s

Limburgs Universitair Centrum

Faculteit Wetenschappen

Pseudo-likelihood Methods and Generalized
Estimating Equations: Efficient Estimation
Techniques for the Analysis of Correlated
Multivariate Data

Proefschrift voorgelegd tot het behalen van de graad van
Doctor in de Wetenschappen, Groep Wiskunde

aan het Limburgs Universitair Centrum te verdedigen door

HELENA GEYS

Promotor:

Prof. dr. G. Molenberghs

1999



Voor Geert



Dankwoord

Bij het voltooien van dit werk wil ik graag al diegenen bedanken die rechtstreeks
of onrechtstreeks bijgedragen hebben tot het tot stand komen ervan.

In de eerste plaats, mijn promotor Geert Molenberghs, die met zeer veel belang-
stelling deze thesis heeft begeleid en mij zoveel interessante suggesties deed. Zijn
hulp en bijstand waarop ik voortdurend beroep mocht doen waren voor mij steeds
aanmoedigingen om verder te werken. Geert, ik wil je nu dan ook van harte danken
voor de jarenlange, openhartige samenwerking.

I gratefully acknowledge Tomasz Burzykowsky, Marc Buyse, Paul Catalano, Stu-
art Lipsitz, Meredith Regan, Didier Renard, Louise Ryan and Paige Williams for
many helpful discussions and stimulating my interest in research. Their comments
on earlier drafts have greatly improved this manuscript.

De aanhoudende blijken van belangstelling en de opbouwende kritiek van alle
leden van het Centrum voor Statistiek waren een voortdurende stimulans bij de
realisatie van deze thesis. Ik ben jullie allemaal heel veel dank verschuldigd.

Mijn dank gaat tevens uit naar Martien voor het scan-werk en Annemie, Conny,
Hilde, Martine en Vivianne van het WNI secretariaat voor het uit handen nemen
van vele administratieve werkjes.

Tenslotte, maar niet in het minst wens ik mijn ouders en Geert te bedanken voor
hun onuitputtelijk geduld. Meer dan wie ook, waren zij voor mij een nooit aflatende

morele steun, die soms wel heel erg noodzakelijk was ...
Helena Geys

Diepenbeek,
28 september 1999.



Contents

1 Introduction

1.1 Developmental Toxicity Studies . . . . . . .. ... ... .. ...

1.1.1
1.1.2
1.1.3
1.1.4

Background . . .. ..o oo
The Segment II Study: a Standard Experimental Design

Challenges in Model Development . . . . . . .. .. ... ...
Heatshock Studies . . . . . .. ... ...

1.2 Risk Assessment . . . . . . . . .. e
1.3 Accounting for Litter Effects . . . . . . .. ... ...

1.3.1
1.3.2
1.3.3

Conditional Modelling . . . .. .. .. ... . 0.
Marginal Modelling . . . . . .. ... o000
Cluster-specific Modelling . . . .. ... ... ... ...

1.4 Joint Modelling of Continuous and Discrete Outcomes . . . . . . . . .

1.5 Organization of Subsequent Chapters . . . . . . ... ... .. ....

Motivating Examples

2.1 NTP studies . . . . . . . .

2.1.1
2.1.2
2.1.3
2.14
2.1.5
2.1.6

DEHP Study in Mice . . . . .. ... . oL
DYME Study in Mice . . ... ... ... ..
THEO Study in Mice . . . . .. ... . ... ...
TGDM Study in Mice . . ... ... ... ... ...
EG Study in Mice. . . .. ... ..o
EGStudyinRats . . . .. ... ..o oo

2.2 Heatshock Studies. . . . . . . ... .. oo
2.3 Macular Degeneration Study . . . . .. . ... ..o

2.4 Advanced Ovarian Cancer Study . . . . ... ... ... ... ....

10
12
14
16
17
20



ii Contents
3 Pseudo-likelihood Estimation in Exponential Family Models with
a Single Clustered Binary Outcome 39
3.1 Introduction . . . . . . . . .. 39
3.2 Model Formulation . . . . .. . .. .. ... ... ... . 40
3.2.1 NoClustering . . . . .. ... . L 40
3.2.2  Clustered Outcomes . . . . .. .. .. .. ... ... 42
3.3 Pseudo-likelihood: Definition and Asymptotic Properties . . . . . . . 43
3.3.1 Definition . . . . . ... 44
3.3.2  Consistency and Asymptotic Normality . . . . . . . . ... .. 44
3.4 Application to the Thélot Model . . . . . . . . ... ... ... .... 49
3.5 Application to Clustered Outcomes . . . . . . . . .. ... .. .... 50
3.6 Examples . . . . . . 51
3.7 Asymptotic Relative Efficiency of Pseudo-
likelihood versus Maximum Likelihood . . . . .. ... .. ... ... 57
3.7.1 Asymptotic Relative Efficiency for the Thélot Model . . . . . 57
3.7.2  Asymptotic Relative Efficiency for the Saturated
Model . . . . . . . 60
3.7.3 Asymptotic Relative Efficiency for Clustered
Outcomes . . . . . . . . . ... 62
3.8 Small Sample Relative Efficiency of Pseudo-likelihood versus Maxi-
mum Likelihood . . . . . . . . . .. oL 64
3.9 Conclusion . . . . . . . . e e e e 67
4 Pseudo-likelihood Inference for Clustered Multivariate Binary Out-

comes 69
4.1 Introduction . . . . . . . . . . ... 69
4.2 Model Formulation . . . . .. ... ... ... ... .......... 70
4.3 Pseudo-likelihood Estimation . . . .. .. .. .. ... .. ...... 73
4.4 Test Statistics . . . . . . . . ... 75
4.4.1  Wald Statistic . . . . . . ... 76
4.4.2 Pseudo-score Statistics . . . . . . .. ... .o L. 76
4.4.3 Pseudo-likelihood Ratio Statistic . . . .. . .. .. ... ... 78
4.5 Simulation Results . . . . . . . .. .. ... ... ... ... 81

4.5.1 Asymptotic Simulations . . . . . ... ..o 0oL 81



Contents iii

4.5.2  Small Sample Simulations . . . . . .. .. ... ... 85
4.5.3  Summary . ... .o e e 86
4.6 Examples . . . ... 87
4.6.1 Bivariate Analyses . . .. . .. ... 87
4.6.2 Tests for Trend . . . . . . . . . ..o 92
4.6.3 Trivariate Analyses . . . . . .. . ..o L. 95
4.6.4 Model Selection . . . . . .. ... Lo 98
4.7 Asymptotic Relative Efficiency . . . . . . . .. ... o000 101
4.8 Conclusion . . . . . . . .o 104
Risk Assessment and Fractional Polynomials 107
5.1 Introduction . . . . . . . . ..o 107
5.2 Fractional Polynomial Predictors . . . .. .. .. ... .. .. .... 108
5.3 Modelling the Dose-response Relationship . . . . ... .. ... ... 110
5.3.1 EGStudy . .. .. .. 110
5.3.2 DEHP Study . .. .. ... 118
5.4 Risk Assessment . . . . . . ..o 120
541 EGStudy . .. ... o 123
542 DEHP Study . .. .. ... ... o 123
5.5 Conclusion . . . . . . .. Lo 125

Comparison of Pseudo-likelihood and Generalized Estimating Equa-

tions for Marginally Specified Odds Ratio Models 127
6.1 Introduction . . . . . . . . ... 127
6.2 Pseudo-likelihood Estimating Equations . . . . . . .. ... ... .. 128

6.2.1 Classical Representation . . . . .. .. ... ... ... .... 128

6.2.2 Generalized Linear Model Representation . . . . . . .. .. .. 133
6.3 Generalized Estimating Equations . . . . . . . .. ... ... .. 136
6.4 Comparison . . . . . . . . .. 140
6.5 Examples . . . . . . 145
6.6 Conclusion . . . . . . . . 149
Analysis of Toxicology Data with Individual-level Covariates 151
7.1 Introduction . . . . . . .. L 151

7.2 Population-averaged Models . . . . . . .. .. o o000 153



iv Contents
7.2.1 Conditionally Specified Models . . . . . ... ... ... ... 153
7.2.2 Likelihood-based Marginal Models . . . . . . . ... ... ... 154
7.2.3 Generalized Estimating Equations . . . . . . .. .. ... ... 155
7.3 Cluster-specific Models . . . . . . . . . . . . ... ... . . ... 159
7.3.1 Marginal Likelihood Approach . . . . . .. ... ... ... .. 159
7.3.2 Conditional Likelihood Approach . . . .. ... .. ... ... 161
7.4 Goodness-of-Fit for Likelihood Based Models with Clustered Binary
Data . . . . . o 162
7.5 Analysis of Heatshock Study . . . . .. ... ... ... ... 163
7.5.1 Population Averaged Models . . . . . . .. ..o 165
7.5.2  Cluster-specific Approaches . . . . . . .. .. ... .. ... 174
7.6 Conclusion . . . . . . . .. 175
8 GEE and PL Risk Assessment Approaches for Combined Continu-
ous and Discrete Outcomes from Developmental Toxicity Studies 179
8.1 Introduction . . . . . . . . ... 179
8.2 Models for Bivariate Data of a Mixed Nature. . . . . . .. .. .. .. 181
8.2.1 Probit Model . . . .. . ... oo 181
8.2.2 Plackett-Dale Model . . . . . . .. ... ... . 185
8.3 Application to Quantitative Risk Assessment . . . . . . .. .. .. .. 191
8.4 Analysis of EG (Rats) Data . . . ... ... ... ... ... ... . 191
85 Conclusion . . . . . . . . 197
9 Validation of Surrogate Endpoints in Clinical Trials 199
9.1 Introduction . . . . . . . . .. . 199
9.2 A Brief History on Validation Criteria in a Single Trial . . . . .. .. 203
9.2.1 Prentice’s Criteria . . . . . . . .. .. 0L 203
9.2.2 Freedman’s Proportion Explained . . . . . .. ... ... ... 205
9.2.3 New Validation Measures for a Single Trial . . . . . . ... .. 206
9.3 Validation of Surrogate Markers with Mixed Continuous and Binary
Endpoints in a Single Trial . . . . . .. . ..o 000 208
9.3.1 A Probit Formulation. . . . .. .. .. .. ... .. .. ... 209
9.3.2 A Plackett-Dale Formulation . . . . . . . ... ... .. .... 211
9.4 An Example in Ophthalmology . . . . .. .. ... ... ... .... 212

9.5 Validation from Multiple Trials . . . . .. .. ... ... ... .. 217



Contents v

9.5.1 Continuous Endpoints . . . . . . . ... ... 217

9.5.2 Binary Endpoints . . . . .. .. 0000000 221

9.5.3 Mixed Binary-Continuous Outcomes . . . . . . . . . . .. .. 224

9.6 An Example in Cancer . . . . . . . . . ... 225
9.6.1 Continuous Outcomes . . . . . . . .. . . . ... ... .. .. 225

9.6.2 Binary Outcomes . . . . . . . . . . ... 226

9.6.3 Mixed Binary-Continuous Outcomes . . . . . . . . . . .. .. 229

9.7 An Example in Ophthalmology: Revisited . . . . . . . .. . ... .. 229
9.7.1 Continuous Outcomes . . . . . . . .. . . . ... ... ... 230

9.7.2 Binary Outcomes . . . . . . . . . . ... 230

9.7.3 Mixed Binary-Continuous Outcomes . . . . . . . . . . .. .. 230

9.8 Conclusion . . . . . . . .. 231
References 233
Summary (Dutch) 249






List of Abbreviations

ARE Asymptotic Relative Efficiency

ARMD Age Related Macular Degeneration

BMD Benchmark Dose

CAP cyclophosphmide plus adriamycin plus cisplatin
CSs Cluster-Specific

CSYM Compound Symmetry Model

CONDLOG Conditional Logistic Model

CP cyclophosphamide plus cisplatin

DEHP Di(-Ethyhexyl)-Phthalate

DYME Diethylene Glycol Dimethyl Ether

EG Ethylene Glycol

EPA Environmental Protection Agency

FDA Food and Drug Administration

GEEn Generalized Estimating Equations (nth order)
GLMM Generalized Linear Mixed Model

LED Lower Effective Dose

MBN Midbrain

MIXLOG Mixed Effects Logistic Model

ML Maximum Likelihood

MR Molenberghs-Ryan (Model)

NOAEL No Observable Adverse Effect Level
NTP National Toxicology Progam

vii



viii

List of Abbreviations

OLF
OPT
PA
PL
QRA
RTG
SD
TGDM
THEO

Olfactory System

Optic System
Population-Averaged

Pseudo (maximum) Likelihood
Quantitative Risk Assessment
Relative Time Gain

Standard Deviation

Triethylene Glycol Dimethyl Ether
Theophylline



List of Tables

2.1
2.2
2.3
2.4
2.5
2.6
2.7

2.8

3.1

3.2

3.3
3.4

3.5

4.1

4.2

4.3

Summary Data from a DEHP Experiment in Mice. . . . . . . . . .. 24
Summary Data from a DYMFE Experiment in Mice. . . . . . . . . .. 25
Summary Data from a THEO FExperiment in Mice. . . . . . . . . .. 26
Summary Data from a TGDM Experiment in Mice. . . . . . . . . .. 26
Summary Data from an KG Fxperiment in Mice. . . . . . . . . . .. 27
Summary Data from an KG Fxperiment in Rats. . . . . . . . . . . .. 31

Heatshock Studies: Number of (surviving) Embryo’s Exposed to Each

Combination of Duration and Temperature. . . . . . . . . . . . .. .. 33

Heatshock Studies: Distribution of Cluster Sizes. . . . . . . . . . . .. 33

NTP Studies: Maximum Likelihood Estimates (model based standard
errors; empirically corrected standard errors) of Univariate Outcomes. 52
NTP Studies: Pseudo-likelihood FEstimates (standard errors) of Uni-
variate Qutcomes. . . . . . . . . 53
Local Linear Smoothed Cluster Frequencies. . . . . . . . . . . . . . .. 63
Simulation Results: Asymptotic Relative Efficiencies of Pseudo-likelihood
versus Maximum Likelthood. . . . . . . . . . . . . ... ... ... .. 64

Simulation Results: Small Sample Relative Efficiencies (500 replica-

tions) of Pseudo-likelihood versus Mazimum Likelihood. . . . . . . . . 66

Cross-classification of Individuals in Cluster i with Respect to o Pair
of Outcome Variables j and j'. . . . . . . . . . . .. ... .. ... .. 72

Simulation Results: Type [ Frror Probabilities for 5o = —2.5 and
Dose Levels 0,.25,.50,1 (NC' is the number of clusters per dose level). 85

Simulation Results: Powers for o = —2.5, B, = 0.1 and Dose Levels
0,.25,.50,1 (NC is the number of clusters per dose level). . . . . . . . 86

ix



List of Tables

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13
4.14
4.15

4.16

4.17

5.1

NTP Studies: Maximum Likelihood Estimates (model based standard

errors;empirically corrected standard errors) of Bivariate Qutcomes

(different main dose effects). . . . . . . .. ... 88
NTP Studies: Pseudo-likelihood FEstimates (standard errors) of Bi-
variate Qutcomes (different main dose effects). . . . . . . . . .. ... 89

NTP Studies: Maximum Likelihood Estimates (model based standard

errors;empirically corrected standard errors) of Bivariate Qutcomes

(common main dose effects). . . . . ... 90
NTP Studies: Pseudo likelihood Estimates (standard errors) of Bi-
variate Qutcomes (common main dose effects). . . . . . . . .. ... 91
NTP Studies: Relative Time Gains (RTG) of Pseudo-likelihood Com-
pared to Maximum Likelihood (in seconds). . . . . . . . . . . ... .. 92
NTP Studies: Likelihood Wald, Score and Ratio Tests for Dose Trends
(empirically corrected (e.c) and model based (m.b)). . . . . . . . . .. 93
NTP Studies: Pseudo-likelihood Wald, Score and Ratio Tests for Dose
Trends. . . . . . . . 94
NTP Studies: Pseudo-likelihood Estimates (standard errors) for Trivari-

ate Outcomes (different main dose effects). . . . . . . . . . . ... .. 96
NTP Studies: Pseudo-likelihood Estimates (standard errors) for Trivari-

ate Outcomes (common main dose effects). . . . . . . . ... ... .. 97
NTP Studies: Model Descriptions (l=linear ; q=quadratic). . . . . . . 99
NTP Studies: Model Selection. . . . . . . . . . .. ... ... ... .. 99

Simulation Results: Asymptotic Relative Efficiencies of Pseudo-likelihood
versus Maximum Likelthood for the bivariate MR model. . . . . . . . 102
Simulation Results: Asympotic Relative Efficiencies of Pseudo-likelihood
versus Maximum Likelthood for the Bivariate MR Model with a Zero
Background Rate Parameter Vector. . . . . . . . . . . . . . ... ... 103

Simulation Results: Asymptotic Relative Efficiencies of PL(1) versus
PL(2) for the Bivariate MR Model. . . . . . . . ... ... ... ... 105

FEG Study: Log Pseudo-likelihood Values for the Univariate MR Model,
with Given Fractional Polynomial Dose Trends on the Skeletal Main

Effect Parameter. The Clustering Parameter is Assumed Constant. . 114



List of Tables xi

5.2

5.3

5.4

5.5

5.6

5.7

5.8

6.1

6.2

6.3

6.4

7.1

7.2
7.3

BEG Study: Model Selection (All effects are constant except the ones

mentioned). . . . ... 115
FG Study: Pseudo-likelihood Estimates (standard errors) for Two Se-
lected Models. . . . . . . . . ..o 116

DEHP Study: Log Pseudo-likelihood Values for the Univariate MR
Model, with Given Fractional Polynomaal Dose Trends on the Fxter-

nal Main Effect Parameter. The Clustering Parameter is Assumed

Constant. . . . . . . . . . . 118
DEHP Study: Model Selection (All effects are constant except the
ones mentioned.) . . . . ... 121
DEHP Study: Pseudo-likelihood Fstimates (standard errors) for the
Final Model. . . . . . . . . . .. 122

EG (mice) Study: FEstimated Values of the BMDys and LEDys (mg/kg/day)
under Different Models (functional form of linear predictor in dose d

s indicated when necessary). . . . . .. ... 124
DEHP Study: FEstimated Values of the BMDos and LEDys (%) un-

der Different Models (functional form of linear predictor in dose d is

indicated when necessary). . . . . . ..o 125

Simulation Studies: Asymptotic Relative Efficiencies for Dose Effect

Parameter of GEE1, GEFE2 and PL versus ML. . . . . . . . . . . .. 143
Simulation Studies: Asymptotic Relative Efficiencies for Association
Parameter of GEE1, GEFE2 and PL versus ML. . . . . . . . . . . .. 144
NTP Studies: Parameter Estimates (standard errors) for a Marginal
Odds Ratio Model fitted with PL, GEEl and GFEE2. . . . . . . . . .. 148
NTP Studies: Time (in seconds) needed for the PL, GEE1 and GEFE2
Procedures. . . . . .. . 149

Heatshock Study: Parameter Estimates (standard error) for the Ba-
hadur Model, Applying Different Designs for the Association Structure.166

Heatshock Study: Goodness-of-fit Deviances (p-values). . . . . . . . . 169

Heatshock Study: Parameter estimates (model based standard error;empirically

corrected standard error) for GEE2, Applying Different Designs for

the Association Structure. . . . . . . . . . . 171



xii

List of Tables

7.4

7.5

8.1

8.2
8.3

9.1

9.2

9.3

9.4

9.5

9.6

9.7

Heatshock Study: Parameter Estimates (standard errors (model based;
empirically corrected)) for Logistic Regression, Two Different GEE1
Procedures and the Generalized Linear Mized Model (using GLIMMIX
Maero). . . . oo 172
Heatshock Study: Parameter Estimates (standard errors; p-values)

for the Mixed Effects Logistic (MIXLOG ), Compound Symmetry (CSYM)
and Conditional Logistic (CONDLOG) models. . . . . . . . . . .. .. 174

FG Study in Rats: Model Selection. All models assume separate fetal
weight variances within each dose group. A * indicates inclusion of
the corresponding effect on the mean weight outcome (1), the logit
of the malformation probability (logit(m)) or the log odds ratio In(v))
between weight and malformation. . . . . . . . . . . ... 193
FEG Study in Rats: Correlated Probit and Plackett-Dale Model Fits. . 194
FEG Study in Rats: Risk Assessment . . . . . . . . . . . ... ... .. 197

Relationship between T (true endpoint) and S (surrogate endpoint),
and Z (treatment) in an artificial set of data for which f(T|S) #
J(D), J(S1Z) # 1(S), and (T1S,2) = [(T|S) yet (T|Z) = F(T).
Cell counts represent numbers of patients. . . . . . . . . . . . .. .. 205
ARMD Study: Mean (standard error) of Visual Acuity at Baseline, at
6 Months and ot 1 Year According to Randomized Treatment Group
(P=Placebo, [=Interferon-a) . . . . . . . . .. ... ... 213
ARMD Study: The quantities of interest for the validation of a surro-
gate endpoint (T': true endpoint, S': surrogate endpoint, 7 : treatment,
f(): density function, PE: proportion explained, RE: relative effect) . 213
ARMD Study: The quantities of interest for the wvalidation of the
surrogate endpoint . . . . . . .. 215
Advanced Ovarian Cancer Trial: Parameter Estimates (standard er-
ror) for the Full and Reduced Two-stage Fized Effects Models, as well
as for the Reduced Random Effects Model. . . . . . . . . . . . .. .. 228
ARMD Study: R? Values of Interest for the Validation of a Surrogate
Endpoint. See Text for Details. . . . . . . . . . .. .. .. ... ... 229
Macular Degeneration Trial: Parameter Estimates (standard errors)
for the Full and Reduced Two-stage Fized Effects Probit Model . . . . 231



List of Figures

1.1
1.2
1.3

2.1

2.2

2.3
2.4

2.5

2.6

3.1

3.2
3.3

3.4

Dissected Mouse with Removed Uterus . . . . . . . . . . . . ... .. 4
Uterus with Removed Fetus . . . . . . . . . . . . . . . ... ... ... 5
Data Structure of Developmental Toxicity Studies. . . . . . . . . . .. 6
DEHP and DYME Studies: Observed and Averaged Malformation

Rates. . . . . . 28
THEO and TGDM Studies: QObserved and Averaged Malformation
Rates. . . . . . 29
FEG Study: Observed and Averaged Malformation Rates. . . . . . . . . 30
EG (rats) Study: Observed Malformation Rates and Average Weights
for all Clusters. . . . . . . . . . . .. . 32
Heatshock Studies: Actual Percentage of Affected Embryos (Experi-
mental Data Points Only). . . . . . . . . . .. ... ... .. 35

ARMD Study: True FEndpoint (change in visual acuity alt 1 year)
versus Surrogate Fndpoint (change in visual acuity at 6 months) for
all Individual Patients, Raw Data. . . . . . . . . . . . . .. ... ... 36

DEHP Study: Implementation using the SAS procedure PROC LO-
GISTIC. . . . . . 55

DEHP Study: Selected Output of the SAS procedure PROC LOGISTIC. 56

Asymptotic Relative Efficiency of the Association in the Reduced Thélot
Model (Independence Case). . . . . . . . . .. .. ... ... ... .. 59

Simulation Results: Asymptotic Relative Effictency of Pseudo-likelihood
versus Maximum Likelihood for the Dose Effect Parameter in the
Clustered Data Model. . . . . . . . . . . . ... ... ... .. .. 65



xXiv

List of Figures

4.1

4.2

4.3

4.4

5.1

5.2

Association Structure for Outcomes j and j' on Individuals k and k'

in Cluster ©. . . . . . .

Simulation Results: Comparison of Likelihood and Pseudo-likelihood
Test Statistics for a Common Dose Trend in the Bivariate MR Model

Simulation Results: Comparison of Likelihood Ratio (G?) and Ad-
justed Pseudo-likelihood Ratio G** Test Statistics for a Common Dose
Trend in an Overspecified and a Parsimonious Bivariate MR Model.
The Adjustments are Calculated under the Alternative (GX*(Hy)) and
under the Null Model (GX*(Ho)) . . . . . . . . . .. .. ... .. ...

NTP Studies: Informal Compartson of Score and Ratio Test Statistics
in the Bivariate MR Model. . . . . . . . . . . . . ... ... .. ...

FEG Study: From Top to Bottom, (a) Univariate dose response curves
for external malformations based on models with d and v/d trends on
main effect parameters 6 and constant clustering parameters &, (b)
Univariate dose response curves for visceral malformations based on
models with d and \/d trends on main effect parameters 0 and con-
stant clustering parameters d, (¢) Univariale dose response curves for
skeletal malformations based on models with a linear d and quadratic
(\/ d, d) trend on main effect parameters 0 and constant clustering pa-
rameters 0, (d) Trivariate dose response curves based on model with

common linear dose trend and models 2 and 5. . . . . . . . .. .. ..

FG Study: Observed and Fitted Skeletal Malformation Rates using a
Unwvariate MR Model with the Main Effect Parameter Modelled as
Function of Dose by (i) a Conventional Quadratic Polynomial, and

(ii) a Fractional Polynomial. . . . . . . . . .. .. ... ... ... ..

82



List of Figures

XV

5.3

6.1

6.2

7.1

8.1

8.2

9.1

9.2

DEHP Study: From Top to Bottom, (a) Univariate dose response
curves for external malformations based on models with a linear d,
a quadratic (d,d*) and a quadratic (1/(d + 1),1/(d + 1)?) trend on
main effect parameters 6 and constant clustering parameters &, (b)
Univariate dose response curves for visceral malformations based on
models with d and 1/(d + 1) trends on main effect parameters 6 and
constant clustering parameters d, (¢) Univariate dose response curves
for visceral malformations based on models with d and 1/(d+1) trends
on main effect parameters 0 and constant clustering parameters 9, (d)
Trivariate dose response curves based on model with common linear

dose trend and model 6. . . . . . . ... ..

Simulation Results: Asymptotic Relative Effictency of GEEZ2 versus
PL and GEFE! for the Dose Effect Parameter in o Marginally Specified
Odds Ratio Model . . . . . . . . . . .. . ...
Simulation Results: Asymptotic Relative Effictency of GEEZ2 versus
PL and GEE1 for the Association Parameter in a Marginally Specified
Odds Ratio Model . . . . . . . . . . .. . ...

Heatshock Study: Fetus-level Risk Surface for MBN. . . . . . . . . ..

FEG Study in Rats: Observed and Fitted Malformation Probabilities
for the Correlated Probit and Plackett-Dale Approach. . . . . . . . . .
FG Study in Rats: Observed and Fitted Average Weights for the Cor-
related Probit and Plackett-Dale Approach . . . . . . . .. .. . . ..

Association Structure for the Surrogate and True FEndpoints on Indi-
viduals § and k in Clusteri. . . . . . . . . .. . ... ... .. ..
Ovarian Cancer Trial: Treatment Effects on the True Endpoint versus
Treatment Effects on the Surrogate Endpoint for all Units of Analysis.
The Stze of Fach Point is Proportional to the Number of Patients in
the Corresponding Unit (Buyse et al. 1999). . . . . . . . . . ... ..

168

224



Chapter 1

Introduction

1.1 Developmental Toxicity Studies

1.1.1 Background

Lately, society has been increasingly concerned about problems related to fertility
and pregnancy, birth defects, and developmental abnormalities. Consequently, reg-
ulatory agencies such as the U.S. Environmental Protection Agency (EPA) and the
Food and Drug Administration (FDA) have given increased priority to protection
against drugs, harmful chemicals and other environmental hazards. As epidemiolog-
ical evidence of adverse effects on fetal development may not be available for specific
chemicals present in the environment, laboratory experiments in small mammalian
species provide an alternative source of evidence essential for identifying potential
developmental toxicants. For ethical reasons, animal studies afford a greater level of
control than epidemiological studies. Moreover, they can be conducted in advance of
human exposure. Unfortunately, there have been cases in which animal studies have
not been run properly. The Thalidomide tragedy is a prominent example (Salsburg
1996). Thalidomide was present in at least 46 countries under many different brand
names. In Belgium it is best known as “Softenon”. The drug was described as being
“safe” because it was not possible to develop toxic lesions in animal trials. Unfortu-
nately, this was not the case. An estimated 10.000 children were born throughout
the world as deformed, some with fin-like hands grown directly on the shoulders,
with stunted or missing limbs, deformed eyes and ears, ingrown genitals, absence of

a lung, a great many of them still-born or dying shortly after birth, etc. The animal



2 Chapter 1

tests performed by the inventor of the drug were very superficial and incomplete.
They did not carry out animal tests specifically to demonstrate teratogenetic effects.
This runs contrary to the basic ideas behind such studies. According to Paracelsus
all compounds are potential poisons: “Only the dose makes a thing not a poison”.
Malformations, like cancer, could occur when practically any substance, including
sugar and salt, is given in excessive doses. A proper animal study should therefore
always include a dose at which a toxic lesion happens.

As a consequence of the thalidomide tragedy, there has been a marked upsurge in
the number of animals used in testing of new drugs. Also, drugs are now specifically
tested on pregnant animals to safeguard against possible teratogenic effects on the
human foetus. However, methods for extrapolating the results to humans are still
being developed and refined. Differences in the physiological structure, function and
biochemistry of the placenta, that exist between species make reliable predictions
difficult.

Since laboratory studies further involve considerable amounts of time and money,
as well as huge numbers of animals, it is essential that the most appropriate and
efficient statistical models are used (Williams and Ryan 1996). Three standard
procedures (Segments I, I and I1I) have been established to assess specific types of

effects.

e Segment | or fertility studies are designed to assess male and female fertility
and general reproductive ability. Such studies are typically conducted in one
species of animals and involve exposing males for 60 days and females for 14

days prior to mating.

e Segment II studies are also referred to as “teratology studies”, since histor-
ically the primary goal was to study malformations (the origin of the word
“teratology” lies in the Greek word “tera”, meaning monster). In Section

1.1.2, I will describe standard teratology studies in greater detail.

e Segment I1I tests are focused on effects later in gestation and involve exposing

pregnant animals from the 15th day of gestation through lactation.

In addition, I will describe alternative animal test systems, such as the so-called
“heatshock studies” in Section 1.1.4. Throughout this work, we will focus on stan-
dard Segment II and heatshock studies.
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1.1.2 The Segment II Study: a Standard Experimental De-
sign

A Segment 11 experiment involves exposing timed-pregnant animals (rats, mice and
occasionally rabbits) during major organogenesis (days 6 to 15 for mice and rats) and
structural development. Administration of the exposure is generally by the clinical
or environmental routes most relevant for human exposure. Dose levels consist of a
control group and 3 or 4 dose groups, each with 20 to 30 pregnant dams. The dams
are sacrificed just prior to normal delivery, at which time the uterus is removed and
thoroughly examined (Figures 1.1 and 1.2).

An interesting aspect of Segment Il designs is the hierarchical structure of the
developmental outcomes. Figure 1.3 illustrates the data structure. An implant
may be resorbed at different stages during gestation. If the implant survives being
resorbed, the developing fetus is at risk of fetal death. Adding the number of
resorptions and fetal deaths yields the number of non-viable fetuses. If the fetus
survives the entire gestation period, growth reduction such as low birth weight may
occur. The fetus may also exhibit one or more types of malformation. These are

commonly classified into three broad categories:

e external malformations are those visible by naked eye, for instance missing

limbs;
e skeletal malformations might include missing or malformed bones;

e visceral malformations affect internal organs such as the heart, the brain, the

lungs etc.

Each specific malformation is typically recorded as a dichotomous variable (present
or absent). Adding the number of resorptions, the number of fetal deaths and the
number of viable fetuses yields the total number of implantations. Since exposure
to the test agent takes place after implantation, the number of implants, a random

variable, is not expected to be dose-related.

1.1.3 Challenges in Model Development

The analysis of developmental toxicity data as described above, raises a number of
challenges (Molenberghs et al. 1998, Zhu and Fung 1996), summarized below.
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Figure 1.1: Dissected Mouse with Removed Uterus
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Figure 1.2: Uterus with Removed Fetus
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Figure 1.3: Data Structure of Developmental Toxicity Studies.
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e Because of genetic similarity and the same treatment conditions, offspring of
the same mother behave more alike than those of another mother. This has
been termed litter effect. As a result, responses on different fetuses within a
cluster are likely to be correlated, inducing extra variation in the data relative
to those associated with the common binomial or multinomial distribution.
This extra variation must be taken into account in statistical analyses (Chen
and Kodell 1989; Kupper et al. 1986).

e Since deleterious events can occur at several points in development, an inter-
esting aspect lies in the staging or hierarchy of possible adverse fetal outcomes
(Williams and Ryan 1996). Ultimately, a model should take into account this
hierarchical structure in the data: (i) a toxic insult early in gestation may
result in a resorbed fetus; (ii) thereafter an implant is at risk of fetal death;
(iii) fetuses that survived the entire gestation period are threatened by low

birth weight and/or several types of malformation.

e While some attempts have been made for the joint analysis of prenatal death
and malformation (Chen et al. 1991; Ryan 1992), the analysis of developmental
toxicity data has usually been conducted on the number of viable fetuses alone.
An appropriate statistical model should then account for possible correlations

among the different fetal endpoints.

e As the number of viable fetuses can sometimes affect the chance of an adverse
effect (in a large litter a larger number of animals have to compete for the
same maternal resources and therefore the probability of malformation may
be larger), a model should also be flexible enough to allow litter size to affect

response probabilities.

e Finally, one may have to deal with outcomes of a mired continuous (low birth

weigth) /discrete (malformation indicator) nature.

1.1.4 Heatshock Studies

A unique type of developmental toxicity study was originally developped by Brown
and Fabro (1981) to assess the impact of heat stress on embryonic development.

Subsequent adaptations by Kimmel et al. (1994) allows the investigation of effects,
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related to both temperature and duration of exposure. These heatshock experiments
are described in Section 2.2. The embryos are explanted from the uterus of the
maternal dam and cultured in vitro. Next, each embryo is exposed to a short period
of heat stress by placing the culture vial into a warm water bath, involving an
increase over body temperature of 4 to 5°C for a duration of 5 to 60 minutes. The
embryos are examined 24 hours later for impaired or accelerated development. This
type of developmental test system has several advantages over the standard Segment
IT design. First of all, the exposure is directly administered to the embryo, so that
controversial issues regarding the unknown relationship between the exposure level
to the maternal dam and that which is actually received by the embryo, need not
be taken into account. Secondly, the exposure pattern can be easily controlled,
since target temperature levels in the warm water baths can be achieved within 2
minutes. Further, information regarding the effects of exposure are quickly obtained,
in contrast to the Segment II study which requires 8 to 12 days after exposure to
assess impact. And finally, this animal test system provides a convenient mechanism

for examining the joint effects of both duration of exposure and exposure levels.

1.2 Risk Assessment

Risk assessment can be defined as (Roberts and Abernathy 1996): “the use of avail-
able information to evaluate and estimate exposure to a substance and its conse-
quent adverse health effects.” An important goal in the risk assessment process is
to determine a safe level of exposure. Traditionally, quantitative risk assessment in
developmental toxicology has been based on the NOAEL, or No Observable Adverse
Effect Level, which is the dose immediately below that deemed statistically or bio-
logically significant when compared with controls. The NOAEL, however, has been
criticized for its poor statistical properties (see for example, Williams and Ryan
1996). Therefore, interest in developing techniques for dose-response modeling of
developmental toxicity data has increased, and new regulatory guidelines (U.S. EPA
1991) emphasize the need of quantitative methods for risk assessment. The standard
approach requires the specification of an adverse event, along with r(d) representing
the probability that this event occurs at dose level d. For developmental toxicity
studies where offspring are clustered within litters, there are several ways to define

the concept of an adverse effect. First, one can state that an adverse effect has oc-
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curred if a particular offspring is abnormal (fetus based). Alternatively, one might
conclude that an adverse effect has occurred if at least one offspring from the litter is
affected (litter based). Based on this probability, a common measure for the excess

risk over background is defined as
r*(d) =r(d) —r(0)

or as

r(d) —r(0)

S A

(1.1)
where definition (1.1) puts greater weight on outcomes with large background risks.
The benchmark dose (BMD,) is then defined as the dose satisfying r*(d) = ¢, where
q corresponds to the pre-specified level of increased response and is typically specified
as 0.01,1,5 or 10% (Crump 1984).

In practice, calculation of the BMD follows several steps. After choosing and
fitting an appropriate dose-response model, the excess risk function is solved for
the dose, d, that yields r*(d) = ¢. Since the dose-response curve is estimated from
data and has inherent variability, the BMD is itself only an estimate of the true
dose that would result in this level of excess risk. The final step therefore consists
of acknowledging this sampling uncertainty for the model on which the BMD, is
based, by replacing the BMD, by its lower confidence limit (Williams and Ryan
1996). Several approaches have been proposed.

Using the delta method, a Wald based method can be used:

BMDL, = BMD, — 1.645\/ Var(BMD,).

Assume that 3 is the vector of parameters included in the dose-response model,
then the BMD, variance can be obtained from the variance matrix of 3. Several
authors have indicated that this method suffers from drawbacks, especially with low
dose extrapolation (Aerts, Declerck and Molenberghs 1997; Crump 1984; Crump
and Howe 1983; Krewski and Van Ryzin 1981) in which case the method may yield
negative lower limits. Furthermore, Catalano, Ryan and Scharfstein (1994) have
empirically found that this method can yield unstable estimates.

Alternatively, an upper limit for the risk function can be computed, and thus the

dose that corresponds to a ¢% increased response above background is determined
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from this upper limit curve by solving:

#*(d) + 1.645/ Var(7*(d)) = q,

where the variance of the estimated increased risk function 7*(d) is estimated as:

Var(7* (d) — (%?)Tﬁ(ﬁ) (%) ‘g

-B

and where 6&/(,@) is the estimated covariance matrix of 3. The resulting dose level

is referred to as the lower effective dose (LED,) (Kimmel and Gaylor 1988).
Crump and Howe (1983) recommend using the asymptotic distribution of the

likelihood ratio (if available). Accordingto this method, an approximate 100(1—a)%

lower limit for the BMD, denoted by BMD(1), corresponding to an excess risk of ¢

is defined as
min{d(8) : r(d; B) = q over all B such that 2(¢(3) — £(3)) < X;(l —a)},

where £ denotes the log-likelihood and p is the number of model parameters. A sec-
ond approach, denoted BMD(2), is based on the profile likelihood method (Morgan
1992). First, construct a profile likelihood based confidence interval for the dose ef-
fect parameter 3. Secondly, transform this interval into an interval for d and check
that the transformation is monotonic. Aerts, Declerck and Molenberghs (1997) com-
pare the different lower limits for the BMD and show that, in general, BMD(1) yields
lower results than BMD(2). Furthermore, they note that for conditionally specified
models, the transformation is not monotonic, and hence the BMD(2) should not
be applied to such models. A variation on this theme, suggested by many authors
(Chen and Kodell 1989; Ryan 1992; Gaylor 1989), first determines a lower confi-
dence limit, e.g. corresponding to an excess risk of 1 per cent, and then linearly
extrapolates it to a BMD. The main advantage quoted for this procedure is that the

determination of a BMD is less model dependent.

1.3 Accounting for Litter Effects

In most developmental toxicity studies, exposure is administered to the dam, rather

than directly to the developing fetuses. Because of genetic similarity and the same
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treatment conditions, offspring of the same mother behave more similar than those
of another mother. This has been termed “litter effect”. Failure to account for the
clustering in the data can lead to serious underestimation of the variances of dose
effect parameters and, hence, inflated test statistics. The need for methods that
appropriately account for the heterogeneity among litters, especially with regard to
binary outcomes, has long been recognized. When the response is continuous and
assumed to be approximately Gaussian, there is a general class of linear models
that is suitable for analyses. However, when the response variable is categorical,
fewer techniques are available. This is partly due to the lack of a discrete analogue
to the multivariate normal distribution. The use of binomial or Poisson models in
toxicological testing has frequently been criticized on the grounds that they generally
poorly fit actual experimental data. This is caused by extra-binomial variation, i.e.
more variability among litters than would be expected based on binomial or Poisson
models. In an attempt to explain this variation, a number of generalized linear
models have been proposed. Williams (1975) assumes that fetuses in the same litter
provide a set of independent Bernoulli responses conditional on the litter-specific
succes probability, and that the variation in this probability from litter to litter
follows a beta-distribution. Haseman and Kupper (1979) provide an excellent survey
of likelihood generalizations of standard distributions to account for clustering.

In general, models for multivariate correlated binary data can be grouped into

the following different classes:
e conditionally specified models,
e marginal models,
o cluster-specific models

(Diggle, Liang and Zeger 1994). The answer to the question of which model family
is to be preferred depends principally on the research question(s) to be answered. In
conditionally specified models the probability of a positive response for one member
of the cluster is modelled conditionally on other outcomes for the same cluster, while
marginal models relate the covariates directly to the marginal probabilities. Cluster-
specific models differ from the two previous models by the inclusion of parameters
which are specific to the cluster. What method is used to fit the model, should not

only depend on the assumptions the investigator is willing to make, but also (to
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some extent) on the availability of computational algorithms. If one is willing to
fully specify the joint probabilities, maximum likelihood methods can be adopted.
Yet, if only a partial description in terms of marginal or conditional probabilities is

given, one has to rely on non-likelihood methods such as:

e generalized estimating equations,

e pseudo-likelihood methods.

1.3.1 Conditional Modelling

In a conditional model the parameters describe a feature (probability, odds, logit,

. ) of (a set of) outcomes, given values for the other outcomes (Cox 1972). The
best known example is undoubtedly the log-linear model. Rosner (1984) described a
conditional logistic model. Due to the popularity of marginal (especially generalized
estimating equations) and random-effects models for correlated binary data, condi-
tional models have received relatively little attention, especially in the context of
multivariate clustered data. Diggle, Liang and Zeger (1994, pp. 147-148) criticized
the conditional approach because the interpretation of the dose effect on the risk of
one outcome is conditional on the responses of other outcomes for the same individ-
ual, outcomes of other individuals and the litter size. Molenberghs, Declerck and
Aerts (1998) and Aerts, Declerck and Molenberghs (1997) have compared marginal,
conditional and random-effects models for univariate clustered data. Their results
are encouraging for the conditional model, since they are competitive for the dose
effect testing and for benchmark dose estimation, and because they are computation-
ally fast and stable. Molenberghs and Ryan (1999), henceforth abbreviated as MR,
discuss the advantages of conditional models and how, with appropriate care, the
disadvantages can be overcome. They constructed the joint distribution for clustered
multivariate binary outcomes, based on a multivariate exponential family model. A
slightly different approach, also based on the exponential family, is presented in
Fitzmaurice, Laird, and Tosteson (1996). An advantage of such a likelihood-based
approach is that, under correct model specification, efficiency can be gained over
other procedures such as generalized estimating equations (GEE) methods. Fur-
thermore, the model provides a natural framework for quantitative risk assessment
(Chapter 5). Present approaches estimate benchmark doses (Crump 1984) based
on the marginal probability of a single offspring being affected (Chen and Kodell
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1989). From a biological perspective, one might argue that it is important to take
into account the health of the entire litter when modelling risk as a function of dose.
The likelihood basis of the MR model allows calculation of quantities such as the
probability that at least one littermate is affected (probability of an affected litter).
In contrast, GEE based models do not provide a way to derive such quantities since
they do not specify the joint probability between outcomes but only marginal prob-
abilities and a working correlation matrix. While they could be calculated from a
fully specified marginal model, fitting these models is hampered by lengthy compu-
tations and/or parameter restrictions (Molenberghs, Declerck and Aerts 1998 and
Aerts, Declerck and Molenberghs 1997).

The flexibility of the MR model partly relies on the exponential family frame-
work. However, maximum likelihood estimation can be unattractive, due to exces-
sive computational requirements. For example, with multivariate exponential family
models, the normalizing constant can have a cumbersome expression, rendering it
hard to evaluate (Arnold and Strauss 1991). Several suggestions have been made
to overcome this problem, such as Monte Carlo integration (Tanner 1991). For ex-
ample, Geyer and Thompson (1992) use Markov Chain Monte Carlo simulations to
construct a Monte Carlo approximation to the analytically intractable likelihood.
Arnold and Strauss (1991) and Arnold, Castillo and Sarabia (1992) propose the
use of a so-called pseudo-likelihood (PL). Pseudo-likelihood (or pseudo-maximum-
likelihood) methods are alternatives to maximum likelihood estimation that retain
the methodology and properties while trying to eliminate some of the difficulties
such as strong distributional assumptions or intensive computations. The idea is
that a parametric family of models is specified, to which likelihood methodology
is applied; the method is denoted *“pseudo”, as there is no assumption that this
family is the true distribution generating the data. Geys, Molenberghs and Ryan
(1996, 1997, 1999) implemented a pseudo-likelihood method for the MR model that
replaces the joint distribution of the responses, a multivariate exponential-family
model, by a product of conditional densities that do not necessarily multiply to the
joint distribution (see also Chapters 3 and 4). In this approach, the normalizing
constant cancels, thus greatly simplifying computations, especially when litter sizes
are large and variable (since the normalizing constant depends on litter size). In
following chapters we will show that pseudo-likelihood estimation is an attractive

alternative for maximum likelihood estimation in the context of clustered binary
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data. Moreover, since the pseudo-likelihood still reflects the underlying likelihood
it can be useful for dose-response modelling (e.g. to determine a benchmark dose).
Pseudo-likelihood estimation turned out to be also extremely useful in the context
of spatial statistics (Cressie 1991). Besag (1975) used pseudo-likelihood estimation
in the context of a general Markov random field and established consistency of the
estimators. A selection of other applications of this technique can be found in Con-
nolly and Liang (1988), Liang and Zeger (1989) and Le Cessie and Van Houwelingen
(1994).

1.3.2 Marginal Modelling

In marginal models, the parameters characterize the marginal probabilities of a
subset of the outcomes, without conditioning on the other outcomes. Advantages
and disadvantages of conditional and marginal modelling have been reviewed by
Molenberghs (1992), pp. 24-25.

Bahadur (1961) proposed a marginal model, accounting for the association via
marginal correlations. This model has also been studied by Cox (1972), Kupper and
Haseman (1978) and Altham (1978). Assuming exchangeability, in the sense that
each fetus within a litter has the same malformation probability, and in addition
setting all the three- and higher-way correlations equal to zero, Bahadur’s represen-
tation can be simplified to give the following marginal distribution of 7;, the number
of malformations in cluster i:

n; 25 "y — 25
fQilmi, pi) = <Z>7TZ (1—m)

2

2 1—m n; — 2 T
+

2 T 2 1—7TZ'

X |1+ p; —zi(ns — ) ¢ |
where w; denotes the malformation probability in the ith cluster and n; denotes the
litter size. A drawback is the fact that the correlation p; is highly constrained when
the higher order correlations have been removed. Even when higher order parameters
are included, the parameter space of marginal parameters and correlations has a very
peculiar shape. Bahadur (1961) discusses restrictions on the parameter space in the
case of a second order approximation. From these, it can be deduced that the lower
bound approaches zero as the cluster size increases. However, it is important to

note that also the upper bound for p, is constrained. Indeed, even though it is one
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for clusters of size two, the upper bound varies between 1/(n; — 1) and 2/(n;, — 1)
for larger clusters. Taking a (realistic) cluster of size 12, the upper bound is in the
range (0.09;0.18). Kupper and Haseman (1978) present numerical values for the
constraints on p; for choices of 7, and n,. Restrictions for a specific version where a
third order association parameter is included as well, have been studied by Prentice
(1988). A more general situation is discussed in Declerck, Aerts and Molenberghs
(1997).

Molenberghs and Lesaffre (1994) and Lang and Agresti (1994) have proposed
models which parameterize the association in terms of marginal odds ratios. Dale
(1986) defined the bivariate global odds ratio model, based on a bivariate Plackett
distribution (Plackett 1965). Molenberghs and Lesaffre (1994) extended this model
to multivariate ordinal outcomes. They generalize the bivariate Plackett distribu-
tion in order to establish the multivariate cell probabilities. Their method involves
solving polynomials of high degree and computing the derivatives thereof. Lang
and Agresti (1994) exploit the equivalence between direct modelling and imposing
restrictions on the multinomial probabilities, using undetermined Lagrange multi-
pliers. Alternatively, the cell probabilities can be fitted using a Newton iteration
scheme, as suggested by Glonek and McCullagh (1995).

