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Q-measures for binary divided networks, as introduced by Flom, Friedman, Strauss and 
Neaigus are studied. These measures try to capture the idea of bridges between two 
groups in a connected undirected network. Values for these measures are calculated for 
building blocks such as line and star networks. As an application two small co-author 
networks are analyzed. 
 
 
Introduction 
 
     Over the last years social network theory has enjoyed more and more success in informetric 
research (Kretschmer, 2004; White et al., 2004). Density and centrality measures known and 
studied in network theory are as useful in sociological as in informetric network studies (Otte & 
Rousseau, 2002).  
 
     Social network theory can be described as a strategy for investigating social structures. Its 
methods, however, can be applied in many fields, including the information sciences. Here 
scientists study publication and citation networks, co-citation networks, bibliographic coupling, 
collaboration structures, web relations and many other forms of social interaction networks 
(Adamic & Adar, 2003; Newman, 2001; van Raan, 2005). The so-called ‘small world 
phenomenon’ has attracted the attention of many scientists (Björneborn & Ingwersen, 2001; 
Braun, 2004; Kochen, 1989; Milgram, 1967; Newman & Watts, 1999; Rousseau, 2005). Such a 
small-world network is characterized as a graph or network exhibiting a high degree of clustering 
and having at the same time a small average distance between nodes. 
 
     Recently Flom et al. (2004) introduced a new sociometric network measure, denoted as Q, for 
individual actors as well as for whole networks. This measure tries to capture the idea of bridges 
between two groups in a connected undirected network. The higher its value the more this actor 
acts as a bridge between the two groups. Assume that there are T actors or nodes in the network. 
Group A contains m nodes, while the other group, denoted as B, contains n nodes, hence T = 
m+n. If actor x belongs to group A, and assuming for simplicity that actor x is am, then the Q-
measure for this actor is defined as follows: 
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If actor x belongs to group B, and assuming again for simplicity that it is actor bn, then its Q 
measure is defined as: 
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Here 

i ja bg  denotes the number of geodesics, i.e. shortest paths, connecting ai ∈  A and bj ∈  B. 

The symbol ( )
i ja bg x represents the number of geodesics connecting ai and bj passing through x, 

where x is not one of the endpoints.  
 
     Existing measures such as betweenness centrality (Freeman, 1977) do not make a distinction 
between nodes belonging to different groups, or between geodesics remaining in the same group 
and geodesics crossing to the other group. This is the main motive for the introduction of this new 
measure. 
 
     Flom et al. (2004) make a further distinction between geodesics which cross exactly once 
between the two groups under study (leading to a measure denoted Q1) and geodesics that 
possibly cross several times between the two groups (leading to Q2). When Q1 coincides with Q2 
in each node we will denote the measure simply as Q.  
 
     Q-measures for the whole network are defined in Flom et al. (2004) as the normalized average 
difference between the most central node (in the Q-sense), denoted as Q*, and all other nodes. 
This is: 
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Note that at least one of the terms in the numerator is certainly zero, namely when Q(ai) or Q(bj) 
is equal to Q*. This explains why the denominator is taken to be equal to T -1. Similar to the 
individual case one can also here define two QNET-measures. 
 
 
Examples of calculations of Q-measures for basic networks 
 
     In this section we will calculate Q-measures for some basic configurations, such as lines and 
stars. The purpose of this is to get a feel of the meaning of different values of the Q-measure. 
This will also allow us to check if the measure behaves as intuitively expected of an indicator for 
the bridging function of a node. Note first that Q(x) is at most one, namely when x is always 
situated on the unique shortest path between any two nodes of different groups. Hence 0 � Q(x) � 
1. 
 
Line networks: a simple example 

 
     We consider a line network of length 5. The first two nodes, a1 and a2 belong to the first group, 
the other three: b1, b2 and b3 (in this order) belong to the second group. We follow the method 
described by Flom et al. (2004) for the calculation of Q-values. Note that in a line network with 
separated groups there is no difference between Q1 and Q2 as a shortest path can cross at most 
once the (imaginary) division line between the two groups.  
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Figure 1: Line network with 2+3 nodes 
 
     In order to calculate Q-measures a matrix is drawn with columns containing the nodes 
belonging to the first group and rows consisting of nodes belonging to the other group (see Table 
1). In each cell the non-terminal nodes of all geodesics between the corresponding row and 
column are entered. Then, to compute Q for a specific node, all geodesics containing that node 
are counted. This number is divided by all geodesics where that node is not a terminal node. If 
there are two or more geodesics between a pair of nodes, they are all included. Using this 
procedure the configuration of Figure 1 leads to Table 1. 
 
