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Chapter 1

Introduction

1.1 Why is there a need for using Semi-parametric

Techniques in Handling Missing Data?

Missing data arise in various settings, including surveys, clinical trials and epidemi-

ological studies. With or without missing data, the goal of a statistical analysis is

to make valid and efficient inferences about a population of interest. The issue of

missing values complicates this process. Early on, modelling incomplete data relied

on the use of parametric models (see e.g. Afifi and Elsahoff, 1966; Ibrahim, 1990).

Recently there is a general trend towards non- and semi-parametric approaches to

relax assumptions on which parametric models typically rely.

Two different reasonings towards the use of non- and semi-parametric modelling

techniques exist. A first point of view is well described by Silverman (1985): “An

initial non-parametric estimate may well suggest a suitable parametric model (such

as linear regression), but nevertheless will give the data more of a chance to speak

for themselves in choosing the model to be fitted.”An alternative point of view arises

from a statement by Box (1980): “Known facts (data) suggest a tentative model,

implicit or explicit, which in turn suggests a particular examination and analysis of

data and/or the need to acquire further data; analysis may then suggest a modified

model that may require further practical illumination and so on.”This results in an

iterative procedure. Non-parametric techniques offer an ideal tool to obtain such a

suitable parametric model (see Hastie and Tibshirani, 1987; Simonoff, 1996; Hart,

1997).

Non- and semi-parametric procedures in general will not be as efficient as model-

based techniques when there is a posited model, and the model is appropriate.

1
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However, if the assumed model is not the correct one, inferences can be worse than

useless, leading to misleading interpretations of the data.

In this thesis, non- and semi-parametric techniques will be used to relax assump-

tions when analyzing incomplete data. We will first provide an overview of existing

approaches for handling missing data.

1.2 Approaches to Missing Data

In real datasets, like, e.g., surveys and clinical trials, it is quite common to have

observations with missing values for one or more input features. The first issue in

dealing with the problem is determining whether the missing data mechanism has

distorted the observed data.

Little and Rubin (1987) and Rubin (1987) distinguish between basically three

missing data mechanisms. Data are said to be missing at random (MAR) if the

mechanism resulting in its omission is independent of its (unobserved) value. If its

omission is also independent of the observed values, than the missingness process

is said to be missing completely at random (MCAR). In any other case the process

is missing not at random (MNAR), i.e., the missingness process depends on the

unobserved values. Some more detail of terminology will be provided in the following

sections.

1.2.1 Standard Methodology

The literature presents various methods to handle missing data. They can roughly

be classified into four groups.

Complete Case Analysis

When some variables are not observed for some of the units, one can omit these

units from the analysis. These so-called “complete cases”are then analyzed as they

are. This method is easy but can lead to serious biases and inefficiency (Little and

Rubin, 1987).

Imputation-based Methods

Multiple imputation was formally introduced by Rubin (1978). Several other sources,

such as Rubin and Schenker (1986), Little and Rubin (1987), Tanner and Wong

(1987) and Schafer (1997)’s book give excellent and easy-to-read descriptions of

the technique. The concept of multiple imputation refers to replacing each missing
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value with more than one imputed value. The goal is to combine the simplicity

of imputation strategies, with unbiasedness in both point estimates and measures

of precision. A problem of simple imputation procedures is that these may yield

inconsistent point estimates as soon as the missingness mechanism surpasses MCAR.

Another problem is that the variability of the estimators is underestimated, since

imputed values are treated as observed values. By imputing several values for a

single missing component, this uncertainty is explicitly acknowledged. There are

several ways to impute missing values by multiple imputation. One of them is to

draw from the posterior distribution based on the complete cases. Another flexible

technique is to impute the missing values using classification trees as described by

Hastie et al. (2001).

Weighting Methods

A third approach is based on the complete cases but now weighting them with

the inverse of the probability that a case is observed as introduced by Flanders

and Greenland (1991) and Zhao and Lipsitz (1992). In this way cases with a low

probability to be observed gain more influence in the analysis and thus represent

the probable missing values in the neighbourhood. One can look at this approach

as an implicit imputation of missing values.

If this probability is unknown, which in general is the case, it can be estimated

for instance using a non- or semi-parametric technique, e.g., kernel-based density

estimation, splines or classification trees.

Recently Carpenter and Kenward (2005) compared the weighting and imputation

procedure. They discuss the merits and demerits of both methods.

Fully Model-based Procedures

The number of publications on missing data modelling procedures increases expo-

nentially and so does the use of model-based procedures. Such procedures rely on

modelling the partially missing data using estimation methods such as, for example,

maximum likelihood. They are based on untestable model assumptions and there-

fore sensitivity analyses are indispensable and should be part of the analysis. Recent

literature (see e.g. Scharfstein et al., 1999; Wang et al., 2004) uses semi-parametric

techniques to relax upon assumptions made, but still a sensitivity analysis ought

to be conducted. Let us give a brief introduction to some popular parametric and

semi-parametric model-based procedures for longitudinal data in the next section.
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1.2.2 Modelling Longitudinal Data with Missing Values

In a longitudinal study, each unit is measured on several occasions. It is not unusual

for some sequences of measurements to terminate early for reasons outside the control

of the investigator, any unit so affected is often called a dropout. We will restrict

our attention to longitudinal data with dropout and fully observed covariates. We

refer to Roy and Lin (2002) for a discussion on modelling dropout when covariate

values are missing. Denote Y i = (Yi1, . . . , Yini
), i = 1, · · · , N ; the full data response

vector. Define Ri = (Ri1, . . . , Rini
), a vector of missingness indicators for which the

elements are given by j = 1, · · · , ni; i = 1, · · · , N ;

Rij =





1 if Yij is observed,

0 otherwise.
(1.1)

Denote X to be the matrix of covariates.

Let us denote Y i = (Y o
i ,Y

m
i ) where Y o

i are those measurements Yij for which

Rij = 1 (observed) and Y m
i those for which Rij = 0 (missing). Let the data that

would be measured when there were no missing data be referred to as the “Original

Data”. The “Full Data”is defined as the original data together with the missingness

indicator, (Y i,Ri). The “Available Cases”are those cases which are observed and

the “Complete Cases”refer to the units for which none of the measurements are

missing. Although of potential interest, auxiliary variables are not discussed here

and therefore omitted from notation.

With this terminology a more refined distinction between the different missing

data mechanisms can be made (Little and Rubin, 1987; Rubin, 1987). Missing

values of Y are said to be missing completely at random (MCAR) if the probability

of nonresponse does not depend on covariates, X, nor on Y . When the probability

of nonresponse depends only on the covariates X and conditionally on X does not

depend on Y , the missingness mechanism is said to be covariate-dependent MCAR.

If the dependency of the probability of nonresponse is allowed to depend only on the

observed components of Y and possibly onX, the missingness mechanism is missing

at random (MAR), while if it is allowed to depend only on observed measurements,

measured at the current or previous occasions is said to be sequential MAR. In

this way the probability to be missing does not depend on missing data nor on

future observed data. The latter could however be true for MAR data even if the

missingness pattern is monotone, i.e., there are no intermittent missing values. Data

are said to be “missing not at random”(MNAR) if the probability for the data to

be missing depends on the unobserved data and possibly on the observed data.

Denote the distribution of missing data as fψ(R|Y ,X). Further denote the
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measurement model fθ(Y |X) and the joint model fθ,ψ(Y ,R|X). When dealing

with MCAR or MAR data, likelihood based inference for the full data parameter θ

can be based on the likelihood of the observed data, assuming that the parameters

ψ and θ are separable (meaning that their parameter spaces are non-overlapping).

This is the ignorability condition (Little and Rubin, 1987). It follows from this

assumption that

fθ,ψ(Y o,R|X) = fθ(Y o|X)fψ(R|X,Y o). (1.2)

In some situations the observed-data likelihood is difficult to use and methods like

the EM-algorithm are required to optimize.

One can also use generalized estimating equations that use only observed response

data in a semi-parametric way

n∑

i=1

wiΨ(Y i;θ) = 0, (1.3)

where wi is the inverse of the marginal probability for an observation to drop out

and Ψ the derivative of the log(quasi)likelihood. Under certain regularity conditions

these equations provide a consistent estimate of θ. For more details we refer to

Robins et al. (1994, 1995).

The semi-parametric approach relaxes upon the assumptions made but requires

the proper estimation of the marginal probability for an observation to drop out

which is not necessary for likelihood-based methods.

Turning to the situation of MNAR, likelihood based methods can be classified

into three main frameworks: (1) selection models, (2) pattern mixture models and

(3) shared parameter models. These three methods correspond to three different

factorizations of the joint density

(1) fθ,ψ(Y ,R|X) = fθ(Y |X)fψ(R|Y ,X),

(2) fθ,ψ(Y ,R|X) = fθ(Y |R,X)fψ(R|X),

(3) fθ,ψ(Y ,R|X) =

∫
fθ(Y |η,X)fψ(R|η,X)dF (η|X),

where in the last expression η denotes a shared parameter.

Selection models consist of two parts. A measurement part and a missingness

part. It has the appealing property that it expresses the taxonomy of Little and

Rubin (1987) in a straightforward way by including or excluding different parameters

in the dropout model. A pattern mixture model, uses a different model for each

missing data pattern. In this way it focuses on the measurement model for a given

missingness pattern and not on the global measurement model which is addressed by
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selection models. A shared parameter model or frailty model uses a random effect

to induce dependency between the responses and the missing data process.

Let us express the different missingness processes when using the selection model

factorization. First of all, Missing Completely At Random (MCAR):

f(R|Y ,ψ) = f(R|ψ).

Secondly Missing At Random (MAR):

f(R|Y ,ψ) = f(R|Y o,ψ).

Finally Missing Not At Random (MNAR) where the missingness process depends

on the missing values:

f(R|Y ,ψ) = f(R|Y m,Y o,ψ).

All of these methods are based on untestable assumptions and therefore a great

deal of literature has focused on sensitivity analyses in this context.

Recently, attention has been devoted to semi-parametric methods to model

MNAR dropout in Scharfstein et al. (1999), Rotnitzky et al. (1998), Fitzmaurice

and Laird (2000) and Lin and Ying (2003). We refer to Hogan et al. (2004) and

Molenberghs et al. (2004) for a further discussion on models handling dropout in

longitudinal studies.

Let us now turn to an overview of some non- and semi-parametric techniques,

which will be used and referred to throughout this thesis.

1.3 Non- and Semi-parametric Techniques

In a first part, we will describe some flexible modelling techniques, while in a second

part, the bootstrap and jackknife are briefly introduced.

1.3.1 Modelling Techniques

In this section, non- and semi-parametric modelling techniques will be briefly in-

troduced. While parametric techniques rely on several assumptions, non- and semi-

parametric techniques relax on these assumptions. As with non-parametric pro-

cedures in general, non-parametric modelling techniques will not be as efficient as

model-based techniques when the assumed is close to the true model.

In a parametric model the relationship, between a response variable and sev-

eral explanatory variables, can be expressed in different ways, subject to different
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assumptions. Fractional polynomials were first introduced by Royston and Alt-

man (1994). They provide flexibility while attaining the advantages of a parametric

model. Other well known flexible parametric modelling techniques are power models

as introduced by Cox and Hinkley (1974) and Davidian and Giltinan (1995). We

will however restrict ourselves to fractional polynomials.

Fractional Polynomials

For a given degree m and a variable x > 0, fractional polynomials are defined as

ηm(x;β,p) =

m∑

i=0

βiHi(x), (1.4)

where β = (β0, . . . , βm) is the vector of regression parameters, p = (p1, . . . , pm) a

vector of powers p1 ≤ . . . ≤ pm, which are positive or negative integers or fractions

and Hi(x) is a transformation given by

Hi(x) =





xpi if pi 6= pi−1

Hi−1(x) × log x if pi = pi−1

(1.5)

with p0 ≡ 0 and H0 ≡ 1. Royston and Altman (1994) argue that polynomials with

degree higher than m = 2 are rarely required in practice. The powers themselves are

proposed to be taken from {−2,−1,−0.5, 0, 0.5, 2, . . . ,max(3,m)} but other powers

can be chosen too.

Non- and Semi-Parametric Modelling Techniques

Although fractional polynomials already offer a great deal of flexibility, parametric

modelling is sometimes too confined. In this section some semi- and non-parametric

techniques will be summarized. In what follows we will focus on smoothing tech-

niques in a regression setting, since they will provide flexible tools to describe the

underlying relationship between a response variable and several explanatory vari-

ables.

Smooth Regression

Suppose we have n observations (x1, y1), . . . , (xn, yn) and interest goes to µ =

(µ(x1), . . . , µ(xn)) with µ(x) = E (Y |x). In what follows we consider linear esti-

mators, i.e., estimators of the form

µ̂λ(x) =

n∑

i=1

w(x, xi;λ)yi, (1.6)
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where w(x, xi;λ) is a collection of weight functions that depend on one or more

parameters λ. If, e.g., w(x, xi;λ) = n−1, i = 1, . . . , n , we obtain the sample mean

of y = (y1, . . . , yn).

A conceptually simple approach is to let the weight sequence {w(x, xi;λ)}ni=1 be

defined in the following way

w(x, xi;λ) =
Kλ(xi − x)

n−1
∑n
i=1Kλ(xi − x)

, (1.7)

where Kλ(·) = K(·/λ) and K is a function satisfying
∫
K(u)du = 1. K is called a

kernel function, while λ is often referred to as the bandwidth. Usually K is chosen to

be a unimodal probability density function that is symmetric around zero like, e.g.,

the standard normal density or Epanechnikov kernel which enjoys some optimality

properties (Härdle, 1990). The choice of the bandwidth λ corresponds with the

window of values where the averaging of the y’s in a neighbourhood of x is done over.

Too small a window produces an undersmooth estimate, while too large a window

will produce an oversmoothed estimate. Techniques to find an optimal bandwidth

rely on minimizing the mean (integrated) squared error which in simple settings

can be shown to depend on the second derivative of the unknown true regression

function. Since the true regression function is not known, alternative techniques

such as cross-validation were developed.

Cross-validation as described by Green and Silverman (1994) has the objective to

provide an optimal bandwidth by minimizing the estimated mean integrated squared

error

CV (λ) =
1

n

n∑

i=1

∫
[µ̂λ,[−i](x) − µ̂λ(x)]

2dx, (1.8)

where µ̂λ,[−i] is the regression estimator (1.6) after deleting the i-th observation,

i = 1, . . . , n.

The estimators as defined by (1.7) are called kernel smoothers. The form (1.7)

has been proposed by Watson (1964) and Nadaraya (1964) and is therefore known

as the Nadaraya-Watson estimator.

A very popular approach in smooth regression is local polynomial regression which

can be seen as an extension of kernel smoothing. In this local polynomial regression

problem, the objective is to minimize

n∑

i=1

{Yi − β0 − β1(xi − x) · · · − βp(xi − x)p}2Kλ(xi − x), (1.9)

with respect to β = (β1, . . . , βp). β̂0 estimates µ(x) while β̂1, . . . , β̂p estimate higher

order derivatives of µ(x). An important part of local polynomial regression is to
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determine the appropriate power p and bandwidth λ. If p = 0, we obtain the

Nadaraya-Watson estimate based on (1.7). We refer to Fan and Gijbels (1996) and

Aerts and Claeskens (1997) for a more thorough discussion and a generalization

towards multi-parameter models.

Recently spline smoothing has gained a lot of attention. Splines are generally

defined as piecewise polynomials (Eubank, 1988) in which curve (or line) segments

are constructed individually and then pieced together. There are different types of

splines which can be roughly divided into smoothing splines, regression splines and

penalized regression splines. Let us first give a basic definition of a cubic smoothing

spline.

Consider
n∑

i=1

(µ(xi) − yi)
2 + λ

∫
[µ′′(x)]2dx, (1.10)

where λ is a positive constant. For a given function µ, the term
∑n
i=1(µ(xi) − yi)

2

provides a measure of how well µ fits the data whereas λ
∫

[µ′′(x)]2dx measures

the smoothness of µ. The constant λ is the smoothing or penalty parameter that

controls the trade-off between closely matching the data and having a smooth model.

As λ → ∞ the penalty increases and the smoother converges to an ordinary least

squares (OLS) fitted cubic polynomial. When λ → 0 the penalty decreases and

the smoother converges to an OLS fitted regression spline through the data. The

minimizer, µ̂ of (1.10) is a spline with all distinct values x1, . . . , xn as knots, which

is a cubic polynomial on each interval [xi−1, xi], i = 2, . . . , n and has two continuous

derivatives.

In general, the placement of the knots and the determination of the penalty are

very important for a spline. The difference between smoothing splines (#knots = n),

regression splines (#knots < n) and penalized regression splines (regression splines

with penalization for the number of knots) lies in the number of knots chosen. Basic

references in this field are Eilers and Marx (1996), Ruppert and Carroll (2000) and

Ruppert et al. (2003).

The choice of the smoothing parameter is crucial in the practical use of splines.

While several methods as Akaike’s information criterion (AIC), unbiased risk esti-

mation (UBRE), and generalized maximum likelihood (see Wahba, 1990; Hurvich

et al., 1998) have been introduced, generalized cross-validation (GCV) is one method

of smoothing parameter selection that has proven effective and has good theoretical

properties.
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Generalized cross-validation introduced by Craven and Wahba (1979) is based

on minimizing

GCV (λ) =
1

n

n∑

i=1

[µ̂λ,[−i](y) − µ̂λ(y)]
2

{
1 − [Sλ]ii

n−1trace(I − Sλ)

}
, (1.11)

where Sλ is the smoothing matrix so that µ̂λ(y) = Sλy.

For multidimensional problems non-parametric smoothers face the problem of

the ‘curse of dimensionality’. In general, the “curse of dimensionality”(Bellman,

1961) refers to the exponential growth of hypervolume as a function of dimension-

ality. For non-parametric regression, this translates into sparseness of data which

causes the variances of the estimates to be unacceptably large. Generalized addi-

tive models (GAM), as introduced by Hastie and Tibshirani (1987) can be used to

cope with this problem. While g(µi) = β0 +
∑n
j=1 βjxji represents a strict para-

metric generalized linear model (McCullagh and Nelder, 1989), where g is a known

monotonic differentiable ‘link function’ and βi are the parameters to be estimated,

a generalized additive model has the form g(µi) = β0 +
∑n
j=1 sj(xji), where the si

are estimated using linear smoothers and backfitting.

While the work of Hastie and Tibshirani (1987) is considered to be the foundation

of generalized additive models, Wood (2001, 2005) and Wood and Augustin (2002)

have done a great deal of work on the application of the technique using penalized

regression splines (Wahba, 1980, 1990; Marx and Eilers, 1998; Wood, 2000) instead

of linear smoothers. Further methodology and theory was developed by, e.g., Aerts

et al. (2002b). Model selection and inference when backfitting with linear smoothers

(Hastie and Tibshirani, 1987) presents difficulties, while the mathematically elegant

work of Wahba (1990) on generalized spline smoothing provides a rigorous framework

for model selection and inference with generalized additive models. A ‘middle way’

between these approaches was the use of penalized regression splines to construct

GAMs. The availability of the R package ‘mgcv ’ has made the use of GAMs very

popular.

While GAMs with penalized regression splines offer a flexible modelling tech-

nique, it is still a hard task to apply them on data with many explanatory variables

(like in a data-mining setting). Tree-based methods such as classification and regres-

sion trees (Breiman et al., 1984) can be used for this purpose. Tree-based methods

partition the covariate-space into rectangles and fit a simple model in each one of

them. They are conceptually simple yet powerful. In what follows we restrict atten-

tion to classification trees.
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Classification Trees

The classification tree methodology is a classification method where, following spe-

cific splitting rules, disjoint subsets of the data are constructed. These subsets are

called nodes. Further splitting is repeated several times within these nodes. We

focus on binary classification trees, where splitting occurs into exactly two child

nodes.

This partitioning process results in a saturated tree. A tree is saturated in

the sense that the offspring nodes subject to further division cannot be split. The

saturated binary tree is then pruned to an optimal sized tree. This is the so-called

pruning process. The final step is the selection process, which determines the final

tree. The point is to find the subtree of the saturated tree that is most ‘predictive’

of the outcome and least vulnerable to noise in the data. Selection of the ‘right-

sized’ tree is based on the cost complexity measure. This function is defined as the

cost for the tree plus a complexity parameter times the tree size. In many typical

applications, costs simply correspond to the proportion of misclassified observations,

but other modifications are possible too (Zhang and Singer, 1999). V -fold cross-

validation is useful when no test sample is available and the learning sample, i.e.,

the sample which was used to construct the tree, is too small to have the test sample

taken from it. The classification tree of the specified size is computed V times,

each time leaving out one of the subsamples from the computations, and using that

subsample as a test sample for cross-validation. The CV costs computed for each of

the V test samples are then averaged to give the V -fold estimate of the CV costs.

While there is nothing wrong with choosing the tree with the minimum cost as the

‘right-sized’ tree, often there will be several trees with cross-validation (CV) costs

close to the minimum. Breiman et al.(1984) make the reasonable suggestion that one

should choose as the ‘right-sized’ tree the smallest-sized (least complex) tree whose

costs do not differ appreciably from the minimum costs. They proposed a ‘1 SE rule’

for making this selection, i.e., chose the ‘right-sized’ tree to be the smallest-sized tree

whose costs do not exceed the minimum cost plus 1 times the standard error of the

cost at the minimum. For more details we refer to Breiman et al. (1984), Zhang and

Singer (1999) and Hastie et al. (2001).

The applications of tree-based methods in statistics nowadays are vast (e.g. Hens

et al., 2002; Speybroeck et al., 2004). A general overview of the applicability was

given by Segal (1995). Among more recent developments we find several areas of

applications as, e.g., longitudinal data analysis and survival analysis (Segal, 1992;

Shannon and Banks, 1999; Feldesman, 2002; Moons et al., 2004).
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One of the disadvantages of tree-based methods is that it gives a discrete, non-

smooth model and that it is very unstable, which results in high variability. Bagging

and boosting have been developed to deal with these issues. Boosting is a method

which constructs a set of successive trees via iteratively reweighting. Observations

which are misclassified, gain more weight and a new tree is built using these weights.

The resulting classifier is a weighted average of the successive trees. The adaptive

boosting of Freund and Shapire (1997) is very popular. Boosting works best with

small trees.

Bagging or bootstrap aggregating (Breiman, 1996) was introduced to reduce the

variance of a predictor. In a tree-based methodology, trees are grown on bootstrap

samples of the learning data and then combined to obtain a more accurate prediction.

Bagging works best with large samples. A theoretical foundation for bagging was

offered by Bühlmann and Yu (2002).

A lot of variants of boosting and bagging have been developed. One of the most

important ones is the random forest methodology (Breiman, 2001). For a random

forest (RF), trees are grown on bootstrap samples of the learning data, as is done

for bagging, but now for each bootstrap sample m out of p variables are randomly

chosen at each node. These m variables are searched through for the best split

and the largest tree possible is grown but not pruned. The default value for m is
√
p, but the technique appears to be relatively insensitive to m. The resulting trees

are then combined to obtain a more accurate prediction (majority vote for binary

classification trees).

The strength of a random forest is that it converges, unlike boosting, and so

overfitting is not a problem. RFs are able to provide variable importance measures,

which could be of interest in reducing the number of variables taken in a statistical

analysis. RFs provide proximity measures between observations resulting in outlier

detection and clustering.

RFs as well as single classification trees can be used to impute missing data in a

straightforward way. They can be seen as hot-deck imputation methods.

Let us now turn to a brief introduction on the jackknife and the bootstrap.

1.3.2 The Jackknife and the Bootstrap

In practical situations interest often goes out to unknown parameters which have

to be estimated from the empirical data at hand. Some disadvantages arise when

estimating a parameter using traditional approaches. Among them are the need of a

large sample size, a correctly postulated model and the ease to derive the theoretical

formula or its approximation for each problem under consideration. Moreover one
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should be able to estimate accuracy measures. A first alternative is the jackknife,

as originally described by Quenouille (1956), where the bias of an estimator was

determined by deleting one observation each time from the original dataset and

recalculating the estimator based on the rest of the data. The jackknife has become

a more valuable tool since Tukey (1958) showed that the jackknife can also be used

to construct variance estimators. A second alternative is the bootstrap which can

be seen as an extension to the jackknife procedure. While the jackknife only utilizes

n of 2n − 1 non empty subsets of a dataset of size n, the bootstrap can use more

than n or even all 2n − 1 subsets to construct estimators (Efron, 1979).

There are two bootstrap situations one can consider, a parametric and a non-

parametric bootstrap. The parametric bootstrap uses a particular mathematical

model to regenerate data while the non-parametric bootstrap does not rely on such

a model. Even if there is a plausible parametric model, a non-parametric analysis

can still be useful to assess the robustness of conclusions drawn from a parametric

analysis. For a more thorough discussion on bootstrap methods we refer to Davison

and Hinkley (1997).

1.4 Objectives of this Thesis

In this thesis a variety of non- and semi-parametric techniques as introduced in Sec-

tion 1.3 are used to handle missing data problems. The material presented here

clearly shows the benefits of relaxing assumptions. Handling incomplete data prob-

lems by means of non- and semi-parametric techniques requires the availability of

powerful computing resources. It will be clear that this still is a limitation to some

of the methods presented here. Let us now give an overview of the different topics

in this thesis.

Many authors as, e.g., Lipsitz et al. (1998), Rubin and Schenker (1986) and Heit-

jan and Little (1991) have addressed the use of semi- and non-parametric techniques

relaxing on strong assumptions made by parametric techniques to impute missing

values. Aerts et al. (2002a) propose to use local multiple imputation in a regres-

sion setting with nonresponse. Chapter 2 describes this kernel based imputation

procedure which makes use of a non-parametric regression relationship between a

partially observed response and fully observed covariate. The approach is related

to the approximate Bayesian bootstrap method (see Efron, 1979; Little and Rubin,

1987) and can be seen as an extension of the local single imputation of Cheng (1994)

to a proper local multiple imputation approach. An essential ingredient of the al-

gorithm is the local generation of responses. Throughout the chapter, interest goes

out to a marginal parameter of the response distribution.
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In a regression analysis, selecting an appropriate model from a candidate set of

models is based on, e.g., the Akaike Information Criterion (AIC). If however obser-

vations are incomplete, the use of complete cases can lead to wrong model choices.

In Chapters 3 and 4, two modifications of the AIC-criterion are proposed. In Chap-

ter 3, inverse probability weights are used, in analogy to the missing data method

described in Section 1.2.1, to improve upon model selection. The method is appli-

cable to both incomplete data and design-based samples (Hens et al., 2005a). If

the weights are unknown, they are estimated using generalized additive models with

penalized regression splines as introduced in Section 1.3.1. Whenever only a few

complete cases are available by deleting every observation with at least one missing

value, weighting is not adequate anymore and imputation can provide a solution.

Therefore, Chapter 4 focuses on an imputation-based AIC-criterion where imputa-

tion is non-parametric in nature by using generalized additive models with penalized

regression splines. The simulations in the latter chapter reveal potential benefits of

model selection after smoothing for fully observed regression data. In Chapter 5 we

will illustrate these two modified AIC versions in a case study and contrast them

with tree-based methods who deal with both missing values and design.

From the overview of existing material to deal with dropout in longitudinal stud-

ies in Section 1.2.2, it is clear that a sensitivity analysis should be part of any statis-

tical analysis. Next to providing an overview of existing sensitivity tools, Chapter

6 describes a non-parametric sensitivity tool called ‘kernel weighted influence’ as

derived by Hens et al. (2005b). It uses a ‘kernel based neighbourhood’ concept to

explore the global and local influence towards non-random missingness for types of

observations instead of observations itself in a selection model framework. These

sensitivity tools pick up a lot of different anomalies in the data not only deviations

from the MAR-assumption. A method to oppose missing at random versus missing

not at random in a selection model framework is the likelihood ratio test. In Chap-

ter 7, the bootstrap will be used in an attempt to generate the null distribution of

the likelihood ratio test statistic opposing missing not at random versus missing at

random in a selection model framework.

In Chapter 8, generalized estimating equations are used to determine the force

of infection for binary clustered data. The impact of missing data on the analysis

is illustrated and an inverse probability weighted estimating equation is proposed.

The weights are estimated non-parametrically by a generalized additive model with

penalized regression splines. Several other complications in the dataset are dealt

with, including the constraint for the age-specific seroprevalence to be monotone

increasing. Deriving confidence intervals under these constraints is done using the
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bootstrap. The application of these techniques in the context of veterinary epi-

demiology is new and therefore considered to be a motivation for interdisciplinary

collaboration between statisticians and veterinary epidemiologists working in this

field.

1.5 Key Examples

In this section, the datasets which will be used throughout this work are introduced.

The Vorozole data (Section 1.5.1) and the Mastitis data (Section 1.5.1) are examples

of longitudinal studies with dropout. The Cervix Cancer Screening data (Section

1.5.2) have been collected as a part of the Belgian health survey held in 1997 and

has a considerable amount of incomplete measurements. The Bovine Herpes Virus-

1 Data (Section 1.5.4) relate to the field of veterinary epidemiology and include

features such as clustering and missingness.

1.5.1 Vorozole Data

This study was an open-label, multicenter, parallel group design conducted at 67

North American centers. Patients were randomized to either vorozole (225 patients,

2.5 mg taken once daily) or megestrole acetate (227 patients, 40 mg four times daily).

The patient population consisted of postmenopausal patients with histologically con-

firmed estrogen-receptor positive metastatic breast carcinoma. All 452 randomized

patients were followed until disease progression or death. The main objective was

to compare the treatment group with respect to response rate while secondary ob-

jectives included a comparison relative to duration of response, time to progression,

survival, safety, pain relief, performance status and quality of life. Full details of

the study are reported in Goss et al. (1999). Here we focus on overall quality of

life, measured by the total Functional Living Index: Cancer (FLIC, Schipper et al.,

1984). Precisely, a higher FLIC score is the more desirable outcome.

Patients underwent screening and for those deemed eligible a detailed examina-

tion at baseline took place. Further measurements were taken at month 1, then from

month 2 at bi-monthly intervals until month 44. The average total FLIC score was

116.3 (s.e. 1.3) for the vorozole group, and 117.1 (s.e. 1.3) for megestrole acetate

group. These total FLIC scores were calculated based on 199 resp. 213 patients.

Goss et al. (1999) analyzed the FLIC score using a two-way ANOVA model with

effects for treatment, disease status, as well as their interaction and found no signif-

icant difference.
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Figure 1.1: Vorozole data: Scatterplot of the FLIC scores at month 6 versus month 1

for the two treatment groups separately.

In Figure 1.1, focus is on the FLIC scores at month 6 versus FLIC scores at month

1 for the two treatment groups separately when both measurements are available.

The mean FLIC score at month 6 for the vorozole group was 123.32 (s.e. 3.69), and

for the megestrole acetate group 119.15 (s.e. 4.19). In the megestrole acetate group

102 patients (48%) have dropped out at month 6 while in the vorozole group 112

patients (53%) have dropped out at month 6 resulting in a considerable amount of

missing data.

In Chapter 2, the mean FLIC score for patients at month 6 for both treatment

arms separately is estimated based on local multiple imputation, which uses a re-

gression relation between the FLIC scores at month 6 with those at month 1 to

impute data.

1.5.2 Cervix Cancer Screening Data

According to the Nationaal Kankerregister (Haelterman, 1999), cervix cancer is

the fifth most common cancer among women in Belgium in the period of 1993-

1995. Therefore, it is not surprising that for health policy goals cervix cancer is

an important point of attention. Interest goes to differences between the group of

women, aged 25-64, not having a smear and those that did have a smear taken in

the past three years. Data were available as a subset of the first Belgian Health

Interview Survey (HIS) which took place in 1997. An brief introduction on the HIS

is given here.
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Table 1.1: The Cervix Cancer Screening data: explanatory variables.

Variable Measurements Variable Measurements

Civil Status Married Educational Level No Diploma

Divorced Primary Education

Widow(er) Lower Secondary Education

Single Higher Secondary Education

Age ’0-14’ Higher Education

’15-24’ Financial Status Difficult to Pay Health Costs

’25-44’ No Problems to Pay Health Costs

’45-64’ Drug Consumption Number of Drugs Taken

’65+’

In the HIS, a total sample of 10,000 interviews (0.1% of the Belgian population)

was planned, equally spread over the year 1997. For the three regions of Belgium

(Flemish region, Walloon region and Brussels region) the number of individuals to

be successfully interviewed was preset at 3500, 3500 and 3000, respectively. An

oversampling was planned for the German Community of Belgium (in the district

Eupen-Malmédy), with 300 successful interviews. A detailed description of the sam-

pling scheme used in the HIS was published elsewhere (Quataert et al., 1998). The

most important features are summarized in what follows. Sampling was based on a

combination of stratification, multistage sampling, and clustering (Kish, 1995).

There were two stratification levels. First, stratification was done at the regional

level, to ensure that the preset regional level could be reached. Secondly, stratifica-

tion was conducted at the level of provinces, proportional to their size. Next, the

individuals’ sample is selected in three stages within each stratum. The first stage,

yielding primary sampling units (PSU), consists of municipalities and sampling is

carried out proportionally to (population) size via systematic sampling. Whenever

a municipality is selected (and it can be more than once), a group of 50 persons is

to be interviewed within this municipality. The next stage of random selection oper-

ates on households (HHs, secondary sampling units or SSU) according to a clustered

systematic sampling procedure upon ordering of the HHs by statistical sector, size

and age of the reference person. At this level, matching HHs are provided in case a

HH refuses to participate. Finally, individuals or tertiary sampling units (TSU) are
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selected within HHs in such a way that 4 persons at most are interviewed in each

HH and the reference person and his/her partner are automatically selected.

To investigate the cervix cancer screening, only women aged between 25 and

64 were selected from the HIS. The explanatory variables of interest for these 2893

women are shown in Table 1.11 (Women without uterus are excluded from the anal-

ysis).

While the response variable was fully observed, 56% of the women had one or

missing values for the explanatory variables. While missing data issues in the health

interview survey have been addressed by Burzykowski et al. (1999), Quataert et al.

(1998) focused on the design of the survey. In Chapter 5 the data are analyzed

while dealing with design issues and missing data. A weighted and imputation-

based AIC-criterion, as introduced in Chapter 3 and 4, will be used to select an

appropriate logistic regression model, while a classification tree is used to provide

a non-parametric alternative to logistic regression accounting for the design and

missing values.

1.5.3 Mastitis Data

In this dataset the occurrence of the infectious disease of the udder, called mastitis,

in dairy cows was studied. The milk yields in thousands of liters of 107 cows from

a single herd in two consecutive years were available. In the first year all cows were

supposedly free of mastitis and in the second year 27 cows became infected. Mastitis

typically leads to a reduction in milk yield. There is a view among dairy scientists,

widely held, that mastitis is more likely to occur in high yielding cows. It is however

difficult to examine such a relationship due to the effects of mastitis. Figure 1.2

shows a profile plot of the Mastitis data.

In Figure 1.3, a scatterplot of the original data is given together with a plot of

the increments, i.e., the difference between the second and the first measurement

against the first measurement.

The Mastitis data have been analyzed by Kenward (1998) for an informal sensitiv-

ity analysis and further by Molenberghs et al. (2001) with the local influence method-

ology while using the selection model proposed by Diggle and Kenward (1994). In

Chapter 6, weighted influence measures are applied to these data as a part of a

sensitivity analysis.

1The questionnaire can be consulted at www.iph.fgov.be/epidemio/epien/crospen/hisen/table.htm.
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Figure 1.2: Mastitis data: Profile plot.
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Figure 1.3: Mastitis data: Scatter plot. In the left panel the milk yield for year 2

was plotted versus the milk yield at year 1. In the right panel the increase in milk

yield from year 1 to year 2 was plotted versus the milk yield at year 1.
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1.5.4 Bovine Herpes Virus-1 Data

The bovine herpesvirus 1 (BoHV-1) is a transmissible disease in cattle, which is of

economic importance and significance to international trade. It is spread worldwide.

To facilitate the free trade of cattle, several European countries implemented erad-

ication programs for BoHV-1. BoHV-1 causes infectious bovine rhinotracheitis, an

enzootic disease. The BoHV-1 seroprevalence (apparent prevalence) in the Belgian

cattle population was determined by a large serological survey, conducted from De-

cember 1997 to March 1998 (Boelaert et al., 2000; Speybroeck et al., 2003). The

sample taken was stratified for province. Within each province, 1% of the total

number of herds was sampled. The blood samples, which were taken from all ani-

mals in the selected herds, were tested for antibodies against BoHV-1 by using an

ELISA-test, specific for the BoHV-1 glycoprotein B (gB). Additional characteristics

as gender, type of the herd (dairy, mixed or beef), purchased or homebred and size

of the herd were recorded. In total 11284 animals were investigated. In Table 1.2, a

complete overview of the variables is given.

Table 1.2: Overview of the different variables in the BoHV-1 dataset.

Variable Description

gB ELISA-test positive for glycoprotein B, or not

herd number of the herd

animal number of the animal

province province (nine, Brabant Walloon and Flemish Brabant together)

herdtype dairy, mixed or beef

herd size size of the herd

densanim density of animals in the municipalities (number of cattle/km2)

densherd density of herds in the municipalities (number of herds/km2)

age age of the animal (in months)

sex gender of the animal

purchase purchased or homebred

From these variables ‘age’, ‘sex’ and ‘gB’ had a small amount of missing values,

0.23%, 0.12%, 0.32%, respectively. The ‘purchase’ variable, indicating whether an

animal was homebred or purchased had 2091 missing values (19.00 %).
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Figure 1.4: BoHV-1 study. Seroprevalence plot as a function of age (in months).

It is often of interest to look at the seroprevalence as a function of age. Since

animals younger than 6 months typically have high seroprevalence of gB-antibodies

because of acquired maternal antibodies and not necessarily due to infection with the

BoHV-1, we will restrict ourselves to the animals older than 6 months. In Figure 1.4,

the age-specific prevalence of gB-antibodies is displayed. There is a clear increase of

seroprevalence with age. In Chapter 8, we will present a flexible population-averaged

model to relate the seroprevalence with the recorded variables and derive the force

of infection thereof.
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Chapter 2

Local Multiple Imputation

2.1 Introduction

Datasets with missing values arise frequently in statistical practice. Population sur-

veys inevitably face the problem of incomplete data, missing data create difficulties

in quality of life studies, in cancer clinical trials, etc. There exist many ways to

deal with missing data problems, ranging from the most naive one focusing on the

complete cases only to well-defined parametric, semi-parametric and non-parametric

approaches.

