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1.1. The world of Brownian machines

1.1 The world of Brownian machines

It is difficult for us, living in a “macroscopic” environment, to imagine
the world at the nanoscale. It is a hostile and restless environment. For a
nanoparticle in a fluid or gaseous medium, fluctuations are omnipresent.
Its energy will continually change in units of kBT , with kB the Boltzmann
constant and T the temperature of the environment. The effects of such
energy fluctuations were demonstrated [1] by the observation of kinesin
molecules climbing the cytoskeletal track in a juddering motion (Fig. 1.1).
The motion of F1-ATPase, a 10 nm small molecular machine that can
pump ions through a membrane by the hydrolysis of ATP molecules (the
molecules that provide the energy in living systems) was captured in a
movie (Fig. 1.2): it rotates, but in a jiggling, seemingly erratic way [2, 3].

It will be obvious that our familiar macroscopic notions of how ma-
chines can convert energy into useful purposes cannot be simply trans-
ferred to the nanoworld. In fact, Nature already shows us very efficient
alternative methods to operate on the nanoscale. The intertwinement
between the current advances in nanotechnology and the growing un-
derstanding of biological systems on the molecular scale, is discussed by

Figure 1.1: The step-like motion of kinesin molecules in the body is subject
to random fluctuations.
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Chapter 1. Introduction

Figure 1.2: Upper figure: F1-ATPase is a naturally occurring rotating molec-
ular motor. It works as a pump for ions through a membrane. Its driving
force is chemical, through the hydrolysis of ATP. Our interest in this molec-
ular motor lies in its environment (in the cytoplasm, subject to fluctuations),
its construction (rotational, and through a biological membrane), its physical
characteristics (size of the order of 10 nm) and dynamical properties (rota-
tional frequency of the order of 100 Hz). Lower figure: Sequential images of a
rotating actin filament attached to the γ-subunit in α3β3γ subcomplex (from
[2]).
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1.1. The world of Brownian machines

Hänggi and Marchesoni in their very recent review paper [4] on artifi-
cial Brownian motors: Nanotechnology has been intricately linked with
biological systems since its inception. Fascinated by the complexity and
smallness of the cell, Feynman [5] challenged the scientific community to
“make a thing very small which does what we want”. In his visionary
response, Drexler [6] proposed to focus on protein synthesis as a pathway
for creating nanoscale devices. Both Feynman and Drexler’s propositions
have been met with much skepticism as accurate manipulations at the
nanoscale were deemed impossible. However, in view of the recent ad-
vances in systems biology [7], cellular mechanisms are now being cited
as the key proof of the nanotechnological viability of devices with atomic
precision. In spite of their established complementarity, a fundamental
difference between systems biology and nanotechnology is their ultimate
goal. Systems biology aims to uncover the fundamental operation of the
cell in an effort to predict the exact response to specific stimuli and ge-
netic variations, whereas nanotechnology is chiefly concerned with useful
design. Manufacturing nanodevices through positional assembly and self-
assembly of biological components available at the cellular level is the goal
of the so-called biomimetic approach – as opposed to the inorganic ap-
proach aimed at fabricating nanomechanical devices in hard, inorganic
materials (e.g., using modern lithographic techniques, atomic force and
scanning tunneling microscopy, etc). Nature has already proven that it
is possible to engineer complex machines on the nanoscale; there is an
existing framework of working components manufactured by Nature than
can be used as a guide to develop our own biology inspired nanodevices. It
is also true that the molecular machinery still outperforms anything that
can be artificially manufactured by many orders of magnitude. Never-
theless, inorganic nanodevices are attracting growing interest as a viable
option due to their potential simplicity and robustness, without forgetting
that inorganic nanodevices may provide additional experimental access to
the molecular machinery itself. With regard to the inorganic approach
to nanodevices, Hänggi and Marchesoni, in the same review, also put
forward three interesting main assumptions: (1) That, in view of the
most recent developments on nonequilibrium thermodynamics, the sci-
ence of nanodevices, regardless of the fabrication technique, is inseparable
from the thermodynamics of microscopic engines; (2) That the fabrication
techniques on the nanoscales become more and more performing following
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Chapter 1. Introduction

the trend of the last two decades; (3) That a better understanding of the
molecular machinery can help devise and implement new transport and
control mechanisms for biology inspired nanodevices. In other words, we
bet on a two-way crossfertilization between the biomimetic and the inor-
ganic approach. These main assumptions also form the premises of our
own investigations in the world of nanomachines. As an illustration of
the rapid advances in nanotechnology, we mention the very recent report
[8] of the construction of an array of anchored nanosized rotors on a gold
surface, see Fig. 1.3.

The quintessential example of such a nanomachine operating under
the influence of fluctuations is the Brownian motor. Such a device ex-
ploits unbiased thermal fluctuations to drive directed motion. Brownian
motion was first detected in 1827 by botanist Robert Brown while exam-
ining pollen grains and the spores of mosses and Equisetum suspended in
water under a microscope. Brown observed minute particles within vac-
uoles in the pollen grains executing a continuous jittery motion. These
particles made a random walk, but on average did not show systematic
displacement. Albert Einstein, in one of the landmark papers [9] he
wrote in his annus mirabilis (1905), laid the theoretical foundations of
the description of Brownian motion. The possibility to attain directed
motion, or concomitantly, to gain useful work out of unbiased random
fluctuations, was first raised by von Smoluchowski in 1912 [10] and was
later popularized and extended by Feynman [11].

In their thought experiment, they considered a paddle rigidly con-
nected through an axle with a so-called ratchet, resembling a circular
saw with asymmetric sawteeth (Fig. 1.4). The device is imagined to be
placed in a gas at thermal equilibrium. Random collisions with the gas
molecules would then cause the device to exhibit rotational Brownian
motion. Then, a pawl is added to the ratchet configuration, which seems
to block the rotation in one sense, hence opening the potential of gen-
erating systematic rotational motion in one direction. If a small load is
attached via a string to the axle, work could be performed, lifting the
load against gravity while the string rolls up. Obviously, this mechanism
contradicts the laws of thermodynamics. However, there is something
fundamentally wrong in our predictions. The clue is in the thermal mo-
tion of the pawl itself, which is also subject to collisions with the gas
particles. Every now and then, the pawl lifts itself up and the sawteeth

6



1.1. The world of Brownian machines

Figure 1.3: (a) STM image of single molecular rotor at the elbow position.
(b) Bright spot found at the rotation center after the molecule observed in (a)
was removed during scanning. (c) Top view and (d) side view of the optimized
adsorption configuration of a (t-Bu)4-ZnPc molecule on the released Au(111)
surface. (e) Top view and (f ) side view of the optimized configuration of a
(t-Bu)4-ZnPc molecule adsorbed on the Au(111) surface via a gold adatom.
The molecular formula of (t-Bu)4-ZnPc is C48H48N8Zn. From [8].
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Figure 1.4: The ratchet and pawl mechanism.

can freely travel underneath. A detailed analysis of the probabilities for
the ratchet to move forward and backward, when the paddle and ratchet
are surrounded by gases at equal temperature, shows that the average
rotation over time is zero. In spite of the built in asymmetry, no pref-
erential direction of motion is possible. Feynman however goes one step
further in considering the case that the gas around the paddles is in a
box at temperature T1, while the ratchet and pawl are in contact with a
different bath (e.g., another gas in a box) at temperature T2 �= T1. Such
conditions do produce systematic rotation in one direction (the sense is
determined by the sign of T1 − T2) and lifting a small load, or doing
useful work, becomes possible. Note that here there is no violation of the
second law of thermodynamics as we extract work from heat baths that
are not at equilibrium with each other. We also mention the report of a
misconception in the analysis of Feynman [12].

Ending our short discourse on the historic perspective, we wish to
cite some landmark papers that appeared in the 1993-1994 period on
the subject of directed transport and Brownian motors: Magnasco [13],
Ajdari and Prost [14], Astumian and Bier [15], Bartussek et al. [16],
Doering et al. [17], Prost et al. [18], Rousselet et al. [19]. After that,
there was an outburst of work on the subject, for which we refer to some
excellent review papers, and references therein [20, 21, 22, 4].
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1.2. Outline of the thesis

Returning our attention to the basic concept of the Brownian motor,
we note that in addition to its operation in an environment of unbiased
random fluctuations, its key attribute lies in the breaking of underlying
symmetries, more specifically

1. the symmetry of detailed balance, governing thermal equilibrium
dynamics,

2. the spatial symmetry.

It would lead us too far to summarize the multiplicity of theoretical, arti-
ficially realized or naturally occurring possibilities that conform to these
prescriptions. We only mention the two most cited paradigms: the flash-
ing and rocking ratchets [23], in which an external space-periodic but
space-asymmetric forcing using a ratchet-like potential acts on a parti-
cle in a viscous environment. Theoretical models and solution methods
based on Langevin-type equations (or the Fokker-Planck equation for the
probability distribution) have become standard tools in nonequilibrium
statistical physics. At variance however with the microscopically exact
description of the fluctuations we present in subsequent chapters of this
thesis, these models introduce an ad-hoc Gaussian (white or colored)
noise.

Aside from the well-known Brownian motor, recent spectacular de-
velopments in nanotechnology have spurred intensive research in other
functionalities. In the realm of mechanical devices, wheels, ratchets,
pivots, shafts, barrels, which can function as gates, gears, switches, ac-
tuators, pedals, elevators, muscles, rotors, gyroscopes etc. have been
reported [24, 25, 26, 27]. Another concept of particular interest is that
of the Brownian refrigerator [28]. Such a device shows the potential to
transport heat away from a hot region or to cool down a small compart-
ment, akin in functionality to macroscopic heat pumps and refrigerators,
but entirely different in its underlying mechanism.

1.2 Outline of the thesis

The work presented in Chapter 2 is the study of a new type of Brownian
motor. The objective was to calculate the characteristics a of three-
dimensional motor with convex constitutive parts using a perturbational
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Chapter 1. Introduction

solution of the Boltzmann equation. Special emphasis was on obtaining
estimates of the resulting sustained velocity for parameter values that
correspond with physically realistic systems, in particular for nanoscale
devices. The Brownian motor in question belongs to the category of
thermal Brownian motors. Recollecting the discussion on the breaking
of underlying symmetries in the previous section, this type of Brownian
motor breaks detailed balance through the presence of its constitutive
parts in separate heat baths at different temperature. The motion of the
device is along a linear track. The necessary breaking of spatial sym-
metry is then accomplished through the asymmetry of the shape of the
parts with respect to the remaining free direction of motion. Interac-
tions with the heat bath are microscopically described by the collisions
of the individual gas particles with the surface of the motor. Under the
assumption of molecular chaos, the probability of the motor subjected
to these interactions to assume a particular momentary velocity, can be
described by a master-Boltzmann equation. The solution of this Boltz-
mann equation is through the calculation of the moments of the velocity,
the first moment under stationary state conditions effectively represent-
ing the average sustained velocity. Only a perturbational solution in a
small parameter given by the ratio of masses of a gas particle and the
motor is attainable.

Various three-dimensional shapes for the parts were considered, along
with the relative positioning of the parts. In addition to predictions of the
friction coefficient and the diffusion coefficient based on entirely micro-
scopic derivations, orders of magnitude were obtained for the predicted
net velocity. As an example, for a motor consisting of cone-shaped silica
units of size 20 nm, one obtains a drift speed of about 0.1μm/s when
subject to 0.1 K temperature difference in a gaseous environment.

In Chapter 3, we present the principal results of our study of a rotating
thermal Brownian motor. A partial motivation for this work was that
rotational motion is localized and possibly easier to realize than linear
motion. The rotational Brownian motion is only similar to the linear
Brownian motion described in Chapter 2 when the axis of rotation is far
removed from the body of the motor. When the axis in close to, or in
the interior of the body, the characteristics of the device were found to
depend in an intriguing way on the location of the axis. While for the
linear case the effect of the requirement of spatial asymmetry on concrete

10



1.2. Outline of the thesis

shapes was rather obvious and predictable, this was certainly not the case
for the rotational setup. In the latter, the chirality of the shape of the
motor plays a key role. Under the assumption of a homogeneous interior,
we arrived at an optimal shape for the motor parts that is far from trivial.

The analysis also here was entirely analytical, starting from the mi-
croscopic interactions of the motor with the environment. The obtained
solutions for the dynamical behavior were in the form of moments of the
angular velocity of the rotor. With physical parameters corresponding
to small proteins we found typical sustained rotation frequencies of kHz
for a 0.1 K temperature gradient.

As mentioned already, the concept of a nanoscale Brownian cooling
device has exciting technological potential. We combined this concept
with the introduced Brownian rotor setup, see Chapter 3 for the central
results. The idea is simple: applying a torque on the rotor consisting of
two chiral parts in separate gas compartments at equal temperature, will
produce a heat flux from one container to the other. This phenomenon
can be explained in terms of Le Chatelier’s principle: a system in equilib-
rium that is externally perturbed will generate processes that counteract
the original perturbation. This is similar to the effect of moving a fer-
romagnetic core into a coil. According to Lenz’ law, currents will be
induced in the coil, such that the resulting magnetic field will expel the
core, hence counteracting the original disturbance. Other well-known ex-
amples of this principle are in its application to electro-thermal devices,
displaying the Peltier, Seebeck and Thompson effects. The property that
a Brownian motor can be turned into a Brownian refrigerator is, at least
in the regime of linear response, a direct consequence of the Onsager
reciprocity relations: if a temperature gradient generates motion, an ap-
plied force will generate a heat flux. The rectification of nonequilibrium
thermal fluctuations provide the driving mechanism for Brownian refrig-
eration. The latter become more prominent, and so do the resulting
motor and cooling functions, as the apparatus becomes smaller.

Apart from the described cooling flow, other currents appear while op-
erating the Brownian refrigerator. There will be Joule dissipation when
the motor is turned against a viscous medium, causing both gases to heat
up. Fortunately, this frictional heating is proportional to the square of the
torque’s magnitude, while the cooling flux is proportional to the torque.
This consideration leaves open a window of small torques that allows for
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Chapter 1. Introduction

one reservoir to cool down. When a temperature gradient is achieved, an
opposite flow, transporting heat from the hot to the cold compartment,
in accordance with Fourier’s law of heat conduction, will also inevitably
appear, even if we would succeed in adiabatically enclosing the two com-
partments and minimizing the thermal conductivity of the rotor. This
heat conduction arises solely from the dynamic interactions of the rotor
with both gases. The crucial comparison of distinct heat flows (cooling,
dissipative and conductive) and the specific role of the magnitude of the
torque was examined in detail and led to additional ways to optimize the
device’s performance. These optimizations predict, for a nanoscale de-
vice, net cooling rates of the order of femtojoules per second. A parallel
setup of multiple nanocoolers would enhance the cooling power accord-
ingly. Similarly, the small sustainable temperature gradient of one device
could be utilised to attain large temperature differences over macroscopic
distances by a serial line-up of the devices.

For the work presented in Chapter 4 we turned to another remarkable
feature of asymmetric Brownian particles: they display directed motion
in an external unbiased and symmetric time-periodic force field. Under
the influence of the external field, a Brownian particle will continuously
be out of thermal equilibrium, hence detailed balance is broken. We intro-
duced a generic formalism for the dynamical (linear or rotational) behav-
ior that enabled us to quantify the net particle velocity. This formalism
couples the deviation of the second moment of the particle’s velocity from
thermal equilibrium with the time evolution of the first moment of the
velocity. The intrinsic asymmetry of the particle appears in this formal-
ism as one dimensionless parameter. First order analytical expressions
for the net velocity in terms of this asymmetry, the amplitude of the ex-
ternal forcing and the period of force modulation were derived for several
force profiles and compared with numerical results. Event-driven molec-
ular dynamics simulations of a rotational setup in an ideal gas setting
confirmed the validity of our formalism. Consequently, we can predict
that drift speeds comparable to thermal speeds are feasible for nanosized
asymmetric Brownian particles under the described ratchet operation.

In Chapter 5 we revisit the chiral Brownian rotor and heat pump,
introduced in Chapter 3. In addition to a comprehensive theoretical
derivation in two and three spatial dimensions, we report a detailed study
of the parameters, in particular the essential chiral shape and its opti-

12
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mization. We also present recent molecular dynamics simulation results
that substantiate our theoretical predictions for the dynamic and cooling
behavior of the chiral device.
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–Abstract–

We extend the analysis of a thermal Brownian motor reported
in Phys. Rev. Lett. 93, 090601 (2004) by C. Van den Broeck,
R. Kawai, and P. Meurs to a three-dimensional configuration.
We calculate the friction coefficient, diffusion coefficient, and
drift velocity as a function of shape and present estimates
based on physically realistic parameter values.
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2.1. Introduction

2.1 Introduction

Spectacular advances in bio- and nanotechnology make it possible, not
only to measure or observe, but also to manipulate and construct objects
at a very small scale. At the same time there is growing interest in
techniques which can add functionality. In particular, the development
of molecular engines is a theme which has received great attention over
the last two decades. The appearance of fluctuations in small systems
has led to new concepts for characterizing or operating such devices,
exploiting rather than fighting these very same fluctuations.

These so-called Brownian motors [21, 22] have an additional the-
oretical interest through their relation with the old issue of Maxwell
demons and the second law of thermodynamics. In return, this theoreti-
cal connection allows to make statements on the efficiency of such engines
[29, 30] or to transform them from engines into mini-refrigerators [28, 31].
Most of the studies on Brownian motors start with an ad hoc separation
of systematic and noise terms, based on linear Langevin equations. This
approach however offers little insight into the origin of the rectification
of random fluctuations. As pointed out by van Kampen [32], the recti-
fication of nonlinear fluctuations cannot be addressed starting from the
standard Langevin description with additive Gaussian white noise. In
[33, 34, 35, 36] a theoretical and numerical study of a thermal engine is
presented in which rectification arises at the level of nonlinear response.
The analysis therein starts from a microscopic description based on New-
ton’s laws of motion. There is another related distinct feature of the
model: the asymmetry of the thermal engine lies in the geometry of the
motor itself, in contrast to the asymmetry imposed by the application
of an external potential, appearing in the so-called flashing and rocking
ratchet models.

The characteristic properties of the engine, such as the friction coef-
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ficient, the speed and the diffusion coefficient, are calculated exactly in
[33, 34, 35, 36] and are found to be in excellent agreement with the results
from hard disk molecular dynamics. However, the results are reported in
dimensionless units, in part due to the fact that the analysis was, for rea-
sons of simplicity and for comparison with molecular dynamics, limited to
the case of two dimensions. In view of the technological interest of motors
in bio- and nanotechnology, we report here a full and detailed analysis
of the three-dimensional version. Our analysis is particularly welcome
in view of the spectacular developments in the nanotechnology of chemi-
cal, mechanical and electronic devices, including wheels, ratchets, pivots,
shafts, barrels, which can function as gates, gears, switches, actuators,
pedals, elevators, muscles, motors, rotors, gyroscopes etc.[24, 25, 26, 27].

This paper is organized as follows. First, the model, notations, and
working hypothesis are introduced in section 2.2. The calculation method,
based on the kinetic theory of gases, is presented in section 2.3, with a
discussion of the analytical solution following in section 2.4. Finally, in
section 2.5 we report and discuss the results for the friction coefficient,
diffusion coefficient, and drift velocity as a function of shape and present
estimates based on physically realistic parameter values.

2.2 The model

The model presented in [33] reproduces in a simplified way the principle
ingredients of Feynman’s ratchet and pawl mechanism [11]: a tempera-
ture difference between two reservoirs and the presence in at least one
reservoir of an asymmetric object. The construction, extended to the
case of three spatial dimensions, is as follows. We consider any number
of reservoirs (denoted by index i), each containing a gas at equilibrium at
a temperature Ti. Fig. 2.2 gives a schematic picture of the two-reservoir
system. Solid objects with no internal degrees of freedom, called ‘motor
units’, are located inside the containers. These objects are coupled rigidly
to each other, so that the motor moves as a single entity, with total mass
M , along a given straight axis, corresponding to its single translational
degree of freedom. For simplicity, we disregard any rotational degree of
freedom (for a detailed discussion of this case, see [31]).

Due to collisions with the gas particles (mass m), the motor will
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2.2. The model

T1

T2

Figure 2.1: The two-reservoir model of the thermal engine: two
solid objects are confined in separate containers (scaled down for
illustration purposes) that contain gases at temperatures T1 and
T2. The objects are assembled with a rigid connection. The en-
semble can move freely along the z-axis.
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change its velocity V (t) in the course of time t. The statistics of these
collisions can be described under the assumption of molecular chaos,
which is valid when the gases are in the high Knudsen number regime
and the containers are large enough to avoid acoustic and other boundary
effects. In addition, the shape of the units’ surfaces must be such that no
re-collisions with the motor occur, namely for convex and closed shapes.
With these assumptions, the precollisional velocities are random and un-
correlated. Hence the time evolution of the probability P (V, t) that the
motor has speed V at time t can be described by a master equation:

∂P (V, t)

∂t
=

∫
dV ′ [W (V |V ′)P (V ′, t) − W (V ′|V )P (V, t)] . (2.1)

Here W (V |V ′) represents the transition probability per unit time for the
motor to change its speed from V ′ to V .

2.3 Kinetic theory

In this section we study the collisions of gas particles from either temper-
ature reservoir with a motor part and derive the resulting total transition
probability W (V |V ′) for the motor to change speed from V ′ to V . We
introduce a Cartesian coordinate system (x, y, z) where the z-axis points
along the free direction of movement of the motor.

2.3.1 Conservation rules

A gas particle will, upon collision with a motor unit, undergo an in-
stantaneous change of velocity from �v′ = (v′

x, v
′
y, v

′
z) before collision to

�v = (vx, vy, vz) afterwards. Due to conservation of momentum along the
free z-direction, one has:

mv′
z + MV ′ = mvz + MV. (2.2)

In addition, when the collision is perfectly elastic, the total energy is
conserved:

1

2
MV ′2 +

1

2
mv′

x
2
+

1

2
mv′

y
2
+

1

2
mv′

z
2

=
1

2
MV 2 +

1

2
mv2

x +
1

2
mv2

y +
1

2
mv2

z . (2.3)
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2.3. Kinetic theory

We will also suppose that the collision is described in terms of a (short-
range) central force, implying that the component of the momentum of
the gas particle along any direction tangential to the surface of the motor
is conserved. The orientation of the tangent plane to the motor surface is

�e⊥

�e1,‖

�e2,‖
dS

ϕ

θ

Figure 2.2: The orientation of an infinitesimal surface element
dS is represented by an outer-pointing unit normal vector �e⊥ and
determined by the spherical coordinates ϕ and θ. The polar angle
θ is measured from the z-axis, which is chosen as the free direction
of movement of the motor. x, y complete the Cartesian coordinate
system and the azimuthal angle ϕ starts from the x-axis. Two
orthogonal unit vectors �e1,� and �e2,� determine the plane that is
tangent to the motor unit in dS.

determined uniquely by a normal outward vector on an infinitesimal ele-
ment dS of the surface at the point of collision. In spherical coordinates,
this normal vector is given by

�e⊥
∣∣
cart

.
= (sin θ cos ϕ, sin θ sin ϕ, cos θ), (2.4)

with θ the polar angle from the z-axis (0 � θ � π) and ϕ the azimuthal
angle in the xy-plane from the x-axis (0 � ϕ < 2π), cf. Fig. 2.3.1.
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Chapter 2. Rectifying the thermal Brownian motion. . .

