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Abstract

The field of networked virtual environments has been an active area of re-
search in the past decades. The increasing power of contemporary computers
and the lowering of hardware and connectivity costs permits people to have
this technology available in their homes and workplaces. As a result, several
applications and prototypes are successfully being used in several fields. Most
of the research and developments have, however, been technology driven and
as a result one of the main components, interaction, is much less explored.

In this dissertation we focus on realizing more realistic virtual experiences
by narrowing the gap between real-life and virtual world interaction possibili-
ties. In contrast to ad hoc approaches, we also seek to provide a more general
and reusable solution. The interactive object approach provides such a solu-
tion by employing a general purpose interaction mechanism for every kind of
interaction in the virtual world. This mechanism relies heavily on a feature
modeling approach that allows objects to describe their own interaction pos-
sibilities. As a result, the interactions become application independent and
objects unknown to the application can be inserted at run time.

The problem of realistic interactions is, however, not limited to represen-
tation and execution of interactions. It requires the consideration of several
related fields, such as realistic simulation and animation, user embodiment
and human computer interaction as well. Therefore, in a second phase, we de-
veloped and integrated the ExtReAM library into the interaction framework.
This platform-independent library allows us to improve realism by enabling
physical simulation and more dynamic animations for objects and user em-
bodiments. Furthermore, it allows objects to contain physical properties and
actions as well. By combining realistic simulation with our dynamic interac-
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tion mechanism, much more lively virtual worlds can be achieved with minimal
effort, which can result in better virtual experiences and higher levels of pres-
ence if used properly.

As more natural interaction techniques can increase the user’s feeling of
being immersed in the virtual world, we analyze how our dynamic interaction
and animation system can be utilized to create more realistic user embodi-
ment control and interaction techniques. Therefore, we propose two new 3D
interaction techniques, utilizing our framework. The first technique allows
the user to interact directly in the virtual world by controlling his virtual
hand with a 3D input device. We elaborate on how this was established and
how this technique can be distributed among the participants with as little
bandwidth consumption as possible. The second technique involves a travel
technique that provides the user with haptic feedback on what is happening to
his virtual counterpart. This was realized by converting rigid body simulation
information into force feedback. By means of a formal usability study, we show
how this haptic travel method results in an increased feeling of immersion.
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General Introduction

The idea of creating a computer-generated experience that is indistinguishable
from reality has since the beginning of the computer age been subject of many
books, movies and theories. Would it not be amazing, if instead of going to
a museum to look at some artifacts and read information charts, we could
virtually travel through time and space and visit any era or location we can
imagine? What if we could be completely present, able to see, hear, smell,
taste and touch everything. Being able to interact with everything and every-
one in a way that feels completely natural. Taking this idea a little further
would lead us to the situation where we would be unable to tell the differ-
ence between our real life and a life in a simulated environment. Although
these ‘Matrix’ or ‘eXistenZ’ theories are still only the subject of science fiction
novels and movies, it is clear that over the past decades the Virtual Reality
(VR) community has become an important part of computer science and its
applications have grown into much more than games and laboratory toys.

However, even though a lot of research has been done by the VR commu-
nity, we are still a long way from achieving ‘virtual trips’ into truly realistic
virtual worlds. In order to create such overall experiences, VR applications
will need to stimulate the participant’s senses. Ideally, it would provide infor-
mation to all the senses (as there are sight, hearing, smell, taste and touch).
It is well known that over the last decades, most of the efforts trying to gener-
ate virtual worlds have been spent on the visual sense. Especially the gaming
and movie industry in combination with the tremendous evolution in hardware
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have boosted computer graphics and animation research, resulting in excellent
real-time graphical rendering of virtual worlds with animated creatures and
physically simulated objects. Auditory feedback has also been investigated
thoroughly, and many contemporary applications support realistic sound ef-
fects and 3D localized sound. On the other hand, olfactory and taste feedback
have gained very little attention from the VR research community and al-
though some experimental systems exist [Davide 01, Chen 06], these domains
are considered to be in their early research phase. As processing power in-
creased over the last years, haptic feedback, stimulating the sense of touch,
has gained more and more interest and has grown into a mature domain. As a
result, it has been successfully applied in several practical applications in the
domains of robotics, telerobotics, CAD, sculpting, medical simulations and
training [Stone 00], and several kinds of haptic Input/Output (IO) devices
have been developed [Berkley 03, Fisch 03].

Not only computer interface technology has advanced. The advances in
communication technologies have caused geographical boundaries for social
interaction to be practically dissolved. The use of asynchronous information
exchange systems such as the WWW and email have become omnipresent
and fulfill a key role in the current workspace. The expansion of high-speed
broadband Internet access, has led to the rising of synchronous communication
systems such as applications for real-time communication, videoconferencing
and distributed forms of VR, often referred to as Networked Virtual Environ-
ments (NVEs) or Collaborative Virtual Environments (CVEs). However, the
deployment of these systems has been much less preeminent.

Thus, the technology to enable realistic NVEs has advanced enormously,
and the research done resulted in several standards allowing the creation and
distribution of different kinds of data necessary to support such environments.
Furthermore, several VR applications are successfully being used in several
fields such as surgery training, flight simulators, networked shared environ-
ments for teleconferencing, human factors analysis, training, education, vir-
tual prototyping, simulation-based design and entertainment and many more.
The increasing power of contemporary computers combined with the lowering
of hardware and connectivity costs permits people to have all this technology
available in their homes and workplaces. So why is it that we are still working
on 2D desktops? Why are we still sending emails typed on a keyboard? And
how come the only widely known applications of VR are the commercial com-
puter games? Why don’t we make use of all the technology that is available
at our fingertips?



Problem Statement

One way of explaining the slow adoption of 3D VEs may be the lack of natural
ways of interacting with these systems. Most of the research and developments
have been technology driven, focusing on better graphics, larger numbers of
simultaneous users, more extensive and detailed environments, more realistic
feedback, supporting more devices, etc. Yet one of the main components of
VEs, interaction, is much less explored. Especially collaborative systems and
video-based distributed systems have tended to focus on simple interactional
situations and have mostly avoided the use of more advanced interactions such
as those involving advanced animation techniques and realistic simulation of
physical objects. It seems as if the quest for larger, more realistically-looking
VEs, with massive multi-user support and streaming multimedia contents has
overshadowed the research on how we could perform even the simplest of tasks,
such as picking up an object or pointing at a location in the virtual world.
Although interaction and interactivity have been studied, a gap still remains
between real world richness of possible actions and their virtual counterparts.
As an example, consider the seemingly trivial action of opening a door. In
the real world it is so common that nobody even needs to think of how to
do it; however, when we try to come up with a general solution for NVEs,
it’s a whole different story. It requires taking into account aspects of user
embodiment, animation, collision detection, object manipulation, etc. Fur-
thermore, most NVE developers consider interaction to be a by-product of
the VE design, a necessary aspect to demonstrate other components. As a
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result, most interaction approaches have been developed in an ad hoc fashion.
Consequently, it is very hard to find relevant information on how exactly VE
interactions are implemented and which underlying mechanisms are used in
these systems, since most publications hardly spend any attention on the mat-
ter. As a result, although many systems are graphically very realistic, with
respect to interaction, most professional VE systems are fairly static and focus
on communicational aspects. Most systems only allow the most basic tasks,
such as travel through the virtual world. Most other professional interactive
systems have focused on 3D modeling aspects, allowing users to select and
move static objects in the environment.



Contributions

The overall purpose of this work is to investigate how more lively and real-
istic VE experiences can be achieved. Instead of focusing on the graphical
aspects, we try to achieve this by narrowing the gap between real-life and vir-
tual world interaction possibilities. In contrast to ad hoc approaches, we seek
a more general solution that is able to support NVE requirements. Therefore,
a new, general way of modeling and executing VE interactions is required.
The problem of realistic interactions is however not limited to their repre-
sentation and execution mechanism. It requires the consideration of several
related fields, such as realistic simulation and animation, user embodiment
and human computer interaction as well. Moreover, to enable more advanced
useful interactions, all these interaction components need to be attuned to
each other. How this can be realized is also the subject of this investigation.

This dissertation reports on our efforts in creating more interactive VE
solutions and describes:

• the design, implementation and evaluation of a new general way of pro-
viding dynamic interaction for VEs: the interactive object approach.
This consists of a new general-purpose interaction mechanism enabling
more dynamic VEs. The proposed system is designed to deal with
all possible interactions in a virtual world. The idea is to construct
a world using only interactive objects that contain their own interaction
information. As a result, the object interactions become application-
independent and only a single interaction scheme is required to handle



6 Contributions

all virtual interactions in the VE. Also, the system allows for instant
integration of new, ‘unknown’ interactive objects during simulation;

• the ExtReAM library, a plug-in-based animation library. This library
will enable us to improve realism by enabling physical simulation and
more dynamic animations for objects and user embodiments which can
result in better VE experiences and higher levels of presence if used prop-
erly. ExtReAM is built around an object-oriented, platform-independent
core that can easily be extended with plug-ins. While the core system
provides functionality for managing plug-ins and objects, the plug-ins
are responsible for more specific tasks such as object loading and var-
ious animation techniques. Different plug-ins can be used for different
platforms, when necessary, and plug-ins need to be loaded only when
their functionality is required. In this way, ExtReAM is prepared for
next generation VEs on different platforms;

• the physical interactive object approach, an extension of the basic interac-
tive object approach, that increases the realism of the interactive world
by employing rigid body simulation to calculate all actor and object
movements. Furthermore, it allows objects to contain physical actions
and properties as well. The extended animation and simulation function-
alities are provided by integrating the ExtReAM library. By combining
realistic simulation with our dynamic interaction mechanism, much more
lively virtual worlds can be achieved with minimal effort;

• new techniques for interacting with virtual environments. We show how
inverse kinematics can be used to increase the interaction possibilities
through realistic direct avatar control. This allows for easy, on-the-fly
creation of new interactions. Furthermore, we present a way to couple
stable haptic force feedback to rigid body simulation in order to achieve
haptic travel in dynamic VEs. Through the use of a haptic IO device,
we provide the user with a realistic way to control an animated avatar’s
travel in a VE. Furthermore, we show how several physically simulated
forces based on changes in the terrain and avatar collisions, influence
travel and give the user feedback on what is happening to its virtual
representation; increasing his feeling of presence;

• formal and informal evaluations of all of the proposed solutions and tech-
niques through experimentation, integration in real-world applications or
usability testing.
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Although the field we are working in is closely related to the rising field
of virtual autonomous actors, we must stress that this is not the field we are
considering. However, there are several links, and where they appear, they
will be mentioned. Another field that is closely related to NVEs is the field of
computer games. The main difference between games and the NVEs we con-
sider is that in contrast to games, that aim at entertaining the user and trying
to have him play as much as possible, professional NVEs are mostly created
with a specific goal in mind. They are tools for achieving a mutual goal. These
goals can include simulation, education, training, a medical procedure, etc. As
a result of their difference in nature, games tend to outperform professional
NVEs with respect to usability and certainly aesthetics. Professional NVEs
tend to spend less attention on these subjects, and NVE developers focus more
on correctness and quality of the tasks at hand. It is clear that both fields can
learn from each other, therefore, we will investigate techniques that are often
only used in games, but that can be useful for professional NVEs, as well.
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Outline

This dissertation comprises five parts:

1. Part I gives a general overview of the research field and discusses some
important definitions and related work.

2. Part II shows how a feature modeling approach is used to enable dynamic
interactions in virtual environments.

3. Part III discusses the importance of realistic simulation and animation
and presents how we constructed a flexible animation library to extend
our dynamic interaction approach.

4. Part IV proposes two dynamic interaction techniques employing realistic
animation, enabling more realistic avatar control.

5. Part V presents some closing remarks and directions for further research.

In Part I we start by defining some of the terminology that is used through-
out this dissertation and give some background information on the field of VR
systems in Chapter 1. This overview is completed in Chapter 2 by a historical
overview of NVE systems and how user embodiments have evolved in VR ap-
plications. Readers who are familiar with the general concepts of (Networked)
VEs, interaction, data distribution and user representation can skip this part.

Part II focuses on how more dynamic interactive NVEs can be supported.
Chapter 3 introduces the problem with contemporary interaction approaches



10 Outline

and their lack of generality. An overview of related work concerning interac-
tion modeling is provided in Chapter 4. Next, Chapter 5 presents the first
version of the interactive object approach for NVEs, which is based on ob-
ject generalization and utilizes a feature modeling approach. It is designed to
support run-time adjustable interactions between all interactive objects in the
virtual world by a single interaction mechanism. How interactive objects are
simulated and controlled are also discussed. Finally, Chapter 6 concludes this
Part with some general remarks and gives pointers to improve realism.

The third Part elaborates on how our interactive object platform can be
extended to support more realistic interactions. Chapter 7 explains how dy-
namic animations and simulations can be used to provide more realism for
interactions. The related work is discussed in Chapter 8. In Chapter 9 we
present ExtReAM, a new animation and simulation library that can easily be
extended with new animation techniques and is easy to integrate. Chapter 10
then discusses how ExtReAM is integrated in the interactive object approach,
enabling new animation and simulation functionality and resulting in more
realistic dynamic interactions. Our findings are given in Chapter 11.

Part IV discusses the HCI part of the interaction process. Chapter 12 elab-
orates on the link between interaction techniques, interaction and embodiment
animation. Also it discusses how more natural interaction techniques can im-
prove the acceptance of VR for a larger audience and how it increases the user’s
feeling of being immersed in the virtual world. Chapter 13 presents related
work in the field of 3D interaction techniques and defines the concepts of pres-
ence and workload and describes some of the most important methodologies
for measuring these. In Chapter 14 we discuss how dynamic inverse kinematic
animation can support more realistic avatar interactions in virtual worlds. As
we discussed earlier, dynamic animations are often avoided in NVEs since they
require more networking resources than predefined animations. Therefore, we
will also elaborate on how this new interaction technique can be distributed
as efficiently as possible. Thereafter, in Chapter 15 we discuss how rigid-body
simulation can be exploited to generate haptic feedback forces. Furthermore,
we present a haptic travel method that allows users to navigate through a
virtual world while receiving haptic feedback on what happens to their virtual
counterpart. After presenting the technique, we evaluate the approach in a
formal experiment that analyzes the influence of haptics on the user’s feeling
of immersion and workload during travel in a virtual world in Chapter 16.
Conclusions for this component of our research are given in Chapter 17.

Part V discusses the overall conclusions of this dissertation. Furthermore,
pointers for further research are given.



Part I

BACKGROUND
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CHAPTER1

Defining Interactive Virtual Reality
Applications

In this chapter we define the concepts that are used throughout this disserta-
tion and describe the areas we are working in.

We first take a look at VR in general, both on the level of the software
system as well as the ways one can interact with such an environment. We
define the different components of interest and their properties. Furthermore,
we describe how VR and virtual simulation can be shared among different
clients over a network. In the following chapter, we complete this overview
by giving the history of NVE systems and user embodiments. In case the
reader is already familiar with the concepts of VR, VEs, interaction and data
distribution, these two chapters may be skipped.

1.1 VR, VE and NVE

The term Virtual Reality has been utilized in several fields and is hard to de-
fine. Perhaps the reason for this difficulty is exactly caused by the widespread
use of the term. Belleman [Belleman 03] states that the term is used by among
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others: game developers, arts movements, lyricists, visionaries, . . . . Also, sev-
eral synonyms have become common, e.g. artificial reality, simulated reality,
cyberspace. We will use the term VR to refer to all computer-based systems
that support interactive virtual worlds, or Virtual Environments (VEs).

Throughout the history of VR research, several definitions of the term VE
have been proposed. Perhaps the most adopted is the one given by Witmer
et al. [Witmer 96]:

”A Virtual Environment is a computer-generated simulated space
with which an individual interacts.”

This definition was later expanded by Singhal en Zyda [Singhal 99] in order to
define Networked Virtual environments. This led to the following definition:

”A Networked Virtual Environment is a software system in which
multiple users interact with each other in real-time, even though
those users may be located around the world.”

In order to distinguish NVEs from other kinds of systems, the authors also
describe five essential features for classifying systems as an NVE. They need
to support:

1. a shared sense of space,

2. a shared sense of presence,

3. a shared sense of time,

4. a way to communicate,

5. a way to share.

From these definitions we can easily deduct that VEs and NVEs are multi-
disciplinary software systems, trying to provide the users with a sense of re-
alism and (shared) experience wherein they can interact. In order to achieve
this goal, (N)VEs first of all require a simulated space or world which has to
be represented to the users, involving computer graphics as a first important
terrain of expertise. Secondly, users must be able to interact with the environ-
ment, creating a link with the field of HCI. For NVEs, another important part
is the network component, which has to ensure that the simulated environ-
ment is synchronized among its users and all interactions are being distributed
to all participants, linking us into the field of computer networks. So as we
can see, in order to create useful VEs and NVEs we need to apply techniques
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from all of these areas and efficiently combine those into a single system. It
is exactly the combining of these different fields, that each on their own have
an impact on the end system and on the other parts that makes NVE systems
one of the most challenging research areas in computer science.

In this work, the emphasis lies on the interactions occurring in NVEs,
which is a crucial part that has often been overlooked, which is striking, as it
is an important part of the definitions of both VEs and NVEs.

1.2 Interaction, Interaction Techniques and Input
Devices

Interaction is a subject that has been widely studied in many areas and, as
a result, has different tailored meanings in various sciences. In sociology,
for example, interaction is defined as a dynamic, changing sequence of social
actions between individuals (or groups) who modify their actions and reactions
due to the actions by their interaction partner(s)1. In physics, an interaction
or force specifically refers to the action of one physical object upon another
resulting in potential energy - the physical objects under consideration may
range from point particles to quantum fields. A more general definition of
interaction states that interaction is a kind of action that occurs as two or
more objects have an effect upon one another1. [APA 07] on their part define
the term quite similarly as: a reciprocal action, effect, or influence.

The focus of this study is in the field of NVEs, therefore we adapt the
latter definition for our purposes as follows:

”A virtual interaction is an event occurring in a virtual environ-
ment that has an impact on one or more objects in the virtual
world or on the world itself.”

By object, we mean any entity that is present in that virtual environment,
thus also including representations of human or AI controlled actors. We
deliberately leave out the specification of how and by whom this event is
triggered in order to remain as general as possible. In the remainder of this
work, if we discuss interaction, we mean these virtual interactions. In relation
to interaction, we must make a clear distinction between what we refer to
as interactions and interaction techniques, two terms that are too often used
incorrectly. Interaction techniques (ITs), also named interaction methods or
methodologies, are used to refer to the way that user input is mapped onto

1Wikipedia - Interaction (http://en.wikipedia.org/wiki/Interaction)

http://en.wikipedia.org/wiki/Interaction
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executed actions in the VE. ITs are used to trigger interactions in the VE, for
example by mapping user gestures captured by an input device into actions
that are performed by the user’s virtual representation. An illustration of
how users, input devices, ITs and interaction relate to one another is given in
Figure 1.1. For clarity, the interaction mechanism itself is ignored.

Input devices provide the user with an interface to the virtual world
through the IT. The input devices are used to register the user’s gestures
and provide them to the IT. In order to be efficient, ITs should be intuitive
and accurate. They should fulfill the user’s intentions fast and correctly. Inter-
action and ITs play an important role in the creation of the feeling of presence,
the sense of being there. Good ITs and realistic methodologies can greatly im-
prove the experience. On the other hand, methods that force the user to step
out of the VE experience and into the real world, even for a brief moment,
can totally break the feeling of presence and ruin the experience. As a result,
over the past decades, several sorts of input have been proposed, in all kinds
of shapes, with varying Degrees Of Freedom (DOF) [Berkley 03, Fisch 03]. It
is the DOF that define the expressiveness of an input device. Often, in order
to achieve a higher expressiveness, several input devices are combined for ex-
ample by using two-handed input [Hinckley 98, Casalta 99]. The devices and
techniques used in a VE are also very dependent on the type of VR system
and the tasks that need to be performed. Immersive VE systems, employing
an immersive display such as a HMD or a CAVE, will usually use less tactile
approaches such as tracking sensors, while desktop VEs will often use more
grounded devices.

West and Hubbold [West 98] have argued that although the hardware
makes it possible to display visually rich environments, the ways in which users
can interact in those environments remain sadly inadequate. Furthermore, a
major part of the problem has to do with improvements in software support
for modeling environments in order to support richer forms of interaction. In
practice, this resulted in the fact that very few toolkits for VE application de-
velopers are available that facilitate the construction of interactive VEs. The
ones that do exist, focus on, or are specifically tailored for specific (groups
of) input hardware, offer limited flexibility, or are specific to the application
area for which they were developed. This is in contrast to the many ITs
that have been proposed [Mine 95, Hand 97, Bowman 99, Subramanian 00],
and the fact that many of them have been applied effectively in VE appli-
cations. Unfortunately, investigations show that the interaction possibilities
within most NVEs often remain fairly limited (navigate, select and move ob-
ject), resulting in seemingly static scenes with only a limited interactivity.
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Figure 1.1: The different steps and components of how a user interacts in a
VE

1.3 Interaction Classes

ITs are often classified from an application’s perspective. A classic exam-
ple is the classification of Bowman et al. [Bowman 99] which categorizes ITs
into four groups: application control, viewpoint motion control, object selec-
tion and object manipulation. Interactions, on the other hand can be best
categorized by the types of objects that interact with each other, and more
specifically by the entity that triggers the interaction. Herein, actors are often
distinguished from other objects. We see actors as entities that are in some
way in control of their actions. This includes both human controlled avatars
as well as autonomous agents. As a result, following categories of interactions
are distinguishable:

1. Actor → Object,

2. Object → Object,

3. Object → Actor,

4. Actor → Actor.

The interactions themselves are usually classified as collision, transform ac-
tions (move, rotate or scale) or a more complex interaction. Furthermore, the
combining of several interactions results in even more possible combinations
(e.g. Actor → Object → Actor, etc.).

Most single-user simulated systems are limited to the first two categories
of interactions. As an example of category one, consider the case of an actor
(human user or an autonomous agent) grasping an object and moving it to a
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new position. For the second group of interactions we can consider the case of
a knocked over domino, toppling another domino. Object - Actor interactions
are much less employed in VR systems. Haptic systems provide perhaps the
best example, where a moving object can push the user’s representation away
from its location. Finally, the last category of interactions are by definition
only possible in NVEs. They form the biggest challenge for developers and
IT designers, and form an issue that has not yet been solved (except for some
specific applications and setups). As Glencross et al. point out, there are
two main problems related with this kind of interaction: the first concerns
the choice of simulation methods, and the second is synchronization of state
information across participants involved in the collaboration [Glencross 05].
Some solutions specifically tailored for distributed haptic VEs can also be
found in [Glencross 05]. In the next section we will discuss how simulated VEs
can be distributed and synchronized among different participants in NVEs.

1.4 State Synchronization and Distributing Simula-
tion

Although it is not the main topic of this dissertation, as we are working in the
field of NVEs, we must take into account that all users need to have a consistent
view of the VE. In fact this is one of the most important aspects of NVEs. It
would be practically impossible for two or more participants to collaborate if
they did not have a consistent view of the shared virtual world at all times.
When we consider synchronizing interactive, simulated NVEs, two important
issues need to be considered. The first concerns the architecture of how state
updates are distributed between different participants. The second has to do
with deciding where the simulation is run and which nodes of the distribution
architecture are responsible for solving conflicting interactions. Exchanging
state information between participants on small scaled Local Area Networks
(LANs) is generally fast and reliable, however a Wide Area Network (WAN)
such as the Internet suffers from network delays and jitter, making it very hard
for NVE developers to create perfectly synchronized views for all participants.

It is clear that the choice of distribution architecture has an important
impact on the choice of where the simulation is performed and vice versa.
Furthermore, these choices are largely dependent on the underlying network,
the application and the types of data that needs to be distributed. Most high-
end systems use hybrid approaches where different data kinds with different
distribution needs are distributed in different ways. As an example consider
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a video frame from a playing video stream versus a text message from a dis-
cussion. Video frames are normally sent unreliably, as minimal delays are
important, and a re-sent lost video frame will arrive too late anyway. On the
other hand, it is important that all other participants receive a chat message in
order to have the same information. The timing is however less strict, thus a
reliable technique is therefore mostly applied. Next we will discuss distribution
architectures and solutions for distributed simulation.

1.4.1 Distribution Architectures

In order to be able to give all users a consistent view of a VE and facing the is-
sues of networks, NVE systems usually adopt one of the two basic distribution
architectures: Client-Server (CS) or Peer-to-Peer (P2P).

The simplest, and probably most applied architecture is the CS solution
(see Figure 1.2(a)). This employs a single, usually dedicated network node
(the server), that is responsible for the distribution of updates to all users (the
clients). In this way, the users do not need to know about the other users, they
just send updates or update requests to the server, which has knowledge of,
or connections to all users and forwards the information to those that require
the update. This approach has several advantages. First of all, clients only
need to know the address of the server, and can work independently of other
clients joining or leaving the NVE session, simplifying the network component
of the clients. Also, implementing this approach and upgrading the server is
relatively simple and requires minimal effort. On the downside, using the CS
architecture creates a single point of failure. If e.g. a server crash occurs,
the NVE is unavailable for all users. Also, the server must be able to handle
all users, and their network traffic, creating a bottleneck situation. For some
applications, which allow a large number of users, this can be problematic.
Several solutions for these issues exist, such as backup servers or splitting up
servers, or splitting up the environment in different areas, managed by different
servers, without the user’s knowledge. These servers would, however, need to
be synchronized very strictly, resulting in other difficulties. Another downside
of the CS approach is that since all network messages need to travel via a
server to the other clients, extra delays are introduced. On the positive side,
if the server is designed more intelligently than just forwarding all incoming
updates to all other users, it can significantly reduce network traffic.

As an alternative to CS, the P2P architecture does not employ a central
server for data distribution (Figure 1.2(b)). Each client distributes its up-
dates to the other clients directly. This approach certainly solves most of the
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problems with CS, such as the single point of failure, the network bottleneck
and the extra delays. On the other hand, it introduces many other issues.
All users need to maintain a list of other clients and need to handle users
that join and leave the NVE. As a result the clients need to perform more
operations and will also use much more network traffic. Furthermore, since
clients need to handle all the consistency rules themselves it is much harder
to implement and client software will be much more complex. Finally, in case
of extra bandwidth requirements, it is much harder to upgrade for example
all client’s networks. This, in contrast to the CS architecture where the server
can be upgraded independently of the clients. P2P architectures appeared a
few years earlier than CS systems. This probably resulted from the fact that
using a dedicated server was very expensive in the beginning years of NVEs
[Joslin 04].

Hybrid approaches employ techniques from both CS and P2P architectures,
resolving the issues that come with the employment of one architecture. For
example a single machine can be used to perform some specific management
tasks but without it being used to distribute all the data as a server would
do in the CS approach, resolving the network bottleneck. Another type of
hybrid approach employs different architectures for different kinds of data.
For example video can be streamed via a server while position updates among
clients are sent in a P2P way. Many other kinds of hybrid approaches exist,
however discussing all of them is beyond the scope of this work.