In this chapter we will introduce non-parametric — smoothing — methods to

obtain multiple imputation estimators in a non-Bayesian framework. The proposed

approach is novel in several aspects. Unlike most of the literature which deals with

missing covariate values, this method allows for missing response data.

The onset to the use of kernel methods for imputation of missing values is given

by Titterington and Sedransk (1989), who used kernel density estimation in com-

bination with a non-parametric bootstrap for imputing values. In their method,

relationships between variables are not directly accounted for. For single imputa-

tion in a nonresponse setting, Cheng (1994) and Chu and Cheng (1995) used kernel

estimators in a regression model. To overcome the curse of dimensionality when

using high dimensional smoothing operations, Wang et al. (2004) and Little and An

(2004) propose the use of propensity scores to obtain semi-parametric imputation

methods.

For missing covariate data, smoothing methods have been applied by Wang et al.

(1998) to estimate selection probabilities. Other semi-parametric approaches, in the

sense of not having to specify a fully parametric model, although not directly in a

23
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Table 2.1: Example: Cholesterol levels for heart-attack patients measured 2, 4 and

14 days after attack. Source: Ryan and Joiner (1994)

Y1 Y2 Y3 Y1 Y2 Y3 Y1 Y2 Y3 Y1 Y2 Y3

270 218 156 236 234 − 210 214 242 142 116 −
280 200 − 272 276 256 160 146 142 220 182 216

226 238 248 242 288 − 186 190 168 266 236 236

206 244 − 318 258 200 294 240 264 282 294 −
234 220 264 224 200 − 276 220 188 282 186 182

360 352 294 310 202 214 280 218 − 278 248 198

288 278 − 288 248 256 244 270 280 236 242 204

smoothing context, are constructed for drop-out models in Scharfstein et al. (1999).

Many authors, e.g., Lipsitz et al. (1998), Rubin and Schenker (1986), Heitjan

and Little (1991), have addressed the use of semi- and non-parametric techniques to

impute missing values in a wide variety of other settings.

We will make use of a non-parametric regression relationship between a partially

observed response variable and a fully observed covariate to augment the data.

As an illustrative example, consider data on the serum-cholesterol levels of heart-

attack patients in Table 2.1 (data from Ryan and Joiner 1994, analyzed by Schafer

1997). For all patients, treated for heart attacks, cholesterol levels were measured at

2 time points after the attack (Y1 and Y2). For only a part of the patients, an addi-

tional measurement Y3 was taken at a third occasion. Schafer (1997) demonstrates

the use of multiple imputation to estimate the parameters of greatest interest which

in this case appear to be functions of the means, such as comparisons or contrasts

among µ1, µ2 and µ3. Examples include µ3, the mean cholesterol level at the last

occasion, µ1 − µ3, the average decrease in cholesterol level and 100(µ1 − µ3)/µ1,

the percentage decrease. In parametric multiple imputation, the original data are

regarded as a random sample from a trivariate normal distribution, an assumption

which implies that the marginal distribution of Yi, i = 1, 2, 3 is normal and that

the conditional distribution of, e.g., Y3 given Y1 is also normal with a conditional

mean function which is linear in Y1. Two kinds of assumptions can be distinguished:

distributional assumptions and assumptions concerning parameter functions. The

need for methods relaxing both types of assumptions has been recognized by many

authors.
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Our approach is based on local imputation methods. Whereas multiple imputa-

tion is mainly regarded as a Bayesian technique, the proposed methods are essentially

bootstrap based (see also Efron, 1994). In the next section, we introduce two local

bootstrap methods, the local resampling method which is fully non-parametric and

hence relaxes both types of the above mentioned assumptions, and the local semi-

parametric resampling method which still assumes that the conditional distributions

are, e.g., locally normal but which allows non-linear conditional mean structures.

We focus on settings such as in the above example where some of the variables are

fully observed and some involve missing measurements. The parameter of interest is

essentially a marginal parameter of an incompletely observed variable. The regres-

sion relationship with a completely observed variable is exploited to impute values

for the missing items. Throughout, we assume an ignorable nonresponse mechanism.

In the next section we introduce some basic notation and explain the imputation

algorithm. Section 2.3 focuses on the local bootstrap method, asymptotic results

are presented in Section 2.4 and the selection of the different smoothing parameters

involved in the procedure, is considered in Section 2.5. Section 2.6 summarizes the

results of a simulation study. An application to the Vorozole data and a discussion

are provided in Sections 2.7 and 2.8, respectively.

2.2 Local Imputation Scheme

Consider one completely observed continuous variable X and one incompletely ob-

served continuous variable Y . The parameter of interest is a function θ(µX , µY ) of

the two means. Since there is no missing X value, the problem reduces to consistent

estimation of µ = µY ; estimators of other moments of Y and functions thereof can

be obtained in a straightforward manner. Extensions to more general settings and

other parameters are discussed in Section 2.8.

The main idea is to exploit the assumed regression relationship between X and

Y to yield better estimators for µ. Let Zi = (Xi, Yi, δi), i = 1, . . . , n, be independent

observations, where δi = 0 if Yi is missing and δi = 1 otherwise. Under the strongly

ignorable missing at random assumption (Rosenbaum and Rubin, 1983)

π(X) := E(δ|X) = E(δ|X,Y ). (2.1)

In other words, Y and δ are conditionally independent given X. Note that this

assumption is weaker than missingness completely at random since dependence on

the observed variable X is allowed. Little and Rubin (1987, p. 15), term data of this

type missing at random but not observed at random.
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Most of the parametric imputation schemes assume an underlying paramet-

ric function, such that Yi = µ(Xi) + εi where ε1, . . . , εn are independent mean

zero random variables and µ(·) is known up to a finite dimensional parameter, see

e.g. Schenker and Welsh (1988).

In case this model assumption is not correct, biased results will be obtained. As

an example, consider a linear single imputation model in X, where the true µ(·) is

non-linear. A linear imputation model calculates Ŷj from a linear regression model

based on the complete data vectors (X,Y ). By straightforward computation one

finds that the expected value of the usual estimator for the global mean of Y , which

is constructed by taking the average of those Y -values which are observed, and the

estimated values Ŷj , if Yj is missing, differs from E{µ(X)} because E(Ŷj |X) differs

from µ(X). That is, if our assumed regression model is not correct, there will be a

bias.

One of the key ideas in this chapter is to use non-parametric regression techniques

to impute the missing values, this to avoid making such model assumptions. As in

parametric methods, it is implicitly assumed that there is a statistical relationship

between X and Y . Cheng (1994) uses a non-parametric kernel estimator to impute

single missing Y observations. Such a single imputation can be considered as a non-

parametric version of the so-called ‘poor man’s data augmentation’, which is known

to underestimate variability, especially in cases with substantial missingness. Little

and Rubin (1987) call such a method an improper imputation method.

Our approach extends this local single imputation of Cheng (1994) to a non-

or semi-parametric version of a ‘proper’ imputation method and is related to the

approximate Bayesian bootstrap method as described in equation (3.7) of Efron

(1994); see also Little and Rubin (1987, Section 12.4). An essential ingredient of the

algorithm is the local generation of Y observations. Let x be a specific value of X

at which a Y value is to be generated and let wj(x), j = 1, . . . , n, denote positive

weights with
∑n
j=1 wj(x) = 1. The local resampling method generates a Y value

from the distribution L(x) with cumulative distribution function

n∑

j=1

wj(x)I{Yj ≤ y}. (2.2)

Detailed treatment of the choice of weights is postponed to Section 2.3. First we

describe the steps of the local m-fold multiple imputation algorithm, where as an

example, attention is restricted to a normal likelihood in Step 2.

Step 1: Resampling step

Fix ℓ between 1 and m. For each observation i = 1, . . . , n, if δi = 1, generate Y ∗
i (ℓ)
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from the distribution L(Xi). This is a non-parametric resampling of the observed

data vectors.

Step 2: Imputation step

Fix ℓ between 1 and m. Given the data from Step 1, we create imputations for

the missing Y values. This can be done in several ways, using local resampling or

local semi-parametric resampling. More explicitly, conditional on the resampled data

(Xi, Y
∗
i (ℓ), δi), i = 1, . . . , n, we construct a distribution L∗

ℓ (Xi), for local resampling,

or local estimators µ̂∗
ℓ (Xi), σ̂

∗2
ℓ (Xi), for local semi-parametric resampling. If Yi is

missing, that is if δi = 0, we generate Y +
i (ℓ) from L∗

ℓ (Xi), for local resampling, or,

for local semi-parametric resampling, we generate Y +
i (ℓ) from N{µ̂∗

ℓ (Xi), σ̂
∗2
ℓ (Xi)}.

It is clear that local semi-parametric resampling is more efficient if normality holds.

In both Step 1 and Step 2, data are generated independently for i = 1, . . . , n,

ℓ = 1, . . . ,m.

Step 3: Construction of the final estimators

For Ỹi(ℓ) = δiYi+(1− δi)Y +
i (ℓ), µ̂(ℓ) = n−1

∑n
i=1 Ỹi(ℓ) is the estimator of the mean

based on the ℓ-th augmented dataset, and the final multiple-imputation estimator

for µ is

µ̂ =
1

m

m∑

ℓ=1

µ̂(ℓ). (2.3)

The algorithm has the same structure as its parametric counterpart. Since an im-

puted observation Y + is subject to extra variability, Step 1 is needed for obtaining a

proper imputation method (Efron, 1994). This extra randomness can be introduced

in different ways. The triplets (Xi, Yi, δi), i = 1, . . . , n, could be resampled with re-

placement; this is case resampling. We opted for an alternative approach, where Y

values are generated, conditional on X and δ, incorporating the regression relation-

ship between X and Y in a non-parametric way. This approach is legitimate because

of assumption (2.1), which states that the missingness mechanism is noninformative

for the parameter µ of interest. The advantage of the method is that it generates

samples with exactly the same range of X values as in the original sample, avoiding

samples which might only poorly reflect the regression structure, the latter which is

essential in Step 2.

The non-parametric imputation method is applicable in a wide variety of statisti-

cal models, and can be used for discrete response data. The small adaptation needed

for semi-parametric resampling is the specification of the appropriate distribution
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function in Step 2 of the algorithm. For examples of local likelihood estimators in

multi-parameter families, see Aerts and Claeskens (1997).

A local bootstrap method both avoids parametric assumptions and allows much

more flexibility in the regression design than does for example hot-deck imputation

(Rao and Shao, 1992), where one requires a covariate to take on only a few different

values, with replication.

2.3 Local Bootstrap Methods

The choice of the weights in the resampling scheme is crucial. Global uniform

weights δj/
∑
j δj would simply result in mean imputation of the Y -values, ignoring

the regression structure completely. More useful are kernel weights of the type

wj(x) =
δjKh (x−Xj)∑n
k=1 δkKh (x−Xk)

, (2.4)

where the kernelK(·) is a symmetric unimodal probability density function, Kh(u) =

K(u/h)/h, and h = hn is a bandwidth parameter converging to zero as the sample

size increases. It is not necessary to use the same set of weights in the resampling

and imputation steps. In particular, since the smoothing weights in Step 2 use a

resampled set of data, it is advisable to use a second bandwidth g = gn in a possibly

different kernel L for the construction of the weights in the imputation step. In case

of possible confusion, choice of bandwidth will be included in the notation.

Local weights (2.4) are defined such that observed Yj values, of which the corre-

sponding Xj is closer to the specific value x, and which are in an area with larger

chance of having missing observations, get larger weights. The latter is readily

understood by rewriting the weights (2.4) as wj(x) = δjw̃j(x)/π̂(x) where the

classical Nadaraya-Watson weights w̃j(x) = Kh (x−Xj) /
∑n
k=1Kh (x−Xk) and

where π̂(x) =
∑n
j=1Kh (x−Xj) δj/

∑n
j=1Kh (x−Xj) is the kernel estimator for

π(x). Thus we do not have to make any parametric assumptions about the missing-

ness probability distribution since this is automatically taken care of by the kernel

weights. The effect of π̂(x) on the weights stresses the importance of the few available

but highly informative Y observations in a ‘sparse’ area with a lot of missingness.

In the complete data case, Aerts et al. (1994) have shown that distribution (2.2) is

consistent and asymptotically normal for estimating the conditional distribution of Y

given X = x. They also showed that a resampling scheme based on this distribution

leads to a consistent bootstrap procedure. In an analogous way it can be shown

that, if Y values are missing, (2.2) is a consistent estimator for the distribution

function P (Y ≤ y|X = x, δ = 1). Its mean equals the well-known Nadaraya-Watson
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estimator at x from the complete cases (Nadaraya, 1964; Watson, 1964), which can

be rewritten as

µ̂(x) =

n∑

j=1

w̃j(x) δjYj/π̂(x), (2.5)

where the numerator is the kernel estimator of E (δY |X = x) and the denominator

estimates E (δ|X = x) non-parametrically. It immediately follows from assumption

(2.1), that µ̂(x) is an estimator of E (Y |X = x). The variance of (2.2),

σ̂2(x) = [
n∑

j=1

δj{Yj − µ̂(x)}2Kh(x−Xj)]/
n∑

j=1

δjKh(x−Xj),

is a consistent non-parametric variance estimator. These provide alternatives to the

local likelihood estimators in local semi-parametric resampling.

Given the known limitations of Nadaraya-Watson weights, alternative sets of lo-

cal weights are worth considering, such as biased bootstrap weights (Hall and Pres-

nell, 1999), constrained to make the adjusted estimator unbiased for linear functions.

Here we define

w̆j(x) = δjKh(x−Xj) {1 + c(x−Xj)Kh(x−Xj)}−1

×
[

n∑

k=1

δkKh(x−Xk) {1 + c(x−Xk) × Kh(x−Xk)}−1

]−1

, (2.6)

where c is the solution to the equation

n∑

j=1

δj(x−Xj)Kh(x−Xj) {1 + c(x−Xj)Kh(x−Xj)}−1
= 0. (2.7)

These weights are asymptotically equivalent to local linear weights. Hence they

automatically correct for boundary bias, while remaining positive. Alternative or

additional constraints on the resampling distribution can be imposed in a similar

way.

If the proportion of missingness would be known, missing data could be dealt

with as in a weighted-distributions regression setting, for which Ahmad (1995), see

also Jones (1991), derives a kernel estimator analogue to the direct sampling case.

The corresponding weights, with π estimated by the kernel estimator π̂, are defined

as

w̌j(x) = δjw̃j(x){π̂(Xj)

n∑

k=1

δkw̃k(x)/π̂(Xk)}−1. (2.8)

The important difference from the weights (2.4) is the evaluation of π̂ at the covari-

ates Xj .
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The performance of the above weights will be numerically illustrated in Sec-

tion 2.6.1, where it turns out that the precise choice of weights has little effect on

the final estimator.

If more than one variable is completely observed, local methods could take all of

them into account. However, in high dimensions kernel-based methods might lose

some of their attractiveness because of the curse of dimensionality.

2.4 Asymptotic Expressions of Bias and Variance

The final estimator µ̂ is consistent, under conditions similar to those in Cheng (1994).

Smoothness conditions require µ(x), the conditional mean of Y given X = x, the

density function, fX(x), and the function π(x), to possess at least two bounded

derivatives, bandwidth sequences to tend to zero at a rate faster than n−1/3, and

kernel functions K and L in both steps to be bounded and symmetric probability

density functions with finite second moments. Although the proofs of the following

theorems are provided for the local resampling algorithm; the proofs for the local

semi-parametric resampling are very similar. We also assume that Y has a finite

second moment, and that all required expected values are finite.

A first result shows that the final estimator µ̂ is asymptotically unbiased and that

the bias depends on both bandwidth sequences in a typical non-parametric way.

Property 1. For some constants c1 and c2,

E (µ̂) = µ+ c1h
2 + c2g

2 + o(h2 + g2) , as n→ ∞. (2.9)

The asymptotic variance of µ̂, as n → ∞, with additional constants c3, . . . , c6 and

with σ2(X) = var(Y |X), is given by

var(µ̂) = (mn)−1E [σ2(X){1 − π(X)}/π(X)] + n−1[E{σ2(X)/π(X)} + var{µ(X)}]
+n−2(c3h

−1 + c4g
−1) + n−1(c5h

2 + c6g
2) + o{(h2 + g2)n−1}, (2.10)

showing that µ̂ is root-n consistent as an estimator for µ.

Proof. Let us denote by E(·|O) the expectation conditional on Z1, . . . , Zn and

by E(·|O,R) the expectation conditional on Z1, . . . , Zn, Z
∗
1 , . . . , Z

∗
n, where Z∗

i =

(Xi, Y
∗
i , δi).

Suppose that the weights on the observed data, with g a twice continuously

differentiable function fulfil
∑n
j=1E{wj(X;h)g(Xj)} → E{g(X)} + O(h2). This
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condition holds for the weights studied in Section 2.3. Since µ̂ is defined as

µ̂ =
1

m

m∑

ℓ=1

1

n

n∑

j=1

Ỹj(ℓ),

where Ỹj(ℓ) = δjYj + (1 − δj)Y
+
j (ℓ), the first term contributes to

E(δjYj) = E{E(δjYj |Xj)} = E{π(X)µ(X)}.

Next, we look at the expectation of the second term,

E{(1 − δj)Y
+
j (ℓ)} = E[(1 − δj)E{Y +

j (ℓ)|O,R}].

By definition of Y +
j (ℓ),

E{(1 − δj)Y
+
j (ℓ)} = E[(1 − δj)E{Y +

j (ℓ)|O,R}] = E{(1 − δj)µ̂
∗
ℓ (Xj ; g)}.

Using the explicit formula µ̂∗
ℓ (Xj ; g) =

∑n
i=1 wi(Xj ; g)Y

∗
i (ℓ), conditioning on the

observed data and using a Taylor expansion, hereby making use of the symmetry of

the kernel functions K and L, we obtain that

E{(1 − δj)Ỹj(ℓ)} = E{µ(X)(1 − π(X))} +O(h2 + g2).

Together with the result for the first term, E (δjYj), this concludes the first part of

the proof.

Conditioning on observed and first-stage resampled data, we obtain var(µ̂) =

E{var(µ̂|O,R)}+var{E (µ̂|O,R)}. By definition of the multiple imputation estimator

µ̂, we have

E{var(µ̂|O,R)} =
1

mn
E [(1 − δ1) var{Y +

1 (1)|O,R}]

=
1

mn
E [(1 − δ1)E{σ̂∗2

1 (X1; g)|O}], (2.11)

where

σ̂∗2
1 (X1; g) =

n∑

j=1

{Y ∗
j (1) − µ̂∗

1(X1; g)}2wj(X1; g).

The inner expectation in (2.11), which is conditional on the observed data, is most

easily obtained by explicitly rewriting {Y ∗
j − µ̂∗(Xi; g)}2 as (Y ∗

j )2 − 2Y ∗
j µ̂

∗(Xi; g) +

{µ̂∗(Xi; g)}2, and by calculating the conditional expectation of each term separately,

using computations similar to those in the proof of (2.9). Proceeding this way, we

obtain that

E{var(µ̂|O,R)} =
1

mn
E [{1 − π(X)}σ2(X)] +O{(h2 + g2)n−1}.
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Next, we turn to

var{E (µ̂|O,R)} = var[E{E (µ̂|O,R)|O}] + E [var{E (µ̂|O,R)|O}]
= 1

n var[δ1Y1 + (1 − δ1)E{µ̂∗
1(X1; g)|O}]

+ 1
mnE [(1 − δ1) var{µ̂∗

1(X1; g)|O}]. (2.12)

Similar calculations as before yield, for the first term in (2.12),

1
n [E{σ2(X)/π(X)} + var{µ(X)} +O{(h−1 + g−1)n−1} +O{(h2 + g2)n−1}],

and, for the second term,

1
mn

(
E[{1 − π(X)}2σ2(X)/π(X)] +O(h2 + g2)

)
,

from which the result follows. �

The second term on the right-hand side of var(µ̂) in equation 2.10 represents

the variance of a single mean imputation, as shown in Cheng (1994). The first term

stems from the multiple imputation approach with additional randomness generated

in Step 1. In the case of no missingness, the leading term in (2.10) reduces to

var(Y )/n, as expected. The constants ci depend on the second derivatives of µ(x),

fX(x) and π(x), with respect to x, as well as on second moments of the kernel

functions.

The following central limit result holds

Theorem 1. √
n var(µ̂)−1/2{µ̂− E(µ̂)} → N(0, 1), (2.13)

in distribution, with mean and variance as given by (2.9) and (2.10).

Proof. Define

V1n = 1
n

n∑

i=1

(1 − δi)µ̂
∗
1(Xi; g) − E{µ(X)} + 1

n

n∑

i=1

δiYi,

V2n = E(V1n|O).

Conditional on Z∗
1 , . . . , Z

∗
n,

√
n(µ̂ − µ − V1n) → N1, in distribution and, con-

ditional on Z1, . . . , Zn,
√
n(V1n − V2n) → N2, in distribution. Unconditionally,

√
nV2n → N3, in distribution, where the Ni have a normal distribution. Since V2n

features only observed data, normality is readily obtained. Distributions of N1 and
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N2 can be obtained by separating the randomness induced by the bootstrap resam-

pling as in the following triangular arrays:

√
n(V1n − V2n) =

n∑

j=1

[
n−1/2(1 − δj)

n∑

i=1

wi(Xj ; g)
n∑

ℓ=1

{
Yℓ −

n∑

k=1

wk(Xi;h)Yk
}

×I{w(ℓ−1)(Xj ;h) < U1j ≤ w(ℓ)(Xj ;h)}
]
,

√
n(µ̂− µ− V1n) =

n∑

i=1

[
n−1/2(1 − δi)

n∑

ℓ=1

{
Y ∗
ℓ −

n∑

k=1

wk(Xi; g)Y
∗
k

}

×I{w(ℓ−1)(Xi; g) < U2ℓ ≤ w(ℓ)(Xi; g)}
]
,

where w(k)(Xi;h) =
∑k
j=1 wj(Xi;h) and w(0) = 0. The independent random vari-

ables U1j (respectively U2j) follow a uniform distribution on (0, 1), and are indepen-

dent of Z1, . . . , Zn (respectively Z∗
1 , . . . , Z

∗
n). A central limit theorem result for the

triangular arrays above is obtained via Theorem 2.1 of Janssen and Mikosch (1997).

Application twice of Lemma 1 of Schenker and Welsh (1988) yields the desired

result that
√
n(µ̂−µ)−N → 0 in distribution, where N is as the convolution of the

three distributions above, namely a normal random variable with mean and variance

as already calculated in (2.9) and (2.10). �

The latter results lead to the following asymptotic expression for the mean

squared error of µ̂,

MSE(µ̂) = c0n
−1 + (c1h

2 + c2g
2)2 + (c3h

−1 + c4g
−1)n−2

+(c5h
2 + c6g

2)n−1 + o{(h2 + g2)n−1}, (2.14)

where c0 = m−1E [σ2(X){1 − π(X)}/π(X)] + E{σ2(X)/π(X)} + var{µ(X)}.
In the remainder of this section we examine the behaviour of a particular esti-

mator of var(µ̂) by showing how it relates to expression (2.10).

In parametric multiple imputation estimation, the variance of µ̂ is typically es-

timated by S2(µ̂) = Ŵ + (1 + m−1)B̂, where Ŵ is the average within-imputation

variance estimator, i.e., Ŵ = m−1
∑m
ℓ=1 S

2
ℓ , where nS2

ℓ is the unbiased sample vari-

ance within the ℓ-th augmented dataset, and B̂ is the between-imputation variance,

i.e., B̂ = (m−1)−1
∑m
ℓ=1{µ̂(ℓ)−m−1

∑m
k=1 µ̂(k)}2. The following proposition, which

proves the asymptotic unbiasedness of S2(µ̂) as an estimator of var(µ̂), holds.

Property 2.

E(Ŵ ) =
1

n

[
var{µ(X)} + E{σ2(X)}

]
+O{(h2 + g2)n−1} (2.15)

E(B̂) =
1

n
E

{
1 − π(X)

π(X)
σ2(X)

}
+O{(h2 + g2)n−1}. (2.16)
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Proof. By straightforward calculation we get that, with µ2(X) = E(Y 2|X),

E(Ŵ ) =
1

n(n− 1)

n∑

i=1

E


{δiYi + (1 − δi)Y

+
i (1)}2 − 1

n

{
n∑

i=1

δiYi + (1 − δi)Y
+
i (1)

}2



= 1
nE{µ2(X)} − 1

n [E{π(X)µ(X)}]2 − 2
nE{π(X)µ(X)} · E[{1 − π(X)}µ(X)]

− 1
n (E[{1 − π(X)}µ(X)])2 +O{(h2 + g2)n−1}

= 1
nE{µ2(X)} − 1

n [E{µ(X)}]2 +O{(h2 + g2)n−1}
= 1

n [var{µ(X)} + E{σ2(X)}] +O{(h2 + g2)n−1},

which is result (2.15).

For ℓ = 1, . . . ,m, define the random variables

Dn(ℓ) =
1

n

n∑

i=1

(1 − δi)Y
+
i (ℓ).

Being a sample variance, the estimator B̂ is an unbiased estimator of the variance

of Dn(1), conditional on the observed data. Hence,

E (B̂) = E [var{Dn(1)|O,R}] + E(var[E{Dn(1)|O,R}|O]). (2.17)

By definition of Dn(1) and Y +
i (1),

var{Dn(1)|O,R} =
1

n2

n∑

i=1

(1 − δi) var{Y +
i (1)|O,R} =

1

n2

n∑

i=1

(1 − δi)σ̂
∗2
1 (Xi; g).

Since this depends on both the observed and the first-stage resampled data, we

calculate the first term of (2.17) via E(E[var{Dn(1)|O,R}|O]). As in the proof of

(2.10), the expectation of the resulting random variable is given by

1
nE[{1 − π(X)}σ2(X)] +O{(h2 + g2)n−1}.

The second term in (2.17) can be shown to equal

1
nE[{1 − π(X)}2σ2(X)/π(X)] +O{(h2 + g2)n−1},

from which (2.16) follows. �

The construction of the variance estimator S2(µ̂) is simple and is exactly the

same as in parametric multiple imputation methods. This is an advantage over

other estimators of this variance, such as the non-parametric estimator of Cheng

(1994), where an additional smoothing parameter needs to be selected.
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2.5 Optimal Bandwidths

As with any other non-parametric method, also here we cannot go without the choice

of smoothing parameters. Asymptotic optimal bandwidths are obtained in Section

2.5.1, followed by jackknife bandwidth selection in Section 2.5.2.

2.5.1 Asymptotically Optimal Bandwidths

The asymptotically optimal bandwidths minimize the dominant terms in (2.14).

Terms of order O(h/n) are negligible compared to order O{(nh)−2} terms, as long

as h = O(n−α), with α > 1/3. The same holds for g, where the order of g is not

restricted to be the same as the order of h.

By differentiating (2.14) and omitting all negligible terms, we find that both

bandwidths are O(n−2/5), yet with different constants, depending on c1, c2, c4 and

c5.

Since the constants in front of the n−2/5 are functions of higher derivatives of

µ(x), these cannot be computed exactly for any dataset. Data-driven bandwidth

selection is to be advised, although in practice any ‘reasonable’ bandwidth choice

will give satisfactory results.

Interesting to observe is that the order of the optimal bandwidths is not the

O(n−1/5) typically obtained in non-parametric regression estimation. It compares

to the rates obtained in non-parametric density estimation. Although we use the

regression relationship between the random variables X and Y , the non-parametric

kernel weights are mainly used to construct a probability distribution from which

‘new’ response values are to be generated.

2.5.2 Jackknife Bandwidth Selection

Using the asymptotic optimal order derived in the previous section, jackknife ideas

can be utilized to estimate the MSE of µ̂ for different choices of the bandwidths h and

g. A data driven selection of both smoothing parameters can then be based on the

minimization of the MSE. Because of the double resampling estimation procedure,

there are different ways to implement a sensible jackknife method.

As a first possibility one could simply apply Quenouille’s original jackknife

method (Quenouille, 1956) to each of the augmented datasets, Ỹi(ℓ), i = 1, . . . , n;

ℓ = 1, . . . ,m. This method is not successful in our case because it cannot estimate

the bias, which here results from the non-parametric estimation used to obtain the

variables Ỹi(ℓ). Moreover some simulations showed that it results in unreasonable

variance estimates.
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A second possibility is to implement the jackknife at the start of the estimation

procedure, on the original data. This approach requires some modifications of the

classical jackknife. Indeed, as can be seen from expression (2.9), the bias is not of a

“parametric order”1/n but determined by the leading term c1h
2 +c2g

2. With α > 0

some exponent to be specified later, define the following jackknife pseudo-values

µ̂n,i =
nαµ̂− (n− 1)αµ̂(−i)

nα − (n− 1)α
(2.18)

where µ̂(−i) is defined exactly as µ̂ but based on all but the i-th observation

(Xi, Yi, δi). Using (2.9), the average of the pseudo-values

µ̄ =
1

n

n∑

i=1

µ̂n,i (2.19)

has approximately the following expectation

E(µ̄) ≈ µ+ c1
nαh2

n − (n− 1)αh2
n−1

nα − (n− 1)α
+ c2

nαg2
n − (n− 1)αg2

n−1

nα − (n− 1)α
. (2.20)

Taking h = Chn
−2/5 and g = Cgn

−2/5, expression (2.20) can be rewritten as

E(µ̄) ≈ µ+ c1Ch
nα−4/5 − (n− 1)α−4/5

nα − (n− 1)α
+ c2Cg

nα−4/5 − (n− 1)α−4/5

nα − (n− 1)α
. (2.21)

By the choice α = 4/5, the leading bias term of µ̂ cancels out, leading to a

bias-corrected estimator µ̄ and called the generalized jackknife statistic (Gray and

Schucany, 1972). Since the bias of µ̂ is not of the order 1/n, the choice α = 1

corresponding to Quenouille’s original jackknife pseudovalues is not appropriate here.

The difference b̂ias(µ̂) = µ̂− µ̄ is known as the jackknife bias estimator and the

jackknife variance estimator for µ̂ is given by (see e.g. Efron and Tibshirani, 1993)

v̂ar(µ̂) =
1

n(n− 1)

n∑

i=1

(µ̂n,i − µ̄)2.

Both b̂ias(µ̂) and v̂ar(µ̂) depend on the values of the unknown constants Ch and

Cg. Optimal choices can then be derived by minimizing the estimated mean squared

error

m̂se(µ̂)(Ch, Cg) = b̂ias
2
(µ̂)(Ch, Cg) + v̂ar(µ̂)(Ch, Cg).

This method has been implemented but led to highly variable estimates for bias

and variance. The reason for this failure is the generation of new responses in step 1

and step 2. Within each jackknife run, deleting the i-th observation, complete new

data are generated, causing far too high variability in pseudo-values.
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A third procedure retains all data generated in steps 1 and 2, but modifies, for

each i = 1, . . . , n, the imputed data Y +
j (ℓ) to Y

+(−i)
j (ℓ) by shifting them to a new

mean reflecting the deletion of the i-th observation while using hn−1 = Ch(n−1)−2/5

and gn−1 = Cg(n − 1)−2/5. This idea was inspired by the adjusted jackknife as

proposed by Rao and Shao (1992). When using all data (X1, Y1, δ1), . . . , (Xn, Yn, δn),

the conditional mean of Y +
i (ℓ) is given by

µ̂+
n (Xi;K,L, hn, gn) =

n∑

k=1

δkL

(
Xi −Xk

gn

)
µ̂(Xk;K,hn)

n∑

k=1

δkL

(
Xi −Xk

gn

) (2.22)

where µ̂(Xk;K,hn) is defined by

µ̂(x;K,h) =

∑n
j=1 δjK

(
x−Xj

h

)
Yj

∑n
j=1 δjK

(
x−Xj

h

) . (2.23)

Within each jackknife run i (referring to deletion of the i-th observation,

i = 1, . . . , n), the imputed observation Y +
j (ℓ) is replaced by the adjusted imputed

value

Y
+(−i)
j (ℓ) = Y +

j (ℓ) + {µ̂+(−i)
n−1 (Xj ;K,L, hn−1, gn−1) − µ̂+

n (Xj ;K,L, hn, gn)}, (2.24)

where µ̂
+(−i)
n−1 (Xj ;K,L, hn−1, gn−1) is defined as µ̂+

n (Xi;K,L, hn, gn) in (2.22) but

with the i-th observation excluded and using bandwidths hn−1 and gn−1.

The values µ̂(−i) are defined in the same way as before but now without the i-th

observation and based on the jackknife imputed values. The pseudo-values are again

defined as in (2.18). Using similar arguments as those in (2.19) to (2.21), it can be

shown that the leading bias term disappears for the estimator µ̄.

As illustrated in the next section, this jackknife procedure succeeds in selecting

a proper choice of Ch and Cg. An in-depth study of the theoretical properties and

the finite sample behaviour of this jackknife bandwidth selector is beyond the scope

of this chapter.

2.6 Simulation Results

In this section we apply the above developed methods to simulated data, and perform

a comparison with other approaches dealing with this type of missingness.
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2.6.1 A Simulation Study

The following methods for multiple imputation are included in this simulation study.

The first, naive approach uses the complete cases only. Among the parametric meth-

ods we consider single imputation (Buck, 1960) and multiple imputation, according

to Rubin (1978, 1987) and Efron (1994). These methods all assume a parametric

regression relationship between Y and X. Rubin’s multiple imputation assumes

joint normality of (X,Y ). In Efron’s bootstrap approach, the complete cases are

resampled and used to fit a linear regression model of Y on X in order to impute

Y -values from a normal distribution with estimated linear conditional mean function

and estimated constant variance.

Three non-parametric approaches are also included. The first is a single impu-

tation method, in which a local linear estimator of the conditional mean is used

to impute for missing Y values (Cheng, 1994). The other two methods are those

studied in this chapter, namely multiple imputation by local resampling or local

semi-parametric resampling, employing different sets of local weights (1) wj , (2) w̆j ,

(3) w̌j ; see Section 2.3.

In a first scenario, Y observations are generated from a normal distribution with

conditional mean µ(x) = −3+x+7x2 and conditional variance σ2(x) = exp(3+0.2x).

The completely observed X variable follows a uniform distribution on the interval

[0,10]. Values are missing with conditional probability 1 − π(x) = {1 + exp(0.5 −
0.1(x−5)2)}−1, which is largest at the ends of the interval. With these specifications,

the true value of the parameter of interest is µ = E{µ(X)} = 235.33 and the total

percentage of missingness is E{π(X)} = 0.57. In this and all other scenarios we

took the number of multiple imputations to be m = 3. Other values, m = 5 and

m = 10, gave very comparable results and are not shown.

We generated 1000 samples {(Xi, Yi, δi), i = 1, . . . , n}. Table 2.2 summarizes the

main results for n=200. An arbitrary sample from this setting is shown in the left

upper panel of Figure 2.1. The 75 solid dots are observed, the other 125 y-values

are missing. As shown in the right lower panel, more response values are missing at

both ends of the [0, 1] interval. The quadratic mean and variance function are also

shown.

In all non-parametric imputation methods, the standard normal kernel func-

tion was used and all bandwidths were kept fixed. For the non-parametric single

imputation only one bandwidth is needed and was taken as 1.5. For the local semi-

parametric resampling the bandwidth in Step 1 was h = 0.25 and in Step 2 we chose

g = 1.5. The local resampling method used the same bandwidth h = g = 0.25 in

both steps. These choices are based on some initial experiments.
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Figure 2.1: Scenario 1, simulation setting 1: an arbitrary sample (left upper panel),

the mean function µ(x) (right upper panel), the function σ(x) (left lower panel) and

the probability π(x) (right lower panel)

For each imputation method and each run we computed the multiple imputa-

tion estimate µ̂, its estimated standard error se(µ̂) and a 95% confidence inter-

val µ̂ ± 1.96se(µ̂). Averages of the point estimates are shown in columns 1 and

2 of Table 2.2. Column 3 shows the simulated standard error of µ̂. Columns 4

and 5 show the average length of the 1000 confidence intervals and the simulated

coverage probability. Rubin and Schenker (1986) suggested adjusting additionally

for the multiple imputation by using critical points based on a t-distribution with

(m − 1){1 + (m/(m + 1))(Ŵ/B̂)}2 degrees of freedom. The average lengths of

these adjusted confidence intervals and simulated coverage probabilities are shown

in columns 6 and 7, only for the multiple imputation methods.
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Table 2.2: Simulation results for the first scenario. For each method: average of

µ̂ and S(µ̂) (columns 1 and 2), simulated standard error of µ̂ (column 3), aver-

age length and estimated coverage probability of confidence intervals (columns 4

and 5) and average length and estimated coverage probability adjusted for multiple

imputation (columns 6 and 7). True value is µ = 235.33. PSI: parametric single

imputation method, Rubin PMI: Rubin’s parametric multiple imputation method,

Efron PMI: Efron’s parametric multiple imputation method, NPSI: non-parametric

single imputation method, LSR: local semi-parametric resampling method, LR: local

resampling method. For the latter two, local weights (1) wj , (2) w̆j , (3) w̌j are used.

method ave(µ̂) ave(S(µ̂)) sse(µ̂) ave.CI sim.cov adj. ave CI adj.cov

All data 235.41 15.83 15.77 62.07 0.954 - -

CC 214.71 19.86 19.82 77.87 0.788 - -

PSI 215.33 14.93 16.93 58.54 0.682 - -

Rubin PMI 215.23 17.26 17.22 67.67 0.759 70.03 0.778

Efron PMI 215.12 17.08 17.38 66.94 0.739 69.07 0.755

NPSI 236.57 15.22 18.11 59.78 0.889 - -

LSR(1) 235.86 17.58 18.13 68.96 0.925 72.39 0.925

LSR(2) 237.09 17.30 18.62 67.83 0.917 69.85 0.920

LSR(3) 236.55 17.64 18.42 69.16 0.925 72.31 0.932

LR(1) 233.53 17.38 18.71 68.13 0.919 71.97 0.924

LR(2) 234.45 17.20 18.66 67.43 0.919 69.85 0.921

LR(3) 234.20 17.52 18.87 68.69 0.916 71.97 0.920

Next to linearity of µ(x), all parametric multiple imputation methods assume a

constant variance σ2(x). Moreover Rubin’s parametric multiple imputation assumes

X to be normally distributed. The local resampling and local semi-parametric re-

sampling approaches do not violate any model specifications.

