosing public transport to
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go to work decreases when 3 or 4 non-work out-home activities are conducted during
the activity pattern, when there are 1 or more cars available per adult or if there is a
bring/get activity in the activity pattern.

Nonparametric Models

The linear optimal separating hyperplane needs 380 support vectors to make up its
classifier. It automatically classifies each case to the outcome value zero, this leads
to an accuracy of 0.872 on the training set and 0.889 on the test set. Note that the
sensitivity in this case equals 0.000 and the specificity 1.000.

The polynomial kernel of degree 3 requires 199 support vectors to make up the
classification, and it almost makes a perfect separation on the training set (accuracy
of 0.999), while on the test set, it leads to an accuracy of 0.801. The sensitivity of
the training is equal to 1.000 and the specificity yields 0.998. One can observe that
a third degree of the polynomial kernel probably leads to over-fitting on the training
set, since the sensitivity on the test set has decreased to 0.294 and the specificity to
0.864.

When the radial kernel is chosen for the support vector machine, we end up with
320 support vectors and a specificity of 0.033, an accuracy of 0.876 on the training
data. The results on the test set indicate a zero sensitivity and an accuracy of 0.889.
It means here that 3 positive cases of the training set are better classified, when
compared to the linear kernel.

Finally, the neural net kernel takes only 185 support vectors in order to make the
classification, but the accuracy on training (0.845) and test set (0.857) are less when
compared to the other support vector machines.

In a second example of nonparametric models, we focus on the classification tree
on this data set. The CART algorithm results in a final tree of depth eight with nine
final nodes. The detailed tree can be found in Figure 7.1. Variable x30 appears to be
the only common variable in the best fractional polynomial model and in the resulting
tree here. The accuracy on the training set is 0.900 and on the test set 0.863. The
sensitivity on the training set (0.293) indicates that at least some positive cases are
correctly predicted, the value on the test set equals 0.118.

All results are summarised in Table 7.4. Note that here the simple linear logistic
regression model provides the best result. The Polynomial SVM comes in second best,
despite the obvious over-fitting on the training data. The non-parametrical models do
not perform well. This is because they are trained on accuracy, and not on sensitivity.
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Figure 7.1: Final tree on Dutch public transport data

Table 7.4: Performance values for the models on Dutch data - Public Transport

accuracy sensitivity specificity

training set test set training set test set training set test set

Linear 0.708 0.668 0.739 0.824 0.703 0.648

Mfp 0.699 0.847 0.652 0.029 0.706 0.949

SVM - Linear 0.872 0.889 0.000 0.000 1.000 1.000

SVM - Polynomial 0.999 0.801 1.000 0.294 0.998 0.864

SVM - Radial basis 0.876 0.889 0.033 0.000 1.000 1.000

SVM - Neural net 0.845 0.857 0.011 0.000 0.968 0.963

CART 0.900 0.863 0.293 0.118 0.989 0.956

This bad performance is also due to the skewness of the data set, only 12.29 % of the
total sample takes public transport as the travel mode to go to work.
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7.4.2 Dutch Data: Slow Transport

Parametric Models

There was no difference in the final multiple fractional polynomial model with the
ordinal categorical variables taken as nominal compared to continuous attributes.
Therefore, the results of the linear regression model presented here, are those with
the ordinal variables considered as continuous-type covariates. The value of Akaike’s
Information Criterion of the linear model is equal to 455.93 and the value of the
Bayesian Information Criterion yields 606.95. The accuracy on the training set holds
0.843 (the cut-off value is equal to 0.199), while on the test set it is 0.847. Though,
more important is the sensitivity, on the training set, the value equals 0.853 and on
the test set 0.882. Considering the final multiple fractional polynomial model, the
accuracy and the sensitivity on the test set do not change, while on the training set,
both decrease a little bit, the accuracy to 0.834 and the sensitivity to 0.839. The AIC
value, on the other hand, decreases up to 428.02, indicating a better model fit, and
the BIC value of 473.78 only confirms this.

The final multiple fractional polynomial model is determined by:

logit(π(x)) = β0 + β1x7 + β2(x14 = 1) + β3(x15 = 1) + β4(x16 = 1) + β5(x26 = 2)

+β6(x27 = 1) + β7x30 + β8(x38 = 1) + β9(x39 = 1)

Only the continuous covariate x30 appears in this model, and then even as a single
linear effect, no fractional polynomials are necessary in this case. The ratio’s between
the travel time of car, slow transport and public transport do not seem to have an
important impact in predicting the usage of slow transport modes.
The difference with the linear model lies in the fact that in the mfp model non-
significant variables have been deleted due to the iterative procedure as described in
Section 7.2.
The parameter estimates and corresponding standard errors can be found in Table
7.5. All ordinal variables are taken as single linear effects.

When interpreting this model, it turns out the the probability of choosing a slow
transport mode (walk/bike) to go to work decreases if there is one or more cars per
adult in the household, if there is at least one shopping or service activity in the
activity pattern. The same is true for social/leisure out-home activities, while on the
other hand a bring/get activity in the activity pattern increases the probability of slow
transport, except when this activity is the first in the concerned tour. The probability
decreases also when the activity is pursued with other members of the household. If
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Table 7.5: Parameter estimates of the semi-linear model on Dutch data - Slow

Parameter Estimate Standard error

β0 1.730 0.475

β1 -1.400 0.285

β2 -1.117 0.378

β3 -0.760 0.288

β4 1.177 0.477

β5 -1.664 1.154

β6 -1.453 0.778

β7 -0.031 0.450

β8 2.152 0.327

β9 -1.138 0.325

the shortest travel time by bike of the tour increases, logically, the probability of using
slow transport for the tour will decrease. If the sum of the duration of the activities
in the tour plus the minimum bike travel time is less or equal then the maximum
duration of the tour, then the probability increases, while the opposite occurs when
the instead of the minimum bike travel time, the minimum public transport travel
time is considered.

Nonparametric Models

The linear optimal separating hyperplane is made up based on 209 support vectors.
This time it performs better then only classifying each case to the majority class,
leading to a sensitivity of 0.608 and an accuracy of 0.876 on the training data set and
on the test set the values yield 0.549 and 0.863 respectively.

The polynomial kernel of degree three needs two support vectors less, but again
one can observe some over-classification on the training set. The sensitivity on the
training set is again equal to 1.000, while on the test set merely the value of 0.588
can be achieved. We have here an accuracy of 0.999 compared to 0.824 on the test.
It does not even attain the level of the simple linear classifier there.

Applying the radial kernel on the support vector machine leads to an accuracy
of 0.918 on training and of 0.880 on the test set. 69.2 % of the positive cases are
correctly predicted on the training data, while on the test data about half of them
(0.510) are correctly predicted. It needs 297 support vectors to make up the margin.

The neural net kernel with parameters κ1 = 0 and κ2 = 0.05 takes 213 support
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Figure 7.2: Final tree on Dutch slow transport data

vectors to end up with an accuracy of 0.805 on the training set, a rather moderate
performance, when compared to the others, while on the test set, it provides an
accuracy of 0.863, exactly the same as the linear optimal hyperplane. The former,
however, does a better job in predicting the positive cases correctly. If we take a look
at the sensitivity on the test data, the value equals 0.569 compared to 0.549 in the
linear optimal hyperplane.

The second nonparametric model, the classification tree algorithm (again, with
ordinal categorical variables regarded as if they were continuous), results in a tree
with eleven final nodes and of depth five. This final tree is shown in Figure 7.2.

The sensitivity on the test data is the same as that of the linear optimal hyper-
plane, on the training data, CART performs better. The accuracy on the training
set equals 0.897, while on the test set it yields 0.860. Variables x14, x30 and x38 are
common in the nonparametric CART model and in the parametric mfp model.

To get a clear overview of all results on this data set, a summary is provided
in Table 7.6.
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Table 7.6: Performance values for the models on Dutch data - Slow Transport

accuracy sensitivity specificity

training set test set training set test set training set test set

Linear 0.843 0.847 0.853 0.882 0.840 0.840

Mfp 0.834 0.847 0.839 0.882 0.833 0.840

SVM - Linear 0.876 0.863 0.608 0.549 0.943 0.926

SVM - Polynomial 0.999 0.824 1.000 0.588 0.998 0.871

SVM - Radial basis 0.918 0.880 0.692 0.510 0.974 0.953

SVM - Neural net 0.805 0.863 0.476 0.569 0.887 0.922

CART 0.897 0.860 0.678 0.549 0.951 0.922

7.4.3 Dutch Data: Car Driver

We added the analysis on the Car Driver data set in this chapter, since Chapter 6
indicates which final interaction model is not rejected by the tree-based goodness-of-
fit test. The performance of this interaction model on training and test set can be
found in the final table of this subsection.

Parametric Models

Again, the best results are obtained, when the ordinal categorical variables are con-
sidered as continuous variables, we will thus do so in the mfp analysis as well as in
the CART analysis for the nonparametric models. The model comparison criteria for
the linear model comprise: an AIC of 742.75, a BIC of 902.92 and an accuracy of
0.731 and a sensitivity of 0.747 on training and respectively 0.733 and 0.730 on the
test set (the cut-off value here is 0.673). Note that the cut-off value does not exactly
agree with the distribution percentages of the transport modes over the data set as
provided in Table 7.1. These values do not agree completely, because the cut-off value
is based on the values of the training set alone, which is a random sample of the total
data set.

The multiple fractional polynomial model looks like:

logit(π(x)) = β0 + β1(x6 = 2) + β2x7 + β3(x14 = 1) + β4(x24 = 1) + β5(x26 = 2)

+β6(x26 = 8) + β7x
−1
30 + β8x

3
30 + β9x31 + β10x

−1
33 + β11x

− 1
2

33

+β12(x38 = 1) + β13(x39 = 1)
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A fractional polynomial with powers (-1,3) was obtained for variable x30, x31

just has a single linear effect, x32 apparently has no effect, while again a fractional
polynomial this time with powers (−1,−1/2) was necessary for variable x33.

The parameter estimates and their respective standard errors can be found in
Table 7.7.

Table 7.7: Parameter estimates of the semi-linear model on Dutch data - Car Driver

Parameter Estimate Standard error

β0 -13.410 2.944

β1 -0.594 0.232

β2 1.549 0.222

β3 0.797 0.231

β4 0.819 0.461

β5 1.306 0.743

β6 -1.471 0.590

β7 4.321 7.155 ×10−3

β8 1.529 ×10−7 6.212 ×10−2

β9 -7.356 ×10−2 0.161

β10 -1.018 ×104 1.872

β11 7.676 ×102 4.727

β12 -1.338 0.305

β13 0.701 0.342

According to these estimates, when all other variables are kept constant, the
probability of using the car as transport mode to go to work is lower amongst females,
when compared to men. The probability increases with the number of cars per adult,
if there is at least one shopping or service activity in the activity pattern, at least one
social or leisure out-home activity in the concerned tour, if the first activity of the
tour is a bring/get activity and if the travel time by bike increases. The probability
decreases when the first activity of the tour is not really determined, if the ratio
between car and bike travel time increases, if the ratio between public transport and
car travel time decreases and if the minimum sum of the duration of the activities in
the tour plus the minimum bike travel time is less or equal to the maximum duration
of the concerned tour, whereas it increases if the minimum sum of the duration of the
activities in the tour plus the minimum public transport travel time is less or equal
to the maximum duration of the tour.
This mfp model has an AIC of 665.58 and a BIC of 729.65 which are considerably
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less than these values for the linear model. The mfp model also shows a better
performance, when one takes a look at the sensitivity: 0.795 on the training and
0.811 on the test set. The accuracy on the training set yields 0.769 and 0.788 on the
test set.

The best interaction model according to the goodness-of-fit test in Chapter 6
incorporates forty-one terms. It has an AIC of 666.23 and a BIC of 858.44. Both
values lay in between the criteria value for the linear and the mfp models. The
accuracies slightly outperform the mfp model (0.790 on training and 0.792 on test
set), conversely, the number of covariates used is more than three times the number
used in the mfp model. The sensitivity of the training set is exactly the same as that
of the mfp model, though on the test set, a value of 0.788 indicates a somewhat lower
performance here, but it is still better than the linear regression model.

