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Samenvatting

De laatste jaren is er steeds meer behoefte aan gegevensbanksystemen die over-
weg kunnen met andere en vaak meer complexere gegevens dan enkel alfanumerieke
gegevens die klassieke gegevensbanksystemen verwerken. Zo is er onder meer een
toenemende vraag naar gegevensbanksystemen die ook geometrische gegevens kun-
nen opslaan en manipuleren. Eén van de gegevensbankmodellen die voorgesteld zijn
om dit probleem op te lossen, is het lineaire model . Deze thesis draait volledig rond
de studie van bevragingstalen voor het lineaire model en hun expressiviteit.

Het lineaire model is ontstaan als een restrictie van het polynomiale model . Het poly-
nomiale model op zijn beurt is een uitbreiding van het welbekende relationele model ,
het standaard model voor gegevensbanken die alfanumerieke gegevens manipuleren.
In het polynomiale model worden geometrische gegevens gerepresenteerd door eerste-
orde logica formules samengesteld uit polynomiale vergelijkingen en ongelijkheden
met gehele coëfficiënten of, equivalent, reële algebräısche coëfficiënten, d.w.z., eerste-
orde formules over de structuur 〈R,≤,×,+, 0, 1〉. De geometrische gegevens die zo
gerepresenteerd kunnen worden, noemen we semi-algebräısche verzamelingen. De
standaard bevragingstaal in het polynomiale model is de relationele calculus uitge-
breid met polynomiale vergelijkingen en ongelijkheden met gehele coëfficiënten of,
equivalent, reële algebräısche coëfficiënten. Deze taal zullen we voortaan FO+ poly
noemen. We kunnen nu op twee manieren het polynomiale model restricteren tot
een lineair model. Vooreerst kunnen we ons beperken tot eerste-orde formules over
de structuur 〈R,≤,+, 0, 1〉. Het zo bekomen model zullen we het Z-lineaire model
noemen omdat de coëfficiënten van de lineaire vergelijkingen en ongelijkheden in
dit model enkel gehele getallen, of equivalent, rationale getallen kunnen zijn. De
geometrische gegevens die we zo kunnen representeren, noemen we Z-semi-lineaire
verzamelingen en de corresponderende beperking van de bevragingstaal FO + poly
noemen we FO + Z-linear. We kunnen ook minder streng optreden en lineaire
vergelijkingen en ongelijkheden met algebräısche coëfficiënten toelaten. Het re-
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sulterende model noemen we het A-lineaire model, de geometrische gegevens die
we kunnen voorstellen noemen we A-semi-lineaire verzamelingen en de correspon-
derende beperking van de bevragingstaal FO+poly noemen we FO+A-linear. Voor
vele resultaten doet het er niet toe in welk model we werken en spreken we over het
lineaire model, semi-lineaire verzamelingen en de bevragingstaal FO + linear. Er
zijn echter resultaten waarbij het onderscheid tussen beide modellen wel belangrijk
is. Voor die resultaten zullen we dat expliciet vermelden.

Wanneer we een taal gebruiken voor het ondervragen van een zekere klasse van
gegevensbanken, is het erg belangrijk dat deze bevragingstaal compatibel is met
die klasse van gegevensbanken. Hiermee bedoelen we dat iedere vraag uitgedrukt
in deze taal steeds een gegevensbank van een zekere klasse zal afbeelden op een
gegevensbank van dezelfde klasse. Een bevragingstaal die compatibel is met lin-
eaire gegevensbanken zullen we kortweg een lineaire bevragingstaal noemen. Het is
duidelijk niet zo dat FO+poly een lineaire bevragingstaal is en bijgevolg is FO+poly
ongeschikt voor het ondervragen van lineaire gegevensbanken. We zullen een vraag
lineair noemen wanneer ze steeds een lineaire gegevensbank afbeeldt op een lineaire
gegevensbank. In deze thesis interesseren we ons in het bijzonder voor de klasse van
lineaire vragen die uitdrukbaar zijn in FO + poly. En daarmee komen we tot een
ander belangrijk begrip, en dat is volledigheid . We zeggen dat een bevragingstaal
volledig is voor een bepaalde klasse van vragen wanneer die taal iedere vraag van
die klasse kan uitdrukken.

We beginnen met de expressiviteit van de bevragingstaal FO + linear op lineaire
gegevensbanken te onderzoeken. We laten zien dat een hele reeks topologische en
geometrische eigenschappen, waaronder de dimensie, de reguliere punten en de lagen
van de reguliere stratificatie van een semi-lineaire verzameling, loodrechte stand
en evenwijdigheid, uitdrukbaar zijn in FO + linear. De uitdrukbaarheid van deze
eigenschappen vormt de basis van vele resultaten in de rest van deze thesis.

We laten echter ook zien dat lang niet iedere lineaire vraag die uitdrukbaar is in
FO + poly ook uitdrukbaar is in FO + linear. We ontwikkelen daarvoor een tech-
niek die een verband legt tussen het niet uitdrukbaar zijn van een lineaire vraag in
FO + linear en het niet semi-lineair zijn van een nauw verwante semi-algebräısche
verzameling. Dit laatste is vaak eenvoudiger te bewijzen. (Later tonen we zelfs aan
dat het beslisbaar is of een semi-algebräısche verzameling semi-lineair is of niet.) We
gebruiken deze techniek om aan te tonen dat een aantal fundamentele vragen over
semi-lineaire verzamelingen, ondermeer vragen betreffende Euclidische afstand, con-
vex omhullende en Voronoi diagram, niet kunnen worden uitgedrukt in FO+ linear.
We besluiten dan ook dat FO+linear tekort schiet als algemene bevragingstaal voor
lineaire gegevensbanken. Hiermee is ook de noodzaak verklaard voor het zoeken naar
uitbreidingen van FO+ linear die strikt expressiever zijn en toch compatibel blijven
met lineaire gegevensbanken. Dergelijke uitbreidingen zullen we later in deze thesis
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bestuderen.

Alhoewel FO+linear als algemene lineaire bevragingstaal geen goede keuze is, blijft
het interessant om te weten welke lineaire vragen uitdrukbaar in FO + poly ook
uitdrukbaar zijn in FO + linear. We tonen echter aan dat het in het algemeen niet
beslisbaar is of een lineaire vraag die uitdrukbaar is in FO + poly ook uitdrukbaar
is in FO+ linear. We laten zelfs zien dat voor deelklassen van de lineaire vragen die
uitdrukbaar zijn in FO + poly, zoals bijvoorbeeld de lineaire vragen die compatibel
zijn met eindige gegevensbanken of de lineaire vragen die compatibel zijn met eindige
unies van affiene ruimten, het in het algemeen onbeslisbaar blijft of vragen van die
deelklasse uitdrukbaar zijn in FO + linear.

Vervolgens concentreren we ons op de vraag of we kunnen beslissen of een semi-
algebräısche verzameling semi-lineair is. We tonen aan dat dit inderdaad beslisbaar
is, zowel in het Z-lineaire als het A-lineaire geval. We bewijzen echter ook dat er
een FO + poly formule bestaat die A-lineariteit beslist, dit in tegenstelling met Z-
lineariteit waarvan we laten zien dat die niet beslist kan worden met een FO+ poly
formule. Uit de gebruikte bewijstechnieken volgen bovendien een aantal belangrijke
neven resultaten, zoals een algoritme om een willekeurige semi-lineaire verzameling
op te splitsen in convexe verzamelingen en een algoritme om de “speciale punten”
van een semi-lineaire verzameling te vinden.

We verleggen nu terug onze aandacht naar lineaire bevragingstalen, en meer in het
bijzonder gaan we op zoek naar talen die strikt expressiever zijn dan FO + linear,
zonder daarbij de compatibiliteit van deze talen op het spel te zetten.

We bestuderen eerst een techniek om FO+linear op een veilige manier uit te breiden
met lineaire operatoren. Gezien de beperkte expressiviteit van FO + linear, zullen
we op zijn minst lineaire operatoren moeten toevoegen die ons toelaten om onder
meer met afstand en convex omhullende te kunnen werken om tot een praktisch
bruikbare bevragingstaal voor lineaire gegevensbanken te komen.

Daarna experimenteren we met het toevoegen van een beperkte vorm van ver-
menigvuldiging aan FO + linear. De resulterende taal noemen we PFOL. We laten
zien dat deze taal inderdaad een lineaire taal is. Vervolgens onderzoeken we de ex-
pressiviteit van deze nieuwe lineaire taal. Hiervoor ontwikkelen we eerst een coder-
ingsalgoritme voor het vinden van een eindige representatie van een willekeurige
semi-lineaire verzameling en een decoderingsalgoritme voor het herberekenen van
een semi-lineaire verzameling uit zijn eindige representatie. Zowel het coderingsal-
goritme als het decoderingsalgoritme zijn uitdrukbaar in PFOL. Het volstaat nu om
de expressiviteit te bestuderen van enkel die PFOL-uitdrukbare vragen die eindige
gegevensbanken op eindige gegevensbanken afbeelden. Om deze specifieke deel-
klasse van de PFOL-uitdrukbare vragen te onderzoeken, stellen we een tussentaal
op, SPFOL genoemd, die precies deze vragen kan uitdrukken. We nemen vervol-
gens de taal SPFOL onder de loep en laten zien dat de expressiviteit van SPFOL
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zeer nauw aanleunt bij de expressiviteit van de bevragingstaal SafeEuql, een taal
die eerder is ontwikkeld om alle passer en liniaal constructies op eindige gegevens-
banken te kunnen uitdrukken. Dit resultaat laat ons toe om te besluiten dat PFOL
precies die vragen kan uitdrukken waarvoor de eindige representatie van de uitvoer
“construeerbaar” is uit de eindige representatie van de invoer van die vraag. We
merken op dat deze klasse van construeerbare vragen niet de volledige klasse van
lineaire vragen uitdrukbaar in FO+poly dekt: we staven dit met een voorbeeld van
een lineaire vraag die wel uitdrukbaar in FO + poly, doch niet construeerbaar is.

Nu de expressiviteit van PFOL bestudeerd is, komen we nog eens terug op de ex-
pressiviteit van uitbreidingen van FO + linear met lineaire operatoren. We vinden
namelijk precies twee lineaire operatoren waarvan we aantonen dat FO+ linear uit-
gebreid met deze lineaire operatoren precies dezelfde klasse van lineaire vragen kan
uitdrukken als PFOL. Het is op dit moment nog een open probleem of er een uit-
breiding van FO + linear bestaat met een eindig aantal operatoren die volledig is
voor de lineaire vragen uitdrukbaar in FO + poly.

We proberen ook te laten zien dat de voorgestelde uitbreidingen van FO + linear
niet alleen interessant zijn vanuit het oog van een theoreticus. Vrij recent is er een
prototype van een geometrisch gegevensbanksysteem ontwikkeld dat gebaseerd is
op het lineaire model met FO + linear als bevragingstaal. We bespreken hoe onze
voorgestelde uitbreidingen van FO+linear, vertrekkende van een implementatie van
FO + linear, kunnen worden gëımplementeerd.

We ronden uiteindelijk dit deel van de thesis af met enkele lineaire talen die volledig
zijn voor de lineaire vragen uitdrukbaar in FO + poly.

De eenvoudigste manier om tot een volledige taal te komen, is het vinden van een
algoritme dat kan beslissen of een FO+poly-uitdrukbare vraag lineair is of niet. We
bewijzen echter dat een dergelijk algoritme niet bestaat.

We kunnen de eerder ontwikkelde lineariteitstest gebruiken om tot een volledige
taal te komen. In weze komt die taal overeen met FO + poly, doch we gebruiken
de lineariteitstest om te weten te komen of de uitvoer van een FO + poly formule
op een semi-lineaire invoer semi-lineair is of niet. In het laatste geval geven we de
lege verzameling als resultaat van die FO + poly formule op de invoer terug. Het is
duidelijk dat deze manipulatie van FO + poly leidt tot een taal die compatibel en
volledig is.

Een andere methode om tot een volledige taal te komen, is gebruik maken van
PFOL formules die enerzijds de eindige representatie van een semi-lineaire verza-
meling berekenen, en anderzijds de semi-lineaire verzameling herberekenen uit zijn
eindige representatie. Stel dat we een taal Q hebben die volledig is voor alle lin-
eaire vragen die eindige gegevensbanken op eindige gegevensbanken afbeelden. De
taal die dan bekomen wordt als de samenstelling van de decoderingsformule, ver-
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volgens een formule van Q en tenslotte de coderingsformule, is duidelijk compatibel
en volledig voor alle lineaire vragen uitdrukbaar in FO + poly. Voor de taal Q
kunnen we de polynomial-restricted queries van Benedikt en Libkin nemen, waar-
van zij hebben aangetoond dat deze vragen precies overeenkomen met de lineaire
vragen die eindige gegevensbanken op eindige gegevensbanken afbeelden. Een an-
dere mogelijkheid om tot een taal Q te komen, bestaat in het gebruiken van de
FO+ linear formule die beslist of een semi-lineaire verzameling eindig is. Zoals met
de lineariteitstest, kunnen we FO+poly manipuleren zodat we een taal bekomen die
precies alle lineaire vragen die eindige gegevensbanken op eindige gegevensbanken
afbeelden kan uitdrukken.

We geven toe dat de volledige talen die we hierboven voorstellen niet bijster interes-
sant zijn vanuit een praktisch oogpunt, maar ze vormen veeleer een rechtvaardiging
voor het zoeken naar praktische bevragingtalen die alle lineaire vragen uitdrukbaar
in FO + poly kunnen uitdrukken.

We beëindigen deze thesis met het aanstippen van enkele suggesties voor toekomstig
onderzoek omtrent lineaire bevragingstalen.
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Chapter 1

Introduction

Traditionally, database systems are used to store and manipulate alphanumerical
data. In the early seventies, Codd [18] proposed the relational database model to
deal with alphanumerical data in a structured way. Nowadays, most database sys-
tems are based on the relational database model as proposed by Codd. However,
there is a growing need for database systems that can also deal with more general
data than alphanumerical data, among which geometric data. Geometric database
systems should be capable of representing and storing both geometric data and al-
phanumerical data. In addition, they should allow the manipulation of geometric
data in their query language, and they should support geometric data in their im-
plementation, for instance, with spatial access and indexing methods [24, 37, 41].
The need for geometric database systems is partially due to new database appli-
cations with a geometric nature [6, 51, 55, 58, 64], such as geographic information
systems (GIS), geometric modeling systems (CAD), autonomous navigation, ar-
chitectural and medical imaging, and simulation processing. The representation,
storage, manipulation, and indexing of geometric data, however, cannot be sup-
ported adequately by database systems based on Codd’s relational model (see, for
instance, [23]). As a consequence, a new challenge for the database community was
launched with as the purpose the development of a geometric database model that
deals with both alphanumerical and geometric data in a sound and natural way.
The research in this area is still ongoing, and much work has still to be done.

At this time, we can roughly categorize the existing geometric database models in
two classes [60, 62]: the geometric data type (GDT) based models and the constraint
based models. Both models have in common that they extend the relational model
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2 1. Introduction

to deal with geometric data.

The GDT-based approach extends Codd’s relational model with a fixed set of ge-
ometric data types, and provides a set of geometric operators on these data types.
Typically, these systems include data types for points, line segments, and convex
polygons, and extend SQL with geometric operators on these data types to compute,
for instance, intersections, the convex hull, the distance, and the topological bound-
ary. A major drawback of these models is that they are application-dependent,
since no set of geometric data types or operators that serves all application needs
is yet known. For examples of GDT-based geometric database models, we refer
to [1, 5, 13, 25, 27, 38, 39, 40, 43, 44, 68, 70] and references therein.

The constraint-based approach, introduced in the seminal paper of Kanellakis, Ku-
per, and Revesz [50], and adopted by [4, 49, 52, 61, 73], uses constraints as data in
the relational model. They allow users to define geometric figures with constraints
formulated as first-order logic formulae of a certain type. The geometric figure
represented by such a formula consists of all points (in an appropriate Euclidean
space) which satisfy the formula. The constraints most studied in this context are
the polynomial constraints and the linear constraints. Since data of the relational
model can be seen as constraints of the form x = a, where x is a variable rang-
ing over the domain of alphanumerical values and a is an alphanumerical constant,
one can view the constraint model as a generalization of the relational model. A
natural query language to accompany these data models is the relational calculus
extended with the class of constraints used to represent the geometric data. A major
difficulty of this approach concerns implementation of these models and, only re-
cently, efforts have been made to develop database systems based on the constraint
model [12, 14, 31, 32].

The GDT-based models typically address geometric database applications in a fixed,
lower dimensional space, such as geographic information systems and geometric
modeling systems. Constraint models are not limited to a fixed dimension. They of-
fer a declarative framework for the representation of arbitrary dimensional—possibly
unbounded and topologically non-closed—geometric figures. As a consequence,
queries within the constraint database model yield exact geometric results rather
than approximated values. The generality of the geometric figures which are under
consideration in constraint-based models is of relevance, although, at a first glance,
practical applications are rarely situated in a dimension higher than 4. As an ex-
ample, consider the following linear problem “Compute the position of a couple of
shelves in a furnished room such that desks can still be sat at, and doors and draw-
ers can still be opened.” The solution to this problem (e.g., the coordinates of the
mass-centers of the shelves) will define a geometric figure in six-dimensional space.
Moreover that geometric figure will not be topologically closed, since open doors
and drawers may not touch the shelves.
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In the implementation of GDT-based models, the data structures for representing the
different data types are selected in such a way that the various geometric operators
can be computed as efficiently as possible using techniques from computational
geometry [30, 36, 42, 66]. This approach garantuees good performance for evaluating
queries, which will be hard to beat with constraint-based models. The geometric
data used in constraint-based models are sometimes too general to ensure efficient
implementation of the accompanying query language. For efficiency reasons, the
linear constraint database model has received more attention than the polynomial
constraint database model, lately. In both approaches, however, there is a clear need
for geometric indexing and access techniques to make geometric database systems
ready for general use.

Finally, constraint-based models have a formally defined semantics which makes
them attractive from a theoretical point of view. These models allow the study of
geometric databases and their properties in a less ad-hoc and more uniform way.

In this work, we concentrate on the linear constraint database model .

Various researchers have studied the expressive power of database query languages
based on linear and polynomial constraints [2, 3, 4, 8, 10, 33, 34, 35, 53, 73, 74], but
we are still far away from a precise insight in the nature of the queries expressible
in these languages. Although the precise expressiveness of linear and polynomial
constraint query languages has not yet been characterized satisfactorily, we have
results on the non-expressibility of queries such as the parity query and the connec-
tivity query in the polynomial constraint query language, hence also in the linear
constraint query language, and the convex closure query and the distance query in
the linear constraint query language. Furthermore, people started to investigate
spatial aggregate functions (e.g., area and volume) and found out that these aggre-
gate functions were undefinable in constraint query languages and that adding these
functions to the query language created serious safety1 problems [16, 67].

As a consequence of the non-expressibility of fundamental queries mentioned above,
it is hard to claim that the linear constraint query language as initially proposed
in the linear constraint data model can act as a general-purpose query language for
the linear constraint data model. Clearly, there is a need for more powerful query
languages which are still sound for the linear constraint data model. In practice, the
design of these query languages seems to be difficult: extending the linear constraint
query language results easily in a language with the same expressive power as the
polynomial constraint query language which is, of course, not sound for the linear
constraint database model [73].

The main contributions of this research dissertation can be summarized as follows:

1A constraint query language is called sound if a query of this language applied to a constraint
database of a given type always results in a constraint database of the same type.



4 1. Introduction

1. We provide a list of queries of which we show that they can be expressed in
FO + linear, i.e., the relational calculus extended with linear constraints, and
a tool which can be used to prove non-expressibility of a query in FO+ linear.
We show that the type of the coefficients of the linear constraints used in the
linear constraint database model does influence certain results. We also prove
that it is undecidable whether a linear query expressible in FO+poly, i.e., the
relational calculus extended with polynomial constraints, can be expressed in
FO + linear.

2. We propose a technique to decompose semi-linear sets (figures representable
with linear constraints) into convex cells which is expressible in FO+poly. As
a side-effect, we obtain algorithms, implementable in FO+poly, to compute a
finite representation of an arbitrary semi-linear set and to recompute a semi-
linear set from its finite representation.

3. We show that it is decidable whether a geometric figure definable with poly-
nomial constraints is semi-linear.

4. We present two sound extensions of FO + linear for linear queries expressible
in FO + poly. One extension can be seen as a bridge between GDT-based
query languages and FO+ linear, while the other extension results in a query
language of which the expressive power can be characterized in terms of the
ruler and compass constructions in the two-dimensional plane. We also show
that there exist query languages which are complete for the linear queries
expressible in FO + poly.

The outline of the remaining chapters is as follows.

In Chapter 2, we introduce the polynomial constraint database model and define
the linear constraint database model as a restriction of the polynomial constraint
database model. We argue that two natural restrictions of the polynomial constraint
database model can be considered. We also establish the equivalence between finite
unions of polyhedra and geometric figures representable with linear constraints,
which further motivates the use of the linear constraint model.

In Chapter 3, we examine the expressiveness of the linear query language FO+linear.
First, we present a list of general queries expressible in FO + linear, which act as
“building blocks” for more sophisticated queries in the remainder of this work. In
particular, we show that the notions of dimension and regular point of a semi-
linear set can be expressed in FO + linear. We stress the importance of those two
notions as they are the basis for the semi-linearity test developed in Chapter 4
and the finite representation technique of semi-linear sets developed in Chapter 5.
Next, we positively illustrate the expressive power of FO + linear by establishing
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that geometric notions such as orthogonality and parallelism can be expressed in
FO+linear. We then argue that FO+linear is nevertheless not sufficiently expressive
to be regarded as a general-purpose query language for the linear constraint database
model. Concretely, we present a theorem that lifts the non-semi-linearity of certain
semi-algebraic point-sets to the non-expressibility of closely related linear queries.
We exhibit several examples of important linear queries which are proven to be
inexpressible in FO + linear using the above theorem. Finally, we show that it is
undecidable whether a linear query expressible in FO + poly can be expressed in
FO + linear.

In Chapter 4, we show that “semi-linearity” is decidable for semi-algebraic sets.
We observe that semi-linearity can be studied in the context of the liberal or the
more restrictive limitation of the polynomial constraint database model to the linear
constraint database model. We prove that semi-linearity of semi-algebraic sets in the
more liberal sense can be decided by an FO+poly expression, while semi-linearity of
semi-algebraic sets in the more restricted sense cannot be decided by an FO+ poly
expression. An interesting by-product of the proof techniques used is an algorithm
to decompose an arbitrary semi-linear set into convex cells which is expressible in
FO + poly.

In Chapter 5, we study extensions of FO + linear which remain sound for linear
constraint databases and capture a broader class of linear queries expressible in
FO+poly than FO+ linear. We first propose a method to extend FO+ linear with
linear “operators.” To illustrate the potential of this method, we exhibit two linear
operators such that the extension of FO+ linear with these operators has the same
expressive power as the query language PFOL, another extension of FO + linear,
which we study next. The query language PFOL is defined as FO+linear augmented
with a limited amount of multiplicative power. We show that the PFOL-expressible
queries which return finite outputs upon finite inputs are closely related to the
queries expressible in SafeEuql [63], a query language which was designed to capture
the ruler and compass constructions in the two-dimensional plane. Thereto, we
study a finite representation of arbitrary semi-linear sets which can be computed
within PFOL. We conclude this chapter with providing query languages which are
complete for the linear queries expressible in FO + poly.

In Chapter 6, we briefly describe approaches to implement the extensions of FO +
linear studied in Chapter 5. This should motivate the use of these languages in
implementations of the linear constraint model. We also propose some directions
for future research.





Chapter 2

Constraint Database Models

In this chapter, we provide the necessary background on the polynomial and linear
constraint database models. We explain how geometric data can be described in a fi-
nite way using polynomial and linear constraints. The geometric figures that can be
described with linear constraints are precisely those figures that can be described as
a finite union of open polyhedra. We introduce the polynomial constraint database
model as an extension of the classical relational database model, and the linear con-
straint database model as a restriction of the polynomial constraint database model.
We argue that two natural restrictions of the polynomial constraint database model
to a linear constraint database model are possible. We study the notion of query
in the context of constraint database models and define for each model a natural
calculus-like query language and an equivalent algebra-like query language. Since
the linear constraint database model is a sub-model of the polynomial constraint
database model, we start with the latter. First, though, since we work in the n-
dimensional Euclidean space Rn for the remainder of this dissertation, we briefly
introduce some terminology about Rn.

2.1 The Euclidean Space: Terminology

From now on, we work in the n-dimensional Euclidean space Rn. The canonical
coordinate basis in Rn has origin ~0 and unit vectors ~e1, . . . , ~en where the vector ~ei,
1 ≤ i ≤ n, has ith coordinate 1 and all other coordinates 0.

7



8 2. Constraint Database Models

A linear subspace of Rn is a subset of Rn that is closed under vector addition and
scalings. The dimension of a linear subspace is the smallest number k for which there
exists k vectors which span the linear subspace. For example, the linear subspaces of
R3 are the origin ~0 of the canonical coordinate system (which has dimension 0), all
lines of R3 through ~0 (which have dimension 1), all planes of R3 through ~0 (which
have dimension 2), and R3 itself (which has of course dimension 3). A d-dimensional
coordinate subspace of Rn, 0 ≤ d ≤ n, is any linear subspace of Rn generated by
exactly d of the canonical basis vectors ~e1, . . . , ~en.

An affine subspace of Rn is a translation of a linear subspace of Rn. Hence, the
affine subspaces of R3 are all points of R3, all lines of R3, all planes of R3, and
R3 itself. A hyperplane of Rn is an (n − 1)-dimensional affine subspace of Rn. A
coordinate hyperplane of Rn is an (n− 1)-dimensional coordinate subspace of Rn.

Two affine subspaces of Rn are parallel if either one is contained in the other or
they have no points in common. Two affine subspaces of Rn are called orthogonal
if their corresponding linear subspaces (obtained by translating the affine subspaces
to the origin of the coordinate system) are orthogonal. Two linear subspaces of Rn

are orthogonal if each vector ~x of the first subspace is orthogonal to each vector ~y of
the second subspace, i.e., if ~x.~y = 0 1. If S is a linear subspace of Rn of dimension k,
then the set S⊥ of all vectors of Rn orthogonal to all vectors of S is a linear subspace
of Rn of dimension n− k.
Let S ⊆ Rn. The affine support of S is the lowest dimensional affine subspace of
Rn containing S.

2.2 The Polynomial Constraint Database Model

In the polynomial constraint database model [50], we consider as geometric data
all geometric figures definable in elementary geometry [11], i.e., 〈R,≤,×,+, 0, 1〉,
the first-order logic over the real numbers with addition and multiplication. The
rationale behind this approach is that the first-order theory of the reals is decidable
by means of a strong form of effective quantifier elimination [6, 19], and that, conse-
quently, many properties of figures definable in elementary geometry are decidable,
too [46, 69, 71].

We now explain how geometric data can be represented with first-order logic for-
mulae over the reals. Assume a totally ordered infinite set of variables called
real variables , which range over the real numbers. Define a polynomial constraint

1Let ~x and ~y be two vectors in Rn. Then, the dot-product ~x.~y is defined as x1y1 + . . .+ xnyn.
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term as a polynomial in real variables with integer coefficients2. Then, an atomic
polynomial constraint formula is built from a polynomial constraint term using
binary comparison relations, i.e., t θ 0 with t a polynomial constraint term and
θ ∈ {=, <,>,≤,≥, 6=}. A polynomial constraint formula3 is defined as a well-formed
first-order logic formula built from atomic polynomial constraint formulae, i.e.,

• every atomic polynomial constraint formula is a polynomial constraint formula;

• if ϕ and ψ are polynomial constraint formulae, then ϕ ∧ ψ and ¬ϕ are poly-
nomial constraint formulae; and

• if x is a real variable and ϕ is a polynomial constraint formula in which x
occurs free, then (∃x)ϕ(x) is a polynomial constraint formula.

Every polynomial constraint formula ϕ with n free real variables x1, . . . , xn defines
a point-set

{(x1, . . . , xn) ∈ Rn | ϕ(x1, . . . , xn)}
in n-dimensional Euclidean space Rn in the standard manner. Point-sets defined by
polynomial constraint formulae are called semi-algebraic sets .

Example 2.1 The polynomial constraint formula

(∃u)(0 ≤ x ∧ x ≤ 10 ∧ 25u = x2 − 10x+ 50 ∧ y2 + z2 = u2)

describes the geometric figure shown in Figure 2.1.

Notation 2.2 For convenience, we shall frequently use vector notation in poly-
nomial constraint formulae. Atoms involving vector notation must be interpreted
coordinate-wise. For instance, in three-dimensional space the expression ~x = α~y+β~z
should be interpreted as the polynomial constraint formula x1 = αy1 + βz1 ∧ x2 =
αy2+βz2∧x3 = αy3+βz3. In particular, ¬(~x = ~0) indicates that ~x is not the origin
of the coordinate system, whereas ~x 6= ~0 denotes that none of the coordinates of ~x
equals 0. As usual, ϕ ∨ ψ, ϕ⇒ ψ, ϕ⇔ ψ, and (∀x)ϕ will be used as abbreviations
for ¬(¬ϕ ∧ ¬ψ), ¬ϕ ∨ ψ, (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ), and ¬(∃x)¬ϕ, respectively. Further-
more, we shall also use polynomials with rational and real algebraic coefficients in
polynomial constraint formulae, since these polynomial constraint formulae can be
rewritten as polynomial constraint formulae that only use polynomials with integer
coefficients.

2In order to obtain formulae that are finitely representable, only coefficients that are finitely
representable (e.g., integers) may be allowed.

3Observe that “polynomial constraint terms” and “polynomial constraint formulae” correspond
to “real terms” and “real formulae”, respectively, which are often used in the context of the real
closed field.
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Figure 2.1: Example of a semi-algebraic figure.

By definition, semi-algebraic sets are finitely representable by means of polynomial
constraint formulae. It must be noted that several polynomial constraint formulae
can represent the same semi-algebraic set, as illustrated by the following example.

Example 2.3 The two polynomial constraint formulae define the same area in the
plane:

• (∃x3)(∃x4)(x23 + x24 = 100 ∧ (x3 − x1)2 + (x4 − x2)2 < 1); and

• x21 + x22 > 81 ∧ x21 + x22 < 121.

In fact, every semi-algebraic set can be represented by an infinite number of poly-
nomial constraint formulae. On the contrary, every polynomial constraint formula
unambiguously defines one semi-algebraic set.

By the quantifier elimination theorem of Tarski [71], it is always possible to represent
a semi-algebraic set by a quantifier-free polynomial constraint formula. (Notice
that the second formula in Example 2.3 is quantifier-free.) The same theorem also
guarantees decidability of the equivalence of two polynomial constraint formulae.

Notice that the intersection and the union of two semi-algebraic sets of Rn can
be interpreted as, respectively, the conjunction and disjunction of the polynomial
constraint formulae representing those semi-algebraic sets; the complement of a
semi-algebraic set as the negation of the polynomial formula representing that semi-
algebraic set; and, finally, the geometric projection of a semi-algebraic set on a
coordinate subspace as the existential quantification of the appropriate free variables
in the polynomial constraint formula representing that semi-algebraic set. As a
consequence, semi-algebraic sets are closed under intersection, union, complement,
and projection.
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We next introduce the polynomial constraint database model. In essence, the poly-
nomial constraint database model is an extension of the relational data model where
a relation, besides columns that store values of some alphanumerical data type, can
have one extra geometric column of type semi-algebraic set. In contrast with the
alphanumerical data columns, there is a sharp distinction between what is stored
in a geometric column (finitely representable polynomial constraint formulae) and
the meaning of the stored data (possibly infinite point-sets, which may even be
unbounded). In the next two paragraphs, we give the formal definitions.

A polynomial constraint database scheme, S, is a finite set of relation names . We
associate with each relation name, R, a type which is a pair of natural numbers,
[m,n], where m denotes the number of alphanumerical columns and n the dimension
of the single geometric column of R. A polynomial constraint database scheme
has type [m1, n1; . . . ;mk, nk] if the scheme consists of relation names, R1, . . . , Rk,
respectively of type [m1, n1], . . . , [mk, nk]. A syntactic polynomial constraint relation
of type [m,n] is a finite set of tuples of the form

(v1, . . . , vm;ϕ(x1, . . . , xn))

with v1, . . . , vm alphanumerical values of some domain4, U, and ϕ(x1, . . . , xn) a
polynomial constraint formula with n free real variables. As argued before, we may
assume without loss of generality that this formula is quantifier-free. A syntactic
polynomial constraint database instance is a mapping, I, assigning to each relation
name, R, of a scheme, S, a syntactic polynomial constraint relation I(R) of the
same type.

Given a syntactic polynomial constraint relation, r, the semantic polynomial con-
straint relation I(r) is defined as

⋃

t∈r

(

{(t.v1, . . . , t.vm)} × {(u1, . . . , un) ∈ Rn | t.ϕ(u1, . . . , un)}
)

.

This subset of Um ×Rn can be interpreted as a possibly infinite (m+ n)-ary rela-
tion, called semantic polynomial constraint relation, the tuples of which are called
semantic polynomial constraint tuples. The semantics of a syntactic polynomial
constraint database instance, I, over a polynomial constraint database scheme, S,
is the mapping, I, assigning to each relation name, R, in S the semantic polynomial
constraint relation I(I(R)).

Example 2.4 The example in Figure 2.2 shows a polynomial constraint database
containing geographical information about Belgium, represented with linear con-
straints.

4Typically, in relational database systems, this domain consists of integers, characters, dates,
etc.
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Regions

Name Geometry

Brussels (y ≤ 13) ∧ (x ≤ 11) ∧ (y ≥ 12) ∧ (x ≥ 10)
Flanders (y ≤ 17) ∧ (5x− y ≤ 78) ∧ (x− 14y ≤ −150) ∧ (x + y ≥ 45)∧

(3x− 4y ≥ −53) ∧ (¬((y ≤ 13) ∧ (x ≤ 11) ∧ (y ≥ 12) ∧ (x ≥ 10)))
Wallonia ((x − 14y ≥ −150) ∧ (y ≤ 12) ∧ (19x+ 7y ≤ 375) ∧ (x− 2y ≤ 15)∧

(5x+ 4y ≥ 89) ∧ (x ≥ 13)) ∨ ((−x + 3y ≥ 5) ∧ (x + y ≥ 45)∧
(x− 14y ≥ −150) ∧ (x ≥ 13))

Cities

Name Geometry

Antwerp (x = 10) ∧ (y = 16)
Bastogne (x = 19) ∧ (y = 6)
Bruges (x = 5) ∧ (y = 16)
Brussels (x = 10.5) ∧ (y = 12.5)
Charleroi (x = 10) ∧ (y = 8)
Hasselt (x = 16) ∧ (y = 14)
Liège (x = 17) ∧ (y = 11)

Rivers

Name Geometry

Meuse ((y ≤ 17) ∧ (5x− y ≤ 78) ∧ (y ≥ 12))∨
((y ≤ 12) ∧ (x − y = 6) ∧ (y ≥ 11))∨
((y ≤ 11) ∧ (x − 2y = −5) ∧ (y ≥ 9))∨
((y ≤ 9) ∧ (x = 13) ∧ (y ≥ 6))

Scheldt ((y ≤ 17) ∧ (x + y = 26) ∧ (y ≥ 16))∨
((y ≤ 16) ∧ (2x− y = 4) ∧ (y ≥ 14))∨
((x ≤ 9) ∧ (x ≥ 7) ∧ (y = 14))∨
((y ≤ 14) ∧ (−3x+ 2y = 7) ∧ (y ≥ 11))∨
((y ≤ 11) ∧ (2x+ y = 21) ∧ (y ≥ 9))

Figure 2.2: Example of a polynomial constraint database database.
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In traditional database theory, a query is usually defined as a computable mapping
from databases to databases. In geometric models, such as the polynomial constraint
database model, the picture is somewhat more complicated, since queries can be
viewed both at the syntactic level and the semantic level. Therefore, given an input
scheme Sin and an output scheme Sout, a query is a mapping of the polynomial
constraint database instances of Sin to the polynomial constraint database instances
of Sout, both at the syntactic and the semantic level. Moreover, at the syntactic
level, a query must be computable5.

We associate with every query a type

[m1, n1; . . . ;mk, nk]→ [m,n]

with [m1, n1; . . . ;mk, nk] the type of the input database scheme and [m,n] the type
of the output database.

An obvious query language accompanying the polynomial constraint database model
is obtained by adding to the language of the polynomial constraint formulae the
following:

1. a totally ordered infinite set of variables, called value variables , disjoint from
the set of real variables, which range over the domain U of alphanumerical
data values;

2. atomic formulae of the form v1 = v2, with v1 and v2 value variables;

3. atomic formulae of the form R(v1, . . . , vm; x1, . . . , xn), with R a relation name
of type [m,n], v1, . . . , vm value variables, and x1, . . . , xn real variables; and

4. existential quantification of value variables.

In the literature, this query language is commonly known as the polynomial con-
straint calculus , or, for short, FO + poly. A query of type [m1, n1; . . . ;mk, nk] →
[m,n] is expressible in FO + poly if there exists an FO + poly formula ϕ with m
free value variables and n free real variables such that, at the semantic level, for ev-
ery input database instance of type [m1, n1; . . . ;mk, nk], {(v1, . . . , vm; x1, . . . , xn) |
ϕ(v1, . . . , vm; x1, . . . , xn)} equals the corresponding output database, which is of
type [m,n]. As is shown by [9, 34, 53], not every query is expressible in FO + poly.

Queries of type [m1, n1; . . . ;mk, nk]→ [0, 0] are called Boolean queries, because the
sets {()} and {} can be seen as encoding the truth values true and false, respectively.

5Although it is not within the scope of this dissertation, a query should satisfy, at the semantic
level, some genericity condition, as first studied in [15] for queries on classical relational databases,
and generalized to queries on geometric databases in [61].
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Example 2.5 Consider the polynomial constraint database of Example 2.4. A
query on this database is “Give the name and position of all cities that lie within
unit distance from the border between Flanders and the Wallonia.” This query of
type [1, 2; 1, 2; 1, 2]→ [1, 2] can be expressed with the formula

(∃u)(∃v)Cities(c, x, y) ∧ Regions(‘Flanders’; u, v) ∧
Regions(‘Wallonia’; u, v) ∧ (x− u)2 + (y − v)2 < 1

in FO + poly.

Due to the existence of quantifier elimination algorithms for polynomial constraint
formulae, every FO + poly-expressible query is effectively computable, and yields a
polynomial constraint database as result [50].

We conclude this section by presenting an equivalent polynomial constraint algebra
for FO + poly, the polynomial constraint calculus [61]. This polynomial constraint
algebra maps polynomial constraint database instances to polynomial constraint
database instances at the syntactic level . Thereto, we translate the polynomial con-
straint calculus formulae into equivalent polynomial constraint algebra expressions
which have an operational semantics on the syntactic level.

The operators of the polynomial constraint algebra are as follows. We use the
following terminology: given a syntactic tuple

t = (v1, . . . , vm;ϕ(x1, . . . , xn)),

we denote the alphanumerical part of t, (v1, . . . , vm), by val(t) and the geometric
part of t, ϕ(x1, . . . , xn), by geom(t).