We also introduce two mutually perpendicular unit vectors within the
tangent plane:

�e1,�
.
= (cos θ cos ϕ, cos θ sin ϕ,− sin θ), (2.5)

�e2,�
.
= (− sin ϕ, cos ϕ, 0), (2.6)

so that we can write the conservation of tangential momentum as

�v′ · �e1,� = �v · �e1,�, (2.7)

�v′ · �e2,� = �v · �e2,�. (2.8)

Solving the conservation rules [Eqs. (2.2,2.3,2.7,2.8)] for V, vx, vy, vz leads
to the following expression for the postcollisional speed V of the motor
in terms of the precollisional speeds:

V = V ′ (2.9)

+
2 m

M
cos2 θ

1 + m
M

cos2 θ
(v′

x tan θ cos ϕ + v′
y tan θ sin ϕ + v′

z − V ′). (2.10)

2.3.2 Transition probability

The motor is subject to random collisions by gas particles form the dif-
ferent reservoirs i. The particle density and velocity distribution in reser-
voir i are denoted by ρi and φi(vx, vy, vz), respectively. The contribution
dWi(V |V ′) to the total transition probability W (V |V ′), coming from col-
lisions on an infinitesimal surface element dSi of the motor unit in reser-
voir i, can then be found by considering the number of gas particles that
collide with this surface element dSi in a unit time step:

dWi(V |V ′) = dSi

∫ +∞

−∞
dv′

x

∫ +∞

−∞
dv′

y

∫ +∞

−∞
dv′

z

× H[( �V ′ − �v′) · �e⊥]|( �V ′ − �v′) · �e⊥|ρiφi(v
′
x, v

′
y, v

′
z)

× δ
[
V − V ′

− B(θ)(tan θ cos ϕ v′
x + tan θ sin ϕ v′

y + v′
z − V ′)

]
. (2.11)

Here H represents the Heaviside function, δ the Dirac distribution, and

B(θ) =
2 m

M
cos2 θ

1 + m
M

cos2 θ
. (2.12)
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2.3. Kinetic theory

The Dirac delta distribution selects those particles that produce the re-
quired postcollisional speed V , following the collision rules [Eq. (2.10)].
Assuming that the velocity distribution of the gas particles is Maxwellian
at the reservoir temperature Ti,

φi(vx, vy, vz) =

(
m

2πkBTi

)3/2

exp

[
−m(v2

x + v2
y + v2

z)

2kBTi

]
, (2.13)

the integrals over v′
x, v

′
y, v

′
z in Eq. (2.11) can be calculated explicitly. The

total transition probability for the motor to change velocity from V ′ to
V in a unit time, is then found by integrating dWi(V |V ′) over the surface
Si of each motor part and summing over all the reservoirs i:

W (V |V ′) =
1

4

∑
i

ρi

√
m

2πkBTi

×
(

(V − V ′)H[V − V ′]
∫

Si,cos θ>0

dSi

+ (V ′ − V )H[V ′ − V ]

∫
Si,cos θ<0

dSi

)(
M

m cos θ
+ cos θ

)2

× exp

[
− m

2kBTi

cos2 θ

(
V ′ +

1

2
(1 +

M

m cos2 θ
)(V − V ′)

)2
]

. (2.14)

We note that in the case of a single reservoir or for multiple reservoirs
at the same temperature, the transition probability satisfies the following
relation:

W (V |V ′)P eq(V ′) = W (−V ′| − V )P eq(−V ), (2.15)

with P eq(V ) the Maxwell Boltzmann distribution for the speed V of the
motor unit (at the temperature of the reservoir(s)). This is in agreement
with the general principle of detailed balance in a system at equilibrium
[37].
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2.4 Solution method

We follow the method of [34, 35, 36] to solve the master equation [Eq. (2.1)]
for the moments of the motor velocity,

〈V n〉 =

∫ ∞

−∞
P (V, t)V ndV. (2.16)

This method is based on the van Kampen 1/Ω expansion [32].

2.4.1 Solution of the master equation

It is convenient to scale the motor velocity V to a dimensionless variable

X =

√
M

kBTeff

V, (2.17)

with the effective temperature Teff to be determined self-consistently from
the condition 〈X2〉 = 1 in steady state operation. We can expand the
integrand in Eq. (2.1) in a Taylor series about X ′:

∂P (X, t)

∂t
=

∞∑
n=1

(−1)n

n!

dn

dXn
{Jn(X)P (X, t)}. (2.18)

Here the ‘jump moments’ are given by

Jn(X) =

∫
ΔXnW (X; ΔX)dΔX, (2.19)

with W (X ′; ΔX) = W (X|X ′) and ΔX = X ′ − X. Using Eq. (2.18) a
coupled set of equations for the time evolution of the moments 〈Xn〉 can
then be constructed:

∂〈Xn〉
∂t

=
n∑

k=1

(
n

k

)
〈Xn−kJk(X)〉, (2.20)

with
(

n
k

)
the binomial coefficients.
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2.4. Solution method

The exact expression for the jump moments Jn(X) is obtained by in-
tegration over ΔX in Eq. (2.19). In terms of parabolic cylinder functions
[38],

Dn(z) =
(
exp[−z2/4]/Γ[−n]

)
×

∫ ∞

0

exp[−zx − x2/2]x−n−1dx (for n < 0), (2.21)

and the Gamma function (Γ), the result reads:

Jn(X) =
2n

√
2π

Γ[n + 2]

(√
M

m

)n

×
∑

i

ρi

√
kBTi

m

(√
Ti

Teff

)n

×
∫

Si

dSi

(
cos θ +

M

m

1

cos θ

)−n

× exp

[
−1

4

m

M

Teff

Ti

X2 cos2 θ

]

× D−n−2

[
1

2

√
m

M

√
Teff

Ti

X cos θ

]
. (2.22)

An exact solution of Eq. (2.20) is not available. We therefore turn to
a perturbational approach in terms of the parameter

ε =
√

m/M. (2.23)

This is consistent with the observation that the mass M of the motor
is expected to be much larger than the mass m of the gas particles.
Even for a motor with dimensions of nanometers operating in a gaseous
environment, ε is of order of 10−3.

The expansion of the parabolic cylinder functions is given by

2−n/2Γ[n + 2] D−n−2(z) = Γ[
n + 2

2
] −

√
2Γ[

n + 3

2
]z

+
2n + 3

4
Γ[

n + 2

3
]z2 − 2n + 3

6
√

2
Γ[

n + 3

2
]z3

+
4n2 + 12n + 11

96
Γ[(2 + n)/2]z4 + O(z5). (2.24)
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Table 2.1: The geometric moments σ2 and σ3 for some basic three-
dimensional shapes. The lowest orders σ2 and σ3 (σ1 = 0) are
tabulated in terms of the total surface area S of the geometry. For
illustrations of the shapes and their parameters, see Fig. 2.4.1.

Shape σ2/S σ3/S Surface S
Disk 1 0 2πr2

Blade 1 0 2lw
Sphere 1/3 0 4πr2

Cone sin α sin α(sin α − 1) πr2(1 + csc α)
Pyramid sin α sin α(sin α − 1) 1

4
nr2 cot π

n
(1 + csc α)

Spherical cap cos 2α+5 cos α+6
3 cos α+9

sin4 α
cos 2α+4 cos α−5

πr2(3 + cos α)/(1 + cos α)

Spherical cone 3 sin3 α−2 cos3 α+2
3 sin α−6 cos α+6

2 sin4 α+cos4α−1
4 cos α−2 sin α−4

πr2 csc α(1 + 2 tan(α/2))

Figure 2.3: Examples of simple three-dimensional geometries that
can be treated analytically. The parameters that determine the
relative areas of the surfaces are indicated in the illustrations.
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2.4. Solution method

Introducing a scaled time τ = ε2t, we find the following expansion for
the equation of the first moment:

∂〈X〉
∂τ

=
∑

i

ρi

√
kBTi

m

[
ε−1

√
Ti

Teff

σ1,i − 2

√
2

π
〈X〉σ2,i

+ ε

(√
Teff

Ti

〈X2〉 −
√

Ti

Teff

)
σ3,i

+
ε2

3

√
2

π

(
6〈X〉 − Teff

Ti

〈X3〉
)

σ4,i

+ ε3

(√
Ti

Teff

−
√

Teff

Ti

〈X2〉
)

σ5,i

]
+ O(ε4). (2.25)

The geometry of the motor is contained in the shape factors σn,i, defined
as:

σn,i =

∫
Si

dSi cosn θ. (2.26)

At this point we remark that the azimuthal angle ϕ has dropped out, and
that the geometric dependency is determined only by the (polar) angle θ
between the surface and the direction of movement. Also note that the
term in ε−1 in Eq. (2.25) is zero by application of Gauss’ theorem:

σ1,i =

∫
Si

dSi cos θ =

∫
Si

dSi�e⊥ · �ez =

∫
Vi

dVi(∇ · �ez) = 0, (2.27)

where the latter integral is over the interior volume Vi of a motor part.
This is consistent with the fact that there is no net macroscopic force
acting on the motor. The net motion that will be revealed below is the
effect of fluctuations only.

Similarly, for the equation of the second moment, one finds the fol-
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lowing expansion:

∂〈X2〉
∂τ

=
∑

i

ρi

√
kBTi

m

[
−4

√
2

π

(
− Ti

Teff

+ 〈X2〉
)

σ2
i

− 2ε

(
4

√
Ti

Teff

〈X〉 −
√

Teff

Ti

〈X3〉
)

σ3
i

+ 2ε2

√
2

π

(
−4

Ti

Teff

+ 5〈X2〉 − 1

3

Teff

Ti

〈X4〉
)

σ4
i

]
+ O(ε3). (2.28)

2.4.2 Linear relaxation

To order ε0, Eq. (2.25) reduces to a linear relaxation law M∂t〈V 〉 =
−γ〈V 〉 with γ =

∑
i γi the sum of linear friction coefficients γi of each

part of the object:

γi = 4ρi

√
kBTim

2π
σ2,i = �iv̄iσ2,i, (2.29)

where �i = mρi is the mass density of the gas, v̄i =
√

8kBTi/(πm) is the
mean gas velocity, and σ2,i is a geometric factor.

2.4.3 Nonlinearity: Steady state directed motion

If a constant temperature difference between the reservoirs can be main-
tained for a time longer than the relaxation time M/γ, the probability
distribution will relax to its steady state value. Restricting ourselves to
the first two moments, we turn to the steady state solution of Eqs. (2.25)
and (2.28). First, from Eq. (2.28) we determine the effective temperature
Teff, which was defined earlier by the condition 〈X2〉 = 1. To lowest order,
ε0, we find that Teff is the weighted average of the reservoir temperatures:

Teff =

∑
i γiTi∑
i γi

=

∑
i ρiσ2,iT

3/2
i∑

i ρiσ2,iT
1/2
i

. (2.30)

Solving Eq. (2.25) to order ε0 leads to a zero average drift speed
〈X〉 = 0. Rectification of the thermal fluctuations occurs at higher levels
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of the expansion and it is necessary to include nonlinear terms. Solving
Eq. (2.25) up to order ε gives us an expression to lowest order for the
average drift speed of the motor:

〈V 〉 =

√
m

M

√
πkBTeff

8M

∑
i ρi(

Ti

Teff
− 1)σ3,i∑

i ρi

√
Ti

Teff
σ2,i

=

√
m

M

√
πkB

8M

∑
i

∑
j ρiρjσ3,iσ2,j(Ti − Tj)

√
Tj

(
∑

i ρi

√
Tiσ2,i)2

. (2.31)

2.5 Results and discussion

2.5.1 Friction and diffusion coefficients

Although not directly related to the main topic of this work, we briefly
pause to discuss the new result for the linear friction coefficient, given
in Eq. (2.29). Together with results from Table 2.1 for the geometric
factors σ2 this result provides the explicit expression for the linear friction
coefficient of corresponding basic shapes. The result for a spherical shape
with radius r,

γ =
4

3
πr2�iv̄i, (2.32)

is in agreement with the result found in [39]. In combination with the
Einstein relation D = kBT/γ, we also obtain the explicit formulas for
the corresponding diffusion coefficients D. As an illustration, numerical
values are given in Fig. 2.5.1 for various shapes of cross section πr2, r =
100 nm. To be concrete, we consider highly diluted argon gas (density
1019 m−3) leading to diffusion coefficients of the order of 3 × 10−4 m2/s,
and corresponding friction coefficients of order 1.5 × 10−17 Ns/m. As
expected, the conical shapes have higher diffusion coefficients and lower
friction as one considers smaller opening angles α.

2.5.2 Equilibrium

When the reservoirs are all at the same temperature, Ti = T , we find
Teff = T , and the distribution of the moments is Gaussian:

〈X〉 = 0, 〈X2〉 = 1, 〈X3〉 = 0, 〈X4〉 = 3, . . . (2.33)
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Figure 2.4: Diffusion coefficients of objects with different geome-
try but identical cross section πr2 (r = 100 nm) in highly diluted
argon gas (1019 m−3 particles, mean free path 2.3 μm) at 299 K
temperature. The geometries are (a) a disk, (b) a sphere, (c) a
cone, (d) a spherical cap, and (e) a spherical cone. See Fig. 2.4.1
for illustrations. For (c,d,e) the shapes and hence the diffusion
coefficients depend on an opening angle α.
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The notion that it is impossible to achieve directed motion (or equiv-
alently, to extract work) from a system in thermal equilibrium is con-
firmed. At least two reservoirs at different temperature are necessary
to break detailed balance and make possible the rectification of thermal
fluctuations.

2.5.3 Asymmetry

The geometry of the motor units enters into the expression of the average
speed via de shape factors σ2 and σ3. In table 2.1, we have reproduced
these quantities for the objects depicted in Fig. 2.4.1. As is clear from
symmetry arguments, the appearance of systematic motion in one direc-
tion requires, apart from non-equilibrium conditions, also the breaking of
the spatial symmetry in the system. One easily verifies from Eq. (2.26)
that

σn,i = 0, n odd, (2.34)

when the surface of a motor element possesses reflection symmetry along
the z-axis, the direction of motion. Consistent with this symmetry obser-
vation we find that the drift speed of the motor in steady state is indeed
zero at lowest order in the perturbation when σ3,i = 0, cf. Eq. (2.31).
It is however interesting to note that reflection symmetry is a sufficient
but not a necessary condition for σ3,i = 0, and hence for obtaining zero
sustained motion (at least in this order of the approximation). Consider
for example a spherical cone, see Fig. 2.5.3. For a specific opening angle
of ≈ 55◦ σ3,i becomes zero, even though there is no reflection symmetry.
A similar discussion can be applied to higher orders corrections in the
ε-expansion (featuring the appearance of the higher shape factors σ5, σ7,
and so on) indicating that there are special shapes which will have a very
low average speed even though there are no immediate symmetry reasons
to expect so.

2.5.4 Temperature gradient

For simplicity we limit the discussion of the drift velocity, in particular in
relation to the applied temperature gradient, to the case of two reservoirs.
Furthermore, the impact of the geometry is most clearly demonstrated
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σ2/S

σ3/S

Figure 2.5: The geometric factors σ2/S and σ3/S as a function of
the opening angle α for a spherical cone, with S the surface area.
While σ2 appears in the expression for the friction coefficient, σ3

relates to the drift speed of the motor. When the geometry of
the surface exhibits symmetry along the z-axis (the direction of
movement), σ3 is zero, and the motor shows no directed motion.
The spherical cone is an example of a class of shapes for which σ3

can become zero, and hence the drift speed (at least to the first
approximation), without however showing reflection symmetry.
For this particular case, σ3 = 0 for α ≈ 55◦.
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T1

T2

T1

T2

Figure 2.6: The drift speed as a function of the temperature differ-
ence ΔT = T1 − T2 between the reservoirs for two configurations
with identical motor units: parallel (solid curves and lower inset)
and antiparallel (dashed curves and upper inset). The units are
cone-shaped (opening angle 30◦) and the motor mass is 1000 kDa.
Both reservoirs are filled with argon gas of same density and T2

is fixed at 299 K. For small ΔT (see insets), the dependence is
parabolic for the parallel setup and linear for the antiparallel
setup. The drift speed is of order nm/s (parallel) and μm/s (an-
tiparallel) for ΔT ≈ 1 K.
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when the motor units have an identical shape in both reservoirs. There
are then two possibilities, namely either the units have the same orienta-
tion (parallel), or they are pointing in opposite direction (antiparallel),
see Fig. 2.5.4 for a schematic representation. For the first scenario, with
σ2,1 = σ2,2 = σ2 and σ3,1 = σ3,2 = σ3, Eq. (2.31) yields:

〈V 〉e =

√
m

M

√
πkB

8M

ρ1ρ2(T1 − T2)(
√

T2 −
√

T1)

(ρ1

√
T1 + ρ2

√
T2)2

σ3

σ2

. (2.35)

For the second scenario, careful consideration of the sign of cos θ in
Eq. (2.26) leads us to write σ2,1 = σ2,2 = σ2 as in the first scenario,
but now when σ3,1 = σ3, it follows that σ3,2 = −σ3. The expression for
the drift speed thus becomes:

〈V 〉o =

√
m

M

√
πkB

8M

ρ1ρ2(T1 − T2)(
√

T1 +
√

T2)

(ρ1

√
T1 + ρ2

√
T2)2

σ3

σ2

. (2.36)

One striking feature of these results is that the drift velocity is scale-
invariant. This is a general property: both σ2 and σ3 scale linearly with
the total surface S of the motor units. As they appear in the denominator
and the nominator respectively in Eqs. (2.35, 2.36), the scale dependence
cancels out. This becomes even more apparent for the particular cases
presented in Table 2.1, where σ2/S and σ3/S are expressed in topological
terms. Note that the scale invariance of the drift speed is only valid with
respect to the scale of the entire motor. The relative proportions of
separate motor units do matter. Note also that scale invariance applies
when disregarding the dependence on the mass M . For comparison with a
physically realistic situation, we assume a constant density of the motor,
so that the drift velocity will decrease with increasing size of an object,
through its 1/M -dependence.

To investigate the departure from the equilibrium state, we consider
small deviations of T1 and T2 about the average T ,

T1 = T +
ΔT

2
, T2 = T − ΔT

2
, (2.37)
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so that for ΔT/T � 1 the drift speeds tend to:

〈V 〉e → − 1

16

√
π

2

√
m

M

ρ1ρ2

(ρ1 + ρ2)2

σ3

σ2

√
kBT

M

(
ΔT

T

)2

, (2.38)

〈V 〉o → 1

4

√
π

2

√
m

M

ρ1ρ2

(ρ1 + ρ2)2

σ3

σ2

√
kBT

M

(
ΔT

T

)
. (2.39)

We note that the respective orientation of the motor elements, parallel
or antiparallel, plays a crucial role. In the first case the sustained average
displacement is always in the same direction (that of −σ3), indifferent of
the sign of ΔT . This was to be expected because there is an additional
symmetry in the system: the interchange of the temperature reservoirs
has no effect. From the point of view of irreversible thermodynamics, this
situation is special since there is no linear relation between the thermo-
dynamic force (the temperature gradient) and flux (the resulting speed
of the motor). For the second case of antiparallel alignment, one observes
the usual situation of linear response between thermodynamic force and
flux [22, 29, 30]: equilibrium is a point of flux reversal, the direction of
net motion reversing with ΔT -inversion.

As an illustration, we reproduce, in table 2.2, explicit values for the
drift speed in the case of a single asymmetric unit, namely a cylindrically
symmetric cone, positioned in antiparallel alignment in the two reser-
voirs under physically realistic conditions. The degree of asymmetry is
described by a single parameter, the opening angle α. The geometric
factors σ2 and σ3 are known analytically (see Table 2.1) and we find the
following simple expression for the drift speed:

〈V 〉 =

√
m

M

√
πkB

8M

ρ1ρ2(T1 − T2)(
√

T1 +
√

T2)

(ρ1

√
T1 + ρ2

√
T2)2

(sin α − 1). (2.40)

The drift speed will become zero for α = 90◦, namely when the cone loses
its asymmetry and reduces to a flat disk. A natural question is whether
there is an optimal opening angle αo that maximizes the drift speed. For

a fixed cross section, one finds αo = sec−1[
√

(1 +
√

5)/2] ≈ 38◦. If, on

the other hand, one assumes that the mass is kept constant, a maximal
speed is reached for an infinitely sharp cone.

Note finally the very strong size-dependence: objects of 20 nm cover
their length 5 times per second, for 5 nm size objects this becomes 1200
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Table 2.2: Values for the drift speed of the motor, as predicted
by theory. Realizations of the motor at different length scales
from micrometers to nanometers are presented. The motor units
are modeled as silica (SiO2) cone-shaped objects, located in two
reservoirs containing argon gas at temperatures 299.0 K and 299.1
K. For constant motor mass, the speed increases as the opening
angle α of the cone decreases.

α = 30◦ α = 5◦ α = 30◦ α = 5◦

Motor
mass Cylinder base Drift speed
(kDa) (nm) (μm/s)
1010 2600 1400 5.2×10−8 9.5×10−8

107 260 140 5.2×10−5 9.5×10−5

106 120 55 5.2×10−4 9.5×10−4

105 63 29 5.2×10−3 9.5×10−3

104 26 14 0.052 0.095
1000 12 6.3 0.52 0.95
100 5.5 2.9 5.2 9.5
10 2.6 1.4 52 95

36



2.6. Conclusion

times per second. To date few artificial linear molecular motors are fabri-
cated, and comparison with our numerical results is not straightforward.
In one rotaxane-based system powered by light [40], a shuttle was moved
1.5 nm with a frequency of 10 kHz (see also [41] for an improvement of
this technique). In [42] explicit numerical values for the drift speed of
particles in a theoretical flashing ratchet are presented as a function of
particles radius. Given an optimized flashing ratchet, a particle of diam-
eter 100 nm can, in principle, drift almost 200 times its own size (19μm)
in every second.