However, even though a variety of flexible models exist, maximum likelihood
can be unattractive due to excessive computational requirements, especially when
high dimensional vectors of correlated data arise. As a consequence, alternative
methods have been in demand. Liang and Zeger (1986) proposed so-called gener-
alized estimating equations (GEEL) which require only the correct specification of
the univariate marginal distributions provided one is willing to adopt “working”
assumptions about the association structure. They estimate the parameters asso-
ciated with the expected value of an individual’s vector of binary responses and
phrase the working assumptions about the association between pairs of outcomes in
terms of marginal correlations. Prentice (1988) extended their results to allow joint
estimation of probabilities and pairwise correlations. Lipsitz, Laird and Harring-
ton (1991) modified the estimating equations of Prentice (1988) to allow modelling
of the association through marginal odds ratios rather than marginal correlations.
When adopting GEE1 one does not use information of the association structure to
estimate the main effect parameters. As a result, it can be shown that GEE1 yields

consistent main effect estimators, even when the association structure is misspeci-
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fied. However, severe misspecification may seriously affect the efficiency of the GEE1
estimators. In addition, GEE1 should be avoided when some scientific interest is
placed on the association parameters. A second order extension of these estimating
equations (GEE2) that include the marginal pairwise association as well, has been
studied by Liang, Zeger and Qaqish (1992). They note that GEE2 is nearly fully ef-
ficient though bias may occur in the estimation of the main effect parameters when
the association structure is misspecified. A variation to this theme, using condi-
tional probability ideas, has been proposed by Carey, Zeger and Diggle (1993). It is
referred to as alternating logistic regressions.

Le Cessie and Van Houwelingen (1994) suggested to approximate the true like-
lihood by means of a pseudo-likelihood function that is easier to evaluate and to
maximize. Both GEE2 and PL yield consistent and asymptotically normal estima-
tors, provided an empirically corrected variance estimator, often referred to as the
sandwich estimator, is used. However, GEE is typically geared towards marginal
models, whereas PLi can be used with both marginal (Le Cessie and Van Houwelingen
1994; Geys, Molenberghs and Lipsitz 1998) and conditional models (Geys, Molen-
berghs and Ryan 1997, 1999). In Chapter 6 we will discuss the relative merits of
PL and GEE and illustrate them using data from developmental toxicity studies.

1.3.3 Cluster-specific Modelling

Cluster-specific models are differentiated from population-averaged models by the in-
clusion of parameters which are specific to the cluster. Unlike for correlated Gaussian
outcomes, the parameters of the cluster-specific and population-averaged models for
correlated binary data describe different types of effects of the covariates on the re-
sponse probabilities (Neuhaus 1992). The choice between population-averaged and
cluster-specific strategies may heavily depend on the scientific goals. Population-
averaged models evaluate the overall risk as a function of covariates; the condition-
ally specified models and marginal models, described above, belong to this class.
With the cluster-specific approach, the response rates are modelled as a function of
covariates and parameters, specific to a cluster. In such models, interpretation of
fixed-effect parameters is conditional on a constant level of the cluster-specific pa-
rameter (e.g. random effect). Population-averaged comparisons, on the other hand,

make no use of within cluster comparisons for cluster varying covariates and substan-
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tially underestimate within cluster risks. Neuhaus, Kalbfleisch and Hauck (1991)
discuss parameter interpretations of these models. They also draw the analogy with
omitted covariates; i.e. unless the included and omitted covariates are uncorrelated
(conditional on the response), the effect of a randomly assigned treatment will be
biased towards zero. Thus, from these papers, population-averaged effects would be
expected to be closer to zero than cluster-specific effects.

Within the class of cluster-specific models, we will study a mized-effect logistic
model as an alternative way of accounting for intra-litter heterogeneity as well as
a condittonal likelthood method. In the mixed-effect logistic procedure cluster ef-
fects are removed by assuming that they are realizations of a random variable and
integrating over their distribution. With conditional likelihood, one conditions on
the sufficient statistics for the cluster-specific effects (Ten Have, Landis and Weaver
1995; Conaway 1989).

1.4 Joint Modelling of Continuous and Discrete

Outcomes

Developmental toxicity studies may seek to determine the effects of dose on fetal
weight (continuous) and malformation incidence (binary) simultaneously, as both
have been found to be indicative of a toxic effect. This motivates the formulation
of a joint distribution with mixed continuous and discrete outcomes. However, this
is not standard.

Catalano and Ryan (1992) note that latent variable models provide a useful and
intuitive way to motivate the distribution of the discrete outcome. Such models
presuppose the existence of an unobservable, normally-distributed random variable,
underlying the binary outcome. The binary event is then assumed to occur if the
latent variable exceeds some threshold value. They further note that this notion of
latent variables has much appeal to toxicologists, because it provides a natural and
intuitive framework for the biological mechanism leading to adverse events such as
malformation.

A flexible latent variable approach to model an arbitrary number of continuous
and discrete outcomes, each of which follows an exponential family distribution, is

proposed by Sammel, Ryan and Legler (1997). They introduce a modified EM al-
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gorithm for parameter estimation with either a simple Monte Carlo expectation or
a numerical integration technique based on e.g. Gauss-Hermite quadrature to ap-
proximate the E-step which is not necessarily available in closed form. The method
allows for arbitrary covariate effects and estimates of the latent variable are pro-
duced as a by-product of the analysis. However, their approach does not extend to

correlated (i.e. clustered) data.

In the context of developmental toxicity studies, the dose-response model is often
characterized in each of the two outcomes (weight and malformation) separately,
using appropriate methods to account for correlation induced by the clustering of
fetuses within litters, or the well-known “litter-effect”. The more sensitive of the
two outcomes is determined based on the dose-response patterns and used for risk
assessment purposes. However, because these outcomes are correlated (Ryan et al.
1991), jointly modelling the outcomes and using the bivariate outcome as a basis for
risk assessment may be more appropriate (Regan and Catalano 1998a). A standard
approach is to apply a conditioning argument that allows the joint distribution to
be factorized in a marginal component and a conditional component, where the
conditioning can be done on either the discrete or continuous outcome (Catalano
and Ryan 1992; Cox and Wermuth 1992; Cox and Wermuth 1994; Fitzmaurice and
Laird 1995; Olkin and Tate 1961). Cox and Wermuth (1992, 1994) consider various
factorization methods and tests for independence. Let us discuss some factorization
methods.

Catalano and Ryan (1992) apply the latent variable concept to derive the joint
distribution of a continuous and a discrete outcome and then extend the model,
using GEE ideas, to incorporate clustering. They parametrize the model in a way
that allows to write the joint distribution as the product of the marginal distribution
of the continuous response, and the conditional distribution of the binary response
given the continuous one. The marginal distribution of the continuous response is
related to covariates, using a linear link function, while for the conditional distrib-
ution they use a probit link. Due to the non-linearity of the link function relating
the conditional mean of the binary response to the covariates, the regression para-
meters in the probit model of Catalano and Ryan (1992) have no direct marginal
interpretation. Furthermore, if the model for the mean has been correctly specified,
but the model for the association between the binary and continuous outcomes is

misspecified, the regression parameters in the probit model are not consistent. The
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lack of marginal interpretation and lack of robustness may be considered unattrac-
tive features of this approach. An important advantage, however, is that it can be
readily extended to allow for clustering. Fitzmaurice and Laird (1995) circumvent
the difficulties in the approach of Catalano and Ryan (1992) by factorizing the joint
distribution as the product of a marginal Bernoulli distribution for the discrete re-
sponse, and a conditional Gaussian distribution for the continuous response given
the discrete one. Under independence, their method yields maximum likelihood es-
timates of the marginal means that are robust to misspecification of the association
between the binary and continuous response. They also consider an extension of
their model that allows for clustering. By using GEE methodology, they avoid the
computational complexity of maximum likelihood in this more elaborate setting. A
conceptual difficulty with this model is the interpretation of the parameters, which

depends on cluster size.

A drawback of mixed outcome models based on factorization (as above) is that
they may be difficult to apply for quantitative risk assessment (Geys et al. 1999b,
Regan and Catalano 1998a). While taking into account the dependence between
weight and malformation, the intrafetus correlation itself cannot be directly esti-
mated. Thus, an expression for the joint probability that a fetus is affected (i.e.
malformed and/or of low birht weight) is difficult to specify. Catalano et al. (1993)
used a factorization model for quantitative risk assessment, in which direct esti-
mation of the bivariate correlation is approximated using a conditioning argument.
To overcome this problem, one needs joint models that incorporate the correlation

between outcomes directly. Thus, a desirable model should have three properties:

o it allows separate dose-response functions for each component of the bivariate

outcome,

e it accounts for the correlations due to clustering within litters,

e it estimates the bivariate intrafetus association.

In Chapter 8, we will propose models that satisfy these properties (see also Molen-
berghs and Geys 1998 and Geys et al. 1999b).
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1.5 Organization of Subsequent Chapters

In Chapter 2, we present an overview of the different data sets that will be used
throughout this work. Essentially, the data refer to three completely different study
types: (i) standard Segment 11 studies, (ii) heatshock studies and (iii) clinical trials.
The last group of data will be tackled in Chapter 9.

Chapter 3 introduces the MR model for a single binary outcome and explores
pseudo-likelihood as an alternative mode of inference to maximum likelihood. Con-
sistency and asymptotic normality of the pseudo-likelihood estimators are estab-
lished. The pseudo-likelihood equations are derived, the model is applied to the
NTP data described in Chapter 2 and an asymptotic and small sample relative

efficiency study is performed.

In Chapter 4 pseudo-likelihood estimating equations are derived for the general
multivariate clustered setting of MR. In that setting the pseudo-likelihood proce-
dure becomes extremely useful, especially for larger cluster sizes (three or higher),
where full maximum likelihood is hampered by excessive computing time require-
ments. In contrast, the pseudo-likelihood estimation method converges quickly, with
only minor losses in efficiency, especially for a range of realistic parameter settings.
Whereas in the univariate case described in Chapter 3 there is only one “natural”
formulation of the pseudo-likelihood estimating equations, several plausible routes
can now be followed. In addition, pseudo-likelihood counterparts for classical infer-
ential tools such as Wald, score and likelihood ratio test statistics are formulated.
They are shown to have easy-to-compute expressions and their limiting distribu-
tions are intuitively appealing. In contrast, GEE type versions of likelihood ratio
test statistics (Rotnitzky and Jewell 1990) take a slightly less appealing form. Next,
likelihood and pseudo-likelihood test statistics are compared using asymptotic and

small sample simulations, and exemplified using the NTP data.

While in Chapters 3 and 4, the NTP data are merely used to exemplify the
pseudo-likelihood methodology, the true data analysis is addressed thoroughly in
Chapter 5. We restrict ourselves to the DEHP and EG data described in Sec-
tions 2.1.1 and 2.1.5, which were collected to investigate the toxicity of di(2-ethylhexyl)-
phthalate and ethylene glycol in mice. The primary goal of such studies is to perform
risk assessment, i.e. to set safe limits for human exposure, based on the fitted model.

For risk assessment to be reliable, models should fit the data well in all respects.
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Although classical polynomial predictors are very customary, they are often of poor
quality, especially when low dose extrapolation is envisaged. A very elegant alterna-
tive approach to classical polynomials, which falls within the realm of (generalized)
linear methods, is given by fractional polynomials. This method has been advocated
by Royston and Altman (1994), and was applied by Royston and Wright (1998) for
the construction of age-specific reference intervals and by Sauerbrei and Royston
(1999) for building prognostic and diagnostic indices for multivariate models. An
attractive feature is that conventional polynomials are included as a subset of this
extended family. Since fractional polynomials provide a much wider range of func-
tional forms, we switched to this approach (see also Geys et al. 1999a). Estimation is
by pseudo-likelihood rather than maximum likelihood, due to the latter’s excessive
computational requirements. In order to select an appropriate dose-response model,
we need to use the test statistics developed in Chapter 4. Once a suitable model is

selected, it serves as basis for quantitative risk assessment.

In Chapter 6 we consider generalized estimating equations and pseudo-likelihood
as alternatives for maximum likelihood for the analysis of exchangeable clustered bi-
nary data, using a marginal odds ratio model. As mentioned earlier in Section 1.3.2,
maximum likelihood estimation can become prohibitive in a marginally specified
model due to excessive computational requirements, especially when high dimen-
sional vectors of correlated data arise. The extension to longitudinal data, which
typically require more complicated association designs, needs further investigation.
First, we construct an appropriate pseudo-likelihood function and derive its cor-
responding estimating equations. Depending on whether scientific interest focuses
mainly on the main effects or shifts towards the association parameters, different
pseudo-likelihood versions can be considered. Next, we present an equivalent but
more appealing representation of the pseudo-likelihood estimating equations in terms
of contrasts between observed and expected frequencies. We discuss the relative mer-
its of the pseudo-likelihood methodology and generalized estimating equations and

illustrate them using data from the NTP studies.

The standard approach for many teratology applications is to use a population-
averaged model with primary interest on evaluating dose-response effects and where
the covariate level is considered to be constant over a litter of animals. Yet, recently
there has been growing interest in evaluating effects of covariates, such as fetal

weight and uterine position, which can vary between individuals within a cluster.
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In that case, individual-level covariates for teratology data are well justified. Chap-
ter 7 describes several population-averaged as well as cluster-specific models for the
analysis of developmental toxicity studies, in which individual-level covariates play
an important role and applies them on the heatshock studies. Within the class of
population-averaged models, we show that conditionally specified models, such as
the one described in Section 1.3.1, should be avoided since they lead to undesirable
properties. In addition, we present a simple goodness-of-fit testing procedure for
clustered binary data which allows us to compare several possible association struc-
tures. Indeed, the specific form of the heatshock study allows us to quantify the
association between different embryos from the same initial dam in terms of genetic
as well as environmental factors, in contrast to the more standard teratology studies
where exposure occurs through the maternal dam (Geys, Molenberghs and Williams
1997, 1999).

Measurements of both continuous and discrete outcomes are encountered in many
statistical problems. In Chapter 8 we consider the particular context of teratology
studies, where quantitative risk assessment is aimed at determining the effect of
dose on the probability that an individual is malformed (binary indicator) or of low
birth weight (continuous), both being important measures of teratogenicity. We
introduce two different joint marginal mean models for outcomes of a mixed nature.
First, we introduce a probit approach (Regan and Catalano 1999), in which the
existence of an underlying continuous variable is assumed for each binary outcome.
Hence, the joint distribution of weight and malformation can be assumed to follow
a multivariate normal distribution. The second approach that we consider is the
Plackett-Dale approach. Here, the latent malformation outcomes are assumed to
follow a Plackett distribution. In both cases, specification of the full distribution is
avoided using generalized estimating equations and pseudo-likelihood methodology
respectively. Quantitative risk assessment is illustrated using data from a develop-
mental toxicology experiment of ethylene glycol in rats.

Chapter 9 is dedicated to an additional application of the previously described
methods for analyzing correlated data, in the context of a multiple clinical trials
study. In that case, the data have a similar structure as in developmental toxicity
studies. Different trials (clusters) are assumed to be independent. Individuals within
a trial (fetuses within a cluster) may however be correlated possibly yielding multiple

associated outcomes of potentially mixed data types.
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Motivating Examples

2.1 NTP studies

In this section we introduce developmental toxicity studies conducted by the Re-
search Triangle Institute under contract to the National Toxicology Program (NTP).
The studies concerned the effects in mice (occasionally rats) of five different chem-
icals: di(2-ethylhexyl)-phthalate (DEHP) (Tyl et al. 1988), ethylene glycol (EG)
(Price et al. 1987), triethylene glycol dimethyl ether (TGDM) (George et al. 1987),
diethylene glycol dimethyl ether (DYME) (Price et al. 1985) and theophylline (THEO)
(Lindstrom et al. 1990).

2.1.1 DEHP Study in Mice

The use of phtalic acid esters as plasticizers for numerous plastic devices is wide-
spread. The most commonly used ester is di(2-ethylhexyl)-phthalate (DEHP), which
may constitute as much as 40% by weight of the finished products, in order to pro-
vide them a desirable flexibility and clarity. It has been well documented that small
quantities of phtalic acid esters may leak out of plastic containers in the presence
of food, milk, blood, or various solvents. Due to their ubiquitous distribution and
presence in human and animal tissues, the possible toxic effects of the phtalic acid
esters have been the subject of considerable concern. In particular, the developmen-
tal toxicity study described by Tyl et al. (1988) has attracted much interest in the
toxicity of DEHP. The doses selected for the study were 0, 0.025, 0.05, 0.10 and
0.15 % DEHP with 25, 26, 26, 17 and 9 timed-pregnant mice assigned to each of

23
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Table 2.1: Summary Data from a DEHP Experiment in Mice.

Dose Dams Live Litter Size Malformations
(%) (mean)  Ext. Visc. Skel.
0.000 25 330 13.2 0.0 15 1.2
0.025 26 288 11.1 1.0 0.4 0.4
0.050 26 277 10.7 54 72 43
0.100 17 137 8.1 175 153 183
0.150 9 50 5.6 54.0 50.0 48.0

these dose groups, respectively. Females were observed daily during treatment, but
no maternal deaths or distinctive clinical signs were observed. The dams were sac-
rificed, slightly prior to normal delivery and the status of uterine implantation sites
recorded. A total of 1082 live fetuses were dissected from the uterus, anaesthetised,
and examined for external, visceral and skeletal malformations. Table 2.1 shows
for each dose group, the number of pregnant dams, the number of live fetuses, the
mean litter size and the rate of malformation for three different classes: external
malformations, visceral malformations and skeletal malformations. The table sug-
gests clear dose-related trends in the malformation rates. The average litter size
(number of viable animals) decreases with increased levels of exposure to DEHP, a

finding that is attributable to the dose-related increase in fetal deaths.

2.1.2 DYME Study in Mice

Diethylene glycol dimethyl ether (DYME) is a component of industrial solvents.
These are widely used in the manufacture of protective coatings such as lacquers,
metal coatings, baking enamels, etc. Although to date, several attempts have proven
inadequate to evaluate the potential of glycol ethers to produce human reproduc-
tive toxicity, structurally related compounds have been identified as reproductive
toxicants in several mammalian species, producing (1) testicular toxicity and (2)
embryotoxicity. Price et al. (1987) describe a study in which timed-pregnant mice
were dosed with DYME throughout major organogenesis (gestational days 8 through
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Table 2.2: Summary Data from ¢ DYME Experiment in Mice.

Dose Dams Live Litter Size Malformations

(mg/kg/day) (mean)  Ext. Visc. Skel.
0.0 21 282 13.4 0.0 0.0 0.0
62.5 20 225 11.3 0.0 00 0.0
125 24 290 12.1 1.0 0.0 1.0
250 23 261 11.3 2.7 0.1 200
500 23 141 6.1 66.0 199 794

15). The doses selected for the study were 0, 62.5, 125, 250 or 500 mg/kg/day with
21, 20, 24, 23 and 23 pregnant dams assigned to each of these dose groups, respec-

tively. Table 2.2 summarizes the data.

2.1.3 THEO Study in Mice

The developmental toxicity of orally administered Theopylline (THEO) in mice has
been described by Lindstrom et al. (1990). Theophylline belongs to the class of com-
pounds, used in the treatment of respiratory diseases, as anti-asthmatics, diuretics,
etc. Theophylline has been shown to cross the human placenta and is secreted in
breast milk. Therefore, there has been an increased interest in the teratogenetic
potential of Theophylline in rodents. Table 2.3 summarizes the data from a devel-
opmental toxicity study, investigating the effect of Theophylline in Mice. The doses
selected for the study were 0, 0.075, 0.15 or 0.20 % THEO with 25, 25, 29 and
17 pregnant dams assigned to each of these dose groups, respectively. The table

suggests small dose-related trends in the malformation rates.

2.1.4 TGDM Study in Mice

Similar to DEHP, Triethylene glycol dimethyl ether (TGDM) is an industrial solvent
with diverse applications. Its potential developmental toxicity has been investigated
by George et al. (1987). Table 2.4 summarizes the data from their study. The doses
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Table 2.3: Summary Data from a THEO Experiment in Mice.

Dose Dams Live Litter Size Malformations

(%) (mean) Ext.  Visc. Skel.
0.00 25 296 11.8 0.003  0.000 0.000
0.075 25 278 11.1 0.007  0.000 0.000
0.15 29 300 10.3 0.017 0.003 0.003
0.20 17 197 11.6 0.020 0.005 0.000

Table 2.4: Summary Data from o TGDM FEaxperiment in Mice.

Dose Dams Live Litter Size Malformations

(mg/kg/day) (mean) Ext.  Visc. Skel.
0.0 26 319 12.3 0.003 0.000 0.000
250 26 275 10.6 0.000 0.000 0.000
500 24 262 10.9 0.004 0.000 0.004
1000 26 286 11.0 0.042 0.003 0.073

selected for the study were 0, 250, 500 or 1000 mg/kg/day TGDM with 26, 26, 24
and 26 pregnant dams assigned to each of these dose groups, respectively. Visceral

malformations are very infrequent with TGDM (only one malformation observed).

2.1.5 EG Study in Mice

Ethylene glycol (EG) is a high-volume industrial chemical with diverse applications.
For instance, it can be used as an antifreeze, as a solvent in the paint and plas-
tics industries, as a softener in cellophane, etc. While EEG may not be hazardous
to humans in normal industrial handling, it can become dangerous when used at
elevated temperatures or when ingested. The potential reproductive toxicity of EG

has been evaluated recently in several laboratories. Price et al. (1985) for example,
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Table 2.5: Summary Data from an EG FExperiment in Mice.

Dose Dams Live Litter Size Malformations

(mg/kg/day) (mean)  Ext. Visc. Skel.
0 25 297 11.9 0.0 00 0.3
750 24 276 11.5 1.1 0.0 8.7
1500 22 229 10.4 1.7 0.9 36.7
3000 23 226 9.8 7.1 4.0 558

describe a study in which timed-pregnant CD-1 mice were dosed by gavage with EG
in distilled water. Dosing occurred during the period of organogenesis and structural
development of the fetuses (gestational days 8 through 15). The doses selected for
the study were 0, 750, 1500 or 3000 mg/kg/day with 25, 24, 22 and 23 pregnant
dams assigned to each of these dose groups, respectively. Table 2.5 shows the rate
of malformed litters for each dose group and suggests clear dose-related trends for
all three classes of malformation. While skeletal malformations are substantial in
the highest dose group, external and visceral malformations show only slight dose
effects.

Figures 2.1-2.3 show for each of these studies and for each dose group, the

observed and averaged malformation rates in mice.

2.1.6 EG Study in Rats

Price et al. (1985) also describe a developmental toxicity experiment, investigating
the effect of EG in rats. The doses selected for the present teratology study were 0,
1.25, 2.50 and 5.0 g/kg/day. A total of 1368 live rat fetuses were examined for low
birth weight (continuous) or defects (binary). This joint occurence of continuous and
binary outcomes will provide additional challenges in model development. Table 2.6
summarizes the malformation and fetal weight data from this experiment. The
data show clear dose-related trends for both outcomes. The rate of malformation
increases with dose, ranging from 1.3% in the control group to 68.6% in the highest

dose group. The mean fetal weight decreases monotonically with increasing dose,
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Figure 2.1: DEHP and DYME Studies: Observed and Averaged Malformation Rates.
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Table 2.6: Summary Data from an EG Experiment in Rats.

Dose Dams Live Litter Size Malf. Weight Pearson
(g/kg/day) (mean)  Nr. % Mean SD  Corr. (p)
0.00 28 379 13.50 5 1.3 3.40  0.38 0.07
1.25 28 357 12.75 21 5.8 3.30  0.37 0.00
2.50 29 345 11.89 86 24.9 2.90 0.36 -0.29
5.00 26 287 11.04 197 68.6 248 0.46 -0.37

ranging from 3.40g to 2.48g in control and highest dose group, respectively. The
fetal weight variances, however, do not change monotonically with dose. In the lower
dose groups, the variances remain approximately constant. However, in the highest
dose group, the fetal weight variance is elevated. Further, it can be observed that
simple Pearson correlation coefficients (p) between weight and malformation tend to
strengthen with increasing doses. As doses increase, the correlation becomes more
negative, because the probability of malformation is increasing and fetal weight is
decreasing. This is illustrated in Figure 2.4, which shows the observed malformation
rates for all clusters, the averaged malformation rates for each dose group, the
average weight outcomes for all clusters and the average weight outcomes for each

dose group.

2.2 Heatshock Studies

Heatshock studies have been described by Brown and Fabro (1981) and Kimmel
et al. (1994). In these experiments, embryos are explanted from the uterus of a
maternal dam (rats, mice or rabbits) during the gestation period and cultured in
witro. Each subject is subjected to a short period of heat stress by placing the culture
vial into a water bath, usually involving an increase over body temperature of 4 to
5°C for a duration of 5 to 60 minutes. The embryos are examined 24 hours later for
impaired and/or accelerated development. The studies collect measurements on 13

morphological variables. We will focus our attention on 3 of these (olfactory system
(OLF), optic system (OPT), and midbrain (MBN)) and assess the effects of both



32 Chapter 2

107 -
+ Observed Rates in Cluster‘s‘ .
‘XAver‘age Rate in Dose Group‘ .
© . .
4&; 3
o . X
5 . ‘
= 1
05| : .
=
1S :
o t :
h
© .
= . . X .
. s -
. . .
> i .
pe . . . . " ,
004 0 1 2 3 4 5 6
Dose [g/kg/day)
51 .
» Observed Average Weights over Cluster*s‘
. ‘>< Observed Average Weights Over Dose Groups ‘
— 4 . .
0 ' : .
4_) . - .
c X
o) T i H :
@ 3f ) ! i .
= ¢ ! §
g ~ i
o 3
L H
20 N
X 0 g 2 3 4 5 5

Dose [(g/kg/day)

Figure 2.4: EG (rats) Study: Observed Malformation Rates and Average Weights
for all Clusters.



Motivating Examples 33

Table 2.7: Heatshock Studies: Number of (surviving) Embryo’s Exposed to Fach

Combination of Duration and Temperature.

Temperature Duration of Exposure Total

5 10 15 20 30 45 60

37.0 11 11 12 13 12 18 11 88
40.0 1 9 9 & 11 10 11 69
40.5 9 g 10 9 11 10 7 64
41.0 0 9 100 11 9 6 0 35
41.5 9 g8 9 10 10 7 O 33
42.0 0 8 10 5 7 6 0 46
Total 60 53 60 56 60 57 29 375

Table 2.8: Heatshock Studies: Distribution of Cluster Sizes.

cluster size n; 1 2 3 4 5 6 7 8 9 10 11

number of clusters of sizen; |6 3 6 12 13 11 8 5 2 3 2

duration and level of exposure on each morphological endpoint, coded as affected
(1) versus normal (0).

While the heatshock studies do not represent a standard developmental toxicity
test system (Tyl et al. 1988), they have several advantages. These include direct
exposure to the embryo rather than the dam, easily controlled exposures, quick
results, and a mechanism for exploring dose-rate effects.

The study design for the set of experiments conducted by Kimmel et al. (1994)
is shown in Table 2.7, which indicates the number of embryos cultured in each
temperature-duration combination. A total of 375 embryos, arising from 71 initial
dams, survived the heat exposure. These were further examined for any affections
and used for analysis.

The distribution of cluster sizes, ranging between 2 and 11, is given in Table 2.8.
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The mean cluster size is 5. Since only surviving fetuses were included, cluster sizes
are smaller than those observed in most other developmental toxicity studies and

do not reflect the true original litter size.

Figure 2.5 shows the actual percentages of affected embryos for each experimental

temperature-duration combination.

Historically, the strategy for comparing responses among exposures of different
durations to a variety of environmental agents relies on a conjecture called Haber’s
Law, which states that adverse response levels should depend only on cumulative
exposure (dose x exposure) (Haber 1924). We will return to this subject in Chap-
ter 7.

2.3 Macular Degeneration Study

The data arise from a randomized multicentric clinical trial comparing an experi-
mental treatment (Interferon-«) to a corresponding placebo administered to patients
with age-related macular degeneration (ARMD). We focus on the comparison be-
tween placebo and the highest dose (6 million units daily) of Interferon-a, but the
full results of this trial have been reported elsewhere (Pharmacological Therapy for
Macular Degeneration Study Group 1997). Patients with ARMD progressively loose
vigion. In the trial, the patients’ visual acuity was assessed at different time points
through their ability to read lines of letters on standardized vision charts. These
charts display lines of 5 letters of decreasing size, which the patient should try to
read from top (largest letters) to bottom (smallest letters). Each line with at least 4
letters correctly read is called one “line of vision”. The patient’s visual acuity is the
total number of letters correctly read. The primary endpoint of the trial is the pro-
portion of patients having lost at least 3 lines of vision in 1 year, compared to their
baseline performance. The secondary endpoint of the trial is the mean visual acuity
at 1 year. In Chapter 9, we examine whether visual acuity at 6 months can be used
as a surrogate for visual acuity at 1 year with respect to the effect of Interferon-a.

The data are shown graphically in Figure 2.6.
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2.4 Advanced Ovarian Cancer Study

Recently, there has been increased interest in the chemotherapy of ovarian carci-
noma, and several large-scale, randomized trials have been conducted of various
drug combinations. Here, the data come from a meta-analysis of four randomized
multicenter trials in advanced ovarian cancer. Individual patient data are available in
these four trials for the comparison of two treatment modalities: cyclophosphamide
plus cisplatin (CP) versus cyclophosphamide plus adriamycin plus cisplatin (CAP).
The full results of this meta-analysis were published with a mininimum follow-up
of 5 years in all trials (Ovarian Cancer Meta-Analysis Project 1991). The dataset
was subsequently updated to include a mininum follow-up of 10 years in all trials
(Ovarian Cancer Meta-Analysis Project 1998). After such a long follow-up, most
patients have had a disease progression or have died (952 of 1194 patients, i.e., 80%).
Although methods that account for censoring would admittedly be preferable, cen-
soring will be ignored in our analyses. The ovarian cancer dataset contains only four
trials. This will turn out to be insufficient to apply the meta-analytic methods of
Chapter 9. In the two larger trials, information is also available on the centers in
which the patients had been treated. We can then use center as the unit of analysis
for the two larger trials, and the trial as the unit of analysis for the two smaller trials.
A total of 50 “units” are thus available for analysis, with a number of individual

patients per unit ranging from 2 to 274.



38

Chapter 2




Chapter 3

Pseudo-likelihood Estimation in
Exponential Family Models with a
Single Clustered Binary Outcome

3.1 Introduction

Molenberghs and Ryan (1999) proposed a likelihood-based model for clustered bi-
nary data, based on a multivariate exponential family model (Cox 1972). Their
model is conditional in nature: it describes a feature of (a set of) outcomes con-
dional on the other outcomes. This conditional interpretation is often seen as a
drawback (Diggle, Liang and Zeger 1994, pp. 147-148), however in the Introduction
we indicated that this difficulty is not a major issue. In this chapter we apply their
model to the special case of a univariate clustered outcome, adopting exchangeabil-
ity. While the model benefits from the elegance and simplicity of exponential family
theory and is flexible in terms of allowing response rates to depend on cluster size, a
main problem (particularly with large clusters) is the evaluation of the normalizing
constant. Therefore, we introduce pseudo-likelihood as an alternative estimation
method. Strictly speaking this is a non-likelihood method. The principal idea is to
replace a numerically challenging joint density by a simpler function that is a suit-
able product of ratios of likelihoods of subsets of the variables. For example, when
a joint density contains a computationally intractable normalizing constant, one

might calculate a suitable product of conditional densities which does not involve
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such a complicated function. While the method achieves important computational
economies by changing the method of estimation, it does not affect model interpre-
tation. Model parameters can be chosen in the same way as with full likelihood and
retain their meaning.

Notation, model formulation and classical likelihood inference for the model pro-
posed by Molenberghs and Ryan (1999) are introduced in Section 3.2. Section 3.3
defines pseudo-likelihood estimation. Section 3.4 describes the pseudo-likelihood
concept for unclustered data. Pseudo-likelihood estimation for clustered binary out-
comes is considered in Section 3.5 and its relative merits are assessed by means of
some examples from developmental toxicity studies in Section 3.6. In addition, as-
ymptotic as well as small sample relative efficiencies are studied in Sections 3.7 and
3.8.

3.2 Model Formulation

Consider an experiment involving N clusters, the ith of which contains n, individu-
als, each of whom are examined for the presence or absence of M different responses.
Suppose for the moment that Y;;, = 1 when the kth individual in cluster ¢ exhibits
the jth response and 0 otherwise. Let Y; represent the vector of outcomes for the

¢th cluster, and a; an associated vector of cluster level covariates.

3.2.1 No Clustering

Let us first suppose there is no clustering (n, = 1;¢ = 1,..., N). Because k = 1
in this setting, we drop this index temporarily from our notation. The observable
outcome is thus Y; = (Yii,...,Yixm)?. Let W, be a ¢ x 1 vector containing the
components of Y, as well as their bivariate and higher order cross-products. (Hence
the dimension of W is (Af) + (1\24) +e (%) = 2M 1)) Next, consider the following
probability mass function:

fri(0:;0;) =exp {©] w; — A(©,)}, (3.1)

where @, is a vector of natural parameters, having the same dimension as W,

and A(®,) is the normalizing constant. This model was proposed by Cox (1972).
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Expanding the components explicitly leads to

M
JriW;:©:) = exp {Z%?ﬁj + > Wi Y
=1

I<J’

+ Wit MYl - Yid — A<@z‘)}

The 6 parameters can be thought of as “main effects”, whereas the w parameters are
association parameters or interactions. Models that do not include all interactions
are derived by replacing W; by one of its subvectors. A useful special case is found

by setting all three and higher order parameters equal to zero:

M

Jr(Y;;0:) o< exp {Z 0s5%i5 + sz‘jj'yz‘jyz‘j'} ) (3.2)
Jj=1 J<j’

which is a member of the quadratic exponential family discussed by Zhao and Pren-

tice (1990). Thélot (1985) studied the case where M = 2. If M = 1, the model

reduces to ordinary logistic regression.

We will briefly outline standard procedures for likelihood based parameter esti-
mation in this setting. Modelling in terms of a parsimonious parameter vector of
interest can be achieved using a linear model of the form @, = X,;3, where X is
a ¢ X p design matrix and B a p x 1 vector of unknown regression coefficients. Let
the mean parameter be 7, = E(W;). Then it is a basic property of exponential
families (e.g. Brown 1986, p. 36) that 7r; is related to the natural parameter ©; by
7; = 0A(0;)/00;. Next, the log-likelihood can be written as

N N
= "I fy;0,) = > {B"X w,— AX.B)},
i—1 i—1

and the score function is

N

Up) =Y X (w —m).

i—1

The maximum likelihood estimator for 3 is defined as the solution to U(3) = 0. It

is usually found by applying a Newton-Raphson procedure, which coincides with a

Fisher scoring algorithm for exponential family models with canonical link functions.
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3.2.2 Clustered Outcomes

Let us now consider a single clustered outcome. Because the index j always equals
1, we drop it temporarily from our notation. We re-introduce however the subscript
k to indicate an individual within a cluster.

Similarly to model (3.2), Molenberghs and Ryan (1999) derived the joint distri-
bution of the clustered binary data Y, as:

fy(y; 0", m;) = exp {ZQ:ZM + Z 0; YirYiry — A(@:)} ; (3.3)
k=1 K<k’

with 0} describing the association between pairs of individuals within the ith cluster.

They code Y;, = 1 when the kth individual in cluster ¢ exhibits the jth response

and —1 otherwise. They use this coding rather than 1 and 0 since it provides a

parameterization that more naturally leads to desirable properties when the roles of

success and failure are reversed (see Cox and Wermuth 1994). Defining the number

of individuals from cluster ¢ with positive response to be z;, (3.3) then becomes

fY(yz§®;anz‘) — €xp {9:2’@ - 9;(71@ — Zz)

16 KZ) + (" N Z) — i — zi)] = A(@;)}
— exp {0;(2,2@ — ) 6 Kg) — 2+ 223} - A(@;)} .

Upon absorbing constant terms into the normalizing constant and using the repara-

metrization §; = 207 and o, = 20 this becomes
fr(y;;0;,n;) = exp {Hizi(l) + (52‘25(2) - A(@i)} ) (3.4)

with zZ(l) =z, and 22(2) = —zi(n; — 2;). For this model, independence corresponds to
d;, = 0. A positive §; corresponds to classical clustering or overdispersion, whereas
a negative parameter value occurs in the underdispersed case. It is worthwhile to
note that even for underdispersion, no restrictions are required on the parameter
space. As discussed in Section 1.3.2, this feature is in contrast to other models for
clustered data such as the Bahadur (1961) model. Molenberghs and Ryan (1999)
show that model (3.4) has several additional desirable properties. First, the model

is clearly invariant to interchanging the codes of successes and failures, whence
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both estimation and testing will be invariant for this change as well. Second, the
conditional probability of observing a positive response in a cluster of size n;, given

that the remaining littermates yield z; — 1 successes is given by:

explts — & (n: — 2z + 1)]
1+ expl; — di(n; — 2z + 1)]

Pya =1|z: — 1,n;) = ; (3.5)
which decreases to zero when n; increases and z; is bounded, and approaches unity
for increasing n, and bounded n; —z,, whenever there is a positive association between
outcomes. From (3.5) it is clear that the conditional logit of an additional success,
given z; — 1 successes, equals 6; — 6;(n; — 2z, + 1). Thus, upon noting that the
second term vanishes if z; — 1 = (n; — 1)/2, 6; is seen to be the conditional logit for
an additional success when about half of the littermates exhibit a success already.
Similarly, the log odds ratio for the responses between two littermates is equal to 24;,
confirming the association parameter interpretation of the d-parameter. Finally, the
marginal succes probability in a cluster of size n; is clearly a (non-linear) function

of n;:

I <é> : S0 2 () exp{biz — 6;2(n; — 2)}
7 S oni() exp{0iz — 8i2(ni — 2)}
Because this model is conditional in nature, this marginal quantity does not simplify
in general. Nevertheless, this expectation can be easily calculated and plotted to
explore the relationship between cluster size and response probability.
Although model (3.4) is very flexible and has several desirable properties, max-
imum likelihood estimation can become cumbersome due to the evaluation of the

normalizing constant. Therefore we propose an alternative estimation method in
Section 3.3.

3.3 Pseudo-likelihood: Definition and Asymptotic

Properties

To introduce pseudo-likelihood formally, we will use the convenient general definition
given by Arnold and Strauss (1991). Without loss of generality we can assume that
the vector Y; of binary outcomes for subject i (i=1, ... ,N) has constant dimension

L. The extension to variable lengths of Y is straightforward.
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3.3.1 Definition

Define S as the set of all 2—1 vectors of length L, consisting solely of zeros and ones,
with each vector having at least one non zero entry. Denote by yZ(S) the subvector
of y, corresponding to the components of s that are non zero. The associated joint
density is fs (ygs); ©,). In order to define a pseudo-likelihood function, one chooses
a set 0 = {0s]s € S} of real numbers, with at least one non zero component. The
log of the pseudo-likelihood is then defined as

N
pt =33 6.0 () ©)). (3.6)
i=1 s€S
In our development we will assume adequate regularity conditions to ensure that
(3.6) can be maximized by solution of the pseudo-likelihood (score) equations, the
latter obtained by differentiation of the logarithm of the pseudolikelihood and the
setting of the derivative to zero.

The classical log-likelihood function is found by setting 6, = 1 if s is the vector
consisting solely of ones, and 0 otherwise. A convenient pseudo-likelihood function
for exponential family models such as described in Section 3.2.1, is found by replacing
the joint density fy(y;;©;) by the product of univariate “full” conditional densities
F il {yiyt. 3" # 7;0;) for j = 1,..., L, obtained by conditioning each observed
outcome on all others. This idea can be put into the framework (3.6) by choosing
01, = L and o5, = —1for j =1,..., L where 1, is a vector of ones and s; consists of
ones everywhere, except for the jth entry. For all other vectors s, ds equals zero. We
refer to this particular choice as the full conditional pseudo-likelihood function. This
pseudo-likelihood has the effect of replacing a joint mass function with a complicated
normalizing constant by L univariate functions. Other types of pseudo-likelihood
functions, that also fit into (3.6), will be considered in Chapter 6.

3.3.2 Consistency and Asymptotic Normality

Before stating the main asymptotic properties of the PL estimators, we first list the

required regularity conditions.
A0 The densities f,(y'®; ©) are distinct for different values of the parameter ©.

A1 The densities f; (y(s); ©) have common support, which does not depend on ©.
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A2 The parameter space €2 contains an open region w of which the true parameter

value @y is an interior point.

A3 w is such that for all s, and almost all y(s) in the support of Y(S)7 the densities
admit all third derivatives
83fs (y(s)§ ®>
00;00,,00,

A4 The first and second logarithmic derivatives of f; satisfy

oln f;(y"; ©)
E =0 kE=1,...
@ ( 89k ? 2 7Q7

and

92 (s).
0< B < OIn fs(y'”; ©)

=1,...,q.
80]@89( ><OO7 k7‘€ ’ 4

A5 The matrix J, defined in (3.7) is positive definite.

A6 There exist functions My, such that

&*In fi(y"); ©)
Z(w@‘ 000,00, | = Meer (@)

seS

for all y in the support of f and for all @ € w and myer = Eg (Mper(Y)) < 00.

Arnold and Strauss (1991) have shown consistency and asymptotic normality of
the pseudo-likelihood estimator in the single parameter case. We will present the
theorem for a vector valued parameter. Without loss of generality, we can assume
® is constant. Replacing it by ©,, and modelling it as a function of covariates is

straightforward.

Theorem 3.3.1 (Consistency and Asymptotic Normality) Let(Y,...,Y n)

be iid with common density that depends on ®¢ then under reqularity conditions
(A1)—(A6):

1. the pseudo-likelihood estimator Oy, defined as the mazimizer of (3.6) con-

verges in probability to Og.
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2. VN(®y—8y) converges in distribution to N,(0, J(B) ' K(0)J(O¢) ") with
J(®) defined by

O 1n fo(y?;©
Ji®) =3 b. g () ) @7)
scS

and K(©) by

Kiw(©®) =) 6.6, Eg (3.8)

s,teS

Oln f,(y*);0) 0ln f,(y'"; ©)
0y, 0, '

The proofs of consistency and asymptotic normality are based upon those presented
by Lehmann (1983, p. 430-434) in the context of likelihood estimation.

Proof of Consistency

Consider the behaviour of the log pseudo-likelihood on a sphere @), with center G

and radius a. If it can be shown that for any sufficiently small a:
Ppl(®) < pl(®g)) =1  for all ©® on @, (3.9)

then the pf has a local maximum in the interior of ?,. At this local maximum
the pseudo-likelihood equations are satisfied. Hence, for any a > 0, the pseudo-
likelihood equations have (with probability tending to one) a solution © x(a) within
().. To ensure the existence of a consistent root that does not depend on a, we can
then define @ as the root closest to .

Let us now prove (3.9). First, note that

P(Y%NZZa—m Y¥i00) (G=1,..,0)
i=1 scS (310)

converges in probability to zero by (A4) and the weak law of large numbers and

similarly that

Loun - LYY g (Y L7:00) (311

21563

converges in probability to —J;u(®g) by (A4), (Ab) and the weak law of large

numbers. Next, using (A6), we can expand the log pseudo-likelihood around @y
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such that:
¥PU(©®) — 5pl(B0)
= x 2iy Pi(y)(0; — bo)
o 2o 2ot @in(Y) (05 — 00;) Ok — Oo)

o d Yo ST (05 — 0os) Ok — Ooi) (0 — 00e) S0 Ve (U,) Miee (),

with 0 < |ye(y)| < 1. Further using (A6) and the weak law of large numbers we
know that 1/N ZZN:1 M,e(Y ;) converges in probability to my k. In addition, if we
define:

1 q
S1 = % Z;Pj(y)(@j — Ooy)
‘7:

1 q q
S = 5 2 2 Qn®)(0; = 00)) (0 — Oox)

G=1 k=1
1 q q q N
S = oy ; ; ;(9;‘ — 00;) (O — Oor) (0 — Oor) ;%‘u(y@)Mju (¥,),
then using (3.10) and (3.11) it can be shown that there exists a ¢ > 0 such that:
max(Sl 4 Sy + 83) < —ca? + (b + q)a3

with probability tending to one and with & defined by:

1 q q q

R
J=1 k=1 (=1

This completes the proof since this is less than zero if a < ¢/(b+ q).

Lemma 3.3.1 Suppose that (T\n, ..., Tyn) converges in distribution to (11, ...,1}),
where Tin (j=1,...,q) ¢s defined by:

q
Tin — ZAj/cNYkN
=1

Assume further that for each fived j and k, A;un converges in probability to aj, for

which the matriz A = (aj.) is nonsingular and let B be A™'.
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Then (Yin,...,Yyn) converges in probability to (Y1,...,Y,) with Y; defined by:

q
Yy =D _buli
=1

A proof for this lemma can be found in Lehmann (1983, p. 432-433).

Proof of Asymptotic Normality

Denote
0 )
82
PA(O) = graanl(©) (k=1 q),
83
Pl (®) = mﬂ(@) (¢=1,...,q).

Since we already know that, with probability tending to one, there exists a consistent

solution @y of the pseudo-likelihood equations, we can expand:

_\/Lﬁpﬁé((‘)o \/_Z 91\71.C — 901@) ( —p j]C(@o) —+ 2}\7 Z(‘QNZ — Qoz)p ;lllc£<®*)>

with ©* on the line segment connecting Oy and O,. This expansion can be rewritten

as: .
Tin = ZAj/cNY/cN;
k=1
with
—1 ,
Tiv = \/—Npgj (©o),
Yiv = VN(@On, —Oop),
1 1 - 11 *
A = 57005(80) + o ;(Qm — Ooe) L (©F).
Because of (A4) and the multivariate central limit theorem we know that (T, ..., T,n)
converges in distribution to (71,...,7,) which follows a g-dimensional multivariate

normal distribution with mean vector 0 and variance-covariance matrix K (0g). Us-

ing the weak law of large numbers and (A6) one can show that Aj,n converges in
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probability to —J;;(0g). By lemma 3.3.1 we know that (Yin,...,Y,n) converges in
probability to (Y1,...,Y,) where

q
V== MO0, j=1....q
k=1

Hence, the distribution of Y is multivariate normal with mean zero and covariance

matrix given by J (@)K (©¢)J '(Oy), completing the proof.

Similar in spirit to generalized estimating equations (Liang and Zeger 1986),
the asymptotic normality result provides an easy way to estimate consistently the
asymptotic covariance matrix. Indeed, the matrix ./ is found from evaluating the
second derivative of the log PL function at the PL estimate. The expectation in K
can be replaced by the cross-products of the observed scores. We will refer to J—! as
the model based variance estimator (which should not be used since it overestimates
the precision), to K as the empirical correction, and to J 'KJ ! as the empirically
corrected variance estimator. In the context of generalized estimating equations,
this is also known as the sandwich estimator.

As discussed by Arnold and Strauss (1991), the Cramer-Rao inequality implies
that J='KJ ! is greater than the inverse of I (the Fisher information matrix for the
maximum likelihood case), in the sense that J 'K J~!'— I~ is positive semi-definite.
Strict inequality holds if the PL estimator fails to be a function of a minimal sufficient

statistic. Therefore, a PL estimator is always less efficient than a ML estimator.

3.4 Application to the Thélot Model

To clarify the pseudo-likelihood concepts, consider the special case of M = 2in (3.2).
This model was studied in detail by Thélot (1985). The log likelihood contribution
for the ith cluster has the form:

el 0y twivinviz
;i =1In )
’ 1+ el + bz | elintbaztws

Using definition (3.6), the p¢ contribution on the other hand can be calculated from

eBi+wivi2)vst
f(arlyi2) 11 cfntwvm

e(eiz s yi1) sz
[ (Wizlya1)

1 + efztwivi
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and equals

e(oil +wsYs2)Ys1 6(0i2+wi@/il)yi2 )

pl; = In (f(ya|yi2) f (Yiz|yin)) = In (

1 + efirtwivz 1  eliztwiyn

Thus, the use of pseudo-likelihood translates a non-standard bivariate problem
into one that can be tackled with standard logistic regression software. As an illus-
tration, we consider the score equations for both ML and the full conditional PL
estimation in the Thélot case. For simplicity, the cluster index i is kept fixed and
dropped from notation. Further, we define mj = Py = j,y2 = k) (4, k = 0,1),
such that

efrtoztw
’n‘ pr—
11 1 + 601 + 692 + 601+02+w ?
et 4 efitoatw
’n' pr—
1+ 14 et 4 ef2 4 gbrtb2+w ?
e 4 efitoatw
T —

1 —+ 601 + 692 + 601+02+w :
Contributions to the score equations for ML can then be written as:

o o o _
891*91 T+, 8927% 41, &d—ywz T11-

Contributions to the first derivatives of the pf function are:

opt opt opl
56, — V! (1), 56, ¥ p2(y1), 2, pa (o) + 112 — p2(y1),
with
elf1twya) eO2twyr)
wi(ys) = T cirow” w2 (yr) = T oo (3.12)

Clearly, the above equations for the main effect parameters are similar in form
to the corresponding score equations for ML. Moreover, they are identical in the

independence case. This model will be explored further in Section 3.7.1.