As expected, the complete-cases method and the parametric imputation methods

clearly underestimate the true mean µ while the non-parametric approaches perform

much better. A comparison of the averages of the estimated standard errors and the

simulated standard errors confirms the need for multiple imputation.

Note that the average lengths of the confidence intervals and the associated

coverage probabilities are equal or larger for the construction based on a t random
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Table 2.3: Simulation results for the second scenario. For each method: average of µ̂

and S(µ̂) (columns 1 and 2), simulated standard error of µ̂ (column 3), average length

and estimated coverage probability of confidence intervals (columns 4 and 5) and

average length and estimated coverage probability adjusted for multiple imputation

(columns 6 and 7). True value is µ = 17.33. LSR: local semi-parametric resampling

method, LR: local resampling method. Local weights (1) wj , (2) w̆j , (3) w̌j are used.

method ave.(µ̂) ave.(S(µ̂)) sse(µ̂) ave.CI sim.cov. adj. ave. CI adj.cov.

LSR(1) 17.75 1.74 1.79 6.83 0.938 7.53 0.948

LSR(2) 18.24 1.72 1.94 6.75 0.906 7.30 0.918

LSR(3) 17.66 1.72 1.76 6.73 0.936 7.36 0.946

LR(1) 18.00 1.72 1.82 6.76 0.927 7.35 0.933

LR(2) 18.48 1.77 2.01 6.94 0.898 7.59 0.918

LR(3) 17.53 1.70 1.76 6.66 0.936 7.22 0.945

variable (Rubin and Schenker, 1986) for all multiple imputation methods. This

approach reduces to the normal confidence intervals for single imputation.

For this scenario there is not much difference between the local semi-parametric

resampling and local resampling methods; both improve significantly upon the para-

metric methods. Also, there are almost no differences between the different local

weighting schemes.

In a second scenario, response data follow a 6:4 mixture of N{µ(x), σ2(x)} and

Exp{1/µ(x)}, where µ(x) = 6 + (x− 2)(x− 4) + 5 cos(πx), σ(x) = exp(0.02x), and

logit{π(x)}=2 − 0.4x, resulting in µ = 17.33. Since there is more misspecification,

differences between parametric and non-parametric methods are more pronounced.

Table 2.3 gives the simulation results for the local methods using bandwidths h = 1

and g = 1.5 for n = 200.

In this scenario, the semi-parametric methods, using a normal local likelihood in

Step 2, turn out to be quite robust against the model misspecification. The local

linearized weights w̆j result in somewhat lower coverage probabilities, caused by a

slight overestimation of µ. Better results might be obtained if the bandwidth were

be optimized in each simulation run. The precise choice of local weights turns out

to be of less importance.

For the simulated dataset shown in Figure 2.1, densities of the augmented re-

sponse values are shown in Figure 2.2. The panel on the left shows densities of all

response values (observed and missing), of the observed only and of the parametri-
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Figure 2.2: Scenario 1, simulation setting 1: Densities of response values (all and

observed only) and augmented values for the different parametric imputation meth-

ods (left panel) and different non-parametric methods (right panel), for a sample

within simulation setting 1.

cally augmented values. The panel on the right shows similar densities based on our

non- and semi-parametric imputation method. For illustrative purposes only the

weights wj were used. It illustrates that the parametric methods impute values at

the wrong location and that variability is wrongly incorporated by single imputation

methods.

Several parameters and underlying functions may influence the behaviour of the

different imputation methods. We experimented with some other simulation settings

(componentwise modifications of setting 1). Results are shown in Table 2.4. In

setting 2, the sample size was reduced from 200 to 100. The results are similar. The

coverage of the single imputation based confidence intervals are unacceptable. The

difference between a parametric and non-parametric approach is now less pronounced

and, for local imputation, the estimator S(µ̂) seems to suffer from underestimation

when the sample size is getting smaller. This is no surprise because local or non-

parametric methods typically need more data to be really successful.
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Setting 3 differs from setting 1 by another choice of π(x) = {1+exp(−1+0.1(x−
5)2)}−1 leading to a lower total percentage of missingness (45.90%). All methods

are performing somewhat better now but the overall conclusion is the same.

Turning to a setting where more assumptions of the parametric MI methods are

fulfilled, we first considered setting 4, similar to setting 1 but now with a constant

conditional variance σ2(X) = 51. This doesn’t seem to lead to large changes or

improvements for the parametric methods. The single non-parametric imputation

method benefits most from this.

In a last setting 5 we chose a linear regression relation µ(x) = −3+70∗x together

with another probability π(x) = {1+exp(−3+0.5 ∗x)}−1 leading to a true value of

µ = 347 and a total percentage of 41.57 % missingness. As can be seen from Table

2.5, the LR and LSR do not outperform the parametric approaches. The latter ones

now use a correctly specified regression model. But the loss in efficiency by using

unnecessarily a local imputation method remains very reasonable.

We experimented with some other variations of setting 1, all leading to essentially

the same conclusions. The local imputation method improves upon the classical

methods when one or more of the parametric assumptions are violated. When all

assumptions underlying the parametric multiple imputation methods are fulfilled,

local resampling and local semi-parametric resampling do not outperform the para-

metric approaches, although the loss in efficiency incurred by using unnecessarily a

local imputation method remains small.

2.6.2 Jackknife Data Driven Bandwidth Selection

As an illustration, we applied the jackknife method of Section 2.5.2 to a randomly

chosen sample obtained from the first scenario in Section 2.6.1, using the weights wj ,

defined in (2.4). For the local resampling imputation, the grid 0.2, 0.25, 0.3, 0.5, 1,

2.5, 5, 20, 30, 40 was used for both constants Ch and Cg. In this way 100 estimates

of µ̂ and the corresponding mean squared error of µ̂ were calculated. This resulted

in a surface as shown in Figure 2.3(a). Figure 2.3(b) shows the estimated mean

squared error as a function of µ̂ using a loess fit. This shows that lower values of the

mean squared error correspond to estimates in the neighbourhood of the true value

µ = 235.33. The minimum is attained at µ̂ = 233.15, with bandwidths h = 0.601

and g = 0.024. This latter plot also shows that different choices for h and g can

lead to a wide range of µ̂-values, from about 225 to 260, indicating that a precise

bandwidth choice is not unimportant.

Jackknifing with local semi-parametric imputation was also examined for the

same sample, using a Ch, Cg-grid based on 1, 1.5, 2.5, 5, 7.5, 10, 15, 20, 30, 40.
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Table 2.4: Scenario 1, simulation results for settings 2, 3 and 4: average of µ̂ and

S(µ̂) (columns 1 and 2), simulated standard error of µ̂ (column 3), average length

and estimated coverage probability of confidence intervals (columns 4 and 5) and

average length and estimated coverage probability adjusted for multiple imputation

(columns 6 and 7). Local weights (1) wj , (2) w̆j , (3) w̌j are used. True value

µ = 235.33.

Setting 2 average(µ̂) average(S(µ̂)) simulated average sim. cov. adj. average adj. cov.

se(µ̂) length of CI prob. length of CI prob.

All data 235.52 22.38 22.67 87.72 0.946 - -

CC 215.76 28.16 28.72 110.37 0.867 - -

PSI 214.86 21.10 24.15 82.71 0.770 - -

Rubin PMI 214.97 24.45 24.57 95.86 0.822 99.33 0.828

Efron PMI 213.94 24.28 24.50 95.17 0.815 98.62 0.827

NPSI 235.67 21.46 26.49 84.11 0.883 - -

LSR(1) 235.03 24.15 27.05 94.66 0.913 97.97 0.925

LSR(2) 235.81 23.71 27.03 92.93 0.904 94.72 0.907

LSR(3) 235.23 24.13 27.20 94.60 0.914 97.74 0.921

LR(1) 232.20 23.45 27.33 91.92 0.892 94.75 0.898

LR(2) 232.89 23.09 27.23 90.53 0.886 92.07 0.889

LR(3) 232.56 23.47 27.74 92.01 0.886 94.80 0.890

Setting 3 average(µ̂) average(S(µ̂)) simulated average sim. cov. adj. average adj. cov.

se(µ̂) length of CI prob. length of CI prob.

All data 235.41 15.83 15.77 62.07 0.953 - -

CC 217.84 18.38 19.29 72.06 0.798 - -

PSI 218.39 15.06 16.43 59.04 0.744 - -

Rubin PMI 218.63 16.77 16.83 65.75 0.798 67.02 0.805

Efron PMI 218.31 16.72 16.85 65.53 0.794 66.73 0.802

NPSI 236.41 15.33 17.21 60.08 0.916 - -

LSR(1) 235.83 17.15 17.41 67.23 0.942 69.33 0.945

LSR(2) 236.83 16.94 17.65 66.40 0.940 67.70 0.940

LSR(3) 236.09 17.20 17.44 67.42 0.938 69.56 0.941

LR(1) 233.70 16.96 17.28 66.47 0.930 68.27 0.932

LR(2) 234.73 17.01 17.42 66.69 0.943 68.31 0.946

LR(3) 234.47 17.11 17.44 67.06 0.933 69.01 0.938

Setting 4 average(µ̂) average(S(µ̂)) simulated average sim. cov. adj. average adj. cov.

se(µ̂) length of CI prob. length of CI prob.

All data 235.38 15.38 15.38 60.30 0.953 - -

CC 251.03 22.65 22.52 88.77 0.895 - -

PSI 250.19 15.02 16.08 58.89 0.823 - -

Rubin PMI 250.26 16.30 16.28 63.88 0.852 64.60 0.856

Efron PMI 250.10 16.31 16.28 63.92 0.854 64.65 0.855

NPSI 241.16 15.13 15.61 59.31 0.936 - -

LSR(1) 241.43 15.88 15.78 62.24 0.941 62.54 0.942

LSR(2) 241.55 15.88 15.73 62.23 0.941 62.51 0.942

LSR(3) 241.29 15.87 15.77 62.19 0.943 62.48 0.945

LR(1) 235.72 15.98 15.89 62.65 0.954 62.97 0.954

LR(2) 235.49 15.99 15.67 62.68 0.952 63.02 0.955

LR(3) 235.45 15.96 15.84 62.55 0.953 62.88 0.953
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Table 2.5: Scenario 1, simulation results for setting 5: average of µ̂ and S(µ̂)

(columns 1 and 2), simulated standard error of µ̂ (column 3), average length and

estimated coverage probability of confidence intervals (columns 4 and 5) and average

length and estimated coverage probability adjusted for multiple imputation (columns

6 and 7). Local weights (1) wj , (2) w̆j , (3) w̌j are used. True value µ = 347.

Setting 5 average(µ̂) average(S(µ̂)) simulated average sim. cov. adj. average adj. cov.

se(µ̂) length of CI prob. length of CI prob.

All data 347.07 14.72 14.79 57.72 0.956 - -

CC 252.36 16.69 16.84 65.43 0.000 - -

PSI 347.12 14.53 15.23 56.95 0.942 - -

Rubin PMI 347.33 15.50 15.42 60.76 0.956 61.37 0.959

Efron PMI 347.26 15.45 15.31 60.55 0.951 61.10 0.953

NPSI 347.16 14.54 15.43 56.99 0.935 - -

LSR(1) 346.73 15.51 15.51 60.81 0.950 61.54 0.95

LSR(2) 347.59 15.39 15.54 60.31 0.949 60.75 0.95

LSR(3) 347.01 15.51 15.47 60.79 0.951 61.47 0.951

LR(1) 345.17 15.33 15.67 60.08 0.934 60.72 0.936

LR(2) 346.06 15.25 15.72 59.80 0.934 60.22 0.937

LR(3) 345.88 15.34 15.70 60.13 0.933 60.74 0.934

Larger values were needed, which seems plausible for a partly parametric approach.

A plot of the estimated mean squared error versus µ̂ is shown in Figure 2.3(c).

The loess curve indicates a steeper descent towards the minimum, but on the

other hand there is more variability. Estimates in the range of 224 to 231 have more

or less the same associated mean squared error. For this sample, however, the local

resampling method seems to do better. A similar experiment was done with sample

size equal to 100 instead of 200. The result is shown in Figure 2.3(d). The curve

seems to flatten out at its minimum of µ̂ = 236.39, corresponding to h = 0.396 and

g = 3.170.

Our conclusion is that the jackknife method gives promising results, but further

research is needed.

2.7 The Vorozole Data

In this section we will illustrate both the local resampling and the local semi-

parametric resampling on the Vorozole data as introduced in Section 1.5.1.

Goss et al. (1999) analyzed the Functional Living Index: Cancer (FLIC) using

a two-way ANOVA model with effects for treatment, disease status, as well as their

interaction. No significant difference was found. These data were further analyzed

by Michiels et al. (1999).
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Figure 2.3: Scenario 1: (a) estimated mean squared error response surface plot for

local resampling method with n = 200, (b) estimated mean squared error plotted

against µ̂ for local resampling method with n = 200, (c) estimated mean squared

error plotted against µ̂ for local semi-parametric resampling method with n = 200,

(d) estimated mean squared error plotted against µ̂ for local resampling method

with n = 100.

Here we estimate the mean FLIC score for patients at month 6 for both treatment

arms separately, using a regression relation between the FLIC scores at month 1 (X)

with those at month 6 (Y ). Patients with no FLIC score at month 1 where excluded.

About 50 % of all patients dropped out. A lower FLIC score at month 1 corresponds

with a higher drop-out probability at month 6.

Table 2.6 summarizes the results. As expected the mean of the available, com-

plete cases clearly overestimates the true mean FLIC score at month 6, for both

treatments. The single imputation method PSI seems to correct for this but heavily

underestimates the standard error. For both non-parametric multiple imputation

methods LSR and LR using weights wi, Table 2.7 and Figure 2.4 show the jackknife
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selected optimal bandwidths (gridsearch). There is almost no difference between

the LSR and LR optimal bandwidths whereas the choices are like reversed for both

treatments. Results for LSR and LR using weights w̆j and w̌j give similar findings.

Figure 2.4: Vorozole data: (a) estimated mean squared error response surface plot

for local resampling method, (b) estimated mean squared error plotted against µ̂ for

local resampling, (c) estimated mean squared error plotted against µ̂ for local semi-

parametric resampling method, (d) estimated mean squared error plotted against µ̂

for local resampling method.

Within a treatment arm, there is a striking similarity between all estimates

based on multiple imputation. Whereas the simulations indicate that even a slightly

misspecified parametric MI method can have serious problems, no such conclusions

can be formulated here.

All point estimates take higher values for the vorozole arm but the confidence

intervals indicate that the differences are not significant, which is in line with the

results of Goss et al. (1999).
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Table 2.6: Results for the Vorozole data: Estimates for the mean FLIC score µ̂

at month 6 with estimated standard error s(µ̂) and corresponding 95% confidence

interval, for the vorozole (rows 1–2) and for the megestrole acetate (rows 3–4) treat-

ment.

Method CC only PSI Rubin PMI Efron PMI LSR(1) LR(1)

µ̂ 123.32 120.55 119.32 120.66 120.44 121.11

s(µ̂) 3.69 1.35 2.80 5.62 3.24 4.00

CI (119.5,127.1) (118.3,122.8) (116.0,122.6) (116.0,125.3) (116.9,124.0) (117.2,125.0)

adj CI - - (115.9,122.8) (114.3,127.1) (116.4,124.5) (116.3,126.0)

µ̂ 119.15 116.68 116.02 116.93 116.86 116.38

s(µ̂) 4.19 1.79 2.96 2.68 4.98 2.60

CI (115.1,123.2) (114.1,119.3) (112.7,119.4) (113.7,120.1) (112.5,121.2) (113.2,119.5)

adj CI - - (112.6,119.5) (113.7,120.2) (111.4,122.4) (113.1,119.6)

Table 2.7: Results for the Vorozole data: Jackknife selected bandwidth for the LR

and LRS methods.

Method LSR(1) LR(1)

Bandwidth h g h g

vorozole 2.95 0.95 2.95 0.59

megestrole acetate 1.18 2.94 1.76 2.94

2.8 Discussion

Dealing with missing data via parametric multiple imputation methods usually im-

plies stating several strong assumptions about both the distribution of the data and

about underlying regression relationships. If such parametric assumptions do not

hold, the multiply imputed data are not appropriate and might produce inconsistent

estimates and thus misleading results. In this chapter, a fully non-parametric and a

semi-parametric imputation method were introduced. Focus was on missing response

data and in particular on the overall mean of the response variable Y . Estimators

of other moments of Y and functions thereof can be obtained in a straightforward

manner. For example, the average k-th sample moment µ̂k =
∑m
ℓ=1 µ̂k(ℓ)/m where

µ̂(ℓ) =
∑n
i=1{Ỹi(ℓ)}k/n, can be shown to be a consistent estimator of the k-th

moment of Y .

The non-parametric imputation method is applicable in a wide variety of sta-

tistical models, and can in the same way be used for discrete response data. The

small adaptation needed for semi-parametric resampling is the specification of the
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appropriate distribution function in step 2 of the algorithm.

If there is more than one parameter completely observed, local methods could

take all of them into account. However, in high dimensions kernel based methods

might loose some of their attractiveness because of the ever present curse of dimen-

sionality. The semi-parametric imputation methods proposed by Wang et al. (2004)

and Little and An (2004) overcome this deficiency in the single imputation setting.

In some specific situations, imputation of missing values when missingness is

non-ignorable, has been addressed by several authors, e.g., Greenlees et al. (1982).

In general, however this is not straightforward.
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Chapter 3

Weighted Model Selection for

Incomplete and Design-based

Samples

3.1 Introduction

In a regression analysis, starting from a rich enough family of models and based

on the data at hand, one or a few good models can be selected, e.g., using the

Akaike Information Criterion (AIC). In case of missing data, simple deletion of the

subsample of incomplete observations and treating the resulting subsample of so-

called complete cases as a simple random sample has been shown to possibly lead

to biased estimates, even when using a correct model (see e.g. Little, 1992; Zhao

et al., 1996). A similar problem occurs when the observations come from a complex

survey design, i.e., when sampling from a finite population with unequal selection

probabilities. Indeed, the probability that an observation is incomplete can also

be considered as a selection probability for that observation to be included in the

sample or not. Analyzing such design-based data as a simple random sample can

also introduce bias (Horvitz and Thompson, 1952).

There is a vast literature on parametric and non-parametric models in case of

incomplete or design-based samples, but most of it concerns estimation (assuming a

correct model) rather than model selection. The naive use of model selection criteria

however turn outs to be unreliable in case of the aforementioned complications in

the data. Indeed, treating the complete cases or the design-based sample as just

51
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a simple random sample can invoke some effects to appear or disappear and thus

suggest another (incorrect) model to be more adequate for the data at hand.

In the context of incomplete data, selection methods like the predictive diver-

gence for incomplete observations (PDIO, Shimodaira, 1994) and the complete data

AIC (AICcd, Cavanaugh and Shumway, 1998) have been proposed. These meth-

ods rely on modelling the complete data likelihood, which introduces an additional

model selection problem, namely the selection of an appropriate model for the miss-

ingness mechanism (if not missing completely at random). In this chapter we focus

on selecting appropriate models for the measurement part, while treating the miss-

ingness mechanism as a nuisance. We propose a modification of the AIC-criterion

for regression models, based on reweighting the complete cases by their inverse se-

lection probabilities. The latter selection probabilities, if unknown, are preferably

estimated non-parametrically (using ,e.g., splines), in this way avoiding the selec-

tion of a parametric model with its assumptions for the missingness process. This

weighting of completely observed cases can be seen as an implicit imputation of

missing observations and is valid when the probability to be missing depends upon

the observed values but not on the unobserved values (MAR in the terminology of

Little and Rubin 1987, Section 1.2).

For the closely related situation of design-based samples, model selection has

not been really investigated. In the next section, the motivating study illustrates

both complications of missingness and design-based sampling. In Section 3.3, the

weighted AIC-criterion is introduced and discussed, mainly for parametric models,

but its applicability is also extended to non-parametric models. Indeed, analogous

to the selection of an optimal model from a set of parametric candidate models, one

can choose the optimal smoothing parameter in non-parametric regression based on

the corrected AIC-criterion, as shown by Hurvich et al. (1998). We will modify this

criterion to handle incomplete and design-based samples. In Section 3.4, a simulation

study shows the improved performance of the weighted AIC-criterion. Section 3.5

and Section 3.6 discuss some other weighted model selection criteria and possible

avenues of other model selection techniques.

3.2 Cervix Cancer Screening

The Cervix Cancer Screening data, as a part of the Belgian Health Interview Survey

of 1997, were introduced in Section 1.5.2. In this particular dataset, two complica-

tions arise. Firstly, sampling in the HIS was based on a combination of stratification,

multistage sampling and clustering (Kish, 1995). Secondly, about 30% of the 2893
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women had one or more missing covariates for the variables of interest. These de-

sign issues, together with the likely occurrence of data to be missing, are inherent

to surveys and should be taken into account when selecting an optimal model from

a candidate set of models.

In Table 5.2 and 5.3, an overview of twelve different models, based on the vari-

ables in Table 5.1, is given together with the original AIC-criterion, three weighted

versions and two imputation-based versions.

The first modification, ‘AICW1
’, corrects for the survey design, the second and

fourth version, ‘AICW2
’ and ‘AICI ’, correct for incomplete data and the combina-

tion of both can be found in versions, ‘AICW1,W2
’ and ‘AICI,W1

’. Table 5.3 shows

that different models are chosen by the different versions of the AIC-criterion; so

it indicates that ignoring missingness or ignoring the sampling design can possibly

lead to inappropriate model choices. We refer to Chapter 5 for a more thorough

discussion.

Based on a theoretical justification, the weighted AICs are defined in the next

section.

3.3 Weighted Akaike Information Criterion

Based on observations (xi, yi), i = 1, ..., n, consider the regression model

y ∼ f(y;θ,η), (3.1)

where

y = (y1, . . . , yn)
T , θ = (θ(x1), . . . , θ(xn))

T , η = (η(x1), . . . , η(xn))
T .

Here f denotes the joint density of y (given x), θ the parameter of interest and η a

nuisance parameter. The aim is to select an optimal or a few good models amongst

a set of candidate models. Several model selection criteria have been developed, in

different settings and with different types of complexities in data and models (see

e.g. Akaike, 1973; Takeuchi, 1976; Schwarz, 1978; Spiegelhalter et al., 2002).

Assume we start from a collection of models, in particular we consider models of

the form (3.1) . The well-known AIC criterion (Akaike, 1973)

AIC = −2L(θ̂, η̂) + 2K, (3.2)

with L(θ,η) denoting the loglikelihood of the model and (θ̂, η̂) the maximum like-

lihood (ML) estimator of (θ,η), originates from information theory. Here K stands

for the total number of estimated parameters, nuisance parameters included. The
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second term in the AIC formula is often interpreted as a penalization for complexity.

The AIC was designed to be an approximately unbiased estimator of the expected

Kullback-Leibler Information (KL). In general, the KL information between model

f0 (denoting the ‘true’ model) and model f (the approximating model (3.1)) is de-

fined as (ignoring an ‘historical’ factor 2)

I(f0, f) = E{ log(
f0(y)

f(y;θ,η)
)}, (3.3)

(expectation with respect to the true model) and can be interpreted as the infor-

mation loss using f to approximate f0, or as the distance from f0 to f . This KL

distance is not a metric, but it has the property that I(f0, f) ≥ 0 with equality only

if f ≡ f0.

3.3.1 Missing Data

In case of missing data, the naive use of only complete cases in the definition of

I(f0, f) can lead to serious deficiencies in its applicability to measure the distance

between models (and consequently also in the use of its empirical version, the AIC-

criterion). For simplicity, let us consider classical regression and suppose data are

generated by a true model

y ∼ Nn(µ0, σ
2
0In), (3.4)

where µ0 = (µ0(1), . . . , µ0(n))T , Nn denotes an n-variate normal distribution and

In the n× n identity matrix . Consider the approximating, or candidate, family of

models

y ∼ Nn(µ(θ), σ2In), (3.5)

where µ = (µ(x1;θ), , . . . , µ(xn;θ))
T .

For this setting, E{log f(y;θ,η)} can be written as (f now denoting the univari-

ate normal density)

E{
n∑

i=1

log f(yi;µ(xi), σ
2)} = −n

2
log(2πσ2)

−E
[
{y − µ(θ)}T {y − µ(θ)}

]
/(2σ2). (3.6)

Using an analogous expression for E{log f0(y)}, it is easy to verify that

I(f0, f) =
n

2
log(σ2/σ2

0) +
n

2
{σ

2
0

σ2
− 1} + {µ0 − µ(θ)}T {µ0 − µ(θ)}/(2σ2). (3.7)

It follows that this measure is minimized as a function of σ2 and µ(θ) (and equals

0) by taking σ2 = σ2
0 and µ(θ) = µ0.
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Now, let us introduce the missingness process. For i = 1, . . . , n, define the

indicator δi = 1 if (xi, yi) is fully observed and 0 otherwise. In general it is possible

that πi = P (δi = 1) = π(xi, yi, zi), so the probability that the i-th observation

is not fully observed is allowed to depend on xi, yi or even on the value zi of an

other, completely ignored, variable. In this chapter we restrict attention to the MAR

setting, implying that πi does not depend on zi, that it additionally does not depend

on xi (resp. yi) in case xi (resp. yi) might be missing.

The use of complete cases (CC) only (those for which δi = 1) (and hence ignoring

the missing data mechanism) is translated in a replacement of (3.6) by

E{
n∑

i=1

δi log f(yi;µ(xi;θ), σ
2)} = −E{trace(D)}

2
log(2πσ2)

−E
[
{y − µ(θ)}TD{y − µ(θ)}

]
/(2σ2),

(3.8)

where D = diag(δ1, . . . , δn). As a function of σ2 and µ(θ), and using a saturated

model µ(θ) = θ = (θ1, . . . , θn) for the mean function, this expression (3.8) is maxi-

mized and the corresponding CC version of the KL distance

ICC(f0, f) = E{
n∑

i=1

δi log[(f0(yi)/f(yi;µ(xi;θ), σ
2)]}

=
E{trace(D)}

2
log(

σ2

σ2
0

) + E
[
{µ0 − µ(θ)}TD{µ0 − µ(θ)}

]
/(2σ2)

+E{zTDz}1

2

(
σ2

0

σ2
− 1

)
+ E{zTD}(µ0 − µ(θ))

(σ0

σ2

)
,

(3.9)

(with z = (y − µ0)/σ0) is minimized at

θ̃i =
E{yiπi}
E{πi}

= µ0(i) +
Cov(yi, πi)

E{πi}
, (3.10)

and

σ̃2 =

n∑

i=1

E[πi{yi − θ̃i}2]

n∑

i=1

E{πi}
. (3.11)

In the above expressions and in what follows, moment related operators like the

expectation E or the covariance (Cov) act on the random variables yi and δi and

treat xi as nonrandom.
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First of all, under a MCAR (missing completely at random) mechanism, πi = π

and the above solutions simplify and are equal to the ‘true’ values, µ0(i) and σ2
0 ,

respectively. The same holds in the MAR case that yi is missing with probability

πi = π(xi), only depending on xi. If however πi does depend on yi in a way that

Cov(yi, πi) 6= 0, ICC(f0, f) reaches a different minimum at (3.10) and (3.11). In

fact, since by definition ICC(f0, f0) = 0, this minimal value is negative (which is

undesirable for a distance measure). If, e.g., yi and πi are positively correlated, then

µ̃i > µ0(i). This is to be expected since observations with smaller values of yi are

discarded with higher probability. Also for nonsaturated models for µ(θ), such kind

of anomalies can be shown.

The AIC-criterion (3.2) based on the complete cases is given by

AICCC = −2

n∑

i=1

δi log[f(yi;µ(xi; θ̂CC), σ̂2
CC)] + 2K, (3.12)

where θ̂CC and σ̂2
CC are the ML estimators, maximizing the CC-loglikelihood (as

described by the first term in (3.12)). For classical regression and ignoring constants,

this can be simplified to

AICCC =

(
n∑

i=1

δi

)
log(σ̂2

CC) + 2K. (3.13)

In case of MCAR, criterion (3.12) (or 3.13) is an approximately unbiased estimate

of ICC(f0, f) and is expected to behave appropriately (the missingness just results

in an implicit sample size reduction). But for the MAR setting with missingness

probabilities depending on the response, nothing guarantees that the above AIC

criteria will serve any longer as useful model selection criteria.

The shortcomings of a CC approach, as described above, can be circumvented

by a simple modification of the KL distance ICC(f0, f) and corresponding AICCC-

criterion. This modification is inspired by the technique of weighted estimation.

Assuming a correct model is used, Flanders and Greenland (1991) and Zhao and

Lipsitz (1992) showed that the use of weighted estimators, solving the weighted

estimating equations (WEE)

n∑

i=1

wiΨ(yi;θ,η) = 0, (3.14)

with Ψ the derivative of the log(quasi)likelihood and with weights wi inversely pro-

portional to the missingness probabilities, are consistent and asymptotically unbi-

ased. The idea of WEE was inspired by the Horvitz-Thompson estimator in the

closely related setting of design-based samples with unequal selection probabilities
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(see Horvitz and Thompson, 1952). In Section 3.3.2, we further exploit this setting

and its similarity with missing data for model selection.

Analogous to (3.14), a weighted KL distance can be defined as

I(f0, f ;w) = E{
n∑

i=1

wi log[(f0(yi)/f(yi;µ(xi;θ), σ
2)]}. (3.15)

Taking the weights

wi = δi/πi, (3.16)

the deficient distance ICC(f0, f) is rectified and turned into the original data KL

distance (‘original’ referring to the ‘full’ data, before introducing missingness). In-

deed,

E{
n∑

i=1

δi
πi

log[(f0(yi)/f(yi;µ(xi;θ), σ
2)]} =

n∑

i=1

E{log[(f0(yi)/f(yi;µ(xi;θ), σ
2)]}.

In a similar way, the weighted AIC-criterion

AICW = −2
n∑

i=1

wi log[f(yi;µ(xi; θ̂W ), σ̂2
W )] + 2K, (3.17)

with wi as in (3.16) and with θ̂W and σ̂2
W the weighted ML estimators (maximizing

the weighted maximum likelihood), is expected to behave appropriately, i.e., to

correct for the missing data. Indeed, denote θ̂o and σ̂2
o the ML estimators based on

the original data, and consider the Taylor expansion (linear terms cancelling out)

−2
n∑

i=1

wi log[f(yi;µ(xi; θ̂o), σ̂2
o)] (3.18)

≈ AICW − 2
(
(θ̂o − θ̂W ) (σ̂2

o − σ̂2
W )
)
In(θ̂W , σ̂2

W )
(
(θ̂o − θ̂W ) (σ̂2

o − σ̂2
W )
)T

,

where the matrix In is the matrix of second derivatives of the weighted log-likelihood,

evaluated at (θ̂W , σ̂
2
W ). The expected value of the left-hand side equals the expected

value of the AIC-criterion based on the original data. Since both estimates, the

‘original’ (θ̂o, σ̂
2
o) and the ‘weighted’ (θ̂W , σ̂

2
W ), are estimating the same parameter

(being the true value (θ0, σ
2
0) in case the model under consideration is a correct

model), the second term in the right hand side is negligible, at least in a first order

approximation.

For a normal regression model with µ(xi,θ) = xiθ, i = 1, . . . , n, where xi =

(1 xi1 . . . nip) and θ = (θ0 θ1 . . . θp)
T , the weighted AIC-criterion can be rewritten

in terms of squared residuals

AICW = (

n∑

i=1

wi) log

(∑n
i=1 wie

2
i∑n

i=1 wi

)
+ 2(p+ 2), (3.19)
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where ei are the residuals from the fitted model, using weighted ML. In the con-

text of robust model selection procedures, Agostinelli (2002) introduced a robust

modification of the AIC-criterion, based on the weighted likelihood methodology.

He proposed a similar weighted AICW -criterion, but with weights downplaying the

contribution of highly influential outliers.

Of course, typically the missing probabilities are unknown and have to be es-

timated, introducing essentially two further complications: i) finding appropriate

estimates π̂i which is again a model selection problem and ii) the effect on the

characteristics of AICW when using weights

ŵi = δi/π̂i. (3.20)

Regarding the first complication, we suggest the use of a non-parametric or

flexible semi-parametric estimator (generalized additive models (gam) or, e.g., clas-

sification trees for more complicated data structures, as illustrated in Section 3.4).

This avoids the need for another model selection step. It is also important to note

that, since the estimation of the missingness probabilities is a step prior to the envis-

aged model selection exercise, and hence is common to all candidate models under

consideration, it has no effect on the penalization term in the expression of AICW .

Concerning the second complication: rather than focusing on a theoretical study of

the effect of estimating πi on the expected value of AICW (a Taylor expansion im-

mediately shows highly ‘untractable’ bias expressions), we opted for examining the

finite sample performance of AICW with estimated weights by a simulation study

(see Section 3.4).

In analogy to its expression based on the original data (Hurvich and Tsai, 1989),

we define a bias-corrected weighted AIC as

AICcorW = AICW +
2K(K + 1)∑n
i=1 wi −K − 1

. (3.21)

This small-sample correction (second-order bias adjustment) has been especially

recommended in a setting where there are many parameters in relation to the size of

the sample n (for more details see Burnham and Anderson, 2002). Its performance

in some simulations is briefly discussed in Section 3.4.1.

3.3.2 Design-Based Samples

Assume a finite population consisting of N units with measurements M =

{y1, . . . , , yN}. A particular sampling plan leads to the random variable δi = 1

if the i-th unit is included in the sample (and 0 otherwise) with n =
∑N
i=1 δi the
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total sample size. The selection probabilities are defined as πi = P (δi = 1), for

i = 1, . . . , N . The choice πi = n/N corresponds to a simple random sample. In this

finite population setting, only the δi are to be considered as random; the set M is

to be considered as unknown but fixed.

Supposing that the population y = (y1, . . . , yN )T is a single realization of a true

‘superpopulation’ model f0(·), using the approximating model f(·;µ(xi;θ), σ
2) and

treating the sample indicated by the δi as a random sample, a KL distance similar

to the ICC(f0, f) measure in (3.9) can be defined as (with now the expectation E

with respect to the δi’s, conditional on the ‘realized’ population)

IDB(f0, f) = E{
N∑

i=1

δi log[(f0(yi)/f(yi;µ(xi;θ), σ
2)]}

=

N∑

i=1

πi log[(f0(yi)/f(yi;µ(xi;θ), σ
2)]. (3.22)

For true and approximating models as in (3.4) and (3.5), with now Π =

diag(π1, . . . , πn), µ = (µ(x1;θ), , . . . , µ(xN ;θ))T and µ0 = (µ0(1), . . . , µ0(N))T and

with z = (y − µ0)/σ0 as before, we get

IDB(f0, f) =
trace(Π)

2
log(

σ2

σ2
0

) + {µ0 − µ(θ)}TΠ{µ0 − µ(θ)}/(2σ2)

+zTΠz
1

2

(
σ2

0

σ2
− 1

)
+ zTΠ(µ0 − µ(θ))

(σ0

σ2

)
. (3.23)

As an example, consider a simple two-valued true superpopulation model

µ0 = (µ0(1), . . . , µ0(N1), µ0(N1 + 1), . . . , µ0(N))T = (µ1, ..., µ1, µ2, ..., µ2)
T

with µ1 6= µ2, and the incorrect constant model µ(θ) = (θ, ..., θ)T . For this incorrect

model, the minimal distance IDB(f0, f) is at least as small as its value at σ̃2 = σ2
0

and

θ̃ =

∑N
i=1 πiyi
n

. (3.24)

Using the correct two-parameter mean model with σ2 = σ2
0 , IDB(f0, f) is minimized

at

µ̃1 =

∑N1

i=1 πiyi
n1

, µ̃2 =

∑N2

i=1 πiyi
n2

, (3.25)

where n1 =
∑N1

i=1 δi and n2 =
∑N
i=N1+1 δi. Now, in the particular case that the se-

lection probabilities induce a bias resulting in µ̃1 = µ̃2, the KL distance IDB(f0, f) is

exactly the same for both models and hence the incorrect model is indistinguishable

from the correct model.
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Identical to the case of missing data, the weighting of the KL distance and

corresponding AIC-criterion, with weights as in (3.16), can be used to correct both

measures. Note that in general the selection probabilities can depend on both xi

and yi. In most applications the selection probabilities πi are determined by the

design of the sample and hence are known.

3.3.3 Design-Based Samples with Missing Observations

In typical surveys, as in the cervix cancer screening example introduced in Section

3.2, both complications occur together. In this case δi, indicating whether or not

the i-th unit is in the sample and is fully observed, can be written as

δi = δDi δ
M
i , (3.26)

where δDi = 1 if the i-th unit is included in the sample (as in Section 3.3.2) and

δMi = 1 if the i-th unit is fully observed (as in Section 3.3.1). The weighted AIC

(3.17) can now be based on weights wi = δi/πi where

πi = P (δi = 1) = P (δMi = 1|δDi = 1)P (δDi = 1). (3.27)

These latter probabilities can be estimated by the product of the (known) prob-

abilities P (δDi = 1) and the (non-parametrically) estimated probabilities P (δMi =

1|δDi = 1).

In the next section, we show how the idea of a weighted AIC can be extended to

select a smoothing parameter for non-parametric regression.

3.3.4 Smoothing Parameter Selection using AICW

Assume

yi = µ0(xi) + ǫi, i, . . . , n, (3.28)

where µ0(·) is an unknown smooth function and ǫi, i = 1, . . . , n, are independent

error terms with mean 0 and variance σ2
0 . Different linear smoothers for µ are

available: orthogonal series, kernel estimators, splines, ... (see e.g. Simonoff, 1996).

The most crucial choice for any smoother is the choice of the smoothing parameter.

