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rity, when the bifurcation vector field X o is of center type, there is the well-known
technique of computing Abelian integrals (the so-called Melnikov functions) in 1-para-
meter families, and the technique of the Bautin ideal in multi-parameter families. For
instance, the first order Melnikov function is the coefficient in the linear approximation
of the displacement map &), with respect to A. The technique of the Bautin ideal
is based on a special division of the displacement map; for 1-parameter families this
technique reduces to the technique of computing Melnikov functions. In the literature,
there exist algorithms to compute Melnikov functions, while the Bautin ideal is a very
powerful theoretical technique, that often, in practice, is too difficult to be computed.

In this thesis, we focus on three problems, that briefly can be described as follows.
The first problem deals with stable bifurcation diagrams of limit cycles near centers,
where attention is focused on uniform results as well in phase plane as well as in
parameter space.

The second problem is the investigation of how 1-parameter techniques, such as
the computation of Melnikov functions, can be used in multi-parameter families, to
compute its cyclicity near centers.

The third problem deals with families (X, (ve)) Of planar vector fields that unfold
a Hamiltonian vector field for £ = 0, where ¢ is a 1-parameter; it is the investigation
whether results on linear approximations I, of the displacement map d(, ), with
respect to £ (such as the first order Melnikov function), can be transferred to valuable
results on the bifurcation diagram of limit cycles and the cyclicity. Let us now describe
these problems in more detail.

Related to the first problem, a well-known example of a stable bifurcation patfern
is the Andronov-Hopf bifurcation in the neighbourhood of a non-degenerate elliptic
singularity (i.e. with pure imaginary eigenvalues), the so-called Hopf singularity.
By the implicit function theorem, it follows that under small perturbations of the
vector field, the singularity persists and no new singularities are created. However,
it is possible that the stability type of the singularity changes when subjected to
perturbations, and then this change is usually accompanied with either the appearance
or disappearance of a small limit cycle encircling the singularity. This important well-
known bifurcation phenomenon is called the Andronov-Hopf bifurcation.

Generalisations of the Andronov-Hopf bifurcation, giving rise to multiple limit
cycles, are called generalised Hopf bifurcations or Hopf-Takens bifurcations. A precise
study of generic generalised Hopf bifurcations is done in [T}, by way of normal forms,
when no centers occur.

Perturbations from centers naturally show up in many problems and one con-
stantly has to consider Hopf-Takens bifurcations that perturb from a center. In this
thesis, we link the different techniques that are used in the study of a Hopf-singularity,
surrounded by non-isolated periodic orbits: normal forms, Lyapunov quantities and
Melnikov functions.

In the study of bifurcation diagrams of a family (X(,,.))(v.e), there appears besides
a 1-parameter £, inducing centers for £ = 0, also an external parameter v, that controls
bifurcations from these centers. If the centers are exclusively situated at £ = 0, then
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integration of the first order approximation of v, .y with respect to ¢ along the level
curves I'; C {H =z} of the Hamiltonian H : if

V(y,e) = dH + €Dy + o(g),e— 0,

I,,(x]=—/=‘ﬁm

where [, is oriented by the vector field X . Therefore, we refer to I, as the related
Abelian integral of the family (X)) -

In case T' is a periodic orbit or a non-degenerate elliptic singularity, then it is well-
known that results on configurations of isolated zeroes of the related Abelian integral
I, can be transferred to results on configurations of limit cycles of the family in a
trivial way, at least if the Abelian integral represents an elementary catastrophe.

In dealing with a k-saddle cycle I' (i.e. a hyperbolic polycycle with k saddle-type
singular points), the transfer of the results on the related Abelian integral I, is no
longer obvious. The difficulties are due to the fact that the displacement map is not
C at the saddle points, unlike the case when I' is a periodic orbit or a non-degenerate
singular point.

In dealing with a 1-saddle cycle or a so-called saddle loop, it is known from [Mar],
that under certain genericity conditions on the Abelian integral I,,, the configuration
of limit cycles of X, ), for € close to 0, is completely analoguous to the configuration
of zeroes of I,,.

In general, unlike the case of the regular periodic orbit or the saddle loop, the
bifurcation diagram of limit cycles near a k-saddle cycle is no longer trivial in the
e-direction. The bifurcation diagram of a 2-saddle cycle is studied in [DRR], and
more generally, the generic k-parameter unfoldings of k-saddle cycles are studied in
[Mo]. Using these results, it is proven in [DR], that the Abelian integral is a very bad
approximation of the displacement map as soon as the unfolding breaks more than
one connection: almost all the limit cycles cannot be traced by the Abelian integral.

It is even not obvious whether it is possible to transfer results on the Abelian
integral to obtain valuable results on the cyclicity along the 2-saddle cycle. Even in
case the unfolding keeps one connection of the 2-saddle cycle unbroken, the transfer
does not work out in a trivial way, unlike one could expect by the known results on
the saddle loop.

In [DRJ, it is proven that there exist generic unfoldings of 2-saddle cycles leaving
one connection unbroken, for which the cyclicity is 4, while the related Abelian integral
1, is of codimension 3, and hence can produce at most 3 zeroes. As a consequence,
in that case, one limit cycle is not covered by a zero of the related Abelian integral.
Such a limit cycle is called an alien limit cycle.

However, the problem of transfer can be dealt with. From [DR], it is known that
the Abelian integral I, provides a finite upperbound for the cyclicity, if it is of finite
codimension. It is interesting to notice that the upperbound in this finite cyclicity
result, is strictly bigger than the maximal possible zeroes of the related Abelian
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possible presence of Hopf-Takens bifurcations, as we will see in chapter 2. Tradition-
ally, Hopf-Takens bifurcations are characterised by normal forms. Both techniques
are of algebraic nature; in section 1.2.4, we recall the definition of Lyapunov quanti-
ties and state an important relation between normal forms and Lyapunov quantities.
Moreover, we clarify the connection with the Bautin ideal and the coefficients of the
displacement map. We also recall a technical proposition to compute Lyapunov quan-
tities in Liénard systems, that will be used in chapter 3. Finally, the duality between
the saddle and focus is recalled.

Next, we consider the special situation of a multi-parameter family (X)), where
A = (v,¢) and only for £ = 0, the vector field is of center type. We will refer to this
situation by ‘regular hypersurface of centers’ and an exact definition is given in section
1.3. After removing the degeneracy in &, we obtain reduced displacement maps and
reduced Lyapunov quantities. These last quantities again can be used to investigate
the presence of Hopf-Takens bifurcations near centers.

Finally, in chapter 5 we deal with the cyclicity problem near a graphic, more
precisely a 2-saddle cycle. The displacement map at a graphic is not differentiable, but
can continuously be extended there. Standard techniques as the division-derivation
algorithm for differentiable functions cannot be applied. A good frame for studying
such unfoldings is created in [DR] by the introduction of ‘simple asymptotic scale
deformation’. In section 1.4, we recall the definition of ‘simple asymptotic scale
deformation’ and related notions, that are illustrated by several examples that will
be used in chapter 5. Moreover, we show that an Abelian integral along a polycycle
has an asymptotic expansion in the logarithmic scale. In sections 1.5 and 1.6, we
describe its use in the study of the bifurcation pattern of limit cycles in case of the
saddle loop and the 2-saddle cycle respectively, by recalling results from [Mar| and
[DR] respectively.

1.1 Limit cycles

For basic definitions and theorems on differential theory, such as regular surface (or
manifold), vector fields, existence and uniqueness of solutions, singular points, peri-
odic orbits, a- and w-limits,. . ., we refer the reader to e.g., [HS], [JrtM], [Perko], and
[W]. Recall that a vector field X = XiZ+X 2§ on R?, can be represented as a
system of autonomous first order differential equations

{J’J = X1(I,y)
!;' == Xg(:l':,y)

or by the so-called dual 1-form v, defined as
v = Xidy — Xodz

Let us now give a precise definition of a limit cycle.






The second part of Hilbert’s sixteenth problem deals with polynomial vector fields
in the plane. It essentially asks for the maximal number H,, of limit cycles, and their
relative positions, in a polynomial planar vector field, in function of the degree n :

n T
s o2 i . 3 b
Z aijz‘yj% -+ Z b,;jz:‘y-“é—, where z,y,a:5,b;; ERVO<i+j<n (1.1)
i+5=0 i+3=0 v

The finiteness part of Hilbert’s sixteenth problem exists in proving that H,, is finite,
¥n € N. Of course, H; = 0, since periodic orbits of linear vector fields are never
isolated. It remains unsolved even for quadratic polynomial vector fields. There were
several attempts to solve it, but all of them failed. So far, one only knows for sure
that Hy > 4 and Hjz > 11. Yet the problem has a source of inspiration for significant
progress in the geometric theory of planar vector fields, as well as bifurcation theory,
normal forms, foliations and some topics in algebraic geometry.

Let us now briefly explain how this global problem can be ‘localized’. Therefore,
we first need to recall some definitions.

Let (5,d) be a metric space. Then, the set of all non-empty compact subsets of
S is denoted by H (S) (compact, for the topology induced by the metric on ). The
Hausdorff space is defined by the metric space H (S), equipped with the Hausdorff
distance dy, defined by

di : H(S) x H(S) —» R : (A, B) = dy (A, B),

with dy (A, B) = max {sup{d(a,B) : a € A},sup{d (b, A) : b € B}} [Barnsley]. Con-

vergence in the sense of the Hausdorff distance will be denoted by the symbol ok In
H

this thesis S will be a compact subset of R?; if S is a compact metric space, then it fol-
lows from elementary topology that also H (S) is a compact metric space [Barnsley].
Now we can give a definition of the notion of limit periodic set and its cyclicity, i.e.
the maximum number of limit cycles, that locally can bifurcate from I'. From the
definition it will be clear that the cyclicity only depends on the germ of the family
(X1), at (I;A%) . Recall that for a function f : X — R defined on a metric space
(X,d) and y € X the superior limit ‘limsup’ for z — y, is defined as:

limsupf () = inf {sup {f (z) : d (x,y) < 6} :6 > 0}.

T—y

Definition 3 Let P C R? be the parameter space with \° € P, and let (X)),.p be a
family of planar vector fields on a regular surface S. Consider the Hausdorff distance
dy on H(S).

1. A set I C S is a limit periodic set of (X)), at A° if and only if T' € H(S) and
there exists a sequence (\i);ey tn P with Aq — A%,i — oo and such that for
every i € N, there exists a limit cycle v; of Xy, with ~y; = I, i — occ.
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As is common, we denote analytic by C¥, and we always mean real analytic.
Furthermore, if C ¢ RY (N € N) is a compact set, then we say that a function
f:C — R (I € N) is analytic on C if f can be extended analytically on an open set
O in RV, that contains C; i.e. if there exists an analytic function f : O — R’ such
that

fle=F
Recall that the notation f | o is used for the restriction of f to C.

From the preceeding discussion, it is clear that our problems are of local nature;
local, in the sense that a property has to be satisfied on arbitrarily small neighbour-
hoods of A? and I. We often are not interested in the exact neighbourhood, we only
need to be sure that there exists a neighbourhood with the required property. There-
fore, we now summarise some notations that will be used throughout the thesis. Since
the cyclicity of a limit periodic set I only depends on the germ of the family (X.\), at
(T, A%, we also speak of an unfolding of Xyo along T, represented by the family
(X2)y-

V\‘;e use twiddles ™ to denote germs of a certain C* function at A°. The notation
(R?, %) will represent a neighbourhood of A% in R?, analoguously (R, sp) will represent
a neighbourhood of sg in R, and so on. Furthermore, A ~ A0 (respectively s ~ sg)
means that A is close to A? (respectively s close to sg), and e.g., V= | O indicates that
the property holds for all £ > 0 sufficiently close to 0.

When we speak of an analytic function f : (R x R”, (so, A%) — R (respectively
f: (R2xR?, ((wo,%0),A%)) — R), it means that f is analytic on a neighbourhood
U x W of (s0,A°) in R x R? (respectively ((zo,%o), A% in R? x R?), that takes the
form

{(5,)) ERxRP:|s| < p, [|A = A°|| < p}
(respectively {((z,y) ,A) € R*xR” : |z — x| < p, |y — w0l < p |A =A%) < p}), for a cer-
tain p > 0.