 
Table 1. Matrix for the calculation of Q-values of the (2+3)-node line network shown in 
Fig.1.  
 

 b1 b2 b3 
a1 a2 a2 b1 a2 b1 b2 
a2  - b1 b1 b2 

 
 
Q-values for these five nodes are given in Table 2. 
 
Table 2.  Q-values of the (2+3)-node line network 
 

Q(a1) = 0 
Q(a2) = 3/3 = 1 
Q(b1) = 4/4 = 1 
Q(b2) = 2/4 = 1/2 
Q(b3) = 0 

 
     These results correspond to our intuition: nodes a2 and b1 form bridges between the two 
groups.  Consequently, they have the maximum Q-value of 1. The two endpoints a1 and b3 clearly 
have no bridging function whatsoever: they receive a Q-value of 0. Finally node b2 occupies an 
intermediary position. For the whole network we find QNET = (5/2)/4 = 5/8. 
 
Line networks: case of m (m > 1) a-nodes followed by n (n >1) b-nodes. 
 
     The approach illustrated in the first example can readily be generalized. Also then there is no 
difference between Q1 and Q2 measures, hence the measure will simply be denoted as Q.  
 

Q(ai) = [(i-1)n]/[n(m-1)] = (i -1)/(m -1),  for i =  1, …,m 
and Q(bj) = [(n-j)m]/[m(n-1)] = (n-j)/(n-1), for j = 1, …,n. 

 
It follows, in particular, that Q(am) = 1 and Q(b1) = 1, and further that Q(a1) = 0 and Q(bn) = 0. If m 
= 1 then Q(am) = 0; similarly, if n = 1 then Q(b1) = 0. 
 

The global network Q-measure is here QNET = 
1

2( 1) 2
m n

m n
+ ≈

+ −
 (for m or n large).  
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Perfectly intermixed line networks: m a-nodes perfectly intermixed with m-1 b-nodes.  
 
     We number a- and b-nodes from left to right. Note that in this case considering Q1 or Q2 
makes a huge difference. Indeed, Q1 (re-entering the same subgroup is not allowed) is zero for 
every node. Q2 on the other hand, takes the following values: 
 
Q2(ai) = 2(i-1)(m-i)/(m-1)²  for i = 1, …, m, and Q2(bi) = ((2i-1)(m-i) – i)/(m(m-2)), for i = 1, …, m -1. 
 
Note that Q2(a1) = Q2(am) = 0, and generally Q2(ai) = Q2(am-i+1); Q2(bi) = Q2(bm-i). 
 

Q2* (the maximum Q2-value) is 1/2. Hence Q2(NET) = 
− + ≈

−

2
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Figure 2: Perfectly intermixed line network 
 

 
Complete bipartite graphs 
 

 
 
 

Figure 3:  An example of a complete bipartite graph 
 

     Consider a graph partitioned into two groups of nodes. A complete bipartite graph is such that 
no two nodes of the same group are adjacent, but any two nodes belonging to different groups 
are. Q-measures for any node are zero. Note that the standardized betweenness centrality 
(Wasserman & Faust, 1994, p.190) of any node is the same in each group, but not zero. Indeed, 
betweenness centrality may be defined loosely as the number of times a node needs a given 
node to reach another node. As a mathematical expression the betweenness centrality of node i, 
is obtained as: 
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where gjk is the number of shortest paths from node j to node k (j,k � i), and gjik is the number of 
shortest paths from node j to node k passing through node i. The main difference between 
betweenness centrality and the Q-measures is that for Q-measures only shortest paths between 
nodes in different groups are considered. Standardized betweenness centrality, denoted as b(.) is 
then defined as expression (4) divided by (T-1)(T-2)/2, where T is the number of nodes in the 
network. If the group A in the complete bipartite graph has m nodes and group B n ones, then the 

betweenness centrality b(aj) is
2 1 ( 1)

. .
( 1)( 2) 2

n n
m n m n m

−
+ − + −

 , where aj denotes any 

element of group A. Similarly, b(bj) is 
2 1 ( 1)

. .
( 1)( 2) 2

m m
m n m n n

−
+ − + −

, where bj denotes any 

element of group B. This example illustrates the difference between betweenness centrality and 
the Q-measures. 
 
 
 
Stars 
 
     Case I: one group consists of the center. Then Q = 0 for all nodes, hence also QNET = 0. 