Nonparametric Models

336 support vectors are necessary to make up the linear optimal separating hyper-
plane. It performs rather well in this context, leading to a sensitivity of 0.936 and an
accuracy of 0.815 on the training set and respective measure of 0.928 and 0.831 on
the test set.

The support vector machine that tries to find a classification of the cases by
means of a polynomial kernel of the third degree is based on 335 support vectors.
The resulting accuracy, specificity and the sensitivity on the training set equal all
three 1.000, indicating something similar as in the previous two data sets, probably
an over-classification on the training set. As a consequence, the accuracy on the
test is lower, even when compared to all other means of classifying, i.e. 0.723. The
sensitivity of the test set yields 0.793.

The radial kernel support vector machine generally needs the highest number of
support vectors. 450 support vectors are necessary here and with the γ-parameter set
to 0.019, the SVM leads to an accuracy of 0.859 on the training and 0.831 on the test
set. A sensitivity of 0.973 on training and of 0.946 on test set depict that this SVM
is the best model so far.

The neural net kernel SVM produces the following results: a training-accuracy
of 0.730 and a test-accuracy of 0.792 are the outcome based on 343 support vectors.
86.5% of the positive cases are correctly predicted on the training data, while even
90.1% is correctly predicted on the test set.

The resulting classification tree has nine final nodes and a depth of six. The
recursive partitioning of the data set can be found in Figure 7.3. Variable x1 is
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the only variable that appears in the classification tree and not in the final multiple
fractional polynomial model.
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Figure 7.3: Final tree on Dutch car driver data

The performance of this classification tree can be situated in between the paramet-
ric models and the SVM. The training-sensitivity equals 0.915 and on the test data
the sensitivity equals 0.864. The accuracy on the training set of the classification
based on this final tree equals 0.813 and on the test set it yields 0.769.

All results of the different classifications are summarised in Table 7.8.



Nonlinear Models 135

Table 7.8: Performance values for the models on Dutch data - Car Driver

accuracy sensitivity specificity

training set test set training set test set training set test set

Linear 0.731 0.733 0.747 0.730 0.698 0.741

Mfp 0.769 0.788 0.795 0.811 0.715 0.729

Interaction 0.790 0.792 0.795 0.788 0.779 0.800

SVM - Linear 0.815 0.831 0.936 0.928 0.566 0.576

SVM - Polynomial 1.000 0.723 1.000 0.793 1.000 0.541

SVM - Radial basis 0.859 0.831 0.973 0.946 0.626 0.529

SVM - Neural net 0.730 0.792 0.865 0.901 0.451 0.506

CART 0.813 0.769 0.915 0.864 0.604 0.518

7.4.4 Southeast Florida: Public Transport

For the analyses on this data set, all ordinal variables are used as a single linear effect
in models described below.

Parametric Models

Using v13 instead of v9 to make the model more parsimonious, appears to be a good
strategy, since the AIC and BIC of these models are lower. The linear model has an
AIC of 5764.89 and a BIC of 5902.20. The cut-off value equals 0.096 leading to a
accuracy of 0.689 on the training and 0.691 on the test set. The sensitivity on the
training data equals 0.662 and it decreases a little on the test set to 0.649.

The final multiple fractional polynomial model (which took more than 2.5h CPU
time to be processed!) yields an AIC of 5291.68 and a BIC value of 5428.99. The
accuracy on the training set is 0.747 and on the test set it is 0.903. The sensitivity
on the training data is higher than the linear regression model (0.694), but on the
test set none of the positive cases has been predicted correctly. The final mfp model
is specified by:

logit(π(x)) = β0 + β1v
−2
1 + β2v1 + β3v2 + β4v3 + β5v4 + β6v5 + β7v

1
2
6

+β8v
2
6 + β9v

− 1
2

7 + β10v
− 1

2
7 × ln(v7) + β11v

−2
10 + β12 ln(v10)

+β13(v13 = 3) + β14(v13 = 4) + β15(v13 = 5)

+β16(v14 = 1) + β17(v15 = 1) + β18(v16 = 1)
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v1, v6, v7 and v10 are the continuous covariates. The fractional polynomial of
degree 2 of v1 has powers (-2,1), that of v6(1/2, 2), of v7(−1/2,−1/2) and of v10 (-
2,0).
The parameter estimates and standard errors of this semi-linear model are provided
in Table 7.9.

Table 7.9: Parameter estimates of the semi-linear model on Southeast Florida Public
Transport

Parameter Estimate Standard error

β0 15.610 1.387

β1 -1.098 2.046 ×10−3

β2 0.176 0.623

β3 -0.107 5.144 ×10−2

β4 -0.386 6.425 ×10−2

β5 0.153 5.602 ×10−2

β6 -0.726 5.725 ×10−2

β7 -0.753 0.250

β8 3.885 ×10−3 7.301 ×10−2

β9 -30.950 1.137

β10 -45.720 1.246

β11 1.448 ×10−2 2.994 ×10−9

β12 0.261 3.308 ×10−2

β13 0.798 0.181

β14 0.543 0.179

β15 0.854 0.114

β16 -0.693 0.119

β17 -0.678 9.891 ×10−2

β18 -0.373 0.104

The probability of using public transport in Southeast Florida increases with a
growing household size, with the number of driving licenses, with an increasing du-
ration of the activity and if the activity type is maintenance, leisure or other, with
respect to a home activity. On the other hand, the probability of using public trans-
port decreases with an increasing number of employed people in the household, with
an increasing number of children, with an increasing number of cars, with increasing
income and age and if the activity is pursued in the AM or PM peak or at mid-day.
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Nonparametric Models

The CPU time needed for obtaining these nonparametric models is very high. For
the polynomial kernel of degree two and three, we were not able to obtain the results
in three weeks time! We therefore skipped these analyses.

The linear optimal separating hyperplane can be formed using 2469 support vec-
tors, and here it appears to be nothing more than the majority class or zero R classifier.
The accuracy on the training set equals thus 0.904 and on the test set 0.903. The
sensitivity on training and test set equal thus 0.000.

The support vector machine based on the radial kernel takes 7162 support vector
machines to accomplish a performance of 0.943 on the training and 0.905 on the test
set. 40.8 % of the positive cases on the training data is correctly predicted, but only
5.2 % on the test set.

Finally, the neural net kernel support vector machine only needs 1962 support
vectors to build the classifier, but its accuracies do not reach further than those of
the linear hyperplane.

To round off this series of nonparametric models, the performance of the classi-
fication tree on this data set will be investigated. As it turns out, the tree is only
of depth one, with 2 final nodes. Figure 7.4 shows that one split has been made on
the age of the person. This final tree resulted in an accuracy of 0.912 on the training
set and of 0.911 on the test set. The sensitivity of the tree on the validation set was
0.097.

All results are summarised in Table 7.10.

Table 7.10: Performance values for the models on Southeast Florida - Public Trans-
port

accuracy sensitivity specificity

training set test set training set test set training set test set

Linear 0.689 0.691 0.662 0.649 0.691 0.695

Mfp 0.747 0.903 0.694 0.000 0.753 1.000

SVM - Linear 0.904 0.903 0.000 0.000 1.000 1.000

SVM - Radial basis 0.943 0.905 0.408 0.052 1.000 0.997

SVM - Neural net 0.904 0.903 0.000 0.000 1.000 1.000

CART 0.912 0.911 0.095 0.097 0.999 0.998
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Figure 7.4: Final tree on Southeast Florida public transport data

7.4.5 Southeast Florida: Slow Transport

Parametric Models

The ‘best’ parametric models on this data set are obtained again by considering single
main effects for the ordinal categorical variables and by using v13 instead of v9.

The linear logistic regression model takes a value of 2249.38 on Akaike’s Informa-
tion Criterion and a value of 2386.70 on Schwartz Criterion (BIC). The cut-off value
for determining the accuracies is 0.026, while the accuracy on the training set itself
yields 0.690 and on the test set 0.693. The sensitivity on the training data yields
0.634 and on the test data 0.627.

The multiple fractional polynomial setting ends up with an AIC of 2236.89 and a
BIC of 2330.84. The training set’s sensitivity is a little bit lower (0.604), but on the
test set, it has improved (0.659). The accuracy on the training set is equal to 0.694
and that of the test set 0.617. The mfp model itself is set by:

logit(π(x)) = β0 + β1v1 + β2v2 + β3v3 + β4v4 + β5v5 + β6v
−2
7

+β7v
−2
7 × ln(v7) + β8(v8 = 2) + β9 ln(v10) + β10(v12 = 1)

+β11(v13 = 4) + β12(v15 = 1)

Fractional polynomials of degree one appear to be necessary for the variables v1

and v10, the former with power one, the latter with power zero. Covariate v7 takes a
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fractional polynomial of degree 2 with powers (-2,-2).
The parameter estimates and their standard errors can be found in Table 7.11.

Table 7.11: Parameter estimates of the semi-linear model on Southeast Florida Slow
Transport

Parameter Estimate Standard error

β0 -3.089 0.236

β1 0.221 0.829

β2 0.237 0.092

β3 -0.320 0.105

β4 -0.536 0.118

β5 -0.864 0.115

β6 143.554 0.438

β7 394.588 1.314

β8 0.523 0.160

β9 -0.070 0.029

β10 0.394 0.186

β11 1.618 0.202

β12 0.401 0.134

Interpreting these model parameters learns us that the probability of using slow
transport in Southeast Florida increases with increasing household size, with an in-
creasing number of employed people in the household, if the person is not-employed
compared to employed, if the activity is pursued at mid-day and if the type of the
activity is leisure. The probability of using slow transport decreases on the other hand
with an increasing number of children, with an increasing number of driving licenses
and an increasing number of cars in the household, with an increasing age and with
an increasing duration of the activity.

Nonparametric Models

The support vector machine that tries to find a linear optimal separating plane in the
transformed covariate space is made out of 1601 support vectors. Again as a classifier
it appears to be the Zero-R classifier in that it classifies each case to the majority
class. This leads to an accuracy of 0.974 on the training data and 0.971 on the test
data.

Again, for the same reasons as above, we did not obtain results on the polynomial
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Figure 7.5: Final tree on Southeast Florida slow transport data

kernel SVM.
The radial kernel SVM takes 5850 support vectors to make up the SVM classifier.

16.4 % of the positive instances were correctly predicted on the training data, though
only 0.8 % was correctly predicted on the test set. This classifier results in a training-
accuracy of 0.978 and in a test accuracy of 0.971.

The neural net kernel SVM with parameters κ1 equal to zero and κ2 equal to 0.056
needs only 536 support vectors to determine an accuracy of 97.36 % on the training
and 97.11 % on the test set. Again, this classifier does not outperform the simplest
classifier possible, but on the other hand, since these classifiers are trained to have a
very high accuracy without taking sensitivity into account, it is hardly not feasible to
do better.

The classification tree (see Figure 7.5) is a little bit more complicated than this
simplest classifier (3 final nodes) and one can observe that the performance on the
test set is slightly worse. The training accuracy yields 0.975 and the test accuracy
equals 0.970. The tree classifies unemployed people without driving license as the
only persons that use slow transport. The sensitivity on the training set is equal to
0.097 and that of the test set equals 0.056.

All results are summed up in Table 7.12.
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Table 7.12: Performance values for the models on Southeast Florida - Slow Transport

accuracy sensitivity specificity

training set test set training set test set training set test set

Linear 0.690 0.693 0.634 0.627 0.691 0.695

Mfp 0.694 0.617 0.604 0.659 0.696 0.616

SVM - Linear 0.974 0.971 0.000 0.000 1.000 1.000

SVM - Radial basis 0.978 0.971 0.164 0.008 1.000 1.000

SVM - Neural net 0.974 0.971 0.000 0.000 1.000 1.000

CART 0.975 0.970 0.097 0.056 0.998 0.998

7.5 Conclusion

In this chapter, we tried to discover whether semi- and nonlinear models could add
something to transportation analysis in general and to mode choice analysis in the
Netherlands as well as in Florida in particular. Linear, semi-linear and nonlinear mod-
els were fitted and compared to each other by means of three diagnostics (sensitivity,
accuracy and specificity, in decreasing order of importance).