• Let r1 and r2 be syntactic relations of type [m,n] and assume, without loss of
generality, that the geometric parts of all syntactic tuples in r1 and r2 use the
same free variables.

– The union, denoted r1 ∪ r2, is the standard set-theoretic union.

– The difference, denoted r1 − r2, is the syntactic relation

{(val(t);ϕt(x1, . . . , xn) | t ∈ r1},

where ϕt(x1, . . . , xn) stands for

∨

t1∈r1
val(t1)=val(t)

geom(t1) ∧ ¬
∨

t2∈r2
val(t2)=val(t)

geom(t2).
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– The intersection, denoted r1 ∩ r2 is defined in the standard way as r1 −
(r1 − r2).

• Let r1 and r2 be syntactic relations of types [m1, n1] and [m2, n2], respectively,
and assume, without loss of generality, that no free real variable occurs in the
geometric part of a syntactic tuple in both r1 and r2.

The Cartesian product , denoted r1 × r2, is the syntactic relation

{(val(t1), val(t2); geom(t1) ∧ geom(t2)) | t1 ∈ r1, t2 ∈ r2},
which is of type [m1 +m2, n1 + n2].

• Let r be a syntactic relation of type [m,n], and assume, without loss of gen-
erality, that the geometric parts of all syntactic tuples in r use the same free
real variables x1, . . . , xn.

– For 1 ≤ i, j ≤ m, the value selection, denoted σi=j(r), is the syntactic
relation

{t ∈ r | val(t)(i) = val(t)(j)}.
For a ∈ U, the constant value selection, denoted σi=a(r), is the syntactic
relation

{t ∈ r | val(t)(i) = a}.
– For ϕ a quantifier-free polynomial constraint formula with free variables
x1, . . . , xn, the geometric selection, denoted σϕ(r), is the syntactic rela-
tion

{(val(t); geom(t) ∧ ϕ) | t ∈ r}.
– For 1 ≤ i1, . . . , ip ≤ m, the value projection, denoted πi1,... ,ip(r), is the

syntactic relation

{(val(t)(i1), . . . , val(t)(ip); geom(t)) | t ∈ r},
which is of type [p, n].

– For 1 ≤ i1, . . . , ip ≤ n, the geometric projection, denoted πxi1 ,... ,xip (r), is
the syntactic relation

{(val(t); πxi1 ,... ,xip (geom(t))) | t ∈ r},
which is of type [m, p], where, for a polynomial constraint formula ϕ
with free variables x1, . . . xn, πxi1 ,... ,xip (ϕ) is defined as (the quantifier-
free equivalent of) the polynomial constraint formula

(∃x1) . . . (∃xn)(ϕ(x1, . . . , xn) ∧
p
∧

k=1

yk = xik),

with y1, . . . , yp real variables satisfying {x1, . . . , xn} ∩ {y1, . . . , yp} = ∅.
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• For each k, the constant relations Uk and Rk denote the “maximal” syntactic
relation of type [k, 0] and [0, k], respectively.

Polynomial constraint algebra expressions are obtained by applying the above op-
erators to relation names.

Example 2.6 The query in Example 2.5 on the polynomial constraint database of
Example 2.4 can be expressed in the polynomial constraint algebra as

π1 πx1,x2 σϕ σ2=‘Wallonia′ σ3=‘Flanders’ (Cities× Regions× Regions)

where ϕ equals x3 = x5 ∧ x4 = x6 ∧ (x1 − x3)2 + (x2 − x4)2 < 1.

Using standard techniques, we can establish the following result:

Proposition 2.7 Every FO + poly expression can be converted effectively into a
polynomial constraint algebra expression and vice-versa, in such a way that both ex-
press the same mapping from polynomial constraint database instances to polynomial
constraint database instances, respectively at the semantic and syntactic level.

As queries expressed by polynomial constraint algebra expressions are obviously
computable at the syntactic level, Proposition 2.7 also establishes that FO+poly and
the polynomial constraint algebra are indeed geometric query languages as discussed
earlier in this section.

2.3 The Linear Constraint Database Model

From the polynomial constraint database model, the linear constraint database
model can be obtained by only considering polynomial constraint formulae with
linear polynomials. There are two obvious ways to obtain this restriction.

In the most restrictive approach, the degree of the polynomials involved is restricted
to 1, as a consequence of which all the linear polynomials considered have integer co-
efficients. So, we consider only atomic polynomial constraint formulae that are built
from polynomial constraint terms that are linear polynomials; these atomic poly-
nomial constraint formulae are called atomic Z-linear constraint formulae, and the
polynomial constraint terms from which they are built are called Z-linear constraint
terms . Atomic Z-linear constraint formulae are of the form

∑n
i=1 aixi θ a, where

x1, . . . , xn are real variables, a1, . . . , an are integer coefficients, a is an integer, and
θ is one of =, >, ≥, <, ≤, and 6=. Polynomial constraint formulae build of atomic Z-
linear constraint formulae are called Z-linear constraint formulae. Clearly, Z-linear
constraint formulae are equivalent to first-order formulae over the real numbers with
addition only.
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Remark 2.8 We shall frequently use Z-linear constraint formulae in which the lin-
ear polynomials have rational coefficients, since these formulae can be easily rewrit-
ten into formulae in which the linear polynomials only have integer coefficients.

A Z-linear constraint formula ϕ(x1, . . . , xn) with free real variables x1, . . . , xn de-
fines a geometric figure {(x1, . . . , xn) | ϕ(x1, . . . , xn)} in n-dimensional Euclidean
space Rn by letting real variables range over the real numbers. Semi-algebraic sets
defined in this way are called Z-semi-linear sets .

Polynomial constraint databases containing only Z-semi-linear sets as geometric
data are called Z-linear constraint databases. The syntactic and semantic relations
of a Z-linear constraint database are called, respectively, syntactic and semantic
Z-linear constraint relations .

Example 2.9 The polynomial constraint database considered in Example 2.4 and
shown in Figure 2.2 contains only Z-linear constraint formulae to describe the geo-
metric information, whence it is a Z-linear constraint database.

Queries in the context of Z-linear constraint databases are called Z-linear queries
and the corresponding restriction of the query language FO+poly is denoted FO+
Z-linear. Using algebraic computational techniques for the elimination of variables
in sets of linear equations and inequalities [47, 48, 54], every FO + Z-linear query
yields a Z-linear constraint database as a result by substituting the definition of the
input relation, which are Z-linear constraint formulae, into the FO+Z-linear query.

Example 2.10 A (simple) example of a Z-linear query on the linear constraint
database of Example 2.9 is “Find all cities that lie on a river and give their name
and position.” This query of type [1, 2; 1, 2; 1, 2]→ [1, 2] which can be expressed as

(∃r)Cities(c, x, y) ∧ Rivers(r, x, y)

in FO + Z-linear.

A more liberal restriction of the polynomial constraint database model to a linear
constraint database model is obtained when the linear polynomials considered may
have arbitrary real algebraic coefficients . In this case, we speak about A-linear
constraint terms, atomic A-linear constraint formulae, A-linear constraint formulae,
A-semi-linear sets, A-linear constraint relations, A-linear constraint databases, A-
linear queries, and the query language FO +A-linear.
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Example 2.11 Let a and b be two positive real algebraic numbers and consider the
polynomial constraint formula

(x+ a)2 + y2 = b2 ∧ (x− a)2 + y2 = b2 ∧ z ≥ 0 ∧ z ≤ 4.

The above formula, though non-linear, represents an A-semi-linear set in three-
dimensional Euclidean space R3 for all possible real algebraic numbers a and b.

Indeed, the above formula describes the intersection of two parallel cylinders with
radius b and height 4, one with central axis x = −a ∧ y = 0 and the other with
central axis x = a ∧ y = 0. The intersection is either empty (if a > b) or the line
segment x = 0 ∧ y = 0 ∧ z ≥ 0 ∧ z ≤ 4 on the z-axis (if a = b) or the set described
by

(x = 0 ∧ y = −
√
b2 − a2 ∧ z ≥ 0 ∧ z ≤ 4) ∨

(x = 0 ∧ y =
√
b2 − a2 ∧ z ≥ 0 ∧ z ≤ 4),

consisting of two line segments parallel to the z-axis (if a < b.)

For example, if a = 4 and b = 5, then S is the set described by

(x = 0 ∧ y = −3 ∧ z ≥ 0 ∧ z ≤ 4) ∨ (x = 0 ∧ y = 3 ∧ z ≥ 0 ∧ z ≤ 4),

which is Z-semi-linear. (The projection of this set on the xy-plane is shown in
Figure 2.3).

Figure 2.3: Projection of the Z-semi-linear set of Example 2.11 on the xy-plane.

If a = 1 and b = 2, then S is the set described by

(x = 0 ∧ y = −
√
3 ∧ z ≥ 0 ∧ z ≤ 4) ∨ (x = 0 ∧ y =

√
3 ∧ z ≥ 0 ∧ z ≤ 4),

which is A-semi-linear, but not Z-semi-linear.
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For most results presented here, there will be no need to make the distinction be-
tween linear polynomials with integer or real algebraic coefficients. Therefore, we
shall speak in general about linear constraint terms, atomic linear constraint for-
mulae, linear constraint formulae, semi-linear sets, linear constraint relation, linear
constraint database, linear queries, and FO+linear whenever the distinction between
integer or real algebraic coefficients has no influence on the proposed results. We
stress, however, that the distinction between integer and real algebraic coefficients
is not just a technical one: Chapter 4 shows that there exists interesting properties
which are decidable by an FO+poly expression in the A-linear case, but not in the
Z-linear case.

As in the case of semi-algebraic sets, the intersection and the union of two semi-
linear sets of Rn can be interpreted as, respectively, the conjunction and disjunction
of the linear constraint formulae representing those semi-linear sets; the complement
of a semi-linear set denotes the negation of the linear formula representing that set;
and, finally, the geometric projection of a semi-linear set on a coordinate subspace
can be regarded as the existential quantification of the appropriate free variables in
the linear constraint formula representing that semi-linear set. As a consequence,
semi-linear sets are closed under intersection, union, complement, and projection.

Next, the above closure properties allow us to establish an alternative characteriza-
tion of semi-linear sets.

A polyhedron in a Euclidean space (of arbitrary dimension) is defined as a finite
intersection of closed half-spaces. Obviously, a polyhedron that can be defined
in terms of half-spaces of which the bounding hyperplanes can be described by
equations with integer (real algebraic) coefficients is Z-semi-linear (A-semi-linear).
An open polyhedron is the topological interior of a polyhedron with respect to the
lowest dimensional affine subspace containing that polyhedron. For instance, a
point, an open half-line (which is topologically open within its supporting line), an
open triangle (which is topologically open within its supporting two-dimensional
plane), and an open cube with one face at infinity are open polehydra in three-
dimensional space. Open polyhedra can always be described as the intersection
of an appropriate set of open and closed half-spaces. The closed half-spaces are
only needed to define the affine support of the polyhedron. Thus, when an open
polyhedron has maximal dimension, open half-spaces suffice to describe it. In case
a polyhedron is bounded, we speak of a polytope rather than a polyhedron. As
an example, points, line segments, and convex6 polygons are the only polytopes in
two-dimensional space. The following result is easy to prove:

6Let S be a subset of Rn. Then S is convex when, for every two points of S, the line segment
defined by these points is fully contained in S.
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Proposition 2.12 Semi-linear sets and finite unions of open semi-linear polyhedra
represent the same class of geometric figures. Bounded semi-linear sets and finite
unions of open semi-linear polytopes are equivalent.

Proof. Since open semi-linear polyhedra can be defined in terms of open and closed
half-spaces that can clearly be described by atomic linear constraint formulae, and
since the geometric operations intersection and union can be interpreted as the
logical connectives ∧ and ∨, respectively, it follows clearly that finite unions of open
semi-linear polyhedra are semi-linear sets.

Since polytopes are bounded polyhedra, it is obvious that finite unions of open
semi-linear polytopes are semi-linear bounded sets.

Conversely, an atomic linear constraint formula represents either an open or closed
half-space, or a hyperplane (which is the intersection of two closed half-spaces), or,
finally, the complement of a hyperplane (which is the union of two open half-spaces).
So, clearly, an atomic linear constraint formula can be represented by one or two
open semi-linear polyhedra. Since the geometric operations intersection and union
can be interpreted as the logical connectives ∧ and ∨, respectively, it follows, from
a simple induction argument on the structure of a linear constraint formula, that
any semi-linear set defined by a linear constraint formula without quantifiers and
negation can alternatively be defined as a finite union of open semi-linear polyhedra.
This result extends to semi-linear sets defined by general linear constraint formulae,
as the quantifiers can be eliminated [47, 48, 54], and linear constraint formulae with
negation can easily be rewritten as linear constraint formulae without negation.

A bounded semi-linear set can be written as a finite union of open semi-linear
polyhedra. Because of the boundedness of the semi-linear set, each polyhedron is
bounded, and, therefore, a polytope.

The above characterization allows us to conclude that most geometric data types
found in the literature are sub-types of the semi-linear sets. Güting [39, 40] in his geo-
relational algebra proposes the geometric data types point , line, and polygon, which
can be seen as 0-, 1-, and two-dimensional polytopes, respectively.7 Egenhofer [21] in
his geometric data representation model proposes as basic objects simplices , which
are special kinds of polytopes.

For FO + poly, the polynomial constraint calculus, we showed that there exists an
equivalent polynomial constraint algebra. This polynomial constraint algebra can
be restricted in the obvious way to obtain algebras which express Z-linear queries
and A-linear queries, and such that we can state the following result:

7The polygons considered by Güting are not necessarily convex, but can always be decomposed
into convex polygons.
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Proposition 2.13 Every FO + linear expression can be converted effectively into
a linear constraint algebra expression and vice-versa, in such a way that both ex-
press the same mapping from linear constraint database instances to linear constraint
database instances, respectively at the semantic and syntactic level.

We point out that Afrati et al. [4] have shown that FO + linear is not complete for
the linear queries definable within FO+ poly. More concretely, Afrati et al. proved
the following result:

Proposition 2.14 [4] The Boolean query on semi-linear sets S of R which decides
whether there exist u and v in S with u2 + v2 = 1, is not definable in FO + linear.

Even though the query in Proposition 2.14 involves a non-linear computation in
order to evaluate it, it is a linear query because it is a Boolean query, and therefore
Proposition 2.14 suffices to establish the incompleteness of FO+linear for the linear
queries definable in FO+poly. We shall denote the class of Z-linear queries definable
in FO+poly by FO+polyz-lin and the class ofA-linear queries definable in FO+poly
by FO + polya-lin. When the distinction between the class of FO + polyz-lin and
FO + polya-lin queries is not important, we will speak of the class of FO + polylin

queries. Various questions now arise, among which the following.

• Is it decidable whether an FO + poly query is an FO + polya-lin or an FO +
polyz-lin query?

• Is FO + linear an adequate linear query language for the linear constraint
database model? Which FO+polya-lin (FO+polyz-lin) queries are expressible
in FO + linear?

• Can we find linear query languages that are complete for the FO + polya-lin

(FO + polyz-lin) queries?

• Are there interesting sub-classes of the FO + polylin queries for which there
exists a natural query language with a nice geometric interpretation?

We try to answer these questions in the following chapters.

We conclude this section with the following remark. Although alphanumerical data
are indispensable in most practical geometric database applications, it is of no use
both in the study of geometric properties of semi-linear and semi-algebraic sets
and in the examination of the expressiveness of the query languages FO+ poly and
FO+linear. Therefore, in the remainder of this dissertation, we shall focus on purely
geometric constraint databases, i.e., constraint databases in which the constraint
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relations have type [0, n]. As a consequence, we shall omit the alphanumerical part
in the query languages FO + poly and FO + linear (and extensions thereof), and
concentrate on the expressibility of purely geometric queries , i.e., queries from purely
geometric constraint databases to purely geometric constraint databases.



Chapter 3

On the Expressiveness of

FO + linear

In this chapter, we focus on the expressiveness and limitations of the linear query
language FO + linear.

The FO+linear formulae we present in the first part of this chapter act as “building
blocks” to compose FO+linear formulae for more sophisticated linear queries in the
remainder of this work. This is illustrated in the second part of this chapter, where
we show that the geometric properties parallelism and orthogonality , in the context
of semi-linear sets consisting of affine subspaces, are expressible in FO + linear.
Moreover, we study the notions of dimension and regular point of a semi-linear set,
and show they can be expressed in FO+ linear. This result is of importance, as the
dimension and regular points of a semi-linear set form the basis for a decomposition
technique of semi-linear sets that is used to obtain (i) an algorithm, which will be
developed in Chapter 4, that decides whether a semi-algebraic set is semi-linear, and
(ii) a method, which will studied in Chapter 5, to “lift” query languages defined on
finite databases to query languages defined on linear constraint databases, which, at
the end, will result in a query language that is complete for the class of FO+polylin

queries.

In the second part of this chapter, we argue that FO + linear is nevertheless not
sufficiently expressive to be regarded as a general-purpose linear query language for
the linear constraint database model. To justify this claim, we exhibit a theorem
stating that the non-semi-linearity of certain semi-algebraic sets can be “lifted” to

23
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the non-expressibility of closely related linear queries. Armed with this tool, we show
that certain linear queries, indispensable in most geometric database applications,
cannot be computed in FO + linear.

We conclude this chapter with a result stating that it is undecidable whether an
FO + polylin query can be expressed in FO + linear. We also give examples of
subclasses of the FO + polylin queries for which it remains undecidable whether
queries of these subclasses can be expressed in FO+ linear. This result shows that,
to study the expressibility of certain queries in FO + linear, the “query-by-query”
approach we took in the first two sections can make sense.

3.1 FO + linear Expressible Properties of

Semi-Linear Sets

Since the query language FO+ linear plays a key role in the upcoming chapters, we
try to make the reader more comfortable with this query language and its expressive
power by showing for some fundamental queries of topological or geometric nature
how they can be expressed in FO+linear. In particular, we show that the dimension
of a semi-linear set can be computed in FO+linear. We also introduce the notion of
regular point of an arbitrary semi-algebraic set. We then show that, for semi-linear
sets, the set of regular points can be computed in FO+linear. The notions dimension
and regular point are the foundations of a decomposition technique of semi-linear
sets which reveals to some extent the geometric structure of a semi-linear set.

To simplify our discussions, we assume that, in all the queries below, the input
database consists of one relation name S of an arbitrary purely geometric type
[0, n].

We start with observing that semi-linear sets are closed under translations . Clearly,
the FO + linear expression

(∃~u)S(~u) ∧ ~z = ~y − ~x+ ~u

computes the translation defined by −→xy 1 of the semi-linear set S.

The property “being symmetric with respect to a point” can be described in terms
of translations. We say that a semi-linear set S of Rn is symmetric with respect to
the point ~p of Rn if, for each point ~x of S, the point ~p +−→xp belongs to S. Clearly,
this property can be expressed in FO + linear by the sentence

(∀~x)(S(~x)⇒ (∃~y)(~y = 2~p− ~x ∧ S(~y))).
1The vector −→xy is defined as ~y − ~x.
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The FO + linear expression

(∀~x)(∃~ε)(~ε 6= ~0 ∧ S(~x)⇒ ¬(∃~y)(S(~y) ∧ ¬(~y = ~x) ∧ ~x− ~ε < ~y < ~x+ ~ε))

decides whether S consists of isolated points only. For semi-algebraic sets, whence
also for semi-linear sets, this is equivalent to S being finite [11].2

The FO + linear expression

(∃~ε)(∀~x)(∀~y)(S(~x) ∧ S(~y)⇒ −~ε < ~y − ~x < ~ε)

decides whether S is bounded.

The definitions of topological interior , boundary , and closure of a point-set in Rn

can be translated almost straightforwardly into FO+ linear using the property that
the n-dimensional open boxes3 form a basis for the standard topology of Rn. This
is shown in the following. The FO + linear expression

(∃~ε)(~ε 6= ~0 ∧ (∀~y)(~x− ~ε < ~y < ~x+ ~ε⇒ S(~y)))

computes the topological interior of S. Similarly, the FO + linear expression

(∀~ε)(~ε 6= ~0⇒ (∃~y)(S(~y) ∧ ~x− ~ε < ~y < ~x+ ~ε))

computes the topological closure of S. The topological boundary of S can be com-
puted as the difference of the topological closure and the topological interior. Notice
that the topological interior, boundary, and closure of a semi-linear set S of Rn is
considered with respect to Rn, and not with respect to the affine support of S.
Later on in this chapter, we show that the affine support of S cannot be computed
in FO + linear.

We note that Clementini et al. and Egenhofer et al. showed in a series of papers [17,
21, 22, 26] that a whole class of topological relationships in the two-dimensional
plane, such as disjoint , in, contained , overlap, touch, equal , and covered , can be
defined in terms of intersections between the boundary, interior, and complement of
the geometric objects.

2It follows from this equivalence that the universal and existential quantor in the above formula
may be swapped.

3An n-dimensional polytope S of Rn is an n-dimensional box if its bounding hyperplanes are
parallel to the coordinate hyperplanes, i.e., there exist real numbers l1 ≤ h1, . . . , ln ≤ hn such that
S = {(x1, . . . , xn) | l1 ≤ x1 ≤ h1 ∧ . . . ∧ ln ≤ xn ≤ hn}. A d-dimensional polytope of Rn of which
all bounding hyperplanes, except the hyperplanes defining the affine support of that polytope, are
parallel to the coordinate hyperplanes, is a d-dimensional box . An open box is the interior of a box
with respect to its affine support.
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Furthermore, the regularization of a semi-linear set, defined as the closure of its
interior4, can be computed in FO + linear, which is of importance, since the reg-
ularized set operators turn out to be indispensable in most geometric database
applications [36, 51].

Notation 3.1 Since the queries above are so elementary, we will introduce predi-
cates to denote them in later queries. We use T−→xy(S, ~z) as the predicate which decides
whether ~z is a point of the translation of the semi-linear set S defined by the vector
−→xy. We denote by symmetric(S, ~p) the predicate which decides whether the semi-
linear set S is point symmetric with respect to the point ~p. Next, we use finite(S)
and bounded(S) as predicates which decide whether the semi-linear set S is finite,
respectively, bounded. Finally, interior(S, ~x), closure(S, ~x), and boundary(S, ~x)
are predicates which decide whether ~x is a point in, respectively, the interior, the
closure, and the boundary of the semi-linear set S.

We next show that the Boolean query deciding whether a semi-linear set is convex
can be defined in FO + linear.

Proposition 3.2 The predicate convex(S), in which S is a semi-linear set of Rn,
and which evaluates to true if S is convex can be expressed in FO + linear.

Proof. We prove that the FO + linear formula

(∀~x)(∀~y)(S(~x) ∧ S(~y)⇒ (∃~z)(2~z = ~x+ ~y ∧ S(~z)))

defines the predicate convex(S).

In words, the above formula states that, for each pair of points in S, the mid-
point is also in S. Clearly, if S is convex, then S satisfies the above FO + linear
formula. Thus suppose, conversely, that S satisfies the above FO + linear formula.
To prove that S is convex, we must show that, for arbitrary points ~p and ~q in S, the
(open) line segment I connecting ~p and ~q is contained in S. Because of the property
expressed by the above FO+linear formula, all points k~p+(1−k)~q, with k a dyadic
number5 between 0 and 1, are in S. Hence, S∩ I is dense in I. Consequently, I−S,
which is also a semi-linear set whence a semi-algebraic set, is zero-dimensional, and,
therefore, finite [11]. A point in I − S, however, would then necessarily be the mid-
point of (infinitely many) pairs of points of S ∩ I, a contradiction. Thus, I − S is
empty, or I is contained in S.

4Intuitively, a regular set has no dangling or isolated boundary points.
5A dyadic number is a finite sum of (positive and negative) integer powers of 2.
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We continue with showing that it can be decided in FO + linear whether a given
semi-linear set of Rn has a given number as its dimension. Since there are only
finitely many values to consider for the dimension of a semi-linear set of Rn, it
follows that the dimension can actually be computed in FO + linear.

Definition 3.3 The dimension of a semi-linear set S of Rn is the maximum value
of d for which there exists a d-dimensional neighborhood which is topologically open
within its affine support and fully contained in S. The dimension of the empty set
is defined as −1.

Again, without loss of generality, we can relax the condition “a d-dimensional neigh-
borhood topologically open within its affine support” to “an open d-dimensional
box.”

The mathematical definition of dimension of a semi-linear set cannot be expressed
straightforwardly in FO+linear, as in the case of the topological interior and closure
of a semi-linear set. It is clear how to consider in FO + linear all d-dimensional
boxes with an affine support parallel to a coordinate hyperplane, but, it is not clear
how to consider all arbitrary d-dimensional boxes in FO + linear. So, we have to
develop an alternative method to compute the dimension of a semi-linear set of Rn

in FO + linear. First, we introduce the following notation.

Notation 3.4 Let S be a semi-linear set of Rn. Then πi(S) denotes the semi-linear
set

{(x1, . . . , xi−1, xi+1, . . . , xn) | (∃xi)S(x1, . . . , xi−1, xi, xi+1, . . . , xn)}
of Rn−1, i.e., the orthogonal projection of S onto the i-th coordinate hyperplane of
Rn.

We now show that, if d < n, at least one projection of S preserves the dimension.
It is this observation that leads us to a method for computing the dimension of a
semi-linear set in FO + linear.

Lemma 3.5 If S is a d-dimensional semi-linear set of Rn, and d < n, then there
exists i, 1 ≤ i ≤ n, such that the dimension of πi(S) equals d.

Proof. Since S has dimension d, there exists a d-dimensional box C, topologically
open within its affine support, which is fully contained in S. Let ~p, ~r1, . . . , ~rd be
points in C such that the vectors −→pr1, . . . ,−→prd are linearly independent. Since d < n,
there exists i, 1 ≤ i ≤ n, such that the unit vector ~ei of the canonical coordinate
system is not a linear combination of −→pr1, . . . ,−→prd. Consider πi(S). Clearly, πi(C)
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is convex and topologically open within its affine support, because C is convex and
topologically open within its affine support. Let ~q, ~s1, . . . , ~sd be the orthogonal
projections on the ith coordinate hyperplane of ~p, ~r1, . . . , ~rd, respectively. We next
show that −→qs1, . . . ,−→qsd are linearly independent. Thereto, let λ1, . . . , λd be real
numbers such that λ1−→qs1+· · ·+λd−→qsd = ~0. Let ~u be the unique point of Rn for which
−→pu = λ1−→pr1 + · · ·+ λd−→prd. By the linearity of projection, πi(−→pu) = ~0, whence −→pu is a
multiple of ~ei, By choice of i, this multiple cannot be non-zero. Hence −→pu = ~0. From
the linear independence of −→pr1, . . . ,−→prd, it then follows that λ1 = · · · = λd = 0. Thus
−→qs1, . . . ,−→qsd are linearly independent. Clearly, a convex set ofRn, topologically open
within its affine support, containing d+ 1 points q, s1, . . . , sd such that −→qs1, . . . ,−→qsd
are linearly independent, contains an open d-dimensional box. Since πi(S) cannot
contain an open box of a strictly larger dimension, we have effectively shown that
πi(S) is d-dimensional.

We are now ready to claim that the dimension of a semi-linear set can be effectively
computed in FO + linear.

Theorem 3.6 The predicate dimn(S, d), in which S is a semi-linear set of Rn and
d is a number, and which evaluates to true if the dimension of S equals d, can be
defined in FO + linear.

Proof. The FO + linear formula defining the predicate dimn(S, d) is obtained by
induction on the dimension n. For convenience, we use in the following the predicates
empty(S), maxdim(S), and max(d1, . . . , dn, d) as macros for, respectively, the FO +
linear expressions

1. ¬(∃~x)S(~x), which decides whether the semi-linear set S equals the empty set;

2. (∃~x)(∃~ε)(~ε 6= ~0∧ (∀~y)(~x− ~ε < ~y < ~x+ ~ε⇒ S(~y))), which decides whether the
semi-linear set S has maximal dimensional, i.e., the dimension of S equals n;
and,

3. (d = d1 ∨ . . .∨ d = dn) ∧ d ≥ d1 ∧ . . .∧ d ≥ dn, which decides whether d is the
maximum value of d1, . . . , dn.

In one-dimensional space, the FO + linear formula

(d = −1 ∧ empty(S)) ∨ (d = 0 ∧ ¬empty(S) ∧ finite(S)) ∨
(d = 1 ∧ ¬empty(S) ∧ ¬finite(S))
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clearly defines dim1(S, d). Assume now that, in Rk, dimk(S, d) has been defined in
FO + linear, for k < n. Then, by the induction hypotheses and Lemma 3.5, the
FO + linear formula

(d = n ∧ maxdim(S)) ∨ (¬maxdim(S) ∧ dimn−1(π1(S), d1) ∧ . . . ∧
dimn−1(πn(S), dn) ∧ max(d1, . . . , dn, d))

defines dimn(S, d) in Rn.

In many situations, semi-linear sets contain parts of which the local dimension is
strictly lower than the overall dimension. We show that we can select those parts of
a semi-linear set which have a given local dimension. We first give a formal definition
of the local dimension of a semi-linear set at one of its points.

Definition 3.7 Let S be a semi-linear set of Rn, and let 0 ≤ k ≤ n.

If ~p is a point of S, then S has local dimension k at ~p if k is the maximum value of
k such that, for each neighborhood V of ~p in Rn, S ∩ V has dimension at least k.

The k-dimensional component of S is the set of all points of S in which S has local
dimension k.

The different dimensional components of a semi-linear set yield a disjoint decom-
position of the semi-linear set. The decomposition of a semi-linear set into its
dimensional components is illustrated in Example 3.8.

Example 3.8 The two-dimensional component of the semi-linear set displayed in
Figure 3.1 is made up of the filled triangle representing the hat and the square
representing the nose. The line segments representing the mouth and the points on
the edge of the face not belonging to the filled triangle constitute the one-dimensional
component. Finally, the zero-dimensional component consists of the two points
representing the eyes of the funny face.

Clearly, using the dimension predicate of Theorem 3.6, the corollary we present next
follows immediately:

Corollary 3.9 Let S be a semi-linear set of Rn, let ~p be a point of S, and let
0 ≤ k ≤ n.

1. The predicate localdimn(S, ~p, k), which evaluates to true if the local dimension
of S at ~p equals k, can be expressed in FO + linear.



30 Expressiveness of FO + linear

Figure 3.1: Illustration of the dimensional components of a semi-linear set.

2. The query returning the k-dimensional component of S can be expressed in
FO + linear.

The decomposition of a semi-linear set into its dimensional components can be
further refined using the notion of regular stratification of a semi-linear set [11, 46,
56, 75], which plays a key role in the study of the geometric structure of semi-linear
sets.

We first study the notion of regular stratification in a more general context than
semi-algebraic sets. Therefore, we introduce the following definition.

Definition 3.10 We define an R-semi-algebraic set as an n-dimensional point-set
which can be described by a polynomial constraint formula in which the polyno-
mials are allowed to have arbitrary real coefficients (instead of only real algebraic
coefficients). Similarly, we define an R-semi-linear set as a point-set of Rn which
can be described by a linear constraint formula in which the linear polynomials are
allowed to have arbitrary real coefficients.

We now define regular points in the context of R-semi-algebraic sets and study the
regular stratification of R-semi-algebraic sets.

Intuitively, a regular point of an R-semi-algebraic set is a point ~p of that set in
which, locally, i.e., in some neighborhood of ~p, the set looks like an algebraic variety
(which can be described by equations only) which has a tangent space6 in ~p.

6A formal definition of the tangent space in a regular point of a set will be given after Defini-
tion 3.12. The notion is a generalization to arbitrary dimensions of tangent line to a curve and
tangent plane to a surface.
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Example 3.11 Consider the semi-algebraic set

S = {(x, y) | x2 + (y − 1)2 < 4 ∨ x2 + (y − 1)2 = 9 ∨
(y = 1 ∧ 3 ≤ x ≤ 5) ∨ (x = 5 ∧ y = 5)}

in the plane, shown in Figure 3.2, which consists of a closed disk, a circle to which
a closed line segment has been attached, and an isolated point.

Figure 3.2: The semi-algebraic set of Example 3.11.

The regular points of S are the points in the interior of the disk, the points of the
circle with exception of the point (3, 1), the points of the open line segment, and
the isolated point. In a sufficiently small neighborhood of a point in the interior of
the disk, the set S looks like the whole plane, which happens to be also the tangent
space in that point. In a sufficiently small neighborhood of a point of the circle
different from the point (3, 1), the set S looks like the circle x2 + (y − 1)2 = 9.
The tangent space in that point is the corresponding tangent to the circle. In a
sufficiently small neighborhood of a point in the open line segment, the set S looks
like the line y = 1, which happens to be also the tangent space in that point. Finally,
in a sufficiently small neighborhood of the isolated point, S looks like that isolated
point, which happens to be its own tangent space. In any neighborhood of a point
on the boundary of the disk or the other end point of the line segment, S does not
look like an algebraic variety, and, therefore, these points are not regular.

We now formalize the intuition given above.

Definition 3.12 Let S be an R-semi-algebraic set of Rn, and let ~p be a point of
S. The point ~p is a regular point of S if there exists a neighborhood V of ~p and
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polynomials with real coefficients P1, . . . , Pk in n real variables such that7

dP1

d~x
(~p ), . . . ,

dPk
d~x

(~p )

are linearly independent and S ∩ V = {~x ∈ V | P1(~x ) = · · · = Pk(~x ) = 0}.

If S and ~p satisfy the above conditions, then, locally around ~p, S is an (n − k)-
dimensional algebraic variety which has an (n− k)-dimensional tangent space at ~p,
defined by the system of k linear equations

dP1

d~x
(~p ) . ~x = 0, . . . ,

dPk
d~x

(~p ) . ~x = 0.

Furthermore, the local dimension of S at ~p equals n− k, and the dimension of S is
the maximum of all these numbers.

Now, let S be an R-semi-algebraic set, and let Reg(S) be the set of those regular
points of S in which S has local dimension precisely the dimension of S itself. It is
well-known that the connected components of Reg(S) are R-semi-algebraic [46, 56].
These are called regular strata. To S−Reg(S), which is again R-semi-algebraic and
of strictly lower dimension than S, we apply the same procedure, and continue until
no more points are left. Since the dimension of the remaining set decreases strictly
after each pass, this process is bound to stop. Upon completion of this process,
every point of S is now part of one of the finitely many regular strata that have
been generated, all of which are pairwise disjoint. We have thus constructed a finite
partition called the regular stratification of S.

Example 3.13 We consider again the semi-algebraic set S of Example 3.11, shown
in Figure 3.2. In Example 3.11, we observed that the set of regular points of S
consists of the interior of the disk, the circle without the point (3, 1), the open line
segment, and the isolated point. Only in the points of the interior of the disk does
S have dimension 2. They form the only stratum in the first layer of the regular
stratification. The complement of the first layer with respect to S, say S1, consists
of the boundary of the disk, the wider circle, the closed line segment attached to it,
and the isolated point, and has overall dimension 1. Its set of regular points consists
of the boundary of the disk, the wider circle without the point (3, 1), the open line
segment, and the isolated point. Only in the regular points of the two circles and the
line segment does S1 have dimension 1. The boundary of the disk, the wider circle
without the point (3, 1), and the open line segment are therefore the 3 strata of the

7For a function f : Rn → R, and a point ~p of Rn, df
d~x

(~p ), the gradient of f , also denoted as

∇f(~p ), is defined as
(

∂f
∂x1

(~p ), . . . , ∂f
∂xn

(~p )
)
.
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second layer of the regular stratification. Each of the remaining 3 points constitute
a stratum in the third and final layer of the regular stratification of S. Notice that
not every point in a stratum is a regular point of the original set S. For example,
the final layer consists of three points only one of which is a regular point of S.

We now review regular points and regular stratification in the context of R-semi-
linear sets and show that the regular points of an R-semi-linear set, whence also of
a Z-linear or A-linear set, can be computed within FO + linear.

If S is an R-semi-linear set, then, locally around a regular point ~p, S will coincide
with its tangent space at ~p. This observation leads us to the following result.

Lemma 3.14 Let S be an R-semi-linear set of Rn. The FO + linear expression

S(~x) ∧ (∃~ε )(~ε 6= ~0 ∧ (∀~y )(∀~z )(S(~y ) ∧ ~x− ~ε ≤ ~y ≤ ~x+ ~ε ∧ S(~z ) ∧
~x− ~ε ≤ ~z ≤ ~x+ ~ε ⇒ (∃~u )(2~u = ~y + ~z ∧ S(~u )) ∧ (∃~v )(~v = 2~x− ~y ∧ S(~v ))))

defines the linear query returning the regular points of S.

Proof. Figure 3.3 illustrates what the above FO+ linear expression means: a point
~x satisfies the expression if there exists a neighborhood V of ~x such that S ∩ V is
closed under taking mid-points and symmetric with respect to ~x.

Figure 3.3: Graphical illustration of the meaning of the FO + linear expression in
Lemma 3.14.

If ~x is a regular point of S, then there exists a neighborhood V of ~x such that S ∩V
can be described by linear polynomial equations , whence S coincides with its affine
support T within V . By choosing V convex and symmetric with respect to ~x, it
is immediately seen that S ∩ V = T ∩ V is convex (whence closed under taking
mid-points) and symmetric with respect to ~x.

Conversely, let ~x be a point of S which has a neighborhood V such that S ∩ V is
closed under taking mid-points and symmetric with respect to ~x. From the proof
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of Proposition 3.2, it follows immediately that S is convex, as S is closed under
taking mid-points. Let T be the affine support of S ∩ V , and suppose that the
dimension of T equals k. Let ~y1, . . . , ~yk in S ∩V such that −→xy1, . . . ,−→xyk are linearly
independent points. Since S ∩ V is convex and symmetric with respect to ~x, the
closed k-dimensional parallelopipedon P with mid-point ~x spanned by corner points
~y1, . . . , ~yk is fully contained within S ∩ V . Clearly, P is a neighborhood of ~x, and
P = P ∩ T = P ∩ S. Hence, locally around ~x, S coincides with T , whence ~x is a
regular point of S.

From Corollary 3.9 and Lemma 3.14, we obtain the following result.

Theorem 3.15 Let S be an R-semi-linear set of Rn. The predicate reg(S, ~x),
which evaluates to true if ~x is a regular point of S and the local dimension of S at
~x equals the overall dimension of S, can be expressed in FO + linear.

Hence, the subsequent layers of regular points encountered during a regular stratifi-
cation of a semi-linear set are again semi-linear (in any of the approaches considered)
and can effectively be computed (if the set is semi-linear). Since the regular strata
of a semi-linear set are the connected components of the regular layers of that set,
it is unlikely that they can be computed in FO + poly.

We now give an example of the regular stratification of a semi-linear set.

Example 3.16 Consider the semi-linear set

S = {(x, y, z) | (0 ≤ x ≤ 3 ∧ 0 ≤ y ≤ 3 ∧ 0 ≤ z ≤ 3) ∨
(3 ≤ x ≤ 5 ∧ y = 1 ∧ z = 0) ∨ (x = 5 ∧ y = 5 ∧ z = 0)}

in three-dimensional space, shown in Figure 3.4, which consists of a closed filled
cube to which a closed line segment has been attached, and an isolated point.