 

 
 
 
 

Figure 4:  A star (case I) 
 

     Case II: one group consists of one satellite while the other group consists of the center and all 
other satellites.  If this singleton is denoted as b1, a1 is the central actor and aj the other ones (j = 
2, .. ,m), then Q(b1) = 0, Q(a1)= 1 and Q(aj) = 0, j = 2, …,m. Here QNET = m/m = 1 
 
 
     As a final example we consider two stars where the central actors are connected. The central 
actor of one star is denoted as a1, while the other ones are aj (j = 2, …, m); the central actor of the 
other star is b1, while the other ones are denoted as bk (k = 2, .., n). Here Q(a1) = Q(b1) = 1, while 
all other Q-values are zero.  
 

In this case QNET = 
2
1

m n
m n

+ −
+ −

, which is slightly less than one. 
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Figure 5:  A star (case II with m = 5) 
 

 
 

 
 
 
 

Figure 6:  Two connected stars (with m = n = 3) 
 

 
Two small co-author networks 
 

In this section we present to small examples of real co-author networks. We calculate Q-
measures and compare with some other network measures. The first example is a co-author 
network taken from JASIST, the second one is taken from the proceedings of the 8th ISSI 
conference. 
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A first co-author network 
 
    JASIST 55(10), 2004 contains a special topic session: document search interface design for 
large-scale collections. One of the articles in this section is written by a group of researchers from 
the University of Sheffield (UK) in collaboration with a Swedish colleague. Full bibliographical 
details of this article are shown in Table 3. We will refer to this article in short as CLIRS (for 
Cross-Language Information Retrieval System). 
 
 
Table 3. Bibliographic details of the studied articles 
 
Daniella Petrelli, Micheline Beaulieu, Mark Sanderson, George Demetriou, Patrick Herring, and 
Preben Hansen (2004). Observing users, designing Clarity: a case study on the user-centred 
design of a cross-language information retrieval system. Journal of the American Society for 
Information Science and Technology, 55(10): 923-934. 
 
The following references of this article are used in the co-author graph. 
 

• Lisa Ballesteros, and W. Bruce Croft (1998). Resolving ambiguity for cross-language 
retrieval. In W.B. Croft, A. Moffat, C.J. van Rijsbergen, R. Wilkinson, & J. Zobel (Eds.), 
Proceedings of the 21st Annual International ACM SIGIR Conference on Research and 
Development in Information Retrieval (ACM SIGIR ’98) (pp. 64-71). Melbourne, Australia: 
ACM. 

 
• Zoë Bathie, and Mark Sanderson (2001). iCLEF at Sheffield. In C. Peters (Ed.), Working 

notes for the CLEF 2001 Workshop (pp.215-217), Darmstadt, Germany: ERCIM. 
 

• Micheline Beaulieu, and Susan Jones (1998). Interactive searching and interface issues 
in the Okapi best match probabilistic retrieval system. Interacting with Computers, 10, 
237-248. 

 
• Daniella Petrelli, Per Hansen, Micheline Beaulieu, and Mark Sanderson (2002). User 

requirement elicitation for cross-language information retrieval. The New Review of 
Information Behaviour Research, 3, 17-35. 

 
• Daniella Petrelli, George Demetriou, Patrick Herring, Micheline Beaulieu, Mark 

Sanderson (2003). Exploring the effect of query translation when searching cross-
language. In C. Peters, M. Braschler, J. Gonzalo, & M. Kluck (Eds.) Advances in cross-
language information retrieval: Results of the CLEF 2002 Evaluation Campaign, Springer 
Lecture Notes in Computer Science LNCS 2785, Berlin: Springer. 

 
• Mark Sanderson, and W. Bruce Croft (1999). Deriving concept hierarchies from text. 

Proceedings of the 22nd Annual International Conference on Research and Development 
in Information Retrieval (ACM SIGIR ’99) (pp. 206-213), Berkeley, CA: ACM. 

 
 

The network shown in Figure 7 depicts the largest connected component of the co-author 
graph of all references in CLIRS. It is clearly dominated by the authors of CLIRS and some 
colleagues from the University of Sheffield. Scientists are represented by an abbreviation of their 
names. They are connected if they occur as co-author in at least one reference. Bibliographic 
details of these references are given in Table 3. Authors in this graph belong to two groups. 
Either they have a Sheffield address in at least one of these references used for our study, or 
they have not. The first group will be referred to as the Sheffielders (the bold ones in Fig.7), the 
other one the non-Sheffielders (script in Fig.7). 
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Figure 7:   Co-authorship network of Sheffielders and non-Sheffielders 

 
    A glance at Figure 7 shows that this co-author network is dominated by the Sheffielders. For 
this study, however, we are not interested in the phenomenon of dominance, but in bridges 
between the two groups. Table 4 gives the details, following Flom et al. (2004), for the calculation 
of the Q-measure. Note that also here Q1 = Q2. 
 