Furthermore, in chapter 4, we will consider contacts between curves: we say that

two curves ¢, ¢ : I € R — R” have contact of order at least k at zo € I if

(¢ =) @) = o((z — )", — a0,
meaning that limg g, %—i%%

of k-jet of functions f of differentiability class C (N > k or N € {oo,w}) at 2o, i.e.
the Taylor polynomial P of f at x = x of degree k; it is denoted by

Ik (g, (&) = Pe ()

= 0. Related to this notion, we encounter the notion

(thus having the property: (f — Pi) (z) = o((z — .’B{))k),:l: — Tp)-

Furthermore, a function f : I C R? — R is said to be non-zero, if there exists
z € I such that f (z) # 0; a germ ¢ of an analytic function at 29 is said to be non-zero
if every representative f : I C RP — R (with z° € I) for  is non-zero.






of X (close to I') and vice versa. Somefimes, such a family of functions will also be
called a family of displacement maps for (X ), .

In view of this remark, we can easily construct vector fields, given a prescribed
displacement map dy, as follows:

d

5} 5 a
Xy=@Wy——2=)+0(5A) (=
\= gy o) Hi(8X) (@5, +u
where s > 0,52 = 2 + y? and 4 (5,A) = 6, (s) . Notice that, in the traditional sense
of the word, 4, is only a displacement map for X, up to a non-zero factor.

Cyclicity and multiplicity

The eyelicity of the family of planar vector fields (X), can be expressed in terms of
the associated family of displacement maps (6,), :

Cyel (X, (T,A%)) = limsup {number of isolated zeros s of dy}

A= AL s—gy

Sometimes one not only counts the maximal number of possible zeroes, but one also
takes multiplicity of the limit cycles into account. The multiplicity of a limit cycle is
given by the multiplicity of the corresponding zero. We say that sq is a multiple zero
of &yo of multiplicity k, also called a k-uple zero of 8y, if

83 (s0) = 0,¥0 < j < k—1 and 83 (s0) #0, (1.3)
If (1.3) holds, we also say that the map éyo has order k at 5o, and we denote it by
orderdyo (sp) = k
This number is referred to as the multiplicity:

Mult (X, (T, A%) = limsup {Z orderd) (s) : s zero of 8y }.

A=Y s—ay T

Hence, near ', with I'a periodic orbit or a non-degenerate elliptic singularity, the
study of the maximal possible number of limit cycles is transferred into the study of
maximal number of isolated zeroes of 1-dimensional maps.

Of course,

Cyel (X, (T, A%)) < Mult (X, (T, A%)).

In fact, the notions of cyclicity and multiplicity coincide, when there exists a param-
eter value A for which the vector field X, has exactly Mult(Xy, (I',A?)) limit cycles.
This is what happens for generic unfoldings.
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As a consequence of Rolle’s theorem, in case sg is a multiple zero of dyo of mul-
tiplicity k, then dy has at most k zeroes in a neighbourhood of sp for all parameter
values A, sufficiently close to A%. Hence, in this case,

Cyel (X», (T,A%)) < Mult (X, (T,A%)) < k.

Theorem 7 (Division-Derivation algorithm based on Rolle’s theorem) Let f :
I C R — R be a function of class C* (k € N\ {0}), where I is an open interval in R
with so € I. Let a; : I — R be functions of class C*=7 with

a;(50) #0,Y0<j<n
Define the functions f; : I — R (0 < j < n) inductively as follows:
fo=ao-f and f; Zﬂj'f}_uVl <Jj<n

If fn (80) # 0, then there exists a neighbourhood Iy of s in I such that f has at most
n zeroes in Iy.

Notice that, by this theorem we only find an upperbound for the number of zeroes,
we have no controll on the exact maximal number of zeroes, or on the relative positions
of these zeroes. The following theorem is a stronger result than Rolle’s theorem: it
also says something about the genericity of the bifurcation diagram of the zeroes in
the family (dy),, locally at s and A%, by linking the bifurcation diagram of the zeroes
in the family (4,), to a family of polynomials. In this way, the family of maps is
prepared to study its zeroes. For this reason, this theorem is called the Preparation
Theorem [M, Malgrange66],[GG]. We will only use the C*° and C* version of this
theorem.

Theorem 8 (Preparation Theorem) Let Uy x Wy C R x R” be an open neigh-
bourhood of (0,A°) , and let be given a C™ (respectively C*) function F' : UgxWp — R
such that

F(r,\°) =r'Fy(r), VreUs withFi(0)#0

Then, there exist an open neighbourhood U x W C Uy x Wy of (0,A?) and C™
(respectively C*) funetions

¢p:W—-R andh:UxW —R

such that
F(r,)) =Q(h(r,A),0(\)- VO (h(r,)),6(N) (1.4)

where Q (0,0) - F; (0) > 0 and
VU) (R;(a‘ﬂi---gﬁl-—l)) - ﬂn+013+... ‘l"ﬂi_lRI_l _J’_RJ}

such that
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3. If A = (v,e),& > 0 and there exist C* (respectively C*) functions ¢;,¥;,j =
0,1,...,n—1 such thatVO<j<n-—1:

qf)j:Ek'f;j aﬂd‘l,bj:&'k'w‘_j,

then the equivalences in 1. and 2. also hold if we replace ¢; (respectively 1](_;3; )
by ¢; (-, 0) (respectively ¥; (-,0)) and X° by v°.

On many occasions, one can succeed in checking that at some point A" we get
o (A%) =...= 1 (%) =0 and 9, (A°) #0,
where ¢; (\°) = %%JE (0. A%) . But to controll the fact that the map

A= (Yo (A) .- ti-1 (X)) (1.6)

is a submersion at A\°, might be quite a challenge. Sometimes one only succeeds in
calculating ;, with 0 < i < [ at those values A where ¥ (A) = ... = ¥;_1 (A) = 0.
This is of course not a draw-back with respect to the third statement in the Prepa-
ration Theorem. Indeed if we want the map (1.6) to be a submersion at A°, then
certainly every component A — ; (A) has to be a submersion too. As such we need
the requirement that A — g (A\) is a submersion at \°. This implies that for A near
A0 the set Zy = 1, ' (0) is a submanifold and we can now restrict the rest of the
calculation to Zy. It is easy to see that X — (g (A), %1 (X)) is a submersion at A° if
and only if 4 is a submersion at A\? and the restriction of 1, to Zp, 1| Zo+ 18 a sub-
mersion at A%, Of course the last map 1); only needs to be known on Z, meaning that
1 (A) only has to be calculated for A € Zy. In practice this means that we will use
tho (A\) = 0, near AU, as an equation explicitly giving some parameter A; as a function
of the remaining parameters (A, ..., Xi—1, Adit1:---5Ap) ; S0 that ¥, will be expressed
in terms of those remaining parameters. This procedure can now be continued until
reaching 11, by the following lemma:

Lemma 10 Suppose that gi,. .. ,Gn,n > 2 are real-valued C> (respectively C¥ ) func-
tions defined on a neighbourhood of \° € R? and g; (\°) = 0, Vi = 1,...,n. Define

7= ’f’r_“qllggl (0). Then, the map
A (gl (A}r"'agn (A))
is a submersion at A°, if and only if the map
A (91 (A) yer19n—1 (’\))

is a submersion at A\° and the restriction of g, to the submanifold Z is a submersion
A,












16

is a local diffeomorphism at ;°. Denote the inverse of a by ¢ = a~'. Then

FoW) =vo+vy+... +uy "t + M)y (1+9(y,6(¥))

where M = a; 0 ¢. Since ¢ (0) = u°, M (0) # 0 and since

f(y!qb(o)) =-ﬂ'ﬂr(0)yI (l +0(y)),y—0,

the Preparation Theorem allows us to write

fy,¢ W) =U (y,v)- P"* (y,h(v)), (1.11)

where U is C™ (respectively C*) in (y,v) with U (0,0) > 0, and h is C* (respectively
C“) in v such that h(0) = 0. The sign in P"* is given by the sign of M (0). By
comparison of the coefficients corresponding to the same powers of y in previous
equation, inductively on the condition that all the coefficients corresponding to lower
order terms in y vanish, the map h is shown to be a diffecomorphism. From (1.11), we
have that

f(y,m) =U (y,a(p) - PH* (y,hoa(n))

and hence, the pair (h o a, Id|g) is a contact-equivalence between the unfoldings (f,)
and Pb*. m
This proposition justifies the following definition:

Definition 16 We define the standard generic unfolding (P,*) or catastrophy model
with a I-dimensional parameter v = (vg,...,v—1) € R by

Pf,‘i (y) = PhE (y,¥)=wo+1n1y+...+ Vg_]yt_l 4 yt.

Vector fields of center type

We say that the vector field X o is of center type, if the associated displacement map
8o identically vanishes. Geometrically, this means that the phase portrait of Xyo
consists of a continuous band or disc of non-isolated periodic orbits, in a neighbour-
hood of T. If T' is a non-degenerate elliptic singularity surrounded by non-isolated
periodic orbits, then we say that I' is a center. A typical example of a vector field of
center type is given by a preditor-pray system, e.g.,

i = az — bxy,y = —cy + dzy,

where x (respectively y) represents the number of prays (respectively preditors), and
the parameters a (respectively d) the birth-rate of the prays (respectively preditors),
and b (respectively c) represents the death-rate of the prays (respectively preditors).
In figure 1.2, the phase portrait of such a system is presented for the parameter values
a=1;b=2,6=3,d'=4.
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of

d(s,e)= ZM(s)s s~ 89,6~ 0 (1.13)

=1

where the coefficients M; are C* (respectively C°°) functions in s,1 € N*.
Definition 17 The function M; is called the i-th Melnikov function (i € N\ {0}).

Suppose that My, is the first non-zero Melnikov function, then there exist dg, ey > 0
such that
V¥ (8,€) € |so — 8o, 80 + 8o X |—€0,€0] : 0 (s,£) = ek§ (s,€)

with
0 (s,8) = Mk (8) + O (g) ,e — 0.

The isolated zeroes of d (-,&) correspond to those of § (-,&). Hence, the number of
isolated zeroes of 4 (-, &) close to sy, for £ close to 0, but £ # 0, is bounded by the
order of My, at sp (by Rolle’s theorem and a continuity argument). As a consequence,
we have

Cycl (X., (I',0)) < orderMjy (sg).

Moreover, by performing the blow-up in case that I" is a non-degenerate elliptic singu-
larity, there show up some symmetry properties; for instance, the phase portrait for
r < 0, is obtained from the phase portrait for r > 0 after rotation over 7 radials. As a
consequence, after blow up we find an odd number of periodic orbits (if this number is
finite), say 2k+1. One periodic orbit corresponding to the singularity I', and the other
periodic orbits are counted twice; in fact, after blowing down, this vector field only
has k periodic orbits. As a consequence, if I' is a non-degenerate elliptic singularity,

then
orderM,-c (Su) —1

2

In the literature [F96],[P], one can find algorithms to compute the first non-
vanishing Melnikov functions for analytic families of planar vector fields unfolding
a Hamiltonian vector field of center type. This is no restriction, since every analytic
vector field of center type is a Hamiltonian one, up to a non-zero analytic factor
(proposition 19).

Cyel (X, (T',0)) <

Definition 18 Let H : U — R be a C* function (k € NU{oo,w}), defined on an
open set U of R2. Then, we say that the C*=1 vector field X, defined by

a 6H

X (z,y) = %g(ﬂf,y) B Ty & y} By

(1.14)

is o Hamiltonian vector field; the function H is called the Hamiltonian of (1.14).
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where T, is the periodic orbit of X contained in the level curve H ~1(h). From
equation (1.15) , it follows that the first order Melnikov function M; is given by

My (h) = — /F (x{Mdy - x{"dz)
“Th

=—/ U].
n

Moreover, if I'y, is the boundary of a simply connected region S (h), then it follows by
Green's theorem that

M (h)=0o f f div (X{”,X;U) dzdy

S(h)

where o = —1 (respectively +1), if the Hamiltonian vector field Xq induces an orien-
tation such that S (h) is positively oriented (respectively negatively oriented).

Theorem 20 [P] Suppose now that

M,=0V1<i<k-1,

k—1
M. (h) = ]r.‘ (Z 9iVk—i — Uk) )
n \i=1

where the analytic (respectively C*) functions g; (1 <i < k— 1) are inductively de-
fined on an open neighbourhood of I' by

i—-1

v — gidH = Zgj'vk—l—j —dR;
i=1

for certain analytic (respectively C*) functions R;,1 <i<k—1.