On top of choosing the right architecture, NVE designers must also choose
between different network protocols (TCP, UDP, multicast), choose relia-
bility parameters (reliable UDP, unreliable multicast,. . . ) and can imple-
ment several improvements over dumb broadcasting of all updates to all users
(dead reckoning techniques [Singhal 95], area of interest management policies
[Boulanger 06], compression techniques,. . . ). Since the focus of this work is
on the interaction within VEs and NVEs, we will not elaborate further on the
subject of network architectures and efficient data distribution. More details
on this subject can be found in [Macedonia 97, Quax 07].

1.4.2 Distributing Simulation

Similarly as on the network level, at the simulation level, NVE designers need
to make choices on which network entities are responsible for keeping the simu-
lation consistent and resolve conflicting interactions. Computer Supported Co-
operative Work (CSCW) locking based floor control techniques [Dommel 97]
are out of the question, since in dynamic NVEs, we want to allow interaction
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(a)

(b)

Figure 1.2: The two basic distribution architectures: (a) Client-Server and (b)
Peer-to-peer.
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with any object at any time even if another user might already be interacting
with that object. What is more, this kind of cooperation is one of the most
important aspects of NVE systems.

The traditional approach is similar to the CS architecture. It uses a single
simulation controller that runs the simulation (usually the server when built
on top of a CS architecture, but it could also be a selected user machine).
The other machines just send interaction requests to this controller, which
applies them to the VE and distributes the resulting changes to all entities.
This approach is simple and easy to implement. Furthermore, since only one
machine is responsible for all the interactions, conflicting interactions can rel-
atively easily be detected and resolved. A high-end machine can handle many
interactions, and by applying this approach, all other clients are alleviated
of the simulation and conflict handling tasks, which can become very hard,
when for example physical realism is required. On the downside, similar dis-
advantages as with the CS approach result from this single point approach.
The biggest disadvantage is the round trip delay that is introduced while in-
teracting. When the users wants to perform an interaction, the request must
be send to the server, the interaction needs to be performed there and the
resulting update needs to be transmitted back to the user before he can see
the impact of his interaction. Obviously, this approach is therefore only ap-
plicable for situations where the delays are small, as the response times for
interactive applications may not become too large in order to maintain a good
experience. Studies have shown that NVE users are able to adapt to latencies
of up to about 200ms [Park 99] , however, this is highly dependent of the task
that is being performed. Furthermore, jitter also plays an important role in
the user’s ability to cope with delay [Quax 07].

As a solution to this approach, some systems use the single controller
approach, but with (partial) simulation on the client’s machine as well, in this
way, if no conflict occurs, the users do not suffer from the round trip delays, as
they perform the interaction results on their own. However they still send the
interaction requests to the server, and other users are only informed of changes
when they are applied by the server. In case of a conflict, the inconsistent
states are corrected by the server as soon as the server sends updates. This
approach obviously requires more processing from the clients and is harder to
implement.

At the other hand, similar to the P2P network architecture, a totally dis-
tributed simulation is also possible. In this approach, no single fixed entity
is responsible for the entire simulation or conflict handling. As a result, the
clients need to be able to simulate the entire virtual world themselves and
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need to resolve conflicting interactions by negotiation or some fixed rule sys-
tem. The advantages are similar to the P2P approach: less delays, no single
point of failure, but it is much harder to implement, especially when one must
take into account that in most NVEs users can enter and leave at any time.

While the two approaches map very well onto the two most used network
architectures, they are not necessarily linked to each other. It is possible to
apply a distributed simulation onto a CS distribution scheme. In this case the
server could control which user machine controls which part of a simulation,
and distribute messages among the clients. The other extreme of having a
single controlled simulation on top of a P2P architecture is just as well possible.
The clients could for example select one client as the simulation controller. As
long as this user stays logged on to the NVE, he can stay in control, when he
logs off, or when he is unable to control the simulation for some other reason,
the simulation could be conveyed to another selected user, and so on.

In order to gain a better understanding of how NVE systems and their
components have become what they are today, the next chapter gives a brief
discussion of their evolution.
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CHAPTER2

A Brief Historical Overview

2.1 NVE systems

NVEs are the result of the merging of the fields of the VR and CSCW. CSCW
and groupware involve all systems that use technology in order to mediate
collaboration in a professional context. The roots of NVEs lie in the text-based
Multi-User Dungeons (MUDs) that have been around since the late 1970s. The
original MUDs were completely text-based multi-player role playing games.
The entire environment, including objects, players and objects were described
in text. Interaction with these MUDs was typically also text-based. Users
could enter commands that were based on natural language (e.g. go hallway,
open door, say ‘hello’ to Tom, look at object). The main advantage of this
form of interaction is that it provided an almost infinite number of DOF with
standard hardware. This is also one of its major drawbacks, as it is almost
impossible to limit the DOF, unless by allowing only a limited part of the
vocabulary. Figure 2.1 shows an example of such a text-based MUD.

With the uprise of Personal Computers (PCs) and computer graphics tech-
nology in the 1980s, MUDs evolved into graphical MUDs. Some systems
merely used graphics to enhance the text-based visualization of the world,
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Figure 2.1: An example of a text-based MUD interface.

while others evolved into full 3D visualizations with customized user represen-
tations. The user interaction methods also evolved. With the introduction of
the mouse, text-based input was being replaced by point and click, allowing
the user to select objects and commands by clicking on their graphical repre-
sentations, or by dragging and dropping objects toward each other in order to
combine them. Figure 2.2 shows a screen from Maniac Mansion1 employing
an interface that combines natural language with a point-and-click approach.
The technologies used in these MUDs were now also being used more and
more by the CSCW community in order to create shared displays of informa-
tion, group decision systems, multi-user editors, . . . . This resulted in more
interactive professional collaborative applications such as Computer-Assisted
Design/Computer-Assisted Manufacturing (CAD/CAM), Computer-Assisted

1Wikipedia - Maniac Mansion (http://en.wikipedia.org/wiki/Maniac Mansion)

http://en.wikipedia.org/wiki/Maniac_Mansion
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Figure 2.2: Maniac Mansion (1988). The interface is partially graphical and
partially text-based, point-and-click.

Software Engineering (CASE), concurrent engineering, workflow management,
distance learning, telemedicine, . . . .

Also in that period, the US military started to interconnect several of its
single-user VR simulations in order to allow training with human allies and
opponents. The SIMNET [Miller 95] project resulted in a standard that is
still being used today, DIS (Distributed Interactive Simulation). A few years
later, non-military NVEs started to appear. Some of the most important in-
clude: NPSNET [Macedonia 95], DIVE (Distributed Interactive Virtual En-
vironment [Hagsand 96]) and MASSIVE (Model, Architecture and System for
Spatial Interaction in Virtual Environments [Greenhalgh 95]). NPSNET, was
one of the first systems that although it was based on the DIS system, was
designed for the Internet, using IP multicast to inform clients of updates. Fur-
thermore, it was one of the first systems that deployed Area Of Interest (AOI)
management, in order to decrease the number of updates that needed to be
sent. DIVE on the other hand, aimed at dedicated networks by employing
full broadcast for all updates that needed to be sent, and all clients held a full
state of the entire virtual world. It differs from similar approaches in its dy-
namic and flexible capabilities and its focus on interaction and human-human
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communication. Dynamic behaviors of objects are described by interpreta-
tive Tcl scripts evaluated on any node where the object is replicated. VEOS
[Bricken 94] is a complete NVE architecture that provides integrated software
to develop general applications. VEOS uses a tightly-integrated computing
model for management of data, processes, and communication describing dy-
namic entities and their behaviors as LISP programs. MASSIVE primarily
focused on teleconferencing, but grew out to be much more. It is underpinned
by the so-called spatial model of interaction for AOI management and was
one of the first systems relying on P2P unicast messages. Furthermore, the
awareness level of objects could differ for audio and visual channels. Also,
MASSIVE supported three kinds of interfaces (text, graphics and audio) that
could be arbitrarily combined according to the user’s equipment, a situation
that is currently again a hot topic since NVEs are also evolving onto mobile
platforms such as cell phones and PDAs. In MASSIVE, the users could specify
their graphics embodiment using a simple geometry description and use it to
show their communication possibilities. Interaction however, was limited to
communication, navigation and to grasp and move virtual objects. An aura
collision manager is responsible for detecting awareness collisions for each de-
clared medium. When two auras collided, communication was made possible.
An illustration of the graphical and textual interface to MASSIVE is shown
in Figure 2.3. Note the resemblance between the textual interface commands
and MUDs. VLNET [VLNET 07] is an exception in the field of these early
NVE systems. The system has been developed at MIRALab at University
of Geneva, and Computer Graphics Laboratory at Swiss Federal Institute of
Technology. In contrast to other systems, VLNET, focuses on integrating ar-
tificial life techniques with virtual reality techniques in order to create truly
virtual environments shared by real people, and with autonomous living vir-
tual humans with their own behavior, which can perceive the environment and
interact with participants.

With the tremendous evolution of PC hardware and performance, NVE
systems boomed in the second half of the 90s, resulting in many new systems
such as SPLINE (Scalable Platform for Large Interactive Networked Envi-
ronments [Waters 97]), VPARK (an extension of VLNET, creating a virtual
amusement park [Seo 00]), BAMBOO ([Watsen 98]), and many more. Fur-
thermore, existing systems evolved as well, resulting in MASSIVE-2
[Greenhalgh 96], MASSIVE-3 [Purbrick 00], NPSNET-V [Capps 00] and oth-
ers [Joslin 04]. Looking at the publications of these systems, it shows already,
that the research community, instead of focusing on new entire NVE sys-
tems, starts to spend more and more efforts on specific aspects, specifically
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Figure 2.3: The MASSIVE interfaces [Greenhalgh 95]: graphical (left) and
textual (right).

enlargements with respect to numbers of users and environment size, improv-
ing graphics and supporting more hardware.

In the last decade or so, the military and gaming industry also started
to join forces, creating games for military training and recruitment. MUDs
started to evolve into full 3D large scale Massively Multiplayer Online Role
Playing Games (MMORPGs), a subset of the more general Massively Mul-
tiplayer Online Games (MMOGs) that are usually in a phantasy or science
fiction setting. Therein, advanced personalized 3D animated characters are
used to represent the users and their actions. The environments are large
scale detailed 3D environments. However, the number of interactive objects
are still rather limited. Also, the animations are often just playbacks of fixed
recorded animations, which result in repetitive motions, not very adaptive nor
realistic. However, in the last years, Badawi [Badawi 06] argues that computer
games have been using more and more physical realism in order to allow the
user to push objects around or to blast them to pieces. Rigid body simulation
and ragdoll physics have been providing games with more realism for quite a
while, and with the uprise of physics Software Development Kits (SDKs) and
hardware, the virtual environments in games are becoming more and more
dynamic and more real-time simulations become possible, including fluids and
gases. Figure 2.4 shows an example of how physical objects can be used in the
gameplay. Still, while some basic physical actions are arising, we do support
the view of Badawi [Badawi 06] stating that, apart from a few exceptions,
more advanced interactions such as opening doors or realistically operating
a machine remain unseen in computer games. When they are, they are ex-
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Figure 2.4: An image from Half-LifeR© 2 [Half-life 2 07]. Rigid Body simula-
tion is used in the gameplay. The concrete bricks are placed on the lever as a
counterweight so the user can walk over the wooden board.

tremely simplified and e.g. picking up an object is done by teleporting the
object to that user’s virtual hand. We also believe that if an NVE user can in-
teract more completely with the virtual world, his feeling of immersion would
definately increase. In contrast to the gaming community, in professional VE
areas, these kinds of interactions are often considered ‘eye candy’ and have
therefore only been seldom applied.

An overview of past NVE systems is given in Figure 2.5. The interested
reader can find more information and references to publications on NVE sys-
tems in [Macedonia 97, Joslin 04].

As NVEs also stem from single-user VR systems, it has also adopted many
of the interfaces that were developed for these kinds of systems, one of the key
areas in single user VR. Since Ivan Sutherland demonstrated the first Head
Mounted Display (HMD), the Sword of Damocles in 1968, a whole range of VR
interface systems have been developed. Differing display technologies (HMDs,
workbenches, CAVEs, . . . ) have been employed with several input devices
(gloves, 3D mouses, haptic arms, visual and electromagnetic trackers, . . . )
and then combined with different specifically designed interaction techniques.
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Figure 2.5: A historical overview of some of the most important NVE systems
[Joslin 04]. The vertical axis represents the number of publications on these
systems.

The main goal of most of these systems is to provide the user with a higher
level of immersivity, the feeling of being there, through the use of new displays,
input hardware or techniques. Giving a complete overview of all these systems
is far beyond the range of this work, and although the potential of immersive
interfaces is highly interesting, the reality is that it is unlikely that they will
become available in every household in the near future, and the desktop com-
puter will remain the common interface in the years to come. Therefore, in the
remainder of this dissertation, as we are discussing interfaces, we will be focus-
ing on desktop VE systems. On the other hand, the techniques discussed in
the following chapters describing the interaction mechanisms for VEs, provide
general solutions for all kinds of VE systems, irrespective of the interface. Of
course, if links to other kinds of interfaces are relevant, they will be discussed
as well.
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2.2 User Embodiments

In order to graphically represent a user and the interactions he performs in the
virtual world, to himself and to others, user embodiments are often utilized.
These embodiments are in the VR community best known as avatars, a term
stemming from Hindu mythology, where it is declared as: the descent of a deity
to the earth in an incarnate form or some manifest shape; the incarnation of
a god2. In [Thalmann 99] Thalmann states that in single-user VEs, avatars
fulfill three distinct functionalities:

1. a visual embodiment of the user,

2. a means of interaction with the virtual world,

3. a means of sensing various attributes of the world.

For NVEs which can contain many users, avatars can be utilized for even a
larger number of functionalities [Thalmann 01]. They are able to show:

1. if a users is present (perception),

2. where the users is (localization),

3. who it represents (identification),

4. where the user’s attention field is (visualization of the other’s interest
focus),

5. what actions the user is performing (visualization of what others are
doing),

6. the user’s task or function (social representation).

It is thus obvious that avatars play a key role in NVEs, and have an im-
portant impact on the feeling of shared presence, the sense of being together
[Thalmann 01].

Many of the first NVEs used very simple avatars to represent connected
users in the virtual world [Thalmann 00]. For example, RING [Funkhouser 95]
utilized yellow spheres with green orientation vectors for user embodiment.
Early versions of MASSIVE and DIVE, on the other hand, used so-called
blockies to represent connected users [Benford 95]. Blockies are avatars that
are only composed of a few very basic geometric shapes such as spheres and

2Wikipedia - Avatar (http://en.wikipedia.org/wiki/Avatar)

http://en.wikipedia.org/wiki/Avatar
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cubes. An example of a blockie avatar is shown in Figure 2.6(a). Although
these early avatars already conveyed some interesting information about the
user, such as his location and interest focus in the virtual world [Benford 95,
Thalmann 99], they clearly lacked visual realism.

Articulated human-like avatars or so-called virtual humans (as shown in
Fig. 2.6(b)) were introduced a few years later in the NPSNET system
[Macedonia 95]. It soon became clear that integrating virtual humans in NVEs
increased the natural interaction within these environments, and generally also
resulted in a higher feeling of presence for connected users [Thalmann 99]. Fur-
thermore, [Casanueva 01] demonstrates that when these virtual humans are
able to perform animations, the feeling of presence is increased even further.
As a result, it should not come as a surprise that almost all recent NVEs,
MMOGs and other multiplayer games use animated human-like avatars.

Finally, in the last few years, with the uprise of MMORPGs and other
NVEs that focus on virtual community building, such as Second Life
[SecondLife 07] and There.com [There.com 07], user embodiment and char-
acter building have become crucial parts of the user experience. As a result,
they offer their users very detailed and advanced avatars that are often also ex-
tremely customizable with respect to their visual appearance (see Fig. 2.6(c)).
This allows users to create their own unique avatar, drastically increasing user
identification with their avatar in the virtual environment. In combination
with more natural interactions, the process of making avatars even more real-
istic and interactive remains an active area of research.



36 A Brief Historical Overview

(a) (b)

(c)

Figure 2.6: Avatar evolution: (a) blockie (DIVE [Hagsand 96]); (b) vir-
tual humans (VLNET [VLNET 07]); (c) customizable avatar (Second Life
[SecondLife 07]).
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CHAPTER3

Introduction

In the general introduction, we discussed that although interactive VR has
been a research topic for several decades and a lot progress has been made
in the fields of 3D graphics, animation and network distribution, we are still
unable to create believable interactive virtual experiences. Furthermore, we
discussed how this can at least partially be attributed to the lack of nat-
ural interactions with and within these environments. Mixing navigation and
meaningful interactions with VR systems is therefore still a key research topic.
However, this research often focuses too much on developing new ITs and in-
put devices rather than being concerned with the underlying system which
is concerned with how interactions can be represented, executed and altered.
This is especially true for NVE systems which often consist of mostly static
scenes.

Looking at the kinds of interactions (N)VEs allow, we find that most of
them are limited to a few direct interaction techniques for selecting and moving
objects and a simple way to navigate through a scene [Bowman 99]. Further-
more, Fraser [Fraser 00] investigated CSCW systems, concluding that these
systems often take ad hoc approaches to object-focused interaction. In many
systems, especially NVEs, interactions are mostly designed as a by-product
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of the development process [Smith 00]. In [Kallmann 01] the author, working
in the field of autonomous avatars makes a similar conclusion, stating that
simulation systems approach actor-object interactions by programming them
specifically for each case. In addition, these poor solutions often only sup-
port a very basic animation system which is only able to display predefined
animation sequences. Consider a basic example that illustrates this standard
approach: when a user want to open an electronic door, he uses an input
device to move his cursor to the button that needs to be pressed in order to
open the door. When it is selected, the system starts by playing a prede-
fined animation of the user’s avatar, that moves its hand to the button and
presses it. The ‘press button’ animation is then followed by another anima-
tion, opening the door, ending the interactions. When the task is repeated,
the exact same actions and animations are reproduced. While this approach
is common in VE systems, it is clearly different from how we interact in the
real world. Furthermore, although this approach is simple, direct and fairly
easy to implement, it is far from general and does not solve the problem for a
wide range of cases. Finally, altering these interactions requires recompilation
of the application’s source code and/or off-line modeling of new animations,
making run-time adjustments impossible.

As we already discussed in Chapter 1 of the previous Part, traditional
systems often distinguish actors (avatars or agents) from other objects in the
VE. However, virtual actors share many properties with virtual objects. Both
need to be modeled, animated, and simulated. However, virtual humans usu-
ally incorporate more complex behaviors than other objects such as user or
AI control, which is mostly the reason for this split. We, however, strongly
believe that this distinction is unnecessary, especially if complexity is the basis
for the distinction. Why not allow more complex actions for all entities in the
VE? And where do you draw the line? Is an autonomous robot considered an
actor or an object? An interesting view is given in [Badawi 06]:

”the notion of object can seem pretty straightforward at first
and according to the Oxford dictionary, an object is a material
thing that can be seen and touched. This definition is extremely
general and encompasses almost everything, but also everyone we
see and touch on a daily basis. A human being is material and can
be seen and touched, it is therefore, by definition, an object.”
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Another interesting point, in the context of interaction in NVEs, was given
in [Broll 95] stating:

”How different interaction requests are processed, as well as
how many participants may interact with an object concurrently,
is highly dependent on the object itself.”

These observations, in cooperation with a feature modeling approach will form
the basis of our general object interaction approach. Feature modeling is a
technique that is mostly used for modeling products with CAD/CAM ap-
plications allowing the association of functional and engineering information
with shape information [Bidarra 99]. In this approach, we aim to generalize
all objects (including avatars and agents) in the VE and allow all these ob-
jects to interact with every other object by one general dynamic interaction
mechanism. The information necessary for interaction is stored at object level
instead of at application level.

The remainder of this part gives an overview of how this was realized. We
begin by analyzing other approaches taken to solve this problem. Thereafter,
we present the interactive object approach as a solution and present some
examples and results. Finally we discuss some conclusions on the approach
taken.
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CHAPTER4

Related Work

While modeling and describing virtual world objects is a very important part
of the VE development process and many mechanisms for describing the vi-
sual elements of objects exist, only a few systems permit the dynamics and
interaction properties of the objects to be described as well [Pettifer 99]. Most
of these systems stem from the field of artificial intelligence (AI), where they
are employed to inform autonomous agents how they can interact with the
objects. Although this is not the our main goal, these systems provide some
interesting aspects that will be useful for our purposes.

A first approach to solve the problem of how agents could be informed
about object specific interaction information was proposed in [Levinson 96].
In this work, Levinson introduced an Object Specific Reasoning module, that
created a relational table with geometric and functional classifications of ob-
jects. Furthermore, it kept some more interaction information on graspable
positions for each object. This information could then be used to help in-
terpret natural language instructions and to inform AI agents of an object’s
purpose and functionality. This approach was mainly applied to let agents
grasp objects in their surroundings. While the approach has some interesting
possibilities, it lacks the ability to create more complex interactive objects and
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does not solve the general interaction problem.
In the same field, a much more extensive system, was developed by Kall-

mann et al. [Kallmann 98] employing the ideas of feature modeling for the
first time in the context of interactive VEs. In this work, the authors pro-
pose a framework for general interactions between virtual agents and objects.
The idea is that all the information necessary for autonomous virtual agents
to interact with an object is included in the object’s description. For each
object, interaction features and predefined plans are defined utilizing scripted
commands. This so-called Smart Object approach is one of the most extensive
systems describing all the functional and behavioral information of objects at
object level. It employs interaction plans to synchronize movements of object
parts with the agent’s hand, and to model the more advanced functionality
of objects. In this way, a Smart Object can instruct the autonomous agent
on the actions to do step by step. Although this system provides the objects
with a lot of interaction information, it is not general enough for our purposes
since it still makes a distinction between different kinds of objects, and there-
fore requires different interaction schemes for different kinds of virtual objects
(avatars, agents and other objects). Furthermore, agents should be able to
interact with an object, the way they want to, not the way that is prescribed
by the object modeler. Smart Objects prescribe all information, up to the joint
positions and orientations of the agents hand that wants to interact with it,
leaving no space for an agent’s own interpretation. Also, even though anima-
tions are adjusted in real-time using inverse kinematics (IK), an agent in the
same position performing an action, will always move in the exact same man-
ner, positioning his hand in the exact same position when interacting with the
same object. Unfortunately, the works describing the approach do not reveal
if and how object-actor or actor-actor objects are supported. Finally, since
this approach aims at human-like agents only, it is not suitable when working
with different kinds of agents. With this system, it would be necessary for
each object to have a different plan of interaction for every (kind of) agent.
Thus, although the idea of feature modeling of interactive properties for VR
objects is very promising and works perfectly for its purposes, the approach
taken here will not be general enough to suit our purposes of more dynamic
and interactive VEs.

This view is also shared by Badawi et al. [Badawi 06], who implemented
another approach into a system wherein autonomous agents interact with the
VE through Synoptic Objects. The information stored within these objects
form a general description of the interaction process, without being specific, a
kind of interaction synopsis, as they refer to it (hence the name). In this ap-
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proach, interactive surfaces describe areas on the object that take part in the
interaction and the space around the object that is affected by the interaction
(influence surface). Furthermore, an object describes the interactions it can
undergo through a set of basic actions which tell the agent what actions it
needs to perform on the object in order to fulfill a task. How these actions are
performed is left to the agents themselves, so there is only a loose coupling and,
in contrast to the Smart Object approach, objects do not need to maintain
information on different kinds of actors and thus do not determine the inter-
action process. Complex actions are created by combining interactive surfaces
and basic actions through the use of finite state machines, which indicate the
sequence of actions to perform during a specific interaction with an object.
Since the geometric information is only composed of surfaces, without being
overly precise, it allows the agent to adapt its animation to the part of the
surface that is most suitable to its current situation, and thus avoids having
the same repetitive robotic animation for the same interaction. Seven basic
actions were described, covering most kinds of interactions. These always take
an actor and an object without making any assumption about the nature of
the actor. The disassociation of form and function allows all objects with the
same functionality to share the same complex action and preserves that func-
tionality even when e.g an object’s geometry is changed. This approach solves
some of the Smart Object’s issues such as taking over the actor completely
during interaction and the resulting problem with different types of actors.
However, this solution is as a result of its goals too focused on agent-object in-
teractions to provide a more general solution for all virtual world interactions.
For example the basic assumption that actions take an actor and an object
limits this system to these types interactions. Object-object and object-actor
interactions are not intrinsically supported. Generalizing the approach would
require the definition of an action for every possible inter-object interaction.
Furthermore, the presented system does not support more than one interacting
agent.

Thus, while several interesting approaches have been devised in the past,
to our knowledge, no dynamic interaction mechanism that allows interaction
between every possible kind of VE object to interact with every other object
exists. In the following chapter we will discuss our interactive object system.
We will first give a brief description of the overall system and then we will
present the details of object representation, application in an NVE system and
end with describing some results.
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CHAPTER5

A Dynamic Interactive Object System

5.1 Dynamic Interactions

Our aim is to create a platform that allows developers to create totally dynamic
virtual worlds in which every object can interact with every other object,
making no distinction at interaction level between ‘plain objects’, avatars or
agents. Furthermore, we want interactions to be run-time adjustable and
application independent.

In order to meet these goals, we employ a feature modeling approach, start-
ing with VE objects that, apart from a visual representation, also contain their
interaction information and behavior. Then, in order to create dynamic VEs,
we devised a format that is able to describe VE scenes that are constructed of
these interactive objects. Thirdly, we developed an interactive platform, the
interaction layer, that can easily be integrated in applications and is able to
simulate the dynamic virtual scenes by exploiting the interaction information
that is provided with these object descriptions. This platform uses the concept
of interaction links to provide a way to allow communication between objects.
These channels allow objects to call each other’s behaviors and communicate
the actions and behaviors they are performing. Finally, in order to provide
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a link between actors (human or AI) that wish to control an object, and the
controlled objects, we created the possibility to construct object controllers.
These allow an application developer to implement interaction techniques or
can be used as the interface for an AI system to control an intelligent object
by sending commands directly to it.

This summarizes the basics of how the overall system works, in the next
sections, we will discuss the different aspects of our interactive object platform
in more details. Thereafter, some examples will be given.

5.2 Interactive Objects and Dynamic Worlds

In order to cover all aspects of objects, that are required for general interac-
tions in interactive VEs, we identified three distinct groups of object features.
First of all, we have the basic object properties, that depict what the object
looks like, which parts it consists of and how these parts relate to one an-
other. Secondly, the object has a set of interaction properties depicting the
object’s external interface, its interactivity features and functionality. Finally,
an object describes its behaviors in order to define how it will react on certain
interactive events and requests.