2.6 Conclusion

We have calculated, on the basis of an exact microscopic theory, the prop-
erties of a thermal Brownian motor in a three-dimensional setup. When
detailed balance is broken by the application of a temperature gradient,
a systematic net speed appears, as given in Eq. (2.31). As an example,
for a motor consisting of cone-shaped silica units of size 20 nm, one ob-
tains a drift speed of about 0.1 μm/s when subject to 0.1 K temperature
difference in a gaseous environment. It remains to be seen whether the
predictions of our theoretical analysis (involving various simplifications
such as molecular chaos, elastic and normal interactions between gas par-
ticles and motor, expansion in mass ratio) provide a realistic estimate,
especially for motors operating in a viscous environment.
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–Abstract–

We present the exact analysis of a chiral Brownian motor and
heat pump. Optimization of the construction predicts, for a
nanoscale device, frequencies of the order of kHz and cooling
rates of the order of femtojoule per second.
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Brownian motors have been studied intensively since the early 1990s
[22, 20, 21, 43]. This interest coincided with developments in bioengi-
neering and nanotechnology, where understanding and designing a motor
in the shape of a small biological or artificial device is an important issue.
Most of the motors investigated in this context are powered by chemical
energy. Brownian motors driven by a temperature gradient [10, 44, 33]
have a fundamental appeal, since their operation is directly related to
basic questions such as Carnot efficiency, Maxwell demons and the foun-
dations of statistical mechanics and thermodynamics [12, 45, 46, 30]. The
additional significance of the thermal Brownian motor comes from the
recent observation that it can operate as a refrigerator [28, 47], see also
[48]. In fact, this property is, at least in the regime of linear response, a
direct consequence of Onsager symmetry: if a temperature gradient gen-
erates motion, an applied force will generate a heat flux. This principle
is well known in its application to electro-thermal devices, displaying the
Peltier, Seebeck and Thompson effects [49]. At variance however with
these macroscopic devices, rectification of nonequilibrium thermal fluc-
tuations provide the driving mechanism for Brownian refrigeration. The
latter become more prominent, and so do the resulting motor and cooling
functions, as the apparatus becomes smaller.

Previous models for the Brownian refrigerator assume translational
motion of the engine [28, 47]. This construction obviously poses diffi-
culties in its technological implementation, while the resulting friction
is expected to lower the efficiency. In this letter, we present a chiral
rotational model, in which these problems do not occur, and which has
the extra benefit that the choice of the axis of rotation provides an ad-
ditional parameter that can be optimized. A related question, that will
also be addressed, is the optimal chiral shape of the device. The ob-
served optimized performance is found to be significantly better than in
the translational counterpart.

Since the properties of the Brownian heat pump follow by Onsager
symmetry from those of the Brownian motor, we first focus on the latter.
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Figure 3.1: (a) Schematic representation of the chiral motor (mass
M) rotating as a single unit along the vertical z-axis. Each motor
element resides in a separate compartment, filled with gas parti-
cles (mass m) at temperatures T1, T2 and densities ρ1, ρ2, respec-
tively. (b) The planar shape of one motor part is determined by
the position vector �r(x, y) of its perimeter (the origin being the
axis of rotation). The collision rule Eq. (3.2) is given in terms
of the polar angle ϕ, determining the direction orthogonal to the
perimeter. The properties of the engine are expressed in terms of
the tangential component r� = �r · �e� of �r along the perimeter cf.
Eqs. (3.3, 3.5-3.8). Maximal rotation and refrigeration speed is
attained for one motor unit being the enantiomorph of the other.
The corresponding optimal shape (with unit area) and axis im-
plantation marked by a star, is the spiral form depicted here for
maximum frequency (b) and maximum net cooling power (c).
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The basic construction is represented in Fig. 3.1(a). The engine consists
of two parts linked by a rigid axis (which we take to be the z-axis), around
which the whole construction is free to rotate as a single entity. This
rotational motion is induced, following Newton’s laws, by the collisions
with surrounding gas particles. The question of interest is under which
conditions sustained rotational motion will arise. Following the Curie
principle, the breaking of symmetry plays a crucial role. There are two
obvious symmetries involved: the statistical symmetry of the microscopic
dynamics and the chiral symmetry of the device. If the motor units
are achiral, in the sense that clockwise and counterclockwise rotation
cannot be distinguished, no sustained motion will appear. When both
motor units reside in a single compartment at equilibrium, sustained
rotational motion will not appear, even for chiral motor units, because it
would violate the second law of thermodynamics, or referring to the basic
underlying symmetry, because detailed balance should hold [37]. Both
symmetries will be broken if we consider chiral units residing in separate
compartments at unequal temperatures Ti. The index i runs over the
different reservoirs, cf. Fig. 3.1(a) for a schematic representation in the
case of two reservoirs i = 1, 2. As we proceed to show, the resulting
average rotational frequency can be calculated exactly from microscopic
dynamics, at least in a limiting case. For simplicity, we will restrict the
theoretical analysis in this letter to the case of a two-dimensional device.
The corresponding results for three-dimensional cylindrical objects, as
depicted in Fig. 3.1(a), are obtained by appropriate rescaling with the
hight h of the units (for more details, see [50]).

Turning to the exact microscopic analysis, we consider convex (two-
dimensional) units, residing in reservoirs that are infinitely large and are
filled with dilute gases at equilibrium. The reservoirs play the role of
ideal thermostats with which the engine is exchanging energy. In the
limit of high dilution and a heavy engine (mass M , moment of inertia I),
the collisions of the engine parts with the gas particles (mass m) become
uncorrelated events and the following exact Boltzmann master equation
for the probability distribution Pt(ω) of its angular velocity holds:

∂Pt(ω)

∂t
=

∫
dω′ [Wω|ω′Pt(ω

′) − Wω′|ωPt(ω)
]
. (3.1)

43



Chapter 3. Chiral Brownian Heat Pump

Here Wω|ω′ is the transition probability per unit time for the motor to
change its angular velocity from ω′ to ω by one collision. We will assume
that the collisions are perfectly elastic and that the interaction force is
short-ranged and central. Conservation of the total energy and of the
total angular momentum in the z-direction of the colliding pair, and of
the tangential component of the momentum of the gas particle, leads to
the following collision law:

ω = ω′ +
2(ω′y + v′

x) cos ϕ − 2(ω′x − v′
y) sin ϕ

x sin ϕ − y cos ϕ + I
m

(x sin ϕ − y cos ϕ)−1 , (3.2)

specifying ω in terms of its pre-collisional value ω′ and the pre-collisional
speeds �v′ = (v′

x, v
′
y) of the gas particle. ϕ is the polar angle of the surface

at impact, see Fig. 3.1(b).
The transition probability Wω|ω′ can now be calculated following stan-

dard arguments from the kinetic theory of gases. Taking into account
that the velocity distributions of the particles φi(�v) are Maxwellian at
the density ρi and temperature Ti of their bath, one finds the following
explicit expression:

Wω|ω′ = 1
2π

∑
i

∮
dli

ρi

vTi

(r� +
I

mr�

)2|Δω|H[r�Δω]

× exp

[
−

(
(r� +

I

mr�

)Δω + 2r�ω
′
)2

/
(
πv2

Ti

)]
. (3.3)

The contour integral
∮

dli is over the perimeter of the engine part in
each reservoir, which can be of any convex shape. H represents the
Heaviside function and we have introduced the tangential component of
the position vector �r along the perimeter, r� = �r · �e� = −x sin ϕ + y cos ϕ
cf. Fig. 3.1(b), the thermal speed of the gas particles vTi

=
√

8kTi/πm,
and the angular velocity increment Δω = ω − ω′.

In equilibrium, Ti = T , one easily verifies that the Boltzmann distri-
bution P eq(ω) =

√
I/(2πkT ) exp[−Iω2/(2kT )] is the unique steady state

solution of Eq. (3.1). As required by statistical mechanics, this solution
satisfies detailed balance: Wω|ω′P eq(ω′) = W−ω′|−ωP eq(−ω).

A general solution away from equilibrium is not available, hence we
resort to a perturbational technique. For small values of the parameter
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ε =
√

m/M = r0

√
m/I, where r0 =

√
I/M is the radius of gyration

of the device, the change in angular velocity upon collision with a gas
particle is small and we can apply a Kramers-Moyal type of expansion.
We only present the final results of this procedure, for more details see
[50].

Up to third order in ε the average angular speed of the motor obeys
the following equation:

∂〈ω〉
∂t

=
m

M

∑
i

ρi

[
−vTi

〈ω〉
∮

dli

(
r�

r0

)2

+ ε

(√
I

m
〈ω2〉 − kTi√

mI

)∮
dli

(
r�

r0

)3

+ O(ε2)

]
. (3.4)

To lowest order in ε we recognize a linear drag law, I∂t〈ω〉 = −γ〈ω〉,
featuring a frictional torque which is proportional to the average rota-
tional speed. The proportionality factor γ =

∑
i γi is equal to the sum of

the friction coefficients γi contributed by each of the engine parts. From
Eq. (3.4), one finds the following explicit expression for these friction
coefficients:

γi = mρivTi

∮
dlir

2
�
. (3.5)

Note that at this order of the perturbation, no systematic steady state
motion appears 〈ω〉st = 0. This indicates that the “rectification of the
fluctuations” leading to systematic motion appears at the level of non-
linear and non-Gaussian effects.

At the next order in ε, the equation for the first moment is cou-
pled to the second moment, whose evaluation is thus needed to close
the equation. Restricting ourselves to the steady state, one finds, not
surprisingly, that (to lowest order) the average kinetic energy of the mo-
tor is given by the usual expression for equipartition, 1

2
I〈ω2〉 = 1

2
kTeff,

but at an effective temperature Teff. The latter is found to be equal
to the weighted geometric mean of the temperatures in the reservoirs:
Teff = (

∑
i γiTi)/(

∑
i γi).

Combined with Eq. (3.4) we conclude that (up to first order ε), the
engine will develop an average steady state angular velocity given by

〈ω〉 =

∑
i ρik(Teff − Ti)

∮
dlir

3
�

I
∑

i ρivTi

∮
dlir2

�

. (3.6)
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Table 3.1: Properties of the 3-d device with a shape optimized for
maximum rotational frequency and cooling power, respectively
(see Fig. 3.1). Each unit of the device is cylindrical with parallel
surfaces of area πR2, R = 3 nm, height h = 3 nm. We assume
following values of the parameters: density 1350 kg/m3 (typical
for proteins); total mass M = 2.29×10−22 kg; mass ratio m/M =
1.3 × 10−4 (m being the mass of a water molecule); T = 300K;
temperature gradient for the motor: ΔT = 0.1 K.

〈ω〉 (Hz) γ (10−28 Nms) I (10−39 kg m2)
Motor 2180 0.90 1.26
Heat pump 1470 4.55 2.22

Q̇1→2/Γ (106 J/(Nms)) Γlim (10−21 Nm) Q̇max
net (10−15 J/s)

Motor 6.53 1.17 1.92
Heat pump 4.41 4.01 4.42

We proceed to discuss this first central result of our paper. The an-
gular velocity is obviously zero at equilibrium, Ti = Teff, and also when∮

dlir
3
�

= 0, in agreement with the fact that the object then loses its chi-
rality. As far as maximizing rotational frequency is concerned, a numeri-
cal procedure was employed to identify the optimum configuration (shape
plus axis implantation) by deforming the contours in both compartments.
This resulted in the spiral shape depicted in Fig. 3.1(b), with one engine
part the enantiomorph of the other one. The same shape remains op-
timal, but appearing as the basis of a cylindrical object as depicted in
Fig. 3.1(a), when turning to the case of dimension 3. The dependence of
the rotational speed on the shape and axis implantation is very intricate.
In fact even the direction of the net rotation is not at all obvious. In
Fig. 3.2 we reproduce, for a specific triangular motor element (and its
enantiomorph), the lines of equal amplitude for the rotational frequency
as a function of the implantation of the rotation axis. The rotation is
clockwise/counterclockwise in the dark/light shaded areas respectively.
In view of the technological interest of this result, we include the corre-
sponding properties of such engine calculated under physically realistic
conditions, in Table 3.1. Rotational frequencies in the kHz regime are
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Figure 3.2: Equal-amplitude lines of the rotational frequency 〈ω〉
as a function of the location of the rotational axis, for two tri-
angular shapes (apex angle 30◦ and 45◦). The (x, y) coordinates
represent the location of the axis with respect to the center of
mass of the unit. Thick lines correspond to 〈ω〉 = 0, and dots to
maximum frequency.
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obtained for a temperature gradient of .1 K. Such a sustained average
rotation will dominate over the thermal Brownian motion, with typical
frequency

√
kTeff/I = 1.81 × 109 Hz, on a time scale of seconds or more.

We next turn to the analysis of the heat pump function. In the fol-
lowing, we will focus only on the linear response property, which can
directly be obtained by invoking Onsager symmetry. To do so, one needs
to write the result Eq. (3.6) in the framework of linear irreversible ther-
modynamics [49]. One identifies the flux J1 = 〈ω〉 and the thermody-
namic force X2 = 1/T2 − 1/T1. For a small temperature difference ΔT ,
T1 = T + ΔT/2, T2 = T − ΔT/2, a linear relation between flux J1 and
force X2 = ΔT/T 2 is observed, namely: J1 = L12X2. The value of the
coefficient L12 is found from Eq. (3.6) (for simplicity considering again
enantiomorphs):

L12 =
2kT 2

IvT

ρ1ρ2

(ρ1 + ρ2)2

∮
dl r3

�∮
dl r2

�

. (3.7)

Following Onsager symmetry [37], there is a mirror relation J2 = L21X1

with an identical proportionality coefficient L21 = L12, while J2 is the
flux associated to the temperature gradient X2, i.e., it is a heat flux
Q̇1→2 (from reservoir 1 to reservoir 2), and X1 is the thermodynamic
force associated with the rotation, namely a mechanical torque divided
by the temperature of the system, X1 = Γ/T . The relation J2 = L21X1,
with Eq. (3.7), implies that the heat flux Q̇1→2 is given by

Q̇1→2 =
2kT

IvT

ρ1ρ2

(ρ1 + ρ2)2

∮
dl r3

�∮
dl r2

�

Γ. (3.8)

This is the second basic result of this letter. Note that the direction of
heat transfer depends on the direction of the torque, in such a way that it
activates an opposing Brownian motor in agreement with Le Chatelier’s
principle [49]. For example, considering

∮
dl r3

�
> 0, the motor rotates

clockwise 〈ω〉 < 0 for ΔT < 0 (T1 < T2). The application of a positive
torque Γ > 0, inducing counterclockwise rotation, produces an energy
flux Q̇1→2 > 0, tending to activate the clockwise Brownian motor.

The Onsager coefficients L21 and L12 are the off-diagonal elements of
the 2×2 linear response matrix:

J1 = L11X1 + L12X2, L11 = T/γ,

J2 = L21X1 + L22X2, L22 = γ1γ2kT 2/(γI). (3.9)
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Figure 3.3: The cooling power as a function of (a) the radius of
the device for heights h = 4, 6, 10 nm (half limiting torque, higher
curve corresponds with lower h), (b) the applied torque Γ for
height h = 6 nm and given radius R, (c) the input power Pin for
the same dimensions, and (d) the location of the rotation axis with
respect to the center of mass. The shape of the device is optimal
for (a,b,c), while for (d) it corresponds with the 45◦ configuration
of Fig. 3.2. Other properties as for Table 3.1.
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The diagonal elements L11, the rotational mobility, and L22, the ther-
mal conductivity, can again be calculated from the above perturbational
method [50], or from general arguments based on Langevin theory [12,
45, 46, 30]. As we proceed to show, these terms, associated with Joule
heating and heat conduction, specify the domain in which the heat pump
can operate as a cooling device.

An external torque can induce a cooling flux, by pumping heat out of
one reservoir (into the other). This effect is offset by a dissipative con-
tribution in both reservoirs, resulting from frictional heating. The lin-
ear response term L11X1 expresses that work is performed on the pump
upon application of an external torque Γ, which leads to a power input
Γ2γi/γ

2 in each reservoir i. The Γ2 dependency ensures that the cool-
ing flux, which is proportional to Γ, will dominate for torques below a
certain Γlim. For a concrete realization of the device this is shown in
Fig. 3.3(b), where the net cooling, Q̇net = Q̇1→2 − Γ2γ1/γ

2, is calculated
as a function of Γ. The formal condition |L21X1| > Γ2γ1/γ

2 enables us
to quantify the limiting torque as Γlim = γ2|L12|/(γ1T ), which is remark-
ably scale-independent. The net cooling Q̇net is maximum for half the
limiting torque Γlim/2. Under this condition, a device of a few nanometer
thickness is capable of a net rate of femtojoules per second, cf. Fig. 3.3(a)
and Table 3.1. We also note that under this condition, half of the input
power, Pin =

∑
i Γ

2γi/γ
2 = Γ2/γ, is used for cooling, yielding a coeffi-

cient of performance η = Q̇net/Pin = 0.5. For lower values of the torque,
Γ < Γlim/2, a higher performance η is feasible even though, as explained
above, the net cooling flux is no longer maximal [see also Fig. 3.3(c)].

We finally turn to the issue of thermal conductivity. Suppose that
a temperature gradient develops under the application of an external
torque, cooling one reservoir and heating the other. The heat pump,
being in contact with reservoirs of unequal temperature, will then con-
duct heat against the cooling flow. Eq. (3.9) tells us that this heat flow,
J2 = L22X2, has the form of a Fourier law, κΔT , with conductivity
κ = L22/T

2. An upper limit for the relative gradient ΔT/T emerges
when the conductive flow L22X2 equals the cooling power |L21X1|. In ex-
plicit terms and at maximum performance, Γ = Γlim/2, the temperature

50



gradient is bounded by

ΔT

T
=

π

8

m

I

ρ2

ρ1 + ρ2

(∮
dl r3

�

)2(∮
dl r2

�

)2 . (3.10)

The fact that this term is proportional with m/M indicates that the
device may be better suited to transfer heat than to create a direct tem-
perature difference.

In conclusion, we believe that our study of the chiral molecular device,
operating as a heat engine or heat pump, is of potential technological
interest. In a nanobiological context, we note that 1 femtojoule per
second corresponds to the hydrolysis of 12,000 ATPs per second. It
remains to be seen whether the simplifications assumed in this exact
theoretical analysis (ideal gas reservoirs, frictionless rotation axis and
lowest order approximation in m/M) lead to a realistic estimation of the
performance, and whether alternative constructions (non-rigid coupling
between units, vibrational instead of rotational units) offer an even better
perspective.
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–Abstract–

We present a generic formalism to describe Brownian motion
of particles with intrinsic asymmetry and give predictions for
the drift behavior in unbiased time-dependent force fields.
Our findings are supported by molecular dynamics simula-
tions.
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4.1. Introduction

4.1 Introduction

In view of their potential applications in bio- and nanotechnology, Brow-
nian motors have in recent years been the object of intensive research
[20, 21, 22, 4]. As is well known, the rectification of the thermal motion
of Brownian particles involves the breaking of underlying symmetries.
On the one hand, the system has to operate under nonequilibrium condi-
tions to break the microscopic equilibrium symmetry of detailed balance.
Spatial symmetry on the other hand is usually broken by applying asym-
metric external forcing. The two most cited paradigms in this context
are the flashing and rocking ratchets (see, e.g., [23]), in which an ex-
ternal space-periodic but space-asymmetric forcing using a ratchet-like
potential is applied. Somewhat surprisingly, the case in which an in-
herent asymmetry of the Brownian particle itself provides the spatial
asymmetry has not been discussed in the context of periodic forcing. We
will refer to such Brownian motors as intrinsic ratchets. In this letter, we
will introduce and solve the equations of motion that generically describe
this type of thermal rectification.

4.2 Generic equations of motion

The motion of a Brownian particle (speed v and mass M) is usually
described by the following Langevin-Newton equation:

M
dv

dt
= −γv + F + ξ. (4.1)

Here γ is the friction coefficient, F is an applied external force and ξ a
Gaussian white noise, whose intensity is determined by the fluctuation-
dissipation relation. The above equation can be derived from a micro-
scopic description by assuming that the mass of the Brownian particle is
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much larger than that of surrounding particles. They form the starting
point for deriving the properties of flashing or rocking ratchets. In fact,
since one needs to apply spatially asymmetric forcing in these systems,
the analysis is typically carried out at the simpler level of overdamped
motion. The latter provides a closed description in terms of the position
variable only and is known to be a very good approximation in most situ-
ations. As we will see below, we however do not need spatially dependent
forcing for the rectification in intrinsic ratchets. This greatly simplifies
the analysis, even at the underdamped level. Indeed, when the forcing
F is position independent, the stochastic variable v is Gaussian, and it
suffices to study the equations of motion for the first two moments of the
velocity. By choosing as units of time, velocity and force the relaxation
time τr = M/γ, the thermal speed vT =

√
kBT/M and γvT , the following

equations are obtained for the moments v1 = 〈v〉 and v2 = 〈v2〉 − 1:

dv1

dt
= −v1 + f,

dv2

dt
= −2v2 + 2fv1. (4.2)

We now argue that a minor modification of these equations describes
the case of intrinsic ratchets. We first note that the possible asymmetry
of the Brownian particle does not appear in the above equations, basi-
cally because the relaxation is described by linear response. As a result,
the equation for the first moment, which is the central object of interest,
is not coupled to the second moment. The asymmetry of the particle will
appear at a next order of perturbation, at the level of nonlinear relax-
ation. Furthermore, the resulting correction appearing in the equation
for v1 still has to vanish when operating under equilibrium conditions,
i.e., when v2 = 0. The simplest analytical correction is thus a term of the
form αv2, where the constant α quantifies the strength of the asymme-
try. Since this term acts like a perturbation on the first moment we can
dismiss, to lowest order, the correction that will appear in the equation
for v2. The intrinsic ratchet is thus described at lowest order (with α
effectively playing the role of a small dimensionless parameter) by the
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following generic set of equations:

dv1

dt
= −v1 + αv2 + f,

dv2

dt
= −2v2 + 2fv1. (4.3)

In addition to the above handwaving arguments, we note that the
equations of motion given in Eq. (4.3) can be derived from microscopic
theory of a Brownian particle moving in a bath of an ideal gas, by an
expansion in the ratio of the mass of the gas particles (m) over the
mass of the Brownian particle (M) [33, 35, 51]. Such a derivation also
provides explicit expressions for the open parameters α and γ (or τr)
behind Eq. (4.3) in terms of microscopic quantities. Concrete examples
for the cases of translational and rotational motion of an asymmetric
object suspended in a thermalized gas will be given below.

In the remainder of this letter, we focus on the rectification, i.e.,
the appearance of a non-zero average drift velocity, when the particle is
subjected to an unbiased time-periodic force f(t). This scenario is the
analogue of the rocking ratchet for particles with intrinsic asymmetry.