Hurvich, Simonoff and Tsai (1998) proposed to select this parameter α by minimizing

the corrected AIC-criterion

AICcorα = n log(σ̂2) +
n+ trace(Sα)

1 − {trace(Sα) + 2}/n, (3.29)

where Sα is the smoother matrix for which ŷ = Sαy.
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In case of an incomplete or design-based sample, this criterion can be turned into

a weighted version

AICcorα,W = (

n∑

i=1

wi) log

(∑n
i=1 wie

2
i∑n

i=1 wi

)
+

∑n
i=1 wi + trace(SW,α)

1 − {trace(SW,α) + 2}/(∑n
i=1 wi)

, (3.30)

where SW,α is the smoother matrix from the weighted fit. Taking SW,α the classical

regression ‘hat matrix’, (3.30) reduces (up to a constant) to (3.21).

To study the effects of weighting more closely, a simulation study in a variety

of settings was conducted. The next section summarizes our main findings. All

computations were conducted in R 2.0 (R Development Core Team, 2004).

3.4 Simulations

In the first two scenarios, we consider a setting with missing covariate data. The

third scenario focuses on design-based samples and the last scenario on the selection

of the smoothing parameter in non-parametric regression.

3.4.1 Scenario 1: Parametric Model Selection for Incomplete

Data

In the initial setting, the set of candidate models contains the true model.

Initial Setting

In this first scenario, uniform[0, 10] x-values were generated, together with (inde-

pendently) Bernoulli(0.5) z-values. Given x and z, response y-values were gener-

ated from a normal distribution with mean µ0(x, z) = −3 + 3x + 5x2 and variance

σ2
0 = exp(5). x-observations were then turned missing with conditional probability

(see middle panel in Figure 3.1),

π(y, z) = 1 − [1 + exp{1 − 0.009(y − 300)}]−1. (3.31)

Not depending on unobserved x-values, the missingness process is MAR. Let n de-

note the total sample size and nc the number of complete observations. We gener-

ated 1000 different samples {(xi, zi, yi), i = 1, . . . , n}, with fixed design {xi, zi, i =

1 . . . , n}. For each sample, 8 different regression models were fit, all submodels of

µ(x, z) = β0 + β1x1 + β2x
2 + β3z + β4xz.

Four different ‘strategies’ are compared: i) AIC on the original data, before intro-

ducing missingness (what we would get if no values were missing), ii) (unweighted)
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Figure 3.1: Scenario 1, an arbitrary chosen sample: (a) original sample, complete

cased (white bullets) and unobserved data (black bullets); (b) missingness probabil-

ities; (c) estimated weights.

AIC on the complete cases only (ignoring missingness), iii) weighted AIC using the

true weights (3.16) and iv) weighted AIC, using the estimated weights (3.20). The

probabilities (3.31) are estimated by gam estimates π̂(y, z) (using the R package

mgcv 1.8, Wood 2001). On average 35% of the x-values were missing. In Figure 3.1,

a typical dataset for Scenario 1 is shown together with the missingness probabilities

and the estimated weights. This latter figure shows a double curve, as a consequence

of the additive model in x and z (being binary). The upper part of Table 3.1 dis-

plays the results for n = 50. Each column (from 2 to 9) corresponds to a particular

model and the numbers show how often the respective model has been selected by

AIC under the four strategies mentioned above. Models more complex than the true

quadratic model {x, x2} can be considered as correct models, the others as incorrect

models. The last rightmost column shows the total number of times a correct model

was chosen. The table shows that for the initial setting, the unweighted AIC applied

on the complete cases, very often selects the incorrect simpler model {x}. This is

to be expected since the missingness is mainly located at the larger y-values (which

of all response values mostly represent the quadratic effect). The weighted versions

correct for that. The one with true weights selects about 10% more often a correct

model, though it less often selects the true model, while the one with the estimated

weights shows an improvement of about 9% and it selects 1% more often the true

model.

We computed the average of the fitted values based on the selected model, to-

gether with 95% pointwise confidence intervals, using AIC on the original data,

(unweighted) AIC on the complete cases, and weighted AIC on the complete cases.
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Table 3.1: Scenario 1: The numbers indicate how often a model has been selected,

for the four strategies. The last column shows how often a correct model has been

chosen, out of 1000. This scenario is repeated for different settings.

1 x z x, x2 x, z x, z, x, x2, x, x2, correctly

xz z z, xz classified

Scenario 1: Initial Setting

n = 50, σ2
0 = exp(5), slope = 5,%(miss) = 35

Original Data 0 272 0 467 55 40 85 81 633

Complete Cases 0 447 0 274 97 53 81 48 403

True Weighted 0 271 0 254 125 99 101 150 505

Est. Weighted 0 329 0 286 100 83 102 106 494

Scenario 1: Variance exp(5.3)

Original Data 0 396 0 374 65 47 70 48 492

Complete Cases 9 540 2 210 107 56 48 28 286

True Weighted 4 330 3 170 131 140 87 135 392

Est. Weighted 5 372 2 198 130 117 78 103 379

Scenario 1: Missingness 20%

Original Data 0 275 0 496 38 31 93 67 656

Complete Cases 0 451 0 311 90 54 49 45 405

True Weighted 1 290 0 286 80 104 93 146 525

Est. Weighted 1 355 0 308 79 70 80 109 497

Scenario 1: Smaller Quadratic Effect: slope = 3

Original Data 0 459 0 297 82 55 63 44 404

Complete Cases 6 548 1 225 87 57 47 29 301

True Weighted 5 414 0 224 107 92 87 71 382

Est. Weighted 4 450 2 245 102 75 74 58 377

Scenario 1: Sample Size 100

Original Data 0 114 0 666 31 18 106 65 837

Complete Cases 0 312 0 452 65 35 91 45 588

True Weighted 0 199 0 371 67 61 129 173 673

Est. Weighted 0 228 0 416 70 56 110 121 647
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The resulting curves are shown in Figure 3.2. The middle figure clearly shows the

bias when using the unweighted AIC on the complete cases. The use of the weighted

AIC nicely corrects the average best model in the direction of the true underlying

curve.
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Figure 3.2: Scenario 1: Average best model with 95% pointwise confidence intervals

for the original data (left), the complete cases with unweighted AIC (middle) and

with weighted AIC (right). The solid curve is the true function µ0(x, z)

In the other parts of Table 3.1 similar results for variations on Scenario 1 are

shown: a larger error variance, less missingness, smaller quadratic effect and larger

sample. Figure 3.3 displays the number of correct models as a function of error

variance σ2
0 , missingness percentage (by changing the coefficient of y in equation

(3.31)), quadratic effect of x in µ0(x, z) and sample size n. All curves show the

decrease in selecting a correct model when using the unweighted AIC on the complete

cases. The difference gets more pronounced for increasing error variance, increasing

missingness and increasing quadratic effect of x in µ0(x, z). Note that this latter

increasing effect implicitly generates more missingness via, on average, increasing

response values y (see equation (3.31)).

The use of the weighted version improves the performance of the AIC and the

version with known weights is consistently choosing more correct models than with

estimated weights. On the other hand the version with estimated weights constantly

performs better than with true weights in selecting the only true model. One might

argue that the gain by using the weighted AIC is not so spectacular but rather mod-

erate, that it tends to select more complicated models and that, thinking critically

further along these lines, always taking the “most complex model”(including x, x2, z

and xz) is actually the best criterion (since it leads to a 100% correct classification

according to our definition of a correct model). But first of all, we have to realize

that correcting for missing information is often a hard exercise, since information in
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Table 3.2: Scenario 1: MASE-values and bias-variance decomposition based on the

original fixed design. On the one hand the model is selected using the AIC- and

AICW -criterion, on the other hand the most complex model is chosen.

Model Selection bias2 var MASE

Original Data min AIC 39.26 2085.05 2124.32

most complex 2.25 2253.05 2255.30

Complete Cases min AIC 2433.37 2485.58 4918.95

most complex 1986.74 2964.73 4951.47

True Weighted min AICW 460.62 3984.71 4445.33

most complex 404.51 4289.29 4693.81

Est. Weighted min AICW 738.53 3153.06 3891.60

most complex 608.09 3595.19 4203.28

available data might be very scarce. Next, the selection of somewhat more compli-

cated models might be justified in this setting and not just arbitrary. Moreover a

needless complex model will be accompanied with larger variability in its estimates.

To show that the weighted AIC does not just select more complex models in an arbi-

trary way, but leads to models with an improved accuracy, Table 3.2 shows, for the

initial setting, mean averaged squared errors (together with squared bias-variance

decomposition)

MASE =
1

1000

1000∑

r=1

{
1

n

n∑

i=1

(µ̂(r)(xi, zi) − µ0(xi, zi))
2

}
, (3.32)

for the different AIC selected models together with that of the “most complex

model”. Here, µ̂(r)(xi, zi) denotes the fitted value within simulation run r. This

table shows that choosing the most complex model is not a sensible strategy (as

expected) and more importantly that the weighted AIC does lead to a considerable

improvement. Also for the original data, choosing the “most complex model”gives

an increase in MASE. Just using complete cases has a disastrous effect on the qual-

ity of the selected fits (particularly on the bias), whereas the use of the estimated

weighted AIC leads to the best results in terms of MASE. Indeed, the latter reduces

bias, at the cost of a moderate increase in variance. That the use of estimated rather

than true weights leads to the smallest MASE-values is in accordance with known

results in related settings (see e.g. Robins et al., 1994; Rotnitzky and Robins, 1995).



66 Chapter 3. Weighted Model Selection

50 100 150 200 250

0
20

0
40

0
60

0
80

0
10

00

Sigma

C
or

re
ct

ly
 C

la
ss

original
complete cases
weighted true
weighted est

10 20 30 40 50 60

0
20

0
40

0
60

0
80

0
10

00

Missingness Percentage

C
or

re
ct

ly
 C

la
ss

original
complete cases
weighted true
weighted est

0 2 4 6 8 10

0
20

0
40

0
60

0
80

0
10

00

beta

C
or

re
ct

ly
 C

la
ss

original
complete cases
weighted true
weighted est

50 100 150 200 250

0
20

0
40

0
60

0
80

0
10

00

Sample Size

C
or

re
ct

ly
 C

la
ss

original
complete cases
weighted true
weighted est

Figure 3.3: Scenario 1: Correctly selected models for different sigma-values (up-

per left), for different missingness percentages (upper right), for different quadratic

effects (lower left) and for different sample sizes (lower right).

Non-parametric Weighting Methods

Different smoothers can be used to estimate the missingness probabilities π(y, z).

In Scenario 1, equation (3.31) shows that these probabilities only depend on y. In

Section 3.4.1, these probabilities were estimated with a gam model, as a function of

both y and z. In this section we illustrate how results differ when using different

smoothers: gam using y only, Nadaraya-Watson (NW) kernel estimate using both y

and z or y only, with fixed or with data-driven bandwidth (cross-validation).

Table 3.3 shows that the best results are obtained when using a penalized spline,

especially the one as a function of y only. The other numbers are more or less similar.

The fixed bandwidth h = 150 for the NW-estimator was chosen by visual inspection
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Table 3.3: Scenario 1, initial setting: Model selection using different smoothers to

estimate the weights.

x x, x2 x, z x, z, x, x2, x, x2, correctly

xz z z, xz classified

Complete Cases 447 274 97 53 81 48 403

NW h=150 (y, z) 342 270 106 84 102 96 468

NW h=150 (y) 337 288 114 76 96 89 473

NW CV (y, z) 315 257 108 96 103 121 481

NW CV (y) 336 287 114 75 96 92 475

gam CV(y, z) 329 286 100 83 102 106 494

gam CV (y) 278 282 107 109 103 121 506

True Weights 271 254 125 99 101 150 505

of some of the generated samples. Main conclusion is that the choice of smoother

and smoothing parameter is not unimportant. It is also recommendable to carefully

examine the missingness process, so that accurate estimation of the probabilities is

possible.

Corrected AIC

For small sample sizes, the use of the corrected AIC-criterion (3.21) is recommended.

The results in Table 3.4 are based on the corrected AIC-criterion for the initial setting

of Scenario 1 but with n = 30. The improvement is considerable. The true model is

chosen most often using the weighted AIC, especially when the weights are estimated

(this latter phenomenon was also noticeable in Table 3.1).

3.4.2 Scenario 2: Generating Model Not Included

We now consider the (more realistic) setting that the set of candidate models does

not contain the true model. The response y is generated as in Scenario 1, but now

with mean function µ0(x, z) = −3 − 3 log(x + 1) + 5x2. The same set of candidate

models is considered. As before, a generalized additive model was used to estimate

the weights. Since now direct comparison with the true model, nor a categorization

in correct or incorrect models is possible anymore, the average of the fitted values

based on the selected model, together with 95% pointwise confidence intervals, using
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Table 3.4: Scenario 1, with sample size 30: Model selection using the corrected

AIC-criterion.

1 x z x, x2 x, z x, z, x, x2, x, x2, correctly

xz z z, xz classified

Original Data 0 435 0 392 77 31 40 25 457

Complete Cases 16 616 3 217 80 34 26 8 251

True Weights 6 398 1 260 129 77 61 68 389

Est. Weights 8 442 0 275 122 53 56 63 394
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Figure 3.4: Scenario 2: Average best model with 95% pointwise confidence intervals

for the original data (left), the complete cases with unweighted AIC (middle) and

with weighted AIC (right). The solid curve is the true function µ0(x, z)

AIC on the original data, (unweighted) AIC on the complete cases, and weighted

AIC on the complete cases are shown in Figure 3.4. The resulting curves show a

similar behaviour as for Scenario 1. Indeed, also for this scenario the weighted AIC

corrects the average best model in the direction of the true underlying curve, while

the unweighted AIC on the complete cases results in a considerable bias.

Similarly to Scenario 1, Table 3.5 shows the MASE-values and bias-variance

decomposition for the different methods. The benefit in using the AICW -criteria is

reflected in the MASE-values and the behaviour of the bias and variance components

is similar to Scenario 1 (Table 3.2).

3.4.3 Scenario 3: Model Selection for Design-Based Samples

To illustrate the use of the weighted AIC for design-based samples, a population

{y1, . . . , yN} of size N = 1500 was generated, as a single realization from the su-
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Table 3.5: Scenario 2: MASE-values and bias-variance decomposition based on the

original fixed design. On the one hand the model is selected using the AIC- and

AICW -criterion, on the other hand the most complex model is chosen.

Model Selection bias2 var MASE

Original Data min AIC 41.58 2079.93 2121.50

most complex 2.90 2236.82 2239.72

Complete Cases min AIC 2040.05 2310.80 4350.85

most complex 1638.04 2750.06 4388.10

True Weighted min AICW 382.79 3516.66 3899.45

most complex 307.85 3802.61 4110.46

Est. Weighted min AICW 439.66 3128.05 3567.70

most complex 374.15 3447.90 3822.05

perpopulation model f0, being a normal distribution with variance σ2
0 and mean

µ0(i) = µ1 for i = 1, . . . , 500 (group 1), µ0(i) = µ2 for i = 501, . . . , 1000 (group 2),

µ0(i) = µ3 for i = 1001, . . . , 1500 (group 3).

In a first setting 1000 samples were taken by dividing this population into three

strata based on the ordered population y values: the 200 smallest y-values, the

middle 900 y-values and the 400 largest y-values. The sample was then taken as

follows: a population unit i (yi) is selected for the sample with probability p1f when

it belongs to the first or third stratum and with probability p2f when it belongs to

the second stratum. When p1 < p2, this results in an oversampling of the second

stratum.

The (single) population was generated with µ2 = µ3 = κ = −µ1 with κ > 0.

The simulation parameters κ, σ0, f, p1 and p2 were set to different values as shown

in Table 3.6. For each of the samples, 5 different models were fit: (1) µi = µ, i =

1, . . . , 3, (2) µ1 = µ2 6= µ3, (3) µ1 6= µ2 = µ3, (4) µ1 = µ3 6= µ2, and (5) µi 6= µj for

i 6= j. Model (3) is the true model, model (5) is another correct model. The other

models assume µ1 = µ2 or µ1 = µ3 and are incorrect (for κ 6= 0).

In a first setting, where {κ, σ0, f} = {0.5, 3, 0.5}, sampling was done according

to different choices of (p1, p2), ranging from simple random sampling p2/p1 = 1 to

highly unequal stratified sampling p2/p1 = 11. The results in Table 3.6 show an

improved selection for the AICW -criterion compared to the AIC-criterion. Models

(3) and (5) are chosen more frequently by the AICW -criterion.
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Table 3.6: Scenario 3, first setting: The number of models chosen by AIC and AICW ,

for different variations of the basic setting and different choices of p1 and p2.

AIC AICW

p1 p2 1 2 3 4 5 Cor 1 2 3 4 5 Cor

Basic

0.05 0.55 321 110 445 107 17 462 128 192 277 133 270 547

0.10 0.50 284 101 498 92 25 523 155 146 424 136 139 563

0.20 0.40 191 116 594 63 36 630 156 132 572 60 80 652

0.30 0.30 133 108 639 64 56 695 125 108 648 63 56 704

σ0 = 4

0.05 0.55 467 108 301 115 9 310 134 205 281 189 191 472

0.10 0.50 428 117 325 118 12 337 209 199 328 161 103 431

0.20 0.40 331 121 450 75 23 473 259 144 471 72 54 525

0.30 0.30 305 136 445 86 28 473 295 137 455 86 27 482

κ = 1

0.05 0.55 13 31 817 25 114 931 27 89 397 62 425 822

0.10 0.50 6 8 841 11 134 975 9 23 604 20 344 948

0.20 0.40 2 5 850 2 141 991 2 6 786 2 204 990

0.30 0.30 0 1 842 0 157 999 0 1 840 0 159 999

f = 0.2

0.05 0.55 494 113 249 133 11 260 116 211 240 204 229 469

0.10 0.50 481 142 241 128 8 249 227 193 280 189 111 391

0.20 0.40 440 130 304 112 14 318 351 158 321 129 41 362

0.30 0.30 364 133 360 123 20 380 368 130 364 118 20 384

Increasing σ0 (more noise) results in model (1) to be chosen more frequently.

Also to be expected, a larger choice of κ (group 1 more different) leads more often to

correct model choices. The fraction parameter f was initially chosen 0.5, resulting

in a sample of size 225. To reflect the behaviour for a smaller sample, f was set

to 0.2, resulting in a larger variability due to the smaller sample size (= 90). For

all variations of the basic setting, AICW improves the selection from slightly to
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Table 3.7: Scenario 3, second setting: The number of models chosen by AIC and

AICW , for different variations of the basic setting and different choices of p1 and p2.

AIC AICW

p1 p2 1 2 3 4 5 Cor 1 2 3 4 5 Cor

Basic

0.05 0.55 92 120 56 596 136 192 66 175 510 52 197 707

0.10 0.50 189 19 392 381 19 411 46 171 590 12 181 771

0.20 0.40 126 131 651 31 61 712 60 197 615 7 121 736

0.30 0.30 133 108 639 64 56 695 125 108 648 63 56 704

σ0 = 4

0.05 0.55 162 266 27 389 156 183 156 307 377 56 104 481

0.10 0.50 370 59 215 349 7 222 144 276 475 28 77 552

0.20 0.40 289 168 472 44 27 499 137 283 500 14 66 566

0.30 0.30 305 136 445 86 28 473 295 137 455 86 27 482

κ = 1

0.05 0.55 0 0 316 599 85 684 0 0 613 3 384 997

0.10 0.50 0 0 757 64 179 936 0 0 709 0 291 1000

0.20 0.40 0 3 845 1 151 996 0 2 775 0 223 990

0.30 0.30 0 1 842 0 157 999 0 1 840 0 159 999

f = 0.2

0.05 0.55 336 138 108 385 33 141 243 254 356 77 70 426

0.10 0.50 439 64 219 270 8 227 263 236 395 62 44 439

0.20 0.40 359 167 381 76 17 398 250 240 439 46 25 464

0.30 0.30 364 133 360 123 20 380 368 130 364 118 20 384

substantially (according to the ratio p2/p1), except for κ = 1.

In a second setting, the same population was taken but now design-based sam-

pling was based on two strata, the 300 largest y-values of the third group and the

remaining 1200 y-values. Sampling was done as follows: a population unit i is se-

lected with probability p1f when it belongs to the first stratum and with probability

p2f when it belongs to the second stratum. If p1 < p2 this results in an undersam-
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pling of units in the third group with the larger y values. The results for 1000

such samples are shown in Table 3.7, again for the same basic setting and varia-

tions thereof. One can see that the AIC-criterion very often chooses the incorrect

model (4) µ1 = µ3 6= µ2 and the AICW -criterion corrects this choice to model (3)

µ1 6= µ2 = µ3, which is the true model. For all variations of this setting, the AICW

outperforms AIC in all cases. The differences are much more pronounced than in

the previous setting. One can also observe that the number of times a correct model

is selected by the AICW -criterion is more or less the same for all different choices of

(p1, p2). When sampling probabilities are equal and thus a simple random sample

is taken, the choices made using AIC and AICW are essentially the same.

3.4.4 Scenario 4: Smoothing Parameter Selection in Non-

parametric Regression for Incomplete Data

For this scenario, n = 200 x-values were generated from uniform[0, 1], and corre-

sponding y-values from a normal distribution with mean µ0(x) = 1− 48x+ 218x2 −
315x3 + 145x4 and variance σ2

0 = 0.4 Range(y). This corresponds to one of the

simulation settings used in Hurvich et al. (1998). Next, x observations were turned

missing with probability

π(y) = [1 + exp{2 − 0.1(y − 2)2]−1. (3.33)

For each of the 1000 generated samples {Yi, i = 1, . . . , n} with a fixed design {xi, i =

1 . . . , n}, a smoothing spline was fitted (using smooth.spline in R) according to

three methods, and with smoothing parameter selected by AIC (as introduced by

Hurvich et al., 1998). The first method is based on the original data, while the second

method is based on the complete cases only and finally the third method weights

the complete cases (at the model selection stage and at the final fitting stage) with

ŵi = 1/π̂i where π̂i is the estimated probability for a complete case to be observed.

The estimation of πi is also based on a smoothing spline with smoothing parameter

again determined by AIC.

The left panel in Figure 3.5 displays an arbitrary sample together with the fit-

ted splines. The white dots indicate the observed data, while the black dots show

the unobserved or missing data. The spline using the weights tends to severely

undersmooth.

In this context, Wahba (1990) uses the unbiased variance estimator

σ̂2
U =

yT (I − Sα)2y

trace(I − Sα)
, (3.34)
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Figure 3.5: Scenario 4: Simulated dataset with spline curves according to the differ-

ent methods together with the true function, using the ML variance estimator σ̂2
ML

(upper panel) and the unbiased variance estimator σ̂2
U (lower panel).
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Table 3.8: Scenario 4: The average number of parameters using variance estimator

σ̂2
ML or σ̂2

U .

σ̂2
ML σ̂2

U

Original Data 8.33 6.99

Complete Cases 7.55 6.31

Weighted 18.31 9.00

where Sα is the smoother matrix. The use of σ̂2
U instead of σ̂2

ML is equivalent to an

extra penalization of −n log(trace(I − Sα)), which corrects for undersmoothing, as

can be seen for the fit of a random sample in the right panel of Figure 3.5. This is also

confirmed by Table 3.8. It shows the simulation average of the equivalent number of

parameters, selected by the three methods (rows) and for both variance estimators

(columns). The models using the unbiased estimator are generally smoother and this

reduction in equivalent number of parameters is very substantial for the weighted

analysis. Other simulations confirmed this and therefore we certainly recommend

the use of the unbiased estimator σ̂2
U for the weighted method.

In Figure 3.6, the true curve (the solid curve) and the simulation average of

the fitted curves for all three methods and both variance estimators, together with

95% pointwise confidence intervals, are shown. Again, the beneficial effect on the

smoothing when using the unbiased variance estimator is illustrated. The middle

panels show that there is substantial bias at both minima, when using the complete

cases without weighting. The weighted AIC does correct for bias, as shown in the

right panels.

To assess the goodness of fit quantitatively for each of the fits, MASE-values were

calculated for each method and each variance estimator. The boxplots in Figure 3.7

show again that the weighted AIC method is not resulting in an improvement when

using σ̂2
ML, but that it does when using σ̂2

U .

3.5 Other Model Selection Criteria

Next to the AIC, several other model selection criteria have been developed and can

be extended to a weighted version to handle incomplete and design-based samples.

For a model M with p regression parameters, the Mallows’ Cp-criterion, developed

as an estimator of the relative mean squared error, is very popular for least squares

regression. Its definition Cp = nσ̂2(M)/σ̂2(F ) − (n− 2p) where σ̂2(M) (σ̂2(F ) ) is
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Figure 3.6: Scenario 4: Average of the fitted values (dashed curve) based on the

chosen models over simulation runs together with the true function (solid curve)

and 95% confidence intervals (dotted curves). From left to right: the original data,

the complete cases and the weighted complete cases, using either σ̂2
ML (upper row)

or σ̂2
U (lower row).
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Figure 3.7: Scenario 4: Boxplots of simulated MASE-values for the different meth-

ods: original data, σ̂2
ML (1), complete cases, σ̂2

ML (2), weighted complete cases, σ̂2
ML

(3), original data, σ̂2
U (4), complete cases, σ̂2

U (5), weighted complete cases, σ̂2
U (6).

the estimated variance based on a reduced model M (respectively full model F), can

be modified in the weighted version

CpW =

(
n∑

i=1

wi

) ∑n
i=1 wie

2
i∑n

i=1 wie
∗2
i

−
(

n∑

i=1

wi − 2p

)
,



76 Chapter 3. Weighted Model Selection

where ei and e∗i are the residuals based on reduced model and full model, respectively.

Analogously, the Bayesian information criterion BIC = n(log σ̂2
ML) + log(n)K (for

classical regression) can be modified in a weighted version

BICW =

n∑

i=1

wi

(
log

∑n
i=1 wie

2
i∑n

i=1 wi

)
+ log

(
n∑

i=1

wi

)
K.

Table 3.9: Scenario 1, basic setting: The number of chosen models by the Cp- and

BIC-criteria.

1 x z x, x2 x, z x, z, x, x2, x, x2, correctly

xz z z, xz classified

Scenario 1: Basic Setting, Cp.

Original Data 0 259 0 465 55 43 97 87 643

Complete Cases 0 424 0 280 104 57 84 51 415

True Weights 0 337 0 257 119 80 97 110 464

Est.Weights 0 375 0 289 104 69 89 80 458

Scenario 1: Basic Setting, BIC.

Original Data 0 536 0 374 27 13 38 12 424

Complete Cases 1 702 1 196 54 17 24 5 225

True Weights 2 578 2 224 89 38 38 29 291

Est. Weights 2 651 0 211 68 27 27 20 258

We also investigated the performance of these alternative model selectors in a

simulation study. As an illustration, Table 3.9 shows some results for the initial

simulation setting of the first scenario. Up to expected differences, like the BIC-

criterion selecting more simple models, a similar improvement is realized by the

weighted selection criteria.

3.6 Discussion

The naive use of model selection criteria in case of incomplete and design-based

samples can lead to the selection of inappropriate or non-optimal models. In this

chapter we introduced a weighted Akaike information criterion. The weights are in-

versely proportional to the selection probabilities and if unknown, can be estimated
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non-parametrically. For incomplete data, the method can be seen as an implicit

non-parametric imputation approach and its application is straightforward. Simula-

tions show that the use of this weighted AIC-criterion results in an improved model

selection for design-based samples. For incomplete data, the model-selection perfor-

mance of the weighted AIC-criterion is somewhat less pronounced. But missing data

are more problematic than design related complications. Moreover, the simulated

MASE results are showing the improved accuracy of the AICW -selected models.

In case covariates are complete and Y -values are missing at random, valid and

efficient parameter estimates are obtained using the complete cases only (Little,

1992). These results however do not apply in the case of missing covariates where

the missingness probability depends on the completely observed response (Robins

et al., 1994; Zhao et al., 1996). In the context of model selection, there is no need to

distinguish between missing covariates and missing responses as such. The under-

lying motivation to use weights in either case however is different. When covariates

are missing and missingness depends on y, the distribution of Y |X is distorted and

weights are used to correct for this. In case of nonresponse, it is not the distribution

that is distorted but it is the finite sample behaviour that causes inadequate model

selection. In the latter situation weights are used, as for design-based samples, to

correct for this. It is not yet clear whether the use of a weighted AIC is more bene-

ficial in the situation of missing covariates compared to nonresponse. This is topic

of further research.

The other options to deal with missingness in the context of model selection

are full likelihood methods, that models both measurement and missingness part

simultaneously. This approach needs an additional model to be selected and is not

extendable to the analogous setting of design-based samples. Another approach is to

first impute missing observations and then select the model based on the augmented

dataset. When the imputation model is flexible, as for example a generalized additive

model can be, one can consider the choice of the imputation model to be a separate

preliminary step in the model selection process. The latter approach is the topic of

next chapter.
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Chapter 4

Imputation-based Model

Selection

4.1 Introduction

In the previous chapter, model selection for incomplete data relied on using a

weighted AIC-criterion where the weights are the inverse probabilities for an ob-

servation to be observed. A natural alternative for this implicit imputation is an

explicit imputation of missing data. Selecting an appropriate model is then done

using the AIC-criterion on the augmented dataset. One might argue that model

selection based on augmented data or on complete cases is not directly comparable

because of the use of different samples. On the other hand, they all have the ob-

served data in common and from there one is interested in which models are selected

by AIC, not the comparison of AIC-values over the different methods as such.

In a recent paper by Carpenter and Kenward (2005) the use of inverse probability

weighting and the use of multiple imputation to handle “missing at random”data

are contrasted. In some situations data are missing not only for one variable but for

several variables, possibly continuous and categorical. In those situations, an ade-

quate imputation method is hard to find and the use of inverse probability weighting

has some major advantages. However, when dealing with only a few fully observed

subjects, i.e., none of the variables for that subject are missing, weighting shows ma-

jor deficiencies since the complete cases do not contain enough information to justify

an implicit imputation. Both methods as such, can be seen as complementary tools

to handle missing data.

79
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Several methods to impute missing data are known, ranging from ‘naive’ proce-

dures such as unconditional mean imputation towards proper imputation methods

such as multiple imputation (Rubin, 1978). Single and thus also mean imputation

is improper as pointed out in Chapter 2, but its use as a first step in selecting a

model is more than satisfactory as will be shown in this chapter. When exploiting

the relation between X and Y by inverse regression to impute missing X-values,

biased regression estimates result. Afifi and Elashoff (1969a,b) propose to use bias-

corrected versions. Nielsen (2001) shows that the use of non-parametric (rather than

parametric) conditional mean imputation results in consistent estimators. He uses a

local linear regression method to impute the data. In the same line of thinking, we

will use penalized regression splines to impute missing covariate values. To allow the

use of more than one predictor variable, a generalized additive model using penalized

regression splines as described by Wood (2001) will be used (see Section 1.3.1).

Although the results presented in this chapter address the missing covariate

situation, similar results were obtained in case of nonresponse.

In a first section, a short simulation study shows the performance of the

imputation-based model selection. Some limitations of imputation-based model se-

lection will be addressed in Section 4.3. In Section 4.4, focus is on model selection

after smoothing and we conclude with a discussion in Section 4.5.

4.2 Imputation-based Model Selection

In this section the simulation study of Section 3.4.1 is repeated, now using an

imputation-based model selection. A first imputation uses a penalized regression

spline of Y

X ∼ s(Y ). (4.1)

However, in practice, one would include all possible information and thus Z to im-

prove upon imputation. For this second imputation, we used a generalized additive

model with penalized regression splines (Wood, 2000)

X ∼ Z + s(Y ) + Z ∗ s(Y ). (4.2)

Let us focus on Scenario 1 and 2 of previous chapter.

4.2.1 Scenario 1

In Table 4.1, the results for the initial setting for Scenario 1, as introduced in Sec-

tion 3.4.1, are shown together with those based on both imputation-based model



4.2. Imputation-based Model Selection 81

Table 4.1: Scenario 1: The numbers indicate how often a model has been selected,

for the eight strategies. The last column shows how often a correct model has been

chosen, out of 1000.

1 x z x, x2 x, z x, z, x, x2, x, x2, correctly

xz z z, xz classified

Initial Setting: (n = 50, σ2
0 = exp(5), slope = 5,%(miss) = 35)

Original Data 0 272 0 467 55 40 85 81 633

Complete Cases 0 447 0 274 97 53 81 48 403

True Weighted 0 271 0 254 125 99 101 150 505

Est. Weighted 0 329 0 286 100 83 102 106 494

Imputation Based (4.1) 0 173 0 533 34 34 117 109 759

Imputation Based (4.2) 0 184 0 471 38 34 139 134 744

selection methods, (4.1) and (4.2). It is seen from the correctly chosen models that

both imputation methods improve selection even beyond the selection based on the

original data. Imputation-based model selection using (4.2) performs about as well,

i.e., selects the true model, as model selection based on the original data. Using

(4.1) to impute the data gives an additional improvement of about 6% in choosing

the true model. It can be seen that imputation based on (4.2) chooses more overly

complex models compared to the imputation based on (4.1). This shift is caused by

the creation of a Z-effect by imputing data based on (4.2). Selecting a correct model

using the imputation-based selection techniques has by far the best results over all

methods.

In Table 4.2, different settings of Scenario 1 were considered. When using a larger

variance (σ2
0 = exp(5.3)), both imputation methods give an increase of more than

10% in the selection of the true underlying model compared to the complete cases

(Table 3.1). Using (4.1), the selection is almost as good as based on the original data

(0.8% less true models). For a lower missingness percentage (20%), both imputation-

based model selection methods outperform model selection based on the original

data. Using a smaller quadratic slope, only a moderate improvement is noticed

when using imputation-based model selection compared to model selection based on

the complete cases only and the weighting methods perform considerably better in

selecting a correct model, although the true underlying function is not selected as

often as for the imputation-based methods. A larger sample size, n = 100, shows
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again that the model-based imputation outperforms the weighting methods.

The weighted AIC is clearly outperformed by the use of imputation-based AIC

except for the case of a small quadratic effect, where the weighting methods per-

form better in selecting a correct model as well as a true model. The use of a

penalized regression spline of Y to impute X (4.1) gives a substantial increase over

the use of a bivariate generalized additive model of Y and Z (4.2). It sometimes

even overshoots the selection using the AIC on the original data. It seems that the

semi-parametric imputation model in most situations captures the true underlying

function extremely well and thus selection based on the imputed data reflects this.

We will come back to this peculiar phenomenon in Section 4.4. Table 4.3 shows the

Table 4.2: Scenario 1: Selected models using both imputation-based selection meth-

ods for different settings of Scenario 1.

1 x z x, x2 x, z x, z, x, x2, x, x2, correctly

xz z z, xz classified

Initial Setting: (n = 50, σ2
0 = exp(5), slope = 5,%(miss) = 35)

σ2
0 = exp(5.3) (4.1) 0 376 0 366 61 58 69 70 505

(4.2) 0 363 0 319 78 66 96 78 493

%(miss)=20 (4.1) 0 170 0 605 26 18 92 89 786

(4.2) 0 180 0 511 29 19 154 107 772

slope = 3 (4.1) 1 491 1 251 91 58 61 46 358

(4.2) 1 482 1 242 91 69 67 47 356

n=100 (4.1) 0 46 0 711 15 12 129 87 927

(4.2) 0 40 0 666 19 15 171 89 926

MASE-values and bias-variance decomposition for both imputation methods. For

reasons of comparison, the results of Table 3.2 are repeated in this table. Here,

MASE-values were calculated, on the one hand, using the original fixed design (OD)

and, on the other hand, using the observed part of the fixed design over simulations

(CC). Looking at the OD-results, the bias reduces when using the imputation-based

AIC compared to the true- and estimated-weighted AIC on the complete cases. The

variance however increases substantially when using the imputation-based methods,

resulting in a larger MASE(OD)-value. If we look at the CC-results, the variance

reduces substantially, while the bias increases moderately. This shows that the in-

crease in variance for the imputation-based methods comes from the imputed data
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and not from the complete cases and so does the moderate increase in bias.

Table 4.3: Scenario 1: Imputation-based model selection: MASE and bias-variance

decomposition based on the available and complete cases. On the one hand the model

is selected using the AIC-criterion, on the other hand the most complex model is

chosen.

Model bias2 var MASE

Selection OD CC OD CC OD CC

Original Data min AIC 39.26 113.11 2085.05 2075.49 2124.32 2188.60

most complex 2.25 58.18 2253.05 2226.20 2255.30 2284.38

Compl. Cases min AIC 2433.37 2436.31 2485.58 2303.38 4918.95 4739.69

most complex 1986.74 2063.29 2964.73 2676.31 4951.47 4739.60

True Weighted min AICW 460.62 460.83 3984.71 3710.22 4445.33 4171.05

most complex 404.51 402.50 4289.29 3927.89 4693.80 4330.39

Est. Weighted min AICW 738.53 876.27 3153.06 2824.43 3891.60 3700.70

most complex 608.09 772.77 3595.19 3140.29 4203.28 3913.06

Imputation min AIC 140.27 119.16 5168.71 2200.35 5308.98 2319.21

(4.1) most complex 85.12 106.90 5407.64 2312.62 5492.75 2419.53

Imputation min AIC 147.46 109.75 5045.66 2352.39 5193.12 2462.15

(4.2) most complex 80.80 100.34 5250.13 2453.09 5330.93 2553.42

Figure 4.1 shows the resulting curves of the average of the fitted values based on

the selected model, together with 95% pointwise confidence intervals for the complete

cases with weighted AIC, augmented data using (4.1) and (4.2), respectively. These

figures show an increasing variability when using the imputation-based AIC-criteria

compared to the weighted AIC-criterion. The increase in variability comes from the

region with higher missingness probability where the main data-imputation takes

place. This confirms our previous findings.

In the next section we investigate the performance of imputation-based model

selection when the true underlying model is not part of candidate set of models, i.e.,

Scenario 2 of Chapter 3.
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Figure 4.1: Scenario 1: Average best model with 95% pointwise confidence intervals

for the complete cases with weighted AIC (left), augmented data using (4.1) (middle)

and augmented data using (4.2) (right). The solid curve is the true function µ0(x, z)

4.2.2 Scenario 2

Let us consider Scenario 2 were µ0(x, z) = −3 − 3 log(x + 1) + 5x2 as described

in Section 3.4.2. Similarly to Table 4.3, Table 4.4 shows the MASE-results for the

imputation-based methods. The conclusions from this table are similar to those for

Scenario 1.