Obviously, this overall structure is similar to the description of the Smart
Objects we discussed in Chapter 4. This might not come as a surprise, as our
approach needs to describe similar object information. However, whereas the
Smart Object approach was designed for VR simulations wherein AI actors
use high-level planning to achieve their goals, focusing on actor-object inter-
actions, we take a much broader approach. We aim at generalizing all objects
and allowing every object to interact with every other object in interactive
VR applications. Also, in the Smart Object approach the objects contain in-
formation on how AI actors need to interact with them. In our approach, we
maintain generality by leaving out all information that is not directly related
to the object itself. We did this because, as we explained in the previous chap-
ter, we do not believe that this information is relevant for the object itself but
rather for the agents, users or other objects that want to interact with it. If
AI actors want to interact with an object (or actor), it is their responsibility
to know or to find out how to interact with that object, not the responsibility
of the objects, just like in the real world. Consider an application with many
different kinds of actors. Then, the object description would have to contain
interaction information for every different kind of actor and even for every
object in the VE, since we want every object to be able to interact with every
other object. This would mean an enormous amount of interaction informa-



5.2 Interactive Objects and Dynamic Worlds 51

Figure 5.1: An example of an interactive door object with two movable sliding
parts and a button triggering the doors to open and close.

tion. Also, the introduction of new objects in the environment would mean
an enormous amount of work, since all other objects used in the application
would have to be adjusted in order to know how to interact with the new
object. Finally, in contrast to the Smart Object approach, we make no dis-
tinction between actors and other objects. Subsequently, every object/actor
can interact with every other object/actor using one single interaction scheme
where all are handled equally and actor-object coupling is much looser.

We will now discuss the three interactive object property types in more de-
tail. Throughout the discussion, we will refer to an example object describing
a button-controlled sliding door that is shown in Figure 5.1. In order to fur-
ther clarify the properties, we will give some partial object descriptions of the
example as well. The complete door example description is given in Appendix
C.1.
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5.2.1 Object Properties

This part of the description comprises a full description of how the object is
constructed, what states it can be in and its internal basic actions. In order
to be identifiable, every object has a name and an identifier. Furthermore,
a text based description can be added in order to provide a more extensive
explanation of the object and its purpose. The object properties thus include
the object’s parts containing:

• a graphical description (3D model);

• its localization in object space (position and orientation relative to object
space);

• a collision object description (if different from the part’s 3D model);

• its movement constraints (if any, relative to object space).

The object properties also describe the object’s possible actions. Actions are
defined as combinations of object part movements or movements of the entire
object itself over a certain amount of time.

Lastly, the object properties make it possible to define state variables of
several basic types (string, boolean, float, integer,. . . ), with a name and an
initial value. The actions and variables can then later be used as building
blocks for the behaviors that can be triggered by some other object or a
controller by sending the right commands to the objects as will be discussed
in section 5.2.3.

Regarding the door object example, this is constructed of several different
parts:

• the door frame, a rail that is fixed (constraint, to disable movement);

• two fixed outer panels (identically constraint);

• two sliding door panels (able to move in one direction for a limited
distance);

• two posts, one on each side of the door (also fixed);

• two buttons that need to be pressed in order to open/close the door.

The actions that are defined consist of the possible moves of the object in-
cluding: open and close actions of the left sliding panel (by translating the
left sliding panel) and similar actions for the right panel. Furthermore, two
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boolean state variables are defined, one to store the ‘open’ state and one to
check if the open/close actions are being processed (doorsMoving). Listing 5.1
consists of a part of the example’s object properties. It includes all different
aspects, however not all parts and actions are included. Two different kinds
of parts are described, one non-fixed specifying how it is constrained and one
fixed object that cannot move in any way. Both specify their own collision box.
The movement actions for the left sliding door and the object state variables
are also included.

Listing 5.1: Partial object properties description of the interactive door exam-
ple
<OBJECT_PROPERTIES >

<DESCRIPTION >

This is the interactive object description for a button controlled sliding door.

The door can be opened and closed by collision triggers coupled to the buttons.

</DESCRIPTION >

<PART partid="glassdoor_left" filename="glassdoor.ms3d" parentid="doorframe">

<POSITION x=" -2.9" y="1.85" z="0.1" />

<ORIENTATION x="0" y="0" z="0" />

<COLLISIONBOX

xsize="2" ysize="3.8" zsize="0.1"

xpos="0" ypos="0" zpos="0"

xrot="0" yrot="0" zrot="0" />

<PART_CONSTRAINTS >

<MAX_TRANSLATE_CONSTRAINT upx="2.0" upy="0" upz="0"

lowerx="0" lowery="0" lowerz="0" />

<MAX_ROTATE_CONSTRAINT clockwisex="0" clockwisey="0" clockwisez="0"

cclockwisex="0" cclockwisey="0" cclockwisez="0" />

</PART_CONSTRAINTS >

</PART>

<PART partid="buttonfront" filename="buttonsphere.ms3d"

parentid="buttonbase1" isfixed="TRUE" >

<POSITION x="2.5" y="1.2" z="1.2" />

<ORIENTATION x="0" y="0" z="0" />

<COLLISIONBOX

xsize="0.2" ysize="0.2" zsize="0.2"

xpos="0" ypos="0" zpos="0"

xrot="0" yrot="0" zrot="0" />

</PART>

<ACTION name="open_left_door">

<TRANSLATE_PART partid="glassdoor_left" x="-2" y="0" z="0" time="2000" />

</ACTION >

<ACTION name="close_left_door">

<TRANSLATE_PART partid="glassdoor_left" x="2" y="0" z="0" time="2000" />

</ACTION >

<VARIABLE type="bool" name="isClosed" value="false" />

<VARIABLE type="bool" name="doorsMoving" value="false" />

</OBJECT_PROPERTIES >

5.2.2 Interaction Properties

The second set of features that is contained in the object description consist
of the interaction properties. This part is where the actual interface and the
interactive parts are described. Firstly, the object modeler can define object
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commands. These form the interface for controllers and other objects that wish
to utilize the object and start one of its actions or behaviors. Object commands
have a name and can have any number of parameters (defined as comma
separated strings). Secondly, interaction zones can be described. These zones
specify which areas take part in the interaction process. They can consist of
an object’s part, an entire object, a basic shape like a box, sphere or cylinder
region or a 3D modeled shape at a specified position relative to the object.
Finally, the object’s interaction triggers can be defined. This version supports
three different kinds of triggers: collision triggers, proximity triggers and timed
triggers. The interactive door has one object command: MoveDoors and one
collision trigger consisting of the two buttons. The interaction properties
description is shown in Listing 5.2.

Listing 5.2: Interaction properties of the interactive door example
<INTERACTION_PROPERTIES >

<OBJECT_COMMAND command="MoveDoors" />

<INTERACTION_ZONE zone_name="button1zone">

<PART_REGION regionid="frontbuttonregion" partid="button1" />

</INTERACTION_ZONE >

<INTERACTION_ZONE zone_name="button2zone">

<PART_REGION regionid="backbuttonregion" partid="button2" />

</INTERACTION_ZONE >

<TRIGGERS >

<ZONETRIGGER triggerid="door_trigger" zones="button1zone , button2zone" />

</TRIGGERS >

</INTERACTION_PROPERTIES >

Triggers can be used to invoke actions as well as behaviors. How an object
reacts to a flagged interaction trigger or to a received object command is
discussed in the next section. The interaction mechanism itself is explained in
section 5.3.

5.2.3 Object Behaviors

The object behaviors can be used to describe how an object reacts to cer-
tain events and interactions in the virtual world. The biggest part of this
description consists of the behaviors themselves, that are specified in a script-
ing language. Scripting languages are programming languages that typically
do not require to be compiled in advance, but are interpreted at run-time.
As a result, scripts can easily be altered at run-time, which is a major step
toward achieving more dynamic environments. In this version, we devised our
own scripting engine supporting its own language. This language has, apart
from standard programming language statements, support for adapting and
requesting states from object variables, controlling object actions and anima-
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tions, allowing the object to communicate with other objects and triggering
other behaviors. Furthermore, application developers can implement their own
functions in C++ and provide hooks to them in the scripting language, making
them very powerful and adaptable in describing behaviors. Also, since scripts
can be altered at run-time, an object’s behavior can be replaced or altered dur-
ing simulation, resulting in different reactions for specified interaction events,
providing VE designers with a very dynamic interaction mechanism. Also, an
object modeler can specify how many times the script can be executed (if not
indefinitely) and how many executions of this behavior can run at the same
time. This will especially be useful when behaviors that can be triggered by
a limited number of users in a collaborative setting.

Apart from behaviors, this part of the object features is concerned with
defining the coupling between the interactive object’s interface (commands and
triggers), object actions and the scripted behaviors. Two types can be speci-
fied: couplings between object commands and behaviors/actions and couplings
between triggers and object commands/actions. In this way, the designer can
define the behavior that is started when the object receives a command from
another object or controller, or when for example a collision trigger is acti-
vated. How this mechanism works in more detail is explained in section 5.3.

Listing 5.3 gives the object behaviors of the interactive door. One scripted
behavior is defined (MoveDoorScript). It opens the doors when closed and
vice versa. It has no restrictions on how many times it can be called but can
only be run once at a time. To make sure it is not running twice, the script
first checks if the doors are already moving (by checking the state variable). If
the doors are already moving, e.g. another element has already triggered this
behavior, the script ends. Otherwise, the script checks if the doors are open or
closed. If the doors are closed/open, the interactive object actions (that were
described in the object properties) to open/close the two sliding panels exe-
cuted after setting the state variable doorsMoving to TRUE. When these tasks
are finished, the door’s open state variable is changed and the doorsMoving
state is set back to false whereafter the script finishes. Finally, the behavior
features describe that both the zonetrigger (collision with one of the buttons)
and previously defined MoveDoors command result in the execution of this
behavior.
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Listing 5.3: Object behaviors of the interactive door example
<OBJECT_BEHAVIORS >

<SCRIPT name="MoveDoorsScript" maxsimultaneousexecutions="1" maxexecutions="unlimited">

push_object_var doorsMoving <!-- if doors are already moving end -->

jump_if_false 3

end

set_object_var doorsMoving 1 <!-- else set doorsMoving true -->

push_object_var isClosed <!-- if doors are closed goto open commands -->

jump_if_true 13

pusharg_const close_left_door <!-- call actions to close both doors -->

call_command performAction

pusharg_const close_right_door

call_command performAction

set_object_var isClosed 1 <!-- set doorsClosed variable true -->

set_object_var doorsMoving 0 <!-- set doorsMoving variable false -->

end <!-- end -->

set_object_var doorsMoving 1 <!-- similar for opening -->

pusharg_const open_left_door

call_command performAction

pusharg_const open_right_door

call_command performAction

set_object_var isClosed 0

set_object_var doorsMoving 0

end

</SCRIPT >

<TRIGGERCOMMAND triggerid="door_trigger" commandname="MoveDoors" />

<COMMANDSCRIPT commandname="MoveDoors" scriptname="MoveDoorsScript" />

</OBJECT_BEHAVIORS >

5.2.4 The interactive Object and World Description Formats

As you may have noticed from the code listings, in contrast to the Smart
Object approach, that uses a proprietary textual description for objects, our
interactive object approach utilizes XML-based files. The major advantages
of XML include readability (it is text-based), easy validation (automatically,
using a well specified Document Type Definition (DTD), standard parsing
tools (SAX and DOM) and the ability to be streamed. Furthermore XML
can be compressed and decompressed quite efficiently, which makes it very
suitable for network distribution. These aspects are however not the subject
of this work and will therefore not be discussed further.

The world description, on the other hand, is concerned with global simu-
lation parameters and defines how the scene is constructed. We will however
not discuss the entire formats in detail. An example scene containing a few
interactive objects is described in Listing 5.4.
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Listing 5.4: An example interactive object scene: a room with sliding door
entrance and a table in the center
<CIWORLD worldname="testworld" sizeX="100" sizeZ="100">

<!-- ground plane -->

<INTERACTIVEOBJECT filename="floor.cio"

xpos="0" ypos="0" zpos="0"

xrot="0" yrot="0.0" zrot="0" />

<!-- Sliding doors for the room -->

<INTERACTIVEOBJECT filename="slidingdoor.cio"

xpos="0" ypos="0" zpos=" -20"

xrot="0" yrot="0" zrot="0">

<!-- Right wall -->

<INTERACTIVEOBJECT filename="wall.cio"

xpos="20" ypos="0" zpos=" -30"

xrot="0" yrot="90" zrot="0" />

<!-- Left wall -->

<INTERACTIVEOBJECT filename="wall.cio"

xpos="20" ypos="0" zpos=" -30"

xrot="0" yrot="90" zrot="0" />

<!-- Back wall -->

<INTERACTIVEOBJECT filename="doublewall.cio"

xpos="0" ypos="0" zpos=" -40"

xrot="0" yrot="0" zrot="0" />

<!-- Table in the center -->

<INTERACTIVEOBJECT filename="table.cio"

xpos="5" ypos="0" zpos=" -30"

xrot="0" yrot="0.0" zrot="0" />

</CIWORLD >

5.3 The Interaction Layer

Now that we have constructed a description for interactive scenes and dynamic
objects, we require a system to integrated them in VE systems. The software
component that we developed in order to support and simulate dynamic virtual
worlds wherein every object in the interaction cycle is an interactive object is
the interaction layer. It is the central control unit for all object interactions
in the VEs that wish to employ the interactive object approach. The tasks
that it needs to perform include:

1. constructing a dynamic interactive virtual environment from a world
description;

2. simulating the movements of the objects and check collisions;

3. creating communication channels for objects to support and mediate
interactions;

4. checking object trigger states;
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5. executing behaviors and scripts.

These tasks and their workings will now be discussed in more detail.

Task 1: Creating a dynamic interactive virtual world

The process of constructing a dynamic VE is fairly simple. The interaction
layer starts with loading an interactive world file and setting the global scene
parameters. Then, the scene loads all interactive object descriptions creating
the core objects. As soon as this is done, the interactive object instances are
created from their cores and placed at the specified location in the scene. Then
the virtual world is ready to start the simulation.

Task 2: Simulation

In this first version of the interactive object platform real-time physics are
not integrated. In the following Part we will describe an extended version
which does. As a result, here the interaction layer is also responsible for
calculating object movements. This is done by the simulation component
which allows for some very basic object movements. If an objects is not in
collision, it can be translated and rotated every timestep. However, in this
basic version no gravity is implemented, neither are the concept of speed and
friction. The collision component is responsible for checking object collisions
every timestep. we utilize the Swift++ collision detection package (Speedy
Walking via Improved Feature Testing for non-convex Objects [Swift++ 07])
to calculate object collisions. When an object or part requests a move, the
simulation component of the interaction layer performs this request taking
into account its specified rotational and translational constraints. When two
or more objects or parts are colliding, and one wants to move in the direction
of another object, all objects in the colliding cluster receive a move request and
perform that move, unless one of them is restricted due to constraints, in which
case none of the objects are moved (or not in every direction). Although this
approach is not physically correct, it suffices for the moment, as we are mainly
concerned with creating more dynamic interaction possibilities. Furthermore,
due to its simplicity the approach is very lightweight, making it possible on
less powerful systems as well and is independent of third party software. In
the next part of this work, we will discuss how a rigid body simulator results
in a much more realistic solution, however requiring more resources.
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Task 3: Interactive Links for Communication

In order to create communication channels for the objects to mediate interac-
tions, we employ interactive links. These links can be used to call each other’s
behaviors and communicate the actions and behaviors they are performing
to others. The most important links that the interaction layer controls are:
contact links, attachment links, controller links and parent/child links.

Contact links are set up when two or more objects are in contact with each
other. The interaction layer creates them when the simulation component re-
ceives a collision report from its collision detection component for distributing
movement messages. Attachment links on the other hand, are constructed
between parts of different objects that somehow need to be attached to each
other. One of the most obvious examples is when a user grasps an object.
Since no physical simulation engine is present, attached objects communicate
their movements through these links, similarly as with contact links, however
these links do not disappear when the collision would end. In this way, if an
the virtual hand would move in a direction away from the object, the object
will still follow this movement. The third kind of links, controller links are
set up by interaction layer when an object controller is initialized by the ap-
plication. These links provide a way for the application to send commands
to objects directly. An object controller can have links to several different
objects and can send single messages to just one of them or to all of them at
the same time. Furthermore, when an object wants to control another object
these links will also be used in a similar way. Lastly, parent/child links are
automatically set up when an object becomes a parent of another object, or
when this is specified in its description.

Task 4: Checking Triggers

At every time step, the interaction layer checks the state of every object trigger.
More specifically, this requires collision detection, which is done already by the
simulation component, in order to activate collision triggers. Also, the distance
between objects needs to be checked in order to see if any proximity triggers
should be activated. The collision component does also support this. Finally,
the timing component needs to check if any timed trigger should be activated
when its time has elapsed, or the activation time has been reached. If a trigger
is activated, the connected actions and/or behaviors are executed. Actions can
be called immediately, as they only consist of simple predefined movements and
are executed by the interaction simulation controller. Behaviors, as explained
earlier, are defined in a scripting language and need to be interpreted and
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executed at runtime.

Task 5: Scripting and Behaviors

As explained earlier, every object can specify its own interface in its description
through commands and behaviors. These commands can be used to trigger
an object behavior. Commands can be sent by controllers or by other ob-
jects through the links. Some commands result in default behaviors, such as:
onContact, onEndContact, onMove, move, onAttach, Detach, . . . . The
default behavior can easily be overridden by implementing the command and
resulting behavior in the object description. An object’s interface can be re-
quested by other objects or by controllers via the object management compo-
nent, allowing other objects to know what commands are implemented. When
a command is received by an object, the behavior or action that it is coupled
to is executed. If it does not concern a default behavior and the command
is not implemented, the command is conveyed to all (if any) parent links of
the object, in case that one of them can perform the necessary task. In our
experience, most objects, however, have no or at most one parent objects.

In order to allow run-time adaptable behaviors, we implemented a specific
scripting engine for this purpose that, apart from basic programming state-
ments, has hooks to functionality that is required by the interactive object
system such as:

• checking and changing object variables;

• executing object commands and behaviors;

• starting and stopping predefined animations;

• change object features (add/remove/change: parts, variables, triggers,
commands and behaviors).

These features are extremely powerful, as it allows every aspect of an object
to be adapted at runtime. Furthermore, an application developer is free to
add scripting hooks with his own, application specific, functionality. When
started, every behavior is run in a separate thread.

This interaction layer can easily be integrated in any application as a part
of the simulation component. Figure 5.2 shows how the interaction layer,
interactive object instances and controllers relate to application components.
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Figure 5.2: The interactive object approach. An application can include the
interaction layer that loads and simulates interactive object worlds as part of
the simulation component. Object controllers can be implemented to convert
input into interactive object commands.
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5.4 Network Distribution and Simulation for NVEs

To allow remote users to simultaneously interact and collaborate within a
NVE, they must have a consistent view of the shared world and therefore re-
quire to be informed on every relevant state change of that VE. The simulation
component of the application can realize this in combination with the network-
ing component. The interactive object interaction mechanism discussed in the
previous sections, was designed to work for all kinds of VE systems, including
NVEs. However, a fixed built-in distribution architecture is not a part of the
approach. This was deliberately not provided in order to remain independent
of the architectures and applications it could be used in. As discussed in Chap-
ter 1 the choice of how data is distributed in an NVE does not only depend
on the data that needs to be distributed, but is also largely dependent on the
underlying network and the application requirements. However, to show how
this could be realized, we present some distribution setups. As a first distrib-
ution architecture, we propose a client/server architecture with a centralized
simulation, wherein the server acts as a simulation manager. This means that
the server is responsible for loading and creating the virtual world, simulating
it, processing updates from the clients and distributing updates to all clients.
With respect to virtual world simulation, this means that the server’s inter-
action layer is responsible for all movements, collisions and interpretation and
execution of scripted behaviors. As a result, the client’s systems are alleviated
from these rather resource intensive tasks and are only responsible for load-
ing and rendering the graphical aspects of the VE and converting input into
interaction requests. Their interaction layer is thus only responsible for the
controllers that convert input into interaction requests, that are sent to the
simulation controller. As a result, much more complex scenes can be simulated
on less powerful machines and far less memory is required since the interaction
information does not need to be loaded. The server handles these interaction
requests on a first-come-first-serve basis.

Apart from running the simulation and handling the interaction requests,
the server is also responsible for the initialization of all new clients by sending
them a consistent state. For the actual distribution of the data, we use a
hybrid approach. At startup, clients connect to the server with reliable TCP
to receive the current state of the virtual world. The system thereafter falls
back onto UDP to keep the different clients synchronized. Furthermore, to
reduce network load, the server sends state updates to all interested clients
at once using multicasting. Multicast transmission delivers source traffic to
multiple receivers without adding any additional burden on the source or the
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receivers while using the least amount of bandwidth of any competing network
technology. An overview of this network setup is given in Fig. 5.3.

To reduce the network load even further, the server exploits information
from the interaction layer and object descriptions to see which object parts
have changed state and must therefore be communicated to clients. Further-
more, object constraints are also exploited in order not to send information
on parts that are fixed, or that can only rotate (so no translations updates
need to be transmitted for these objects). Since UDP is an unreliable pro-
tocol, we do not rely on incremental updates, but always send full positions
and orientations. Optionally, TCP keep-alive messages containing positional
data can also regularly be sent to ensure at least some synchronization under
all circumstances. If in the meanwhile a more recent UDP message has been
received by the client, the (outdated) TCP message will be ignored. Since we
work at high update rates (25 per second), our approach is relatively robust
against small percentages of packet loss. The TCP messages will only be re-
quired in situations wherein long sequences of UDP messages, concerning the
same object/part are lost.

We must note that the network messages sent here only contain transfor-
mational object data (positions and orientations). If an update message from
the server gets lost, there is only a synchronization issue at those clients that
did not receive it, and only for a short period until they receive the next up-
date of that object by UDP or TCP. If a client’s interaction request message,
for example for a move forward, is lost on its way to the server, no adjust-
ments will be done at the server running the simulation, and thus no move
forward will happen on any client, hereby maintaining its consistency. This
might however cause problems, since the user might believe that his interac-
tion is requested. This could be resolved by sending the update requests with
a reliable protocol, but this could then on its turn increase the round-trip
delay time for the interaction (as discussed in Chapter 1). Another benefit of
using this centralized server is that we can have persistent worlds that do not
disappear or lose state when all clients disconnect, as is the case with some
P2P solutions. Consequently, as long as the server is running, the world keeps
existing and evolving. Logically, our CS approach suffers the same advantages
and disadvantages of other systems as discussed in Section 5.5.

Other approaches are just as well possible. For example, we can use the
same simulation distribution approach but on top of a P2P network architec-
ture. Then, one client e.g. the first client that enters the world or the most
powerful, could be selected to act as the simulation node. This client’s com-
puter would then act as the server. When he logs off, the next node in the
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Figure 5.3: Network setup: after initialization using TCP, the clients send
their interaction requests using UDP. State updates are distributed by the
server using multicast.

selection procedure will take over the simulation and so on. A distributed sim-
ulation approach is also a possibility wherein different clients simulate different
parts of the virtual world simulation. As results, the application’s simulation
component would need to implement a mechanism for splitting up the sim-
ulation onto the different clients. For demonstrating our technique we took
the single simulation controller CS approach. The results are presented in the
next Chapter.

5.5 Evaluation of the Interactive Object approach

5.5.1 A Simple Controller Example

We already discussed an example of an interactive object in the previous chap-
ter, but did not give an example of how input can be employed to control such
an interactive object. As an example, we describe an object that can be used
to navigate through an interactive world and the controller that converts key-
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board input into object commands. The interactive object itself consists of
one part e.g. an avatar’s collision box, actions for rotating and translating
it and commands that can form an interface for these movements. The ob-
ject behaviors are limited to the coupling of the commands to the movement
actions.

Once this object is created, the application developer can create a con-
troller. By specifying this object as the controlled entity, the interaction layer
will automatically generate a controller link to the object when the controller
is initialized. Now all the application developer needs to do in order to ma-
nipulate the object, is send the correct commands to the object through the
link. As an example, keyboard presses could be used to control the object
by mapping keyDown events onto the command moveBackwards. A keyUp
can similarly be translated into a command such as moveForward and a ke-
yArrowLeft could trigger the rotateY command with some specified number
of degrees as a parameter. Upon receiving this command, the object will
request execution of these actions to the simulation component.

5.5.2 Discussion of Examples

Both the interactive door object from the previous chapter and the controlled
object example we have just discussed show the basics of how interactive
objects can be constructed and controlled. We must hereby note that due to
the freedom that our approach provides, related to how objects and controllers
are built, the same object can often be created in several ways. As an example,
consider the door object. A modeler could decide to model the doors and
panels with a modeling package as one object containing predefined open and
close animations. The resulting object description would then only have this
door object and the posts and buttons as parts. The script could then just
check if the doors are moving, or if one of the animations is active or not and
play the predefined open/close animation. Of course, if afterward some other
behavior would need to be specified, e.g. opening only a single door panel,
the modeler would need to model this animation using the modeling package
again, which would not be the case with our described object.

It is these kinds of design choices that will need to be made when new ob-
jects are created, and poor choices can lead to an object that is less adaptive.
However, it would still be an improvement over the traditional approach in
which every interaction is implemented hard coded into the application. On
the other hand, if the right choices are made, the adaptivity of our interactive
objects is practically unlimited as every aspect of it can be changed at run-
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time. As a relatively minor downside, object controllers still need to be hard
coded into the application. However, their only task is to send commands to
the objects through the interaction layer, and they are often closely coupled to
the application. In future work we could allow controllers to be implemented
in scripts as well, making the applications even more adaptable. Furthermore,
objects controlling other objects can be added at any time. As an example
consider a remote control for the door. A small object with a single button
can be created, similar as the post with the button, except for the movement
constraints. This object could be added as a child object of the original door
object. Then this object could define a zonetrigger and couple it to the
same MoveDoors command as was done with the original post buttons, and
the remote could be introduced into the environment at runtime without any
modifications to the original object. As the MoveDoors command is not imple-
mented by this object, it will be passed to its parent, the original door object,
and executed there.

Finally, we must note that although the design and modeling of our objects
with its interaction features might seem more complex and time-consuming
than the traditional approach (hard coding interactions), once modeled ob-
jects are highly reusable. First of all, entire objects can be reused in other
applications. Secondly, similar objects, with a different look could reuse state
variables, behaviors and constraints but replace the graphical components or
models. Finally, some common behaviors can be used in by several other
objects as well. Consider the MoveDoorScript behavior, with slight changes
(other animations, move actions), it could be used for e.g. cupboards, win-
dows, a CD rom drive, . . . . Furthermore, the generalization of object types
results in the fact that every object can trivially interact with every other
object without the specific need to alter the application.

5.5.3 Evaluating Interactive Objects in an Existing NVE

In order to apply our approach and distribution architecture in the field, we
integrated our interaction mechanism in the ALVIC (Architecture for Large-
Scale Virtual Interactive Communities) platform described in [Quax 03] and
[Quax 07]. This system was originally developed to allow the creation of desk-
top NVEs for testing video based avatars and scalability techniques. Sub-
sequently, not much attention was given to the interactivity of the worlds
therein, and its scenes consisted of statically modeled environments, apart
from the user and AI controlled movable avatars.