The set of regular points of S consists of the interior of the cube, the open line
segment, and the isolated point. Only in the points in the interior of the cube does
S have dimension 3. They form the only stratum in the first layer of the regular
stratification. The complement of the first layer with respect to S, say S1, consists
of the faces of the cube, the closed line segment attached to it, and the isolated
point, and has overall dimension 2. Its set of regular points consists of the 6 open
faces of the cube, the open line segment, and the isolated point. Only in the points
of the open faces does S1 have dimension 2. The open faces of the cube are therefore
the 6 strata of the second layer of the regular stratification. The complement of this
second layer with respect to S1, say S2, consists of the edges of the cube, the line
segment attached to it, and the isolated point, and has overall dimension 1. Its set
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Figure 3.4: The semi-linear set of Example 3.16.

of regular points consists of the 12 open edges of the cube with the exception of
the point (3, 1, 0), the open line segment, and the isolated point. Only in the said
points of the open edges and in the points of the open line segment does S2 have
dimension 1. The two open line segments in which the point (3, 1, 0) divides one of
the edges of the cube, the 11 remaining open edges, and the open line segment are
therefore the 14 strata of the third layer of the regular stratification. The remaining
8 corner points, the end points of the line segment meeting the cube, and the isolated
point each constitute one of the 11 strata in the fourth and final layer of the regular
stratification of S.

Finally, we give two examples of queries that can be expressed in terms of the layers
of the regular stratification of a semi-linear set.

Example 3.17 Corners of a polygon.

Let S be a closed filled polygon in the plane. Then (S−reg(S))−reg(S−reg(S)) is
the set of all corner points of this polygon. By our results, this set can be computed
in FO+ linear-Z. This technique can of course be generalized to higher-dimensional
simplices and higher-dimensional spaces.

It must be noted that not only the zero-dimensional layer, but also the one-dimen-
sional layer of the regular stratification of a semi-linear set is of interest.

Example 3.18 Wire frame of a polyhedron.

Let S be a closed filled polyhedron in three-dimensional space. Then S − reg(S)−
reg(S − reg(S)) is the wire frame of S. As in Example 3.17, the wire frame can be
computed in FO+linear-Z. Again, the computation of wire frames can be generalized
to higher-dimensional polyhedra in higher-dimensional spaces.
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3.2 Case Study: Linear Queries on Unions of Af-

fine Subspaces

In this section, we illustrate the potential of the FO+linear-expressible queries given
in the previous section. Our application domain is the class of queries on databases
which consist of finite unions of affine subspaces of the n-dimensional Euclidean
space, and, more particularly, we are interested in the expressiveness in FO+ linear
of the geometric notions parallelism and orthogonality .

We start with showing that, in FO+linear, it is possible to identify a semi-linear set
which consists of a finite union of affine subspaces. Thereto, we first prove that it
can be decided in FO+ linear whether a semi-linear set is an affine subspace. After
that, we generalize this result to finite unions of affine subspaces.

Proposition 3.19 Let S be a semi-linear set of Rn. The Boolean query deciding
whether S is an affine subspace of Rn can be expressed in FO + linear.

Proof. We show that S is an affine subspace of Rn if and only if S is symmetric
with respect to each of its points; since point symmetry is expressible in FO+linear
(see Section 3.1), the result then immediately follows.

Clearly, each affine subspace of Rn is symmetric with respect to each of its points.

Thus suppose, conversely, that S is symmetric with respect to each of its points. If
S consists of a single point, then, clearly, S is an affine subspace of Rn. Otherwise,
let ~p and ~q be arbitrary but different points of S, and let L be the line through ~p
and ~q. To show that S is an affine subspace of Rn, we must prove that L is fully
contained in S.

Thereto, consider S ∩ L, and assume that S ∩ L 6= L. Since a semi-algebraic set,
whence a fortiori a semi-linear set, can only contain a finite number of isolated
points [11], S ∩ L must be the disjoint union of a finite number of isolated points,
non-degenerated intervals, and half-lines. Since S (whence S∩L) is symmetric with
respect to each of its points, non-degenerated intervals and half-lines cannot occur
in this disjoint union, whence S ∩ L is a finite set of (at least two) isolated points.
Clearly, S ∩ L is not point-symmetric with respect to any of its two “outermost”
points (which, more formally, are the end points of the interval obtained by taking
the convex closure of S ∩ L), a contradiction with our initial assumption. Thus,
S ∩ L = L, whence L is fully contained in S.

By combining Proposition 3.19 with the expressibility of the dimension predicate
(Theorem 3.6), we immediately obtain that the Boolean query deciding whether
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a semi-linear set is a k-dimensional affine subspace, 0 ≤ k ≤ n, is expressible in
FO + linear.

From the proof of Proposition 3.19, we conclude that requiring a semi-linear set to
be globally symmetric with respect to each of its points is a strong condition. It
is, however, also possible to require a semi-linear set to be locally symmetric (i.e.,
within some neighborhood) with respect to each of its points, which leads to the
next result.

Proposition 3.20 Let S be a semi-linear set of Rn. The Boolean query deciding
whether S is a finite union of affine subspaces of Rn can be expressed in FO+linear.

Proof. We show that S is a finite union of affine subspaces of Rn if and only if S
is topologically closed and locally symmetric with respect to each of its points. The
former can be decided within FO + linear (see Section 3.1), and the latter is true
when S satisfies the FO + linear sentence

(∀~p)(∃~ε)(ε 6= ~0 ∧ (∀~x)(S(~x) ∧ ~p− ~ε < ~x < ~p+ ~ε⇒ (∃~y)(~y = 2~p− ~x ∧ S(~y)))).

From this, the result then immediately follows.

Clearly, each finite union of affine subspaces of Rn is topologically closed and locally
symmetric with respect to each of its points.

Thus suppose, conversely, that S is topologically closed and locally symmetric with
respect to each of its points. Consider the regular stratification of S, which is a
decomposition of S into a finite number of disjoint semi-linear sets. Each regular
stratum is topologically open within its affine support. Clearly, the set S is a finite
union of affine subspaces if, for each regular stratum of S, the affine support of that
stratum is fully contained in S.

For the zero-dimensional regular strata of S, the above property is trivially satisfied.
To see that the property also holds for higher dimensional strata, let ~p and ~q be
arbitrary but different points in such a regular stratum, and let L be the line through
~p and ~q. We prove that L is fully contained in S.

Thereto, consider S ∩ L, and assume that S ∩ L 6= L. Since S and L are both
topologically closed, so is S ∩ L. Thus, S ∩ L is the disjoint union of a finite
number of isolated points, non-degenerated closed intervals, and closed half-lines.
Moreover, S ∩ L must contain non-degenerated closed intervals and/or closed half-
lines, since the stratum under consideration is non-zero-dimensional and open within
its affine support. However, S cannot be locally symmetric with respect to the
boundary points of these intervals and/or half lines, a contradiction with our initial
assumption. Thus, S ∩ L = L, whence L is fully contained in S.
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Now, for any set which is topologically open within its affine support, that affine
support is generated by the lines connecting different points of the set. Thus, we
have indeed shown that the affine support of each regular stratum of S is fully
contained in S.

Notice that the topological-closedness condition in Proposition 3.20 is essential, as
local point symmetry alone is a much weaker property: for instance, each set which
is topologically open within its affine support is locally symmetric with respect to
each of its points. In the proof, the topological-closedness condition is used to ensure
that boundary points with respect to which S would not be locally point-symmetric
have to belong to S.

As for Proposition 3.19, combining Proposition 3.20 with the expressibility of the
dimension predicate (Theorem 3.6) or the local dimension predicate (Corollary 3.9)
yields the expressibility in FO + linear of several other Boolean queries.

We now turn to the issues of parallelism and orthogonality.

Proposition 3.21 Let S be a k-dimensional affine subspace of Rn, 0 ≤ k ≤ n, and
let ~p be a point of Rn. The linear query returning the k-dimensional affine subspace
of Rn through ~p parallel to S can be expressed in FO + linear.

Proof. The FO + linear formula (∃~y)(S(~y) ∧ T−→yp(S, ~x) computes the query under
consideration.

In order to prove a similar proposition for orthogonality, we need the following
technical lemma.

Lemma 3.22 Let S be a k-dimensional linear subspace of Rn, 2 ≤ k ≤ n.

1. The linear subspace S is spanned by its intersections with those (n − 1)-
dimensional coordinate hyperplanes in which S is not contained.

2. The linear subspace S is spanned by the lines that are intersections of S with
one of the (n− k + 1)-dimensional coordinate subspaces of Rn.

Proof.

1. The proof of the first statement of Lemma 3.22 goes by induction on n. If
n = 2, then k = 2, and S equals the entire plane. The coordinate hyperplanes
are the coordinate axes, and they equal their intersections with S. Obviously,
the coordinate axes span the plane. For higher values of n, there are two
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cases to consider. If S is contained in one of the coordinate hyperplanes,
say H , then the first statement of Lemma 3.22 follows from applying the
induction hypothesis to S within H , which is of dimension n − 1. (Notice
that the (n − 2)-dimensional coordinate hyperplanes of H are obtained by
intersecting H with each of the other coordinate hyperplanes of Rn.) If S
is contained in none of the coordinate hyperplanes, let H1, . . . , Hn be the
coordinate hyperplanes. Obviously, S∩H1, . . . , S∩Hn are all linear subspaces
of dimension k−1. Now suppose that S∩H1 = · · · = S∩Hn. Then

⋂n

i=1 S∩Hi,

which is (k − 1)-dimensional, would equal S ∩⋂n

i=1Hi = {~0}, which is zero-
dimensional, a contradiction, since k ≥ 2. Thus, S ∩H1, . . . , S ∩Hn are not
all equal. Consequently, the dimension of the linear subspace of Rn spanned
by S ∩H1 = · · · = S ∩Hn is strictly greater than k − 1, whence it must be k,
whence that linear subspace must equal S.

2. The proof of the second statement of Lemma 3.22 goes by induction on k. If
k = 2, then the second statement of Lemma 3.22 reduces to the first state-
ment of Lemma 3.22. For higher values of k, we first consider the coordinate
hyperplanes with which S has an intersection of dimension k − 1 (these in-
tersections span S, by the first statement of Lemma 3.22), and then apply
the induction hypothesis to each of these intersections within their respective
(n− 1)-dimensional hyperplanes, yielding the desired result.

We are now ready to prove the following result.

Proposition 3.23 Let S be a k-dimensional affine subspace of Rn, 0 ≤ k ≤ n, and
let ~p be a point of Rn. The linear query returning the (n − k)-dimensional affine
subspace through ~p orthogonal to S can be expressed in FO + linear.

Proof. By Proposition 3.21, we may assume without loss of generality that S
is a linear subspace, i.e., goes through ~0, the origin of the canonical coordinate
system of Rn. Moreover, by the same proposition, it suffices to prove that the query
returning the (n− k)-dimensional linear subspace orthogonal to S can be expressed
in FO+ linear. In other words, we have to show that, if S is a k-dimensional linear
subspace of Rn, the linear query returning the (n− k)-dimensional linear subspace
S⊥ of Rn orthogonal to S can be expressed in FO + linear.

By the expressibility of the dimension predicate (Theorem 3.6), we may divide the
problem in cases according to the dimension of S.

If S is zero-dimensional (i.e., equals {~0}), then S⊥ equals Rn, which is the evaluation
of {~x | true }.
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If S is one-dimensional, i.e., a line through the origin ~0 of the canonical coordinate
system, we propose an FO + linear formula of the form

ϕ1(~x) ∨ . . . ∨ ϕn(~x).

We first explain how ϕ1(~x) is obtained.

We start by checking whether S is contained in the first coordinate hyperplane,
i.e., whether the first coordinate of all points of S equals 0, which can easily be
done in FO + linear. If this is the case, we return the empty set as partial output
corresponding to ϕ1(~x). Otherwise, we compute the unique point ~p = (1, p2, . . . , pn)
of S with first coordinate 1, which, again, can easily be done in FO + linear. The
real formula

x1 + p2x2 + · · ·+ pnxn = 0

defines the set of all vectors ~x = (x1, . . . , xn) orthogonal to ~p, which constitute S⊥.
Unfortunately, the above formula is not linear. We can demonstrate, however, that
it is possible to compute the above products in FO + linear. Let, for j = 2, . . . , n,
the predicate S1j(x, y) be an abbreviation for the FO + linear formula

(∃~x)(S(~x) ∧ x1 = x ∧ xj = y).

Hence, S1j represents the projection of S on the (1, j)th coordinate plane. Hence,
S1j is the line through the origin (0, 0) and the point (1, pj) in R2, and, therefore,
S1j(x, y) is true if and only if y = pjx. The real formula x1 + p2x2 + · · ·+ pnxn = 0
is therefore equivalent to the FO + linear formula

(∃y2) . . . (∃yn)(S12(x2, y2) ∧ . . . ∧ S1n(xn, yn) ∧ x1 + y2 + · · ·+ yn = 0).

Hence, in the case considered, it is possible to return S⊥ as partial output corre-
sponding to ϕ1(~x).

The construction of ϕi(~x), 2 ≤ i ≤ n, is analogous, with the role of the first coordi-
nate plane taken over by the ith coordinate plane.

Since S is not parallel to at least one of the coordinate hyperplanes, at least one of
the partial outputs corresponding to ϕ1(~x), . . . , ϕn(~x), respectively, is non-empty,
whence the union of all the partial outputs is always S⊥, which concludes the case
that S is one-dimensional.

If S is of higher dimension, we first compute the intersections of S with the (n−k+1)-
dimensional coordinate subspaces. Let E be such a subspace. If S ∩ E is one-
dimensional (i.e., a line), which can be checked in FO + linear, then we return
(S ∩E)⊥ as partial output, computed as in the previous case. Otherwise, we return
Rn as partial output. By Lemma 3.22, the intersection of all these partial outputs
yields S⊥.
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In the two-dimensional plane R2, Proposition 3.23 says that is possible to compute
in FO+ linear the line through a given point orthogonal to a given line, i.e., making
a right angle with it. It is possible to generalize this result to other angles:

Corollary 3.24 Let S, T1 and T2 be lines in the plane R2, and let ~p be a point of
R2. The linear query returning the line through ~p making the same angle with S as
T2 with T1 can be expressed in FO + linear.

Proof. As explained at the beginning of the proof of Proposition 3.23, we may
assume without loss of generality that all lines concerned go through ~0, the origin
of the canonical coordinate system, and that ~p = ~0. The geometric construction of
the required line shown in Figure 3.5 demonstrates that Corollary 3.24 is indeed an
immediate consequence of Proposition 3.23.

Figure 3.5: Geometric construction of the line through ~0 making the same angle
with S as T2 with T1. First, the thin lines S⊥ and T1

⊥, orthogonal to S and T1,
respectively, are drawn. The construction starts with an arbitrary point of T2 and
yields a point of the result. Each point of the result can be reached in this way.

It can be seen that Corollary 3.24 still holds if S, T1, T2, and ~p are contained in a
plane of a space Rn of arbitrary dimension. Indeed, if T1 and T2 are parallel (i.e., are
equal or have no point in common), then the output of the query in Corollary 3.24
is the line through ~p parallel to S, which can be computed in FO+ linear by Propo-
sition 3.21. If T1 and T2 are not parallel, then ~q is in the plane supported by T1 and
T2 if and only if ~q is the mid-point of two points in T1∪T2. Hence, this plane can be
computed in FO + linear. Using this additional information and Proposition 3.23,
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it is not difficult to see that the construction in the proof of Corollary 3.24 can still
be carried out in FO + linear.

To close this section, we restrict ourselves to databases consisting of finite unions
of one-dimensional affine subspaces, i.e., lines, and ascertain the expressibility in
FO + linear of several linear queries pertaining to such sets.

We first summarize what we can determine in FO+ linear about the composition of
such sets (cfr. Proposition 3.19 and Proposition 3.20).

Proposition 3.25 Let S be a semi-linear set of Rn. The Boolean queries deciding
the following properties can be expressed in FO + linear:

1. S consists of a finite number of lines;

2. S is a single line;

Remark 3.26 Although the following Boolean queries are strictly spoken not with-
in the context of databases consisting of unions of subspaces, we notice that they
can be also expressed in FO + linear:

1. S consists of a finite number of lines, half-lines, and (non-degenerated) line
segments only;

2. S is a single (open/closed) half-line;

3. S is a single (non-degenerated) (open/half-open-half-closed/closed) line seg-
ment.

The first query follows from the first part of the proof of Proposition 3.25.

For the second and third query, we first check that S consists of lines, half-lines,
and (non-degenerated) line segments only (Query 1). If, in addition, S is con-
vex (Theorem 3.2), then S is either a single line, or a single half-line, or a single
(non-degenerated) line segment. Thus, if S is not bounded and S is not a line
(Proposition 3.25), S is a half-line; if S is bounded, S is a non-degenerated interval.
To decide which type of half-line or interval S is, we can in addition compute the
set of points of S with respect to which S is not locally point-symmetric. These
points are precisely the boundary points of S contained in S. The type of half-line
or interval then depends on whether there are 0, 1, or 2 of them.

We now focus on the case where S consists of a finite number of lines of Rn.
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Proposition 3.27 Let S consist of a finite number of lines of Rn, n ≥ 1. The
query returning the set of all intersection points between two or more lines in S can
be expressed in FO + linear.

Proof. The intersection points of two or more lines in S are precisely those points
~p of S in which S is not locally convex , i.e., those points ~p of S such that, for no
convex neighborhood V of ~p in Rn, S ∩ V is convex. Since the neighborhoods used
in the topological queries earlier in this section are convex and suffice to express the
above property, Proposition 3.27 now follows from Theorem 3.2.

Corollary 3.28 Let S be a semi-linear set of Rn. The Boolean query deciding
whether S consists of a finite number of parallel lines can be expressed in FO+linear.

Proof. By Proposition 3.25, we can decide whether S consists of a finite number
of lines; S will consist of a finite number of parallel lines if and only the set of
intersection points between two or more lines in S is empty, which can be decided
in FO + linear by Proposition 3.27.

For the following result, we need a technical lemma.

Lemma 3.29 Let S consists of k parallel lines of Rn, k ∈ N and k > 0. There
exists a linear query expressible in FO + linear that selects a single line from these.

Proof. First, assume that S is not parallel to the ith coordinate hyperplane (i.e.,
the set of ith coordinates of S is not a singleton), 1 ≤ i ≤ n, and let, for j = 1, . . . , n,
j 6= i, minij(S) be the semi-linear set defined by the FO + linear formula

S(~x) ∧ (∀~y)(S(~y) ∧ yi = xi ⇒ xj ≤ yj).

Then minij(S) consists of those lines of S that are “leftmost” with respect to the
jth coordinate axis. Thus,

mini(S) = minin(mini(n−1)(. . . mini1(S) · · · ))
consists of a single line.

We next modify the definition of mini such that mini(S) = S if S is parallel to the
ith coordinate plane, a condition which can easily be checked in FO + linear.

Then, in all cases,

min(S) = minn(minn−1(. . . min1(S) · · · ))
consists of a single line, since S is not parallel to at least one of the coordinate
hyperplanes.
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Proposition 3.30 Let S consists of a finite number of lines of Rn, and let ~p be a
point of S. The linear query returning the semi-linear set consisting of all lines of
S through ~p can be expressed in FO + linear.

Proof. First, assume that ~p is not an intersection point of two or more lines of
S. Then, precisely one line of S goes through ~p. Consider a neighborhood V of ~p
in Rn such that S ∩ V is convex. (Such a neighborhood exists, and its existence
can be asserted in FO+ linear using the techniques employed to express topological
queries and Theorem 3.2.) Necessarily, S ∩V is a line segment. Let S~p the set of all
points ~x of S which have a neighborhood W in Rn for which T−→xp(S ∩W ) ⊆ S ∩ V .
Clearly, there exists an FO+ linear formula defining S~p. Since translations preserve
parallelism, S~p consists of the lines of S parallel to the line of S through ~p, from which
the intersection points with other lines have been omitted. Hence, the topological
closure of S~p, S~p, which can be computed in FO + linear, consists of all lines of S
parallel to the line of S through ~p. From this set, a single line can be selected in
FO+ linear, by Lemma 3.29. The output of the query is the line through ~p parallel
to this single line, which can be computed in FO + linear, by Proposition 3.21.

Next, assume that ~p is an intersection point of two or more lines of S. Consider a
neighborhood V of ~p in Rn such that S ∩ V is point-symmetric with respect to ~p.
(Such a neighborhood exists, and its existence can be asserted in FO+linear, as was
shown earlier in the proof of Proposition 3.20.) For every point ~q in S ∩ V − {~p}, ~q
is not an intersection point of lines of S, whence the semi-linear set consisting of all
lines of S through ~q can be computed in FO + linear, as shown in the first part of
the proof. The output of the query is the union of all these sets.

Proposition 3.30 has some remarkable corollaries.

Corollary 3.31 Let S consist of a finite number of lines of Rn, and let ~p and ~q be
points on some line of S. The linear queries respectively returning the line through
~p and ~q and the closed line segment between ~p and ~q can be expressed in FO+linear.

Proof. The expressibility in FO + linear of the first query is an immediate conse-
quence of Proposition 3.30. To see that the second query is expressible in FO+linear,
let ~r be the mid-point of ~p and ~q. The points common to the line through ~p and ~q
and all neighborhoods of ~r containing both ~p and ~q constitute the closed line segment
between ~p and ~q.

Corollary 3.32 Let S consist of a finite number of lines of Rn. The linear queries
respectively returning all pairs of parallel lines and all pairs of orthogonal lines of S
(which can be seen as a query of type [0, n]→ [0, 2n]) can be expressed in FO+linear.
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Proof. Let ~p and ~q be points of S which are not intersection points of two or
more lines of S. (This can be decided in FO + linear, by Proposition 3.27). By
Proposition 3.30, it is possible to compute in FO+linear the unique lines of S going
through ~p and ~q, respectively. By Corollary 3.28, it now follows that the first query
can be expressed in FO + linear. By Proposition 3.23, it is decidable whether two
lines are orthogonal, whence also the second query can be expressed in FO+linear.

3.3 Limitations of FO + linear

From the results proposed in Section 3.1 and Section 3.2, the reader may have the
impression that FO+ linear is a rather expressive query language and well-suited as
a linear query language. In this section, however, we demonstrate that there exist
fundamental linear queries not expressible in FO + linear.

In the literature (e.g., [2, 3, 4, 73]), researchers have been concerned with the non-
definability of certain geometric sets by linear first-order formulae (i.e., with the
non-semi-linearity of these sets). In this section, however, we are concerned with
the non-expressibility of queries in FO+linear, as opposed to the non-definability of
sets by linear formulae. The principal contribution of this section is the development
of a general tool to lift the non-definability of certain semi-algebraic sets by linear
formulae to the non-expressibility in FO+linear of closely related FO+poly queries.
Application of this tool allows us to establish the non-expressibility in FO + linear
of a wide range of queries in FO + polylin, which in turn improves our insight into
the nature of the FO + polylin queries not expressible in FO + linear.

To develop this tool, we first establish a link between certain semi-algebraic sets and
certain FO + poly queries.

Definition 3.33 Let P be a semi-algebraic subset of (Rn)m, m,n ≥ 1. Let k be
such that 0 ≤ k ≤ m. Furthermore, assume that P and k are such that, for each
sequence ~u1, . . . , ~uk in Rn, and for all sequences i1, . . . , ik such that {~ui1 , . . . , ~uik} =
{~u1, . . . , ~uk}, the following permutation invariance property holds, for ~uk+1, . . . , ~um
in Rn:

(~u1, . . . , ~uk, ~uk+1, . . . , ~um) ∈ P ⇔ (~ui1, . . . , ~uik , ~uk+1, . . . , ~um) ∈ P.

The query QP,k of signature [0, n] → [0, n(m − k)] is now defined as follows. If S
consists of at most k points of Rn, say S = {~u1, . . . , ~uk} (~u1, . . . , ~uk not necessarily
all distinct), then

QP,k(S) = {(~uk+1, . . . , ~um) | (~u1, . . . , ~uk, ~uk+1, . . . , ~um) ∈ P};
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otherwise QP,k(S) is empty.

Observe that the invariance property assumed for P and k guarantees that QP,k is
a well-defined query expressible in FO + poly.

Example 3.34 We give some examples of sets P and corresponding queries QP,k

which will be used further on in this section.

1. Let P1 be the set

{(~u1, . . . , ~um) ∈ (Rn)m | ~u1, . . . , ~um are collinear},

for appropriately chosen values of n and m. The set P1 is obviously semi-
algebraic; e.g., for m = 3, it is expressed by the real formula

~u2 = ~u3 ∨ (∃λ1)(∃λ2)(λ1 + λ2 = 1 ∧ ~u1 = λ1~u2 + λ2~u3).

Moreover, it satisfies Definition 3.33 for k = m. The associated query QP1,m

can be interpreted as the Boolean query which decides whether a semi-linear
set S consists of at most m collinear points.

2. Let P2 be the set

{(~u1, . . . , ~um) ∈ (Rn)m | ~um is in the same (closed) Voronoi cell as ~um−1

with respect to ~u1, . . . , ~um−2}.

The point ~um belongs to the same (closed) Voronoi cell as ~um−1 with respect
to ~u1, . . . , ~um−2 if the condition

(∃~u)((~u = ~u1 ∨ . . . ∨ ~u = ~um−2) ∧
m−2∧

i=1

(d(~um−1, ~u) ≤ d(~um−1, ~ui) ∧ d(~um, ~u) ≤ d(~um, ~ui))),

where d(~r, ~s) denotes the Euclidean distance between ~r and ~s, is satisfied.
Hence, P2 is semi-algebraic. Moreover, it satisfies Definition 3.33 for k = m−2.
The associated query QP2,m−2 of type [0, n]→ [0, 2n] can be interpreted as the
linear query that associates, with each semi-linear set S consisting of at most
m−2 points, pairs of points which belong to the same Voronoi cell with respect
to the points of S, and, with every other semi-linear set S, the empty set.
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3. Let S be a semi-algebraic set of Rn. We define the diameter of S, denoted
Ø(S), as the supremum8 of the (Euclidean) distance between two points of S.
Let

P3 = {(~u1, . . . , ~um−1, (d, 0, . . . , 0
︸ ︷︷ ︸

n−1

)) | Ø({~u1, . . . , ~um−1}) = d}.

It is easily seen that P3 is a semi-algebraic set; e.g., for m = 3, it computes
the distance between two points. Moreover, it satisfies Definition 3.33 for
k = m− 1. The associated query QP3,m−1 can be interpreted as the aggregate
query of type [0, n] → [0, n] which associates, with each semi-linear set S
consisting of at most m− 1 points, the singleton (Ø(S), 0, . . . , 0

︸ ︷︷ ︸

n−1

).

We now establish that the query QP,k is not expressible in FO + linear as soon as
the set P is not definable by a linear constraint formula.

Theorem 3.35 Let P be a semi-algebraic subset of (Rn)m, m,n ≥ 1, let k be such
that 0 ≤ k ≤ m, and let P and k satisfy the conditions of Definition 3.33. If P is
not definable by a linear constraint formula, then the following holds:

1. the query QP,k is not expressible in FO + linear;

2. if Q is a linear query of type [0, n]→ [0, n(m− k)] such that, for every semi-
linear set S of Rn, Q(S) = QP,k(S) if QP,k(S) is not empty, then Q is not
expressible in FO + linear.

Proof.

1. Assume, to the contrary, that the query QP,k is expressible in FO + linear.
Then there exists an FO + linear formula ϕP,k(R; ~xk+1, . . . , ~xm), with R an
appropriate predicate name, such that, for each semi-linear set S of Rn,
QP,k(S) = {(~uk+1, . . . , ~um) | ϕP,k(S; ~uk+1, . . . , ~um)}. We now argue that the
predicate name R must effectively occur in ϕP,k. If this were not the case,
then the query associated with ϕP,k would be independent of the input, i.e.,
a constant function. This constant function must return the empty set, since
QP,k by definition returns the empty set on all inputs containing more than k
points. However, QP,k cannot return the empty set on every input unless P
is the empty set, which is obviously definable by a linear constraint formula,
contrary the hypothesis of the theorem. Thus R must occur in ϕP,k.

8The supremum d of a set S ⊆ R is defined by (∀x)(S(x)⇒ x ≤ d)∧ (∀ε)(ε > 0⇒ (∃x)(S(x)∧
x > d− ε), which is obviously expressible in FO + linear.
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Given the formula ϕP,k, we construct a new formula ϕ̂P,k, as follows. Let
~x1, . . . , ~xk be variables that do not occur in ϕP,k. Now replace every literal of
the form

R(~z)

in ϕP,k by the formula
~z = ~x1 ∨ · · · ∨ ~z = ~xk.

Observe that the formula ϕ̂P,k is a linear constraint formula with free variables
~x1, . . . , ~xm. Our claim is that the formula ϕ̂P,k defines the set P , a contra-
diction with the hypothesis of the theorem. To substantiate our claim, we
consider an m-tuple (~u1, . . . , ~um) ∈ (Rn)m. From the definition of QP,k and
ϕP,k, we have

(~u1, . . . , ~um) ∈ P ⇔ (~uk+1, . . . , ~um) ∈ QP,k({~u1, . . . , ~uk}),

whence
(~u1, . . . , ~um) ∈ P ⇔ ϕP,k({~u1, . . . , ~uk}; ~uk+1, . . . , ~um).

It follows from the construction of ϕ̂P,k from ϕP,k that

(~u1, . . . , ~um) ∈ P ⇔ ϕ̂P,k(~u1, . . . , ~um).

2. Assume that Q is expressible in FO + linear. Then there exists a formula

ϕQ(R; ~xk+1, . . . , ~xm)

that defines Q, where R stands for the input predicate. Given ϕQ, we can
construct the formula ϕ̂Q:

ϕ̂Q(R; ~xk+1, . . . , ~xm)⇔ (|R| ≤ k ∧ ϕQ(R; ~xk+1, . . . , ~xm)) ∨ (|R| > k ∧ false).

It is obvious that this expression for ϕ̂Q can be translated into proper FO +
linear syntax. It now follows from the properties of Q that the FO + linear-
formula ϕ̂Q expresses the query QP,k, which is impossible by the first part of
the theorem.

A shortcoming of Theorem 3.35 is that we have to find out somehow whether the
semi-algebraic set P is semi-linear or not. Fortunately, in the following chapter, we
will prove that it is decidable whether a semi-algebraic set is semi-linear. To apply
Theorem 3.35 on the semi-algebraic sets of Example 3.34 without relying on the
semi-linearity test of the following chapter, we show that these semi-algebraic sets
are not definable by linear formulae for most values of m and n, by a reduction
argument.
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Proposition 3.36 The sets P1, P2, P3 are not definable by linear formulae if n ≥ 2
and m ≥ 3.

Proof.

1. We first show that P1 is not definable by a linear constraint formula. Assume
to the contrary that P1 is definable by a linear constraint formula for some
n ≥ 2 and some m ≥ 3. Then, clearly, P1 is also definable by a linear
constraint formula for n = 2 and m = 3. Let collinear(x1, x2, y1, y2, z1, z2)
denote this formula. We now show that there exists a linear constraint formula
product(x, y, z), with x, y, z real variables, equivalent to the real formula z =
xy, an obvious contradiction. From the geometric construction of the product
shown in Figure 3.6, it follows that

(x = 0 ∧ z = 0) ∨ (y = 0 ∧ z = 0) ∨ (y = 1 ∧ z = x) ∨
¬(∃v)(∃w)(collinear(x, 0, 0, 1, v, w) ∧ collinear(z, 0, 0, y, v, w))

is the desired linear constraint formula.

Figure 3.6: Geometric construction of the product.

2. The semi-algebraic set P2 is not definable by a linear formula, since P1 is not:
indeed, for m = 4, we have that

(~p1, ~p2, ~p3) ∈ P1 ⇔ (∃~p)(∃~q)((~p, ~q, ~p, ~p1) ∈ P2 ∧ (~p, ~q, ~p, ~p2) ∈ P2 ∧
(~p, ~q, ~p, ~p3) ∈ P2 ∧ (~p, ~q, ~q, ~p1) ∈ P2 ∧ (~p, ~q, ~q, ~p2) ∈ P2 ∧ (~p, ~q, ~q, ~p3) ∈ P2).
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3. The semi-algebraic set P3 is not definable by a linear constraint formula, be-
cause, for m ≥ 3, it is possible to obtain a disk by applying appropriate
FO + linear-expressible operations to P3.

Theorem 3.35 and Proposition 3.36 yield the following corollary, the proof of which
is immediate from the former:

Theorem 3.37 1. The Boolean query of type [0, n] → [0, 0] deciding whether a
semi-linear set of Rn is contained in a line is not expressible in FO + linear.

2. The linear query of type [0, n] → [0, 2n] computing all pairs of points of Rn

which belong to the same Voronoi cell with respect to a finite semi-linear set
of Rn is not expressible in FO + linear.

3. The linear aggregate query of type [0, n]→ [0, n] computing the singleton

{(Ø(S), 0, . . . , 0
︸ ︷︷ ︸

n−1

)}

upon a semi-linear set S of Rn as input, is not expressible in FO + linear
(whence the diameter query of type [0, n]→ [0, 1] is not expressible either).

Obviously, Theorem 3.35 can be used to show the non-expressibility of many more
linear queries. For instance, it can be used to prove Proposition 2.14 as well as the
non-expressibility in FO + linear of several other Boolean queries. Just as Boolean
queries restricted to semi-linear sets are necessarily linear, rational-valued aggregate
queries, such as volume or surface restricted to semi-linear sets, are necessarily linear.

As a final example, we discuss the non-expressibility in FO + linear of the queries
with type [0, n]→ [0, n] which compute the convex closure and the affine support of
a semi-linear set. We can show that for n ≥ 2 and m ≥ 3 the semi-algebraic sets

{(~u1, . . . , ~um) ∈ (Rn)m | ~um is in the convex closure of {~u1, . . . , ~um−1}}
and

{(~u1, . . . , ~um) ∈ (Rn)m | ~um is in the affine support of {~u1, . . . , ~um−1}}
cannot be expressed by linear formulae as the product of two real numbers would be-
come expressible (in the same way as the definability of the set P1 led to the express-
ibility of the product of two real numbers). Then, according to Theorem 3.35, we
can lift the non-definability of these sets by linear formulae to the non-expressibility
in FO+ linear of the queries computing the convex closure and the affine support of
a semi-linear set. For these last two queries, however, the non-expressibility can also
be established more directly by reduction to the non-expressibility of the collinearity
query.
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3.4 Expressibility in FO + linear is Undecidable

Until now, we have studied the expressibility of FO+polylin queries within FO+linear
for each FO + polylin query individually. In Section 3.1 and Section 3.2, we have
proved that various FO + polylin queries are expressible within FO + linear. In
Section 3.3, we provided a helpful tool to study the non-expressibility of FO+polylin

queries within FO + linear. The most straightforward way to avoid this “query-by-
query” study is to discover an algorithm to decide whether an FO + poly formula
defining an FO + polylin query is expressible in FO + linear.

However, we must point out that we can prove the following theorem, which can be
viewed as an analogue of Rice’s Theorem for FO + poly-expressible queries:

Theorem 3.38 Let C1 and C2 be subclasses of polynomial constraint databases such
that C1 contains all semantically finite geometric databases. Let FO + polyC1→C2 be
the sublanguage of FO + poly consisting of those formulae that return outputs in
C2 upon inputs in C1. Let E be a semantic property of FO + polyC1→C2 formulae
satisfying the following conditions:

1. if ϕ(R1, . . . , Rk; x1, . . . , xn) is an FO + polyC1→C2 formula satisfying prop-
erty E and defining a query of type, say, [0, n1; . . . ; 0, nk] → [0, n], and if
ϑ(x1, . . . , xn1) is a real formula defining a semantically finite geometric data-
base relation of type [0, n1], then the FO + polyC1→C2 formula

ϕ′(R2, . . . , Rk; x1, . . . , xn),

obtained from ϕ by substituting each occurrence of R1 by ϑ, and defining a
query of type [0, n2; . . . ; 0, nk]→ [0, n], satisfies property E ;

2. if ϕ(R2, . . . , Rk; x1, . . . , xn) is an FO+polyC1→C2 formula satisfying property E
and defining a query of type, say, [0, n2; . . . ; 0, nk] → [0, n], then, for each
relation type [0, n1], and for each relation name R1 of type [0, n1], the FO +
polyC1→C2 formula

ϕ′(R1, . . . , Rk; x1, . . . , xn) ≡ ϕ(R2, . . . , Rk; x1, . . . , xn)

defining a query of type [0, n1; . . . ; 0, nk]→ [0, n] satisfies property E ; and

3. for some query type [0, n1; . . . ; 0, nk]→ [0, n], there exist FO + polyC1→C2 for-
mulae

• ϕ+(R1, . . . , Rk; x1, . . . , xn)

• ϕ−(R1, . . . , Rk; x1, . . . , xn)
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both defining a query of type [0, n1; . . . ; 0, nk] → [0, n] such that ϕ+ has prop-
erty E and ϕ− does not have property E .

Then it is undecidable whether an FO + polyC1→C2 formula has property E .

Proof. The proof is a variation of a proof of Paredaens, Van den Bussche, and Van
Gucht [61] concerning undecidability of genericity in FO+poly (Theorem 1, p. 285).

The ∀∗-fragment of number theory is undecidable since Hilbert’s 10th problem can be
reduced to it. We encode a natural number n by the finite set enc(n) := {0, . . . , n},
and we encode a vector of natural numbers (n1, . . . , nk) by

9

enc(n1) ∪ (enc(n2) + n1 + 2) ∪ . . . ∪ (enc(nk) + n1 + 2 + · · ·+ nk−1 + 2).

The corresponding decoding is first-order-expressible. Consider the FO+ polyC1→C2

formulae
ϕ+(R1, . . . , Rk; x1, . . . , xn)

and
ϕ−(R1, . . . , Rk; x1, . . . , xn)

defining queries of some common type, say, [0, n1; . . . ; 0, nk] → [0, n], such that ϕ+

has property E and ϕ− does not have property E . We then reduce a ∀∗-sentence
(∀~x)ψ(~x) of number theory to the following query of type [0, 1; 0, n1; . . . ; 0, nk] →
[0, n] (S of type [0, 1] and R1, . . . , Rk of types [0, n1], . . . , [0, nk], respectively, are
the input relation names of this query):

if ( S encodes a vector ~x ) then
if ψ(~x) then
return({(x1, . . . , xn) | ϕ+(R1, . . . , Rk; x1, . . . , xn)})

else

return({(x1, . . . , xn) | ϕ−(R1, . . . , Rk; x1, . . . , xn)})
else

return({(x1, . . . , xn) | ϕ+(R1, . . . , Rk; x1, . . . , xn)}).

By definition, the above query is FO + polyC1→C2-expressible. Moreover, an FO +
polyC1→C2 formula computing this query can effectively be constructed. Let

ϕ(S,R1, . . . , Rk; x1, . . . , xn)

be such an formula. When the ∀∗-sentence (∀~x)ψ(~x) is valid, then

ϕ(S,R1, . . . , Rk; x1, . . . , xn) ≡ ϕ+(R1, . . . , Rk; x1, . . . , xn)

9For N a set of natural numbers and n a natural number, N+n denotes the set {x+n | x ∈ N}.
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has property E , by conditions 2 and 3 above. When the ∀∗ sentence (∀~x)ψ(~x) is
not valid, then ϕ(S,R1, . . . , Rk; x1, . . . , xn) does not have property E . To see this,
let ~n be a vector of natural numbers for which ψ(~n) is false, and let ϑ(x) be a real
formula defining enc(~n). Let

ϕ′(R1, . . . , Rk; x1, . . . , xn)

be the FO + polyC1→C2 formula obtained from ϕ(S,R1, . . . , Rk; x1, . . . , xn) by sub-
stituting each occurrence of S by ϑ. Then, clearly, ϕ′ defines a query of type
[0, n1; . . . ; 0, nk] → [0, n]. Now, if ϕ(S,R1, . . . , Rk; x1, . . . , xn) would have prop-
erty E , then ϕ′(R1, . . . , Rk; x1, . . . , xn) would have property E , by condition 1, a
contradiction with condition 3, since

ϕ′(R1, . . . , Rk; x1, . . . , xn) ≡ ϕ−(R1, . . . , Rk; x1, . . . , xn).