Similar to Figure 4.1, Figure 4.2 shows the resulting curves of the average of the

fitted values based on the selected model, together with 95% pointwise confidence

intervals for the three different methods. These figures indicate a similar behaviour

as for Scenario 1.
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Figure 4.2: Scenario 2: Average best model with 95% pointwise confidence intervals

for the complete cases with weighted AIC (left), augmented data using (4.1) (middle)

and augmented data using (4.2) (right). The solid curve is the true function µ0(x, z)

These simulations show an improved model selection when using imputation-

based methods. The imputation, based on a generalized additive model seems to be
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Table 4.4: Scenario 2: Imputation-based model selection: MASE and bias-variance

decomposition based on the available and complete cases. On the one hand the model

is selected using the AIC-criterion, on the other hand the most complex model is

chosen.

Model bias2 var MASE

Selection AC CC AC CC AC CC

Original Data min AIC 41.58 92.88 2079.93 2054.75 2121.50 2147.63

most complex 2.90 40.05 2236.82 2208.54 2239.72 2248.59

Compl. Cases min AIC 2040.05 1973.02 2310.80 2179.40 4350.85 4152.42

most complex 1638.04 1661.70 2750.06 2527.05 4388.10 4188.76

True Weighted min AICW 382.79 349.28 3516.66 3323.59 3899.45 3672.87

most complex 307.85 297.16 3802.61 3524.97 4110.46 3822.13

Est. Weighted min AICW 439.66 485.19 3128.05 2865.52 3567.70 3350.71

most complex 374.15 421.72 3447.90 3109.23 3822.05 3530.96

Imputation min AIC 145.64 126.04 4591.55 2063.58 4737.20 2189.62

(4.1) most complex 101.65 113.26 4886.85 2246.59 4988.50 2359.85

Imputation min AIC 151.83 118.20 4492.10 2195.02 4643.93 2313.22

(4.2) most complex 98.60 111.89 4747.08 2375.32 4845.68 2487.21

capable of restoring the true underlying model. Therefore, a closer look at model

selection using smoothed data will be provided in Section 4.4. Let us first point out

several limitations towards imputation-based model selection.

4.3 Limitations to Imputation-based Model

Selection

The applicability and the performance of imputation-based model selection highly

depends on the (unknown) missingness process and on the imputation model used.

In the previous section a generalized additive model was used to impute the

data. The flexibility of a generalized additive model with penalized regression splines

(Section 1.3.1) allows the choice of the imputation model to be considered as a

preliminary step to the selection of a model. However, the choice of the imputation

technique is not unimportant and a careful examination of the missingness process
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Table 4.5: Imputation-based model selection: The number of chosen models by the

different methods based on the AIC-criterion.

Scenario 1: π(y) = 1 − [1 + exp{1 − 0.009|y − 300|}]−1.

Bandwidth\ Model 1 X Z X,X2 X,Z X,X2, X, Z, X,X2, correctly

Z XZ Z,XZ classified

Original Data 0 121 0 631 26 19 130 74 835

Complete Cases 3 469 0 251 100 75 63 40 354

True Weights 0 64 1 166 54 129 198 389 753

Est. Weights 0 103 1 255 73 137 142 290 687

Imputation (4.2) 0 205 0 187 153 242 84 129 400

is recommendable.

If E (x|y) is not well defined, imputation using a generalized additive model fails

since the relationship between x and y cannot be captured by the complete cases

only.

Indeed, as a first example, let us reconsider Scenario 1 with n = 100, but now

adapting the conditional missingness probability in equation (3.31) to

π(y) = 1 − [1 + exp{1 − 0.009|y − 300|}]−1. (4.3)

This gives the results shown in Table 4.5. In this situation, the imputation spline

deviates from the true underlying function and therefore the imputation-based model

selection does not perform as well as the weighted imputation (Figure 4.3).

In a second example uniform[0, 10] x-values were generated. Given x, response y-

values were generated from a normal distribution with mean µ0(x) = 1.5(x−5)2 and

variance σ2
0 = exp(3.5). x-observations were then turned missing with conditional

probability (see left bottom panel in Figure 4.4),

π(y, z) = 1 − [1 + exp{1 − 0.0009y2}]−1. (4.4)

The lower left panel of Figure 4.4 shows the augmented data based on an impu-

tation using (4.2). It is clear from this figure that imputation-based model selection

cannot be used when E (x|y) is not well defined.
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Figure 4.3: A first example: In the upper left panel, the observed data (white dots)

and the missing data (black dots), in the upper right panel the complete cases.

The lower left panel gives the missingness function and the lower right panel an

augmented dataset using (4.2) (imputed data indicated by black dots).
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Figure 4.4: A second example: In the upper left panel, the observed data (white

dots) and the missing data (black dots), in the upper right panel the complete cases.

The lower left panel gives the missingness function and the lower right panel an

augmented dataset using (4.2) (imputed data indicated by black dots).
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4.4 Model Selection after Smoothing

In Section 4.2, it was shown that the success of the imputation-based model selection

lies in the modelling of the complete cases. This raises an intuitive feeling that it is

the smooth nature of the spline which is responsible for the improved performance

of imputation-based methods. If the spline captures the true underlying curve, then

the imputed data will also suggest a model close to the true underlying curve to be

most adequate.

Therefore it is interesting to examine the effect of smoothing on model selection,

even if missingness is not an issue. The algorithm proposed is the following. (1) Fit a

penalized regression spline through the data (x, y), resulting in (x, ys), where ys are

the predicted responses based on the spline fit; (2) use the AIC-criterion on (x, ys)

to select a model; (3) use this model on (x, y)-data. Figure 4.5 shows a graphical

representation of this algorithm.
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Figure 4.5: Illustration of the “model selection after smoothing”algorithm.

Let us consider some simulations to explore the performance of model selection

after smoothing.

4.4.1 Scenario A

In a first scenario, uniform[0, 10] x-values were generated, together with (indepen-

dently) Bernoulli(0.5) z-values. Given x and z, response y-values were generated

from a normal distribution with mean µ0(x, z) = −3 + 3x + 5x2 and variance

σ2
0 = exp(5). (This is similar to Scenario 1 without missing values). 1000 dif-

ferent samples {(xi, zi, yi), i = 1, . . . , n}, with fixed design {xi, zi, i = 1 . . . , n} and

n = 50 were generated. The candidate set of models is the same as for Scenario 1,
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i.e., all submodels of µ(x, z) = β0 + β1x1 + β2x
2 + β3z + β4xz.

Now, three smoothing methods were considered: (1) a gam model with penalized

splines Y ∼ s(X)+Z+Z ∗ s(X); (2) a gam model with penalized splines built from

Y ∼ s(X)+Z+Z∗s(X) according to Wood and Augustin (2002), and (3) a penalized

regression spline Y ∼ s(X).

Wood and Augustin (2002) propose a 3-step ad hoc method to drop terms in a

generalized additive model.

(1) Are the estimated degrees of freedom for the term close to their lower limit

(e.g., 1 for a univariate smooth)?

(2) Does the confidence region for the smooth include zero everywhere?

(3) Does the GCV score for the model go down if the term is removed from the

model?

If the answer to all 3 of these question is ‘yes’ then the term should be dropped. If the

answer to 2 is ‘no’ then it probably should not be. Other cases require judgement.

Table 4.6: Scenario A: The numbers indicate how often a model has been selected,

for the four strategies. The last column shows how often a correct model has been

chosen, out of 1000.

1 x z x, x2 x, z x, z, x, x2, x, x2, correctly

xz z z, xz classified

Original Data 0 114 0 666 31 18 106 65 837

(1) 0 3 0 42 5 24 97 829 968

(2) 0 9 0 757 3 7 106 118 981

(3) 0 12 0 892 2 0 60 34 986

The results in Table 4.6 show that model selection after smoothing based on a

gam model with penalized splines Y ∼ s(X) + Z + Z ∗ s(X) results in the selection

of the most complex model. In Figure 4.6, an arbitrary chosen sample, with the

associated smoothed data (x, ys) is shown. The smoothing invokes an apparent Z-

effect, not only as a main effect but also as an interaction as can be seen from this

figure. This was not a major problem for the imputation-based model selection,

since there was still a considerable amount of complete cases indicating the Z-effect

to be merely a nuisance.
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Figure 4.6: Method 1: An arbitrary sample for scenario A together with the associ-

ated smoothed data (x, ys) based on smoothing method (1).

Table 4.7: Scenario A: model selection after smoothing: MASE and bias-variance

decomposition.

bias2 var MASE

Original Data 4.26 971.59 975.85

(1) 0.50 1080.38 1080.88

(2) 0.48 939.64 940.12

(3) 0.64 855.40 856.04

The use of the 3-step method of Wood and Augustin (2002) to determine the

smoothing model improves model selection considerably. It selects a true model

10% more often than the AIC-criterion on the original data. As an other smoothing

method, one can use a penalized regression spline of X only to obtain smoothed data

(x, ys). This results in additional improvement of 11% in selecting the true model

and in 98.6% correct models to be chosen.

In Table 4.7, MASE-values together with bias-variance decomposition confirm

the performance of the different methods. There is a large decrease in bias and

applying methods (2) and (3) reduces the variability, while using method (1) results
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in an increased variability compared to model selection based on the original data.

Model selection after smoothing, AICS (methods (2) and (3)), seems to be able to

reveal the true underlying function by reducing the noise in the data.

4.4.2 Scenario B

In a second scenario the same setting as Scenario A is considered. We will use the

AIC-criterion and AICS to select the power(s) of a fractional polynomial (Section

1.3.1) of degree 1(2) from a grid {−2,−1,−0.5, 0, 0.5, 1, 2, 3}. Note that the true

model is a fractional polynomial of degree 2 with p1 = 1 and p2 = 2.

Table 4.8 shows an overview of the powers chosen by AIC- and AICS . Powers not

chosen by any of the selection criteria were omitted from the table. All fractional

polynomials selected using the AIC- and AICS-criterion are of degree 2. It can be

seen that the generating model, which is contained in the set of the candidate models

(p1, p2) = (1, 2), was chosen 16 times by the AIC-criterion while it was chosen 297

times using AICS .

Table 4.8: Scenario B: Selected powers using the AIC-criterion (left) and AICS-

criterion (right).

p1\p2 0.0 0.5 1.0 2.0 3.0

-2.0 1 4 28 134 87

-1.0 2 3 10 29 36

-0.5 2 13 14 11 39

0.0 11 14 10 36

0.5 29 42 15 31

1.0 49 16 31

2.0 12 8

3.0 118

p1\p2 0.5 1.0 2.0 3.0

-2.0 7 7

-1.0 4 9 8

-0.5 2 1 16 19

0.0 7 11 28 24

0.5 11 26 68 43

1.0 48 297 159

2.0 40 45

3.0 120

In Figure 4.7, a smoothed density plot of the ratio MASE(AIC)/MASE(AICS)

is given. About 85% of the ratios are larger than 1 indicating an improved model

choice when using the AICS-criterion.

The success of model selection based on presmoothing is in accordance

with known results in related settings (Faraldo and Gonzalez Manteiga, 1987;

Christóbal Christóbal et al., 1987; Janssen et al., 2001).
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Figure 4.7: Scenario B: Smooth density plot of the fraction of MASE-values accord-

ing to the model chosen on the original data (ASEc) and the model chosen on the

smoothed data (ASEs).

4.5 Discussion

In this chapter, a small simulation study was performed to investigate the perfor-

mance of imputation-based model selection, i.e., selecting a model based on aug-

mented data. The performance of the method was compared to the performance of

the weighted AIC-criterion presented in Chapter 3. The simulations in this chapter

show that model selection based on non-parametric mean imputation is able to cap-

ture the true underlying model in fairly simple applications. If however information

about the true model is scarce or if the true underlying function is not reversible,

i.e., E (x|y) is not well defined, it does not succeed in improving the model selection.

From the discussion on the mean average squared errors and bias-variance de-

composition of the several methods it is clear that the price to pay using imputation-

based model selection is the increase in variability, whereas the weighting methods

perform better to that respect. Therefore possible further research lays in the com-

bination of imputation and weighting, i.e., to select the model using an imputation-

based AIC and to fit the model using inverse probability weights.
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In exploring the improved behaviour of the imputation-based model selection,

a concept of model selection after smoothing was briefly investigated by means of

a small simulation study. In the preliminary smoothing step, model selection is

necessary to avoid overly complex models to be chosen. Since the method reduces

the noise in the data, it reveals the true underlying function and an improved model

selection is the result. It remains a question whether model selection after smoothing

is applicable in higher dimensions and generally applicable for different types of

distributions.



Chapter 5

Cervix Cancer Screening in

the Belgian Health Interview

Survey 1997

5.1 Introduction

To outline an evidence-based health policy, one is often interested in the profiles of

persons who are at risk to obtain certain diseases or who do not respond to prevention

programs as, e.g., cervix cancer screening via smears. Statistical modelling can

provide a tool to discover such profiles.

In the Belgian Health Interview Survey (HIS) of 1997, one of the questions in-

vestigated is in what respect the group of women, aged 25-64, not having a smear

is different from the group of women that did have a smear taken in the past three

years. For this purpose discrimination based on civil status, drug consumption, age,

educational level and financial status was of interest.

Statistical modelling of surveys often has to deal with design issues as the sam-

pling in the HIS was based on a combination of stratification, multistage sampling

and clustering (Kish, 1995). Moreover it is not unlikely that one or more covariates

for the variables of interest are missing, possibly due to numerous reasons or just

by chance. In this dataset about 30% of the 2893 women had one or more missing

covariates. Together with the design issues, statistical modelling has to deal with

the missing values.

95
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Table 5.1: Cervix Cancer Screening: Variables used in the candidate models.

Variable Abbreviation Coding

Screening Status SC binary

Civil Status CS nominal

Drug Consumption DR ordinal

Age Age continuous

Educational Level EL nominal

Financial Status FS nominal

In this chapter, different parametric and non-parametric modelling techniques

will be applied to the Cervix Cancer Screening data. It is already in the first step,

the model selection step, that one has to account for the design and the occurrence

of missing values as pointed out in Chapters 3 and 4. In a second step the selected

model is then used, while accounting for the design and missing values, to discover

the profiles of persons who are at risk to obtain cervix cancer but who do not respond

to prevention programs. We will assume data to be missing at random (see Section

1.2).

As a parametric technique, logistic regression will be used while as a non-

parametric technique, the method of classification trees is described. Both logistic

regression and classification trees have advantages but also limitations with respect

to their application in the survey domain.

In a first section, focus is on model selection using logistic regression and in a

second section, focus is on the final tree selection for a classification tree analy-

sis, dealing with both design and missingness issues. We end with a discussion in

Section 5.4.

5.2 Model Selection using Logistic Regression

Let us first apply the model selection procedures as introduced in Chapters 3 and 4

in a logistic regression setting.

Based on the variables given in Table 5.1, twelve different models as shown in

Table 5.2 were considered. In Table 5.3, the AIC-criterion based on the complete

cases (second column) is given together with five modified AIC-criteria. The models

are ranked according to their AIC-criterion based on the complete cases. For all other
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Table 5.2: Cervix Cancer Screening: Overview of the candidate models.

Model Structure

(1) SC∼ Age+Age2+log(DR)+CS

(2) SC∼ Age+Age2+log(DR)+EL+DR*EL

(3) SC∼ Age+Age2+DR+EL+EL*DR

(4) SC∼ Age+Age2+log(DR)

(5) SC∼ Age+Age2+log(DR)+log(Age)

(6) SC∼ Age+Age2+DR

(7) SC∼ Age+Age2+CS+CS*Age

(8) SC∼ CS+Age+EL+DR+Age*EL

(9) SC∼ Age+Age2

(10) SC∼ CS+Age+EL+DR+Age*EL+DR*EL

(11) SC∼ FS+CS+DR+Age+EL

(12) SC∼ FS+CS+DR+AGe+Age*FS

columns, the three models with lowest AIC-values are indicated by their ranks.

In the third column, a first weighted version, AICW1
, takes into account the

complex design. Individual weights, W1, reflecting the stratification at provincial

level and the differential selection probabilities within households were available.

This results in a somewhat different ordering of the models. The best model now is

the one with original rank 8.

Similarly, the fourth column shows the modified AIC-value, AICW2
, incorpo-

rating missing covariate data (assuming MAR). Because of the high dimensional

covariate space, a classification tree with surrogate splitting (Section 5.3) was used

to obtain estimates of the missingness probabilities and thus the weights W2. This

leads to only minor changes, as compared to the second column. The best model

now is model 2.

In the fifth column both complications have been taken into account by multiply-

ing both weights in AICW1,W2
. Again the same models appear to be the best ones;

model 8 showing up again, now as the third best model, while model 3 is having the

lowest value.

To contrast these weighting methods to model selection after imputing miss-

ing covariate values, the AIC-criterion was applied to an imputed data set (AICI).
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The imputation of missing values for the Cervix Cancer Screening data is not at all

straightforward since the missing values are spread over several variables. The ‘Ran-

dom Forest’-methodology of Breiman (2001), introduced in Section 1.3.1, provides

a flexible iterative imputation method. The algorithm starts by a rough imputation

of missing values where for continuous variables, missing values are replaced with

their median and for factor variables, missing values are replaced with the most

frequent class breaking ties at random. Then a random forest is built with this

augmented dataset. The proximity matrix from the random forest is used to update

the imputation of the missing values. For continuous predictors, the imputed value

is the weighted average of the non-missing observations, where the weights are the

proximities. For categorical predictors, the imputed value is the category with the

largest average proximity. This process is iterated 10 times.

A comparison between the imputation-based and weighted AIC-criteria shows

that model (11), not chosen by the AIC and AICW1
on the complete cases, has the

third lowest AICI -, AICI,W1
-value. Model (8), not chosen by the AICW2

-criterion

which ignores the design but corrects for the missingness is now chosen by the AICI -

criterion while it was chosen by the AICW1,W2
-criterion and not by the AICI,W1

-

criterion, both dealing with design and missing values. Model (2), the model with

the lowest AICW2
and second-lowest AICW1,W2

-value had the lowest AICI - and

AICI,W1
-value.

From this data example, we see that weighted and imputation-based model se-

lection opt for different models compared to model selection on the complete cases,

but also compared to each other. There is a general tendency to opt for model (2)

and (3) to be the better models. This example illustrates that differently weighted

or imputation-based AIC-criteria can select different models as best ones. Since the

choice of the final model or the set of final models used for e.g., model averaging is

affected by missing data and by the design, we recommend in general the use of the

weighted and imputation-based criteria (at least as a sensitivity tool).

Let us now focus on classification trees as a non-parametric alternative to logistic

regression.

5.3 Model Selection using Classification Trees

The classification tree methodology was briefly introduced in Section 1.3.1. More

details can be found in Breiman et al. (1984), Zhang and Singer (1999) and Hastie

et al. (2001).
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Table 5.3: Cervix Cancer Screening: The different (weighted/imputation-based)

AIC-values and, between brackets, the rank of the three best models.

Model AIC AICW1
AICW2

AICW1,W2
AICI AICI,W1

(1) 1489.02(1) 975.31 2614.04(2) 1451.19 3626.56 3781.04

(2) 1489.81(2) 969.04 2606.71(1) 1441.53(2) 3556.07(1) 3706.76(1)

(3) 1490.70(3) 963.26(2) 2617.82(3) 1440.44(1) 3585.19 3713.98(2)

(4) 1492.39 965.66(3) 2625.36 1445.89 3654.47 3779.14

(5) 1494.10 967.60 2625.73 1447.96 3656.45 3781.30

(6) 1495.86 967.64 2632.11 1449.03 3660.89 3787.37

(7) 1496.19 984.37 2631.01 1461.50 3648.50 3806.66

(8) 1496.84 961.57(1) 2628.85 1441.77(3) 3556.28(2) 3737.76

(9) 1496.97 969.54 2636.47 1451.42 3665.03 3796.02

(10) 1502.31 967.35 2632.49 1447.34 3559.81 3747.50

(11) 1504.01 970.94 2648.48 1460.69 3559.48(3) 3733.11(3)

(12) 1516.75 980.92 2676.15 1477.45 3658.80 3839.60

One attractive feature of tree-based methods is the ease with which missing values

can be handled. The appropriateness of these methods is however not straightfor-

ward (Ripley, 1996).

A first approach is prediction on complete observations suggested by Quinlan

(1986). He suggests replacing missing values using the distribution within the class

at that node when computing the expected value of a split. In his paper of 1993,

Quinlan multiplies the impurity gain calculated on known observations by the pro-

portion of missing values. This method has a major disadvantage when the number

of complete observations in the node is quite small. Another disadvantage is that

other available variables for this observation are neglected while they are possibly

highly correlated with the missing one.

A second approach, Ripley (1996) discusses, is the missing together approach

(MT). Suppose that we attempt to split a node by a variable and that the measure-

ment for that variable is missing for a number of observations. The MT approach

forces all of these subjects to the same daughter node. If it is a nominal variable with

several levels, the missing value is regarded as an additional level, so the variable

has one more level. On the other hand, when the variable has a natural order, two
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copies are made. If a component is missing, the component in the first copy will

be set on plus infinity and the corresponding component in the second copy will be

given the value minus infinity. In this way, replacing the variable by its two variants,

results in two possible splits such that the observations with missing measurement

are sent to the same daughter node. The variant that gives the best split is chosen.

This is the key idea of the MT approach. The advantages of the MT approach

are that it is very easy to implement and that a recursive partition algorithm that

assumes no missing data can still be used without modification when the raw data

contain missing values. Also the observations with missing information can easily

be located in the tree structure. In contrast, both daughter nodes may contain some

of these subjects by using surrogate splits instead. A major disadvantage of the MT

approach is that imputation relies on the assumptions of simultaneous behaviour for

subjects with a missing observation for the covariate of interest. Moreover, the most

favourable split is chosen to be the best split, without considering the information

in the other covariates. This can be circumvented by surrogate splits.

The third approach of surrogate splits is analogous to replacing a missing value

in a linear model by regressing on the explanatory variable with a non-missing value

most highly correlated with it. However it is more robust because of no model

assumptions. The surrogate split approach attempts to utilize the information in

the other predictors to assist in making the decision to send a observation to the left

or the right daughter node. One looks for the predictor that is most ‘similar’ to the

original predictor in classifying the observations. Similarity is measured by a measure

of association. It is not unlikely that the predictor yielding the best surrogate split

may also be missing. Then we have to look for the second best surrogate, and so

on. In this way all available information is used. If surrogate splits are used, the

user should take full advantage of them. In particular, a thorough examination of

the best surrogate splits may reveal other important predictors that are absent from

the final tree structure, and it may also provide alternative tree structures that in

principle can have a lower misclassification cost than the final tree, because the final

tree is selected in a stepwise manner and is not necessarily a local optimizer in any

sense. This problem arises also in the case of selection procedures for parametric

models.

A fourth possibility is to take missing as a further level of the attribute. This

method allows multi-way splits which are not appealing because making some values

missing can increase the gain in impurity. This can be circumvented by allowing only

binary splits, or by penalizing multi-way splits.
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As a conclusion one can say that in most approaches tree construction is based

on the observations without any missing values. Where missing values are very

frequent; as in large scale surveys, this may be unacceptable or even impossible.

The practical implementation of the previous methods, handling missing data, is

not an issue. The appropriateness of the chosen approach however is. Especially the

use of all available information by surrogate splits is appealing. Substantial improve-

ments upon this method can be thought of, although the practical implementation

can be a drawback. All of these ideas have merits and demerits, depending on how

common missing values are and whether or not they are missing at random (Little

and Rubin, 1987).

Prediction using either the complete observations, the missing together approach

or multi-way splits has several disadvantages compared to the use of surrogate splits.

Therefore we will not discuss them. As an illustration we focus on four classification

tree analyses: (1) using complete cases only, (2) using complete cases with inverse

probability weighting, (3) using augmented data, i.e., missing values are imputed in

the original dataset, and (4) using available data with surrogate splits. These four

methods were applied with and without design weights.

Let us describe the pruning process, using cross-validation, for the analysis with-

out design weights using the complete cases only. Calculation of the cross-validation

relative error was based on subsets of size 10. In Figure 5.1, the cross-validation

relative error is shown as a function of the size and cost complexity parameter (cp).

In Table 5.4, the cross-validation relative error (xerror) is shown together with the

cost complexity (CP), the number of splits (nsplit), the relative error (rel error) and

the cross-validation relative error standard deviation (xstd). The size of the tree is

defined as the number of terminal nodes. From this table we can see that a minimum

is obtained for size 3 (nsplit=2). The 1 SE-error rule, i.e., selecting the smallest tree

of which the cross-validation error is within one standard error from the minimal

cross-validation error was not applied because of the simplicity of the resulting tree.

Similarly, the selection of the final tree for the other methods occurred with and

without design weights. In Figure 5.2 and 5.3, the resulting trees are shown without

and with design weights, respectively.

Looking at Figure 5.2, small trees were selected by all four methods. There is a

small difference in the final trees using the complete cases and inverse probability

weighted complete cases. They both have age as a primary split, while based on

the complete cases a second split based on educational level is found. There is no

difference in the final tree using the augmented data and the available cases with

surrogate splits.
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Figure 5.1: Cervix Cancer Screening: cross-validation relative error as a function

of the size (upper axis) and cost complexity (lower axis) using complete cases only

without design weights.
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Table 5.4: Cervix Cancer Screening: cross-validation relative error using complete

cases only without design weights.

CP nsplit rel error xerror xstd

0.03723404 0 1.00000 1.00000 0.043247

0.01861702 1 0.96277 1.00266 0.043280

0.00797872 2 0.94415 0.98404 0.043045

0.00531915 3 0.93617 1.00532 0.043313

0.00398936 12 0.88564 1.03191 0.043635

0.00354610 16 0.86968 1.04521 0.043790

0.00341945 19 0.85904 1.06117 0.043971

0.00265957 33 0.80319 1.08245 0.044205

0.00227964 47 0.76596 1.07979 0.044176

0.00199468 54 0.75000 1.10372 0.044429

0.00182846 58 0.74202 1.10638 0.044457

0.00177305 80 0.69947 1.11702 0.044565

0.00159574 92 0.67819 1.13298 0.044723

0.00132979 103 0.65957 1.14096 0.044800

0.00122750 170 0.56915 1.13564 0.044748

0.00088652 192 0.53723 1.15957 0.044975

0.00066489 225 0.50798 1.15160 0.044900

0.00053191 233 0.50266 1.15957 0.044975

0.00000000 238 0.50000 1.16755 0.045048
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Figure 5.2: Cervix Cancer Screening: final trees without design weights based on the

complete cases (upper left), complete cases with inverse probability weights (upper

right), augmented cases (lower left) and available cases with surrogate splits (lower

right).

However, there is a difference between the latter two and the first two trees,

i.e., the latter two methods result in a tree with primary split educational level. A

secondary split is based on age while educational level shows up again as a last split.

Comparing these results with the final trees using design weights, we see that

more complex trees are chosen for those trees resulting from using the augmented

data and the available cases with surrogate splits, while the use of complete cases

and inverse probability weighted complete cases result in a tree of size 1. The final

trees based on the augmented data and available data using surrogate splits show

some differences from the seventh layer onwards. The basis of the trees, using design

weights are the same as when ignoring the design but the complexity is different.
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Figure 5.3: Cervix Cancer Screening: final trees with design weights based on the

complete cases (upper left), complete cases with inverse probability weights (upper

right), augmented cases (lower left) and available cases with surrogate splits (lower

right).

To validate the final trees, we calculated the cross-validation misclassification

error for each method. First, ignoring the design, all methods give a similar mis-

classification error of about 29%. Secondly, correcting for the design, we find a

misclassification error of 27% for both the complete cases and inverse probability

weighted complete cases, while 31% was found for both the augmented data and

available cases with surrogate splits. This shows that more complex (non-nested)

trees are not necessarily equivalent with an improved classification.

Looking at tree-based methods as variable reduction methods, variables age and

education level are the only important variables when ignoring the design while the

other variables show up when using design weights. We refer to Hens et al. (2002)

for a more thorough discussion of both a classification tree analysis and logistic

regression analysis of cervix cancer screening in the Belgian HIS of 1997.
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5.4 Discussion

The results of the analyses on the Cervix Cancer Screening data, presented in this

chapter, show that dealing with missing data highly depends on the method used.

Feelders (2000) showed that using imputation outperforms the use of surrogate splits.

In our analysis, they seem to perform equally well. It is appealing to use imputation

because of the preliminary imputation step which is not a part of the model building

process as opposed to the use of surrogate splits. Carpenter and Kenward (2005)

contrast the use of inverse probability weighting with multiple imputation to handle

data missing at random in a parametric setting. A similar comparison for non-

parametric techniques such as classification trees has, to our knowledge, not been

done before.

Dealing with the design affects the final model chosen and is therefore not to be

ignored. A sensitivity analysis is recommended to be a part of the data analysis.

The use of a classification tree as a prediction and classification tool is known to

be highly unstable. Ensemble methods as bagging, boosting and random forests have

been developed to obtain more accurate predictions (see Section 1.3.1). Instead of

applying a single classification tree, one could opt for the use of one of such ensemble

methods. However, in practice, one is often interested in the effects of one or more

covariates on the response variable and it is often difficult to derive these from

an ensemble method. Therefore, we advise to use these methods to validate the

predictions made by a single classifier.

The motivation to use a parametric or non-parametric modelling technique de-

pends on the aim of the analysis, the underlying assumptions and other sometimes

subjective criteria. Ye (1998) introduced the concept of generalized degrees of free-

dom which can be used to compare different model techniques as, e.g., classical

parametric models and tree-based methods and thus could be used as a basis for

further research in the field of survey data.



Chapter 6

Kernel Weighted Influence

Measures

6.1 Introduction

When dealing with longitudinal data, it is not unlikely for measurements to drop

out. In Section 1.2 several modelling techniques to represent dropout under differ-

ent missingness mechanisms have been introduced. These models, trying to repre-

sent a non-random dropout mechanism, rely on strong and untestable assumptions.

Therefore, there is a clear need for a sensitivity analysis. A sensitivity analysis

can be defined as one in which several statistical models are considered simultane-

ously and/or where a statistical model is further scrutinized using specialized tools.

Examples include, Crouchley and Ganjali (2002) who used a multivariate general-

ization of the Heckman model as an alternative to selection models on the Mastitis

data; Baker et al. (2003) who use different missing data models and compared the

resulting goodness of fit statistics and parameter estimates in a selection modelling

framework; and Daniels and Hogan (2000) who performed a sensitivity analysis for

pattern mixture models under informative dropout.

In this chapter, we will focus on the selection model proposed by Diggle and

Kenward (1994). Using a selection model, not only the assumed distributional form

can be misspecified but also the presence of influential observations can be of great

importance to select an appropriate model. A well known method to investigate the

influence of individual cases is case deletion (Cook and Weisberg, 1982; Lawrance,

1995; Zhu et al., 2001; Cavanaugh and Oleson, 2001). This results in the global

influence approach. A quite different approach is to perturb the model a bit and

107
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study the stability of the model, as is done by Lesaffre and Verbeke (1998) as an

application of the local influence approach introduced by Cook (1986). In Thijs

et al. (2000), Verbeke et al. (2001), Molenberghs et al. (2001, 2003) and Jansen et al.

(2003), this method was used to investigate the influence of non-random missingness

as part of a sensitivity analysis in the selection modelling framework. A thorough

discussion can also be found in Verbeke and Molenberghs (2000) and Jansen et al.

(2005).

One of the datasets discussed in the literature is the Mastitis dataset. These data

were initially used by Kenward (1998) for an informal sensitivity analysis. They were

analyzed extensively with the local influence approach by Molenberghs et al. (2001).

The influence analyses on the Mastitis data and other datasets, make it clear that

the allocation of the possibly different sources of influence is still a burden. The

related question on when to call a case influential (i.e., well defined cut-off values) is

still an open problem. In view of obtaining new insight in this matter, we introduce

kernel weighted influence measures. We will illustrate the techniques on the Mastitis

dataset throughout this chapter.

Our proposal is an extension of the two approaches of global and local influence.

Instead of looking at cases, we are interested in looking at the influence of types

of observations. To know why an observation is influential, one has to consider the

characteristics of that observation. So, instead of wondering why this particular ob-

servation is influential, the question becomes which characteristics of this observation

makes this type of observation influential. Therefore we will look at observations in

the neighbourhood of a case. This new exploratory and graphical tool supplements

many other tools for sensitivity analysis and can contribute in obtaining further in-

sights in the mechanisms generating missing data (Hens et al., 2005b; Jansen et al.,

2005).

Kenward (1998) introduced a statistical model to analyze the Mastitis data,

a model that fits in the selection modelling framework. We briefly describe the

selection model of Diggle and Kenward and the global and local influence in Section

6.3. The development and motivation of the kernel weighted influence measures is

given in Section 6.4. This approach will be extended to a grid analysis (Section 6.5)

and a small simulation study is carried out (Section 6.6). In this chapter, we restrict

attention to the case of two measurements for each subject. How the method can

be extended to the general case of more than two time points is briefly sketched in

Section 6.7.
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6.2 A Descriptive View on the Mastitis Data

Consider the Mastitis data as introduced in Section 1.5.3. Looking at the different

profiles in Figure 1.2, cows #4, #5 and #66 have a large increase in milk yield

compared with the other cows. Cow #89 appears to have the largest decrement.

Next to cow #66, cows #54, #69 and #53 are high yielding cows in both consecutive

years.

Because some cows have a large reduction in milk yield and others exhibit a

substantial increase, it is useful to look at the increments, i.e., the difference between

the milk yield in the second year and the first year. In Figure 1.3, a scatterplot of

the original data is given together with a plot of the increments against the first

measurement.

If we take a closer look at the scatterplots in Figure 1.3, we can see that the cows

mentioned above, are located at the border of the data region. Are these specific

cows having a large influence on a statistical analysis and are there any other cases

with high influence? Getting more insights in such questions is the purpose of a

sensitivity analysis. Special attention goes to cows #54 and #69, having almost

identical measurements (both very high). It is known that, in classical regression

models without missingness, most influence measures are not able to detect such

cases, because they mask each other (Ryan, 1997). One of the main objectives is to

study to which extent the influence measures introduced by Molenberghs et al. (2001)

suffer from the same deficiency; and to propose modified versions of these influence

measures which deal with it. Another objective is to extend the methodology to

measure the influence of ‘types’ of observations, not really included in the sample

but represented by clusters of neighbouring observations.

6.3 Influence Measures

This section summarizes parametric approaches to sensitivity analysis within the

framework of selection models.

6.3.1 A Selection Model for Non-random Dropout

Let us assume that for subject i = 1, · · · , N , a sequence of responses Yij is measured

at two occasions j = 1, 2. Let Ri be a missingness indicator and assume that Yi1

is always observed. Then, Ri = 1 if Yi2 is observed and Ri = 0 if Yi2 is missing.

The measurement part of the model of Diggle and Kenward (1994), applied to the
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Table 6.1: Parameter estimates (and standard errors) of the selection model fitted

on the Mastitis dataset.

Effect Parameter Random Non-random

Dropout Dropout

Measurement Model

Intercept µ 5.77(0.09) 5.77(0.09)

Time effect ∆ 0.72(0.11) 0.33(0.14)

First variance σ2
1 0.87(0.12) 0.87(0.12)

Second variance σ2
2 1.30(0.20) 1.61(0.29)

Correlation ρ 0.58(0.07) 0.48(0.09)

Dropout Model

Intercept ψ0 -2.65(1.45) 0.37(2.33)

First measurement ψ1 0.27(0.25) 2.25(0.77)

Second measurement ψ2 0 -2.54(0.83)

-2 loglikelihood 280.02 274.91

Mastitis data, is characterized by, for i = 1, . . . , N ,


 Yi1

Yi2


 ∼ N




 µ

µ+ ∆


 ,


 σ2

1 ρσ1σ2

ρσ1σ2 σ2
2




 , (6.1)

where the covariance matrix expresses a serial correlation between the measurements

at the two occasions. The missingness process is described by

logit[Pr(Ri = 0|yi1, yi2)] = ψ0 + ψ1yi1 + ψ2yi2, (6.2)

where Pr(Ri = 0|yi1, yi2) is the probability for the i-th subject to have a missing

measurement at the second occasion, under the posited model. If ψ2 differs from

zero, the missingness process is non-random as in the terminology of Rubin (1987).

The fit of this model on the Mastitis data based on the assumption that the

dropout process is MAR on the one hand and MNAR on the other hand (Diggle

and Kenward, 1994) is summarized in Table 6.1.

Testing H0 : ψ2 = 0 by means of a likelihood ratio test gives the value G2 = 5.11,

indicating some evidence against the MAR assumption. The appropriateness of

using the χ2(1)-distribution in this situation is postponed to Chapter 7. The high
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value of the test statistic does not at all mean that there are observations in the

dataset which are missing not at random. It is also possible that this high value

is due to misspecification of the distribution or even just the missingness process.

An important question is then, whether some particular subjects are responsible for

this behaviour. Cook and Weisberg (1982) introduced a case deletion approach to

investigate the influence of subjects. From their approach, several other methods

were developed. The next two sections discuss global and local influence measures

as applied on the Mastitis data.

6.3.2 Global Influence

Let us introduce a weighted loglikelihood

l(γ;w) =
N∑

j=1

wj lj(γ), (6.3)

where w = (w1, . . . , wN ) is a vector of subject specific weights such that
∑N
i=1 wi =

N (reflecting an effective total sample of size N) and lj(γ) represents the loglike-

lihood contribution of the j-th subject with γ the parameter vector containing all

unknown parameters (from measurement and dropout model). Denote γ̂ the maxi-

mum likelihood (ML) estimator of the unweighted likelihood, corresponding to the

weight vector 1 = (1, . . . , 1), and γ̂w the ML estimator based on the weighted like-

lihood (6.3).

Define

CD(w) = 2{l(γ̂;1) − l(γ̂w;1)}, (6.4)

as a measure for the distance between the ML estimator γ̂ and the weighted ML

estimator γ̂w. The global influence measure (Molenberghs et al., 2001)

CDi = CD(w(−i)), (6.5)

compares γ̂ to γ̂(−i); the latter is the weighted ML estimator using weight vector

w(−i) = N/(N − 1) × (1, . . . , 1, 0, 1, . . . , 1) with the 0 at the i-th entry.