General conclusions that can be drawn report that on very skewed data sets, the
performance of linear regression and the multiple fractional polynomial model are
usually better than the results of the support vector machines and CART. The main
idea of models applied to a setting with a binary response variable is to predict the
positive cases well. Since the SVM models are especially derived to achieve an ac-
curacy (instead if sensitivity) as high as possible, this may conflict with the purpose
of the modeler. On better balanced data sets (as the Dutch Car Driver data), the
performance of the SVM and the CART models are comparable and usual somewhat
better than the results of the (semi-)linear models. These latter models have the
advantage of being better interpretable, while the SVM’s are simply a black box ap-
proach. These support vector machines, and more in specific the polynomial kernel
SVM, sometimes tend to over-fit the data on the training set. CART is also inter-
pretable, but not in terms of the parameters as in linear models. Also here one has
to apply pruning strategies in order to avoid over-fitting.

Further research will take a closer look at extensions of semi-linear and nonlinear
statistical models. Apart from support vector machines and classification and regres-
sion trees, there are also other nonlinear models, well-known in machine learning:
Neural (Zurada, 1992; Haykin, 1994) and Bayesian (Pearl, 1988) networks, to name
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a few. A possible avenue for future research is to investigate whether these models
are transferable to other countries. One could question whether the variables that
appeared important in order to model e.g. the probability of using public transport,
are the same in all countries, and if so, perhaps policy measures can be undertaken in
order to advise certain groups of people (e.g. commuters with flexible working hours)
to use the public transport system.
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Final Conclusions

8.1 Introduction

The purpose of this thesis was to find an answer to two particular questions. At
first whether simpler, and hence more parsimonious models would perform better,
worse or approximately as well as complex models in the context of activity-diary
data. And secondly: how well is the performance of nonlinear and semi-linear mod-
els, as compared to linear models at the selection of a transport mode? These semi-
and nonlinear models often lead to more parsimonious, but on the other hand also
to more complex models (in terms of model definition, not in terms of the number
of parameters). Another objective that fits within this second main topic of linear
and nonlinear models, is concerned with testing parametric linear models on their
goodness-of-fit. A test was developed to investigate lack-of-fit of a linear model based
on a nonparametric classification tree. This test clearly shows the value of a nonlinear
model, and how it can serve to improve a linear model. Of course, it is difficult to give
clear recommendations on the choice of a particular model. Which model would be
preferable? It raises many questions and there are several possible grounds for pre-
ferring one model above another. In transportation studies, predictive performance,
interpretability, robustness and sensitiveness for policy measures are generally con-
sidered to be relevant criteria for model comparison. These different characteristics
will be discussed in the next two sections.

In this final chapter, considerations are made about the consequences for trans-
portation modelling. Which models considered here can be of use for the transporta-
tion modelling community, what are the pros, cons and restrictions for each of the
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models? Are they robust, interpretable, can their parameters be influenced, etc? In
the first section, some final remarks are given on the activity-based models used in
Chapters 4 and 5. The next section concerns a summary of the results on mode-choice
models as presented in Chapters 6 and 7.

8.2 Activity-Based Models

This manuscript has explored the relevance and performance of four different simple
models, two recursive partitioning methods (CHAID and C4.5) as well as the appli-
cation of bagging and boosting in building activity-based models of transportation
demand. The four simple models are the Zero R model, the One R model (which
can be regarded as a very simple tree structure), the Näıve Bayes model, and the
Feature Selection (FS) approach as described in Chapter 4. Furthermore, in Chapter
5, bagging and boosting have been applied to the One R models and to the feature
selection models. This allows us to make a comparison between bagging and boosting
on a rather weak classifier (One R) and a stronger one, i.e. a tree induction algorithm
(C4.5 after feature selection).

8.2.1 Predictive Performance

Let us consider again the probability on a correct prediction (or the predictive accu-
racy) on each dimension for each approach. Figures 8.1 and 8.2 show the performance
for each of the methods on every dimension.

Figure 8.1 shows the accuracies of the three simple classifiers (Zero R, One R
and Näıve Bayes), together with those of CHAID, C4.5 (the ‘full’ approach) and of
the second type of simple models, i.e. the C4.5 trees after feature selection. The
Zero R method clearly sets the lowest standard above which all other methods should
perform. The simple models (going from One R up to FS) clearly outperform Zero
R and the recursive partitioning methods (CHAID and C4.5) outperform these sim-
ple methods by just a few percentages. Both bagging and boosting models achieve
better results than their original analysis, even better than the recursive partitioning
methods. Only on the ‘Mode for work’ and the ‘Location 1’ dimensions, the results
of the CHAID analysis could not be improved. Though, the number of rules neces-
sary to improve on the CHAID analysis by means of bagging and boosting the FS
models also outnumbers the number of rules of the CHAID analysis. In general, one
could say that the performance of the models is approximately the same. The simple
models perform a little worse than the complex, but they compensate for this fact by
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Figure 8.1: Performance of ‘simple’ activity-based models

requiring fewer rules to build them. This holds solely for predicting each dimension
separately.
If we consider the aggregate behaviour, (i.e. the sequence alignment measures (SAM)
and the correlation coefficients of the OD matrices that capture the performance over
the nine different dimensions as discussed in Chapters 4 and 5), apparently the results
differ somewhat. These SAM measures determine the dissimilarity between the ob-
served and predicted sequences of activities and should be as low as possible. On the
test set, apart from the SAM measure disaggregated on location, which is lowest for
the feature selection approach, all other SAM measures are best for either the CHAID
or the ‘full’ C4.5 approach. Though, very often, the feature selection approach or the
One R approach come as a close second best. Therefore, it is not surprising that these
measures can be improved by bagging and boosting on the One R method. At trip
matrix level, the One R method shows the highest correlation coefficient between the
observed and expected origin-destination matrices, when disaggregated on transport
mode. The full approach has the highest coefficient overall and when we disaggregate
on primary activity, while the feature selection approach shows the best results when
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Figure 8.2: Performance of bagging and boosting on activity-based models

one disaggregates on day. Most of these results can again be equaled or improved by
bagging and boosting. Conclusion: (combinations of) simple models do not necessar-
ily perform worse than the more complex models and they are able to capture the
most important information in trying to predict the activity-travel behaviour.

There are also some other grounds on which some modelling approach might be
preferred above another. Interpretability, robustness and sensitiveness for policy mea-
sures are considered to be relevant criteria in transportation models. All these char-
acteristics will be discussed in the next three subsections.

8.2.2 Interpretability

With respect to this characteristic, there is a notable uniformity amongst the different
approaches. In fact, all simple models can be regarded as being tree structures. In the
Zero R approach, there is only the root node, in the One R approach, there is just one
branch, while in the Näıve Bayes approach trees up to depth three are possible. The
CHAID and C4.5 approach are recursive partitioning methods, hence they provide
tree structures. In general, the CHAID method provides the most complex trees,
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followed by the C4.5, the Näıve Bayes and the feature selection approach, in this
order.

The different states, represented by the branches of the tree, are often readily
recognisable in terms of context-specific decision rules or behavioural patterns. The
legibility of the tree structures may assist policy makers in identifying those groups of
individuals or contexts for which certain transport-demand measures are applicable.
For example, a tree may reveal circumstances in which a particular measure would or
would not lead to a change in mode choice, travel party, . . . .

Bagging and boosting models are harder to interpret. They do not lead to one
particular tree, either they provide fifty possibly different tree structures on which
the results are averaged, or they provide weighted results. After taking a closer look
at the fifty trees that bagging provides per dimension, one may conclude that they
usually differ, sometimes this difference starts already at the root node. This does
not allow for immediate recognition of the important variables for prediction of the
outcome variables.

8.2.3 Robustness and Stability

The advantage of all these tree structure models (when compared to e.g. parametric
models) is that they are ‘free of assumptions’, thus their structure is completely de-
termined by the data. Above that, the tree structure models are also less sensitive to
possible sources of bias, like outliers and multicollinearity (Wets et al., 2000). Out-
liers are simply cases that may increase the heterogeneity in a branch under given
conditions, but they rarely effect the variables on which the split is made or the modal
response outcome in that particular branch. Tree induction models do not solve the
problem of multicollinearity, but this type of imperfections in the data has probably
less disruptive impacts on the outcome when e.g. compared to parametric models.
Since tree structure models determine the selection of the explanatory variables to-
gether with their impact on the outcome variable, multicollinearity means that some
variables are simply redundant given the presence of others. These redundant vari-
ables will not be used for the formation of the branches in the tree structure.
Removing the irrelevant variables to increase robustness is also the purpose when a
variable selection technique was applied before building the C4.5 trees. The results
learn us that a strong reduction in the complexity of the tree do not necessarily lead
to a decrease in performance, sometimes even quite the reverse happens. Experi-
ence learns that quite different structures may fit almost equally well on a given data
set. In order to increase the robustness, bagging was applied to two of the simple
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approaches, with successful results.

8.2.4 Sensitiveness for Policy Measures

In general, tree structure models predict discontinuous behavioural changes if policy
measures lead to a shift from one condition state to another (e.g. if the price of petrol
raises above 1.25 ¿, public transport will be chosen as transport mode). In other
words, people’s behaviour, as predicted by the model, is to some extent insensitive
to (small) changes (e.g. if the petrol prices increases from 1.05 to 1.15 ¿, the model
will not predict a change in the transport mode used). However, whether a rather
low sensitiveness also leads to a low prediction of behavioural change is an empirical
question. It might very well be the fact that individuals are indifferent to small
variations in conditions (e.g. travel distances), and that they make changes in their
behaviour (e.g. mode choice) only if the changes make a qualitative difference (e.g.
is my destination within walking distance or not). Investigating this question about
changes in travel behaviour requires data about the behaviour before and after a
change is implemented or data about the response of individuals to (hypothetical)
situations. These data are not at hand, but future research could focus on this
questions by comparing the ability of the different methods to predict behavioural
change.

8.3 Mode-Choice Models

The second main question posed in this manuscript was whether semi- and nonlinear
models perform better than the standardly used linear models in the context of mode
choice models? The semi-linear approach of multiple fractional polynomials (mfp) is
compared to the nonlinear approaches of support vector machines (SVM’s) and clas-
sification and regression trees (CART) on the same four criteria as the activity-based
models, i.e. predictive performance, interpretability, robustness and sensitiveness to
policy measures.
Another study aim that fits within this context is concerned with testing parametrical
linear models on their goodness-of-fit. We developed a test, based on a nonparamet-
ric classification tree, that examined linear models on lack-of-fit. This section clearly
puts its value in perspective.
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8.3.1 Predictive Performance

The mode choice data sets that have been used are very skewed. It means that
the probability on observing a case is very low, the majority class of the response
variable is zero. Therefore, it would not have been ‘honest’ to make a comparison
of the different models on e.g. predictive accuracy alone. Therefore, we have added
the sensitivity and the specificity measure as well. The sensitivity measures (in the
case of public transport) the conditional probability of predicting public transport
given that public transport was observed, while the specificity equals the conditional
probability of predicting the ‘other’ transport mode, given that is was observed. These
two additional measures give a more complete picture of the relative performance on
the five different mode choice data sets. Consider e.g. the data set of Southeast
Florida on public transport: only 9.67% of the cases do use public transport. Thus
if a particular model predicts default the ‘other’ transport mode, it has an accuracy
of over 0.900, but none of the cases that you actually want to predict is predicted
correctly. Figures 8.3 to 8.7 show the results on the different data sets. The models
on the horizontal axis are ordered according to an increasing value of the accuracy.
The predictive performance measures (all on a scale from zero to one) will again be
compared on the test set. Some general characteristics are discussed below.