3.5 Application to Clustered Outcomes

We will now apply the pseudo-likelihood ideas to the specific context of exchangeable

clustered binary outcomes.
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In order to define a pseudo-likelihood function based on model (3.4) we will
consider the n; conditional probabilities of observing the outcome for littermate k,
given the outcomes for the other n, — 1 littermates. Due to the exchangeable nature
of the littermates, there are only two types of contributions: (1) the conditional
probability of an additional success, given there are z; — 1 successes and n; — 2z,

failures (this contribution occurs with multiplicity z;):

exp{6; —o;,(n; — 2z, + 1)}
DPis = R
1+ exp {0; — 0:(n; — 22 + 1)}

and (2) the conditional probability of an additional failure, given there are z; suc-

cesses and n,; — 2z — 1 failures (with multiplicity n, — z):

exp{—0i+di(ni — 2z — 1)}
L exp{—0; +&i(ni — 22 — 1)}

Dif

The log PL contribution for cluster i can be expressed as pl; = z;Inp;s + (n; —
z;)Inp;¢. The contribution of cluster i to the pseudo-likelihood score vector is of the

form

Zz‘(l _pis> - (nz - 2’@)(1 —pz‘f)
—zi(ni — 22 + 1) (1 — pis) + (05 — 25)(ns — 22 — 1)(1 — pig)

Note that, if 6, = 0, then p;s = 1 — p,¢ and the first component of the score vector is
a sum of terms z; —n;p;s, i.€. standard logistic regression follows. In the general case,
we have to account for the association, but this non-standard system of equations
can be solved using logistic regression software as follows. Represent the contribution
for cluster ¢ by two separate records, with repetition counts z; for the “success case”
and n; — z for the “failure case” respectively. All interaction covariates need to be
multiplied by —(n; — 2z + 1) in the success case and —(n; — 2z; — 1) in the failure

case.

3.6 Examples

To illustrate our findings, we apply the proposed method to the five developmental
toxicity studies in mice (DEHP, EG, TGDM, DYME, THEO) conducted by the Re-
search Triangle Institute under contract to the National Toxicology Program (NTP).
These studies were described in Chapter 2.
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Table 3.1: NTP Studies: Maximum Likelihood Estimates (model based standard

errors; empirically corrected standard errors) of Univariate Outcomes.

Study  Par. External Visceral Skeletal Collapsed

DEHP Bo  -2.81 (0.58;0.52
Ba 3.07 (0.65;0.62
Ba 0.18 (0.04;0.04

-2.39 (0.50;0.52) -2.79 (0.58;0.77) -2.04 (0.35;0.42
2.45 (0.55;0.60)  2.91 (0.63;0.82

0.18 (0.04;0.04)  0.17 (0.04;0.05

2.98 (0.51;0.66
0.16 (0.03;0.03

EG Bo  -3.01 (0.79;1.01
Ba 2.25 (0.68;0.85

-5.09 (1.55;1.51) -0.84 (0.17;0.18
3.76 (1.34;1.20)  0.98 (0.20;0.20
0.23 (0.09;0.09)  0.20 (0.02;0.02

-0.81 (0.16;0.16
0.97 (0.20;0.20

Ba 0.25 (0.05;0.06 0.20 (0.02;0.02

TGDM 3y -6.19 (1.62;1.48 -7.43 (2.00;1.72) -5.24 (1.03;1.03

Ba 0.08 (0.12;0.11 0.16 (0.07;0.05 0.17 (0.05;0.04

DYME B, -5.78
Bs  6.25(1.25;1.41
3. 0.09 (0.06;0.06

1.13;1.23 -3.32 (0.98;0.89) -1.62 (0.35;0.48

2.88 (0.93;0.83)  2.45 (0.51;0.82

-2.90 (0.43;0.51
5.08 (0.74;0.96

0.29 (0.05;0.05)  0.25 (0.03;0.03 0.19 (0.03;0.03

THEO By -4.82 (1.52:1.55
B, 1.75(0.94;1.06
3,  0.07 (0.13;0.13

-10.50 (4.84;3.66) -2.80 (2.79;1.00
4.31 (3.56;2.05)  2.19 (2.92;0.96
-0.10 (0.36;0.18)  0.81 (0.32;0.09

-4.14 (1.26;1.37
1.97 (0.88;0.93

( ) ( ) )
( ) ( ) )
( ) ( ) )
( ) ( ) )
( ) ( ) )
( ) ( ) )
( ) ( ) )
By 3.79 (1.10;1.31) 6.23 (1.88;1.67)  4.47 (0.94;1.01)
( ) ( ) )
( ) ( ) )
( ) ( ) )
( ) ( ) )
( ) ( ) )
( ) ( ) )
( ) ( ) 0.13 (0.11;0.12)
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Table 3.2: NTP Studies: Pseudo-likelihood Fstimates (standard errors) of Univari-

ate Outcomes.

Study  Par. External Visceral Skeletal Collapsed
DEHP 3o -2.85(0.53) -2.30 (0.50) -2.41 (0.73) -1.80 (0.35)
Ba  3.24 (0.60) 2.55 (0.53) 252 (0.81) 2.95 (0.56)
Ba  0.18 (0.04) 0.20 (0.04) 0.21 (0.05) 0.20 (0.03)
EG Bo -2.61 (0.88) -5.10 (1.55) -1.18 (0.14) -1.11 (0.14)
Bg 214 (0.71) 379 (1.18) 1.43 (0.19) 141 (0.19)
B.  0.30 (0.06) 0.23 (0.10)  0.21 (0.01) 0.21 (0.01)
TGDM  [o  -4.75 (1.06) -7.10 (1.70) -4.69 (0.97)
Bq 352 (1.24) 6.10 (1.65) 4.13 (0.99)
Ba  0.22 (0.07) 0.19 (0.06) 0.22 (0.03)
DYME  §o  -5.04 (0.94) -3.34 (0.99) -2.20 (0.27) -3.08 (0.47)
Bg 552 (1.01) 291 (0.91) 3.22(0.49) 5.20 (0.97)
Ba  0.13 (0.05) 0.29 (0.06) 0.25 (0.02) 0.19 (0.02)
THEO [y -3.51 (1.26) -10.58 (3.66) -4.33 (1.34) -3.36 (1.08)
Ba  1.65(1.07) 430 (2.04) 4.69 (1.72) 1.92 (0.94)
Ba 020 (0.12) -0.11 (0.18) 0.84 (0.14)  0.22 (0.10)
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We fitted model (3.4) to 4 outcomes in each of the 5 datasets: external, vis-
ceral, and skeletal malformation, as well as a collapsed outcome, defined to be 1 if
any malformation occured and —1 otherwise. Parameters were estimated by both
maximum likelihood (Table 3.1) and pseudo-likelihood (Table 3.2). The empirically
corrected standard errors are commonly referred to as “robust” standard errors and
introduced by Liang and Zeger (1986). The fitting procedure has been implemented
in GAUSS. The natural parameters were modelled as follows: 0; = B0 + Bad; where
d; is the dose level applied to the ith cluster, and ; = 5., i.e. a constant association

model.

An attractive feature of the proposed approach is that the parameters can also be
obtained using standard and readily available software, such as SAS PROC LOGIS-
TIC or SAS PROC GENMOD. As an illustration, the parameters for the external
outcome in the DEHP study were also determined with SAS PROC LOGISTIC.
An implementation and selected output is presented in Figures 3.1 and 3.2. Each
cluster is represented by a two-line record. The first line corresponds with the “suc-
cess” case so that the variable ASSOC represents —(n, — 2z; + 1); the second line
corresponds with the “failure” case so that ASSOC represents —(n, — 2z; — 1).

While the estimates are identical to those obtained in Table 3.2, the standard
errors are incorrect since they are based on the assumption of independence. To
obtain a correct estimate of the variability, a short macro could be written.

Since visceral malformations are very infrequent with TGDM (only one malfor-
mation observed) a fit could not be obtained with either estimation technique.

The methods can be compared based on the parameter estimates, their stan-
dard errors (model based likelihood, empirically corrected likelihood, and pseudo-
likelihood), or a combination of both (e.g. the Z statistic, defined as the ratio of
estimate and standard error). Obviously, the development of methods to assess the
fit of the proposed methods is necessary. However, classical tools cannot be used
within the pseudo-likelihood framework without modification. Of course, one can
always assess the fit by fitting an extended model and testing whether the additional
parameters are significant. The extension of flexible tools such as likelihood ratio
and score tests to the PL framework has been proposed by Geys, Molenberghs and
Ryan (1999) and will be described in Chapter 4.

ML and PL dose parameter estimates agree fairly closely, except for the EG out-
comes skeletal and collapsed and more dramatically for THEO skeletal. No method
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data pseudo;
input success failure dose assoc;

total=success+failure;

cards;

.0000
.0000
.0000
.0000
.0000
.0000

S =, O O O O

2.0000
0.0000

run;

proc logistic data=pseudo;

model success/total = dose assoc;

run;

0.0000
9.0000
0.0000

10.

0000

0.0000
6.0000

.0000
.0000

o O O O o ©

.0000
.0000
.1667
.1667
.3333
.3333

0.6667
0.6667

.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000

Figure 3.1: DEHP Study: Implementation using the SAS procedure PROC LOGIS-

TIC.
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Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Standardized

Variable DF Estimate Error Chi-Square Chi-Square Estimate

INTERCPT 1 -2.8520 0.5621 25.7456 0.0001 .
DOSE 1 3.2369 0.6501 24 .7921 0.0001 0.474261
ASSOC 1 0.1833 0.0429 18.2737 0.0001 0.393847

Figure 3.2: DEHP Study: Selected QOutput of the SAS procedure PROC LOGISTIC.

systematically leads to larger parameter estimates (each one yields the largest value
in about half of the cases).

Rather than comparing estimated standard errors directly, one could also con-
sider the derived Z statistics (not shown) and their associated significance levels.
The only non-significant dose effects are found for the THEO dataset: external is
non-significant, independent of the method; visceral and skeletal are non-significant
with the model based likelihood version only. Pairwise comparisons of the test sta-
tistics reveal again that no procedure systematically yields larger values. Indeed,
in all three comparisons, the magnitude of one statistic is larger than the other in

approximately 50% of the cases.

These results are promising because a loss of efficiency of pseudo-likelihood versus
maximum likelihood could be anticipated. However, even though in Section 3.7 it
will be shown that the asymptotic relative efficiency (ARE) is in general strictly less
than 1 (except for saturated models), the data analysis suggests that the efficiency
loss is moderate. To explore the extent to which this conjecture can be generalized,
we calculate asymptotic and small sample relative efficiency (Geys, Molenberghs
and Ryan 1997).
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3.7 Asymptotic Relative Efficiency of Pseudo-

likelihood versus Maximum Likelihood

3.7.1 Asymptotic Relative Efficiency for the Thélot Model

The price for computational ease usually consists of some efficiency loss. To illustrate
this statement, we will consider two simple forms of the Thélot model, both without
covariates (i.e. the sample comprises a single two by two table).

In the first case, all three parameters 6;, 65, and w are estimated. Pseudo-
likelihood is then as efficient as maximum likelihood, in the sense that I=! =
J 'K J~! Indeed, consider the contributions to the expected information for both
ML and PL. For the likelihood, this contribution is

Tl —my) mu—maema mu(l —mig)
I = 11— 14741 7T+1(1 - 7T+1) 7T11(1 - 7T+1)
mi(l—my) mi(l—7p) ma(l —m)

The negative second derivative matrix of the log PL is given by

pa(y2) {1 = (ye)} 0 yort1 (Y2) {1 — 1 () }
T = 0 po(y{l —pe(y)}  yipa(y){l — pe(y1)}
yorr (Y2 )1 — 1 (y2)} yipe(y){l — u2(yn)} w2 (y2) {1 — pa(ye)} ;

Fyipe(y){1 — pa(y1)}

with expected value

R+ Ry 0 R
J = 0 Sl + So Sl ’
Ry Sh Ry 4+ 5

where

R = wu(l)
Ro = (1 —m1)m(0)(1 — pa(0)),
S1= mippe(1)(1 — pe(1)),

So = (1 =m)p2(0)(1 — 12(0)).
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The entries of K are

ko= mip = 21001 (0) + muge (1) + (1 — 1) (0)* + g (1)%,
k1o = min— mipa(1) — moapa (1)

s (D p2 (1) + miopa (0)p2 (1) + morpta (1)12(0) + moope1(0)p2(0),
koo = 71— 270102(0) + it (1) + (1 — 71 )pa(0)* + 71y o (1)%,
kig = 2m11 = 3miypn (1) + 7 (1)? = mypa (1) + mopn (0)p2 (1) + wupm (Dpa (1),
kos = 2myy — 3mipe (1) + miope(1)? — moap (1) 4 mor e (1)p2(0) 4+ muap (Dpe(1),
kas = 2mu{1— (1) — p2(1) + 1 — ()1 = po ()} + myapn (1)* + w14 o (1)%.

Now, straightforward but tedious matrix manipulations establish the desired equal-

ity.

In the second case, the true value of both main effect parameters is assumed to
be known (reduced Thélot model). In order to obtain a formula for the ARE of the
remaining association parameter, all matrices derived in the first case are replaced
by their (3,3) entry for some choices of main effect parameters. The ML and PL
variances are then respectively given by:

1
T (1l —m)’
and
211 — 2mupn (1) + muppe(1)? — 2mnpe (1) + moyn (1?4 20 {1 — m(DH1 — pe(1)}

[ (DAL = i (D}min + po (D1 = (1)} ]
Applying some algebra to these expressions, the ARE is found to be

{27107T01 + 7T11(7T10 + 7T01)}2
(1 - 7T11) {Wfl + 7T11(7T10 + 7T01) + 7T107T01} {47T107T01 + 7T11(7T10 + 7T01)}

The condition for ARE< 1 implies

m1 {momor (T — m41)” + moo (Tr07 7y, + TouwrL) } > 0.

Clearly, this condition is always satisfied. Equality holds solely in trivial boundary
cases, when one or more cell probabilities equal zero. It is interesting to observe
that this holds even in the independence case, i.e. when w is estimated 0. Figure 3.3
shows the ARE of the association parameter, in that case, as a function of the first

and second marginal probabilities: m, and 7.1.
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ARE of Association
0875 0900 0825 0950 0975 1000
T

Figure 3.3: Asymptotic Relative Efficiency of the Association in the Reduced Thélot
Model (Independence Case).
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3.7.2 Asymptotic Relative Efficiency for the Saturated
Model

The observation from Section 3.7.1, that the ARE in the full Thélot model equals
1 holds more generally. In fact, it holds for all saturated models, i.e. models of the
form (3.1) without covariates and where all subvectors of W are included. The ARE
for non-saturated models will be discussed in Section 3.7.3.

Consider the PL contribution for a single cluster, consisting of the product of
all univariate conditional densities. Like in Section 3.2.1 the cluster index ¢ is kept

fixed and dropped from notation:

M
PL=1] Wy

Jj=1

where y;) indicates omission of the jth component. Extending the notation intro-
duced in (3.12), the logit of the conditional probability that y; equals 1 given all

others can be written as:

loglt (Mg(yla ce. 7yj717yj+17 s J/M)) — aj -+ zk?fj wg/cyk
+ Zk</€’;k,k’7ﬁj Wikk! Y Yk! +---+ Wiz, MYt - Yi1Yj41 - - - YM- (313)

In short we denote the logit in (3.13) by logit w;. In general, the pseudo-likelihood
score contributions of the rth (r = 1,..., M) association parameter for a single

subject can then be derived as:

T

> ke = 1 b - Yk Ukers Y (L Sk <hp <o <k < M),
=1 (3.14)

For the main effect and the pairwise interactions, these contributions reduce to

Yy — My, 1SJSM7
(Y5 — 1)y + (Ye — 1)y, 1<j<k< M.

We will now show that the maximum likelihood estimator satisfies (3.14).

Organise the data into an M dimensional contingency table with cell counts
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Obviously, it may be more convenient to introduce an alternative notation for these
cell counts. Rather than giving a sequence of M zeros and ones like in (3.15), we
can present the subscripts for which j, = 1. Thus, z is the number of individuals
with failures on all variables, z; refers to those having a success on outcome j and
a failure on all others, z; ;, refers to those having successes on both outcomes j;
and js and a failure on all others, etc. With straightforward notation, the maximum

likelihood estimates for the corresponding cell probabilities are easily obtained:

« Z.

(— ﬁ7

T ’% (3.16)
R .
Tj1j2 — %7 (3'17)
jl...jp N .

Now, simple relations exist between these cell probabilities and the natural parame-

ters. For example:

R 1
w. = —~
A(8)
b;
A(©)
. eéh +‘§j2 +&514q
Tjijs — Wu (3.19)

with A(@) = 1+ et 4 - 4 el +¥12..0 Combining for example (3.16) and (3.18)
we can rewrite % — z;/%., which is the classical relationship between the main effect
parameters and the conditional odds associated with outcome j, given failures on

all others. Similarly, it follows from (3.17) and (3.19) that e“ivz = (2;,5,2.)/ (25, 25)-

Using the notation introduced above, the PL score contribution for the main
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effect 6;, combined over all subjects can be written as:
Z zt1...tj,11tj+1...t1\/[ {1 - Mj<t17 s 7tj*17tj+17 s 7tM>}

+ Z zt1...tj710tj+1...tM {—,Uj<t17 . 7tj,17tj+17 e 7tM>} = 0.
(tlv"'vtjflvtj—‘»l ..... tM)
where the summation is over all M — 1 vectors (no jth component) of zeros and

ones. Rewriting this equation as

Z(th...,tj,l,tj+1,...,tM) Ztl---tjflltj+l---tM -

z(t17...7tj717tj+1 tar) Ryttt tarky <t17 oo tienti, 7tM) =0,

.....

it is eagily seen that the MLE satisfies this equation, since on the one hand
it . ti—1,tj1, ..., tar) is the probability of observing a success on outcome j,

given the value of the other outcomes, and on the other hand its MLE is given by

N Rtytj1 1ty 1.ty
f(tes st tyn, s ta) = :
Ztl...tj,1+tj+1...tM

Similar calculations can be carried out for the equations pertaining to the association
parameters. This shows that the maximum likelihood estimator and the pseudo-
likelihood estimator coincide in this case. A trivial consequence of this result is that
ARE=1.

3.7.3 Asymptotic Relative Efficiency for Clustered

Outcomes

Although explicit formulae for the ARE were derived for unclustered outcomes in
previous sections, similar expressions in the clustered case are difficult to obtain.
Therefore, to study the ARE, we will follow the recommendations of Rotnizky and
Wypij (1994). In order to compute asymptotic bias or efficiency, an artificial sample
can be constructed, where each possible realization is weighted according to its true
probability. In our case, we need to consider all realizations of the form (n;, z;, d;),
and have to specify: (1) f(d;), the relative frequencies of the dose groups, as pre-
scribed by the design; (2) f(n:|d;), the probability with which each cluster size can
occur, possibly depending on the dose level, and (3) f(z;|n;,d;), the actual model
probabilities.
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Table 3.3: Local Linear Smoothed Cluster Frequencies.

n fna) mi f(ng)
1 0.0046 11 0.1179
2 0.0057 12 0.1529
3 0.0099 13 0.1605
4 0.0139 14 0.1424
5 0.0147 15 0.0975
6 0.0148 16 0.05642
7 0.0225 17 0.0207
8 0.0321 18 0.0086
9 0.0475 19 0.0030

10 0.0766

Throughout we assume that there are 4 dose groups, with one control (d; = 0)
and three exposed groups (d;, = 0.25,0.5,1.0). The number n, of viable fetuses per
cluster is chosen at random, using a local linear smoothed version of the relative
frequency distribution given in Table 1 of Kupper et al. (1986) (which is considered
representative of that encountered in actual experimental situations). Least squares
cross-validation has been used to choose the bandwidth. The smoothed frequencies
are presented in Table 3.3. Guided by the analysis of the examples, we identified
three values for each of the three parameters: Gy, = —5,—-3,0, 84 = 0,3,5, and
Be = 0,0.15,0.30, with notation as defined in Section 3.6. The full grid of 27

parameter combinations has been explored. Results are displayed in Table 3.4.

No AREs are exactly equal to one, although some appear to be due to rounding.
The AREs are very high for the lowest background rate (8o = —5) and they are
almost all above 90% for the medium background rate (6o = —3). We can notice
the nonmonotone relationship of the ARE with 34 and 53,. While still high in
some areas of the (84, 8.) space for By = 0, a dramatic decrease is observed when
(. increases and/or (3; decreases. PL performs very poorly when there is no dose

effect together with a reasonably high association. Unless background malformation
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Table 3.4: Simulation Results: Asymptotic Relative Ffficiencies of Pseudo-likelihood

versus Maximum Likelihood.

Ba
Bo Ba 000 0.15 0.30

-5 0 1.000 1.000 1.000

0.958 0.895 0.792
0.943 0.928 0.890

3 0982 0.999 1.000

5 0.940 0.978 0.966
-3 0 1.000 1.000 1.000

3 0938 0.938 0.897

5 0921 0.959 0.907
0 0 1000 0.725 0.055

3

)

probabilities or dose effects are extreme, large associations diminish the contribution
to the information of a full conditional. As a limiting case it can even be reduced
to zero when the association parameter approaches infinity. This phenomenon is
further illustrated in Figure 3.4. The parameter estimates found from the data
analysis are all in regions of the parameter space with a high ARE.

In order to investigate whether these conclusions also hold for random samples,

a small simulation study was performed.

3.8 Small Sample Relative Efficiency of Pseudo-

likelihood versus Maximum Likelihood

The same 27 parameter combinations of the previous sections are investigated, for
samples of size 30. For each setting, 500 simulations were run. The estimated
covariance matrices were kept and averaged at the end of the run. The relative
efficiencies for the dose effect parameters are displayed in Table 3.5. For the maxi-

mum likelihood procedure, both the purely model based as well as the empirically
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Asymptotic Relative Efficiency of PL vs ML (Sg=0.0)
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Figure 3.4: Simulation Results: Asymptotic Relative Efficiency of Pseudo-likelihood

versus Maximum Likelihood for the Dose Effect Parameter in the Clustered Data
Model.
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Table 3.5: Simulation Results: Small Sample Relative Efficiencies (500 replications)

of Pseudo-likelihood versus Maximum Likelihood.

Ba
0.00 0.15 0.30
Bo G4 model emp. runs model emp. runs model emp. runs
-5 0 1.073 0973 500 2592 0990 319 8.919 0.945 93
3 0976 095 500 1.086 0.995 485 1.613 1.017 254
5 0959 0918 500 1.003 0.982 499 1.123 0986 411
-3 0 1.027 0.994 500 1.116 1.018 500 1.966 1.009 425
3 0929 0915 500 0.970 0.938 500 1.005 0.921 500
5 0931 0.905 500 0.979 0.938 500 1.058 0.951 498
0O 0 1.000 0.995 500 0.746 0.732 500 0.055 0.055 500
3 0948 0942 500 0.925 0.903 500 0.912 0.831 500
5 0934 0909 500 0.951 0.932 500 1.064 0.950 500

corrected version are considered. The results of the asymptotic study and the small
sample study are remarkably well in agreement,, except for the small sample relative
efficiency (SSRE), which tends to be slightly higher in certain regions of the grid,
such as Jop = —3 or 0 and 3, = 0.3. Also, the SSRE is larger for the model based
than for the empirically corrected likelihood version, which is in line with knowledge
about the sandwich estimator. The only major discrepancies, deserving further ex-
planation, are seen for Gy = —5, no dose effect (54 =0) and 3, # 0. First, observe
that these parameter settings correspond to a very low background rate (the back-
ground probability of observing no malformation in a single fetus being 0.9933). It
can be calculated that the marginal probability of sampling a cluster without mal-
formations is 0.9229, 0.9851, and 0.9966 for the respective association parameters
0.0, 0.15, and 0.30. Correspondingly, the number of datasets without malforma-
tions (and thus with parameters at infinity) in a batch of 500 runs is on average
0.03, 83, and 332 respectively. In our simulation study, we actually encountered 0,

83, 331 of such datasets. All 83 respectively 331 of these datasets were ignored,
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along with 98 respectively 76 other problematic sets of data, mainly because the
latter contain merely a single malformation, which renders the association parame-
ter inestimable. Still, the remaining 319 and 93 datasets are not free of difficulties.
Let us consider variances and relative efficiencies for the dose effect in the 0.30 as-
sociation case. The asymptotic variances are all about 17.8, while the simulation
result for the small sample variances are smaller (8.84 for model based likelihood,
0.94 for empirically corrected likelihood, and 0.99 for PL). This might be due to
the fact that omitting the problematic datasets truncates the sampling space and
effectively reduces the variability. In particular, these problematic datasets contain
no events, yielding an estimate for the intercept of —oco, the dose effect being in-
estimable. Typically, samples with extreme parameter values are excluded, leading
to still smaller sample variances. This effect is more pronounced in the empirically
corrected estimators than in the purely model based one.

For the other, often more realistic parameter settings the asymptotic and small
sample variances are in fairly good agreement. This leads to very close SSREs and
AREs. Further, the observed variances in these settings, whether asymptotic or
small sample, are much smaller than in the problematic settings described earlier.
E.g., when 8y = —3.0, 55, = 3.0, and 3, = 0.15, the asymptotic variances of the dose

effect are all close to 0.13, while the small sample versions are about 0.14.

3.9 Conclusion

In this chapter we have shown that pseudo-likelihood estimation, in the sense of
Arnold and Strauss (1991), is a viable and attractive alternative to maximum likeli-
hood in the case of a single clustered binary outcome, analyzed with the exponential
family model of Cox (1972), and applied to clustered data by Molenberghs and Ryan
(1999).

The method yields consistent and asymptotically normal estimates of the para-
meters of interest. It avoids the need to calculate complex normalizing constants,
yielding substantial gains of computing time. This is an important issue when data
contain large and variable sized clusters. Another problem arises when multivari-
ate outcomes are recorded for each littermate. Formulating appropriate pseudo-
likelihood functions for multivariate clustered data is the topic of the next chapter.

It was thus shown that the loss of (asymptotic and small sample) efficiency, even
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when theoretically problematic, is not an issue for realistic parameter combinations
in the models for clustered data considered here. This is closely connected to the
fact that the ARE equals one for a family of saturated models. These findings are
supported by the analysis of five developmental toxicity studies.
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Pseudo-likelihood Inference for
Clustered Multivariate Binary

Outcomes

4.1 Introduction

In this chapter we re-introduce the exponential family model of Molenberghs and
Ryan (1999), this time in its general multivariate clustered setting. As indicated
before, this model benefits from the elegance and simplicity of exponential family
theory and is flexible in terms of allowing response rates to depend on cluster size.
With large clusters a main problem is however, the evaluation of the normalizing
constant. Especially for trivariate and higher-order clustered outcomes, this exceeds
the capacity of state-of-the-art computing. Therefore, we explore pseudo-likelihood
as an alternative inferential procedure. This non-likelihood method yields a con-
siderable gain of computation time, shows minimal efficiency loss and provides a

flexible modelling framework.

Section 4.2 presents the extended exponential family model of Molenberghs and
Ryan (1999), which allows for clustering as well as multiple outcomes. In Section 4.3,
we will derive pseudo-likelihood estimating equations for this general multivariate
setting. Whereas in the univariate case, there turned out to be only one “natural”
formulation of the pseudo-likelihood estimating equations, it is now indicated that

several plausible routes can be followed. In general, it is not guaranteed that a

69
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pseudo-likelihood function corresponds to an existing and uniquely defined proba-
bility mass function. In Section 4.3 we will show that for our proposals, both exis-
tence and uniqueness are guaranteed. Therefore, the pseudo-likelihood as proposed
here, still reflects the underlying likelihood so that it can be useful for dose-response
modelling and quantitative risk assessment. This will be further illustrated in Chap-
ter 5. Section 4.4 explores pseudo-likelihood as an alternative mode of inference for
clustered multivariate binary outcomes. While point estimation and asymptotic
normality have already been established in Chapter 3, this section is devoted to the
construction of pseudo-likelihood counterparts for classical inferential tools such as
ratio test statistics and score tests statistics. Section 4.5 further explores the per-
formance of the pseudo-likelihood test statistics using asymptotic and small sample
simulations. In Section 4.6 our findings are exemplified, using data from develop-
mental toxicology experiments. Since the results of that section seem to imply that
the efficiency loss of pseudo-likelihood over maximum likelihood is minor, a limited

asymptotic relative efficiency study is performed in Section 4.7.

4.2 Model Formulation

Consider the notation introduced in Section 3.2, i.e. the experiment involves N
clusters, the ith of which contains n; individuals, each of whom are examined for the
presence or absence of M responses and ¥;;, = 1 when the £th individual in cluster
¢ exhibits response j and —1 otherwise. It is convenient to group the outcomes
for the ith cluster in an Mn,; vector Y; = (Yiii, .-, Yitngs - Yinats - - - Yingm,) .-
Molenberghs and Ryan (1999) proposed the following model for the joint distribution

of clustered multivariate binary data:

M n; M n;
Sriw;©]) = exp {Z D 0+ D Y Sman & > > W Ykl

=1 k-1 =1 k<k' G<i! k=1
ST —A<@:>}7 @)
7<g’ k#k!

where A(®7) is the normalizing constant, resulting from summing (4.1) over all 2"

possible outcomes. The building blocks of this model are clearly the “main effects”
(0*) and three types of association parameters, reflecting three different types of

association. E.g., d7; refers to the association between two different individuals
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from the same cluster on the same outcome j, w},, refers to the association between
outcomes j and j' for a single individual within cluster i and ;5 gives the association
between outcomes j and j' for two different individuals in the same cluster. The
three different types of associations captured in the model are depicted in Figure 4.1.

The absence of individual specific subscripts reflects the implicit exchangeability
assumption between any two individuals within the same cluster. This assumption
will now be used to simplify the model. Let z;; be the number of individuals from
cluster i positive on outcome j and z;;; as the number of individuals in cluster ¢,
positive on both outcomes j and j’. For the ith cluster, these can be thought of as
arising from the set of two-by-two tables obtained by cross-classifying every pair of
outcomes. This is illustrated in Table 4.1.

Using these summary statistics, Molenberghs and Ryan (1999) derived (after

reparameterization):
M M
Jri(y::0,) = exp {Z Oies) + 3 0520+ wipals) (4.2)
=1 =1 <5’
4
+ > gy — A(@z‘)} 7
J<j’
where
2
o) = —ay(n— )
3
Zi(j;, — 2Zijj’ — Rij — Rl (43)
4 3
Zz‘(jj)’ = —ZZJ<TLZ - Z@v) — Z@j/(ﬂz‘ - Zij) - Zz‘(jg)"

In the sequel, this will be referred to as the MR model. Its advantages are the
flexibility, with which both main effects and associations can be modelled, and the
absence of constraints on the parameter space, which eases interpretability. Further,
the fact that the probability model depends explicitly (see (4.3)) and implicitly on
the cluster size is an advantage since it is in line with the observation that litter size
itself may depend on the level of exposure. Note that model (4.2) is conditional in
nature, since it describes a feature of (a set of) outcomes conditional to the other
outcomes. In particular, it implies conditional odds and conditional odds ratios

that are log-linear in the natural parameters. F.g., Molenberghs and Ryan (1999)
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Figure 4.1: Association Structure for Qutcomes j and j' on Individuals k and k' in

Cluster i.

Table 4.1: Cross-classification of Individuals in Cluster i with Respect to a Pair of

Qutcome Variables j and j'.
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construct the conditional logit associated with the presence and absence of outcome
4 for an individual k in cluster ¢, given all other outcomes in the same cluster, and
show that this function depends on cluster size and on the observed pattern of the
remaining outcomes. Let x,5, = 1 if the k£th individual exhibits a success on the jth
variable and 0 otherwise. Then
1 PP = Uy, " # j o k' 7 k)
pr(Yie = — Uiy, ' # 3 or k' # k)

D w26 — 1) + Y Yy (225 — s — 26am + 1),
57 7

As noted in Section 3.2.2, marginal quantities are fairly complicated functions of

the parameters and are best represented graphically.

4.3 Pseudo-likelihood Estimation

The MR model, introduced in the previous section, is based on an exponential family
model for multivariate binary data and exhibits a high flexibility to capture differ-
ent patterns of non-linear dependencies of the marginal probabilities on the cluster
size. Like most exponential family models, (4.2) enjoys well known properties, such
as linearity of the log-likelihood in the minimal sufficient statistics, unimodality,
etc. This implies a high numerical stability of iterative procedures to determine
maximum likelihood estimators. In multivariate settings (with 3 or more outcomes)
however, where the normalizing constant takes a complicated form, all of these ad-
vantages can be lost as this leads to excessive computational requirements. This
is especially true for clusters of variable length, because the normalizing constant
depends on the cluster size. Hence, alternative estimation methods, that do not
require the explicit calculation of the normalizing constant, are in demand.

We explore the pseudo-likelihood estimation method, which is now indispens-
able. Again, the main idea is to replace the numerically intractable joint density by
a simpler function that is a product of conditional densities that do not necessarily
multiply to the joint distribution, but have the advantage that they do not involve
that complicated normalizing constant. A bivariate distribution f(1, ), for ex-
ample, can be replaced by the product of both conditionals f(y1|y2)f(y2|y1). This
method converges quickly with only minor efficiency losses, especially for a range of

realistic parameter settings. In Chapter 3 we presented a formal and more general
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definition, initially proposed by Arnold and Strauss (1991), and proved consistency
and asymptotic normality of the pseudo-likelihood estimator. We also showed that
with a single clustered outcome, there is only one natural formulation of the pseudo-
likelihood. It replaces the joint likelihood for the ith cluster by the product of n,
conditional probabilities of observing the outcome for littermate k, given the out-
comes for the other n; —1 littermates. However, with the present model for clustered
multivariate binary data, several formulations can be adopted.

One convenient PL function is found by replacing the joint density (4.2) by the
product of Mn, univariate conditional densities describing outcome j for the kth

individual in a cluster, given all other outcomes in that cluster:

N M n;
PLY = [TTI 11 f @selyins, 3 # 5 or K # k;©,). (4.5)

=1 j=1 k=1
This fits into framework (3.6) by choosing d1,,, = Mn; and d,, = —1 for k =
1,...,n; and j = 1,..., M where 17, is a vector of ones and si; is a Mn,; X 1

vector, obtained by applying the vec operator to an n; x M matrix, consisting of
ones everywhere, except for entry (k,j), which is 0. Since the members of each
cluster are assumed to be exchangeable on every outcome separately, there are only
M?2M different contributions. For example, for clustered trivariate binary data, the
logit of the conditional probability of observing a response of type 1 for the kth
individual in cluster ¢, given there are responses of the two remaining types and

given all outcomes for all other cluster members, is:
01 — 0 (s — 2z + 1) + wine + wing — Ya2(ns — 22i2 + 1) — vas(ns — 2253 + 1),

with similar expressions for all other cases. The log pseudo-likelihood contribution
for cluster ¢ can now be written as a sum of such contributions, with appropriate
multiplicities. Subsequently, one can model components of @, as a function of
covariates, and take derivatives with respect to the regression parameters 3 to derive
the score functions.

Equation (4.5) is one convenient definition of the PL function but certainly not
the only one. E.g., one might want to preserve the multivariate nature of the data
on each cluster member by considering the product of n, conditional densities of the

M outcomes for subject k, given the outcomes for the other subjects:
N ez

PLE) =[] f@iswd =L My ke £ K, j=1,..., M), (4.6)

=1 k=1
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This satisfies the definition of Arnold and Strauss (1991) by taking 61, = n; and
0s, = —1for &k = 1,...,n,. Here, 1p,, denotes the Mn, dimensional vector of
ones, while s, is the (Mn; x 1) vector, obtained by applying the vec operator to
an (n; x M) matrix, consisting of ones everywhere, except for the kth row which
consists of zeros.

Computational convenience may be the primary reason for choosing one PL
definition over another. Let us discuss the relative merits of definitions (4.5) and
(4.6). The former procedure is straightforward and natural when interest is focused
on the estimation of main effect parameters. Furthermore, it is slightly easier to
evaluate. If however, interest lies in the estimation of multivariate associations
then approach (4.6) would be more natural. In Section 4.7 it is shown that both
procedures are roughly equally efficient.

Further, it should be noted that in general, it is not guaranteed that a pf function
corresponds to an existing and uniquely defined probability mass function. However,
since PL(1) and PL(2) are derived from (4.2), existence is guaranteed. In addition,
both definitions (4.5) and (4.6) satisfy the conditions of the theorem presented in
Gelman and Speed (1993), and hence uniqueness is guaranteed as well.

Since for toxicology data primary interest goes to the estimation of dose effects,
which are usually incorporated into the main effects, we will focus on the use of the
full conditional approach (4.5). In the context of the MR model, the notation PL
will therefore refer to that approach. Only in cases where confusion might arise, it
will be spelled out as PL(1).

4.4 Test Statistics

In Chapter 5, the data from two developmental toxicity studies will be used for
quantitative risk assessment. Omne of the primary goals of quantitative risk assess-
ment is to determine a safe level of exposure, based on an appropriate dose-response
model. In the case of maximum likelihood estimation, several tools can be used
to select such a model (e.g., Wald, score or likelihood ratio test statistics). Here
we proposed pseudo-likelihood estimation as an attractive alternative to maximum
likelihood estimation in the case of multivariate (e.g., clustered) binary outcomes,
analyzed with the MR model. Therefore, in order to perform a flexible model se-

lection, one needs extensions of the Wald, score or likelihood ratio test statistics to



76 Chapter 4

the pseudo-likelihood framework.

Rotnitzky and Jewell (1990) examined the asymptotic distributions of general-
ized Wald and score tests, as well as likelihood ratio tests, for regression coefficients
obtained by generalized estimating equations for a class of marginal generalized lin-
ear models for correlated data. Following a similar line of thought, we derive test
statistics, as well as their asymptotic distributions for the pseudo-likelihood frame-
work. Liang and Self (1996) have considered a test statistic, for one specific type of
pseudo-likelihood function, which is similar in form to one of the tests we will derive
below.

Suppose we are interested in testing the null hypothesis Hy : v = ~,, where ~ is
an r-dimensonal subvector of the p dimensional vector of regression parameters 3

and write B as (y7,87)7. Then, the following test statistics can be used.

4.4.1 Wald Statistic

Because of the asymptotic normality of the PL estimator 3 N
W* = N(:YN - 70)T2;$ (’NYN - 70)

has an asymptotic x? distribution under the null hypothesis, where 3., denotes
the r x r submatrix of ¥ = J 'K J !, with J and K shorthand notations for the
matrices defined in (3.7) and (3.8). In practice, the matrix ¥ can be replaced by
a consistent estimator, obtained by substituting the PL estimator 3 ~- Although
the Wald test is usually simple to apply, it is notoriously sensitive to changes in
parameterization (Fears, Benichou and Gail 1996). For example, using the delta
method it is easy to show that the Wald test statistic for Hy : v = 0 is two times
the Wald statistic for Hy : 72 = 0. Therefore, the Wald test statistic is particularly
unattractive for conditionally specified models, since marginal effects are likely to

depend in a complex way on the model parameters (Diggle, Liang and Zeger 1994,
pp. 148).

4.4.2 Pseudo-score Statistics

As an alternative to the Wald statistic, we propose pseudo-score statistics. A score
test has the advantage to be obtained by fitting the null model. Furthermore, it is

invariant to reparameterization.



Pseudo-likelihood Inference for Clustered Multivariate Binary Outcomes 77

Definitions

Let U(B) be the pseudo-score vector obtained by differentiation of the log of the
pseudo-likelihood, and U, (3) its r-dimensional subvector corresponding to the com-
ponents of . Then, we can define an “empirically corrected” pseudo-score statistic
as follows:

1 - B N
S*(e.c) = NU’Y<707 5N<70>>TJWZW1JWUV(7O7 Ix(70)); (4.7)

where &5 (7o) denotes the maximum pseudo-likelihood estimator of & in the sub-
space where v = ~,, J77 is the r X r submatrix of the inverse of J, and JWZ%1 J
is evaluated under Hy. In the following paragraph we show that, under mild regu-
larity conditions, the pseudo-score statistic S*(e.c) is asymptotically x2 distributed
under Hy. As discussed by Rotnitzky and Jewell (1990) in the context of general-
ized estimating equations, the score statistic (4.7) may suffer from computational

stability problems. A “model based” test that may be computationally simpler is:

§°(m0) = U0, Su) T (B (70) (19)

Its asymptotic distribution under Hy, however, is complicated and given by

> i—1 AjX ;) where the x7 ;) are independently distributed as x7 variables and A >
-+ > A\ are the eigenvalues of (J77)7'3.,, evaluated under Hy. The score statistic
S*(m.b) in (4.8) can be adjusted such that it has an approximate x? distribution,
which is much easier to evaluate. Several types of adjustments have been proposed
in the literature (Rao and Scott 1987; Roberts, Rao and Kumar 1987). Similar to
Rotnitzky and Jewell (1990), we propose an adjusted pseudo-score statistic

S (m.b) = S*(m.b) /N,

where A is the arithmetic mean of the eigenvalues \;. Note that there is no distinction
between S*(e.c) and S¥(m.b) for r = 1. Moreover, in the likelihood-based case, all
eigenvalues reduce to one and thus all three statistics coincide with the model based

likelihood score statistic.
Derivation of the Asymptotic Distributions of the Pseudo-score Statistics
A Taylor series expansion of the pseudo-score U(,@ ~) around 3 leads to:

By —B) = %J”U(ﬁ) + ol (N2, (4.9)
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where 0"*!(a,,) stands for a sequence of k-dimensional random variables that con-

P
verges to zero in probability faster than a,, as N tends to infinity. In partitioned

matrix notation (4.9) can be rewritten as :

o) o (o] (me) BN )
-6 ) N\ )\ vis
Therefore,
) 1 . R
Gu0) = 7 U (30.8) + () T Us(or )] 1 0 (V2) .10

in which J is evaluated at (v, §).

Next, we already know (by Theorem 3.3.1) that v/ N(%, — 7,) converges in
distribution to a multivariate normal with zero mean and variance .., evaluated
at (7o,8). Therefore N(¥, — v,)"31 (5 — o) converges in distribution to a x-
distribution with r degrees of freedom and thus, using (4.10),

1
= [0, (40, 8) + (7)1 T Us(v, )] TSI [Uy (0, 8) + (J7) LT Us (o, 8)]

N
(4.11)

converges to a x2-distribution with r degrees of freedom too. Under Hp, (4.11)
simplifies to:
1

N<U’Y('YO7 5N('70>>)TJWE%1 S (UL (Yo, 5N(70)>)7

which completes the derivation of the asymptotic distribution of (4.7).
Next, following Johnson and Kotz (1970, p. 150) the model based score statistic

S ) = Uy (3T Uy, ()

is aymptotically distributed as 22:1 /\jsz7 where X? are independently distributed
according to a y2-distribution with 1 degree of freedom and A\, > --- > )\, are the

eigenvalues of ¥, (J77)7!, evaluated under Hy.

4.4.3 Pseudo-likelihood Ratio Statistic

Another alternative is provided by the pseudo-likelihood ratio test statistic, which

requires comparison of full and reduced model.
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Definition

We define:

G = 2pl(B.) — (0. 0))]

In the next paragraph, we show that the asymptotic distribution of G*? can be writ-
ten as a weighted sum Z;Zl )\jxf(j)j where the X%(j) are independently distributed
as x7 variables and A\; > -+ > ), are the eigenvalues of (J7)~'%,,. Alternatively,
the adjusted pseudo-likelihood ratio test statistic, defined by

GZQ _ G*Q/X

is approximately x? distributed. The proof shows that G*? can be rewritten as an
approximation to a Wald statistic. The covariance structure of the Wald statistic can
be calculated under the null hypothesis, but also under the alternative hypothesis.
Both versions of the Wald tests are asymptotically equivalent under Hy (Rao 1973,
p. 418). Tt can therefore be argued that the adjustments in G*? can also be evaluated
under the null as well as under the alternative hypothesis. These adjusted statistics
will then be denoted by G*?(Hy) and G*?( H;) respectively. In analogy with the Wald
test statistic, we expect G*?(H;) to have high power. A similar reasoning suggests
that the score test S*(m.b) might closely correspond to G*?(H,), since both depend
strongly on the fitted null model. Analogous results were obtained by Rotnitzky and
Jewell (1990). Sections 4.5.1 and 4.5.2 briefly compare the asymptotic and small

sample behaviours of the different test statistics.
Derivation of the Asymptotic Distribution of the Pseudo-likelihood Ratio
Test Statistic

Using a Taylor expansion of the log pseudo-likelihood function around 3, we obtain:

DB = HB) + (B — B UB) + (B — B (~N)By— ) + (1)
(4.12)

Using a Taylor expansion of the pseudo-score function around 3, we obtain:
0 =U(By) = U(B) + (=NJ)(By — B) + o (N'?), (4.13)
or

U(B) = NJ(By — B) + " (NV/2). (4.14)
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Substituting (4.13) in (4.12), we find :

DB = PB4 5 (B = BT (B~ B) 1 (1) (1.15)

In partitioned matrix notation (4.15) can be rewritten as:

pg(ﬁ’z\m 6N> - p€<7N7 5)

FY (5, — )7 (6 - 8)7) ( oo ) ( g __?) ) Fopt.

(4.16)
Assuming the null hypothesis is true, (4.16) reduces to:
Us(0:0) = NJss(8x(vo) — &) + o "% (N'/?) (4.17)

in which J is evaluated at (7v,,8). Equating (4.17) with the last (p —r) rows of the
score vector U(7y,, 0), obtained from (4.14), leads to:

(On(v0) = 8) = s Joy (T = o) + (8o = 8) + 07 (N 1/2),

Therefore,

2 | pl(vo, Ox(v0) — P(70,0)| = N<5N(70> - 5>TJ66(5N<70> —&)+ O£X1<1>
= Ny - 70>T<J51;J531J57>('7N — o)
F2N(Fy — ¥0) I3 (8y — 8)
+N(Oy — 8)  Js5(6x — &) + 21 (1).
Using the expression for the inverse of a partitioned matrix it follows that:

2 pﬁ(ﬁ/}w 5N> - p€<707 SN(VO))} = 2 [pg(:yz\m SN) - p€(707 6)}

—9 {pﬁ(*ym (7o) — PE(vo, 6>]

= Ny = %) (g = JL T35 J5) (A — ¥o) + 2% (1)

= NFx—5) () Ay =) + 2 (1)
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Since VN (¥, — o) converges in distribution to a multivariate normal with mean
zero and variance X, it follows from Johnson and Kotz (1970, p. 150) that the

distribution of
N(:YN - 70)T<JVV>71<:YN - 70)
is the same as that of 22:1 )\jX?(jy where X%(j) are independently distributed ac-

cording to a y’-distribution with 1 degree of freedom and \; > --- > A, are the

eigenvalues of >, (J77) 7 .

4.5 Simulation Results

4.5.1 Asymptotic Simulations

To explore more thoroughly the performance of the pseudo-likelihood estimator and
pseudo-likelihood test statistics, we will show a few simulation results with asymp-
totic considerations similar to the ideas of Rotnitzky and Wypij (1994). Remember
from Section 3.7.3 that these constitute an artificial sample, where each possible
realization is weighted according to its true probability. E.g., in a univariate set-
ting, they would consider all realizations of the form (d;,n;,z;). So, we need to
specify: (1) f(d;), the relative frequencies of the dose groups, as prescribed by the
design; (2) f(n:|d:), the probability with which a cluster size can occur, possibly
depending on the dosing (we assume here f(n;|d;) = f(n;)) and (3) f(z;|ns, d;), the
actual model probabilities. This approach can easily be adapted to a multivariate
context. As above, we assume that there are 4 dose groups, with one control group
(d; = 0) and three active groups (d; = 0.25,0.5,1.0) and that the number of viable
fetuses (n,) per cluster is chosen at random from a local linear smoothed version of
the relative frequency distribution given in Table 1 of Kupper et al. (1986) (which
is considered representative of that encountered in actual experimental situations).
The smoothed frequencies were presented in Table 3.3.