We know that the displacement map §. and the first non-zero Melnikov function
M;, are C¥ (respectively C*) as functions in the variable s. It is well-known that
the first non-identically zero Melnikov function can be written as a C* (respectively
C™) function in the variable h (where h = r?), even at h = 0; we recall this fact
in theorem 62, including its proof, in section 1.3.2. However, the displacement map
itself cannot always be written as a C* (respectively C*) function at h = 0, as the
following example illustrates. Consider the family of polynomial vector fields given

by

(y+ex(l +x))£€+{—x+sy(1+x))—a% (1.16)
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Definition and basic properties

Let us denote the local ring of analytic function germs at A by Oyo, and its unique
maximal ideal by M o. The ideal generated by analytic function germs ¢,,...,¢; is
denoted by

(PN )

We use twiddles ™ to denote the germ of a certain analytic function at A\°. We will
not. always use the twiddles to make a distinction between the germ of an analytic
function at A\° and its representative. When we deal with ideals, we will always work
in the local ring Oyo of analytic function germs at A°, without mentioning it each
time. Furthermore, if f, g € Oyo, and I is an ideal in Oyo, then we say that f is equal
to g modulo I if and only if f — g € I; briefly, this relation is denoted as:

f=gmodl.

The expansion of §, in a Taylor series at s = sg, defines a sequence of analytic
functions g, @y, ..., 0y, ... in a neighbourhood of A :

8x(s) =D (N (s—s0)' 18~ 80

=0

Definition 21 The ideal Z, generated by the germs of the analytic functions oy at
X0 is called the Bautin ideal:

I=@@:jeN)=T%

The point sy is called the base point of I°°. Since the local ring Oyo of analytic
function germs at \° is Noetherian [M], this ideal is finitely generated, i.e. there
exists a number M (sg) € N such that

T=(d:0<j<M(s)). (1.17)

The notion Bautin ideal finds its origin in the study of centers in families of
quadratic vector fields by N.N. Bautin, who reduced the cyclicity problem to a certain
assertion concerning all Taylor coefficients of the Poincaré map. He computed the first
seven Taylor coefficients explicitly and established some divisibility properties for all
Taylor coefficients. As result, he found that the cyclicity from a focus or center in a
family of quadratic vector fields is at most 3 ([Bautin],[Y]).

Definition 22 We denote the zero-set of the ideal T by Z (I). If @1,...,@; s a set
of generators for I, then Z (I) is defined as the germ at \° of the set

AeW:p;(N)=0V1<iLl},

where W is a neighbourhood of \° in R?, such that the maps @y, ..., are defined on
W. Notice that Z (I) consists of all parameter values \ near A° for which the vector
field Xy is of center type.
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and put 6y = Py — Id and 6} = Q) — Id. Then there exist C* functions f}', 1Ly
i,V1 > 1 such that

&

A
3_‘5J\ ()], =g ij " 5a7 A (8)ls=0- (1.18)

where ff (\) = (e (U))‘_] Vi> 1.

The Bautin ideal even does not change when we multiply the displacement map
itself by a non-zero function; more precisely, we have the following property:

Proposition 25 Let (8)), be a C¥ family of maps and let (f)), a C* family of maps
with f (so) # 0. If (8}), is the family of maps obtained by

83 (s) = fr (s) dx ()
then there exist C* functions f}, 1<j<i—1,¥i>1 such that Vi € N :

T 0],y = F2 (50) g 82 9] ,,0+ng ) o 3 (5) s -

Remark 26 Propositions 24 and 25 also hold when C¥ is replaced by C*°; in fact,
identities (1.18),1 < i < k, even hold for C* functions with k € N\ {0} (the functions
£ are only C¥~"H V1< j<iVi<i<k)

Another interesting property is the following, its proof can be found in [R98].

Proposition 27 IfT is a non-degenerate elliptic singularity, represented by sq, then
the Bautin ideal is generated by the ‘odd’ coefficients; more precisely, suppose we have
the following local expansion at sg :

5(s,0) =3 ai (A) (s — 80)" 8 ~ 0,4 ~ XY,
i=1
then Vp e N :
gy € (a1,0,...,02p1)

Proposition 27 can easily be checked in case the family of vector fields is expressed
in normal form: after a coordinate change and multiplication by a strictly positive
function, the family X is expressed in polar coordinates (r,#), up to finite order as

{ Po= r T8 (N)r¥ 40 (PN2),r -0
g = 1

The coefficients of even index in the displacement map, corresponding to the trans-
verse section {6 = 0}, all are zero; hence, the result of proposition 27 trivially holds
in this case. From facts 2,3,4,5 and proposition 24, it now follows that proposition 27
holds in general (i.e. if I' is a center).
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From this proposition the following definition is meaningful:

Definition 31 Let @1,...,4 be a minimal set of generators for . Then, the func-
tions H;, 1 < i <1 defined by (1.21) are called a set of factor functions corresponding

t0 P1y- - o) QL.

Proposition 32 There exists a minimal set of generators for T such that the corre-
sponding factor functions have a strictly increasing order at s :

orderH; (sg) < orderHy (sq) < ... < orderH (sp)-

Definition 33 A minimal set of generators such that the corresponding factor func-
tions have a strictly increasing order at so is called a minimal set of generators adapted
at 5g.

Cyclicity, multiplicity and index.

In this section, we briefly recall the notion of relative index, that is defined in [R98],
and there proven to be an upperbound for the cyclicity (and even for the multiplicity)
of the family. In fact, when computing Melnikov functions in 1-parameter families,
the upperbound found is exactly this index. In [R00], it is proven that there exists
a l-parameter subfamily in which the index of this family is equal to the one of the
whole family. Later, in chapter 3, we come back on this notion, and in particular,
attention is focused on the use of 1-parameter techniques in multi-parameter families.
Let us start by defining the index at sg, in case sy represents a periodic orbit.

Definition 34 Let ¢1,. .., be a minimal set of generators for T, and let Hy, ..., H;
be a corresponding set of factor functions. Then, the relative index of the Bautin ideal
at sp is defined by

Index (X3, (T, A%)) = inf{n € N : {jn (Hi),, }_, is R-independent}.

By proposition 30and the analyticity, the index is finite. The index only depends
on 6 (or X») and sp. In [R98], this number is denoted by s5 (so) . We use the longer
notation to indicate whether we work with the p-parameter family (X), or with a 1-
subfamily (X¢(s)), with ¢ (0) = A”; for this 1-parameter family (X¢(e)), » the relative
index of T is denoted by Index (X¢(.), (I',0)). The following equivalent characterisa-
tions can easily be checked:

Proposition 35 If ¢1,...,¢ is a minimal set of generators adapted at so, and if
Hi,...,H; is a corresponding set of factor functions with

orderH, (sg) < orderHs (sg) < ... < orderH; (sp),

then
Index (X, (T, A")) = orderH; (so)
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To end this section, let us illustrate in an example that the numbers in (1.22)
possibly all are distinct. For instance, consider the 1-parameter family (X.) of type
(1.2) with

d (s,e) =€h(s, )

and
h(s,e) = (s — (s0 +€))* ((s — 50)* —&%)

where so > 0 and I' = {(z,y) : 2? + y?> = s§}. The Bautin ideal is generated by
¢ (€) = € and the corresponding factor function H is given by

H (s) = (s — 50)*
Clearly,

Cycl (X., (T,0)) = 1 < Mult (X, (T, 0)) = 2 < Index (X, (I',0)) = 4

Principal Bautin ideal

Definition 41 The Bautin ideal is called principal, if it is a principal ideal, meaning
that it can be generated by only one function.

If the Bautin ideal is principal, then there exist analytic functions
@: (R?,\%) — (R,0) with ¢ (A°) =0

and
h: (R x RP, (s0,A%)) — R with h (-,A%) #0

such that the displacement map can locally be written as
5(5,2) = @A) h(5,X) 58— 50,A = A°

Then, the set Z (Z) = {\ : ¢ (A) = 0} describes the parameter values A, for which X
is of center type. Outside Z (Z), the bifurcation diagram of the limit cycles of the
family (X)), is given by the one of the isolated zeroes of the family of maps (h (-, ),
for A ¢ Z (Z) (i.e. ¢ (X) #0). Again, the bifurcation diagram of this last one can be
studied by application of the Preparation Theorem. In particular, if I' is a periodic
orbit and if Index(Xy, (T, A%)) = and if the map

=
H: (R, X)) R : A (h(ao,k),%g(sm),-- o h(so,/\))

“1 g1
is a submersion at A, then

Cyel (X, (T, A%)) = Mult (Xy, (T, A?)) = Index (X, (T, A%))
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Regular Bautin ideal

Definition 43 The Bautin ideal is said to be regular, if it has a regular set of gen-
erators; more precisely, if the germs of the analytic functions ¢1,...,p at A\° form
minimal set of generators for I, then T is regular if and only if the map

@: (RP,A%) SR : A= (01 (A) s () (1.24)
is a submersion at A9,

It is an easy calculation to check that this condition does not depend on the chosen
minimal set of generators, and hence this definition is meaningful. Geometrically, the
fact that the Bautin ideal is regular implies that the zero-set of the ideal forms a
regular surface (or we will shortly say that ‘the centers occur on a regular surface’).
However, the converse is not true in general. For instance, the ideal Z generated by
the germ of the map A = (Aq,...,Ap) — A7 at A% = 0 clearly is not regular, although
its zero-set is a regular surface.

An interesting property of a regular Bautin ideal is that we can choose analytic
coordinates in parameter space such that the generators of the minimal set of gen-
erators correspond to projections and such that the minimal system is adapted at
So -

Proposition 44 Let (X,), be an analytic family of planar vector fields, unfolding a
vector field of center type Xyo and suppose that I' is a non-isolated reqular periodic
orbit of Xyo. If the Bautin ideal is regular, and if ¢i1,..., is a minimal set of
generators for I, then there exists an analytic diffeomorphism < : (R, A%) — (R?,19)
such that

wios(Viy. .., 1) =¥, V1 <4 <1

and the germs of the analytic functions @1 0¢,...,@ o< form a minimal set of gen-
erators adapted at so for the Bautin ideal I, where I is an ideal in O, defined by

felizbfzfocef

In case the Bautin ideal is regular, the cyclicity can also be bounded from below
(its proof is based on Chebyshev systems [Mar| and can be found in [R98]):

Theorem 45 Let (X,), be an analytic family of planar vector fields, unfolding a
vector field of center type Xyo and suppose that I' is a non-isolated reqular periodic
orbit of Xyo. If the Bautin ideal is regular, then

dimZ — 1 < Cycl (X, (T, %)) (1.25)

We conclude by giving two algorithms to check whether a Bautin ideal is regular
or not. The first proposition states that if the map defined in (1.24) is a submersion
at A? for a set of generators, then this set of generators is a minimal one, and then, of
course, the considered Bautin ideal is regular. The second proposition allows one to
decide whether a Bautin ideal is regular or not by computation of Melnikov functions
in linear 1-parameter subfamilies.
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a consequence, Lyapunov quantities can also be used in the description of the set of
parameter values for which centers occur.

In section 1.2.4, we give an example of calculation of Lyapunov quantities in
Liénard systems, that will be used in chapter 3.

To end this section, we recall the notion of saddle quantities, and explain briefly
the existing duality between saddle and focus.

Algebraic lemma

Lyapunov quantities are defined by an algebraic lemma, that is proven in [S]. The
statement there is restricted to the case of an individual polynomial vector field with
linear part m% - ya%. We give here a small generalisation for families of vector fields
of type (1.27) (hence we don’t exclude here vector fields for which the linear part has
a non-zero trace):

Lemma 47 Suppose a C> family of vector fields is given in the form (1.27). Then
there exists a formal power series Fl,

1 oo
Py (@) = 5 (&% +9%) + 3 Fj (@.9,0),

=3

where F; is a homogenous polynomial of degree j in x and y,

j
Fj(z,u,0) = Y fis (V) 2y,

i=0

and there exist coefficients V; (A) such that:
oo g
XaFy(z,y) =D Vi) (22 +2)"™ . (1.28)
i=0

Moreover if Fy and V; (i € N) are solutions satisfying (1.28), then the functions
fij and V; are C™ in A

Remark 48 The “moreover” part in lemma 47 can be generalised in the following
sense: if the family given in (1.27) is of class C7 (y € NU {oo,w}) in A, then also
the functions fi; and V; are C7.