4.3 Piecewise constant forcing

Eq. (4.3) with time-periodic forcing f(t) has a mathematical structure
similar to the Newton equation of motion for a parametric oscillator.
It is therefore out of the question to find a general analytical solution.
Instead we turn to the case of piecewise constant forcing (square wave
profile), viz.,

0 ≤ t < τ/2 : f(t) = f0,

t ≤ τ/2 < τ : f(t) = −f0. (4.4)

Introducing the vector notation

V (t) =

[
v1

v2

]
(t), (4.5)
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Figure 4.1: Time evolution of the first moment of the velocity
v1 (in thermal speed vT units) subject to a modulating square
force with periods 1, 4, and 16 (dashed, solid, dotted curve). The
relaxation time τr of the particle is the time unit. The particle’s
asymmetry is α = 0.3 and force amplitude is f0 = 0.4 (in units
MvT /τr, with M the particle’s mass).

one readily finds the solutions in the separate time regimes, with f = f0

and f = −f0 respectively:

V+(t) = A+(t)C+ + B+, (4.6)

V−(t) = A−(t)C− + B−. (4.7)

The time-propagators A± are given by:

A±(t) =

[±1−d±
4f0

e−(3+d±)t/2 ±1+d±
4f0

e−(3−d±)t/2

e−(3+d±)t/2 e−(3−d±)t/2

]
, (4.8)

with d± =
√

1 ± 8αf0. B± are the steady state solutions:

B± =

[±f0/(1 ∓ αf0)
f 2

0 /(1 ∓ αf0)

]
. (4.9)

The vector constants C± are specified by the assumption that we
operate in the steady state regime, hence the velocity moments in Eqs.
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(4.6) and (4.7) satisfy time-periodic boundary conditions, V+(0) = V−(τ).
This, together with continuity at t = τ/2, V+(τ/2) = V−(τ/2), leads to
a solution,

C+ = (A−1
2 A1 − A−1

4 A3)
−1(A−1

2 − A−1
4 )(B− − B+), (4.10)

C− = (A−1
1 A2 − A−1

3 A4)
−1(A−1

1 − A−1
3 )(B+ − B−), (4.11)

with A1 = A+(τ/2), A2 = A−(τ/2), A3 = A+(0), A4 = A−(τ). We will
not reproduce here the resulting expression for the time-dependent av-
erage speed v1. It is extremely cumbersome, and, strictly speaking, only
valid to lowest order in the asymmetry contribution α. For an illustration
of the typical time dependence of v1 we refer to Fig. 4.3. We remark that
our theory yields accurate results when αf0 � 1. Under the described
ratchet operation, the speed v1 and second moment v2 are then of order
f0 and f 2

0 respectively. This means that the nonlinear correction term
αv2 in the equations of motion [Eq. (4.3)] is a factor αf0 smaller than
the linear v1 term.

The quantity of central interest is the resulting time-average net
speed, being the average net displacement over a period τ divided by
this period:

vnet = τ−1

∫ τ

0

v1(t) dt. (4.12)

Again, the exact expression for vnet is extremely long. In any case, our
approach is limited to small α, so it suffices to reproduce the lowest order
term in α:

vnet � αf 2
0

(
1 − 4

τ
tanh

τ

4

)
. (4.13)

We note that the next term in the expansion in α is an order of magnitude
(αf0)

2 smaller.
We make the following observations. First, there is no directed mo-

tion, vnet = 0, in the absence of forcing, f0 = 0, or when the particle has
intrinsic symmetry, α = 0. Second, vnet is an uneven function of α, hence
an inversion of the asymmetry, α → −α, results in an inversion of the
speed of net motion. We represent vnet as a function of the asymmetry,
α, the amplitude of the force, f0, and the period, τ , in Fig. 4.3 (solid
curves). In all three cases, the lowest order approximation, Eq. (4.13),
is in fact indistinguishable from the exact result for the chosen range of
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Figure 4.2: Time-average net velocity vnet as a function of (a)
the asymmetry α of the Brownian particle, (b) the amplitude
f0 of the modulating force, and (c) the modulation period τ .
Exact analytical solutions for square modulation – solid curves –
coincide, for the presented parameter range, with the first order
approximation [Eq. (4.13)]. Dashed curves represent results for
harmonic modulation (upper curves) and sawtooth modulation
(lower curves), Eqs. (4.21) and (4.23), obtained from first order
perturbation theory. Numerical integration results can not be
distinguished from the analytical solutions in the shown graphs.
If not in the abscissa, parameter values are α = 0.3, f0 = 0.4,
τ = 1. Units for velocity, time and force are the particle’s thermal
speed vT , relaxation time τr and MvT /τr (mass M) respectively;
α is dimensionless.
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values of α and f0. Finally we note that the maximum speed vlim
net � αf 2

0

is reached in the limit of very slow modulation, τ → ∞. Since this speed
is expressed in units of thermal velocity, we conclude that one can reach
high net drift speeds, comparable to thermal speeds, by applying unbi-
ased periodic forcing of small to moderate intensity to intrinsic ratchets.

4.4 Other periodic forcings

To investigate the effect of other types of periodic forcing, such as har-
monic or symmetric sawtooth [cf. Fig. 4.4(b)], we resort to a pertur-
bational solution of Eq. (4.3). As the contribution due to the intrinsic
asymmetry α is considered small, we can make the following first-order
ansatz for the velocity moments:

v1 = v1,0 + αv1,1 , (4.14)

v2 = v2,0 + αv2,1 . (4.15)

With this ansatz, Eq. (4.3) can be solved to first order in α for arbitrary
periodic force fields f(t), yielding the steady state solutions

v1,0(t) =

∫ t

−∞
dt′ e−(t−t′)f(t′) , (4.16)

v2,0(t) =

∫ t

−∞
dt′ e−2(t−t′)2f(t′)v1,0(t

′) , (4.17)

v1,1(t) =

∫ t

−∞
dt′ e−(t−t′)v2,0(t

′) , (4.18)

v2,1(t) =

∫ t

−∞
dt′ e−2(t−t′)2f(t′)v1,1(t

′) . (4.19)

Using f(t+ τ) = f(t) it is easy to show that these expressions are indeed
periodic with periodicity τ . The results for the time evolution of the
first moment v1 under harmonic or sawtooth forcing are reproduced in
Fig. 4.4(a); they are indistinguishable from numerically integrated solu-
tions of the original Eq. (4.3). For comparison, the results for the square
wave profile are also included.
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With regard to the net velocity vnet as defined in Eq. (4.12), we ob-
serve that for unbiased symmetric forcings f(t + τ/2) = −f(t), and thus∫ τ

0
dt′ v1,0(t

′) = 0 [see Eq. (4.16)], so that vnet is given by

vnet = ατ−1

∫ τ

0

dt′ v1,1(t
′) . (4.20)

Again, vnet is zero when α = 0, consistent with the notion that no directed
motion occurs for symmetrical particles.

It is straightforward to recover the net velocity for square forcing to
lowest order in α, Eq. (4.13), from (4.20). Similarly, for harmonic driving,
f(t) = f0 sin(2πt/τ), we find a time-average net velocity

vnet =
αf 2

0

2

τ 2

4π2 + τ 2
. (4.21)

For sawtooth forcing,

0 ≤ t < τ/2 : f(t) = f0 (t − τ/4)/(τ/4) ,

t ≤ τ/2 < τ : f(t) = f0 (3τ/4 − t)/(τ/4) , (4.22)

a net speed

vnet =
αf 2

0

3

[
1 − 3

(
4

τ

)2

+ 3

(
4

τ

)3

tanh
τ

4

]
(4.23)

is obtained. These first order results for the net velocity vnet are compared
with the analytical solution for square forcing in Fig. 4.3 (dashed curves).
We conclude that the resulting drift behavior is very similar in all three
cases. In fact, comparing Eqs. (4.13), (4.21) and (4.23), we see that
the differences become very small, and even vanish for slow forcing τ →
∞, if, instead of using the same amplitude for the three modulations,
one considers the same average quadratic amplitude, i.e., if one replaces
f0/

√
2 → f0 in Eq. (4.21) and f0/

√
3 → f0 in Eq. (4.23).

4.5 Microscopic models

As already mentioned, the structure of Eq. (4.3) can be obtained from
kinetic theory of microscopic models, that describe a small, non-trivially
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Figure 4.3: Time evolution of (a) the first moment of the velocity
v1 (in thermal speed vT units) for the periodic forcings in (b)
(correspondence by line style). For harmonic and symmetric saw-
tooth profiles the first order approximation [Eq. (4.14)] is used,
for square modulation the full analytical solution is shown. In all
three cases, a numerical solution of the dynamic equation is indis-
tinguishable from the analytical results in the graph. Parameter
values are period τ = 4, force amplitude f0 = 0.4 and asymmetry
α = 0.3. Unit of time is the particle’s relaxation time τr, unit of
force is MvT /τr, with M the particle’s mass.
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shaped object (mass M) moving under the influence of collisions with a
surrounding bath of gas particles (mass m), by an expansion in the mass
ratio ε =

√
m/M [33, 35, 51]. Such a procedure also provides explicit

expressions for the parameters τr and α of the intrinsic ratchet.
For a three-dimensional asymmetric object of arbitrary convex shape,

that is confined to move along a fixed z-axis (translational motion), one
obtains [51]

τr = ε−2σ−1
2 , (4.24)

α =
√

π/8 ε3τrσ3, (4.25)

where the geometry dependent moments σn are given by

σn = ρ

√
8kBT

πm

∫
S

dS (−�e⊥|z)n , (4.26)

with ρ being the particle density of the gas, and where the integral is
over the surface of the asymmetric object. �e⊥|z is the component in the
free direction of motion (z) of the outward unit normal vector �e⊥ at its
surface.

To get an idea of the actual net velocity a realistic setup of an intrinsic
ratchet can attain, we use Eqs. (4.13), (4.24)-(4.26) to calculate the speed
for a cone-shaped silica (SiO2) Brownian particle with half opening angle
30◦ and 10 nm base diameter [see Fig. 4.5(a) for a schematic representa-
tion]. The cone’s axis is along the free direction of motion. In air, the
ratio M/m is about 10 000 and the asymmetry parameter is α = 0.003.
At temperature T = 300 K the relaxation time is τr = 7.5 ns. An ampli-
tude f0 = 10 of unbiased square forcing then corresponds to 1.9 pN in real
units and is well within the accuracy range of our theory: αf0 = 0.03.
These conditions produce a maximum speed of vlim

net = 0.88 m/s or 30% of
the thermal speed of the particle. Note that the direction of the particle’s
motion is towards the apex of the cone.

4.6 Rotational Brownian motion

For simplicity of presentation, we started with the generic equations of
motion for one-dimensional translational Brownian motion of an asym-
metric particle. In practice, this supposes that the particle is constrained
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4.6. Rotational Brownian motion

Figure 4.4: Idealized realizations of the intrinsic ratchet. (a)
For translational motion: a conical shape with axis along the
free direction of motion. Indicated is the resulting sense of net
motion under unbiased forcing. (b) For rotational motion: a right
triangular prism, with three suggested locations for the rotation
axis. The resulting net rotation sense under unbiased forcing is
indicated.
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to move on a track. The so-far presented discussion of the intrinsic
ratchet can however be repeated, with minor modifications, for the ro-
tational Brownian motion of chiral objects, with angular velocity ω and
moment of inertia I. With an adaptation of the expressions for the relax-
ation time τr = I/γ and the thermal velocity vT =

√
kBT/I as units of

time and angular velocity, and f now signifying a torque, this leads to the
same generic equations of motion [Eq. (4.3)] for the moments v1 = 〈ω〉
and v2 = 〈ω2〉 − 1. Microscopic theory [31, 50] yields the same expres-
sions for the relaxation time τr [Eq. (4.24)] and asymmetry coefficient
[Eq. (4.25)], but now with geometrical moments given by

σn = ρ

√
8kBT

πm

∫
S

dS [(�e⊥ × �er)|z]n , (4.27)

where the axis of rotation is taken to be parallel to the z-axis. Again, the
integral is over the surface of the object and �e⊥ is the outward unit normal
vector on the surface. �er is given by �r/r0, with �r denoting the position of
a surface element measured from the axis of rotation (the z-component
in �r is irrelevant), and r0 =

√
I/M being the radius of gyration of the

object. Due to the chosen orientation of the rotation axis, only the z-
component of �e⊥ × �er appears in the expression for σn. With these new
notations and units, the previous results, in particular the expressions for
the time-average net velocity [Eqs. (4.13), (4.21), (4.23)], remain valid.

In view of the technological potential of the rotational setup, and in
order to get an idea of the order of magnitudes involved, we again consider
a realistic physical realization. A silica triangular prism of height 10 nm
and with right triangular top and bottom surfaces (sides: 10 nm, 10 nm,
14 nm) is connected with a rotation axis at one of its vertical edges, cf.
Fig. 4.5(b). Operating in air, the ratio M/m is about 23 000. If the axis
is connected to the 90◦ corner edge, α = 0 and no rectification or net
rotation will occur. Connected to the 45◦ corner edges, α = ±0.0016 and
relaxation time is τr = 8.1 ns, at air temperature T = 300 K. A torque
amplitude (for square forcing) of f0 = 10 corresponds to 2.2 × 10−20 Nm
and produces a maximum net rotation frequency of 6 MHz, 16% of the
thermal frequency.
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4.7 Molecular dynamics simulations

In the following we verify our generic theory for the intrinsic ratchet with
molecular dynamics simulations. As concrete microscopic system, we
consider the prism from Fig. 4.5(b) surrounded by a thermalized bath of
ideal gas particles, and perform event-driven simulations of its rotational
Brownian motion. The rotation axis is chosen to be located slightly [4 nm
in the units of Fig. 4.5(b)] outside the prism in the plane given by one
of the prism surfaces merging at the 90◦ edge, and is oriented parallel to
this edge.

Exploiting the homogeneity of the prism along the direction of the
rotation axis, the simulations are carried out in a (projected) two-
dimensional space, where the ratchet object is given by the right tri-
angular top (or bottom) surface of the prism, and where the rotation
axis is reduced to a point-like center of rotation. The rotation center is
positioned at the center of a quadratic box, containing an ideal gas of
point particles (mass m). The box walls ‘absorb’ gas particles upon colli-
sion, but also randomly ‘emit’ new particles (into the box’ interior) such
that the gas properties, in particular density ρ and Maxwellian equilib-
rium distribution, are preserved. In this way, an infinitely large reservoir
of gas particles is realized.

Collisions between gas particles and the triangle are detected by nu-
merically solving the exact equations of motion for the point in time of
the impact. At each collision, the speed of the gas particle and the ro-
tational velocity of the triangle are changed according to the rules for
elastic collisions, neglecting tangential forces [31]. In between collisions
the triangle is accelerated by an external constant or periodically switch-
ing torque (square profile).

In Fig. 4.7 the net rotational speed of the triangle under the action
of a periodically switching torque is shown for different values of the
modulation period τ . The agreement between simulation results for the
time-average net velocity vnet and theory, Eq. (4.13), is excellent. We
also compared the asymptotic rotation of the triangle under constant
but opposite torques (‘infinite’ driving period τ) with the theoretical
result, Eq. (4.9), and again found excellent agreement.
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Figure 4.5: Molecular dynamics simulation results (dots with error
bars) compared with theory (curves) for the rotational intrinsic
ratchet. Time-average net velocity vnet is shown as a function
of the modulation period τ of zero-average square forcing. The
simulation results are obtained from averaging over typically 5000
realizations (20 000 for the smallest driving periods) with about
17 000 collisions performed per realization, corresponding to a sim-
ulation time of 1000 periods for the fastest and 20 periods for the
slowest modulation; the error bars characterize the remaining sta-
tistical uncertainty. Simulation parameters are ρ = 0.25, M = 50,
m = 1, side lengths (1, 1,

√
2) of the right triangle, and amplitude

0.15 of the external square torque (see also main text), resulting
in α = 0.0233 and f0 = 1.32. Units are relaxation time τr (time),
thermal angular velocity vT =

√
kBT/I (angular velocity) and

IvT /τr (torque), with I the inertial moment.
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4.8 Stop-and-go motor

We finally discuss an alternative approach to intrinsic ratchets, antici-
pated in [52] and further worked out in more detail in [53]. The so-called
stop-and-go motor consists of an asymmetric particle which is period-
ically stopped, for example by an array of traps or binding sites that
can be activated or deactivated at will. The basic assumption is that
the (thermal) energy of the Brownian particle is changed when it is sub-
jected to the trapping mechanism. This energy exchange results in a
specific value of the second velocity moment at the stopping sites, v2,s.
For v2,s �= 0 the energy exchange in the traps induces a deviation from
thermal equilibrium conditions, and this process will result in sustained
directed motion with an average net speed vnet, being the average distance
traveled by the particle in a time interval τs between the stopping events,
divided by τs. A simple analytical calculation, starting from Eq. (4.3)
with f = 0, gives an exact expression:

vnet =
αv2,s

2τs

(
1 − e−τs

)2
. (4.28)

The sense of motion is determined by the sign of α and of v2,s, which
is negative (positive) when the particle’s thermal motion is reduced (en-
hanced) by the trapping mechanism. A stopping interval τ o

s � 1.26,
given by the solution of eτs = 2τs + 1, yields a maximum net veloc-
ity (vmax

net � 0.204 αv2,s) and an optimal distance between binding sites
(� 0.256 αv2,s, expressed in units vT τr).

These theoretical predictions are confirmed in a molecular dynamics
simulation of the stop-and-go mechanism applied to a rotating (chiral)
object, using the setup based on the prism in Fig. 4.5(b), as in the pre-
vious section. In Fig. 4.8 the resulting average net velocity vnet as a
function of different stop intervals τs, for the values v2,s = −1 and 1 is
shown. In the insets of Fig. 4.8 we include the molecular dynamics re-
sults for vnet at the optimal stopping interval as a function of v2,s. The
linear relation (vmax

net � 0.204 αv2,s) holds, even for large v2,s.
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Figure 4.6: Main figure: average (angular) net velocity vnet of the
rotating stop-and-go ratchet as a function of the time interval τs

between stopping events. In the trapping mechanism the second
moment is set to v2,s = 1 (upper curve), v2,s = −1 (lower curve),
with v2 = 〈ω2〉− 1. Insets: maximal average net velocity vnet (for
optimal τs) as a function of the second moment of the velocity
v2,s in the trap. Lines correspond to theory, dots represent re-
sults from molecular dynamics simulations, using the same setup
as for Fig. 4.7 (but without external torque). The net speed is
obtained from simulating 1000 independent stopping intervals τs

per realization and averaging over 10 000 realizations for the three
smallest stopping intervals and over 5000 realizations otherwise.
Shown angular velocity is in units of thermal speed vT =

√
kBT/I

and time in units of relaxation time τr. The asymmetry parameter
is α = 0.0233.
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4.9 Conclusion

Intrinsic ratchets are characterized by an inherent asymmetry of the
Brownian particle itself breaking the spatial symmetry. A generic formal-
ism for the dynamical behavior enables us to quantify the net particle ve-
locity under unbiased periodic forcing. Molecular dynamics simulations
of a rotational setup confirm the validity of this formalism. We pre-
dict drift speeds comparable to thermal speeds for nanosized asymmetric
Brownian particles under ratchet operation. The relative simplicity of
the setup (one heat bath, external symmetric forcing) could open avenues
to experimentally test the nonlinear contribution of intrinsic asymmetry
crucial in this and other work [33, 35, 51, 31, 50, 52, 53, 54, 55, 56].
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Chapter 5. Theory and Simulations

–Abstract–

We derive in detail the theory of the chiral Brownian rotor
and heat pump introduced in Chapter 3 and compare the
results with molecular dynamics simulations.
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5.1 Brownian motors

The Brownian motors suggested in Chapter 2 move linearly, which ob-
viously poses difficulties when comparing with real systems, or suggest-
ing a technological implementation of a Brownian motor. In Chapter
3 (see also [31]) we introduced a Brownian motor, driven by thermal
fluctuations, that is free to rotate around a fixed axis. Rotational mo-
tion typically encounters less friction than purely translational movement
and a rotating force is easier to apply than a linear force. We propose
a device that exploits the random nature of the perturbations from its
environment maximally to produce a net directed motion.

Molecular motors operating within biological cells, although chemi-
cally driven, are also subject to random motion. F1-ATPase is a well-
known rotating motor (see Fig. 5.1 for a diagram). A direct observation
of its rotation, driven by the hydrolysis of adenosine triphosphate (ATP),
was first reported in [2, 3]. Later experiments [57] revealed the direction
in which the ATP motor spins. It is about 10 nm in size and typically
rotates with a frequency of 100 Hz. The observed rotary torque reaches
more than 40 pN nm. The relation between the geometry of our rotating
object, specifically its chirality, and its kinetic properties, such as the av-
erage motion and friction, can be of interest to microbiology. One might
also imagine artificial devices inspired by the existing biological exam-
ples. Proteins could be used as the building blocks of mechanical devices
and artificial biological membranes as means to separate reservoirs and
keep them at different temperature. Small moving parts in the area of
micro-electronics are also subject to random fluctuations.

As a side note we remark that the rotational three-dimensional model
we will present, can be used to describe the essence of the device
R. Feynman presented in his Lectures on Physics [11] [for a sketch of
the ratchet and pawl mechanism, see Fig. 5.2(a)] to illustrate the impos-
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Figure 5.1: F1-ATPase is a naturally occurring rotating molecular
motor. It works as a pump for ions through a membrane. Its
driving force is chemical, through the hydrolysis of ATP. Our
interest in this molecular motor lies in its environment (in the
cytoplasm, subject to fluctuations), its construction (rotational,
and through a biological membrane), its physical characteristics
(size of the order of 10 nm) and dynamical properties (rotational
frequency of the order of 100 Hz).
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Figure 5.2: (a) The ratchet and pawl mechanism used by
R. Feynman to illustrate the impossibility to extract work from
a system in equilibrium. An axle with vanes in it (in the bot-
tom reservoir ) is bombarded by gas molecules at temperature T1.
The pawl in the top reservoir (surrounded by a gas at temper-
ature T2) seems to allow only one rotation sense of the ratchet,
that is connected with the axle. The fluctuations of the paddle in
the bottom reservoir would then be rectified. Via a comparison of
the probability to move forward and backward, Feynman showed
in his Lectures on Physics [11] that at temperature equilibrium,
T1 = T2, no average motion occurs and the device cannot be used
to do work, such as to lift a weight. For T1 > T2 however, average
motion does take place and the ratchet works as an engine. Feyn-
man noted that for T1 < T2, the ratchet goes backward. Note
that the rectification manifested by the device originates from
the asymmetry of the ratchet and pawl mechanism. Our model
remains close to Feynman’s system, as it can be applied to rotat-
ing three-dimensional objects of any shape, while it simplifies the
asymmetry requirements to the geometrical properties of the de-
vice. (b) A rotating Brownian motor where two parts in isolated
thermal reservoirs (temperatures T1 and T2, particle densities ρ1

and ρ2) are connected through the axis of rotation. Collisions with
particles in the reservoirs will cause fluctuating rotational move-
ment of the heavier motor, which, under appropriate conditions,
will propel the motor with a nonzero average angular velocity.
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sibility of a Maxwell Demon, that would be able to extract work from a
system in equilibrium. It was also shown that the same device can lift a
weight (do work) at temperature disequilibrium.