For all skew data sets, the specificity is rather high, since this ‘other’ transport
mode is rather easy to predict. For all public transport data sets, the sensitivity of
the multiple fractional polynomial model and the support vector machines is espe-
cially low. The sensitivity measure of CART is somewhat higher, while the linear
model appears to be best in predicting predict public transport for these data sets.
For both slow transport data sets, the same results can be observed as in the public
transport case, apart from the multiple fractional polynomial models. In the slow
transport data sets, the mfp model clearly predicts the ‘slow transport’ choice much
better. In the Dutch Car Driver data set, which is more balanced than the others,
the results are somewhat better, as expected. The nonlinear models outperform the
linear and semi-linear on both accuracy and sensitivity, while the semi-linear model
also performs better than the two linear models.
To conclude, one could advise to consider nonlinear models for prediction, certainly if
the data set is balanced or if the number of ‘Y=1’ cases is large enough. Otherwise,
i.e. if the probability of observing a case is rather low, a linear or semi-linear model
will probably serve best.
This illustrates once more the value of the tree-based test statistic. Overlooking the
results on the different data sets, the parametric models (linear and semi-linear) ap-
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Figure 8.3: Performance of Different Methods on Mode Choice Models: Dutch Data
- Public Transport

pear to be the only models with a reasonable predictive performance in terms of
sensitivity. And sensitivity seems a very important measure in this context. Appar-
ently, only a small number of people use slow or public transport, thus it is important
to come up with an interpretable model that is able to predict the transport usage
of this minority. The tree-based lack-of-fit test is able to evaluate the fit of paramet-
ric models (regardless of the type of explanatory variables) and if the null model is
rejected, a close inspection of the classification tree can reveal a particular deviation
from the null model. It is a nice example that shows how a nonlinear, nonparamet-
ric technique can be used to confirm or improve a parametric (linear or semi-linear)
model.

The next three subsections will discuss the interpretability, the robustness and
the sensitiveness for policy measures. With respect to these properties sometimes the
parametric models will have advantages over the nonparametric models, while with
respect to others it might be the other way around.
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8.3.2 Interpretability

For interpretability, we argue that the nonparametric CART model and the linear
and semi-linear models are comparable. The impact of a certain explanatory variable
(ceteris paribus) on the response can easily be determined from the corresponding
parameter value in the parametric models. On the other hand, in the CART model,
the branches of the tree represent different condition states and the sequence of splits
that make up these branches indicate which variables have an impact on the response
and what this impact is. When it comes to readability, the structure that is provided
by a tree has an advantage over the additive model that is provided by the (semi-
) linear models. Due to this legibility, policy makers can easier identify groups of
individuals or contexts wherein similarities or changes in the choice of transport mode
can be identified.
The SVM models will be hard to compare with the other models, since they can be
regarded as a black box approach. One can change the values of the parameters that
make up the different SVM models, but with respect to interpretability, robustness
and sensitiveness to policy measures, there is very little to discuss.

8.3.3 Robustness

Again, as discussed in the section on activity-based models, the CART model has
two possible advantages. At first, the parametric models assume a predefined addi-
tive functional form, the CART model is ‘free of assumptions’ in the sense the data
determine the tree structure.

Furthermore, the stability of the parameter estimates of a parametric model tends
to be sensitive to the presence of outliers and multicollinearity in the data used for
estimation. Careful preprocessing is required in order to try to eliminate these possible
sources of bias. Tree structure models, on the other hand, are less sensitive to such
sources of bias (Wets et al., 2000). As discussed above, outliers only increase the
heterogeneity in the nodes, whereas multicollinearity means that some variables are
irrelevant given the presence of others and consequently they are not used in the
formation of the tree.

8.3.4 Sensitiveness for Policy Measures

With respect to sensitiveness to policy measures, parametric models seem to have
an advantage as they are designed to predict the size of the independent impacts of
the explanatory variables on the choice of the transport mode (response variable).
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Even the impact of a very small change in one of the variables can be determined.
The design of (semi-)linear models makes them ideal for policy makers to test the
impact of different scenario’s (e.g. what is the effect on the transport mode if we
increase the number of part-time workers?). In contrast, the CART model can only
predict a change in the response variable if the change in behaviour caused by a new
policy measure leads to a shift from one branch to another. Thus, the tree model is
less sensitive to policy measures, though this does not mean that the prediction of a
change in the mode choice will be worse in the tree models. It depends on whether
the individual regards the change as having a qualitative impact for which a change in
transport mode is needed. The extent to which this property represents an advantage
of tree models over parametric models depends on the degree to which the transport
mode to be predicted can be governed by the branches of the tree that are extracted
from the data. Investigating this question is an interesting topic for future research.
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Figure 8.4: Performance of Different Methods on Mode Choice Models: Dutch Data
- Slow Transport

Figure 8.5: Performance of Different Methods on Mode Choice Models: Dutch Data
- Car Driver
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Figure 8.6: Performance of Different Methods on Mode Choice Models: Southeast
Florida - Public Transport

Figure 8.7: Performance of Different Methods on Mode Choice Models: Southeast
Florida - Slow Transport



Appendix A

In order not to overload Chapter 2, we will discuss the variables that are important in
the Albatross system (Arentze and Timmermans, 2000). Note again that all relevant
choices are considered through different dimensions in the Albatross system: which
activity is conducted, where, when, with whom, for how long and which transport
mode is used. The variables that determine these nine choice facets will be discussed
separately in the following sections.

A.1 Mode for Work

Table A.1 shows the list of independent variables for the ‘mode for work’ choice facet.

The first variable ‘group’ is included to allow the system to distinguish between
cases where there is no partner, the partner’s schedule for that day is unknown or
that schedule is known. The next series of variables describe the activity program at
the level of the schedule skeleton (S)1. These include the total time engaged in Work1,
in Work1 and Work2 together the number of mandatory, out-of-home activities other
than work and the presence of a bring/get activity. Work1 includes work/school
activities and Work2 voluntary work activities. For the partner, the variables have
zero values if there is no partner, or if the partner’s schedule is unknown.

The succeeding variables describe the work-chain (W)2 for which a mode choice is
to be made. These include work time and travel time information. Bike travel time
is taken as an indicator of travel distances. Furthermore, travel time ratios between
modes are included as indicators of the relative speed of each mode on the (shortest)
route between locations.

Then a series of descriptors at the level of the work-chain are included. First, the

1Schedule skeleton
2Chain of work episodes for which transport mode is selected

155
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Table A.1: Independent variables used in the ‘mode for work’ choice facet of Albatross

Name Description Categories

group Partner status 1: no partner

2: schedule partner unknown

3: partner schedule known

Two Total time of Work1 in minutes in S 0 : 0; 1 :≤ 240; 2 : 241− 360;

3 : 361− 480; 4 :> 480

Ttot Total time of Work1 and Work2 in S 1 :≤ 240; 2 : 241− 360;

3 : 361− 480; 4 :> 480

Nsec Number of mandatory, out-of-home activities other 0 : 0; 1 : 1; 2 : 2; 3 : 3− 4;

than work in S 4 : 4− 5; 5 :> 5

yBget There is a bring/get activity in S 0: yes; 1: no

Pwo Total time of Work1 in minutes in S of partner 0 : 0; 1 :≤ 240; 2 : 241− 360;

3 : 361− 480; 4 :> 480

PTtot Total time of Work1 and Work2 in S of partner 1 :≤ 240; 2 : 241− 360;

3 : 361− 480; 4 :> 480

PNsec Number of fixed out-of-home activities other 0 : 0; 1 : 1; 2 : 2; 3 : 3− 4;

than work in S of partner 4 : 4− 5; 5 :> 5

PyBget There is a bring/get activity in S of partner 0: yes; 1: no

Tbike Objective travel time by bike to location of W 1 :≤ 10; 2 : 11− 20;

in minutes 3 : 21− 30; 4 : 31− 50;

5 : 51− 100; 6 :> 100

Rcabi Ratio car/bike travel time in % 1 :≤ 25, 2 : 26− 50;

3 : 51− 75; 4 :> 75

Rpubi Ratio public transport/bike travel time in % 1 :≤ 100; 2 : 101− 150;

3 : 151− 200; 4 :> 200

Rpuca Ratio public transport/car travel time in % 1 :≤ 300; 2 : 301− 500;

3 : 501− 700; 4 :> 700

Peak1 Start time of W falls in 7:30-9:00 AM 0: yes; 1: no

Peakn End time of W falls in 17:00-18:00 0: yes; 1: no

Two2 Total time of W in minutes 1 :≤ 300; 2 : 301− 500;

3 : 501− 700; 4 :> 700

Nloc Number of different locations in W 1: one; 2: more than one

Avo Activity in S with end time within 1-hour 1: none

interval before first work episode in W 2: bring/get; 3: other

Ana Activity in S with start time within 1-hour 1: none

after last work episode in W 2: bring/get; 3: other

Pywork Partner has work activity during work time 0: no; 1: yes

Pybget2 There is a bring/get activity in S 0: no; 1: yes

of partner during W

PNfix Number of out-of-home activities in S 0: none; 1: one

of partner during W 2: more than one

PTTmax Maximum bike travel time across activities in S 0: none; 1: 1-15;

of partner during W (minutes) 2 : 16− 30; 3 :> 30
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start time of the first work episode and end time of the last work episode of the chain
determine whether travel time takes place during the morning and/or evening rush
hours. Second, the number of different work locations involved serve as a measure of
the amount of travel involved apart from the first and last commute. Third, activities
included in the skeleton that are closely related in time to the start of the first work
episode or the end of the last work episode are recorded as possible condition for
trip-chaining during the first and the last commute. Finally, the last set of variables
tends to cover travel demands of the partner during the work-chain. These include
the number of out-of-home activities in the schedule skeleton, maximum travel time
across locations and the presence of a bring/get activity.

A.2 Activity Selection, Travel Party and Duration

Table A.2 shows the list of independent variables for the ‘activity selection’, ‘travel
party’ and ‘duration’ choice facets. The footnotes 3, 4 and 5 distinguish between the
three different choice facets, while S stands for the evolving schedule.

The program-level variables are partly dynamically and partly statically defined.
The fixed activities, which belong to the skeleton of the schedule, are given and re-
main constant during the process. Therefore, the variables Two and Ttot are defined
statically as the total time scheduled for Work1 and Work1 and Work2 together, re-
spectively. Twincl is added to take observed travel time as well as activity time related
to Work1 activities into account. In the present step, the travel time information is
considered known, given our assumption that transport mode choice for primary work
activity is made in the previous step.

The other program-related variables (except yBget) are dynamically defined. A
first set of variables defines for each flexible activity the total time scheduled (T-
variants) or, simply, the presence of the activity (y-variants) in the current schedule.
The variable values are initially zero and updated each time an activity is added.
The Nsec variable is a summary variable representing the number of flexible or fixed
out-of-home activities other than work in the current schedule. The rationale for
including the program-level variables in general is that they describe conditions, such
as activity load of the current program, possibilities to combine activities, and so on.