The present study is restricted to clusters of bivariate binary data with maximum
cluster size of 10, due to prohibitive time requirements of ML. The main effects are
modelled as 0,; = Go; + fad;(j = 1,2), i.e. a common main dose effect is assumed,
and all association parameters are assumed to be constant. Data are generated from
a bivariate model with background rate parameters (801, Bo2) = (—3,—3) and a zero

association vector (d1,ds2,w19,v12). Positive associations yield similar results.
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Compariscn of Likelihood and Pseudo-likelihood test Statistics
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Figure 4.2: Simulation Results: Comparison of Likelthood and Pseudo-likelihood

Test Statistics for a Common Dose Trend in the Bivariate MR Model
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Comparison of Likelihcod Ratio and Pseudo-likelihcod Ratio
Test Statistics in an Overspecified and a Parsimonious Maodel.
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Figure 4.3: Simulation Results: Comparison of Likelihood Ratio (G*) and Adjusted
Pseudo-likelihood Ratio G=* Test Statistics for a Common Dose Trend in an Over-
specified and a Parsimonious Bivariate MR Model. The Adjustments are Calculated
under the Alternative (G**(Hy)) and under the Null Model (G**(H,))
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We want to assess the effect of F4. Since the Wald test is known to depend on
the particular parameterization, it might be a less relevant measure to use. We will

therefore concentrate mainly on score and ratio statistics.

Figure 4.2 shows the adjusted pseudo-score and pseudo-likelihood ratio statistics
S*(m.b) and G**(Hy), as well as the model based, S(m.b), and empirically corrected,
S(e.c), likelihood score tests and the likelihood ratio statistic G?. We restrict to
G%(Hy), since it is similar to G**(H;) in this case. Note that S¥(m.b) is identical
to S*(e.c), since we are testing for the effect of a single parameter. In the absence
of both a true dose effect and an association between outcomes or between cluster
members, likelihood and pseudo-likelihood are equivalent. However, a substantial
discrepancy arises between G? and G:?(H,) for positive dose effects. Indeed, by
ignoring an important effect, we introduce an apparent association, which is given
too much weight in the pseudo-likelihood. This leads to a pseudo-likelihood value
that is too large under the null. Therefore, the pseudo-deviance is much smaller
than the likelihood deviance. As a consequence of the misspecification, the matrix
Y (J7)7! and hence also the corresponding adjustment, is overestimated, ren-
dering an even greater discrepancy between the test statistics G* and G*?(Hp). A
similar argument explains the discrepancy with the pseudo-score statistic, since this
statistic is fully obtained from the null model. As follows from theory, S%(m.b) and
G**(Hy) are comparable. For small to moderate dose effects, both these statistics
are situated between S(m.b) and S(e.c). However, for larger dose effects, the pseudo-
statistics S*(m.b) and G:?(Hy), as well as their adjustments, show a non-monotone
behaviour, in contrast to the likelihood ratio which increases monotonically with

dose. This issue deserves further research.

We will now study an anomaly that was observed when fitting a more parsi-
monious model, excluding the zero clustering parameters d; and d,. Results are

summarized in Figure 4.3.

The likelihood ratio statistic, calculated under the parsimonious model is larger
than when it is obtained from the overspecified model. This is in agreement with
known properties of the likelihood function. The pseudo-likelihood ratio statistic
G**(H,), on the contrary, becomes smaller. Again, we might argue that a model
under the null hypothesis is misspecified, thus introducing an apparant association
that cannot be captured by the clustering parameters. For reasons, similar to the

ones in our previous discussion, this might lead to inflated variances and correspond-
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Table 4.2: Simulation Results: Type I Frror Probabilities for 50 = —2.5 and Dose
Levels 0,.25,.50,1 (NC is the number of clusters per dose level).

Likelihood Pseudo-likelihood
B. NC G?* S(m.b) S(ec) G (Ho) G (Hy) S*(e.c)= S (m.b)
0.10 5 5.09 4.21 3.21 4.29 14.29 2.80
30 6.00 6.20 5.00 5.40 6.60 5.40
0.25 15 3.63 3.68 1.23 4.70 18.37 2.25
30 6.01 4.60 5.00 6.63 10.84 5.20

ing adjustments. However, the pseudo-likelihood ratio statistic G:?(H;) behaves in
agreement with intuition, since it is based on the (correct) alternative model. A

similar feature was observed by Rotnitzky and Jewell (1990).

4.5.2 Small Sample Simulations

In this section we perform a small sample simulation study for a single clustered
outcome, based upon 500 replications, to illustrate the finite sample behaviour of
the pseudo-likelihood test statistics with respect to type I error probability and
power. The number n, of viable fetuses per cluster is again assumed to follow a
local linear smoothed version of the relative frequency distribution in Table 1 of
Kupper et al. (1986). Data are generated and fitted using a model where the main
effect is modelled as &; = Fo + Bad; and the association parameter is held constant
(0, = B4). The hypothesis of interest is 34 = 0.

The simulation results are shown in Tables 4.2 and 4.3.

The pseudo-score test statistics as well as G**(H,) have satisfactory type I error
probabilities, in good agreement with their likelihood counterparts. Since we are
in the single parameter case, S*(e.c) and S*(m.b) yield identical results. The rejec-
tion probabilities for the pseudo-score test statistics tend to be somewhat smaller
than for pseudo-likelihood ratio test statistics, which is often observed in the like-
lihood setting as well. The pseudo-likelihood ratio statistic G#%(H;) shows inflated
type | error probabilities, especially for small samples. Consequently its power may

be misleadingly high. This feature is commonly observed for the Wald statistic
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Table 4.3: Simulation Results: Powers for 8o = —2.5, B, = 0.1 and Dose Levels
0,.25,.50,1 (NC s the number of clusters per dose level).

Likelihood Pseudo-likelihood
Ba NC  G*  S(m.b) S(ec) G (Ho) GX(Hy) S*(e.c) =S (m.b)
1.0 5 25.05 2480 16.80 20.04 29.66 20.20
2.0 96.42 9579  79.79 90.18 91.38 90.40
2.5 100.00  100.00  92.46 98.20 97.80 98.00
1.0 30 8840 83.60 8340 83.80 87.60 84.40
2.0 100.00  100.00  100.00 100.00  100.00 100.00
2.5 100.00  100.00  100.00 100.00  100.00 100.00

(which is also based on the alternative model). The power of G¥?(Hy) closely corre-
sponds to that of the pseudo-score statistics. For realistic parameter settings such
as (8o, B4, Ba) = (—2.5,2.5,0.1) (based on analyses of National Toxicology Program
data; Price, Kimmel, George and Marr 1987) and/or large samples, Gi2(H;) be-
haves similarly to the other pseudo-likelihood test statistics. In that case, powers
are then very high anyway for all pseudo-likelihood statistics and comparable to

their likelihood counterparts.

4.5.3 Summary

Wald tests can have poor properties for conditional models. Therefore we advocate
the use of score and ratio test statistics. The pseudo-score test statistics have the
advantage to need evaluation under the null model only. Moreover S*(e.c) has an
appealing asymptotic distribution. On the other hand, S*(e.c) may be computation-
ally unstable. In that case, the use of working score statistic S*(m.b), even though
its asymptotic distribution is more complicated, should be preferred. To avoid this
problem, an adjusted score statistic S¥(m.b) was proposed. The distribution of the
pseudo-likelihood ratio test statistic can be adjusted similarly. Our simulations sug-
gest that the pseudo-score statistics as well as G%(Hy) may have lower power than

their likelihood counterparts. Calculating the adjusted pseudo-likelihood ratio test
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under the alternative, G>(H;) may increase the power, but tends to inflate type I
error probabilities in small samples. For realistic parameter settings however, the
pseudo-likelihood ratio tests produce high powers, especially for large samples. To
conclude, we suggest the use of the adjusted pseudo-likelihood ratio tests, but we

recommend caution for small sample sizes.

4.6 Examples

In this section we illustrate the developed pseudo-likelihood techniques to the data
from the NTP developmental experiments DEHP, EG and DYME in mice. We
discuss parameter estimation and hypothesis testing. First, we consider bivariate
analyses, choosing pairs out of the three possible malformation outcomes: external,
visceral and skeletal (respectively indexed by 1,2 and 3). Secondly, we illustrate the
derived test statistics in the bivariate setting. Finally, we perform trivariate data

analyses, and we demonstrate some important advantages of PL estimation.

4.6.1 Bivariate Analyses

Parameters were estimated by means of ML and PL. The main effects are modelled
as either: (1)0;; = Bo; + Byd; (j = 1,2), ie. a different dose effect parameter
is included for each outcome, or (2)6;; = Bo; + Bads (7 = 1,2), i.e. a common dose
effect is assumed. All association parameters are assumed to be constant. Tables 4.4
through 4.7 give a detailed picture of the results obtained for all three NTP studies.

The tables reveal that ML and PL estimates are fairly similar. Dose effect
parameters are statistically highly significant for all analyses, independent of the
estimation technique. The next chapter will try to provide with more insight in the
scientific relevance of these dose effects.

The clustering parameters (d; and d2) are significant, except for EG (External-
Visceral). From Table 2.5 in Chapter 2 it follows that the malformation frequencies
for external and visceral outcomes in the EG study are rather small. The remaining
association parameters often do not reach the 5% significance level.

Although ML and PL estimates and standard errors are numerically different,
they have similar magnitude and direction, and no clear ordering is seen between
them. Further, the Wald test statistic for dose effect is higher with PL than with
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Table 4.4: NTP Studies: Maximum Likelihood Estimates (model based standard

errors;empirically corrected standard errors) of Bevariate Outcomes (different main

dose effects).

Study  Par. External-Visceral FExternal-Skeletal Visceral-Skeletal
DEHP 8o -2.62 (0.60;0.60) -2.66 (0.60;0.53) -2.57 (0.54;0.55)
Bai 2.92 (0.68;0.69) 2.89 (0.67;0.62)  2.59 (0.58;0.62)
Bo2 -2.18 (0.54;0.65)  -2.63 (0.60;0.76) -2.94 (0.61;0.81)
Baz 2.22 (0.59;0.75) 2.73 (0.66;0.83)  3.02 (0.65;0.83)
o 0.14 (0.06;0.06)  0.22 (0.04;0.04)  0.21 (0.04;0.03)
d2 0.14 (0.06;0.05)  0.21 (0.05;0.05)  0.20 (0.04;0.04)
W1o 0.09 (0.20;0.27)  0.54 (0.20;0.20)  0.34 (0.20;0.26)
Y12 0.04 (0.05;0.06) -0.08 (0.03;0.03) -0.08 (0.03;0.02)
EG Bo1 -2.96 (0.96;1.10)  -2.74 (0.80;0.97) -4.75 (1.56;1.38)
Bai 2.28 (0.69;0.88) 1.84 (0.76;0.84)  3.14 (1.43;0.89)
Bo2 -5.12 (1.61;1.60)  -0.53 (0.31;0.32) -0.37 (0.47;0.43)
Bam 375 (1.35:1.20)  0.94 (0.20;0.20)  0.94 (0.20;0.19)
o1 0.22 (0.10;0.10)  0.25 (0.05;0.06)  0.23 (0.09;0.09)
8 0.18 (0.14;0.13)  0.20 (0.02;0.02)  0.21 (0.02;0.02)
W1o -0.09 (0.56;0.59)  0.43 (0.26;0.28)  0.91 (0.43;0.33)
Y12 0.05 (0.10;0.09)  -0.01 (0.02;0.03) -0.04 (0.03;0.03)
DYME (o -5.26 (1.15:1.27)  -7.09 (1.23;1.32) -2.89 (1.06:1.21)
Ba 588 (1.22:1.37)  8.01 (1.38;1.56)  2.18 (1.14:1.37)
Bo2 -2.87 (0.98;0.90)  -3.59 (0.66;0.75) -1.25 (0.53;0.83)
Baz 2.37 (0.99;0.95)  4.54 (0.80;0.94)  2.30 (0.53;0.97)
o 0.09 (0.06;0.07)  0.11 (0.05;0.04)  0.29 (0.05;0.05)
d2 0.29 (0.05;0.05)  0.23 (0.02;0.02)  0.25 (0.03;0.03)
wip  -0.29 (0.24:0.21)  0.01 (0.22;0.34)  0.42 (0.32;0.29)
Y12 0.06 (0.04;0.04) -0.09 (0.02;0.03) -0.02 (0.03;0.06)
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Table 4.5: NTP Studies: Pseudo-likelthood Fstimates (standard errors) of Bivariate

Outcomes (different main dose effects).

Study  Par. External-Visceral FExternal-Skeletal Visceral-Skeletal

DEHP o, -2.52 (0.61) -2.80 (0.53) -2.73 (0.53)
Ba 2.99 (0.67) 3.23 (0.58) 3.03 (0.58)
Boz -1.90 (0.65) -2.41 (0.70) -2.80 (0.71)
Bao 2.12 (0.70) 2.46 (0.79) 2.77 (0.75)
5 0.14 (0.05) 0.23 (0.05) 0.25 (0.04)
8 0.15 (0.05) 0.25 (0.06) 0.26 (0.05)
wl2 0.12 (0.25) 0.56 (0.20) 0.36 (0.28)
~12 0.07 (0.05) -0.10 (0.05) -0.12 (0.04)
EG Bor -2.39 (0.94) -2.37 (0.88) -4.69 (1.63)
Ba 2.14 (0.76) 1.64 (0.74) 3.16 (0.98)
Boz -5.04 (1.62) -0.77 (0.30) -0.69 (0.43)
Ban 3.73 (1.17) 1.39 (0.20) 1.44 (0.19)
5 0.24 (0.11) 0.28 (0.06) 0.24 (0.11)
8 0.16 (0.14) 0.20 (0.01) 0.21 (0.01)
Wi -0.05 (0.58) 0.14 (0.31) 0.81 (0.33)
Y2 0.08 (0.11) 0.03 (0.03) -0.03 (0.03)
DYME o, -4.74 (0.90) -5.87 (1.26) -3.03 (1.19)
Ba 5.35 (0.92) 6.55 (1.45) 2.38 (1.19)
Boz -2.85 (1.06) -3.36 (0.79) -1.90 (0.55)
Bao 2.46 (1.02) 4.40 (1.02) 3.11 (0.56)
5 0.12 (0.05) 0.16 (0.05) 0.28 (0.06)
8 0.30 (0.06) 0.25 (0.02) 0.25 (0.02)
wia -0.41 (0.20) 0.23 (0.29) 0.34 (0.31)
Y2 0.07 (0.04) -0.10 (0.05) -0.01 (0.05)
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Table 4.6: NTP Studies: Maximum Likelihood Estimates (model based standard

errors;empirically corrected standard errors) of Bivariate Outcomes (common main

dose effects).

Study  Par. External-Visceral FExternal-Skeletal Visceral-Skeletal
DEHP 8o -2.31 (0.43;0.57)  -2.59 (0.46;0.49) -2.74 (0.46;0.54)
Bo2 -2.46 (0.43;0.60)  -2.70 (0.46;0.52) -2.74 (0.46;0.56)
o1 0.16 (0.05;0.06)  0.22 (0.04;0.04)  0.20 (0.03;0.03)
do 0.12 (0.06;0.05)  0.20 (0.04;0.04)  0.22 (0.03;0.03)
W1o 0.08 (0.20;0.27)  0.54 (0.20;0.20)  0.34 (0.20;0.26)
Y12 0.04 (0.05;0.06) -0.08 (0.03;0.03) -0.08 (0.03;0.02)
Ba 2.54 (0.44;0.65) 2.81 (0.49;0.56)  2.79 (0.47;0.57)
EG Bo1 -3.33 (0.91;1.00)  -2.01 (0.42;0.43) -2.86 (0.79;0.69)
Boz  -4.02 (1.01;1.12)  -0.45 (0.31;0.34) -0.12 (0.46;0.50)
o 0.20 (0.10;0.10)  0.26 (0.05;0.05)  0.27 (0.09;0.08)
02 0.19 (0.14;0.13) 0.20 (0.02;0.02)  0.20 (0.02;0.02)
w12 -0.08 (0.56:0.59)  0.52 (0.26;0.31)  1.16 (0.41;0.41)
v12 0.06 (0.11;0.09) -0.01 (0.02;0.03) -0.04 (0.02;0.03)
B4 2.68 (0.61;0.75) 1.02 (0.20;0.21) 1.02 (0.20;0.20)
DYME (o -3.93 (0.78;0.80)  -4.49 (0.63;0.72) -2.99 (0.51;0.82)
Bo2 -4.81 (0.79;0.81)  -4.02 (0.64;0.77) -1.25 (0.52;0.83)
o 0.16 (0.04;0.04)  0.22 (0.03;0.03)  0.29 (0.05;0.05)
do 0.25 (0.05;0.06)  0.21 (0.02;0.02)  0.25 (0.03;0.03)
mp -0.31 (0.23;0.19)  0.06 (0.23;0.37)  0.41 (0.30;0.31)
Y12 0.05 (0.03;0.04)  -0.10 (0.02;0.03) -0.01 (0.03;0.05)
Ba 4.30 (0.77;0.80) 5.26 (0.77;0.95)  2.28 (0.51;0.96)
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Table 4.7: NTP Studies: Pseudo likelthood Fstimates (standard errors) of Bivariate

Outcomes (common main dose effects).

Study  Par. External-Visceral FExternal-Skeletal Visceral-Skeletal

DEHP o, -2.15 (0.58) -2.48 (0.47) -2.64 (0.50)
Boz -2.21 (0.61) -2.72 (0.50) -2.90 (0.55)
& 0.16 (0.05) 0.25 (0.05) 0.25 (0.05)
8 0.13 (0.05) 0.23 (0.05) 0.25 (0.04)
w1a 0.12 (0.25) 0.56 (0.20) 0.36 (0.28)
Y12 0.06 (0.05) -0.10 (0.05) -0.12 (0.04)
Ba 251 (0.60) 2.84 (0.53) 2.91 (0.52)
EG Bor -2.79 (0.85) -2.18 (0.45) -3.05 (0.74)
Boz -3.88 (1.08) -0.76 (0.30) -0.58 (0.47)
5 0.23 (0.11) 0.28 (0.06) 0.27 (0.09)
5 0.18 (0.14) 0.20 (0.01) 0.21 (0.01)
wia -0.04 (0.58) 0.15 (0.31) 0.90 (0.36)
Y2 0.09 (0.11) 0.03 (0.03) -0.02 (0.03)
Ba 2.59 (0.64) 1.42 (0.20) 1.52 (0.19)
DYME  Bo; -3.83 (0.78) -4.50 (0.80) -3.63 (0.59)
Boz -4.57 (0.83) -3.87 (0.77) -1.89 (0.55)
& 0.18 (0.04) 0.22 (0.03) 0.27 (0.06)
8 0.26 (0.06) 0.24 (0.02) 0.26 (0.02)
w1a -0.42 (0.19) 0.23 (0.30) 0.32 (0.31)
T2 0.05 (0.04) -0.10 (0.05) -0.01 (0.05)
By 4.21 (0.74) 5.08 (0.99) 3.00 (0.57)
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Table 4.8: NTP Studies: Relative Time Gains (RTG) of Pseudo-likelihood Compared

to Maximum Likelihood (in seconds).

Study  Parameter Combination ML PL  RTG

DEHP  External-Visceral 73.17 14.06 5.20
External-Skeletal 75.30 14.01 5.37
Visceral-Skeletal 72.77 14.06 5.18

EG External-Visceral 75.97 15.10 5.03
External-Skeletal 73.55 13.84 5.31
Visceral-Skeletal 76.02 15.11 5.03

DYME External-Visceral 98.60 15.76 6.26
External-Skeletal 98.42 1577 6.24
Visceral-Skeletal 95.35 15.77 6.04

ML in about 60% of the cases considered.

From a computational perspective, Table 4.8 shows that the PL estimation pro-
cedure needs only between 14 and 16 seconds to converge, while ML, needs 73 to 99
seconds. This translates into relative time gains of 5 to 6 seconds. Especially, in the

trivariate case, PL. will become really superior.

4.6.2 Tests for Trend

Tests for trend are often applied to toxicological data in order to assess dose effects.
Lefkopoulou, Rotnitzky and Ryan (1996) explain the need for computationally sim-
ple trend tests. We compute the test statistics, proposed in Section 3 for main dose
effects in the NTP data (bivariate case only). In particular, we test Ho; : B = 0
(j = 1,2) and Hp : Bq = 0. Results are shown in Tables 4.9 and 4.10. The notations
A(Ho) and A(H,) refer to the arithmetic means of the eigenvalues calculated under
Hy or Hj respectively.

Based on the tabulated observations, Figure 4.4 informally shows the relative
positions of score and likelihood ratio tests. As is known for the likelihood setting

the empirically corrected score statistic S(e.c) is often much smaller than the model
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Table 4.9: NTP Studies: Likelihood Wald, Score and Ratio Tests for Dose Trends
(empirically corrected (e.c) and model based (m.b)).

W(e.c) W(mb) S(ec) S(m.b) G?

common main dose effect
DEHP  Ext-Vis 15.24 33.11 2193 3505 6148
Ext-Skel  25.69 3342 1593  36.76  67.07
Vis-Skel  24.36 3495 21.35 4152  67.60
EG Ext-Vis 12.73 19.36 746  23.17  27.39
Ext-Skel  24.40 25.65 23.68  46.06  55.70
Vis-Skel  25.64 2461 2553 4735  55.60
DYME Ext-Vis 29.01 3132 17.19  31.50  86.31
Ext-Skel  30.82 46.11 2593  53.27 134.98
Vis-Skel 5.69 20.02 25.11 3899 6561

different main dose effects
DEHP  Ext-Vis 17.69 33.09 2261 3515 62.08
Ext-Skel — 28.87 3341 1751  36.76  67.10
Vis-Skel  24.20 3499 2405 4155 67.89
EG Ext-Vis 15.72 1869 779  24.09 2843
Ext-Skel — 28.52 2757  26.19  46.66  57.06
Vis-Skel  36.67 26.33 2594 4879  58.62
DYME Ext-Vis 21.03 2789 1738  36.53 91.75
Ext-Skel  29.39 45.96 28.53  53.39 145.56
Vis-Skel 5.74 20.02 25,19 4537  65.62
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Table 4.10: NTP Studies: Pseudo-likelthood Wald, Score and Ratio Tests for Dose

Trends.

MNHy) MHY) W+ S*(ec) Sim.b) G2(Hy) G(H))
common main dose effect

DEHP  Ext-Vis 1.55 1.79 17.49 20.83 20.83 21.12 18.34
Fxt-Skel 1.54 1.02  29.24 19.91 19.91 20.81 31.65

Vis-Skel 1.58 1.08 31.78  22.67 22.67 23.71 34.47

EG Ext-Vis 2.46 1.02 16.36 8.14 8.14 8.62 8.43
Ext-Skel 077 043 50.23  28.99 28.99 27.94 64.59

Vis-Skel 0.68 0.35 63.62  33.75 33.75 32.39 91.98

DYME  Ext-Vis 2.41 0.87 32.57 13.35 13.35 15.20 41.92
Ext-Skel 1.47 1.69 26.26  33.36 33.36 36.96 32.13

Vis-Skel 1.26 0.99 2795  23.07 23.07 22.98 29.34

different main dose effects

DEHP  Ext-Vis 1.07 1.19 26.72 21.02 31.25 31.73 28.21
Ext-Skel 1.08 0.99 30.42  23.11 29.02 30.35 32.98

Vis-Skel 1.07 1.02 33.75  24.49 33.65 35.14 36.58

EG Ext-Vis 1.69 0.90 17.77 8.48 12.24 15.22 24.79
Ext-Skel  0.73 0.59 36.44  29.02 30.77 29.72 36.22

Vis-Skel 0.57  0.38 59.56  36.02 42.11 41.36 61.80

DYME Ext-Vis 1.58 0.85 37.02 13.68 22.66 25.50 47.63
Ext-Skel 1.14 1.34 34.64  34.25 45.27 50.46 42.79

Vis-Skel 0.96 0.88 31.87  23.52 31.15 30.56 33.27
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S(e.c) Si(m.b) G22(Hy) G
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S*(e.c) G**(Hy) S(m.b)

Figure 4.4: NTP Studies: Informal Comparison of Score and Ratio Test Statistics
in the Bivariate MR Model.

based version S(m.b). While a similar observation can be made for the pseudo-score
statistics S*(e.c) (playing the role of the empirically corrected statistic) and the
adjusted statistic S’(m.b), the gap is considerably narrower and, as appears from
the theory, it vanishes in the common dose effect model. Whereas the maximum
likelihood ratio statistic is usually much larger than any other statistic, the same
does not hold for the adjusted pseudo likelihood ratio statistic G#?(Hy), which in
fact closely agrees with the adjusted pseudo-score Si(m.b). It should be noticed
that these results correspond with our findings in Section 4.4.

As expected, the pseudo-Wald test W* corresponds fairly well with GZ2(H,).
Further note that the eigenvalues take unusually small values for the EG data
(External-Skeletal;Visceral-Skeletal). This is probably due to rare events, leading

to an inflated Hessian matrix.

4.6.3 Trivariate Analyses

When considering all three outcomes jointly, ML, becomes prohibitively difficult to
fit. Some analyses are very sensitive to initial values and take more than 10 hours to
converge. Therefore, we abandoned ML and concentrated solely on the P, method,
which took less than 3 minutes to converge.

For all three NTP studies, we considered (1) a model with a different dose effect
per outcome and (2) a common dose effect model, both of which are tested for

the null hypothesis of no dose effect. In both cases all association parameters are
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Table 4.11: NTP Studies: Pseudo-likelihood Estimates (standard errors) for Trivari-

ate Outcomes (different main dose effects).

Par. DEHP EG DYME
Bor  -2.13 (0.64) -1.64 (1.04) -5.67 (1.16)
Boz -2.38 (0.63) -5.04 (1.75) -2.34 (1.26)
Bos -2.76 (0.72) -0.39 (0.51) -2.97 (0.90)
5  0.14 (0.07) 0.18 (0.13)  0.15 (0.04)
5, 0.18(0.04) 0.12(0.17) 0.30 (0.06)
53 0.29 (0.06) 0.20 (0.01) 0.25 (0.02)
wiz  0.06 (0.25) -0.05 (0.57) -0.45 (0.20)
wis  0.60 (0.20) 0.11 (0.31) 0.25 (0.31)

(0.29) (

(0.06) (

(0.05) (

(0.06) (

(0.66) (

(0.66) (

(0.76) (

wos  0.36 (0.29)  0.86 (0.34)  0.35 (0.31)
Y12 0.11 (0.06)  0.14 (0.13)  0.07 (0.04)
13 -0.06 (0.05) 0.08 (0.04) -0.11 (0.05)
Y25 -0.14 (0.06) -0.09 (0.04) 0.01 (0.05)
Ba 270 1.12 (0.86)  6.48 (1.26)
Bar  2.63 3.63 (1.04) 1.66 (1.36)
Baz  2.70 1.42 (0.19)  4.29 (0.99)

0.66
0.66
0.76
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Table 4.12: NTP Studies: Pseudo-likelihood Estimates (standard errors) for Trivari-

ate Outcomes (common main dose effects).

Par. DEHP EG DYME
Bor  -2.10 (0.51) -1.97 (0.56) -3.89 (0.83)
Boz  -2.42 (0.50) -2.96 (0.87) -4.77 (0.87)
Bos  -2.74 (0.49) -0.27 (0.55) -3.21 (0.81)
5  0.14 (0.07) 0.18 (0.13) 0.22 (0.03)
§, 0.8 (0.04) 0.17 (0.17) 0.25 (0.06)
53 0.29 (0.05) 0.20 (0.01) 0.25 (0.02)
wip  0.06 (0.24) -0.05 (0.57) -0.46 (0.19)
(0.20) (
(0.28) (
(0.06) (
(0.05) (
(0.06) (
(0.48) (

wis  0.60 (0.20) 0.11 (0.30)  0.29 (0.30)
wys  0.36 (0.28) 0.97 (0.37) 0.28 (0.31)
0.06) 0.13 (0.13)  0.05 (0.04)
0.05) 0.06 (0.04) -0.09 (0.04)
0.06) -0.07 (0.03) -0.03 (0.05)
0.48) 1.50 (0.20) 4.31 (0.85)

M2 11
s -0.06
vo3  -0.14
8, 267




98 Chapter 4

held constant. Results of these analyses are tabulated in Tables 4.11 and 4.12
and indicate, based on Wald tests, that all dose effect parameters are significant
(except for External outcomes in EG and for Visceral malformations in DYME).
In addition, Tables 4.11 and 4.12 show that by fitting a relatively simple model
with different dose effects for each outcome and constant association parameters,
the three different main dose effect parameters in the DEHP study all seem to be
relevant and of similar magnitude. This suggests that the use of a common main
dose parameter is desirable, hereby increasing the efficiency (Lefkopoulou and Ryan
1993). The estimated clustering parameters d; (j = 1,2, 3) are all significant, except
for External and Visceral malformation outcomes in the EG study. In contrast, the

other association parameters often do not reach the 5% significance level.

4.6.4 Model Selection

In this section we merely exemplify how to select appropriate models for the EG,
DYME and DEHP studies, using the test statistics developed in Section 4.4. The
EG and DEHP studies will be re-analyzed more thoroughly in the next chapter.
Because of the indicated drawbacks of the Wald test statistic, specifically for
conditional models, we concentrate on score and likelihood ratio test statistics only.
The different trivariate models considered are described in Table 4.13. A summary

of the model selection strategy for the two studies is given in Table 4.14.

The EG Study

For the EG chemical, the number of “events” tends to be small, especially for ex-
ternal and visceral malformation types. Therefore, the data do not support very
complicated models. We start from a model that contains linear dose effects on all
parameters (model 7). The linear dose effects on the association parameters are
all non significant. Hence the model can be reduced to model 4. According to the
statistics, it seems not necessary (sometimes borderline) to consider different dose
effects for the main parameters. One common dose effect may be sufficient. How-
ever, since our model is conditionally specified, it is important to assess its fit to the
observed malformation rates. This will be further investigated in Chapter 5.

We tabulated the adjusted pseudo-likelihood ratio test statistics, as well as

the adjusted and unadjusted pseudo-score statistics, described earlier in this sec-



Pseudo-likelihood Inference for Clustered Multivariate Binary Outcomes — 99

Table 4.13: NTP Studies: Model Descriptions (=linear ; g=quadratic).

Model Description Par.
1 Null Model 12
2 Common (1) dose effect on main pars 0 13
3 Common (1++q) dose effect on main pars 0 14
4 Different (1) dose effects on main pars 15
5 Different (1) dose effects on 0, § 18
6 Different (1) dose effects on 0, §, w 21
7 Different (1) dose effects on 8, J, w, v 24
8 Different (14+q) dose effects on 4, § and (1) dose effect on w, v pars 30
9 Different (14+q) dose effects on 4, 3, w and (1) dose effect on v pars 33
10 Different (14+q) dose effects on all parameters 36
Table 4.14: NTP Studies: Model Selection.
Model Comp. df A(Hy) M) S*(ec) Si(m.b)y G2(Ho) G¥?(H,)
EG

6-7 3 1.27 0.94 7.771 5.25 5.33 7.16

0-6 3 1.32 1.13 5.06 4.56 6.58 7.45

4-5 3 1.34 1.33 5.45 2.89 2.81 2.84

2-4 2 0.66 0.72 6.21 3.82 4.19 3.85

DEHP
1-2 1 1.83 1.26 22.09 22.09 22.62 32.88
2-3 1 1.01 0.92 5.8 5.8 5.73 6.29
DYME
9-10 3 0.22 0.16 1.35 0.93 0.97 1.32
8-9 3 0.32 0.00 -1.07 2.61 1.43  63269.42
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tion. Note that the GI*(Hy) and S (m.b) statistics are similar, while G**(H,) is in
most cases slightly less conservative. This confirms earlier results. The unadjusted
pseudo-score statistic S*(e.c) yields comparable results in this case. However, Rot-
nitzky and Jewell (1990) note that it may suffer from computational stability prob-
lems, similar to those of the Wald test statistic. Our experience with the DYME
study is in line with this statement. This will be further illustrated below.

The DYME Study

Let us start from the very complicated model with linear and quadratic dose effects
on all parameters (model 10). From Table 4.14, it follows that the quadratic dose
effects on the v parameters can be omitted. However, the eigenvalues are very
small, indicating a numerical stability problem. This is even more extreme, when
we compare model 9 with model 8. Since events are rare, and the occurence of
several malformations simultaneously is even rarer, the Hessian matrix is inflated.
The adjustment A(H,) is therefore nearly zero, leading to an inflated G*?(H,). This
feature is well known for and shared with the Wald statistic, and is the reason why
one often prefers score statistics. However, G*?(H;) can be regarded as an internal
diagnostic as well. Besides, S*(e.c) takes a negative value, which confirms our
former statement that the compounded matrix JWZ%l J77 can suffer badly from
instabilities and that even the sign of the eigenvalues is affected. Our discussion
suggests that these models are too complex, given the structure of the data and

that more parsimonious models ought to be considered.

The DEHP Study

All test statistics in Table 4.14 lead to the conclusion that the null model (model
1), containing no dose effect, is clearly unacceptable, compared to model 2 which
assumes a common dose effect on the main effect parameters. This could have
been anticipated from the data in Table 2.1 which suggest clear exposure effects of
DEHP on the three malformation outcomes: external, visceral and skeletal. Adding
a common quadratic dose effect (model 3) ameliorates the fit significantly. In an
attempt to improve the fit even further we might consider more complicated models.
This will be further discussed in Chapter b.
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4.7 Asymptotic Relative Efficiency

One might expect that a loss of efficiency is the price to pay for computational
ease. However, in Chapter 3 we showed that the ARE of PL versus ML equals 1 for
all saturated exponential models, i.e. models of the form proposed by Cox (1972).
In order to study the ARE for the dose trend in multivariate clustered outcomes,
we follow the suggestion of Rotnitzky and Wypij (1994) and consider the same
settings as in Section 4.5.1. Again, we restrict attention to bivariate binary data
with maximum cluster size of 10, due to prohibitive time requirements of ML. The
main effects are modelled as 0;; = Bo; + Bads (j = 1,2), i.e., a common main dose

effect is assumed, and all association parameters are assumed to be constant.

A grid of several parameters is explored. The AREs of PLL and ML are displayed
in Table 4.15. The table shows that the AREs are very high for the lower values
of the common background rate parameter 3y (e.g., —5 to —3) and decrease with
increasing dose effect when Jy is held constant. When [y approaches zero, the ARE
shows a non-monotonic behaviour as function of 34, except for the zero association
vector, and decreases with strength of association. In the case of a zero association
vector, the ARE always decreases with increasing 3,4, independent of the value of
the common background rate. These conclusions are well in agreement with those
found earlier in Chapter 3 for univariate clustered binary data. There, the ARE
was found to be very high for low background rates, which are frequently observed.
In addition it was found that the ARE decreases, when the dose effect increases for

either a zero association or a low background rate.

When 3y equals zero, the ARFE decreases with strength of association. Table 4.16
shows the AREs for a zero background rate parameter and (6;,0:) = (.2,.2) The
ARE steeply decreases when w or v increase. This is especially true in the absence of
a dose effect. The ARE increases as 3, increases within the range of positive w and
~v parameters. When ~ equals 0, the ARE decreases for an increasing association
parameter w. Again, thisis very marked in the case of a zero dose parameter. When
v is negative, the ARE is fairly high for all values of w. Again, these conclusions are
well in agreement with those found earlier for univariate clustered binary data. In
that setting it was shown that the AREs are very high for low background rates and
pseudo-likelihood performs relatively poorly for a background rate of 50%, no dose

effect and a high within-cluster association. Furthermore, the ARF.: decreases, when
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Table 4.15:  Simulation Results: Asymptotic Relative Efficiencies of Pseudo-

likelihood versus Maximum Likelihood for the bivariate MR model.

& 0 20 20 .20 20 .20
8 0 20 20 .20 20 .20
Wi 0 0 .10 .50 .10 .50
Y12 0 0 05 .05 .10 .10

(Bot, Bo2)  Ba
(—57—5) 0.0 1.000 1.000 1.000 1.000 1.000 1.000

1.5 0999 1.000 1.000 1.000 1.000 1.000
3.0 0990 0.999 0.999 0999 0.999 0.999
(—3,—3) 0.0 1.000 0.999 0.999 0.999 0.999 0.999
1.5 0979 0997 0.998 0.998 0.998 0.998
3.0 0942 0949 0887 0867 0.865 0.855
(—2,—2) 0.0 1.000 0.999 0.999 0.998 0.999 0.998
1.5 0959 0966 0.971 0973 0974 0.973
3.0 0936 0949 0.897 0863 0.844 0.822
(—1,—1) 0.0 1.000 0.980 0.989 0.986 0.987 0.979
1.5 0976 0942 0.879 0.842 0.818 0.790
3.0 0936 0949 0.897 0863 0.844 0.822
(0,0) 0.0 1.000 0.856 0.551 0.312 0.252 0.127
1.5 0967 0947 0.869 0.815 0.809 0.768
3.0 0943 0949 0887 0867 0.865 0.855
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Table 4.16: Simulation Results: Asympotic Relative Efficiencies of Pseudo-likelihood
versus Maximum Likelithood for the Bivariate MR Model with a Zero Background

Rate Parameter Vector.

w B Y
-1 0 .05 1
0 0.0 0.857
1.5 0.948
3.0 0.949

1 00 0984 0.830 0.551 0.252
1.5 0936 0939 0.869 0.810
3.0 0966 0.937 0.887 0.865
S 00 0969 0.669 0.312 0.127
1.5 0971 088 0.815 0.768
3.0 0982 0.893 0.868 0.856
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the dose effect increases for either a zero association or a low background rate. For a
50% background rate, the ARE decreases rather dramatically when the association
becomes stronger or when dose effect decreases.

In conclusion, the efficiency loss of PL is very mild, especially for commonly
encountered parameter values. In most settings, such a slight loss of efficiency
will be well worth the gain in computational ease. A similar study confirmed that,
based on their ARE, PL(1) and PL(2) can be considered roughly equivalent for most
practical purposes. Table 4.17 shows that their AREs all vary around one. As can
be anticipated, the AREs of PL(1) versus PL(2) decrease slighly with the strength
of the association parameter w, but in the worst case considered of (3, = 0, 3; = 0)
and a positive association vector (81,02, w12, v12) = (.2,.2,1.0,.05) no values smaller

than .83 were observed.

4.8 Conclusion

In this chapter we have shown that pseudo-likelihood estimation is a very attrac-
tive alternative for maximum likelihood in the case of clustered multivariate binary
outcomes, analyzed with the exponential family model of Molenberghs and Ryan
(1999). The procedure becomes particularly useful for larger cluster sizes, where
full maximum likelihood estimation is hampered, due to computing time require-
ments. In contrast, the pseudo-likelihood estimation method converges quickly with
only minor efficiency losses, especially for a range of realistic parameter settings.
Moreover, it is a natural estimation procedure. Often it can be derived directly
from a probability mass function, as was the case here. Should one choose to specify
a set of conditional densities directly, then compatibility conditions (Arnold and
Strauss 1991) can be imposed to ensure existence of an underlying density.

To overcome the absence of inferential test procedures, we also proposed score
and likelihood ratio tests within the pseudo-likelihood framework. They are easy
to calculate, exhibit nice satisfactory behaviour and provide the necessary tools for
model selection. These desirable properties were exemplified using data from the
NTP developmental toxicity studies. In the next chapter we will perform analyses

of developmental toxicity data in their own right.
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Table 4.17: Simulation Results: Asymptotic Relative Efficiencies of PL(1) versus
PL(2) for the Bivariate MR Model.

81 0 2 2 2 2
8 0 2 2 2 2
w12 0 0 1 5 1.0
Y12 0 0 .05 .05 .05

(Bor, Boz)  Ba

(=5,—5) 0.0 1.000 1.000 1.000 1.000 1.000
1.5 1.000 1.000 1.000 1.000 1.000
3.0 0.999 1.000 1.000 0.997 0.999

(—3,—3) 0.0 1.000 1.000 1.000 0.999 0.999
1.5 0.999 1.000 0.999 0.999 0.997
3.0 0.997 1.001 0.996 0.973 0.938

(—2,—2) 0.0 1.000 1.000 1.000 0.999 0.997
1.5 0.999 1.000 0.999 0.994 0.981
3.0 0.999 0.997 0991 0.978 0.953

(—1,—1) 0.0 1.000 1.000 0.999 0.993 0.975
1.5 1.000 0.998 0.996 0.985 0.950
3.0 0.999 0.997 0991 0.978 0.953

(0,0) 0.0 1.000 1.000 0.997 0.943 0.829
1.5 0.999 0999 0997 0978 0.943
3.0 0.997 1.001 0.996 0.973 0.938
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Chapter 5

Risk Assessment and Fractional

Polynomials

5.1 Introduction

In this chapter we investigate the toxicity of DEHP and EG in mice. The data are
described in Sections 2.1.1 and 2.1.5. Our primary goal in this chapter will be to de-
termine safe levels of exposure for these studies, based on appropriate dose-response
models. Since the data involve a vector of malformation indicators, flexible mod-
els for clustered, multivariate binary data are required. Williams and Ryan (1996)
summarize a variety of reasons why multivariate methods for dose-response mod-
elling are important, thereby controlling for several adverse events simultaneously.
Incorporating multiple outcomes helps: (1) to control the Type I error rate, which
can become inflated when several tests for dose effects are conducted across several
univariate models, (2) to investigate relationships among adverse outcomes, (3) to
more realistically quantify overall risk of “any adverse event” that can be used for
the purpose of risk assessment. The exponential family likelihood model of Molen-
berghs and Ryan (1999) easily deals with multivariate outcomes. Other advantages
of this model are the flexibility with which both main effects and associations can
be modelled, and the absence of constraints on the parameter space which eases
interpretability. Further it provides a natural framework for quantitative risk as-
sessment. Present approaches based on marginal models estimate benchmark doses

based on the marginal probability of a single offspring being affected, although litter
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based versions can be considered as well. Declerck et al. (1999) compare litter based
versus fetus based risks in the univariate case. From a biological perspective, one
might argue that it is important to take into account the health of the entire litter
when modelling risk as a function of dose. The likelihood basis of the MR model
allows calculation of quantities such as the probability that at least one littermate is
affected. While they could in principle be calculated from a fully specified marginal
model, computations tend to be involved, since fitting these models is hampered
by lengthy computations and /or parameter restrictions (Molenberghs, Declerck and
Aerts 1998 and Aerts, Declerck and Molenberghs 1997). A detailed comparison of
litter-based versus fetus-based risk assessment, for the multivariate MR model is the
subject of ongoing research .

An important goal of developmental toxicity studies is to perform risk assess-
ment, i.e. to set safe limits for human exposure, based on the fitted model (Crump
1984). To this end, models should fit the data well. This has implications for both
the model family chosen, as well as for the form of the linear predictors. Since
classical polynomial predictors are often of poor quality, especially when low dose
extrapolation is envisaged, there is a clear need for alternative specifications of the
predictors describing main effects and associations.

We describe how to find appropriate fractional polynomial predictors in Sec-
tion 5.2. In Section 5.3, we construct several candidates for dose-response models
by modelling the natural parameters © in model (4.2) as fractional polynomial func-
tions of dose (Royston and Altman 1994). We use fractional polynomials, since they
provide more flexibly shaped curves than conventional polynomials. Estimation is
by pseudo-likelihood rather than maximum likelihood, because of the latter’s exces-
sive computational requirements. Once a suitable model is selected, it can serve as

basis for quantitative risk assessment. This is illustrated in Section 5.4.

5.2 Fractional Polynomial Predictors

For risk assessment to be reliable, models should fit the data well in all respects.
Although classical polynomial predictors are still very customary, they are often
inadequate. Perhaps an obvious alternative are non-linear predictor functions (Da-
vidian and Giltinan 1995). Such models pose non-trivial methodological challenges.

For example, a classical power model o+ 3d”, where d denotes dose and «, 3, and
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are unknown parameters, suffers from lack of identifiability under the null hypoth-
esis of no dose effect, since this null hypothesis corresponds to both 7 = 0 with ~
arbitrary, as well as to v = 0 with 3 arbitrary. The advantages and disadvantages of
Bayesian methods in this context are currently under investigation (Declerck 1999).
A very elegant alternative approach to classical polynomials, which falls within the
realm of (generalized) linear methods, is given by fractional polynomials. They pro-
vide a much wider range of functional forms. Let us briefly describe this procedure,
advocated by Royston and Altman (1994).

For a given degree m and an argument d > 0 (e.g., dose), fractional polynomials

are defined as

Bo+ S By,
j=1

where the 3; are regression parameters and d° = In(d) and the powers p; < -+ < p,
are positive or negative integers or fractions (Royston and Altman 1994). Royston
and Altman (1994) argue that polynomials with degree higher than 2 are rarely
required in practice and further restrict the powers of dose to a small predefined set
of possibly non-integer values: 1l = {—2,—1,—1/2,0,1/2,1,2,..., max(3,m)}. For

example, setting m = 2 generates:

(1) 4 “quadratics” in powers of d, represented by

— (L/d?,1/d) : Bo + B1/d + o1 /d?,
— (1/d,1/v/d) : Bo + 11/Vd + B;1/d,
— (Vd,d) : Bo+ B1Vd + Bad, and

— (d.d?): Bo + Brd + Bod?;

(2) a quadratic in In(d): 8o + 31 In(d) + B2 In(d)?, and

(3) other curves which have shapes different from those of conventional low degree

polynomials.

The full definition includes possible “repeated powers” which involve powers of In(d).
For example, a fractional polynomial of degree m = 3 with powers (-1,-1,2) is of the
form By + B1d ! + Bod tIn(d) + B3d*> (Royston and Altman 1994, Sauerbrei and
Royston 1999).
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For given m, we consider as the best set of transformations, the one producing
the highest log (pseudo)-likelihood. For example, the best first degree fractional
polynomial is the one with the highest log (pseudo)-likelihood among the eight
models with one regressor (d2,d!,...,d®). As with conventional polynomials, the
degree m is selected either informally on a priori grounds or by increasing m until no
worthwhile improvement in the fit of the best fitting fractional polynomial occurs.
In the above discussion, it is assumed that d is strictly positive. If d can take zero

values, a preliminary transformation of d is needed to ensure positivity (e.g., d+ 1).

5.3 Modelling the Dose-response Relationship

As suggested earlier in Section 5.1, it is important to incorporate multiple outcomes
at the same time. In that case, maximum likelihood becomes prohibitive and we are
restricted to the pseudo-likelihood estimation method. In order to select appropriate
dose-response models, we can rely on the test statistics, introduced in Chapter 4 and

proposed by Geys, Molenberghs and Ryan (1999).

5.3.1 EG Study

For the EG data it was shown in Section 4.6.4 that a model with different linear dose
trends on all parameters can be reduced to a model with a common linear dose trend
on the main effect parameters () only. Hence, the association parameters seem to
be unaffected by dose. Now, the question arises whether these provisional models
provide an adequate fit to the data. This is important when quantitative risk assess-
ment is envisaged. A key tool to gain insight in a model is the qualitative study of the
dose-response relationship. Given the number of viable fetuses n;, the probability of
observing at least one abnormal fetus in a cluster is 1 —exp(—A4,,(0;)). Integrating
over all possible values of n;, we obtain the following risk function (introduced in
Section 1.2):

r(d) =Y P(ni)[1— exp(—4n,(8))], (5.1)

ni:O
where P(n;) is the probability of observing n; viable fetuses in a pregnant dam (we
use the empirical distribution of P(n;)). One of the major challenges of a teratology

study lies in characterizing the relationship between dose and event probability
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(5.1) by means of a dose-response curve. Figures 5.1(a)—(c) show the observed
frequencies of malformed litters at the selected dose levels for external, visceral and
skeletal malformations and the three (univariate) dose-response curves for models
with constant association and a linear d trend on the main effects. Figure 5.1(d)
shows the trivariate dose-response curve based on all three outcomes jointly and with
a common linear dose trend on the main effect parameters. Clearly, the fit is not
satisfactory. Of course, one can try to further improve the fit by imposing quadratic
(or higher order) dose effects. Often, however, this is inadequate. Alternatively,
the fractional polynomial approach can be adopted. Let us contrast both ways of
extending the simple model for the skeletal malformation indicator. Consider (1) a
conventional quadratic polynomial in dose (0 = 3o+ B1d+ 32d?), and (ii) a fractional
polynomial (# = 3o + $1v/d + Bod). The clustering parameter is kept constant in
both cases. Figure 5.2 plots the fitted malformation rates for both these models on
the observed ones. Note that the conventional polynomial (quadratic) approach is

clearly inferior.

Therefore, in the analysis of the EG data, the following strategy is adopted (see
also Geys, Molenberghs and Ryan 1999 and Geys et al. 1999a). First, we select a
suitable set of dose transformations for each of the three developmental outcomes
(skeletal, visceral and external) separately. The resulting set of transformations is
then used to construct more elaborate (multivariate) models that can be scrutinized

further by means of formal test statistics.