These reasons motivate us to study a chiral Brownian motor in detail.
The constituting parts of the motor are in different thermal reservoirs.
In an analytical analysis we will derive expressions for the kinetic proper-
ties of the motor as a function of the external parameters of the system.
It will be made clear that temperature equilibrium between the different
reservoirs results in zero average motion and hence prohibits the creation
of a Maxwell Demon. On the other hand we will demonstrate the im-
portance of the configuration of the building blocks of the motor and
their actual shape, as well as their position relative to the rotation axis.
Some emphasis is put on finding optimum operation, yielding maximum
average angular velocity. The chiral Brownian motor presented now is
a precursor for the chiral Brownian refrigerator presented later in this
text. The exact relationship derived here between the angular velocity
and the temperature gradient will be a crucial step in the investigation
of the cooling potential.

The concrete model we propose consists of at least two parts, each
residing in a thermal reservoir i = 1, 2, . . ., that are rigidly connected
with each other through a rotation axis. In Fig. 5.2(b) we show the
construction of two parts in reservoirs of temperature T1 and T2, and
particle densities ρ1 and ρ2. We expect that the fluctuations from colli-
sions with particles in the thermal reservoirs will under certain conditions
be rectified, resulting in an average rotational motion, clockwise or coun-
terclockwise. As we will demonstrate, these conditions are (1) thermal
disequilibrium, T1 �= T2, and (2) asymmetry (or chirality) through the
shape of the motor parts.

5.2 From fluctuations to the angular veloc-

ity

Our analysis is based on an exact calculation of the probability for the
motor to change its rotating speed by a certain amount when subject
to thermal fluctuations. We will show that an exact solution can be
reached when the fluctuations are in the form of collisions of particles of

78



5.2. From fluctuations to the angular velocity

an ideal gas at temperature equilibrium with the surface of the motor. A
master equation for the probability density to observe an angular velocity
P (ω, t) at a certain time t can be proposed if the particles are presumed
to collide not more than once, and only with the motor. This condition
implies that the gas is in the high Knudsen number regime. Limiting
the parts of the motor to convex and closed shapes will reduce but not
prohibit recollisions in the case of rotational motion. The justification for
neglecting recollisions ultimately rests on a comparison with molecular
dynamics simulations, of which the results are given at the end of this
text. We are interested in the case where the motor, with total mass M ,
has no translational degree of freedom and a single rotational degree of
freedom. Parts of the motor reside in different thermal reservoirs but are
considered rigidly linked. Choosing the z-axis as the axis of rotation, we
can write for the angular velocity �ω = (0, 0, ω). The inertial moment Iz

of the motor with respect to the rotation axis is simply denoted as I.
Under these conditions the probability density P (ω, t) obeys a master

equation,

∂tP (ω, t) =

∫
dω′ [W (ω|ω′)P (ω′, t) − W (ω′|ω)P (ω, t)] , (5.1)

where W (ω|ω′) is the transition probability per unit time for the motor
to change its angular velocity from ω′ to ω. The solution is based on the
van Kampen 1/Ω-method [32]. A Taylor expansion of the first term of
the integrand in the angular velocity change, υ = ω − ω′, leads to

∂tP (ω, t) =
∞∑

n=1

(−1)n

n!

(
d

dω

)n

{an(ω)P (ω, t)}. (5.2)

In this expression the so-called jump moments appear, given by

an(ω) =

∫
υnW (ω; υ)dυ. (5.3)

A notation W (ω′; υ) = W (ω|ω′) is used. With the time evolution of the
probability density known [(Eq. (5.2)], it is possible to derive a coupled
set of equations for the moments of the angular velocity 〈ωn〉:

∂t〈ωn〉 =
n∑

k=1

(
n

k

)
〈ωn−kak(ω)〉, (5.4)
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with
(

n
k

)
the binomial coefficients. Our strategy is now clear: first find

an expression for the transition probability W (ω|ω′), then calculate the
jump moments an(ω), and finally the moments of the angular velocity
〈ωn〉.

However, the coupled set of equations Eq. (5.4) cannot be solved un-
less we expand each equation into powers of a small variable, and ig-
nore terms after a certain order. For the expansion variable we will use
ε = r0

√
m/I, with r0 =

√
I/M the radius of gyration of the motor. We

also introduce an effective temperature Teff, so that to first significant
order, in the regime of stationary motion, the average kinetic energy of
the motor is given by

1

2
I〈ω2〉 =

1

2
kBTeff. (5.5)

In the calculation it is convenient to make a transformation to di-
mensionless variables, by scaling the angular velocity ω and the jump
moments an as follows:

ξ = ω
√

I/kBTeff,

An(ξ) = (
√

I/kBTeff)
nan(ξ). (5.6)

Our selfconsistent definition of the effective temperature Teff then leads
to 〈ξ2〉 = 1 for the stationary state to first order in ε. The set of coupled
equations for the moments 〈ξn〉 =

∫
ξnP (ξ, t)dξ remains

∂t〈ξn〉 =
n∑

k=1

(
n

k

)
〈ξn−kAk(ξ)〉. (5.7)

5.3 Two-dimensional model of the motor

The motor consists of parts with hard surfaces of arbitrary (but con-
vex) shape, each described by their boundary and inner mass distribu-
tion. Many of the important features already appear in a simpler two-
dimensional system, which we present first. Here the motor consists of
two-dimensional shapes, each in two-dimensional reservoirs. We choose a
cartesian coordinate system as follows: the z-axis coincides with the rota-
tion axis, while the xy-plane is parallel to the reservoirs. In each reservoir
i, the shape of the motor (part) is defined by its boundary �ri(x, y), given
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5.3. Two-dimensional model of the motor

Figure 5.3: The coordinate system used for the two-dimensional
model. In each reservoir, the motor part can be described by
the boundary �r(x, y), where the rotation axis is at the origin of
the reference frame. It is convenient to also know explicitly the
orientation of the boundary at any point. This is given by the
polar angle ϕ of the normal outward vector �e⊥ on the surface at
this point. The unit vector �e� is tangential to the boundary.

as a vector with the rotation axis as its origin (see Fig. 5.3). The perime-
ter of the boundary is denoted Li. Henceforth we will just write �r(x, y)
for �ri(x, y) as no confusion can arise in subsequent expressions. It is
convenient in the further derivation to explicitly know the inclination of
the boundary at �r(x, y), for which we use the orientation of the normal
outward unit vector �e⊥ = (cos ϕ, sin ϕ) on the boundary, determined by
the polar coordinate ϕ from the x-axis.

5.3.1 Conservation rules

Fluctuations of the angular velocity ω of the motor arise from collisions
on the surface with gas particles of mass m. Such a collision – presumed
instantaneous and perfectly elastic – changes the velocity of the gas par-
ticle �v′ = (v′

x, v
′
y) into �v = (vx, vy) after the collision, while the motor

changes angular speed from ω′ to ω. The inertial moment of the mo-
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tor about the rotation axis (z-axis) is denoted I, while its mass is M .
Conservation of the total energy requires that

1

2
Iω′2 +

1

2
mv′

x
2
+

1

2
mv′

y
2

=
1

2
Iω2 +

1

2
mv2

x +
1

2
mv2

y , (5.8a)

while conservation of the angular momentum in the z-direction yields

m(xv′
y − yv′

x) + Iω′ = m(xvy − yvx) + Iω. (5.8b)

Also we suppose the interaction force is short-ranged and central, im-
plying that the tangent component of the momentum of the gas par-
ticle on the boundary is conserved. Choosing the tangent unit vector
�e� = (− sin ϕ, cos ϕ), so that (�e⊥, �e�) forms a positive orthonormal base,
we write

�v′ · �e� = �v · �e�. (5.8c)

The conservation laws [Eqs. (5.8)] produce a solution for the postcolli-
sional angular velocity ω,

ω = ω′ +
2(ω′y + v′

x) cos ϕ − 2(ω′x − v′
y) sin ϕ

x sin ϕ − y cos ϕ + I
m

(x sin ϕ − y cos ϕ)−1 , (5.9)

Introducing
r� = �r · �e� = −x sin ϕ + y cos ϕ, (5.10)

and the precollisional speed of the boundary at position �r,

�V ′ = �ω′ × �r = (−ω′y, ω′x), (5.11)

so that we can write

V ′
⊥ = �V ′ · �e⊥ = −ω′y cos ϕ + ω′x sin ϕ, (5.12)

and

ΔV ′
⊥ = ( �V ′ − �v′) · �e⊥ = −(ω′y + v′

x) cos ϕ + (ω′x − v′
y) sin ϕ, (5.13)

the transition in ω can also be written as

ω = ω′ + 2
ΔV ′

⊥
r� + I

mr�

. (5.14)

82



5.3. Two-dimensional model of the motor

5.3.2 Transition probability

Next, we set out to find the crucial transition probability W (ω|ω′) for the
motor to change its angular velocity from ω′ to ω in a unit of time. Every
reservoir i contains a gas with particle density ρi and velocity distribution
φi. The contribution dWi to the total transition probability W (ω|ω′)
from all possible collisions of particles in gas i in a time interval dt on a
boundary section of length dli, at position �r(x, y) and with orientation
ϕ, can be expressed as

dWi(ω|ω′) = dli

∫ +∞

−∞
dv′

x

∫ +∞

−∞
dv′

y

× H[( �V ′ − �v′) · �e⊥]|( �V ′ − �v′) · �e⊥|ρiφi(v
′
x, v

′
y)

× δ

[
ω − ω′ − 2(ω′y + v′

x) cos ϕ − 2(ω′x − v′
y) sin ϕ

x sin ϕ − y cos ϕ + I
m

(x sin ϕ − y cos ϕ)−1

]
, (5.15)

with H the Heaviside step function and δ Dirac’s distribution. We mul-
tiplied the particle density ρi with the volume of the gas that is passed
by the boundary element dli in a time unit, considering only those gas
particles that comply with the collision rules. This can be written in
short form as

dWi(ω|ω′) = dli

∫ +∞

−∞
dv′

x

∫ +∞

−∞
dv′

yH[ΔV ′
⊥]|ΔV ′

⊥|

× ρiφi(v
′
x, v

′
y)δ

[
ω − ω′ − 2

ΔV ′
⊥

r� + I
mr�

]
. (5.16)

The total transition probability is then found by integrating over all
boundary elements dli and summing over all reservoirs:

W (ω|ω′) =
∑

i

∮
boundary

dWi(ω|ω′). (5.17)

Henceforth we will simply write
∮

when we imply the line integral over
all boundary elements.

For a Maxwellian velocity distribution at temperature Ti,

φi(vx, vy) =
m

2πkBTi

exp

(−m(v2
x + v2

y

2kBTi

)
, (5.18)
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the integrals over the speed of the colliding particles can be performed
explicitly, resulting in

W (ω|ω′) =
1

4

∑
i

∮
dliρi

√
m

2πkBTi

× (r� +
I

mr�

)2H[(ω − ω′)r�]|ω − ω′|

× exp

[
− m

2kBTi

(
(r� +

I

mr�

)
ω′ − ω

2
− r�ω

′
)2

]
. (5.19)

5.3.3 Moments of the angular velocity

Now that we have obtained an exact expression for the transition prob-
ability W (ω|ω′), we turn our attention to the jump moments,

an(ω) =

∫
υnW (ω; υ)dυ, (5.20)

and then the moments of the angular velocity. Careful consideration of
the sign of r� + I/mr� in

W (ω; υ) =
1

4

∑
i

ρi

√
m

2πkBTi

×
(

H[υ]

∫
r�≥0

dli + H[−υ]

∫
r�<0

dli

)
|υ|(r� +

I

mr�

)2

× exp

[
− m

2kBTi

(
(r� +

I

mr�

)
υ

2
+ r�ω

)2
]

, (5.21)

where υ = ω − ω′ is the change in angular velocity, leads to an exact ex-
pression for the jump moments. In terms of parabolic cylinder functions,
Dn(z) = (exp[−z2/4]/Γ[−n])

∫ ∞
0

exp[−zx−x2/2]x−n−1dx (for n < 0) the
results are

an(ω) =
2n

√
2π

Γ[n + 2]
∑

i

ρi

(
m

kBTi

)−n+1
2

∮
dli

(
r� +

I

mr�

)−n

× exp

[
− m

4kBTi

r2
�
ω2

]
D−n−2

[√
m

4kBTi

r�ω

]
. (5.22)
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Rescaling the jump moments using dimensionless variables ξ =
ω
√

I/kBTeff allows us to introduce the parameter ε = r0

√
m/I, where

r2
0 = I/M :

An(ξ) =
2n

√
2π

Γ[n + 2]
∑

i

ρi

√
kBTi

m

(
Ti

Teff

)n/2 ∮
dli

(
εr�/r0

1 + ε2 (r�/r0)
2

)n

× exp

[
−1

4
ε2Teff

Ti

(
r�

r0

)2

ξ2

]
D−n−2

[
ε

√
Teff

Ti

r�

r0

ξ

]
. (5.23)

We can express both the exponential function and the parabolic cylinder
functions in a power series,

exp[z] = 1 +
z

1!
+

z2

2!
+

z3

3!
+ · · · , (5.24)

2−n/2Γ[n + 2] D−n−2(z) = Γ[
n + 2

2
] −

√
2Γ[

n + 3

2
]z

+
2n + 3

4
Γ[

n + 2

3
]z2 − 2n + 3

6
√

2
Γ[

n + 3

2
]z3

+
4n2 + 12n + 11

96
Γ[(2 + n)/2]z4 + O(z5). (5.25)

Considering that the parameter ε =
√

m/M is small for gas particles
much lighter than the motor, we arrive at a series expansion for the
jump moments in ε. We substitute this expansion in the set of equations
[(Eq. (5.23)] coupling the jump moments An(ξ) with the moments of the
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angular velocity 〈ξn〉. For n = 1, with τ = ε2t, this results in

∂τ 〈ξ〉 = ε−2〈A1(ξ)〉 =
∑

i

ρi

√
kBTi

m

×
[
ε−1

√
Ti

Teff

∮
dli

(
r�

r0

)
− 2

√
2

π
〈ξ〉

∮
dli

(
r�

r0

)2

+ε

(√
Teff

Ti

〈ξ2〉 −
√

Ti

Teff

)∮
dli

(
r�

r0

)3

+
ε2

3

√
2

π

(
6〈ξ〉 − Teff

Ti

〈ξ3〉
) ∮

dli

(
r�

r0

)4

+ε3

(√
Ti

Teff

−
√

Teff

Ti

〈ξ2〉
)∮

dli

(
r�

r0

)5]
+ O(ε4). (5.26)

The term in ε−1 disappears because∮
dlir� =

∮
�dli · �r =

∫
Ai

(∇× �r) · �ezdAi = 0. (5.27)

Similarly for n = 2,

∂τ 〈ξ2〉 =
∑

i

ρi

√
kBTi

m

×
[
−4

√
2

π

(
− Ti

Teff

+ 〈ξ2〉
) ∮

dli

(
r�

r0

)2

−2ε

(
4

√
Ti

Teff

〈ξ〉 −
√

Teff

Ti

〈ξ3〉
)∮

dli

(
r�

r0

)3

+2ε2

√
2

π

(
−4

Ti

Teff

+ 5〈ξ2〉 − 1

3

Teff

Ti

〈ξ4〉
) ∮

dli

(
r�

r0

)4

+2ε3

(
7

√
Ti

Teff

〈ξ〉 − 2

√
Teff

Ti

〈ξ3〉
)∮

dli

(
r�

r0

)5]

+O(ε4). (5.28)

To lowest order in ε we can extract from Eq. (5.26) a linear relaxation
law for rotational movement, I∂t〈ω〉 = τf , describing a net frictional
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5.4. Three-dimensional model of the motor

torque τf exerted on the motor as a result of all collisions .With τf =
−γ〈ω〉 and γ =

∑
i γi we derive a microscopic expression for the friction

coefficient γi of each part of the object:

γi = 4ρi

√
kBTim

2π

∮
dlir

2
�
. (5.29)

To order ε2 the average angular velocity in a stationary state appears
from Eq. (5.26) as

〈ω〉 =

√
2πkBm

4I

∑
i ρi(Teff − Ti)

∮
dlir

3
�∑

i ρi

√
Ti

∮
dlir2

�

=
kBm

γI

∑
i

ρi(Teff − Ti)

∮
dlir

3
�
. (5.30)

Here, we substituted the expression for the second moment from Eq. (5.28)
to order ε. To this order the second moment is given by

〈ω2〉 =
kBTeff

I
, (5.31)

while the effective temperature is found according to its definition,

Teff = (
∑

i

γiTi)/(
∑

i

γi). (5.32)

Using higher order terms in the expansions for 〈ξn〉 results in correction
terms to the expressions for 〈ω〉 and 〈ω2〉. The correction terms are
in both a factor m/M smaller than the presented first terms. Later in
this text [Eq. (5.107)] we use a higher order expression for 〈ω〉; these
expressions become very elaborate.

5.4 Three-dimensional model of the motor

The results of a fully three-dimensional analysis are very similar to those
derived in the previous two-dimensional case. We will clarify the principal
differences here.

The motor parts are now determined by their surface Si (i is the
reservoir in which the part resides), to be described by a vector �r(x, y, z)
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Figure 5.4: The coordinate system used for the three-dimensional
model. In each reservoir, the surface of a motor part can be de-
scribed by �r(x, y, z), where the rotation axis is chosen as the z-axis
of a cartesian coordinate system. The orientation of the surface
at any point is given by the polar angle θ and the azimuthal angle
ϕ of the normal outward vector �e⊥ on the surface at this point,
with the polar axis parallel to the rotation axis. The orthogonal
unit vectors �e1,� and �e2,� are tangential to the surface.
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5.4. Three-dimensional model of the motor

from the origin. Again we choose the rotation axis to be the z-axis. See
Fig. 5.4 for a depiction of the coordinate system used. The orientation
of the surface at a certain location (x, y, z) is uniquely determined by
the normal outward unit vector, �e⊥ = (sin θ cos ϕ, sin θ sin ϕ, cos θ), de-
scribed by two angles θ and ϕ, polar and azimuthal angles in a spherical
coordinate system.

The assumption that there is only a central force during an interaction
with a gas particle, entails that there is conservation of momentum of a
gas particle along any tangential direction. So for the speed of the gas
particle before [�v′ = (v′

x, v
′
y, v

′
z)] and after [�v = (vx, vy, vz)] the collision,

we can write this condition formally as

�v′ · �ek,� = �v · �ek,�, k = 1, 2, (5.33)

where �e1,� and �e2,� are two distinct unit vectors perpendicular to
�e⊥. It is convenient to use �e1,� = (cos θ cos ϕ, cos θ sin ϕ,− sin θ) and
�e2,� = (− sin ϕ, cos ϕ, 0). Together with conservation of total energy
and angular momentum in the z-direction [the three-dimensional ex-
pressions are straightforward extensions of the two-dimensional versions,
Eqs. (5.8a), (5.8b)] we find a relation for the change of angular velocity
induced by one collision:

ω = ω′ + 2
(v′

x + ω′y) cos ϕ + (v′
y − ω′x) sin ϕ + v′

z cot θ
1

sin2 θ(x sin ϕ−y cos ϕ)
I
m

+ x sin ϕ − y cos ϕ

= ω′ + 2
( �V ′ − �v′) · �e⊥

r� + I
mr�

. (5.34)

( �V ′ − �v′) · �e⊥ is the component of the velocity difference between motor
and gas particle perpendicular to the surface at the place of impact. r�

is now defined as

r� = −x sin θ sin ϕ + y sin θ cos ϕ = (�e⊥ × �r)|z. (5.35)

The latter expression signifies the z-component of the vector product of
�e⊥ and �r. r� is zero in locations where the surface is perpendicular to �r,
these coincide with zero momentum transfer. Maximal momentum trans-
fer and r� occur when the rotation axis intersects the plane tangential to
the surface at this location.
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The transition probability dW (ω|ω′) caused by all possible collisions
with a surface element dSi of the motor, is then found by integrating
over all velocities that obey the collision rules,

dWi(ω|ω′) = dSi

∫ +∞

−∞
dv′

x

∫ +∞

−∞
dv′

y

∫ +∞

−∞
dv′

z

× H[( �V ′ − �v′) · �e⊥]|( �V ′ − �v′) · �e⊥|

× ρiφi(v
′
x, v

′
y, v

′
z)δ

[
ω − ω′ − 2

( �V ′ − �v′) · �e⊥
r� + I

mr�

]
. (5.36)

Adding the contributions of all surface elements dSi in all reservoirs i,
gives us the total transition probability,

W (ω|ω′) =
∑

i

∫
surface

dWi(ω|ω′). (5.37)

Again, for a Maxwellian velocity distribution,

φi(vx, vy, vz) =

(
m

2πkBTi

)3/2

exp

(−m(v2
x + v2

y + v2
z)

2kBTi

)
, (5.38)

we can do the integration over vx, vy, vz analytically and find

W (ω|ω′) =
1

4

∑
i

∫
dSiρi

√
m

2πkBTi

× (r� +
I

mr�

)2H[(ω − ω′)r�]|ω − ω′|

× exp

[
− m

2kBTi

(
(r� +

I

mr�

)
ω′ − ω

2
− r�ω

′
)2

]
. (5.39)

This expression is identical to its two-dimensional equivalent [Eq. (5.19)],
apart from the different definition of r�, and obviously an integration over
the surface instead of the boundary. The previous algebraic technique
can then be applied to derive results for a general shape of the motor,
such as for the average angular velocity in a steady state,

〈ω〉 =

√
2πkBm

4I

∑
i ρi(Teff − Ti)

∫
dSir

3
�∑

i ρi

√
Ti

∫
dSir2

�

, (5.40)
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and the friction coefficient,

γ =
∑

i

γi =
∑

i

4ρi

√
kBTim

2π

∫
dSir

2
�
. (5.41)

where Teff is still defined as

Teff = (
∑

i

γiTi)/(
∑

i

γi). (5.42)

5.4.1 Cylindrical shapes

For cylindrical three-dimensional shapes of the motor parts, our analysis
can be reduced to two spatial dimensions, via an appropriate scaling of
the densities involved. The three-dimensional shapes then consist of two
equal, flat (two-dimensional) shapes as top and bottom surfaces sepa-
rated by a distance H, with the rotation axis perpendicular to the flat
surfaces, and an edge surface parallel to the rotation axis. We consider
again the parameter r� defined in three dimensions as

r�,3D = −x sin θ sin ϕ + y sin θ cos ϕ. (5.43)

For the top (bottom) surface, θ = 0 (θ = π), hence r�,3D = 0 and we
can conclude that these surfaces play no part in the rotational dynamics.
For the edge surface, θ = π/2 and sin θ = 1, so that we recover the
two-dimensional expression for r�,2D, defined in Eq. (5.10). Thus, for
cylindrical three-dimensional geometries, the factors depending on the
shape occurring in Eq. (5.40) can be written as∫

dS r2
�,3D = H

∮
dl r2

�,2D, (5.44)∫
dS r3

�,3D = H

∮
dl r3

�,2D. (5.45)

If we assume homogeneous interiors for the device’s parts (constant den-
sity �3D), the inertial moment I can be written as

I = �3D

∫
r2
⊥dV = �3DH

∫
r2dA. (5.46)
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The first integral is over the interior volume of r2
⊥, with r⊥ the orthog-

onal distance to the rotation axis. The second integral is over a top (or
bottom) surface, where we have omitted the now superfluous subscript
in r⊥. The transition from a three-dimensional to a two-dimensional
analysis for homogeneous cylindrical shapes is then completed by an ap-
propriate scaling of the involved densities:

�2D = H�3D, (5.47)

ρ2D
i = Hρ3D

i . (5.48)

This way, the two-dimensional expression of Eq. (5.30) is retrieved from
Eq. (5.40). We will start our analysis of the results with a study of
two-dimensional shapes (or, equivalently, three-dimensional cylindrical
shapes), as the two-dimensional expressions are easier to examine.