In order to allow our approach to create more interactive scenes, we started



5.5 Evaluation of the Interactive Object approach 67

with creating interactive object descriptions for all objects in the environment,
including the avatars. Then, we implemented an interactive avatar controller
handling keyboard and mouse input. This controller was used to convert the
input, that was normally sent straight to application, into commands that
the interactive avatar object can handle (similar to the controller example
of the previous chapter). As the final step, we added the interaction layer
to a basic test application and set up an interaction server responsible for
running the simulation and distributing the client updates as was explained in
the previous section 5.4. This server would run next to the standard ALVIC
game and world server but on a separate machine. Although the ALVIC
system does not support immersive (N)VEs, these systems can integrate our
framework just as easily, by integrating it in their simulation component in the
same way. The only difference will be the implementation of the controllers,
as immersive systems mostly use different input devices than desktop VEs.

As already mentioned throughout this chapter, in this dissertation we do
not focus on providing solutions for network distribution issues such as delay
and jitter but we aim at generating more interactive and dynamic environ-
ments. The distribution architecture we utilized during testing was the CS
approach outlined in Section 5.4. In order to keep the round-trip delays be-
low the interactive threshold, the tests were held on a LAN, where delays did
not exceed 100 ms. The client and server PCs were Pentium IV 1.7 GHz.
computers with an internal memory of 512 MB. While we did not perform a
fully formal usability test, this test environment employing our first version of
the interactive object approach was utilized and tested sufficiently in order to
draw some conclusions.

Regarding the interactivity, as all objects are now defined as interactive
objects, the worlds have become much more lively and interactive. Avatars
can trigger all kinds of behaviors by just moving around or by causing col-
lisions with buttons or other objects. Also, objects themselves can trigger
behaviors of other objects, etc. The avatar controller object work just as fine
and correct as the traditional approach with no noticeable difference to the
end user. Similarly, as long as the number of simultaneous scripted behav-
iors is not too large, their run-time interpretation does not cause extra delays
or noticeable differences. Only when the number of simultaneous interactive
scripts that needed interpretation at the same time grew large (over 100 inter-
pretations) some minor delays were noticeable, specifically when the scripts
started (exceeding the interactive threshold). The parsing and interpreting of
course form the main problem here as they are the most resource intensive.
Another partial cause of this delay can be attributed to the large number of
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threads that were created, as every script is run in its own thread, causing
minor performance issues on the server machine that also has to perform sev-
eral other thread intensive tasks. This issue could quite simply be resolved by
using a more powerful machine for the server (which can not be a problem to
date), since this is the only computer that needs to execute the scripts, or by
keeping an interpreted version of every script at the object level, alleviating
the server from the tasks of parsing and interpreting the script every time it
is run. Of course the interaction layer will then need to check and compile
the new scripts if behaviors are changed at run-time or when it needs to be
executed for the first time. This checking is now unnecessary as each script
is fully parsed and interpreted every time it is executed. Another possibility
to improve script execution would be to use a more efficient scripting engine,
as ours was not created specifically for performance but for usability and ease
of understanding and is therefore not the most efficient. Currently several
excellent commercial and non-commercial solutions exist for adding scripted
behaviors to games and other real-time applications such as: Lua [Lua 07]
and Python [Python 07]. Other solutions might include splitting up worlds
on different servers, load balanced distributed simulation and other solutions
described in the previous chapter and the literature.

With respect to network delays and the extra round-trip delay, we found
that our tests on LANs always kept these beneath the interaction threshold of
about 100 ms. and thus sufficed for our purposes. The network delays intro-
duced by the deployed client/server architecture are practically unnoticeable.
This is of course the combined result of the efficiency of UDP and the small
packets we use for updates.

In conclusion we can state that our interactive object approach enables
much more dynamic and run-time adjustable interactive virtual worlds for
both VEs and NVEs. This was realized by employing a feature modeling
approach coupling interaction information to the objects instead of to the ap-
plication and generalizing object types. However, even though we now have
created more interactive and lively scenes wherein all objects can interact and
communicate with each other with a single interaction mechanism, the basic
simulation approach that is lightweight and platform-independent, does not
provide an entirely realistic environment. As an example consider an avatar
pushing a large object such as a table on one of the corners. In our simula-
tion approach this object will receive move messages from the avatar’s object
through the collision link, and perform the same movements as the avatars
hands, as long as they remain in collision. As a result, the table will move
forward, if the user pushes it forward. However, in a more physically real-
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istic environment, the object would rotate as well. Figure 5.4 illustrates the
difference between our basic simulation approach and the physically correct
solution. Thus some further research is required to enable more realistic be-
havior.

(a) (b)

Figure 5.4: Illustration of the difference between the result of an avatar pushing
on one side of a table with our basic simulation mechanism (a) and true
advanced physical simulation (b). The green arrow shows the direction the
avatar is pushing, the red arrow illustrates the direction the table will move
in.
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CHAPTER6

Conclusions

In this part, we proposed a general framework for dynamic interactions in
VEs and NVEs, that is able to provide a solution for the lack of liveliness
and interactivity in contemporary systems. The presented approach employs
a feature modeling approach and object type generalization in the virtual
world. As a result no distinction on the interaction level is made between
avatars, agents and other static or dynamic objects, and they are all subject
to the same interaction mechanism. Object actions and behaviors can be
performed by activating triggers or as a result of command passing through
inter-object or controller interaction links. The construction of the object as
well as the entire interaction paradigm are kept on the object level and objects
and worlds are described in an XML based format. The interaction mechanism
is implemented in an interaction layer that can easily be integrated into an
application and provides the concept of controllers to control objects in the
environment.

The main advantage of this approach is that all the information needed to
interact with an object is located at the object level instead of at the appli-
cation level, which is the standard approach. As a result, the objects, their
parts, actions and behaviors can be modified, even at run-time. This could be
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done by the application itself, or by the application user, provided that the
application developer offers support for it to the users. Also new, unknown ob-
jects can be added to the simulation at any time. While the modeling process
for interactive object might require some more work than creating objects for
the standard approach, these objects are highly reusable and specific inter-
actions no longer need to be implemented in the application. Furthermore,
entire objects, can be reused in other applications, and already defined parts
and behaviors can be reprocessed for defining other interactive objects. Even
at the network level, interactive object features could be utilized to increase
performance. For example, consider an object’s movement constraints. These
can be checked to see if its parts can move or rotate, hereby determining if
frequent updates should be sent or not. An object that has no movable parts,
and that is immovable itself, should never have to be synchronized at all, since
this would only consume unnecessary and scarce network resources. An ob-
ject that is only able to rotate, on the other hand, should only sent updates
containing its orientation.

In order to show that our solutions works in a realistic setting, our approach
was integrated in the ALVIC NVE framework. Although no formal usability
study was performed, several tests have shows that the integration formed
no problem and that while we used only a basic distribution architecture, we
managed to create more lively and dynamic VEs with only a naive lightweight
simulation mechanism. We also provided some solutions for what we found to
be the main performance limit, the run-time behaviors, that need to interpret
and execute scripts of all interactive objects in the system.

The presented approach illustrates how we can create more dynamic and
run-time adjustable virtual worlds with our dynamic object approach, however
at the same time, we must admit that the realism is still not optimal. We
believe that physically correct simulation and more advanced animation can
increase realism even further, and consequently result in better acceptance of
VEs in general. The next part will discuss how we can enable more dynamic
and realistic animations and simulations and how our interactive approach can
utilize these to create even more engaging virtual worlds.
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CHAPTER7

Introduction

In the previous section we discussed a dynamic interaction mechanism for
NVEs. Although the goals of more lively and run-time adjustable virtual
worlds were achieved, the simulation was rather basic, and the animations
provided by the system still relied on predefined modeling, resulting in little
flexibility.

In contrast to passing commands, executing behaviors and distributing
virtual world states, animation is not an essential enabler of interaction for
NVEs. However, proper use of animation can drastically increase the user’s
feeling of presence while interacting in these worlds [Casanueva 01]. This is
especially true for the animation of avatars, since they are the user’s means of
interaction in the VE as we discussed in Chapter 2. It is through this avatar
that a user can for example pick up objects, point at locations and display
his actions to others in the shared virtual world. In order to achieve even
the slightest level of realism, such actions clearly have to be accompanied by
appropriate animations. Since NVEs are real-time applications, we can not
use off-line techniques to take care of the animation in these virtual worlds as
is done in the movie industry. Fortunately, real-time character animation and
physical simulation have improved considerably over the past few years. Due
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to recent advances in computer hardware, it is currently possible to produce
results in real-time that were formerly only achievable in off-line animation
[Anderson 01]. In the context of NVEs however, animation has received rela-
tively little attention. This is manifested in the fact that advanced animation
techniques are only slowly finding their way into these systems. A possible
explanation of this could be the computational complexity of these more ad-
vanced techniques. Another reason might be the inherent networking aspect
of NVEs. Since avatars are a part of the shared world, their state has to be
distributed to other connected users, and more advanced animation techniques
often require more synchronization and will as a result consume more of the
scarce network resources.

Fortunately, in the gaming, movie and computer graphics communities 3D
computer animation has been an important research topic in the last decades.
However, despite these efforts, still several problem areas exist and the de-
mand for more realistic animations is still growing. As a result, a lot of
research is focusing on improving very specific areas such as realistic human
motion simulation, cloth and hair rendering, physical simulations and so on.
Simultaneously, a lot of new gaming devices have entered the market over the
last decades. Examples include Microsoft Xbox 360

TM
, Sony PlaystationR© 3,

Nintendo Wii
TM

and so on. These systems are, just like PCs, equipped with
special 3D hardware and enough memory and processing power to show high
resolution interactive 3D graphics. Also, due to recent advances in process-
ing power and memory capacity, small portable or handheld devices such as
PDAs and smart phones are currently also capable of supporting graphical
user interfaces with audio and video playback. Some of these have already
been equipped with special 3D hardware as well, making them suitable for
more interactive 3D animated applications and games. So, it is clear that the
number of platforms capable of displaying interactive 3D graphics is growing
rapidly. As these portable systems are also equipped with wireless networking,
many gaming and more specifically MMORPG developers are seeking ways of
creating mobile clients for their systems as well. In a more serious application,
a successful demonstration of enabling the ALVIC NVE system presented in
[Quax 03] on a PDA are presented in [Jehaes 05].

Currently, most games and software components have been, and are still
being developed for specific platforms. Since development time for games is a
critical factor, not much attention (or money) is usually spent on portability
or extensibility of game engines or their parts. As a result, many platform
specific SDKs, libraries, game and animation engines have been developed
over the years. Some specific applications or games are being ported to other
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platforms such as PDAs or smart phones, but since little or no consideration
for these platforms was given during the design phase, the porting process is
usually difficult and time-consuming. However, since more and more game
developers are creating games for more than one platform, there is a trend to-
ward more multiple platform or platform-independent components. In research
and other less commercial areas some open platform-independent animation
libraries and SDKs have been studied and developed. However, these systems
are usually limited to desktop platforms (MacOS, Windows and Linux PCs).
Other platforms are usually considered to be too specific or non-relevant by
the developers. On the other hand, most libraries or engines for 3D games or
animation are not open source or extensible in any way. Consequently, appli-
cation developers can only work with the provided functionality. Some open
source projects do exist, but adding new animation techniques is often very
difficult or unsupported.

In this part, we elaborate on how our interactive object platform can be
extended to support more realistic animation and simulation. We start by
describing the ExtReAM (Extensible Real-time Animations for Multiple Plat-
forms) animation library, we developed for this purpose. This library takes
into account the evolution of graphics capable devices and the principles of
dynamics we also used in our interaction platform. In contrast to similar sys-
tems, the ExtReAM library was developed to be an animation library that
can easily be extended with new animation techniques and is easy to integrate
in all kinds of applications, on all kinds of platforms. This is realized by im-
plementing a very lightweight, platform-independent core system. Animation
and simulation techniques are added through plug-ins that can be used by
the system. Plug-ins can easily be created by developers due to the object
oriented design and different platforms can use different plug-ins for similar
tasks. After elaborating on this powerful animation library, we discuss how
its physical simulation plug-in improves the realism of our interactive object
approach and we show how our interactive object system is adjusted in order
to support it. We conclude this part by discussing our findings regarding the
approach.
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CHAPTER8

Related Work

8.1 Character Animation

The realistic animation of 3D objects has been widely studied, and as a result
many techniques have been proposed. In 1989 Chadwick et al. [Chadwick 89]
presented an efficient layered modeling approach decomposing a human body
into distinct layers. The resulting models consist of separate discrete layers,
every one of them with their separate physical and geometric properties. After
the appropriate constraints are enforced between the different layers, animat-
ing the model comes down to controlling the undermost layer of the model
[Giang 00]. This approach is best known as layered modeling. Contemporary
real-time applications generally use a two layered approach consisting of a
skeleton (a hierarchic structure of joints) and skin layer (a vertex mesh rep-
resenting the shape). As in this case the skeleton is the layer that is to be
transformed for creating animations, this approach is often referred to as skele-
ton animation. An example of a skeleton based model is shown in Figure 8.1.
Due to its efficient nature and ease of use, it is still the standard animation
technique in most real-time systems.

The best known and most used techniques for transforming these hierar-
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Figure 8.1: A model of a male character used in the ALVIC framework, con-
sisting of two layers: a skeleton and a textured skin mesh.

chic 3D characters are kinematics and dynamics. Kinematic techniques are
concerned with explicitly transforming the different parts of the animated ob-
jects. Important kinematic techniques include keyframe animation and inverse
kinematics [Welman 89a, Giang 00].

8.1.1 Keyframe Animation

Keyframe animation consists of specifying skeleton poses (key frames) at cer-
tain points in time and then use an interpolation technique between those
key frames in order to animate the objects. Key frames are mostly modeled
by hand in an animation modeling application. Over the years, many sys-
tems have been developed for modeling these kinds of animations. The best
known are the commercial modeling packages such as AutoDesk c© 3D Studio
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Figure 8.2: Four keyframes of a walk animation for a 3D animated model
(from [Cal3D 07]).

Max [3ds Max 07], Maya [Maya 07] and Blender [Blender 07] an open source
project. The generated models can be integrated into applications and the pre-
defined animation data can be used to animate the objects, but animations
can not be changed unless the application has its own animation control. It
is however possible to blend different animations e.g. for different parts of an
object or changing the speed of animations. Another possible way of defining
key frames is through motion capture which can also be used to control an
animated figure directly. Motion graphs [Kovar 02] on the other hand use a
database of kinematic motions to automatically calculate transitions between
key frames. Keyframe animation is an example of a forward kinematics ani-
mation technique, since it specifies all joint transformations in order to have
the end of the chains reach a certain position. A sequence of four frames taken
from a walk cycle of an animated 3D character is shown in Figure 8.2.

8.1.2 Inverse Kinematics

Inverse Kinematics (IK) techniques, on the other hand, originate from the field
of robotics. They can be used to dynamically generate motions for (part of)
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Figure 8.3: Illustrations of a numerical IK method in 2D taking discrete steps
to move the IK chain’s end effector closer to the goal position.

a skeleton. Normally a chain of bones with a specified end-effector (the final
joint in that chain), is instructed to move toward a specified goal position. This
move toward that goal position is automatically calculated [Welman 89b]. A
possible example of an IK chain could be the arm of a virtual human, with the
hand being the end-effector. IK solutions can nowadays easily be calculated
on-the-fly, resulting in real-time adjusted animations [Anderson 01]. However,
the complexity (and as a result calculation times) increases with the addition
of every bone and constraint. Broadly speaking, inverse kinematics algorithms
can be characterized as analytical or numerical. Analytical methods attempt
to mathematically solve an exact solution by directly inverting the forward
kinematics equations. This is only possible on relatively simple chains with
limited DOF. In contrast, numerical methods use approximation and iteration
to converge toward a solution as illustrated in Figure 8.3. They tend to be
more expensive, but far more general purpose.

8.1.3 Dynamic Animation Techniques

Dynamic, in contrast to kinematic, animation techniques use physical forces
and laws to simulate object movements. Since creating physical controllers
for complex articulated 3D characters is not a trivial task [Faloutsos 01a],
dynamic animation techniques in games are usually limited to ragdoll physics1,
which simulates lifeless bodies. For example, when in a first-person shooter
somebody is shot, the user looses control over his character, and the physics
engine takes over, creating a realistic body response. An example of the results

1Wikipedia - Ragdoll Physics (http://en.wikipedia.org/wiki/Ragdoll physics)

http://en.wikipedia.org/wiki/Ragdoll_physics
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of ragdoll physics is shown in Figure 8.4. Hybrid techniques have also been
investigated in the past [Shapiro 03, Zordan 02], and are still being studied to
date. The main goal usually includes achieving more control over dynamically
animated characters. However, attempts to adjust kinematic motions with
dynamic effects to improve realism and variation have also been explored.

Endorphin [Endorphin 07] is commercial modeling package supporting dy-
namic animation techniques. It uses dynamic motion synthesis and adaptive
behaviors to create very realistic animated 3D characters. Dance (Dynamic
Animation and Control Environment) [Faloutsos 01b], on the other hand, is an
open and extensible framework for computer animation focused on the devel-
opment of physically based controllers for articulated figures. These systems
provide the tools to create physically simulated animations but are not suited
to be integrated into other applications.

In contrast to animation modeling applications, animation libraries are
specifically designed to be easily incorporated into other software. Cal3d
[Cal3D 07], for example, is a skeleton based 3D character animation library
written in C++ in a platform- and graphics API-independent way. It can
easily be integrated into different applications and provides basic skeleton
animation techniques such as forward kinematics, keyframe animations and
animation blending. However, Cal3D is limited to these animation techniques
since it was specifically designed for only these tasks and provides little means
to extend its functionality. Granny 3D [Granny3D 07] is another commercial
animation system that can easily be integrated into applications. It has pow-
erful support for all kinds of skeleton animations and is available for several
platforms. Extensibility is however hardly provided.

8.2 Rigid Body Simulation in Real-time Virtual En-
vironments

Physically based simulation techniques are already widespread in off-line an-
imations such as in the movie industry, but with the computational capac-
ity of modern computers, these techniques are also slowly finding their way
into real-time computer applications. A relatively simple, and often employed
technology is rigid body simulation, where the position and orientation of the
objects are calculated using simple laws of physics. Many middle-ware prod-
ucts exist that can calculate rigid body dynamics efficiently, and we discuss
some of the more important ones here.

Havok [Havok 07] is a commercial solution that has been proven to be
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Figure 8.4: Ragdolls of two virtual terrorrist’s avatars. After being shot,
the physics engine took over to create realistic movement (from Counter-
Strike

TM
).
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one of the fastest and most stable solutions available. It has won several
awards and is used in commercial games, like Max PayneR© 2 [Payne 07] and
Half LifeR© 2 [Half-life 2 07]. Ageia PhysX

TM
[PhysX 07] is another commer-

cial product, but is free for non-commercial use. It has a complex test-suite
available to tweak the engine and make it even more stable. It is employed in
for example the UnrealR© 3 [Unreal 3 07] engine. Open Dynamics Engine

TM

(ODE) [ODE 07] is probably the most used open-source solution for rigid body
simulation. Recent releases added a new mathematical solver, making it stable
and fast enough to be used in commercial applications. Newton Game Dy-
namics [Dynamics 07] is a recent open-source solution, that is rapidly growing
to be a successful competitor to ODE.

As already mentioned, these tools are rapidly becoming very popular in
the gaming industry. Although very simple physically based techniques were
used before as eye-candy (mostly particle systems with gravity and collision
detection), games such as Half-LifeR© 2 [Half-life 2 07] use the middle-ware
products mentioned above to make dynamic objects part of the gameplay (see
Figure 2.4). Thus apart from making virtual worlds look more realistic, rigid
bodies can also largely influence interaction. For example while in the standard
approach, a button, such as a light switch, can only be pushed by an actor,
in the physical approach, the collision and force information can be used. As
a result the light could also be switched on or off when a non-actor object
collides with it. Looking at more professional NVE applications, we see that
physical simulation, if present at all, is usually limited to some form of gravity
and collision detection on the avatars and the world itself. Most objects in the
world would be on a fixed position in the world, not even movable and mostly
not interactive at all.

The following chapter describes the animation library we developed in
order to allow multiple and new animation techniques to be applicable in
real-time NVEs in order to achieve a higher level of realism. Furthermore,
we present how this system employs plug-ins in order to allow the system to
be extended with all kinds of animation techniques and file formats without
changing the core.
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CHAPTER9

The ExtReAM Library: Extensible Real-time
Animations for Multiple Platforms

9.1 System Overview

In order to be as lightweight and portable as possible, the ExtReAM library
is built around a very lightweight core. This core is primarily responsible for
object management, registering plug-ins and plug-in components. Further-
more, it has a built-in event and command system that can be used by the
plug-ins. In this way, plug-ins can register functions that can then be executed
by an application or other plug-ins in a similar way as interactive objects can
call commands. As an example consider a keyframe animation plug-in, reg-
istering functionality to start and stop an animation in order to allow the
application that loaded the plug-in, or another loaded plug-in to start and
stop animations of a specific object instance. The more platform-independent
and resource consuming tasks such as file loading, object creation, command
handling and the animation techniques are left to be implemented in the plug-
ins. This results in a very flexible system that can be be integrated easily in
all kinds of applications on many different platforms. Figure 9.1 shows how
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Figure 9.1: Overview of the ExtReAM library in an application.

the ExtReAM library is used in an application. The application chooses which
plug-ins and objects to load. A Plug-in can be loaded into memory for just as
long as its functionality is required. As a result, it will only consume resources
when necessary. For example plug-ins for loading certain object types will
only be necessary when the scene is created. Thereafter, the plug-in can be
released, freeing resources.

Because the ExtReAM system is only an animation library and not a
graphics engine, a rendering component is not included. All the necessary
data for rendering (vertex buffers, textures,...) can however trivially be re-
trieved from the system. In order to advance animations and simulations,
the application can step the library at every time frame. Commands can be
executed by communicating them to the command handler, which is part of
the core. Once an actual plug-in is loaded, interaction with it is completely
transparent from the application’s perspective. Plug-ins can also register their
own commands, enabling the application to use their functionality.

9.1.1 Plug-in System

Plug-ins are used extensively in the ExtReAM library. A plug-in is a “building
block” on top of the core system. Plug-ins can perform common tasks like
loading mesh files or specific tasks like animating a skeleton-based character.
As plug-ins are one of the main components of the system, providing the actual
functionality, we assured that creating a new plug-in is as simple as possible.
As a result of the object-oriented design, in order to create a new plug-in, the
developer must only derive from a (couple of) class(es) and implement a few
methods. More specifically, for most of the plug-ins, it involves deriving from
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the Plug-in class and implementing the start and stop methods.
The core system internally uses a plug-in manager to start and stop plug-

ins and to get information from certain plug-ins. It also ensures that plug-in
dependencies (other plug-ins that it relies on) are started first and that plug-
ins are not loaded more than once.

9.1.2 Plug-in Components

To extend the core animation system, using the principles of object-oriented
design, the ExtReAM library provides some abstract base classes that can be
used in plug-ins in a standard object-oriented way. Here we give an overview
of the different base classes and explain how to use them.

To provide a new object type in the ExtReAM system, three classes have
to be implemented. Examples of object types might include: skeleton objects,
rigid and soft body objects, . . . . How the actual objects are managed in the
system is explained in section 9.1.3.

• ObjectCore: an object core is generated from the data that gets read
from file. From this core data, one or more object instances can be
created. The instances can share the core data if desired, so redundant
data can be minimized.

• ObjectInstance: an object instance is an actual entity in the virtual
world. It is created from an object core and can use that core’s data
besides having its own specific data.

• ObjectCreator: an object creator can register itself in the object factory
(a part of the core) with certain file types, and is used to create object
cores from file and object instances from these cores.

The remainder of the plug-in base classes are used to alter the behavior of
the animation system:

• Actor: actors are used to alter the scene every timestep. The elapsed
time is provided every frame when the step method is called. We
have used actors, for example, to advance the physics system and blend
skeleton-based animations (see sections 9.2.1 and 9.2.2).

• EventHandler: this class has to be implemented if a plug-in needs to
react on certain events in the system, like objects being added or re-
moved. An example is our rigid body simulation plug-in (see section
9.2.1), where a physical shape is automatically created when an object



92
The ExtReAM Library: Extensible Real-time Animations for

Multiple Platforms

instance is added, and deleted when the object instance is removed from
the system.

• CommandHandler: through this class, a plug-in can register the com-
mands it can handle. By using commands, the coupling with plug-ins
and the actual application can be very loose (the application does not
have to know anything about the plug-ins). The core system has built-in
commands to start or stop plug-ins, add or remove objects and alter their
position or orientation. Examples of registered commands can be found
in the KeyFrameController plug-in (see section 9.2.2), where we register
commands to start, stop and pause keyframe animations for skeleton
object instances.

9.1.3 Object Management

The ExtReAM system is designed to easily manage object creation and re-
moval in the scene, as efficiently as possible. The library keeps track of object
cores and object instances. The object core contains all necessary data to cre-
ate one or more object instances, the actual entities that will be rendered in a
scene. Rigid objects are a good example: the core contains the geometry to be
rendered and the bounding geometry to be used with collision detection. All
that the actual instances need is a position and an orientation in the virtual
world.

Creation of object cores and instances in the system is handled by the
Object Factory. The factory automatically chooses the right creator if the user
asks to create an object. The actual creators from which the factory can choose
can be implemented as plug-ins as explained in the previous section. The
system can then select the correct creator plug-in, based on the registration of
the object types they can create, and the file types they can read. Furthermore,
the factory makes sure a file is not read twice if that is unnecessary.

9.2 Plug-in Examples

9.2.1 Rigid Objects, Bodies and Physical Simulation

As the main goal of the animation library is to add more realism to our virtual
worlds, we started with the creation of a rigid body simulation system. In order
to achieve the most flexible solution, the implementation is split up into two
plug-ins.
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Firstly, we created the RigidObject plug-in, which is able to create a
basic physical object type: RigidObject. The RigidObject’s core is able to
store an object’s geometry and bounding box. RigidObject instances on the
other hand, can have a position and an orientation. In order to be able to
create these objects from different file types, we also constructed several object
creator plug-ins that each can create an object from one or more different file
formats. Some of the file types supported include ply, 3ds, Ogre, ms3d, etc.

Secondly, we created the actual Physics plug-in, that encapsulates the
Ageia PhysX [PhysX 07] engine and provides the rigid body simulation control.
The plug-in contains an actor that advances the physical scene every timestep
through the inherited step function. Furthermore, it implements some physics
specific functionality, such as creating physical bodies from triangle meshes.
Unfortunately, the Ageia PhysX engine is currently only available for desktop
computers and some consoles. It is unavailable for mobile or handheld devices.
As a result, this Physics plug-in can not be used on these platforms. This is a
perfect example of a plug-ins that could be implemented differently for differ-
ent platforms. We could for example use the simplified simulation approach
described in the previous part, to create a more lightweight and less memory
consuming plug-in to be used on less powerful devices. The Physics plug-in
automatically couples physical shapes to rigid objects added to the scene to
be used for collision detection and rigid body dynamics. Logically, the physics
plug-in is dependent on the RigidObject plug-in.

After every time step, the actual positions and orientations of objects are
set according to the physical shapes that are simulated, resulting in physically
correct motions.

9.2.2 Skeleton Animation System

Since skeleton animation is one of the most applied character animation tech-
niques, we also created a skeleton animation system for the ExtReAM library.
Similarly as the physics plug-ins, in order to improve flexibility, we provided
this through a set of different plug-ins.