Definition 49 Such coefficients {V; (\) : i € N}, as defined by (1.28) in lemma 47,
are called Lyapunov quantities (or Lyapunov coefficients or focal values) of the vector
field X, at the focus.

From the proof of lemma 47, it follows that a set of Lyapunov quantities is not
unique. However, in a certain sense, they are unique, as we will see in corollary 53
below.
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Suppose we are gwen a set of Lyapunov quantities {V; : i € N} for (X)),, then there
exist C™ (respectively C¥) functions R;; 0 < i < N,0 < j < i— 1 defined on a
neighbourhood of A° such that

$—1

di(\) =Vi(\)+ Y R (W) V; (N, i=0,...,N. (1.31)

=0

Remark 51 This proposition remains true if we change C* by C", with r sufficiently
large.

Proof. Suppose that F) is a formal power series such that equation (1.28) is satisfied.
Denote the formal power series on the right-hand side of equation (1.28) by G (x,y).
Then we can write:

XY (Frows?) =ha- (Grows). (132

Since ) is a near-identity diffeomorphism and hy (0,0) = 1, the right-hand side
of equation (1.32) -written in polar coordinates (r,0) in the (u,v)-plane- is of the
following form:

ha (u,v) - (Gao @3 ) (u,0) = wa (A) 7% + Y w; (A, 0) 7

j=3
with
w2 (A) = Vo (A)
wa; (A, 0) = Vj—1 (A) mod (Vo, Vi, Vj—a), Vj2=2, (1.33)
Wa441 (:B) € (%! VI}'--vV;i—Z)! VJ = 2.

We also have

2 m
=y r ' i

i Hpp (0, 0) —

Fxo@y' (u,v) 5 —f—é (A, 8) -
for certain C* (respectively C*) functions H,, (A, 8) which are 27-periodic in 0. After
writing equation (1.32) in polar coordinates, we can identify the coefficients of r2(i+1)
(with 0 < ¢ < N) in both sides of this equation. It is clear that the following relations

can be deduced:

wa () =do (), (1.349)
0
wagesn) () = 5y g Hatern) (18) +do () Haguany (08) +da (3) Has (1,0
Fdy ) Hay O\ 0) + o+ s N Ha OO+ (). (135)

From (1.33) and (1.34), it follows that
do (A) = Vo (A)-
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Remark 52 Proposition 50 can be generalised for a C* (respectively C*) family
(X1)y of type (1.29). The main difference is that now, hy (0,0) = (e (}\))_l #1
in general. By the remark at the end of section 1.2.4, we can state the analogue of
proposition 50 for this kind of families, where relation (1.31) is replaced by

i—1
di ()= (M) VM + YD R (N V; (N, i=0,...,N.
J=0

Clearly, proposition 50 also implies uniqueness of Lyapunov quantities in the fol-
lowing sense:

Corollary 53 If both {W; : i € N} and {V; : i € N} are a set of Lyapunov quantities
for a given family of vector fields of type (1.27), then they are related by:

% — WI’J!

Vi= W}mod(Wg,...,Wg._l), Vie Nj.

(recall that the twiddles in the notation denote germs).

As a consequence of corollary 53, the first non-zero Lyapunov quantity V; is
uniquely determined, but V4 and the successive ones are not.

Bautin ideal and displacement map

The notations introduced in section 1.2.3, regarding the displacement map and its
coefficients, will also be used here. We call the ideal generated by the germs of the
Lyapunov quantities V; in A? the Lyapunov Ideal and denote it by £ = (V; : i € N).
By corollary 53 this definition is meaningful.

Theorem 54 Consider a C family of vector fields (X)), of type (1.27). Then,

1. the Lyapunov quantities and the coefficients agji1,j € N in (27) are related by
e‘zﬂfg(,\) == 1
(W) =V M) (o ) and Vi > 1,
Vo (A
e4j1r'f’u(:\) 1

. . wVo(A) (I~
2541 {/\) — V.f (A) 82 ( 2JVE} (’\)

)mod(Vn,...,V}‘l);

2. in case the vector field Xyo is of center type, then the Bautin ideal and the
Lyapunov ideal coincide, i.e., T = L; moreover,

3. If for N € N, the family (Xf)'\ is a C* normal form, like in (1.30), then we
can write in terms of ideals of germs of C* functions:

(‘}Dsﬁ'l"'}?N) E (JQ!J’.!"'!JN) = (611631-'”&2N+!)'
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By substitution of (1.44) in (1.43) we find the following expressions for the coefficients
ﬁi}’i = 1z

‘ o2mdo(\) _
B (A) = a1 (\,27) — 1 = 2™ _1 = dy (}) —) p
\ do(N)
amanhy (BB =
Baj+1 (A) = agjpi (A 2‘JT2 =dj(\)e TNV
P
+3 di (\) Hi (A), Y
k=0
\ Baj (A) = ag; (A, 27) =0, f=1,00e, N

for certain analytic functions Hﬁ. Therefore the ideals in (1.42) coincide. The other
statements now follow from proposition 50. m

Remark 55 For N € N, the coefficients 3;,0 < i < 2N +1, that appear in expansion
(1.41) of the displacement map 83, associated to the normal form XY, are independent
of N.

The following corollary follows immediately from theorem 54.

Corollary 56 The analytic vector field Xy is of center type if and only if all Lyo-
punov quantities vanish in A (i.e. Vi e N: V;(A) =0).

Remark 57 The “moreover” statements in theorem 54 also hold when C* is replaced
by C*® and the coefficients caj41 (N), j € N, are read as:
1 g2+l
@i+ 0 gsm 0 W)l

The proof is completely analoguous to the C* case.

Liénard systems

In this section, we recall a result due to C. Christopher and N. Lloyd ([CL]), concern-
ing the computation of Lyapunov quantities for families originating from families of
Liénard equations. This result will be used in chapter 3. For sake of completeness,
we also provide a proof of the result. In appendix A, we give another proof, according
to the algorithm used in the proof of lemma 47 in [S].

Proposition 58 Consider the C7 planar vector field X = Pga; + Qé% where

Il

P@@y) = y+Li e+ e +0 (Il y)*" ")
Q) = —=+0(l@yIP"), (2.3 - (0,0)
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By backwards substitution, one finds the solution:
{18_1 = dij!Vj=011|"'1k 1

where d, = 1,dx—; = ﬂm (C;-‘i'll +(2j + 3)dk—j41) ¥ = 1,...,k. As a conse-
quence,

agk+1 = PBo+ Vi = (do +1) Vi,
and the required result follows with ¢ = &ﬁ eQt\{0}. m

Saddle quantities

There exists a strong duality between saddle and focus, and as a consequence between
the generalised Hopf bifurcation and the homoclinic loop bifurcation. This duality
is recalled below; furthermore, we give a precise definition of the notion of saddle
quantities or dual Lyapunov quantities, that reappear in chapter 5.

It is well-known that the stability of a homoclinic loop through a saddle point
in the plane is determined in first approximation by the trace of the linearisation
of the vector field at the saddle point. In case of a non-zero trace, a homoclinic
loop bifurcation leads to the birth (or death) of a unique limit cycle when the two
separatrices of the saddle point cross each other. However, when the trace vanishes,
we can have several limit cycles arising in a homoclinic loop bifurcation. As in the
generalised Hopf bifurcation, this phenomenon is traditionally studied by calculation
of normal forms. Another interesting tool in this study are so-called saddle quantities.
Saddle quantities of a system are given by the coefficients appearing in an asymptotic
expansion of the Dulac map in the neighbourhood of the saddle point. These saddle
quantities are the analogues of the focal values (or Lyapunov quantities) for the focus;
therefore they are also called dual Lyapunov quantities [JR].

Consider first the linear systems: the linear center or focus determined by

T a b T
1+ 23]
with b # 0 and the linear saddle determined by
X A B X
7 1-[5 2] 7] 4
with |A| < |B|. The matrix in (1.45) has eigenvalues a + bi and a — bi, which are

complex and conjugated. Hence, the origin is a linear center or focus for (1.45) . The
general solution of (1.45) with (x (0),y(0)) = (x0,y0) can be written as

(28]~ | =% 2] [2]. e

In this way, the solution is the composition of a rotation and a dilation.
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is transformed into
azx +by +p(x,y)

T =
{!J = —bzt+ay+q(z,y) ’ (L50)
where
a = 34
b = B
p(z,y) = iP(z,—iy)
q(z,y) = —-Q(=x —iy)

Remark that the coefficients of p and ¢ are complex-valued.
By lemma 47, we know that corresponding to the focus (1.50), there exists a
formal power series

(;r:2 + yz) + ZF;,, (z,y),
k=3

F(x!y) ==

b | =

where F}, is a homogenous polynomial in (z,y) of degree k (Vk > 3) such that
: _OF dy 2 | ak+1
The coefficients Vj. are Lyapunov quantities (or focal values) of system (1.50) . By the

formal relation between the saddle and focus described above, there exists a formal
power series

* _1 212 = #*
F* (X,Y) = (x?-Y )+k2=3Fk (X,Y)
such that
PHX,Y)= ‘9 (X Y)dX 3F (X Y)jT
3F d:c : e
= (X,1Y)i T ]d—y (X,zY] a =iF(X,iY)

- Ziv; P e i ke
oF ka k+1

Such coefficients V! are called dual Lyapunov quantities or saddle quantities (because
of their relation with the coefficients in the Dulac map). Again, the function F* with
the property:
{ F*(X,Y)

F*(X,Y)

Il

L(x2 -2 +0 (X Y)I) , (X,Y) = (0,0)

Ve (X2 -Y2) + 7 (X2 - Y22 .+ W (X2 hYQ)kH o= o
(1.51)
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1.3 Regular hypersurface of centers

This section contains new material, that mainly will be used in chapter 2. We intro-
duce the notion of regular hypersurface of centers; moreover, we state and prove some
interesting properties.

In this section, we consider C™ (respectively C) families of planar vector fields,
unfolding a vector field X0 of center type. In particular, we consider situations in
which one has extra parameters besides the one that serves to generate the centers:
we speak of regular hypersurfaces of centers. In such families the bifurcation diagram
of limit cycles can be studied by way of reduced displacement maps. We start by
giving a precise definition of these notions in section 1.3.1.

Since only a 1-dimensional parameter is responsable for centers in the family,
it is natural to use Melnikov functions in the study of the bifurcation diagrams of
limit cycles. In section 1.3.2, we introduce these Melnikov functions, depending on
external parameters besides the phase variable, and, in the C* case, we derive the
relation between these Melnikov functions and the Bautin ideal and index at the
center e. Moreover, as X o is of center type, we can associate a Hamiltonian H to
X o such that e € H—' (0) ; as announced before, we here provide a proof of the fact
that the first non-zero Melnikov function is C*° (respectively C*) at h = 0, where h
denotes the value of the Hamiltonian.

Finally, in section 1.3.3, we introduce reduced Lyapunov quantities and show how
they can be used to compute the index, and hence an upperbound for the cyclicity.

1.3.1 Reduced displacement map

Definition 60 Suppose that (X)), is a C*° (respectively C“) family of planar vector
fields, unfolding a vector field of center type Xyo. Suppose that (8)), is an asso-
ciated C™ (respectively C*) family of displacement maps such that the parameter
A = (v,e) € RP is close to \° = (v°,0) and such that the map 6 = 6 (-, A) can be
divided by £*; more precisely:

b (s,v,€) = "8 (s,1,¢) (1.52)

for a certain C™ (respectively C*) function &, which is not divisible by €. Then we
say that the centers in the family (X)), occur on a regular hypersurface. The C*
(respectively C*) family of maps (65) , defined by

5y =06(-,A)
in (1.52) is called a family of reduced displacement maps.
We will only consider families in which no centers occur for £ > 0. Working with

an analytic family, it would mean that we suppose the Bautin ideal to be generated
by the germ of the map ((v,) — £¥) at (+°,0) .
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Assuming that property (1.56) holds for all j with j < k — 2, we will now prove
that the property (1.56) also holds for j + 1. From (1.53) it follows that

§i+1

S0 (8, 18)

=0, (1.57)
=0

If we write
G (31 vE) = ‘sels(u,s} (‘p(l’ﬁ) (S)) + Plue) (S) s

then it follows from (1.55) that

géﬁ (s,v,8) = % (‘P(_uls) (G (s, v, 5})) (1.58)

a a

= 2 (b5) G Eme) + (k) (G ls,me): 5C (s1e).