Table 5.1 shows that for skeletal malformation outcomes, the fractional polyno-
mials approach suggests that a single effect of dose (m = 1), whether represented
by 1/d?, 1/d, 1/Vd, In(d), Vd, d, &* or d® is unacceptable as opposed to two ef-
fects simultaneously (m = 2) to model the main effect parameter (9). Table 5.1
tabulates only the four quadratics in powers of d and a quadratic in In(d). None
of the other combinations provided a substantial improvement. The quadratic rep-
resented by (Vd,d) yields the highest pseudo-likelihood (no fit could be obtained
for the quadratic represented by (1/d,1/v/d)). A similar approach, applied to the
clustering parameter, suggests that no dose effect needs to be incorporated. For
both the external and visceral malformation outcomes, the main effect parameters
are best modelled in a linear fashion (m = 1) in v/d, while the clustering can be
assumed constant. These univariate findings then served as a basis to construct

more elaborate, trivariate models, presented in Table 5.2. The subscripts 1, 2 and
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Figure 5.1: EG Study: From Top to Bottom, (o) Univariate dose response curves for
external malformations based on models with d and \/d trends on main effect para-
meters O and constant clustering parameters o, (b) Univariate dose response curves
for visceral malformations based on models with d and V'd trends on main effect
parameters 6§ and constant clustering parameters 6, (c¢) Univariate dose response
curves for skeletal malformations based on models with a linear d and quadratic
(\Vd, d) trend on main effect parameters 0 and constant clustering parameters 5, (d)

Trivariate dose response curves based on model with common linear dose trend and

Univariate Dose—Response Curves for External Malfermation Rate

— Fitted Rates: Linear d
— Fitted Rates: Linear sqrtid)

®Observed Rates

g 750 TE00 2350 3000

Univariate Dose—Response Curves for Visceral Malfoermation Rate

— Fitted Rates: Linear Ed)
— Fitted Rates: Linear (sartld})

®0Observed Rates

: .
° 750 1500 2250 3000
dose (d)

Univariate Dose—Response Curves for Skeletal Malformation Rate

— Fitted Rates: Linear (d)
— Fitted Rates: Quadratic (sqrt(d),d) -
—

®@Observed Rates

e TEGC T35 oo
dose (d)

Trivariate Dose—Response Curves

! — Fitted Rates (Common Linear}
— Fitted Rotes (Model 2
- - - Fitted Rates (Model 5

®Observed Rates

750 TE50 3350 Gt
dose (d)

models 2 and 5.
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L

— Fitted Rates (Fractional Polynomial)
O = = [itted Rates (Conventional Quadratic Palynomial)
— — — — =—
-~
* Observed Rates
. /
]
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O
g
o
|
2250 3000

Figure 5.2: EG Study: Observed and Fitted Skeletal Malformation Rates using a
Univariate MR Model with the Main Effect Parameter Modelled as Function of Dose

by (i) a Conventional Quadratic Polynomial, and (i) a Fractional Polynomial.
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Table 5.1: EFG Study: Log Pseudo-likelihood Values for the Univariate MR Model,
with Given Fractional Polynomial Dose Trends on the Skeletal Main Effect Parame-

ter. The Clustering Parameter is Assumed Constant.

m=1 m =2

transformation pl transformation pl
1/d? -337.59

1/d -337.48 (1/d,1/d?) -332.44
1/Vd 33847 (1/d,1/\/4d)

In(d) -339.46  (Vd,d) -331.96
Vd -335.99  (d,d?) -333.79
d 34129 (In(d),In’*(d))  -333.56
d -345.28

& -346.51

3 refer to external, visceral and skeletal malformations, respectively.

Since the EG data do not support really complicated models, the most complex
model we considered (Model 1) allows different v/d trends on the external, visceral,
and skeletal main effect parameters, an additional d trend on the skeletal main effect

parameter:

th = Boit+B8yz Vi,
b = Boz+ BV,
0z = Boz+ 5\/33\/3 + Baad,

and different v/d trends on the clustering parameters (§). All other association
parameters (w and ) are kept constant. This model was then further scrutinized
by means of formal test statistics. From Table 5.2 it is clear that the clustering
parameters do not depend on v'd (confirming the preliminary findings). Hence,
Model 2 is now selected. The d trend on the skeletal main effect parameter cannot
be removed (Model 2 vs Model 3), nor can the different v/d trends on the external,

visceral and skeletal main effects be replaced by a common trend (Model 2 vs Model
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Table 5.2: EG Study: Model Selection (All effects are constant except the ones

mentioned).

Model Description no. Pars.

1 Different v/d trends on 61, 02, 05 19
4 d trend on 05
+ different v/d trends on &1, &, ds

2 Different v/d trends on 6, 65, 05 16
4 d trend on 05

3 Different v/d trends on 6, 62, 03 15

4 Common v/d trend on 6y, 0, 65 14

4 d trend on 05
5 Different v/d trends on 61, 02, 05 10
4 d trend on 05

+ no w and v pars.

Comparison  S*(e.c.) S*(m.b.) G**(H,) G**(H,y)
(p-value) (p-value) (p-value) (p-value)
1-2 377 (0.29)  2.84 (0.42)  2.84 (0.42)  4.06 (0.26)
23 15.19 (0.00) 15.19 (0.00) 18.55 (0.00) 10.68 (0.00)
24 5.76 (0.05)  8.03 (0.02)  8.05 (0.02)  9.09 (0.01)
25 771 (0.26)  9.18 (0.16)  9.68 (0.14)  10.01 (0.12)




116 Chapter 5

4). Therefore, Model 2 was selected at this point. Table 5.3 shows PL parameter

estimates for this model.

Table 5.3: EG Study: Pseudo-likelihood Fstimates (standard errors) for Two Selected
Models.

Effect Outcome  Parameter Estimate (s.e.)
Model 2 Model 5
0 Main Ext. Bol 227 (1.16) -3.58 (1.10)
By 171 (0.99)  3.07 (0.97)
Vise. Bo2 6.98 (2.36) -7.17 (2.26)
By 5.54 (1.71)  5.83 (1.96)
Skel. Bos 2,81 (0.95) -3.61 (0.84)
8 yas 773 (2.32) .59 (2.22)
Bas 4.01 (1.50) -3.89 (1.43)
o Clustering  Ext. 01 0.18 (0.13)  0.29 (0.06)
Vise. & 0.12 (0.17)  0.22 (0.09)
Skel. 53 0.18 (0.01)  0.19 (0.01)
w Assoc. Ext.-Visc.  wia -0.06 (0.57)
Ext.-Skel. w3 0.11 (0.29)
Skel.-Visc. wss 0.81 (0.34)
v Assoc. Ext.-Visc. 712 0.14 (0.13)
Ext.-Skel. 73 0.08 (0.04)
Skel -Visc. o3 -0.08 (0.04)

Next, Model 2 was used to construct a dose-response curve representing the prob-
ability of observing an adverse event as a function of dose (d). The risk function
r(d) was calculated using PL parameter estimates (due to excessive computational
requirements for ML). Figures 5.1(a) and (b) show the (univariate) dose-response
curves for models with constant association and v/d trends on the main effects.

The dose-response curve for skeletal malformation (Figure 5.1(c)) is based on the
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quadratic (\/37 d)-model for the main effect parameter and constant clustering. Fig-
ure 5.1(d) shows the trivariate dose-response curve based on all three outcomes
simultaneously (Model 2). Both the univariate as well as the trivariate fits are ex-
cellent. All curves gradually increase when dams are exposed to larger quantities of
the toxic substance, before finally reaching an asymptote. Note that there is a fun-
damental difference in the dose-response curves for external and visceral outcomes
on the one hand, and skeletal malformation on the other, the latter of which shows
a much more pronounced dose-response relationship. This is in line with the data
in Table 2.5. Further, the joint dose-response curve is clearly driven by skeletal

malformation.

These observations incite to explore additional model simplifications. Candi-
dates for removal are the dose trends on the external and visceral outcomes, as well
as one or more assocation parameters. Table 5.2 shows that the w and ~ association
parameters are redundant (Model 2 vs Model 5). However, the clustering para-
meters could not be removed from the model without a substantial decrease in fit.
Futhermore, the dose trends on the external and visceral main effects are also impor-
tant. Since the goal of selecting a well-fitting model is to perform risk assessment,
merely concentrating on formal model selection criteria is insufficient. Arguably,
the excellent fit of the dose-response curves which have been achieved, should not
be compromised. However, Figure 5.1 shows that the simplified Model 5 produces
essentially the same dose-response curve as Model 2. Therefore, Model 5 will be
treated as our final model. It can thus serve as basis for quantitative risk assess-
ment, aiming at determination of a low-risk dose level. The parameter estimates are
tabulated in Table 5.3. These have a conditional interpretation. For example it can
be derived from (4.4) that, in Model 5, the main effect parameter 6;; can be inter-
preted as the conditional logit, associated with an additional malformation of type
j in the ith cluster, given the cluster contains already z;; = (n; + 1)/2 fetuses with
malformations of that type. Similarly ¢,; can be interpreted as the conditional log
odds ratio for a pair of fetuses, exhibiting malformation j, given all other outcomes.
Thus, if interest is in marginal quantities such as the dose-response curve, they have
to be obtained as non-linear functions of the parameters. Computationally, this is
feasible. Conditional questions can, on the contrary, be answered in terms of linear

functions of the parameters.
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Table 5.4: DEHP Study: Log Pseudo-likelihood Values for the Univariate MR Model,

with Given Fractional Polynomial Dose Trends on the External Main Effect Para-

meter. The Clustering Parameter is Assumed Constant.

m=1 m =2
transformation pl transformation pl
1/d 164.26  (1/d,1/d%) -162.91
1/vVd 16479 (1/d,1/V/d)
In(d) -165.39  (Vd,d) -162.42
Vd 16351 (d,d?) -164.20
d -166.82  (In(d),In*(d))  -163.95

5.3.2 DEHP Study

We now consider the DEHP Study (see also Geys et al. 1999a). We first select a
suitable set of dose transformations for each of the three developmental outcomes.
Table 5.4 suggests that for external malformation outcomes the main effect of dose
(#) may be modelled using a first or second degree model (m = 2). Since our aim
is to find a suitable trivariate model first, on which more formal model selection
criteria can be applied later, we have chosen the second degree model. Among
all second degree models, the quadratic represented by (\/37 d) yields the highest
pseudo-likelihood for external malformations. However, since this model yields the
lowest pseudo-likelihood for visceral and skeletal malformations (although the dif-
ference is not significant), we preferred to use the model represented by (1/d, 1/d?).
Next, we consider a univariate MR model on the external malformation indicators
in the DEHP study, and model the main effect parameter as: (1) a conventional
quadratic polynomial in dose (6 = 8o + 1d+ [B2d?), and (2) a fractional polynomial
@ = Bo + 51% + Bgﬁ). The clustering parameter is kept constant in both
cases. Figure 5.3 (a) plots the fitted malformation rates for both these models on
the observed ones. Clearly, the fractional polynomial approach yields only a mar-
ginally improved fit. It is comforting, however, that when the fractional polynomial
approach is strictly speaking not necessary, it reduces to a standard polynomial

approach. Still, the difference between both may become important when doing
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Univariate Dose—Response Curves for External Malformation Rate

! — Fitted Rates: Linear o
— Fitted Rates: Quadratic {d.d?)
-+ Fitted Rotes: Quadratic {1,/{d+1),1/(d+1)%)

®Observed Rates

dose (d)

Univariate Dose—Response Curves for Visceral Malformation Rate

— Fitted Rates: Linear Ed)
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Univariate Dose—Response Curves for Skeletal Malformation Rate
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>
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Figure 5.3: DEHP Study: From Top to Bottom, (a) Univariate dose response curves
for external malformations based on models with a linear d, a quadratic (d,d*) and
a quadratic (1/(d+ 1),1/(d + 1)?) trend on main effect parameters & and constant
clustering parameters 9, (b) Univariate dose response curves for visceral malforma-
tions based on models with d and 1/(d + 1) trends on main effect parameters 0 and
constant clustering parameters §, (c¢) Univariate dose response curves for wvisceral
malformations based on models with d and 1/(d + 1) trends on main effect para-
meters O and constant clustering parameters §, (d) Trivariate dose response curves

based on model with common linear dose trend and model 6.
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extrapolation to very low doses. Therefore, we continue to use the fractional poly-
nomial approach. For visceral and skeletal outcomes, a linear model in 1/(d + 1)
suffices. Moreover, Figures 5.3(b) and (c¢) show that this transformation results in a
slightly better fit than a conventional linear model. The clustering parameters are
most appropriately modelled as a constant.

Based on the above preliminary selection, we can construct more elaborate,
trivariate models presented in Table 5.5. The most complex model we consider
(Model 1) allows different 1/d and 1/d? trends on all three main effect parameters
and different 1/d trends on the clustering parameters. All other association para-
meters are assumed constant. This model can now be investigated further by means
of formal test statistics. Table 5.5 suggests that the dose trends on é;1,d2 are non-
significant (Model 1 vs Model 2). After removal of the = trends from the main effect
parameters 02,03 (Model 2 vs Model 4), the dose trend on d3 can be removed as well
(Model 4 vs Model 6). The quadratic trend on the external main effect parameter,
01, cannot be removed without a substantial decrease in fit. Nor can any of the
remaining dose trends on the other parameters. Therefore, we accept Model 6 as
final model. Table 5.6 shows PL parameter estimates for this model. Figure 5.3(d)
shows the resulting dose-response curve. For comparison, we have also plotted a

model with a common linear dose trend on the main effect parameters.

5.4 Risk Assessment

Dose-response curves, such as the ones obtained in Section 5.3, can serve as basis
for quantitative risk assessment, aiming at determination of a low-risk dose level,
where risk is defined as the probability of an adverse outcome resulting from the dose.
Several authors have discussed the use of dose-response models to characterize risk at
low doses. Crump (1984) advocates fitting a reasonably flexible dose-response model
to the data and then using the estimated model to find the dose corresponding to a
specified level of increased risk over background, usually referred to as benchmark
dose (BMD). The increased risk over background, r*(d), defines the actual level of
risk to which extrapolation is targeted. It istherefore a very important quantity from
a regulatory point of view (Williams and Ryan 1996). As mentioned in Section 1.2,
two common safe dose levels that can derived from r*(d), by solving r*(d) = ¢%,
are the benchmark dose (BMD,) and a lower limit: the lower effective dose (LED,).
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Table 5.5: DEHP Study: Model Selection (All effects are constant except the ones

mentioned.)

Model Description no. Pars.
1 Different 2 and 2 trends on 601, 0, 63 21
+ different 5 trends on 41, d2, 03
2 Different % and d% trends on #;, 8-, 03 19
+ é trend on d3
3 Different  and - trends on 601, 0, 03 18
4 Different % trends on 61, 85, 63 17

d% trend on 6,
L trend on 65

5 Different % trends on 61, 85, 63 16
% trend on o3

6 Different % trends on 61, 85, 63 16

1
= trend on 6,

Comparison S*(e.c.) S*(m.b.) G**(H,) G*2(H,)
(p-value) (p-value) (p-value) (p-value)

1-2 1.75 (0.42)  1.95 (0.38) 2.03 (0.36) 2.08 (0.35)
2-3 3.19 (0.07) 3.19 (0.07) 3.07 (0.08) 4.87 (0.03)
2-4 1.06 (0.59) 1.17 (0.56) 1.10 (0.58)  1.50 (0.47)
45 5.16 (0.02) 5.16 (0.02) 5.96 (0.01) 7.17 (0.01)
46 2.29 (0.13)  2.29 (0.13) 2.37 (0.12) 2.16 (0.14)
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Table 5.6: DEHP Study: Pseudo-likelihood Estimates (standard errors) for the Final

Model.

Effect Outcome  Parameter FEstimate (s.e.)
# Main Ext. Bo1 -5.14 (3.85)
B 19.93 (11.39)

B 118.68 (7.89)

Visc. Bo2 2.72 (0.78)

By 529 (1.37)

Skel. Bos 2.56 (1.05)

Bays “5.50 (1.89)

o Clustering Ext. o 0.15 (0.06)
Visc. 5 0.18 (0.04)

Skel. 53 0.28 (0.05)

w Assoc. Ext.-Visc.  wio 0.09 (0.22)
Ext.-Skel. w3 0.59 (0.19)

Skel.-Visc. wss 0.37 (0.27)

v Assoc. Ext.-Visc. 712 0.11 (0.05)
Ext.-Skel. i3 -0.04 (0.05)

Skel.—\/isc. Y23

-0.13 (0.06)
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These will be used subsequently.

5.4.1 EG Study

For the EG study, the BMDgs and LEDgs; for Models 2 and 5 are displayed in Ta-
ble 5.7. We also added the corresponding quantities, calculated from univariate
versions of our model, applied to external, visceral, and skeletal malformation, as
well as to the collapsed outcome defined as “any malformation”. Finally, risk as-
sessment based on logistic regression applied to an indicator for affected litter has
been added. Clearly, there is very little difference between the safe dose levels based
on Models 2 and 5. This is consistent with the virtual identity of the dose-response
curves. However, these multivariate MR models provide LED’s which are more con-
servative than the ones obtained from any other univariate MR model. This is an
argument in favor of a joint approach, even though it is tempered by the fact that
external and visceral outcomes show a very mild risk. In case the three outcomes
would suffer from a substantial risk, then focusing attention to a single response
or a collapsed outcome would overestimate the safe dose. Further, it is noteworthy
how the square root transformed linear predictors yield substantially lower (and
thus more conservative) BMDs and LEDs than the conventional linear predictors in
d, thanks to a better fit of the dose-response curve to the data. Moreover, within
skeletal or collapsed outcomes, LEDg5 is lowest when using the more complex linear
predictor in v/d and d. The LEDgs obtained from logistic regression equals 9 and is
clearly the lowest of all. While this seems cautious, Morgan (1992, p. 175) warns
that safe dose determination should be tempered by common sense. For example,
blind use of an overly conservative procedure has been regarded as scientifically in-
defensible by the Scientific Committee of the British Food Safety Council, since it

may produce unrealistically low safe doses.

5.4.2 DEHP Study

For the DEHP study, the BMDgs and LEDgs for several univariate models, as well as
the final model are displayed in Table 5.8. Here, the difference between the use of a
linear predictor in d or a transformed 1/d is much smaller than in the previous study.
The BMDs and LEDs calculated with the fractional polynomial approach are only

slightly more conservative. Adding a quadratic term in di—l to the predictor of the
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Table 5.7. EG (mice) Study: FEstimated Values of the BMDys and LEDys

(mg/kg/day) under Different Models (functional form of lknear predictor in dose
d is indicated when necessary).

Univariate Models

External Visceral Skeletal
(d) (Vd) (d) (Vd) d) (Vd) (Vd+d)
BMDgs 1035 566 1672 1445 207 24 33
LEDgs 788 313 1273 954 170 17 14

Univariate Models

Collapsed
(d) (Vd) (Vd+d)
BMDgs 197 22 31
LEDges 161 15 13

Multivariate Models

Model2 ~ Modelb
BMDygs 28 27
LEDygs 12 12
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Table 5.8: DEHP Study: FEstimated Values of the BMDys and LEDys (%) under

Different Models (functional form of linear predictor in dose d is indicated when

necessary).
Univariate Models
External Visceral Skeletal Collapsed
@ G (@) @ Gy @ G d (i

BMDgys 0.018 0.015 0.016 0.015 0.011 0.019 0.014 0.009 0.006
LEDgs 0.014 0.011 0.011 0.012 0.008 0.015 0.009 0.007 0.005

Final Multivariate Models
BMDgs 0.006
LEDgs 0.004

external main effect does not seem to provide a further reduction of the calculated
benchmark doses. As before, the multivariate model yields the most conservative
results. However, in this case, it should be noted that the results are virtually

identical to the ones obtained with a univariate model on a collapsed outcome.

5.5 Conclusion

We have studied risk assessment from developmental toxicity studies. Such studies
combine clustering (fetuses within dams), multivariate outcomes (visceral, skeletal,
and external malformation), and binary data indicator variables. Likelihood based
models for this fairly involved data structure do not abound, due to the demanding
computational requirements.

The model combines conditional logits for the main effects of malformation with
pairwise conditional log odds ratios for the association structure. Each of these
natural parameters needs to be specified as a realistic function of dose. Whereas

linear models may be too simplistic, higher order polynomial extensions suffer from



126 Chapter 5

well-known drawbacks, especially when low dose extrapolation is envisaged. Non-
linear predictors pose particular and currently unresolved methodological challenges.

Therefore, we have advocated the use of the fractional polynomial approach,
suggested by Royston and Altman (1994). This heuristic scheme of model selection
has properties, superior to those of polynomial predictors, when both are different.
In case the extension is not necessary, this family essentially returns to a polynomial
structure. Thus, their use is strongly recommended and considering a polynomial
and a fractional polynomial approach simultaneously, is certainly a worthwile sen-
sitivity analysis in an important public health matter such as the determination of

safe limits for human exposure to potentially hazardous agents.
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Comparison of Pseudo-likelihood
and Generalized Estimating
Equations for Marginally Specified
Odds Ratio Models

6.1 Introduction

In the framework of a marginally specified odds ratio model (Lipsitz, Laird and
Harrington 1991, Dale 1986, Molenberghs and Lesaffre 1994, Glonek and McCullagh
1995, Lang and Agresti 1994) for multivariate, clustered binary data, full maximum
likelihood estimation can also become prohibitive, especially with large within-unit
replication. In this chapter we describe two alternative estimation procedures, which

are easier to fit: pseudo-likelihood and generalized estimating equations.

The latter is generally well known, but typically aimed at marginal models. In
contrast, PL can be used with both marginal (Le Cessie and Van Houwelingen 1994,
Geys, Molenberghs and Lipsitz 1998) and conditional models. For conditionally
specified models, PL is often seen as the most natural choice, as it exhibits several
desirable properties (Geys, Molenberghs and Ryan 1997, 1999), studied in length in
Chapters 3 and 4. Here, we discuss the relative merits of PL and GEE, which will
be illustrated using data from N'TP studies. As before, we will only pay attention to

exchangeable association structures and cluster-level covariates, since this simplifies
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comparison and covers the setting encountered in the data. While our findings
can be applied to some longitudinal settings, the assumption of exchangeability is
frequently not tenable, so that more complex association structures are needed. The

extension to longitudinal data therefore needs further investigation.

In Section 6.2 we construct an appropriate PL function and derive its corre-
sponding estimating equations. Next, we present an equivalent but more appealing
representation of the PL estimating equations in terms of contrasts between observed
and expected frequencies. Section 6.3 deals with a GEE1 and GEE2 approach for
this setting. We discuss the relative merits of full likelihood, first and second order
GEE and PL in Section 6.4. Finally, in Section 6.5 we apply GEE and PL proce-
dures on data from NTP studies. Evaluating the likelihood for this kind of data can
become computationally very demanding. This is especially true for large clusters
and motivates the exploration of alternative estimation procedures such as PL and
GEE.

6.2 Pseudo-likelihood Estimating Equations

In this section we first present a general PL form, accomodating clustered responses.
Next, we concentrate on the special case of exchangeability leading to an elegant
formulation of the PL. Again, we assume there are N clusters with &k = 1,...,n;
indexing the individuals in the ith cluster. If we denote the binary outcome for sub-
ject k in cluster ¢ by Y then the exchangeability assumption allows us to introduce
the summary statistic Z; = > /% | Yix: the total number of successes within the ith

cluster.

6.2.1 Classical Representation
Definition 1

Le Cessie and Van Houwelingen (1994) replace the true contribution f(%1,. .., Yin,)
of a vector of correlated binary data to the full likelihood by the product of all
pairwise contributions f(v:;, i) (1 < j < k < n;), to obtain a pseudo-likelihood

function. Grouping the outcomes for subject ¢ into a vector Y, the contribution of
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the ith cluster to the log pseudo-likelihood is

Pl = > In f(yis, yax), (6.1)
j<k
if it contains more than one observation. Otherwise pf; = f(v:1). In the sequel we
restrict our attention to clusters of size larger than 1. Clusters of size 1 contribute
to the marginal parameters only.

Using a bivariate Plackett distribution (Plackett 1965) the joint probabilities
f(yij, yire), denoted by mij%, can be specified in terms of marginal probabilities and
pairwise odds ratios. For individuals j and k (or for measurement occasions j and
k in a longitudinal study), the pairwise odds ratio ¥ is defined as (Fitzmaurice,
Molenberghs and Lipsitz 1995):

P(Y;; = 1LYy = P(Yy; =0,V = 0)

Yok (Y — 1Y — )Py — 0.V — 1)

Dale (1986) refers to this quantity as the global cross ratio.
The univariate marginal means 7;;, as well as the pairwise odds ratios ¥,;,, can
be modelled in terms of regression parameters, using (for example) logit and log

links respectively, whence the bivariate marginal means 75, satisfy:

L (g +m50) (g — 1) = S(Mar T Wi 1) .
g = G Snsritin) iy, 1

Tajk = TijTik if i = 1,

with

S(Tajs Titer Yijie) = \/[1 (g ) (Wi — D+ 400 (1 — o) iy

Under Exchangeability

For binary data and taking the exchangeability assumption into account, the log

pseudo-likelihood contribution p¢; can be formulated as:

vl = <z22) In7}, + (m ; ZZ) In 7}y + 2(ns — 2:) In7fy,. (6.2)

In this formulation, 7}, and 7}, denote the bivariate probabilities of observing
two successes or two failures respectively, while 7}, is the probability for the first

component, being 1 and the second being 0. Under exchangeability, this is identical
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to the probability 7}, for the first being 0 and the second being 1. If we consider
the following reparameterization: 11 = 7}, M0 = 7T + 7Tho = To1 and 0 =
Th, + Tho+ Ty + Tho = 1, then this one-to-one reparameterization maps the three,
common within-cluster, two-way marginal probabilities (7}, 7o, Tjoo) t0 two one-
way marginal probabilities (which under exchangeability are both equal to 7;10) and

one two-way probability m;1; = 7};. Hence, equation (6.2) can be reformulated as:

Pl = <Z22) Inm, + (nl ; ZZ) In(1 — 2m00 + mi1) + 2:(ns — 2:) In(mw10 — Ti11),
(6.3)

and the pairwise odds ratio ;. reduces to:

7Tz‘11(1 — 2mi10 + 7Tz‘11)

(7Tz‘10 - 7Tz‘11)2

i =

In order to enable model specification, we assume a composite link function

n, = (M1, 772‘2>T with a mean and an association component:
[ 111(7@10) - 111(1 - 7Tz‘10)7
N2 = IH(Z/J@) = 111(%11) + 111(1 — 2700 + 7Tz‘11) - 2ln<7ri10 - 7Tz‘11)~

From these links, the univariate and pairwise probabilities are easily derived (Plack-
ett 1965):

. eXp(Uﬂ)
Til0 —
1 + eXp(nﬂ)
and
1+4+2m; (1#1'71)752 .
[ sy
211
7Tz‘210 it ; =1,
with

S; = \/[1 + 2ma0(thi — 1)]2 + debi(1 — abs) .

Next, we can assume a linear model 1, = X;8, with X, a known design matrix and
B a vector of unknown regression parameters.
The maximum pseudo-likelihood estimator B of B is then defined as the solution

to the pseudo-score equations:

U(B) = 0.
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Using the chain rule, U(3) can be written as:

al ot
Ug) -y X0 S (6.4)
i=1 ‘

with 7; = (10, m11)? and T; = On,/Om;. Writing the different components in (6.4)
in full yields:

pt; - OTito
Ot
with
010 1 — 2700 + ™1 2 310 — Tall
O i1 \ 2 1 — 27410 + min1 2 10 — Tall
and
1 1
+ 1 0
w; — 70
T 10 10
B 2 2 1 n 1 2
1 =200 + minn 10 — 7411 7511 1 —2m10 + i1 710 — 711

Two frequently used fitting algorithms are the Newton-Raphson and the Fisher
scoring algorithms. Newton-Raphson starts with a vector of initial estimates B

and updates the current value of the parameter vector ,6(5) by:
gt = g7 w(s?) ().

Here, W (3) is the matrix of the second derivatives of the log pseudo-likelihood with
respect to the regression parameters 3:

”pt;

wwzxﬂﬂﬂnw

i=1

1)) X
and F; is defined by (McCullagh 1987, p. 5; Molenberghs and Lesaffre 1999):

9277@« OTis Ot OTti, ODE;
(Fm =Y 5 t
s nrtu

Tt O i, ONia 3772‘;‘ M OTs
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The Fisher scoring algorithm is obtained by replacing the matrix W (3) by its ex-
pected value:

W(B) = 3 X (1 )T AT )X,

with A, the expected value of the matrix of second derivatives of the log pseudo-

likelihood p#; with respect to m;. Calculating the three relevant elements of A, it

(2) o (6.5)
E Kn N Z)} - <7;> + (2) T — ma(ni — Do, (6.6)

Elzi(ni —z)| = nini— 1)(mao0 — mn)- (6.7)

can easily be demonstrated that:

Using (6.5), (6.6) and (6.7) yields:
8217&}

2
O

_ — K”) (1 + mo1) — na(ms — 1>m10} _mlnm b

(1 — 2710 + 7Tz‘11)2 2 <7Ti10 - 7Tz‘11)

200
A = E{ia ph }

01100311

= ° K") (1+ 1) — na(n; — 1)7@10} L=

(1 — 2710 + 7Tz‘11)2 2 <7Ti10 - 7Tz‘11) 7

200,
Ai22 — E|:a p€2:|

2
O,

<2> w1 (1 — 2mn0 + min1)? {<2>< + mi1) — na(n )Wlo}

(7Tz‘10 - 7Tz‘11)

Aill — E|:

Similar in spirit to generalized estimating equations, the asymptotic covariance ma-

trix of the regression parameters ,3 is consistently estimated by (Arnold and Strauss
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1991, Geys, Molenberghs and Ryan 1997):
N
Wi (Lvower)wie
=1

In the context of generalized estimating equations, this estimator is also known as

the empirically corrected or sandwich estimator.

Definition 2

A non-equivalent specification of the pseudo-likelihood contribution (6.1) is:.
plf =pl;/(n; — 1).

The factor 1/(n; — 1) corrects for the fact that each response Y;; occurs n; — 1 times
in the éth contribution to the PL and it ensures that the PL reduces to full likelihood

under independence. Indeed, under independence, (6.3) simplifies to:
p& = (nz — 1) [ZZ 111(7?@10) + (nz — ZZ> hl(l — 7@10)] .

We can replace pf; by pf; everywhere in this discussion. However, if (n; — 1) is
random it is not obvious that the expected value of U;(3)/(n, — 1) equals zero. To
ensure that the solution to the new pseudo-score equation is consistent, we have to
assume that n, is independent of z; given the dose level d; for the ith cluster. Then
we have:
EU(B)/(n: — D\d;] = EU(B)|ds] £[1/(n; — 1)|d;] = 0.

When all clusters are equal in size, the PL estimator 8 and its variance-covariance
matrix remain the same, no matter whether we use pf; or pf; in the definition of

the log pseudo-likelihood.

6.2.2 Generalized Linear Model Representation

To obtain the pseudo-likelihood function described in Section 6.2.1 we replaced the
true contribution f(#1,...,%m,) of the ith cluster to the full likelihood, by the
product of all pairwise contributions f(y;;,y:) with 1 < j < k < n,. This implies
that a particular response ¥;; occurs n; — 1 times in pf;. Therefore, it is useful
to construct for each response ;;, n, — 1 replicated yz(f) with & # j. The dummy

response yz(jk ) is to be interpreted as the particular replicate of y,; that is paired
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with the replicate yz(,i) of 7, in the pseudo-likelihood function. Using this specific
device we are able to rewrite the gradient of the log pseudo-likelihood pf in an
appealing generalized linear model type representation. With notation introduced

in the previous section the gradient can now be written as:
N
U@) =) XV, 2 —m)
i=1
or, using the second representation pf}, as:
N
U = X1V, 2 —m) /(= 1),
=1

where

n; (k)
7. < Zj:l Zk;éj Yz‘j A ) o (m(m - 1)%10)
% Z? 1 Zk;éj ng)}/z/(cj ) (7;1)7@11

5

The components of V;, the covariance matrix of Z;, can be obtained after some
straightforward calculations. We illustrate them on the (1,1) element only. If we

denote the components of Z; by (Z;1, Z;2), then:

E<Zi1) - m(ni—l)mlo
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and

B(Z%) = E (Z; “) (iZY;:))

k=1 sk

+ F

D) B FREN

G145 ket stk

DD IDIPLES

J=1 t#j s#t.Jg

P IDIRARTS

J=1 k#j t#.k

:Eizzwm
Li=1 t#j

s

+F

Li=1

— R Z (t)>
t#7

+ 2K

1Y Sy
Li=1 kj

+F

W IPNIRT
k#j

Li=1 k#j t#i.k sk

= TLZ(TLZ — 1>7Tz'10 -+ ng(TLZ — 1)(%2 — 2>7T§10 —+ nz(nz — 1)7@‘11
+2n,(n; — 1)(n; — 2)mh + n3(ns — 1)(ns — 2)°m),.
This leads to:

ar(Zy) = B(Z3)— E(Zn)

= mi(n; — D) (mao + min — 27Tz‘210>~

Under independence, this reduces to Var(Z;1) = n;(n, — 1)mio(1 — m10). Similar

calculations lead to:

COV<ZZ‘17 ZiZ) — nz(nz - 1)7Tz‘11(1 - 7Tz‘10)

g
VEH'(ZZ'Q) = <2>7TZ‘11<1 — 7TZ‘11).

Clearly, the elements of V; take appealing expressions and are easy to implement.
One only needs to evaluate first and second order probabilities. Under independence,
the variances reduce to well-known quantities.

To obtain a suitable PL estimator for 3 we can use the Fisher-scoring algorithm
where the matrix A, in the previous section is now replaced by the inverse of ;.

The asymptotic covariance matrix of 3 is estimated in a similar fashion as before.
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6.3 Generalized Estimating Equations

When we are mainly interested in first order marginal mean parameters and the
pairwise interactions, a full likelihood procedure can be replaced by quasi-likelihood
methods (McCullagh and Nelder 1989). In quasi-likelihood, the mean response is
expressed as a parametric function of covariates; the variance is assumed to be a func-
tion of the mean up to possibly unknown scale parameters. Wedderburn (1974) first
noted that likelihood and quasi-likelihood theories coincide for exponential families
and that the quasi-likelihood “estimating equations” provide consistent estimates of
the regression parameters 3 in any generalized linear model, even for choices of link

and variance functions that do not correspond to exponential families.

In the introduction we did already mention that Liang and Zeger (1986) intro-
duced first order estimating equations, GEE1, which require only the correct spec-
ification of the univariate marginal distributions provided one is willing to adopt

“working” assumptions about the association structure.

Prentice (1988) extended these results to allow joint estimation of probabilities
and pairwise correlations, using a pair of estimating equations. Williamson, Lipsitz
and Kim (1997) wrote a SAS macro for GEE1, based on Prentice’s approach. Lipsitz,
Laird and Harrington (1991) modified the estimating equations of Prentice (1988) to
allow modelling of the association through marginal odds ratios rather than marginal

correlations.

Adopting the ideas of Prentice (1988) and Lipsitz, Laird and Harrington (1991),
we first consider a GEE1 approach that allows joint estimation of regression pa-

T"in respectively the marginal means and pairwise associations,

rameters (87, a”)
using two sets of estimating equations. Both extended the GEE1 approach of Liang
and Zeger (1986), where estimators for (37, a”)7 were obtained using iteratively
reweighted least squares calculations and moment-based estimation of «. If we
let the marginal means ;19 and pairwise probabilities m;11 depend on a vector of

regression parameters (37, a’)? through the following generalized linear model:

In 3 —In(1 — i
0, — <7T 10) ( a 10) _ XZ‘ /8 7

In(m;11) + In(1 — 2m;10 + ma1) — 2In(m100 — Ti1) «

then the two sets of estimating equations for, respectively, 3 and e can be combined
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into:
1
i DI 0 Var(Z;) 0 Zi — NiT310
i=1 0 Cf 0 Var((gi)) (Zz) - (gi)will 7

where D; = n;0m;10/08 and C; = (%)Omi11 /0. An iterative procedure for calcu-
lating 3 and e« begins with starting values 3, and ay and produces updated values
By 1,541 from values B, ,a; by means of

N
Bs1 = Bs+ (Z DZT‘/HD@) Z DZT V[l (Z; — n3mi10)
1 —1

N -1 N 7 .
o1 = O+ (Z C@TV%lC@> ZOZT M/;l (( ;) - (5) 7Tz‘11) 3
=1 =1

where V; = Var(Z;) and W, = Var((Z;)) = Var(} ., Yi;Yie). Here, W; is a function
of third and fourth order probabilities, which are nuisance parameters we would
rather not estimate. Assuming three- and higher order independence, in the spirit

of Lipsitz, Laird and Harrington (1991), and taking into account the exchangeability

(ZZ> i (1 — minn).

Prentice (1988) and Lipsitz, Laird and Harrington (1991) have shown that the joint

~T
asymptotic covariance matrix of (3 7aT)T equals:

assumption, W; reduces to:

T
_ Bt 0 Y1 Y2 By 0
Vo = lim . ,

N—oo By Bg; 2?2 Y99 By B;Q
where

Bu = N DIVD;,

By = NTUY CIWG,

By = By (o), CITW,o((%)m1)/08) By

Suo= NV DIV 'War(Z) Vit D,

Yoo = Nt Zzil CZ‘TVVz‘ilvar< (ZQZ))W;1027

Yo = NN DIV 'Cov(Z;, ()W, G,
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The matrix Vs, can be consistently estimated by replacing 3 and « by their esti-

mates, and also

Var(Z;) by (Z; — nimino)(Z; — nimino)?,
Var((5)) by ((5) = (5)ma)((5) = (5)man),

COV(ZZ‘7 (Z22)> by (ZZ — nﬂrﬂo)((%) — (T;)WZ‘H)T.

Note that GEE1 operates as if 8 and « are orthogonal to one another even when
they actually are not. The effect is that GEE1 gives consistent estimators of 3
whether or not the association structure is correctly specified. On the other hand,

GEEL can be extremely inefficient for the estimation of «.

A second order extension of these estimating equations that includes marginal
pairwise associations as well has been studied by Liang, Zeger and Qagish (1992),
Molenberghs and Ritter (1996) and Heagerty and Zeger (1996). Liang, Zeger and
Qaqish (1992) point out the connection of the quasi-likelihood theories with sec-
ond order generalized estimating equations, GEE2. In fact, GEE2 can be simply
regarded as a multivariate extension of quasi-likelihood. As in quasi-likelihood,
GEE?2 requires specification of first and second order moments, which are usually
of great scientific interest. Indeed, even when there is considerable association be-
tween outcomes, three-way and higher order interactions tend to be negligible and
are certainly more difficult to interpret. Therefore, a working higher order inde-
pendence assumption is often plausible. We will develop a second-order estimating
equations procedure (GEE2), following the ideas of Liang, Zeger and Qaqish (1992)
and adopting a working higher order independence assumption. It is very appealing
that such a procedure closely corresponds to the way in which the pseudo-likelihood
function was represented. Recall that the pseudo-likelihood function also limits its
attention to pairwise interactions, since it is constructed as a product of pairwise
probabilities. In the GEE2 framework the following set of estimating equations can

be considered:

U(B) =3 XHIHVH (Zi = m) =0
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with
Z; N3T310
Z; = Z; and m; = N
11
2 2

Furthermore, T; = dn,/0w,; and V; is the covariance matrix of Z,;. The computa-
tion of T} presents no difficulties and is analogous to the calculations performed in
Section 6.2.1. We obtain:

1 1 1
n; (ﬂ'ﬂo + 1*%’10) 0

1 2 . 2 2 L 1 2
n; \ 1-2m10+mi11 T310— ;11 ng(n;—1) \ ™11 1-2m;10+m11 10— 11 )

However, the matrix V; contains third and fourth order probabilities, which can be
found using either the iterative proportional fitting (IPF) algorithm, outlined in
Molenberghs and Lesaffre (1999) or alternatively by the procedure given in Molen-
berghs and Lessaffre (1994), which we use here. This is an important difference
with both PL. and GEEI1. Indeed, these only need first and second order proba-
bilities, which are straightforward to implement. Probabilities of order n can be
computed, provided all lower-dimensional probabilities together with the odds-ratio
of dimension n are known. At this point we introduce the higher order independence
working assumption. Let us denote the so-obtained three and four way probabilities
Plyy = Ly = Lya = 1) and P(ys; = Lya = Lya = L yun = 1) by p1ly resp. ply,
then we can calculate the different components of V;:

Var(Zy) = E(Z7) — E(Z)

T, T n; 2
e[Sy e[Sl e[S
=1 k> j=1 =1
n;
= 2 < 5 ) i1 + namao(l — nimao) (6.8)

Note that (6.8) reduces to n;m;10(1 — 7;10), under independence. Similarly, we cal-
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culate:
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= 2 1 — Ny 4107411,
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A Fisher scoring algorithm can now be applied to calculate the parameter estimates.

The empirically corrected version of the asymptotic covariance matrix proposed
by Liang and Zeger (1986) is similar to the one described in Section 6.2.1 and is
estimated by:

N -1 N N —1
(i) (oo ) (S i)
=l (6.9)

=1 i=1

Thus, provided the model is correctly specified, ,@ is consistent for B and is as-
ymptotically normally distributed with covariance matrix estimated by (6.9). If
the model for the association structure is misspecified, bias may follow in first or-
der parameters (Liang, Zeger and Qaqish 1992). This contrasts with the classical
first order estimating equations, GEE1, which yield consistent estimates even if the

association structure is misspecified.

6.4 Comparison

In the previous sections we described two alternative estimating procedures for full
maximum likelihood estimation in the framework of a marginally specified odds
ratio model, which are easier and much less time consuming. In this section we

provide insight in both these methods. Several questions arise such as to how the
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different methods compare in terms of efficiency and in terms of computing time
and what the mathematical differences and similarities are. At first glance, there is
a fundamental difference. A pseudo-likelihood function is constructed by modifying
a joint density. Parameters are estimated by setting the first derivatives of this
function equal to zero. On the contrary, generalized estimating equations follow
from specification of the first few moments and by adopting assumptions about the
higher order moments. One could also consider them as resulting from modifying
the score equations from the likelihood function. In that respect McCullagh and
Nelder (1989) note that these estimating equations need not necessarily integrate to
a so-called quasi-likelihood.

The close connection of PL to likelihood is an attractive feature. Indeed, it en-
abled Geys, Molenberghs and Ryan (1999) to construct pseudo-likelihood ratio test
statistics that have easy-to-compute expressions and intuitively appealing limiting
distributions. In contrast, likelihood ratio test statistics for GEE (Rotnitzky and
Jewell 1990) are slightly more complicated.

In Section 6.2.2 we have rewritten the PL score equations as contrasts of ob-
served and fitted frequencies, herewith showing some agreement between PL and
GEE2. Both procedures lead to similar estimating equations. The most important
difference is in the evaluation of the matrix V; = Cov(Z;). This only involves first
and second order probabilities for the pseudo-likelihood procedure. In that respect,
PL resembles GEE1L. In contrast, GEE2 also requires evaluation of third and fourth
order probabilities. This makes the GEE2 score equations harder to evaluate and
also more time consuming,.

Both pseudo-likelihood and generalized estimating equations yield consistent and
asymptotically normally distributed estimators, provided an empirically corrected
variance estimator is used and provided the model is correctly specified. This vari-
ance estimator is similar for both procedures, the main difference being the evalua-
tion of V.

If we define the log of the pseudo-likelihood contribution for clusters with size
larger than one as pf; = pf; /(n; — 1), the first component of the PL vector contribu-
tion S; = Z,—m; equals that of GEE2. On the contrary, the association component,
differs by a factor of 1/(n;, —1). Yet, if we would define the log pseudo-likelihood as
pl = Zil pé;, then the second components would be equal, while the first compo-

nents would differ by a factor of n; — 1. Therefore, in studies where the main interest
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lies in the marginal mean parameters one would prefer pf* over pf. However, if main
interest lies in the estimation of the association parameters we advocate the use of pf
instead. GEE1 in that case should be avoided, since its goal is limited to estimation

of the mean model parameters, while GEE2 is computationally more complex.

The price to pay for computational ease is usually efficiency. Therefore we will
study the asymptotic relative efficiencies (AREs) of the different estimation proce-
dures. For clusters of fixed size, pf and pf* are equally efficient. For variable sized
clusters, the loss of efficiency for main effects of pf will turn out to be very small
compared to pf*. On the contrary, pf will turn out to be superior for estimation of
association parameters. We follow the suggestion of Rotnitzky and Wypij (1994),
described in Section 3.7.3. In our case, we need to consider all realizations of the
form (n;,d;, Y1, .., Yin;), and have to specify: (1) f(d;), the relative frequencies
of the dose groups, as prescribed by the design; (2) f(n;|d;), the probability with
which each cluster size can occur, possibly depending on the dose level (we will as-
sume f(n;|d;) = f(n:)), and (3) f(yir, - - Yin,

These can be derived from the cumulative Dale model probabilities. For instance,

ns,d;), the actual model probabilities.

let 7*) denote the cumulative Dale probability of observing at least k successes and

7)* the probability of observing exactly k successes, then

*) n\ e =k O\ gy
£ _ 4 1y % +3)
() S ()

7=0 ‘

As before, we assume that there are 4 dose groups, with one control (d; = 0)
and three exposed groups (d;, = 0.25,0.5,1.0). The number n, of viable fetuses per
cluster can be chosen at random using a local linear smoothed version of the relative
frequency distribution given in Table 3.3. Due to excessive time requirements for
the maximum likelihood procedure, the calculations are restricted to clusters of size

4. The ML estimating equations are:
N on
HEEDY %VJI(Z@ —m) =0,
i=1

where
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Table 6.1: Simulation Studies: Asymptotic Relative Efficiencies for Dose FEffect
Parameter of GEE1, GEE2 and PL versus ML.

Bo Ba Pa PL. GEEl GEE2
5 5 0.0 1.000 1.000 1.000

0.3 0999 0999 0.999
1.0 0.995 0.999 0.999
-5 3 0.0 1.000 1.000 1.000
0.3 0999 0999 0.999
1.0 0.998 0.999 0.999
-5 0 0.0 1.000 1.000 1.000
0.3 0999 0999 0.999
1.0 0.999 0.999 0.999
0 0 0.0 1.000 1.000 1.000
0.3 0999 0999 0.999
1.0 0.999 0.999 0.999

Z; ;710
Z; Mg A
2| G| | G
() (5)m
(%) ()"

This involves the evaluation of third and fourth order probabilities, which is compu-
tationally laborious, though feasible. Data are generated from a univariate model
where the parameters of interest are modelled as follows: logit(m;10) = Bo + (ad;
with d;, the dose level applied to the ith cluster, and Inv; = 3,, i.e. a constant
marginal odds ratio model. The background rate parameters (3y) equal either 0
or —5 and dose effect parameters (584) are chosen from 0,3,5. The second order
association parameters (3,) are chosen from 0,0.3,1. The third and fourth order
associations are assumed to be zero. The AREs will decrease for increasing higher
order associations.

Table 6.1 shows that, when main interest lies in the estimation of the dose effect,
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the AREs are highest for GEE2, followed by GEE1 and PL. Since the cluster sizes
are assumed to be constant and equal to 4, it does not matter whether we use p#
or pf* to define the log of the pseudo-likelihood. This result shows that GEE1 has
some advantage when interest lies in the estimation of main effect parameters. ML
and GEE2 are computationally more complex. GEEL is the easiest one to fit and
the loss of efficiency for the main effect parameters is very small compared to GEE2
and ML. Similar results were found by Liang, Zeger and Qaqish (1992). The PL
estimation procedure proposed by Le Cessie and Van Houwelingen (1994) is also
computationally easy but is slightly less efficient than GEE1. The differences in
ARE between GEE1 and PL are minor.

Table 6.2: Simulation Studies: Asymptotic Relative Efficiencies for Association Pa-
rameter of GEE1, GEE2 and PL versus ML.

Bo Ba [Ba PL GEEl1 GEE2
-5 5 0.0 1000 0.865 1.000
0.3 0.998 0.888 0.999
1.0 0995 0.862 0.999

-5 3 0.0 1000 0992 1.000
0.3 0.999 0992 0.999
1.0 0993 0.992 0.999
-5 0 0.0 1000 1.000 1.000
0.3 1.000 1.000 1.000
1.0 1.000 1.000 1.000
0 0 0.0 1.000 1.000 1.000
0.3 1.000 1.000 1.000
1.0 1.000 1.000 1.000

When main interest lies in the estimation of the association parameters, Ta-
ble 6.2 shows that GEE1 can loose considerable efficiency. Moreover, in general, one
should not use GEE1 for estimating association parameters, unless confidence in the
working assumption is great. Therefore, we would advocate the use of PL.. ML and

GEE2 are again the most efficient procedures, but computationally intensive. In
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case of no dose effect, the three procedures are equally efficient with respect to the
association parameter.