The SkeletonObject type has an object core containing the geometry
and a core skeleton structure. Also, it contains the link constraints be-
tween the skeleton and the geometry to do vertex blending [Lander 98]. The
SkeletonObject instances on their part, have a position and an orientation
in the virtual world, and also contain their own deformed skeleton pose and if
desired a deformed geometry. Both are implemented in the SkeletonObject
plug-in.
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The bone structure we use is the standard tree structure used for skeleton-
based animation: it consists of a single root bone and every other bone has a
parent and a list of children. Furthermore, every bone stores a position and an
orientation relative to its parent. Different skeleton controllers (which can be
implemented as different plug-ins) can animate the skeleton. Every controller
can create a skeleton pose for every instance, and a skeleton blender combines
the poses of all the controllers into the final pose for the skeleton object in-
stance. This blender can use interpolation between the final skeleton poses of
the different active controllers or select one as the most important. This can be
controlled by the application or by another plug-in. The skeleton blender can
also apply weights to the different controllers so that one controller can have
more influence on the entire skeleton or a specific part of it. An example of
when this might be used is when we manipulate an avatar’s hand for grasping
something using IK while it is performing a keyframe ‘walk’ animation.

To deform the geometry, a mesh deformer was implemented. This de-
former uses the final skeleton pose generated by the skeleton blender to gener-
ate a deformed skin. It uses the standard weighted vertex blending technique
[Lander 98]. If the deformed geometry is not needed in software, a graphics
hardware method could be used to speed up the deformation. Our current sys-
tem only provides a software implementation of vertex blending, so the same
technique can be used on all platforms. Separate plug-ins could be created for
the different platforms, wherein more platform-specific and performant tech-
niques could be used. On desktop platforms for example, the vertex blending
could be implemented using GPU hardware. These skeleton animation specific
components are grouped in the SkeletonObject plug-in. Figure 9.2 shows an
overview of the skeleton animation system.

In order to provide some basic animation techniques, several skeleton con-
trollers were already implemented in this system which we will briefly be dis-
cussed now.

The KeyFrame Controller

To support standard keyframe skeleton animations, the first skeleton controller
we propose is the keyframe controller. For each SkeletonObject core, it holds
a list of available animations, that can be read by the skeleton object creators.
An animation consists of a list of key frames describing a (partial) skeleton
pose at a certain time. In this way, animations can be defined on an entire or a
specific part of the skeleton. When an animation is started for a certain object
instance, the plug-in creates a new animation state that holds the current time
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Figure 9.2: Overview of the skeleton animation plug-in.

and the weight of that specific keyframe animation. The keyframe controller
then calculates a skeleton pose by interpolating between the keyframes of
the running animations. Finally, a keyframe command handler is created,
implementing functionality to start and stop animations and apply weights to
them.

The IK Controller

In order to allow on-the-fly motions to be created as well, the second motion
controller allows (parts of) poses to be calculated using an IK technique. The
current plug-in implements the Cyclic Coordinate Descent (CCD) technique
[Welman 89a]. This is, together with the Jacobian Transpose (JT) method
one of the most applied IK algorithms to compute real-time IK solutions for
animated skeletons. Although each CCD iteration is somewhat more expen-
sive to calculate in comparison to JT, it generally tends to require far fewer
iterations to converge to an acceptable solution. In order to calculate a pose,
the algorithm takes a part, or the entire skeleton of an animated character, an
end-effector and a goal position. Joints can also specify constraints, in order
to avoid unrealistic or impossible poses. Furthermore, as CCD tends to favor
joints closer to the end, we also allow joints to define a damping factor, which
limits the maximum number of degrees a joint can be rotated per iteration.
Finally, since we are working in real-time, the IK calculation request can spec-
ify a maximum time for calculation. In this way, the total amount of time for
iterating can be limited, resulting in the best possible solution given the time
limit. After calculation, a skeleton pose for the IK chain will be provided to
the skeleton blender.
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(a) (b)

Figure 9.3: Two different IK results for the same IK chain. (a) Has constraints
and strong damping for the last two joints in the chain. (b) Constrains only
the second joint and has no damping on the final joint.

Physical Controllers

In order to demonstrate that our system can also provide dynamic animation
techniques, two physical controllers were also implemented. The first one is
the RagdollController plug-in which employs the Physics plug-in which
we described in Section 9.2.1 to implement a ragdoll system. This plug-in
automatically builds an articulated rigid body structure from a skeleton object
instance for the physics engine and submits it to the rigid body simulation
system. After every timestep, a skeleton pose is calculated from the movement
of the physical objects.

A second more advanced physical controller is an extension to this ragdoll
system and implements a simple dynamic controller enabling an animated ob-
ject to stand upright and stay balanced. This BalanceController was created
specifically for human models and uses joint motors on the ankles to keep the
model in balance. This implementation only contains a basic solution, which
will not be able to keep the model balanced in all circumstances. More ad-
vanced balance strategies, such as swinging the arms or performing protective
steps could be added as well. However, as dynamic animation is a subject on
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its own, especially when it comes to animating humans in a realistic physical
way, we will not discuss this subject any further.

9.3 Evaluation of the ExtReAM library

9.3.1 Desktop Evaluation

Before we integrated ExtReAM into our interactive object approach, we first
wanted to check its portability and functionality. Therefore, a test applica-
tion was developed for desktop platforms and was tested under MS Windows
and Linux. The application provides functionality to load scenes described in
a simple XML-based scene format that contains the necessary plug-ins and
object positioning. Furthermore, the user can load extra plug-ins and add,
remove and reposition objects at runtime. The interface was developed with
the QT 4.0 library [Qt 07] and shows a tree structure of the objects and ob-
ject specific properties. These properties are specific for every object type.
For example, a skeleton object instance has a property displaying the pos-
sible keyframe animations that it supports and the weights that are applied
to them. The system also supports command handling, so users can send
commands to the system for example to invoke core or plug-in functionality.
OpenGL is used to render the scenes.

All the controller plug-ins described in the previous sections were tested.
Integrating the library and using plug-ins was straightforward, and the plug-
in system did not introduce any noticeable slowdowns. Figure 9.4 shows a
screenshot of the test application containing a scene with one skeleton-based
object and two rigid object models. The user is controlling the keyframed
animations of the skeleton object using the properties widget for skeleton
objects. We did not optimize the rendering, since this was not part of our
research. However, even without this optimization, the system can render
a sufficiently large number of objects for our purposes. On a standard PC,
Pentium 4, 2.4 GHz with 1 GB RAM and an ATI Radeaon 9800 graphics
card and no physics processor, we managed to animate and render over 250
keyframe animated objects (a model with 18 animated joints and 400 mesh
triangles) and approximately 900 simulated movable rigid body objects (non-
convex, with an average of 48 triangles per object). With more extensive use of
rendering hardware, a physics processor [PhysX 07] and optimizations of the
physically simulated objects (using convex objects, or basic physics shapes)
these results could be drastically improved.
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Figure 9.4: The desktop test application, using QT and OpenGL. The skeleton
object properties widget (bottom left) allows the user to activate animations
and set weight factors.

9.3.2 PocketPC Evaluation

As a second test, aimed at portability, we developed a PocketPC application
using native C++, and OpenGL ES as the rendering backend. This was tested
on Dell Axim X50v PDAs, that are equipped with hardware-accelerated 3D
graphics, so we could test advanced animation techniques without the delays
caused by software rendering. The PocketPC application can load the same
scenes as the desktop application, but can’t load the desktop-specific plug-ins
such as the Physics plug-in we presented in section 9.2 as it relies on the
Ageia PhysX library which is only available for desktop platforms

We found that the plug-in-based system is an efficient solution for these
kind of devices which have only limited memory resources, because plug-ins
(along with their linked libraries and memory usage) can be unloaded when
their functionality is no longer required. The object creator plug-ins for exam-
ple, that are used to generate object cores and instances from file, are loaded
only when necessary, and are immediately unloaded after the objects have
been created.

Figure 9.5 shows a scene consisting of 18 rigid objects (each about 1800
polygons) and one animated skeleton object (with 400 polygons and 18 an-
imated skeleton joints). The scene is rendered in real-time (20 frames per
second). The plug-ins used are the same as in the desktop application. Vertex
blending forms the biggest bottleneck for this scene, since the algorithm is
completely running in software and thus not optimized for the device.
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Figure 9.5: PocketPC application. The robot is a skeleton object performing
the “walk” animation. The other objects are rigid.
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CHAPTER10

A Physically Simulated Dynamic Interactive
Object System

In the previous chapter we elaborated on the ExtReAM library, supporting
realistic, dynamic animation and simulation techniques. In this chapter we
will discuss how it is integrated in our interactive object system in order to
provide applications with this functionality as well.

In order for the integration to be successful, several adjustments need to
be made to the original system which we described in Chapter 5. First of
all, the animation library must be integrated in the interaction layer, so re-
alistic animation, and physical simulations can become an intrinsic part of
the interaction system. Secondly, if we want objects and worlds to behave
more natural, their descriptions need to be extended, allowing them to de-
scribe properties and actions related to physical simulation as well. Finally,
in order to create dynamic reactions, object behaviors should also be able to
express physical actions and offer support for the new animation techniques
to be controlled as well. Finally, as realism is not elementary for all kinds of
VE systems and to remain backwards compatible, we want these parts to be
optional, so the basic version of simulation must also be supported.
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10.1 Improving Realism in the Interaction Platform

As we explained in Chapter 5, the Interaction Layer is the component respon-
sible for handling the interactions and the simulation of the virtual worlds.
In the first version, a basic simulation system was provided, that supported
collision detection and movements in a basic way. In order to keep support for
this lightweight approach, this component is separated from the core of the in-
teraction system into a separate library. This allows an application to specify
whether it uses the basic rather then the ExtReAM system, without requiring
both components to be loaded. Thus when the basic simulation component
is selected, the simulation system works as explained in the previous Part.
However, when an application chooses ExtReAM to handle the simulations
and animations, the interactive object system will enable a whole new range
of realism. First of all, the simulation can be done by loading and employing
the Physics plug-in that we presented in the section 9.2, enabling rigid body
dynamics.

In order to make sure that the interactions themselves or behaviors of
objects do not change, the communication mechanism, employing interaction
links and command messages, is left unaltered. Thus, the objects will still
receive movement commands of connected objects for example. However, the
rigid body simulation mechanism ignores these move messages and calculates
all movements and collision responses on its own. This results in a much more
realistic experience since it makes results of interactions look more physically
correct. The only extra that needed to be implemented in the simulation
system was the possibility to allow the interaction layer to request object
collisions, a task that in the basic simulation system is provided by the collision
manager. However, the integrated physics engine supports this in a similar
way.

Apart from simulation, using the new library also provides a number of new
animation techniques that can be used when the correct plug-ins are loaded.
For example the skeleton animation plug-ins, allows keyframe, IK and even
dynamic motions to be created on-the-fly. Of course in order to support all
this new functionality, new commands must be provided. Therefore, we allow
the interaction system to reuse and forward commands that are registered in
the ExtReAM plug-ins. In this way, we can instantly use all functionality from
these plug-ins for defining actions and behaviors for our interactive objects.
For the behaviors to be able to call these functions, the scripting engine was
also adjusted in order to support ExtReAM commands. Of course when such
a command is requested, the application developer must ensure that the cor-
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rect plug-ins are loaded or the command will fail. In case e.g. the IK plug-in
is not loaded and an action moveIKChain is requested, the action will not be
executed. Also, object controllers can utilize the animation plug-ins’ com-
mands by forwarding them to the animation library. In this way, application
developers can directly control object animations and simulation.

In order to be able to use objects from the basic approach, we implemented
a conversion for the move and rotate actions that formerly used no physics,
to new physical functionalities that use forces in order to generate the move.
These forces are calculated automatically based on the duration of the action
and the mass of the object that needs to be moved. The scripting engine is
finally also allowed to change physics parameters, so these can be adjusted at
run-time as well, similarly as the other properties of the interactive objects.

In order to define the properties necessary for the new system requires some
changes to the object and world definitions are required. These extensions are
the subject of the next section.

10.2 Extending Object and World Descriptions

To determine if worlds are physically simulated or using the basic approach,
the interactive world description is adapted to allow this to be specified. Fur-
thermore, when physical simulation is enabled, the world designer must be
able to specify some global physical properties. First of all, the force of grav-
ity can be set. Since virtual worlds are not necessarily earth-based, any force is
allowed (within the limits of the physics engine). Secondly, we allow physical
joints to be defined that connect objects. In order to be independent of the
physics engine, these are specified in a general way. These joints can constrain
the movements of objects relative to each other. Finally, since we are working
in physical worlds, we need to be able to define the materials that the objects
are made of. The reason we define materials at world level, instead of at object
level, is that many of the materials are reused for different objects. This way,
when we want a material to change some of its parameters, it has to be done
only once for all objects in the world. Of course, these can be incorporated
from a file as well, so they are easy to reuse in different worlds. Two examples
of how materials can be defined in the world’s XML description are shown
in Listing 10.1. Furthermore, this listing shows how rigid body simulation is
enabled and how the gravity is set.
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Listing 10.1: Part of a physical world’s XML description showing the definition
of materials and the global physical settings.
<CIWORLD worldname="testworld" rigidbodies="TRUE" ygravity=" -9.81">

<MATERIAL name="unbreakableglass" restitution="0.7"

staticfriction="0.5" dynamicfriction="0.5" />

<MATERIAL name="steel" restitution="0"

staticfriction="0.5" dynamicfriction="0.5" />

Similarly as the world description, the object descriptions are first of all
extended with a number of physical specifications. Parts are extended to de-
scribe the material out of which they are constructed. These materials can be
world specified materials, or object specific. The interaction system separates
these materials; object specific materials will overwrite a world material with
the same identifier, but only for instances of that object type. In order to
be able to overwrite the automatically calculated collision object, an object
modeler can specify the collision model for a part. This is often useful, when
a part is graphically complex but physically less detail is required, or when a
part closely relates to a standard collision shape. Overwriting the calculated
collision mesh with a simpler, less detailed mesh or a standard shape (sphere,
box, cylinder, . . . ) can significantly increase performance. Secondly, similarly
as objects can be interconnected, object part relations can also be specified
with the same physical joints in the object properties. Thirdly, object actions
can now also be defined as strings with a string parameter set. This allows
them to define unknown commands that can be handled by e.g. plug-ins of
the ExtReAM library. As an example consider the door object presented in
Chapter 5.2. Instead of just moving the doors, actions could be defined that
use physical forces and velocities to move the doors, by employing Physics
plug-in commands. The three changes are illustrated in Listing 10.2. This
listing consists of pieces of a physical version of the glass door example de-
scribed in Section 5.2. First a physical part is described integrating a physical
collisionbox with a material that was specified at world level (see Listing 10.1).
Furthermore a prismatic joint is specified, that allows the sliding door to move
2 meters to the left. Note that this is similar to the part’s constraints. The
reason both are defined is that in this way the object can be used in both
physical and non-physical worlds. Finally we describe an object action that
utilizes a rigid body plug-in function for setting a physical object’s velocity.
The resulting force will close the left sliding door. The entire object description
is given in Appendix C.2. In order to use the physical action in the behavior
instead of the standard open door action, the script just needs to change the
name of the action called.
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Listing 10.2: Parts of the physical glassdoor object: a physical part, a physical
joint and a physical action.

<!-- Physical part -->

<PART partid="glassdoor_left" filename="glassdoor.ms3d" parentid="doorframe">

<POSITION x=" -2.9" y="1.85" z="0.1" />

<ORIENTATION x="0" y="0" z="0" />

<PHYSICSCOLLISIONBOX

xsize="2" ysize="3.8" zsize="0.1"

xpos="0" ypos="0" zpos="0"

xrot="0" yrot="0" zrot="0" materialname="unbreakableglass" />

<PART_CONSTRAINTS >

<MAX_TRANSLATE_CONSTRAINT upx="2.0" upy="0" upz="0"

lowerx="0" lowery="0" lowerz="0" />

<MAX_ROTATE_CONSTRAINT clockwisex="0" clockwisey="0" clockwisez="0"

cclockwisex="0" cclockwisey="0" cclockwisez="0" />

</PART_CONSTRAINTS >

</PART>

<!-- Physical Joint -->

<JOINTS >

<PRISMATICJOINT jointname="sliderleft" partid="fixedglass_left" partid2="glassdoor_left"

xorientation="1" yorientation="0" zorientation="0"

xleftextent="0" xrightextent="2" />

</JOINTS >

<!-- Physical Action -->

<ACTION name="close_left_velocity"> <!-- Physical action -->

<SET_PART_LINEARVELOCITY partid="glassdoor_left" xvel="5" yvel="0" zvel="0" time="2000" />

</ACTION >

As the interaction properties only provide an interface and a way to de-
scribe triggers, no changes are required to allow more realism to be described.
Similarly, although the scripting engine was adjusted, as scripts are described
as a string in the object description, the specification of object behaviors in
the file format required no changes. Table 10.2 gives an overview of what is
actually stored in the extended object description.

10.3 Results

In order to test if our physical approach works just as well as the basic ap-
proach, we integrated the new version in the ALVIC framework, similarly as
was done in Chapter 5.5. We used similar machines for testing the new ap-
proach in a LAN environment and used the same network setup. For the hu-
man avatars, we constructed a specific interactive object, with collision objects
for the body, the arms and hand. An avatar controller was also implemented,
that allows navigation and hand movements. Navigation behavior also triggers
the walk animation, through the startKeyframeAnimation command, that is
forwarded to the ExtReAM library. The controller also enables the user to
move the avatar’s hand around. This is animated by controlling the skeleton
on-the-fly with the IK component of the animation library. More information
on the avatar controller, the possible interaction techniques and the resulting
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Object Properties

• Object specific materials

• Parts, consisting of:

– Relative position and orienta-
tion

– 3D description

– Physical description

• Joints connecting the parts and con-
straining their moves

• Basic Actions

• State variables

Interaction Properties

• Commands

• Interaction Zones

• Triggers

Object Behaviors

1. Behaviors

2. Command to action/behavior map-
pings

3. Trigger to action/behavior map-
pings

Table 10.1: An overview of the contents of the extended object description.
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animations will be discussed in the next Part.
Whereas the basic interactive object system enabled many new kinds of in-

teraction features, especially with respect to run-time adjustments, the phys-
ical simulation component replaces basic collision detection with physically
realistic reactions of all objects (apart from deformations). As a result, a user
can now push objects forward, tip them over, smash them off each other and
so on, making the experience much more alive, realistic and explorative. Fig-
ure 10.1 illustrates some of the results of the new interactive object system
employing our animation library with rigid body simulation. On the left side,
an illustration of how an avatar pushes away one of the bottom boxes of a
stack, causing the whole stack to collapse is shown. The physics engine, that
is now an inherent part of the interaction component, automatically calcu-
lates realistic motions. The right side shows how interaction and simulation
are now trivially combined in the new interaction platform. The avatar has
pushed the first of a row of dominoes, causing the rest to tumble as well. When
the last block of the row falls, it collides with the button, which is part of a
collision trigger of the door object we described in Chapter 5.5. This causes
the MoveDoorScript behavior to be triggered, closing the door. Only this
time, the closeDoor actions use physical forces to move the door’s panels. As
a result, the door causes a second row of dominoes to tumble. This is also
a perfect example of an inter-object interaction that would in a traditional
NVE interaction approach be unavailable, since they program these kinds of
interactions specifically for each case, and often only avatar-object interactions
are provided. Using our approach, these new kinds of interactions are trivially
supported, creating more interactive and dynamic virtual worlds with minimal
efforts.

Finally, we mention that this physical interactive object approach can also
have an impact on collaboration and can enable new cooperative modes of
interaction. E.g. since objects have physical shapes and masses, and avatars
can be used to apply forces on objects, it is possible to create situations in
which users have to work together in order to achieve a common goal. Consider
a large and heavy object blocking an entrance, one avatar could not have
enough force to move it on its own. It would require the force of several avatars,
and thus the cooperation between different users or agents, to move the object
away. These kinds of cooperations can be necessary in training tasks for
example. Of course, the object’s physical models and avatar controllers would
need to be attuned to each other. However, this is not an unsurmountable
problem if the same basis for mass and force are used, for example real-world
values, which can perfectly be handled by most physics engines.
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Figure 10.1: Illustrations of the new physical and interactive capabilities of
the extended interactive object approach provided by the ExtReAM animation
library.



CHAPTER11

Conclusions

In this part, we discussed how animation and rigid body simulation can be
used to improve the realism of virtual worlds. Although the interactive object
platform, which was presented in the previous part, enables developers to
create dynamic interactive behaviors for virtual worlds, it was clearly lacking
physical realism and the ability to use dynamic animations in a general way.
In order to solve this issue we delineated how we created and employed our
own animation library to fill this gap.

Taking into account the evolution of graphics capable devices and the
dynamic approach of our interaction system, ExtReAM is built around an
object-oriented, platform-independent core that can easily be extended by
plug-ins. While the core system provides functionality for managing plug-
ins and objects, the plug-ins are responsible for more specific tasks such as
object loading and various animation techniques. Different plug-ins can be
used for different platforms when necessary and plug-ins need to be loaded
only when their functionality is required. Furthermore, we described several
plug-ins that were created in order to support the animation requirements of
our interactive object framework and demonstrated them in a Desktop and
PocketPC application. As a result of the design choices, ExtReAM offers
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application developers with a flexible 3D animation library that is easy to
integrate, work with and extend with new animation techniques even without
recompiling the core.

These properties make integration of this library into our interactive object
platform almost trivial. However, in order to be backwards compatible with
the basic version, application and virtual world developers can choose if they
want the original simulation technique, or the new approach. In the latter
case, the simulation and animation components of the interaction system em-
ploy ExtReAM instead of basic simulation and animation techniques, resulting
in the above mentioned advantages. Plug-ins provide functionality for more
realistic virtual worlds by supporting, amongst others, rigid body dynamics
and IK. In order to describe these new features, the interactive object and
world descriptions had to be extended as well. These extensions mainly in-
clude physical properties to be described as well. As we coupled the animation
library’s command system to interactive object system, including ExtReAM
causes all of its commands to be available for the interactive object system
as well. Consequently, this extended interaction system provides, apart from
more realistic and physically enabled virtual worlds, much more interaction
possibilities for VE and NVE systems

Now that we have created a realistic and dynamic interaction framework,
that enables every kind of object to interact with any other object in a virtual
world, and has built-in support for dynamic and on-the-fly animation tech-
niques, it is only logical that we further investigate how this can be exploited
in order to achieve a higher level of presence and participation. More specif-
ically, although we mentioned the final link in the interaction process avatar
control, several times, and provide built-in support for it in our interaction
framework, we must analyze how dynamic animation and physical simulation
can be utilized to create more realistic avatar movements and interaction tech-
niques. Furthermore, the impact on the user’s feeling of being present in the
virtual world is important to be examined as well. This will be the subject of
the next Part of this dissertation.
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CHAPTER12

Introduction

In the first part of this work, we discussed how VR tries to exploit the idea
of fully immersing a user into a computer-generated environment. Kallmann
argues that the concept of immersion in a VE is rather relative, depending on
many factors [Kallmann 01]. Graphical realism and plausible simulation are
two important factors, but the way users are represented is just as important.
Seamless coupling between a user’s actions and his avatar representation is a
necessity if naturalness is to be achieved with respect to interaction in VEs.
This is even more so in NVEs where, as we discussed in Part I, an avatar has
even more tasks to fulfill. Manninen argues that the representational aspects
of interaction, such as appearance and embodiment are major factors that
can increase the communication, co-ordination and collaboration possibilities
within NVEs [Manninen 04]. If other users can perceive a user’s task and the
actions he is performing, they have a chance to act accordingly.

However, although the expressiveness of avatars is relevant to interaction
within the NVEs, the avatars in most contemporary NVE systems tend to
be limited in terms of their expressive capabilities. Although skeleton based
modeling is the most supported approach in contemporary NVE systems, the
avatars are limited to displaying a restricted set of predefined keyframe ani-
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mations. The main reason behind this is the fact that this is computationally
inexpensive, easy to use and distribute. However, as only a limited set of
animations can be provided, this approach is far from flexible, even if real-
time adjustment of the animation parameters are supported (e.g. the speed
at which an animation is to be displayed or blending weights). While this ap-
proach is suitable for displaying reoccurring events such as walking or running,
the instant creation of situation-specific animations is impossible, resulting in
the fact that avatars become customized 3D cursors that mark their owner’s
position within a virtual world and perform repetitive actions. Consider the
case of object grabbing for example. If the animation engine relies solely on
keyframing, allowing users to grab objects at different heights requires the
availability of multiple predefined grabbing animations, which can cost an an-
imator a lot of time to create and requires more memory. This problem is
often circumvented by placing objects at one or possibly a few fixed heights
in the virtual world and predefining very specific and detailed animations for
grabbing at these heights. However, this approach clearly limits the freedom
of the VE designer. Furthermore, even when these interaction restrictions are
applied, the results are still not always satisfactory. An example is a user
that is not perfectly aligned with the object he is picking up. As a result, in
order to create truly dynamic and interactive virtual worlds, more advanced
animation techniques have to be introduced in NVEs.

In the previous part, we described an animation system that permits more
dynamic animations to be integrated in NVEs as well. This animation system
can, apart from realistic object behavior, also be used to create more dynamic
avatars for instance by employing IK. Integrating IK in NVEs can compen-
sate for their current lack of flexibility, since it enables on-the-fly creation
of new animations. As an example, reconsider the case of object grabbing.
By using IK, a grabbing animation for the arm that takes into account the
height at which the object is located can be created on-the-fly. It suffices to
feed the position of the object to the IK algorithm, and save the current pose
of the model, then a new pose is calculated by the algorithm as respectively
the first and second keyframe of a new animation. This new animation can
then be displayed by the animation engine as if it were a predefined anima-
tion. If appropriate constraints are applied to the different parts of the IK
chain [Welman 89b], this approach generally yields more realistic results than
displaying a predefined grabbing animation. Furthermore, no grabbing ani-
mations need to be predefined, and no restrictions need to be applied to the
height at which objects can be located in the VE. Furthermore, if the right
input devices are available, IK can also be applied to directly control the end-
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effector of the IK chain of an animated object (typically the hand of an avatar’s
right arm). However, it should be clear, that an animation system will not on
its own be able to convert user’s intentions into the correct representation and
avatar reactions. First of all, the user’s intentions will need to be captured in
some way. Thus, an input device is required, that can convert user input into
a usable digital format. Secondly, this input must be analyzed and converted
into virtual world actions, performed by the avatar. As we discussed in Part
I, this software component is referred to as an interaction technique.