A global influence analysis on the Mastitis data, leads to influential cows #4, #5,

#66 and #89, as shown in Figure 6.1. This is not surprising since cows #4, #5 and

#66 have the largest increases in milk yield from year 1 to year 2 and cow #89 has

the largest decrease in milk yield. Their behaviour is thus different from the other

cows. A full discussion is given by Molenberghs et al. (2001). But apparently cows

#54 and #69 are not suggested to be influential by the global influence measure

CDi.
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Figure 6.1: Influential subjects of the Mastitis data based on the global influence

measure.

A main disadvantage of global influence measures is that the influence that can

be ascribed to a specific case is hard to assess, since by deleting a subject all sources

of influence are lumped together, with little hope to disentangle them. This was the

main motivation to look at local influence methods.

6.3.3 Local Influence

The principle is to investigate how the results of an analysis are changed under

infinitesimal perturbations of the model. Based on knowledge about Mastitis, the

increments appear to be important. A thorough motivation is given in Molenberghs

et al. (2001). Therefore a missingness process of the following form is considered.

logit[P (Ri = 0|Yi1, Yi2)] = ψ0 + ψ1(Yi1 + Yi2) + φi(Yi2 − Yi1), (6.6)

where φi is a subject-specific weight, allowing the investigator to determine the local

influence of one subject on the dropout model.

Let li(γ|φi) denote the i-th loglikelihood contribution of the i-th subject, as-

sociated with missingness process (6.6) and let l(γ|φ) =
∑N
i=1 li(γ|φi) denote the

total loglikelihood with φ = (φ1, . . . , φN ). The vector φ0 = (0, . . . , 0) corresponds

to a MAR process. Cook (1986) proposed to measure the distance between γ̂φ, the

ML estimator based on l(γ|φ) and γ̂0, the ML estimator based on l(γ|φ0), by the

so-called likelihood displacement, defined by

LD(φ) = 2{l(γ̂0|φ0) − l(γ̂φ|φ0)}. (6.7)

This approach takes into account the variability of γ̂. The geometric surface formed

by the values of the graph ξ(φ) = (φ, LD(φ)) gives the essential information about
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the influence of the perturbation scheme. Because of graphical limitations in dimen-

sions higher than 2, Cook (1986) proposed to look at the normal curvatures Ch of

ξ(φ) at φ0, in the direction of some N -dimensional vector h of unit length.

Cook (1986) has shown that Ch can easily be calculated by

Ch = 2
∣∣∣ hT ∆T L̈

−1
∆ h

∣∣∣ , (6.8)

where ∆ is a (s×N) matrix with ∆i as its i-th column, ∆i being the s dimensional

vector defined by

∆i =
∂2li(γ|φi)
∂φi∂γ

∣∣∣∣
γ=bγ0,φi=0

. (6.9)

Further, L̈ denotes the (s × s) matrix of second order derivatives of l(γ|φ0) with

respect to γ, also evaluated at γ = γ̂0. One evident choice for h is the vector hi

containing 1 in the i-th position and 0 elsewhere, corresponding to a perturbation

from the MAR model for the i-th subject in (6.7) only. The measure Chi
reflects

the influence of allowing the i-th subject to drop out non-randomly, while the others

can only drop out at random.

Calculating the local influences of the cows in the Mastitis data, cows #4, #5

and #66 appear to be influential (see Figure 6.2). This is in agreement with the

global influence analysis. Because the local influence looks at perturbations of the

MNAR-parameter, while the global influence is based on case deletion, this was not

to be expected a priori (Molenberghs et al., 2001). Kenward (1998) observed that

cows #4 and #5, which show up in both analyses, are substantially different from

the other cows by their large increment.

Figure 6.2: Influential subjects of the Mastitis data based on the local influence

measure.
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If the dropout probabilities are considered, then cow #66 seems to have a large

dropout probability compared with the other cows. Therefore, a perturbation of the

MNAR-parameter will reflect this.

From both the global and local influence analysis it is clear that the location of

the data is of great interest. Therefore, a method to analyze sensitivity of types of

observations might lead to a better comprehension of the influence measures and

sensitivity analyses.

6.4 Kernel Weighted Influence Measures

The basic idea is to study the influence of types of observations, which are defined

by neighbourhoods centered at the observations (y1i, y2i, ri). Here techniques from

non-parametric smoothing methods can be used. Inspired by the well-known kernel

estimators for density and regression estimation (Wand and Jones 1995, Section

1.3.1), we propose the use of a kernel based choice for the weight vector w in the

global measure (6.4) and for the direction vector h in the local measure (6.8).

6.4.1 Kernel Weighted Global Influence

Influence measures such as the global influence and local influence approach are

essentially based on the influence of single cases. The global measure CDi quantifies

the change in the parameter estimates when including or excluding the i-th case;

the local measure Chi
reflects the influence of allowing the i-th subject to drop out

non-randomly. We extend these two approaches by considering a neighbourhood

N(i) of (y1i, y2i, ri) defined by kernel functions (see e.g. Wand and Jones, 1995). Let

K be a density function and g1 and g2 two so-called bandwidth parameters.

The neighbourhood N(i) of observation i is characterized by the values of the

product (or multiplicative) kernel

K(
y1j − y1i

g1
){K(

y2j − y2i
g2

)}riI(rj = ri), (6.10)

for j = 1, ..., N , where I(rj = ri) equals 1 if rj = ri and 0 otherwise. The first

two factors in the definition of (6.10) are typical kernels for continuous variables

and the indicator function can be considered as a kernel for a categorical variable.

Taking the product of one-dimensional kernels is a typical simple way to characterize

multivariate observations in a the neighbourhood of a certain observation (see e.g.

Wand and Jones 1995). The exponent of the second factor expresses the possible

missingness of the second measurement y2.
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First consider the case observation i is complete (ri = 1). Complete observations

(rj = ri = 1) with values close to K2(0) (the upper limit) are close neighbours of the

i-th observation; observations at a further distance have values for (6.10) close to 0

(the lower limit). Incomplete observations (rj = 0) get value 0. In case observation

i is incomplete (ri = 0), the interpretation is essentially the same focusing on the

first factor, now having a maximal value K(0) for the closest neighbours (identical

observations).

This leads to the following definition: the kernel based weight vector w(−N(i)) is

the vector of length N with elements, for j = 1, . . . , N ,

(w(−N(i)))j = [K(0){K(0)}ri

−K(
y1j − y1i

g1
){K(

y2j − y2i
g2

)}riI(rj = ri)

]
/D. (6.11)

The denominator D is a normalization constant assuring that

N∑

i=1

(w(−N(i)))j = N.

Define the kernel weighted global influence measure of the i-th observation

(y1i, y2i, ri) as

CDN(i) = CD(w(−N(i))). (6.12)

It measures the discrepancy between the ML-parameter estimator including or ex-

cluding the neighbourhood N(i) as indicated by the weight vector w(−N(i)). The

weights are shown graphically in Figure 6.3. For bandwidths g1 and g2 tending

to 0 and in case all observations are different (no ties), the weight vector w(−N(i))

converges to w(−i). In case there are ties (or very close neighbours), the method

contrasts the parameter estimates including or excluding these particular ties (or

very close neighbours) for bandwidths tending to 0 (or very small). So the kernel

weighted influence measure (6.12) is able to allocate groups of influential cases with

similar outcomes, thus avoiding the problem of masking. Masking refers to the ex-

istence of a close cluster of influential data points such that deleting a single point

will cause little effect (see e.g. Ryan 1997).

As the method is intended as an exploratory and graphical tool, the influence

of neighbourhoods N(i), characterizing a certain type of observation, is explored by

considering a series of bandwidth values. But, from our experience, the bandwidth

needs to be adjusted to the data density at the observation i under consideration.

We suggest to use a density adaptive bandwidth g = g1 = g2. Let (y1i, y2i, ri) be
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Figure 6.3: Shape of the weights. On the left hand side the weights are shown for

the situation ri = rj = 1 (completers), while on the right hand side the weights are

shown for the situation ri = rj = 0 (incompleters).

the observation of interest. If ri = 1, the bandwidth g is taken as

g(y1i, y2i, ri) =
CK2(0)∑

j,rj=0K(
y1j−y1i

g̃1
)K(

y2j−y2i

g̃2
)
. (6.13)

If ri = 0, the bandwidth is taken to be

g(y1i, y2i, ri) =
CK2(0)∑

j,rj=1K(
y1j−y1i

g̃1
)K(0)

, (6.14)

where C is a constant and g̃1 and g̃2 are two initially chosen bandwidths. Throughout

the chapter we used the standard normal density function as the kernel function K.

A kernel weighted global influence analysis with initial bandwidths g̃1 = g̃2 = 0.2

and g̃1 = g̃2 = 1.5 on the Mastitis data leads to Figures 6.4 and 6.5, respectively. For

both bandwidths the types of cows corresponding to #4, #5, #54, #66, #69 and

#89 seem to have a large influence. From Figure 1.3 it is clear that these cows are

the ones, lying at the border of the region. Cows #54 and #69 were not found with

the global influence. The profiles of these two cows are practically the same (Figure

1.2). The global influence did not identify these cows as influential due to masking.

The ML estimators γ̂(−54), γ̂(−69) as defined in Section 6.3.2 do not differ very

much from γ̂. In the kernel weighted global influence both cows get low weight and

therefore, the shift in likelihood is detected. If we have a closer look at Figure 6.5,

a second group of observations seems to be influential. This group corresponds to

types of observations #7, #47 and #58, which are incomplete observations. These

incomplete observations have the three highest y1-values among the incompleters
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Figure 6.4: Influential subjects of the Mastitis data for the kernel weighted global

influence with initial bandwidths g̃1 = g̃2 = 0.2.

Figure 6.5: Influential subjects of the Mastitis data for the kernel weighted global

influence with initial bandwidths g̃1 = g̃2 = 1.5.

(Figure 1.2) and thus can also be seen as outlying observations with substantial

influence. A comparison of Figures 6.4 and 6.5 in this respect clearly shows the

role of the bandwidth as a tuning parameter in an explorative sensitivity analysis.

Both figures show the same influential complete cases but Figure 6.5 with the larger

bandwidth adds to these some incomplete influential cases.

6.4.2 Kernel Weighted Local Influence

The local influence approach can be extended by looking at the direction determined

by the neighbourhood N(i). First, note that from the discussion in Section 3 it

follows that hi = (1−w(−i))/D where D is a normalizing constant such that hi has
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unit length. This motivates the definition of the kernel weighted local influence of

the i-th observation (y1i, y2i, ri) as

ChN(i)
= 2

∣∣∣ hN(i)
T ∆T L̈

−1
∆ hN(i)

∣∣∣ , (6.15)

where

hN(i) = (1 −w(−N(i)))/D, (6.16)

with w(−N(i)) as defined in (6.11) and D a normalizing constant. The choice hN(i)

reflects the influence of allowing subjects in the neighbourhood of the i-th subject to

drop out non-randomly, while others, not within this neighbourhood, can only drop

out at random. This method provides new insights in the local influence of types of

observations.

It is again interesting to compute the kernel weighted local influence for a series

of bandwidths. Because the vector hN(i) is normalized, there is no need to have a

density-adaptive bandwidth as in Section 6.4.1.

In the weighted local influence approach, applied on the Mastitis data, one is

interested in whether the probability of occurrence of mastitis is related to the yield

that would have been observed had mastitis not occurred for a cow with certain

characteristics. In Figure 6.6, a kernel weighted influence analysis for 6 different

bandwidths is shown for the local influence analysis.

For a larger bandwidth the left upper panel in Figure 6.6 suggests two groups

of observations. The group with the highest influence is the group of completers,

while the other group is the group of incompleters. If the bandwidth decreases,

#66 shows up, as is shown in the right upper panel in Figure 6.6. For further

decreasing bandwidths, #66 remains influential, while two other observations, #4

and #5, show up. The fact that #66 is dominantly present at several choices for the

bandwidth, stresses the high degree of influence for this type of observations. The

profile of #66 (Figure 1.2) is special in the sense that the milk yield in year 1 and

year 2 are very high and so is the increase in milk yield. Types of observations with

such a profile have a high dropout probability (Table 6.1) and, if they do not drop

out, they are highly influential. This again illustrates the usefulness to examine the

kernel weighted influence measures over a range of bandwidth values. The kernel

weighted influence approach has the additional advantage to allow for a grid-based

influence analysis as explained in the next section.
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Figure 6.6: Influential subjects of the Mastitis data for the kernel weighted local

influence (increments) with different bandwidths g = g1 = g2.

6.5 Grid-based Influence Measures

Instead of considering weights, centered at the datapoints (y1i, y2i, ri), i = 1, . . . , N ,

we now consider weights centered at points (y1, y2, r) on a one- or two-dimensional

grid (for r = 0 and r = 1, respectively) enclosing the full observed data range. Define,

in analogy with definition (6.11), the kernel based weight vector w(−N(y1,y2,r)) as

the vector of length N with elements, for j = 1, . . . , N ,

(w(−N(y1,y2,r)))j = [K(0){K(0)}r

−K(
y1j − y1
g1

){K(
y2j − y2
g2

)}rI(rj = r)

]
/D, (6.17)

where, as before, D is a normalization constant such that
∑N
i=1(w(−N(y1,y2,r)))j =

N , and define the kernel weighted global influence measure on the grid points

(y1, y2, r) as

CDN(y1,y2,r) = CD(w(−N(y1,y2,r))). (6.18)

Examining the graph of CDN(y1,y2,r) as a function of y1 (incompleters) or y1 and y2

(completers) allows us to identify influential regions over a grid, not only centered
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at the observed data points.

The kernel weighted local influence can be calculated over a grid in a similar

way. With hN(y1,y2,r) = (1 −w(−N(y1,y2,r)))/D (D a normalizing constant), define

the grid based weighted local influence as ChN(y1,y2,r)
. A plot of the weighted local

influence values can be constructed and can lead to additional insights.

The two plots in Figure 6.7 show kernel weighted global influence values over

a (y1, y2)-grid [1, 9] × [2, 12] in steps of 0.2. Again, as in Section 6.4.1, we used a

density-adaptive bandwidth. The initial bandwidths g̃1 and g̃2 in (6.13) and (6.14)

were chosen equal to 0.2 and 1.5, respectively.

These plots show that, using the available information in the Mastitis sample,

certain types of observations are highly influential when modelled missing not at

random in stead of missing at random. The peaks shown in Figure 6.7 confirm the

results from Section 6.4.1. Indeed, a closer inspection of the first plot in Figure

6.7 reveals that the four highest peaks correspond to types of observations with

characteristics similar to cows #4 and #5, to #54 and #69, to #66 and to #89.

The main structure of the second plot in Figure 6.7, based on a larger initial

bandwidth, is essentially the same but the influence of observations at the border of

the ellipsoidal area of datapoints gets more pronounced. Especially observations on

that border, with Y2 large, seem to be highly influential. A similar grid analysis for

the incompleters didn’t show any highly influential types of observations.

The construction of such a grid-based global influence graph is very computer

intensive due to the calculation of the numerous (weighted) ML estimates. This is

not the case for a grid analysis based on kernel weighted local influence, which is

computationally much simpler. So, for the local influence measures, based on the

directions hN(y1,y2,r), we used a wider range, a finer grid and tried several band-

width choices. Figure 6.8 shows a selection of weighted local influence graphs, for

four different bandwidths. The main structure is essentially the same in each graph.

If we have a closer look to the graphs for smaller bandwidths, the non-influential

region is concentrated at the first principal component axis. The correlation be-

tween Y1 and Y2 is strongly positive, as can be seen in Figure 1.3. The types of

observations which do not follow this main structure of the data, can be seen as

potential outlying types of observations. Especially, types of observations with low

values for Y1 and high values for Y2 seem to be influential. The highest influence

for each of the graphs in Figure 6.8 for decreasing bandwidths is reached for (y1, y2)

equal to (2.93, 9.34);(2.93, 8.49);(3.08, 7.72);(3.62, 7.41);(3.78, 7.18) and (3.93, 7.10),

respectively. A closer look at these highly influential types of observations and to

the Mastitis data shows that they are of the same type as observations #4 and #5.
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Figure 6.7: Kernel weighted global influence graph over a grid of completers with

density-adaptive bandwidths initially equal to 0.2 (upper panel) and 1.5 (lower

panel).
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Figure 6.8: Kernel weighted local influence graphs over a grid of completers for

several bandwidths g1 = g2.

This confirms our findings in Section 6.4.2.

A plot (omitted from the text) of the grid-based kernel weighted local influence

for different bandwidths for types of incomplete observations showed little influence
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compared with the types of complete observations. The influential types of incom-

plete observations, when present, are located in the center of the first measurement-

range (3.5, 7.5).

A simulation study for the kernel weighted influence measures can give us a

better insight in the source of influence for both complete and incomplete types of

observations. Computationally, it is not feasible to carry out a simulation study for

the grid-based kernel weighted global influence. Therefore, we restrict ourselves to

a simulation study for the grid-based kernel weighted local influence.

6.6 A Simulation Study

A small simulation study is carried out in order to obtain new insights in the different

sources of influence. For this simulation study, 100 similar datasets were generated.

Each dataset consists of 107 subjects, each with two measurements generated from a

bivariate normal distribution. Consider the following bivariate normal distribution,

based on a compound symmetry covariance matrix:

 Yi1

Yi2


 ∼ N




 6.426

7.095


 ,


 2.865 2.324

2.324 2.865




 . (6.19)

The dropout process was generated according to the following model

logit[P (Ri = 0|Yi1, Yi2)] = −3.379 + 0.387Yi1 + ψ2Yi2, (6.20)

where ψ2 is the MNAR-parameter. The choice for the parameters in both the

measurement model and dropout process was based on a fit of this model with

ψ2 = 0 (MAR) on the Mastitis data.

6.6.1 A First Setting

In a first simulation setting, 104 of the 107 subjects in each dataset were generated

according to the process described above with ψ2 equal to 0 (MAR). Three subjects

however were generated with ψ2 = −0.5, so three observations were allowed to

be missing not at random. To compare the additional influence of generating 3

subjects which are allowed to be missing not at random versus the situation where

all subjects are allowed to be missing at random, an average influence measure was

plotted in Figure 6.9 for the completers and in Figure 6.10 for the incompleters. This

average influence measure is the difference between the average grid-based influence

of 100 datasets with 3 subjects allowed to be missing not at random and the average
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grid-based influence of 100 datasets, where none of the subjects were allowed to be

missing not at random.

Figure 6.9: A figure of the relative average gain in influence of the completers when

generating 3 subjects under MNAR. The bandwidths used are respectively equal to

1 and 0.5.

Figure 6.10: A figure of the relative average gain in influence of the incompleters

when generating 3 subjects under MNAR. The bandwidths used are respectively

equal to 1 and 0.5. µ and σ denote the mean and standard deviation of Y1.

If we consider the dropout structure in Figure 6.11 for both MAR (ψ2 = 0) and

MNAR (ψ2 = −0.5) and relate this to the results shown in Figure 6.9, it becomes

clear that completers which tend to have a large probability of dropping out under

the MNAR model, but do not, appear to be influential.

For the types of observations with a missing second measurement the largest

influence is located at higher y1 values as can be seen in Figure 6.10. A high value

of y1 often goes with a higher value of y2 (correlation 0.8), a combination which
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has, under the MNAR model, a small probability to drop out. If it then drops out

nevertheless, it is highly influential.

Figure 6.11: Plot of the probability of dropout. On the left hand side the dropout

probability under MAR is shown, while on the right hand side the dropout proba-

bility is shown under MNAR.

6.6.2 A Second Setting

In a second simulation setting, the presence of subjects missing not at random is

invoked by taking 100 datasets generated under MAR (ψ2 = 0) as above, but now

all data, with a second measurement higher than 8.5, are set to be missing.

Figure 6.12: The average kernel weighted local influence for the completers of the

100 reference datasets

In Figure 6.12, the average influence measure of the completers of 100 datasets
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is shown. We will refer to these datasets generated under MAR as the reference

datasets. The plot of the average influence of the completers of the reference datasets

versus the grid has a particular shape. There is very low or no influence for data along

the first principal component axis due to the high correlation (ρY1,Y2
= 0.80) between

Y1 and Y2. When we move away from this axis the average influence increases. This

indicates that outlying types of observations, not following the main pattern in the

data, are influential. To see what the effect of invoking MNAR-dropout is on the

completers, we leave out all observations in these datasets with a Y2-measurement

higher than 8.5 and calculate the average kernel weighted local influence again.

Figure 6.13: Kernel weighted local influence for the completers of the 100 complete

datasets with MNAR dropouts for Y2 > 8.5

The average influence of the completers under such a MNAR dropout process is

shown in Figure 6.13, which indicates that dropout due to this MNAR mechanism

has a large change in influence for types of completers with a high Y1-measurement

and a low Y2-measurement. The larger influence of observations with a high Y1-

measurement and a low Y2-measurement is not surprising. In Figure 6.14, a scat-

terplot of the completers is given. If we consider the structure of the data, we know

that observations with a high value for Y1 are more likely to be missing due to the

underlying MAR-mechanism (Figure 6.11). Combined with the MNAR-mechanism

we invoked in this setting, we especially obtain complete observations with a low

Y2-measurement. The correlation indicates that, among these types of observations,

the ones with a low Y1-measurement follow the correlation structure of the data.

The ones with a high Y1-measurement do not follow this structure and therefore

they can be seen as outlying types of observations. Their influence is rather high
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Figure 6.14: A scatterplot for all simulated datasets with MNAR dropouts for

Y2 > 8.5

Figure 6.15: The figures of kernel weighted local influence for the incompleters of

the complete dataset and the incompleters of the datasets with MNAR dropouts for

Y2 > 8.5
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compared with the other types of observations.

Looking at the incompleters in Figure 6.15 one can see that there is a large

change in influence on the incompleters. The highest average influence for the

incompleters of the reference datasets was reached for Y1 = 8.5, considering the

MNAR-mechanism there is a shift towards Y1 = 9.75. Not only this shift can be

seen, but also the overall average influence increases. This indicates that the pres-

ence of types of observations which are left out non-randomly seem to have a large

influence.

Other simulation settings (such as larger sample sizes) confirm these results. The

main idea is illustrated here and therefore these other simulations are omitted from

this chapter.

6.7 Discussion

In this chapter we introduced some new exploratory and graphical techniques, sup-

plementing existing tools for sensitivity analysis. These methods combine parametric

global and local influence measures with non-parametric smoothing weights. They

provide new insights in the influence of certain types of observations and offer a nice

solution to the problem of masking. The discussion here has been focusing on the

setting of two (repeated) measurements. In case of three or more measurements, the

kernel based weights (6.11) and (6.21) can be based on higher dimensional kernels.

Alternatively, one can first determine the Euclidean distance between two observa-

tions (belonging to the same pattern) in combination with a one-dimensional kernel

function. This latter option leads to the following extension of the weights (6.11),

to any number of measurements.

Let (yi, ri) denote the data where yi = (yi1, . . . , yin) = (yoi ,y
m
i ) is the vector of

observed components yoi and missing components ymi and where ri = (ri1, . . . , rin)

is the vector grouping the missingness indicators

riℓ =





1 if yiℓ is observed

0 otherwise.

For a neighbourhood N(i) of outcome (yi, ri), define the weights

(w(−N(i)))j = {K(0) −K(‖yoj − yoi ‖/g)I(rj = ri)}/D, (6.21)

where K is for instance a Gaussian kernel function, g is the bandwidth and D a

normalizing constant, as before. So, similar to the weights (6.11), the weights (6.21)

are constant for all observations with a different missingness pattern (rj 6= ri) and
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assign low weights to all observations yj in the close neighbourhood of yi and with

an identical missingness pattern (rj = ri). Note that this definition is not restricted

to monotone dropout missingness mechanisms.

As a further generalization one could extend the concept of the neighbourhood

of a particular observation (yi, ri) to all observations with not only an identical

missingness pattern ri but also with a similar pattern, in this way including, for

example, observations which drop out one time point earlier or later. This could be

an interesting option in order to enlarge the number of effective observations in the

neighbourhood of (yi, ri) which is, especially in case of several measurements and

in view of the curse of dimensionality, not unimportant.

A deeper study of the properties and the applicability of this extension to more

than two measurements is beyond the scope of this chapter.

The local influence methodology and the proposed weighted influence methodol-

ogy are both tools for sensitivity analysis. It has been shown that these tools pick up

a lot of different anomalies in the data, not just deviations of the MNAR mechanism.

One possible tool to assess the appropriateness of including the MNAR-parameter

in the model of Diggle and Kenward (1994) is the Likelihood Ratio Test to test for

MAR versus MNAR. Many authors have noted that there is very little information

available for the MNAR-parameter, in addition to the information available for all

other parameters. If this were to be true, this ought to show in the behaviour of the

likelihood ratio test statistic, as well as in the structure of the information matrix

for the vector of model parameters. This will be explored in the next chapter.
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Chapter 7

Behaviour of the Likelihood

Ratio Test for MAR versus

MNAR

7.1 Introduction

Recall the selection model of Diggle and Kenward (1994) as introduced in Section

6.3.1 for two occasions. Rubin’s (1976) classification of missing data into three types,

missing completely at random, missing at random and missing not at random can be

translated into the presence or absence of specific parameters in the drop out part

of the model. Opposing the different missingness mechanisms to each other can be

done using a likelihood ratio test. In classical theory, the asymptotic distribution

of the likelihood ratio test is a chisquare distribution with degrees of freedom equal

to the difference in number of parameters. Careful considerations have to be made

when using this result to test for missing not at random as shown by Rotnitzky et al.

(2000) and by Bottai (2003) in a simpler setting.

In Section 7.2, we will formally introduce the framework in which we work.

Section 7.3 gives an informal look at theoretical considerations regarding the distri-

bution. An overview of different simulation settings to illustrate the finite sample

behaviour of the likelihood ratio test will be given in Section 7.4. In an attempt to

generate the null distribution for a given data set, two bootstrap methods will be

introduced in Section 7.5. Finally, a discussion is provided in Section 7.6.

131



132 Chapter 7. LRT for MAR versus MNAR

7.2 The Selection Model by Diggle and Kenward

(1994)

The selection model of Diggle and Kenward (1994) was already introduced in Section

6.3.1 for two occasions. The terminology here, is repeated for J occasions. The

different missingness mechanisms according to Rubin (1976) can easily be expressed

in the selection modelling framework as described in Section 1.2.2.

Let us assume that for subject i, i = 1, · · · , N , a sequence of responses Yij is

measured at several occasions j = 1, 2, . . . , J . Let Rij be a missingness indicator

and assume that yi1 is always observed. Then rij = 0 if yij is missing and rij = 1 if

yij is observed. The measurement part of the model of Diggle and Kenward (1994)

is given by

Yi = (Yi1, . . . , YiJ ) ∼ N(Xiβ,Σi), i = 1, . . . , N, (7.1)

where β is a vector of fixed effects, Xi is a matrix containing covariate values and

Σi is a covariance matrix. The missingness process is described by

logit[Pr(Rij = 0|yi,j−1, yij)] = ψ0 + ψ1yi,j−1 + ψ2yij , (7.2)

where Pr(Rij = 0|yi,j−1, yij) is the probability for the i-th subject to drop out at

time j. If ψ2 differs from zero, the missingness process is non-random. Let us denote

g(hid, yid) = Pr(Rid = 1|yi,d−1, yid),

with d the time of dropout and hid = (yi1, . . . , yi,d−1) the history of yid, which we

now restrict to depend on the previous measurement only. The total loglikelihood

has the form

ℓ =
N∑

i=1

[riℓ
c
i + (1 − ri)ℓ

i
i],

with ℓii the contribution for an incompleter

ℓii = ln f(hid) +

di−1∑

j=2

ln[1 − g(hij, yij)] + ln

∫
f(yid|hid)g(hid, yid) dyid,

and ℓci the contribution for a completer

ℓci = ln f(yi) +

J∑

j=2

ln[1 − g(hij, yij)].

The likelihood ratio test statistic for testing ψ2 = 0, and thus MNAR versus MAR,

is then given by

G = −2[ℓγ(γ̂) − ℓγ∗(γ̂∗)],
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where γ = (β1, β2, σ, d, ψ0, ψ1, ψ2) and γ∗ = (β1, β2, σ, d, ψ0, ψ1, 0). Due to the dif-

ference in only one parameter, the distribution of this statistic can be misleadingly

expected to be χ2(1). Based on this statistic Kenward (1998) and Molenberghs et al.

(2001) rejected the null hypothesis of missing at random on a value of 5.11, which

corresponds to a p-value of 0.02 for their data example (Mastitis in dairy cattle).

They compared this result with the Wald test (p-value of 0.002) and concluded that

the asymptotic approximations are not very accurate. Rotnitzky et al. (2000) state

that the regular assumptions of the likelihood ratio test statistic do not hold in case

of a singular information matrix. In the next paragraph, we will have an informal

look at the theoretical aspects of the distribution.

7.3 An Informal Look

In a first subsection we will focus on an example used by Rotnitzky et al. (2000) to

motivate the need for a careful use of the likelihood ratio test statistic in the context

of the selection model introduced in Section 7.2.

7.3.1 The Example of Rotnitzky et al. (2000)

Suppose that y1, . . . , yn are observations from a normal distribution with mean β

and variance σ2. Suppose there is the possibility that the value of yi is missing with

probability

Pc(y;α0, α1) = 1 − exp{H(α0 + α1(y − β)/σ)}, (7.3)

where α0 and α1 are unknown parameters and H(·) is a known function assumed to

have its first three derivatives at α0 non-zero. Interest may lie in small values of α1

and especially in testing the null hypothesis α1 = 0. The likelihood contribution of

an individual is given by

Ln(β, σ, α0, α1) =

[
1√
2πσ

e(
(y−β)2

2σ2 )eH{α0+α1(y−β)/σ}

]r

.

[∫
(1 − eH{α0+α1(y−β)/σ})

1√
2πσ

e
(y−β)2

2σ2 dy

](1−r)
,

such that the loglikelihood contribution equals

ℓ(β, σ, α0, α1) = r

[
− ln(

√
2π) − ln(σ) +

(y − β)2

2σ2
+H{α0 + α1(y − β)/σ}

]

+ (1 − r)

[
ln(

∫
(1 − eH{α0+α1(y−β)/σ})

1√
2πσ

e
(y−β)2

2σ2 dy)

]
.
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From this, the score equations can be calculated

S∗
1 =

∂ℓ

∂β
(β, σ, α0, 0) =

r(y − β)

σ2
,

S∗
2 =

∂ℓ

∂σ
(β, σ, α0, 0) = rH ′(α0) − (1 − r)

H ′(α0)e
H(α0)

1 − eH(α0)
,

S∗
3 =

∂ℓ

∂α0
(β, σ, α0, 0) =

rH ′(α0)(y − β)

σ
,

S∗
4 =

∂ℓ

∂α1
(β, σ, α0, 0) =

−r
σ

+ r
(y − β)2

σ3
.

We can see that S∗
1 and S∗

3 are proportional and so this set of equations is degenerate

at this particular parameter point. Equivalently, the information matrix calculated

from expected second order derivatives is singular at this parameter point.

7.3.2 Likelihood-based Inference with Singular Information

Matrix

The key feature is the singularity of the information matrix. Rotnitzky et al. (2000)

formulated two basic theorems who give us the asymptotic distribution of the like-

lihood ratio test statistic when dealing with a singular information matrix. We

formulate them in a multidimensional setting which relies on several regularity con-

ditions. Similar theorems were formulated relaxing upon some of the conditions,

they can be found in Rotnitzky et al. (2000).

Let us first introduce some terminology. Let Y1, . . . , Yn denote n independent

copies of a random variable Y with density f(y;θ∗) where θ∗ = (θ∗1 , . . . , θ
∗
n) is an

unknown parameter. Let us assume some regularity conditions on f(y;θ) are ful-

filled. These essentially consist of the usual smoothness assumptions that guarantee

uniqueness and consistency of the ML estimator and in addition the existence in a

neighbourhood of θ∗ of 2s+ 1 derivatives with respect to θ of ℓ(Y ;θ) = log f(Y ;θ)

for some positive integer s with absolute values uniformly bounded by functions of

Y that have finite mean (see Rotnitzky et al. 2000 for more details). s is a positive

integer for which

∂jℓ(Y ;θ)/∂θj1|θ∗ = 0, 1 ≤ j ≤ s− 1 and ∂sℓ(Y ;θ)/∂θs1|θ∗ 6= 0. (7.4)

Let Sj(θ) denote the score equation with respect to θj , 1 ≤ j ≤ p and Sj =

Sj(θ
∗). Let I denote the covariance matrix of (S

(s)
1 /s!, S2, . . . , Sn), where S

(s)
1 =

∂sℓ(Y ;θ)/∂θs1|θ∗ . The rank of the information matrix at θ∗ is p − 1 if and only if

p− 1 elements of the score vector, say the last p− 1 scores are linearly independent

and the remaining score is equal to a linear combination of them. Let us denote
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 for convergence in distribution under θ = θ∗. Denote Z = (Z1, Z2, . . . , Zp)
T

a mean-zero normal random vector with variance equal to I−1 and B a Bernoulli

variable with success probability equal to 1/2 that is independent of Z. Let Ijk

denote the (j, k)-th entry of I−1. The following theorems hold.

Theorem 2. Under regularity conditions, when s is odd:

(a) the ML estimator θ̂ of θ exists when θ = θ∗, it is unique with a probability

tending to 1, and it is a consistent estimator of θ when θ = θ∗,

(b) 


n1/(2s)(θ̂1 − θ∗1)

n1/2(θ̂2 − θ∗2)
...

n1/s(θ̂p − θ∗p)



 




Z
1/s
1

Z2

...

Zp




; (7.5)

(c)

2{Ln(θ̂) − Ln(θ
∗)} χ2

p.

Theorem 3. Under regularity conditions, when s is even:

(a) the ML estimator θ̂ of θ exists when θ = θ∗, it is unique with a probability

tending to 1, and it is a consistent estimator of θ when θ = θ∗,

(b)




n1/(2s)(θ̂1 − θ∗1)

n1/2(θ̂2 − θ∗2)
...

n1/s(θ̂p − θ∗p)



 




(−1)BZ
1/s
1

Z2

...

Zp



I(Z1>0)+




0

Z2 − (I21/I11)Z1

...

Zp − (Ip1/I11)Z1



I(Z1<0);

(7.6)

(c)

2{Ln(θ̂) − Ln(θ
∗)} 

p∑

j=1

Z∗2
j I(Z∗

1>0) +

p∑

j=2

Z∗2
j I(Z∗

1<0),

where Z∗
j , j = 1, 2, . . . , p, are independent N(0, 1) random variables. That is,

the asymptotic distribution of the likelihood ratio test statistics is a mixture of

a χ2
p−1 and χ2

p random variable, with mixing probabilities equal to 1/2, where

I(A) is an indicator variable which takes the value 1 if A is true and 0 if not.



136 Chapter 7. LRT for MAR versus MNAR

Rotnitzky et al. (2000) show that the difference between the likelihood ratio test

statistic and its limiting random variable is of order Op(n
−1/(2s)).

For the example shown in Section 7.3.1, s = 3 and so the limiting distribution

according to Theorem 1 is a χ2
1-distribution.

In the next section, we will show that the set of score equations for the likelihood

ratio test opposing different missingness mechanisms for a simplified selection model

are degenerate.

7.3.3 Testing Hypotheses in the Selection Modelling Frame-

work

Let us consider the selection model introduced in Section 7.2. To simplify the general

derivations, we will only derive the full expressions for the case of a covariance

matrix expressing compound symmetry and for the case J = 2. The derivations are

analogues for other association structures.

The full likelihood is given by

ℓ =

N∑

i=1

[riℓ
c
i + (1 − ri)ℓ

i
i],

with

lci = ln f(yi1, yi2) + ln[1 − g(hi2, yi2)],

and

lii = ln f(yi1) + ln

∫
f(yi2)g(hi2, yi2)dyi2.

If

Σ =


 σ2 + d d

d σ2 + d


 ,

we know that

f(yi1, yi2) =
1

2π
|Σ|−1/2e−

1
2 (y−β)T Σ−1(y−β)

=
1

2πσ(σ2 + 2d)1/2
e
−

(yi1−β1)2(σ2+d)−2(yi1−β1)(yi2−β2)d+(yi2−β2)2(σ2+d)

2σ2(σ2+d) ,

and

g(hi2, yi2) =
eψ0+ψ1yi1+ψ2yi2

1 + eψ0+ψ1yi1+ψ2yi2
=

1

1 + e−ψ0−ψ1yi1−ψ2yi2
.
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So the expression for an individual contribution to the loglikelihood is the following

one:

ℓi = ri

[
− ln(2π) − ln(σ) − 1

2
ln(σ2 + 2d)

− (yi1 − β1)
2(σ2 + d) − 2(yi1 − β1)(yi2 − β2)d+ (yi2 − β2)

2(σ2 + d)

2σ2(σ2 + 2d)

− ln(1 + eψ0+ψ1yi1+ψ2yi2)

]

+ (1 − ri)

[
− 1

2
ln(2π) − 1

2
ln(σ2 + d) − (yi1 − β1)

2

2(σ2 + d)

+ ln

∫
1√

2π(σ2 + d)

e
−

(yi2−β2)2

2(σ2+2d)

1 + e−ψ0−ψ1yi1−ψ2yi2
dyi2

]
.

From this expression, we can calculate the score equations Sk, k = 1, . . . , 7, where

Sk =
∂ℓi
∂γk

,

with γk the kth component of γ = (β1, β2, σ, d, ψ0, ψ1, ψ2). In the general form, these

score equations are fairly complicated. Let us therefore look at a simpler setting.

Let us consider the specific situation that we test for ψ2 = 0 while ψ1 = 0

in equation (7.2). Denote γ∗ = (β1, β2, σ, d, ψ0, 0), which corresponds to the null

hypothesis: ψ2 = 0. Assume furthermore that the correlation between the two

measurements is 0 (d = 0) and standardize yi2 in the dropout model by (yi2−β2)/σ.