5.5 Analysis and discussion

Now that we derived analytical results for any shape and any number of
reservoirs, we are ready to analyze concrete systems. We are interested in
the role of external parameters, such as the temperature and the density
of the gas, and in the construction and shape of the motor itself.

5.5.1 Temperature gradient

When the thermal reservoirs are at equilibrium with each other, we imme-
diately see from Eq. (5.32) that T1 = T2 = · · · = Ti = Teff, independently
of the construction we propose. The average angular velocity

〈ω〉 =
kBm

γI

∑
i

ρi(Teff − Ti)

∮
dlir

3
�
, (5.49)

becomes zero. It is impossible to extract net motion from a system in
equilibrium.

5.5.2 Chirality

The next element we want to discuss is the factor
∮

dlir
3
�

in Eq. (5.49).
Consider a motor shape in one reservoir i that is symmetrical with respect
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to a plane through the rotation axis. A simple argument reveals that∮
dlir

3
�

= 0: for every point (x, y) on the boundary of the shape with
value r� there can be found a point (x′, y′) for which r′

�
= −r�. The

contour integral of r� is therefore zero, considering that the line element
dli is positive.

A construction that consists entirely of symmetric shapes will yield
zero average rotation. Such a construction in its most simple form could
consist of flat blades through the rotation axis in every reservoir. To find
a net angular velocity, the motor must have at least one chiral part. The
factor

∮
dlir

3
�

will be analyzed in more detail in a later section.

5.5.3 Friction and propulsion

In the full expression

〈ω〉 =

√
2πkBm

4I

∑
i ρi(Teff − Ti)

∮
dlir

3
�∑

i ρi

√
Ti

∮
dlir2

�

, (5.50)

the factor
∮

dlir
2
�

in the denominator stems from the friction each motor
part encounters while rotating in the gas. If we are intent on optimizing
the motor, the first idea would be to minimize this factor. A surface
where r� is zero at every point corresponds to a sphere (circle), but

∮
dlir

3
�

will be zero as well, resulting in zero net motion. Large average angular
velocities will be obtained then by a compromise between a small

∮
dlir

2
�
,

and a large
∮

dlir
3
�
. The ‘propulsion’ of the motor originates in the factor∮

dlir
3
�
. The largest friction will be experienced by a shape for which r�

is maximal. This corresponds to a (flat) surface, or blade, through the
rotation axis.

5.5.4 Motor configurations

We turn to the question of how to configure the motor. Leaving the exact
choice of the shape for later, we tackle the following question: if we have
a certain part of the motor in one reservoir, how will the placement of
the part in the other reservoir effect the motion of the motor? We start
by proposing three simple constructions (see Fig. 5.5):
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Figure 5.5: Three possible configurations of the motor parts in a
two-reservoir system. (a) The part in the first reservoir is copied
exactly to the other reservoir. Not only the shapes are identical,
also their position relative to the rotation axis. (b) The motor part
in one reservoir is reflected in the other reservoir. The reflecting
plane passes through the rotation axis. (c) A general shape is com-
bined with a blade: a plane of length L (and height H in three
dimensions). Note that the system is rotationally invariant in each
reservoir separately.

1. The shapes are identical in both reservoirs (Fig. 5.5a). This in-
cludes the location of the rotation axis with respect to the shape.
The exact shape can be determined afterwards. With∮

dl1r
2
�

=

∮
dl2r

2
�
=

∮
dlr2

�
, (5.51)∮

dl1r
3
�

=

∮
dl2r

3
�
=

∮
dlr3

�
, (5.52)

Eq. (5.50) simplifies to

〈ω〉 =

√
2πkBm

4I

ρ1ρ2(T
1/2
2 − T

1/2
1 )(T2 − T1)

(ρ1T
1/2
1 + ρ2T

1/2
2 )2

∮
dl r3

�∮
dl r2

�

. (5.53)

2. The shapes are still general but they are exact mirror images of
each other in both reservoirs (Fig. 5.5b). Also the location of the
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rotation axis with respect to the shape is mirrored. The mirror
axis (plane) is through the rotation axis, but its orientation is of
no importance, as our system is rotationally invariant. Writing∮

dl1r
2
�

=

∮
dl2r

2
�

=

∮
dlr2

�
, (5.54)∮

dl1r
3
�

= −
∮

dl2r
3
�
=

∮
dlr3

�
, (5.55)

Eq. (5.50) now becomes

〈ω〉 =

√
2πkBm

4I

ρ1ρ2(T
1/2
2 + T

1/2
1 )(T2 − T1)

(ρ1T
1/2
1 + ρ2T

1/2
2 )2

∮
dl r3

�∮
dl r2

�

. (5.56)

3. We use a general (yet unknown) shape in the first reservoir, while
in the second reservoir we put a blade of length L, rotating about
one end (Fig. 5.5c). Omitting the index i = 1, and identifying∮

dl2r
2
�

= 2L3/3, (5.57)∮
dl2r

3
�

= 0, (5.58)

we obtain

〈ω〉 =

√
2πkBm

4I

ρ1ρ2T
1/2
2 (T2 − T1)(2L

3/3)
∮

dl r3
�

(ρ1T
1/2
1

∮
dl r2

�
+ ρ2T

1/2
2 (2L3/3))2

. (5.59)

Comparing the three suggested configurations, we see configuration (1) is
even when the temperature difference ΔT = T1−T2 is inverted, while (2)
and (3) are odd. For small temperature differences, 〈ω〉 is approximately
parabolic in ΔT , while (2) and (3) are linear. For small ΔT therefore,
(1) yields much lower angular speeds than (2) and (3).

For a small temperature difference a rather technical calculation in-
dicates that the average angular velocity for configuration (2) is at least
twice that of construction (3) for the same general shape with similar
linear dimensions as the blade.
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Figure 5.6: A motor with multiple identical shapes in each
reservoir. For the depicted configuration with equal multiples,
n = m = 4, we show that the resulting average angular velocity
is the same as that for only one shape in each reservoir.

In a numerical procedure described later, we discovered that the con-
figuration of two mirror shapes in the two reservoirs produces the maxi-
mal average angular velocity. In other words, given a certain part in one
reservoir, the highest average angular velocity is obtained by using the
reflected shape in the other reservoir.

One could think of multiple but identical structures (blades) in each
reservoir, as illustrated in Fig. 5.6. Ignoring the increased probability of
multiple collisions of gas particles with the motor, our theory leads to an
average angular velocity

〈ω〉 =

√
2πkBm

4I

ρ1ρ2(T2 − T1)
(
T

1/2
2

∮
dl1 r3

�

∮
dl2 r2

�
− T

1/2
1

∮
dl2 r3

�

∮
dl1 r2

�

)
(√

n
m

ρ1T
1/2
1

∮
dl1 r2

�
+

√
m
n
ρ2T

1/2
2

∮
dl2 r2

�

)2 ,

(5.60)
for a system with n identical shapes in reservoir 1 and m identical shapes
in reservoir 2. The appearing contour integrals are over one shape of the
set of identical shapes. For the same number of shapes in both reservoirs,
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n = m, the average angular velocity is the same as with only one blade in
each reservoir. The result also indicates that it is beneficial to have the
highest number of blades in the reservoir with the highest ρT 1/2

∮
dl r2

�

factor, or simply the highest ρT 1/2 factor if the blades have the same
shape in both reservoirs.

5.5.5 Globular proteins

Looking for real-world candidates to fill the role of our Brownian motor,
we turn our attention to biological systems. In the further analysis we
want to use physical values for the dimensions, masses and so on. A
possibility is to apply our model to globular proteins, substituting one
for each motor part. The two parts would reside in a water environment,
separated by a lipid membrane.

To obtain orders of magnitude for our results we will often refer to
the values in Table 5.1.

Mass of one part M/2 1.66 × 10−22kg
Density of the motor � 1380 kg m−3

Volume of one part V 120 nm3

Radius of one part (if assumed spherical) R 3 nm
Particle mass (H2O) m 2.992 × 10−26kg
Reservoir temperature T1, T2 ±300 K
Reservoir particle density ρ1, ρ2 ±3.3 × 1028m−3

Table 5.1: Typical parameters used for the motor and environ-
ment. The values of the individual parts correspond to those of
globular proteins.
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Figure 5.7: The temperature dependency of ω0 for a configuration
of (a) identical shapes and of (b) mirror shapes in the two reser-
voirs. One reservoir is kept at a fixed temperature T1 = 300K,
while the temperature T2 in the other reservoir changes in a range
of 300 ± 1K. For (a) we see a nearly parabolic dependency on
T2 −T1. The sense of rotation remains the same if we switch part
1 and part 2 of the motor, and the angular velocity is rather small.
For (b) we see a much larger effect, a nearly linear dependency
on T2 −T1, and the sense of rotation is inverted by switching part
1 and part 2 of the motor. The densities are taken the same in
both reservoirs.
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5.5.6 External parameters

In the cases of identical shapes and mirror shapes [Eqs. (5.53), (5.56)] we
can separate from the expressions for 〈ω〉 a shape-dependent factor,

S =
√

A
M

I

∮
dl r3

�∮
dl r2

�

. (5.61)

A factor
√

A (or V 1/3 if we prefer to work in three dimensions), which
stands for the typical dimensions of a motor part, is multiplied to make
S scale-invariant. S will be discussed in detail in the next section.
Eqs. [5.53, 5.56] can then be written as

〈ω〉 = ω0S. (5.62)

What remains is a factor ω0 that depends on the specific configuration,
the reservoir temperatures and densities, and the masses of the motor
and particles:

ω0 = ω±
0 =

√
2πkBm

4M
√

A

ρ1ρ2(T
1/2
2 ∓ T

1/2
1 )(T2 − T1)

(ρ1T
1/2
1 + ρ2T

1/2
2 )2

. (5.63)

We have used the notation ω+
0 for the configuration with two identical

shapes in the two reservoirs and ω−
0 for the configuration where the shapes

are mirror images.
ω0 is also dependent of the size of the motor. Because the mass

M of the motor is also size-dependent, the full dependency could be
written as M

√
A = 2�A3/2 in two dimensions, or MV 1/3 = 2�V 4/3 in

three dimensions, if the density � of the motor interior is considered
constant. Therefore ω0 ∝ M−3/2 in two dimensions and ω0 ∝ M−4/3 in
three dimensions.

In Fig. 5.7 we show the temperature dependency of ω0, calculated
with the physical values of Table 5.1 and equal reservoir densities. As
mentioned before ω−

0 is linear in T2 − T1, while ω+
0 is quadratic.

5.5.7 Shape factor

Next, we consider the size-independent geometrical factor,

S =
√

A
M

I

∮
dl r3

�∮
dl r2

�

, (5.64)

99



Chapter 5. Theory and Simulations

which is comprised of an interior factor M/I, and an exterior (boundary)
factor

∮
dl r3

�
/
∮

dl r2
�

The factor M/I is actually independent of the mass of the motor
because the inertial moment I is proportional to the mass M . It only
describes the spatial distribution of mass. For a homogeneous motor
interior it is given by

M

I
=

∑
i Ai∑

i

∫
r2dAi

. (5.65)

The integral is over the entire interior of the motor, and r is the distance
of an interior point to the rotation axis.

Finally the factor
∮

dl r3
�
/
∮

dl r2
�

depends on the exact form of the
boundary of the motor parts, where r� is to be measured from the location
of the rotation axis. The integrals are over the entire boundary.

To enable us to get an understanding of the geometrical factor, we
introduce three simple realizations (Fig. 5.8) (in two dimensions and with
homogeneous mass distributions), of which the boundary can easily be
described analytically. For these prototype shapes all factors can be
expressed in closed form. The shape of the motor parts are respectively
a right triangle (Motor 1), an isosceles triangle (Motor 2) and a disk sector
(Motor 3). Both the dimensions of the motor parts (R) and the shape
(α) are fixed with one parameter, making a comparative study easier.
We would also like to specify the location of the motor part relative to
the rotation axis with one representative point with coordinate (x, y).
For motors 1 and 2 we choose the center of mass and for motor 3 the
center of the disk sector [see Fig. (5.8)] as this representative point . For
these simple motors we can calculate analytical expressions for

∮
dl r2

�

and
∮

dl r3
�
. As an example consider the Motor 2 case:

∮
dl r2

�
=

2R

9

(
R2 + 3Ry cos 3α + 9y2 + 9x2 sin α

+ sin2 α
(
R2(3 sin α − 2 cos 2α) + 9x2 − 9y2

))
, (5.66)
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Figure 5.8: Three simple shapes for the motor parts. All are
determined by a minimal number of parameters. The shape is de-
termined by the angle α, the size by one side R, and the position
with respect to the rotation axis (at the origin) by one coordinate
(x, y). For the triangles (Motor 1: right triangle; Motor 2: isosce-
les triangle) (x, y) is the location of the center of mass, while for
the disk sector (Motor 3) (x, y) corresponds to the center of the
disk.
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Motor 1 I/M = R2/18 + x2 + y2

Motor 2 I/M = R2(2 − cos 2α)/18 + x2 + y2

Motor 3 I/M = R2

2
− 4Ry sin α

3α
+ x2 + y2

Table 5.2: The ratio of the inertial moment I over the mass M
of the motors in Fig. 5.8 given as a function of the location (x, y)
(of the center of mass for Motors 1 and 2, and of the center of the
disk for Motor 3) with respect to the rotation axis and the shape
parameters, angle α and size R. The distribution of mass within
the motors is assumed homogeneous.

and∮
dl r3

�
=

R

3
x sin 2α

(
R(3y + R cos α)(1 − 2 cos 2α)

+ 3
(
x2 − 3y2

)
cos α

)
. (5.67)

The inertial moments I for the three motors are given in Table 5.2. Some
physical properties are immediately apparent from these expressions. For
example

∮
dl r3

�
, and hence the angular velocity 〈ω〉, is zero when

• x = 0: this is when the rotation axis is on the symmetry axis of
the motor; there is no preferred sense of rotation,

• sin 2α = 0 or α = 0 or α = π/2: the motor is bar shaped, and loses
its asymmetry (or chirality).

Note that
∮

dl r2
�
, which also appears as a factor in the expression for the

friction coefficient, is not zero if the shape is bar shaped (or symmetrical
in general).

In general the
∮

dl r3
�

factor [Eq. (5.67) for Motor 2] describes the
asymmetry of the motor. It also determines the sense of rotation. For
example for Motor 2, the rotation sense is inverted when the rotation axis
is placed on opposite sides of the symmetry axis, x = x0 and x = −x0.

More features can be seen from plots of the angular velocity of the
motors as a function of their shape and configuration, see Figs. 5.9 (Motor
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Figure 5.9: Contour plots of the average angular velocity 〈ω〉(x, y)
of Motor 1 as a function of the location of the rotation axis (x, y),
for several values of the angle α. The center of mass of the motor
is in the origin (0, 0). Regions in black (and white) correspond to
locations for the rotation axis that yield the highest 〈ω〉 (but in
opposite sense). If the rotation axis is put on a red curve there is
zero average rotation. Maxima in 〈ω〉(x, y) are marked by dots,
the purple dot reveals the optimal place for the rotation axis (the
one that gives the highest angular velocity).
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Figure 5.10: Contour plots of the average angular velocity
〈ω〉(x, y) of Motor 2 as a function of the location of the rota-
tion axis (x, y), for several values of the angle α. For a technical
explanation see Fig. 5.9. The symmetry of the shape is reflected
in the 〈ω〉(x, y) plot, in particular in the locations for the rotation
axis that correspond to zero average angular velocity (red curves):
the y-axis for all the configurations and three symmetry axes for
α = 30◦. Note that the rotation sense is opposite for locations on
opposite sides of a symmetry axis.
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Figure 5.11: Contour plots of the average angular velocity
〈ω〉(x, y) of Motor 3 as a function of the location of the rota-
tion axis (x, y), for several values of the angle α. For a technical
explanation see Fig. 5.9.
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1), 5.10 (Motor 2) and 5.11 (Motor 3). Note that a coordinate change
was made, x → −x, y → −y. This means the coordinate (x, y) in the
plot corresponds to the location of the rotation axis with respect to the
representative point of the motor (center of mass or center of the disk),
which is put in the origin of the plots. In Figs. 5.9, 5.10, 5.11 of 〈ω〉(x, y)
we show lines of equal angular velocity (in black) and lines of zero average
angular velocity (in red). Highest angular velocities are found in the black
and white regions (but with opposite rotation sense). Local extrema of
〈ω〉(x, y) are represented by a green dot while a purple dot is the optimal
location of the rotation axis. The shape of the motor is drawn in yellow.

We see that the red curves that signify zero average rotation can be
straight lines when they correspond to a symmetry axis of the shape (the
y-axis in Figs. 5.10, 5.11 for all shapes α, but also in Fig. 5.9 for α = 45◦

for example), but in general they follow a curved path. The regions of
opposite rotation sense, separated from each other by the red curves,
form not so trivial patterns.

Also interesting to note is that the location of the rotation axis that
yields the highest rotation speed is always in the vicinity of the rotating
Brownian motor and often in its interior. Remember that the geometrical
results are scale-invariant, and the relative locations of the maxima (and
zero lines) are independent of the dimensions of the motor.

For certain choices of the shape and especially of the location of the
rotation axis the average rotation speed can become zero. It is therefore
sensible to investigate which configurations yield the highest rotation
speed. For the three simple motor realizations, we determine the loca-
tion of the rotation axis that yields the highest shape factor S for every
value of the shape parameter α, as shown in Fig. 5.12. The angle α
that results in the highest S is listed in Table 5.3 for each of the motors.
The corresponding shapes are depicted in Fig. 5.13. Considering the
constraints put on the shape, Motor 1 and Motor 2 adopt very similar
configurations, while the best (convex) shape for Motor 3 is a semi-disk.

5.5.8 Optimal shape

The analysis of the three motor realizations demonstrates that the an-
gular velocity is sensitive to the precise shape of the motor. We are
interested to know what happens if we relax the shape constraints while
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Figure 5.12: For the simple motor types (Fig. 5.8), we determined
the position of the rotation axis that maximizes the average ro-
tation speed for every shape, given by angle α. The values of
α for which the shape factor S reaches a maximum are given in
Table 5.3. It becomes clear that the shape is a key factor in the
operation of the motor.
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Figure 5.13: The choices for the shape and location of the rotation
axis for each of the three motor realizations that result in the
highest average angular velocity of the motor. The location of the
rotation axis is marked by a star. Although the initial constraints
for Motor 1 and 2 are different (respectively the shape of a right
and isosceles triangle), in their optimal configuration they are very
similar. Motor 3 is optimal in the shape of a semi-disk, while we
excluded the possibility of a concave shape.

Motor Angle α shape factor S
Motor 1 43.2◦ - 0.618

46.8◦ 0.618
Motor 2 17.7◦ 0.465

47.7◦ 0.627
Motor 3 22.4◦ 0.638

90.0◦ 1.54

Table 5.3: For each of the three simple motor prototypes, we
shape factor S that corresponds to the optimal settings (shape
and location of the rotation axis) is listed. The related shapes are
shown in Fig. 5.13.
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optimizing for maximum rotation speed. We solve this problem using a
numerical procedure.

The boundary of the motor is modeled as piecewise linear. It is
defined by the location of n vertices. The numerical procedure finds the
optimum location of the n vertices, yielding maximum angular velocity,
under the constraints that (1) the mass M remains constant, (2) the
shape remains convex. The mass constraint for a homogeneous mass
distribution translates into conservation of total area A. For low numbers
n = 3, 4, 5, 6 the optimum location of the vertices is shown in Fig. 5.14.
Note that the rotation axis is still fixed in the origin (0, 0).

By increasing the number of vertices n, the piecewise linear shape
approaches the smooth boundary that yields the highest angular velocity
possible. In Fig. 5.15 the shape factor S is plot against the number of
vertices n. We see a convergence for large n. For n = 100 the value of S
is 2.29. This is a factor 3.65 higher than the best value for a triangular
shape, n = 3, S = 0.63. The corresponding shape (for n = 100) is shown
in Fig. 5.16. A tentative explanation for the optimum spiral shape is that
it combines a long curved section with small r

� (and hence small friction)
with a short section that is linear, providing the necessary propulsion.

The chirality of the shape determines the rotation sense. A motor that
consists of two identical optimum shapes as shown in the large figure
of Fig. 5.16 actually has a negative S. This means the motor rotates
clockwise (from y-axis to x-axis). Its enantiomer (the small figure) has
positive S and rotates counterclockwise (from x-axis to y-axis).

We initially applied the numerical procedure to identical shapes in
the two reservoirs. We knew we would simultaneously find the optimum
shape for the construction with mirrored shapes in both reservoirs as they
share the same shape factor S (see Eqs. 5.53 and 5.56). Then we extended
the numerical procedure so that the shapes in each reservoir could develop
independently. For a small temperature difference (ΔT = 1 K) the shapes
become almost exactly each others mirror image (area difference A1/A2 =
1.00045). Even for a large temperature difference (ΔT = 100 K) we find
mirror shapes with only a small area discrepancy (A1/A2 = 1.017). The
larger shape is in the reservoir with lower temperature. To obtain a
positive rotation sense (from x-axis to y-axis) for a construction with
mirror images, the shape with positive S needs to be placed in the cold
reservoir , while its mirror shape with negative S (but equal in absolute
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Figure 5.14: A numerical procedure was used to find optimum
piecewise linear shapes, by determining the best location of each
vertex. The results for a small number of vertices, n = 3, 4, 5, 6
are shown. Note that the results are invariant for rotations with
respect the rotation axis, which is located in the origin (0, 0) of
the coordinate system.
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Figure 5.15: The shape factor S is a scale-invariant measure of
the influence of the precise geometry of the motor. For S = 0, the
average angular velocity is zero. A numerical procedure was used
to obtain the optimum shape (with highest S) for a motor shape
that is piecewise linear, i. e. consisting of n vertices connected by
straight lines. For high n we find an approximation of the exact
optimum shape and a lower limit of the maximal S that can be
obtained. S converges to a value of about 2.29. A negative S is
possible, but this corresponds to a shape that is the mirror image
of the shape with opposite S.
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Figure 5.16: The (two-dimensional) shape of one motor part that
produces the highest average angular velocity, found with a nu-
merical procedure. The rotation axis is marked by a star [at (0, 0)],
while the center of mass is marked by a dot. When two identical
shapes are placed in both reservoirs (with equal position relative
to the rotation axis), the shape in the larger figure rotates from
the y-axis to the x-axis, while its mirror shape (enantiomer) in
the smaller figure rotates in the opposite sense. The area of the
shape is normalized to 1.