As Liang, Zeger and Qagish (1992) suggested, GEE1, GEE2 and PL may be less
efficient when the cluster sizes are unequal. Figures 1 and 2 show the efficiencies of
pf and pf* and GEE1 versus GEE2 for varying cluster sizes. In that case pf and pf*
behave differently. Since maximum likelihood is prohibitive, we calculated the AREs
of several methods versus the GEE2 method. Since even data generation from the
assumed true distribution is rather time consuming, we restricted the calculations
to clusters of size less than or equal to 6. Association parameters of order three and
higher are assumed to be zero.

Figure 6.1 shows that pf* is much more efficient than pf for estimating dose
effects. Furthermore, it has the desirable property that the ARE equals 1 under
independence. For estimating the second order association parameter however, Fig-
ure 6.2 suggests the use of pf rather than pf*. Therefore, if main interest lies in the
marginal mean parameters we would suggest to use pf* rather than pf. However,
if main interest lies in the estimation of association parameters, the use of pf is
advised. If interest is combined, and one type of analysis should be chosen, pf might
be preferable. When using pf* the ARE increases for increasing association. Fur-
thermore, in all cases, AREs are highest for the lowest background rate parameters.

This is in agreement with our findings in Chapter 3.

6.5 Examples

We apply the PL, and first and second order GEE estimating procedures to data
from the DEHP and DYME studies, described in Chapter 3. Malformations are
classified as being external, visceral and skeletal. However, we fit the marginal odds
ratio model described in the previous sections to a collapsed outcome, defined as 1
if at least one malformation was found and 0 otherwise. The parameters of interest
are modelled as follows:

logit (m;10) = Bo + Bad;,
with d; the dose level applied to the ith cluster, and

lnl/JZ - /3117

i.e. a constant marginal odds ratio model is assumed.
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Figure 6.1: Stmulation Results: Asymptotic Relative Efficiency of GEE2 versus PL

and GEFE1 for the Dose Effect Parameter in a Marginally Specified Odds Ratio Model
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Table 6.3: NTP Studies: Parameter Estimates (standard errors) for a Marginal
Qdds Ratio Model fitted with PL, GEE1 and GEE2.

Study Bo Ba Ba
Newton Raphson PL Estimates

DEHP -3.98 (0.30) 5.57 (0.61) 1.10 (0.27)

DYME -5.73 (0.46) 8.71 (0.94) 1.42 (0.31)

Fisher scoring PL Estimates
DEHP -3.98 (0.30) 5.57 (0.61) 1.11 (0.27)
DYME -5.73 (0.47) 8.71 (0.95) 1.42 (0.35)
GEE2 Estimates
DEHP  -3.69 (0.25) 5.06 (0.51) 0.97 (0.23)
DYME -5.86 (0.42) 8.96 (0.87) 1.36 (0.34)
GEE1 Estimates
DEHP -4.02 (0.31) 5.79 (0.62) 0.41 (0.34)
DYME -5.89 (0.42) 8.99 (0.87) 1.46 (0.75)

Table 6.3 shows that the parameter estimates, obtained by either the pseudo-
likelihood or generalized estimating equations approach, are comparable. Because
main interest is focused on the dose effect, we used p€* rather than pf. Dose effects
and association parameters are always significant, except for the GEE1 association
estimates. For this procedure 3, is not significant for the DEHP study and mar-
ginally significant for the DYME study. The GEE1 standard errors for 3, are much
larger than for their P, and GEE2 counterparts. The GEE2 standard errors are the
smallest among the different estimating approaches, which is in agreement with find-
ings in previous sections. Furthermore, it is observed that the standard errors of the
Newton-Raphson PL algorithm are generally slightly smaller than those obtained
using Fisher scoring, which is in line with other empirical findings. On the other
hand, the Newton-Raphson procedure is computationally slightly more complex in

this case. The time gain of Fisher scoring however is negligible.

Table 6.4 presents the time (in seconds) needed for each procedure. As was ex-
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Table 6.4: NTP Studies: Time (in seconds) needed for the PL, GEE1 and GEE2

Procedures.

Study GEE2  PL (Fisher Scoring) PL (Fisher Scoring) GEEL1
Classical representation GLM representation

DEHP 1280 116 72 25

DYME 801 110 76 26

pected, GEE2 is relatively time consuming. Then comes the PL estimating approach
in its classical form, followed by the generalized linear model type representation,
which is be computationally less complex. As anticipated, GEE1 is the least com-

plicated fitting procedure.

6.6 Conclusion

We considered both generalized estimating equations (GEE1 and GEE2) and pseudo-
likelihood (Le Cessie and Van Houwelingen 1994) as alternatives for maximum like-
lihood for the analysis of exchangeable clustered binary data, using a marginal odds
ratio model. The applicability to longitudinal data needs further investigation, since
they usually do not satisfy the exchangeability assumption on which this work heav-
ily relies: they beg for more complex association structures. First, we have shown
that, upon rewriting the pseudo-likelihood and its corresponding score equations,
both GEE and PL are similar in spirit. Pseudo-likelihood allows the estimation of
both main effect parameters and association parameters, whereas GEE1 is restricted
to main effect parameters. In addition, a nice and intuitively appealing class of in-
ferential tools has been proposed by Geys, Molenberghs and Ryan (1999) for the PL
case. Depending on whether scientific interest focuses mainly on the main effects or
shifts towards the association parameters, different PL versions can be considered.
When the main interest lies in the marginal mean parameters, GEF.1 has some ad-
vantage. Compared to GEE1, PL. has a nearly equal asymptotic relative efficiency
performance, while the additional computational burden is minor. In contrast, when
some interest lies in the estimation of the association parameters as well, we advo-

cate the use of PL.. GEE1 can become very inefficient and should not be used for
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estimating association parameters, unless strong confidence can be placed in the
working assumption. While GEE2 includes second order association parameters as
well and is slightly more efficient than both GEE1 and PL, it is computationally
much more complex and becomes cumbersome for large cluster sizes. In contrast,

GEE1L and PL can be used with very large clusters.



Chapter 7

Analysis of Toxicology Data with

Individual-level Covariates

7.1 Introduction

Over the last decades, a large number of models have been suggested for clustered
binary data. Such models are typically considered to fall into one of two classes:
cluster-specific (CS) or population-averaged (PA). Section 1.3.3 described the dif-
ferences between both classes. The PA approach is most appropriate for assessing
effects of cluster-level covariates. Cluster-level covariates take on the same value for
every unit in the cluster. The effects of within-cluster covariates can also be esti-
mated from these models, but their interpretations are based on the overall popula-
tion. In a CS model, covariate effects are measured conditional on a cluster-specific

parameter.

The standard approach for many teratological applications is to use a population-
averaged model with primary interest on evaluating dose-response effects and where
the covariate level is considered to be constant over a litter of animals. Lately
however, interest for potential effects of individual-specific covariates, such as for
example, the position of a fetus within the uterine horn, has been growing. This may
also affect the probability of malformation. In this chapter we present population-
averaged and cluster-specific modelling strategies that can adjust for these effects

and we apply them to the heatshock studies, described in Section 2.2.

For the heatshock studies, described in Section 2.2, the vector of exposure co-

151
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variates must incorporate both exposure level, d;;, and duration, ¢;,, for the kth
embryo of the ith dam. Furthermore, models must be formulated in such a way
that departures from Haber’s premise of the same adverse response level for any
equivalent multiple of dose times duration can easily be assessed. The exposure
metrics in these models are the cumulative heat exposure, d;; X t;, which will be
denoted by dt,, and the effect of duration of exposure at temperatures above normal

body temperature, Z; X dq,, (in short ¢},), where

5dik = 1ifdy > 37°C

0 otherwise.

Williams, Molenberghs and Lipsitz (1996) applied a maximum likelihood estimation
procedure and two approaches, based on generalized estimating equations, to investi-
gate the effects of heat stress exposure on the joint distribution of multiple ordinally
measured developmental outcomes. They argue that, while genetic factors are still
expected to exert an influence on the vulnerability of embryos from a common dam,
direct exposure to individual embryos reduces the need to account for such litter
effects. However, they note that this may be too strong an assumption. In this
chapter we will concentrate on models, that allow for individual-specific covariates,
while clustering induced by litter effects is also taken into account. Furthermore,
interest is focused on the comparison of several possible association structures. The
specific form of the heatshock study allows us to quantify the association between
different embryos from the same initial dam in terms of genetic as well as environ-
mental factors, in contrast to the more standard teratology studies where such a
decomposition is not possible.

Within the class of PA models, we consider conditionally and marginally speci-
fied models. While the conditionally specified MR model, introduced in Chapters 3
and 4, was very flexible for exchangeable clustered binary data, we show here that
limitations are severe, as soon as there are individual-level covariates. Therefore,
in this chapter, we mainly focus on marginal models, which can further be sub-
divided into likelihood based and non-likelihood (e.g. generalized estimating equa-
tions) approaches. The likelihood based model proposed by Bahadur (1961) readily
extends to the context of individual-specific covariates. Associations for this model
are measured in terms of correlations. However, in order to obtain a valid proba-

bility distribution, more stringent restrictions must be imposed on the correlations
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as cluster size increases (Kupper and Haseman 1978; Molenberghs, Declerck and
Aerts 1998). Alternatively, odds ratio models such as the one proposed by Molen-
berghs and Lesaffre (1994) could be used. For their model, only mild constraints on
the association parameters apply. However, no closed form expressions can be ob-
tained for third and higher order probabilities, rendering the model computationally
cumbersome. Prentice (1988) advocates an extension of the first order generalized
estimating equations approach, proposed by Liang and Zeger (1986) that allows
for joint estimation of marginal response probabilities and pairwise correlations.
However, GEE1 has only limited applicability when some interest is placed on the
estimation of correlation parameters. In the context of the heatshock studies, the
comparison of different association structures is of particular interest; we therefore
also consider a set of second order generalized estimating equations, as proposed by
Liang, Zeger and Qaqish (1992).

Finally, within the class of CS models, we study a mixed-effects logistic model as
an alternative way of accounting for intra-litter heterogeneity as well as a conditional
logistic method. In the mixed-effect logistic procedure cluster effects are removed
by assuming that they are manifestations of a random variable and integrating
over their distribution. With conditional likelihood, one conditions on the sufficient
statistics for the cluster effects (Ten Have, Landis and Weaver 1995; Conaway 1989).

Sections 7.2 and 7.3 respectively describe population-averaged and cluster-specific
modelling approaches. Section 7.4 presents a simple goodness-of-fit testing approach
for clustered binary data. In Section 7.5 we apply the different methods to the heat-
shock data. Several possible association structures are studied, allowing an evalu-
ation of both generic and environmental components of the intralitter correlation.

An overview of conclusions and remarks is given in Section 7.6.

7.2 Population-averaged Models

7.2.1 Conditionally Specified Models

In Chapter 3, we introduced the likelihood-based model (3.3), proposed by Molen-
berghs and Ryan (1999), for exchangeable clustered binary data. Extending their

model to individual-level covariates is, at the formal level, straightforward. With



154 Chapter 7

notation introduced in Chapter 3, the model becomes:

Jvi (¥, ©5,m5) = exp {Zlgmyzk + Z itk Yite Uikt — A(@@)} :
k=1 o<k

However, while this model benefits from the elegance and simplicity of exponential
family theory, it turns out that it is not entirely appropriate within the context of
clustered binary data with covariates specific to each observation. To illustrate this
point, consider a cluster of size 2 yielding two outcomes (Y7, Y2). The conditional
probability of observing Y7 = o, given the other animal in the cluster is malformed
is:
exp [(61 + 612)y1]

PYlY, =1) = )
(1fYe ) exp(—6, — 012) + exp(f1 + d12)

(7.1)

Assuming the association parameter d12 is constant, (7.1) does not depend on the
covariates for the second individual. In addition, the marginal malformation prob-
ability of the first individual is:

P(n = 1) = exp(@l — 05 — 812 — A(@)) + exp(91 4+ @9 + 512 — A(@»j

which depends on the covariates of the second individual, as reflected by A(@). Both
properties are undesirable when fetuses are randomized to a certain dose group
after sacrifice of the maternal dam. This is a strong warning against the use of

conditionally specified models. Hence, they will be ignored henceforth.

7.2.2 Likelihood-based Marginal Models

The Bahadur model has been used by several authors in the context of toxicological
experiments (Kupper and Haseman 1978; Altham 1978) and can thus be considered
an important representative of the marginal family. Bahadur (1961) describes the
joint distribution of clustered binary data for a single outcome in terms of marginal
means m; = (T;1,...,Tin,)? and marginal correlations p;, = (pi12, Pi13, - - -, Pi12..m;) " -

The closed form probability mass function is given as:

f(yi777i7pz ]i[wydc 11— 7r/€ (1 Yik) X (1 + Z Piky kil Tiky

k1 <ko

-+ g Dikey bogks Tiky Tiko Viky + + * + Pil..n¥i1 .- - Tin ) .

ki <ko<ks
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Unfortunately, the association parameters may be subject to severe restrictions.
In practice, three-way and higher order associations are often difficult to interpret
and can be neglected. Therefore, a working higher order independence assumption
is often plausible. If we set all three- and higher way correlations equal to zero,

Bahadur’s representation simplifies to:

f(yilms, p;) H Yk (1 — kv (1 +> pg‘]clei/ceil) )

o<l
with
Yike — Tik
ik (1 — i) .
In the simple case of equicorrelation and a constant mean, Bahadur gives ranges

€ikk —

in the parameter space within which this second order approximation is a valid
probability distribution. Declerck, Aerts and Molenberghs (1998) have shown that
the range of positive second order associations is markedly enlarged in a four-way
Bahadur model. But fitting higher order Bahadur models is difficult, due to the
increasingly complicated nature of the restrictions on the parameter space. Using
appropriate link functions, the marginal mean parameters m;, (k = 1,...,n;), as
well as the marginal correlations p;(k < [), can be modelled as a function of a
(n; (n, +1) /2 x p) covariate matrix X; and a parsimonious (px 1) vector of regression
parameters 3. The logistic link function is a natural choice for m;, while Fisher’s z-

transform is convenient to model p;z;. This leads to the following generalized linear

T
1n( ik )
lfﬂik k—1

n, = = X,3. (7.2)
1n (1+Pikl)
L=piki ) g
The maximum likelihood estimator 3 for B3 is defined as the solution to U(B) =0
with U(3) the score function. A Fisher scoring or Newton-Raphson algorithm can

model:

be used to obtain the maximum likelihood estimate B .

7.2.3 Generalized Estimating Equations

For marginal odds ratio models, generalized estimating equations have been intro-
duced in Chapter 6. Here, we model the association in terms of correlations, in

order to enable an easy comparison with the Bahadur model.
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GEE1

GEE1 were first proposed by Liang and Zeger (1986) and require only the correct
specification of the univariate marginal distributions provided one is willing to adopt
working assumptions about the association structure. However, the appropriateness
of GEEL is reduced when the association parameters themselves are of scientific
interest. Assuming that a function of the mean can be written as a linear function
of regression parameters 3, the generalized estimating equations for 3 are given by:

N

871'2‘ 1
; Yz_ i) — Y,
ZZ;%VZ (Y, —m;) =0

where V; = éA;/ZRi(a)Ai/27 R;(a) is a m; X n; working correlation matrix fully
specified by the vector of parameters e, and A, is an (n; x n;) diagonal matrix with
diagonal elements (1 — 7). Usually, the working correlation matrix depends on
unknown parameters which have to be estimated. Standard procedures, such as the
SAS/STAT procedure GENMOD (1997) and the Oswald functions in Splus (Smith,
Robertson and Diggle 1996), that include GEE1 capabilities use an iterative fitting
process, where estimation of the parameters « is based on standardized residuals.

The model based estimator of Cov(3) is given by I, where

N
o, o,
Iy = ——yi=—2

The empirically corrected variance estimator (Liang and Zeger 1986), is Iy 11117,

where .
o’ o,
I = —V 1 Cov(Y,)V, =
1 2. 55" ov(Y,)V, RE

Williamson, Lipsitz and Kim (1997) wrote a SAS macro for GEE1 which is based
on Prentice’s approach. The latter considered an extension of the GEE1 approach
of Liang and Zeger (1986) that allows joint estimation of the parameters 3 and o
in both the marginal response probabilities and the pairwise correlations. A GEE1

estimator for 3 and a may be defined as a solution to:

N
Y DIV (Y, —m) = 0
=1

N
Y EIW,(Z,-6) = 0,
i=1
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where
(Ve — i) (Y — )

Vi (1= ) (1 — 7ar,)

and 0,5, = E(Z;;,). Under exchangeability we have d,;, = p;, the correlation between

Zijle =

any two outcomes of the same cluster ¢. This can be reparametrized in terms of «,
using Fisher’s #transformation: o = In(1 4 p) — In(1 — p). The joint asymptotic
distribution of v N(8 — 8) and vV N(& — «) is Gaussian with mean zero and with

variance-covariance matrix consistently estimated by N times

A 0 Ay Ap A BT
B C A21 A22 0 C

where

N
A = O DV 'D)",
=1

N N aZ N
B — ETW lE)! ETw 122 DTV 1D,
(S BIWE) B GEODIY D)

N
C = Q_E/W,'E)",

=1

N
An = ) D]V;'Cov(Y,)V,'D;

=1
N
A = ) D!V,;'Cov(Y;, Z,)W, E;,

=1

A21 - A127

N
Ay = Y EIW,'Cov(Z,)W,;'E;,

=1

and Var(Y;), Cov(Y,, Z;) and Var(Z,) respectively estimated by (Y, — m,)(Y,; —
7)Y, —w)(Z; — 8;)1 and (Z; — 8,)(Z; — 8,)T. The SAS macro defines:

Y Yio
Yi1Yis

}/ini }/Z(nz -1)
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Hence, under exchangeability,

E<Z2jk)> — Tk — p\/ﬂ_zg — Ty Wzk(l - Wzk) + T35 Tk 5
Var(Zie) = migr(l — mye),
OE(Zij) 2 exp(a)

b el + 1V (1~ Tl — )

The matrix C then reduces to:

C(2exple) T T L
= (o Vo~ mmatd =) s

To obtain the variance-covariance matrix of the correlation parameters p, one can

apply the delta method. In the case of exhangeability we multiply the standard
error of a with a factor 2exp(a)/(exp(a) + 1)? to obtain the standard error of p.

GEE2

The GEE2 approach naturally accomodates individual-level covariates in the esti-

mation of marginal response probabilities. For each cluster, define

T
w; — (ym ey Ying, YirYio, - - - 7ymi71ymi) 5

a vector of n; + () components. Further, let ©; = (7}, p/)” which depends on a
p X 1 vector of regression parameters 3 through the generalized linear model (7.2).
Estimation of 3 is accomplished by solving the following second order estimating

equations:

ZXT W - BW) — 0,

with X; = 0n,/08, T, = 8?72/6’@@ and V; = Cov(W;). Calculation of all matrices
involved is straightforward with the exception of the covariance matrix, which con-
tains third and fourth order probabilities. To this end, the three-way and higher
order correlations are set equal to zero. As before, the parameter estimates B can
then be calculated using, for example, a Fisher scoring algorithm. Provided the
first and second order models have been correctly specified, ,3 is consistent for 3
and has an asymptotic multivariate normal distribution with mean vector 8 and

variance-covariance matrix consistently estimated by:

N -1 N —1
V(B) = (ZX@TYA;T‘FYZ%) ZU(B Wi(B8)T (ZXTT TV 1x> .

i=1 =1
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7.3 Cluster-specific Models

To introduce cluster-specific approaches, consider the generalized linear mixed model
(Breslow and Clayton 1993):

n, = g(m;) = X;B + Z;b;,

where g is an appropriate link function, 3 is a vector of unknown fixed effects with
known model matrix X;, b; is a vector of unknown random effects with known
model matrix Z; and m; is the conditional mean of the observations, given the
random effects b;,. The random effects b; can have any distribution (Lee and Nelder
1996). Standard approaches assume them to be normally distributed with mean O
and variance D. As pointed out by Zeger and Karim (1991), the beta-binomial and
Poisson-gamma models were among the earliest extensions of random-effects models
to the generalized linear context. However, these models only allow for cluster-level
covariates. Within the mixed-effects models framework, several approaches can be

used for estimating the parameters of interest (3).

7.3.1 Marginal Likelihood Approach

In a marginal likelihood approach, the random intercept terms are integrated out.
Likelihood inference for generalized linear mixed models requires evaluation of in-
tegrals, the dimension of which is equal to the number of random effects. Zeger
and Karim (1991) avoid this need for numerical integration by casting the gen-
eralized linear mixed-effects model in a Bayesian framework and using the Gibbs
sampler. Breslow and Clayton (1993) apply Laplace’s method for integral approxi-
mation, whereas Wolfinger and O’Connell (1993) propose a pseudo-likelihood (PL)
procedure. Starting with an initial estimate of the conditional mean vector 7;, they
construct a vector of pseudo-data (i.e. a linearized version of the link function) and
fit a weighted linear mixed model to them. Iteratively solving the mixed model equa-
tions, they obtain an updated estimate of the mean. This process then iterates until
convergence. This procedure has been implemented in SAS using the GLIMMIX
macro which iteratively calls the MIXED procedure. Using this macro without ran-
dom effects, but with a compound symmetry covariance structure for the correlated
error terms describes a PA model, where the individuals within a cluster are as-

sumed to be exchangeable (compound symmetry model). This procedure is related
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to the GEE concept, where an exchangeable working correlation matrix is assumed.
A criticism of GEE is that it generally does not correspond directly to a likelihood
(which could be used to calculate deviances), even though some approximations to a
likelihood ratio statistic have been proposed (Rotnitzky and Jewell 1990). Random-
effects models, on the contrary, correspond to a likelihood (or pseudo-likelihood)
function. But very little research has been done on the form of the deviance re-
ported in the output of the GLIMMIX macro (Littell et al. 1996). Moreover, Littell
et al. (1996) warn that one should be aware that relatively little research has been
done on the small-sample properties of inference statistics for the generalized linear
mixed model. The test statistics are basically reasonable-looking extensions of stan-
dard tests for mixed models and generalized linear models. More work is needed
to either validate or modify these procedures. Finally, Neuhaus and Segal (1997)
warn that approximate methods based on Laplace or Taylor series approximations
(cf. Breslow and Clayton 1993; Wolfinger and O’Connell 1993) may require modi-
fication before their asymptotic bias can be competitive with mixed-effects model
methods such as the Gibbs sampler that provide consistent estimation.

In this section we will focus on cluster-specific mixed-effects logistic models,
where the intercept terms b, are allowed to vary from cluster to cluster, according

to a normal distribution:

In this formulation, ;. denotes the kth row of the design matrix X;. The regression
parameters (B-g) in this CS mixed-effects logistic model measure the change in the
conditional logit of the probability of response with a unit increase in the corre-
sponding covariates for individuals at the same random-effects level (e.g. within a
cluster with only individual-level covariates). The association between littermates is
induced by the random intercept. Because cluster sizes for developmental toxicology
studies are relatively small, more complex random-effect structures can seldom he
addressed from a practical perspective. Further, while mixed-effects models uniquely
specify marginal models by integrating (7.3) over the random-effect terms b, the re-
verse is not true since there is a many-to-one mapping between CS and PA models.
Integration of (7.3) leads to the following PA model for Y:

exp(x0 + b)
1+ exp(xxB + b)
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In contrast to the cluster-specific regression parameters B¢, regression parameters
in a PA model (B8p4) measure the change in the logit of the “success” probability
for a unit increase in the corresponding covariates. Neuhaus, Kalbfleisch and Hauck
(1991) have derived an interesting approximate relationship between PA and CS

parameters in the above described context:

Bpa == Besll — p(0)], (7.4)

where p(0) refers to the intracluster correlation when the covariate has no effect.
Since 0 < p < 1, this suggests that, at least for small B.g, [Bpal < |Bcg|, so that

the population-averaged effect is smaller than the cluster-specific effect.

7.3.2 Conditional Likelihood Approach

The conditional likelihood approach eliminates the random intercept terms b by

conditioning on sufficient statistics. It can be written as:

ﬁ P(Y; = y;la:, 8. b)
e} P(Sz‘ = Sz‘|$z‘7/37 bi) 7

where S; = Y., Yy is a sufficient statistic. By the sufficiency of S;, the condi-
tional likelihood does not depend on the random-effects distributions (Neuhaus and
Kalbfleisch 1997). One drawback of this conditional likelihood method, particularly
with binary data, is that the method only uses data from clusters that are discordant
on both the outcome and the covariates. The conditioning also removes effects from
cluster level covariates together with the random effects. Hence, it is not possible
to estimate effects from cluster level covariates. Further, the conditional likelihood
approach can also lose efficiency because S; depends on 3. Neuhaus and Lesperance
(1996) have investigated the ARE of the conditional likelihood estimators relative
to the estimators obtained with a mixed-effects logistic model. They show that the
ARE is a decreasing function of within-cluster covariate correlation. However, for
a fixed covariate correlation, the ARE increases as cluster size increases. This is a
consequence of fewer discarded clusters, resulting from the decreasing probability of

concordance.
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7.4 Goodness-of-Fit for Likelihood Based Models
with Clustered Binary Data

In order to evaluate how effective models are in describing the outcome variable, we
need to assess the quality of their fit. Lipsitz, Fitzmaurice and Molenberghs (1996)
note that for the special case of a binary response, several methods for assessing the
goodness-of-fit of binary logistic regression models have been proposed. All these
methods are based on the notion of partitioning the covariate space into groups or
regions. Tsiatis (1980) proposed a goodness-of-fit statistic for the logistic regression
model for a given partition of the covariate space, but he did not provide a method
for partitioning the covariate space into suitable regions. Hosmer and Lemeshow
(1989) proposed the partition of subjects into groups or regions on the basis of the
percentiles of the predicted probabilities from the fitted logistic regression model. To
construct a goodness-of-fit measure for clustered binary data, we adapted the meth-
ods proposed by Hosmer and Lemeshow (1989) and Tsiatis (1980). Following these
authors, groups are constructed according to deciles of the predicted malformation
probabilities in each temperature-duration combination. Given this partition, the
goodness-of-fit statistic is formulated by defining G — 1 group indicators (in our

example, G = 10):

1 if 7 isinregion g (g=1,...,G—1)
I =

0 otherwise,

where 7y, is the estimated malformation probability of the kth individual within the
ith cluster, calculated from the model that takes into account the clustering between
the individuals. For example, in the context of the heatshock studies, the following
model is considered:

G-1

% *
In ( i > = Bo + Be-tyy, + Badtan + Z LY

1—7TZ‘].C )

The association is modelled similarly as in the model for which the goodness-of-fit is
assessed. One possible choice would be an exchangeable correlation structure. Other
more complicated structures will be described in the following section. If the mean
structure in the original model is correctly specified, then vy = -+ = v 1 = 0.

Moore and Spruill (1975) note that, even though I, is based on random quantities
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T;, the partition can be treated asymptotically as if it were based on the true
. 1o test the goodness-of-fit of the model, one can use either a likelihood ratio,
Wald or score statistic to test Hy : 17 = .-+ = 7¢-1 = 0. For large samples,
each of these statistics has approximately a 2 distribution with G — 1 degrees of
freedom, if the model under the null hypothesis is correctly specified. We suggest
the use of the likelihood ratio statistic, since it is simple to calculate and is fairly
powerful. For large samples, all estimated expected frequencies should typically be
greater than 1 and at least 80 percent should be greater than 5. Otherwise, one can
collapse some frequencies, reducing the number of groups G (Lipsitz, Fitzmaurice
and Molenberghs 1996). Hosmer and Lemeshow (1989) noted that G = 6 should be a
minimum, since a test statistic calculated from fewer than 6 groups will usually have
low power and thus indicates that the model fits well. Note that in the goodness-
of-fit assessment described above, correlation is essentially treated as a nuisance
parameter and interest is focused on the relationship between the covariates and the
probability of response. Recent work has shown there may be disadvantages in the
use of goodness-of-fit tests based on the ones proposed by Hosmer and Lemeshow
(Hosmer, Hosmer, Lemeshow, Le Cessie 1997). Decisions on model fit may depend
more on choice of cutpoints than on lack-of-fit and their test statistic may have
relatively low power with small sample sizes. Developing improved goodness-of-fit
test statistics for likelihood based models for clustered binary data is a topic of

further research.

7.5 Analysis of Heatshock Study

As mentioned in Section 7.1, the specific form of the heatshock study allows us to
quantify the association between different embryos from the same initial dam in
terms of genetic as well as environmental factors. Therefore, we can consider several

possible designs for the association structure.

Design 1
The mean parameters are assumed to be a linear function of dt and t*, while
the pairwise associations are assumed to equal the constant value p. Hence,

the design matrix X, for the ith cluster is a matrix with n; + (g) rows and 4
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columns:

1 & dta O
' ' Bo
1t dtim, O .
X, = e , and B = b
0 0 0 1 Bat
P

0 0 0 1

Design 2

Asin the previous case, the mean parameters are assumed to be a linear function
of dt and t*, but the pairwise associations are modelled as:
Oikt =
o otherwise.
A significant « would then mean a large association within all clusters, while
a significant v would indicate an extra association within the same duration-

temperature group.

Design 3
This design is analogous to the previous one, except that the pairwise associa-
tion is now modelled by specifying an extra association parameter within each

cumulative exposure group:

(0t ifdty — diy,
Okt =
a otherwise.
Design 4
Here, the main difference with design 3 is that we model the mean parameters
as a linear function of the exposure level, d, and duration ¢. The pairwise
agsociation is modelled in a similar fashion as in the previous design:
a+y il dg = dy and g = ta,

Oitl =
a otherwise.
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Design 5
Analogous to designs 1 — 3, we assume that the mean parameters are a linear
function of dt and t*, but the pairwise associations are modelled as a linear
function of the “quadratic distances” between any two cumulative exposure

values, i.e.

5@‘}%1 =+ ’}/(dtik — dtil>2.

For the design matrix X; and the vector of regression parameters 3, this implies

the following choices:

1ty dty 0 0
: Bo
1t dim, 0 0 By
X;=|[0 0 0 1  (dty—din)? B =1\ Bu
0 0 0 1 (dt;; — di;3)? o
oy

0O 0O 0 1 (dti(m,l) — dtmz.)z

7.5.1 Population Averaged Models

In Section 7.2.1 it was shown that conditionally specified models are less suitable
for developmental toxicity studies with individual-level covariates. Therefore, we
will restrict attention to the Bahadur model and generalized estimating equations

as representatives of PA models.

Bahadur Model

Restrictions on the parameter space in the Bahadur representation present no prob-
lem for our data. As mentioned in Section 7.1, severe restrictions may arise for
larger cluster sizes, but cluster sizes are relatively small for the heatshock studies.
Table 7.1 gives the parameter estimates (standard errors) using the Bahadur model

for the different designs.
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Table 7.1: Heatshock Study: Parameter Estimates (standard error) for the Bahadur
Model, Applying Different Designs for the Association Structure.

Outcome Par. Design
1 2 3 4
MBN G, -1.84 (0.21) -1.85 (0.21) -1.85 (0.20) -1.85 (0.21
B -3.83 (1.69) -3.75 (1.69) (
Bar  5.88 (1.71) 5.80 (1.70) (
a 0.13 (0.08) 0.13 (0.08) (
¥ -0.05 (0.21) (
opPT Bo -2.50 (0.23) -2.41 (0.25) -2.41 (0.24) -2.49 (0.24) -2.43 (0.25)
B -3.69 (1.62) -4.26 (1.72) -4.27 (1.74) -4.17 (1.57
Bar  5.66 (1.58) 6.13 (1.70) 6.13 (1.70) 6.14 (1.58
(0.07) (
(0.28) (
(0.20) (
(1.69) (
(1.69) (
(0.08) (
(0.27) (

-1.8
-3.77
5.82

5
) -1.64 (0.23)
1.67) -3.90 (1.68) -4.03 (1.41)
1.68) 5.96 (1.70) 5.49 (1.46)
0.13 (0.08) 0.13 (0.08) 0.22 (0.08)
-0.04 (0.20) 0.07 (0.24) -1.26 (0.58)
(
(

) -3.93 (1.64)
) 5.61 (1.58)
) 0.00 (0.09)
0.73 (0.28) 0.59 (0.29) -0.54 (0.43
-1.39 (0.20) -1.44 (0.19) -1.43 (0.21

)

)

)

)

o

a  -0.06 (0.07) -0.10 (0.07) -0.10 (0.07) -0.10 (0.07

v 0.72 (0.28
OLF Bo -1.47 (0.19) -1.40 (0.20
B -4.91 (2.00) -5.61 (1.69
Ba 6.69 (1.97) 7.35 (1.69
o 0.26 (0.07) 0.22 (0.08
0.27

5.63 (1.81) -5.65 (1.84
7.37 (1.84) 7.49 (1.87
0.22 (0.08) 0.22 (0.08
0.50 (0.25) 0.57 (0.32

(
-5.52 (1.80
712 (1.74
(
(

o

0.29 (0.08

)
)
)
)
)
-0.37 (0.51)

¥ 0.49
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Midbrain (MBN)

For the MBN response, we observe both an important cumulative exposure effect
and an important additional effect of duration of exposure to temperatures above
normal body temperature. This indicates a departure from Haber’s premise that the
probability of observing an adverse effect is the same for each exposure x duration
combination. Further, the coefficients for F;~ are consistently negative, indicating
that shorter exposures of the same cumulative exposure cause more developmental
damage than longer ones. As expected, the malformation probability tends to in-
crease with increasing cumulative exposures. Figure 7.1 shows how the fetus-level
risk surface (i.e. plot of the probability that a fetus is malformed at a given cu-
mulative exposure and a given duration of exposure to a temperature above 37°C)
changes with dt and ¢*. For this visual representation, we used the constant associ-

ation design model and rescaled the covariates between 0 and 1.

Based on the first association design model, there is no evidence of a signifi-
cant intracluster correlation for MBN responses. Direct exposure to the individual
embryos seems to reduce the need to account for litter effects on midbrain malfor-
mations. More complex association structures, such as designs 2, 3 and 4 lead to
similar conclusions. Furthermore, according to these models, there is no evidence
for an extra association contribution for MBN responses on individuals within the
same duration-temperature group. Comparing the likelihoods of models obtained
with designs 2, 3 and 4 to the constant association model (design 1) yields deviances
(D) of resp. 0.052, 0.032 and 0.087 (in the remainder, all deviances will refer to a
comparison with the constant association model). In contrast, design 5 yields a sig-
nificant quadratic distance effect parameter v (D=3.9028). Hence, the association
between any two individuals decreases with the “distance” between their cumulative
exposures. The goodness-of-fit deviances (G = 10) for all fitted models are tabu-
lated in Table 7.2. All expected malformation frequencies are larger than 1 and the
collapsed frequencies within groups are all larger than 5. None of the deviances indi-
cates a lack of fit for the MBN predicted probabilities, compared to a x? distribution
with 9 degrees of freedom.



168 Chapter 7

Bivariate risk function for MBN

Figure 7.1: Heatshock Study: Fetus-level Risk Surface for MBN.
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Table 7.2: Heatshock Study: Goodness-of-fit Deviances (p-values).

Outcome Design
1 2 3 4 )
MBN 6.78 (0.66) 6.91 (0.65) 6.91 (0.65) 6.75 (0.66) 6.36 (0.70)

OPT  17.77 (0.04) 14.89 (0.09) 14.89 (0.09) 16.93
OLF  25.18 (0.00) 22.65 (0.01) 22.65 (0.01) 23.00

0.05) 18.09 (0.03)

(
(0.01) 25.45 (0.00)

Optic System (OPT)

Again we observe an important effect of cumulative exposure and an additional
effect of duration of exposure to temperatures above normal body temperature.
The clustering parameter « is never significant, indicating that there is no important
intra-litter correlation working on the optic system. However, there is evidence for
an extra association between animals within the same duration-temperature group
(design 2) (D=6.021). Parameter estimates for the two designs (2 and 1) are similar
but di and #* tend to be slightly more significant for the more complex design 2.
Designs 3 and 4 lead to similar results as design 2. There seems to be no evidence
for a quadratic distance effect (D=1.622). Further, Table 7.2 shows that designs 4
and 5 give a rather poor fit to the data. Based on these results, the third association

design might be the most preferable.

Olfactory System (OLF)

For the OLF outcome, dt and t* are again highly significant. Design 1 now shows
evidence of a significant intra-litter correlation. Furthermore, it follows from design
2 that there might be a (borderline significant) extra contribution of association
for individuals within the same duration-temperature group (D=3.6836). The sim-
pler design 3 leads to similar results (D=3.877) and might therefore be preferable.
The results of design 4 are comparable with those obtained by the second design
(D=3.868). The quadratic distance effect parameter ~ is apparently superfluous
(D=0.564). However, Table 7.2 shows that all these models fit the data poorly.
Including a quadratic main dt effect improves the fit substantially. Adopting one

of the two-level association designs rather than assuming a constant association im-
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proves the fit of the mean model even further. Again, the best fit was obtained for
design 3, yielding a goodness-of-fit deviance of 12.31. The intra-litter correlation
becomes even more significant, but the extra association for individuals within the

same duration-temperature group is now reduced to non-significance.

Generalized Estimating Equations

Table 7.3 gives the parameter estimates together with model-based and empirically
corrected standard errors of the second order generalized estimating equations. In
many cases, GEE2 models were hard to fit. For instance, in the case of the more
complicated design b, we were not able to fit GEE2 for any of the outcomes, and
therefore we exclude it from the table. For outcome MBN, the results of GEE2
are similar to those obtained using the Bahadur model. The model-based standard
errors correspond closely with those calculated by the likelihood method. Further-
more, model-based and empirically corrected (robust) standard errors are close to
each other, indicating that complex association designs need not be considered. In
contrast, for the OPT outcome, there is a larger gap between model-based and
empirically corrected standard errors, especially for design 1. This might indicate
that other more complex designs should be considered. In some cases, it may be
worthwhile to consider association structures that include a genetic association com-
ponent («), a serial association component () and a random covariate effect. Full
likelihood methods, as well as second order generalized estimating equations, can

only handle the first two components.

Importance of Complex Association Patterns

To illustrate the importance of addressing complex association patterns, Table 7.4
tabulates the parameter estimates (standard errors) for each of the three binary out-
comes (MBN, OPT and OLF) respectively for the logistic model, the standard GEE1
procedure and Prentice’s extended GEE1 approach under an exchangeable working
correlation assumption, and the generalized linear mixed model fitting procedure
of Wolfinger and O’ Connell (1993), fitted without random effects but assuming a
compound symmetry (CSYM) covariance structure. All are PA approaches where
individuals within a cluster are assumed to be either independent (logistic) or ex-

changeable.
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Table 7.3: Heatshock Study: Parameter estimates (model based standard er-
ror;empirically corrected standard error) for GEE2, Applying Different Designs for

the Association Structure.

Par. Design

Outcome 1 2 3 4

MBN B -1.81(0.21:0.22) -1.83 (0.21:0.22) -1.83 (0.21;0.22) -1.81 (0.21;0.22)
Bie -3.93 (1.66;1.96) -3.68 (1.62;1.97) -3.72 (1.62;1.97) -3.96 (1.66;1.95)
Bar  5.93 (1.68:1.94) 5.70 (1.64;1.96) 5.74 (1.64:1.96) 5.97 (1.69:1.94)
( ( )

( )

o 0.10 (0.08;0.06) 0.11 (0.08;0.07) 0.11 (0.08;0.07) 0.09 (0.08;0.07

)
)
)
)
5 -0.16 (0.18;0.17) -0.14 (0.18;0.17) 0.03 (0.25;0.24
)
)
)
)
)

OPT By -2.49 (0.24;0.22) -2.42 (0.25:0.23
Bie -3.69 (1.70;2.22) -3.71 (1.79;2.22
Ba  5.64 (1.67:2.27) 5.64 (1.77:2.23
a  -0.05 (0.05;0.04) -0.07 (0.06:0.06
5 0.76 (0.25:0.27

OLF By -1.52(0.22;0.28) -1.55 (0.21;0.28)
Bie -3.70 (1.49:1.56) 451 (1.44;1.54)
Ba  5.61 (1.50;1.53) 6.47 (1.40;1.60)
a 051 (0.08;0.14) 0.41 (0.07;0.09)
5 -0.09 (0.22;0.23)
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Table 7.4: Heatshock Study: Parameter Fstimates (standard errors (model based;
empirically corrected)) for Logistic Regression, Two Different GEE1 Procedures and
the Generalized Linear Mixed Model (using GLIMMIX Macro).

Outcome Par. Model

LOGISTIC GEEL1 (standard) GEEL (Prentice) GLIMMIX (CSYM)

MBN Bo -1.80 (0.20) -1.81 (0.20;0.23) -1.82 (0.21;0.22)  -1.82 (0.21;0.22)

Bie -3.88 (1.58) -3.92 (1.60;1.95) -3.98 (1.66;1.98) -3.97 (1.66;1.97)
Ba  5.85(1.60) 5.91 (1.62;1.95) 5.99 (1.69:1.97)  5.99 (1.69:1.97)
p 0 02 05 05

OPT By -248 (0.25) -247 (0.24;:0.22) -247 (0.24;0.22)  -0.47 (0.24;0.22)
B -3.68 (1.77) -3.77 (1.69;2.26) -3.75 (1.71;:2.26)  -3.73 (1.67;2.26)
Ba  5.61 (1.73) 5.68 (1.65:2.30) 5.66 (1.67:2.30)  5.65 (1.66;2.30)
p 0 -03 -.03 -.02

OLF By -1.44(0.18) -1.54 (0.22:0.22) -1.57 (0.23;0.21) -1.56 (0.22;0.22)
Bie -5.69 (1.65) -4.85(1.74:2.11) -4.50 (1.73;2.07)  -4.71 (1.74;2.09)
Ba 719 (1.66) 6.65 (L.77:2.15) 640 (1L.77:2.12)  6.55 (1.77;:2.13)
p 0 15 24 19




Analysis of Toxicology Data with Individual-level Covariates 173

From Table 7.4 a clear distinction between the logistic and correlated models can
be deduced. For outcome MBN we find that the logistic standard error is smaller
than the model-based standard errors of any of the other three procedures, which
are smaller than any of the empirically corrected standard errors. More complex
association designs which were previously fitted using the second order generalized
estimating equations (e.g. Table 7.2, design 2) do not reduce the difference beween
model-based and empirically corrected standard errors. This may be due to the fact
that the association parameters are not significant for MBN. Fitting more complex
designs will therefore not be very helpful. In contrast, for the OPT outcome, model
based and empirically corrected standard errors tend to lie closer to each other for
the GEE2 estimates (e.g. Table 7.3, design 2) than for the exchangeably correlated
PA procedures in Table 7.4. Indeed, the association parameter ~v results in a signifi-
cant amelioration of the association model. Hence, it might be important to consider
more complicated designs for the association structure. Further, one observes that
the correlation parameter is always estimated negative (but not significantly). For
OLF, the model based standard error for the logistic procedures are considerably
smaller than the model based standard errors for the correlated procedures. Fur-
thermore, the discrepancy between model based and empirically corrected standard
errors for the correlated procedures is rather high. Unfortunately, GEE2 was hard

to fit for complex association designs, such as designs 2 and 3.

In conclusion, although GEE1 is much easier to fit than GEE2, it presents more
difficulties when coping with complex association designs. In the discussion of Fitz-
maurice, Laird and Rotnitzky (1993), Drum and McCullagh note that “ideally, one
should calculate both model based and empirically corrected standard errors and
aim to understand any differences that occur”. Whenever model based and empiri-
cally corrected standard error estimates are similar, GEE1 is trustworthy and might
be helpful in finding crude effects like a dominant compound symmetry component.
Even GEE2 or full likelihood methods may sometimes be unsatisfactory for ad-
dressing complex association patterns. Whenever more complex designs are needed
where all three components (genetic, serial and random covariates) are important,

generalized linear mixed models would be necessary.
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7.5.2 Cluster-specific Approaches

In this section we used the SAS/STAT GLIMMIX macro (Littell et al. 1996) to
fit mixed effects logistic models such as (7.3) to the binary outcomes MBN, OPT
and OLF. The responses from the ith cluster are now correlated by virtue of their
sharing a common intercept. For continuous outcomes a random intercept model
and a compound symmetry model yield equivalent results. In contrast, parameter
estimates obtained from a compound symmetry model (PA) for discrete outcomes

tend to be smaller than those obtained from a random intercept model (CS).

Table 7.5: Heatshock Study: Parameter Estimates (standard errors; p-values) for the
Mized Effects Logistic (MIXLOG), Compound Symmetry (CSYM) and Conditional
Logistic (CONDLOG) models.

Outcome Par. Model
MIXLOG CSYM CONDLOG

MBN 3 -1.87 (0.21;0.00) -1.82 (0.21;0.00)

B -4.08 (1.65;0.01) -3.97 (1.66;0.02) -4.64 (2.55;0.07)

Bar  6.16 (1.67;0.00) 5.99 (1.69;0.00) 6.84 (2.63;0.01)
opPT Bo  -2.48 (0.25;0.00) -2.47 (0.24;0.00)

B -3.67 (1.75;0.04) -3.73 (1.67;0.03) -1.46 (3.04;0.63)

Bar  5.60 (1.71;0.00) 5.65 (1.66;0.00) 3.96 (3.01;0.19)
OLF Bo -1.84 (0.24;0.00) -1.56 (0.22;0.00)

By -4.99 (1.90;0.01) -4.71 (1.74;0.01) -3.40 (2.96;0.25)

Bar  7.25 (1.94;0.00) 6.55 (1.77;0.00) 6.30 (3.04;0.04)

Table 7.5 shows the parameter estimates, with p-values, for the mixed-effects
logistic model (MIXLOG) and the compound symmetry model (CSYM). Fixed ef-
fects can be easily tested using the ratio of the parameter estimate of interest over
its standard error. However, in finite samples, this statistic is only approximately t-
distributed, and the appropriate number of degrees of freedom needs to be estimated
from the data. The SAS procedure MIXED (that is called recursively within the

GLIMMIX macro) provides several methods for estimating the appropriate number
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of degrees of freedom, including a Satterthwaite (1946) approximation.

The observed “shrinkage effect” is, in most cases, in agreement with (7.4) and
with findings of Neuhaus and Jewell (1993), who state that PA parameters will be
closer to zero than CS parameters for convex link functions. One exception is formed
by the OPT outcome, for which the correlation parameter was estimated negative.

For all outcomes there is evidence of a significant effect of the cumulative ex-
posure (dt) and a significant effect of duration of exposure at temperatures above
normal body temperature (¢*). Furthermore, the parameter estimate for t* is again
negative, which is in agreement with earlier results. One could also try to include
a random dt parameter in addition to a random intercept. However, for MBN,
this parameter estimate was very small (.00005). For the other outcomes conver-
gence problems occured when fitting this model. This covariance structure might
be too complex and requires substantial binary data per cluster to provide accurate
information. Therefore, we restricted attention to the mixed-effects logistic model.

Table 7.5 also shows the conditional logistic regression (CONDLOG) parameter
estimates. All cluster-level effects are conditioned out. Therefore we cannot obtain
parameter estimates for the intercepts. Where we found strong significant effects for
dt and t* by the MIXLOG and CSYM approaches, we now observe a severe reduction
in statistical significance of the CONDLOG estimates. This is in agreement with
the results of Neuhaus and Lesperance (1996) summarized in Section 7.3.2. The
cumulative exposure and duration of exposure at “positive increases” of temperature
are highly correlated (correlation coefficient=97%) and moreover the cluster sizes in

the heatshock study are relatively small (mean cluster size is 5).

7.6 Conclusion

We have described population-averaged and cluster-specific models for the analy-
sis of developmental toxicity studies, in which individual-level covariates play an
important role.

Within the class of population-averaged models, we have illustrated that condi-
tionally specified models, such as that described in Section 7.2.1, should be avoided
since they lead to undesirable properties. Alternatively, one can use marginal mod-
els. The likelihood based method proposed by Bahadur (1961), readily extends

to individual-level covariates. But the correlation parameters may be subject to
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severe restrictions. Likelihood-based odds ratio models (Dale 1986; Molenberghs
and Lesaffre 1994; Lang and Agresti 1994; Glonek and McCullagh 1995) exhibit
less constraints, but they are more involved to fit when cluster sizes are moderate
to large. Therefore, generalized estimating equations are a very viable alternative
marginal approach. In addition to the classical first order GEE, second order esti-
mating equations can be considered as well when the association structure is also of
scientific interest. GEE1 models are relatively straightforward to fit even with large
clusters, but the second order version appeared to be more cumbersome. The lack
of a likelihood base is generally viewed as a disadvantage of GEE, since it prevents
standard calculation of joint and union probabilities, even though such calculations
are often needed in risk assessment. Further, a likelihood ratio test statistic cannot
be computed, even though some approximations have been proposed (Rotnitzky and
Jewell 1990).