The score equations Sk, k = 1, . . . , 5 where Sk corresponds to the score equation

of the kth component of γ = (β1, β2, σ, ψ0, ψ2) are given by

S1(γ
∗) =

yi1 − β1

σ2
,

S2(γ
∗) =

ri(yi2 − β2)

σ2
,

S3(γ
∗) =

−σ2 − 2riyi2β2 + riβ
2
2 + riy

2
i2 − 2yi1β1 + y2

i1 − riσ
2
i + β2

1

σ3
,

S4(γ
∗) =

−(rie
−ψ0 − e−ψ0 + ri)

1 + e−ψ0
,

S5(γ
∗) =

ri(−yi2 + β2)

(1 + e−ψ0)σ2
.

Again similar to the example of Rotnitzky et al. (2000), these score equations are

degenerate. S5(γ
∗) is proportional to S3(γ

∗) and therefore the information matrix

is singular.
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This and the more general situation, however, have not been studied before.

Indeed, Rotnitzky et al. (2000) focus on simple null hypotheses while in this situation

the parameter vector can be divided into a parameter of interest and several nuisance

parameters. Even if the result of Rotnitzky et al. (2000) holds, the question remains,

whether it is applicable for finite samples.

Another remark is that the calculations for the more general case become more

complicated due to the presence of correlations between the two measurements and

due to a more complex dropout mechanism including the ψ1-term. However, one

can expect similar issues to occur.

In the next paragraph, we will illustrate the behaviour of the likelihood ratio test

statistic for the different missingness parameters in a simple setting by means of a

simulation study.

7.4 Simulating the Likelihood Ratio Test Statistic

for the Different Missingness Processes

The presented simulation study focuses on the asymptotic distribution of the like-

lihood ratio test statistic for the different missingness processes. In Section 7.5, we

discuss two bootstrap approaches to implement the likelihood ratio test statistic for

testing missingness not at random. We will restrict our discussion and derivations

to the situation J = 2.

400 similar datasets were generated in 4 different settings. Each data set con-

sists of 200 subjects, each with two measurements generated from a bivariate normal

distribution. Consider the following bivariate normal distribution, based on a com-

pound symmetry covariance matrix:


 Yi1

Yi2


 ∼ N




 4

2


 ,


 4 2

2 4




 . (7.7)

The dropout process was generated according to the following model

logit[P (Ri = 1|Yi1, Yi2)] = ψ0 + ψ1Yi1 + ψ2Yi2, (7.8)

where ψ0 = −2 and ψ1 and ψ2 were chosen according to four different settings.

An overview of the settings is given in the following table. In the situations where

ψ1 6= 0, ψ1 was chosen to be 1. Figure 7.1 shows plots of the simulated null-

distributions together with approximating χ2-distribution. In Table 7.2, the critical

values for each of the four settings are shown together with the critical values of
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Table 7.1: Overview of the different simulation settings.

Setting Missingness Process Null Hypothesis

logit[P (Ri = 1|Yi1, Yi2)] =

1 ψ0 + ψ1Yi1 ψ1 = 0

2 ψ0 + ψ1Yi1 + ψ2Yi2 ψ1 = 0

3 ψ0 + ψ2Yi2 ψ2 = 0

4 ψ0 + ψ1Yi1 + ψ2Yi2 ψ2 = 0

the χ2(1)-, χ2(2)- and χ2(3)-distribution. From Figure 7.1 and the critical values

in Table 7.2, it is clear that the distribution corresponding to setting 1 is close to

the asymptotically expected χ2(1). The distribution for setting 2 is closer to a χ2-

distribution with 2 degrees of freedom, while setting 3 lies in between. Setting 4

seems to correspond to a χ2(1)-distribution but the critical values in Table 7.2 do

not correspond to those of a χ2(1)-distribution but to those of a χ2(3)-distribution.

This is in contrast with the findings of Rotnitzky et al. (2000).
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Figure 7.1: Density plots (solid curve) of the different settings with χ2(1)-

distribution (dotted curve) and χ2(2)-distribution (dashed-dotted curve).
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Table 7.2: Table of critical values for the four different settings and some χ2-

distributions.

Method α = 0.10 α = 0.05 α = 0.01

Setting 1 2.23 3.27 6.04

Setting 2 4.07 5.74 9.85

Setting 3 3.18 4.75 8.74

Setting 4 6.38 8.29 11.95

χ2(1) 2.71 3.84 6.63

χ2(2) 4.61 5.99 9.21

χ2(3) 6.25 7.82 11.35

7.5 Bootstrap Approaches

From previous simulation results, it appears that the classical asymptotic theory is

not applicable. To decide whether the hypothesis of missing at random holds for

any given data set, one has to be able to generate the null distribution. A well

known method is the parametric bootstrap, first introduced by Efron (1979), which

heavily relies on distributional assumptions. To relax these assumptions we propose

to use a semi-parametric bootstrap method. In the next subsections both bootstrap

procedures are introduced.

7.5.1 Parametric Bootstrap

The parametric bootstrap scheme is as follows:

1. fit the initial data under the null and the alternative hypothesis resulting in

(θ̂0, ψ̂0) and (θ̂1, ψ̂1), respectively, where θ denotes the parameter vector for

the measurement part and ψ for the missingness part; compute the LRT for

the hypotheses under consideration,

2. generate a ‘bootstrap sample’ from the selection model, reflecting the null

hypothesis by using the estimates (θ̂1, ψ̂0),

3. compute the LRT test for the bootstrap sample,
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4. repeat step 2 and 3 B times and determine the bootstrap p-value as the pro-

portion of bootstrap LRT values larger than its value for the original data from

step 1.

Alternatively, step 2 could be based on the estimates (θ̂0, ψ̂0). But some exploratory

simulations showed that both choices resulted in essentially the same p-values. The

parametric bootstrap heavily depends on the quality of the estimates (θ̂1, ψ̂0). In

case the initial data are generated under the alternative, one can expect that bias

disturbs the procedure. This would lead to the generation of bootstrap data in step

2 which would obey the null constraint but which would be substantially different

from the initial data in many other respects. A semi-parametric model based on re-

sampling and less depending on the estimates from the initial sample might perform

better.

7.5.2 Semi-Parametric Bootstrap

Given the data, a semi-parametric bootstrap procedure for testing hypotheses in the

selection model can be implemented using the following algorithm:

1. fit the initial data under the null and the alternative hypothesis resulting in

(θ̂0, ψ̂0) and (θ̂1, ψ̂1), respectively; compute the LRT for the hypothesis under

consideration,

2. impute the missing data, conditionally on the observed outcomes at the pre-

vious occasion, and based on the probability model for the measurement part

using the estimate θ̂1 (this is a parametric part),

3. draw (complete) observations from the augmented data set (resulting from

step 2), with replacement, yielding a new sample of the same size N (this

resampling is the non-parametric part),

4. observations at time t ≥ 2 are deleted with a probability according the logistic

dropout model using the estimate ψ̂0 (thus reflecting the null hypothesis; this

is again a parametric part); this is the final bootstrap sample,

5. compute the LRT test for the bootstrap sample,

6. repeat step 2 and 5 B times and determine the bootstrap p-value as the pro-

portion of bootstrap LRT values larger than its value from the initial data

from step 1.



142 Chapter 7. LRT for MAR versus MNAR

For more details about similar semi-parametric bootstrap implementations in other

settings, see Davison and Hinkley (1997).

In the next section, the two bootstrap methods are illustrated on a simulated

data example.

7.5.3 Simulated Data Example

In this section the methods introduced in the previous section are investigated fur-

ther. Setting 2 in Section 7.4 is not of practical use and therefore omitted from

the simulation study. Let us consider hypothesis 1, 2 and 3, which correspond to

settings 1, 3 and 4, respectively.

Hypothesis 1: MAR vs MCAR

In Table 7.3, the situation of MAR vs MCAR is given. In this setting, the initial

data set of size N = 200 is generated according to the following model

 Yi1

Yi2


 ∼ N




 4

2


 ,


 4 2

2 4




 . (7.9)

and the dropout process is given by

logit[P (Ri = 1|Yi1, Yi2)] = −2 + ψ1Yi1 (7.10)

We generated 400 parametric bootstrap values and 400 semi-parametric bootstrap

values in three different situations.

• Scenario 1: all N observations generated under the null hypothesis,

• Scenario 2: all N observations generated under the alternative,

• Scenario 3: 190 observations generated under the null hypothesis and 10 ob-

servations under the corresponding alternative.

In this situation the asymptotic distribution is known to be χ2(1). The simulations

confirm this. Table 7.3 shows that both bootstrap methods perform well. Fitting

the selection model, obtaining the maximum likelihood estimates and computing

the LRT is a nontrivial iterative computing exercise, not lending itself for intensive

simulations. A full simulation study based on, e.g., 100 initial samples was compu-

tationally not feasible. The ‘optmum’ procedure in Gauss 3.2.32 was used for com-

putations. The optimization method used the Broyden-Fletcher-Goldfarb-Shanno

procedure (Shanno, 1985) to obtain starting values for the Newton Raphson proce-

dure and it took about one week to obtain the results of one of the 18 combinations.



7.5. Bootstrap Approaches 143

Table 7.3: Hypothesis 1: Critical points based on the parametric and semi-

parametric bootstrap procedure (400 bootstrap runs) for two initial data sets. Lower

lines show the critical points of the simulated null distribution based on 800 samples,

together with those of the χ2(1) distribution.

quantiles p-value

0.10 0.05 0.01

Scenario 1 Parametric 3.04 4.17 6.12 0.7556

2.53 3.35 6.76 0.3566

Semi-Parametric 2.96 3.83 6.22 0.7890

2.46 4.16 6.60 0.3616

Scenario 2 Parametric 2.55 3.39 6.36 <0.0025

2.83 3.68 7.02 <0.0025

Semi-Parametric 2.41 3.39 6.49 <0.0025

2.68 3.68 6.37 <0.0025

Scenario 3 Parametric 2.35 3.72 7.91 0.9352

3.00 3.93 6.48 <0.0025

Semi-Parametric 2.83 4.13 8.00 0.6085

2.70 4.40 6.49 <0.0025

simulated H0 2.23 3.27 6.04

χ2(1) distribution 2.71 3.84 6.63

Nevertheless, we think that our limited results do reveal the main characteristics of

the performance of both bootstrap procedures.

For Hypothesis 1, Table 7.3 shows that, for all scenarios, the χ2(1) approximation

and the bootstrap approximation to the null distribution are consistent and in line

with our expectations. Note that the results for the two initial data sets under

Scenario 3 are not in agreement: one of them clearly rejects the hypothesis and

the other clearly not. Since only 5% of the initial data are generated under the

alternative, a less clear rejection pattern is to be expected here.
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Hypothesis 2: MNAR vs MCAR

In a third simulated data example the initial data set is generated according to the

same measurement model as in Section 7.5.3 but the dropout model is adjusted to

logit[P (Ri = 1|Yi1, Yi2)] = −2 + 2Yi2, (7.11)

This hypothesis corresponds to setting 3 in Section 7.4. We generated 400 parametric

bootstrap values and 400 semi-parametric bootstrap values. As in the previous

section three different scenarios are considered. In Table 7.4, an overview of the

critical values for α = 0.10, 0.05 and 0.01 according to the generated null distribution,

the different bootstrap methods and the χ2(1)-distribution can be found for each

of the three scenarios. For Hypothesis 2, Table 7.4 shows that both bootstrap

Table 7.4: Hypothesis 2: Critical points based on the parametric and semi-

parametric bootstrap procedure (400 bootstrap runs) for two initial data sets. Lower

lines show the critical points of the simulated null distribution based on 800 samples,

together with those of the χ2(1) distribution.

quantiles p-value

0.10 0.05 0.01

Scenario 1 Parametric 4.08 5.31 9.76 0.3092

5.63 7.50 11.33 0.9302

Semi-Parametric 5.79 7.48 11.99 0.3791

5.24 8.30 15.11 0.9352

Scenario 2 Parametric 6.11 8.44 15.4 0.0025

5.84 7.84 12.04 0.0075

Semi-Parametric 9.21 11.02 15.68 0.0075

5.93 7.72 13.30 0.0075

Scenario 3 Parametric 4.41 5.81 9.58 0.5362

4.47 6.23 10.14 0.1920

Semi-Parametric 5.31 7.69 12.95 0.6234

14.16 17.35 22.07 0.5586

simulated H0 3.18 4.75 8.74

χ2(1) distribution 2.71 3.84 6.63
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methods provide higher critical values compared to the generated null distribution.

The difference is rather small for Scenario 1 but increases for Scenario 2 and 3.

The semi-parametric bootstrap method gives higher critical values compared to the

parametric bootstrap. For Scenario 3, there is a substantial difference between

both of them. Thus the bootstrap approaches are not able to regenerate the null

distribution in this particular case.

Hypothesis 3: MNAR vs MAR

Testing whether dropout occurs randomly or non-randomly is the most interesting

situation. In this setting, the initial data set is generated according to the following

model 
 Yi1

Yi2


 ∼ N




 4

2


 ,


 4 2

2 4




 . (7.12)

and the dropout process is given by

logit[P (Ri = 1|Yi1, Yi2)] = −2 + Yi1 + ψ2Yi2, (7.13)

We generated 400 parametric bootstrap values and 400 semi-parametric bootstrap

values in the three different scenarios. In Table 7.5, an overview of the critical

values for α = 0.10, 0.05 and 0.01 according to the generated null distribution, the

different bootstrap methods and the χ2(1)-distribution in all three scenarios can

be found for two initial data sets. The results in Table 7.5 globally show that for

testing MAR versus MNAR (Hypothesis 3), also in this setting the bootstrap is

not able to approximate the true null distribution. Especially the behaviour of the

parametric bootstrap is very unstable and variable. The semi-parametric version

seems to slightly perform better, especially for Scenario 1. As the bootstrap is also

an asymptotic method, it suffers from the same slow convergence as the χ2-type

distributions.

In Hypotheses 2 and 3 the dropout model depends upon unobserved data, result-

ing in a strange behaviour of both bootstrap methods, while for Hypothesis 1 this

is not the case. Therefore the irregular behaviour of the bootstrap methods seem to

be caused by the dependence of the dropout on the unobserved outcome.
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Table 7.5: Hypothesis 3: Critical points based on the parametric and semi-

parametric bootstrap procedure (400 bootstrap runs) for two initial data sets. Lower

lines show the critical points of the simulated null distribution based on 800 samples,

together with those of the χ2(1) distribution.

quantiles p-value

0.10 0.05 0.01

Scenario 1 Parametric 38.71 42.68 46.21 0.1870

9.62 12.25 19.77 1.000

Semi-Parametric 4.86 6.74 10.48 0.0998

7.40 9.35 14.47 0.2743

Scenario 2 Parametric 22.07 24.84 30.32 0.0349

9.36 11.39 14.04 0.0025

Semi-Parametric 12.35 15.63 20.88 0.0050

17.05 19.75 27.56 0.0224

Scenario 3 Parametric 8.17 10.09 15.02 0.0175

15.46 17.85 24.38 0.9351

Semi-Parametric 15.68 19.11 25.58 0.1397

8.11 10.46 13.55 0.6085

simulated H0 6.44 9.17 12.10

χ2(1) distribution 2.71 3.84 6.63

7.6 Discussion

To asses the sensitivity of conclusions to model choices in the context of selection

models for non-random dropout, one can contrast the different missing mechanisms

with each other; e.g., by the likelihood ratio tests. A simulation study was performed

to examine the asymptotic null distribution under a variety of missingness mecha-

nisms. Additionally, the behaviour of a parametric and a semi-parametric bootstrap

approach was also investigated.

From literature and the simulation results, it is clear that the likelihood ratio test

for testing missing not at random does not fulfil the regular assumptions. The use

of classical asymptotic results might clearly lead to false results. The dependence

on unobserved data seems to be responsible for this behaviour. Using bootstrap
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methods to generate the null distribution showed irregularities when testing for

missing not at random.

Together with influence measures as the kernel weighted global and local influence

derived in Chapter 6 it becomes clear that care has to be taken when modelling

longitudinal data with missing values. A sensitivity analysis should not merely be

mentioned as a possible tool to assess the sensitivity of the model but should be

considered to be a part of the model building process (Jansen et al., 2005).
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Chapter 8

Modelling the Force of

Infection for Clustered

Binary Data with Missing

Values

8.1 Introduction

Veterinary epidemiology is a research area that deals with the investigation of dis-

eases in animal populations. Modelling infectious diseases is often confronted with

key features such as clustering and stratification. Moreover, it is not unlikely that

such data have missing values.

In practice, one often analyzes the complete cases, while ignoring the missingness

mechanism. If data are missing completely at random, these complete cases can be

analyzed as they are, but even then complete case analysis is non-efficient. Moreover,

if this assumption is not fulfilled, as is frequently the case in practice, analyses can

be affected by merely using the complete cases. Several methods to handle missing

data are known (see Section 1.2). None of them are without limitations. One of

them is multiple imputation (Rubin, 1978), where each of the gaps in the data

are imputed several times and the analyses of the augmented data sets are then

combined. However, in data with a mix of continuous and discrete variables, the

choice of imputation model is non-trivial. Another technique is to weight a subject

by the inverse of the probability that it is observed (see e.g. Robins et al., 1994;

149
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Zhao et al., 1996). In this way subjects unlikely to be observed gain more weight.

This can be seen as an implicit imputation of missing values. Both techniques are

valid under the missing at random assumption.

The seroprevalence survey of the Bovine Herpesvirus-1 (BoHV-1) in Belgian cat-

tle, as introduced in Section 1.5.4, is a study of a transmissible disease in cattle,

which is of economic importance and significance to international trade. A central

characteristic of infectious disease dynamics is the transmission of the infection from

infectious to susceptible subjects. The force of infection (FOI) is the rate of acqui-

sition of the infection for a susceptible host and can be interpreted as the instant

probability to get infected, given that no infection has occurred before. Empirical

data show that, in general, the FOI is age-dependent.

Under the assumptions of life long immunity and that the disease is in a steady

state, the prevalence and FOI can be estimated from such seroprevalence data (Gren-

fell and Anderson, 1985). Parametric models for the prevalence and FOI of child-

hood infections, estimated from seroprevalence data, were discussed by Grenfell and

Anderson (1985) who modelled the FOI with a polynomial function of host age.

Other parametric models fitted within the framework of generalized linear models

(GLM) with binomial error (McCullagh and Nelder, 1989) were discussed by Becker

(1989), Diamond and McDonald (1992) and Keiding et al. (1996). They used the

complementary log-log link in order to parameterize the prevalence and the FOI as

a Weibull model. Becker (1989) suggested to model a piecewise constant FOI by

fitting a model with a log link. In the case that other covariates, in addition to ex-

posure time, are included in the model, Jewell and Van Der Laan (1995) proposed,

for current status data, a proportional hazards model with constant FOI which can

be fitted as a GLM with a complementary log-log link. Grummer-Strawn (1993) dis-

cussed two parametric models for current status data, the first one being a Weibull

proportional hazards model with complementary log-log link and the second being

the log logistic model with logit link function. For the latter, the proportionality

in the model is interpreted as proportional odds. Farrington (1990) and Farring-

ton et al. (2001) proposed a non-linear model for which the FOI is restricted to be

non-negative and applied the model for measles, mumps and rubella. Shkedy et al.

(2003, 2005) proposed to use local and fractional polynomials for the estimation of

the prevalence and FOI.

Like many other infectious diseases data, the BoHV-1 data are complicated and

thus statistical modelling has to deal with these complications. In this chapter, we

model the FOI, while dealing with clustering, missing values, informative cluster size

and the constraint for the FOI to be non-negative or equivalently the seroprevalence
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to be monotonically increasing (Hens et al., 2005c).

In a first section, the basic SIR model (Susceptible, Infected, Recovered) is intro-

duced. In Section 8.3, the FOI is formally introduced. To account for the clustering

and missing values, a weighted flexible population-averaged model is introduced in

Section 8.4. In Section 8.5 the modelling of the age-specific seroprevalence and the

derivation of the age-specific FOI thereof is illustrated. The influence of ignoring

missing values and thus merely using complete cases as such is addressed throughout

these analyses. Section 8.6 gives a discussion on model building for the BoHV-1 data

and we end with a general discussion in Section 8.7.

8.2 The Basic SIR Model

Mathematical modelling of infectious diseases involves describing the flow of indi-

viduals from different infection states within the population. For simple infectious

diseases that simulate long-lasting immunity following infection, the individuals can

be classified into three different states as shown in Figure 8.1 (Anderson, 1982;

Anderson and May, 1991). In a first stage individuals are susceptible to infection,

meaning that they have not been exposed yet. The number of hosts at risk at time

t and age a is denoted by X(a, t). In a second stage, individuals are infected and

infectious to others. Y (a, t) is the number of infected hosts at time t and age a. The

third and last stage consists of individuals who are immune to reinfection. Z(a, t) is

the number of immune hosts at age a and time t. The total population is given by

N(a, t) = X(a, t) + Y (a, t) + Z(a, t). (8.1)

The model described here is called a SIR model (Susceptible, Infected, Recovered).

The SIR model relies on the assumption that newborns are entered directly into

the susceptible class and infection, the infectious period and the disease occur si-

multaneously. Furthermore the SIR model ignores the latent period in which the

individual is infected but not infectious to others. Figure 8.1 illustrates the basic

SIR model.

Birth -
µ

Susceptible
(Years)

mX
?
µ

-
λ(a)

Infected
(Days)

mY
?
µ+ α

-
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Immune
(Life Long)

mZ
?
µ

Figure 8.1: Illustration of the basic SIR model.
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A central characteristic of the population dynamics of infection diseases is the

transmission of the infection from the infected state to the susceptible state. Ander-

son (1982) and Anderson and May (1991) used a set of 3 partial differential equations

to describe the flow of individuals within the population with respect to time and

host age.
dX
da + dX

dt = Nµ− [λ(a, t) + µ]X(a, t),

dY
da + dY

dt = λX − (v + α+ µ)Y (a, t),

dZ
da + dZ

dt = vY − µZ(a, t).

(8.2)

Here, N is the population size, µ is the natural rate of death (1/µ is the life ex-

pectancy), v is the recovery rate and α is the rate of death caused by the disease.

λ(a, t) is the FOI for age a at time t, i.e., the rate at which the host moves from the

susceptible to the infected class. We refer to Shkedy (2003) for more details. It is

often of interest to look upon the FOI as a function of age and time. Let us first

derive the FOI in case of a generalized linear model assuming that the disease is in

a steady state, i.e., time independent.

8.3 Force of Infection

Let π(a) = {Y (a)+Z(a)}/N = 1−X(a)/N be the probability to be infected before

age a. In general, the seroprevalence π(a) is modelled as

π(a) = g−1(η(a)) = δ(η(a)), (8.3)

where η(a) is the linear predictor and g is a link function. If it is assumed that

the disease is in a steady state, then the age-dependent FOI, λ(a), can be modelled

according to equation (Anderson and May, 1991):

d

da
q(a) = −λ(a)q(a), (8.4)

with q(a) = 1− π(a). Indeed, in a steady state, the first equation in (8.2) simplifies

to dX
da = −λ(a)X(a). Using q(a) = X(a)/N this becomes (8.4). The differential

equation (8.4) describes the change in the fraction of susceptible individuals with

the age of the host and so

λ(a) =
π′(a)

1 − π(a)
. (8.5)

When a logit link is considered, the FOI can be expressed as:

λ(a) = η′(a)
eη(a)

1 + eη(a)
. (8.6)
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In case that other covariates, except age, are included in the model, one can use

the following structure for the linear predictor

g(π) = η(a) +αZ . (8.7)

Here η(a) is the fractional polynomial which is used to model the dependency of

π and λ on age, Z is the design matrix for the additional covariates and α is the

parameter vector. Note that η′(a) does not depend on αZ . Let us consider that Z

is a binary predictor. For models with logit link we have

λ(a|z = 1)

λ(a|z = 0)
=
η′(a)

η′(a)
· π(a|z = 1)

π(a|z = 0)
= exp(α) · 1 − π(a|z = 1)

1 − π(a|z = 0)
. (8.8)

The parameter α is in this case simply the log odds ratio. When Z is continuous, α

is the log odds ratio for a unit change in Z.

For a model with complementary log-log link, i.e., a proportional hazard model,

λ(a|z = 1)

λ(a|z = 0)
= exp(α), (8.9)

i.e., α is the hazard ratio and can be seen as the relative FOI in our setting.

In the following section a weighted population-averaged model is introduced.

8.4 A Weighted Flexible Population-averaged

Model

Once an infection is introduced in a herd, animals within the same herd have a

high chance to get infected too. Thus, individual responses are more homogeneously

distributed within herds than in the whole population. One cannot ignore the pos-

sibility of animals within herds to be more similar than between herds (Figure 8.2).

There are several ways of dealing with such clustering (Aerts et al., 2002c).

A first approach is to ignore the clustering. Let Yij , j = 1, . . . , ni; i = 1, . . . ,K,

represent the binary response that equals 1 when the j-th animal of the i-th herd

has antibodies to gB of BoHV-1, and 0 otherwise. Modelling the seroprevalence can

be done by means of a logistic regression

Yij ∼ Bernoulli(πij),

ηij = log

(
πij

1 − πij

)
= f(aij), (8.10)

where f(aij) is a functional form describing the dependency of the covariate of

interest.
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Farm 1
Farm 2

Farm 3

Figure 8.2: Clustering: animals within a farm (cluster) are more alike than between

farms.

A logistic regression assumes that observations are independent and so the tech-

nique is not appropriate for clustered data (Figure 8.2). While logistic regression

typically leaves the consistency of point estimation intact, the same is not true for

measures of precision. In case of a ‘positive’ clustering effect (i.e., animals within a

herd are more alike than between herds), then ignoring this aspect of the data will

lead to overestimation of the precision and underestimation of standard errors and

lengths of confidence intervals. Another strategy is to account for clustering, while

the population mean is of major interest. This means that the existence of cluster-

ing is recognized but considered a nuisance characteristic. Generalized estimating

equations (GEEs) can be used for this purpose. If one is interested in the clustering

itself, one can use random-effects models. We restrict ourselves to GEEs and refer

to Faes et al. (2005) for the random-effects approach.

8.4.1 Generalized Estimating Equations

Using GEEs, correlated binary data are modelled using the same link function and

linear predictor setup (systematic component) as in the independence case (logistic

regression). The random component is described by the same variance functions as in

the independence case, but the covariance structure of the correlated measurements

must also be modelled.

Denote Y i = (Yi1, . . . , Yini
)T , the vector of measurements on the i-th cluster

and µi = (µi1, . . . , µini
)T , the corresponding vector of means. Let Vi denote the

covariance matrix of Y i. Let the vector of explanatory variables for the j-th unit in

the i-th cluster be denoted by Xij = (xij1, . . . , xijp)
T .

The GEE approach of Liang and Zeger (1986) for estimating the p× 1 vector of

regression parameters β is given by

S(β,φ;R) =

K∑

i=1

∂µi
∂β

Vi

−1(Y i − µi(β)) = 0. (8.11)
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Since g(µij) = xTijβ, where g is the link function, the p × ni matrix of partial

derivatives of the mean with respect to the regression parameters for the i-th cluster

is given by

∂µTi
∂β

=




xi11

g′(µi1)
· · · xini1

g′(µini
)

...
...

xi1p

g′(µi1)
· · · xinip

g′(µini
)


 , (8.12)

where g′(µij) denotes the derivative of g with respect to µij . Let Ri(α) be an ni×ni
‘working’ correlation matrix that is fully specified by the vector of parameters α.

The covariance matrix of Y i is modelled as

Vi = φA
1
2
i Ri(α)A

1
2
i , (8.13)

where Ai is an ni × ni diagonal matrix with v(µij) = var(Y ij) as the j-th diagonal

element. If Ri(α) is the true correlation matrix of Y i, then Vi is the true covariance

matrix of Y i.

The working correlation matrix is usually unknown and must be estimated. It

is estimated in the iterative fitting process using the current value of the parameter

vector β to compute appropriate functions of the Pearson residual

eij =
yij − µij√
v(µij)

.

If one specifies the working correlation by

Corr(Yij , Yik) =





1 j = k

0 j 6= k
, (8.14)

then Ri = I , which is the identity matrix and the GEE reduces to the independence

estimating equation. Several other correlation structures can be specified (Liang and

Zeger, 1986). One interesting correlation structure is the exchangeable one, defined

by

Corr(Yij , Yik) =





1 j = k

α j 6= k
, (8.15)

and this can be estimated by

α̂ =
1

(N∗ − p)φ

K∑

i=1

∑

j 6=k

eijeik, (8.16)

with N∗ =
∑K
i=1 ni(ni − 1).
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The dispersion parameter φ is estimated by

φ̂ =
1

N − p

K∑

i=1

ni∑

j=1

e2ij , (8.17)

where N =
∑K
i=1 ni is the total number of measurements and p is the number of

regression parameters. The square root of φ̂ is often called the scale parameter.

The use of a dispersion parameter can be extremely useful in modelling residual

overdispersion.

To estimate the covariance matrix of β̂ one can use

V̂m =

(
K∑

i=1

∂µTi
∂β

Vi

−1 ∂µi
∂β

)−1

, (8.18)

the so-called model-based covariance matrix. This matrix however is not a consistent

estimator of the covariance matrix of β̂ if the working correlation matrix is misspec-

ified, that is, if Cov(Y i) 6= Vi. In that case one can use the robust or empirical

estimator

V̂r = V̂m ·
(

K∑

i=1

∂µTi
∂β

V −1
i Cov(Y i)V

−1
i

∂µi
∂β

)
· V̂m, (8.19)

which is a consistent estimator of Cov(β̂). An attractive point of the GEE approach

is that it yields a consistent estimator of β even when the working correlation matrix

is misspecified (Liang and Zeger, 1986). Zeger et al. (1988) and McDonald (1993)

have shown that in the case of a working independence model, R = I , which is often

convenient, β̂ is relatively efficient at least when the correlation between responses

is not large. In the next section, weighted GEEs are introduced to deal with missing

data.

8.4.2 Inverse Probability Weighted GEE

One of the techniques to deal with data which are missing at random, that gained

a lot of attention, is the ‘weighted estimating equation’ (Robins et al., 1994; Zhao

et al., 1996), where each contribution of a case is weighted with the inverse of the

probability that this case is observed as introduced in Section 1.2.1. In this way cases

with a low probability to be observed gain more influence, resulting in an implicit

imputation of missing values. The generalization towards GEEs is straightforward:

Sw(β,φ,R) =

K∑

i=1

∂µi
∂β

Vi

−1Wi(Y i − µi(β)) = 0, (8.20)
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where Wi is a ni×ni diagonal matrix with elements wij equal to the inverse proba-

bility for the j-th unit in the i-th cluster to be observed, i = 1, . . . ,K; j = 1, . . . , ni.

This probability is preferably estimated non-parametrically (Wang et al., 1998), by,

e.g., a generalized additive model (Hastie and Tibshirani 1990, Section 1.3.1). Let

us denote β̂w as the solution to (8.20).

8.4.3 Fitting a Flexible Model

We will use fractional polynomials, as introduced in Section 1.3.1, to model the

relationship between the seroprevalence and age. In this way a flexible parametric

model is provided (Royston and Altman, 1994). Fractional polynomials were used

before by Shkedy et al. (2005) and Faes et al. (2005) in modelling infectious diseases

and correlated animal data.

The use of splines could offer a fully non-parametric alternative to the use of

fractional polynomials. However, a fractional polynomial offers a simpler derivation

of the FOI and permits constrained optimization. An appealing feature of fractional

polynomials is that they, as a parametric tool, offer a wide range of flexible functional

forms and that they include the conventional polynomials, often used in practice.

Let us now formulate the AIC and AICW -criterion to select the appropriate

model and the appropriate powers of the fractional polynomial in a unweighted and

weighted logistic regression setting.

Model Selection

In a logistic regression setting, the Akaike Information Criterion is given by

AIC = −2

n∑

i=1

yi log(π̂i) + (1 − yi) log(1 − π̂i) + 2p, (8.21)

where p is the number of regression parameters and π = π(β) is the probability for

Y to be 1.

Recalling the weighted model selection criteria presented in Chapter 3, the

weighted version of (8.21) is given by

AICW = −2

n∑

i=1

wi (yi log(π̂w,i) + (1 − yi) log(1 − π̂w,i)) + 2p, (8.22)

where π̂w,i denotes the estimated probability for the i-th unit based on a weighted

logistic regression with weights wi, i = 1, . . . , n. When wi = 1 for all i = 1, . . . , n,

this criterion reduces to its unweighted version.
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8.5 Modelling the FOI for the BoHV-1 Study

In the Bohv-1 data not only clustering and missing values complicate analyses but

also the informative cluster size and monotonicity constraints have to be dealt with.

Let us give an overview of the different complications and the way we will handle

these to model the FOI for the BoHV-1 study.

8.5.1 Overview of the Methods

To deal with clustering and missingness, we propose to use constrained weighted

GEEs (8.20), where the weights are the inverse probability for the animal to be

observed. We will use a fractional polynomial to model the dependency of the test

result, the presence of antibodies, with age. Let us point out how the informative

cluster size and monotonicity constraints are dealt with.

Faes et al. (2005) showed that the herd size in the BoHV-1 data is informative,

i.e., the herd size is related with the outcome of interest. When dealing with an in-

formative cluster size, one can be interested in the probability of a randomly sampled

unit from all units or in the probability of a randomly sampled unit from a randomly

selected cluster. In the GEE approach, the correlation between cluster members is

modelled in order to determine the weight that should be assigned to the data from

each cluster. If interest goes out to a randomly selected unit from all units, one

can use the working independence correlation. If interest goes out to a randomly

sampled unit from a randomly selected herd and the cluster size is not related to

the outcome, the same analysis will be valid and the same asymptotic parameter

estimates will be obtained (Williamson et al., 2003). However, when the cluster size

is related to the outcome, the latter analysis is not valid anymore. Williamson et al.

(2003) proposed to use weighted GEEs where the weights equal the inverse of the

cluster size. In this way subject-specific weights turn into cluster-specific weights.

The motivation of this method is the same as when dealing with design-based sam-

ples (Section 3.3.3). Faes et al. (2005) proposes an alternative method where the

cluster size is incorporated as a categorized covariate. This method facilitates to

look upon the FOI from a herd-specific point of view (Section 8.5.3). Following

these strategies, we obtain two approaches to deal with an informative cluster size

in an inverse probability weighted GEE. A first approach is to use weights that

provide a correction for both the informative cluster size and the occurrence of miss-

ing values by multiplying the inverse cluster size and the inverse probability for an

observation to be observed. A second approach, which we will use, includes herd

size as a covariate in the model, correcting for the informative cluster size, and uses
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weights equal to the inverse probability for an observation to be observed to correct

for missing values.

The final complication to be dealt with is that the FOI as a function of age

cannot be negative and thus the age-specific prevalence has to be monotone increas-

ing. Determining β̂w is therefore subject to constraints depending on the functional

relationship with age. Selecting a model when dealing with constrained parameters

is not straightforward either. A modified version of the AIC-criterion when dealing

with a parameter that is restricted to be in a range [a, b] has been proposed by

Hossain (2002). This MAIC-criterion uses a penalization which is 1/2 instead of 1

for a parameter on the border of the range. When the parameter lays in the range

[a, b] the MAIC-criterion equals the AIC-criterion. Equivalently one can think of a

modification of the AIC-criterion when dealing with more general constraints of the

form

C(β) ≥ 0, (8.23)

where β = (β0, . . . , βp). This however is a topic of further research and will not be

pursued in this thesis.

Recently a lot of attention has gone out to model selection for GEEs. The work of

Pan (Pan, 2001a,b) is key in this context. However, using these criteria when dealing

with constraints requires even more caution because of the additional selection of

an appropriate correlation structure. It is not clear what the effect is of constraints

on the estimation of the variance.

In the following sections the FOI for the BoHV-1 data is derived. We will select

the appropriate model by first selecting the appropriate constrained (weighted) lo-

gistic regression model using the (weighted) AIC-criterion. The selected model will

then be fitted using a constrained (weighted) GEE in order to obtain a more honest

estimate of the variability. Let us first study the missingness in the Bohv-1 data.

8.5.2 Missing Data in the BoHV-1 Data

From the 11284 records, 2148 records have at least one missing value in response

and covariates. In Table 8.1, the specific amount of missingness for each variable is

given. From this table, it is clear that the only variable with a substantial amount

of missingness is ‘purchase’. Therefore, the remainder of this chapter observations

with one or more missing values for ‘age’, ‘sex’, and ‘gB’ are ignored. The purchase-

missing values were caused by a technical problem while conducting the survey; for

animal-level identification, the animals’ working eartag numbers were noted, not

their official ones. The advantage of the former ones is higher readability. Unfor-

tunately, these working eartag numbers were not indexed. To asses the influence of
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Table 8.1: BoHV-1 data: Overview of the amount of missingness for each variable.

Variables without any missing values were omitted.

Variable Miss. (#) Miss. (%)

Age 26 0.23 %

Sex 14 0.12 %

Purchase 2091 19.00 %

gB 36 0.32 %

the different variables on the missingness of ‘purchase’, we use a generalized additive

model as proposed by Wood and Augustin (2002) to estimate the probability, πo, for

an observation to be observed. Starting from the generalized additive model (8.24),

we apply the 3-step ad hoc method proposed by Wood and Augustin (2002) to drop

terms (see Section 4.4).

logit(πo) = β0 + fc1(herdtype) + fc2(gB) + fc3(sex) + fc4(province)

+ fs1(age) + fs2(herd size) + fs3(densanim) + fs4(densherd),

(8.24)

where fci
(·) denotes a main effect of a categorical variable and fsi

(·) denotes a

smooth function. In Figure 8.3, an overview of the smooth terms together with

95% confidence intervals is shown (R package mgcv 1.1-8). Based on Figure 8.3,

Table 8.2: BoHV-1 data: Overview of the missing data modelling result.

Variable Estimated df.

herd size 8.01

age 8.15

densanim 8.54

densherd 8.65

Table 8.2 and the fact that all categorical variables contributed significantly to the

model, no term could be dropped from the model. In practice, one could think of

using surface smoothers, tensor product smoothers and category-specific smoothing

to include interactions. For a large dataset as the BoHV-1 this was computationally

not feasible.
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Figure 8.3: Missingness in the BoHV-1: GAM-plots for the continuous variables.

To illustrate the effect of ignoring missing data, we compare the analysis based on

the complete cases, i.e., cases for which the ‘purchase’-variable is observed with the

analysis based on the available cases, i.e., cases for which ‘purchase’ can be observed

or unobserved and show that a weighted analysis on the complete cases can be used

to correct for the missing values. The animal-specific weight is the inverse of the

estimated probability that the animal is observed, i.e., all characteristics for that

animal are observed. The latter probability is derived from model (8.24).