Some of the variables at this level need further explanation. The Iact variable
defines for the current activity type the number of instances of that type present in

3available for selection decisions only
4available for travel party decisions only
5available for duration decisions only
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Table A.2: Independent variables used in the ‘activity selection’, ‘travel party’ and
‘duration’ choice facets of Albatross

Name Description Categories

Iact Number of instances of the current 0: 0; 1: 1

activity type in S 2 :> 1

Two Total time of Work1 in S (in minutes) 0 : 0; 1 :≤ 240; 2 : 241− 360;

3 : 361− 480; 4 :> 480

Twincl Total time of Work1 incl. travel in S 0 : 0; 1 :≤ 260; 2 : 261− 380;

3 : 381− 500; 4 :> 500

Ttot Total time of Work1 and Work2 in S 0 : 0; 1 :≤ 240; 2 : 241− 360;

3 : 361− 480; 4 :> 480

Nsec Number of out-of-home activities other 0 : 0; 1 : 1; 2 : 2;

than work in S 3 : 3; 4 : 4; 5 :> 4

yBget There is a bring/get activity in S 0: no; 1: yes

yDshop There is a daily shopping activity in S 0: no; 1: yes

yServ There is a service activity in S 0: no; 1: yes

yNDshop There is a non-daily shopping activity in S 0: no; 1: yes

ySoc There is an out-of-home social activity in S 0: no; 1: yes

yLeis There is an out-of-home leisure activity in S 0: no; 1: yes

Tsoc Total time of social activities (in-home 0 : 0; 1 :≤ 30; 2 : 31− 60;

and out-of-home) in S 3 : 61− 120; 4 :> 120

Tleis Total time of out-of-home leisure 0 : 0; 1 :≤ 30; 2 : 31− 60;

activities in S 3 : 61− 120; 4 :> 120

Td-shop Total time of daily shopping activities in S 0 : 0; 1 :≤ 20; 2 : 21− 40;

3 : 41− 60; 4 :> 60

Tserv Total time of service activities in S 0 : 0; 1 :≤ 20

2 : 21− 40; 3 : 41− 60; 4 :> 60

Tnd-shop Total time of non-daily shopping 0 : 0; 1 :≤ 30

activities in S 2 : 31− 60; 3 : 61− 120; 4 :> 120

A1dur Total relative time of current activity in S 0: none; 1: short

2: average; 3: long

Tmax(t) Maximum available time in t-th time 0: 0; 1: 1-30

interval in Sfix (in minutes) 2 : 31− 60; 3 :> 60

yCar(t) Availability of car in t-th time 0: no; 1: yes;

interval in Sfix 2: schedule partner is unknown

Atype Activity type 1: daily shopping; 2: service; 3: non-daily

shopping; 4: social; 5: leisure

yAvail3 Selection of activity is feasible given S 0: no; 1: yes

and minimum duration for the activity type

yAvail4 ‘Others in the household’ option is 0: no; 1: yes

available given the household composition

yAvail25 The ‘average’ duration class is feasible 0: no; 1: yes

given S and the minimum duration for that class

yAvail35 The ‘long’ duration class is feasible 0: no; 1: yes

given S and the minimum duration for that class

Awith5 Travel party 0: none; 1: only others inside household;

2: others outside household involved
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the current schedule. This is a powerful variable if the probability of adding a next
activity decreases with the number of instances already scheduled. A1dur represents
an alternative way of encoding activity time. The variable defines a short, average
and long time relative to the activity type under concern, such that for example the
long category of one type may still be shorter than the average of another type. The
definition of the duration categories corresponds with the alternatives considered for
the duration choice (see Table A.3).

The next set of variables describes cases at the schedule level. First, the Tmax(t)
variables represent the maximum time available across available time slots in the
schedule skeleton. The index t defines a particular time period among six distin-
guished time periods: before 10 AM; 10-12 AM; 12-2 PM; 2-4 PM; 4-6 PM and after
6 PM. The time for each time slot and each time period is determined by the overlap
between time ranges given by opening hours of available facilities for the activity type,
the time between fixed activities and the time period t. Second, the yCar(t) variables
represent the availability of the car in each time period t, as a function of the number
of available cars in the household, the number of adult members of the household
and the mode used by the partner for work. For example, the car is considered not
available if the car is in use for work by the partner and there is less than one car
per adult available in the household. As in the previous table, the equal-frequency
method was used to discretise continuous variables.

Finally, besides activity type, the activity-level variables are specific for each of
the three considered choice facets. The variables at this level represent feasibility
conditions for choice alternatives. Selecting an activity is considered infeasible if the
maximum available time across the time slots that are available within opening hours
of available facilities for the activity is shorter than the minimum duration for the
activity type. For travel party decisions, the options ‘alone’ and others outside the
household’ are considered to be always available. The ‘other(s) inside the household’
option, however, is considered available only in multi-person households. With respect
to the duration choice, the exact definitions of alternatives are shown for each flexible
activity type in Table A.3.

The shortest duration class is available by definition (given the positive selection
decision). The average and long duration alternatives, however, are available only if
the minimum duration defined for the concerned class fits in the schedule (evaluated
in the same way as in the case of selection). Apart from the feasibility conditions, the
travel party dimension is an additional variable for the duration choice facet. This
dimension is considered known at the time that the duration decision is made.
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Table A.3: Classification of activity duration

short average long

type range mean range mean range mean

daily shopping [10 - 20] 15 [21 - 45] 35 [46 - 90] 50

service [5 - 10] 5 [11 - 20] 15 [21 - 40] 30

non-daily shopping [10 - 30] 20 [31 - 80] 60 [81 - 160] 90

social [10 - 75] 60 [76 - 150] 120 [151 - 300] 180

leisure [10 - 60] 40 [61 - 120] 90 [121 - 240] 150

A.3 Activity Start Time

Table A.4 shows the list of independent variables for the ‘start time’ choice facet.
The footnote 6 points to earlier definitions of duration alternatives in the table for
duration decisions, whereas A denotes the concerned activity and Sall the complete
observed schedule.

The first set of variables, labelled Tmax(t), represents for each distinguished time
interval t the available time in the current schedule given start and end time times of
the fixed activities, the opening hours of available facilities for the concerned activity
and estimated travel times for the free as well as for the fixed activities in the current
schedule. Tmax represents the maximum time across feasible positions in the current
schedule. Because the location, mode and trip chains are not yet known in this stage,
the travel time estimates are based on activity-type specific ratios between activity
type derived from the entire data set. These ratios are represented in Table A.5.

On the other hand, the used facility opening hours are specific for origins and
day of the week. The time periods t correspond to the alternatives for the start-time
choice (i.e. before 10 AM, 10-12 AM, 12-2 PM, 2-4 PM, 4-6 PM and after 6 PM).

The Tmax variables are updated after each start time decision. Initially, only the
schedule skeleton is given and the fixed start and end times determine the available
time in each position.

As said before, once a start-time decision is made for a flexible activity, its sched-
ule position is taken as given (i.e. taken as observed). Tmax accounts for the assumed
flexibility in timing and duration choices of flexible activities by calculating the max-
imum time available per position. The maximum represents the available time under
the most favourable duration and start-time choice within given duration and start-
time constraints. Still, the sequential procedure implies that high-priority activities

6see earlier definitions of duration alternatives in Section A.2
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Table A.4: Independent variables used in the ‘start time’ choice facet of Albatross

Name Description Categories

Nsec Number of mandatory out-of-home activities 0 : 0; 1 : 1; 2 : 2;

other than work in Sall 3 : 3− 4; 4 :> 4

Two Total time of Work1 in Sall (in minutes) 0 : 0; 1 :≤ 240

2 : 241− 360; 3 : 361− 480

4 :> 480

Twincl Total time of Work1 incl. travel in Sall 0 : 0; 1 :≤ 260;

2 : 261− 380; 3 : 381− 500; 4 :> 500

Ttot Total time of Work1 and Work2 in Sall 0 : 0; 1 :≤ 60;

2 : 61− 120; 3 : 121− 240; 4 :> 240

yBget There is a bring/get activity in Sall 0: no; 1: yes

yDshop There is a daily shopping activity in Sall 0: no; 1: yes

yServ There is a service activity in Sall 0: no; 1: yes

yNDshop There is a non-daily shopping activity in Sall 0: no; 1: yes

ySoc There is an out-of-home social activity in Sall 0: no; 1: yes

yLeis There is an out-of-home leisure activity in Sall 0: no; 1: yes

Tsoc Total time of social activities (in-home and 0 : 0; 1 :≤ 30; 2 : 31− 60;

out-of-home) in Sall 3 : 61− 120; 4 : 121− 240; 5 :> 240

Tleis Total time of out-of-home leisure activities in Sall 0 : 0; 1 :≤ 30; 2 : 31− 60;

3 : 61− 120; 4 : 121− 240; 5 :> 240

Td-shop Total time of daily shopping activities in Sall 0 : 0; 1 :≤ 20; 2 : 21− 40;

3 : 41− 60; 4 :> 60

Tserv Total time of service activities in Sall 0 : 0; 1 :≤ 20; 2 : 21− 40;

3 : 41− 60; 4 :> 60

Tnd-shop Total time of non-daily shopping 0 : 0; 1 :≤ 30; 2 : 31− 60;

activities in Sall 3 : 61− 120; 4 :> 120

Tmax(t) Maximum available time in t-th time interval 0: < minimum; 1: minimum-average

in Sall (possible duration for A) 2: average-maximum; 3: > maximum6

Btwo(t) There is a Work1 activity with start time 0: no; 1: yes

in t = 1, . . . , 3 in S

Etx(t) There is an out-of-home activity with end time 0: no; 1: yes

in t = 1, . . . , 6 in S

DBT(t) Saved bike travel time if A is linked with 0: 0 or no such activity; 1 :≤ 10

out-of-home activity with start time in t = 1, . . . , 3 2 : 11− 30; 3 :> 30

DET(t) Saved bike travel time if A is linked with 0: 0 or no such activity; 1 :≤ 10

out-of-home activity with end time in t = 1, . . . , 6 2 : 11− 30; 3 :> 30

yCar(t) Availability of car in t-th time interval in S 0: no; 1: yes;

2: schedule partner is unknown

Atype Activity type of A 1: daily shopping; 2: service; 3: non-

daily shopping; 4: social; 5: leisure

Awith Travel party of A 0: none; 1: only others inside household;

2: others outside household involved

Iact Number of the current activity type of A 1 : 1; 2 :> 1

Adur Duration of A 1: short; 2: average; 3: long6

Ad1 Shortest bike travel time across possible locations 0 : 0; 1 :≤ 10

for A (minutes) 2 : 11− 30; 3 :> 30
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Table A.5: Travel time/duration ratios used to estimate travel times based on activity
duration

activity ratio

daily shopping 0.33

service 0.65

non-daily shopping 0.28

social 0.14

leisure 0.14

unknown 0.30

(e.g. shopping) may reduce the start-time options for activities lower in the assumed
hierarchy (e.g. leisure activities).

The levels for Tmax are defined dependent on the duration class of the activity
under concern. The zero level means that there is no feasible schedule position for
the t-th start-time range even if the minimum duration of the activity is taken. The
levels 1 and 2 denote respectively, that there is a feasible position for implementing
an average and long duration type of activity. Hence, the Tmax variable has two
functions. First, it defines the feasibility condition for each start-time option and
second, it indicates the extent to which each time period allows flexible choice of
activity duration.

The next set of schedule-level variables allows the system to anticipate on possi-
bilities to establish connections with other out-of-home activities. Various indicators
are included. First, Btwo(t) indicates whether the current schedule includes a work
activity with a start time falling in the t-th time period. Second, the ETx(t) denotes
the same for the end time of any out-of-home activity. For existing flexible activities
possible end times given duration and start-time constraints are taken. Note that for
other than work activities only the end times are taken into account. This is done
to reduce redundancy in the set of variables. Other-than-work activities tend to be
short so that start and end times often fall within the same time period and only one
value can serve as an indicator for both.

Second, the DBT(t) and DET(t) variables more specifically indicate the travelled
distance that could be saved by establishing a travel connection. Hereby, DBT refers
to the work activity with start time falling into time period t, if any, DET, relates to
the out-of-home activity of any type with the end time falling in the t-th interval, if
any. As in previous models, bike travel time is taken as indicator of distance. Let O
denote the existing out-of-home activity, A the activity for which the start time choice
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is made and H the home location, then the saved time is determined by comparing the
sum of travel time across H-O-H and H-A-H tours with the travel time of H-O-A-H
or H-A-O-H trip. In all trip types, the location that minimises travel time across
location alternatives for A is taken as the location for A.

The final set of schedule-level variables is given by yCar(t). As explained before,
this variable represents the availability of the car in the t-th time period, given the
number of cars present per adult member of the household and the mode used for
the work activity in the partner’s schedule (if any). Finally, the remaining variables
all relate to dimensions of the activity for which the start-time decision is currently
made. These are restricted to the dimensions considered known at this stage, i.e. the
activity type, travel party, duration and shortest home-based distance.