Thus, clearly, ϕ(S,R1, . . . , Rk; x1, . . . , xn) does not satisfy property E . In summary,
ϕ(S,R1, . . . , Rk; x1, . . . , xn) has property E if and only the ∀∗-sentence (∀~x)ϕ(~x) is
valid.

From the proof of Theorem 2.14, we see that, without loss of generality, the real
formula ϑ in condition 1 can be assumed to be Z-linear.

If we combine Proposition 2.14 and Theorem 3.38, in which we let C1 = C2 be the
class of linear constraint databases, and E be FO + linear-expressibility, then we
immediately obtain the following corollary:

Corollary 3.39 It is undecidable whether an FO+polylinquery induced by an FO+
poly formula can be expressed in FO + linear.

Hence, an algorithm to decide whether an FO + poly expression defining an FO +
polylin query is expressible in FO + linear, cannot be provided.

The following results show that, even for subclasses of the linear constraint data-
bases, it remains undecidable whether the corresponding FO + polylin queries are
expressible in FO + linear.

Let C1 be the class of finite linear constraint databases, i.e., those semi-linear sets S
on which the predicate finite(S) yields true. Denote C2 the class of arbitrary linear
constraint databases. Again, let E be FO + linear-expressibility. From Section 3.3,
we remember that the query which computes the diameter of a finite set of points
cannot be expressed in FO+linear. Using Theorem 3.38, we then obtain immediately
the following result:
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Corollary 3.40 It is undecidable whether an FO+polylin query which returns semi-
linear outputs upon finite semi-linear inputs is expressible in FO + linear.

This result remains true for the FO + polylin queries that return finite semi-linear
outputs upon finite semi-linear inputs, i.e., the class of FO + polylin queries that
preserve the classical notion of safety. In Section 5.5, we show that we can “lift” a
query language complete for the FO + poly queries that return finite outputs upon
finite inputs to a query language complete for the FO + polylin queries. The most
straightforward way to obtain a query language complete for the FO+ poly queries
that return finite outputs upon finite inputs is to discover an algorithm to decide
whether an FO + poly query returns finite outputs upon finite inputs. From the
above result, it follows that such an algorithm does not exists.

We can generalize the above result to the class of databases which contain only
k-dimensional affine spaces10, k > 0. In this case, we study the decidability of FO+
linear-expressibility of those FO + polylin queries which return semi-linear outputs
upon input databases containing a finite number of k-dimensional affine spaces.
Again, without going into details, we can prove that it is undecidable whether such
an FO + polylin query can be expressed in FO + linear.

10Points can be seen as zero-dimensional affine spaces.



Chapter 4

Decidability of Semi-Linearity of

Semi-Algebraic Sets

In this chapter, we focus on the decidability of semi-linearity for semi-algebraic sets.
This is by no means a trivial problem, since it is possible to describe semi-linear sets
by non-linear constraint formulae, as is illustrated in Example 2.11. Moreover, as
explained in Section 2.3, there are two natural ways to define semi-linearity, A-semi-
linearity and Z-semi-linearity, depending on the type of coefficients (real algebraic
versus integer) of the linear inequalities used to describe a semi-linear set.

We first prove that semi-linearity for semi-algebraic sets is decidable in the A-semi-
linear case, and we provide an FO + poly expression for the corresponding decision
query. Next, we prove that semi-linearity for semi-algebraic sets is decidable in
the Z-semi-linear case, too. However, we also prove that, in this case, there is no
FO + poly expression for the corresponding decision query.

In the proof of the decidability results, the notion of regular stratification introduced
in Section 3.1, plays a key role. More concretely, we propose an algorithm based
on regular stratification to decompose a semi-linear set. We then study relevant
properties of the so-obtained algorithmic decomposition of a semi-linear set, and use
these to develop an algorithm, expressible in FO + linear, that computes the set of
so-called special points of a semi-linear set. We show that a collection of hyperplanes
defining every affine support of a subset of the special points of a semi-linear set
defines a decomposition of that semi-linear set into convex cells.

We wish to point out that the road we chose to prove the decidability results in

55
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this chapter is by no means the only one possible. An anonymous referee of the
extended abstract of the paper [20], presented at the 16th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, kindly suggested an alter-
native method based on decidability results in logic. For completeness, an outline
of this method is given in Appendix B. Although that proof is much shorter, we
stress that our approach yields some interesting by-products, among which a finite
encoding technique for arbitrary semi-linear sets that is the basis of the design of
more expressive query languages than FO + linear, which we study in Chapter 5.

An outline of this chapter is as follows. In Section 4.1, we recall the definitions
of R-semi-algebraic and R-semi-linear sets given in Section 3.1. We then propose
Property SL and show that R-semi-algebraic sets satisfying Property SL are neces-
sarily R-semi-linear. The proof uses a decomposition of an R-semi-linear set based
on the notion of regular stratification, which we shall refer to as the canonical decom-
position. Unfortunately, it is unlikely that the techniques used in that proof can be
expressed in FO+ poly, as they involve connectivity [9, 33]. In Section 4.2, we pro-
pose an algorithm which uses a variation on those techniques, but does not require
the expressibility of connectivity. This algorithm is expressible in FO + poly. We
show that the resulting algorithmic decomposition of a semi-linear set has the same
desirable properties as the decomposition used in the proof that R-semi-algebraic
sets satisfying Property SL are necessarily R-semi-linear. In Section 4.3, algorithmic
decompositions are used to show that R-semi-linear semi-algebraic sets are A-semi-
linear, as a consequence of which Property SL (which can easily be expressed in
FO + poly) can be used to decide whether a semi-algebraic set defined by a real
constraint formula is A-semi-linear. To obtain this result, the bounded case is con-
sidered first, which is then bootstrapped to the general case. Finally, in Section 4.4,
the technique developed in Section 4.3 is reviewed to obtain that Z-semi-linearity
is decidable. However, we also show that Z-semi-linearity cannot be decided by an
FO + poly formula.

4.1 Property SL

In Chapter 2, we started with formulae built from polynomial equations and inequal-
ities with real algebraic coefficients to arrive at the polynomial constraint database
model. In this section, we study a property, called Property SL, which guarantees
that n-dimensional semi-algebraic point-sets having Property SL are necessarily rep-
resentable with linear polynomial equations and inequalities with real coefficients.
We recall Definition 3.10 in which we defined an R-semi-algebraic set as an n-
dimensional point-set representable with a polynomial constraint formula in which
the polynomials are allowed to have real coefficients, and an R-semi-linear set as an
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n-dimensional point-set representable with linear constraint formulae in which the
linear constraints are allowed to have real coefficients.

We now formulate Property SL.

Definition 4.1 Let S ⊆ Rn. We say that S has Property SL if, for every point ~p
of S, there exists a neighborhood V of ~p such that, for every point ~q of V ,

1. if ~q is in S, then ]~p, ~q[ is fully contained within S; and

2. if ~q is not in S, then ]~p, ~q[ is disjoint from S.

We next claim the following.

Proposition 4.2 Let S be an R-semi-algebraic set. The set S is R-semi-linear if
and only if it has Property SL.

The proof of this claim, given by Freddy Dumortier [20], is very technical, and
therefore deferred to Appendix A, which can be read at the reader’s discretion. The
proof technique, which uses regular stratification of a semi-algebraic set, is of interest
in its own right, and is the basis of some of the more algorithmic decomposition
techniques of semi-linear sets later on in this chapter. Therefore, we will illustrate
the decomposition technique of semi-linear sets used in the proof of Property SL by
some examples. For the correctness of our technique, however, we refer to the proofs
of the various lemmas in Appendix A.

Before doing so, however, we wish to give the reader a better understanding of
Property SL.

First, we invite the reader to convince himself or herself that R-semi-linear sets
have Property SL, e.g., by verifying this property for the R-semi-linear sets in Ex-
ample 3.8, Figure 3.1, and in Example 3.16, Figure 3.4.

Second, we illustrate that non-R-semi-linear R-semi-algebraic sets do not have
Property SL.

Example 4.3 Consider S1 = {(x, y) | x ≥ 0 ∧ y ≥ 0 ∧ x2 + y2 = 4} (Figure 4.1,
left) and S2 = {(x, y) | 0 ≤ x ≤ 3 ∧ 0 ≤ y ≤ 3 ∧ x2 + y2 6= 4} (Figure 4.1, right).
The set S1 is a quarter circle, and the set S2 is a square with a quarter circle cut out.
Both are non-R-semi-linear semi-algebraic sets. The set S1 fails Property SL, since
no open line segment connecting two different points of S1 is contained within S1.
The set S2 fails Property SL, since each open line segment connecting two different
points of the cut-out quarter circle meets S2. Observe that the cut-out quarter circle
belongs to S2.
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Figure 4.1: The non-semi-linear semi-algebraic sets of Example 4.3.

Third, and finally, we illustrate that a non-R-semi-algebraic (whence non-R-semi-
linear) set can have Property SL.

Example 4.4 Consider Z ⊆ R, the set of all integer numbers. Since Z consists
of an infinite number of connected components, Z cannot be R-semi-algebraic (see,
e.g., [11]). Clearly, Z has Property SL. Hence, Z is an example of an unbounded
non-R-semi-algebraic set having Property SL.

A bounded (possibly non-R-semi-algebraic) set having Property SL is necessarily
R-semi-linear, however.

Proposition 4.5 A bounded set having Property SL is R-semi-linear.

The proof of Proposition 4.5 can be found in Appendix A.

We now turn to the decomposition techniques of possibly unbounded semi-algebraic
sets as used in the proof of Property SL in Appendix A.

Let S be an R-semi-linear set of Rn. First, the regular stratification S10, . . . , Sm0

of S is obtained. Next, for each i = 1, . . . , m, the regular stratification Si1, . . . , Siki
of the boundary of Si0 within its affine support, is computed. Clearly, the set C =
{Sij | 1 ≤ i ≤ m ∧ 0 ≤ j ≤ mi} is a finite cover of

⋃m
i=1 Si0 = S, but not necessarily

a partition of S, since, unlike S10, . . . , Sm0, the boundaries of S10, . . . , Sm0 within
their affine supports, need not be disjoint. The decomposition C will be called the
canonical decomposition of S relative to S.

We illustrate the notion of “canonical decomposition” by an example.

Example 4.6 Consider the semi-linear set

S = {(x, y) | (−2 < x < 4 ∧ −2 < y < 4 ∧ x 6= 1 ∧
¬(x < 1 ∧ y = −1) ∧ ¬(x > 1 ∧ y = 1)) ∨ (x = −2 ∧ y = 1)}
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Figure 4.2: The semi-linear set of Example 4.10.

in the plane, shown in Figure 4.2.

Clearly, S is the 6× 6 square centered around the point (1, 1).

The regular stratification of S consists of 2 layers. The first layer contains the 4
open rectangles, and the second and final layer consists of the point (−2, 1). In total,
the regular stratification of S consists of 5 strata. The canonical decomposition C
consists of these 5 regular strata and the regular stratification of the boundary of
each stratum of S with respect to its affine support. We thus see that C consists of
4 open rectangles, the 4 × 4 open edges delineating them, the 4 × 4 corner points,
and the point (−2, 1). Hence, in total, C constitutes of 29 different sets.

Now, let S ⊆ Rn be a semi-linear set, and let C be the canonical decomposition of
S relative to S. Denote by TC , C ∈ C, the affine support of C. Let HC1, . . . , HCkC

be (n − 1)-dimensional hyperplanes of Rn such that their intersection equals TC
1.

For each C ∈ C and i = 1, . . . kC , let PCi be the partition of Rn consisting of the
hyperplane HCi and the two open half-spaces it delineates. Let P be the coarsest
common refinement of PCi, C ∈ C and 1 ≤ i ≤ kC . Clearly, each cell2 of P can be
obtained by choosing, for each C ∈ C and for each i = 1, . . . , kC , one cell of PCi,
and then taking the intersection of the chosen cells. Hence, P is a finite partition
of Rn whose cells are open convex polyhedra. Then, the R-semi-linear set S can
be written as a finite union of cells of P. If H is the collection of all hyperplanes
considered above, P is called the partition of Rn induced by H.
The claim above follows directly from an inspection of the proofs of Lemmas A.6
and Proposition A.7. For future reference, we state and prove this claim formally.

1We consider Rn as the intersection of zero (n− 1)-dimensional hyperplanes.
2We use the term cell to refer to an element of a partition.
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Proposition 4.7 Let S ⊆ Rn be an R-semi-linear set and let C be the canonical
decomposition of S relative to S. Let T be the set of the affine supports of the
members of C. Let H be a finite set of (n − 1)-dimensional hyperplanes such that
each member of T is an intersection of members of H. Then, each regular stratum
of S (whence S) is a union of cells of the partition P of Rn induced by H.

Proof. Let C be a regular stratum of S. By Lemma A.4, C is open within its
affine support. Furthermore, C contains the regular stratification of ∂C = C − C,
which, again by Lemma A.4, constitutes a partition of ∂C in sets which are open
within their affine supports. Thus, C and H meet the conditions of Lemma A.6. A
straightforward inspection of the proof of Lemma A.6 shows that C is a union of
cells of P.

The following example illustrates Proposition 4.7.

Example 4.8 Consider the semi-linear set

S = {(x, y) | (3x− y > 2 ∧ y > 1 ∧ x+ 2y < 10) ∧
¬(x ≤ 3 ∧ y ≥ 2 ∧ x ≥ y) ∧ ¬(1 ≤ y ≤ 3 ∧ x = 3)}

in the plane, shown in Figure 4.3, which consists of an open triangle, out of which
a closed triangle and a closed line segment have been cut out. Each point of S is
regular, whence S itself is the only regular stratum in the regular stratification of S.

Figure 4.3: The semi-linear set of Example 4.8.

The affine support T0 of S is the entire plane. We now consider ∂S, the topological
boundary of S (within T0), shown in Figure 4.4.

Clearly, ∂S is the disjoint union of its regular stratification which consists of the 8
open line segments and the 7 points defining them, indicated in Figure 4.4. They
constitute the sequence S0, . . . , Sm (whence m = 15). The respective affine supports
of these 15 sets, T0, . . . , Tm, are the lines supporting the 8 line segments and the 7
points, supporting themselves.
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Figure 4.4: The set ∂S in Example 4.8.

In the two-dimensional plane, hyperplanes are lines. The 6 lines shown in Figure 4.5
suffice to describe each of the affine supports T0, T1, . . . , Tm as an intersection of
these lines. Indeed, T0, which is the entire plane, is the empty intersection of lines.
Next, T1, . . . , T8 are precisely these 6 lines. Finally, each of the 7 points, T9, . . . , T15,
is the intersection of two lines which support non-collinear line segments meeting in
that point.

The 6 lines shown in Figure 4.5, together with the open half-planes they delineate,
induce a partition of the entire plain, consisting of 12 points, 31 open line segments
or half-lines, and 20 open regions. In Figure 4.5, these regions have been identified by
numbers. By construction, all 63 members of the induced partition are semi-linear
sets.

Figure 4.5: The lines describing the affine supports T0, T1 . . . , Tm of S0, S1, . . . , Sm,
respectively, described in Example 4.8. The numbers indicate the open regions in
the induced partition.

Finally, S is the union of some members of the induced partition. Indeed, we see in
this example that S is the union of the open regions 13, 14, 15, 17, 18, and 19, all of
which are filled polygons, and the open intervals separating them, except of course
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the open interval separating region 13 and 19.

We stress that, in general, it does not suffice to consider only the regular stratifica-
tion of the boundary of the regular strata in the top layer of the regular stratification
of S in order to be able to write S as a finite union of cells of the partition induced
by hyperplanes defining the affine supports of the elements of a decomposition of S.
We invite the reader to verify this on Example 4.6.

Unfortunately, it is unlikely that the canonical decomposition of a semi-linear set
can be computed in FO + poly, since the definition of the regular stratification of
a semi-linear set involves connectivity. Therefore, we propose an algorithm in the
following section which is a variation on the technique resulting in a canonical de-
composition that does not require the expressibility of connectivity. The connected
components of the output of that algorithm constitute what we shall call the algo-
rithmic decomposition. Given a semi-linear set S, we show that, as for the canonical
decomposition, any collection of hyperplanes defining the affine supports of the ele-
ments of an algorithmic decomposition of S relative to S induces a partition of Rn

for which S is a finite union of cells.

4.2 Algorithmic Decompositions of Semi-Linear

Sets

Given an R-semi-linear semi-algebraic set, we propose the following algorithm, im-
plementable in FO + linear-Z. Recall that reg(S, ~x) computes the set of regular
points of S in which S has local dimension the overall dimension of S.

Algorithm 4.9

Input : An R-semi-linear semi-algebraic set S of Rn.
Output : A finite sequence S1, . . . , Sk of subsets of Rn.
Method :

1. Initialize i to 0;

2. Increment i;

3. Let Si = {~x | reg(S, ~x)};

4. If S − Si is not empty, repeat Steps 2–5 with S replaced by S − Si;

5. If Si − Si is not empty, repeat Steps 2–5 with S replaced by Si − Si.
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In words, Algorithm 4.9 first computes the regular stratification of S; then Al-
gorithm 4.9 is recursively applied to the union of the boundaries of the strata in
each layer of this regular stratification (rather than the boundaries of the individual
strata). Also, Algorithm 4.9 returns the layers of the various regular stratifications
it performs (rather than the individual strata). In this way, Algorithm 4.9 does not
involve taking connected components.

The set of all connected components of sets in the output of Algorithm 4.9 is called
the algorithmic decomposition of S relative to S.

In the following two examples, we illustrate Algorithm 4.9, and contrast the notions
of algorithmic decomposition and canonical decomposition.

Example 4.10 Recall Example 4.6, in which we obtained a canonical decomposi-
tion of the semi-linear set S shown in Figure 4.2.

If we apply Algorithm 4.9 to S, we first obtain the layers of the regular stratification
of S. Hence, S1 consists of the 4 open rectangles in Figure 4.2 and S2 consists
of the point (−2, 1). Since S2 − S2 = ∅, we must recursively apply Algorithm 4.9
only to S1 − S1, the union of the boundaries of the 4 open rectangles. We first
obtain the layers of the regular stratification of S1 − S1. Hence, S3 consists of the
13 open line segments contained in this union, and S4 consists of the in total 10 end
points of these open line segments. Since S4−S4 is empty, we must recursively apply
Algorithm 4.9 only to S3−S3 = S4. Clearly, S5 = S4, and the algorithm terminates.
Hence, the connected components of S1, S2, S3, and S4 = S5, respectively, 28 sets
in total, constitute the algorithmic decomposition of S relative to S. Notice that
the canonical and the algorithmic decomposition do not coincide.

Example 4.11 Consider the semi-linear set

S = {(x, y, z) | (y = 0 ∧ x 6= 1) ∨ (x = 1 ∧ 2y + z = 3 ∧ z ≥ 1)}

in three-dimensional space, shown in Figure 4.6. The reader is invited to verify that
the canonical decomposition C consists of the two open half-planes in which the plane
y = 0 is divided, the line y = 0 ∧ x = 1, the open half-line x = 1 ∧ 2y+z = 3 ∧ z > 1,
and the point (1, 1, 1), 5 sets in total.

If we apply Algorithm 4.9 to S, we first obtain the layers of the regular stratification
of S. Hence, S1 consists of the two open half-planes in which the plane y = 0 is
divided, S2 is the open half-line x = 1 ∧ 2y+ z = 3 ∧ z > 1, and S3 consists of the
single point (1, 1, 1). Since S3 − S3 = ∅, we must recursively apply Algorithm 4.9
only to S1− S1, the line y = 0 ∧ x = 1, and S2− S2, the point (1, 1, 1). Since both
sets are affine subspaces of R3, we see that the first recursive call results in only
one layer, S4 = S1− S1, and the second recursive call also results in only one layer,
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Figure 4.6: The semi-linear set of Example 4.11.

S5 = S2 − S2 = S3, after which the algorithm terminates. Hence, the connected
components of S1, S2, S3 = S5, and S4, respectively, 5 sets in total, constitute the
algorithmic decomposition of S relative to S. In this example, the algorithmic and
the canonical decomposition coincide.

It turns out that the analogue of Proposition 4.7 for algorithmic decompositions
holds, which is our justification for proposing Algorithm 4.9 and considering the
notion of “algorithmic decomposition.” In order to prove this analogue, we need the
following strengthening of Lemma A.6.

Lemma 4.12 Let S ⊆ Rn be a finite disjoint union of sets S0, . . . , Sk, each of
which is open within its affine support. Let

⋃k

i=0 ∂Si (∂Si = Si − Si) be a finite
disjoint union of sets Sk+1, . . . , Sm, each of which is open within its affine support.
Let T0, . . . , Tm be the affine supports of S0, . . . , Sm, respectively. Let H be a finite set
of (n−1)-dimensional hyperplanes such that, for i = 0, . . . , m, Ti is an intersection
of members of H. Then, for i = 1, . . . , k, Si is a union of cells of the partition of
Rn induced by H.

Proof. A straightforward verification reveals that the arguments developed in the
proof of Lemma A.6 apply literally to the situation described in Lemma 4.12.

We are now ready to prove the analogue of Proposition 4.7 for algorithmic decom-
positions.

Proposition 4.13 Let S ⊆ Rn be an R-semi-linear semi-algebraic set and let D
be the algorithmic decomposition of S relative to S. Let T be the set of the affine
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supports of the members of D. Let H be a finite set of (n−1)-dimensional hyperplanes
such that each member of T is an intersection of members of H. Then, each member
of D (whence S) is a union of cells of the partition of Rn induced by H.

Proof. Let L be the layer (set in the output of Algorithm 4.9) to which D belongs.
The set L is a finite disjoint union of sets D = D1, . . . , Dm, each of which is open
within its affine support. Since, for i, j = 1, . . . , m, i 6= j, Di ∩Dj = ∅,

L− L =

m⋃

i=1

m⋂

j=1

(Di −Dj) =

m⋃

i=1

Di −Di =

m⋃

i=1

∂Di.

Now, the algorithmic decomposition of S relative to S contains an algorithmic de-

composition of L− L = L − L relative to L − L, which in turn contains a regular
stratification of L−L. This regular stratification of L−L is a partition of L−L in
members of D, each of which is open within its affine support. Thus, L and H meet
the conditions of Lemma 4.12, whence, in particular, D is a union of cells of P.

We conclude this section with some properties of algorithmic decompositions which
will prove useful in the following section.

Proposition 4.14 Let S ⊆ Rn be an R-semi-linear semi-algebraic set, and let D
be the algorithmic decomposition of S relative to S. Let D ∈ D. Suppose that ∂D
(the boundary of D within its affine support) is not empty. Let R be a stratum in
the top layer of the regular stratification of ∂D.

1. There exists D′ ∈ D with D′ ⊆ R and dim(D′) = dim(D)− 1.

2. There exist pairwise disjoint members D′
1, . . . , D

′
r of D in the same layer (a

set in the output of Algorithm 4.9 applied to S) with, for i = 1, . . . , r, D′
i ⊆ R

and dim(D′
i) = dim(D)− 1, such that D′

1 ∪ . . . ∪D′
r = R.

3. There exist pairwise disjoint members D′
1, . . . , D

′
m in the same layer of D

with, for i = 1, . . . , m, D′
i ⊆ ∂D and dim(D′

i) = dim(D) − 1, such that
D′

1 ∪ . . . ∪D′
m = ∂D.

Proof. Let L be the layer to which D belongs. Since, clearly, D ∩ (L − D) = ∅,
∂D = D−D ⊆ L−L. Hence, ∂D, whence ∂D, whence R is covered by the members
of D that belong to the regular stratification of L − L. All these members are of
strictly lower dimension than D. Let dim(D) = d. Clearly, dim(R) = dim(∂D) =
d− 1. We are now ready to prove the three claims.
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1. Since R is covered by a finite number of members of D of dimension at most
d−1, at least one of them, say D′, satisfies dim(R∩D′) = d−1. In particular,
dim(D′) = d− 1 and R and D′ have the same affine support, say T . Suppose
D′ contains points outside R. Since D′ is connected, D′ must contain a point
on the boundary of R within T . However, any neighborhood of such a point
must necessarily contain points of ∂D outside T , whence, ∂D does not look
like a (d−1)-dimensional affine subspace in any neighborhood of such a point,
a contradiction. Hence, D′ ⊆ R.

2. Let D′
1, . . . , D

′
r be the strata in the top layer of the regular stratification of

L−L (these are members of D) for which, for i = 1, . . . , r, dim(R∩D′
i) = d−1.

By the arguments used in the proof of the first claim, D′
i ⊆ R. Since R is

covered by the regular stratification of L−L, dim(R− (D′
1∪ . . .∪D′

r)) < d−1,
from which the second claim immediately follows.

3. For the third claim, we first observe that the union of the strata in the top
layer of the regular stratification of ∂D is dense in ∂D. Second, we observe
that the layer to which D′

1, . . . , D
′
r in the second claim belong does not depend

on the choice of R. The third claim now immediately follows.

Proposition 4.15 Let S1, S2, and B be R-semi-linear semi-algebraic sets of Rn

such that B is open within Rn and S1 ∩ B = S2 ∩ B. For each set Si1 in the output
of Algorithm 4.9 applied to S1 such that Si1 ∩ B is not empty, there exists a set Sj2
in the output of Algorithm 4.9 applied to S2 such that Sj2 ∩B is not empty satisfying
Si1 ∩ B = Sj2 ∩ B, and vice-versa.

Proof. We prove by induction on the dimension of d = dim(S1) that, for each set
Si1 in the output of Algorithm 4.9 applied to S1 such that Si1∩B is not empty, there
exists a set Sj2 in the output of Algorithm 4.9 applied to S2 such that Sj2 ∩ B is
not empty satisfying Si1 ∩ B = Sj2 ∩ B. Proposition 4.15 then follows because of
symmetry reasons.

Suppose d = 0. Then S1 consists of isolated points only, whence also S1 ∩ B =
S2 ∩ B consists of isolated points only. Clearly, S1 is the only set in the output of
Algorithm 4.9 applied to S1. The zero-dimensional layer of the regular stratification
of S2, which occurs in the output of Algorithm 4.9 applied to S2, necessarily contains
all points of S1 ∩B = S2 ∩ B. Hence, Proposition 4.15 is satisfied.

Suppose d > 0. First, we observe that each set in the output of Algorithm 4.9 applied
to S1 (respectively, S2) with dimension higher than dim(S1 ∩B) = dim(S2 ∩B) has
an empty intersection with B. We now distinguish two cases.
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1. reg(S1) ∩ B = ∅. Then, for reg(S1), there are no further conditions to be
satisfied. Next, Algorithm 4.9 has to be applied recursively to S1 − reg(S1),
unless that set is empty. Clearly, since (S1 − reg(S1))∩B = S1 ∩B = S2 ∩B
and dim(S1−reg(S1)) < d, S1−reg(S1), S2, and B satisfy Proposition 4.15 by
the induction hypothesis. Finally, Algorithm 4.9 has to be applied recursively
to reg(S1) − reg(S1), unless that set is empty. However, reg(S1) − reg(S1)
has an empty intersection with B, since reg(S1) ∩ B = ∅ implies that also
reg(S1) ∩B = ∅. Hence, there are no further conditions to be satisfied.

2. reg(S1) ∩ B 6= ∅. Let d = dim(S1 ∩ B) = dim(S2 ∩ B). Let S ′
2 be the set

S2 of which all layers of the regular stratification of S2 of dimension strictly
higher than d are stripped off. Notice that the algorithmic decomposition of S ′

2

relative to S ′
2 is contained in the algorithmic decomposition of S2 relative to S2.

Clearly, S1∩B = S2∩B = S ′
2∩B, and dim(S1) = dim(S1∩B) = dim(S ′

2∩B) =
dim(S ′

2) = d. By using neighborhoods fully contained within the open set B,
it is readily seen that reg(S1)∩B = reg(S1∩B) = reg(S ′

2∩B) = reg(S ′
2)∩B.

The two layers under consideration satisfy the required correspondence.

Next, Algorithm 4.9 has to be applied recursively to S1− reg(S1), unless that
set is empty (respectively, S ′

2 − reg(S ′
2), unless that set is empty). We first

observe that (S1 − reg(S1)) ∩ B = (S1 ∩ B) − (reg(S1) ∩ B) = (S ′
2 ∩ B) −

(reg(S ′
2) ∩ B) = (S ′

2 − reg(S ′
2)) ∩ B. Since this latter set is empty if either

S1 − reg(S1) or S ′
2 − reg(S ′

2) are empty, there are no further conditions to
be satisfied in this case. If neither S1 − reg(S1) nor S

′
2 − reg(S ′

2) are empty,
then dim(S1 − reg(S1)) < d, and S1 − reg(S1), S

′
2 − reg(S ′

2), and B satisfy
Proposition 4.15 by the induction hypothesis.

Finally, Algorithm 4.9 has to be applied recursively to reg(S1) − reg(S1),
unless that set is empty (respectively, reg(S ′

2) − reg(S ′
2), unless that set is

empty). If A is an arbitrary set and G an open set of an arbitrary topological
space, the identity A ∩G = A ∩G ∩G holds. Using this identity, we observe
that

(reg(S1)− reg(S1)) ∩B = (reg(S1) ∩ B)− (reg(S1) ∩ B)

= (reg(S1) ∩ B ∩ B)− (reg(S1) ∩B)

= (reg(S ′
2) ∩ B ∩ B)− (reg(S ′

2) ∩B)

= (reg(S ′
2) ∩ B)− (reg(S ′

2) ∩ B)

= (reg(S ′
2)− reg(S ′

2)) ∩ B.

Since this set is empty if either reg(S1) − reg(S1) or reg(S ′
2) − reg(S ′

2) are
empty, there are no further conditions to be satisfied in this case. If nei-
ther reg(S1)− reg(S1) nor reg(S ′

2)− reg(S ′
2) are empty, then dim(reg(S1)−
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reg(S1)) < d, and reg(S1)−reg(S1), reg(S ′
2)−reg(S ′

2), and B satisfy Propo-
sition 4.15 by the induction hypothesis.

A special case of Proposition 4.15 is the following.

Proposition 4.16 Let S and B be R-semi-linear semi-algebraic sets of Rn such
that B is open within Rn. For each set Si in the output of Algorithm 4.9 applied to
S such that Si∩B is not empty, there exists a set SjB in the output of Algorithm 4.9
applied to S ∩ B such that SjB ∩ B is not empty satisfying Si ∩ B = SjB ∩ B, and
vice-versa.

Proof. The sets S, S ∩ B, and B satisfy Proposition 4.15.

4.3 A-Semi-Linearity of Semi-Algebraic Sets is

Decidable

We intend to use the notion of algorithmic decomposition, in particular Proposi-
tion 4.13 and the fact that Algorithm 4.9 can be implemented in FO + linear-Z
(whence certainly in FO + poly) to show that R-semi-linear semi-algebraic sets are
A-semi-linear, as a consequence of which Property SL (which can easily be expressed
in FO + poly) decides whether a semi-algebraic set is A-semi-linear.

To prove this, we first consider bounded semi-algebraic sets.

Lemma 4.17 Let S be a bounded R-semi-linear semi-algebraic set of Rn, and let
D be the algorithmic decomposition of S relative to S. Then all the affine supports
of the members of D are A-semi-linear.

Proof. Let S0 be the union of the zero-dimensional sets in the output of the
algorithm, which is also the union of all members of D consisting of a single point.
We shall call these points special points . Since Algorithm 4.9 can be implemented
in FO+ linear-Z (whence in FO+poly), S1, . . . , Sk are semi-algebraic. Since it can
be decided in FO + linear-Z whether a semi-algebraic set is zero-dimensional, i.e.,
consists of isolated points only (see Section 3.1), S0 is semi-algebraic. Clearly, all
members of D consisting of a single point are the intersection of S0 and a suitable
semi-algebraic neighborhood of that point, and must therefore be semi-algebraic,
too. Thus, each special point can be described by a real constraint formula. By
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the Tarski-Seidenberg quantifier elimination theorem [69, 71], it follows that the
coordinates of that point can be described using univariate polynomials with integer
coefficients. By definition, it follows that these coordinates must be real algebraic
numbers.

Now, let D be a member of D, and let T be the affine support of D. We claim that
T is the affine support of a set of special points. Since these special points have real
algebraic coordinates, it then follows that the standard techniques from analytical
geometry to obtain a system of linear equations describing their affine support T
only generate real algebraic coefficients. Consequently, T is A-semi-linear, what has
to be shown.

We prove the above claim by induction on the dimension of D.

For the basis of this induction, we observe that, if D is zero-dimensional, the claim
becomes trivial.

Now assume that the claim holds for all members of D of dimension strictly less
than d, 0 < d ≤ dim(S).

Let D be a d-dimensional member of D, and let T be the affine support of D.
Clearly, T is also the affine support of D. Let D1, . . . , Dm be the members of D
fully contained within ∂D (the boundary of D within T , which is not empty since
D, whence D, is bounded), and let T1, . . . , Tm be their respective affine supports.
By the third claim of Proposition 4.14, D1 ∪ . . . ∪ Dm = ∂D. Since D is bounded
and the closure of a set open within T , it follows that T is also the affine support of
∂D, whence also of D1 ∪ . . . ∪Dm, whence also of D1 ∪ . . . ∪Dm. By the induction
hypothesis, we know that T1, . . . , Tm are the respective affine supports of some
subsets S0

1 , . . . , S
0
m of S0. Hence, T is the affine support of S0

1 ∪ . . . ∪ S0
m, also a

subset of S0.

From the proof of Lemma 4.17, we obtain an algorithm, implementable in FO +
Z-linear, which outputs the set of special points of a bounded R-semi-linear semi-
algebraic set S.

Algorithm 4.18

Input : A bounded R-semi-linear semi-algebraic set S of Rn.
Output : The finite set S0 of special points of S.
Method :

1. Initialize S0 to the empty set;

2. Let Sr = {~x | reg(S, ~x)};

3. If Sr is zero-dimensional, then let S0 = S0 ∪ Sr;
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4. If S − Sr is not empty, repeat Steps 2–5 with S replaced by S − Sr;

5. If Sr − Sr is not empty, repeat Steps 2–5 with S replaced by Sr − Sr.

A closer inspection of the proof of Lemma 4.17, in combination with Proposi-
tion 4.13, immediately reveals the following result.

Proposition 4.19 Let S be a bounded R-semi-linear semi-algebraic set of Rn. Let
S0 be the finite set of special points of S returned by Algorithm 4.18. Let H be
a finite set of (n − 1)-dimensional hyperplanes such that every affine support of a
subset of points of S0 can be described as an intersection of members of H. Then,
S is a union of cells of the partition of Rn induced by H.

We next wish to prove that Lemma 4.17 also holds for unbounded R-semi-linear
semi-algebraic sets. In order to prove this generalization, we introduce the notion
of bounding box .

Definition 4.20 Let S be an R-semi-linear semi-algebraic set of Rn. Let D be
the algorithmic decomposition of S relative to S. A bounding box for S is an open
n-dimensional box B which intersects each member of D.

To motivate our notion of bounding box, we first observe the following.

Lemma 4.21 Let S be an R-semi-linear semi-algebraic set, and let D be the al-
gorithmic decomposition of S relative to S. Each bounded member of D is fully
contained within any bounding box for S.

Proof. Let B be any bounding box for S, and let D be a bounded member of D.
We prove Lemma 4.21 by induction on dim(D).

Let dim(D) = 0. Then, D is a point, which, by definition, is contained in B.

Let dim(D) = d > 0. Let D1, . . . , Dm be the members of D contained in ∂D, the
boundary of D within its affine support, which is not empty since D, whence D, is
bounded. By the third claim of Proposition 4.14, D1 ∪ . . . ∪ Dm = ∂D. Since, for
i = 1, . . . , m, Di ⊆ B, by the induction hypothesis, ∂D ⊆ B. Since D is bounded,
it follows that D ⊆ B. Since D ∩B 6= ∅ and D is open within its affine support, D
cannot contain points on the boundary of B. Hence D ⊆ B.

An immediate corollary to Lemma 4.21, which one might intuitively have desired,
is the following.
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Proposition 4.22 Let S be a bounded R-semi-linear semi-algebraic set. Then S
is fully contained within any bounding box for S.

We now present three examples illustrating Definition 4.20 for unbounded semi-linear
sets.

Example 4.23 Consider the unbounded semi-linear S of Example 4.11, shown in
Figure 4.6, and the algorithmic decompositionD of S relative to S that was obtained.
The open 4× 4× 4 cube B centered around ~0 intersects all five members of D, and
is therefore a bounding box for S.

Example 4.24 Consider the semi-linear set S = {(x, y) | x ≥ 0 ∧ 0 < 2y ≤ x} in
the plane, shown as the heavily shaded angular sector in Figure 4.7.

Figure 4.7: The semi-linear set of Example 4.24.

The reader is invited to verify that the algorithmic decomposition D of S relative
to S consists of the open angular sector, the two open half-lines in the boundary of
the angular sector, and the angular point.

Now, let B be the open 2× 2 square centered around ~0, shown in lighter shading in
Figure 4.7. Since B intersects all four members of D, B is a bounding box for S.

Example 4.25 Consider the semi-linear set S = {(x, y) | −1 ≤ x − y ≤ 1} in the
plane, shown as the heavily shaded strip in Figure 4.8.

The reader is invited to verify that the algorithmic decomposition D of S relative
to S consists of the open strip and the two lines delineating it, none of which is
bounded.

Now, let B again be the open 2 × 2 square centered around ~0, shown in lighter
shading in Figure 4.7. Since B intersects all three members of D, B is a bounding
box for S.
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Figure 4.8: The semi-linear set of Example 4.25.

Given an R-semi-linear semi-algebraic set S of Rn, we now provide an algorithm,
implementable in FO + Z-linear, which computes a bounding box for S.

For that purpose, we consider all the 2n different open Z-semi-linear sets σ1x1 <
1 ∧ . . . ∧ σnxn < 1, with, for i = 1, . . . , n, σi = −1 or σi = +1. If ~p = (σ1, . . . , σn),
then this set is the translation of the open coordinate hyperquadrants σ1x1 < 0 ∧
. . . ∧ σnxn < 0 over the vector ~p. As a consequence of these translations, the sets
obtained cover Rn. We shall denote these sets by E1, . . . , E2n , and still use the term
hyperquadrant (or quadrant , if n = 2) to refer to them.

Example 4.26 Figure 4.9 shows the quadrants E1, E2, E3, and E4 of R2.

Figure 4.9: The quadrants E1, E2, E3, and E4 of Rn.

Algorithm 4.27

Input : An R-semi-linear semi-algebraic set S of Rn.
Output : A bounding box for S.
Method :
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1. Let E1, . . . , E2n be the hyperquadrants of Rn defined above.