112



5.5. Analysis and discussion

value) should be in the warm reservoir.

5.5.9 Physical estimates for the Brownian rotor

We have now collected all the necessary elements to estimate the physical
properties of our motor. In a real world example of course many of the
features discussed here will only be of qualitative use.

We learned that is is advantageous to use a configuration where the
shape of the motor in one reservoir is the mirror image of the shape in
the other reservoir (section 5.5.4). We also found the optimal individual
shape (section 5.5.8). In the results we present here we assume these
optimizations can be approached.

When we use the physical properties of small protein structures in an
environment of water molecules (section 5.5.5) as the separate building
blocks of our motors, we arrive at an average angular velocity of about
1500 Hz when driven by a temperature gradient of 0.1 K (T1 = 300 K,
T2 = 300.1 K). This corresponds to about 230 rotations per second.

5.5.10 Three-dimensional optimal shapes

The previous optimization, when applied to three-dimensional geome-
tries, was under the restriction of cylindrical shapes. In this section, the
effect of lifting this restriction is investigated and higher ‘shape factors’
are shown to be feasible.

We start our analysis with the assumption of two equal or mir-
rored shapes for the parts in the two reservoirs. Separating the expres-
sion for the average angular velocity into shape-independent and shape-
dependent factors,

〈ω〉 = ω0S, (5.68)

leads to

ω0 = ω±
0 =

1

2�V 4/3

√
πkBm

8

ρ1ρ2(T
1/2
2 ∓ T

1/2
1 )(T2 − T1)

(ρ1T
1/2
1 + ρ2T

1/2
2 )2

. (5.69)

with ω+
0 the angular velocity for two identical shapes in the two reservoirs

and ω−
0 for the configuration where the shapes are mirror images. For

simplicity we have assumed the density � of the interior of the parts to be
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constant. The volume V is that of one part, hence M = 2�V . Note that
the magnitude of the angular velocity is inversely proportional to the
4th power of the linear dimensions of the device. The remaining ‘shape
factor’ is then dimensionless and only depends on the shape:

S =
2�V 4/3

I

∫
dS r3

�∫
dS r2

�

=
V 4/3∫
dV r2

⊥

∫
dS r3

�∫
dS r2

�

. (5.70)

In the latter expression we have used that I = 2�
∫

dV r2
⊥ for equal or

mirror shapes.

We have employed a numerical method similar to that for the two-
dimensional optimization, to find shapes that maximize S. The shape
is modeled as a convex polyhedron with triangular faces. The factors
occurring in Eq. (5.70) can be calculated from the coordinates of its n
vertices. The polyhedral shape is then allowed to transform randomly
while only transformation steps that preserve convexity and that increase
S are retained. Whereas for the two-dimensional optimization a restraint
of fixed mass was sufficient to attain convergence to a nontrivial shape,
for the three-dimensional case the absence of further restrictions leads to
an infinitely high (and infinitely narrow) shape. Obviously, a distribution
of mass closer to the axis of rotation, impossible in the two-dimensional
case, trivially increases the inertial moment I and hence the shape factor
S. Therefore, we introduced an additional constraint, restricting the
height H of the shape in the direction of the rotation axis. The obtained
results for H = 0.5 (n = 200), H = 1 (n = 400) and H = 1.5 (n =
200) (with H in units V 1/3) are reproduced in Figs. 5.17, 5.18 and 5.19
respectively. Although conclusive rules are impossible to infer from a
numerical procedure, we mention our observation that for shallow objects
the optimal shape tends to a symmetrical configuration in the direction
of the rotation axis, cf. Fig. 5.17, whereas for tall objects the tendency
is towards an asymmetrical configuration in the direction of the rotation
axis, with one large flat top (or bottom) surface, cf. Fig. 5.19. The
distribution of profiles of numerically attained realizations, depicted in
Fig. 5.20, further demonstrates this observation. The chirality of the
shapes however is very clear and manifested by the appearance of a flat
face in combination with a smooth rounded surface.

Table 5.4 lists the shape factors S corresponding with the shapes of
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5.6. Cross processes

Height H (units V 1/3) Shape factor S
0.5 2.24
1 2.71

1.5 3.18

Table 5.4: Dimensionless shape factors S for three-dimensional
optimal shapes of varying height H. To obtain actual angular
velocities, S is multiplied by ω0 of Eq. (5.69).

height H = 0.5, H = 1 and H = 1.5. Naturally, S increases with height
as the inertial moment decreases.

So far, we have assumed the shapes in the two reservoirs to be ei-
ther identical or exact mirror images. We have however also applied the
described numerical algorithm to an explicit two-reservoir system with
independent shapes in each reservoir. In Fig. 5.21 we show the result
of an optimization of the shapes for reservoir temperatures T1 = 0.032
and T2 = 0.045. The two shapes resemble enantiomorphs, but close in-
spection reveals there is no exact correspondence in the z-direction. This
can be attributed to a remaining freedom of the shape in the z-direction.
We note that the resulting angular speed is 2.75% higher than when an
exact mirror copy of either shape is placed in the other reservoir. This
difference however can be accounted for by incomplete convergence of
the shapes (each with n = 200 vertices). A view along the z-direction
(Fig. 5.22) on the other hand seems to show that the cross sections of the
two shapes in the xy-plane approach mirror images of each other. Note
that the view is respectively from the top and the bottom of the rotor,
hence enantiomorphs would appear as identical shapes in this projection.

5.6 Cross processes

We discussed a Brownian motor, and derived a relationship between its
motion – the average angular velocity 〈ω〉 – and the applied temperature
difference ΔT . This relationship is an example of a cross process. The
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Figure 5.17: The optimal three-dimensional shape for height
H = 0.5 V 1/3 shown from different view angles. The rotation
axis is colored red. This shape maximizes the net angular veloc-
ity of the Brownian rotor, when identical or mirrored shapes are
placed in the two reservoirs. The shape is the result of a numerical
technique employing a polyhedral structure with 200 vertices.
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Figure 5.18: The optimal three-dimensional shape for height
H = V 1/3 shown from different view angles. The rotation axis
is colored red. This shape maximizes the net angular velocity of
the Brownian rotor, when identical or mirrored shapes are placed
in the two reservoirs. The shape is the result of a numerical tech-
nique employing a polyhedral structure with 400 vertices.
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Figure 5.19: The optimal three-dimensional shape for height
H = 1.5 V 1/3 shown from different view angles. The rotation
axis is colored red. This shape maximizes the net angular veloc-
ity of the Brownian rotor, when identical or mirrored shapes are
placed in the two reservoirs. The shape is the result of a numerical
technique employing a polyhedral structure with 200 vertices.
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5.6. Cross processes

Figure 5.20: Profiles of several realizations of the three-
dimensional shape as obtained from a numerical procedure. The
vertical axis is in the z-direction (axis of rotation). Top figure
(height H = 0.5 V 1/3): a larger number of z-symmetric profiles
occur. Bottom figure (H = 1.5 V 1/3): a larger number of z-
asymmetric profiles occur. Middle figure (H = V 1/3): no clear
bias discernible. Volume V = 1 for all realizations.
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Figure 5.21: Optimal three-dimensional shapes, each in a sepa-
rate reservoir (not shown), obtained from a a numerical technique
when no preset relation between the two shapes is assumed. The
rotation axis is colored red, views are the same shapes from differ-
ent viewpoints. These shapes maximize the net angular velocity of
the Brownian rotor for temperatures T1 = 0.032 and T2 = 0.045.
Both shapes are modeled as polyhedral structures with 200 ver-
tices, each with height restriction H = 0.5 V 1/3.
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Figure 5.22: The two shapes (one in each reservoir) of Fig. 5.21
as seen from the top and the bottom.
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normal process that would give rise to a motion 〈ω〉 originates from a
mechanical force. In our system with only a rotational degree of freedom
this mechanical force would be in the form of a torque τ along the z-axis.

Cross processes are very common in physics. One well-known ex-
ample is the Seebeck effect [49], where a temperature difference over an
electric conductor causes an electric current. The Seebeck effect has a
reverse or mirror cross process: the Peltier effect. Here, an applied elec-
tric current causes a temperature difference. Processes and their mirror
processes are related through a general principle of stability. In the ex-
ample of the Seebeck-Peltier effects, consider a system that is originally
in equilibrium. If it is perturbed by the application of a temperature gra-
dient, currents will start to flow (the Seebeck effect), which in turn will
give rise to a counteracting temperature difference (the Peltier effect),
attempting to cancel out the original cause of the disturbance. Another
example is Lenz’ law in electromagnetism. Moving a ferromagnetic core
into a coil will induce currents in the coil. These currents are such that
the resulting magnetic field will expel the core, hence counteracting the
original disturbance.

Now that we established the existence of a cross process in the Brow-
nian motor system and showed the relationship between a cross process
and its mirror process, the question naturally arises: what is the mirror
process in our system? It should be one that counteracts the original
perturbation – a temperature difference between the reservoirs. A flow
of heat Q̇1→2 from reservoir 1 to reservoir 2 would do exactly that. And
we know the normal process (that causes rotational motion) is induced
by a torque τ . The mirror cross process then is a heat flow caused by
a torque. When we perturb our system in temperature equilibrium by
applying a torque τ , the motor will of course rotate. How can the system
react to counterbalance this motion? By creating a temperature gradient
between the two reservoirs, that according to the theory of the Brownian
motor will cause rotational motion. The sign of the temperature differ-
ence is such that the resulting rectified Brownian motion opposes the
motion started by the torque.
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Figure 5.23: The Brownian refrigerator is a rotating device con-
sisting of two connected bodies, each in a temperature reservoir.
By applying a torque on the apparatus, a heat flow Q̇1→2 will
arise that can cool down reservoir 1 at the expense of heating
up reservoir 2. It is possible to obtain the conditions where this
cooling power is larger than the dissipative heating Q̇J1.
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5.7 Model of the Brownian Refrigerator

We propose a cooling apparatus or refrigerator based on the Brown-
ian motor described before. Two reservoirs (see Fig. 5.23) are ther-
mally isolated from each other and initially at temperature equilibrium,
T1 = T2 = T . The refrigerator consists of a rotating device with a part
in each reservoir. The parts are rigidly connected via a rotation axis
and are subject to random collisions with particles in their reservoirs.
These have mass m, considered much smaller than the total mass M of
the rotating device. On applying a torque τ along the z-axis the system
will develop a heat flow Q̇1→2, cooling reservoir 1 down at the expense of
heating up reservoir 2. The following derivation of this heat flow is done
for a construction where one part of the device is the reflected copy of the
other (as in Fig. 5.5b) because it shows a linear response in small tem-
perature differences T1 − T2 and it produces the highest rotating speeds
and resulting heat flow.

5.8 Linear response and Onsager symme-

try

Previously we derived a relation between the average angular velocity 〈ω〉
of the rotating brownian motor and the temperatures of the two isolated
reservoirs, T1 and T2, correct to order m/M :

〈ω〉 =

√
2πkBm

4I

ρ1ρ2(T
1/2
2 + T

1/2
1 )(T2 − T1)

(ρ1T
1/2
1 + ρ2T

1/2
2 )2

∮
dl r3

�∮
dl r2

�

. (5.71)

Here I is the inertial moment of the motor with respect to its rotation
axis and

∮
dl r3

�
/
∮

dl r2
�

is a geometrical factor defined by the shape of
the rotating motor parts. The geometrical factor is zero in a symmetrical
configuration, hence the importance of choosing appropriate asymmetric
or chiral elements. For a more detailed discussion of the geometrical
factor we refer to Section 5.5.7. For a small temperature difference ΔT
between the two reservoirs,

T1 = T − ΔT/2, ΔT = T2 − T1 � T, (5.72)

T2 = T + ΔT/2, T = (T1 + T2)/2, (5.73)
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the mechanical response 〈ω〉 is linear in ΔT to very good approximation:

〈ω〉 ≈
√

2πkBm

2I

ρ1ρ2

(ρ1 + ρ2)2

∮
dl r3

�∮
dl r2

�

ΔT

T 1/2
. (5.74)

An elegant way to calculate the cooling potential of our system is by
making use of Onsager’s relations [37]. We will identify a flow and a
force for the two cross processes involved. For the mechanical process
we identify a flow J1 = 〈ω〉 and a thermodynamic force X2 = ΔT/T 2 in
the linear relation of Eq. (5.74). The proportionality constant L12 of the
first Onsager relation,

J1 = L12X2, (5.75)

is, for our particular system, given by

L12 =

√
2πkBm

2I

ρ1ρ2

(ρ1 + ρ2)2
T 3/2

∮
dl r3

�∮
dl r2

�

. (5.76)

For the second cross process, the cooling process, we can identify a
heat flow J2 = Q̇1→2. The force X1 is given by the chemical potential
associated with the particle flow J1 = 〈ω〉 of the normal process, and is
generated by the application of the torque τ . More precisely, X1 = τ/T .
Again we expect a linear response

J2 = L21X1. (5.77)

Onsager symmetry now tells us that the two proportionality coeffi-
cients of the cross processes are identical,

L21 = L12. (5.78)

The heat flow from one reservoir to the other in the linear regime now
becomes obvious,

Q̇1→2 =

√
2πkBmT

2I

ρ1ρ2

(ρ1 + ρ2)2

∮
dl r3

�∮
dl r2

�

τ. (5.79)

The complete Onsager relations, combining normal and cross pro-
cesses, are given by:

J1 = L11X1 + L12X2, J2 = L21X1 + L22X2. (5.80)
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The Onsager coefficients we have not identified yet are:

L11 = T/γ, L22 =
γ1γ2kBT 2

γI
, (5.81)

while J1 = 〈ω〉, J2 = Q̇1→2, X1 = τ/T , and X2 = ΔT/T 2 as before. L11

can be associated to the direct mechanical response of the motor to the
application of a torque, while L22 is related to heat conductivity, being
the coefficient between the heat flow and the temperature gradient.

5.9 Results and discussion

Eq. (5.79) gives us a relation between the heat flow from reservoir 1 to
reservoir 2 and the applied torque. Earlier we chose the parameters of
the building blocks that constitute our motor and its environment to
be comparable with globular proteins in water, see Table 5.1 for details.
Using these variables again for the refrigerating device we obtain a heat
flow Q̇1→2 of 4.5 μJ/s for every pNm of torque applied. This result is for
T = 300 K and a shape that is close to optimal. Note that in the ratio
Q̇1→2/τ , the geometrical factor,

M

I

∮
dl r3

�∮
dl r2

�

, (5.82)

found earlier reappears so that the comprehensive discussion therein (sec-
tions 5.5.7 and 5.5.8) remains applicable for the various shapes the parts
of the refrigerator can adopt.

In Fig. 5.24 we reproduce the dependency of the cooling power Q̇1→2/τ
on the densities ρ1 and ρ2 of the gas reservoirs for different gas temper-
atures T . Here we have set the cooling device in the membrane separat-
ing two gaseous environments (the values for nitrogen gas N2 are used:
m = 5 × 10−26kg, while for the refrigerator M = 1.66 × 10−22kg and
typical radius 3 nm). The size of the effect is determined by the ratio of
the gas densities ρ1/ρ2. For all temperatures maximal cooling power is
found when the densities in the two reservoirs are equal, ρ1 = ρ2. Higher
heat fluxes arise when the gas temperature T is higher.

The maximal torque that can be applied and the maximum obtainable
temperature difference will be determined by increasing dissipative heat
flows, which we discuss now.
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5.9. Results and discussion

Figure 5.24: Physical values of the cooling power Q̇1→2 of the
Brownian refrigerator in response to a torque τ are given for an
environment of two nitrogen gas reservoirs for several choices of
the temperature T of the gases. The device works best when the
densities of the gases, ρ1 and ρ2, are equal. The mass of the
gas particles is m = 5 × 10−26kg, while the mass of the device is
M = 1.66 × 10−22kg.
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5.9.1 Joule dissipation

We showed the occurrence of a heat flux Q̇1→2 that takes away heat from
reservoir 1 to reservoir 2. Friction however will cause Joule heating in
both reservoirs i = 1, 2 by an amount

Q̇Ji = γi〈ω〉2 = γiτ
2/γ2. (5.83)

If we want reservoir 1 to cool down, the heat Q̇1→2 transferred from
reservoir 1 to 2 needs to be larger than the heat Q̇J1 dissipated by friction
in reservoir 1,

Q̇1→2

Q̇J1

= 2
kBTm

I

ρ2

τ

∮
dl r3

�
> 1. (5.84)

This condition poses a limit on the applied torque:

τ < τlim = 2
kBTm

I
ρ2

∮
dl r3

�
. (5.85)

A greater torque would cause the heat dissipation to annihilate the cool-
ing effect. We are able to suggest a scale-invariant numerical limit for
the torque. Note that both the inertial moment I and the shape factor∮

dl r3
�

scale with R4 (R being the typical linear dimension of the refrig-
erator) in the case that the refrigerator parts have homogeneous density
�. If we assume optimum operation using the appropriate chiral shapes
of the parts, as will be developed in detail later (section 5.9.2), we find

�

∮
dl r3

�

I
= 1.30684. (5.86)

This result depends only on the geometry and not on the dimensions
of the parts. It will be lower for less favorable shapes and zero for a
symmetric construction. The maximal torque than can be expressed as

τlim = 2kBT
ρ2m

�
× 1.30684. (5.87)

This maximal torque is proportional to the ratio of the mass density ρ2m
of gas that is heated and of the refrigerator �. It does not depend on
the size of cooling device. For T = 300 K and a system according to
Table 5.1, assuming optimum shape,

τlim = 3.92 × 10−21Nm. (5.88)
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5.9.2 Maximal net cooling

The cooling power of the refrigerator is proportional to the applied torque
τ [Eq. (5.79)], while the dissipative heat flux grows with τ 2 (Eq. 5.83).
For large τ the cooling effect will be annihilated by dissipation and in
the previous section we calculated a cut-off τlim, at which both effects
cancel each other. We can also calculate the torque τmax that maximizes
the net cooling,

Q̇net = Q̇1→2 − Q̇J1. (5.89)

A simple calculation leads to a maximum of Q̇net = Aτ − Bτ 2 at
τmax = τlim/2 = A/(2B), with A = (

√
2πkBmT )/(2I)(ρ1ρ2)/((ρ1 +

ρ2)
2)(

∮
dl r3

�
)/(

∮
dl r2

�
) and B = γ1/γ. For the optimum torque then

we find:

τmax =
kBTm

I
ρ2

∮
dl r3

�
. (5.90)

This result, like τlim, is independent of the size of the refrigerator (as-
suming a homogeneous interior). It only depends on the density of the
environment and the refrigerator, the environment temperature and the
specific shape of the refrigerator. For an optimum shape (see later) and
variables according to Table 5.1 we find:

τmax = 1.96 × 10−21Nm. (5.91)

Substituting the explicit expression for τmax into Eq. (5.89) yields the
maximal net heat flow out of reservoir 1:

Q̇max
net =

√
π

8

(kBTm)3/2

I2

ρ1ρ
2
2

(ρ1 + ρ2)2

(∮
dl r3

�

)2∮
dl r2

�

. (5.92)

We see that when we also take into account the loss through friction,
the refrigerator is most effective when the densities are the same in both
reservoirs, ρ1 = ρ2. The net cooling is higher when the device works in
higher gas densities. The reason may seem counterintuitive: the heat
dissipation through friction is smaller in an environment with higher
friction. With Eq. (5.83) we show that the dissipated heat is proportional
to the square of the average angular velocity 〈ω〉 that is obtained by
applying a torque τ , and this velocity is lower when the friction γ is
higher.
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Before we can give numerical results, we need to investigate the role
of the geometry of the refrigerator. We separate a scale-invariant shape
factor from Eq. (5.92),

S =
1√
A

M2

I2

(∮
dl r3

�

)2∮
dl r2

�

, (5.93)

where A is the area of one part of the construction. All the factors
that depend on the shape, the contours and the inertial moment, are
included in S. We will begin straight away with optimizing this shape
factor, and for most of the realizations of the refrigerator presented in
this paper we assume the shape is (close to) optimum. The calculations
however can also be done for other (less favorable) shapes; the elements of
the calculation are comparable to those presented earlier, where we also
discussed three simple model shapes that can be analyzed analytically.
A similar numerical procedure as was used to find the optimal shape
of the motor (see section 5.5.8), yields a value for S, see Fig. 5.25. The
procedure approximates the shape of the refrigerator parts as piecewise
linear with n vertices. For sufficiently large n, S converges to a value
slightly higher than 2. The corresponding optimum shape for the cooling
function is then also found, see Fig. 5.26. The shape is that of a part of
the refrigerator in one reservoir; placing the mirrored shape in the other
reservoir gives the optimum configuration of the refrigerator. The axis
of rotation is given by the z-axis. The numerical procedure expects the
mass M of the motor to be homogeneously distributed, which reflects
the reality of biological entities such as proteins that could function as
parts of the device.

For a homogeneous mass distribution we write the mass of the refrig-
erator as M = 2�A, with � the constant density of the refrigerator parts.
To find the maximum net heat flux the numerical factor S is multiplied
by

Q̇0 =

√
2π

16

(kBTm)3/2

�2A3/2

ρ1ρ
2
2

(ρ1 + ρ2)2
, (5.94)

so that Q̇max
net = Q̇0S. Remember that our theory is two-dimensional. The

result however depends on the absolute values of the gas densities ρ1 and
ρ2, contrary to Eq. (5.79) where only their relative magnitudes play a
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Figure 5.25: The effectiveness of the refrigerator is influenced by
its (chiral) shape. S gives a size-independent measure of this
geometrical factor. With a numerical procedure we can optimize
this factor, by approximating the shape of the motor parts as
piecewise linear, with n edges. For n sufficiently high we approach
the highest obtainable factor S, and the corresponding shape is
represented in Fig. 5.26.

131



Chapter 5. Theory and Simulations

Figure 5.26: The shape of one part of the refrigerating device that
maximizes the net cooling power, which also takes into account
the frictional dissipation. The complete device consists of this
shape in one reservoir and the mirror image of this shape in the
other. The two parts are rigidly connected with each other by
a rotation axis, marked by a star. The mass distribution in the
interior of the parts is assumed homogeneous. The center of mass
is represented by a dot.
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part . We cannot simply insert values for three-dimensional gas densi-
ties. Therefore we make a small technical detour to describe the three-
dimensional expressions and justify for which case the two-dimensional
shape optimization remains valid.