Apart from converting input into virtual world actions, another important
aspect of interaction at the end-user’s side involves giving the user feedback
on his actions. Most NVE systems therefore only rely on visual and audio
rendering. However, as we discussed in Part I, haptic rendering, stimulating
the sense of touch is becoming a mature research area as well. Furthermore,
due to the increase in PC capabilities, it is more and more applied in prac-
tice. This resulted in several haptic IO devices, collision detection techniques
and interaction methods aimed at providing users with the ability to feel the
VEs that before could only be seen and heard. However, most of the work in
this area has remained limited to research projects and specialized setups and
have not yet reached a large audience. This can at least partially be attributed
to the high requirements for haptic rendering calculations and the high costs
involved with haptic devices. The prices of touch-enabled I/O devices are,
however, decreasing. For example, Novint Technologies, Inc. has recently re-
leased a cheap haptic device, the Novint Falcon [Novint 07], which is aimed
at the gaming market in order to replace the mouse. Already, a modification
of the popular Half-LifeR© 2 [Half-life 2 07] has been created which adds force
feedback when a gun is fired or when the player is being shot during the game.
The release of these kinds of devices could lead to the propagation of haptic
technology to a larger audience. On the other hand, as haptic applications use
specialized collision detection and simulation mechanisms in order to support
haptic IO, they still suffer from problems with real-time restrictions such as
high update rates. This results in the fact that most haptics remain limited to
specialized set-ups for specific applications. A less strict approach, employing
the techniques that are available in many systems, such as a rigid body simu-
lation system, can also be used in order to generate realistic haptic feedback.
While this approach might not be as exact as specific haptic routines, it will
suffice for most kinds of interactions and the results could potentially form a
solution for a much broader group of applications.

While the previous two Parts mostly focused on the internal mechanisms
for supporting realistic and dynamic interactions in (N)VEs, this part will
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focus more on the interaction mechanisms provided to the user. More specifi-
cally, we will present two interaction techniques exploiting the dynamic mech-
anisms and animation techniques provided by our extended interactive object
platform. First of all, we will discuss how dynamic IK animation can support
more realistic avatar interactions in virtual worlds. As we discussed earlier,
dynamic animations are often avoided in NVEs since they require more net-
working resources than predefined animations. Therefore, we will also elabo-
rate on how this new interaction technique can be distributed as efficiently as
possible. Secondly, we will discuss how rigid-body simulation, which is present
in our interactive object system, can be exploited to generate haptic feedback
forces. More specifically, as ‘travel’ is probably the most ubiquitous of all
interactions, we delineate how we created a haptic travel method that allows
users to navigate through a virtual world while receiving haptic feedback on
what happens to their virtual counterpart. After presenting this haptic travel
technique, we evaluate the approach in a formal experiment that analyzes the
influence of haptics on the user’s feeling of immersion during travel in a virtual
world.

Before we get to this, the next Chapter introduces some background on
avatar control in virtual environments, haptic control and its relation to phys-
ical simulation. Furthermore, we provide a more detailed explanation of pres-
ence and discuss some presence measuring tools.



CHAPTER13

Related Work

In order to have an avatar interact with the virtual environment a user must
be able to control his virtual counterpart’s actions. In [Capin 98] the authors
identify three broad groups of control. Direct avatar control enables the user
to adjust the avatar’s pose directly. Guided avatars on the other hand, can
be given a specific task which the avatar will then perform, such as walk
forward, but the user has no direct control over the avatar’s pose(s). Thirdly,
autonomous avatars are steered by user or AI-specified high-level goals, such as
‘go to room 12’ or ‘pick up the glass and drink’. These autonomous avatars can
extensively be used in NVEs, especially to inhabit places that might otherwise
appear unattractive or empty. However, in this work, we will not focus on
the use of autonomous avatars. The major advantage of direct avatar control
techniques is that they allow a natural mapping between a user and his avatar’s
movements to be created. This increases the user’s feeling of identification with
the 3D virtual character. On the other hand, guided avatars are the most
common, as they are easier to implement and can be used without specialized
input devices for tracking the user’s actions.

As a result, most interaction techniques are not concerned with avatar
animation directly, but focus on two other aspects: navigation through the
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virtual world and the manipulations of objects [Bowman 99]. These are the
standard actions that almost every (N)VE system provides. However, as dis-
cussed earlier, most of them have been developed in an ad hoc fashion as a
necessity to be able to demonstrate other functionalities. Several taxonomies
have also been proposed to categorize these ITs and to define their building
blocks. Navigation is undoubtedly the most ubiquitous of the basic interac-
tion tasks, as the user mostly wants to explore the virtual world. According to
Bowman [Bowman 97] the navigation task consists of two phases: a cognitive
component called wayfinding and a second named viewpoint motion control.
In the wayfinding phase the user plans how he can reach the desired loca-
tion, based upon an internal mental map of the environment together with
several (mostly visual) cues from the environment. Viewpoint Motion control
or travel, on the other hand, is the physical component used to move one’s
viewpoint between different locations in the VE. Both phases are separate
processes, although they can have an influence on each other. In literature,
several traveling metaphors can be found, either from an egocentric (first per-
son) or an exocentric (third person) point of view [Pouprey 98, De Boeck 05].
The best known metaphor for exploring virtual worlds is the ‘flying vehicle’
metaphor, where the virtual camera is moved as if it is mounted on a vehicle
or object which can be moved in space. The metaphor provides a very under-
standable and controllable solution to the user either with 3 or 6 degrees of
freedom (DOF). The ‘Scene In Hand’ metaphor is more suitable for inspecting
objects as it makes it possible to easily rotate the scene and to inspect it from
different viewpoints. Finally, ‘World in Miniature’ provides the user with a
miniature overview of the world, allowing to place the camera at an arbitrary
position.

Mine [Mine 95] as well as Bowman [Bowman 98] recognize that many of
the problems with understanding these 3D interactions result from the lack of
haptic feedback. Therefore, it is no surprise that in the past decade there has
been an increasing interest in this area [Oakley 00]. In the scope of this work
we will focus on force feedback, which relates to the mechanical production of
information sensed by the human kinesthetic system. However, we are aware
that tactile feedback, more focused on the sense of pressure can have its merits
for direct and guided avatar control as well.

To achieve natural force feedback in VEs special haptic IO devices are
used. These devices usually consist of motors or brakes which have to be
updated at least at 1000 Hz to avoid instabilities. Compared to the 25 to 50
Hz update rate of visual rendering and physics calculations this is a tremendous
difference, which is the reason why many haptic applications are limited to
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the rendering of rather static environments or virtual worlds with a limited
number of simulated objects.

As mentioned earlier, physical simulation has also been extensively inves-
tigated in the last few years. This resulted in several interesting applications
and a number of physics SDKs, which were discussed in Chapter 8. 3D input
in combination with haptic feedback has not been applied in many applica-
tions with real-time direct avatar control, certainly not in combination with
physical simulation. In [Oore 02] Oore et. al. present a novel 3D input
device for interactively controlling animations of a humanoid character. By
embedding the trackers in a physical tubing, the authors establish a tangible
interface with various coordinate frames inherent to the character, provid-
ing a valuable synergy between the physical input device and the underlying
transformations from input to motion. This is only one approach, most other
approaches rely heavily on motion capture employing expensive suits, or cap-
ture studios. Although these methods provide a way to control an avatar,
apart from visual cues, they lack extensive feedback on what is happening to
it in the virtual world. Furthermore, support for these kinds of techniques
in NVEs is almost non-existent. Avatar control involving haptics is even less
explored. Bierz et.al [Bierz 05], describe haptic interaction with cognitive
avatars in their CONTACT project. More specifically, the user can interac-
tively influence an actor’s planned path by blocking the avatar’s path with
his virtual hand, forcing the actor to calculate a new path. While interacting,
the user receives force feedback from the collisions. Several other authors,
such as [Magnusson 02, Nemec 02] describe navigation and object recognition
schemes in VEs for visually impaired people. The virtual worlds that are used,
are fairly static and there are no dynamics or animations involved. Also, due
to severe haptic rendering and output requirements, the number of objects is
usually limited in these environments. De Boeck et al. [De Boeck 02] describe
navigation using the ‘Camera In Hand’ metaphor, similar to the ‘flying vehicle’
metaphor, enhanced with a bounding box which the user could feel while navi-
gating. They compared their navigation technique by using a PHANToM and
a spacemouse as alternative input devices. The usability study showed that
users equally liked both input devices and the tasks were performed equally
well. This study, however, lacks an investigation on the user’s presence and
workload.

The concept of presence has been defined by several researchers from dif-
ferent areas in different ways. In this work, however, we are only concerned
with the definition in the context of interactions in 3D VEs. Presence can
then be defined as: a state of consciousness, the psychological state of be-
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ing there [Slater 97, Hendrix 96]. Similarly, Witmer and Singer [Witmer 98]
define presence as the subjective experience of being in one place or environ-
ment, even when one is physically situated in another. Two psychological
concepts are of interest concerning presence, those are involvement and im-
mersion [Witmer 98]. As users focus more attention on the virtual reality
stimuli, their involvement in the virtual reality experience increases, resulting
in an increasing sense of presence. Immersion, on the other hand, depends on
the extent to which the stream of stimuli and experiences that the VE pro-
vides make people feel included in and able to interact with the environment.
Factors which affect immersion include isolation from the real environment,
perception of self-inclusion in the VE, natural interaction and control, and the
sense of self-movement [Witmer 98].

Investigating a participant’s perceived presence is far from straightforward
and a lot of research has been done in trying to determine a useful method-
ology for measuring it. Three categories of measurement methodologies have
resulted from this: subjective, behavioral and physiological [Insko 03]. Subjec-
tive methods rely on self-assessment by the participants, and include answering
questions such as “How real did the environment seem to you?”. These self-
assessments are normally performed after a task has been performed in the
virtual environment. Several questionnaires exist: the most employed being
Witmer-Singer [Witmer 98] and SUS [Usoh 00]. The advantages of these ques-
tionnaires are that they are specifically tailored for what they want to measure,
and they are easy to use, validate and interpret. They also do not break the
presence as they are conducted post-immersion. This is immediately also the
main disadvantage: as they are post-immersion the user answers them after
the experience of presence while the experience could vary according to time
or might be better or worse near the end of the experience. Behavioral meth-
ods, on the other hand, take a totally different approach, and examine actions
or manners exhibited by the user that are responses to objects or events in
the virtual environment. For example, does the user duck if a virtual object
is thrown at his head. The main problem with behavioral methods is experi-
menter bias. As he is aware of the experimental conditions, it is hard to know if
the observed behavior is a consequence of an experimental condition. Finally,
physiological methods attempt to measure presence by gauging changes in the
subject’s heart rate, skin temperature, skin conductance, breathing rate, etc.
These methods are, compared to the former, objective and continuous but
harder to use. It takes time to place the sensors and it is harder to interpret
the results. Meehan [Meehan 01] created a ‘pit’ room containing a virtual
20-foot precipice to induce stress in the users and measured heart rate, skin
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temperature and galvanic skin response.
Presence with regard to VEs has mostly been investigated for immersion

in setups in which only the visual and sometimes the auditory sense is pre-
sented to the participant [Slater 97, Witmer 98, Meehan 01]. Sallnäs et al.
[Sallnäs 00] have investigated the presence in collaborative haptic environ-
ments. They concluded that haptics improves task performance, perceived
task performance, and perceived virtual presence in the collaborative distrib-
uted environment. Adding haptics to VEs does, however, not only influences
presence, it can also influence the workload which a user experiences. Oakley
et al. [Oakley 00] investigated several haptic effects of which some had a higher
workload than others. They used the NASA Task Load Index (TLX) question-
naire [Hart 90]. NASA TLX is a subjective workload assessment tool, which
allows users to perform subjective workload assessments on operator(s) work-
ing with various human-machine systems. NASA TLX is a multi-dimensional
rating procedure that derives an overall workload score based on a weighted
average of ratings on six subscales:

• mental demand: how much mental and perceptual activity was required;

• physical demand: how much physical activity was required;

• temporal demand: how much time pressure did you feel due to the rate
or pace at which the tasks or task elements occurred;

• effort: how hard did you have to work (mentally and physically) to
accomplish your level of performance;

• performance: how successful do you think you were in accomplishing the
goals of the task set by the experimenter;

• frustration: how insecure, discouraged, irritated, stressed and annoyed
versus secure, gratified, content, relaxed and complacent did you feel
during the task.

The following chapter discusses an interaction technique that directly con-
trols the avatar’s pose using IK and a 3D input Device. Thereafter we pro-
pose a method for employing a rigid body simulation system to calculate
haptic force feedback. This is then demonstrated by creating a haptic travel
technique that gives force feedback on what is happening to his virtual repre-
sentation. Finally, we investigate what impact the haptic information has on
user’s task performance, feeling of presence and workload in Chapter 16.
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CHAPTER14

An Avatar Control Method for Direct
Interaction

14.1 A Dynamic Physical Avatar Object

As we extensively discussed in the previous Chapters, our interactive object
system generalizes all objects in the virtual world. Hence, if we want our
animated avatar to be able to interact with other objects, we need to create
an interactive object that incorporates this avatar. Once this object is cre-
ated, a controller can be implemented that communicates with this object in
order to move its parts and animate the model to display its actions and have
resulting interactions in its surroundings. Since we will rely mostly on the
physical interaction aspects, our avatar object will have to contain a physical
representation and physical actions as well. We must emphasize that although
this avatar and its interactive object are only an example, the underlying tech-
niques are kept as general as possible. It is however required for each other
(kind of) animated character to create an associated interactive object, that
fits the graphical representation. In case the character is very different and im-
plements completely different commands for moving according to its graphical
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representation, it might also be necessary to implement a different controller.
However, for most avatar types used in current NVE systems and MMORPGs
this will not be necessary.

The basic properties of the avatar’s interactive object consist of two parts.
The first part incorporates the 3D animated character like the one shown
in Figure 14.1(a). Although this model is quite simplistic in terms of mesh
quality, it suffices for our purposes. It has integrated keyframe animations for
walking, running, jumping and standing still. The animations are defined on
a skeleton consisting of 21 bones, also shown in the Figure. Since we do not
require complete physical interaction with every part of the body, we provide
the object with a less detailed physical representation consisting of a flattened
cylinder surrounding the human model. This more efficient physical object
suffices to make sure the visual representation does not run through walls etc.
As a second part, we define a spherical object, that will be coupled to the
hand of the avatar when his arm will be transformed with IK with physical
joints. To avoid any more complexity, we did not add other physical objects
to follow the entire arm. While this would result in more realistic behavior
when the arm would hit something, we are in this interaction technique only
concerned with the ability to use the hand as a means of interaction with
the environment, for which this physical representation suffices. The sphere’s
connective joints, specified in the interactive object description, restrict it from
moving outside the animated model’s reach by using the same limitations as
specified for the model’s skeleton joints.

Apart from the parts and physical objects, the basic object properties
indicate the commands that allow the object to move forward, backward, left
and right and state variables that contain if IK is enabled. Furthermore,
we define the IK end goal position as a state variable and another variable
that points to a separate file describing the IK chain that will be used in
the interaction technique. First of all, this file indicates which joints of the
model form the IK chain. Secondly, it describes a bounding volume which
the end of the IK chain can never leave when it is being animated through
inverse kinematics. And finally, DOF constraints can be specified for all joints
in the IK chain. These constraints will be taken into account by the IK
algorithm when it is calculating a new pose. This way, we can prevent joints
from rotating into positions that are physically impossible to achieve. The
separation of IK information from the interactive object data model is done
for reusability reasons. This is specifically useful for similar kinds of avatars,
which often use the same underlying skeleton, and only have a different skin
mesh. As an other advantage, we can use the same animated model to create a
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(a) (b)

Figure 14.1: (a) The avatar’s 3D animated model and (b) the physical repre-
sentations of the parts.

left and right handed interactive avatar, by changing the IK chain. In the case
of this avatar, the IK chain consists of the joints ranging from the shoulder to
the hand.

As ExtReAM is used, employing the IK, keyframe and physics plug-ins,
all the commands that are supported by them will be available. The in-
teractivity properties of the object description furthermore describe several
important functions: walkForwardToPosition, walkBackwardToPosition,
RotateDegrees and moveIKChainToPosition. These functions are described
in scripts and combine animation engine calls consisting of the application of
physical forces (to move the entire physical avatar), partial running of keyframe
animations (for example to let the graphical representations walk while the
physical representation moves) and to apply IK on the specified IK chain in
order to move the hand to the goal position. We hereby note that we do
not focus on human models only, but in contrast provide a solution that is
applicable to all kinds of animated avatars.

14.2 A Direct Avatar Controller Exploiting IK

The next step in creating a direct avatar control technique that interacts with
the environments is the implementation of an interactive object controller,
that communicates the user’s intentions to the object. We emphasize that
regarding the interface, this work focuses on desktop VR systems. So in a
first approach, we created a controller that employs the keyboard as a way
to control the avatar’s physical end of chain representation and its IK chain.
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More specifically, the controller takes as input key presses, which trigger the
moveIKChainToPosition behavior within the IK area. This results in a phys-
ical movement of the end chain object in the direction of the new end position,
using the rigid body simulation plug-in to make sure it does not move through
other objects. The new position of the physical end chain object is then used
as the goal position for the IK algorithm. The IK plug-in of ExtReAM then
instantly calculates a plausible pose for this chain taking into account the
skeleton’s DOF and damping factors. In this way, the controller can be used
generally for all kinds of controlled animated interactive objects. In the case
of our interactive avatar, this results in the avatar’s hand moving according to
the input of the user, unless the physical object of the hand is colliding with
another object. Moving the physical representation of the hand is achieved
through applying a force to that object, which means it can be used to push
other movable objects away, or it can be pushed away by other objects as well,
depending on the masses and forces that are applied on those objects.

Although physically and graphically the results of the proposed technique
proved to work correctly, the use of the keyboard as the input device for con-
trolling the arm proved inefficient and counterintuitive. First of all, as the
keyboard is a 2D input device, it is inefficient to be used to directly con-
trol an object in 3D space. Secondly, apart from the visual feedback that
is given to the user (the graphical movement of the avatar’s arm), the user
receives no reference information of where his virtual hand is positioned, re-
sulting in a low level of identification with the avatar. Finally, this control
also requires a context switch, as the keyboard was also used to control the
avatar’s navigation through the scene. Thus, users explicitly had to switch
between direct hand/arm control mode and travel mode, which in informal
tests often resulted in situations where users tried to move forward while they
were actually controlling the arm and vice versa.

As a solution to these problems, we implemented a second dynamic avatar
controller. Its functionalities are exactly the same; however, instead of tak-
ing input from the keyboard, it allows input from a 3D input device. The
MicroScribe-3D input device was chosen for tracking the user’s gestures. Al-
though it was more specifically designed for digitizing real world models into
3D virtual models, it provides an affordable and efficient solution for our
purpose as well. Furthermore, it is very lightweight and supports a large
workspace. Based on the observation that the MicroScribe-3D is constrained
in its movements just as the IK chain is, we automatically map the allowed
workspace of the MicroScribe-3D onto the IK bounding volume of the model.
This mapping is model-dependent, as each interactive object with IK chain



14.3 Distributing Animation Information in NVE Systems 129

Figure 14.2: A schematic representation of the mapping of the MicroScribe-3D
input field onto human avatar’s the IK chain workspace.

specifies its own IK workspace. This ensures that the input position from the
MicroScribe-3D is always correctly transformed to the corresponding relative
position in the IK bounding volume of the interactive object. This position is
subsequently fed to the physical representation, whereto the IK algorithm will
try to move the end-effector as close to as possible. A schematic representation
of how 3D input with the MicroScribe-3D is mapped onto the IK described
workspace is given in Figure 14.2.

14.3 Distributing Animation Information in NVE
Systems

Animating articulated objects in NVEs introduces new network traffic since
animation related information will need to be distributed among connected
users. There are several ways animation data can be represented for trans-
mission over a computer network [Capin 98]. Some of these representations
place a large load on the network, but do not require a lot of processor time
to encode/decode. Others are computationally expensive to encode/decode,
but require only small update messages. Since both network bandwidth and
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processor time are scarce resources, NVE designers will need to make a trade-
off and decide which of these two resources is more valuable to their application
and architecture.

As the ALVIC framework, which we use for testing, already consumes a
lot of bandwidth by employing video avatars, we decided to keep the new
network traffic introduced by animation as low as possible by using compact
update messages. This decision is also based on the observation that there
have been steady increases in the clock speed of processors, while Internet
connections have not improved accordingly the past few years. We believe
this trend will persist at least in the near future. Therefore, when keyframing
is used to animate a model, only a high-level description of the model’s active
animations is sent over the network. When receiving such a message, remote
sites must start interpolating locally to be able to display these animations as
well. Similarly, instead of transmitting the transformations of all the joints
in the IK chain when animating using inverse kinematics, only the position of
the goal position of the chain is sent. Upon arrival of such a message, remote
hosts will need to calculate the transformations of the intermediate joints in
the chain themselves by feeding the received goal position to their animation
component. It should be apparent that this approach minimizes the network
load but increases the necessary processor time in the decoding phase.

A simple calculation shows the bandwidth reductions our approach is ca-
pable of achieving. Suppose the IK chain of a model consists of N joints. To
precisely represent the orientation of a joint, one float triplet is required (joint
lengths are fixed, thus positions are calculated from the orientation of the
joints). Furthermore, suppose animation updates are transmitted at a rate of
25 per second, an update rate that should be achieved by our platform on PCs.
If we included the transformation of all IK joints in each animation update
packet, a bandwidth of N ∗ 3 ∗ floatsize ∗ 25 would be required per second.
Our approach reduces the bandwidth usage by a factor of N since only the
position and orientation of the end-effector is transmitted in every animation
interval. Note also that the benefits of our approach increase proportionally
to the number of animated models present in the virtual environment. Con-
sider the case of an interactive arm containing 4 joints in the IK chain. Our
approach would require 1 * 3 * 4 bytes * 25 = 300 bytes/second. The normal
approach would require 1200 bytes/second (ignoring headers of course), so we
decreased our bandwidth usage with 900 bytes/second per interactive actor.

For keyframe animations, we take an even simpler approach. We just send
start and stops for animations such as walking, resulting in the fact that only
one small message needs to be send instead of a triplet of floats per joint per
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frame, resulting in an even greater bandwidth reduction. However, there is
also a downside to these traffic reductions. While our approaches minimize
the network load, a reasonable amount of processor time is required to decode
incoming animation messages. Furthermore, there is also a synchronization
loss associated with distributing animation data this way. However, this is ac-
ceptable for most multi-user applications as the most important aspect of the
animations is to show the user and other participants of the NVE where the
avatar is, and what actions it is performing. As an example of this synchro-
nization error, consider when keyframe animation is used for showing that an
avatar is traveling through the virtual world. With this approach, the exact
frame of the walk animation will not be identical on all other clients, but it will
show the walk animation. Showing the fact that the avatar is walking suffices,
and exact keyframe synchronization of the animations is not a necessity, espe-
cially weighting it off to the extra network usage it would require. Similarly,
for the IK chain, since only the end-effector position is distributed, the end
position of the IK chain will be the same on all sites, but the remaining joints
are calculated locally. Thus these can be different. However as we are mostly
interested in the hand position, we are not really interested in the other joints.
Furthermore, as the same IK algorithm is used on the different sites, and the
goal position is updated every frame, the results will mostly be very similar.
However we realize, that for some specific applications exact avatar pose syn-
chronization might be a requirement. In that case, complete skeleton poses
must of course be distributed every time frame. We are aware that several
solutions exist to even further minimize the number of update messages, such
as dead reckoning techniques, however these network improvements are not
the subject of this work, so we will not discuss them here.

14.4 Results

The dynamic avatar controller and MicroScribe-3D input device were added
to the ALVIC test application that we also used for earlier tests. The map-
ping of the input device’s workspace on the humanoid avatar’s IK workspace
in combination with the device’s positioning together with the skeleton limi-
tations, resulted in the fact that the pose of the avatar’s arm approximately
corresponds to the pose of the user’s real arm when he is using the device. Fig-
ure 14.3 shows some of the results of this mapping with a humanoid animated
model. As a result, this approach becomes a very useful and intuitive control
method over the IK chain, which confirms the view given in [Hinckley 94] and
[Mine 97] stating that the inclusion of motion relative to a spatial reference or
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the user’s own body in interaction techniques decreases the cognitive load of
the user. Furthermore, the switch between controlling the arm and navigation
also became much more natural by introducing the MicroScribe-3D, since both
controls are now performed by separate input devices. This also creates the
possibility to control both at the same time. ExtReAM ’s SkeletonBlender,
then overwrites the IK chain’s keyframe information by the information pro-
vided by the IK controller. Informal usability tests showed that the loose
synchronization over the network worked correctly and fast enough. The pos-
sible differences in the arm’s pose on different sites were not noted by the
participants. This is probably the result of the fact that the focus was on the
hand position, and the interaction of the hand with other objects. Figure 14.4
shows some screenshots from inside the NVE. Two avatars are working to-
gether in the virtual world. One user closes the door by controlling his avatar
with the dynamic hand interaction technique. At the same time the other user
pushes a table through the doors with his avatar.

It should be noted that the results presented in this section could have also
been achieved by using other animation techniques, such as inverse dynamics.
Some of these techniques are even capable of producing visually more realistic
interaction animations than IK. Unfortunately, these techniques also have a
much larger computational cost associated with them. Since processor time
is still a scarce resource, at the moment IK is the most suitable animation
technique to enable complex, run-time interactions for all animated models in
a virtual world.

A disadvantage of the proposed interaction technique and input device is
that it does not generate force-feedback information, making it possible for the
user to keep his hand moving while the avatar’s hand is stopped by a collision.
This might result in problems with understanding the interaction method, as
was also previously found by Mine [Mine 95] and Bowman [Bowman 98]. In
the remainder of this part, we will discuss a method that will also provide
haptic force feedback. Instead of utilizing specific haptic rendering and col-
lision techniques, which are specifically aimed at working at haptic rates, we
will discuss how standard rigid body simulation as we have in ExtReAM’s
Physics plug-in can be used to calculate haptic force feedback. As a result,
we use information that is already available but can result in more complex
and dynamic haptic scenes.
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Figure 14.3: Results of the dynamic hand interaction technique. The avatar’s
arm is moved according to the user’s input taken from the MicroScribe-3D.
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(a)

(b)

Figure 14.4: Screenshots from inside the physical ALVIC system as seen from
one of the users. (a) A user utilizes the MicroScribe-3D arm control to push
the button triggering the door to close. (b) As another user is pushing a table
through the door, the closing of the doors is stopped and the box is now stuck
in between.
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A Physical Travel Method Enabling Haptic
Force Feedback

15.1 Creating A Haptic Controller by Employing
Rigid Body Dynamics

15.1.1 Requirements

To realize a stable coupling between user input, physical simulation and pro-
viding force feedback to the user, several components must are required. First
of all, an object must be present in the virtual world that can be controlled by
the user. Since travel is the most employed interaction technique, we aim at
providing a realistic method for it. We can reuse the interactive avatar object
we used in the previous chapter, ignoring the hand part as it is not relevant for
travel. Secondly, a simulation component is required, to make sure collision
and force information is given to this object to let it move in a believable and
realistic way. As we explained in the previous Part, the Physics plug-in of the
ExtReAM framework was specifically designed for this purpose and can thus
be utilized for this task. Finally, we we need a haptic output device and a con-



136 A Physical Travel Method Enabling Haptic Force Feedback

version routine that translates the collision information from the simulation
into real-world forces that can then be displayed to the user.