2. Initialize S0
E to the empty set;

3. For j = 1 . . . 2n do

(a) Sj = S ∩ Ej ;
(b) Srj = {~x | reg(Sj, ~x)};
(c) If Srj is zero-dimensional, S0

E = S0
E ∪ Srj ;

(d) If Sj − Srj is not empty, repeat Steps 3b–3e with Sj replaced by Sj − Srj ;
(e) If Srj − Srj is not empty, repeat Steps 3b–3e with S replaced by Srj − Srj ;

4. Let r be the maximum of the absolute values of the coordinates of the points
of S0

E ;

5. Let B be the 2(r + 1) × . . . × 2(r + 1) n-dimensional hypercube centered
around ~0.

Notice that Algorithm 4.27 requires the computation of the algorithmic decomposi-
tions (Algorithm 4.9) of S ∩ Ej relative to S ∩ Ej, 1 ≤ j ≤ n. In particular, S0

E is
the union of the zero-dimensional members of these algorithmic decompositions.

Before proving the correctness of Algorithm 4.27, we illustrate it with three exam-
ples.

Example 4.28 Consider again the semi-linear set S of Example 4.11, shown in
Figure 4.6. Let E1 be the hyperquadrant −x > 1 ∧ −y > 1 ∧ −z > 1. We invite
the reader to verify that the zero-dimensional members of the algorithmic decom-
position of S ∩ E1 relative to S ∩ E1 consists of the points (−1, 0,−1), (1, 0,−1),
(1, 1, 1), and (1,−1, 6). We shall not explicitly consider the 7 other hyperquadrants
E2, . . . , E7; however, we may conclude that r ≥ 6, and that the box B returned by
Algorithm 4.27 containts the open 14 × 14× 14 cube B centered around ~0. Hence,
B is a superset of the bounding box found in Example 4.23, and, therefore, itself a
bounding box for S.

Example 4.29 Consider again the semi-linear set S of Example 4.24, shown in
Figure 4.7. Let the quadrants E1, . . . , E4 be as shown in Figure 4.9. Clearly, S∩E1 =
S. In Example 4.24, we found that the algorithmic decomposition D of S relative
to S consists of the open angular sector, the two open half-lines in the boundary of
the angular sector, and the angular point. Hence, the point (0, 0) constitutes the
only zero-dimensional set in the output of Algorithm 4.9 applied to S ∩ E1. We
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invite the reader to verify that the points (0, 0), (1, 0), and (1, 0.5) constitute the
zero-dimensional sets in the output of Algorithm 4.9 applied to both S ∩ E2 and
S ∩E3, and that the points (0, 0), and (2, 1) constitute the zero-dimensional sets in
the output of Algorithm 4.9 applied to S ∩ E4. Hence, r = 2, and Algorithm 4.27
returns the 6 × 6 square B centered around ~0, which is a superset of the bounding
box of S shown in Figure 4.7, and, therefore, itself a bounding box.

Example 4.30 Consider again the semi-linear set S of Example 4.25, shown in
Figure 4.8. Let the quadrants E1, . . . , E4 be as shown in Figure 4.9. The reader is
invited to verify that the zero-dimensional members of the algorithmic decomposi-
tion of S ∩ E1 relative to S ∩E1 consist of the points (0,−1), (−1,−1), and (−1, 0);
that the zero-dimensional members of the algorithmic decomposition of S ∩ E2 rel-
ative to S ∩ E2 consist of the points (−2,−1), (0,−1), (1, 0), and (1, 2); that the
zero-dimensional members of the algorithmic decomposition of S ∩ E3 relative to
S ∩ E3 consist of the points (1, 0), (1, 1), and (0, 1); and that the zero-dimensional
members of the algorithmic decomposition of S ∩ E4 relative to S ∩ E4 consist of
the points (2, 1), (0, 1), (−1, 0), and (−1,−2). Hence, r = 2, and Algorithm 4.27
returns the 6 × 6 square B centered around ~0, which is a superset of the bounding
box of S shown in Figure 4.7, and, therefore, itself a bounding box.

We now prove the correctness of Algorithm 4.27.

Proposition 4.31 Let S be an arbitrary R-semi-linear semi-algebraic set of Rn.
Algorithm 4.27 is implementable in FO + Z-linear and, upon input S, computes a
bounding box for S.

Proof. We first argue that Algorithm 4.27 is implementable in FO+Z-linear. The
sets E1, . . . , E2n are described by Z-linear constraint formulae. Since Algorithm 4.9
can be implemented in FO+ linear-Z, and since it can be checked in FO+Z-linear
whether a set is zero-dimensional, (see Section 3.1), it follows that S0

E can be com-
puted from S in FO + linear-Z. Clearly, the open n-dimensional hypercube B can
then be computed from S0

E in FO + linear-Z.

Second, we show that B is a bounding box for each S ∩ Ej, 1 ≤ j ≤ 2n.

Thereto, let Dj be the algorithmic decomposition of S ∩ Ej relative to S ∩ Ej. To
prove our claim, we must show that B intersects each member D of Dj. We prove
this by induction on d = dim(D).

Let d = 0. Then, by an earlier remark, D is contained within S0
E , whence D ⊆ B.

Let d > 0. Since D ⊆ Ej, D cannot be an affine subspace of Rn. Hence, ∂D, the
boundary of D within Rn, is not empty. By Proposition 4.14, there exists a member
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D′ of Dj such that D′ ⊆ ∂D and dim(D′) = d − 1. By the induction hypothesis,
D′ ∩B 6= ∅. Since B is open, it follows that D ∩ B 6= ∅.
Third and finally, we show that B is a bounding box for S.

Let D the algorithmic decomposition of S relative to S. We show that B intersects
each member D of D. Let L be the layer (a set in the output of Algorithm 4.9 applied
to S) to which D belongs. Since the hyperquadrants E1, . . . , E2n cover Rn, there
exists j, 1 ≤ j ≤ 2n, such that D ∩ Ej 6= ∅. Let Dj the algorithmic decomposition
of S ∩ Ej relative to S ∩ Ej. Since Ej is open within Rn, Proposition 4.16 applies.
Hence, there exists a layer Lj (a set in the output of Algorithm 4.9 applied to S∩Ej)
such that L ∩ Ej = Lj ∩ Ej . Since L and Lj both consist of connected sets of the
same dimension which are open within their respective affine supports, there exists
a member Dj of D fully contained within Lj ∩ Ej such that Dj ⊆ D. Since B is a
bounding box for S ∩ Ej , Dj ∩B 6= ∅, whence D ∩ B 6= ∅.

We are now ready to generalize Lemma 4.17.

Lemma 4.32 Let S be a R-semi-linear semi-algebraic set of Rn, and let D be the
algorithmic decomposition of S relative to S. Then all the affine supports of the
members of D are A-semi-linear.

Proof. If S is bounded, Lemma 4.32 follows from Lemma 4.17.

Let B be a bounding box for S computed from S in FO+linear-Z (Proposition 4.31).
Clearly, S ∩ B is R-semi-linear, as it is the intersection of two R-semi-linear sets.
Moreover, S ∩ B is semi-algebraic, as it can be computed from S in FO + linear-Z
(whence in FO + poly).

Let DB be the algorithmic decomposition of S ∩ B relative to S∩B. By Lemma 4.17,
all the affine supports of the members of DB are A-semi-linear.

Now, let D be a member of D, and let T be the affine support of D. Let L be the
layer (a set in the output of Algorithm 4.9 applied to S) to which D belongs. Since
D∩B 6= ∅, L∩B 6= ∅, whence, by Proposition 4.16, there exists a layer LB (set in the
output of Algorithm 4.9 applied to S∩B) such that L∩B = LB ∩B. As in the final
part of the proof of Proposition 4.31, we can find a member DB of DB fully contained
within LB ∩ B such that DB ⊆ D. Since dim(DB) = dim(LB) = dim(L) = dim(D),
it follows that T is also the affine support of DB. Since DB is a member of DB, T
is A-semi-linear.

We are now able to generalize Algorithm 4.18 for arbitrary R-semi-linear semi-
algebraic sets.
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Algorithm 4.33

Input : An R-semi-linear semi-algebraic set S of Rn.
Output : The finite set S0 of special points of S.
Method :

1. Let B be the bounding box for S computed by Algorithm 4.27;

2. Let SB = S ∩B;

3. Initialize S0
B to the empty set;

4. Let SrB = {~x | reg(SB, ~x)};

5. If SrB is zero-dimensional, then let S0
B = S0

B ∪ SrB;

6. If SB − SrB is not empty, repeat Steps 4–7 with SB replaced by SB − SrB;

7. If SrB − SrB is not empty, repeat Steps 4–7 with SB replaced by SrB − SrB.

We call S0
B the set of special points of S. Notice that this definition is consistent

with our earlier use of the term “special points” in the context of bounded R-semi-
linear semi-algebraic sets, as these are contained in any of their bounding boxes
(Proposition 4.22). Hence, Algorithms 4.18 and 4.33 return the same set of points
in this case.

A closer inspection of the proof of Lemma 4.32, in combination with Proposi-
tions 4.13 and 4.19, immediately reveals the following result.

Proposition 4.34 Let S be an arbitrary R-semi-linear semi-algebraic set of Rn.
Let S0

B be the finite set of special points of S returned by Algorithm 4.33. Let H be
a finite set of (n − 1)-dimensional hyperplanes such that every affine support of a
subset of points of S0

B can be described as an intersection of members of H. Then,
S is a union of cells of the partition of Rn induced by H.

Lemma 4.32 can be sharpened to Proposition 4.35, below.

Proposition 4.35 Let S be an R-semi-linear semi-algebraic set of Rn, and let D
be the algorithmic decomposition of S relative to S. Then all members of D are
A-semi-linear.
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Proof. Let T be the set of all the affine supports of the members of D. By
Lemma 4.32, all members of T are A-semi-linear. Hence, there exists a finite set H
of (n− 1)-dimensional A-semi-linear hyperplanes such that each member of T is an
intersection of members of H. Consider the finite partition P of Rn induced by H.
Obviously, all cells of P are A-semi-linear. By Proposition 4.13, each member of D
is a union of cells of P, and is therefore A-semi-linear, too.

Corollary 4.36 Every R-semi-linear semi-algebraic set is A-semi-linear.

We are now ready to state and prove our first main result.

Theorem 4.37 Let S be a semi-algebraic set. The set S is A-semi-linear if and only
if it has Property SL. Moreover, A-semi-linearity of a semi-algebraic set defined by
a polynomial constraint formula is decidable by an FO + poly formula.

Proof. The first statement in Theorem 4.37 is an immediate consequence of Propo-
sition 4.2 and Corollary 4.36. The second statement follows from the first, because
the corresponding Boolean decision query of type [0, n] → [0, 0] can easily be ex-
pressed in FO + poly using Property SL, and the validity of polynomial constraint
sentences in R is decidable.

It is important to note that the truth of the first statement in Theorem 4.37 is not
revealed by the proof of Proposition 4.2, because Definition 3.12 of regular point
does not specify anything regarding the type of the coefficients in the polynomials
involved. To obtain this information, we made a more thorough study above of the
decomposition process outlined in the proof of Proposition 4.2.

4.4 Z-Semi-Linearity of Semi-Algebraic Sets is

Decidable

We now put to use the results of Section 4.2 a second time to show that Z-semi-
linearity of a semi-algebraic set is decidable, too. Then, we show that the corre-
sponding decision query cannot be expressed in FO + poly, however.

First, we summarize the results we obtain if we apply the same line of argument as
in Section 4.3 to Z-semi-linearity instead of A-semi-linearity.

Proposition 4.38 Let S be an A-semi-linear set of Rn, and let D be the algorith-
mic decomposition of S relative to S. Let S0 be the union of all zero-dimensional
members of D. The following properties hold:
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1. if S is bounded, then S is Z-semi-linear if and only if all points in S0 have
rational coordinates;

2. if S is unbounded, and B is a Z-semi-linear bounding box for S, then S is
Z-semi-linear if and only if S ∩ B is Z-semi-linear; and

3. S is Z-semi-linear if and only if all members of D are Z-semi-linear.

Proof. Let T be the set of the affine supports of the members of D.
First, suppose that S is bounded.

We recall that Algorithm 4.33 can be implemented in FO + linear-Z. Hence, if S is
Z-semi-linear, S0 is Z-semi-linear, too. Thus, all the points in S0 must have rational
coordinates.

Conversely, suppose that all points in S0 have rational coordinates. Then S0 is Z-
semi-linear. As in the proof of Lemma 4.17, it can then be shown that all members
of T are Z-semi-linear. As in the proof of Proposition 4.35, it can finally be shown
that all members of D, as well as S, are Z-semi-linear.

Next, suppose that S is unbounded.

Of course, if S is Z-semi-linear, then, since B is Z-semi-linear, S∩B is Z-semi-linear.

Conversely, suppose that SB = S ∩ B is Z-semi-linear. Let DB be the algorith-
mic decomposition of S ∩B relative to S ∩ B, and let S0

B be the union of all
zero-dimensional members of DB. By Property 1, all points in S0

B have rational
coordinates. From this, we deduce as above that all members of DB are Z-semi-
linear. As in the proof of Lemma 4.32, we can show that, for each member of D,
there is a member of DB with the same affine support. Thus, all members of T are
Z-semi-linear, from which we deduce as above that all members of D, as well as S,
are Z-semi-linear.

Proposition 4.38 yields a decidability criterion for Z-semi-linearity, provided that
rationality of a real algebraic number is decidable, which we show next.

Lemma 4.39 Suppose a real algebraic number is given by a univariate polynomial
equation with integer coefficients and an open interval with rational endpoints which
contains that algebraic number as only solution of the equation. It is decidable
whether that real algebraic number is rational.

Proof. It is an easily provable consequence of Eisenstein’s irreducibility criterion
that any rational root of a polynomial anx

n + · · ·+ a0 with integer coefficients can
be written as r/s with r and s relatively prime, r|a0, and s|an. (This result is called
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the rational root theorem in [65].) Hence, there are only a finite number of rational
numbers for which the conditions defining the algebraic number have to be verified.

We can now finally prove our second main result of this chapter.

Theorem 4.40 It is decidable whether a semi-algebraic set defined by a polynomial
constraint formula is Z-semi-linear.

Proof. Let S be a semi-algebraic set of Rn. First, we verify whether S satisfies
Property SL. If S does not satisfy Property SL, it is not R-semi-linear (Proposi-
tion 4.2), whence certainly not Z-semi-linear; else it isA-semi-linear (Theorem 4.37).

If S is bounded, which can be decided in FO + linear-Z, we compute the set S0 of
all special points with Algorithm 4.18 applied to S. By Proposition 4.38, it now
suffices to decide whether all points in S0 have rational coordinates.

If S is unbounded, we apply Algorithm 4.33 to S to obtain the set S0
B of all spe-

cial points of S. Notice that, if S is Z-semi-linear, the bounding box B used in
Algorithm 4.33 is Z-semi-linear, too. By Proposition 4.38, it now suffices to decide
whether all points in S0

B have rational coordinates.

However, the Boolean query deciding the Z-semi-linearity of a semi-algebraic set is
not expressible in FO + poly.

Theorem 4.41 The Boolean query of type [0, n] → [0, 0] deciding the Z-semi-
linearity of a semi-algebraic set is not expressible in FO + poly.

Proof. Assume to the contrary that there exists a sentence σ in the first-order
language (≤, S,+,×, 0, 1), with S an n-dimensional predicate, such that, for each
possible interpretation of S as a semi-algebraic set, σ is true if and only if this
interpretation is a Z-semi-linear set of Rn.

Now, let x1, . . . , xn be real variables not occurring in σ, and transform σ into a real
constraint formula ϕ(x1, . . . , xn) by replacing each sub-formula S(y1, . . . , yn) in σ,
with y1, . . . , yn variables bound in σ, by the sub-formula (x1 = y1 ∧ . . . ∧ xn = yn).
Hence ϕ(x1, . . . , xn) evaluates to true if and only if the evaluation of (x1, . . . , xn)
is a point with rational coordinates. Now, let ψ(x) be the real constraint formula
ϕ(x, . . . , x). Then {x | ψ(x)} is the set of all rational numbers, which is not semi-
algebraic, a contradiction.





Chapter 5

Extensions of FO + linear

In Chapter 3, we concluded that, despite several positive expressiveness results,
FO+ linear is not sufficiently powerful to accompany the linear constraint database
model as a general-purpose linear query language. In this chapter, we focus on
extensions of FO + linear which remain sound for the FO + polylin queries and are
strictly more expressive than FO + linear.

First, we study a method to extend FO + linear with linear operators in a sound
way.

Second, we experiment with adding multiplicative power to FO + linear in a sound
way. The resulting linear query language is called PFOL. We characterize PFOL
as an extension of FO + linear with two particular operators. To study the expres-
siveness of PFOL, independently of FO + linear, we develop a finite representation
technique for arbitrary semi-linear sets and provide encoding and decoding algo-
rithms expressible in PFOL. As a result, every PFOL-expressible query induces an
equivalent PFOL-expressible query defined on the finite representations of the input
and output of the original query, and, hence, the queries expressible in PFOL can
be characterized in terms of the PFOL-expressible queries defined on finite repre-
sentations. We then define in a syntactic way the query language SPFOL, which
is guaranteed to yield finite outputs upon finite inputs, and we show that SPFOL
captures precisely the PFOL-expressible queries which return finite outputs upon
finite inputs. Next, we show that the expressive power of SPFOL and the linear
query language SafeEuql [63] are closely related. The query language SafeEuql was
designed to capture the ruler and compass constructions on finite point-sets in the
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two-dimensional plane. We conclude that PFOL captures those linear queries for
which the finite representation of the output can be “constructed” from the finite
representation of the input.

Finally, we discuss syntactically defined query languages which are sound and com-
plete for the FO+polylin queries and show how the existence of these query languages
can be proved using results developed in this chapter and in Chapter 4. While none
of the complete query languages we propose here can be seen as a “natural” query
language for the FO+polylin queries, their existence at least shows that it is mean-
ingful to search for more natural such languages.

5.1 FO + linear Extended with Operators

The basic idea is to extend FO + linear with certain linear operators , such as the
linear queries listed in Theorem 3.37 or the collinearity or the convex-closure query.

However, we cannot achieve our goal by adding the corresponding predicates to
FO+ linear. Indeed, from the proof of Proposition 3.36, it follows that, e.g., adding
a predicate collinear(~x, ~y, ~z), which evaluates to true if its arguments are collinear
points, would yield a language equivalent to FO + poly, as the product of real
numbers would become definable. Moreover, the set {(~x, ~y, ~z) | ~x, ~y, ~z ∈ Rn ∧
collinear(~x, ~y, ~z)} is not a semi-linear subset of R3n. Obviously, we need a less
liberal syntax to ensure that the extensions of FO + linear envisaged remain sound
with respect to the FO + polylin queries.

The subtle point in the definition of our extension of FO+ linear with operators, is
that we disallow free real variables in set terms. Before we come to the formal defi-
nition of this new query language, we first explain what we mean by an “operator.”

An operator is defined to be an FO + polylin query. The type of an operator is the
type of the corresponding query. Hence, examples of operators of type [0, n]→ [0, n]
are the collinearity and the convex-closure query. Notice that, e.g., the collinearity
query defines a mapping from semi-linear sets to semi-linear sets, i.e., a linear query,
while the corresponding predicate defines a non-semi-linear algebraic set. We also
mention that operators can be defined either as FO + polyz-lin or as FO + polya-lin

queries, which yields the opportunity to define a linear query language for the Z-
linear constraint model (FO+Z-linear extended with Z-linear operators) as well as
the A-linear constraint model (FO + A-linear extended with A-linear operators).
Unless stated otherwise, we do not make the distinction between the Z-linear and
the A-linear case, and all results proposed will be valid in both cases.

Let O be a set of operator names O provided with a type, each of which represents
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an operator op(O) of the same type.1

The query language FO+ linear +O is then defined as an extension of FO+ linear,
as follows. First, we extend the terms of FO + linear with set terms :

• If ϕ is an FO+ linear +O formula with m free value variables v1, . . . , vm and
n free real variables x1, . . . , xn, then, if k ≤ m,

{(v1, . . . , vk; x1, . . . , xn) | ϕ(v1, . . . , vm; x1, . . . , xn)}

is a set term of type [k, n] with free value variables, vk+1, . . . , vm and no free
real variables.2

• If O is an operator name in O of type [m1, n1; . . . ;mk, nk] → [m,n], and
S1, . . . , Sk are set terms of types [m1, n1], . . . , [mk, nk], respectively, then

O(S1, . . . , Sk)

is a set term of type [m,n] with free variables the free (value) variables in S1

through Sk.

Finally, we extend the atomic formulae of FO + linear:

• Let S be a set term of type [m,n], v1, . . . , vm value variables, and x1, . . . , xn
real variables. Then, S(v1, . . . , vm; x1, . . . , xn) is an atomic formula with free
value variables v1, . . . , vm, and the free variables of S, and with free real vari-
ables x1, . . . , xn.

Semantically, when actual values are substituted for the free variables, a set term
of type [m,n] represents a subset of Dm × Rn. Now, consider an atomic for-
mula of the form S(v1, . . . , vm; x1, . . . , xn). When actual values are substituted
for the free variables, this atomic formula evaluates to true if the evaluation of
(v1, . . . , vm; x1, . . . , xn) belongs to the set represented by the set term S. The full
semantics of FO + linear +O is now straightforward to define.

The following soundness property is easily shown by structural induction:

Theorem 5.1 The query language FO + linear + O only expresses FO + polylin-
expressible queries.

1To be practically relevant, the set O must be recursively enumerable.
2Observe that this definition allows us to interpret a predicate name R of type [k, n] as a set

term of type [k, n].
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The syntactic restriction that set terms do not contain free real variables is essential
for Theorem 5.1 to hold.

Without going into details, we mention that it is possible to define an algebraic
query language equivalent to FO + linear + O by extending the linear constraint
algebra defined in Section 2.3 of Chapter 2 with the operators represented by O.
This equivalence result forms a theoretical justification for the approach Güting et
al. have taken with the development of the ROSE-algebra [39, 40, 42, 44], which
extends the relational algebra with a class of spatial operators.

We now illustrate our method for extending FO+linear with an example of an FO+
linear+O query language in which we can express the collinearity and convex-closure
queries described in Section 3.3, of which it was shown they are non-expressible in
FO + linear.

Example 5.2 Let O be an infinite set of operator names segmentn of type [0, n]→
[0, n], n ≥ 0. We then associate with each operator name segmentn the operator
op(segmentn) defined by

op(segmentn)(S) = {~x ∈ Rn | (∃~y)(∃~z)(S(~y) ∧ S(~z) ∧ ~x ∈ [~y, ~z]}),
for each semi-linear set S of Rn. Thus, op(segmentn)(S) is the union of all closed
line segments with both endpoints in S. The FO + linear +O formula

segmentn(segmentn(. . . segmentn
︸ ︷︷ ︸

n times

(S) · · · ))(~x)

computes the convex closure of S. Using the convex-closure query as a macro, the
FO + linear +O formula

(∃d)(dimn({~x | convexclosure(S)(~x)}, d) ∧ d ≤ 1)

expresses the collinearity query.

In the next section, we propose an entirely different extension of FO + A-linear
which captures the queries constructible with ruler and compass. We show that
this powerful extension of FO+A-linear can alternatively be captured by extending
FO+A-linear with two A-linear operators, as a further illustration of the potential
of this paradigm for extending FO + linear.

5.2 The Query Language PFOL

In this section, we present the query language PFOL. The main idea behind the
introduction of this language is augmenting FO + linear with a limited amount of
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multiplicative power, as is needed, for instance, to express collinearity or to compute
convex closure or distances, without sacrificing the soundness of the language with
respect to the class of linear queries. We show that PFOL is indeed sound with
respect to the class of FO + poly-expressible A-linear queries, and illustrate its
expressive power with some examples. In Section 5.3, we shall make a more profound
study of the expressive power of the query language PFOL.

In order to define the linear query language PFOL, we first need to define an in-
termediate language FO + linear + P(D1, . . . , Dk), where D1, . . . , Dk are so-called
domain symbols denoting finite sets. For this purpose, we assume two sorts of vari-
ables, called real variables and product variables . We shall use x, y, z, . . ., possibly
subscripted, to denote real variables, and p, q, r, . . ., possibly subscripted, to denote
product variables. Finally, we shall use the symbol t, possibly subscripted, to denote
a variable that can either be a real variable or a product variable.

Definition 5.3 LetD1, . . . , Dk be domain symbols. An atomic partial FO+linear+
P(D1, . . . , Dk) formula is defined as follows:

• R(t1, . . . , tn), with R a predicate symbol of type [0, n] and t1, . . . , tn real vari-
ables or product variables, is an atomic partial FO + linear + P(D1, . . . , Dk)
formula;

• ∑n
i=1 aiti θ a with a1, . . . , an, and a real algebraic numbers, t1, . . . , tn real vari-

ables or product variables, and θ ∈ {=, 6=, <,≤, >,≥}, is an atomic partial
FO + linear + P(D1, . . . , Dk) formula;

• t1 = p t2, with t1 and t2 real variables or product variables and p a product
variable, is an atomic partial FO + linear + P(D1, . . . , Dk) formula; and

• t =
√

|p|, with t a real variable or a product variable and p a product variable,
is an atomic partial FO + linear + P(D1, . . . , Dk) formula.

A partial FO + linear + P(D1, . . . , Dk) formula is built from atomic partial FO +
linear + P(D1, . . . , Dk) formulae using the connectives ¬ and ∧ and the quantifiers
(∃x), with x a real variable, and (∃p ∈ Di), with p a product variable and 1 ≤ i ≤ k.

An FO + linear + P(D1, . . . , Dk) formula is a partial FO + linear + P(D1, . . . , Dk)
formula without free product variables.

In the context of sets of real numbers as interpretations for D1, . . . , Dk and a linear
constraint database containing interpretations for the relevant predicate symbols,
the semantics of an FO + linear + P(D1, . . . , Dk) formula is the obvious one.
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Notice that, for k = 0, the above definition reduces to the definition of an FO +
A-linear formula.

We now state an important soundness property of an FO+ linear + P(D1, . . . , Dk)
formula.

Proposition 5.4 Let D1, . . . , Dk be domain symbols and let ϕ(x1, . . . , xn) be an
FO + linear + P(D1, . . . , Dk) formula with free variables x1, . . . , xn. If D1, . . . , Dk

are interpreted as finite sets of real algebraic numbers, then the set {(x1, . . . , xn) |
ϕ(x1, . . . , xn)} defined by ϕ is interpreted as an A-semi-linear set.

Proof. Let, for i = 1, . . . , k, the interpretation of Di be the finite set of real
algebraic numbers {ci1, . . . , cimi

}. We consecutively eliminate product variables in
ϕ by replacing formulae of the form (∃p ∈ Di)ψ by ψ(ci1/p) ∨ . . . ∨ ψ(cimi

/p) (or
false, if Di is interpreted as the empty set). Hence, if ϕ, is the result of all the
substitutions, then {(x1, . . . , xn) | ϕ(x1, . . . , xn)} = {(x1, . . . , xn) | ϕ(x1, . . . , xn)}.
Since the latter set is expressed as the result of an FO + A-linear query on an
A-linear constraint database, it is A-semi-linear.

Observe that Proposition 5.4 is not true in the Z-linear setting, not even when the
coefficients a1, . . . , an, a in the atomic formulae

∑n

i=1 aiti θ a of PFOL are restricted
to be integers.

Using Definition 5.3, we now define the language PFOL.

Definition 5.5 A PFOL program is of the form

D1 ← ϕ1(x); . . . ;Dk ← ϕk(x);
{(x1, . . . , xn) | ϕ(x1, . . . , xn)},

with, for i = 1, . . . , k, Di domain symbols, ϕi(x) an FO+ linear + P(D1, . . . , Di−1)
formula, and ϕ(x1, . . . , xn) an FO + linear + P(D1, . . . , Dk) formula.

The semantics of a PFOL program is as follows. First, D1, . . . , Dk are consecutively
interpreted as finite sets of real algebraic numbers. In this process, Di is interpreted
as the set {x | ϕi(x)} if this set is finite, and as the empty set otherwise.3 Next, the
set {(x1, . . . , xn) | ϕ(x1, . . . , xn)} is interpreted in the obvious way.

From Proposition 5.4, the following is immediate.

3Recall that it can be decided in FO + linear whether a semi-linear set is finite, as was shown
in Section 3.1. By Proposition 5.4, the set {x | ϕi(x)} is A-semi-linear. If, in addition, it is finite,
it must therefore consist of real algebraic numbers.
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Theorem 5.6 The language PFOL is sound with respect to the FO + polya-lin

queries.

In other words, the limited multiplicative power that has been added to FO +
A-linear did not destroy the soundness of the language with respect to linearity.
To illustrate the gain in expressive power entailed by this limited addition of mul-
tiplicative power, we give examples of PFOL programs for queries known to be
inexpressible in FO +A-linear (see Section 3.3).

Remark 5.7 In order to write down PFOL programs concisely, we remark that the
syntax of an FO+linear+P(D1, . . . , Dk) formula may be relaxed without increasing
the expressive power of PFOL. In particular, on can allow atomic formulae of the
form

n∑

i=1

Pi(p1, . . . , pm)ti θ P (p1, . . . , pm),

with P1, . . . , Pn, P expressions built from the product variables p1, . . . , pm and the
real algebraic numbers, using addition, multiplication and absolute-value square
rooting, and t1, . . . , tn product or real variables. We can also allow Boolean con-
junctives other than “∧” and “¬”, and subformulae of the form (∀p ∈ D)ϕ as
abbreviation of ¬(∃p ∈ D)¬ϕ.

In the following examples, the binary predicate symbol R represents a semi-linear
set in the two-dimensional plane.

Example 5.8 The PFOL program

D1 ← (∃y)(R(x, y) ∨ R(y, x));
{() | (∀p ∈ D1)(p 6= p) ∨

(∃px ∈ D1)(∃py ∈ D1)(∃qx ∈ D1)(∃qy ∈ D1)
(∀rx ∈ D1)(∀ry ∈ D1)(R(rx, ry) ⇒
(∃λ)(rx = pxλ+ qx − qxλ ∧ ry = pyλ+ qy − qyλ))}

decides whether the points stored in R are collinear, if R is finite, and returns the
empty set otherwise.
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Example 5.9 The PFOL program

D1 ← (∃y)(R(x, y) ∨ R(y, x));
{(x, y) | (∃px ∈ D1)(∃py ∈ D1)(∃qx ∈ D1)(∃qy ∈ D1)

(∃rx ∈ D1)(∃ry ∈ D1)(∃λ1)(∃λ2)(∃λ3)
(R(px, py) ∧ R(qx, qy) ∧ R(rx, ry) ∧
λ1 ≥ 0 ∧ λ2 ≥ 0 ∧ λ3 ≥ 0 ∧
λ1 + λ2 + λ3 = 1 ∧ x = pxλ1 + qxλ2 + rxλ3 ∧
y = pyλ1 + qyλ2 + ryλ3)}

computes the convex closure of the points stored in R, if R is finite, and the empty
set otherwise.

The modification of the above PFOL program obtained by removing the conditions
λ1 ≥ 0, λ2 ≥ 0, and λ3 ≥ 0 computes the affine support of the points stored in R,
if R is finite, and the empty set otherwise.

Example 5.10 The PFOL program

D1 ← (∃y)(R(x, y) ∨R(y, x));
{(x) | (∃px ∈ D1)(∃py ∈ D1)(∃qx ∈ D1)(∃qy ∈ D1)

(R(px, py) ∧R(qx, qy) ∧
x =

√
(px − qx)2 + (py − qy)2)}

computes the set of all distances between pairs of points stored in R, if R is finite,
and the empty set otherwise.

One can also write PFOL programs deciding whether the points of an arbitrary semi-
linear set of Rn are collinear, or computing the convex closure or the affine support
of such a set. However, we shall not exhibit such programs, as their existence—as
well as the way in which they can be obtained—will follow from Theorem 5.46 and
its proof, further on in this chapter.

We conclude this section with a remark on the number of finite domains introduced
in a PFOL program. One can wonder whether it can be avoided to introduce more
than one finite domain in a PFOL program. Although this question is open, we
believe that the use of several finite domains in a PFOL query contributes to a
more natural language and cannot be avoided in some cases. To illustrate our point,
consider the query which takes a finite A-semi-linear set as input and computes, for
each positive number in the input, the 4th root of that number. The most natural
way to express this query in PFOL is as follows

D1 ← (∃x)(R(x) ∧ x ≥ 0);

D2 ← (∃p ∈ D1)(x =
√

|p|);
{(x) | (∃p ∈ D2)(x =

√

|p|)}.
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It is far from clear how to express this query in PFOL using just one finite domain.

5.3 Expressiveness of PFOL

In order to investigate the expressive power of a geometric query language on pos-
sibly infinite geometric databases, we can proceed as follows. First, we define a
finite representation of the geometric databases which may occur as input or output
of the query language under consideration. We then show that the encoding and
decoding algorithms to obtain the finite representation of a geometric database and
recompute the geometric database from its finite representation are expressible in
the query language under consideration. If this has been accomplished, the expres-
sive power of the query language can be characterized in terms of the expressive
power of the fragment of the query language returning a finite representation as
output on a finite representation as input. This idea has also been considered by
Kuijpers et al. [63], in the context of SafeEuql, and by Benedikt and Libkin [10], on
a more abstract level.

In this section, we first exhibit a finite representation for arbitrary Z-linear and A-
linear constraint databases, together with encoding and decoding algorithms that
are expressible in PFOL. The techniques used are derived from the properties of
semi-linear sets described in Chapter 3 and Chapter 4. We next study the PFOL-
expressible queries which return finite outputs on finite inputs. Thereto, we define a
new syntactical query language, called SPFOL, and prove that SPFOL captures pre-
cisely the class of PFOL-expressible queries returning finite outputs on finite inputs.
Then, we investigate the expressive power of the query language SPFOL. We show
that SPFOL has the same expressive power as the query language SafeEuql [63],
whence all ruler and compass constructions on finite sets of points in the plane can
be expressed in SPFOL. This result gives a geometric justification to SPFOL. Fi-
nally, we discuss the expressive power of PFOL in terms of the expressive power of
SPFOL.

5.3.1 Finite Representations of Semi-Linear Sets

As announced earlier, we present here an encoding and decoding algorithm, both
implementable in PFOL, which compute a finite representation of an arbitrary semi-
linear set and recompute the semi-linear set from its finite representation, respec-
tively. We proceed as follows. First, we present the encoding and decoding al-
gorithms, and define the canonical finite representation of a semi-linear set as the
result of the encoding algorithm. Then, we define finite representations as a general-
ization of canonical finite representations in such a way that the decoding algorithm
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is guaranteed to recompute the original semi-linear set on any finite representation
of it. For clarity, we first consider the case where the linear constraint database
consists of bounded semi-linear sets, and then say which modifications are required
if unbounded semi-linear sets occur.

The Bounded Case

Let S be a bounded semi-linear set of Rn. We describe the encoding. First, denote
by T the set of special points of S, as computed by Algorithm 4.33. We recall
Proposition 4.34 which states that any finite collection of hyperplanes such that
every affine support of a subset of points of T can be described as an intersection
of hyperplanes of that collection, partitions the n-dimensional space such that S is
a finite union of cells of that partition. We now describe how such a collection of
hyperplanes can be computed within PFOL. First, we determine the affine support
of T , which can be done in PFOL (Example 5.9). We also determine the dimension
of this affine support, say k ≤ n, which can be done in FO+linear (see Theorem 3.6).
Then, consider all possible sequences ~p11, . . . , ~p1k, . . . , ~pk1, . . . , ~pkk of k

2 points of T .
Let, for i = 1, . . . , k, Ai be the affine support of ~pi1, . . . , ~pik. Let U consists of all
points ~p for which ∩ki=1Ai = {~p}. Clearly, T ⊆ U , and U can be computed from T
in PFOL. (Where necessary, product variables can be introduced which range over
the set of coordinates of points in T .)

Example 5.11 We recall Example 4.8 with S the two-dimensional semi-linear set
shown in Figure 4.3 and T , the set of the special points of S, consisting of the three
corner points of the outer triangle, the three corner points of the inner triangle, and
the special point on the base of the outer triangle, 7 points in total. Clearly, the
affine support of T is the two-dimensional plane itself, and hyperplanes are lines in
the plane. All 6 lines shown in Figure 4.4 connect points of T , so the 12 points
they generate (including the 7 points of T ) all belong to U . The set U , however,
contains many more points. For instance, two additional points are obtained by
intersecting the line connecting the tops of both triangles with the two horizontal
lines in Figure 4.4.

Next, we compute the finite relation Senc with arity n(n+ 1). The relation consists
of (n+1)-tuples of n-dimensional points of U , not necessarily distinct, such that the
open4 convex closure of these points is contained in S. In particular, some tuples of
Senc denote a point of U which is contained in S, other tuples of Senc denote two

4“Open” is to be understood with respect to the topology of the affine support of the points
under consideration. In Example 5.9, the open convex closure can be obtained by requiring that
λ1, λ2, and λ3 are strictly greater than 0. This technique also works in general.
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different points of U such that the open interval between these points is contained is
S, still other tuples of Senc denote three non-collinear points of U such that the open
triangle of which these points are the corners is contained in S, and so on. Notice
that tuples of Senc consist of at most k+1 different points (k being the dimension of
S). Since product variables can be used to represent the points of the finite relation
U , and since the convex closure of a finite set of points can be computed in PFOL
(Example 5.9), we conclude that the entire query of type [n] → [(n + 1)n] which,
given a semi-linear set S as input, returns the finite relation Senc as output, can be
computed in PFOL. The output relation Senc is the canonical finite representation
of S.

We consider the following property to be the key property of this canonical finite
representation:

Proposition 5.12 Let S be a bounded semi-linear set of Rn and let Senc be the
canonical finite representation of S. Then

S =
⋃

(~p1,... ,~pn+1)∈Senc

CH(~p1, . . . , ~pn+1),

where CH(~p1, . . . , ~pn+1) is the open convex closure of ~p1, . . . , ~pn+1.

Proof. By construction of the relation Senc, the inclusion from right to left is trivial.
Therefore, we concentrate on the other inclusion. From Proposition 4.34, we know
that S is a finite union of cells of the partition of the affine support A of S induced by
the (k−1)-dimensional hyperplanes supported by the points of T . By construction,
the cells of this partition have their corner points in U . Since S is bounded, S is
a finite union of bounded cells, and since these are intersections of half-planes and
thus convex, they can be triangulated using their corner points only. Thus, each cell
contained in S, whence S itself, is fully contained in the left-hand side of the above
equality.

Decoding the canonical finite representation of a bounded semi-linear set can be
done in PFOL in the obvious way, suggested by the formula in the statement of
Proposition 5.12.

The General Case

Let S be a semi-linear set of Rn which may be unbounded. The methodology of
the bounded case can easily be extended, provided we can incorporate into the
finite representation the “corner points at infinity” of the unbounded cells of the
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partition. “Corner points at infinity” will be represented by directional vectors.
Hence, for each direction, we consider two “corner points at infinity,” one for each
orientation. To compute these directional vectors, it is necessary to introduce a
bounding box B for S (recall Definition 4.20). One such bounding box can be
computed with Algorithm 4.27, which, by Proposition 4.31, is implementable in
FO + linear, whence in PFOL.