A.4 Trip Chaining

The set of variables that were used to describe the cases at the program-level, schedule-
level and activity-level are summarised in Tables A.6 and A.7. The footnote 7 points
to earlier definitions of duration alternatives in the table for duration decisions, Sall

denotes the complete observed schedule, whereas S is the current schedule. Finally,
A is the concerned activity and O is an existing previous or next activity.

The program-level variables are largely the same as in the previous step. Only the
variables that are specific for the trip-chaining step are considered here.

First, the yAstop, yBstop and yIBstop denote the feasibility of the trip-chaining
options. The rules for determining the feasibility take the spatial, temporal and
institutional constraints into account. The next set of variables, then, describes the
concerned flexible activity regarding the dimensions that are considered known in
this step. First activity step is defined in two alternative ways by a single nominal
variable and a binary variable for each activity type respectively. Binary encoding
is added to allow the system to distinguish between certain types also if significant
splits on the nominal variable cannot be found due to the Bonferroni adjustments.
The Awith, Adur and Astart variables describe the travel-party, duration and start-
time dimensions in terms of the choice alternatives of the choice facets in previous
steps. Finally Ad1 measures the shortest distance from the home location across the
possible locations for the activity. Note that in the case of social activities every zone
in the area is by definition zero. For the other activities, the shortest distance depends
on locations of available facilities.

7see earlier definitions of duration alternatives in Section A.2
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Table A.6: Independent variables used in the ‘trip chaining’ choice facet of Albatross:
Part I

Name Description Categories

Nsec Number of mandatory out-of-home activities 0 : 0; 1 : 1; 2 : 2; 3 : 3− 4; 4 :> 4

other than work in Sall

Two Total time of Work1 in Sall (in minutes) 0 : 0; 1 :≤ 240; 2 : 241− 360;

3 : 361− 480; 4 :> 480

Twincl Total time of Work1 incl. travel in Sall 0 : 0; 1 :≤ 260; 2 : 261− 380;

3 : 381− 500; 4 :> 500

Ttot Total time of Work1 and Work2 in Sall 0 : 0; 1 :≤ 60; 2 : 61− 120;

3 : 121− 240; 4 :> 240

yBget There is a bring/get activity in Sall 0: no; 1: yes

yDshop There is a daily shopping activity in Sall 0: no; 1: yes

yServ There is a service activity in Sall 0: no; 1: yes

yNDshop There is a non-daily shopping activity in Sall 0: no; 1: yes

ySoc There is an out-of-home social activity in Sall 0: no; 1: yes

yLeis There is an out-of-home leisure activity in Sall 0: no; 1: yes

Tsoc Total time of social activities (in-home 0 : 0; 1 :≤ 30; 2 : 31− 60;

and out-of-home) in Sall 3 : 61− 120; 4 : 121− 240; 5 :> 240

Tleis Total time of out-of-home leisure 0 : 0; 1 :≤ 30; 2 : 31− 60;

activities in Sall 3 : 61− 120; 4 : 121− 240; 5 :> 240

Td-shop Total time of daily shopping activities in Sall 0 : 0; 1 :≤ 20; 2 : 21− 40;

3 : 41− 60; 4 :> 60

Tserv Total time of service activities in Sall 0 : 0; 1 :≤ 20; 2 : 21− 40;

3 : 41− 60; 4 :> 60

Tnd-shop Total time of non-daily shopping 0 : 0; 1 :≤ 30; 2 : 31− 60;

activities in Sall 3 : 61− 120; 4 :> 120

yCar There is a car available in the selected 0: no; 1: yes;

time-of-day, given work activity of partner 2: schedule partner is unknown

yBstop Feasibility of a Before Stop, given 0: no; 1: yes

space-time constraints

yAstop Feasibility of an After Stop, given 0: no; 1: yes

space-time constraints

yIBstop Feasibility of a Between Stop, given 0: no; 1: yes

space-time constraints

Atype Activity type of A 1: daily shopping; 2: service; 3: non-daily

shopping; 4: social; 5: leisure
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Table A.7: Independent variables used in the ‘trip chaining’ choice facet of Albatross:
Part II

Name Description Categories

yAd-shop A is a grocery activity 0: no; 1: yes

yAserv A is a service activity 0: no; 1: yes

yAnd-shop A is a non-grocery activity 0: no; 1: yes

yAsoc A is a social activity 0: no; 1: yes

yAleis A is a leisure activity 0: no; 1: yes

Awith Travel party of A 0: none; 1: only others inside household;

2: others outside household involved

Adur Duration of A 1: short; 2: average; 3: long7

Astart Start time of A 1: < 10 AM; 2: 10-0 AM; 3: 0-2 PM;

4: 2-4 PM; 5: 4-6 PM; 6: > 6 PM

Ad1 Shortest bike travel time across possible 0 : 0; 1 :≤ 10;

locations for A (minutes) 2 : 11− 30; 3 :> 30

Ontime Available time for A before (On) or after 0: < minimum; 1: minimum - average;

Optime O (Op), given the timing of fixed activities 2: average - maximum; 3: > maximum7

On-/Optype Activity type of O 1: bring/get; 2: work1; 3: other

Onwith Travel party of O 0: none; 1: only others inside the household;

Opwith 2: others outside the household involved

On-/Opdu Duration of O 1: ≤ 10; 2: 11-40; 3: 41-120; 3: > 120

Ondu1 Bike travel time to (nearest) location 0: 0; 1: ≤ 10; 2: 11-20; 3:> 20

Opd1 of O from home

Ond3 Shortest bike travel time between location 0: 0; 1: ≤15; 2: 16-30; 3:> 30

Opd3 of O and possible locations for A

On-/Opd13 Saved bike travel time of A is linked with O 0: 0; 1: ≤ 10; 2: 11-30; 3:> 30
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The final set of variables describe the (uniquely) identified feasible activities, if
any, for making a before or an after connection respectively. Note that if A can
be positioned before as well as after an certain activity, the variables refer to the
same activity. First, the Otime variables represent the available time for completing
A in that position. In fact, the maximum available time is calculated if there is
flexibility in determining the start time and duration for existing activities in the
current schedule. The Otype, Owith and Odu describe the activity type, the travel
party and duration of the activity, again, in terms of the same categories that are
used throughout the model. Finally, the next variables describe the spatial context in
terms of the (shortest) distances to O from home, the distance between A and O and
the saved travel distance when the connection would be made (H-A-O-H or H-O-A-H)
compared to the single stop option (H-A-H).

A.5 Activity Transport Mode

The transport mode of the cases can be determined by independent variables at
household/individual, activity-program and tour level. The same variables as in Table
2.1 can be used for the household/individual level, while the activity-program and
tour-level variables are summarised in Table A.8. The footnote 8 points to earlier
definitions of duration alternatives in the table for duration decisions, S is the current
schedule and C is the concerned tour.

Activity-program variables concern the total time engaged in work and the number
of second, mandatory activities, such as service, shopping and the bring/get activities.
Together, these variables indicate the ‘workload’ of the program. Possibly, a high
workload may lead to a preference for fast modes so as to increase the remaining time
for leisure and social activities.

The tour-level variables cover various aspects. First, the time-of-day when the tour
is undertaken is potentially relevant as it may determine the degree of congestion on
the road network during travelling. However, at this stage the start time of the tour
is not exactly known. The exact departure time will be dependent on the mode used
for the tour. For example, a fast mode allows one to delay the departure time, while
keeping the time engaged in the activities itself constant. Moreover, the start time
and duration of flexible activities are flexible. To account for the freedom of choice
on all these dimensions, we included a variable that determines the earliest possible
start time of the tour.

8see earlier definitions of duration alternatives in Section A.2
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Table A.8: Independent variables used in the ‘transport mode for other than work
activities’ choice facet of Albatross

Name Description Categories

Nsec Number of mandatory out-of-home activities 0 : 0; 1 : 1; 2 : 2; 3 : 3− 4; 4 :> 4

other than work in S

Two Total time of Work1 in S (in minutes) 0 : 0; 1 :≤ 240; 2 : 241− 360;

3 : 361− 480; 4 :> 480

Ttot Total time of Work1 and Work2 in S 1 :≤ 120; 2 : 121− 240; 3 : 241− 360;

4 : 361− 480; 5 :> 480

CBT Earliest possible begin time of C 1: < 10 AM; 2: 10-0 AM; 3: 0-2 PM;

4: 2-4 PM; 5: 4-6 PM; 6: > 6 PM

Aty1 Type of the first activity in C 1: work; 2: bring/get; 3: grocery; 4: service;

5: non-grocery; 6: leisure; 7: social; 8: other

Aty2 Type of the second activity in C 0: home; 1: work; 2: bring/get; 3: (non-)gro-

cery or service; 4: leisure or social; 5: other

Adur1 Duration of the first activity in C 1: short; 2: average; 3: long8

Awith1 Travel party of the first activity in C 0: none; 1: only others inside the household;

2: others outside the household involved

Cbrget Bring or get activity is part of C 0: no; 1: yes

Cgroc Grocery activity is part of C 0: no; 1: yes

Cserv Service activity is part of C 0: no; 1: yes

Cshop Non-daily shopping activity is part of C 0: no; 1: yes

Csoco Social activity is part of C 0: no; 1: yes

Cleiso Leisure activity is part of C 0: no; 1: yes

Cnlout Non-leisure activity is part of C 0: no; 1: yes

TTbike Shortest travel time by bike for tour C 0: 0; 1 :≤ 5; 2 : 6− 15; 3 : 16− 25

(in minutes) 4 : 26− 35; 5 : 36− 60; 6 :> 60

Rcabi Travel time ratio between car and bike (%) 1 :≤ 25, 2 : 26− 33

3 : 34− 85; 4 :> 85

Rpubi Travel time ratio between public transport 1 :≤ 100; 2 : 101− 200

and bike (%) 3 : 201− 260; 4 :> 260

Rpuca Travel time ratio between public transport 1 :≤ 100; 2 : 101− 700

and car (%) 3 : 701− 900; 4 :> 900

Textra2 Extra bike travel time to reach location 0: 0; 1: ≤ 10; 2: 11-15;

of order 2 (minutes) 3: 16-30; 4: > 30

Textra3 Same for order 3 0: 0; 1: 1-15; 2: 16-20;

3: 21-35; 4: > 35

Textra4 Same for order 4 0: 0; 1: 1-20; 2: 21-30;

3: 31-40; 4: > 40

Pbrget Partner has a bring/get activity during tour C 0: no; 1: yes

Pserv Partner has a shopping or service during tour C 0: no; 1: yes

PTmax Partner’s maximum bike travel time across 0: 0; 1: 1-10; 2: 11-20;

activities during tour C (minutes) 3 : 21− 40; 4 :> 40

Avcar Car is available given the work activity 0: no; 1: yes; 2: there is no partner

of the partner or schedule partner is unknown
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A second potentially important aspect of the tour is the tour’s purpose. The
dimensions of the first activity in the tour, such as the activity type, travel party
and duration, are included as descriptors of the tour’s purpose. In the majority of
tours, which involve only one out-of-home activity, these variables suffice. To cover
the general case where a tour involves multiple activities, we additionally use a series
of variables indicating the absence or presence of an activity of each distinguished
activity category in the tour.

Third, the required travel distance on the tour is a potential moderator of mode
choice. We use the shortest-route bike time as an indicator of distance. Because
locations of flexible activities are still unknown in this stage, the shortest-travel time
across possible locations for the activity is taken as an index here9 Additionally, the
tour-specific relative speed of each mode is measured in terms of travel-time ratios
between car/bnike, public transport/bike and public transport/car.

Mode choice may further depend on the required travel distance to reach locations
of higher order. Fast modes probably reduce the disutility of travel and therefore may
be preferred in cases where the individual wishes to visit a higher-location at a relative
long marginal distance. The fourth set of tour-level variables, therefore, defines the
extra bike-travel time required to reach locations for each higher-order location. The
bike times calculated relate to the first activity only and assume a home-based trip10

In case of fixed activities (no location choice) and social activities (no higher-order
locations), the marginal distances are set to zero. Note that these variables describe
location choice options and, consequently, allow the system to anticipate on location
choices in choosing a mode.