From elementary calculus we can derive the following property, for given C*° functions

¥, g1 and g3 :
o3

7 [ (g1 (s,v,€) + g2 (5, v,e))]

= asl@mGua|
By this property, the second line in equality (1.58) and the induction hypothesis,

equation (1.57) becomes:

IS % [8% ((’0(_:&}) (‘p(”@ (3)) + (‘p(_r:s))’ (‘P(V.E) (5)) d (T%‘P (5,1 5)] A=
;:_, [(‘P(u,s)) (‘P(u,s) (5)) . % (5,15(1,‘5} (‘P(u,e) (3)))] 'yl i (1.59)

By the chain rule, we find that the first term in the right-hand side of equation (1.59)
is identically zero. The second term in (1.59) consists of a sum of which each term
contains a factor of the form

6e+§:‘=1 ng+p ?
DeSONT .. O Ors PRI v KL
with e + E +p<j+1,1<i, <p-1. By the induction hypothesis, the factors

in (1.60) va.msh for e<j. Therefore the right-hand side of equation (1.59) is reduced
to only one term:

j+1

(*"@%ﬂ))f (w0 (8)) - ;ﬁ (Jflc(u.e)) (@0 () - (£ ()Y (1.61)

e=0
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type for (v ~ %) , there exist strictly positive functions f, such that the vector fields
fv - X(v,0) are Hamiltonian vector fields with some Hamiltonian H, (proposition 19).
Hence,

Jo Xwo) = %iai - 8;{"2?-

y ox €T oy

We can suppose that H, (0,0) = 0. The functions H (z,y,v) = H, (z,y) and

f(z,y,v) = fo (x,y) are C¥ (respectively C*) if the family X, ¢y is C* (respectively

C*). As a consequence of (1.62), the function H, is a first integral of f, - X, 0),
meaning that

(1.62)

(fv - X(,0)) Ho =0. (1.63)
Thus orbits of the vector field f, - X(,0) (as well as of X(, ¢) lie on the level curves of

the Hamiltonian H,. With respect to closed orbits, we can replace the study of the
family (X(,,)) ., by the study of the family (Y{,,)) ., defined by

},(u,e) = Jur X(u,s)-

Because of (1.62) and the form of X, ¢y given in (1.27), the Hessian of H,, at (0,0) has
a strictly positive determinant and trace. By the Morse lemma there are coordinates
(u,v) = @y (z,y) with ¢, (0,0) = (0,0) such that

u? + v?

Gy (,0) = (). Hy (1,0) = By (0" (uy0)) =

(1.64)

The function ¢ (z,y,v) = @, (z,y) is C¥ (respectively C*) if the family (X(,,0)) is
C* (respectively C°).

Because of (1.63) the function G, is a first integral of (¢, ), Y(,,0) and so the
periodic orbits around the origin are exactly round.

We take a displacement map &, of (p,)" ¥{u,e), associated to the transverse
section {6 = 0}, defined in terms of r, with r? = u? 4+ v2. Clearly, this function is C*
(respectively C°°) in V'h, where h denotes the value of the Hamiltonian. Although
the displacement map is not necessarily C* (respectively C*) in h (cfr. example 1.16
above), the first non-zero Melnikov function is C*¥ (respectively C'°°) in h. This fact
is commonly used, but it is not easy to find a proof of it in the literature. Since it can
be proven in a short way and for the sake of completeness, we provide such a proof.

From (1.52) and proposition 61 the first non-zero Melnikov function is My, i.e.
M;(r,v)=0,Vj=1,...,k—1 and My (r,v) # 0. Because d(,c) is C“ (respectively
C*) inr and §(,.¢) (0) = 0, there are C* (respectively C*) functions My and g such
that

8 (r,v,€) = re® (Mi (r,v) + g (r,v,€))

with g (r,v,£) = O (g) ,& — 0. We refer to My as the reduced k-th Melnikov function,
because of its relation with the k-th Melnikov function:

Mk (T‘,U) = T‘-Mk (T,U}
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Lemma 63 The Abelian integral

/ v
{%(u’-i—v’):h}
where v is an C¥ (respectively C™) 1-form, is C* (respectively C*°) in h at h = 0.

Proof. We will first give a proof in the C* case, and then indicate which changes
have to be made in the C° case. Since, v is analytic, there exist p > 0 such that the
following series converge for all (u,v,v) with |ul,|v| < 4p and |lv — 20| < 2p:

v(yo,0) = (40 @) u'o?) dut (X, ;b () uie? ) do,
v (u,v,v) = (Ze,,’ !ai_,,- (v) u"v-"|) du + (Z‘.‘j |bij (v) u"v"|) dv.
As a consequence, Y (h,v) with |h[,||r — 1°|| < p, the integral Jtua 4vamany V] < 00,

Then, by the dominated convergence theorem [Br], one can change sum and integral
and write: V (h,v) with ||, ||v — 2| < p:

v= a“(v)/ vl du+ b--(v)f u'vdv.
f{%<u=+v2)=h} 299 [y e 250 fiyrvaneny

‘!3
(1.67)
Now, we use the theorem of Stokes to calculate the integrals in the right-hand side of
(1.67) :

fu‘vjdu =—j // u'v?~tdudv
{3(u2+v2)<h}
VZh p2r Ny : ’
— —j/ f 71+ cos' O sin’ ! Bdrdf
o Jo

: (ﬂ'ﬁ)ﬁj-{-! 2n

= _3m A cos' Bsin’ ! 6de. (1.68)
Analoguously, we find that
/ wotdy = SO [Tt pinigds. (169)
{3 (u2+02)=h} (E+i+1) Jo
Integrals of the form »

cos™ @sin' 6d
0

vanish if m or [ is odd; so we can restrict to the cases

w'tv?du

-/{%(u=+u‘)=h}
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with : V; = £*V;. These functions V; are called the reduced Lyapunov quantities (or
reduced Lyapunov coefficients or reduced focal values), and they in turn can be used
to determine the stability of the focus.

Suppose now that the family (X)) ,\kis C¥; then, the Bautin Ideal is generated by
the germ of the C* function (v, &) — &* at A, The following proposition provides an
expression for the relative index in terms of the reduced Lyapunov quantities:

Proposition 64 Let (X(,.)) be a C¥ family of planar vector fields, where centers
occur on a regular hypersurface. Let {V; :i € N} be a set of reduced Lyapunov quan-
tities. Then,

Index (X(,e), (T, (¢°,0))) = inf {m e N : Vi (1°,0) # 0}

Proof. As a consequence of Nakayama's lemma (1.20), every set of generators
{@1,...,&n} for the Bautin Ideal contains a minimal set of generators. Suppose
§ is the smallest positive integer for which &; generates the Bautin Ideal. From
proposition 27, it then follows that j is odd, say j = 2m + 1. Then we get: Vi <m

i1 (v,€) = e¥H; (v,¢),
{ o1 (VL E) = Eka (v,€), (1.71)

for C¥ functions H; with H; (¢°,0) = 0,Vi < m and Hp, (¥9,0) # 0. From theorem
54 there exists, Vi, a C* function f; with f; (¢°,0) # 0 such that

Vi = fi - @iy mod (G- - -, Q2i-1)

and thus, from (1.71) : Vi < m : V; (+°,0) = 0 and V;, (+°,0) # 0.

Now we'll show that Indez (X, (T, (¥°,0))) = m. As a property of the Bautin
Ideal, there exists a C* function h such that d (r,v,€) = agm41 (¥,€) h (r,v,€). Then
the factor function associated to Qgm+1 reads H (r) = h(r,»°,0) and because of
(1.71) it is of the following form:

H (r) = r®™+l 4 o (p®™11), r— 0.

This ends the proof, because:

_orderH (0) -1

Index (X(y,¢), (T, (+°,0))) 2

= m.

1.4 Simple asymptotic scale deformations

This section is provided for chapter 5, where we study unfoldings Xy of a 2-saddle
cycle leaving 1 connection unbroken. To create a good frame for studying these
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To prove the second statement, we remark that
® & fhy
fiei  They Fieg

and . X ; .

e Ty fegep. | By

s Toes Teiwa . T
In the right-hand side of this equation, each of the fractions tends to 0 when z — 0,
since 7 is an asymptotic scale of functions. For the third statement, we denote
¥ = ®* and we remark that the sequence 7, j € N, defined by the division-derivation
process on ¥ by F, is given by

Pl = oF vjeN

To prove the fourth statement, we denote ® = f., and remark that ¥0 < j <k :

=gl ,
and as a consequence, V0 < j < N :
o fl,
Fros B

The fraction on the right-hand side of this equation tends to 0 as z — 0, since is F is
a simple asymptotic scale of functions and k > N4+ 1. m

Definition 73 Let F ={fi : i € N} be a simple asymptotic scale of functions and let
f be a function of class C*°. We say that

1. f has an expansion in F of order N if there ewist a;,0 <1 < N (constants or
functions depending smoothly on \) and a function @y satisfying the remain-
der property of order N, such that

N
f(z)= Zaifi () + ®Nnyi1(x)

=0

2. f is asymptotic to the series
i oo
f@)=> aifi(z),z—0
i=0

with respect to F if for all N € N, the function ®x .1, defined by

N
Dyt (z) = f () - Y aufil@),

i=0

satisfies the remainder property of order N with respect to F,
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Suppose that we have computed L3;-1 and Ly; and find (1.76) and (1.77) respectively.
Starting from L, we now compute L£251. Suppose that g2 is defined by (1.78), then
Vi € Ny,

Vi =V (2'Le}) = V (¢'L) - 63 +2'L - Vg3!

m -2 m m

=u'L (Z aijL_k) ' [ (i+ | A Zai’L‘k ZC?’%L'“’
k=0 k= k=0

mi{m+1)
+ N, AP
k=2

b = n

—z'L (Z a,zch'k) Z‘U S
k=0 k=0

where v2 171 = g2 2% £ 0. Suppose that ga_, is defined by (1.78), then we
find analoguously, V’l G N %

m -2 T
VL, = (#P,) = (Za};m—k) §
k=0 k=0

. 25 2,2~ ; - 2. 2j !
where v 1272 — g2 2921 oL . Since fi’ = zL%g}’, we obtain
25+1 _ me- g=1 2741
24-2 = =& g
Vf
2i+1 __ me j=171—1_27+1
fair = =z’ L7 g,
2i—-1 2i—-1
v
where

—1

™
2;,-+1 (z 2j+1 21-AL ) (ZU;EJH’DL_’C)
k=0
] m =
2441 2§41,2i-1 7 —k 25410 y -k
95 = (Zuk L ) (Zuk L )
k=0

k=0
This is the suggested form for the functions in Ly;4;. From these functions, we can
compute the sequence L3;42, and find the suggested formulas, in the same way as
we did previously to calculate the functions of the sequence La;41. This proves the
induction.

Definition 83 Let [ be a C™ function that can be written as
f=4'lg

where i,j € Z and g takes the form (1.78). Then we will call x'L? the principal part
of f.


















68

i’ > i or i =i and j' < j. This order corresponds to the order of flatness at 0 of the
sequence fi; =«'log’ £,0 < j <i,i € N.