Thus, we construct in PFOL from S ∩ B the set T of special points. Let U be, in
the same way as in the bounded case, those points ~p for which ∩ki=1Ai = {~p} with
k the dimension of the affine support of T and Ai the affine support of k + 1 linear
independent points of T . To find the “corner points at infinity,” we compute the
set V of directional vectors ~s = ±(~c − ~p), where ~c is a point of T on the boundary
of B and ~p is an arbitrary point of T , and the open interval between both points is
fully contained in S5. Using the coordinates of the points of T as a finite domain
for restricting the range of product variables, we can easily write a PFOL program
to compute V .

The canonical finite representation of S is again a finite relation Senc, but which is
now of arity (n + 1)2. Intuitively, we add an extra coordinate to each point, which
equals “1” for a “finite” corner point, and “0” for a “corner point at infinity,” i.e.,
for a directional vector.

The relation Senc is the subset of

n+1⋃

i=1

(U × {1})i × (V × {0})n+1−i,

with 1 ≤ i ≤ n + 1, consisting of all n+ 1-tuples

((~p1, 1), . . . , (~pi, 1), (~si+1, 0), . . . , (~sn+1, 0))

such that the open convex closure of all these, not necessarily different, points and
“directions” is contained in S. We notice that a point p is in this open convex closure
if there exist λ1 > 0, . . . , λi > 0, µj+1 > 0, . . . , µn+1 > 0 such that λ1 + · · ·+ λi = 1
and

~p = λ1~p1 + · · ·+ λi~pi + µi+1~si+1 + · · ·+ µn+1~sn+1.

Since product variables can be used to represent the points of the finite relations
U and V , we conclude that the entire query of type [n] → [(n + 1)2], that, given a
semi-linear set S as input, returns its canonical finite representation as output, can
be computed in PFOL.

5The latter condition restricts the set of directional vectors to be considered, but will turn out
not to be strictly necessary.
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Example 5.13 Recall Example 4.29 with the two-dimensional set S shown with a
bounding box B in Figure 4.7. For convenience, we shall assume that the angular
point has coordinates (0, 0), while the special points on the bounding box have
coordinates (1, 0) and (1, 0.5), respectively. The set T consists of those points.
Clearly, U = T . The set V consists of 6 directional vectors, with coordinates (1, 0),
(−1, 0), (1, 0.5), (−1,−0.5), (0, 0.5), and (0,−0.5), respectively. The canonical finite
representation Senc of S is the closure under permutations of generalized points
within one tuple of the set

{(0, 0, 1; 0, 0, 1; 0, 0, 1), (1, 0, 1; 1, 0, 1; 1, 0, 1), (1, 1
2
, 1; 1, 1

2
, 1; 1, 1

2
, 1),

(0, 0, 1; 1, 0, 1; ∗, ∗, ∗), (0, 0, 1; 1, 1
2
, 1; ∗, ∗, ∗), (1, 0, 1; 1, 1

2
, 1; ∗, ∗, ∗),

(0, 0, 1; 1, 0, 0; ∗, ∗, ∗), (0, 0, 1; 1, 1
2
, 0; ∗, ∗, ∗), 1, 0, 1; 1, 0, 0; ∗, ∗, ∗),

(1, 1
2
, 1; 1, 1

2
, 0; ∗, ∗, ∗), (0, 0, 1; 1, 0, 1; 1, 1

2
, 1), (1, 0, 1; 1, 1

2
, 1; 1, 0, 0),

(1, 0, 1; 1, 1
2
, 1; 1, 1

2
, 0), (0, 0, 1; 1, 0, 1; 1, 1

2
, 1), (0, 0, 1; 1, 1

2
, 1; 1, 0, 0),

(0, 0, 1; 1, 0, 0; 1, 1
2
, 0), (1, 0, 1; 1, 0, 0; 1, 1

2
, 0), (1, 1

2
, 1; 1, 0, 0; 1, 1

2
, 0)},

with (∗, ∗, ∗) standing for one of the other points occuring in that tuple.

Proposition 5.12 can immediately be generalized:

Proposition 5.14 Let S be an arbitrary semi-linear set of Rn and let Senc be the
canonical finite representation of S. Then

S =
⋃

((~p1,t1),... ,(~pn+1,tn+1))∈Senc

CH((~p1, t1), . . . , (~pn+1, tn+1)),

where, for i = 1, . . . , n + 1, ti = 1 or ti = 0 and CH((~p1, t1), . . . , (~pn+1, tn+1)) ⊆ Rn

is the open convex closure of (~p1, t1), . . . , (~pi, ti), where, for i = 1, . . . , n+ 1, (~pi, ti)
is interpreted as the “finite” corner point ~pi, if ti = 1, and as the “corner point at
infinity” described by the directional vector ~pi, if ti = 0.

Again, decoding the canonical finite representation of an arbitrary semi-linear set
can be done in PFOL in the obvious way, suggested by the formula in the statement
of Proposition 5.14.

We now define a finite representation of S as any relation of the right arity that
satisfies Proposition 5.14. (For these relations, the decoding query described above
always returns the original semi-linear set).

We now turn back to our motivation for considering finite representations, namely
to study the expressive power of the query language PFOL. We illustrate how the
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results on finite representations of semi-linear sets can be used to lift query languages
defined on finite databases to query languages defined on linear constraint databases.

Let Q be a query language defined on finite databases. We define Lift(Q) to be
the query language defined on arbitrary linear constraint databases consisting of all
compositions of the PFOL encoding program, a query of Q, and the PFOL decoding
program. The following property is now immediate.

Theorem 5.15 Let P be a linear query language defined on arbitrary semi-linear
databases that is at least as expressive as PFOL. Let Q be a query language on finite
databases whose expressive power is bounded by P. Then Lift(Q) is a query language
on arbitrary databases whose expressive power is bounded by P. If, moreover, Q
is complete for the P-expressible queries from finite inputs to finite outputs, then
Lift(Q) has the same expressive power as P.

To use Theorem 5.15 for our purposes, we need the following definition.

Definition 5.16 A PFOL-finite program is a PFOL program which returns finite
outputs upon finite inputs.

Example 5.17 The PFOL programs in Examples 5.8 and 5.10 are examples of
PFOL-finite programs.

Clearly, PFOL has the same expressive power as Lift(PFOL-finite). The language
PFOL-finite is defined semantically, however, and, therefore, difficult to study. In
the following subsection, we syntactically define a related language of PFOL, called
SPFOL, which is “safe” with respect to finite databases, i.e, an SPFOL program
applied on a finite database as input always yields a finite database as output.
Moreover, we show that the language SPFOL and the language PFOL-finite are
equivalent in expressive power. We then study the expressive power of the language
SPFOL.

5.3.2 The Language SPFOL

We start with the definition of SPFOL.

Definition 5.18 Let D1, . . . , Dk be domain symbols. An atomic partial safe FO+
linear + P(D1, . . . , Dk) formula and its set of free variables are defined as follows:
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• true is an atomic partial safe FO + linear + P(D1, . . . , Dk) formula, and its
set of free variables is the empty set;

• adom(t), with t a real variable or a product variable, is an atomic partial safe
FO + linear + P(D1, . . . , Dk) formula, and its set of free variables equals {t};

• R(t1, . . . , tn), with R a predicate symbol of type [0, n] and t1, . . . , tn real vari-
ables or product variables, is an atomic partial safe FO+linear+P(D1, . . . , Dk)
formula, and its set of free variables equals {t1, . . . , tn};

• Q1(p1, . . . , pn) x = Q2(p1, . . . , pn) ∧ Q1(p1, . . . , pn) 6= 0, p1, . . . , pn prod-
uct variables, x a real variable, and Q1 and Q2 expressions built from the
product variables p1, . . . , pn and the real algebraic numbers using addition,
multiplication, and absolute-value square rooting, is an atomic partial safe
FO + linear + P(D1, . . . , Dk) formula6, and its set of free variables equals
{x, p1, . . . , pn}; and

• Q(p1, . . . , pn) θ 0, with p1, . . . , pn product variables and Q an expression built
from the product variables p1, . . . , pn and the real algebraic numbers using ad-
dition, multiplication, and absolute-value square rooting, is an atomic partial
safe FO + linear + P(D1, . . . , Dk) formula, and its set of free variables equals
{p1, . . . , pn}.

A partial safe FO + linear + P(D1, . . . , Dk) formula and its set of free variables are
inductively defined as follows:

• an atomic partial safe FO + linear + P(D1, . . . , Dk) formula with set of free
variables F is a partial safe FO + linear + P(D1, . . . , Dk) formula with set of
free variables F ;

• if ϕ(x1, . . . , xm, p1, . . . , pr) is a partial safe FO+linear+P(D1, . . . , Dk) formula
with set of free variables {x1, . . . , xm, p1, . . . , pr}, and ψ(x1, . . . , xm, q1, . . . , qs)
is a partial safe FO+ linear+P(D1, . . . , Dk) formula with set of free variables
{x1, . . . , xm, q1, . . . , qs}, then

ϕ(x1, . . . , xm, p1, . . . , pr) ∨ ψ(x1, . . . , xm, q1, . . . , qs)

is a partial safe FO+ linear+P(D1, . . . , Dk) formula with set of free variables
{x1, . . . , xm, p1, . . . , pr, q1, . . . , qs};

6Obviously, if Q1(p1, . . . , pn) is a constant a 6= 0, we abbreviate this atomic partial safe FO +
linear + P(D1, . . . , Dk) formula to a x = Q2(p1, . . . , pn).
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• if ϕ(x1, . . . , xm, p1, . . . , pr) is a partial safe FO+linear+P(D1, . . . , Dk) formula
with set of free variables {x1, . . . , xm, p1, . . . , pr}, and ψ(y1, . . . , yn, q1, . . . , qs)
is a partial safe FO+ linear+P(D1, . . . , Dk) formula with set of free variables
{y1, . . . , yn, q1, . . . , qs}, then

ϕ(x1, . . . , xm, p1, . . . , pr) ∧ ψ(y1, . . . , yn, q1, . . . , qs)

is a partial safe FO+ linear+P(D1, . . . , Dk) formula with set of free variables
{x1, . . . , xm, y1, . . . , yn, p1, . . . , pr, q1, . . . , qs};

• if ϕ(x1, . . . , xm, p1, . . . , pr) is a partial safe FO+linear+P(D1, . . . , Dk) formula
with set of free variables {x1, . . . , xm, p1, . . . , pr}, and ψ(y1, . . . , yn, q1, . . . , qs)
is a partial safe FO+ linear+P(D1, . . . , Dk) formula with set of free variables
{y1, . . . , yn, q1, . . . , qs}, and {y1, . . . , yn} ⊆ {x1, . . . , xm}, then

ϕ(x1, . . . , xm, p1, . . . , pn) ∧ ¬ψ(y1, . . . , yn, q1, . . . , qs)

is a partial safe FO+ linear+P(D1, . . . , Dk) formula with set of free variables
{x1, . . . , xm, p1, . . . , pr, q1, . . . , qs}; and

• if ϕ(x1, . . . , xm, p1, . . . , pr) is a partial safe FO+linear+P(D1, . . . , Dk) formula
with set of free variables {x1, . . . , xm, p1, . . . , pr}, and if 1 ≤ i ≤ r and 1 ≤
j ≤ k, then

(∃pi ∈ Dj)ϕ(x1, . . . , xm, p1, . . . , pr)

is a partial safe FO+ linear+P(D1, . . . , Dk) formula with set of free variables
{x1, . . . , xm, p1, . . . , pi−1, pi+1, . . . , pr}.

We define a safe FO+linear+P(D1, . . . , Dk) formula as a partial safe FO+linear+
P(D1, . . . , Dk) formula without free product variables.

In the context of sets of real numbers as interpretations for D1, . . . , Dk and a linear
constraint database containing interpretations for the relevant predicate symbols,
the semantics of a safe FO + linear + P(D1, . . . , Dk) formula is the obvious one,
provided adom is interpreted as the active domain of the input database.

The syntax of an SPFOL program is the same as that of a PFOL program, except
that all formulae are safe.

The semantics of an SPFOL program is defined in the same way as the semantics
of a PFOL program.

Example 5.19 The PFOL program in Example 5.10 is actually an SPFOL pro-
gram, provided D is defined using the active-domain atom.
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The language SPFOL has the following basic properties:

Proposition 5.20 1. Each constant linear query returning an input-independent
finite output can be expressed in SPFOL.

2. Each SPFOL program is equivalent to a PFOL program.

3. SPFOL programs return finite outputs upon finite inputs.

The first statement follows from the observation that the most obvious way to de-
scribe a finite relation yields a safe FO + linear formula. The second statement is
obvious, whereas the third statement can be proved by structural induction.

Observe, as in the case of PFOL, that SPFOL programs do not necessarily return
finite Z-semi-linear sets as output on Z-semi-linear sets as input, not even when the
coefficients in the polynomials of the atomic formulae of SPFOL are restricted to be
integer.

The remainder of this subsection is concerned with proving that, on finite inputs,
the syntactically defined language SPFOL has the same expressive power as the
semantically defined language PFOL-finite. The proof is built on a chain of partial
results. Unless stated otherwise, all SPFOL-expressible queries considered below are
implicitly assumed to take finite inputs only.

We first introduce the following notion.

Definition 5.21 Let Q be a linear query. The active range of Q upon a possible
input of Q is the set of all real numbers in the corresponding output of Q. The active
range query is the query returning upon a possible input of Q the active range of
Q. An active range superset of Q upon a possible input of Q is a superset of the
active range of Q. An active range superset query of Q is any query returning upon
a possible input of Q an active range superset of Q.

We can now state our first partial result, which will turn out to be of key importance.

Lemma 5.22 Let Q be an FO + polylin query returning finite outputs upon finite
inputs. If an active range superset query of Q is expressible in SPFOL, then Q is
expressible in SPFOL.

Proof. Let ϕ(x1, . . . , xn) be an FO + poly formula computing Q. From a result
by Benedikt and Libkin [8, 9], it follows that there exists an equivalent formula
ψ(x1, . . . , xn) in which all quantified variables range over the active domain (of the
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input of ψ). Without loss of generality, we assume that there are no universal
quantifiers in ψ. Let Din be a domain symbol corresponding to the active domain
of the input. Let ψ̃ be ψ in which (i) each bound variable x has been replaced by
a distinct product variable px, and (ii) each quantifier “(∃x)” has been replaced by
“(∃px ∈ Din)” Finally, let

D1 ← ϑ1(x); . . . ;Dk ← ϑk(x);
{(x) | ϑ(x)}

be an SPFOL program computing an active range superset query of Q. Consider
the “program”

Din ← adom(x);
D1 ← ϑ1(x); . . . ;Dk ← ϑk(x);
Dout ← ϑ(x);
{(x1, . . . , xn) | (∃p1 ∈ Dout) . . . (∃pn ∈ Dout)(x1 = p1 ∧ . . . ∧ xn = pn ∧

ψ̃(p1, . . . , pn)}.

It should first be observed that ψ̃(p1, . . . , pn) can be interpreted as a safe FO +
linear + P(Din, D1, . . . , Dk, Dout) formula, because (i) all quantification is of the
form “(∃px ∈ Din),” and (ii) apart from quantification, the syntax of SPFOL does
not impose restrictions on formulae in which only product variables occur. Hence
the above “program” is an SPFOL program. Clearly, it expresses Q.

The following result is immediate from Lemma 5.22:

Proposition 5.23 The restriction to finite inputs of each FO + poly-expressible
Boolean query is expressible in SPFOL.

Lemma 5.24 The active range query of an SPFOL-expressible query is SPFOL-
expressible.

Proof. Let Q be an SPFOL-expressible query. Then, clearly, the active range query
of Q is expressible in FO + poly. By Lemma 5.22, it thus suffices to show that an
active range superset query of Q is expressible in SPFOL. Let

D1 ← ϕ1(x); . . . ;Dk ← ϕk(x);
{(x1, . . . , xn) | ϕ(x1, . . . , xn)}

be an SPFOL program for Q. Let ψ(xi1 , . . . , xir , p1, . . . , pm), 1 ≤ i1, . . . , ir ≤ n
and p1, . . . , pm product variables, a partial safe subformula of ϕ(x1, . . . , xn) with
set of free variables {xi1 , . . . , xir , p1, . . . , pm}. For j = 1, . . . , m, let uj, 1 ≤ uj ≤
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k, be the index such that pj is quantified over Duj in ϕ. From the partial safe
FO + linear + P(D1, . . . , Dk) formula ψ(xi1 , . . . , xir , p1, . . . , pm), we define the safe
FO + linear + P(D1, . . . , Dk) formula

ψ(xi1 , . . . , xir) ≡ (∃p1 ∈ Du1) . . . (∃pm ∈ Dum)ψ(xi1 , . . . , xir , p1, . . . , pm).

Then, by structural induction, we prove, for each partial safe subformula

ψ(xi1 , . . . , xir , p1, . . . , pm)

of ϕ(x1, . . . , xn), that an active range superset query of the query expressed by the
SPFOL program

D1 ← ϕ1(x); . . . ;Dk ← ϕk(x);

{(xi1 , . . . , xir) | ψ(xi1 , . . . , xir)}
can be expressed in SPFOL. We shall call the above program Pψ.

If ψ is atomic, then either the empty set, {(x) | adom(x)}, or Pψ itself is an SPFOL
program computing an active range super set query of Pψ, settling the basis of the
induction.

If ψ has the form ψ1 ∨ ψ2, with ψ1 and ψ2 safe, then the query of which the output
is the union of the output of an active range superset query of Pψ1 and the output
of an active range superset query of Pψ2 is an active range superset query of Pψ.
(The validity of this claim hinges on the fact that ψ1 and ψ2 have the same free real
variables.) Clearly, this union can be computed in SPFOL if the subqueries can be
computed in SPFOL.

If ψ has the form ψ1 ∧ ψ2 or ψ1 ∧ ¬ψ2, with ψ1 and ψ2 safe, then an active range
superset query of Pψ1 is also an active range superset query of Pψ.

Finally, if ψ has the form (∃pi ∈ Dui)ϑ, with ϑ safe, then ψ = ϑ, whence an active
range superset query of Pϑ is trivially an active range superset query of Pψ = Pϑ,
concluding the induction step.

It now suffices to observe that ϕ = ϕ, whence Pϕ is an SPFOL program expressing
Q.

We now prove the following elementary property.

Proposition 5.25 The SPFOL-expressible queries are closed under composition.

Proof. Consider a composition

R1 := Q1 ; . . . ; Rm := Qm ; Q(R1, . . . , Rm),
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with Q1, . . . , Qm, andQ SPFOL-expressible queries, and R1, . . . , Rm the input pred-
icates of Q. To compute this composition, the input predicates in Q must be sub-
stituted by the corresponding outputs of Q1, . . . , Qm.

Let, for i = 1, . . . , m,

Di1 ← ϕi1(x); . . . ;Diki ← ϕiki(x);
{(x1, . . . , xni

) | ϕi(x1, . . . , xni
)}

be an SPFOL program computing Qi. Also, let, for i = 1, . . . , m,

Ei1 ← ϑi1(x); . . . ;Eili ← ϑili(x);
{(x) | ϑi(x)}

be an SPFOL program expressing the active range query of Qi (Lemma 5.24). Fi-
nally, let

D1 ← ψ1(x); . . . ;Dk ← ψk(x);
{(x1, . . . , xn) | ψ(x1, . . . , xn)}

be an SPFOL program computing Q. Without loss of generality, we may assume
that all domain symbols are pairwise different (even if some of the queries involved
are identical).

Let ψ1, . . . , ψk and ψ be obtained from ψ1, . . . , ψk and ψ, respectively, by the fol-
lowing substitutions:

1. each occurrence of “Ri(t1, . . . , tni
),” 1 ≤ i ≤ m, with t1, . . . , tni

real variables
or product variables, is replaced by “ϕi(t1, . . . , tni

)”; and

2. each occurrence of “adom(t)”, with t a real variable or a product variable, is
replaced by “ϑ1(t) ∨ . . . ∨ ϑm(t)”.

Then,
D11 ← ϕ11(x); . . . ;D1k1 ← ϕ1k1(x);

...
Dm1 ← ϕm1(x); . . . ;Dmkm ← ϕmkm(x);
E11 ← ϑ11(x); . . . ;E1l1 ← ϑ1l1(x);

...
Em1 ← ϑm1(x); . . . ;Emlm ← ϑmlm(x);

D1 ← ψ1(x); . . . ;Dk ← ψk(x);

{(x1, . . . , xn) | ψ(x1, . . . , xn)}
is an SPFOL program computing the composition under consideration.
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We shall make extensive use of Proposition 5.25 in the remainder of this section,
however, without each time explicitly mentioning this.

The proof that each PFOL-finite program can be transformed into an equivalent
SPFOL program will use structural induction. Unfortunately, intermediate re-
sults (i.e., outputs corresponding to subformulae of formulae in the program) of
PFOL-finite programs may be infinite. Therefore, we intend to prove by structural
induction that finite representations of these intermediate results can be computed
in SPFOL. For this purpose, we prove the following lemmas.

Lemma 5.26 Let S be a semi-linear set of Rn. There exists an SPFOL program
that, upon a finite representation of S as input, computes a finite representation of
the complement Rn − S as output.

Proof. Let Senc ⊆ R(n+1)2 be an arbitrary finite representation of S. From Senc, we
shall compute the corner points (both finite and infinite) of the cells of a partition
P of Rn into convex cells such that, for every tuple of Senc, the convex subset of
Rn represented by that tuple is a union of cells of P. Consequently, S, whence also
Rn−S, is a union of cells of P. From the obtained corner points, we shall compute
a finite representation of Rn − S.
We show that the entire computation can be expressed in FO + poly, and that the
set of the coordinates of the corner points, which is an active range superset of this
query, can be computed in SPFOL. By Lemma 5.22, it then follows that the entire
computation can be expressed in SPFOL.

Let T be the set of all (finite) corner points occurring in a tuple of Senc, all points

~p+ ~d, with ~p a (finite) corner point and ~d a directional vector occurring in a tuple of
Senc , the origin ~0 of Rn, and the unit vectors ~e1, . . . , ~en of the canonical coordinate
basis of Rn. Clearly, T can be computed from Senc in SPFOL.

Next, we perform the construction in Subsection 5.3.1 to obtain the set U consisting
of the (finite) points that can be described as intersections of n (n− 1)-dimensional
hyperplanes supported by points of T . Let ~pij ≡ (pij1, . . . , pijn), 1 ≤ i, j ≤ n,
be points of T . The condition that ~pi1, . . . , ~pin, 1 ≤ i ≤ n, supports an (n −
1)-dimensional hyperplane of Rn has the form Qi(pi11, . . . , pinn) 6= 0, with Qi a
polynomial in pi11, . . . , pinn, expressing some determinant. To obtain the common
point(s) of the n hyperplanes, we have to solve a system of equations







Q11(p111, . . . , p1nn) x1 + · · ·+Q1n(p111, . . . , p1nn) xn = Q10(p111, . . . , p1nn);
...

Qn1(pn11, . . . , pnnn) x1 + · · ·+Qnn(pn11, . . . , pnnn) xn = Qn0(pn11, . . . , pnnn),
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where, for i = 1, . . . , n,

Qi1(pi11, . . . , pinn) x1 + · · ·+Qin(pi11, . . . , pinn) xn = Qi0(pi11, . . . , pinn)

is an equation describing the hyperplane supported by ~pi1, . . . , ~pin. This system has
a unique solution if and only its determinant is nonzero, which is a condition of the
form Q(p111, . . . , pnnn) 6= 0, with Q a polynomial in p111, . . . , pnnn. If this is the
case, then the solution is given by equations of the form

Q(p111, . . . , pnnn) xi = Q′
i0(p111, . . . , pnnn),

with Q and Q′
10, . . . , Q

′
n0 polynomials in p111, . . . , pnnn. Since, obviously, product

variables can be used to represent coordinates of points of T , it follows that U can
be computed from T in SPFOL.

Since ~0, ~e1, . . . , ~en are in T , the (finite) corner points occurring in a tuple of Senc also
occur in U . Hence, the partition of Rn into convex cells defined by T (of which the
set of the (finite) corner points of its cells is precisely U) satisfies the requirements
imposed at the beginning of this proof.

Next, let V = {~p− ~q | ~p, ~q ∈ U ∧ ~p 6= ~q}. The set V is a set of directional vectors,
which will be used to describe the infinite cells of P. (Actually, V generally contains
more directional vectors than needed, resulting in a refinement of P, which is no
objection).

Clearly, U∪V can be computed from T in SPFOL. Since the (finite) corner points of
U and the directional vectors of V suffice to obtain a finite representation of Rn−S,
the query returning the set of the coordinates of the points of U and the points of V
upon input Senc is an active range superset query of the query we intend to express.
By Lemma 5.24, this query is computable in SPFOL.

Finally, to obtain the finite representation of Rn − S, we must select all tuples of
n + 1 (finite and infinite) points of U and V (of which at least one belongs to U)
for which the open convex closure does not meet any of the open convex closures
of n + 1 (finite and infinite) points in a tuple of Senc. Obviously, this query can be
expressed in FO + poly.

Lemma 5.27 Let S1 and S2 be semi-linear sets of Rn. There exist SPFOL programs
that, upon finite representations of S1 and S2 as input, compute finite representations
of the union S1 ∪ S2, respectively the intersection S1 ∩S2, respectively the difference
S1 − S2 as output.

Proof. Let Senc

1 , Senc

2 ⊆ R(n+1)2 be arbitrary finite representations of S1 and S2,
respectively. Clearly, Senc

1 ∪ Senc

2 is a finite representation of S1 ∪ S2, which can be
computed from Senc

1 and Senc

2 in SPFOL.
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Since intersection can be expressed in terms of union and complementation, and
since difference can be expressed in terms of intersection and complementation, the
above result and Lemma 5.26 together with Proposition 5.25 yields the second and
the third claim of Lemma 5.27.

Lemma 5.28 Let S be a semi-linear set of Rn. Let i1, . . . , im be indices, not neces-
sarily distinct and not necessarily in ascending order, such that 1 ≤ i1, . . . , im ≤ n.
There exists an SPFOL program that, upon a finite representations of S as input,
computes a finite representation of the generalized projection

πi1,... ,im(S) = {(xi1 , . . . , xim) | (x1, . . . , xn) ∈ S}

as output.

Proof. Let Senc ⊆ R(n+1)2 be an arbitrary finite representation of S. By definition,

S =
⋃

(~x1,... ,~xn+1)∈Senc

CH(~x1, . . . , ~xn+1).

Hence,

πi1,... ,im(S) =
⋃

(~x1,... ,~xn+1)∈Senc

CH(πi1,... ,im,n+1(~x1), . . . , πi1,... ,im,n+1(~xn+1)).

In these expressions, ~x1, . . . , ~xn+1 are in Rn×{0, 1} and represent generalized points
of Rn; clearly, πi1,... ,im,n+1(~x1), . . . , πi1,... ,im,n+1(~xn+1) are in Rm × {0, 1} and repre-
sent the generalized points of Rn that are the relevant projections of ~x1, . . . , ~xn+1.
Furthermore, if ~y1, . . . , ~yn+1 ∈ Rm × {0, 1} are generalized points of Rm, then
CH(~y1, . . . , ~yn+1), which is topologically open in its affine support, is the union of
all convex closures CH(~yj1, . . . , ~yjm+1) for which (i) 1 ≤ j1, . . . , jm+1 ≤ n + 1 (no-
tice that j1, . . . , jm+1 are not necessarily all distinct or in ascending order), (ii)
there is at least one finite point among ~yj1, . . . , ~yjm+1, and (iii) CH(~yj1, . . . , ~yjm+1) ⊆
CH(~y1, . . . , ~yn+1). From these observations, it follows that a finite representation of
πi1,... ,im(S) can be computed from the relevant projections of the generalized points
in Senc. Obviously, this computation can be expressed in FO + poly. Moreover,
the active domain of the input of this query, which is a primitive in SPFOL, is an
active range superset of this query. By Lemma 5.22, it follows that this query can
be expressed in SPFOL.

Lemma 5.29 Let S be a semi-linear set of Rn. Let m ≥ 0. There exists an
SPFOL program that, upon a finite representation of S as input, computes a finite
representation of S ×Rm as output.
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Proof. Because of Proposition 5.25, it suffices to consider the case m = 1 (Notice
that S × R0 = S). Let Senc ⊆ R(n+1)2 be an arbitrary finite representation of S.
Then, for each tuple (~x1, i1 ; . . . ; ~xn+1, in+1) of S

enc,

{(~x1, 0, i1 ; . . . ; ~xn+1, 0, in+1 ; 0, . . . , 0
︸ ︷︷ ︸

n times

,±1, 0), (~x1, 0, i1 ; . . . ; ~xn+1, 0, in+1 ; ~x1, 0, i1)},

which is a subset of R(n+2)2 , is a finite representation of

CH((~x1, i1), . . . , (~xn+1, in+1))×R.

(In the above expression, (~xj , ij), 1 ≤ j ≤ n + 1 and ij ∈ {0, 1}, is an element of
Rn+1 and represents a generalized point of Rn; semi-colons have been inserted for
clarity.) Clearly, a finite representation of S × R can be computed from Senc in
FO + poly by making the union over all tuples of Senc of the finite representations.
Moreover, the active domain of the input of this query, which is a primitive in
SPFOL, augmented with constants 0, +1, and −1, is an active range superset of
this query. By Lemma 5.22, it follows that this query can be expressed in SPFOL.

Lemma 5.30 Let S1 be a semi-linear set of Rn, and S2 a semi-linear set of Rm.
There exists an SPFOL program that, upon finite representations of S1 and S2 as
input, computes a finite representation of the Cartesian product S1×S2 ⊆ Rn+m as
output.

Proof. We have that S1 × S2 = S1 ×Rm ∩ Rn × S2. The result now follows from
Lemmas 5.27, 5.28, and 5.29 (notice that Rn×S2 can be obtained from S2×Rn by
a generalized projection), together with Proposition 5.25.

Lemmas 5.27, 5.28, and 5.30 yield some more closure properties for SPFOL.

Lemma 5.31 Let S be an arbitrary finite semi-linear set of Rn, and let Senc be
the unique finite representation of S. The query mapping S to Senc and the query
mapping Senc to S are both SPFOL-expressible.

Proof. We start by observing that

Senc = {(~x, 1; . . . ; ~x, 1
︸ ︷︷ ︸

n+1 times

) | ~x ∈ S}.

Obviously, the query mapping S to Senc and the query mapping Senc to S are both
FO + poly-expressible. For the former query, the active range equals the active
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domain—which is an SPFOL primitive—augmented with the constant 1. Hence,
the active range query is clearly SPFOL-expressible. For the query mapping Senc

to S, the active domain is an active range superset. By Lemma 5.22, it follows that
both queries in the statement of Lemmma 5.31 are SPFOL-expressible.

The following is an immediate corollary to Lemmas 5.27, 5.28, 5.30, and 5.31, and
Proposition 5.25.

Proposition 5.32 The SPFOL-expressible queries are closed under union, inter-
section, difference, generalized projection, and Cartesian product.

We are now ready for the proof that each PFOL-finite program can be transformed
into an equivalent SPFOL program. The proof consists of a double induction, the
inner one of which is exhibited in Lemma 5.33.

Lemma 5.33 Let Q be a linear query returning finite outputs upon finite inputs,
and let

D1 ← ϕ1(x); . . . ;Dk ← ϕk(x);
{(x1, . . . , xn) | ϕ(x1, . . . , xn)}

be a PFOL program computing Q. Assume that, for i = 1, . . . , k, there exists an
SPFOL program which computes the interpretation of the domain symbol Di in the
above program. Then there exists an SPFOL program computing Q.

Proof. Let, for each product variable p that occurs in ϕ (as bound variable), u(p),
1 ≤ u(p) ≤ k, be the index such that p is quantified over Du(p). (Without loss of
generality, we assume that each product variable occurs in only one quantification.)
For each real variable x that occurs in ϕ (as bound or unbound variable), we put
u(xi) = 0. In the remainder of this proof, we interpret D0 as R. If t1, . . . , tr are
real variables or product variables occurring in ϕ, then, by the assumption and by
Lemmas 5.28, 5.29, 5.30, and 5.31, and Proposition 5.25, the query returning upon
a possible input of Q a finite representation of Du(t1)× . . .×Du(tr) can be computed
in SPFOL. Now, let ψ(t1, . . . , tr) be a subformula of ϕ(x1, . . . , xn) with set of free
real and product variables {t1, . . . , tr}. We define the output of ψ(t1, . . . , tr) as the
query returning upon a possible (in particular, finite) input of Q the set

{(t1, . . . , tr) | ψ(t1, . . . , tr) ∧ Du(t1)(t1) ∧ . . . ∧ Du(tr)(tr)}

as output. By structural induction, we show , for each such subformula ψ(t1, . . . , tr)
of ϕ(x1, . . . , xn), that there exists an SPFOL program returning upon a possible
input of Q a finite representation of the output of ψ(t1, . . . , tr).

For the basis of this induction, we first examine the atomic subformulae.
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• R(t1, . . . , tr), with R an input predicate symbol . By definition, the output of
R(t1, . . . , tr) is the intersection of R with Du(t1)×. . .×Du(tr). By Lemmas 5.27
and 5.31, and Proposition 5.25, it follows that a finite representation of the
output of R(t1, . . . , tr) is also SPFOL-computable.

• ∑r
i=1 aiti θ a, with a1, . . . , ar and a real algebraic numbers and θ ∈ {=, 6=

, <,≤, >,≥}. The output of
∑r

i=1 aiti θ a is the intersection of the set
{(y1, . . . , yr) |

∑r
i=1 aiyi θ a} with Du(t1) × . . . × Du(tr). The query return-

ing the first set is a constant linear query (the output is input-independent).
Therefore, the query returning some finite representation of this set is also
a constant query, which, by Proposition 5.20, is SPFOL-computable. By
Lemma 5.27 and Proposition 5.25, it follows that a finite representation of
the output of

∑r
i=1 aiti θ a is also SPFOL-computable.

• t1 = pt2, with p a product variable. First, consider the query Qinit which,
upon input the interpretation of Du(p), returns the set {(y1, y2, y3) | y1 =
y3y2 ∧ Du(p)(y3)}. The partial output of this query corresponding to some
fixed value of y3 is a line in R3 through the points (0, 0, y3) and (y3, 1, y3).
Hence, the SPFOL program (using some vector notation for the purpose of
abbreviation)

D ← Du(p)(x);
{(~z1, ~z2, ~z3, ~z4) | (∃p ∈ D)(~z1 = (0, 0, p, 1) ∧ ~z2 = (p, 1, 0, 0) ∧

~z3 = (−p,−1, 0, 0) ∧ ~z4 = ~z3)}
computes, upon input the interpretation of Du(p), a finite representation of the
output of Qinit. By Proposition 5.25, it follows that the query which, upon
input a possible input of Q, returns a finite representation of Qinit, is also
SPFOL-computable. Since the output of t1 = pt2 is the intersection of the
output of Qinit with Du(t1)×Du(t2)×Du(p), it follows from Lemma 5.27 that a
finite representation of the output of t1 = pt2 is also SPFOL-computable.

• t =
√

|p|, with p a product variable. First, consider the query Qinit which,
upon input the interpretation of Du(p), returns the finite set {(y1, y2) | y1 =
√

|y2| ∧ Du(p)(y2)}. This query is computed by the SPFOL program

D ← Du(p)(x);

{(y1, y2) | (∃p ∈ D)(y1 =
√

|p| ∧ y2 = p)}.
Since the output of Qinit is always finite, it follows from Lemma 5.31 that the
query returning a finite representation of the output of Qinit is also SPFOL-
computable. Since the output of t =

√

|p| is the intersection of the output of
Qinit with Du(t)×Du(p), it follows from Lemma 5.27 that a finite representation

of the output of t =
√

|p| is also SPFOL-computable.
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This concludes the basis of the induction. For the induction step, we consider the
ways in which larger formulae can be constructed.

• Boolean combination. It suffices to consider the connectives “¬” and ∧.”
First, let ¬ψ(t1, . . . , tr) be a subformula of ϕ(x1, . . . , xn). Clearly, if a finite
representation of the output of ψ(t1, . . . , tr) is SPFOL-computable, then, by
Lemma 5.26 and Proposition 5.25, a finite representation of the output of
¬ψ(t1, . . . , tr) is also SPFOL-computable. Next, let ψ1(t1, . . . , tv, . . . , ts) ∧
ψ2(tv, . . . , ts, . . . , tr) be a subformula of ϕ(x1, . . . , xn). Without loss of gen-
erality, we assume that tv, . . . , ts are the free (real and product) variables
shared by ψ1 and ψ2. If S1 ⊆ Rs and S2 ⊆ Rr−v+1 are the outputs of
ψ1(t1, . . . , ts) and ψ2(tv, . . . , tr), then S1×Rr−s ∩ Rv−1× S2 is the output of
ψ1(t1, . . . , tv, . . . , ts) ∧ ψ2(tv, . . . , ts, . . . , tr). Hence, if finite representations of
the outputs of ψ1(t1, . . . , ts) and ψ2(tv, . . . , tr) are SPFOL-computable, then,
by Lemmas 5.27, 5.28, and 5.29, and Proposition 5.25, a finite representa-
tion of the output of ψ1(t1, . . . , tv, . . . , ts) ∧ ψ2(tv, . . . , ts, . . . , tr) is SPFOL-
computable.

• Quantification. If (∃x)ψ(t1, . . . , tr), with x ∈ {t1, . . . , tr} a real variable,
is a subformula of ϕ(x1, . . . , xn), then the output of (∃x)ψ(t1, . . . , tr) is ob-
tained from the output of ψ(t1, . . . , tr) by projecting out the coordinate po-
sition corresponding to the free real variable x of ψ. Similarly, if (∃p ∈
Du(p))ψ(t1, . . . , tr), with p ∈ {t1, . . . , tr} a product variable, is a subfor-
mula of ϕ(x1, . . . , xn), then the output of (∃p ∈ Du(p))ψ(t1, . . . , tr) is ob-
tained from the output of ψ(t1, . . . , tr) by projecting out the coordinate po-
sition corresponding to the free product variable p of ψ. Hence, if a finite
representation of the output of ψ(t1, . . . , tr) is SPFOL-computable, then, by
Lemma 5.28, a finite representation of the output of (∃x)ψ(t1, . . . , tr), respec-
tively (∃p ∈ Du(p))ψ(t1, . . . , tr), is SPFOL-computable.

We have thus shown by structural induction that, for each subformula ψ(t1, . . . , tr)
of ϕ(x1, . . . , xn), there exists an SPFOL program returning upon a possible input
of the given query Q a finite representation of the output of ψ(t1, . . . , tr). By
definition, the output of ϕ(x1, . . . , xn) is the output of Q. Hence we have shown
that, in particular, a finite representation of the output of Q is SPFOL-computable.
Since, by assumption, the output of Q is always finite, it follows from Lemma 5.31
that Q itself is SPFOL-computable.

Theorem 5.34 The languages PFOL-finite and SPFOL are equivalent in expressive
power.
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Proof. By Proposition 5.20, each SPFOL program is equivalent to a PFOL-finite
program. We are going to show that each PFOL-finite program is equivalent to an
SPFOL program, by induction on the number of domain symbols in the PFOL-finite
program.

For the basis of this induction, we observe that a PFOL-finite program without
domain symbols satisfies all the conditions of Lemma 5.33, whence such a program
is equivalent to an SPFOL program.