Furthermore, the activity schedule of the partner, if any, may compete with the
use of car in households where there is only one car available. The fifth set of tour-
level variables describe the presence of a bring/get activity, the presence of a shopping
or service activity and the maximum bike-travel time across the partner’s tour that
necessarily overlap in time with the tour concerned. Overlapping tours are identified
by comparing latest possible start times and earliest possible end times. If there is
no partner, the partner’s schedule is unknown or there are no overlapping tours, the
variables are set to zero.

The final independent variable defines the availability of the car-driver mode. Car

9If the tour involves more than one flexible activity, the shortest travel time is calculated based

on home-based distances. This was done to avoid the computational complexity of optimising the

choice of multiple locations simultaneously.
10This covers the majority of cases in our data sets as about 70 % of the tours involve only a single

activity.
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driver is considered not available if there is no car available in the household or the
person has no driving license or is otherwise incompetent to drive. Furthermore, the
option is not available if there is only one car and this car is in use by the partner for
work (the first schedule decision). Hence, three groups are distinguished: there is no
car available (Avcar = 0), there is a car available (Avcar = 1) and there is no partner
of the schedule of the partner is unknown (Avcar = 2). The other mode alternatives
- car passenger, public transport and slow mode - are considered always available.
At least in these data set, (almost) every person has a bike and a public transport
link exists between every origin-destination in the study area (although the required
travel time may vary strongly). Nevertheless, the time available for the tour may rule
out public transport or slow modes and dictate the use of the car. In the present
system, however, this is not taken into account, because uncertainties about available
times, possible locations and travel times at this stage of the process make it hard to
evaluate this constraint.

A.6 Locations

The different categories of the choice facet location1 are:

� Hmin: the nearest location from home;

� Cmin: the nearest location in the context of the tour;

� Cext5: the highest-order location within 5 minutes;

� Cext10: the highest-order location within 10 minutes;

� Cext20: the highest-order location within 20 minutes;

� Cmax: the highest-order location;

� Other: none of the foregoing.

The required travel time and the order of the location are used as selection crite-
ria. Travel times are based on the observed mode. They are derived from travel-time
matrices considering either the home location (Hmin) or the entire tour (Cmin-Cmax)
as the basis for the trip(s). The Cext5 - Cext20 categories assume a maximum accept-
able travel time and select the highest order location within reach. We assume that
individuals define acceptable travel times relative to the travel time required for the
nearest location (tour based). Therefore, the maximum levels - 5, 10 and 20 minutes -
are defined as extra travel time over the minimally required travel time (tour-based).
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Table A.9: Definition of location orders in Albatross

Order daily shopping non-daily service leisure

(floor space) shopping (] of outlets) (] of outlets)

in m2 (floor space)

1 1-1000 1-4000 1-40 1-5

2 1001-2000 4001-10000 41-80 6-10

3 > 2000 10001-50000 81-800 11-100

4 - 50001-70000 - > 100

5 - > 70000 - -

Location order, on the other hand, is defined dependent on activity type and the size
of facilities available at the location. The exact definitions are given in Table A.9.

An observed location belongs to the ‘other’ category, if it matches none of the
others, because the location is inferior in terms of travel time and order or it does not
meet the maximum travel-time constraints of Cext5, Cext10 or Cext20.

Just as in previous choice facets, each case is described at different levels includ-
ing the household/individual, activity program/schedule, tour and activity level. The
variables used to describe household/individuals are the same as in Table 2.1. The
other variables are described in Table A.10. The footnote 11 points to earlier defi-
nitions of duration alternatives in the table for duration decisions, S is the current
schedule, A the current activity and C is the concerned tour.

Activity-program variables describe the activity load of the schedule in terms of
the amount of time engaged in and number of out-of-home, non-leisure activities,
such as work/school, shopping, personal business and others. Tour-level variables
determine the number of activities conducted on the tour, the nature of the previous
and the next activity and whether the trip to the activity starts and/or ends at home.
Activity-level variables describe the profile of the (flexible) activity in terms of activity
type, duration, travel party and start time (time of day). The classifications used for
these dimensions correspond to the actions of choice facets used in earlier stages.

The final set of variables, AvCmin - AvCmax, has a special status. They deter-
mine, e.g., that Cmin is not available in cases where the nearest home location (Hmin)
is identical with the nearest tour-based location (Cmin).

For the location2 choice facet, we consider only the ‘other’ locations from the pre-
vious choice facet. This facet now selects a travel-time band comprising the location
where the activity is to be performed. travel times are evaluated exclusively in the

11see earlier definitions of duration alternatives in Section A.2
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Table A.10: Independent variables used in the ‘location’ choice facets of Albatross

Name Description Categories

Twincl Total time of Work1 inclusive travel 0 : 0; 1 :≤ 260; 2 : 261− 380;

in S (in minutes) 3 : 381− 500; 4 :> 500

Ttot Total time of Work1 and Work2 in S 1 :≤ 240; 2 : 241− 360

3 : 361− 480; 4 :> 480

Nsec Number of mandatory out-of-home activities 0 : 0; 1 : 1; 2 : 2; 3 : 3− 4;

other than work in S 4 : 4− 5; 5 :> 5

Atype Activity type 1: daily shopping; 2: service;

3: non-daily shopping; 4: social;

5: leisure

Mode Transport mode 1: car (driver or passenger); 2: slow;

3: public

Adur Activity duration 1: short; 2: average; 3: long11

Awith Travel party of A 0: none; 1: only others inside the

household; 2: others outside the

household involved

Tiday Start time of A 1: < 10 AM; 2: 10-0 AM; 3: 0-2 PM;

4: 2-4 PM; 5: 4-6 PM; 6: > 6 PM

Tmax Maximum available time in the schedule position 0: 0; 1: 1-30;

of the activity (inclusive travel times) 2: 31-60; 3: > 60

Nout Number of out-of-home activities 1: 1; 2: 2;

in C 3: > 2

fromH Trip to A starts from home 0: no; 1: yes

toH Trip from A ends at home 0: no; 1: yes

Aprev Type of previous activity 0: home; 1: work; 2: other

mandatory; 3: social or leisure

Anext Type of next activity 0: home; 1: work; 2: other

mandatory; 3: social or leisure

AvCmin Cmin location is available in choice set 0: no; 1: yes

AvCext5 Cext5 location is available in choice set 0: no; 1: yes

AvCext10 Cext10 location is available in choice set 0: no; 1: yes

AvCext20 Cext20 location is available in choice set 0: no; 1: yes

AvCmax Cmax location is available in choice set 0: no; 1: yes
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context of the concerned tour (as opposed to home-based). As before, the time limits
are defined in terms of the extra travel time relative to the minimum travel time
across locations of the choice facet. In that way, the following bands are defined: 0-5
(Cext5), 6-10 (Cext10), 11-20 (Cext20), 21-30 (Cext30) and more than 30 minutes
(Cext>30). Furthermore, locations outside the study area are considered as an ad-
ditional choice category (Othout). We use the same set of variables to describe the
cases as in the location1 choice facet (see table A.10). Only the availability variables
are redefined to indicate the presence of locations in the (reduced) choice set lying
within each of the successive time bands.



Samenvatting

Het modelleren van verplaatsingen is altijd van groot belang geweest in transport
onderzoek. In de jaren 50 was er, wegens de snelle toename in autogebruik, nood
aan modellen die de vraag naar transport konden voorspellen. In die dagen werden
verplaatsingen beschouwd als het resultaat van vier achtereenvolgende stappen, die
apart gemodelleerd werden: het genereren van trips, het verdelen van trips over de
verschillende zones, de keuze van vervoermiddel en de toekenning van de route. Deze
modellen staan ook bekend als het trip-gebaseerde of vierstapsmodel (Ruiter en Ben-
Akiva, 1978). Een nadeel van deze modellen is dat de interacties tussen trips in tijd en
ruimte genegeerd worden. Daarom werden er vanaf het midden van de jaren zeventig
toer-gebaseerde systemen ontwikkeld (Daly et al., 1983). Deze modellen combineren
verschillende trips in een toer die vertrekt en aankomt thuis of op het werk. Doch,
opnieuw kwam er kritiek op deze modellen, omdat de verplaatsing nog steeds als een
gëısoleerd gegeven beschouwd werd en de reden waarom men trips onderneemt, werd
nog steeds verwaarloosd.

Dit heeft ertoe geleid dat er in de loop van het laatste decennium een verandering
opgetreden is binnen het verkeersonderzoek. De interesse in ruimtelijke interactiepa-
tronen is verschoven van trip- en toer-gebaseerde modellen naar de analyse van com-
plexe dagelijkse activiteitenpatronen en de hiermee gepaard gaande verplaatsingen
(Bhat en Koppelman, 1999). De basisgedachte achter activiteitengebaseerde modellen
is dat het verplaatsingsgedrag van personen bepaald wordt door de activiteiten die
individuen of huishoudens wensen te ondernemen. De verplaatsing op zich is slechts
één van de componenten binnen het rooster van activiteiten dat in tijd en ruimte
gemodelleerd moet worden. Deze activiteitengebaseerde modellen pogen ook de duur
van de activiteiten te voorspellen, wanneer en op welke locatie ze worden uitgevoerd,
welk vervoermiddel wordt gebruikt om tot op deze locaties te komen, enz. Het
huishouden en andere sociale structuren hebben natuurlijk een invloed op het ver-
plaatsings- en activiteitengedrag van personen, net zoals de onderlijke afhankelijkheid
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tussen personen, vervoermiddelen, etc.

Deze activiteitengebaseerde aanpak van verplaatsingsgedrag heeft geleid tot ver-
schillende modellen waarbij voornamelijk 2 grote groepen tot stand zijn gekomen,
deze van de simultane en deze van de sequentiële modellen. De eerst groep van de
nuts-maximaliserende modellen vindt zijn oorsprong in de micro-economie en psy-
chologie, de tweede groep van computationele procesmodellen werd gëınspireerd door
psychologische beslissingsprocestheorieën. De simultane modellen gaan ervan uit dat
een individu per dag een complete set patronen van activiteiten met bijbehorende ver-
plaatsingen evalueert en er vervolgens het patroon uitkiest dat zijn of haar nutsfunc-
tie maximaliseert. Een grote groep onderzoekers was echter gekant tegen dit soort
modellen, ze betwisten het feit dat personen altijd tot een ‘optimale’ keuze zouden
komen en gaan ervan uit dat individuen heuristieken gebruiken die verschillend kun-
nen zijn al naar gelang de context waarin men zich bevindt. In zijn meest simpele
vorm zijn deze modellen opgebouwd uit een verzameling van ALS-DAN regels: ALS
aan voorwaarde X voldaan is, DAN wordt actie Y ondernomen.

Eén van de meest geavanceerde én het enige operationele sequentiële model tot op
heden is het Albatross systeem (Arentze en Timmermans, 2000). Dit systeem, dat we
zullen gebruiken doorheen dit proefschrift, wordt uitgebreid toegelicht in Hoofstuk 3.
De oorspronkelijke data uit Hendrik-Ido-Ambacht en Zwijndrecht, twee gemeentes uit
de regio ten zuiden van Rotterdam, worden ook hier gebruikt. Deze staan beschreven
in Hoofdstuk 2 en in de Appendix. Het systeem heeft als doel te voorspellen welke
activiteiten waar uitgevoerd worden, wanneer, voor hoe lang, met wie en welk trans-
portmiddel voor de verplaatsing gebruikt wordt. Deze beslissingen bepalen de negen
verschillende keuzefacetten (ook wel dimensies genoemd) van het systeem en een se-
quentiële uitvoering van de negen modellen die op hun beurt telkens één van deze
facetten trachten te voorspellen, levert de voorspelde activiteitenpatronen. De per-
formantie van het systeem wordt getest op drie niveaus: op het niveau van de keuze-
facetten, van de activiteitenpatronen en van de tripmatrices. Op dit eerste niveau
wordt er per dimensie nagegaan hoe goed elk model de respons kan voorspellen, dit
wordt gemeten aan de hand van de accuraatheid. Verder wordt er ook wat dieper in-
gegaan op welke verklarende variabelen het belangrijkst zijn om tot deze voorspelling
te komen. Op het niveau van de activiteitenpatronen vergelijkt men de geobserveerde
en de voorspelde sequenties van activiteiten door middel van Sequence Alignment
Methodes (SAM) (Joh, et al., 2001a, 2001b, 2001c, 2002a). Deze methodes meten
het verschil tussen 2 sequenties in termen van de inspanning die nodig is om de twee
sequenties gelijk te maken met behulp van invoeging, verwijdering en substitutie. Hoe
lager de SAM maat, hoe gelijker de sequenties zijn. Tot slot test men de performantie
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van het Albatross systeem ook op tripmatrix niveau. De geobserveerde en voorspelde
oorsprong-bestemming matrices worden met elkaar vergeleken door middel van een
correlatiecoëfficiënt. Deze matrices bevatten het aantal trips ondernomen van een
bepaalde oorsprong (rij) naar een bepaalde bestemming (kolom). Een bepaald type
van modellen presteert dus goed binnen het systeem als de accuraatheid per dimensie
behoorlijk is, als de SAM maten laag zijn en de correlatiecoëfficiënten op tripmatrix
niveau dicht bij 1 liggen.