The Standard enlarged logarithmic scale £5¢ is a simple asymptotic scale. Indeed,
we can calculate the principal parts of the sequences £9¢ k € N, analoguously as we
did for the logarithmic scale £, and we find by induction that Vj € N, the following
pattern is repeated: let J(j) be defined by f(;) = 777 (from an easy calculation
one finds that J (j) = 35 (j — 1); notice also that J (0) = 0 and J (j +1) = J (4) +
4§+ 1,Vj € N), then Vj € N,VO < s < j — 1 : the principal parts of the functions in
the sequence L"_?(ﬂj) ¢ are given by

(Ll Y% o 2Py DT e v g i 4 JEZ TS

In proposition 131, we encounter another example of the enlarged logarithmic scale
Y g

LoF e {1,L’l,L_z,xL,x,:cL‘l,:cL_z,:rng,. N
={z'L*7:0<j<i+2ieN}

In an analoguous way as we did for the standard enlarged logarithmic scale L3¢, one
can show that £¢ is a simple asymptotic scale. Indeed, by induction on j € N, we
find that the following pattern is repeated: let J (j) be defined by f;¢;y = #?L? (from
an easy calculation one finds that

J(j)=1+3(j—1)+%j(j—l)=%(j2+5j*4); (1.83)

notice also that J(0) =0and J(j +1) =J (j)+j+3),thenVj e NVO < s < j+2:
the principal parts of the functions in the sequence £, . are given by

{LL*‘,L—“, cor s DU P Ar G L p S G4 § 2,8 2 1} )

Analoguously as for the logarithmic scale, one can deduce the following proposition
concerning the remainder property for the enlarged logarithmic scale.

Proposition 89 Let L& be the enlarged logarithmic scale and let ® be a C* function.
Let N € N. There exists a positive integer M (N) such that if ® is flat of the order
M (N) at x = 0, then ® satisfies the remainder property of order N with respect to
L&

1.4.3 Expansion of the Abelian integral near a hyperbolic sad-
dle

In this section, we prove that any Abelian integral expands in the asympfotic scale £
(proposition 92 below). First we give two lemmas. Lemma 90 is a clever application of
























76
with respect to D, then, for all N € N with any1 #0:
N
F(z)— Y auFi(z) = ant1Fnia (1+0(1),2 = 0
i=0
2. If codimpF =1 < oo, then V0 < j <1!:
codimp,- Fj =] — _j'
Theorem 103 Let D ={F; :i € N} be a ssimple asymptotic scale deformation of the

asymptotic scale F ={f; : i € N} and let F be a function of class C*. Suppose that
F has a finite codimension at x = 0,A = 0,& = 0 in the scale D. Then

Cycl(F, (0,0)) < codim( fo) (1.89)

1.4.5 The different compensators

The compensator w show up in the study of the cyclicity or the bifurcation diagram
of limit cycles near saddle points. It is defined as

g% —1

ifa#0

P (1.90)
log = ifa=0

wa:R+—>R:xr——+wa($)=w(x,a)={

Let us first recall the definition of ratio of hyperbolicity at a saddle point.

Definition 104 Let s be a saddle point of Xy. Then the ratio of hyperbolicity r (\)
of the saddle point s for X is defined as the ratio of the absolute value of the negative
eigenvalue divided by the positive eigenvalue at s.

Although the displacement map near a homoclinic loop is not differentiable at
the saddle point s, there exists an expansion in a formal series in terms of z* and
2z logz,i € N for a = 0, if 1 + « is the ratio of hyperbolicity at the saddle point
s. For a # 0, these monomials origin from z' and z*'w,,i € N respectively (see
theorem 119). The introduction of compensators, which unfold the function logz, is
a way to avoid the divergence at x = 0.

In section 5.2, we consider unfoldings of a 2-saddle cycle. Theorem 127 displays
an expansion for the reduced displacement map & for unfoldings of a 2-saddle cycle in
the monomials * (zw; )’ (zws)" , where the compensators w; = w(-,ea(!)) respectively
wa = w(-,ea®) correspond to the saddle points s, and s, in the 2-saddle cycle respec-
tively. Taking € = 0 in §, every monomial in z* (zw;)’ (2ws)" corresponding to a fixed
value of i and j + k converges towards the same function z*+7+¥log/** z. In case the
unfolding of the 2-saddle cycle leaves one conection unbroken, the new compensators
wy_1 and wy; are introduced in [DR], to avoid this degeneracy phenomenon:
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2. 0< @ (u) <ell

3. 0< @ (u) < el

4. 0 < W (u,0) =¥ (v,u) < elvthl

5 0< %‘I’(u, v) < elul+ll gnd 0 < —8%11'(-1;, v) < elulHl
Proof.

1. For u = 0, the inequaltities are trivially satisfied. So, we can suppose that
u # 0. By the MVT, there exists ¢ € R with 0 < |¢| < |u|, cu > 0 such that

P (u) = e
Hence, 0 < ® (u) < el < el
2. Denote T'(u) = ue* — e, then

_T-T(0)

o' (u) 5

u

By the MV'T, there exists ¢ € R with 0 < |¢| < |u|,cu > 0 such that

v TE_s

ec
u

As 0 < £ < 1, the proposed inequalities are satisfied.
3. Denote S (u) = (u? — 2u+ 2) e, then

@”(H) e S(u) ; S(O) 4 I_L]'E

The inequalities are obtained in the same way as in 2.: by the MV'T, there exists
¢ € R with 0 < |¢| < |u|,eu > 0 such that

o -9 _ ()

u2 m

4. It is clear that W (u,v) = ¥ (v,u); if u = v, then, the inequalities surely hold
by the second assertion of this lemma since, ¥ (u,u) = ®' (u). Hence, we can
suppose that v < u. By the MVT, there exist ¢ € R with v < ¢ < u such that

0< ¥ (u,v) =9 (c)
< elel < elul+lvl

the inequaltities follow from the second assertion in this lemma and from the
fact that v < e < u (implying that |¢| < |u| + |v]).
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where VA : u(\) > 0, and P, ®;, are C* functions such that P (0,\) = 1,VA and By, is
flat of the order k at x = 0, uniform in A. Then,

(&3
wo By (z) = Sa(x)” —1
o
YT p (P (z,\) + B (z, A]) -1
= o
2* (P@N+ B (@) ~1 ya_q
= it +
o’ !
Clearly, the second term ¢ defined by
a*—1
s ="

is C* in A\. Now we rewrite the first term:

2 (P (, ) +fk(x,,\))“ = (PN +«'13; (x,)\))a =% Iaa_l

(P(x,A)Jr&»k (:.,«,A))Q < W

a
=(1+a¥(z,A)w+¥(z,A)

= (aw+1) w

where ¥ is the C* function defined by

(P(@,2) + & (a, ,\))Q o4

(4]

¥ (z,A) =
As a consequence, we have
wo®y (z) =u"(1+a¥(z,A)w+¢(A) +u*¥(z,A)

Expanding the right-hand-side of this equation to the order k, we obtain the desired
formula with ¢(A) = u®. m
As a consequence, one has the following corollary.

i

1
Corollary 112 Let w (y,c) = and let R (z,a) be a C™ map with

R(x,a)=z(1+0(z)),z | 0

Then,
w(R(z,q),a) = ¥ (z,0)w(z, a) + ¥a(z, o)

where ¥y and ¥y are smooth functions in (z,a) with

Uy (z,a) =1+ O(z) and ¥y(z,a) = O(z),x | 0.
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1.4.6 Examples of simple asymptotic scale deformations

Here we consider two examples of simple asymptotic scale deformations: a deforma-
tion of the logarithmic scale and one of the enlarged logarithmic scale. In chapter
5, we also encounter another simple asymptotic scale deformation of the logarithmic
scale.

Deformations of the logarithmic scale
Let us denote shortly w = we, with a (A,2) = & (A, €) . The sequence W,
W= {l,a:w,:.r:,me,xz,...,:c"w,x"_....}

is a simple asymptotic scale deformation of the logarithmic scale L. Indeed, using
propositions 113 and 114, one can prove by induction that Vje Ny :

-1 24=1 _  24—1 i—1, —1 _25—1 i 25—1 .
ng_l :{I,W glj .,.Tagzj ,...,-'\Iuj w gzg_l.&‘:‘ng ,...},‘321

and
g ! 24 24 i, 29 i 2 1
W2:f 5 {113‘-‘-’91 s LGy 5 - ":xgwsrﬁg—l!ng%‘” } 21

where g';' are rational functions in w~'. More precisely, the functions gf can be written
as:

-]

m(i) 5. m(i) ‘ "
> cptw Mw*|  withc)' #0
k=0 k=0
by #0 if j is odd
" { by =a-bh,b] £0 if jis even (1.101)

The conditions in (1.101) and propositon 107 imply that every W; is a deformation
of the asymptotic scale £;,j € N given in (1.76) and (1.77).

The expansion of the displacement map at the saddle point of a homoclinic loop
is made in a sequence W of functions (1.102) below of the variable  and depending
on the parameter (),£). Let us denote w = w.4, then one can prove analoguously as
above that the sequence

W ={1, [zw + em), [z + epa], - .., [2"w + e, [2" + Eptn)], - - -} (1.102)
(where 7, is a polynomial in z* and 2*"'w,i > n and py, is a polynomial in z'w and

zt,i > n+ 1) is a simple asymptotic scale deformation of the logarithmic scale L.
This fact was proven in [R86] (without introducing this terminology).
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1.5 Saddle loop

1.5.1 Imntroduction

In chapter 5, we study unfoldings of a 2-saddle cycle, that leave one connection
unbroken. As a particular case, we consider a subfamily, in which the saddle points
remain lineair. For this particular subfamily, the study of limit cycles can be reduced
(by rescaling) to the study of isolated zeroes of an unfolding E. This unfolding =
has an asymptotic expansion that is very similar to the expansion of the reduced
displacement map §, in case of the saddle loop, filled with non-isolated periodic orbits,
for € = 0 (theorem 119). In this way, we can use results obtained by [Mar| and [R86]
in case of the saddle loop, in the study of limit cycles for the particular subfamily of
the unfolding of a 2-saddle cycle, as described above.

Recall that a saddle loop or saddle connection is a singular cycle, containing
precisely one hyperbolic singular point (figure 1.3).

Figure 1.3: Saddle loop

The results obatined in the saddle loop case, are based on an asymptotic expansion
of & in a simple asymptotic scale deformation (of the logarithmic scale £), without
working explicitly with this notion. It turns out that, under generic conditions, the
bifurcation diagram of limit cycles of the unfolding of the saddle loop is a trivial
reflection of the bifurcation diagram of zeroes of the related Abelian integral. In
particular, under these generic conditions, the local bifurcation diagram of limit cycles
of X(,,¢) is homeomorphic to the one of the linearisation of X(y.e), with respect to
£ = 0, and all limit cycles can be traced from the zeroes of the Abelian integral.

In section 1.6, we recall some results from [DR] and [DRR] for the 2-saddle cycle,
that imply that the Abelian integral is a bad approximation of the displacement map,
when studying limit cycles bifurcating from the 2-saddle cycle. For general generic
unfoldings of the 2-saddle cycle, there are limit cycles not covered by zeroes of the
Abelian integral (the so-called alien limit cycles ). Even in case that the unfolding
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is a good approximation for the reduced displacement map 8y, which determines the
limit cycles of the considered unfolding. Let us now recall these results.

Let r()) be the ratio of hyperbolicity of the saddle point s of X (see definition
104); we can write r(A) = 1 + ga(A, ). Here we denote the compensator shortly by
W

= e

An asymptotic expansion for § at any order N in & was derived in [R86):

Theorem 119 There exists a sequence of germs of smooth coefficients: o, 3;,i € N
at v = 0,e = 0, such that, for any N € N :

8(z,v,€) = Bo + culzw + eny] + Bi[z + ] + . .. (1.108)
+ By [N + epn] + oy [aN
where ® x4 is of class CN*Y and (N + 1)-flat at z = 0,Y), i.e;

8N+1
= 5N H

w+ E"?N'l"l] i+ ¢N+l($: Rs E‘)

V(D‘,E) :CI)N_‘_I(O,V,S) =... ‘«I‘N+1(‘[]',V,€) = {3

The functions n;, p; are polynomials in x and xw with valuation strictly greater than
the leading term of the bracket, and their coefficients are polynomials in the functions
o, Bi. (The valuation is the weakest degree of the monomials in a polynomial)

Remark 120 1. The function €83y is the z-coordinate on o of the first intersec-
tion of the unstable separatriz, and it is called the breaking parameter of the
connection I' (definition 126).

2. One has oy = (1+0(¢))e and the other parameters ov; are related to the normal
form of the unfolding X at the saddle point p.