Table 4. Table used for the calculations of the Q-measure.  
 

 MB DP MS GD PHe ZB 
SJ --- MB MB MB MB MB - MS 

WBC MS MS --- MS MS MS 
LB WBC - MS WBC - MS WBC WBC - MS WBC - MS WBC - MS 

PHa --- --- --- MB ; DP ; MS MB ; DP ; MS MS 
 

 
     Using Table 4 and formulas (1),(2) yields the following Q-measures: Q(Sanderson) = 19/30, 
Q(Croft) = 6/18, Q(Beaulieu) = 17/60, Q(Petrelli) = 1/30, Q(Demetriou) = Q(Herring) = Q(Bathie) = 
0, Q(Jones) = Q(Balesteros) = Q(Hansen) = 0. 
 
    Clearly, among the Sheffielders, George Demetriou, Patrick Herring and Zoë Bathie play no 
role at all as bridges between the two groups. The same is true for the non-Sheffielders Susan 
Jones, Lisa Balesteros and Per Hansen. Daniella Petrelli has a small Q-value, while Micheline 
Beaulieu and especially Mark Sanderson play important roles as bridges between the two groups. 
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Similarly among the non-Sheffielders W. Bruce Croft is the main bridge. Note that his role as a 
bridge is completely derived from being a co-author of someone belonging to the Sheffield group 
as well as being a co-author of someone not belonging to the Sheffielders. For this example QNET 
= 101/180. 
 
     For comparison’s sake we add the values for some classical centrality measures.  
 
Degree centrality of a node is the number of ties this node has. Denoting this measure as d, gives 
(in decreasing order): d(Sanderson) = 7, d(Beaulieu) = 6, d(Petrelli)=5, d(Herring) = d(Demetriou) 
= 4, d(Hansen) = 3, d(Croft) = 2, d(Jones) = d(Bathie) = d(Balesteros) = 1 
 
Closeness centrality of a node is calculated in two steps. First, one determines the sum of all 
distances (= lengths of shortest paths) to all other nodes. Then the standardized closeness 
centrality is equal to the number of nodes minus one, divided by this sum of distances. Values are: 
c(Sanderson) = 0.82, c(Beaulieu) = 0.69, c(Petrelli)= 0.64, c(Herring) = c(Demetriou) = 0.60, 
c(Hansen) = 0.56, c(Croft) = 0.53, d(Bathie) = 0.47, c(Jones) = 0.43, c(Balesteros) = 0.36. Note 
that in this example closeness centrality just refines degree centrality. 
 
     Finally we calculated the normalized betweenness centrality, denoted as b, in this network. 
We find: b(Sanderson) = 34/54, b(Beaulieu) = 13/54, b(Croft) = 2/9, b(Petrelli) = 1/54, b(Herring) 
= b(Demetriou) = b(Hansen) = b(Jones) = b(Bathie) = b(Balesteros) = 0. In this simple case 
betweenness centrality gives almost the same ranking as the new Q-measure, only Beaulieu and 
Croft switched places. Moreover, some values and ratios between values are different.  
 
A second co-author network 
 
     As a second real-life application we study the co-authorship network involving UNSW authors, 
who have an article or poster publication in the Proceedings of the 8th ISSI conference (Davis & 
Wilson, 2001).  
 
     From July 16 to July 20, 2001 the 8th International Conference on Scientometrics and 
Informetrics was held at the University of New South Wales (UNSW), Sydney, Australia. Its two 
volume conference proceedings contains all announced talks and posters. For this example we 
consider the connected component in the co-author graph of these proceedings containing Mari 
Davis and Concepción S. Wilson, its editors and members of the Bibliometric & Informetric 
research Group (BIRG) of the University of New South Wales. Full bibliographic details of the 
articles whose authors are included in this graph are shown in Table 5. 
 
Table 5. Bibliographic details of the studied articles 
 
All articles and posters are taken from: 
 
Proceedings of the 8th International Conference on Scientometrics & Informetrics (two volumes). 
Mari Davis and Concepción S. Wilson, editors. Published by the Bibliometric & Informetrics 
Research group (BIRG), University of New South Wales, Sydney, Australia, 2001. 
 
Articles 
 

• Sri Hartinah, Mari Davis, Amru Hydari and Philip Kent. Indonesian nutrition research 
papers 1979-2000: a bibliometric analysis, pp 225-234. 