5.9.3 Three-dimensional model

In a three-dimensional analysis the essential difference is the description
of the geometrical factors. Instead of a contour integral

∮
dl there is an

integral
∫

dS over the surface of the refrigerator parts, while the vector
r� gets a new definition, see Section 5.4 for details. For the ratio of the
cooling power over the applied torque we find

Q̇1→2

τ
=

√
2πkBmT

2I

ρ1ρ2

(ρ1 + ρ2)2

∫
dS r3

�∫
dS r2

�

, (5.95)

while the maximum net cooling power of reservoir 1 now becomes

Q̇max
net =

√
π

8

(kBTm)3/2

I2

ρ1ρ
2
2

(ρ1 + ρ2)2

(∫
dS r3

�

)2∫
dS r2

�

. (5.96)

We again use a product of an external Q̇0 and a scale-invariant geomet-
rical factor S,

Q̇max
net = Q̇0S. (5.97)

The geometrical factor now needs to be scaled by a factor proportional
to R2, with R the typical linear dimension of the shape. For this we use
V 2/3, with V the volume of a refrigerator part:

S =
1

V 2/3

M2

I2

(∫
dS r3

�

)2∫
dS r2

�

, (5.98)

The shape factor can then be solved analytically or numerically, produc-
ing size-independent results. The remaining factor

Q̇0 =

√
π

8

(kBTm)3/2

M2

ρ1ρ
2
2

(ρ1 + ρ2)2
V 2/3 (5.99)

=

√
2π

16

(kBTm)3/2

�2V 4/3

ρ1ρ
2
2

(ρ1 + ρ2)2
, (5.100)
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then shows again the role of the various parameters. In the second ex-
pression for Q̇0 we substituted M = 2�V for the homogeneous case.

We now argue that we can recuperate the two-dimensional optimiza-
tion of the shape factor S and corresponding two-dimensional shape. We
propose a prismatic structure for each of the refrigerator parts, defined
by two equal, flat (two-dimensional) surfaces separated by a distance H,
as shown in the initial model of the device in Fig. 5.23. The rotation
axis is perpendicular to the two surfaces. For this configuration it is easy
to show that the surface integrals can be written as the product of the
distance H and the contour integral of the top or bottom surface, exactly
as in the two-dimensional description:∫

dS r2
�

= H

∮
dl r2

�,2D, (5.101)∫
dS r3

�
= H

∮
dl r3

�,2D. (5.102)

Also, for a homogeneous mass distribution,

M

I
=

V∫
r2
⊥dV

=
HA

H
∫

r2dA
, (5.103)

where we take the integral over the volume V of r⊥, the distance to the ro-
tation axis, and find it is equivalent to taking the surface integral over the
top or bottom surface A of the prism times the thickness H. In conclu-
sion we recover the two-dimensional shape factor [(Eq. (5.93)] by inserting
the corresponding volume V = (H

√
A)3/2 in Eq. (5.98). The approach

is then to use the three-dimensional expression for Q̇0 [Eq. (5.100)], and
the numerical results for the two-dimensional case, as in Fig. 5.25.

Doing this for a temperature (T = 300K), reservoir densities (ρ1 =
ρ2 = 3.343 × 1028m−3) and m = 2.992 × 10−26kg for an aquatic envi-
ronment, and � = 1380 kg m−3, typical for proteins, Q̇max

net = Q̇0S can
be expressed as a function of only the radius R of one refrigerator part.
For a globular protein of typical dimension R ≈ 3nm, we find a value of
Q̇max

net = 3.5 × 10−15J/s. Note the strong size dependence: a refrigerator
of 1 nm, would yield a cooling power of about 2.8 × 10−13J/s. For com-
parison, it takes about 2.2 × 10−12J to cool down a 1 μm small cell one
Kelvin, which could be accomplished by one refrigerator of 1 nm radius
in one minute.

134



5.10. Molecular dynamics simulations

5.9.4 Thermal conductivity

As mentioned earlier, the L22 Onsager coefficient can be related to heat
conductivity between the reservoirs. In the linear response model, the
heat conducted from one reservoir to the other can be quantified:

Q̇cond =
γ1γ2

γI
kBΔT. (5.104)

Here γ1 and γ2 are the friction coefficients of the separate parts of the
refrigerator, and γ = γ1 +γ2 represents the total friction coefficient. The
conductive heat flow is proportional to the temperature gradient ΔT and
goes from the warm to the cold reservoir. Therefore it is directed against
the cooling power of the device and for a temperature difference larger
than ΔTlim the net cooling effect will vanish. The condition Q̇cond < Q̇max

net

leads to
ΔT

T
<

π

8

m

I

ρ2

ρ1 + ρ2

(∮
dl r3

�

)2(∮
dl r2

�

)2 . (5.105)

Note that the sustainable temperature gradient is proportional to m/M .
In Fig. 5.27 we show ΔTlim for varying m/M as a function of the density
ratio ρ1/ρ2. For our choice of the direction of the cooling effect (reservoir
1 cools down, reservoir 2 heats up), a higher relative density in reservoir
2 allows a larger ΔTlim. In the limit of ρ1 being much smaller than ρ2,

ΔTlim/T approaches (π/8)(m/I)
(∮

dl r3
�

)2
/
(∮

dl r2
�

)2
. Earlier we found

equal densities, ρ1 = ρ2, to correspond with maximum net cooling power,
for which the maximum sustainable temperature gradient ΔTlim is half
this value.

For the previously used example of globular proteins (see Table 5.1
for the parameters), ΔTlim = 4.3 mK at T = 300 K and equal reservoir
densities.

In all examples given, the shape is presumed to be (close to) optimal.

5.10 Molecular dynamics simulations

Two main theoretical results, the sustained rotational Brownian motion
and the cooling power, are compared with molecular dynamics simu-
lations. The simulated systems throughout this Section consist of two
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Figure 5.27: The temperature gradient ΔT for which the con-
ductive heat flow cancels the cooling heat flow. For the device
to cool down reservoir 1 (at the expense of reservoir 2), the tem-
perature difference must remain under this limit. A small M (or
large m) is beneficial. The sustainable temperature gradient is
highest for high gas density ρ2 in reservoir 2 (relative to ρ1). For
high gas density ρ1 in reservoir 1 the obtainable temperature gra-
dient becomes very small. The graph is for absolute temperature
differences around T = 300 K.
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reservoirs of non-interacting gas particles. To restrict the computation
time, we carried out the simulations in two spatial dimensions. In each
reservoir, a triangular rotor part is placed. Collisions between gas parti-
cles and the triangle are detected by numerically solving the exact equa-
tions of motion for the point in time of the impact. At each collision,
the speed of the gas particle and the rotational velocity of the triangle
are changed according to the rules for elastic collisions. The two gases
are each confined within a ‘box’. Depending on the requirements of the
simulation we employed two types of boxes: closed and virtual. For
both boxes the initial distribution of the speeds of the gas particles is
Maxwellian. A virtual box was used when theory required a constant
temperature of the gas. The walls of a virtual box ‘absorb’ gas particles
upon collision, but also randomly ‘emit’ new particles (into the box’ inte-
rior) such that the gas properties, in particular density ρ and Maxwellian
equilibrium distribution, are preserved. In this way, an infinitely large
reservoir of gas particles is simulated. A closed box was used when the
effect of interest was the temperature change of the gas. The walls of a
closed boxed are simply reflective. In all simulation we used a configu-
ration with mirrored objects in the two reservoirs. The rotation axis is
always centered in the box.

5.10.1 Rotor

Earlier, we derived an expression for the average sustained angular ve-
locity of the Brownian rotor. The specific expression for mirrored shapes
in the two reservoirs is

〈ω〉 =

√
2πkBm

4I

ρ1ρ2(T
1/2
2 + T

1/2
1 )(T2 − T1)

(ρ1T
1/2
1 + ρ2T

1/2
2 )2

∮
dl r3

�∮
dl r2

�

, (5.106)

where the contour integrals are over the boundary of the shape in the
first reservoir.

With molecular dynamics simulations we tested this prediction for a
right triangle (and reflected shape in the other reservoir). In the dimen-
sions of the simulation, the sides of the triangle were 1, 1,

√
2. The total

mass of the rotor was M = 50 and the mass of a single gas particle was
m = 1. Virtual boxes of size 20 × 20 were used and gas temperatures
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were T1 = 1, T2 = 5. The velocities of the gas particles were drawn from
a Maxwellian distribution (kB = 1 in the simulations). We performed
simulations for different locations of the triangle with respect to the axis.
In a coordinate system with the axis of rotation at the origin (0, 0) and
x-axis and y-axis parallel to the short sides of the triangle, the right
corner of the triangle (xc, yc) was moved in the x-direction, such that
yc = −1/3. Note that the center of mass passes through the axis of ori-
gin when (xc, yc) = (−1/3,−1/3). The simulation results for the average
angular velocity 〈ω〉 are reproduced as dots in Fig. 5.28. The error bars
are given by the standard deviation of 10 000 realizations. The dashed
curve represents the theoretical calculation, from Eq. (5.106). The cor-
respondence is very satisfactory.

In the simulations however, the ratio M/m = 50 is much lower than in
a physical realization of the rotor. The expression for 〈ω〉 in Eq. (5.106)
is correct to order (m/M)3/2. An excellent agreement between theory
and simulations is obtained when the expression for 〈ω〉 is expanded to
order (m/M)5/2, represented in Fig. 5.28 by the solid curve, and explicitly
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Figure 5.28: Molecular dynamics simulation results (dots and er-
ror bars) for the average angular velocity 〈ω〉 of the Brownian
rotor compared with theory to first significant order in m/M
(dashed curve) and one order higher (solid curve). The shapes
in both reservoirs are right triangular with sides 1, 1,

√
2. In the

abscissa is the x-coordinate (xc) of the right corner of a triangle
with respect to the rotation axis (yc = −1/3). Mass of the rotor is
M = 50 (gas particle mass m = 1). Gas densities are ρ1 = ρ2 = 1.
The simulation results are averages over 10 000 realizations.
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given (for a system with mirrored shapes) by
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As before,

Teff =
ρ1T

3/2
1 + ρ2T

3/2
2

ρ1T
1/2
1 + ρ2T

1/2
2

. (5.108)

For the particular right triangle under consideration, the appearing con-
tour integrals can be written as functions of the coordinates of the right

140



5.10. Molecular dynamics simulations

corner point (xc, yc), with L = 1:∮
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The moment of inertia finally, is given by

I/� =
1

6
L2

(
L2 + 2(xc + yc)L + 3

(
x2

c + y2
c

))
, (5.116)

with � = M/(2A) and A the area of a triangle.

5.10.2 Refrigerator

We also tested the cooling function of the device with molecular dynamics
simulations. If we assume ideal gases in both reservoirs, at temperatures
T1 and T2 and with particle numbers n1 and n2, the change in time t of
internal energy can be described by the following coupled set of equations:

n1kBṪ1 = Q̇1
J − Q̇c + k(T2 − T1),

n2kBṪ2 = Q̇2
J + Q̇c + k(T1 − T2). (5.117)

On the right hand sides we included three heat currents: the Joule dissi-
pation (Q̇i

J), the cooling flow (Q̇c) and the heat conduction between the
reservoirs [k(Tj − Ti)]. Earlier [cf. Eqs. (5.83), (5.79) and (5.104)] we
described microscopic expressions for these terms. With notations γi for
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the friction coefficient of each part, γ = γ1 +γ2, τ for the applied torque,
I the inertial moment and ρi the particle densities, these were

Q̇i
J = γiτ

2/γ2, (5.118)

Q̇c =

√
2πkBmT

2I

ρ1ρ2

(ρ1 + ρ2)2

∮
dl r3

�∮
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τ, (5.119)

k = kB
γ1γ2

γI
. (5.120)

The cooling flow Q̇c was derived in the linear response regime, with
T = (T1 + T2)/2.

We seek a solution of Eq. (5.117) with initial equilibrium conditions
T1(0) = T2(0) = T0. The dependence on Ti in Eq. (5.117) is rather
involved, as the friction coefficients also depend on the temperature:

γi = 4ρi

√
kBTim

2π

∮
dl r2

�
. (5.121)

Therefore, an exact solution is only attainable numerically. Earlier, we
established however that the generated relative temperature difference
|T1 − T2|/T is of order m/M (the ratio of masses of gas particle and
device). For any physical realization of the device, m/M is very small,
and we expect a substitution of Ti = T0 in the expressions for the friction
coefficients [Eq. (5.121)] to be a good approximation. In fact, as will be
shown later in a graph with the simulation results, the (‘exact’) numerical
solution and this approximation are indistinguishable for a ratio M/m as
low as 20. In this approximation, the evolution of the two temperatures
can be described analytically. For simplicity of the resulting expressions,
we choose identical gases in both reservoirs, n1 = n2 = n and ρ1 = ρ2,
such that Q̇1

J = Q̇2
J = Q̇J , yielding:

T1(t) = T0 +
Q̇Jt

nkB

− Q̇c

2k

[
1 − exp

(
− 2kt

nkB

)]
,

T2(t) = T0 +
Q̇Jt

nkB

+
Q̇c

2k

[
1 − exp

(
− 2kt

nkB

)]
. (5.122)

For large reservoirs (n large), the effect is for T1 to decrease and T2 to
increase when Q̇c > Q̇J (see also the discussion about limiting torque,
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Section 5.9.2). However, for small n, as will be used in molecular dynam-
ics simulations because of obvious computational limitations, the effect
of the Joule heating in both reservoirs will become apparent after a rel-
atively short time t. More specifically, T1 reaches its minimum,

Tmin
1 = T0 − Q̇c

2k
+

Q̇J

2k

[
1 + ln

(
Q̇c

Q̇J

)]
, (5.123)

at time tmin = nkB ln
(
Q̇c/Q̇J

)
/(2k). For t > tmin, T1 increases. This is

also what would happen if one would place a household refrigerator in a
narrow confinement.

As the molecular dynamics simulations pose a practical limit on the
number of gas particles, we resorted to a simple alternative scenario,
to demonstrate the effect of a ‘real’ refrigerator. Here, we assume T2

to be fixed (T2 = T0). This setup emulates an infinitely large second
reservoir. Substitution of T2 = T0 in the first line of Eq. (5.117) leads
to a solution for T1 (in the approximation of temperature independent
friction coefficients):

T1(t) = T0 − Q̇c − Q̇J

k

[
1 − exp

(
− kt

nkB

)]
. (5.124)

T1 decreases monotonically from T0 and asymptotically reaches

Tmin
1 = T0 − Q̇c − Q̇J

k
. (5.125)

Both scenarios, T2 free and fixed, were tested against molecular dy-
namics simulations. The rotor setup was the same for both scenarios.
Again, two right triangular rotor parts were placed in separate boxes.
The configuration in one box was the mirrored copy of the other. One
triangle had sides 1/

√
2, 1/

√
2, 1. With x-axis and y-axis parallel to the

short sides of the triangle and origin at the center of rotation (0, 0), the
center of mass for the following simulations was placed at (−0.2, 0.1).
The total mass of the rotor was M = 20. Densities in both reservoirs
were ρ1 = ρ2 = 2.5. The initial temperature (at t = 0) was T0 = 1 for
both boxes. For the first scenario (both gases can change in tempera-
ture), closed boxes were used. For the second scenario [T2(t) = T0], the
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Figure 5.29: Molecular dynamics simulations of the Brownian re-
frigerator. Shown are the evolution of temperatures T1 and T2 of
both gases in time, starting from equal initial temperature T0 = 1,
on application of a torque. Solid curves are theoretical calcula-
tions (numerical and analytical approximation indistinguishable
in the graph). For parameters see main text.
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box of the second gas was virtual. The applied torque was τ = 0.02. The
simulations generated 10 000 realizations for each scenario.

In Figs. 5.29 and 5.30 we compare the theoretical predictions with
the simulation results for the first and the second scenario respectively.
The cooling effect is certainly apparent. The theoretical curves (solid)
correspond well to the simulations, considering the statistical accuracy
of the simulations. The derived expressions for minimum temperatures
are in good agreement.
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Figure 5.30: Molecular dynamics simulations of the Brownian re-
frigerator. Shown is the evolution of the temperature T1 of the
cooled gas in time [starting from T1(t = 0) = T0 = 1], when an in-
finitely large reservoir is emulated for the second gas [T2(t) = T0],
on application of a torque. The solid curve represents the theo-
retical prediction (numerical and analytical approximation indis-
tinguishable in the graph). For parameters see main text.
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Samenvatting

Omdat we gewend zijn aan onze ‘macroscopische’ leefwereld, is het moei-
lijk om ons voor te stellen hoe een microscopisch klein voorwerp beweegt
op nanometerschaal. Eén nanometer is één miljoenste van een millimeter.
In een vloeistof wordt elke systematische beweging van het deeltje bijna
ogenblikkelijk gedempt door de voortdurende interacties met de vloei-
stofdeeltjes. De enige beweging die overblijft, als we geen externe kracht
uitoefenen op het voorwerp, is een willekeurige beweging, een ‘wandeling’
zonder richting. Netto, over lange tijd bekeken, verplaatst het voorwerp
zich helemaal niet. Door de botsingen met de omgevingsdeeltjes is de
energie van het voorwerp ook steeds ‘uit evenwicht’. Onze vertrouwde
(thermodynamische) principes over de efficiënte omzetting van energie
in arbeid, die vertrekken van systemen in evenwicht, kunnen we dan ook
niet zomaar overnemen naar de nanowereld.

Twee recente ontwikkelingen liggen aan de basis van dit werk. Ener-
zijds begrijpen we steeds beter hoe biologische systemen op de kleinste
schaal bewegen. Vermeldenswaard zijn de stapsgewijze beweging van
kinesinemoleculen over het cytoskelet en de draaiende beweging van F1-
ATPase. Beide behoren tot de klasse van zogenaamde ‘moleculaire mo-
toren’. Anderzijds is er de spectaculaire vooruitgang in de ‘nanotechno-
logie’. Het is nu mogelijk materie op moleculaire schaal te manipuleren
en zodoende allerlei functionaliteiten, zoals radertjes, schakelaars en zelfs
motortjes op nanoschaal te bouwen.

In het ontwerp van deze artificiële apparaatjes wordt tot nog toe wei-
nig rekening gehouden met de specifieke problemen die zich stellen op
deze kleine schaal. Het storende effect van de omgeving wordt overwon-
nen door brute kracht. Een Brownse motor daarentegen gebruikt juist
de willekeurige interacties met de omgeving op een slimme manier en
zet ze maximaal om in een nuttig resultaat: een netto verplaatsing; of
gerelateerd ermee: een arbeid. Om dit gelijkrichtende effect van wille-
keurige fluctuaties te bereiken moet de motor twee symmetrieën breken.
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Enerzijds moet het thermisch evenwicht verstoord worden. Anders zou
men arbeid kunnen putten uit een systeem in evenwicht, wat in strijd is
met de basiswetten van de thermodynamica. Anderzijds moet de ruim-
telijke symmetrie op één of andere manier gebroken worden, zodat een
‘voorkeursrichting’ ontstaat, waarin dan de netto verplaatsing geschiedt.

De studie van Brownse motoren waarbij de ruimtelijke symmetrie
gebroken wordt door de specifieke vorm van de onderdelen van de mo-
tor, maakt het onderwerp uit van een deel van dit proefschrift. In een
specifieke realisatie van de motor, de thermische Brownse motor wordt
de noodzakelijke verstoring uit thermisch evenwicht teweeggebracht door
het plaatsen van de verschillende onderdelen van de motor in omgevin-
gen met verschillende temperatuur. Een volledig analytische berekening,
waarin de interacties tussen de motor en de omgeving exact microscopisch
worden behandeld, leidt dan tot bijvoorbeeld de netto snelheid die zo’n
thermische Brownse motor kan behalen. Een voorbeeld: een motortje dat
bestaat uit twee vast verbonden kegelvormige onderdelen, elk ongeveer
20 nanometer groot en in contact met omgevingen met een temperatuurs-
verschil van 0,1 kelvin, haalt een gemiddelde snelheid van 0,1 micrometer
per seconde (één micrometer is één duizendste van een millimeter).

We introduceren ook de roterende variant van de thermische Brownse
motor. De verschillende onderdelen zijn dan vast verbonden met een ro-
tatieas, waarrond het geheel kan draaien. We laten zien dat de ‘Brownse
rotor’ zich heel anders gedraagt naar gelang de specifieke inplanting van
de as. Heel intrigerend is ook hoe de noodzakelijke vormasymmetrie zich
vertaalt in concrete vormen. Chiraliteit bleek hier van essentieel belang
en optimaliseren van de vorm om een zo hoog mogelijke rotatiefrequentie
te bereiken, resulteerde in een spiraalachtige figuur.

Een derde type Brownse motor werd op een heel andere manier ver-
wezenlijkt. Nog steeds vertrokken we van een ruimtelijk asymmetrisch
vormpje, maar dit maal slechts in contact met één thermische omgeving.
Op het motortje wordt een fluctuerende kracht uitgeoefend, maar zó dat
die netto opgeteld in de tijd nul is. Een symmetrisch lichaam beweegt
wel heen en weer in zo een krachtveld, maar netto verplaatst het zich
niet. Het bijzondere aan asymmetrische vormen is dat ze zich in het
beschreven krachtveld wél netto verplaatsen en we hebben een formule
afgeleid voor de zogenaamde driftsnelheid van dit type motortjes.

Een ander deel van dit proefschrift beschrijft het concept van een
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warmtepomp of koelkast op nanometerschaal. Hiervoor vertrekken we
van de roterende versie van de thermische Brownse motor. Het toestelle-
tje heeft twee asymmetrische onderdelen die zich elk in een ander reser-
voir bevinden. Door het aanleggen van een rotatiekracht (krachtmoment)
ontstaat er, via de verstoorde thermische fluctuaties, een warmtestroom
van het ene naar het andere reservoir. Dit betekent we warmte kunnen
‘pompen’ uit één reservoir, en dat dit na verloop van tijd zal afkoelen. De
volledige analyse is ingewikkelder: er treden immers nog andere warmte-
stromen op dan de beschreven koelingsstroom. Door het draaien van het
rotortje gaat er door wrijving warmte naar beide reservoirs. Anderzijds
is er een onvermijdelijke warmtestroom van het warme naar het koude
reservoir, eenmaal er een temperatuursverschil gerealiseerd is. De verge-
lijking van deze warmtestromen leidt tot verdere mogelijkheden om de
werking van de koelkast de optimaliseren en meer bepaald tot de bes-
te waarde voor de aan te brengen rotatiekracht. De maximale koeling
van de Brownse nanokoelkast is uiteraard bijzonder klein (femtojoules
per seconde), maar de kleine afmetingen maken het erg geschikt om vele
exemplaren in één laag te assembleren en zo het koelingsvermogen sterk
te verhogen.

Verschillende resultaten van dit theoretische werk werden ook geve-
rifiëerd met behulp van een computersimulatietechniek. Hierin werden
de interagerende deeltjes uit de omgeving elk afzonderlijk gevolgd en de
interacties exact berekend. De prestaties van de gëıntroduceerde motor-
tjes en koelkasten bleken de theoretische voorspellingen heel goed na te
komen
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