3. Ezpansion (1.108) in theorem 119, is made in a sequence W of functions (the
brackets) of the variable z and depending on the parameter (v, <) :

W={1,[zw+..)Jc+..Jy..o, [ +..), [ w .. ],.. .} (1.109)

The sequence W coincides for € = 0 with the logarithmic scale L; the expansion
in the theorem coincides for e = 0 with the expansion of the Abelian integral (up
to its sign):
N - . .
8(z,v,0) = —I(z,v) = Z(ﬁ,—(v)m‘ + a1 ()t logx) + o(z”),  (1.110)

i=0

for z | 0, where Bi(v) = Bi(v,0) and &;+1(v) = ai41(1,0),0 <i < N. The fact
that the sequence W is a simple asymptotic scale deformation of L, was proven
in [R86] (without introducing this terminology). Let us also notice that theorem
119 produces an expansion of the reduced displacement map 8(x,v,€) in this
simple asymptotic scale deformation at any order, in the sense of definition 98.
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Remark that this definition of generic unfolding differs from the one in the regular
case: if
a=...=0h-1=0,a4 #0,

then the codimension is ¢ while the order is ¢ — 1. Now, one has the following results
from [Mar]:

Theorem 124 Let f, be a generic unfolding of codimension q in an asymptotic scale
of functions with the Chebychev property. Then, for hy > 0 small enough, the bifur-
cation diagram of zeroes of f, on [0, h,[, is topologically equivalent to the bifurcation
diagram of zeroes of the universal polynomial of degree q:

Py(z)=80+ s+ Byrad® ™ L2t

(+ or — depending on the sign of fq(x) for x > 0 near 0). Here, topologically
equivalent means that there exists a local homeomorphism 3,

B (quo) I (Rqso) 23 (160 (V) yyee :?61,'—1 (V))
such that f, and Pfﬁu) have the same zeroes on [0, hgl.

Theorem 125 Let Xy be a perturbation of a Hamiltonian vector field, along a saddle
loop, with A = (v,€). If the corresponding Abelian integral I,, is a generic unfolding of
codimension q with q parameters (in the sense of definition 123). Then, the bifurcation
set Diagram(d, ) is topologically equivalent to Diagram(I,)x [0, 0], for g small enough
(i.e., the bifurcation sets are homeomorphic by a homeomorphism of the form (v,e) —
(G1,2),)).

By this result, it is natural to define the codimension of the saddle loop unfolding
X, to be the codimension of the related Abelian integral unfolding, and to say that
the unfolding X is generic if and only if the Abelian integral unfolding is generic.

It is an open question if the proof of Mardesic is valuable for any F with the
Chebychev property and any simple asymptotic scale deformation D.

1.6 2-saddle cycle

In this section, we recall a number of results from [DR] on the relation of limit cycles
bifurcating from a 2-saddle cycle and zeroes of the related Abelian integral, that is
matter of subject in chapter 5.

Recall that T is called a k-saddle cycle or a polycycle if T' is a compact connected
curve, made by k hyperbolic saddle points, say si,..., sy and saddle connections of
Xy (the eigenvalues of the linear part of X(, ) at the saddle points s; (1 <i <k)
have a non-zero real part). In figure 1.4, we represent a 2-saddle cycle.
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same properties as d : isolated zeroes of A (-, (v, €)) correspond to limit cycles of X(,,.),
and the linear part of A with respect to £, corresponds to the Abelian integral I,,.

Let us now recall the definition of the difference map A. Near the saddles s; and
sy, we can use normalizing coordinates (introduced in [R86]), denoted respectively by
(z,y) and (z,w). If the ratio of hyperbolicity at s; of X (respectively s3 of —X,)
is given by 1 + za(!) (respectively 1 + £a(®)), then the vector fields X respectively
— X, in these coordinates can formally be written as

Y* == ail
{ o o m(1+£a(1)(v,s)+52?213§1) (v,€) (zy)")

respectively

W o= —w
{ 2 = 2(1+ea® we)+eX2, B‘gz) (v,€) (zw)")

We consider some transverse sections Cp,Cy, Cs,Cy corresponding to respectively
{y =1},{z =1},{w = 1} and {z = 1} in the normalizing coordinates; {w = 0} (re-
spectively {x = 0}) is a point on the local stable separatrix of s3 (respectively s;).

The difference map A is the composition of the transitions D; and R (respectively
D, and R;) defined by the flow of X (respectively —X) as follows. The transition
map D, is the Dulac map at the saddle point s; from C; to Cs, and the transition
map R; denotes the regular transition from Cy to Cy. The transition map Dy is the
Dulac map at the saddle point sz from C3 to Cy, and the map Ry denotes the regular
transition from C; to C5. The precise definition of the Dulac map at a saddle point
is recalled in chapter 5 (section 5.2.2), where we study the its coefficients in a simple
asymptotic scale deformation of the enlarged logarithmic scale £°.

Let Ay (respectively As) be the transition map from C to Cjy, defined by the flow
of X, (respectively —X)):

Al =R10D1 and Az - DzORg.
Then the difference map A is defined as the difference
A=A; A

For & = 0, the vector field is Hamiltonian, and the Hamiltonian function H is equal
to zy and 2w respectively in the normalizing coordinates near the saddle points sy
and ss. It follows that A; — Id (i = 1,2) and A are divisible by ¢; hence, there exist
C* functions A; (i = 1,2) and A such that

A; (z,v,8) =z + A (z,v,8), Vi=1,2

and o’
A (z,v,e) = €A (z,v,¢6) = € (Ag (z,v,6) — Ay (z,v,€))
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Definition 126 Let ¥ be a transverse section to the separatriz I'y of T' of Xg,
connecting the saddle py with pa. Then, for A near 0, the local stable separatriz
of pa cuts Lo transversally at a point S () and the local unstable separatriz of p
cuts Yo at U (N). The breaking parameter b of T is then defined as the function
b(A)=S(A) —-U(A).

Let us now denote by b(*) and b® the breaking parameters for X at C; and for

— X, at C4 respectively. Then the transition maps A; (i = 1,2) have the following
expansions:

A; (z,0) =D (A) + (¥ (A) — Daw; + O (z),z | 0, (1.116)

uniformly in A. From (1.114), it is clear that it is more easy to derive an expansion
for the difference map A than for the displacement map &, given expansions for A;
and Ag.

The complete bifurcation diagram for generic 2-parameter unfoldings of 2-saddle
cycles is described for instance in [DRR]. In particular, it is proven that the cyclicity
of a generic 2-parameter unfolding of a 2-saddle cycle is bounded by 2.

Let us now recall the definition of genericity by Mourtada: a 2-parameter unfolding
X, is called generic if

1. the map A — (b (X),b® (X)) is a local diffeomorphism at 0 € R? (in particu-
lar, one can suppose that A = b = (b1, b?);

2. certain algebraic generic conditions on the values ) (0),i = 1,2 are satisfied,
e.g.,
r®(0) # 1,7 (0) # 1,r® (0) /1 (0) #1

Returning to the unfolding of a Hamiltonian 2-saddle cycle I, the generic condi-
tions of Mourtada are translated into generic conditions for the Hamiltonian unfolding
as follows. A perturbation X of Xy is said to be a generic 2-parameter unfolding if

1. A = (v,¢) € R? with v € (R?,0) and ¢ € [0, &0;

2. the breaking parameters have the form b (v,e) =efW,i=1,2and v =3 =
(3™, 3(2)), The parameters B (i = 1,2) are also called the reduced breaking
parameters;

3. the hyperbolicity ratios have the form r (B,€) =1 +eal® (B,€),i=1,2 and
certain algebraic conditions are supposed on al? (0),i = 1,2, such that for
e > 0, the generic conditions of Mourtada on the ratios r® (8,€),i = 1,2 are
satisfied. E.g.,

a® (0) # 0,a® (0) £ 0,a® (0) — P (0) # 0.
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This section contains the following parts of [DR]. In case the unfolding breaks only
one connection, one can obtain an asymptotic expansion for the difference map A in
the same way as for the saddle loop. By the occurence of two different compensators,
that degenerate in the same way for £ — 0, this asymptotic expansion cannot be used
to prove a finite cyclicity result, as in case of the saddle loop. To avoid this degeneracy
phenomenon, one rearranges the expansion by introduction of new compensators.
This new asymptotic expansion permits to prove a finite cyclicity result.

Asymptotic expansion of A in terms of w; and w;

Theorem 127 recalls an asymptotic expansion of A in terms of 1,2'w; 4 atwi

(0 < j <i)and z%,i > 1. Unlike the Abelian integral, where we encounter only linear
terms in log z, we also meet unfoldings of log' z,i > 2.

Using results from [R86| again, one obtains asymptotic expansions for A; (or Ay)
and A, (or Az) at any order, in terms of wi (z, A, £) and wy(2, A, €) respectively, similar
to expansion (1.108) for the map d in theorem 119 in section 1.5. But for A=A-A;,
there is no reason to preserve the special grouping of terms in brackets appearing in
expansion (1.108) for §, and having the leading terms linear in the compensator. The
asymptotic expansions that we can write for A, just have the property that their
principal parts are polynomials in &, 2w, w2 at any order N :

Theorem 127 Let A be the reduced difference function, associated to an unfolding of
a 2-saddle cycle, which breaks just one connection. There exists a sequence of germs
at v = 0,e = 0 of smooth functions cuji(v,€), i,J,k € N, such that for any N € N,
one has the following expansion at order N :

N
Alz,v,e)= Y gk (v, €)zt (zwr)? (zwe)* + Uy (T, 1, 8). (1.118)
itj+k=0

The remainder Uy is of class CN and flat at order N in x = 0, for all (v,€).

Remark 128 In fact, each monomial in the principal part of the expansion (1.118)
contains at most one of the compensators (the compensators are not mized, since w;
and wy come from Ay and Ay respectively and A = Ay — Ay ), but this is without
importance in this work.

The important difference between the saddle loop case which we have recalled
in section 1.5 and the case of the 2-saddle cycle is that we have now two different
compensators converging toward the same function log x, when ¢ — 0. Takinge = 0 in
A, every monomial z* (xu.n)j' (:rwz) : correspondmg to a given value of i and £ = j+k,
converges towards the same function 2t log® z. This degeneracy phenomenon is the
obstruction in using expansion (1.118) to prove directly a result similar to theorem
103.
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In order to remove the degeneracy in the first three terms (caused by zw; and zws),
the compensator wy_; is used to transform the first terms in the expansion of A
into the terms 1,z wy_; and 215", Since these last terms converge towards
1,zws_1 and z respectively, when £ — 0, there is no degeneracy anymore in the first
three terms, and one finds:

A(z) = B+ (@@ — aW)zitea?y, | —ugttee™ L R(z). (1.128)

To obtain these first three terms in (1.128) , the definition of the compensators wy,ws
and ws_1 and their relation are exploited as follows:

euaVzw, = u(:x:”“"m —Z) (1.129)

(1)
=yt —ug

and
> 2 (1)
ca@aw, — eaMgw, = g™ — gltee
(1) (2) _ (1)
= I1+sa (Is(a al't) 1)

& $1+ea“)5(a{2) B a(l))w2_1

Or, after division by € :
Q(Q)Iwz ot a(l)xw‘ — (a(z) — a(l))$1+€a(1)w2_1 (1’130)
Using (1.130) and (1.129), one find

a@zws — oM (1 + ue) zwy
= (a®Pzwy — aWzw;) — oM uezw

L (0:(2) — otV )$1+£a“)w2_1 s uml-i—sa“’ +uz (1.131)

Next, to remove the degeneracy in the terms of order O (:c2 |w[2) ,& — 0, where

lw| = max {|w;|,|ws|}, we remark that, for each N € N (N > 2), the remainder R
can be written as:
R(z) = Qn (z, 2wy, Tws) + BN (2)

where Qy is a polynomial of valuation > 2 in =, zw;, zws and Py is a CV function
that is flat of the order N at z = 0. Hence, we are only left with the treatment of
the function @, where the degeneracy comes from the presence of both w; and ws.
The idea now is to introduce the compensator wsy; and to eliminate one of those two
compensators, for instance ws. By the definition of wg,, it is clear that

Wy =un + E(OA(Z) = &(1)){4!21 (1.132)






102

and such that for any N € N one has an expansion of A as follows:

A(z,v,e) = Z Qi imj (1, ) Fiimj(z, v, 8) + Un (2, v,€) (1.136)
0<j<i<N

The coefficients a;; are smooth functions of the parameter and the remainder Wy is
CN and flat of order N at = 0, for all (v,¢).