De vraag of men de voorkeur moet verlenen aan complexe of aan meer eenvoudige
modellen, is waarschijnlijk even oud als de wetenschap zelf. Occam’s scheermes (‘Nun-
quam ponenda est pluralitas sin necesitate’ - Niets moet onnodig verveelvuldigd wor-
den), een smeekbede voor eenvoud, dateert zelfs uit de Middeleeuwen (Tornay, 1938),
doch men moet erover waken dat deze stelling juist verklaard wordt. ‘Eenvoud is een
doel op zich’ is in essentie de juiste interpretatie, terwijl ‘Eenvoud leidt tot een grotere
accuraatheid’ dit niet is. Het antwoord op die vraag naar eenvoud hangt natuurlijk af
van het doel dat men met een bepaald model wil bereiken. Als men een model beoogt
met een hoge voorspellings- en veralgemeningsgraad, dan zullen complexere modellen
dit doel waarschijnlijk het best dienen. Indien men echter het grote geheel wil zien
en bereid is om hiervoor wat kleinere details op te offeren, dan kan een eenvoudiger
model soelaas brengen. Indien men geconfronteerd wordt met een grote verzameling
van verklarende variabelen die een bepaalde uitkomst moeten voorspellen, dan kun-
nen deze kleinere details storend werken. In de psychologie (Gigerenzer et al., 1999)
beroept men zich ook vaak op het feit dat men in het dagelijkse leven eenvoudig-
weg de tijd niet heeft om de verschillende mogelijkheden in overweging te nemen, en
daarom kiest men voor eenvoudigere modellen. Denk bv. aan een dokter in het ope-
ratiekwartier, waar net een patiënt wordt binnengevoerd die een hartaanval krijgt. De
beslissing van deze arts kan een leven redden of er een kosten, en hij/zij heeft niet de
tijd om uitgebreid overleg te plegen. Slechts een paar metingen moeten uitwijzen welke
acties ondernomen moeten worden. Dus, eenvoudigere modellen kunnen een oplos-
sing bieden waneer men vooral gëınteresseerd is in de hoofdeffecten die de uitkomst
bëınvloeden. Men kan deze eenvoudigere modellen aan de ene kant bekomen door een-
voudige heuristieken toe te passen, of door technieken toe te passen die een selectie
maken uit een grote verzameling van verklarende variabelen.

Deze vraag naar complexiteit of eenvoud, en welke van de twee beter dienst doet
in de context van transportmodellen vormt een rode draad doorheen dit proefschrift.
Met betrekking tot het activiteitengebaseerde Albatross systeem gaan we in Hoofd-
stuk 4 en 5 na of eenvoudige modellen beter, even goed of slechter presteren dan
het standaard gëımplementeerde CHAID inductie algoritme (Kass, 1980) dat we clas-



176 Samenvatting

sificeren onder de complexere modellen. Dit zal onderzocht worden op niveau van
de keuzefacetten, dus voor elk van de dimensies apart, maar ook op een meer geag-
gregeerd niveau, op basis van de voorspelde activiteitenpatronen. Gesteund door on-
derzoek binnen het domein van de psychologie dat ons leert dat menselijk gedrag vaak
goed voorspeld wordt door eenvoudige modellen, gaan we deze stelling in Hoofdstuk 4
toetsen in een transportomgeving. Twee verschillende manieren om de complexe
verzameling van regels per dimensie te vereenvoudigen worden bekeken. De eerste
manier steunt op eenvoudige heuristieken (Zero R, One R (Holte, 1993) en Näıve
Bayes (Langley et al., 1992)) die gebruikt worden om de negen Albatrossdimensies te
voorspellen, terwijl in de tweede manier twee gelijkaardige analyses uitgevoerd wor-
den. In de eerste analyse wordt een C4.5 boom (Quinlan, 1993) gebouwd met behulp
van alle variabelen, terwijl in de tweede analyse enkel een bepaalde set van variabe-
len gebruikt wordt, die geselecteerd werden aan de hand van een variabele selectie
techniek, Relief-F (Kononenko, 1994). Het is immers zo dat irrelevante variabelen
een sterk effect kunnen hebben op de structuur van de boom. De resultaten van
de verschillende analyses leren ons dat een sterke reductie in het aantal verklarende
variabelen dat gebruikt wordt (én bijgevolg in de complexiteit van de bomen) niet
noodzakelijk leidt tot een verlies in de voorspellende kracht van het systeem.

Een uitbreiding op deze eenvoudige modellen wordt gebracht in Hoofdstuk 5. Bag-
ging en boosting (Breiman, 1996; Freund en Schapire, 1997) zijn twee technieken die
in de laatste tien jaar gëıntroduceerd werden als ideeën om de accuraatheid van een
voorspelling te verbeteren. Bagging doet dit door de variantie van de voorspelling
te verminderen, terwijl boosting eigenlijk een gewogen gemiddelde voorspelling ople-
vert. Deze bagging en boosting technieken worden toegepast op de One R modellen uit
Hoofdstuk 4 en op de modellen na variabele selectie. De resultaten worden opnieuw
vergeleken op de drie niveaus: per dimensie apart, op niveau van de activiteiten-
patronen en op tripniveau. We mogen concluderen dat de resultaten zeker die van
de modellen zonder bagging of boosting overtreffen, en dat ze zelfs op geaggregeerd
niveau het beste resultaat over Hoofdstuk 4 en 5 heen behalen.
Deze resultaten bevestigen de stelling dat (een combinatie van) eenvoudige modellen
niet noodzakelijker slechter presteert dan de complexere, ook binnen een activiteiten-
gebaseerd transportmodel.

Een tweede onderzoekspunt situeert zich binnen één specifiek facet van activiteiten-
gebaseerde modellen, nl. de keuze van vervoermiddel. De verschillende datasets die
hiervoor gebruikt worden, zijn weerom allemaal beschreven in Hoofdstuk 2. Door
evolutie op verschillende domeinen wordt de onderzoeker nu geconfronteerd met twee
nieuwe problemen: aan de ene kant zijn de datasets waarmee gewerkt moet worden
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veel groter geworden, zowel wat het aantal variabelen betreft als het aantal gegevens
en aan de andere kant is er in het laatste decennium een overvloed aan nieuwe tech-
nieken ontwikkeld. Hoofdstuk 6 focust op het eerste probleem: hoe kan men de fit van
een lineair model nagaan in dergelijke hoogdimensionele datasets, terwijl Hoofdstuk 7
een aantal van deze nieuwe technieken toepast binnen vervoersmodellen.
Een typische setting die vaak gebruikt wordt om na te gaan in welke omstandighe-
den een bepaald vervoermiddel geprefereerd wordt boven de andere is de logistische
regressie setting. Om na te gaan in hoeverre het model de data goed fit, wordt vaak
gebruik gemaakt van de Pearson teststatistiek, doch deze kan enkel gebruikt wor-
den als alle verklarende variabelen categorisch van aard zijn. Verschillende methoden
(zie bv. Hosmer en Lemeshow, 1980; Hart, 1997) werden ontwikkeld om ook con-
tinue variabelen mee in rekening te kunnen brengen, zonder dat men deze eerst moet
categoriseren, maar de meeste technieken verliezen aan kracht van zodra het aantal
verklarende variabelen toeneemt. We stellen in Hoofdstuk 6 een nieuwe teststatistiek
voor, die het nulmodel contrasteert met een niet-parametrisch model dat gebaseerd is
op het algoritme dat gebruikt wordt voor classificatiebomen (Breiman et al., 1984).
Deze teststatistiek laat toe dat zowel categorische als continue variabelen gemodelleerd
worden. Verschillende simulatiesettings en de resultaten op werkelijke datasets tonen
aan dat deze teststatistiek een veel belovende kracht heeft om fout gemodelleerde vari-
abelen of vergeten variabelen te ontdekken, zelfs in hoge dimensies (i.e. veel gegevens
en veel variabelen). Bovendien, als het lineaire nulmodel niet aanvaard wordt, dan
geeft de classificatieboom, als niet-parametrische tegenhanger van het parametrisch
nulmodel, aan in welke mate het nulmodel verbeterd kan worden. Om een dieper
inzicht te verkrijgen in de asymptotische nulverdeling van deze boom-gebaseerde test-
statistiek, is echter verder theoretisch onderzoek nodig.
In Hoofdstuk 7 wordt gefocust op de performantie van niet-lineaire en semi-lineaire
modellen en de resultaten worden vergeleken met deze van de lineaire modellen. Deze
semi- en niet-lineaire modellen leiden vaak tot een eenvoudiger model wat het aantal
parameters betreft, maar van de andere kant ook tot een moeilijker wat betreft de
definitie van het model. Fractionele polynomen (Royston en Altman, 1994) (semi-
lineair) toegepast binnen een logistische regressie setting, classificatie en regressie
bomen (Breiman et al., 1984) en support vector machines (Vapnik, 1996) (niet-lineair)
worden met elkaar vergeleken op basis van sensitiviteit, accuraatheid en specificiteit
in dalende volgorde van belangrijkheid. Veronderstel bv. dat er slechts weinig cases
zijn waarin openbaar vervoer gebruikt wordt, dan zijn het toch juist die cases die men
juist wil voorspellen. Uit Hoofdstuk 7 volgt dat (semi-)lineaire modellen in het alge-
meen goed presteren op deze scheve datasets en dat het bijgevolg de moeite loont om



178 Samenvatting

hier wat dieper op in te gaan. Dit bevestigt tevens het nut van de boom-gebaseerde
teststatistiek die in Hoofdstuk 6 ontwikkeld werd.
Support vector machines (SVM) werden ontwikkeld om een zo hoog mogelijke ac-
curaatheid te behalen en presteren bijgevolg duidelijk beter bij meer gebalanceerde
datasets. Bij dergelijke SVM-modellen schuilt dan wel het gevaar dat ze gaan over-
fitten op de traningset, bij classificatie en regressiebomen kan dit wat opgevangen
worden door snoeitechnieken toe te passen. Het nadeel van de SVM-methode is dat
het echt een ‘zwarte doos’ techniek is: het resultaat wordt verkregen, maar de manier
waarop wordt niet getoond en het is niet interpreteerbaar. Bomen zijn wel interpre-
teerbaar, maar niet in dezelfde mate als de voorgestelde (semi-)lineaire modellen waar
de impact van elke variabele op de respons afzonderlijk kan bepaald worden.

Hoofdstuk 8 vat alle resultaten nog eens samen in een conclusiehoofdstuk. Er
wordt dieper ingegaan op de consequenties voor het modelleren van verplaatsingen
en op de voor- en nadelen van de verschillende modellen. Verder worden de gebruikte
technieken onderling vergeleken op basis van vier criteria die van belang zijn bij
transportonderzoek: kracht om het gevraagde te voorspellen, interpreteerbaarheid,
robuustheid en gevoeligheid voor beleidsmaatregelen.
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