For the induction step, let k > 0, and assume as induction hypothesis that all
PFOL-finite programs with at most k−1 domain symbols are equivalent to SPFOL
programs. Let

D1 ← ϕ1(x); . . . ;Dk ← ϕk(x);
{(x1, . . . , xn) | ϕ(x1, . . . , xn)},

be a PFOL-finite program with k domain symbols, which we shall call P . For
i = 1, . . . , k, let

ϕi(x) ≡ ϕi(x) ∧ (∀x)(∃ε)(∀y)(ε > 0 ∧ ϕi(x) ∧ y 6= x ∧ x−ε ≤ y ≤ x+ε ⇒ ¬ϕ(y)).

Since ϕi(x) is an FO + linear + P(D1, . . . , Di−1) formula, ϕi(x) is also an FO +
linear + P(D1, . . . , Di−1) formula. Clearly, {(x) | ϕi(x)} equals {(x) | ϕi(x)}, if this
set is finite, and the empty set, otherwise. Hence, we may conclude that

D1 ← ϕ1(x); . . . ;Di−1 ← ϕi−1(x);
{(x) | ϕi(x)},

is a PFOL-finite program with i − 1 < k domain symbols computing the interpre-
tation of Di in P . By the induction hypothesis, there exists an equivalent SPFOL
program. We have thus shown that, for i = 1, . . . , k, there exists an SPFOL pro-
gram which computes the interpretation of the domain symbol Di in P . Another
application of Lemma 5.33 yields the existence of an SPFOL program equivalent to
P .

If encode and decode are the PFOL programs computing the canonical finite repre-
sentation of a semi-linear set, respectively re-computing a semi-linear set from any
of its finite representations, and P is an arbitrary PFOL program, then the com-
position encode ◦ P ◦ decode, which represents a PFOL-finite program, computes,
upon as input an arbitrary finite representation of the input of P , as output the
canonical finite representation of the output of P . Corollary 5.35 is now immediate.

Corollary 5.35 For every PFOL program P , there exists an SPFOL program which
computes, upon as input an arbitrary finite representation of the input of P , as
output the canonical finite representation of the output of P .
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Corollary 5.35 also yields a normal form for PFOL-expressible queries: each PFOL-
expressible query is the composition of the encode program, followed by an SPFOL
program, followed by the decode program.

5.3.3 Expressiveness of SPFOL

Although SPFOL is a coordinate-based language, we claim that it is nevertheless ge-
ometrically meaningful. To substantiate this claim, we prove that SPFOL programs
in which the coefficients of the polynomials in atomic formulae are restricted to ra-
tional (or, equivalently, integer) numbers (instead of real algebraic numbers), define
the same queries in the two-dimensional plane as the query language SafeEuql [63].
Indeed, SafeEuql has been devised to capture precisely the ruler and compass con-
structions on finite sets of points in the two-dimensional plane which return finite
sets of points7. We take the liberty of redefining SafeEuql here, so that the definition
may better accommodate proofs by structural induction.

We assume that the points ~0, ~e1, and ~e2 represent the origin and both unit coordinate
vectors of the canonical coordinate system of the two-dimensional plane. Variables,
denoted as ~p, ~q, ~r, . . . , and possibly subscripted, should be interpreted as points of
the plane rather than coordinate vectors. Predicates, denoted as R̂(~p1, . . . , ~pk), and
possibly subscripted, represent relations consisting of k-ary tuples of points.

Definition 5.36 The SafeEuql formulae are the smallest collection of formulae
closed under the following rules:

• true is a safe formula;

• R̂(~p1, . . . , ~pk) is a safe formula;

• if ϕ(~p1, . . . , ~pk) is a safe formula, and if {~q1, . . . , ~q6} ⊆ {~p1, . . . , ~pk}, and if ~r
is an arbitrary variable, then

– ϕ(~p1, . . . , ~pk) ∧ ~r = ~0,

7A point of the plane is constructible with ruler and compass from a finite set of points if and
only if that point can be obtained by applying a finite number of ruler and compass constructions
on the given set of points and already constructed points. The following constructions can be
executed with ruler and compass on a finite set of points of the plane:

1. the construction of a line through two points of the given set;

2. the construction of a circle of which the midpoint and a point belong to the given set;

3. the construction of the intersection point(s) of two lines, two circles, or a line and a circle.
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– ϕ(~p1, . . . , ~pk) ∧ ~r = ~e1,

– ϕ(~p1, . . . , ~pk) ∧ ~r = ~e2,

– ϕ(~p1, . . . , ~pk) ∧ ~r = ~q1,

– ϕ(~p1, . . . , ~pk) ∧ geom-pred(~r, ~q1, . . . , ~q6),

with geom-pred one of the geometric predicates defined below, are safe for-
mulae;

• if ϕ(~p1, . . . , ~pk) and ψ(~p1, . . . , ~pk) are safe formulae, then ϕ(~p1, . . . , ~pk) ∨
ψ(~p1, . . . , ~pk) is a safe formula;

• if ϕ(~p1, . . . , ~pk) and ψ(~q1, . . . , ~ql) are safe formulae, then ϕ(~p1, . . . , ~pk) ∧
ψ(~q1, . . . , ~ql) is a safe formula;

• if ϕ(~p1, . . . , ~pk) and ψ(~q1, . . . , ~ql) are safe formulae such that {~q1, . . . , ~ql} ⊆
{~p1, . . . , ~pk}, then ϕ(~p1, . . . , ~pk) ∧ ¬ψ(~q1, . . . , ~ql) is a safe formula; and

• if ϕ(~p1, . . . , ~pk) is a safe formula, and 1 ≤ i ≤ k, then (∃~pi)ϕ(~p1, . . . , ~pk) is a
safe formula.

The semantics of a SafeEuql formula is the obvious one, provided the interpretation
of geom-pred is one of the following geometric predicates8:

• on-line(~r, ~q1, . . . , ~q6), which evaluates to true if ~q2 and ~q3 are distinct and ~q1,
~q2, and ~q3 are collinear;

• on-same-side(~r, ~q1, . . . , ~q6), which evaluates to true if ~q3 and ~q4 are distinct,
and ~q1 and ~q2 are on the same side of the line defined by ~q3 and ~q4;

• on-circle(~r, ~q1, . . . , ~q6), which evaluates to true if ~q3 and ~q4 are distinct and
~q1 is on the circle with center ~q2 and radius the distance between ~q3 and ~q4;

• in-circle(~r, ~q1, . . . , ~q6), which evaluates to true if ~q3 and ~q4 are distinct, and
~q1 is in the topological interior of the disk with center ~q2 and radius the distance
between ~q3 and ~q4;

• l-order(~r, ~q1, . . . , ~q6), which evaluates to true if ~q1, ~q2, and ~q3 are collinear
and distinct, and ~q2 is between ~q1 and ~q3;

• c-order(~r, ~q1, . . . , ~q6), which evaluates to true if ~q1, . . . , ~q4 are pairwise dis-
tinct and on the same circle in clockwise or counter-clockwise order;

8Some variables serve as dummy variables to make geometric predicates of equal width.
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• l-l-crossing(~r, ~q1, . . . , ~q6), which evaluates to true if ~q1 and ~q2, respectively
~q3 and ~q4 are distinct, ~q1, . . . , ~q4 are not collinear, and ~r is the intersection
point of the line through ~q1 and ~q2, and the line through ~q3 and ~q4;

• l-c-crossing(~r, ~q1, . . . , ~q6), which evaluates to true if ~q1 and ~q2, respectively
~q4 and ~q5 are distinct, and ~r is an intersection point of the line through ~q1 and
~q2, and the circle with center ~q3 and radius the distance between ~q4 and ~q5;

• c-c-crossing(~r, ~q1, . . . , ~q6), which evaluates to true if ~q2 and ~q3, respectively
~q5 and ~q6 are distinct, and ~r is an intersection point of the circle with center ~q1
and radius the distance between ~q2 and ~q3, and the circle with center ~q4 and
radius ~q5 and ~q6.

Example 5.37 To illustrate Definition 5.36, we give an example of a SafeEuql query
involving the geometric predicate l-l-crossing(~r, ~q1, . . . , ~q4).

Let R̂ be a finite set of points in the two-dimensional plane. The SafeEuql query

{(~x) | (∃~p)(∃~q)(∃~r)(∃~s)(∃~t)(∃~u)(R̂(~p) ∧ R̂(~q) ∧ R̂(~r) ∧ R̂(~s) ∧ R̂(~t) ∧ R̂(~u) ∧
l-l-crossing(~x, ~p, ~q, ~r, ~s,~t, ~u)}

computes the intersection points of all pairs of different non-parallel lines supported
by points of R̂.

For a comparison between SPFOL and SafeEuql to make sense, we must realize
that (i) expressions in atomic formulae of SPFOL are allowed to have real alge-
braic coefficients, and (ii) SPFOL works with variables representing real numbers,
whereas SafeEuql works with variables representing points in the two-dimensional
plane. Clearly, as SafeEuql expresses precisely the ruler and compass constructions,
only constructible numbers9 can be computed in SafeEuql. Observe that not every
algebraic number can be constructed with ruler and compass from 0 and 1. To show
this, we consider the following well-known result.

9With every point in the plane, we can associate a pair of real numbers corresponding to
the coordinates of that point with respect to the canonical coordinate system of the plane. We
then define the constructible numbers as x ∈ R such that the point with coordinates (x, 0) can
be constructed with ruler and compass from the points with coordinates (0, 0) and (1, 0). It is
well-known that, for a and b real numbers, a + b, ab, −a, and 1/a can be constructed with ruler
and compass from 0 and 1 (see Figure 3.6 and Figure 5.1). Hence, starting from 0 and 1, all
rational numbers are constructible with ruler and compass. Moreover, the absolute-value square
root of a given number can be constructed with ruler and compass (see also Figure 3.6), whence
the constructible numbers are a strict superset of the rational numbers. The following alternative
characterization of the constructible numbers can be found in the literature: a real number x is
constructible with ruler and compass from 0 and 1 if and only if x belongs to a finite Galois-
extension of Q with degree 2n, n ∈ N.



112 Extensions of FO + linear

Proposition 5.38 In three-dimensional space, the cube with volume twice the vol-
ume of a given cube cannot be constructed by ruler and compass.

It follows from Proposition 5.38 that the real algebraic number 3
√
2 is not a con-

structible number. We shall, therefore, only consider SPFOL programs in which the
expressions in atomic formulae are built from product variables and rational num-
bers , using addition, multiplication, and absolute-value square rooting. We denote
this restriction of SPFOL as SPFOLQ. Moreover, we assume from now on that all
relation names involved, as well as the output, have even arity. This latter assump-
tion allows us to interpret consecutive variables in a relation name, or in the output
format, as coordinates of a point in the two-dimensional plane.

We first show that every SafeEuql-expressible query can be expressed in SPFOLQ.
Thereto, we need the following lemma.

Lemma 5.39 Let R be a finite relation of type [0, 2], i.e., a finite set of two-
dimensional points. Let geom-pred(~p, ~p1, . . . , ~p6) be one of the geometric predicates
l-l-crossing, l-c-crossing, and c-c-crossing defined in Definition 5.36. There
exists an SPFOLQ program of which the output upon input R equals the set

{(~p) | (∃~p1) . . . (∃~p6)R̂(~p1) ∧ . . . ∧ R̂(~p6) ∧ geom-pred(~p, ~p1, . . . , ~p6)}.

Proof. We describe, for every geometric predicate, how to obtain an SPFOLQ

program that has the desired point-set as output upon input R.

• The geometric predicate l-l-crossing(~p, ~p1, . . . , ~p6). First, we observe that
the Boolean conditions “~p1 and ~p2 are distinct”, “~p3 and ~p4 are distinct,” and
“~p1, . . . , ~p4 are not collinear,” with ~p1, . . . , ~p4 points of R, can be expressed
in FO + poly, whence, by Proposition 5.23, they can be also expressed in
SPFOLQ 10. Next, the intersection point ~p is found as the unique solution of
the system of equations11

{
(py − py1)(px2 − px1)− (px − px1)(py2 − py1) = 0

(py − py3)(px4 − px3)− (px − px3)(py4 − py3) = 0

Solving this system of equations for px and py yields equations of the form
A1p

x = A2 and B1p
y = B2, with A1 6= 0, A2, B1 6= 0, and B2 polynomials in

10Indeed, an inspection of the proof of Lemma 5.22 shows that, if the active range superset
query of an FO+poly-expressible query Q can be expressed in SPFOLQ, the query Q can be also
expressed in SPFOLQ. Hence, Proposition 5.23 remains valid for SPFOLQ.

11We shall denote the coordinates of a two-dimensional point ~p as px and py.
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the variables px1 , p
y
1, . . . , p

x
4, p

y
4. Hence, if D is the finite domain containing the

active domain of R, all computations can be done with product variables rang-
ing over domain D, whence there exists an SPFOLQ program that computes
the intersection point of two non-parallel lines. By Proposition 5.25, there
exists an SPFOLQ program that, upon input R, has the desired point-set as
output.

• The geometric predicate l-c-crossing(~p, ~p1, . . . , ~p6). First, we observe that
the Boolean conditions “~p1 and ~p2 are distinct,” and “~p4 and ~p5 are distinct,”
with ~p1, ~p2, ~p4, ~p5 points of R, can be expressed in FO + poly, whence, by
Proposition 5.23, they can be also expressed in SPFOLQ. Next, the intersec-
tion point ~p has to satisfy the following system of equations:

{
(py − py1)(px2 − px1) = (px − px1)(py2 − py1)
(px − px3)2 + (py − py3)2 = (px4 − px5)2 + (py4 − py5)2

We can isolate variable px in the first equation and then substitute px in the
second equation which yields a system of equations A1p

x = B1p
y + C1 and

A2(p
y)2+B2p

y+C2 = 0, with A1 6= 0, A2 6= 0, B1, B2, C1 and C2 polynomials
in the variables px1 , p

y
1, . . . , p

x
5, p

y
5. The solution py then equals −B2/2A2 when

B2
2 − 4A2C2 = 0, or (−B2 ±

√

B2
2 − 4A2C2)/2A2 when B2

2 − 4A2C2 > 0.
When B2

2 − 4A2C2 < 0, no real solution py exists. Let D be the finite domain
containing the active domain of R. Then, all computations involved can be
performed with product variables ranging over D. Hence, by Proposition 5.25,
there exists an SPFOLQ program that, upon input R, has the desired point-set
as output.

• The geometric predicate c-c-crossing(~p, ~p1, . . . , ~p6). First, we observe that
the Boolean conditions “~p2 and ~p3 are distinct,” and “~p5 and ~p6 are distinct,”
with ~p2, ~p3, ~p5, ~p6 points of R, can be expressed in FO + poly, whence, by
Proposition 5.23, they can be also expressed in SPFOLQ. Next, the intersec-
tion point ~p has to satisfy the equations

{
(px − px1)2 + (py − py1)2 = (px2 − px3)2 + (py2 − py3)2 (1)

(px − px4)2 + (py − py4)2 = (px5 − px6)2 + (py5 − py6)2 (2)

which is equivalent with the system consisting of equation (1), and equation (2)
minus equation (1). The latter equation is of the form Apx + Bpy + C = 0,
with A 6= 0, B, and C polynomials in the variables px1 , p

y
1, . . . , p

x
6 , p

y
6. Hence,

the initial problem is reduced to the computation of the intersection of a line
and a circle, both defined by points of which the coordinates are described
as polynomials in variables that range over D, where D is the finite domain
containing the active domain of R. This problem is solved above.



114 Extensions of FO + linear

We are now ready to prove the following result:

Proposition 5.40 Every SafeEuql-expressible query can be expressed in SPFOLQ.

Proof. Let Q be a query which is expressible in SafeEuql by the formula ϕ.

First, we observe that, for each point variable in a SafeEuql formula, only a finite
number of points can be substituted to satisfy that formula. We show how the
finite superset D, which contains all coordinates of these points, can be computed
in SPFOLQ by induction on the structure of the SafeEuql formula ϕ.

We start with D equal to {0, 1}.
For an atomic SafeEuql formula R̂(~p1, . . . , ~pk), we augment the domain D with the
active domain of the input database.

Assume now SafeEuql formulae ψ1(~p1, . . . , ~pk) and ψ2(~q1, . . . , ~ql). Let D1 and D2 be
the finite domains which contain the coordinates of the finitely many points that can
be substituted for point variables of, respectively, ψ1 and ψ2, to satisfy, respectively,
ψ1 and ψ2.

Consider a subformula of ϕ of the form

ψ1(~p1, . . . , ~pk) ∧ geom-pred(~p, ~pi1, . . . , ~pi6),

with 1 ≤ i1, . . . , i6 ≤ k and geom-pred one of the following geometric predicates
l-l-crossing, l-c-crossing, or c-c-crossing. Then, let D be equal to D1 ∪
D∗ where D∗ is the finite domain of all coordinates of points in the output of
the SPFOLQ program of Lemma 5.39 for the corresponding geometric predicate
geom-pred(~p, ~pi1, . . . , ~pi6) upon input D1.

For subformulae of ϕ of the following form

1. ψ1(~p1, . . . , ~pk) ∧ ψ2(~q1, . . . , ~ql)

2. ψ1(~p1, . . . , ~pk) ∨ ψ2(~p1, . . . , ~pk) or,

3. ψ1(~p1, . . . , ~pk) ∧ ¬ψ2(~pi1 , . . . , ~pim),

with 1 ≤ i1, . . . , im ≤ k, let D be the union of D1 and D2.

In all other cases, D remains unchanged.

Clearly, there exists an SPFOLQ program which outputs D upon input a possible
input of Q. Moreover, this SPFOLQ program expresses an active range superset
query of Q. Furthermore, every SafeEuql formula has an equivalent FO + poly
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formula [63], whence Q can also be expressed in FO+ poly. Then, by Lemma 5.22,
Q can be expressed in SPFOLQ.

In the following, we say that a SafeEuql formula ϕ(~p) represents a finite domain D
if the sentence {(x, 0) | (D(x)} = {~p | ϕ(~p)}.
To prove the converse of Proposition 5.40, we use the following lemma.

Lemma 5.41 Let Q1 and Q2 be expressions built from the variables p1, . . . , pm,
and the rational numbers, using addition, multiplication, and absolute-value square
rooting. There exists a SafeEuql formula ϕ such that

{(~p, ~p1, . . . , ~pm) | ϕ(~p, ~p1, . . . , ~pm)} =
{((p, 0), (p1, 0), . . . , (pm, 0)) | D(p1) ∧ . . . ∧D(pm)

∧Q1(p1, . . . , pm)p = Q2(p1, . . . , pm) ∧Q1(p1, . . . , pm) 6= 0},

provided that a representation of D, the domain of the variables p1, . . . , pm, can be
computed from the input in SafeEuql.

Proof. First, we observe that the point (p, 0), with p a rational number, can easily
be constructed with ruler and compass from the points ~0 and ~e1. Second, we show
that addition, multiplication, and absolute-value square rooting on variables bound
by D can be computed by ruler and compass. Thereto, consider the geometric
constructions for multiplication, shown in Figure 3.6, addition and absolute-value
square rooting, shown in Figure 5.1. All these geometric constructions can be per-
formed in SafeEuql, assuming that we add conjuncts that state that the coordinates
of ~p and ~q satisfy the SafeEuql formula representing D. By a simple induction on
the structure of the expressions under consideration, we obtain a SafeEuql formula
ϕ with the desired result.

We are now ready to prove the converse of Proposition 5.40.

Proposition 5.42 Every SPFOLQ-expressible query can be expressed in SafeEuql.

Proof. Since an SPFOLQ program is defined by safe FO + linear + P(D1, . . . , Dk)
formulae (in which the polynomials have rational coefficients), it suffices to show
that we can translate an arbitrary safe FO + linear + P(D1, . . . , Dk) formula into
a SafeEuql formula, given SafeEuql formulae that represent the finite domains
D1, . . . , Dk. To do the translation, we observe that, in the SafeEuql query to be
constructed, the point variables that occur in input relational predicates correspond
to pairs of product variables in the input relational predicates of the given SPFOLQ
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Figure 5.1: Geometric construction for addition (left), and absolute-value square
rooting (right).

program. However, it is much easier to represent a product variable p by a point
variable ~p corresponding to the point (p, 0). This transition is possible in SafeEuql,
as the points ~p = (p, 0) and ~q = (q, 0) can be constructed from the point ~r = (p, q)
with ruler and compass. This technique can also be used to construct a SafeEuql
formula which represents the active domain of the input database. To obtain the
output point variables of the SafeEuql program, which correspond to pairs of output
variables of the SPFOLQ program, the reverse construction is required, which can
also be done with ruler and compass.

Assume now finite domains D1, . . . , Dk for which there exists SafeEuql formulae
ϕ1, . . . , ϕk such that {~p | ϕi(~p)} equals {(x, 0) | Di(x)}, with 1 ≤ i ≤ k. Let
ϕ(x1, . . . , x2n) be a safe FO+linear+P(D1, . . . , Dk) formula. The SafeEuql formula
is obtained by inductively translating ϕ to SafeEuql syntax.

Every occurrence of an atomic formula R(t1, . . . , t2k) or adom(t), with t real or
product variables, is replaced by a SafeEuql formula as explained above.

Every occurrence of an atomic formula Q(p1, . . . , pm) > 0, with Q an expression
built from the product variables p1, . . . , pm and the rational numbers, using addition,
multiplication and absolute-value square rooting, is replaced by

ϕQ(~p, ~p1, . . . , ~pm) ∧ on-same-side(~p, ~e1,~0, ~e2),

with ϕQ the SafeEuql formula of Lemma 5.41 applied to Q1 = 1 and Q2 = Q.
Similar formulae can be constructed for the formulae Q(p1, . . . , pm)θ0 with θ ∈ {≥
, <,≤,=, 6=}. Notice that product variables in ϕ are appropriately bound to finite
domains, and, hence, during the translation, we can add, for each point variable
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representing a product variable, a conjunct stating that the point variable belongs
to the appropriate domain.

Every occurrence of an atomic formula

Q1(p1, . . . , pm)x = Q2(p1, . . . , pm) ∧Q1(p1, . . . , pm) 6= 0,

with Q1 and Q2 expressions built from the product variables p1, . . . , pm and the
rational numbers, using addition, multiplication and absolute-value square rooting,
is replaced by the SafeEuql formula ϕQ(~p, ~p1, . . . , ~pm), where ϕQ(~p, ~p1, . . . , ~pm) is
the result of Lemma 5.41 applied to Q1 and Q2. As explained above, we can add,
for each point variable representing a product variable, a conjuct stating that the
point variable belongs to the domain to which the product variable is bound.

This concludes the basis of the induction. The rest of the induction process is
straightforward.

The combination of Proposition 5.40 and Proposition 5.42 yields the main result of
this subsection:

Theorem 5.43 The languages SPFOLQ and SafeEuql are equivalent in expressive
power.

5.3.4 Expressiveness of PFOL

We now summarize our results and show that PFOL can express a wide range of
natural, A-linear FO + poly-expressible queries.

Definition 5.44 An FO+polylin query Q is constructible if there exists an SPFOL
program that computes, from the canonical finite representation of the input, the
active range of the canonical finite representation of the output, or, equivalent, an
active range superset of the finite representation of the output.

We claim that the notion of constructibility is a natural notion, which, to a certain
extent, can be seen as a generalization of the notion of domain preservation in the
relational model to the context of the linear constraint database model. Indeed,
from the equivalence of SPFOL and SafeEuql (Theorem 5.43), one can argue that
constructibility implies that the output can be “assembled” from “material” “con-
structed” from the “building blocks” of the input; in the relational model, domain
preservation means that the output can be “assembled” from the “building blocks,”
i.e., the entries, of the input.

We give an example of a constructible query.
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Example 5.45 Let S be an arbitrary semi-linear set. Clearly, a bounding box for
S is also a bounding box for both the convex closure and the affine support of S.
It is now easy to see that a superset of the active domain of the canonical finite
representation of the convex closure, respectively, the affine support, of S can be
computed from the canonical finite representation of S. As both the convex-closure
query and the affine-support query on arbitrary semi-linear sets are FO + poly-
expressible, we may conclude that they are also constructible.

We can now state the following result:

Theorem 5.46 The class of queries expressible in PFOL is the same as the class
of constructible queries.

Proof. Clearly, by Corollary 5.35 and Lemma 5.24, every query expressible in PFOL
is also a constructible query.

Conversely, for each constructible query Q, consider the query Q which computes,
upon as input the canonical finite representation of the input of Q, as output the
canonical finite representation of the output of Q. By Lemmas 5.22 and 5.31, Q
is expressible in SPFOL, whence certainly in PFOL. Since the encoding and de-
coding algorithms, computing the canonical finite representation of semi-linear set,
respectively re-computing a semi-linear set from any of its finite representations, are
expressible in PFOL, there exists a PFOL program which computes Q.

The relevance of Theorem 5.46 with respect to the expressive power of PFOL, is
that PFOL can compute a wide range of natural, A-linear queries, while remaining
sound for the A-linear constraint databases. The observation that SPFOL is closely
related to SafeEuql, a geometrically inspired point-based language, suggests that
PFOL, while coordinate-based just like FO + linear, is geometrically much more
meaningful than the latter.

We conclude this section with showing that not all FO + polylin queries are con-
structible queries, whence PFOL is not equivalent to FO+ polylin, confirming what
one might have intuitively expected.

Let ~p and ~q be arbitrary points of the plane such that ~0, ~p, and ~q are not collinear.
It is well-known that the point ~r on the line segment defined by ~p and ~q such that
the angle defined by ~0, ~p, and ~r is the trisection of the angle defined by ~0, ~p, and
~q cannot be constructed with ruler and compass from ~0, ~e1, ~p, and ~q. This result
remains true even if to these points a fixed (i.e., independent of ~p and ~q) finite set of
points is added [59]. By the equivalence between SPFOLQ and SafeEuql, established
in Theorem 5.43, and by Theorem 5.46, we can now state the following result.
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Proposition 5.47 The trisection query of type [0, 2] → [0, 2] computing for each
point ~p 6= ~0 in the input all points on a trisector of the angle defined by ~0, ~e1, and ~p
cannot be expressed in PFOL.

Proof. Assume to the contrary that there exists a PFOL program that computes
the trisection query. We now consider the query which outputs, on finite input, the
output of the trisection query on that input intersected with the line x = 1, and,
on infinite input, the empty set. Clearly, if the trisection query is expressible in
PFOL, this modified trisection query is also expressible in PFOL. Moreover, the
latter query yields finite outputs upon finite inputs, whence it is in PFOL-finite. By
Theoreom 5.34, there exists an SPFOL program

D1 ← ϕ1(x); . . . ;Dk ← ϕk(x);
{(x1, x2) | ϕ(R; x1, x2)},

computing that query.

If all expressions in ϕ have rational coefficients, there exists, by Theorem 5.43, an
equivalent SafeEuql expression, whence the trisection of an angle defined by the
points ~0, ~e1, and an arbitrary point ~p can be constructed by ruler and compass,
which yields a contradiction.

Thus, assume that some expressions in ϕ have real algebraic coefficients. Denote
by Ca the finite set of real algebraic coefficients occuring in a polynomial of ϕ and
let C~a be the set of points {(a, 0) | a ∈ C}. We can then generalize Lemma 5.41 to
expressions with coefficients from Ca and SafeEuql expressions with input C~a ∪{~p}.
Hence, using a similar proof as that of Theorem 5.42, we can construct a SafeEuql
expression ψ(R, S; ~x) such that, for every finite relation R,

D1 ← ϕ1(x); . . . ;Dk ← ϕk(x);
{(x1, x2) | ϕ(R; x1, x2)},

and ψ(R,C~a; ~x) compute the same set of points in the plane. Hence, we can construct
the trisection of an angle defined by the points ~0, ~e1, and an arbitrary point ~p by
ruler and compass from the finite set of points C~a ∪ {~0, ~e1, ~p}, a contradiction.

5.4 Expressiveness of FO + linear Extended with

Operators

We now turn our attention to the expressive power of the query language FO +
linear +O proposed in Section 5.1. We present here an extension of FO +A-linear
with A-linear operators of which we prove that it has the same expressive power as
PFOL.
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Definition 5.48 • The linear operator line12 of type [0, 2] → [0, 2] is defined
by the FO+poly formula (∃u)(∃v)(R(u, v)∧uy = vx). In words, the operator
line returns the union of all lines through some point of the input and the
origin (0, 0).13

• The A-linear operator sqrt12 of type [0, 1]→ [0, 1] is defined by the FO+poly
formula (∃u)(R(u) ∧ ((u ≥ 0 ∧ x2 = u) ∨ (u < 0 ∧ −x2 = u)). In words, the
operator sqrt returns those real numbers that are the absolute-value square
root of a real number in the input.

We abbreviate the extension of FO + A-linear with the operators line and sqrt

to FO + linear + {line, sqrt}. We now prove that FO + linear + {line, sqrt} has the
same expressive power as PFOL. (For this purpose, we only consider the geometric
part of FO + linear + {line, sqrt}.)
To do so, we need the following lemmas.

Lemma 5.49 Let R be of type [0, 1]. The predicate product(R; p, x, y) which evalu-
ates to true if R is finite, p is in R, and y = px can be expressed in FO+linear+{line}
(whence in FO + linear + {line, sqrt}).

Proof. We can check in FO + linear, whence in FO + linear + {line}, whether R is
finite. If R is finite, p = 0, and p is in R, then product(R; p, x, y) evaluates to true
if and only if y = 0. It remains to explain what to do if R is finite, p 6= 0, and p is
in R.

Let L =line({(x, y) | x = 1 ∧ R(y) ∧ y 6= 0}). Since the operand is finite and does
not contain the origin of the plane, L is a finite union of lines. By Proposition 3.30,
we can select in FO + A-linear, whence in FO + linear + {line}, the line Lp going
through the point (1, p). Since this line also goes through the point (0, 0), it readily
follows that product(R; p, x, y) is true if and only if the point (x, y) is on Lp.

Lemma 5.50 Every PFOL-expressible query can be expressed in FO + linear +
{line, sqrt}.

Proof. Consider the PFOL program

D1 ← ϕ1(x); . . . ;Dk ← ϕk(x);
{(x1, . . . , xn) | ϕ(x1, . . . , xn)},

12From their definitions, it is not obvious that line and sqrt are A-linear operators. However,
since PFOL can only express A-linear queries (Theorem 5.1), the proof of Lemma 5.51 also entails
a proof of the linearity of these operators.

13Notice that, if R(0, 0) is true, then the operator line returns the entire plane.
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with, for i = 1, . . . , k, Di domain symbols, ϕi an FO + linear + P(D1, . . . , Di−1)
formula, and ϕ an FO + linear + P(D1, . . . , Dk) formula.

First, we show how to obtain FO + linear + {line, sqrt} expressions which com-
pute the domains D1, . . . , Dk according to the semantics of PFOL. The FO +
linear + {line, sqrt} expressions are obtained by inductively translating the expres-
sions ϕ1, . . . , ϕk to FO + linear + {line, sqrt} expressions ϕ̃1, . . . , ϕ̃k.

For the basis of this induction, we observe that ϕ1 is an FO + A-linear expres-
sion, whence also an FO + linear + {line, sqrt} expression. Let ϕ̃1 be the formula
finite({(x) | ϕ1(x)}) ∧ ϕ1, with finite the FO + A-linear query which decides
whether a A-semi-linear set is finite. Clearly, ϕ̃1, evaluated in the standard manner,
yields the correct interpretation of D1, independent of whether {(x) | ϕ1(x)} is finite
or not.

Now, assume that, for 1 ≤ i < k, there are FO + linear + {line, sqrt} expressions
ϕ̃1, . . . , ϕ̃i computing the domains D1, . . . , Di according to the semantics of PFOL.
Consider the FO + linear + P(D1, . . . , Di) expression ϕi+1. In ϕi+1, we substitute
every subformula of the form (∃p ∈ Dj)ψ, 1 ≤ j ≤ i, by (∃p)(ϕ̃j(p)∧ ψ̃), where ψ̃ is
the formula obtained from ψ as follows:

• every occurrence of an atomic formula of the form pt1 = t2 is replaced by the
FO + linear + {line, sqrt} formula simulating product({(x) | ϕ̃j(x)}; p, t1, t2)
(Lemma 5.49); and

• every occurrence of an atomic formula of the form t =
√

|p| is replaced by the
FO + linear + {line, sqrt} formula simulating

(p ≥ 0 ∧ product({(x) |sqrt({(x) | ϕ̃j(x)})(x)}; t, t, p)) ∨
(p < 0 ∧ product({(x) |sqrt({(x) | ϕ̃j(x)})(x)}; t, t,−p)).

We abbreviate the FO+linear+{line, sqrt} formula obtained in this way as ϕ̂i+1. By
Lemma 5.49, ϕ̂i+1 and ϕi+1 are equivalent when evaluated in the standard manner.
Therefore, the FO+linear+{line, sqrt} expression ϕ̃i+1 = finite({(x) | ϕ̂i+1(x)})∧
ϕ̂i+1(x), evaluated in the standard manner, yields the correct interpretation of Di+1,
independent of whether {(x) | ϕi+1(x)} is finite or not.

Thus, all domains can be computed in FO + linear + {line, sqrt}.
The only thing that remains is to show that the FO + linear + P(D1, . . . , Dk) ex-
pression ϕ can be translated into an FO+ linear+ {line, sqrt} expression, for which,
of course, the same technique applies: every subformula (∃p ∈ Dj)ψ, 1 ≤ j ≤ k, is
replaced by an FO+linear+{line, sqrt} formula (∃p)(ϕ̃j(p)∧ψ̃) in the way explained
above. The resulting FO + linear + {line, sqrt} formula clearly expresses the same
query as the original PFOL program.



122 Extensions of FO + linear

Lemma 5.51 Every FO+ linear+ {line, sqrt}-expressible query can be expressed in
PFOL.

Proof. It suffices to show that both line and sqrt can be simulated by a PFOL
program to establish the result. The main difficulty in doing so is that, in FO +
linear + {line, sqrt}, both line and sqrt can take an infinite input. However, it
turns out to be always possible to select a finite number of points from the input
such that the output can be constructed from the result of the operator applied to
this finite set of points and the general structure of the input.

Since the operator line takes a two-dimensional set as input, whereas the operator
sqrt takes a one-dimensional set as input, we start with the latter, simpler, case.

Thus, let R be of type [0, 1]. As observed above, the naive “solution” of using the
PFOL program

D1 ← R(x);

{(x) | (∃p ∈ D1)(x =
√

|p|)}
fails, since R may be infinite. Since {x|sqrt(R; x)} equals {x|sqrt({x|R(x) ∧ x ≥
0}; x)∨sqrt({x|R(−x) ∧ x ≥ 0}, x)}, we assume in the following that R contains
only positive real numbers. A semi-algebraic set, in particular also a semi-linear set,
has only a finite number of connected components, whence R is either empty, or a
line, or a finite union of isolated points, intervals, and half-lines. If we apply the sqrt
to the isolated points and the end points of intervals and half lines in R, the output
can be obtained from these by “filling in” the intervals and half lines appropriately.
Thus, let D1 be the boundary of R, which consists of all isolated points and end
points of line segments and half-lines of R. Clearly, D1 is a finite set which can
be computed in FO + linear (Theorem 3.15). The following FO + linear + P(D1)
expression then yields sqrt(R):

{(x) | (¬(∃y)R(y)⇒ false) ∨
(¬(∃y)D1(y)⇒ R(x)) ∨
(∃p ∈ D1)(R(p) ∧ x =

√

|p|) ∨
(∃p1 ∈ D1)(∃p2 ∈ D1)(∃y1)(∃y2)((∀z)(p1 < z < p2 ⇒ R(z)) ∧

y1 =
√

|p1| ∧ y2 =
√

|p2| ∧ y1 < x < y2) ∨
(∃p ∈ D1)(∃y)((∀z)(p < z ⇒ R(z)) ∧ y =

√

|p| ∧ y < x) ∨
(∃p ∈ D1)(∃y)((∀z)(p > z ⇒ R(z)) ∧ y =

√

|p| ∧ y > x)}.

We now turn to the operator line, which takes a (possibly infinite) two-dimensional
semi-linear set as input. Let R, of type [0, 2], be the input predicate. Rather than
providing the PFOL program, we explain how to construct it.

Since line(R) yields the entire plane if R contains the origin (0, 0), we can deal
with this case separately and assume for the remainder of the proof that R does not
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contain the origin. We furthermore assume that R is bounded and explain afterwards
which changes must be made to the reasoning below if R is not necessarily bounded.

Again since a semi-linear set has only a finite number of connected components, R
is a finite union of isolated points, intervals, and polygons. We first compute the
isolated points, the end points of the intervals, and the corner points of the polygons,
which together are the special points of R, with Algorithm 4.33. Let S be the finite
set of special points of R, augmented with the points (1, 0) and (0, 1)14, and let D1

be the finite set consisting of the coordinates of points of S. Let L be the union of
all the lines through the origin and a point of S. Obviously, L can be computed by
the PFOL expression

{(x, y) | (∃p ∈ D1)(∃q ∈ D1)(S(p, q) ∧ py = qx)}.

The lines of L induce a partition of the plane, consisting of the origin (which always
belongs to the output of line(R), except when R is empty), the open half-lines in
which the origin divides the lines of L, and the open convex angular sectors between
successive half-lines. The output of line(R) consists of the union of all the one- and
two-dimensional classes of this partition which have a non-empty intersection with
R and their mirror images with respect to the origin, augmented with the origin if
R is not empty.

The union of the open half-lines which have a non-empty intersection with R can
be computed by the PFOL expression

{(x, y) | (∃p ∈ D1)(∃p ∈ D2)(∃λ)(∃µ)(∃z1)(∃z2)(S(p, q) ∧
λ > 0 ∧ µ > 0 ∧R(z1, z2) ∧ z1 = λp ∧ z2 = λq ∧ x = µp ∧ y = µq}.

The open convex angular sector defined by two non-collinear open half-lines consists
of all mid-points of a point of the first and a point of the second half-line.15 Such
an angular sector is a class of the partition if the defining half-lines are classes of
the partition, and if no other half-line which is a class of the partition has a point
in common with the angular sector. Notice that, by the addition of the points
(1, 0) and (0, 1) to S, the partition is guaranteed not to contain angular sectors of
180◦, whence the above observations can be used to construct a PFOL expression
computing the union of the open convex angular sectors which have a non-empty
intersection with R.

Finally, to conclude the case where R is bounded, let U be the union of all one- and
two-dimensional classes of the partition which have a non-empty intersection with

14The reason for the addition of these two points will be explained a little later.
15Notice that if we would have worked with lines rather than half-lines, this part of the proof

would have failed; the same construction applied to full lines does not yield the union of the relevant
angular sector and its mirror image with respect to the origin, but the entire plane.
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R. Then the output of line(R) is computed by the PFOL expression

{(x, y) | (x = 0 ∧ y = 0 ∧ (∃u)(∃v)R(u, v)) ∨ U(x, y) ∨
(∃z1)(∃z2)(U(z1, z2) ∧ x+ z1 = 0 ∧ y + z2 = 0)}.

As shown in Subsection 5.3.1, the above reasoning can be generalized to unbounded
semi-linear sets by considering “special points at infinity,” which are represented by
pairs of directional numbers. (Conceptually, all semi-linear sets can then be treated
as if they were bounded.) It was also shown in that subsection that all the required
constructions can be simulated in PFOL. This completes the proof.