Random-effects models, on the contrary, correspond to a likelihood function.
Unfortunately, this function is difficult to evaluate for many realistic applications.
Therefore, a variety of approximations, as reviewed by McCulloch (1997) have been
proposed. As already stated in previous sections, the best known approximations are
based on Laplace transforms (Breslow and Clayton 1993) and on pseudo-likelihood
(Wolfinger and O’Connell 1993) already stated in previous sections. Caution should
be used with the GLIMMIX macro since, e.g., the deviance such as reported in
the output and also mentioned in Lee and Nelder (1996) requires additional work.
Arguably, a more appropriate form needs to be proposed. In addition, Neuhaus and
Segal (1997) warn that such approximate methods may require modification before
their asymptotic bias can be competitive with sampling based methods (e.g., the
Gibbs sampler).

An important difference between the categorical data setting considered here
and clustered normally distributed data is that, unlike in the latter case, the in-
terpretation of parameters depends crucially on the choice between marginal and
random-effects models (Neuhaus, Kalbfleisch and Hauck 1991). A marginal model
describes the average evolution within a certain subpopulation, whereas the fixed
effects in a mixed model describe the evolution, conditional on values for the random
effects. This implies that one should be guided not only by computational conve-
nience, but in particular by the nature of the scientific question. In some cases,

however, it is reasonable to consider both approaches as equally valid.
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The conditional likelihood approach described in Section 7.3.2 lacks efficiency
with small cluster sizes and large within-cluster correlations. Therefore we cannot

recommend it.
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Chapter 8

GEE and PL Risk Assessment
Approaches for Combined
Continuous and Discrete
Outcomes from Developmental

Toxicity Studies

8.1 Introduction

Measurements of both continuous and discrete outcomes are encountered in many
statistical problems. However, methods that jointly analyze discrete and continuous
outcomes and adequately account for the correlation structure in the data are not
widely available and remain a topic of statistical research. In this chapter we con-
sider the particular context of teratology studies, where quantitative risk assessment
is aimed at determining the effect of dose on the probability that a live fetus is mal-
formed (binary) or of low birth weight (continuous), both being important measures
of teratogenicity. Although a frequent approach is to apply a conditioning argument
that allows the joint distribution to be factorized in a marginal component and a
conditional component, we have previously (see Introduction) promoted the use of

joint models that:

e allow separate dose-response functions for each component of the bivariate
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outcome,
e account for the association due to clustering within litters,
e cstimate the bivariate intra-fetus association.

Here, we describe two modelling approaches that satisfy these criteria and apply
them on data from a developmental toxicity study (see also Geys et al. 1999b).

Regan and Catalano (1999a) introduced a probit approach, based on the Ochi
and Prentice (1984) method. They assume an underlying continuous variable for
each binary outcome. Hence, the joint distribution of the vector of weight and latent
malformation outcomes can be assumed to follow a multivariate normal distribution.
Their full likelihood approach can easily be used for quantitative risk assessment and
model checking. It provides marginal dose-response models for each outcome and
allows for estimation of the joint risk to a fetus due to malformation and low birth
weight. A difficulty, however, is the computational intractability of their full likeli-
hood. In Section 8.2.1 we show how this problem can be avoided by adopting GEE
methodology (Regan and Catalano 1999b). Since in quantitative risk assessment
clustering is a nuisance, Regan and Catalano (1999b) argue that one can avoid fully
specifying the distribution within a litter by specifying only the marginal distribu-
tion of the bivariate outcome and using GEE ideas to account for correlations due to
clustering. Their GEEs are derived from the marginal distribution of the bivariate
outcome, which defines the mean and association parameters that are of interest for
the application to quantitative risk assessment. Those association parameters of in-
terest are estimated via second order GEEs. The nuisance parameters that account
for clustering are estimated via the method of moments as in first order GEE.

In Section 8.2.2, we describe the Plackett-Dale approach that has been used by
Molenberghs, Geys and Buyse (1999) and Molenberghs and Geys (1998) to model
independent bivariate endpoints in which one component is continuous and the
other is binary (see also Chapter 9). It provides an alternative to frequently used
multivariate normal latent variables. Main advantages are the flexibility with which
the marginal densities can be chosen (normal, logistic, complementary log-log, etc.)
and the familiarity of the odds ratio which is used as a measure of association,
providing an alternative to correlation. Geys et al. (1999b) extend this method to
allow for within-cluster association as well, while specification of the full likelihood

is avoided by using pseudo-likelihood methodology.
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Thus, in this chapter we concentrate on models that satisfy the three criteria
listed above, while specification of the full distribution is avoided using GEE and
PL methodologies. Section 8.3 describes tools for quantitative risk assessment with
these models. Section 8.4 applies the methods to data, introduced in Section 2.1.6,
that investigate the toxicity of ethylene glycol in rats.

8.2 Models for Bivariate Data of a Mixed Nature

Let us formalize the setting of this chapter. Consider, as before, an experiment
involving N clusters, the ith of which contains n; individuals, each of whom are ex-
amined for the presence (M;, = 1) or absence (M, = 0) of a certain malformation
indicator (M;;) and measured for fetal weight (W) (k = 1,...,n;). The binary out-
come is assumed to arise from an unobservable continuous random variable, denoted
M}, Mg, represents an indicator of whether this underlying variable exceeds some

threshold, arbitrarily assumed to be 0. In the remainder of this chapter we assume
a normal distribution for W, with mean p; and variance o7,. The malformation

probability for the kth individual in the ith cluster will be denoted by .

8.2.1 Probit Model
Independence

To derive the marginal distribution of the bivariate response (W, M), first assume
that littermates are independent. Under a probit model for the binary response
Mjy,, the latent variable M}, is assumed normally distributed with mean ~;;, and

unit variance so that

Tk — Pl”(MZk = 1)
= Pr(M}, > 0)

where ®(-) denotes the standard normal distribution function. The probability of
malformation is related to covariates by expressing ;. as some linear combination of
predictors. For the bivariate response, we assume the observed fetal weight and un-

observed continuous malformation variables for fetus k in litter ¢ to share a bivariate
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normal distribution,

Do (Wi, M35 Litos Yiter Oites L, pir) = (QWUzk)_l(l—pgk)_% X (8.1)

—1 War— b\ Wit — pha 5
eXP{ 2(1—p2) [( T ) Pik: < o (M, —vir) + (M, — i)

To arrive at a convenient form of the bivariate distribution of the mixed outcomes,

this density (8.1) is rewritten as a product of the marginal density for fetal weight
and conditional density of latent malformation given weight, so the joint distribution
of the bivariate fetal weight and binary malformation outcome for fetus &k in litter ¢

can be written

F W, M) = Wi pian, 03) D)™™ [1 = @i ),
(8.2)

where ¢(-) denotes the univariate standard normal density and from bivariate nor-
mal theory,
Yike 1 Piko W—’f;f—’“
A

The probit ®(V,.,, ) represents the mean of the conditional binary malformation
outcome E(M;, | W), and the marginal expectation of My, is m = P(yik).
Dose—response models are specified for all four parameters of the bivariate normal
density to allow the fetal weight mean and variance, the probability of malformation,
and the bivariate correlation to vary as functions of dose and other covariates. In the
light of restrictions on the respective parameter spaces, we use an exponential link
function for the fetal weight variance and the inverse of Fisher’s Z—transformation
as a link function for the correlation. The dose-response models can be written

generally as

Yo = X35 pa = {exp(Xy, 7) — 1}/ {exp(X7, 7) + 1},

where the ikth fetus has {bx1,tx1,ax1,sx 1} vectors { Xs, , X+, , Xa,., X, } of
covariates that may be both fetus— and litter—specific. These vectors correspond to

{bx1,tx1,ax1,sx1} vectors of fixed regression parameters @ = {3,7, a,s}.
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From the log-likelihood based on the bivariate distribution (8.2), score equations

for the regression parameters @ can be written,

Z Z 9&1@ My O O\
or Oo o¢’

i=1 k=1

Abik Xbik 0 0
(@O )1 =PHp, )~ 0 0
Ay, X, O 0

N n;
2.2 0 o 0
i=1 k=1

Aazk Xazk Xa’ik 0
0 0 50
Aszk stk 0 O_ZZICXSiIc
M, — Py,
X | Wir — pa (8.4)
Sk — 02‘216
where
Si]{} = (VVZIC - ,Ll”i/c>27
Abik - 8(1)(7”1\%1)/87%7
Clustering

In the case of clustering, we avoid fully specifying the joint distribution of the n;
bivariate outcomes in litter i by using the score equations (8.4) of the bivariate
distribution derived under independence to motivate a set of generalized estimat-
ing equations (GEESs) for the clustered setting; the GEE methodology of Liang
and Zeger (1986) and Zeger and Liang (1986) is the basis of estimation. Now as-
sume that each of N independent litters has measurements on n; bivariate response
vectors (W, M), (i=1,... ,N; k=1,...,n,); thus the responses within a lit-

ter are no longer assumed independent. For litter i, W, = (W,... ,W,,,)" and
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M, = (M;y,...,M,,)" will denote the n, X 1 vectors of fetal weights and malfor-
mation outcomes. Let { X, Xy, Xa,, X, } represent the {n; xb, n; xt,n;xa, n;x s}
matrices of covariates for the éth litter whose rows are defined by the covariate
vectors in (8.3) above.

First note that the score equations (8.4) can be rewritten at the level of the litter

as:
N n; 7
Z Z ( ot; ot; ov; 8&) (8.5)
ft L o3  or  dol  O¢ '
( AbiXbi 0 0 \ -1
N AtiXti 0 0
- 0 X, 0 W, — :

= | ApXa, Xo O

\ A X, 0 X,X,

where Ay, Ay, Ay, As, are n,xn; diagonal matrices with elements Ay, Ay, Ay, As, s

respectively7 and (I)<7m\wi> - (q)<7m\wi1>7 S 7q)(7m\wmi))/7 K — (lu”ih"' :,u”ém>/7

and o} = (o}y,...,0,,). The three n;, x n, diagonal covariance matrices are
S, = (Si1,...,Sm;) is the vector of squared weight residuals. We assume the

marginal distribution of the bivariate outcome is defined by (8.2) and use the form
of the score equations (8.5) to construct a set of GEEs for the regression parameters
by replacing the block—diagonal covariance matrix {3, %.,, 25, } by a working
covariance matrix that incorporates correlation between littermates. Thus the re-
gression parameters @ = {3, T, a,s} are estimated in the clustered setting from the
following set of GEEs:

N 0 B
Ay, Xy, 0 0
Zz‘il Vwmi Vwi 0 VV; — L - 07
AeXa Xa O (8.6)
o o0 Vv, \s —o?

\ AL X, 0 X, X,

where V.., V.., Vi, and V,,,, are equicorrelated working covariance matrices. For



GEFE and PL Approaches for Combined Continuous and Discrete Outcomes 185

developmental toxicity data, the assumption that littermates are exchangeable is
reasonable and generally implemented. Note, when accounting for the correlation
between the weight and malformation outcomes among littermates, V,,,,, has zeros
on the diagonal because of the conditional independence of the outcomes of an
individual fetus in the joint distribution (8.2); the correlation within a fetus is still
characterized by p;z. These equations follow the familiar form

N
> DVH(Y, - p(0) 0
i=1
with an obvious correspondence to the three major matrices in (8.6), to which the
approach of Liang and Zeger (1986) and Zeger and Liang (1986) is implemented for

estimation.

8.2.2 Plackett-Dale Model

The Plackett-Dale idea has been used by Molenberghs, Geys and Buyse (1999) to
assess the validation of surrogate endpoints in randomized experiments with a binary
surrogate endpoint and a continuous true endpoint or vice versa (see Chapter 9).
In their work, the bivariate outcomes on different subjects are independent. In
contrast, teratology experiments in rodents entail clustering between littermates,
which has to be incorporated (Geys et al. 1999b).

Independence

First, suppose that all littermates are independent. Assume that the cumulative
distributions of the weight (W) and malformation (M,,) outcome of the kth in-
dividual in the ith cluster are given by Fyw, and Fy,. Their dependence can be

defined using a global cross-ratio at cutpoint (w,m) (m = 0,1):

FVVikvMik<w7 m) {1 — FVVzk<w> — FMzk(m) + FVVikvMik<w7 m>}

{FVVik (’U)) — Fw,, <w7 m)} {FMzk<m> — Fw,, <w7 m)}
This expression can be solved for the joint cumulative distribution Fyv, ar,, (Plackett
1965):

Vit

1+(Fw,, (w)+Far., (M) (Ws—1)—S(Fw., (w),Fag., (m)ad; .
(i (0 Pty )~y Py ) i 1y

FVVzk<w>FMzk (m) if 1/J2k =1,

FVVik,Mz'k <w7 m) -
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where

S<FVVik7 FMik7 ¢Zl€>

Based upon this distribution function, we can derive a bivariate Plackett density

function g;;(w, m) for mixed continuous-binary outcomes. With the success prob-

ability for M, denoted by mi and the density function for Wi, by fw,, , we define

gi(w, m) by specitying g (w,0) and g (w, 1) such that they sum to fiw, (w). If we

define g (w,0) = dFw,, m, (w,0) /0w, then this leads to specifying g, by:

Tw, (W) I Pwy, () @ae— 1) —(1—mie) (Wi +1) . )
2 1 S<FWik71*7Tikv'¢'ik) if djlk % 1

szk(w><]‘ - 7r27€> it djlk =1,

Gik (’U}7 O) -

and

gi/ﬂ<w7 1) - fmk(w> - gik(w7 O)

Note how g (w, m) in (8.7) satisfies the classical density properties:

(i) gi(w,m) > 0 for all possible values of w and m,

(i) f {9 (w,0) + gur(w, 1)} duw = [ fuvy, (w)dw = 1

(8.7)

Further, gz (w,0) naturally factorizes as a product of the marginal density fw,, (w)

and the conditional density fas, w; (O|w) (and similarly for gz (w,1)). Some inter-

esting special cases are obtained by putting #,, = 1 (independence), 9, = 0 (perfect

negative association) and ;, = oo (perfect positive association).

1. In case weight and malformation are independent, the function g (w,m) re-

duces to:

gik(w70> - fVVik<w)<1_7ri]€)7
gik(w71> - fVVzk<w)7rZ/€

2. Suppose weight and malformation are perfectly negatively correlated (¢, = 0),
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then the function S(Fw,_, 1 — mu, 0) reduces to |mx — Fw,, (w)| and as a result:

0 if i — ka(w) >0
gik<w70> -

Jwy(w) i g, — Fw,, (w) <0
gik<w71> -

0 if Tile — ka(w) < 0

3. If weight and malformation are perfectly negatively correlated (¢, = o0), then

one can define ¢* = 1/¢) whence S(Fw,,, 1 — mr, ¥ix) can be rewritten as:
S(Fwy,, 1 — ok, i)

S+ (0 P () 1 — 7)) + A5, — 1) Py () (1 — )5
- S*<FWZM 1— 7r2/€71/]:k)/1/]:k

As a result we can now calculate:

S (w) Vi + Py (w) (1 — ) — (1 — ) (1 + ¥

Gi(w,0) wlzlkrgo 5 (1— k S*<FW%71’C_ T k )

fmk(w) <1 _ FWzk<w) — (1 — Wik) >

2 [ Fwy (w) — (1 — )|

[0 Fiv, (w) — (1 — 7)) > 0

i szk<w> ka<w> —(1—7@]@) <0
and

(0 Fuv, (10) — (1 — 1) > 0
gik(w7 1) - .
Clustering

In the case of clustering, rather than considering the full likelihood contribution for

cluster 4, i.e. f(wi,. .., Win,, Mi1, ..., My, ), We avoid computational complexity by

replacing the full likelihood by a pseudo-likelihood function that is easier to evaluate.
We define the following log pseudo-likelihood function:

N  ny
pl = Z Zlngz‘lc<wz‘k; Mt (8.8)

=1 k=1



188 Chapter 8

The contribution pé; for the ith cluster equals > " | In g (Wi, ma.). With this ap-
proach, weight and malformation outcomes for a given littermate are allowed to
be correlated, but for outcomes from different littermates independence is taken
as a working assumption. This leads to consistent estimates (Arnold and Strauss
1991; Geys, Molenberghs and Lipsitz 1998; Le Cessie and Van Houwelingen 1994).
We then correct for potential bias in the variance estimator by using a sandwich
estimator, formulated in (8.10). As was the case in Section 8.2.1, this approach
acknowledges the fact that, while the association between different outcomes on the
same littermate is often of scientific interest, the clustering (association between
different littermates) is usually considered a nuisance. Indeed, in quantitative risk
assessment primary interest lies in the probability that an individual is affected,
either by malformation or by low birth weight. This probability is a function only of
the mean parameters and the association of the bivariate outcome. Nevertheless, if
one is interested in the amount of clustering as well, pseudo-likelihood (8.8) can be
extended by including the products of the bivariate probabilities of (i) two weight
outcomes for two different individuals in the same cluster, (ii) two malformation
outcomes for two different individuals in the same cluster and (iii) a weight and
malformation outcome for two different individuals in the same cluster.

Let us group all parameters ., 02, T and ¥, for individual k = 1,...,n; in
cluster ¢ = 1,..., N in a vector @;. Linear dose-response models can be considered

on each of the parameters in #;, by using appropriate link functions:

Lk

In(o 221@)
Nk, = = X0, (8.9)
logit ()

In ()

where X is a design matrix for the kth fetus in the ith cluster and 83 is a vector
of regression parameters. The generality of (8.9) is an important advantage. For
example, for developmental toxicity data, a constant variance assumption is often

not tenable.

Grouping all vectors 6;;, and n,, for the ith cluster in 8, and n, respectively,

estimates are obtained by solving the estimating equations U (3) = 0, where U (3)
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can be written as:

wmfﬁwmifiﬁﬁy<%ﬁT<@%%£@)

i=1 i=1 k=

Expressions for the derivatives are given below (occasionally dropping indices for
ease of notation). The derivatives of fy (w) and Fy (w) are combined with those of

S(Fw,1—m7,7) to obtain the first derivatives of In g;, with respect to the regression

parameters:
Ofw(w) (w — p)
“on T3
Afww)  fww) ((w—p)? —o2
802 o 2 ( 04 )
oL = —fw(w)
OFw(w) w—pu\ fw(w)
Oo? - ( o? ) 2
os 2014+ @ = D)(Fw(w) + 1 —m)] (v — 1)2
o 29
40 (1 — ) T (1 — )
i 25
08 2[4 (W — D(Fw(w) + 1 —m)] (% — 1) 255
do? 25
49 (1 — o) 2 (1 — )
25
S 2[1+ (¢ = D(Fw(w) + 1 —a)] (1 —¢) =41 — &) Fw(w)
on 24
9S 201+ (@ - D(Fw(w) + 1 —m)] (Fw(w) + 1 —7)
I 28

A0 = ) Fw(w) (1 = ) — 4 Fiw (w) (1 — )
28
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_ Ldfw(w) Lt Fw()@—1) -1 -m)@®+1)

_OFw(w) fw(w)(® — 1)

o 25
OB Juw) g,y
L) 28 11t Rt = 1) = (1= m) (1 +0)
et = Py B v - - w1
%( 0 = Iy - 1y
fvzvézzu)%[HF (= 1) = (1 =m) ¥+ 1)

Arnold and Strauss (1991) showed that the PL estimator 3, obtained by max-

imizing (8.8) is consistent and asymptotically normal with covariance matrix esti-

"

An advantage of this approach is the close connection of pseudo-likelihood with
likelihood, which enabled Geys, Molenberghs and Ryan (1999) to construct pseudo-

likelihood ratio test statistics that have easy-to-compute expressions and intuitively

mated by:

Cov(B) = (Z ) 1(ZU(BU(ﬁ )(fj

B-8 (810)

appealing limiting distributions (see Chapter 4).
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8.3 Application to Quantitative Risk Assessment

The theory of quantitative risk assessment has been introduced before in Section 5.4.
The standard approach requires the specification of an adverse event, along with p(d)
representing the probability that this event occurs at dose level d. In developmental
toxicity studies, the choice exists between fetus and litter based risks. In this chapter
we focus on the first approach. The fetus based approach focuses on the risk of a
fetus as a function of the dose that was administered to the maternal dam. Here,
p(d) represents the probability that a fetus is malformed or of low birth weight. In
other words, for the kth fetus in the ith cluster:

p(d) = Pr(Wi. < We or My, = 1|d),

where W, denotes some cutoff value that determines fetal weight low enough to be
considered adverse. Hence, p(d) does not depend on correlation parameters that
account for clustering among littermates. Formulas (8.11) and (8.12) show the
explicit expressions for p(d) with respectively the probit approach and the Plackett-
Dale approach.

—Y@) o0

p(d) = 1—/ / Do (W, M*; @), 0,0, 1, p@) dW dM*,  (8.11)
-0 W,

p(d) = m + Fwm(We,0), (8.12)

where (8.11) is based on (8.1).

8.4 Analysis of EG (Rats) Data

In this section we apply both methods introduced in Section 8.2 to the ethylene
glycol data described in Section 2.1.6. Scientific interest lies in the probability of
an overall adverse effect, i.e. the probability that an individual fetus is malformed
or of low birth weight. Only one cluster-level covariate is available for each fetus,
namely the dose that was administered to the maternal dam. The cutoff level for
determining low fetal weight is specified as two standard errors below the control
average fetal weight W, = 2.644, corresponding to a 1.6% low birth weight rate in
control animals.

In order to select a parsimonious model for these data we rely on the pseudo-
likelihood procedure for the Plackett-Dale method, described in Section 8.2.2 | for
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which we can use the pseudo-likelihood ratio test statistic, defined in (4.12). Model
comparisons in the probit framework are done using a robust Wald test statistic.
Although the Wald test is in general simpler to apply, it is well known to have some
unattractive features such as sensitivity to changes in parameterization (Hauck and
Donner 1977). Table 8.1 shows the different fitted models and the results from the
model selection with the Plackett-Dale approach.

Model 1, the most complicated one we consider, assumes different quadratic dose
trends on the mean weight outcome and on the logit of the estimated malformation
probability in a cluster, a linear dose trend on the weight-malformation log odds
ratio and separate fetal weight variances within each dose group because of the

non-monotone relationship of these variances with dose (cf. Table 2.6):

i = Yo+ ndi +d,
logit(m;) = ao+ aid; + aed;,
In(¢;) = G+ Gd;.

From Table 8.1 follows that the quadratic dose trends on the mean weights (Model
1-Model 2) and on the logits of the malformation probabilities (Model 2-Model 3)
are not significant and can be removed from the model. So far, similar results were
obtained with the robust Wald test statistic in the probit modelling approach. The
linear dose trend on the log odds ratio between weight and malformation is borderline
not significant (Model 3-Model 4) in the Plackett-Dale approach. However, for the
probit model, a Wald test shows the linear dose trend on the weight—malformation
correlation is borderline significant (p-value=0.02). Therefore, we chose not to re-
move this trend from the model. Linear dose trends on the mean weight outcomes
and the logits of the malformation probabilities cannot be removed without an im-
portant decrease in fit. Therefore, we propose Model 3 as our final model.

Table 8.2 presents the results of fitting the probit and the Plackett-Dale approach
to the data, using the more complex Model 1 and the final Model 3. The table shows
the average weight (1(d)) and standard error of the weight outcomes (o(d)) per dose
group, as well as the malformation probabilities (7(d)) and the association between
weight and malformation outcomes (either p(d) or ¥(d), depending on whether the
probit or Plackett-Dale model is being used).

The results of both modelling approaches are in remarkable agreement. The fit-

ted values are close to the observed ones, shown in Table 2.6. Both models suggest



GEFE and PL Approaches for Combined Continuous and Discrete Outcomes 193

Table 8.1: EG Study in Rats: Model Selection. All models assume separate fetal
weight variances within each dose group. A x indicates inclusion of the corresponding
effect on the mean weight outcome (1), the logit of the malformation probability
(logit(m) ) or the log odds ratio In(v)) between weight and malformation.

Model logit(7) Inw
ldd 1d & 1d

1 Kok XK EE T ® 3k
2 OIS EE T ® 3k
3 OIS KK ® 3k
4 OIS KK &
5 & & &

Comparison  G2* (p-value
12 0.15 (
23 273 (

34 273 (0.097

(
(

4-5 139.49
1-3 1.253
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Table 8.2: EG Study in Rats: Correlated Probit and Plackett-Dale Model Fits.

Dose

(g/kg/day) puo(d) 0w(d) w(d) p(d)  pu(d) ouwl(d) w(d) ¥(d)

Model 1

Probit Plackett-Dale
0.00 3.439 0.378 0.013 -0.046 3.435 0.381 0.012 0.965
1.25 3.216 0.387 0.072 -0.154 3.208 0.383 0.066 0.632
2.50 2.967 0.367 0.234 -0.263 2.969 0.367 0.231 0.414
5.00 2.386 0.497 0.739 -0.480 2.454 0.459 0.701 0.178

Model 3

Probit Plackett-Dale
0.00 3.464 0.382 0.017 -0.035 3.448 0.382 0.024 0.938
1.25 3.203 0.391 0.075 -0.156 3.202 0.385 0.073 0.617
2.50 2.940 0.363 0.227 -0.273 2.957 0.365 0.199 0.406
5.00 2.417 0.496 0.736 -0.483 2.466 0.458 0.713 0.176




GEFE and PL Approaches for Combined Continuous and Discrete Outcomes 195

* Observed Rates
®
.
‘X Average Rate in Dose Gfoup‘
‘ Plackett—-Dale Fitted Hates‘ e
.
‘ — Probit Fitted Retes‘
. .

Malformation Rate
O
Ul

0.0

Dose (g/kg/day]

Figure 8.1: EG Study in Rats: Observed and Fitted Malformation Probabilities for
the Correlated Probit and Plackett-Dale Approach.
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Figure 8.2: EG Study in Rats: Observed and Fitted Average Weights for the Corre-
lated Probit and Plackett-Dale Approach
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that the average fetal weights drop with increasing doses. The fetal weight vari-
ances show a non-monotone behaviour with dose, but are definitely higher in the
largest dose group. The malformation probabilities clearly increase with increasing
dose effects. Further, the models indicate that the weight—malformation association
becomes stronger when the amount of EG administered increases. As expected,
the correlation parameter p becomes more negative, while the odds ratio parameter
becomes much smaller than 1.

Figures 8.1 and 8.2 show the fitted and observed malformation rates, respectively
fetal weights as a function of dose for both approaches based on our final dose-
response model (Model 3). The observed averaged weights and malformation rates
in each dose group are supplemented with pointwise 95% confidence intervals.

Table 8.4 shows the benchmark doses corresponding to the 10% excess risk for
Models 1 and 3, as well as the 10% lower limits BMDL g and LED;.

Table 8.3: EG Study in Rats: Risk Assessment

Model Probit Plackett-Dale
BMD;y BMDL;y LED;; BMD;, BMDL;y LEDg
1 1.25 1.00 1.05 1.27 1.05 1.08
3 1.23 1.05 1.07 1.29 1.10 1.12

Again, both modelling approaches agree closely. Furthermore, there is only a
small difference between the results for Models 1 and 3. Both models yield bench-
mark doses of approximately 1.3 with lower limits approximately 1.1. Morgan (1992,
p. 175) warns that safe dose determination should be tempered by common sense.
For example, blind use of an overly conservative procedure has been regarded as sci-
entifically indefensible by the Scientific Committee of the British Food Safety Coun-
cil, since it may produce unrealistically low VSDs. Here, similar safe doses were

obtained, using two radically different models and different modelling approaches.

8.5 Conclusion

We have considered two latent variable approaches for mixed continuous-discrete

outcomes from clustered data. The probit approach uses GEE ideas to incorporate
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the clustering, while the Plackett-Dale model is based on pseudo-likelihood ideas.
The bivariate latent variables are fundamentally different in the way the association
between both variables is described. The correlation coefficient of the bivariate
normal induces constant local association in the sense of Holland and Wang (1987)
while the odds ratio is a measure of constant global association (Dale 1986; Lapp,
Molenberghs and Lesaffre 1998). This is important since it allows us to consider
fitting both models simultaneously as a sensitivity analysis. It is comforting to see
that not only the model fits are virtually identical, but also that the risk assessment

based on both models produces very similar results.



Chapter 9

Validation of Surrogate Endpoints

in Clinical Trials

9.1 Introduction

Surrogate endpoints are loosely referred to as endpoints that can be used in lieu
of other endpoints in the evaluation of experimental treatments or other interven-
tions. Surrogate endpoints are useful when they can be measured earlier, more
conveniently, or more frequently than the endpoints of interest, which are referred
to as the “true” or “final” endpoints (Ellenberg and Hamilton 1989). The need
to evaluate treatment benefits as fast as possible on easily measurable endpoints
has always been a preoccupation in clinical research. In most clinical trials, several
endpoints are measured over the course of the disease, and treatment benefits can
be evaluated on all of them. In general, however, one endpoint is pre-specified as
being of primary interest, and serves to determine the significance of any observed
treatment benefit. Ideally, the primary endpoint should be the one which is most
clinically relevant, but considerations of time and cost may force the investigators to
use some other endpoint instead. Examples abound, particularly in chronic diseases
in which the duration of survival is the ultimate endpoint which clinicians would
like to affect, but cannot always afford to observe due to the prolonged period of
follow-up needed. Alternative endpoints must then be considered as surrogates for
survival: for instance, disease recurrence after surgical removal of early cancers, tu-

mor shrinkage (usually called “response”) in advanced cancers, progression to AIDS

199
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in HIV positive subjects, lymphocyte T4 (CD4) counts in AIDS patients, etc. The
true endpoint may also be a rare event, such as a disease or unexpected side-effect
of treatment, which occurs so infrequently as to make a study unrealistically large.
Finally, surrogate endpoints may be needed when competing risks and secondary
treatments contaminate the impact of an experimental treatment or intervention
upon the true endpoint (Wittes, Lagakos and Probstfield 1989). In some cases,
the surrogate endpoint directly affects the patient’s condition, and is therefore itself
of clinical relevance, in other cases it is merely a biological marker of the disease
process leading to the final endpoint. In the latter case the term “surrogate marker”
may be preferred, and the endpoint of interest is then referred to as “the clinical

endpoint”.

While the practice of looking at multiple endpoints is by no means recent in clin-
ical research, the validity of using one endpoint as a surrogate for another has been
raised and studied only over the last few years. The dramatic surge of the AIDS
epidemic, the pressure for an accelerated evaluation of new therapies, ete. have all
played a major role in focusing attention on the need for a formal definition of
surrogate endpoints, along with practical methods to validate them. Much applied
research on surrogate endpoints has concentrated on evaluating the possible value
of changes in CD4 counts as surrogates for time to clinical events in asymptomatic
HIV-infected persons and in AIDS patients (Machado, Gail and Ellenberg 1990; Lin,
Fischl and Schoenfeld 1993, De Gruttola et al. 1993, De Gruttola and Tu 1995). This
research has revealed that, although CD4 counts were useful to monitor the disease
process, they were only of limited value as a surrogate marker for clinically relevant
endpoints (Lagakos and Hoth 1992). In cardiovascular disease, the unsettling dis-
covery that the two major antiarrhythmic drugs encanaide and flecanaide reduced
arrhythmia but cause a more than 3-fold increase in overall mortality stressed the
need for caution in using non-validated surrogate markers in the evaluation of the
possible clinical benefits of new drugs (The Cardiac Arrhythmia Suppression Trial
(CAST) Investigators 1989).

The validation of surrogate endpoints is a controversial issue (Boissel et al. 1992;
Fleming and DeMets 1996; De Gruttola et al. 1997) and should be rigorously es-
tablished. In a landmark paper, Prentice (1989) proposed a formal definition of
surrogate endpoints and outlined how potential surrogate endpoints could be vali-

dated. Much debate ensued, for the criteria set out by Prentice are too stringent
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(Fleming et al. 1994) and neither necessary nor sufficient for his definition to be ful-
filled, except in the special case of binary outcomes (Buyse and Molenberghs 1998).
In addition, Freedman, Graubard and Schatzkin (1992) showed that these criteria
were not straightforward to verify through statistical hypothesis tests. They intro-
duced the proportion explained (PFE) to quantify how much of the treatment effect
is captured by the surrogate endpoint. The latter proposal is itself surrounded with
difficulties, the most dramatic one being that it is not confined to the unit interval.
Another major drawback of PF is that it is not estimated accurately unless treat-
ment has a highly significant effect on the true endpoint, a rare situation in which
the need for a surrogate is questionable. As a consequence, use of this measure
should no longer be recommended in practice (Flandre and Saidi 1998, Molenberghs
and Buyse 1999).

Buyse and Molenberghs (1998), henceforth called BM, proposed to replace PFE
by two new measures to assess the quality of a surrogate. The first one, termed
relative effect (RFE) is the (population-averaged) effect of the treatment on the true
endpoint relative to that on the surrogate endpoint. The second one is the adjusted
assoctation between both endpoints, an individual measure of agreement between
both endpoints after accounting for the effect of treatment. Their methodology
focuses on surrogate and true endpoints which are both binary or both normally
distributed. Technically, a joint model for both endpoints is required. In the binary
case, the Dale (1986) model is used, whereas for continuous endpoints, a bivariate
normal model is considered. The association parameters are then the log odds ratio
and the Pearson correlation coefficient respectively. In this chapter we first extend
the BM proposals to cases where the surrogate and the true endpoints are of a
different data type (mixed binary—continuous). In this situation, the choice of a
joint model is less straighforward. Following Geys et al. (1999b), both a hybrid
probit model and a hybrid Dale model are considered, where one latent variable is
observed directly, and the other latent variable is recorded in dichotomized form.
For the sake of presentation, we consider a binary surrogate and a continuous true
endpoint, but the reverse case is entirely similar (see also Molenberghs, Geys and
Buyse 1999).

In order to be informative and of practical value, however, the validation of a
surrogate endpoint will typically require large numbers of observations. It is there-

fore useful to consider extensions of the foregoing quantities to situations in which
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data are available from several randomized experimens, where the experimental unit
can be center in a multicentric trial or trial in a meta-analysis of several trials. In
that case, the data have a similar structure as in developmental toxicity studies.
Different trials or centers are assumed to be independent. Individuals within a trial
(center) may however be correlated possibly yielding multiple associated outcomes

of potentially mixed data types.

Buyse et al. (1999) show that the individual-level association between the surro-
gate and final endpoints carries over naturally to this setting. The notion of relative
effect, on the other hand, can be extended to a trial-level measure of association
between the effects of treatment on both endpoints. Their approach suggests a new
definition of validity in terms of the quality of both trial-level and individual-level
associations between the surrogate and true endpoints. The quality of a surrogate
at the trial level is assessed by means of a coefficient of determination RZ,,. At the
individual level the squared correlation R?, ;. between the surrogate and true end-
point, after adjustment for both the trial effects and the treatment effects is used.
A surrogate will be said to be valid when it is both trial-level valid (R?,,,, ~ 1) and
individual-level valid (RZ,;,, = 1). From a modelling perspective, a two-stage hierar-
chical model is required. This can be fitted using a variety of methods, such as linear
mixed-effects models methodology (Verbeke and Molenberghs 1997), a two-stage ap-
proach, or pseudo-likelihood (Geys et al. 1999b). As Buyse et al. (1999) centered
solely on the case of normally distributed endpoints, it is necessary to explore other
settings, often more complicated due to the absence of a unifying framework such

as the multivariate normal distribution.

Section 9.2 gives a brief history on validation criteria for a single trial. In Sec-
tion 9.3 we extend the BM proposals for normally and binary endpoints in a single
trial case to situations where the surrogate and true endpoints are of different data
types (binary/continuous). In Section 9.4, the proposed methodologies are then ex-
emplified on data from a clinical trial, described in Section 2.3. Section 9.5 looks at

meta-analytic extensions, which are exemplified in Sections 9.6 and 9.7.
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9.2 A Brief History on Validation Criteria in a
Single Trial

Let us first introduce some notation. Throughout this chapter we assume that 7" and
S are random variables that denote the true and surrogate endpoints respectively
and 7 is an indicator variable for treatment. We restrict attention to a binary
treatment indicator (Z =0 or 1).

BM have given an overview, with discussion, of common practice for validation

of surrogate endpoints. In this section, we summarize their main arguments.

9.2.1 Prentice’s Criteria

Prentice (1989) defined a surrogate endpoint as “a response variable for which a test
of the null hypothesis of no relationship to the treatment groups under comparison

is also a valid test of the corresponding null hypothesis based on the true endpoint”:

[(512) = J(8) = f(T2) = /(T) (9-1)

where f(X) denotes the probability distribution of a random variable X and f(X|Z2)
denotes the probability distribution of X conditional on the value of 7. Note that
this definition involves the triplet (7,5, Z), hence the endpoint S is a surrogate for T’
only with respect to the effect of some specific treatment 7. Based on his definition,

Prentice (1989) proposed the following 4 criteria to validate a surrogate endpoint:

[(Tz) # [, (9-2)
fs12) # f(S), (9:3)
f(r1s)y # (), (9-4)
JT1S) = J(T15,2). (9.5)

Criteria (9.2) and (9.3) measure departures from the null hypothesis, implicit in
(9.1). Criterion (9.4) implies that the surrogate endpoint has prognostic value for
the true endpoint. Criterion (9.5) requires S to fully capture the effect of treatment
on the true endpoint, that is: there is no effect of treatment on the true endpoint
after correction for the surrogate endpoint. Of course, this last condition is so
restrictive that it rarely holds in practice. Moreover, it is hard to verify since it

would formally require equivalence testing.



204 Chapter 9

BM have shown that criteria (9.2)—(9.5) are necessary and sufficient to establish
the validity of binary surrogate endpoints. Let us first show that (=) holds in (9.1).

By definition, we have
112) = [ 181210 ~ [ 1(115.2)(5\2)as
By (9.1), £(S12) = F(5) and
1@12) = [ 1115218
By (9.5), this can be written as:
1112) = [ F(T19)7S)d8 = 1T,

Next, we show that (<) holds in (9.1) for binary surrogate endpoints. First note
that

1(112) = [ 1115, 20812148 ~ [ 111918 2)d5. (9.6)
Similarly,
1)~ [ 1T18) 1) 9.7)
Since f(T|Z) = £(T), by subtraction of (9.7) from (9.6),
[ #@19)11(512) - 5(5))d5 0.
For a binary surrogate endpoint, this reduces to
[F(T]S = 0) = F(T)S = D] [F(S — 112) = £(S = 1)] — 0.

By (9.4), (<) holds.
These criteria however do not necessarily establish the validity of other than
binary surrogate endpoints. The simplest counterexample is found by considering a

multi-categorical surrogate endpoint, as illustrated in Table 9.1.
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Table 9.1: Relationship between T (true endpoint) and S (surrogate endpoint), and
Z (treatment) in an artificial set of data for which f(T|S) # f(T), f(S|Z) # f(5),
and f(T15,2) = f(TS) yet f(I'|Z) = f(I'). Cell counts represent numbers of

patients.

A
ST 0 1
0 0 40 120
1 10 30
1 0 150 50
1 150 50
20 30 50
1 120 200

9.2.2 Freedman’s Proportion Explained

Freedman et al. (1992) argued that criterion (9.5) raises a conceptual difficulty in
that it would require the statistical test for treatment effect on the true endpoint
to be non-significant after adjustment for the surrogate. The non-significance of
this test does not prove that the effect of treatment upon the true endpoint is
Sfully captured by the surrogate. Therefore, they supplemented these criteria with
the so-called proportion explained, the proportion of the treatment effect explained
by the surrogate. In this paradigm, it is suggested that a good surrogate is one
which explains a large proportion (but not necessarily everything) of that effect.
Let PE = PE(T,S,Z) stand for the proportion of the effect of Z on 7" which can
be explained by 5. An estimate of PE(T,S,Z) is then as follows:

PE(T,S,Z)=1— bs

8

where 3 and g are the estimates of the effect of 7 on T" without and with adjustment
for S. The PFE is large if (g is small in comparison to 3. Prentice’s criterion (9.5)
requires that Fs = 0, or equivalently P = 1. A surrogate endpoint for which
PFE < 1 explains only part of the treatment effect on the true endpoint (Choi et
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al. 1993). Hence, Freedman et al. suggested that a good surrogate is one for which
the PFE is close to unity. However, this reasoning is not generally valid. Several
conceptual difficulties surrounding the £ have been outlined in the literature (Choi
et al. 1993; Lin, Fleming and De Gruttola 1997; Buyse and Molenberghs 1998;
Flandre and Saidi 1998; Buyse et al. 1999) For example, Lin, Fleming and De
Gruttola (1997) argue that a value of PE near 1 is not sufficient for inferring that
a marker is a good surrogate for a clinical endpoint, since a variety of factors such
as drug toxicity, non-compliance with study medications, and incomplete marker
information can artificially raise this valueto 1, even for poor surrogates. In addition,
Molenberghs and Buyse (1999) and Flandre and Saidi (1998) note that there are
serious conceptual difficulties with the PFE. First, PE is not a proportion since it
can lie anywhere on the real line, which makes its interpretation problematic. For
example, it is possible for PE to be greater than 1 if Sg and § have opposite signs,
i.e., if the adjustment for S changes the direction of the effect of 7 on T. 1t is
even possible for PFE to be negative, which can hardly be justified for a proportion.
Secondly, its confidence limits tend to be very wide, unless trial sizes are very large
and the treatment effect on the true endpoint is strong enough (in which case the
need for a surrogate is questionable). When Fieller confidence intervals (Herson
1995) are used instead of the more common but less performing delta intervals, the
confidence interval would in many reported cases be unbounded. These arguments
have lead Flandre and Saidi (1998) and Molenberghs and Buyse (1999) to simply

recommend that use of the measure be discontinued.

9.2.3 New Validation Measures for a Single Trial

The previously described problems with the PFE have lead BM to replace this mea-
sure by two other quantities: the relative effect (RFE) and the treatment-adjusted

association between the surrogate and the true endpoint (vz).

Relative Effect

The relative effect (RE) links the surrogate and the true endpoint at the population-
averaged level. Let RE(T, S, Z) stand for the effect of Z on T relative to that of Z
on S. An intuitively appealing way of defining RE(T', S, Z) is as follows:

RE(T,S,7Z) = g
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where 3 and « are the estimates of the effect of treatment on T and S. They are
estimated in the verification process of (9.2) and (9.3), respectively. Clearly, RF
connects the treatment effects at the population-averaged levels. Therefore, BM
call a surrogate for which RE ~ 1 walid at the population level. To be of practical
value, that is to enable prediction of the effect of Z on T based on an observed
effect of 7 on S, the RF must be estimated with good precision. This requires large
numbers of observations. Clearly, in order to be meaningful the validation process
will have to be based on large-scale randomized evidence. Such evidence is not
always available from individual trials. Therefore, BM suggest that meta-analyses
based on individual patient data from several randomized trials may be the best

way to validate a surrogate endpoint. We will return to this matter in Section 9.5.

Adjusted Association

The treatment-adjusted association (vz) is the subject-specific association between
the surrogate and true endpoints, adjusting for treatment. For binary endpoints
vz takes the form of a log odds ratio (see BM). Large (infinite) vz means that
the surrogate and true endpoints are very similar (the same), possibly up to a
deterministic transformation. For normal endpoints, vz is the correlation between
the error terms of the surrogate and true endpoints or, equivalently, the coefficient
of S in the regression of 7" on Z and S simultaneously. When -z ~ oo (binary case)
or vz =~ 1 (normal case), the surrogate is said to be walid at the individual level.
Even if either a or # would be small (RE far from 1), a surrogate for which vz is

large, would be useful to predict the outcome at the individual level.

Remark

Let us indicate the link between PF, RF, and adjusted association, as presented by
Molenberghs and Buyse (1999). For ease of exposition, we assume both S and 7" to
be normally distributed:

SilZ: = ps+aZ; +es;,
E|ZZ - MT+/3Zi+€E7
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where ¢ = 1,...,n indicates patients, and the error terms have a joint zero-mean

normal distribution with covariance matrix

0ss Osr
Z pu—

ost OTT
Formally,
RE = pB/a

osT
VOSsOTT
Rewriting
_ 2 - 2 32 2

Oss =0, 0sr =pzAd”, orr = X0,
we deduce s = — pz a and
o 1
— = ANpz——.
3 Pz RE
Therefore, in addition to the earlier mentioned problems with the PF, the quantity

PE = pzA

is hard to interpret since it is an amalgamation of three sources of information:

e the adjusted association pz, which is an individual-level measure of agreement;

e the RF, expressing the relation between the two treatment effects at the trial

level;

e the variance ratio A, which is a nuissance characteristic.

Clearly, this is less attractive to interpret than the couple RF and ~v4. RF connects
the treatment effects at the population-averaged level, while vz connects them at
the individual-specific level. In the remaining of this chapter we will abandon the

P FE approach.

9.3 Validation of Surrogate Markers with Mixed
Continuous and Binary Endpoints in a Single
Trial

In this section, we propose joint models for a binary surrogate and a continuous true
endpoint, in the single trial case (Molenberghs, Geys and Buyse 1999). The reverse

case is entirely similar.
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Let S; be a latent variable of which S, is the dichotomized version. In Section
9.3.1 we describe a bivariate normal model for S; and 7}, resulting in a probit-linear
model for S; and 7;. Section 9.3.2 presents an alternative formulation based on the
bivariate Plackett (1965) density and resulting in a Plackett-Dale model.

9.3.1 A Probit Formulation

In this formulation, we assume the following model:

T, = ur+ 087+ e, (9.8)

S, = ps+taZ; +es, (9.9

where ps and pp are fixed intercepts and a and 3 are the fixed effects of the treat-
ment / on the surrogate and true endpoints respectively. Further, es; and ep; are

correlated error terms, assumed to satisfy:

o’ 29
ET; 1—p2
~ N 7 Vi-p
pg 1
£Si 0 — 2
1—p2 1—p

Model (9.8)(9.9) specifies a bivariate normal density. The variance of S, is chosen
for reasons that will be made clear in what follows. From this model, it is easily
seen that the density of 7} is univariate normal with mean pr +(37; and variance o2,
implying that the parameters p7, 3, and o2 can be determined using linear regression
software with response T; and single covariate Z;. Similarly, the conditional density
of 5}7 given 7Z; and T; is

STy, Zi ~ N [(us —

p p p
—_— + ——0 | 4+ ——==1i;1],
(ﬂ/l—pQuT) (a a\/l—p26> o\/1—p?

motivating our earlier choice for the covariance matrix of T; and S;. The corre-

sponding probability

P(S;, = 1T;,7;) = P(ho + Az Z; + MrT5), (9.10)
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where
/\0 = Ms — 2uT7 (9.11)
o/ 1—p
P
Ay = a— —+Lt—3, 9.12
g A 012
Ap = — P (9.13)

=
and @ is the standard normal cumulative distribution function. The A parameters
can be found by fitting model (9.10) to S; with covariates Z; and 7;. This can be
done with standard logistic regression software if it allows to specify the probit rather
than the logit link (e.g., the LOGISTIC procedure in SAS). Given the parameters
from the linear regression on T} (ur, 8, and ¢?) and the probit regression on S; (Ao,

Az, and Ar), the parameters from the linear regression on S, can now be obtained
from (9.11)-(9.13):

ls = Ao + )\Tu;m (9.14)
a = Az+ s, (9.15)
Ao
2 T
fr— _ 1
p 14 Neo? (9.16)

The asymptotic covariance matrix of the parameters (ur, ) can be found from
standard linear regression output. The estimated variance of o2 equals 26*/N.
The asymptotic covariance of (Ao, Az, Ar) follows from logistic (probit) regression
output. These three statements yield the covariance matrix of the six parameters
upon noting that it is block-diagonal. In order to derive the asymptotic covariance
of (us,a, p) it suffices to calculate the derivatives of (9.14)—(9.16) with respect to
the six original parameters and apply the delta method. They are:

)\T 0 0 1 0 HT
0 Ax 0 01 23 5
0 0 hy 0 0 hs

Ous, o, p) B
a(/,LT7 /37 027 )\07 )\Z7 /\T>

where
1 A2
hi = — 2 9\2?
2p (1 + A\5.0?)
1 2\po?
hy — o

20 (1 +Mpo?)?
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In addition, we developed a program in GAUSS that performs the joint estimation
directly by maximizing the likelihood based on contributions (9.8) and (9.10).

The adjusted association is given by p (which is slightly different from -z since we
have to correct for the variances 0% and 1/(1— p?)). The relative effect, RE = 3/a,

can be determined directly from the output.