There is however one issue with our components. As already mentioned,
in order to give the user stable haptic feedback, haptic rendering requires a
high update rate, in the order of 1000 Hz. This is why most haptic applica-
tions utilize specialized collision detection routines, which can operate under
these heavy real-time requirements. However, if we look at our simulation
component, we see that the update rate is significantly slower, 30 to 50 Hz,
depending on the requirements of the application and the numbers of objects
that need to be simulated. How we circumvented this issue is delineated in
the following sections, where we also discuss how a haptic controller plug-in
was created.

15.1.2 A Haptic Component for ExtReAM

Although the haptic component is not necessarily bound to animation, our
solution relies heavily on rigid body simulation, therefore, we can implement it
as a separate plug-in of the ExtReAM framework, obviously dependent on the
Physics plug-in we outlined in the previous Part. In order to allow it to send
force feedback information to the users, we integrated the low-level HDAPI
from the Sensable OpenHapticsTM toolkit [SensAble 07] as an interface to the
haptic device. For grabbing input and displaying haptic output, we employ a
PHANToM device [Massie 94].

How the HapticController plug-in was constructed, and how its compo-
nents relate to other plug-in components and the application is illustrated in
Figure 15.1. The main component of the plug-in, the HapticController’s
actor is used to initialize the plug-in and forms the link between the hap-
tic rendering and the physical simulation. Its main tasks are converting the
input into physical movements for the physical object that is controlled and
providing the user with force feedback based on the physical simulation of
that object, in the virtual world. The actor has just like any other plug-in, a
step function that is called every animation timestep by the AnimationSystem
and is dependent on the Physics plug-in, that handles the physical simula-
tion and contains the physical data and objects in the scene. Furthermore,
the plug-in makes use of the HapticDeviceManager handling the haptic de-
vice input. It allows for information such as current position, orientation
and forces from the device to be requested. In addition, it is the interface
through which we can output feedback forces. The HapticDeviceManager is
also the component that solves the real-time requirements of the haptic de-
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Figure 15.1: An overview of the haptic controller plug-in components and their
relations to other components and the application.

vice. It runs a separate thread that is updated at the device’s required update
rate (at least 1000 Hz for the PHANToM). Furthermore, it is responsible for
handling haptic device callbacks as well (too strong forces, overheated mo-
tors,. . . ). To calculate the feedback forces based on the physical simulation,
we implemented a base class for a HapticForceCalculator. When an appli-
cation wishes to provide haptic feedback, it implements a derived class from
the HapticForceCalculator class, implementing the requestForce function,
and the HapticDeviceManager will apply the updated forces, from this mod-
ule, at every haptic iteration. This design choice is in accordance with the
design approach of the ExtReAM framework, and makes our plug-in as flexi-
ble as possible. As a result, one can implement several different force calculator
classes and use the one that suits the application, or write one force calculator
that combines several others. Also, the HapticDeviceManager could be eas-
ily replaced to work with other devices without the need to change the force
calculator. Finally, the HapticsActor contains a reference to the physically
controlled object. This is a rigid body, which in this situation will be the part
describing the avatar’s collision object as described in the previous Section.
As the graphical representation will follow the displacements of this object,
we refer to it as the character controller.
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15.2 Enabling Physical Travel

15.2.1 Motion Control

As it is the most applied metaphor for travel, we chose to adopt an adjusted
‘Flying vehicle’ [Ware 90] metaphor, also known as ‘driving vehicle’, where we
apply the rigid body simulator’s gravity to keep the avatar’s physical repre-
sentation on the ground and attach the camera to the avatar, following its
exact movements. We can use it either in a first person (egocentric) or a third
person (exocentric) view. This metaphor is one of the most natural for guiding
an avatar through a 3D environment and it allows the user to see exactly how
his representation is moving through the VE.

There are two key parameters that define a user’s movement at any time
[Mine 95]: speed and direction of motion. Both have to be controllable by the
input device. Since haptic devices usually have 3 or 6 (e.g the PHANToM)
DOF, we have several possibilities. Logically, when the device is in the neutral
position, specified by the user’s rest state, no movement is applied. The most
natural movement input in this case is to move the avatar in a hand directed
way [Mine 95], meaning that the avatar is moved according to the hand move-
ment of the user. Directly coupling the avatar’s position to the end-effector
position of the input device, as was done in the IK technique, will not pro-
vide a decent solution. It would imply that a direct mapping can be created
between the virtual world and the device’s workspace dimensions. This so-
lution would suffer from several issues. First of all, even if the world would
be relatively small, so are most of the input device’s workspaces. The user
would need to have a very stable hand, as each involuntary movement would
result in movements of the avatar. Furthermore, in large VEs, the travelling
speed caused by a small hand move, would be uncomfortably large. Also, the
user would be responsible for keeping the avatar on the ground plane, unless
the Y-axis input would be ignored. As a result, adopting this strategy would
make it very hard for the user to navigate and explore the virtual world, and
would certainly increase user disorientation in certain situations.

Therefore, we have chosen to control the avatar (and hence the virtual
camera) in a relative manner, by pushing against the boundaries of a ‘virtual
box’, more or less as described by Anderson [Anderson 98]. In contrast, we
do not use a strict virtual box, but a spring force field instead. The spring
force is computed by applying Hooke’s Law:

→
F= −k· →x (15.1)
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Where k is a stiffness constant and x is a displacement vector. The spring
is attached between a fixed anchor position (the neutral position p0) and the
device’s current position (p1). The displacement vector is such that the spring
force is always directed toward the neutral position.:

→
x= p1 − p0 (15.2)

The force felt is called the restoring force, since the spring is trying to restore
itself to its rest length. The stiffness constant k dictates how aggressively the
spring tries to restore itself: a low stiffness constant feels loose, whereas a
high stiffness constant feels rigid. To provide more flexibility, we allowed for
different values of k to be used for the 3 dimensions. so for example, we can
make the spring in the X-axis stiffer than for the Z-axis making sideway moves
harder than walking forward or backwards.

To determine the avatar’s speed, we use the length of the displacement
vector

→
x in its sideway (X) and forward component (Z). The further away

the input device’s end-effector is from the neutral position, the higher the
avatar’s velocity. As a result from the spring force, faster movement will also
require stronger force input from the user. This is similar to the real world,
where faster walking or running also requires more effort. Since the user’s
hand is never completely still, we introduce a small threshold that needs to be
exceeded before the avatar starts to travel. For reasons of clarity we excluded
this in the force functions here, but it can be seen as the rest length of the
spring. The Y-axis force inputs could also be used, for example to let the
avatar jump (if Y position or force is above the jump threshold) or crawl (Y
position or force below the crawling threshold), but since we are for now only
concerned with travel it is not applied at the current stage.

In order to specify the avatar’s orientation, we use an approach similar to
the one proposed in [De Boeck 02]. We use the direction of the input device’s
end-effector orientation for determining the orientation of the avatar. As long
as the input is not rotated, the avatar stays facing in front and moves in the
direction it is pushed. If the input device is rotated, in the test setup this
means rotating the PHANToM’s stylus around the Y-axis, the avatar starts
rotating as well. The larger the difference between the neutral angle and the
current angle, the faster the avatar rotates. As a result, the user can adjust
the turning velocity to the situation. To avoid involuntary rotation, we have
also introduced a threshold angle that has to be exceeded before rotation of
the avatar begins. In the current stage, we only utilize the Y-axis orientation,
which is the only one required for travel on a surface where gravity is applied.
The Z and even X-axis angles could also be used for altering the camera’s tilt
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Figure 15.2: The PHANToM haptic IO device and the haptic travel control
possibilities

angle, but since we are focusing only on travel, it is not considered. Figure
15.2 shows the PHANToM and its travel possibilities in more detail. The
calibration of the neutral position and orientation can be done by holding
PHANTOM’s stylus button for more than three seconds. We do not provide
the user with any other than visual feedback when rotating the avatar, since
it already requires some effort to twist the arm, and we do not believe much
is gained by applying extra force feedback. Also, very few desktop haptic IO
devices support torques.

15.2.2 Generating Travel Force Feedback

Several kinds of forces tend to influence someone that is traveling in the real
world: gravity, wind, collision responses from objects that he hits or that
hit him, . . . . In the haptic travel technique, we try to simulate some of the
most important of these forces and convert them into force feedback for the
user. The calculations are performed by the HapticTravelForceCalculator,
a derived class from the HapticForceCalculator class we described earlier in
this Chapter.

The first kind of feedback concerns the terrain surface on which the hu-
manoid avatar is traveling. People tend to walk slower, or have more trouble
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to travel at the same speed, on terrains like mud or sand. We simulate this by
by applying a factor ksu to the force field, where ksu > 1 for difficult terrains.
This factor is computed by requesting surface material information from the
physical scene. As an extension to this force feedback, we could also provide
the user with some tactile feedback in order to make him feel the structure of
the surface. But since this is not the subject of this study, we will, for now,
let the user trust on the visual and force feedback rendering.

A second form of travel feedback provided to the user, is based on the
slope of the terrain he is walking on. It determines a force upward or down-
ward, together with another factor ksl for the stiffness in the direction of the
avatar’s movement. On a horizontal plane this latter factor is 1 and it increas-
es/decreases when walking uphill/downhill. The slope of the ground surface
is computed from the collision information that is given to the rigid body
representation by the Physics plug-in. Also, the physical character controller
has a maximum slope it can walk on. We therefore map the current slope
factor between 0 and 2, so the counterforce doubles when the avatar travels
up the maximum slope of the physical character controller. Any angle above
this maximum results in the maximum feedback force, so the avatar cannot
walk up that slope and the user can no longer push into the direction of that
slope. As there is no maximum downward angle, the factor can become 0. As
another result, one can walk downhill with much less force at the same speed,
or at a much higher speed with the same input force then he can walk uphill.
In total, the movement force feedback (in X and Z-axis) calculation becomes:

→
F= −ksu · ksl · k · (p1 − p0) (15.3)

A second slope-dependent force pushes the input device and therefore the
user’s hand into the direction the avatar is traveling (in the Y-direction) and
is dependent on the length of the current movement. It is thus an addition to
the normal force we use to keep the haptic device’s end-effector in the neutral
height. It takes into account the avatar’s current speed and a range adjusted
slope factor:

→
FslY = (ksl − 1) · |movementXZ | (15.4)

where ksl − 1 > 0 when the avatar travels uphill and < 0 when walking
downhill. The total force function for the Y direction then becomes:

→
FY = −kY · (p1 − p0) + (ksl − 1) · |movementXZ | (15.5)
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The resulting force directs the user’s hand up when traveling uphill and
down when going down a slope in combination with the restoring force. The
upward/downward force increases linearly with the increase in speed. As a
result, when moving his hand away from the neutral position, on a constant
slope, the user’s hand is smoothly pushed up/down depending on the slope in
the direction of the movement, giving the effect as if the neutral Y position
smoothly moves up/down.

Finally, we give the user feedback when he walks against a wall, or when
he gets hit by another object. The collision information is given by the rigid
body simulator through callbacks, giving the point of collision and the collision
normal. When a user walks against a wall, we just slowly (in the sense of the
haptic rendering) increase the force in the opposite direction of the collision to
a maximum. As a result the user’s hand gets pushed to the neutral position,
ending the travel requests to the physical character controller in that direc-
tion. When trying to move in that direction again, the spring force stays at a
maximum value, making sure that it is no longer possible to move into that
direction and giving the feeling of touching a wall. In the other case, when
another, dynamic object hits the avatar, the collision information is converted
from a physics hit into an impulse force in the same direction as the colliding
object. When a heavy object hits the physical avatar, this will usually re-
sult in a movement of the user’s hand, changing the movement of the avatar,
similarly to a realistic situation.

15.2.3 Force Feedback Issues

Several issues needed to be resolved in order to combine rigid body simu-
lation with haptic rendering. A first and most important problem involves
the difference in speed between the haptic and physics simulation loops. The
physics loop runs at a framerate of approximately 30 to 50 Hz while the haptic
thread requires 1000 Hz updates, depending on the device at hand. This dif-
ference can lead to synchronization problems which can lead to instabilities.
We avoid these by not using a direct coupling between the input device and
a rigid object, which is the traditional approach. Instead, we influence the
feedback force field according to the changing circumstances in the physical
simulation. The HapticsActor operating at the physics update rate sends the
relevant information about the input to the rigid body simulator at the rate it
can handle. The HapticForceCalculator on the other hand, calculates the
feedback forces at the haptic loop rate, using input data that is available at
the haptic rate. Since the normal spring feedback is only dependent on the
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relative position of the input device at each haptic frame, and it is thus not
dependent on the simulation of the physically simulated world, this feedback
keeps perfectly stable in all cases.

To get stable collision and terrain feedback forces, we had to take a different
approach since the collision information is only updated at the simulation rate.
We resolved this by keeping the collisions valid for the duration of the entire
physics frame. This does not provide a problem for force feedback, since the
visual framerate will never exceed the physical rate. Also the reaction speed
of the user’s hand will not exceed the physics update rate. As a result, the
haptic feedback force field that the user feels, will never be inconsistent with
his visual feedback. While this approach suffices for the purposes of physical
travel, we are aware that this solution would not suffice for detailed feeling
and recognition of object surfaces. However, this is not our purpose, and the
approach taken suffices for the haptic travel technique.

Some issues were also raised by the forces concerning the terrain’s slope
factor in combination with triangular mesh representations. Since we use the
normal of the terrain position at the character controller directly, discontinu-
ities may be perceived as unpleasant force transitions. This can occur when a
user is traveling fairly fast (|movementXZ | = large) and there is a hard slope
transition (e.g. from downhill to uphill) resulting in a sudden change of force
feedback in the Y-axis. To resolve this issue, we introduced a variable sized
window of terrain normals. Instead of using the exact normal of the terrain,
we now use an average of past normals. The calculation then becomes:

ksl =
∑

kpast
sl /windowsize. (15.6)

This of course results in a small delay of the slope factor, but informal tests
have shown that the window size does not have to be large (3 physical normals
are sufficient) to get smooth transitions in all situations. Furthermore, since
it takes several physical and visual frame updates to move the entire avatar
over this transition zone, this delay is unnoticeable for users. By adapting
the window size to the level of detail of the terrain, the application developer
can always give the user smooth force transitions. When making the window
smaller, there will be harder transitions, making it better for feeling the details
of the terrain mesh. An illustration of the smoothing window is shown in
Figure 15.3.
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Figure 15.3: An illustration of the difference in the terrain normals and the
haptic normals after applying the smoothing window. The delay is linearly
dependent on the window size



CHAPTER16

Evaluating the Effects of Haptics on
Presence while Traveling

In the previous Chapter, we showed how we employed the rigid body simulator
of the ExtReAM animation library in the haptic rendering loop to create dy-
namic haptic VEs. Since navigation is undoubtedly the most ubiquitous of the
interaction tasks, we created a haptic travel technique allowing users to feel the
terrain and surrounding dynamic objects while navigating through the VE. As
VR tries to immerse the participant as much as possible, it is crucial that we
investigate how the stimuli on the different senses influence the user’s presence,
the feeling of being there. Therefore, in this Chapter we present an experimen-
tal study on the influence of haptics on the perceived presence during haptic
travel. More specifically, we investigate how adding haptic force feedback to
travel affects: task performance, perceived task performance, perceived virtual
presence, mental and physical workload. Furthermore, we investigate if this
influence is larger on more experienced VR users than on novices.
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Figure 16.1: A user navigating in the desktop virtual environment using the
haptic travel technique in first person camera mode.

16.1 The Haptic Travel Experiment

16.1.1 Virtual Environment Setup

The test environment that was used for the experiment, is based on the frame-
work described in the previous parts. It consist of a desktop VE wherein 3D
scenes and interactive objects can be loaded, and users can navigate. The Ex-
tReAM library is used to increase realism, calculating the physical simulation
and haptic force feedback, as explained in the previous Chapter. The desktop
system employs a 19 inch monitor with a 120 Hz. refresh rate for the visual
feedback. Audio is provided through a standard speaker set. The haptic dis-
play used in this investigation was a PHANToM premium 1.0 IO device which
is placed as conveniently as possible at the user’s dominant hand. Figure 16.1
shows a user who is using the PHANToM to navigate through the VE.

Three input methods were provided: one employing the keyboard and two
using the PHANToM, based on the haptic travel of the previous Chapter. The
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keyboard method is used as a reference technique for the 3D input techniques,
mainly in respect to task performance and workload. Since adding haptics
to the keyboard is impossible, we cannot study the effect of that feedback on
(perceived) presence. Another reason for using the keyboard as a reference
is that, in contrast to the PHANToM, all participants are familiar with it,
and it will show how efficient the 3D navigation techniques perform. For
traveling, it uses only the arrow keys and provides: forward and backward
movement at constant speed and left and right turns. In order to be able
to objectively compare the PHANToM-based techniques to this, we had to
adjust the PHANToM-based travel technique somewhat to make sure that all
techniques provided the same functionality in terms of possible movements and
speed. Therefore we disabled the left/right (strafe) movements, we switched
to a constant turning speed and disabled the coupling of the traveling speed
from the length of the displacement of the hand position from the neutral
position. The final technique is exactly the same as the haptic travel technique,
however the force feedback was left out. To summarize, we have 3 travel
techniques allowing the same functionality: keyboard travel (KT), PHANToM
travel without haptic feedback (PT) and PHANToM haptic travel (HT).

16.1.2 Task Description

In order to compare the different traveling techniques described above, a nav-
igation task was set up. The users were asked to travel through several virtual
scenes from a starting position toward an end position as fast as possible.
For this task, ten different scenes were created, five having a flat terrain and
five with sloped terrains. These scenes consist of a start position, a goal po-
sition and several physical barriers in the form of walls which, however, did
not occlude the view of the goal position. The barriers were placed in order
to coerce different travel patterns including e.g. moving in a straight line,
moving through a narrow passage, and several combinations of short and long
left and right turns. A schematic top down view of these scenes is shown in
Figure 16.2. In order to eliminate the wayfinding component of the navigation
task, large arrows were placed on the barriers showing the direction of travel
at all times. The goal position was in all scenes represented as a high green
cylinder. In order to let the users focus on the task at hand, there were no
irrelevant objects placed in the scenes that could distract them or could lead
to deviations of their travel path, e.g. if he would collide against a moving
object.

Participants, when ready, could initiate the travel task by a simple button
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Figure 16.2: The scenes for the travel task, x marks the start position, o
symbolizes the cylinder-shaped goal position which can be seen from the entire
scene.

press. For keyboard navigation, the CTRL button was chosen, while in the
case of the PHANToM techniques the PHANToM stylus button was used.
Once started, the participant could travel freely to the goal position without
interruption. Both the starting and finishing of a travel task were emphasized
by playing a short sound. A flat scene with no obstacles was used for training.
The user was free to move around until he felt reasonably comfortable in
using the travel technique. Figure 16.3 illustrates a VE view of one of the
participants while traveling towards the end goal in one of the virtual scenes.

16.1.3 Experimental Procedure

The design of the experiment is a within-participant design. The independent
variables were the travel technique TT (KT, PT and HT) and the participant’s
VR experience PE (experienced (EX) or inexperienced (IX)). The dependent
variables are trial completion time, travel distance, total rotations performed,
perceived presence and workload.

The participants consist of unpaid volunteers that are screened based on
questions regarding their experience with VEs and 3D input devices. On this
basis a group of twelve was selected, nine male and three female, ranging in
age from twenty-one to fifty-nine (average thirty-one). This includes six ex-
perienced and six inexperienced VR users. The experienced users consist of
people that regularly used VR environments such as experienced 3D gamers
and people that work with 3D input devices regularly. However, of these,
only two users had prior experience with the PHANToM. During the experi-
ment, participants use their dominant hand to control the input devices. Nine
participants were right handed and three were left handed.

The travel techniques are fully counterbalanced across the twelve partic-
ipants with one experienced and one inexperienced participant randomly as-
signed to each of the six unique orderings. The nine scenes, remaining after
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Figure 16.3: A user’s view while traveling toward the end goal in the VE.

one was used for training, are presented in random order. After testing each
travel technique the participant filled out the workload and perceived presence
questionnaire. When the participant completes the entire test, another final
questionnaire is presented in which he is asked to rank the travel techniques
according to perceived performance and presence and can give other general
remarks. Per participant, the experiment is performed in a single session,
lasting about one hour.

16.1.4 Hypotheses

The main objective of this study is to test the influence of haptic feedback on
the task of travel in VEs. More specifically we will check how the perceived
presence, perceived performance, workload as well as task performance are
influenced. Our main hypotheses include:

H1 Haptic force feedback improves task performance.

H2 Haptic force feedback increases perceived performance.

H3 Haptic force feedback increases perceived virtual presence.
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H4 Haptic force feedback increases the physical demand.

16.2 Experimental Results

16.2.1 Trial Completion Time

The trial completion time, is defined as the time it takes a participant to nav-
igate from the start to the goal position. The average trial completion times
were calculated per technique by averaging the trial completion times for all
users and scenes. For the KT, this resulted in an average time of 36.2s, for PT
this was 40.3s and the HT averaged 40.5s. Focusing on the PHANToM-based
techniques, no statistical significant performance difference is present, refuting
H1. Post hoc comparisons showed that keyboard was significantly faster than
both PHANToM-based techniques (p < .05) in terms of timing, the increase
is around 11%. In order to explain this difference, we first take a look at the
other dependent variables: the distance traveled and the amount of rotations a
user made. Statistical analysis showed that there is no significant difference in
distance traveled between the different travel techniques, but as illustrated in
figure 16.4(a), we can see that using the PHANToM results in slightly longer
distances traveled (4%). As a result of the constant speed, this difference in
traveled distance can already partly explain the longer trial completion times.
A further explanation can be found by looking at the amount of degrees ro-
tated during the navigation task. There is a significant difference between
the keyboard technique and the PHANToM techniques (p < .01) which is
also illustrated in figure 16.4(a). The (de)activation of the rotation with the
PHANToM is slower compared to the keyboard since the user has to make a
bigger gesture. For the PHANToM, the user had to rotate a certain amount
before rotation was activated and in order to deactivate, the user had to ro-
tate back to the neutral position which takes longer than pressing/releasing a
key. As a result many users frequently overturned while traveling and others
regularly halted in order to specify a new orientation before resuming forward
movement again. This behavior only occurred very rarely with the KT, and
only with IX, which might also explain the larger difference in completion
time than in distance traveled. In the original haptic travel technique the ro-
tation with the PHANToM would happen gradually according to the amount
of rotation, which in this test was made constant in order to have a more fair
comparison with the KT. We expect this problem of the tested technique to
be less significant if we would have tested the original haptic travel technique,
as it allows the rotation speed to be adjusted gradually.
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(a)

(b)

Figure 16.4: (a) Total distance traveled and rotations performed by partici-
pants. (b) Trial completion time by participant’s experience.
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We found that there was a significant interaction effect with PE (p < .0001).
By splitting up the users according to PE we see a significant difference in trail
completion time. This interaction is illustrated in Figure 16.4(b). As expected,
experienced participants performed faster than inexperienced participants but
the performance with regard to the travel techniques has not been influenced
significantly by participant’s experience. We found similar results for the other
dependent variables.

16.2.2 Workload

The participant’s workload was estimated by using the NASA-TLX question-
naire [Hart 90]. Figure 16.5(a) shows the resulting scores (scored on a scale of
100). The KT scored lower on all categories, which logically results in a lower
total workload of 21. The PHANToM-based techniques had a significantly
higher total workload (p < .01), 40 for the PT and 39 for HT. When we
considered the difference between EX and IX, we found there was a small dif-
ference between them. Experienced participants had a smaller total workload
than inexperienced participants, which was expected.

Looking into the different subscales, we found that there is no significant
difference between PT and HT for mental demand, temporal demand, perfor-
mance and effort. Physical demand, on the other hand, is substantially higher
in the case of HT. This is an expected result, since the user had to constantly
push against a varying force field in the direction he wanted to travel. This
was also hypothesized as H4. In contrast, the frustration level significantly
drops when haptic forces are present. We can at least partially attribute this
to the fact that in case the user has feedback, that he can feel that he is
moving. This is also present while navigating with the keyboard. The user
just knows that he is moving when he presses a button (unless when he is
colliding with an obstacle). When no haptics were present the user could only
determine his movement visually. Also, in the PT, users made larger hand
movements up to the device’s workspace limits and experienced more diffi-
culty in finding the neutral position. This concurs with the findings of Mine
[Mine 95] and Bowman [Bowman 98] who state that many problems with 3D
interaction techniques are caused by the lack of haptic feedback. Considering
this in view of the total workload, we see that the decrease in frustration,
caused by introducing feedback, is alleviated by an equally large increase in
physical demand resulting in similar workloads for both techniques.

Figure 16.5(b) gives a more detailed overview of the workload for each
travel technique taking into account participant’s experience. When we com-
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pare EX with IX users, we can diagnose that there was an overall higher
mental demand. This was to be expected, since users that are familiar with
traveling in VEs need to concentrate less on the actions they perform. Both
user groups also indicate an important increase in physical demand for the HT
with respect to PT, the increase was larger for EX than for IX. Also, inex-
perienced users have a lower temporal demand than experienced users. This
probably resulted from the constant speed condition, which was the same for
all users. For experienced users the speed might not have been fast enough
by which they felt more temporal demand, as they might have had the feeling
they could have performed better (smaller trial completion times). During ob-
servations, we also saw, especially with EX, that when the users had reached
the final straight line toward the end goal position, they enlarged their hand
movement, trying to speed up. We consider this to be a confirmation of our
choice in the original haptic travel technique, that allows users to define their
virtual speed by the size of the displacement from the neutral position. If we
look at performance, effort and frustration, there was a clear higher demand
which can be attributed to them being less experienced.

16.2.3 Perceived Presence and Performance

In order to estimate the perceived presence, the user had to fill out the Witmer
and Singer presence questionnaire (version 4.0) [Witmer 98] and had to rank
the travel techniques according the perceived presence and performance. This
questionnaire is subdivided in 4 subscales: involvement, sensory fidelity, adap-
tation/immersion, interface quality. As this questionnaire is designed for total
VR experiences, we could remove some questions that were irrelevant for our
task (such as: “How closely were you able to examine objects?”), considering
the fact that the environment and interaction possibilities remained the same.
As a result, all questions regarding sensory fidelity seemed to be dismissed.
Therefore, we will discuss only the remaining three.