Lemmas 5.51 and 5.50 together yield the following conclusion.

Theorem 5.52 The linear constraint query languages PFOL and FO + A-linear
extended with the operators line and sqrt have the same expressive power.

By examining the proofs of the previous lemmas, it also follows that the restriction of
PFOL in which square-root terms are disallowed is equivalent to FO+linear+{line}.
Alternatively, one may extend PFOL by adding cube-root terms, etc. One can easily
see that the above proofs generalize provided FO+ linear + {line, sqrt} is extended
by operators corresponding to the added terms.

Of course, the above result does not settle the expressiveness of extensions of FO+
linear with operators in general. In particular, the questions whether there exists
an extension of FO + linear with (a recursively enumerable set of) operators which
captures precisely the FO + polylin queries remains open.

5.5 Query Languages Complete for FO + polylin

In this section, we are concerned with query languages that are sound and complete
for the FO + polyz-lin queries on the one hand and the FO + polya-lin queries on
the other hand. The most straightforward way to obtain such a query language
is to discover an algorithm to decide whether an FO + poly formula induces a Z-
linear query or an A-linear query. Unfortunately, such an algorithm does not exist,
neither in the Z-linear, nor in the A-linear setting, because we can again invoke
Theorem 3.38, this time with C1 = C2 the class of all polynomial constraint relations
and E the property of inducing a Z-linear or A-linear query, yielding

Theorem 5.53 It is undecidable whether an FO+poly formula induces a Z-linear
or A-linear query.
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Observe that Theorem 5.53 does not rule out that one can isolate a subset of the
FO+poly formulae which expresses precisely the FO+polyz-lin queries or the FO+
polya-lin queries, in the same way that the undecidability of domain independence in
the relational calculus is not in contradiction with the existence of a sublanguage of
the relational calculus which precisely expresses the domain-independent relational
calculus queries [72].

In the remainder of this section, we propose query languages which are sound and
complete for the FO + polyz-lin queries, respectively the FO + polya-lin queries.

First, we use the decidability results on semi-linearity of semi-algebraic sets, elabo-
rated upon in Chapter 4, to show that there exist query languages which are sound
and complete for the FO + polyz-lin queries, respectively the FO + polya-lin queries.
We recall from Chapter 4 that it can be decided whether a semi-algebraic set is
Z-semi-linear or A-semi-linear. We start with a query language that is complete
for the FO + polyz-lin queries. Syntactically, the query language concerned is just
FO + poly. Semantically, the standard output of an FO + poly query is replaced
by the empty set if it is not a Z-semi-linear set. The language thus obtained is
obviously sound and complete (the standard output of a linear FO + poly query is
not modified) for the FO+ polyz-lin queries. This also works in the A-linear setting
to obtain a query language sound and complete for the FO+polya-lin queries. In the
A-linear case, however, there exists an FO + poly expression that decides whether
a semi-algebraic set is A-semi-linear (Theorem 4.37). Hence, by substituting this
FO+poly expression deciding A-semi-linearity in the above described manipulation
of FO + poly formulae, we obtain a syntactically defined fragment of FO + poly
which is sound and complete for the FO+polya-lin queries with respect to the stan-
dard semantics. As a consequence, there exists a recursively enumerable subset of
FO + poly which expresses precisely the A-linear queries expressible in FO + poly.
Observe that we can generalize the above described manipulation of FO + poly to
arbitrary properties of semi-algebraic sets.

Proposition 5.54 Let E be a property of semi-algebraic sets which can be expressed
in FO + poly and let C be the class of semi-algebraic sets with property E . There
exists a syntactically defined fragment of FO+poly which is sound and complete for
the FO + poly queries that return outputs in C upon inputs in C.

Admittedly, the languages thus obtained neither are particularly elegant nor have
much practical value, but, at least, their existence justifies the search for more
natural sound and complete languages for the FO + polylin queries.

Second, we consider the class of polynomial-restricted queries , exhibited by Benedikt
and Libkin [10], which form a syntactically defined fragment of FO + poly of which
these authors have shown it is sound and complete for the FO + poly-expressible
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queries from finite A-semi-linear inputs to finite A-semi-linear outputs. Hence, by
Theorem 5.15, if we let P be the A-linear queries expressible in FO + poly, and Q
the polynomial-restricted queries, we obtain the following result.

Corollary 5.55 The A-linear query language Lift(Q), with Q the class of polyno-
mial-restricted FO + poly queries, is sound and complete for the FO + polya-lin

queries.

A simular approach to obtain a linear query language complete for the FO+polya-lin

queries using Theorem 5.15, is possible. As the query deciding finiteness is express-
ible in FO+ linear, whence in FO+poly, it follows from Proposition 5.54 that there
exists a syntactically defined fragment of FO+poly which is sound and complete for
the FO+poly queries from finite A-semi-linear sets to finite A-semi-linear sets. Ob-
viously, applying Theorem 5.15 on this syntactically definable fragment of FO+poly
yields a query language sound and complete for the FO + polya-lin queries.

Finally, we mention that it is possible to define a language complete for all com-
putable linear queries, even those not expressible within FO + poly. It is shown
in [45] that it is possible to augment FO + linear with a while-loop such that the
resulting query language is sound and complete for the computable linear queries.



Chapter 6

Discussion

We conclude this dissertation with a short discussion on the implementation of the
linear query languages introduced in Chapter 5. We also propose some directions
for future research on linear query languages.

First, we summarize the main contributions of this dissertation.

6.1 Main Results

In this dissertation, we studied linear query languages for the linear constraint
database model and their expressive power. Our main results are as follows.

First, we provided a list of queries which can be expressed in FO+linear. This list of
queries turned out to be a useful instrument to show the expressibility in FO+linear
of several other queries. We also provided a tool which can be used to prove non-
expressibility of a query in FO + linear. We used that tool to prove that various
fundamental linear queries cannot be expressed in FO+ linear. We showed that the
type of the coefficients of the linear constraints used in the linear constraint database
model does influence certain expressibility results. We proved that it is undecidable
whether a linear query expressible in FO + poly can be expressed in FO + linear.
This results remains true for several subclasses of the FO + poly-expressible linear
queries.

Second, we developed an algorithm, implementable in FO + poly, to compute the
“special points” of a semi-linear set. These special points of a semi-linear set allow us
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to obtain a decomposition of that semi-linear set into convex cells which is expressible
in FO + poly. Moreover, we obtain algorithms, implementable in FO + poly, to
compute a finite representation of an arbitrary semi-linear set and to recompute a
semi-linear set from its finite representation.

Third, we showed that it is decidable in FO + poly whether a semi-algebraic set
is A-semi-linear. We also showed that Z-semi-linearity of a semi-algebraic set is
decidable, but not in FO + poly.

Fourth, we presented two sound extensions of FO+ linear for linear queries express-
ible in FO+poly. One extension resulted in a query language of which the expressive
power can be characterized in terms of the ruler and compass constructions in the
two-dimensional plane. The other extension described how linear operators can
be added to FO + linear in a sound way. As an example of the potential of this
paradigm for extending FO + linear with linear operators, we presented two linear
operators such that FO+linear extended with these two operators captures precisely
all queries expressible in the query language obtained in the first extension. We also
showed that there exist query languages which are complete for the linear queries
expressible in FO + poly.

6.2 Some Remarks on Implementing the Query

Languages PFOL and FO + linear +O
The main purpose of this section is to argue that the two extensions of FO+ linear
introduced in Chapter 5 (FO+ linear +O and PFOL) are not only query languages
with a “theoretical” value, and, by doing so, to encourage the use of these linear
query languages in implementations of the linear constraint database model. We
exhibit in this section possible approaches to implement the query languages FO +
linear+O and PFOL on top of a linear constraint database system (with FO+linear
as linear query language). Some of the proposals, however, require further research
to obtain a better insight in their feasibility.

We start this section with a brief discussion on the DEDALE system, which im-
plements the linear constraint database model with FO + linear as linear query
language.

6.2.1 On the Implementation of FO+ linear

In this subsection, we briefly describe the DEDALE system, which is a first prototype
of the linear constraint database model, recently developed by Grumbach et al. [31,



6.2. Some Remarks on Implementing PFOL and FO + linear +O 129

32]. The data considered in DEDALE consists of alphanumerical values and two-
dimensional semi-linear sets. We concentrate here on the geometric part of the linear
constraint database model and the query language FO+linear, as existing relational
database systems can be used for the implementation of the alphanumerical part of
the linear constraint database model and the query language FO + linear.

Because of the declarative style of FO + linear, queries formulated as expressions
in FO + linear are less appropriate for query evaluation. By Theorem 2.13, the
query language FO+linear is equivalent in expressive power to the linear constraint
algebra, which has a more procedural style. Moreover, an FO+linear expression can
be translated automatically into a linear constraint algebra expression. As formally
described in Section 2.3, the operators of the linear constraint algebra, which work
on semi-linear sets, consist of union, intersection, complement, Cartesian product,
selection, and projection.

Roughly spoken, the DEDALE system implements the operators of the linear con-
straint algebra as follows1:

• projection is implemented using Fourier-Motzkin quantifier elimination on fi-
nite sets of linear inequalities;

• union, intersection, selection, and Cartesian product are performed by a sym-
bolic manipulation on the constraints representing the semi-linear sets to which
these operators are applied; the actual computation of these operators is post-
poned until an explicit call of the function which computes the polygon rep-
resentation of a two-dimensional semi-linear set is made; and, finally,

• the complement of a two-dimensional semi-linear set is computed by making a
cell decomposition of the plane using the lines defined by a1x1+a2x2+a3 = 0,
with a1x1+a2x2+a3 a linear constraint term occuring in the linear constraint
formula defining that semi-linear set.

1A program that can also be useful in this context, is the program called cdd, or the mod-
ern object-oriented version of it, cdd+. The program cdd+ implements the Double Description
Method of Motzkin et al. [29, 57] for generating all special points (corner points and points at
infinity) of a general convex polyhedron in Rn given by a system of linear inequalities. The
program can also be used for the reverse operation, i.e., computing the convex closure of a
set of n-dimensional corner points and points at infinity. This means that one can move back
and forth between an inequality representation and the finite representation of a n-dimensional
polyhedron with cdd+. The program cdd+ can be found on the Internet by following the link
http://www.ifor.math.ethz.ch/ifor/staff/fukuda/cdd home/cdd.html. Another example of
an algorithm that computes the convex closure of a finite set of points in the n-dimensional
space, is the QuickHull algorithm, developed by Barber et al. [7]. The program qhull im-
plements the QuickHull algorithm, and can be found on the Internet by following the link
http://www.geom.umn.edu/locate/qhull.
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6.2.2 On the Implementation of FO+ linear+O
In this subsection, we describe how FO + linear + O can be implemented on top
of a linear constraint database system with the linear constraint algebra as query
language. Thereto, we extend the linear constraint algebra with the operators rep-
resented by O to obtain a more procedural query language which is equivalent to
FO + linear +O.
Let O be a set of operator names, each of which denotes a linear operator. For each
operator name O in O of type [m1, n1; . . . ;mk, nk]→ [m,n], we add to the operators
defining the linear constraint algebra, the operator

O(r1, . . . , rk),

where r1, . . . , rk are syntactic linear constraint relations of type [m1, n1], . . . , [mk, nk]
respectively. We call the resulting query language the linear constraint algebra+O.
We can now generalize the result of Proposition 2.13:

Proposition 6.1 Every FO + linear + O expression can be converted effectively
into a linear constraint algebra + O expression and vice-versa, in such a way that
both express the same mapping from linear constraint database instances to linear
constraint database instances, respectively at the semantic and syntactic level.

Of course, the efficiency of the evaluation of expressions in the linear constraint
algebra extended with O-operators depends heavily on the availability of efficient
algorithms for computing the operators represented by O and the efficiency of the
evaluation of linear constraint algebra expressions. However, because of the severe
limitations of FO + linear, one should at least consider extending FO + linear with
a minimal set of aggregate operators to compute, for instance, distance, area, and
volume. As a matter of fact, the DEDALE prototype system includes, besides the
linear algebra operators, the following efficiently implementable linear operators:

• σdist θ d of type [0, n; 0, n]→ [0, 0], which evaluates to true if there exists some
point ~p in the first input relation and some point ~q in the second input relation
such that distance(~p, ~q) θ d is satisfied;

• axis of type [0, 2] → [0, 2], which yields as output the affine support of the
input relation, and;

• median of type [0, n; 0, n; 0, n], which yields as output the empty set if one of
the input relations consist of more than one point, and otherwise, the Voronoi-
cell of the point in the third input relation with respect to the points in the
first and in the second input relation.
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6.2.3 On the Implementation of PFOL

The approach we follow here is based on the result established in Theorem 5.52 in
which we showed that PFOL and FO + linear + {line, sqrt} are equivalent query
languages. For convenience, we reiterate the definition of the linear operators line
and sqrt:

• The linear operator line of type [0, 2] → [0, 2] returns the union of all lines
through some point of the input and the origin (0, 0).2

• The linear operator sqrt of type [0, 1]→ [0, 1] returns those real numbers that
are the square root of the absolute value of a real number in the input.

Combining Theorem 5.52 and Proposition 6.1, we immediately obtain the following
result.

Proposition 6.2 Every PFOL expression can be converted effectively into a linear
constraint algebra expression with sqrt and line operators and vice-versa, in such
a way that both express the same mapping from linear constraint database instances
to linear constraint database instances, respectively at the semantic and syntactic
level.

For our purposes, we concentrate on the translation of a PFOL program into an
FO + linear + {line, sqrt} expression, which is done in the proof of Lemma 5.50.
An inspection of the proof of Lemma 5.50 shows that this translation is indeed
effective and, moreover, in the FO+ linear+ {line, sqrt} expressions obtained as the
translation of PFOL programs, the operators line and sqrt are only applied to finite
point-sets in two-dimensional and one-dimensional space, respectively. Obviously,
the operators line and sqrt can be implemented efficiently on finite sets of points.
Hence, we can conclude that the evaluation of FO+ linear + {line, sqrt} expressions
in which the operators line and sqrt are applied to finite sets is as tractable as the
evaluation of FO + linear expressions.

6.3 Directions for Future Research

We conclude this work with two possible directions for future research on linear
query languages for the linear constraint database model.

2Notice that, if R(0, 0) is true, then the operator line returns the entire plane.
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First, we must emphasize that we are still far away from a precise insight into the
expressiveness of FO + linear on semi-linear figures. As a step towards answering
this question, we could investigate the expressive power of FO + linear on certain
subclasses of the semi-linear figures? For instance, in Section 3.2, we studied the
expressibility in FO+ linear of various geometric properties as “being parallel” and
“having the same angle” on databases consisting of lines. Now, any database con-
sisting of finite unions of non-zero-dimensional affine subspaces, can be encoded as
a finite number of lines3. Indeed, we can generalize Proposition 3.30 to non-zero-
dimensional affine subspaces, and Lemma 3.22 shows that the encoding of one affine
subspace can be obtained as intersections of that affine subspace with the appro-
priate coordinate subspaces. Moreover, this encoding is expressible in FO + linear.
The corresponding decoding is also expressible in FO + linear: given a set of lines,
of which we can assume without loss of generality that these lines are pairwise non-
parallel, the affine subspace spanned by these lines is obtained by computing the
midpoint of every possible pair of points on these lines. Hence, similarly as in The-
orem 5.15, we can characterize the expressive power of FO + linear on databases
consisting of finite unions of affine subspaces in terms of the expressive power of
FO + linear on databases consisting of finite unions of lines. A precise characteri-
zation of the expressiveness of FO + linear on finite unions of lines remains open,
however.

Related to the above, it would be interesting to study subclasses of semi-linear
figures for which it is decidable whether an FO + poly-expressible query which is
sound with respect to a particular subclass of the semi-linear figures can be expressed
in FO + linear. In Section 3.4, it is shown for various subclasses of the semi-linear
figures that it is undecidable whether an FO+poly-expressible query which is sound
with respect to one of these subclasses can be expressed in FO + linear. We might
have more success, however, when the number of “components” of which the figures
of a particular subclass consist is fixed, e.g., databases which consist of at most k
affine subspaces, k > 0.

Second, in Chapter 5, we proposed extensions of FO + linear to capture richer
subclasses of the FO+polylin queries. In our opinion, this direction deserves further
exploration. The following are only illustrations of research questions one might ask:

• Can we find a finite set of operators such that FO+ linear +O is complete for
the linear queries?

• Can we find “practical” query languages which capture the linear queries ex-
pressible in FO + poly?

3A k-dimensional affine subspace can be encoded with k − 1 lines.
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• Can we find query languages which are sound and complete for the linear
queries that satisfy one of the various genericity conditions studied in [61]?

• What is the expressive power of PFOL augmented with all k-roots?

As a general conclusion of this chapter, we may say that there are still several
exciting research directions concerning new languages, their expressiveness and their
implementation that make future investigations of the linear constraint database
model worthwhile.





Appendix A

Property SL and Semi-Linearity

The purpose of this appendix is giving a rigorous proof of the key property of
Chapter 4, which states that an R-semi-algebraic set is R-semi-linear if and only if
it satisfies Property SL. The proof of this claim is due to Freddy Dumortier [20].

For convenience, we reiterate Property SL:

Definition 4.1 Let S ⊆ Rn. We say that S has Property SL if, for every point ~p
of S, there exists a neighborhood V of ~p such that, for every point ~q of V ,

1. if ~q is in S, then ]~p, ~q[ is fully contained within S; and

2. if ~q is not in S, then ]~p, ~q[ is disjoint from S.

First, we observe that having Property SL is preserved under several operations.

Lemma A.1 Having Property SL is preserved under set difference, complementa-
tion, finite intersection, and finite union.

Proof.

1. Difference: Let S1, S2 ⊆ Rn both have Property SL. Let ~p be in S1 − S2.
Obviously, ~p is then also in S1. We now distinguish two cases.

First, if ~p is in S2, then we choose a neighborhood V of ~p such that Def-
inition 4.1 is satisfied with respect to both S1 and S2. A straightforward
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verification then suffices to see that Definition 4.1 is also satisfied with respect
to S1 − S2.

Second, if ~p is not in S2, then we choose a neighborhood V of ~p such that
Definition 4.1 is satisfied with respect to S1 and such that V ∩ S2 = ∅. Again,
a straightforward verification then suffices to see that Definition 4.1 is also
satisfied with respect to S1 − S2.

2. Complementation: Let S ⊆ Rn have Property SL. Obviously, Rn satisfies
Property SL. Hence, the complement of S, Rn − S, satisfies Property SL.

3. Intersection: Let S1, S2 ⊆ Rn both have Property SL. Then S1 ∩ S2 = S1 −
(Rn − S2) has Property SL.

4. Union: Let S1, S2 ⊆ Rn both have Property SL. Then S1∪S2 = Rn− ((Rn−
S1) ∩ (Rn − S2)) has Property SL.

Lemma A.2 Having Property SL is preserved under taking topological boundary,
closure, and interior.

Proof.

1. Closure: Let S ⊆ Rn have Property SL. To show that S has Property SL,

let ~p be in S = S. Let V be a convex neighborhood of ~p showing that S has
Property SL at ~p. Let ~q be in V . We consider both possibilities:

(a) ~q is in S: Then there must exist a sequence ( ~qm)m≥0 in S ∩ V such that
limm→∞ ~qm = ~q. Since S has Property SL, we have, for all m ≥ 0, that
]~p, ~qm[ is fully contained within S, whence, in the limit, ]~p, ~q[ is fully
contained within S.

(b) ~q is not in S: We have to show that ]~p, ~q[ is disjoint from S. Therefore,
assume to the contrary that both sets have the point ~r in common. Since
~r is in S, there must exist a sequence (~rm)m≥0 in S such that limm→∞ ~rm =
~r. Since ~r is on the open line segment between ~p and ~q, there exists λ > 0
such that ~q = ~p+λ(~r−~p). Let, for m ≥ 0, ~qm = ~p+λ(~rm−~p). Obviously,
limm→∞ ~qm = ~q. Since ~q is not in S, there must exist m0 ≥ 0 such that
~qm0 is not in S. Since S has Property SL, we have that ]~p, ~qm0 [ is disjoint
from S. Hence, ~rm0 , which by construction is on this line segment, does
not belong to S, a contradiction.

2. Boundary : Let S ⊆ Rn have Property SL. The topological boundary of S
equals S ∩Rn − S, and, therefore, has Property SL.
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3. Interior : Let S ⊆ Rn have Property SL. The topological interior of S equals
Rn −Rn − S, and, therefore, has Property SL.

Using some of the above preservation properties, we can easily show the “only if”
of Proposition 4.2:

Proposition A.3 Each R-semi-linear set has Property SL.

Proof. First, we observe that closed half-spaces obviously have Property SL. As a
consequence, convex polyhedra must have Property SL, by Lemma A.1, and open
convex polyhedra must have Property SL, by Lemma A.2. Finally, each R-semi-
linear set, which is a finite union of open convex polyhedra (see, e.g., [73]), must
have Property SL, again by Lemma A.1.

We now come to the “if” part of Proposition 4.2, which is the more interesting
direction of this result.

First, we prove Proposition 4.5:

Proposition 4.5 A bounded set having Property SL is R-semi-linear.

Proof. Let S ⊆ Rn be a bounded set. We show by induction on the dimension
of S that S is R-semi-linear. If S is zero-dimensional, then S consists of a finite
number of points, whence S is trivially R-semi-linear. Now, assume that, for some
k, 0 ≤ k < n, each bounded subset of Rn with Property SL and dimension at most
k is R-semi-linear, and let S be (k + 1)-dimensional. For ~p ∈ Rn and A ⊆ Rn, let
us define the cone from ~p on A as the union of all closed line segments connecting ~p
to a point of A. By Property SL, there exists, for each point ~p of S, a neighborhood
V~p, which we can assume to be an n-dimensional hypercube, such that S ∩ V~p is
either the cone from ~p on S ∩ ∂V~p, if ~p is in S, or that set with ~p removed, if ~p
is not in S. Since ∂V~p, the boundary of the hypercube V~p, is obviously R-semi-
linear, it has Property SL (see also Lemma A.3 in Appendix A). Since, clearly,
the intersection of two sets with Property SL has Property SL (see also Lemma A.1
in Appendix A), S ∩ ∂V~p has Property SL. Since, moreover, this set is at most
k-dimensional, the induction hypothesis applies, whence it is R-semi-linear. Since
S ∩ ∂V~p is R-semi-linear, it follows from Proposition 2.12 that it is the finite union
of convex polyhedra. Clearly, the cone from a point on a convex polyhedron equals
the convex closure of that point and that polyhedron, whence that cone is R-semi-
linear. Hence, since the cone defining S ∩ V~p equals the finite union of the cones
from ~p on a polyhedron defining S ∩ ∂V~p, possibly with the point ~p removed, S ∩ V~p
is R-semi-linear. Clearly, S ⊆ ⋃

~p∈S V~p. Since S is both closed and bounded, it is
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compact1, whence there exist finitely many points of S, say ~p1, . . . , ~pm, such that
S ⊆ ⋃m

i=1 V~pi. Consequently, S =
⋃m

i=1(S ∩ V~pi) is a finite union of R-semi-linear
sets, and, therefore, R-semi-linear.

The above proof only works for the bounded case, as it uses compactness, and is
highly non-constructive, for the same reason.

We now prove Property SL for the general case, but, first, we state and prove the
following two lemmas.

Lemma A.4 A regular stratum (of the first layer of the regular stratification) of an
R-semi-algebraic set having Property SL is contained in an affine subspace within
which it is topologically open.

Proof. Let S ⊆ Rn be an R-semi-algebraic set having Property SL, and let Si be
a regular stratum of the first layer of the regular stratification of S.

Let ~p be a point in Si. By Definition 3.12, we know there exist polynomials with
real coefficients P1, . . . , Pk in real variables, k = n− dim(S), such that

dP1

d~x
(~p ), . . . ,

dPk
d~x

(~p )

are linearly independent and

S ∩ V = {~x ∈ V | P1(~x ) = · · · = Pk(~x ) = 0}. (A.1)

Let T be the (n− k)-dimensional tangent space of S at ~p, defined by the system of
k linear equations

dP1

d~x
(~p ) . ~x = 0, . . . ,

dPk
d~x

(~p ) . ~x = 0. (A.2)

Without loss of generality, we may assume that V shows that S has Property SL
at ~p.

By the Implicit Function Theorem, there exist k coordinate positions, say the
first k for simplicity of notation, there exists an open convex neighborhood W1 of
(p1, . . . , pk) in Rk and an open convex neighborhood W2 of (pk+1, . . . , pn) in Rn−k

with W = W1 ×W2 ⊆ V , and there exist analytic functions f1, . . . , fk such that

S ∩W = {~x | x1 = f1(xk+1, . . . , xn), . . . , xk = fk(xk+1, . . . , xn),

(xk+1, . . . , xn) ∈ W2}.
(A.3)

1A subset of a topological space is called compact if each cover by open sets can be reduced to
a finite cover. A subset of Rn is compact precisely if it is closed and bounded.
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Consequently, the system of k linear equations A.2 defining T can be rewritten as







x1 = ∂f1
∂xk+1

(pk+1, . . . , pn) . xk+1 + · · ·+ ∂f1
∂xn

(pk+1, . . . , pn) . xn,
...

...

xk = ∂fk
∂xk+1

(pk+1, . . . , pn) . xk+1 + · · ·+ ∂fk
∂xn

(pk+1, . . . , pn) . xn.

(A.4)

Now, let ~q be any point of S ∩W different from ~p. By Property SL, the convexity
of W , and the defining properties of ~p and ~q, [~p, ~q ] is fully contained within S ∩W .
Necessarily, a line segment through ~p which is fully contained in S is also fully
contained in the tangent space T of S at ~p, whence in particular ~q is in T . Thus, we
have shown that S ∩W is fully contained in T . We next show that, also, T ∩W is
fully contained in S. Thereto, let ~r be any point of T ∩W . Then (rk+1, . . . , rn) is in
W1. By (3), there is a unique point ~s in S ∩W for which sk+1 = rk+1, . . . , sn = rn.
Since S ∩W is fully contained in T , it follows that ~s is in T . By (4), ~r is the only
point of T for which rk+1 = sk+1, . . . , rn = sn. Hence ~r = ~s, whence ~r is in S. We
may thus conclude that S ∩W = T ∩W , as a consequence of which all points in
S ∩W are regular and must belong to Si. Another consequence of S ∩W = T ∩W
is that S ∩W is topologically open within T .

By analytic continuation, i.e., by making the above argument for all points ~p in Si
and by considering that the constructed neighborhoods overlap, we see that (i) Si
is fully contained in T , and that (ii) Si is topologically open within T .

Lemma A.5 A regular stratum (of the first layer of the regular stratification) of an
R-semi-algebraic set having Property SL is an R-semi-algebraic set which also has
Property SL.

Proof. Let S ⊆ Rn be an R-semi-algebraic set having Property SL, and let Si be a
regular stratum of the first layer of the regular stratification of S. It is well-known
that Si is R-semi-algebraic [46, 56].

By Lemma A.4, there exists an affine subspace T of Rn such that Si is contained in
T and Si is topologically open within T . Obviously, Si is also contained in T . We
show that Si has Property SL.

Thereto, let ~p be a point of Si.

If ~p is a point of Si, then there exists a neighborhood V of ~p such that S ∩ V =
Si ∩ V = T ∩ V . Using this neighborhood V , it is immediately seen that Si has
Property SL at ~p. Thus suppose ~p is not in Si. Let V be a convex neighborhood of
~p showing that S has Property SL at ~p. Let ~q be in V .

We distinguish two cases:
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1. The point ~q is in Si: Then there exists a neighborhood W ⊆ V of ~q such that
S ∩W = Si ∩W = T ∩W . Let ~r be a point on ]~p, ~q[. Then there exists λ,
0 < λ < 1, such that ~r = ~p + λ(~q − ~p). Let X = {~p + λ(~s − ~p) | ~s ∈ W}.
Then X is a neighborhood of ~r. By applying Property SL, it is easily seen
that S ∩ X = T ∩ X , whence ~r is regular and S has maximal dimension at
~r. Thus, Si ∪ ]~p, ~q[, which is connected, is a superset of Si consisting only of
regular points of S in which S has maximal dimension. By definition of regular
stratum, Si ∪ ]~p, ~q[ = Si, whence ]~p, ~q[ is fully contained within Si.

2. The point ~q is not in Si: If ~q is not in S, then, by Property SL, ]~p, ~q[ is disjoint
from S, whence disjoint from Si. Similarly, if ~q is not in T , ]~p, ~q[ is disjoint
from T , whence disjoint from Si. Thus suppose ~q is in S ∩ T .
We again distinguish two cases:

(a) Each neighborhood of ~q contains points of S outside T . Then there must
exist a sequence of points (~qm)m≥0 in S ∩V not belonging to T such that
limm→∞ ~qm = ~q. Let ~r be on ]~p, ~q[. Then there exists λ, 0 < λ < 1, such
that ~r = ~p+ λ(~q− ~p). Let, for m ≥ 0, ~rm = ~p+ λ(~qm − ~p). Clearly, ~rm is
not in T , and limm→∞ ~rm = ~r, whence each neighborhood of ~r contains
points of S outside T . Hence, ~r cannot belong to Si. We have thus proved
that ]~p, ~q[ is disjoint from Si.

(b) Some neighborhood of ~q contains no points of S outside T . Let W ⊆ V
be such a neighborhood; thus, S∩W = T ∩W , and ~q is a regular point of
S in which S has maximal dimension. Let Sj 6= Si be the regular stratum
to which ~q belongs. By an argument similar to the one used in Case 1, we
can show that the open line segment between ~p and ~q is fully contained
in Sj, whence it is disjoint from Si.

We may thus conclude that Si has Property SL.

Lemma A.6 A set which is topologically open within its affine support, and whose
topological boundary within its affine support can be decomposed into a disjoint union
of sets each of which is topologically open within its affine support, is R-semi-linear.

Proof. Let S0 ⊆ Rn. Let T0 be the affine support of S0 and assume that S0 is open
within T0. Let ∂S0 be the topological boundary of S0 within T0. Assume furthermore
that ∂S0 is the disjoint union of S1, . . . , Sm, that T1, . . . , Tm are the affine supports
of S1, . . . , Sm, respectively, and that, for i = 1, . . . , m, Si is topologically open
within Ti. We prove that S0 is R-semi-linear.
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For i = 0, . . . , m, let Hi1, . . . , Hiki be (n− 1)-dimensional hyperplanes the intersec-
tion of which equals Ti. For i = 0, . . . , m and j = 1, . . . ki, let Pij be the partition of
Rn consisting of the hyperplane Hij and the two open half-spaces it delineates. Let
P be the coarsest common refinement of Pij , 0 ≤ i ≤ m and 1 ≤ j ≤ ki. Clearly,
each cell2 of P can be obtained by choosing, for each i = 0, . . . , m and for each
j = 1, . . . , ki, one cell of Pij , and then taking the intersection of the chosen cells.
Hence, P is a finite partition of Rn whose cells are open convex polyhedra and,
therefore, R-semi-linear.

Thus, it suffices to show that S0 is a union of such cells.

Thereto, let ~p be a point of S0. For i = 0, . . . , m and j = 1, . . . , ki, let H
~p
ij be either

Hij , if ~p is in Hij , or the open half-space delineated by Hij that contains ~p. Then,

~p ∈
m⋂

i=0

ki⋂

j=1

H~p
ij .

By the observation above, the right-hand side of the above containment is the cell
of P containing ~p, which we shall denote as N~p. Notice that N~p ⊆ T0. Now suppose
that N~p also contains a point, say ~q, not belonging to S0. By the convexity of N~p,
[~p, ~q] is fully contained within N~p. Since S0 is open in T0, there exists a point ~r 6= ~p
on [~p, ~q] such that (i) [~p, ~r[ is fully contained within S0, and (ii) ~r is not in S0.
Consequently, ~r is in ∂S0. Let Si, 1 < i ≤ m, be the set in the decomposition of ∂S0

to which ~r belongs. Clearly, Si and S0 are disjoint. Moreover, ~p is not in Ti. Indeed,
if ~p were in Ti, then [~p, ~r[ would be fully contained in Ti. Since Si is topologically
open within Ti, it follows that [~p, ~r[ would intersect Si. Hence, [~p, ~r[ would contain
points outside S0, a contradiction. Since ~p is not in Ti, there exists j, 1 ≤ j ≤ ki
such that ~p is not in Hij . Of course, ~r is in Hij and, therefore, not in H

~p
ij, whence

not in N~p, a contradiction. We may thus conclude that N~p is fully contained in S0.

Finally, S0 =
⋃

~p∈S0
N~p.

We are now ready to prove the “if” part of Proposition 4.2.

Proposition A.7 Each R-semi-algebraic set with Property SL is R-semi-linear.

Proof. Let S ⊆ Rn be an R-semi-algebraic set with Property SL.

Let S1, . . . , Sl be the (pairwise disjoint) regular strata of the first layer of the regular
stratification of S. By Lemmas A.4 and A.5, there exist affine subspaces T1, . . . , Tl

2We use the term cell to refer to an element of a partition (which is a subset of the set being
partitioned).
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of Rn such that, for i = 1, . . . , l, (i) Si is an R-semi-algebraic subset of Ti which
is topologically open within Ti, and (ii) Si has Property SL. By Lemma A.1, S −
⋃l
i=1 Si is an R-semi-algebraic set having Property SL. We can thus recursively do

the same procedure on S − ⋃l

i=1 Si to obtain the regular strata of the subsequent

layers of the regular stratification of S. Since dim(S − ⋃l

i=1 Si) < dim(S), the
recursion stops, and we obtain a decomposition of S as a disjoint union of sets
S1, . . . , Sm, for which there exist affine subspaces T1, . . . , Tm of Rn such that, for
i = 1, . . . , m, (i) Si is an R-semi-algebraic subset of Ti which is topologically open
within Ti, and (ii) Si has Property SL. It suffices to show that S1, . . . , Sm are
R-semi-linear.

Thereto, let 1 ≤ i ≤ m, and consider Si. By Lemma A.2, ∂Si, the topological
boundary of Si within Ti, which is also R-semi-algebraic, has Property SL. Thus,
we can repeat the above reasoning and decompose ∂Si as a disjoint union of sets each
of which is topologically open within its affine support (and which has Property SL).
It now follows immediately from Lemma A.6 that Si is R-semi-linear.

From Propositions A.3 and A.7, our final result is now immediate:

Proposition 4.2 Let S be an R-semi-algebraic set. The set S is R-semi-linear if
and only if it has Property SL.



Appendix B

Alternative Proof for Decidability

of Semi-Linearity for

Semi-Algebraic Sets

In this appendix, we present an alternative method, which was kindly suggested
by an anonymous referee of the extended abstract of the paper [20], presented at
the 16th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, to prove the two principal decidability results in Chapter 4 (Theorems 4.37
and 4.40).

This alternative method is based on the well-known fact that the real ordered field
〈R,≤,×,+, 0, 1〉 and the real ordered group 〈R,≤,+, 0, 1〉 have “definable choice
functions”: for any definable set, one can definably choose an element in it (e.g.,
[11]). More formally, if ϕ(~x) is a satisfiable real formula, i.e., S = {~x | ϕ(~x)} is
not empty, one can construct a real formula ϕ′(~x) such that S ′ = {~x | ϕ′(~x)} is a
singleton subset of S. Moreover, it is possible to construct this formula in such a
way that (i) ϕ′(~x) is Z-linear if ϕ(~x) is Z-linear, and (ii), whenever ϕ(~x) and ψ(~x)
define the same set S, ϕ′(~x) and ψ′(~x) define the same singleton subset S ′ of S.
In geometric terms, the above translates as follows: in a non-empty semi-algebraic
set, one can choose deterministically a point with real algebraic coordinates in an
algorithmic manner; if, moreover, the set is Z-semi-linear, then the point has rational
coordinates.1

1To see this, let S be a semi-algebraic set. If S is discrete (which is decidable by the same
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Using this result, we prove Theorems 4.37 and 4.40.

Theorem 4.37 Let S be a semi-algebraic set. The set S is A-semi-linear if and only
if it has Property SL. Moreover, A-semi-linearity of a semi-algebraic set defined by
a real formula is decidable.

Proof. By Proposition 4.2, it suffices to show that, if S is a semi-algebraic R-
semi-linear set, then S is A-semi-linear. Since S is semi-algebraic, there exists a
real formula ϕ(~x) defining S. Since S is R-semi-linear, there also exists an R-linear

formula ψ(~x) defining S. Let θ(~λ, ~x) be the real formula obtained from ψ by replacing
each coefficient in ψ by a real variable. Hence, there exists a vector ~r of real numbers
such that ψ(~x) ≡ θ(~r, ~x). Next, let γ(~λ) be the formula (∀~x)(ϕ(~x)⇔ θ(~λ, ~x)). This
formula is satisfiable, since γ(~r) is true. Let ~a be the unique vector of real algebraic
numbers such that γ′(~a) is true. Clearly, the formula ψ̃(~x) ≡ θ(~a, ~x) is an A-semi-
linear formula defining S.

Theorem 4.40 It is decidable whether a semi-algebraic set defined by a real formula
is Z-semi-linear.

Proof. Assuming that we have already decided that S is A-semi-linear, we produce
by enumeration an A-linear formula ϕ(~x) defining S. Let θ(~λ, ~x) be the real formula
obtained from ϕ by replacing each coefficient in ϕ by a real variable, and let ~a be
the vector of real algebraic numbers such that ϕ(~x) ≡ θ(~a, ~x).

Let γ(~λ) be the formula (∀~x)(ϕ(~x)⇔ θ(~λ, ~x)). This formula is satisfiable, since γ(~a)
is true. Let ~q be the unique vector of real algebraic numbers such that γ′(~q) is true.

Notice that the formula γ′(~λ) can effectively be computed.

We now claim that S is Z-semi-linear if and only if ~q is a vector of rational numbers.
Lemma 4.39 then yields the desired result.

Clearly, if ~q is a vector of rational numbers, then ϕ̃(~x) ≡ θ(~q, ~x) is a Z-linear formula
defining S, whence S is Z-semi-linear.

Conversely, if S is Z-semi-linear, then let ψ(~x) be a Z-semi-linear formula defining

S. Consider the formula (∀~x)(ψ(~x)⇔ θ(~λ, ~x)). Using quantifier elimination [19], it

expression as for semi-linear sets [74]), then choose a point of S based on minimality of coordinates.
From the observation that Z-linear formula permit quantifier elimination [28, 54, 48], it is readily
seen that, if S is Z-semi-linear, this point will have rational coordinates. If S is not discrete, then
at least one of its projections on the coordinate axes is not discrete. Let Si be the projection on
the first such coordinate axis (according to the standard order of the coordinates), say xi. Since Si

is not discrete, Si contains an open interval, and, therefore, a point whose coordinate is a rational
number. Let q be the first such rational number in some enumeration of the rational numbers. The
intersection of S and the hyperplane xi = q has strictly lower dimension than S and is Z-semi-linear
whenever S is. The procedure above is now repeated for this lower dimensional set.
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can be seen that the above formula is equivalent to a Z-linear formula χ(~λ). Hence,

χ′(~λ) is also Z-linear. Since γ(~λ) and χ(~λ) clearly define the same semi-algebraic

set, it follows that γ′(~λ) and χ′(~λ) both define ~q. Since χ′(~q) is true, it follows that
~q is a vector of rational numbers.
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