9.3.2 A Plackett-Dale Formulation

Let us now consider an alternative approach. Assume that the cumulative distrib-
utions of S; and 7; are given by Fg, and Fp. The joint cumulative distribution of
both these quantities has been studied by Plackett (1965):

(14 (Fn + Fo)(@ — 1) = S, Fo ) Vi 71,
FTinz’ - 2<w2 - 1)
FTz’FSz’ lfw2:17

where

e 7, is the global odds ratio (see Chapter 6),

o S ) = I+ (@ + @)@ — D + 460 — ).

Based upon this distribution function, we can derive a bivariate Plackett “density”
function G, (¢, s) for mixed continuous- binary outcomes (see also Chapter 8). Sup-
pose the success probability for S; is denoted by 7;, then we can define G,(¢, s) by
specifying G;(t,0) and G;(t, 1) such that they sum to f,(t). If we define G,(t,0) =
OFy, ,(t,0)/0t, then this leads to specifying G; by:

fr, (1) L+ P, (£) (s —1)—Fs, (5) (s +1) .
2 (1 - S(Pry 13 ) ) it # 1,

G,(t,0) =
fr,(HA —m,) if ¢, =1,
and

Gi<t7 1) - fﬂ(t) - Gi(t70>'

In this formulation we assume T, ~ N(u;, 0%), with pu; = ur + 87, and logit(m;) =

Us-+aZ; with similar notation as in the probit case. The global odds ratio is assumed
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to be constant. If we denote

i Hi
o? In(c?)
0, — and 1, = ,
T logit(;)
(@ In(?)

estimates of the regression parameters T = (ur, us, 3, a,Ino?,Inv)) are easily ob-
tained by solving the estimating equations U (7) = 0, using a Newton-Raphson

iteration scheme, where U (1) is given by:

~(omN\ (om0

P

Note that the adjusted association vz is given by % in this case and the relative
effect RE = 3/ can be readily determined.

9.4 An Example in Ophthalmology

In this section, we analyze the data described in Section 2.3. The binary indicator
for treatment (Z,;) is set to 0 for placebo and to 1 for Interferon-a.

Let us first present the results of Buyse and Molenberghs (1998). They assume
that visual acuity is a continuous, normally distributed variable and investigate
whether the change in visual acuity at 6 months after starting treatment (.5;;) can
be used as a surrogate for the change in visual acuity at 1 year (7};). Table 9.2
shows the visual acuity (mean and standard error) by treatment group at baseline,
at 6 months and at 1 year.

The results of Buyse and Molenberghs (1998) are summarized in Table 9.3. The
analyses were carried out using the SAS procedure MIXED (Littel et al. 1996). The
first three Prentice Criteria (9.2)—(9.4) are provided by tests of significance of «, 8

and ~ in the following models:
Sij|Zij = ps +aZy+es,
T\ Ziy = pr+BZ; + e,
T3S = wt+S;+ ey
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Table 9.2: ARMD Study: Mean (standard error) of Visual Acuity at Baseline, at
6 Months and at 1 Year According to Randomized Treatment Group (P=Placebo,

I=Interferon-a)

Time point

P Total

Baseline
6 months

1 year

I
55.3 (1.4) 54.6 (1.3) 55.0 (1.0)
49.3 (1.8) 45.5 (1.8) 475 (1.3)
44.4 (1.8) 39.1 (1.9) 42.0 (1.3)

Table 9.3: ARMD Study: The quantities of interest for the validation of a surrogate

endpoint (I': true endpoint, S: surrogale endpoint, Z: treatment, f(.):

function, PE: proportion explained, RE: relative effect)

density

Quantity of interest

Estimate Test

Effect of treatment on true

endpoint

B =412 (s.e. 2.32)

Ho: f(T12) = J(T)

Effect of treatment on surro-

gate endpoint

o = 2.83 (s.e. 1.86)

Ho: f(5]2) = (5)

Effect of surrogate on true

endpoint

v =10.95 (s.e. 0.06)

Ho: f(T]S) = £(T)

Proportion of treatment effect
on true endpoint explained by

surrogate

PE = 0.65 (95% confidence
interval [-0.22;1.51])

Effect of treatment on true
endpoint relative to that on

surrogate endpoint

RE = 1.45 (95% confidence
interval [-0.48;3.39])

Adjusted effect of surrogate

on true endpoint

p = 0.75 (95% confidence in-
terval [0.69;0.82])
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Here, a = 2.83 (s.e. 1.86), 8 = 4.12 (s.e. 2.32), v = 0.95 (s.e. 0.06). Thus, there
is little evidence for an effect of Z on either endpoint but overwhelming evidence
that the surrogate is strongly correlated with the true endpoint. Therefore the
validation procedure has to stop inconclusively. Note, however, that the lack of
statistical significance of a and 3 could merely be due to the insufficient number of
observations available in this trial. Freedman’s proportion explained was calculated
as 0.65 with 95 % confidence interval [-0.22;1.51] and the relative effect was 1.45
with 95% confidence interval [-0.48;3.39]. It is noteworthy that, while the confidence
intervals for PE and RF are too wide to convey any useful information, vz = 0.75
with confidence interval [0.69;0.82], which implies that a very large part of the

variability of the surrogate is shared with the true endpoint.

Let us now apply the methodology for mixed continuous and discrete outcomes.
First, we consider dichotomized visual acuity at 6 months as the surrogate and
(continuous) visual acuity at 12 months as the true endpoint. 0 , is achieved by
setting a binary variable to 1 if visual acuity at 6 months is larger than the value at
baseline and to 0 otherwise. Let us first consider the probit model. The parameter
estimates for the true endpoint are pur = 11.04 (s.e. 1.57), p = 4.12 (s.e. 2.32),
and o = 15.95 (s.e. 0.82). The parameter estimates for the surrogate endpoint are
ps = 0.64 (s.e. 0.20) and o = 0.39 (s.e. 0.28) and the correlation is p = 0.74 (s.e.
0.05). Note that the parameter estimates for the true endpoint coincide with those
in BM, who employed a bivariate normal model for the case where both outcomes
are continuous. The relative effect is estimated to be RE = 10.44 (95% confidence
interval [—1.77;22.65]) and the adjusted correlation p = 0.74 (95% confidence inter-
val [0.64;0.84]). While care has to be taken with the RE since both numerator and
denominator are non-significant (leading to a Fieller confidence interval equal to the
whole real line), the adjusted correlation is estimated very precisely and there is
clearly a strong correlation between both endpoints. BM found an adjusted correla-
tion of 0.75 (95% confidence interval [0.69;0.81]) which agrees remarkably well with
our results. The slightly wider standard error results from the loss of information
through dichotomizing the surrogate endpoint. Let us now analyze the same data
using the Plackett-Dale model. The parameter estimates for the true endpoint are
pr = 10.89 (s.e. 1.56), § = 4.02 (s.e. 2.32), and 0 = 16.04 (s.e. 0.81). These results
are relatively close to the ones obtained with the probit model since in both cases

a linear regression of 7" on Z is assumed. The binary regression of S on 7" and 7
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contains additional information about the true endpoint parameters as well, which
is why the results are not exactly equal. The values for the surrogate endpoint are
s = 0.74 (s.e. 0.19) and o = 0.45 (s.e. 0.30) and the log odds ratio, Iny = 2.85
(s.e. 0.37) with corresponding odds ratio 17.29. The relative effect is estimated to
be RE = 8.92 (95% confidence interval [—0.41;18.25]), in close agreement with the
above estimate. For sake of presentation and comparison, these results are summa-
rized in Table 9.4.

Table 9.4: ARMD Study: The quantities of interest for the validation of the surrogate

endpoint

Quantity of interest Estimate
Probit Plackett-Dale
Effect of treatment on true G =4.12 (s.e. 2.32) 8 =4.02 (s.e. 2.32)
endpoint
Effect of treatment on sur- « = 0.39 (s.e. 0.28) o =045 (s.e. 0.30)

rogate endpoint

Effect of treatment on true RE = 10.44 (95% confi- RE = 8.92 (95% confidence
endpoint relative to that dence interval [-1.77;22.65]) interval [-0.41;18.25])

on surrogate endpoint

Adjusted effect of surro- p = 0.74 (95% confidence in- In(¢)) = 2.85 (95% confi-
gate on true endpoint terval [0.64;0.84]) dence interval [2.12;3.58])

Next, we consider the binary indicator for loss of at least 2 lines of vision at
6 months as a surrogate for (continuous) visual acuity at 12 months. With the
probit model, the regression coefficients (standard errors) for the true endpoint are
pr =11.04 (s.e. 1.57), B =4.12 (s.e. 2.32), and 0 = 15.95 (s.e. 0.82). The values for
the surrogate endpoint are pug = —0.43 (s.e. 0.19) and o = 0.58 (s.e. 0.28) and the
correlation is p = 0.75 (s.e. 0.05). The regression parameters for the true endpoint
are once again in agreement with earlier findings. The relative effect is estimated to
be REE = 7.08 (95% confidence interval [5.77;19.93]) and the adjusted correlation
p = 0.75 (95% confidence interval [0.66;0.84]). With the Plackett-Dale model, the
regression coefficients (standard errors) for the true endpoint are ur = 10.95 (s.e.
1.56), = 3.74 (s.e. 2.30), and o = 15.97 (s.e. 0.82). The values for the surrogate
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endpoint are pus = —0.38 (s.e. 0.20) and o = 0.63 (s.e. 0.29) and the log odds ratio
Iny = —2.78 (s.e. 0.30) with corresponding odds ratio 16.18. The relative effect is
estimated to be RE = —5.93 (95% confidence interval [—17.17;5.32]).

Finally, we consider the more interesting situation of (continuous) visual acuity
at 6 months as a surrogate for the binary indicator for loss of at least 3 lines of
vision lost at one year. With the probit model, the regression coefficients (standard
errors) for the true endpoint are puy = —0.36 ( s.e. 0.21), 7 =0.60 ( s.e. 0.30). The
values for the surrogate endpoint are pus = 5.53 (s.e. 1.26), o = 2.83 ( s.e. 1.87),
and ¢ = 12.80 ( s.e. 0.66). The correlation is p = 0.81 ( s.e. 0.04). The rela-
tive effect is estimated to be RE = 4.75 (95% confidence interval [—5.11;14.61]).
With the Plackett-Dale model , the regression coefficients (standard errors) for the
true endpoint are pupr = —0.36 ( s.e. 0.19), 5 = 0.58 (s.e. 0.28), and o = 12.90
( s.e. 0.65). The values for the surrogate endpoint are g = 5.89 ( s.e. 1.24) and
a = 2.72 ( s.e. 1.84) and the log odds ratio In?y) = 2.83 (' s.e. 0.29) with corre-
sponding odds ratio 16.93. The relative effect is estimated to be RE = 4.67 (95%
confidence interval [—5.00; 14.35]).

Conclusion

The examples show that the two approaches yield very comparable results, so that
in practice one approach can be regarded as a sensitivity analysis for the other. It
is interesting to note that the discretization of a continuous endpoint into a binary
variable does not lead to a great loss of information for the purposes of validation
of surrogate endpoints. The reliability of the analyses is primarily driven by the
number of observations, rather than by the data type of the endpoints considered.
The example used in this section underscores one of the greatest practical diffi-
culties of surrogate validation, i.e., the need for very large datasets from randomized
experiments. As mentioned above, the confidence limits of the proportion explained
tend to be hopelessly wide regardless of the number of observations, which casts
doubts on the value of this quantity. The confidence limits of the relative effect will
also be wide unless the number of observations is large. Here, for instance, with only
190 patients the confidence limits of RE are too wide to be useful. In contrast, the
confidence limits of the adjusted asociation will generally be narrow enough to be
of practical interest even with small numbers of observations. This is because the

surrogate endpoint and the true endpoint are generally strongly correlated (at the
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individual level). For the validation to be complete, however, a strong association
between the surrogate and the true endpoint is not sufficient: the relative effect
must also be estimated with good precision to permit the reliable prediction of a
treatment effect on the true endpoint based on the observation of the treatment

effect on the surrogate endpoint.

9.5 Validation from Multiple Trials

Buyse et al. (1999) have shown how further progress can be made by conducting
the validation process within a meta-analytic framework. They developed their
methodology for surrogate and true endpoints which are jointly normally distributed.
They considered two distinct modelling strategies, based on a two-stage fixed effects
representation on the one hand and random effects on the other hand. However, it
may also be necessary to explore other settings, often more complicated due to the
absence of a unifying framework such as the multivariate normal distribution. Here,

we will present approaches for surrogate and true endpoints which are
e both continuous,
e both binary,
e of a mixed binary—continuous nature.

First, we extend the setting and notation by supposing we now have data from
¢ = 1,..., N trials, in the ith of which j = 1,...,n; subjects are enrolled. Let
T;; and S;; denote the true and surrogate endpoints respectively, and let Z;; be an

indicator variable for treatment.

9.5.1 Continuous Endpoints

In this section we focus on surrogate and true endpoints which are assumed to
be jointly normally distributed. Two distinct modelling strategies will be followed,
based on a two-stage fixed effects representation on the one hand and random effects
on the other hand.
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Let us first consider the two-stage fixed effects representation. At first, we con-
sider the fixed-effects model

SijlZiy = s, + QiZi; + sy, (9.17)
Tij|Zsy = wm+ BiZs + emy, (9.18)

where «; and ; are trial-specific effects of treatment Z on the endpoints in trial ¢,
is, and pr, are trial-specific intercepts, and g, and e7, are correlated error terms,
assumed to be mean-zero normally distributed with covariance matrix

0ss Osr
Z pu—

gst O0TT

Due to the replication at the trial level, we can impose a distribution on the trial-

specific parameters. At the second stage, we assume

s, s ms,
X mmo.
M _ Mr n T (9.19)
(07 (8% a;
I g bi

where the second term on the right hand side of (9.19) is assumed to follow a zero-

mean normal distribution with dispersion matrix

dss dsr ds. dsp
drs drr dre dro
dus  dar daa  dap
dps  dyr  dpa  dpp

Next, the random-effects representation is based upon combining the above two

steps.

Sij|Zy = nps +ms, +aZy +a:Ziy + sy, (9.20)
T\ Zy = wr+mg + BZy + b Zi + exy, (9.21)

In the above formulation, ps and pp are now fixed intercepts, a and S are the

fixed effects of treatment on the endpoints, mg, and myp, are random intercepts
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and a; and b; are the random effects of treatment on the endpoints in trial ¢. The
vector of random effects b; = (mg,, mz,, a;,b;) is assumed to be mean-zero normally
distributed with covariance matrix D). The error terms eg, and e, follow the same
assumptions as in fixed-effects model (9.17)—(9.18). Suppose the fixed effects are
grouped in a vector 3 and the outcomes S;;,T;; in a 2n; dimensional response vector
Y., = (Sa, T, ..., S, Tm;), then it can be easily shown that Y, follows a 2n;
dimensional normal distribution with mean vector X;3 and with covariance matrix
V; = N+ Z,DZ}F (Verbeke and Molenberghs 1997). In the above formulation,
i = I,, @3, where I,,; denotes the identity matrix of dimension n,, and X; and Z;
are suitable design matrices for the fixed and random effects, respectively.

The settings described above naturally lend themselves to introduce surrogacy

at both the trial level as well as the individual level. We will discuss them in turn.

Trial-Level Surrogacy

The key motivation for validating a surrogate endpoint is to be able to predict the
effect of treatment on the true endpoint based on the observed effect of treatment
on the surrogate endpoint. It is essential, therefore, to explore the quality of the

prediction of the treatment effect on the true endpoint in trial ¢ by:
(a) information obtained in the validation process based on trials i =1,..., .V,
(b) the estimate of the effect of Z on S in a new trial i = 0.

To this end, observe that (3 + bg|mso,ao) follows a normal distribution with mean

and variance:

T 1
d d ds,, —
BB+ bolmso,ag) — B+ | W S )
dab dSa da,a g —
T 1
dsp dss dsa dsp
Var(@ —+ b0|mso7 ao) = dy — . (923)
dab dSa, daa dab

This has lead Buyse et al. (1999) to call a surrogate perfect at the trial level if the

conditional variance (9.23) is equal to zero. A measure to assess the quality of the
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surrogate at the trial level is the coefficient of determination
T —1

2 2 1 dsb dss dsa dsy,

Rtm‘al(f) - Rbi\mSi,ai - d_bb d d d J .
ab Sa  Caa ab (9.24)

(9.24) is unitless and ranges in the unit interval, two desirable features for its in-

terpretation. Intuition can be gained by considering the special case where the pre-

diction of by can be done independently of the random intercept mgo. Expressions

(9.22) and (9.23) then reduce to

da
E(@ + b0|a0) = [0+ ) b(Ozo — Oz)7
d2
Var(8 + bolag) = dw — dab

with corresponding

R2 o R2 o dzb
trial(r) — *bla; daadbb.

Now, Rfml(r) = 1 if the trial level treatment effects are simply multiples of each
other. We will refer to this simplified version as the reduced random effects model,
while the orginal expression (9.24) will be said to derive from the full random effects

model.

Individual-Level Surrogacy

To validate a surrogate endpoint, Buyse and Molenberghs (1998) suggested to con-
sider the association between the surrogate and the final endpoints after adjustment
for the treatment effect. To this end, we need to construct the conditional distribu-
tion of T, given S and Z. From (9.17)—(9.18) we derive

Tij| Zi5, Sy ~ N {ur: — orsogius: + (Bi — o1505304) Zij + 015058555
orT = 05033} -
A similar expression can be found for the random effects model (9.20)—(9.21), but

conditioning is then also on the random effects. The association between both

endpoints after adjustment for the treatment effect is then captured by:

2
a
2 _ p2 _ ST
RZTLdZ’U 7 RETi ‘ESZ' 7 ?
08s0TT
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the squared correlation between S and T after adjustment for both the trial effects

as well as for the treatment effect.

Summary

2
trial

is sufficiently close

The above developments suggest to term a surrogate trial-level valid if R is suf-

ficiently close to one, and to call it individual-level valid if R?
to one. Finally, a surrogate is termed walid if it is both trial-level and individual-
level valid. In order to replace the words “valid” with “perfect” the corresponding
R-squared values are required to equal one.

Buyse et al. (1999) note that the validation criteria proposed here do not require
the treatment to have a significant effect on either endpoint. In particular, it is
possible to have a = 0 and yet have a perfect surrogate. Indeed, even though
the treatment may not have any effect on the surrogate endpoint as a whole, the
fluctuations around zero in individual trials (or other experimental units) can be
very strongly predictive of the effect on the true endpoint. However such a situation
is unlikely to occur since the heterogeneity between the trials is generally small

compared to that between individual patients.

9.5.2 Binary Endpoints

Let S;; and Tj; represent unobserved latent variables that are related to the actual
(binary) responses S;;, 1;; through a threshold value. Without loss of generality, we

can assume this threshold value to be zero. Hence:

1 if g@j >0
Sij - B ,
0 if Sz‘j <0
and
(1467, >0
1; = .
0 if Ej <0

We can then easily update the previously described two-stage fixed effects model

and random effects model.



222 Chapter 9

Two-stage Fixed Effects Representation

In the first step of the two-stage approach, we consider the following fixed-effects
model:

!

with the same assumptions as in (9.17)-(9.18). At the second stage, we consider the

same model as in (9.19).

random-effects Representation

Similar to Section 9.5.1, combining the above two steps gives rise to a random-effects
regression model, which itself now leads to a joint probit regression model with

random effects for the response probabilities on the surrogate and true endpoints:

i Zij = s+ ms, +aZy+aiZ;+es,;, (9.27)
WlZig = e+ mn+ B2+ 02 + ey, (9.28)

S A

The above equations (9.27) and (9.28) can be seen from a “generalized linear mixed
model” (GLMM) viewpoint (Breslow and Clayton 1993) with a probit link. In the-
ory, any link function could be used to model both endpoints. However, we prefer
probit link based approaches, the main advantage being that the measures R?,

and R}, to assess the quality of the surrogate generalize immediately to this set-
ting. Parameter estimation can proceed by maximizing the likelihood function, but
unfortunately, to obtain the unconditional likelihood from such model, intractable
expressions need to be evaluated. The joint marginal probability for an entire trial

can be obtained from:
/HP(Sz‘j = 845, Ly = 5125, 3, b;) f(b;| D)db;, (9.29)
=1

where B groups all the fixed effects. Clearly, the integration in (9.29) can hardly be
accomplished, in view of the generally large size of the clusters (trials), even though
an explicit expression exists when a probit formulation is adopted. Zeger, Liang
and Albert (1988) presented such a closed form expression in the univariate case.

One consequently needs to resort on some kind of approximation to the likelihood
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function (Breslow and Clayton 1993, Wolfinger and O’Connel 1993). When applied,
such procedures can however lead to substantial downward bias for the estimates of

variance components.

Pseudo-likelihood Approach

A useful alternative to likelihood-based methods can rest on a pseudo-likelihood
approach, where we replace the likelihood contribution f(S;1,...,Sm: Tits ..oy Tin,)
of cluster ¢ by the product of all possible pairwise contributions (see Chapter 6).
Hence, the contribution of the ith cluster to the log pseudo-likelihood function can

be written as:

pl; = Zlﬂ S Wis, vare)
F<k
where y;; and y;, are taken from S;1, ... S, 151, ... Lin,. These pairwise contri-

butions p¢; reflect four different association types:

(i) the association between the surrogate and true endpoint for a certain individ-
ual,

(ii) the association between two surrogate endpoints for two different individuals,
(iii) the association between two true endpoints for two different individuals,

(iv) the association between a surrogate and true endpoint for two different indi-
viduals.

This is illustrated in Figure 9.1.
Fach of these pairwise contributions can then be written in terms of bivariate
probits. For example,the probability that both the surrogate and the true endpoint

are zero can be written as:

Pr(Sy; =0,Ty; = 0|8,b;,7Z;;) = P(S; <0,Ty; <0|B,b;, Zs;)

_ s taZy o e+ BZ;
Var(S;;) ~ Var(Ty) )

Similar expression (in terms of univariate and bivariate probits) can be obtained for
all other pairwise probabilities. In this formulation, the variance terms, Var(S;;) and

Var(Tij)7 are obtained by selecting the appropriate 2 x 2 submatrix of the covariance
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indiv. j indiv. k

Sij (ii) Sik Surrogate

(i) (iv) (i)

T;; (iii) Tk True

Figure 9.1: Association Structure for the Surrogate and True Endpoints on Individ-

uals j and k in Cluster i.

matrix, V; = R; + Z! DZ;, where R; is the correlation matrix of the measurement
errors (€5, - - -5 E8;,,, EThy, - - -, €Ty, ) a0 Z; is a suitable design matrix for the random
effects. p;; is the correlation parameter that corresponds with this submatrix.
Estimates for 3 and the components of D can then be obtained by maximizing
the log pseudo-likelihood pé = ZZ]\L | P¢;. Similar to Chapter 6, if main interest lies

in the main effect parameters, we might prefer maximizing:

pl* = Zp&/@m —1), (9.30)

where (9.30) corrects for the fact that each response occurs 2n; — 1 times in the ith

contribution to the pseudo-likelihood.

9.5.3 Mixed Binary-Continuous Outcomes

In this section we concentrate on a two-stage fixed-effects model only. Generalized
linear mixed models, such as obtained from (9.27)—(9.28), have the advantage that
they are a straightforward generalization of the linear model discussed in Molen-

berghs and Buyse (1998), however they cannot be applied on endpoints that are of
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different data type. Whereas a pseudo-likelihood approach might be possible theo-
retically, it can become very involved in practice. Indeed, we would need to consider
different contributions, based on two continuous outcomes, two binary outcomes,
and a binary and continuous outcome.

Let us now describe the two-stage fixed-effects model, with a binary surrgate
and a continuous true endpoint. The reverse case is entirely similar. Let S;; be a
latent variable of which S;; is a dichotomized version.

In the first step, we can agssume the following model:

SilZiy = s, ¥ ouZy Sy s
T Ziy = wry + BiZiy + €1y

with similar notation as before. But, the error terms, g, and e1,, are assumed to

be mean-zero normally distributed with covariance matrix

1 po
w_ | A Ve

In short, we use the probit formulation, described in Section 9.3.1. At the second
stage, we again assume model (9.19). The trial-level and individual-level measures

for surrogacy (R?,, and RZ , ) easily extend to this setting.

9.6 An Example in Cancer

In this section we will illustrate our methods using data from the Ovarian Cancer
Meta-Analysis Project (1998), described in Section 2.4. The treatment indicator Z
is set to 0 for CP and to 1 for CAP. The primary endpoint is “survival”, defined
as the time from randomization to death from any cause. To assess sensitivity, all
analyses have been performed with and without the two smaller trials. Excluding
the two smaller trials has very little impact on the estimates of interest and therefore

the results reported are those obtained with all four trials.

9.6.1 Continuous Outcomes

In this subsection, we present the results obtained by Buyse et al. (1999). The

surrogate endpoint 5;; is the logarithm of time to progression, defined as the time
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(in weeks) from randomization to clinical progression of the disease or death due
to the disease, while the final endpoint 7;; is the logarithm of survival, defined
as the time (in weeks) from randomization to death from any cause. Two-stage
fixed-effects models could be fitted, as well as a reduced version of the mixed-effects
model (9.20)-(9.21). Figure 9.2 shows a plot of the treatment effects on the true
endpoint by the treatment effects on the surrogate endpoints. The size of each point
is proportional to the number of patients in the corresponding unit. Clearly, the
treatment effects are highly correlated.

When the sample size of the trial are used to weight the pairs (a;, b;), the reduced
fixed-effects model provides R? y = 0.92 (s.e. 0.08). The full fixed-effects model

trial(r
yields R, ;) = 0.94 (s.e. 0.07). (In the reduced random effects model, 7,y =
0.95 (s.e. 0.10).
At the individual level, RZ ;, = 0.89 (s.e. 0.01) in the fixed-effects model, and
R} ey = 0.89 (s.e. 0.01) in the reduced random effects model.

Thus, Buyse et al. (1999) conclude that time to progression is a valid surrogate for
survival in advanced ovarian cancer. Hence, the effect of treatment can be observed

earlier if time to progression is used instead of survival.

9.6.2 Binary Outcomes

To illustrate our methods when both surrogate and true endpoints are binary, we
dichotomize the true endpoint as 1 if the patient survived the first 5 years of follow-
up and 0 if it died during this period. The clinical response, dichotomized as 1
if the patient exhibits no progression during treatment and 0 otherwise, is used
as surrogate endpoint. For the purpose of this analysis we omit trials with no
centers and centers for which all clinical responses are unknown. Unfortunately,
this drastically reduces the total number of units of analysis from 50 to 13. In all
other cases, “unknown” clinical responses are considered as “progressions”.

Let us first consider Table 9.5, which shows the fixed parameter estimates for
the full and reduced two-stage fixed-effects models and the reduced random effects
model, fitted with the GLIMMIX macro in SAS (Wolfinger and O’Connell 1993).

In the two-stage fixed-effects model, sample sizes of the experimental units are
used to weigh the pairs (a;, ;). The reduced two-stage fixed-effects model provides
R? =0.09 (s.e. 0.15) and R} ,, .y = 0.45 (s.e. 0.07). In addition, the full two-

trial(r) indiv(r
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Effect for In{survival time)

Effect for In{time to progression)

Figure 9.2: Owarian Cancer Trial: Treatment Effects on the True Endpoint versus
Treatment Effects on the Surrogate Endpoint for all Units of Analysis. The Size of
Fach Point is Proportional to the Number of Patients in the Corresponding Unit
(Buyse et al. 1999).
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Table 9.5: Advanced Ovarian Cancer Trial: Parameter FEstimates (standard error)
for the Pull and Reduced Two-stage Fized Fffects Models, as well as for the Reduced
Random Effects Model.

2-Stage 2-Stage  Random Effects

full reduced reduced
s 1.33 (0.51) 0.47 (0.07) 0.47 (0.07)
a -0.32 (0.66) 0.52 (0.36) 0.18 (0.10)
pr -1.02 (0.38) -0.80 (0.07) -0.80 (0.07)
B 0.08 (0.13) -0.12 (0.36) 0.17 (0.10)

stage fixed-effects model provides R}, ;) = 0.79 (s.e. 0.10) and R} ;s = 0.45 (s.e.
0.07). Based on these results, it is clear that the assessment of the clinical response
is not a good surrogate for survival. It should however be noted that R?m‘al(f) is
much larger than Rfml(r). This might indicate important effects for the intercepts.

Individual level measures of surrogacy are comparable.

Clearly, the parameters, obtained with the two-stage fixed-effects models, are
not estimated with great precision. This is especially true for the full model. Alter-
natively, we tried to fit full and reduced random effects models, as in (9.27)—(9.28),
using the GLIMMIX macro in SAS or using the pseudo-likelihood approach. How-
ever, none of these methods could provide us with trustworthy estimates for the
variance components in ). The GLIMMIX approach yielded negative variance
components for the reduced model, and could not be fitted for the full model. The
pseudo-likelihood approach yielded a non-positive definite information matrix in
both cases. Of course, problems that occur with fitting mixed-effects models have
long been recognized. Already in the case of jointly normally distributed surrogate
and true endpoints, Buyse et al. (1999) observed that, in many practical instances,
convergence of the Newton-Raphson algorithm could hardly be achieved. Simulation
studies revealed that there should be enough variability at the “cluster” level, and a
sufficient number of “clusters” to obtain convergence. When these requirements are
not fulfilled, they argue that one must rely on simpler models, such as the two-stage

fixed effecs models.



Validation of Surrogate Endpoints 229

9.6.3 Mixed Binary-Continuous Outcomes

In addition to the analyses presented in Section 9.6.2, we can consider clinical re-
sponse as a binary surrogate and log survival time as a continuous response. An-
alyzing these data with the full two-stage fixed-effects probit model, we find the
following measurements for the trial-level and individual-level validities: Rfm[(f) =
0.65(s.€.0.17) and andw(f) = 0.53(s.€¢.0.03). The reduced two-stage fixed-effects
model provides i}, = 0.15(s.€.0.19) and R, ., = 0.53(s.e.0.04). These results
are in close agreement with those obtained in Section 9.6.2. The values for R?, . are
well in agreement for the reduced and full models, however Rfcu” () 1s much smaller
than Rfcu”(f)7 indicating a potential important effect from the trial-specific inter-
cepts. In addition, we have also investigated the potential of pathological response,
dichotomized as progression or no progression, as a valid surrogate. The full model

yielded only a R, ;s of only 0.14(s.e.0.09) and a R} ;s of 0.26(s.e.0.03).

9.7 An Example in Ophthalmology: Revisited

The ARMD data come from a single multicentric trial. Therefore, it is natural to
consider the center in which the patients were treated as the unit of analysis. A total
of 36 centers were thus available for analysis, with a number of individual patients
per center ranging from 2 to 18.

Table 9.6 summarizes the Z2-values of interest to validate the surrogate endpoints

in each of the following subsections.

Table 9.6: ARMD Study: R? Values of Interest for the Validation of a Surrogate
FEndpoint. See Text for Details.

2

9.7.1 048 (0.05) 0.69 (0.16)
9.7.2  0.64 (0.13) 0.22 (0.12)
9.7.3 044 (0.09) 0.42 (0.13) 0.56 (0.08) 0.36 (0.13)

Section Rgndz‘v('r) R%’rz‘al (r) Rzndzv(f) R%rial(f)
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9.7.1 Continuous Outcomes

Buyse et al. (1999) applied their meta-analytic methods in the case of jointly con-
tinuous surrogate (visual acuity at 6 months) and true (visual acuity at 1 year)
endpoints. Irrespective of the software used, random effects were difficult to obtain
and they had to restrict to the reduced two-stage fixed-effects model. Let us briefly

summarize their results. At the individual level, they found R? ) = 0.48 (s.e.

indiv(r
0.05). Note that Rnamw(r) = 0.69 is close to p = 0.74, estimated in Section 9.4. At
the trial-level, R?ml(«) = 0.69 (s.e. 0.16). Clearly, the coefficients of determination

are both too low to make visual acuity at 6 months a reliable surrogate for visual

acuity at 12 months. This is in contrast with the inconclusive analysis in Section 9.4.

9.7.2 Binary Outcomes

We illustrate our method for binary outcomes using dichotomized visual acuity at
6 months as the surrogate and dichotomized visual acuity at 1 year as the true
endpoint. Obtaining a fit for these data was very difficult. A random effects model
could not be fitted. The PL approach yielded a non positive definite information
matrix. The only feasible approach was to use the reduced two-stage fixed-effects
model. This resulted in R} ;) = 0.64 (s.e. 0.13) and R7,,;,y = 0.2 (s.e. 0.12).
The latter quantity is much smaller than in the normal case. This is probably due to

the loss of information, resulting from the discretization of the continuous endpoints.

9.7.3 Mixed Binary-Continuous Outcomes

Let us now consider a situation where dichotomized visual acuity at 6 months acts
as surrogate for the continuous visual acuity at 12 months. Table 9.7 shows the
parameter estimates for the full and reduced two-stage fixed-effects probit model.
In Section 9.4, we found similar parameter estimates for pur and 3. Here, the full
model yields R}, = 0.36 (s.e. 0.13) and R, ;) = 0.56 (s.e. 0.08). The square
root of the latter quantity equals 0.75 (s.e. 0.05), which is almost identical to the
adjusted association pz = 0.74 (s.e. 0.05), estimated in Section 9.4. The reduced
model yields 17 .., = 0.44 (s.e. 0.09) and R}, = 0.42 (s.e. 0.13). This confirms
our earlier results of a poor surrogate.
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Table 9.7: Macular Degeneration Trial: Parameter Estimates (standard errors) for
the Full and Reduced Two-stage Fived Effects Probit Model

Full Reduced
s 1.46 (0.68) 0.67 (0.15

o 1.10 (0.98) 1.75 (0.69
pr 11.13 (1.69) 11.82 (1.00
3 4.40

o 11.43 (0.60) 13.60 (0.71

(
(
(
(
(
p  0.75 (0.05) 0.66 (0.07

)
(0.69)
(1.00)
2.94)  3.72 (2.38)
(0.71)
(0.07)

9.8 Conclusion

In this chapter, we have first extended the single-trial approach proposed in BM for
the validation of surrogate endpoints when the surrogate and true endpoint are of
a mixed continuous and discrete nature. In that case, a latent variable approach is
a natural extension of the likelihood based approach. Such an approach discretizes
one latent response variable and assumes the other one is measured directly. We
have presented two approaches, one based on a probit-linear model, the other on a
Plackett-Dale model.

Next, we have looked into meta-analytic extensions for cases where both end-
points are binary or of a mixed continuous-binary data type. The approach pre-
sented here is an extension of the methodology described by Buyse et al. (1999),
who assumed jointly normally distributed endpoints. In contrast with the Prentice-
Freedman criteria, it is not based on tests of hypothesis, but evaluates the validity
of a surrogate in terms of coefficients of determination, which are intuitively appeal-
ing quantities in the unit interval. Such an approach is more informative than a
mere dichotomization of surrogate endpoints as being “valid” or “invalid”. More-
over, the validation procedure no longer requires statistical tests to be statistically
significant: for instance, an endpoint with a low individual-level coefficient of de-

. . 2
termination (R, 4,

<< 1) is unlikely to be a good surrogate (even if R? 1), a

trial

conclusion that may be reached with a limited number of observations.
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Samenvatting

Recent is er in de maatschappij een grote bezorgdheid ontstaan omtrent het effect
van blootstelling aan mogelijk toxische verbindingen op de menselijke voortplanting
en ontwikkeling. Vermits, om dit te onderzoeken nauwelijks of geen epidemiologische
gegevens beschikbaar zijn, is men genoodzaakt toevlucht te nemen tot toxicologische
studies uitgevoerd bij proefdieren, zoals muizen en ratten. Afhankelijk van het
type effect dat men wenst te bestuderen zijn er een drietal standaard procedures
voorhanden. Segment I studies zijn bedoeld om het effect van scheikundige stoffen
op de vruchtbaarheid van zowel het mannetje als het wijfje te bestuderen. Segment I1
studies worden ook wel teratologische studies genoemd. Hier bestudeert men vooral
het effect van een toxische stof op het al dan niet aanwezig zijn van verschillende
types malformaties en/of laag geboortegewicht. Segment III studies bestuderen
effecten later in de zwangerschap. In dit proefschrift bestuderen we vooral Segment
IT studies. Daarnaast komen ook de zogenaamde “heatshock” experimenten aan

bod, die we later zullen beschrijven.

Een Segment II experiment bevat over het algemeen een controle groep en 3
tot 4 groepen, waarbij een 20 tot 30-tal zwangere dieren aan verschillende doses
van een chemische stof worden blootgesteld. Net voor het baren worden de moed-
erdieren gedissecteerd. Vervolgens wordt de baarmoeder grondig onderzocht. Men
telt dan het aantal embryo’s die nooit tot ontwikkeling zijn gekomen en terug in
de baarmoeder zijn geabsorbeerd (dit kan waargenomen worden aan de hand van
donkere plekken in de baarmoederwand), het aantal dode foetussen en het aan-
tal levensvatbare foetussen. De levensvatbare foetussen worden verder onderzocht
op de aanwezigheid van verschillende types malformaties en laag geboortegewicht.
Deze malformaties kan men indelen in 3 klassen: (i) de externe malformaties welke
met het blote oog kunnen waargenomen worden (b.v. ontbreken van ledematen),

(ii) skeletmisvormingen en (iii) inwendige malformaties (b.v. aangetaste lever, lon-
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gen, ... ). leder type van misvorming wordt meestal weergegeven via een binaire
variabele (aan- of afwezig).

De bedoeling van dergelijke experimenten is duidelijk. Enerzijds wenst men
de relatie tussen de toegediende dosis en de respons (risico op een bepaald type
afwijking, laag geboortegewicht, ... ) te bestuderen. Anderzijds wil men op basis
van een gepaste dosis-respons modellering een kwantitatieve risico-analyse uitvoeren,
d.w.z. men wil een veilig niveau van blootstelling aan een bepaalde toxische stof

schatten.

Het analyseren van de hierboven beschreven experimenten is methodologisch
een grote uitdaging. Men dient immers verschillende deelaspecten in rekening te
brengen. Ten eerste worden in de meeste toxicologische studies foetussen via de
moederdieren blootgesteld aan een of andere toxische stof. Dit heeft tot gevolg dat
de foetussen van eenzelfde moederdier zich gelijkaardiger gedragen dan foetussen die
afkomstig zijn van verschillende moederdieren. Dit is het zogenaamde “nest-effect”
of “cluster-effect” Om dergelijke gecorreleerde binaire gegevens te modelleren kan
men terugvallen op verschillende klassen van modellen: (i) conditionele modellen,
(ii) marginale modellen of (iii) cluster-specifieke modellen. Verder dient men ook de
hiérarchische natuur van de data in rekening te brengen: (i) een blootstelling aan
een chemische stof in een vroeg stadium van de zwangerschap kan leiden tot absorp-
tie van het embryo in de baarmoederwand; (ii) eens dit stadium gepasseerd loopt
de foetus alsnog het risico om te sterven in een later stadium; (iii) levensvatbare
foetussen kunnen allerlei misvormingen en/of laag geboortegewicht vertonen. In dit
proefschrift beperken we ons enkel tot levensvatbare foetussen. Vervolgens dient
men rekening te houden met de mogelijke associaties tussen de verschillende types
van misvormingen. Het is ook niet ondenkbaar dat de nestgrootte een belangrijke
invloed heeft op de responskansen. In een groot nest concurreren immers een groot
aantal foetussen voor de voedingsstoffen van dezelfde moeder. De kans op een mis-
vorming in een groot nest kan daarom groter zijn dan in een kleiner nest. Ten slotte
moet een statistisch model ook in staat zijn om binaire (malformaties) en continue

(geboortegewicht) responsen gezamenlijk te modelleren.
In dit proefschrift laten we verschillende van deze deelaspecten aan bod komen.

In hoofdstuk 3 beschrijven we het conditionele model van Molenberghs en Ryan
(1999), afgekort als MR, voor gecorreleerde binaire gegevens. Dit model is gebaseerd

op een exponenti€le familie en heeft dus ook alle daarmee verbonden voordelen.
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FEchter, een exponentieel familie model wordt gekenmerkt door een normaliser-
ingsconstante welke in het geval van gecorreleerde (multivariate) binaire gegevens
computationeel erg onaantrekkelijk kan worden. Vooral voor multivariate gegevens
vergt het bepalen van deze constante enorm veel tijd. Om dit te vermijden introduc-
eren we in hoofdstuk 3 de pseudo-likelihood schattingsmethode voor het MR model
met een enkele binaire respons. Deze methode levert consistente en asymptotisch
normale schatters op. Bovendien induceert ze (vooral voor multivariate responsen)
een aanzienlijke tijdswinst, vermits de normaliseringsconstante met deze methode
niet hoeft bepaald te worden. In ruil hiervoor boeten we een beetje aan efficiéntie
in, echter het efficiéntieverlies blijkt erg klein te zijn voor realistische parameter

combinaties.

In hoofdstuk 4 breiden we de pseudo-likelihood methode voor het MR model uit
naar multivariate responsen. Vooral in deze situatie bewijst de pseudo-likelihood
methode zijn nut. Reeds in het geval van 3 responsen blijkt de maximum likelihood
methode computationeel te complex te zijn. De pseudo-likelihood methode daarente-
gen convergeert zeer snel. In dit hoofdstuk formuleren we eveneens enkele klassieke
toetsingsgrootheden voor de pseudo-likelihood context, zoals Wald, score en pseudo-
likelihood ratio test statisticken. Deze grootheden zijn eenvoudig te bepalen en
hebben aantrekkelijke asymptotische verdelingen. Likelihood en pseudo-likelihood
test statistieken worden in dit hoofdstuk met elkaar vergeleken via asymptotische en
kleine steekproef simulaties. Hieruit blijkt dat het onderscheidingsvermogen voor de
score statistieken in de pseudo-likelihood context slechts een weinig kleiner is dan in
de maximum likelihood context. Voor de pseudo-likelihood ratio statistiek kunnen
we twee versies construeren, respectievelijk geévalueerd onder de nul of alternatieve
hypothese. Het onderscheidingsvermogen van deze laatste kan hoger worden dan
die van de klassieke likelihood ratio test statistiek, maar voor kleine steekproeven
dient men dan een prijs te betalen in termen van type I fout. Immers, voor kleine

steekproeven vertoont deze statistiek soms een veel te grote gesimuleerde type I fout.

Een van de doelstellingen van kwantitatieve risico-analyse ligt by het schatten
van een veilige dosis, welke kan worden gedefinieerd als de dosis waarbij het extra
risico op een bijwerking bovenop het achtergrond-risico, gelijk is aan een bepaalde
kans, b.v. 10~*. Het is bijgevolg van groot belang dat de gekozen modellen goed
aanpassen aan de data. In de statistische literatuur wordt nog steeds veel aandacht

besteed aan klassieke veelterm predictoren. Deze zijn echter vaak ontoereikend voor
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kwantitatieve risico-analyse. In hoofdstuk 5 bestuderen we fractionele veelterm pre-
dictoren, welke een veel grotere verscheidenheid van functionele vormen kunnen

bieden dan de klassieke veelterm predictoren.

In hoofdstuk 6 vergelijken we veralgemeende schattingsvergelijkingen (general-
ized estimating equations, GEE) met pseudo-likelihood in de context van marginale
odds ratio modellen. We construeren eerst een geschikte pseudo-likelihood functie
en de bijhorende schattingsvergelijkingen. Afhankelijk van het feit of de wetenschap-
pelijke interesse meer bij de hoofdeffecten ligt dan wel bij de associatie, beschouwen
we verschillende types van pseudo-likelihood. De resultaten van dit hoofdstuk sug-
gereren het gebruik van eerste orde veralgemeende schattingsvergelijkingen wan-
neer de interesse voornamelijk bij hoofdeffecten ligt. Desondanks blijkt de pseudo-
likelihood methode bijna even efficiént. Wanneer echter de interesse voornamelijk
bepaald wordt door de associatie parameters, stellen we voor om de pseudo-likelihood
methode te gebruiken. In dat geval kan GEE1 buitengewoon inefficiént worden.
Hoewel men zich in theorie ook zou kunnen beroepen op tweede orde veralgemeende
schattingsvergelijkingen (GEE2), welke lichtjes meer efficiént zijn dan GEEL en
pseudo-likelihood, zijn deze computationeel veel minder aantrekkelijk (vooral voor

grote nesten). We raden dan ook het gebruik van GEE2 niet aan.

In hoofdstuk 7 bestuderen we modellen voor toxicologische studies, waar iedere
foetus gekenmerkt wordt door een eigen set van covariaten. In het bijzonder bestud-
eren we de zogenaamde “heatshock” studies, waar foetussen op een gegeven tijdstip
uit het moederdier worden gedissecteerd en zich vervolgens verder #n vitro ontwikke-
len. ledere foetus wordt daarna voor een bepaalde tijd in een warm waterbad gedom-
peld van een bepaalde temperatuur. Enkele uren later kan men dan het effect van
deze behandeling op de foetus bestuderen. Dergelijke studies stellen ons in staat
om de associatie tussen verschillende embryo’s van hetzelfde moederdier te quantifi-
ceren in termen van zowel genetische als omgevingsfactoren. In dit hoofdstuk tonen
we aan dat de hoger beschreven conditionele modellen best niet gebruikt worden
voor dergelijke studies. Als alternatieven kunnen we wel gebruik maken van mar-
ginale modellen of random effect modellen. Verder introduceren we een eenvoudige
aanpassingstoets voor het analyseren van gecorreleerde binaire gegevens.

In toxicologische studies treft men naast verschillende types van malformaties ook
vaak het lage geboortegewicht aan als mogelijke respons. In hoofdstuk 8 stellen we

twee verschillende methodes voor die het gezamenlijk modelleren mogelijk maken van
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zowel binaire (malformaties) als continue (laag geboortegewicht) responsen. Eerst
introduceren we een probit benadering. Hier veronderstellen we dat er voor iedere
binaire respons een onderliggende continue variabele bestaat, die normaal verdeeld
is. De gezamenlijke verdeling van laag geboortegewicht en malformatie kan bijgevolg
beschreven worden via een multivariate normale verdeling. Fen tweede benadering
is de Plackett-Dale methode. Hier veronderstellen we dat de latente malformatie
variabelen een Plackett verdeling volgen. In beide gevallen is het specifiéren van de
volledige verdeling echter computationeel veel te complex. Voor de probit benader-
ing maken we daarom gebruik van veralgemeende schattingsvergelijkingen; voor
de Plackett-Dale benadering maken we gebruik van de pseudo-likelihood methode.
Beide methodes zijn fundamenteel verschillend in de manier waarop de associatie
tussen beide soorten variabelen wordt geschat. De probit benadering maakt hier-
voor gebruik van een correlatiecoéfficiéent. De Plackett-Dale benadering daarentegen
maakt gebruik van een odds ratio. De eerste is veeleer een maat voor “lokale” as-
sociatie, terwijl de tweede eerder een maat is voor “globale” associatie. Het is dan

ook heel verrassend dat beide benaderingen toch bijna identieke resultaten geven.

Hoofdstuk 9 is gewijd aan het valideren van surrogaat responsen in klinische
studies. Data afkomstig van dergelijke studies hebben een gelijkaardige structuur
als in toxicologische studies. Verschillende studies (clusters) worden onafhankelijk
verondersteld. Patiénten binnen eenzelfde studie zijn echter mogelijks gecorreleerd
en kunnen aanleiding geven tot meerdere responsen van verschillende types (binair,
continu, enz.). Hoewel in een klinische studie meestal wel meerdere respons data
opgemeten worden, is men vaak slechts geinteresseerd in 1 enkele respons (de hoof-
drespons), waarop men zich vervolgens baseert om het effect van een bepaalde behan-
deling na te gaan. Normaliter is de hoofdrespons de klinisch meest relevante respons
variabele. Maar vaak is het moeilijk of zelfs onmogelijk om die te observeren. In
dat geval probeert men het effect van een behandeling te evalueren aan de hand van
alternatieve responsen, zogenaamde “surrogaten”. Surrogaten kan men definiéren
als variabelen die gebruikt kunnen worden in de plaats van een hoofdrespons bij het
evalueren van het effect van een behandeling, omdat ze vroeger, gemakkelijker of
vaker opgemeten kunnen worden. Vooral het onderzoek in verschillende vormen van
kanker maar ook de recente ontwikkelingen in het AIDS onderzoek hebben de inter-
esse in surrogaat responsen nieuw leven ingeblazen. Uiteraard stelt zich de vraag of

dergelijke surrogaat responsen “goed” zijn, d.w.z. of het effect van de behandeling
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op de surrogaat respons een getrouwe weergave is van het effect van de behandeling
op de hoofdrespons. De validatie van surrogaten is tot op heden nog steeds een

controversieel onderwerp. In hoofdstuk 9 wordt dit in detail besproken.