Considering the PHANToM-based techniques Figure 16.6 shows that the
addition of haptics gives a higher value for all 3 categories, especially for in-
volvement. From this result, we can conduct that adding haptics to the travel
technique gave the users a higher level of presence. Furthermore, these results
are similar for both EX and IX. Comparing to the keyboard technique, the
condition with the HT gives better results for involvement and adaptation/im-
mersion but not for interface quality. This resulted mostly from the fact that
users judged the interface quality on the basis of the task that was given, in
which they were asked to perform the task as fast as possible. They felt this
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(a)

(b)

Figure 16.5: (a) Workload by travel technique. (b) Workload by travel tech-
nique and participant’s experience.
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Figure 16.6: The 3 perceived presence categories by travel technique.

to be the KT, which is confirmed by their ranking of the navigation techniques
according to perceived performance. All participants felt they were the fastest
with the KT, which is sustained by the results described in section 16.2.1. The
HT was ranked second and the PT last (χ2 test: p < .0001) confirming H2.
This is probably also caused by the fact that all users were acquainted with
the keyboard, while only 2 of them had prior experience with the PHANToM
device. The ranking order for perceived presence is the HT, which was pre-
ferred by 9 participants, KT by 2 participants and the PT was preferred by 1
participant (χ2 test: p < .01). The participant that stated to perceive more
presence with the technique of the PHANToM without haptics, was an expe-
rienced VR user who had several years of experience with 3D input devices
including the PHANToM and the non-haptic MicroScribe-3D input device.
This ordering of the TT by perceived presence, is confirmed by the results of
the presence questionnaire and is an acknowledgement of H3.
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CHAPTER17

Conclusions

In contrast to the previous parts, where we focused on the realization of dy-
namic interactions and animations, here we focused more on the user aspects
of interaction in the context of avatar control. We discussed how most contem-
porary VE systems only provide predefined animations to the user and how
this results in unrealistic behavior and repetitiveness. We presented a general
solution supporting on-the-fly creation of new animations employing inverse
kinematics. As a demonstration, we created an interaction technique control-
ling a humanoid avatar’s arm in a real-time NVE. The results dramatically
increased the interaction possibilities of the user, as well as his identification
with the controlled virtual representation. Furthermore, we explained how
avatar control techniques can be distributed efficiently with minimal band-
width consumption, making it more attractive for use in NVE systems.

We also discussed that most contemporary haptic applications are only
provided in specialized setups with specialized collision detection algorithms
due to high update requirements. As a solution, we presented a way to utilize
a standard rigid body simulation system to provide information to calculate
force feedback information. This was then used to create an interaction tech-
nique for haptic travel that allows a user to navigate through a virtual scene
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while using the PHANToM IO device for rendering force feedback on what
is happening to his representation. Furthermore, we explained how we cal-
culated the feedback from rigid body simulation, terrain, slope and collision
information and discussed how we solved instabilities.

To determine the impact of our travel technique on users, we performed
an empirical study on the addition of haptic force feedback to travel, and how
this affects task performance, perceived task performance, perceived presence,
mental and physical workload. A formal experiment was conducted compar-
ing three travel techniques, a keyboard technique used as a benchmark and
two PHANToM-based techniques, with and without haptic feedback. Our
results demonstrate that, in terms of efficiency, the keyboard technique out-
performed both PHANToM techniques, as expected. However, in terms of
perceived user presence, involvement and satisfaction, haptic travel proved to
be better. Comparison among the PHANTOM-based techniques showed that
performance was not significantly improved although users perceived the hap-
tic condition to be faster, allowing us to conclude that adding haptics has a
positive influence on the task of travel. Also, we showed that these results
apply to both experienced and inexperienced VR users.
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CONCLUSIONS AND
FUTURE RESEARCH





General Conclusions and Directions for
Further Research

Throughout this dissertation, we presented our approaches to realize more
dynamic virtual environments. This final part presents the main findings of
our research. As each previous part already discussed some conclusions to the
sub-topics, a more general approach is taken here, relating our solutions to
the problem statement. In addition, we propose some directions for further
research in this area.

General Conclusions

VEs and NVEs have evolved tremendously over the past decades and have
become one of the most active areas of research within computer science. Al-
though interactivity is one of the key terms in their definitions, this area has
not been fully investigated yet. Most mechanisms supporting interaction con-
sist of ad hoc solutions that are hard coded for specific applications and hardly
any literature is found on the matter. Consequently, most contemporary sys-
tems support only limited interactive possibilities and dynamic behaviors. In
this dissertation we took a bottom-up approach to realize a general solution
to create more dynamic and interactive VEs.

The basic interactive object approach presents a general and dynamic in-
teraction mechanism for VE systems. This was realized by employing the
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concepts of feature modeling to describe the interactive object properties.
Furthermore, we generalized all objects that could be present in our interac-
tive virtual worlds at the interaction level, so one central mechanism is able
to handle all interactions. The major advantage of this approach is that all
interaction information is located at object level and thus independent of the
application. As a result, objects can change their appearance, structure and
behaviors even at run-time and new objects, unknown to the application, can
be inserted at any time. Also, as there is only one interaction mechanism
which handles all objects, all the objects in a virtual world can interact with
each other automatically. These properties allow for highly dynamic virtual
worlds to be created. While modeling interactive virtual worlds using our ap-
proach might require more work in the modeling stage, interactive objects are
highly reusable and depreciate the use of ad hoc interaction mechanisms.

Apart from the dynamics, another important aspect is the representation
of actions occurring in virtual environments. For interactions to appear nat-
ural, realistic simulation and animations are required. This was provided by
integrating ExtReAM into the interactive object approach. This library was
devised as a platform-independent, easily extensible animation library. Plug-
ins enable support for skeleton-based character animation techniques and rigid
body simulation. This causes the virtual world objects to appear more physi-
cally correct and extends the interaction framework with new animation and
physical simulation possibilities, resulting in much more natural and plausible
virtual worlds.

Furthermore, the resulting realistic interactive and dynamic object ap-
proach supports dynamic avatar control which can be used to create more
natural interaction techniques. By utilizing dynamic animation techniques we
can overcome the unrealistic and repetitive results from standard approaches
to interaction representation and give VE designers much more freedom. Also,
we showed that rigid body simulation can be used to calculate feedback forces
for the users. More dynamic interaction techniques and force feedback increase
the user’s feeling of identification with his virtual representation and raises the
user’s immersion.
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Directions for Further Research

The research principles proposed in this dissertation are currently being ex-
tended to provide a general way to describe all entities in a (N)VE system,
including objects that are not necessarily related to interaction. The approach
taken is even more general in the way object properties are described. In this
approach a scene is composed of a hierarchical tree of nodes. Objects are com-
pletely generalized and can be attached to these nodes. The objects consist of
different components which describe their different aspects. Examples thereof
include: graphical and physical representation, interaction information, audio
information, etc. Furthermore, the system will utilize an efficient scripting
engine (Lua), that can be used to control all aspects of the interactive virtual
world. Currently we are also working on a modeler which allows the user to
create interactive objects in a more graphical way. This will drastically im-
prove the modeling of interactive objects and decrease the time necessary to
create them.

With respect to ExtReAM, possible extensions include the creation of plug-
ins that will enable other animation and simulation techniques such as control-
lable physically based animation and deformable objects. Also, the proposed
interaction techniques can be extended and investigated further in several
ways. First of all, we can employ the haptic force calculation of the haptic
travel technique to add force feedback to the IK arm technique. This will
resolve the problem we have with the user’s hand moving further while the
virtual hand is stopped by a collision. Also, both techniques could be com-
bined resulting in complete haptic control over the embodiment and travel.
Thirdly, the ITs should be compared to other interaction techniques, espe-
cially with respect to their influence on the user’s presence and performance.
Furthermore, studying the influence of the haptic travel on wayfinding could
be interesting, also for visually impaired people.

Finally, efficient distribution of physical simulation among different clients
on large scale networks with varying conditions is an active area of research.
Integrating solutions for this problem in our approach will create the possibility
to use it on a larger scale, increasing the applicability.
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Dutch Summary - Samenvatting

De laatste decennia vormt het domein van de genetwerkte virtuele omge-
vingen een zeer actief onderzoeksgebied binnen de informatica. Samen met de
groeiende capaciteiten van hedendaagse computers zorgen de dalende kosten
voor hardware en connectiviteit ervoor dat deze technologie meer en meer
beschikbaar wordt thuis en op de werkplek. Meerdere applicaties en speci-
fieke prototypes worden momenteel dan ook in verschillende sectoren succesvol
toegepast. Het overgrote deel van het gevoerde onderzoek en ontwikkeling
binnen dit domein is echter gericht op de technologie, waardoor een van de
belangrijkste componenten, namelijk interactie, veel minder aan bod komt.

In dit werk richten we ons op het realiseren van meer realistische virtuele
ervaringen door de interactiekloof tussen de echte en de virtuele wereld te
verkleinen. In tegenstelling tot ad hoc oplossingen proberen we een oplossing
te bieden die algemeen en herbruikbaar is. De voorgestelde interactieve object
aanpak voorziet zo een oplossing door een algemeen interactiemechanisme te
toe te passen voor elke interactie binnen de virtuele wereld. Verder maakt
deze aanpak gebruik van het feature modeling principe, dat objecten toelaat
om hun eigen interactie-informatie te specificeren op objectniveau. Hierdoor
kunnen interacties onafhankelijk van de applicatie worden voorgesteld, hetgeen
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ook toelaat om nieuwe objecten toe te voegen aan de applicatie tijdens de
simulatie.

Het probleem van realistische interacties is echter niet beperkt to het re-
presenteren en uitvoeren van interacties, maar dient ook rekening te houden
met andere domeinen zoals realistische simulatie en animatie, gebruikersre-
presentatie en mens-computerinteractie. Daarom werd in een tweede fase van
dit werk ExtReAM ontwikkeld en bijgevoegd. Deze platform-onafhankelijke
animatie- en simulatiebibliotheek laat ons toe het realisme van de simulatie
te verhogen en de interacties binnen de virtuele wereld realistischer voor te
stellen. Verder wordt het ook mogelijk om objecten uit te rusten met fysieke
eigenschappen en ze fysieke acties te laten uitvoeren. Door onze interactieve
object aanpak te combineren met realistische simulatie kunnen we meer leven-
dige virtuele werelden creëren met minimale inspanning, hetgeen bij correct
gebruik zal leiden tot betere virtuele belevingen en hogere niveaus van ‘aan-
wezigheid’.

Meer natuurlijke interactie technieken kunnen ook het gevoel van onder-
dompeling in de virtuele wereld sterk verbeteren. Daarom onderzoeken we
in dit werk ook hoe onze aanpak kan gebruikt worden om meer realistische
controle over de gebruikersrepresentatie en natuurlijke interactietechnieken te
realiseren. We presenteren daarom twee nieuwe 3D interactietechnieken die
gerealiseerd werden met onze aanpak. De eerste techniek laat gebruikers toe
om op een directe wijze met de virtuele wereld te interageren door hun virtuele
hand te controleren met een 3D invoerapparaat. We bespreken hoe deze tech-
niek tot stand kwam en leggen uit hoe ze gedistribueerd kan worden tussen
de verschillende gebruikers, met een minimum aan bandbreedte gebruik. De
tweede techniek voorziet een manier om te navigeren door de virtuele omge-
ving waarbij de gebruiker haptische feedback krijgt gebaseerd op wat er met
zijn virtuele tegenhanger gebeurt. Dit werd gerealiseerd door rigid body sim-
ulatie informatie om te zetten naar krachtterugkoppeling. Met een formele
gebruikersstudie tonen verder aan dat deze haptische navigatie methode het
gevoel van onderdompeling in de virtuele wereld verhoogt.
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Interactive Object Examples

C.1 Interactive Door Object

<?xml version="1.0" ?>

<!DOCTYPE CIOBJECT SYSTEM "ciobject.dtd">

<CIOBJECT object_name="slidingdoor">

<OBJECT_PROPERTIES >

<DESCRIPTION >

This is a CIObject used for testing the CIFramework.

</DESCRIPTION >

<PART partid="doorframe" filename="glassdoorframe.ms3d" isfixed="TRUE">

<POSITION x="0" y="3.8" z="0" />

<ORIENTATION x="0" y="0" z="0" />

<COLLISIONBOX

xsize="8" ysize="0.2" zsize="0.5"

xpos="0" ypos="0" zpos="0"

xrot="0" yrot="0" zrot="0" />

</PART>

<PART partid="glassdoor_left" filename="glassdoor.ms3d" parentid="doorframe">

<POSITION x=" -2.9" y="1.85" z="0.1" />

<ORIENTATION x="0" y="0" z="0" />

<COLLISIONBOX

xsize="2" ysize="3.8" zsize="0.1"

xpos="0" ypos="0" zpos="0"

xrot="0" yrot="0" zrot="0" />

<PART_CONSTRAINTS >

<MAX_TRANSLATE_CONSTRAINT upx="2.0" upy="0" upz="0"

lowerx="0" lowery="0" lowerz="0" />

<MAX_ROTATE_CONSTRAINT clockwisex="0" clockwisey="0" clockwisez="0"

cclockwisex="0" cclockwisey="0" cclockwisez="0" />
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</PART_CONSTRAINTS >

</PART>

<PART partid="glassdoor_right" filename="glassdoor.ms3d" parentid="doorframe">

<POSITION x="2.9" y="1.85" z="0.1" />

<ORIENTATION x="0" y="0" z="0" />

<COLLISIONBOX

xsize="2" ysize="3.8" zsize="0.1"

xpos="0" ypos="0" zpos="0"

xrot="0" yrot="0" zrot="0" />

<PART_CONSTRAINTS >

<MAX_TRANSLATE_CONSTRAINT upx="0" upy="0" upz="0"

lowerx=" -2.0" lowery="0" lowerz="0" />

<MAX_ROTATE_CONSTRAINT clockwisex="0" clockwisey="0" clockwisez="0"

cclockwisex="0" cclockwisey="0" cclockwisez="0" />

</PART_CONSTRAINTS >

</PART>

<PART partid="fixedglass_left" filename="glassdoor.ms3d" parentid="doorframe" isfixed="TRUE">

<POSITION x="3" y="1.85" z="0" />

<ORIENTATION x="0" y="0" z="0" />

<COLLISIONBOX

xsize="2" ysize="3.8" zsize="0.1"

xpos="0" ypos="0" zpos="0"

xrot="0" yrot="0" zrot="0" />

</PART>

<PART partid="fixedglass_right" filename="glassdoor.ms3d" parentid="doorframe" isfixed="TRUE">

<POSITION x=" -3" y="1.85" z="0" />

<ORIENTATION x="0" y="0" z="0" />

<COLLISIONBOX

xsize="2" ysize="3.8" zsize="0.1"

xpos="0" ypos="0" zpos="0"

xrot="0" yrot="0" zrot="0" />

</PART>

<PART partid="buttonbase1" filename="buttonbase.ms3d" parentid="doorframe" isfixed="TRUE">

<POSITION x="2.5" y="0.8" z="1.0" />

<ORIENTATION x="0" y="0" z="0" />

<PHYSICSCOLLISIONBOX

xsize="0.3" ysize="1.4" zsize="0.3"

xpos="0" ypos="0" zpos="0"

xrot="0" yrot="0" zrot="0" />

</PART>

<PART partid="button1" filename="buttonsphere.ms3d" parentid="buttonbase1" isfixed="TRUE">

<POSITION x="2.5" y="1.2" z="1.2" />

<ORIENTATION x="0" y="0" z="0" />

<COLLISIONBOX

xsize="0.2" ysize="0.2" zsize="0.2"

xpos="0" ypos="0" zpos="0"

xrot="0" yrot="0" zrot="0" />

</PART>

<PART partid="buttonbase2" filename="buttonbase.ms3d" parentid="doorframe" isfixed="TRUE">

<POSITION x="2.5" y="0.8" z=" -1" />

<ORIENTATION x="0" y="0" z="0" />

<COLLISIONBOX

xsize="0.3" ysize="1.4" zsize="0.3"

xpos="0" ypos="0" zpos="0"

xrot="0" yrot="0" zrot="0" />

</PART>

<PART partid="button2" filename="buttonsphere.ms3d" parentid="buttonbase2" isfixed="TRUE">

<POSITION x="2.5" y="1.2" z=" -1.2" />

<ORIENTATION x="0" y="0" z="0" />

<COLLISIONBOX

xsize="0.2" ysize="0.2" zsize="0.2"

xpos="0" ypos="0" zpos="0"

xrot="0" yrot="0" zrot="0" />

</PART>

<ACTION name="open_left_door">

<TRANSLATE_PART partid="glassdoor_left" x=" -2" y="0" z="0" time="2000" />
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</ACTION >

<ACTION name="open_right_door">

<TRANSLATE_PART partid="glassdoor_right" x="2" y="0" z="0" time="2000" />

</ACTION >

<ACTION name="close_left_door">

<TRANSLATE_PART partid="glassdoor_left" x="2" y="0" z="0" time="2000" />

</ACTION >

<ACTION name="close_right_door">

<TRANSLATE_PART partid="glassdoor_right" x=" -2" y="0" z="0" time="2000" />

</ACTION >

<VARIABLE type="bool" name="isClosed" value="TRUE" />

<VARIABLE type="bool" name="doorsMoving" value="FALSE" />

</OBJECT_PROPERTIES >

<INTERACTION_PROPERTIES >

<OBJECT_COMMAND command="MoveDoors" />

<INTERACTION_ZONE zone_name="button1zone">

<PART_REGION regionid="frontbuttonregion" partid="button1" />

</INTERACTION_ZONE >

<INTERACTION_ZONE zone_name="button2zone">

<PART_REGION regionid="backbuttonregion" partid="button2" />

</INTERACTION_ZONE >

<TRIGGERS >

<ZONETRIGGER triggerid="door_trigger" zones="button1zone , button2zone" />

</TRIGGERS >

</INTERACTION_PROPERTIES >

<OBJECT_BEHAVIORS >

<SCRIPT name="MoveDoorsScript" maxsimultaneousexecutions="1" maxexecutions="unlimited">

push_object_var doorsMoving <!-- if doors are already moving stop -->

jump_if_false 3

end

set_object_var doorsMoving 1 <!-- else set doorsMoving true -->

push_object_var isClosed <!-- if doors are closed goto open commands -->

jump_if_true 13

pusharg_const close_left_door <!-- call actions to close both doors -->

call_command performAction

pusharg_const close_right_door

call_command performAction

set_object_var isClosed 1 <!-- set doorsClosed variable true -->

set_object_var doorsMoving 0 <!-- set doorsMoving variable false -->

end <!-- end -->

set_object_var doorsMoving 1 <!-- similar for opening -->

pusharg_const open_left_door

call_command performAction

pusharg_const open_right_door

call_command performAction

set_object_var isClosed 0

set_object_var doorsMoving 0

end

</SCRIPT >

<TRIGGERCOMMAND triggerid="door_trigger" commandname="MoveDoors" />

<COMMANDSCRIPT commandname="MoveDoors" scriptname="MoveDoorsScript" />

</OBJECT_BEHAVIORS >

</CIOBJECT >
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C.2 Physical Interactive Door Object

<?xml version="1.0" ?>

<!DOCTYPE CIOBJECT SYSTEM "ciobject.dtd">

<CIOBJECT object_name="glassdoor">

<OBJECT_PROPERTIES >

<DESCRIPTION >

This is the interactive object description for a button controlled sliding door.

The door can be opened and closed by collision triggers coupled to the buttons.

</DESCRIPTION >

<PART partid="doorframe" filename="glassdoorframe.ms3d" isfixed="TRUE">

<POSITION x="0.0" y="3.8" z="0.0" />

<ORIENTATION x="0.0" y="0.0" z="0.0" />

<PHYSICSCOLLISIONBOX

xsize="8" ysize="0.2" zsize="0.5"

xpos="0.0" ypos="0" zpos="0"

xrot="0.0" yrot="0.0" zrot="0.0" />

</PART>

<PART partid="glassdoor_left" filename="glassdoor.ms3d" parentid="doorframe">

<POSITION x=" -2.9" y="1.85" z="0.1" />

<ORIENTATION x="0.0" y="0.0" z="0.0" />

<PHYSICSCOLLISIONBOX

xsize="2" ysize="3.8" zsize="0.1"

xpos="0.0" ypos="0" zpos="0"

xrot="0.0" yrot="0.0" zrot="0.0" materialname="unbreakableglass" />

<PART_CONSTRAINTS >

<MAX_TRANSLATE_CONSTRAINT upx="2.0" upy="0.0" upz="0.0"

lowerx="0.0" lowery="0.0" lowerz="0.0" />

<MAX_ROTATE_CONSTRAINT clockwisex="0.0" clockwisey="0.0" clockwisez="0.0"

cclockwisex="0.0" cclockwisey="0.0" cclockwisez="0.0" />

</PART_CONSTRAINTS >

</PART>

<PART partid="glassdoor_right" filename="glassdoor.ms3d" parentid="doorframe">

<POSITION x="2.9" y="1.85" z="0.1" />

<ORIENTATION x="0.0" y="0.0" z="0.0" />

<PHYSICSCOLLISIONBOX

xsize="2" ysize="3.8" zsize="0.1"

xpos="0.0" ypos="0" zpos="0"

xrot="0.0" yrot="0.0" zrot="0.0" materialindex="1" />

<PART_CONSTRAINTS >

<MAX_TRANSLATE_CONSTRAINT upx="0.0" upy="0.0" upz="0.0" lowerx=" -2.0"

lowery="0.0" lowerz="0.0" />

<MAX_ROTATE_CONSTRAINT clockwisex="0.0" clockwisey="0.0" clockwisez="0.0"

cclockwisex="0.0" cclockwisey="0.0" cclockwisez="0.0"/>

</PART_CONSTRAINTS >

</PART>

<PART partid="fixedglass_left" filename="glassdoor.ms3d" parentid="doorframe" isfixed="TRUE">

<POSITION x="3" y="1.85" z="0.0" />

<ORIENTATION x="0.0" y="0.0" z="0.0" />

<PHYSICSCOLLISIONBOX

xsize="2" ysize="3.8" zsize="0.1"

xpos="0.0" ypos="0" zpos="0"

xrot="0.0" yrot="0.0" zrot="0.0" />

</PART>

<PART partid="fixedglass_right" filename="glassdoor.ms3d" parentid="doorframe" isfixed="TRUE">

<POSITION x=" -3" y="1.85" z="0.0" />

<ORIENTATION x="0.0" y="0.0" z="0.0" />

<PHYSICSCOLLISIONBOX

xsize="2" ysize="3.8" zsize="0.1"

xpos="0.0" ypos="0" zpos="0"

xrot="0.0" yrot="0.0" zrot="0.0" />

</PART>

<PART partid="buttonbase1" filename="buttonbase.ms3d" parentid="doorframe" isfixed="TRUE">

<POSITION x="2.5" y="0.8" z="1.0" />

<ORIENTATION x="0.0" y="0.0" z="0.0" />

<PHYSICSCOLLISIONBOX
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xsize="0.3" ysize="1.4" zsize="0.3"

xpos="0.0" ypos="0.0" zpos="0.0"

xrot="0.0" yrot="0.0" zrot="0.0" />

</PART>

<PART partid="buttonfront" filename="buttonsphere.ms3d" parentid="buttonbase1" isfixed="TRUE">

<POSITION x="2.5" y="1.2" z="1.2" />

<ORIENTATION x="0.0" y="0.0" z="0.0" />

<PHYSICSCOLLISIONBOX

xsize="0.2" ysize="0.2" zsize="0.2"

xpos="0.0" ypos="0.0" zpos="0.0"

xrot="0.0" yrot="0.0" zrot="0.0" materialname="steel" />

</PART>

<PART partid="buttonbase2" filename="buttonbase.ms3d" parentid="doorframe" isfixed="TRUE">

<POSITION x="2.5" y="0.8" z=" -1" />

<ORIENTATION x="0.0" y="0.0" z="0.0" />

<PHYSICSCOLLISIONBOX

xsize="0.3" ysize="1.4" zsize="0.3"

xpos="0.0" ypos="0.0" zpos="0.0"

xrot="0.0" yrot="0.0" zrot="0.0" />

</PART>

<PART partid="buttonback" filename="buttonsphere.ms3d" parentid="buttonbase2" isfixed="TRUE">

<POSITION x="2.5" y="1.2" z=" -1.2" />

<ORIENTATION x="0.0" y="0.0" z="0.0" />

<PHYSICSCOLLISIONBOX

xsize="0.2" ysize="0.2" zsize="0.2"

xpos="0.0" ypos="0.0" zpos="0.0"

xrot="0.0" yrot="0.0" zrot="0.0" />

</PART>

<JOINTS >

<PRISMATICJOINT jointname="sliderright" partid="0" partid2="glassdoor_right"

xorientation="1" yorientation="0" zorientation="0"

xleftextent="2" xrightextent="0" />

<PRISMATICJOINT jointname="sliderleft" partid="fixedglass_left" partid2="glassdoor_left"

xorientation="1" yorientation="0" zorientation="0"

xleftextent="0" xrightextent="2" />

</JOINTS >

<ACTION name="open_left_door">

<TRANSLATE_PART partid="glassdoor_left" x=" -2" y="0.0" z="0" time="2000" />

</ACTION >

<ACTION name="open_right_door">

<TRANSLATE_PART partid="glassdoor_right" x="2" y="0.0" z="0" time="2000" />

</ACTION >

<ACTION name="close_left_door">

<TRANSLATE_PART partid="glassdoor_left" x="2" y="0.0" z="0" time="2000" />

</ACTION >

<ACTION name="close_right_door">

<TRANSLATE_PART partid="glassdoor_right" x=" -2" y="0.0" z="0" time="2000" />

</ACTION >

<ACTION name="open_left_velocity">

<SET_PART_LINEARVELOCITY partid="glassdoor_left" xvel=" -5.3" yvel="0.0" zvel="0" time="2000" />

</ACTION >

<ACTION name="close_left_velocity">

<SET_PART_LINEARVELOCITY partid="glassdoor_left" xvel="5.3" yvel="0.0" zvel="0" time="2000" />

</ACTION >

<ACTION name="open_right_velocity">

<SET_PART_LINEARVELOCITY partid="glassdoor_right" xvel="5.3" yvel="0.0" zvel="0" time="2000" />

</ACTION >

<ACTION name="close_right_velocity">

<SET_PART_LINEARVELOCITY partid="glassdoor_right" xvel=" -5.3" yvel="0.0" zvel="0" time="2000" />

</ACTION >

<VARIABLE type="BOOL" name="isClosed" value="false" />

<VARIABLE type="BOOL" name="doorsMoving" value="false" />

</OBJECT_PROPERTIES >

<INTERACTION_PROPERTIES >

<OBJECT_COMMAND command="MoveDoors" />



176 Interactive Object Examples

<INTERACTION_ZONE zone_name="button1zone">

<PART_REGION regionid="frontbuttonregion" partid="button1" />

</INTERACTION_ZONE >

<INTERACTION_ZONE zone_name="button2zone">

<PART_REGION regionid="backbuttonregion" partid="button2" />

</INTERACTION_ZONE >

<TRIGGERS >

<ZONETRIGGER triggerid="door_trigger" zones="button1zone , button2zone" />

</TRIGGERS >

</INTERACTION_PROPERTIES >

<OBJECT_BEHAVIORS >

<SCRIPT name="door_script_physical" maxsimultaneousexecutions="1" maxexecutions="unlimited">

push_object_var doorsMoving

jump_if_false 3

end

set_object_var doorsMoving 1

push_object_var isClosed

jump_if_true 14

pusharg_const close_left_doorphysical

call_command performAction

pusharg_const close_right_doorphysical

call_command performAction

set_object_var isClosed 1

wait 700

set_object_var doorsMoving 0

end

set_object_var doorsMoving 1

pusharg_const open_left_doorphysical

call_command performAction

pusharg_const open_right_doorphysical

call_command performAction

set_object_var isClosed 0

wait 700

set_object_var doorsMoving 0

end

//end of script

</SCRIPT >

<TRIGGERCOMMAND triggerid="door_trigger" commandname="MoveDoors" />

<COMMANDSCRIPT commandname="MoveDoors" scriptname="door_script_physical" />

</OBJECT_BEHAVIORS >

</CIOBJECT >
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