In Figure 8.4, the fraction of positive tests for the antibodies as a function of age

based on the available and on the complete cases is shown. To distinguish between

animals coming from herds with different sizes, each of the plots is an overlay of

seroprevalence plots for animals with herd size lower or equal to 30 (circles), between

30 and 60 (stars) and higher or equal to 60 (triangles), respectively. Figure 8.4 shows

that the seroprevalence for animals from larger herds is higher. The seroprevalence



162 Chapter 8. Modelling the Force of Infection

Figure 8.4: Seroprevalence scatterplot as a function of age based on the available

cases (left) and on the complete cases (right) for small (circles), medium (stars) and

large herds (triangles).

plot for the complete cases differs slightly from the one for the available cases,

e.g., the seroprevalence, based on the available cases, shows less variability over the

different herd sizes. We will show that merely using the complete cases can result

in a wrong model and thus has its effect on the FOI.

8.5.3 Constrained Logistic Regression

Let us start from a logistic regression with a fractional polynomial of age to model

the age-specific seroprevalence, subject to the constraint of monotonicity and based

on three different methods. The first method is based on the available cases (AC),

the second on the complete cases (CC) and the third method uses a weighted logis-

tic regression based on the complete cases (WCC) where the subject-specific weight

equals the inverse probability for that subject to be observed as estimated by the gen-

eralized additive model (8.24). Contreras and Ryan (2000) give an overview of opti-

mization software to fit non-linear and constrained GEEs. We used the ‘Constrained
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Optimization’-module in Gauss 6.0. The procedure uses a sequential quadratic pro-

gramming method in combination with the Newton-Raphson procedure. In an initial

stage, the Broyden-Fletcher-Goldfarb-Shanno procedure (Shanno, 1985) was used to

obtain starting values for the Newton-Raphson procedure.

As pointed out in Section 8.4.3, we will use fractional polynomials of degree 2 to

describe the dependency of seroprevalence on age. Because of the informative herd

size, we included herd size as a main effect in the constrained logistic regression

model

logit(P (gB = 1)) = β0 + β1agep1 + β2agep2 + β3herd size. (8.25)

The appropriate powers of the fractional polynomial, p1, p2 ∈
{−2,−1,−0.5, 0, 0.5, 1, 2, 3}, p1 ≤ p2, were determined by minimizing the AIC

(available cases, complete cases) and AICW -criterion (weighted complete cases).

Since the number of parameters in these models stays the same, this corresponds

with the deviance criterion used by Royston and Altman (1994). In Table 8.3, an

overview of the different models is given together with the AIC- and AICW -values.

The powers, parameters and standard errors for the three different methods can

be found in Table 8.4. The results in this table are difficult to compare since the

different methods selected different fractional polynomials.

As an illustration, Figure 8.5 shows the resulting seroprevalence curves together

with the FOI for herd sizes 15, 45, 80, and 120, representing small, medium, large

and very large herds, respectively.

Figure 8.5 indicates an improved seroprevalence fit when using weighted complete

cases instead of complete cases only, especially for larger herd sizes. The FOI-curves

show that using the weighted complete cases give a substantial correction compared

to using the complete cases only. The latter finding can be translated in that the

curvature of the seroprevalence curves for both the available and weighted complete

cases are quite similar.

In practice, interest often goes out to the age at which the maximal FOI is

reached, agemax. In Table 8.5, the âgemax is shown for four herd sizes 15, 45, 80

and 120, representing small, to large-sized farms. Using the complete cases only,

agemax is severely overestimated with 10 to 17 months compared to âgemax based on

the available cases, while the use of weights gives a slight underestimation of agemax

with about 2.5 months.

The results, using all methods (CC,AC,WCC), show that the age at which the

FOI reaches its maximum value decreases with herd size, i.e. the cluster size (see

Table 8.5). In Figure 8.6, the age-specific FOI for the available cases is shown for

herd sizes 15, 45, 80 and 120. An increasing herd size corresponds to an increasing
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Table 8.3: BoHV-1 data: Overview of the AIC- and AICW -values for different choices

of powers for the logistic regression model described by (8.25).

Powers Selection Powers Selection

p1 p2 AIC(CC) AIC(AC) AICW p1 p2 AIC(CC) AIC(AC) AICW

-2.0 -2.0 10025.63 12756.67 12902.12 -0.5 1.0 9961.00 12710.29 12855.05

-2.0 -1.0 9966.01 12704.41 12853.35 -0.5 2.0 9965.11 12711.64 12856.13

-2.0 -0.5 9958.61 12705.29 12852.77 -0.5 3.0 9969.04 12712.56 12857.08

-2.0 0.0 10073.98 12815.65 12958.77 0.0 0.0 9958.36 12708.29 12853.86

-2.0 0.5 9959.91 12714.68 12857.97 0.0 0.5 9958.90 12708.03 12853.75

-2.0 1.0 9965.82 12722.31 12863.75 0.0 1.0 9959.44 12707.80 12853.66

-2.0 2.0 9984.75 12741.13 12880.05 0.0 2.0 9960.36 12707.57 12853.63

-2.0 3.0 10007.03 12760.48 12898.59 0.0 3.0 9960.98 12707.70 12853.75

-1.0 -1.0 9980.96 12715.20 12861.18 0.5 0.5 9958.53 12714.01 12859.39

-1.0 -0.5 9956.62 12706.74 12853.18 0.5 1.0 9958.17 12707.08 12853.65

-1.0 0.0 10007.60 12738.87 12883.96 0.5 2.0 9957.66 12712.22 12858.32

-1.0 0.5 9959.53 12711.15 12855.54 0.5 3.0 9957.81 12717.54 12863.18

-1.0 1.0 9962.67 12713.83 12857.42 1.0 1.0 9961.79 12731.86 12876.85

-1.0 2.0 9971.22 12719.41 12862.06 1.0 2.0 9959.54 12728.03 12873.76

-1.0 3.0 9980.40 12724.45 12866.98 1.0 3.0 9964.93 12742.16 12887.26

-0.5 -0.5 9967.59 12708.49 12854.24 2.0 2.0 10003.66 12809.93 12953.45

-0.5 0.0 9979.40 12714.73 12860.28 2.0 3.0 10003.10 12811.59 12955.43

-0.5 0.5 9959.24 12710.07 12854.50 3.0 3.0 10079.35 12916.32 13058.69

Table 8.4: Logistic Regression: Maximum likelihood parameter estimates using frac-

tional polynomials with powers (p1, p2) for the three different methods: complete

cases (CC), available cases (AC) and weighted complete cases (WCC).

Parameter CC (−1,−0.5) AC (−2,−1) WCC (−2,−0.5)

Intercept 2.640(0.410) 0.410(0.113) 1.726(0.205)

agep1 6.638(1.383) 5.321(1.039) 1.813(0.658)

agep2 -10.969(1.537) -7.095(0.726) -5.215(0.506)

herd size 0.008(5.0e-4) 0.007(4.0e-4) 0.004(5.1e-4)
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Figure 8.5: Age-specific seroprevalence curves together with the age-specific FOI

for the available cases (solid curve), the complete cases (long dashed curve) and

weighted complete cases (short dashed curve) for herd sizes 15, 45, 80 and 120.

FOI. That was expected from a veterinary and epidemiological point of view since

animals in a larger herd have a higher probability to get infected at younger age.

Looking at the seroprevalence and FOI from a different angle, Figure 8.7 shows

the ‘herd size’-specific curves for animals at the age of 30, 90 and 180 months. Both

the seroprevalence- and FOI-curves show a positively-related herd size. For animals

with age larger than âgemax (see Figure 8.7), one observes a positive effect of age

on the seroprevalence and a negative effect of age on the FOI. This was observed

before in Figure 8.5, where the seroprevalence increases and the FOI decreases with



166 Chapter 8. Modelling the Force of Infection

Table 8.5: Age (in years) where the maximal FOI is reached for herd size 15, 45, 80

and 120 for the three different methods.

Herd size CC AC WCC

15 3.32 1.91 1.72

45 3.09 1.86 1.67

80 2.85 1.80 1.62

120 2.60 1.73 1.56

Figure 8.6: The age-specific FOI for herd sizes 15 (solid curve), 45 (long dashed

curve), 80 (dotted curve) and 120 (short dashed curve) using the available cases.

age larger than âgemax. Similarly, for animals at an age lower than âgemax, the

seroprevalence- and FOI-curve would both show a positive effect of age.

Figure 8.7: The herd size-specific seroprevalence (left panel) and FOI (right panel)

at the age of 30 months (solid curve), 90 months (dashed curve) and 180 months

(dotted curve) using the available cases.
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Since the use of a logistic regression analysis does not take into account the

clustering, the use of GEEs to model the seroprevalence is provided in the next

section.

8.5.4 Constrained Generalized Estimating Equations

While the use of a logistic regression to model clustered binary data typically leaves

the consistency of point estimation intact, precision is overestimated in case of a

“positive”clustering effect (i.e., animals within a herd are more similar than between

herds). The use of GEEs accounts for the correlations in the data in a manner that

clustering is considered to be a nuisance parameter.

Selecting the powers of the fractional polynomials for the GEE (WGEE) with

independence working correlation matrix is done using AIC (AICW ) and the con-

strained (weighted) logistic regression for reasons pointed out before (Section 8.5.1).

Table 8.6: GEE parameter estimates, standard errors and corresponding p-values

for the three different methods.

Parameter Estimate Emp.S.E.(p-value) Mod. S.E.(p-value)

Complete Cases

Intercept 2.640 0.888(0.003) 0.410(<0.001)

age−1 6.638 2.935(0.024) 1.383(<0.001)

age−0.5 -10.969 3.312(0.001) 1.537(<0.001)

herd size 0.008 0.004(0.046) 5.0e-4(<0.001)

Available Cases

Intercept 0.410 0.304(0.177) 0.113(<0.001)

age−2 5.321 2.238(0.017) 1.039(<0.001)

age−1 -7.095 1.661(<0.001) 0.726(<0.001)

herd size 0.007 0.003(0.020) 4.0e-4(<0.001)

Weighted Complete Cases

Intercept 1.726 0.563(0.002) 0.205(<0.001)

age−2 1.813 1.967(0.357) 0.658(0.006)

age−0.5 -5.215 1.571(0.001) 0.506(<0.001)

herd size 0.004 0.005(0.424) 5.1e-4(<0.001)
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Figure 8.8: Herd size 80: Age-specific seroprevalence curves and corresponding FOI

with 95% bootstrap confidence intervals using a logistic regression.

In Table 8.6, the parameter estimates and standard errors are tabulated for the

three different methods. There is a positive effect of herd size and the components

of the fractional polynomial counteract. Taking into account the clustering effect

has a substantial impact as can be seen from the difference between the empirical

standard errors, i.e., taking into account clustering and the model-based standard

errors, i.e., ignoring clustering.

Calculating 95% confidence bounds for a constrained (weighted) logistic regres-

sion or constrained (weighted) GEE is not straightforward, since these bounds are

typically not symmetric due to the constraint(s). We will use two bootstrap tech-

niques to produce these confidence intervals.

A first technique was used to generate bootstrap confidence intervals for the

constrained logistic regression. We refer to Davison and Hinkley (1997) for more

details about bootstrap based confidence intervals. It consists of three successive

steps:

(1) Resample animals with equal probabilities,

(2) fit model (8.25) using constrained (weighted) logistic regression to the resam-

pled data, while keeping (p1, p2) fixed and recalculating the herd size,
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Figure 8.9: Herd size 80: Age-specific seroprevalence curves and corresponding FOI

with 95% bootstrap confidence intervals using GEEs.

(3) calculate age-specific fitted values.

These steps were repeated 400 times and bootstrap confidence intervals were cal-

culated using the age-specific 2.5% and 97.5% percentiles points. In Figure 8.8,

seroprevalence and FOI curves are shown together with 95% pointwise bootstrap

confidence intervals for herd size 80 based on the complete cases, available cases and

weighted complete cases, respectively. Similar plots were obtained for other herd

sizes.

A second technique was used to generate bootstrap confidence intervals for the

constrained GEE. It consists of the following three successive steps:

(1) Resample herds with equal probabilities,

(2) fit model (8.25) using a constrained (weighted) GEE with independence work-

ing correlation to the resampled data, while keeping (p1, p2) and herd sizes

fixed,

(3) calculate age-specific fitted values.

Again these steps were repeated 400 times and bootstrap confidence intervals were

calculated using the age-specific 2.5% and 97.5% percentiles points. By resampling



170 Chapter 8. Modelling the Force of Infection

herds instead of animals clustering is taken into account. This non-parametric boot-

strap procedure is based on Moulton and Zeger (1989); Sherman and Le Cessie

(1997), who applied the bootstrap in a repeated measures context. In Figure 8.9,

seroprevalence and FOI curves are shown together with 95% pointwise bootstrap

confidence intervals for herd size 80 based on the complete cases, available cases and

weighted complete cases, respectively.

From these confidence intervals it is clear that clustering has an impact on the

variability and thus should be taken into account. Bootstrap procedures for corre-

lated binary data were applied before by Gemechis and Aerts (2004).

8.6 Extending the Model

To extend model (8.25) and maintain flexible modelling for age, one could incorpo-

rate all other variables in the model as main effects. Additionally, one could add

all two-way interactions, quadratic effects, three-way interactions and so on. For

continuous variables, taking an interaction with the fractional polynomial of age

would imply taking interactions with each of the components (when m = 2). For

categorical variables, one could fit a fractional polynomial of age for each of the

categories. Selecting the appropriate powers by means of a selection criterion ap-

plied on a two-dimensional grid for the powers (p1, p2) would result in an enormous

number of candidate models to be considered, e.g., for m=2, including variables age,

sex, purchase, herdtype and herd size and using a grid {−2,−1,−0.5, 0, 0.5, 1, 2, 3}2,

244, 903 models have to be fit. The monotonicity constraint makes the model build-

ing process very computer intensive and time consuming. There is currently no

software which allows these features to be combined, while keeping the computing

time acceptable. On average one such analysis, using Gauss 6.0 on an PIV (512 MB

Ram, 2.6 Ghz), runs 181 seconds.

In what follows we first consider a classification tree analysis, to gain some insight

in the relation between the seroprevalence and the explanatory variables (Table 1.2).

8.6.1 A Classification Tree Analysis

Although a classification tree is a fully non-parametric technique to model binary

data (Section 1.3.1), it is not suitable to derive the FOI, but can provide insights in

the relations between the different variables in the data.

A classification tree analysis obtains an optimal tree of size 189 when applying

the 1 SE-error rule (Figure 8.10). All variables were used in the tree-construction.

A closer look at the cross-validation relative error in Figure 8.10 shows minor de-
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Figure 8.10: Classification tree analysis of the BoHV-1 data: X-validation relative

error.

Figure 8.11: Classification tree analysis of the BoHV-1 data: A subtree of size 27.

creases in the cross-validation relative error based on trees of size larger than 27. We

therefore restrict ourself to a tree of size 27. As an illustration, Figure 8.11 shows

this subtree of size 27. All variables except sex and herdtype are shown in this tree.
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This classification tree analysis confirms the difficulties of model building in this

specific situation.

Although model building is hard, we will consider two models. The first model

is an additive model consisting of a fractional polynomial of degree 2 for age and

all other variables as main effects. Model 2 illustrates the use of interactions by

considering an additive model consisting of a fractional polynomial of degree 2 for

age, a main effect for herd size and a main effect of purchase together with the

interaction of purchase with the fractional polynomial and herd size. The analyses

presented are based on both complete and weighted complete cases, to illustrate the

impact of ignoring missing observations.

8.6.2 Model 1: An Additive Model

Let us start from an additive logistic regression model

logit(P (gB = 1)) = β0 + β1age + β2herd size + β3herdtype + β4densanim

+β5densherd + β6province + β7sex + β8purchase, (8.26)

and perform a stepwise deletion. Looking at the correlations among the different ex-

planatory variables, the animal density and herd density have the highest correlation

of about 0.48, however after some investigation no multicollinearity was established.

Selecting the appropriate model is done by the use of the (weighted) AIC-criterion.

In Table 8.7, the submodels of (8.26) are given together with their (weighted) AIC-

value. Deletion stops when the (weighted) AIC-values of the submodels are all larger

than the model under consideration. For both the complete and weighted complete

cases, the model

logit(P (gB = 1)) = β0 + β1age + β2herd size + β3densanim

+β4densherd + β5province + β6sex + β7purchase,

(8.27)

has the minimal AIC-, AICW -value.

This final constrained logistic regression model can be altered to include a

fractional polynomial of degree 2 for age. The powers (p1, p2) from the grid

{−2,−1,−0.5, 0, 0.5, 1, 2, 3}2 are determined by selecting the model with minimal

AIC-, AICW -value under constraints. Recall the equivalence with the deviance cri-

terion used by Royston and Altman (1994). A constrained logistic regression with

powers (p1, p2) = (−1,−0.5) on the complete cases resulted in a minimal AIC of

9509.47 while on the weighted complete cases a minimal (weighted) deviance of
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Table 8.7: Constrained additive logistic regression models for the BoHV-1 data

based on complete cases and weighted complete cases together with their AIC and

AICW -values.

CC WCC

Model AIC-value AICW -value

Initial Model (8.26) 9554.28 12332.37

- province 9916.76 12794.52

- herdtype 9554.16* 12330.36*

- densherd 9564.91 12352.31

- densanim 9558.57 12356.38

- sex 9572.57 12347.73

- purchase 9573.78 12405.02

- herd size 9736.46 12440.69

- herdtype,province 9914.84 12794.46

- herdtype,densherd 9564.49 12355.46

- herdtype,densanim 9560.61 12350.29

- herdtype,sex 9571.47 12345.94

- herdtype,purchase 9572.25 12405.72

- herdtype,herd size 9748.89 12443.73

12248.84 was obtained for the powers (p1, p2) = (−2,−0.5). These powers are the

same as those found for model (8.25). The summary of the final models using

(weighted) GEEs; i.e., powers, estimates, empirical and model-based standard er-

rors with corresponding p-values, is given in Tables 8.8 and 8.9. The estimates and

model-based standard errors correspond to using a (weighted) logistic regression

while the empirical standard errors reflect the effect of clustering.

While there is a clear difference between the empirical and model-based standard

errors, reflecting the clustering in the data, this has little impact on the significance

(α-level 0.05) of the different covariates. Comparing the weighted complete case

analysis with the unweighted complete case analysis there is some difference be-

tween the different estimates but little difference between the effects of the different

variables. From these analyses, one can conclude that purchased animals have a
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Table 8.8: Final additive models for the BoHV-1 data: complete cases.

GEE (Independence)

Parameter Estimate Emp.S.E.(p-value) Mod.S.E.(p-value)

Complete Cases

Intercept 1.714 0.477(<0.001) 0.001(<0.001)

age−1 7.219 1.438(<0.001) 0.003(<0.001)

age−0.5 -12.405 1.593(<0.001) 0.003(<0.001)

herd size 0.009 4.3e-6(<0.001) 6.7e-4(<0.001)

purchase 0.259 0.058(<0.001) 1.7e-4(<0.001)

sex 0.486 0.088(<0.001) 1.8e-4(<0.001)

densanim 0.001 3.5e-4(0.004) 2.0e-6(<0.001)

densherd -0.090 0.029(0.002) 1.5e-4(<0.001)

province (ref.cat. Namur)

- Antwerp 1.747 0.240(<0.001) 0.001(<0.001)

- Brabant 0.178 0.273(0.514) 0.001(<0.001)

- West Flanders 1.476 0.236(<0.001) 0.001(<0.001)

- East Flanders 1.745 0.238(<0.001) 0.001(<0.001)

- Hainaut 1.454 0.233(<0.001) 0.001(<0.001)

- Liège 0.818 0.234(<0.001) 0.001(<0.001)

- Limburg 1.983 0.244(<0.001) 0.001(<0.001)

- Luxembourg 0.370 0.255(0.1468) 0.001(<0.001)
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Table 8.9: Final additive models for the BoHV-1 data: weighted complete cases.

GEE (Independence)

Parameter Estimate Emp.S.E.(p-value) Mod.S.E.(p-value)

Weighted Complete Cases

Intercept 0.881 0.270(0.001) 0.001(<0.001)

age−2 2.544 0.682(<0.001) 0.002(<0.001)

age−0.5 -6.571 0.527(<0.001) 0.001(<0.001)

herd size 0.006 5.7e-4(<0.001) 4.2e-6(<0.001)

purchase 0.422 0.050(<0.001) 2.1e-4(<0.001)

sex 0.469 0.077(<0.001) 1.7e-4(<0.001)

densanim 0.002 3.2e-4(<0.001) 1.9e-6(<0.001)

densherd -0.107 0.026(<0.001) 1.4e-4(<0.001)

province (ref.cat. Namur)

- Antwerp 1.371 0.183(<0.001) 0.001(<0.001)

- Brabant 0.004 0.211(0.985) 0.001(<0.001)

- West Flanders 1.485 0.176(<0.001) 0.001(<0.001)

- East Flanders 1.515 0.181(<0.001) 0.001(<0.001)

- Hainaut 1.246 0.174(<0.001) 0.001(<0.001)

- Liège 0.635 0.176(<0.001) 0.001(<0.001)

- Limburg 1.710 0.187(<0.001) 0.001(<0.001)

- Luxembourg 0.110 0.194(0.571) 0.001(<0.001)
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higher seroprevalence than homebred animals. An increasing herd size, increasing

animal density and decreasing herd density give an increase in the seroprevalence.

The apparent contradictive effect of animal density and herd density on the sero-

prevalence has been observed before in veterinary epidemiology.

One can think of possible explanations as that low herd density points at regions

where family and amateur farms are located, while a high density refers to regions of

professional farms. The latter being more aware of the potential danger of infectious

diseases like the BoHV-1. This however should be investigated further.

8.6.3 Model 2: Including Purchase as an Interaction

In this section we focus on

logit(P (gB = 1)) = β0 + (β1agep1 + β2agep2) ∗ I0 + (β3agep3 + β4agep4) ∗ I1
+β5herd size + β6purchase + β7purchase ∗ herd size,

(8.28)

where Ii denotes an indicator variable which takes the value 1 if purchase = i and 0

otherwise, i = 0, 1 (homebred and purchased, respectively).

Whether the animals were purchased or homebred has a substantial influence

on the powers chosen for both fractional polynomials in the model. While there

is a rather small difference between the use of complete cases and weighted com-

plete cases for homebred animals, there is a considerable difference between the two

methods for purchased animals. The interaction between herd size and purchase is

not significant (empirical S.E.) based on the complete cases, but it is, based on the

weighted complete cases. From this model and the additive model in the previous

section the FOI can be derived. A graphical representation of the FOI for Model

1 is not feasible due to the high dimensional covariate space. In Figure 8.12, the

age-specific seroprevalence and FOI for Model 2 show that purchase is an important

discriminator. From a veterinary point of view, purchased animals are expected to

have a higher seroprevalence compared to homebred animals (Boelaert et al., 2005).

The interaction model shows that young purchased animals have a higher seropreva-

lence than young homebred animals, while the seroprevalence for older purchased

animals is smaller compared to older homebred animals. Indeed, animals are pur-

chased at a young age and are likely to either be infected or to have recovered from

an infection. After introduction into the herd, they can spread the infection to the

other animals in the herd, which are mostly homebred (Once recovered from infec-

tion animals can turn infectious again due to numerous reasons like, e.g., stress).
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Table 8.10: BoHV-1 data: Interaction model of purchase and age.

GEE (Independence)

Parameter Estimate Emp.S.E.(p-value) Mod.S.E.(p-value)

Complete Cases

Intercept 3.038 0.939(0.001) 0.488(<0.001)

age−1
0 7.711 3.134(0.014) 1.657(<0.001)

age−0.5
0 -12.592 3.554(<0.001) 1.838(<0.001)

age0.5
1 0.835 0.487(0.086) 0.201(<0.001)

age2
1 -0.003 0.007(0.668) 0.004(0.453)

herd size 0.009 0.005(0.072) 7.2e-4(<0.001)

purchase -5.593 1.231(<0.001) 0.593(<0.001)

herd size*purchase -0.004 0.003(0.182) 0.001(<0.001)

Weighted Complete Cases

Intercept 3.151 0.946(0.001) 0.397(<0.001)

age−1
0 7.336 2.868(0.011) 1.331(<0.001)

age−0.5
0 -12.341 3.385(<0.001) 1.486(<0.001)

age0
1 1.758 3.357(0.600) 1.185(0.138)

age0.5
1 -1.1e-034 1.394(1.000) 0.505(1.000)

herd size 0.008 0.004(0.046) 0.001(<0.001)

purchase -4.509 1.546(0.004) 0.530(<0.001)

herd size*purchase -0.010 0.004(0.012) 0.001(<0.001)

Purchased animals are thus more likely to be infected at a young age in contrast

to homebred animals. Secondly, animals in beef herds are slaughtered at young age

(18-20 months) and therefore a decline for older ages is caused by the absence of

these animals compared to homebred animals.

For the weighted complete cases there is a significant effect of purchase on the

influence of herd size. For purchased animals, an increasing herd size gives a decrease

in seroprevalence, while for homebred animals there is an increasing effect.
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Figure 8.12: Plot of the seroprevalence and FOI for homebred (left) and purchased

(right) as a function of age using complete cases (solid curve) and weighted complete

cases (dashed curve).

From the FOI-curve, it can be seen that animals which are homebred have the

typical tendency to have a maximal FOI around 3 years while for the purchased an-

imals, a monotone decrease in the FOI can be observed. Especially for the weighted

complete cases, this is a substantial decrease.

8.7 Discussion

In this chapter, the BoHV-1 data were analyzed to determine the FOI. It is clear from

the results that the dataset has several complications. To overcome the complication

of missing covariates an inverse probability weighted analysis is proposed (Robins

et al., 1994; Zhao et al., 1996). Data are assumed to be missing at random throughout

this chapter. Clustering, if regarded merely as a nuisance parameter, can be taken

into account by using GEEs. Since the FOI can be seen as a hazard rate, i.e.,

the instant probability for an animal to get infected given that infection has not

occurred yet, it has to be positive and thus the seroprevalence monotone increasing.

To handle this latter complication a constrained analysis was performed. To correct



8.7. Discussion 179

the influence of an informative cluster size on the analysis, herd size was added

to the model as a main effect. The combination of all these techniques to model

such complex veterinary data can be termed as “Constrained, Flexible, Weighted

Generalized Estimating Equations”(CFWGEE), where flexibility was achieved using

a fractional polynomial for age.

A multiple imputation analysis can be seen as an alternative to the inverse prob-

ability weighted analysis. An alternative to GEE is the use of random-effects models

where interest goes out to the clustering itself. Alternatives to the use of fractional

polynomials are smoothing splines. The derivation of the model in that case will

be even more computer intensive due to the constraint of the FOI to be positive.

Selecting an appropriate flexible model when dealing with constraints together with

other complications is an interesting topic of further research.
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Samenvatting

Het Gebruik van Niet- en Semi-parametrische

Technieken bij het Modelleren van Ontbrekende

Gegevens

Het doel van een statistische analyse is om, aan de hand van een steekproef, geldige

en efficiënte gevolgtrekkingen te maken omtrent de beschouwde populatie. In ver-

schillende studies zoals bijvoorbeeld klinische en epidemiologische studies stoot men

echter vaak op het probleem van ontbrekende gegevens die dit proces bemoeilijken.

In het verleden werd er gebruik gemaakt van parametrische modellen om onvolledige

datasets te modelleren (zie bv Afifi and Elsahoff, 1966; Ibrahim, 1990). Recent is er

een algemene trend naar het gebruik van niet- en semi-parametrische technieken die

de typische veronderstellingen, waarop de parametrische methoden steunen, versoe-

pelen. Parametrische technieken steunen op verschillende veronderstellingen zoals

bijvoorbeeld in een regressie-context op de verdeling van de response variabele en op

de functionele relatie die het verband tussen de response en de verklarende variabe-

len weergeeft. Niet-parametrische technieken zijn vrij van veronderstellingen, terwijl

semi-parametrische technieken enkel gedeeltelijk veronderstellingen gebruiken.

Omtrent het gebruik van deze niet- en semi-parametrische technieken bestaan er

twee verschillende standpunten. Een eerste standpunt werd beschreven door Silver-

man (1985): “An initial non-parametric estimate may well suggest a suitable para-

metric model (such as linear regression), but nevertheless will give the data more of

a chance to speak for themselves in choosing the model to be fitted.”Daarmee duidt

Silverman (1985) op de motivatie die niet-parametrische schattingen met zich kunnen

meebrengen om een gepast parametrisch model te kiezen. Deze niet-parametrische

schattingen geven de data de gelegenheid om voor zichzelf te “spreken”. Een tweede

standpunt komt voort uit een standpunt geformuleerd door Box (1980): “Known

facts (data) suggest a tentative model, implicit or explicit, which in turn suggests a

particular examination and analysis of data and/or the need to acquire further data;
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analysis may then suggest a modified model that may require further practical illu-

mination and so on.”Niet-parametrische technieken zijn het aangewezen hulpmiddel

om bestaande parametrisch modellen te optimaliseren (zie Hastie and Tibshirani,

1987; Simonoff, 1996; Hart, 1997).

Niet- en semi-parametrische methoden zijn in het algemeen niet zo efficiënt als

parametrische methoden indien het veronderstelde model geschikt is. Indien het mo-

del echter niet het geschikte model is, kunnen de gevolgtrekkingen hieruit misleidend

zijn.

Onder deze niet- en semi-parametrische technieken vind men kernschatters (zie

bv Watson, 1964; Nadaraya, 1964), splines (Eubank, 1988), veralgemeende additieve

modellen (Hastie and Tibshirani, 1987; Wood, 2001; Wood and Augustin, 2002;

Wood, 2005) en classificatie- en regressiebomen (Breiman et al., 1984), die in deze

thesis aan bod komen.

Bij het modelleren van onvolledige data, maakt men meermaals gebruik van de

terminologie die gëıntroduceerd werd door Little and Rubin (1987) en Rubin (1987).

Vooreerst, zegt men dat data volledig willekeurig ontbreken (missing completely at

random, MCAR) indien de kans om te ontbreken onafhankelijk is van zowel de ge-

observeerde als ontbrekende gegevens. Indien deze kans mogelijk afhangt van de

geobserveerde gegevens, maar niet van de ontbrekende gegevens, dan zegt men dat

de data willekeurig ontbreken (missing at random, MAR). Tenslotte noemt men het

ontbreken van gegevens niet-willekeurig indien deze kans afhangt van ontbrekende

en mogelijk ook van de geobserveerde gegevens (missing not at random, MNAR). In

de praktijk is het meestal niet aannemelijk dat ontbrekende gegevens aan de MCAR-

veronderstelling voldoen. De MAR-veronderstelling wordt doorgaans veel gebruikt

en is in vele situaties te verdedigen. Indien men echter data met niet-willekeurig

ontbrekende gegevens wilt analyseren, moet men doorgaans verdere ontestbare ver-

onderstellingen maken. Een sensitiviteitsanalyse is in deze laatste situatie onont-

beerlijk.

In de literatuur zijn verschillende technieken voorgesteld om met ontbrekende

gegevens om te gaan. Ze kunnen ruwweg onderverdeeld worden in vier groepen: (1)

‘complete case analysis’ ; (2) ‘multiple imputation’ ; (3) ‘inverse probability weighting’

en (4) ‘fully model-based procedures’. Bij de ‘complete case analysis’ gebruikt de ana-

lyse enkel de eenheden die volledig geobserveerd zijn. Deze methode is gemakkelijk

toe te passen maar kan tot inefficiëntie en vertekening leiden (Little and Rubin,

1987). Bij ‘multiple imputation’ worden er meerdere malen gegevens gëımputeerd.

Vervolgens worden de vervolledigde datasets geanalyseerd en de respectievelijke re-

sultaten gecombineerd. Ook deze methode heeft beperkingen (zie bv Rubin, 1978;



Samenvatting 197

Rubin and Schenker, 1986; Little and Rubin, 1987; Tanner and Wong, 1987; Schafer,

1997). ‘Inverse probability weighting’ geeft de volledig geobserveerde eenheden een

gewicht, gelijk aan de inverse van de kans dat de eenheid volledig geobserveerd is.

Zo vertegenwoordigen ze op een impliciete manier de ontbrekende gegevens (Flan-

ders and Greenland, 1991; Zhao and Lipsitz, 1992; Robins et al., 1994; Zhao et al.,

1996). In een recente publicatie van Carpenter and Kenward (2005), werd deze

laatste methode vergeleken met ‘multiple imputation’. ‘Fully model-based proce-

dures’ modelleren naast het meetmodel ook het mechanisme achter het ontbreken

van gegevens. Deze procedures steunen op ontestbare veronderstellingen waardoor

een sensitiviteits-analyse aangewezen is. Van deze laatste groep zijn er vele metho-

den ontwikkeld voor herhaalde metingen zoals bijvoorbeeld voor klinische studies

waar het uitvallen van patiënten meestal de oorzaak is van het ontbreken van ge-

gevens. Dit laatste fenomeen wordt ‘dropout’ (uitvallen) genoemd. Voorbeelden

van zulke modellen zijn ‘selection’-modellen, ‘pattern-mixture’-modellen en ‘shared-

parameter’-modellen. Voor een vollediger overzicht verwijzen we naar Hogan et al.

(2004) en Molenberghs et al. (2004).

In deze thesis worden verschillende niet- en semi-parametrische technieken ge-

bruikt voor het modelleren van onvolledige gegevens. Het gepresenteerde materiaal

geeft duidelijk het voordeel weer van het versoepelen van de veronderstellingen. Vele

auteurs zoals Lipsitz et al. (1998), Rubin and Schenker (1986) en Heitjan and Little

(1991) hebben reeds gebruik gemaakt van niet- en semi-parametrische technieken in

het modelleren van ontbrekende gegevens.

Het inleidende hoofdstuk van deze thesis geeft een kort overzicht van niet- en

semi-parametrische technieken en van verschillende technieken om onvolledige data

te analyseren. In een tweede hoofdstuk stellen we voor om een lokale meervoudige

imputatie methode te gebruiken in een regressie-context met ontbrekende response

gegevens (Aerts et al., 2002a). De interesse gaat uit naar een marginale parameter

van de response-verdeling. Hiervoor gebruikt men een driedelige imputatie-methode:

(1) in eerste fase worden de gegevens geresampled d.m.v. een lokale bootstrap, (2)

gebaseerd op deze bootstrap sample worden gegevens gëımputeerd: hetzij gebaseerd

op een nieuwe lokale bootstrap; hetzij gebaseerd op een normale likelihood. Deze

twee stappen worden telkens m keer herhaald, wat resulteert in een meervoudige

imputatie. De laatste stap, (3), is het construeren van de schatter voor de margi-

nale parameter van de response verdeling. De lokale bootstrap die hier toegepast

wordt, maakt gebruik van omgevingen van de response variabele om uit te resam-

plen. De motivatie voor deze methode werd gegeven door Cheng (1994) die gebruik

maakt van een enkelvoudige imputatie en aldus de variabiliteit onderschatte. Door
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de bijkomende eerste stap, wordt de variabiliteit juist ingeschat. Dit wordt zowel

theoretisch als met simulaties aangetoond.

Het derde en vierde hoofdstuk geven aan dat er in een regressie-analyse met ont-

brekende gegevens nood is aan een aangepast model selectie criterium. Het toepas-

sen van het Akaike Informatie Criterium (AIC, Akaike, 1973) enkel op de volledige

geobserveerde eenheden kan leiden tot foutieve modelkeuzes. Een eerste oplossing

hiervoor is het gebruik van een gewogen AIC-criterium waar volledig geobserveerde

eenheden een gewicht krijgen zoals bij ‘inverse probability weighting’. De methode is

toepasbaar zowel op onvolledige data als op design-gebaseerde steekproeven (Hens

et al., 2005a). Indien de gewichten ongekend zijn, kan men semi-parametrische

methoden zoals veralgemeende additieve modellen gebruiken om deze te schatten.

Theoretische argumenten geven samen met simulaties aan dat de methode vaker

leidt tot een correcte modelkeuze. Indien er slechts enkele volledige eenheden zijn, is

het gebruik van gewichten niet geschikt. In dit geval kan men opteren om eerste te

imputeren en gebaseerd op de gëımputeerde dataset een model te kiezen. De impu-

tatie gebeurt hier semi-parametrisch door gebruik te maken veralgemeende additieve

modellen. Een simulatie studie toont aan dat het selecteren na imputatie heel wat

potentieel heeft. Het nadeel van deze laatste methode is echter dat deze grotendeels

op het onderliggende imputatiemodel steunt. Indien dit imputatiemodel niet goed

gedefinieerd is, zal dit tot gevolg hebben dat de methode onderuit gaat.

In een vijfde hoofdstuk wordt een gevallenstudie bekeken omtrent baarmoeder-

halskanker waar, voor vele vrouwen, gegevens ontbreken. Naast het probleem van

onvolledige data, is er een tweede moeilijkheid, namelijk het specifieke design waar-

mee deze studie is opgebouwd als deel van de nationale gezondheidsenquête (HIS)

van België uitgevoerd in 1997. Met behulp van de technieken gëıntroduceerd in

Hoofdstukken 4 en 5 wordt de invloed van het negeren van deze complicaties aange-

toond. We vergelijken het parametrisch logistisch regressiemodel met classificatiebo-

men die volledig niet-parametrisch zijn (Hens et al., 2002). Verschillende manieren

om met het design en de ontbrekende gegevens in classificatiebomen om te gaan

worden hier gëıllustreerd en besproken.

Een tweede deel van deze thesis betreft gecorreleerde gegevens. Hoofdstukken

6 en 7 geven aan dat een sensitiviteitsanalyse onmisbaar is bij het analyseren van

herhaalde metingen met dropout. Het model dat hier beschouwd wordt, is het

selectiemodel van Diggle and Kenward (1994). In Hoofdstuk 6 wordt een niet-

parametrische variant van ‘global’ en ‘local influence’ ontwikkeld. Deze tool is in

staat om de invloed van verschillende types van observaties op een selectie-model

te detecteren door gebruik te maken van kerngewichten die een omgeving van een