 
• William W. Hood and Concepción S. Wilson. Distribution of phrases in the fuzzy set 

literature in the period 1965-1993, pp. 253-263. 
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• Liming Liang, Yongzheng Guo and Mari Davis. How do scientists of different ages 
collaborate in China: the case of computer science and control theory, pp. 395-409. 

 
• Farideh Osareh and Concepción S. Wilson. Iranian scientific publications: collaboration, 

growth, and development from 1985-1999, pp. 499-509. 
 
Posters 
 

• Joanne Orsatti, Concepción S. Wilson and Mari Davis. Disciplinarity explored through the 
emergent domain of consciousness, pp. 865-868. 

 
• L. Sulistyo-Basuki, Zainal Hasibuan, Mustangimah and Sri Hartinah. Studies toward 

subject dispersion in atomic and nuclear energy journals published in Indonesia 1986-
1998 based on subject and citation analysis, pp.883-885. 

 
• Weiping Yue and Concepción S. Wilson. The relationship of two derived measures: 

impact factor and immediacy index, pp. 893-896. 
 
 

 
 

Figure 8: The co-author graph of UNSW contributions 
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     We consider, as a simple example, the following two groups. The first one consists of Mari 
Davis (indicated as MD in the graph), Concepción S. Wilson (CW) and every colleague who has 
co-authored a full article in the proceedings with one of them. These are: Sri Hartinah (SH), Amru 
Hydari (AH), Philip Kent (PK), William W. Hood (WH), Liming Liang (LL), Yongzheng Guo (YG) 
and Farideh Osareh (FO). This group is indicated in bold.  The other group consists of all other 
colleagues in this connected component. They have either collaborated with Mari Davis or 
Concepción S. Wilson on a poster presentation, or have collaborated with someone who has 
collaborated with Mari Davis or Concepción S. Wilson on a full article. This group is indicated in 
script and consists of: Joanne Orsatti (JO), L. Sulistyo-Basuki (LS), Zainal Hasibuan (ZH), 
Mustangimah (M) and Weiping Yue (WY). 
 
     For this study we are only interested in bridges between the two groups. Table 6 gives the 
details, following Flom et al. (2004), for the calculation of the Q-measure. Scientists in the cells of 
this table are situated on a shortest path between the colleagues on top of the row and column.  
 
 
Table 6. Table used for the calculations of the Q-measure.  
 
 CW MD FO WH YG LL SH PK AH 
JO - - CW CW MD MD MD MD MD 
WY - CW CW CW CW – 

MD 
CW -
MD 

CW -
MD 

CW -
MD 

CW -
MD 

LS SH -
MD 

SH SH-MD-
CW 

SH – MD - 
CW 

SH-MD SH -
MD 

- SH SH 

ZH SH -
MD 

SH SH-MD-
CW 

SH – MD - 
CW 

SH-MD SH -
MD 

- SH SH 

M SH -
MD 

SH SH-MD-
CW 

SH – MD - 
CW 

SH-MD SH -
MD 

- SH SH 

 
 
     Clearly, most colleagues do not play a bridging function in this graph. This is, in particular true 
for all members of the second group, as they are all directly connected to a member of the first 
group. Hence: Q(FO) = Q(WH) = Q(YG) = Q(LL) = Q(PK) = Q(AH) = Q(JO) = Q(WY) = Q(LS) = 
Q(ZH) = Q(M) = 0. The other three colleagues do have a bridging function: Q(MD) = 25/40, Q(SH) 
= 24/40 and Q(CW) = 16/40. 
 
     For comparison’s sake we add the degree centrality. Denoting this measure as d, gives (in 
decreasing order): d(MD) = 7, d(SH) = 6, d(CW)=5, d(ZH) = d(M) = d(LS) = d(AH) = d(PK) =3, 
d(LL) = d(YG)= d(JO) = 2, d(FO) = d(WH) = d(WY) = 1. 
 
 
Conclusion 
 
     Q-measures capture the idea of bridges between two groups in a connected undirected 
network. Values for these measures were calculated for building blocks such as line and star 
networks. These theoretical cases provide examples illustrating the difference between these Q 
measures and centrality measures. They also illustrate the difference between Q1 and Q2. The 
small real-world co-author networks that we investigated illustrate the usefulness of this new 
concept. Clearly much more work has to be done on the theoretical side as well, and in particular, 
on the practical side, in order to prove that Q-measures really capture the notion for which they 
are intended. It would also be useful to have access to a computer program in order to study Q-
measures in larger networks. 
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