Notice that, for € = 0, expansion (1.134) reduces to

I (z) = A(z,v,0) = B+ (5:(2) - &(1))mlog:z —ax + Ry(z,zlogz) + ®n(z),

where § = ﬁ]5=0,&(i) = a“)|szo,i = 1,2,@ = u|,_, and Ry = BRy|.—y, D
®y|._q . This is the expected expansion of I3 in the logarithmic scale £, proven in
proposition 92.

Simple asymptotic scale deformation

For € = 0, the sequence W coincides with the standard enlarged logarithmic scale
£5¢, However, the sequence W probably is not a simple asymptotic scale deforma-
tion. In fact, if one tries to prove it, at some point one has to control linear com-
binations of 20 and ge@®-a) (coming from the derivations of w; and wa,
respectively). But, fortunately enough, after three applications of the algorithm of
division-derivation to A (with the operator V = :sc% used instead of 58-1—), one can
make the compensator wy_1 to disappear from the formulas. In fact, it remains hidden
in terms O.

Proposition 130 After three steps in the division-derivation algorithm (each step
consists in the division by a function, smooth and positive for x > 0, followed by the
derivation by V, starting with the function A), one obtains a new function, A3, with
expansions at any order in the sequence Ws given by

Ws = {g'07(1+ Gywi ))(1+0), 0<j<i, 22}, (L137)
where the functions Gyj(u) are rational functions of u and G;;(0) = 0.

Proof. It suffices to perform the three successive steps in the division-derivation
algorithm starting from the sequence W ={F;; : 0 < j < i,i € N} given in (1.135).
Using the derivation properties of the algebra O (lemma 118), we will deduce the
elements of each sequence up to the relation = .

First step One divides the sequence Wy = W by 210" and one then derives
this sequence by V to obtain the sequence W :

{2

Wy = {$41-ea“‘1xs{a _“(1))(1-1—0), 0, xi—l—sa‘”w{—j(l_l_Gilj(ul—l)}

where GJ; are rational functions with G3;(0) =0, fori >2, 0 <j <.
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or zwiT*(1 4+ G(wy')(1 + O), where G is a rational function, G(0) = 0, and i € N.
From Lemma 107, it follows that these ratios go to zero when (x,£) — 0, uniformly
in A. The derivation by V of these ratios gives functions equivalent (in the ~ sense)
to —w,‘zmmm(l +G)(1 4+ 0) and zwit?(1 + G)(1 + O) respectively with a constant
sign for z > 0 small enough. So, also the fourth condition in definition 93 is verified.
We now proceed to prove that this asymptotic scale deformation is simple (defi-
nition 94). To simplify the notations, we will just write the principal term for each
function in the different sequences. In fact, these functions are obtained by multi-
plying the principal term P by a factor M = (1 4+ G(w;'))(1 + O). The operation of
division and derivation transforms this term into a similar one. Precisely, from lemma
118 part 3, one has that V(PM) ~ (VP)M, where M is similar to M. Moreover, we
indicate the functions just up to the relation ~ . We begin with the sequence W* :

WE =We & {107, wi2; z*ui‘f‘ 0<j<i+2i>1} (1.140)
Application of the operator V gives

{0, w25 wdzee; x*ui‘fi 0<j<i+2i€cN} (1.141)
We now divide by the first function to obtain

By -1, i—ea'V i+2—j
Wi = {lLw; sz H

0<j<i+2,ieN;} (1.142)
Next (after derivation by V and division), we will find

W5 = {1; mf_zeafl)wi+4_j| 0<j<i+2ieN}

2

- s R | 2
Wi = {1,wi w2 wi®, ow, 4, zwl 2wy 2, swp 0, 2wty . )

~ {1; x“wi—j|0§j§i+3,ieN}, and so on.

Let us again define for r € N, the index J (r) as the order of the function f., =
" log” z in the scale £¢ as in (1.83) . Then we can prove by induction on r € N, that
Vr € N,V0 < s < r + 2, the principal parts of the functions in the sequence W5
are given by

(r)+s

= Ao o sV 34— .- .
{l,wl T R T o k7 g A 05}5z+r+2,321}

Therefore, as the sequence W, each sequence W¢ (i € N) verifies the conditions of
definition 93, once that one restricts = to some interval [0, h;[. m
Finite cyclicity
As we have already seen in (1.115) , the Abelian integral is given by
I(z,v) = Az, v,0)
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the bifurcation sets in uniform neighbourhoods as well in the phase plane as in the
parameter space and obtain “stable bifurcation diagrams” when bifurcating from the
set of integrable systems? This is the subject of this chapter.

A lot of results in this chapter are for sure well-known among specialists, if not
explicitly then at least implicitly. However as far as we know they have never been
written down thoroughly.

In [BoLe| and [GW], one can find the relation between the normal form of a Hopf
point or Hopf singularity and associated Lyapunov quantities. However these papers
do not take care about the relations on parameters, hence on the bifurcations as such.
In [T] we have a well elaborate study of the generic Hopf bifurcation of any codimen-
sion, but in this paper nothing is said about the relation with Lyapunov quantities.
Moreover none of these papers deal with the more degenerate bifurcations in which
centers can occur; in that case people use Lyapunov quantities as well as Melnikov
functions but again a clear description of the relation between these notions does not
seem to be present in the literature. For a simple Hopf bifurcation of codimension
1 there exists a result using normal forms in the case of a center [CLW]. Without
claiming to be complete, we state and prove a number of theorems that can be used
as a firm theoretical base for the calculations that are generally made in freating
concrete examples.

In this chapter, we deal with C* families of vector fields if the study is (completely)
analoguous to the C* case. However certain results are restricted to C* families. The
main reason is that these results cannot be generalised to non-analytic families. Also
in most concrete examples the families to deal with are for sure analytic if not to say
polynomial.

Throughout this chapter, we only deal with a local study of families near a center.
The right framework for this study relies on the notion of germ. We of course mean
the notion of “germ of a family” and not “family of germs”. However to make the
study simpler we will sometimes forget to state the results in terms of germs and use
the families of vector fields themselves.

In the last paragraph of [Chic] a few ideas developed here are already present.
However in [Chic] attention only goes to the cyclicity and not to the genericity of the
unfoldings, which is our main concern.

This chapter is organised as follows. In section 2.2 (respectively section 2.3), we
look for sufficient and necessary conditions to ensure the presence of a generic Hopf-
Takens bifurcation (respectively near centers). We start by recalling the definition
of the generic Hopf-Takens bifurcation of codimension [ in section 2.2.1. In sections
2.2.2 and 2.2.3, we state sufficient and necessary conditions in terms of normal forms
and Lyapunov quantities respectively. In section 2.3.1, we restrict to situations where
centers occur on the regular hypersurface {(v,¢) € RP~IxR: e =0}, and we gener-
alise the results in section 2.2 in a uniform way with respect to € > 0. In addition,
we give a uniform result with respect to € > 0 in terms of the first non-zero Melnikov
function. Finally in section 2.3.2, we investigate a more complicated situation, in
which the Bautin ideal is not anymore principal (but this time it is regular). In the
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1-dimensional parameter; therefore we speak of a codimension 1 bifurcation. We de-
note the standard generic Hopf bifurcation of codimension 1, giving rise to either a
stable or an unstable limit cycle, at once by X:(kl). The bifurcation diagram of limit

cycles of Xf:} is presented in figure 2.1.

Figure 2.1: Standard generic Hopf-Takens bifurcation of codimension 1 (type X _E_l))

The simplicity of this model relies on the fact that limit cycles of the vector field are
exact circles centered at the origin, with radius determined by zeroes of a polynomial
of degree 2; the stability of the singularity and the possible limit cycles are found by
investigating the sign of this polynomial.

In general, bifurcation diagrams of zeroes of polynomials are matter of subject in
Catastophy theory, and in an analoguous way, the bifurcation diagram of limit cycles

in the standard models X(it), defined by

Xg) — (Ié% - y(%) i(rm + ag_ﬂ"w_l) + ...+ mrg + ag) (m(,% L y%) , (2.1)
where 2 = 22492 and ay, ...,a;—1 € R, is represented by the one of the zeroes of the
governing polynomial of degree 2[ in r. The occuring bifurcation phenomenon in the
family X:(if), is referred as ‘Standard generic Hopf-Takens bifurcation’ or ‘Standard
generic generalised Hopf bifurcation’ of codimension I, since it can be described by
a [-dimensional parameter a = (ag, ...,a;—1). Clearly, we deal with a multiple limit
cycle bifurcation, meaning that V0 < i < [, there is a region in the bifurcation diagram
of limit cycles of Xg) in R*, adhering to a = 0, with ¢ limit cycles bifurcation.

The bifurcation diagram of X(f) is shown in figure 2.2. Its bifurcation diagram
exhibits regions with 0,1 or 2 limit cycles.

Let us now consider a family of planar vector fields (X,), with singularity e, that
unfolds the vector field X0, where \° € R?. Then, we say that the family (Xy),
exhibits a generic Hopf-Takens bifurcation of codimension [ at (e,A?) , if there exist
an open submanifold W C R” containing A° and an open neighbourhood U C RZof e
such that the bifurcation diagram of limit cycles of (X)) on U x W is diffeomorphic
to the one of Xg) on R? x R}, preserving the repelling and attracting nature of the
singular point and possible limit cycles. More precisely,
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2.2.2 Normal forms

In this section, we recall the main result and the ideas of the proof given in [T], to
fix notations and to clarify how this result can be generalised to situations where
centers occur on regular hypersurfaces (section 1.3). We first give a summary of this
section. F. Takens reduced the investigation of the presence of generic Hopf-Takens
bifurcations’ to the one for families of ‘symmetric normal forms’ according to the

standard generic Hopf-Takens bifurcation X:(;), that is an example of such a family
of symmetric normal forms. For such families he defined ‘symmetric displacement
maps’, in such a way that the governing polynomial in (2.1) multiplied by 2, s
symmetric displacement map for XE), the so-called standard symmetric displacement
map Dg). In this way, the family (X)), exhibits a generic Hopf-Takens bifurcation
if there exists a weak morphism from its associated symmetric displacement map D
and the standard symmetric displacement map D (where ¢ is + or —). Moreover,
for this purpose, he gave a generalisation of the Preparation Theorem for symmetric
functions. Then, by this theorem and the relation between the coefficients in the
expansion of D and the ones in D!, one can give an equivalent characterisation of the
generic Hopf-Takens bifurcation of codimension [ in terms of normal forms. This last
step is neither worked out, nor explicitly mentioned in [T].

Firstly, the family (X ), is reduced to a symmetric normal form (X )(\N) )a; it means
that (X ;N)),\ satisfies the following ‘symmetry property”: in polar coordinates (r, #)
the vector field X ,(\N) is expressed as

Po= r(f (r%A) + g (rcosf,rsind, A))
=1
where f, g are C™ functions with
f(0,0) = 0
Joo (g(! '?’\)}(0,0) = 0,VA

and all closed orbits vy of XiN) sufficiently close to e are exactly round (i.e., there
exists a positive constant p such that

v ={(x,p) eR?:z% 4+ 4% =p}).
This reduction is obtained by C* diffeomorphisms of the form:
(3’:, yr’\) = (KA (9:1 y) ?"\)
and by multiplying the family by a strictly positive function F':
XM (K (2,9)) = F (2,3, ) - d(Kx) 5y (X (2,9)) -

In this way, the singularity e of X is sent to the singularity (0,0) of the vector
field X‘gm preserving its type (sink or source); in a neighbourhood of e, closed orbits
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1. there exist a family of C™° maps Hy : U — R, with Hy (0) >0,A € W and a
submersion ¢ : W — ¢ (W) at A%, such that the map ® can be written as

& (r,\) = (Hy (r?),¢(N) ,V(r,A) e U x W,
and
2. for every (r,\) e U x W :

D(r,\) = DY (& (r,))).

Proof. The map ® ((z,y),A) = (Hx (22 +¢?) - (z,4),¢())) defines a weak mor-
phism from (X)) to X (il ), and its action is presented in figure 2.3;

Fa fﬁ\gx,y) T TNBE )
L . \ / A \
v rH,\(r‘)/
\>/ \

SR @ k/ gﬂ\’n

Figure 2.3: Weak morphism @

Proposition 137 gives an equivalent characterisation of a Hopf-Takens bifurcation
in terms of the symmetric displacement map. In practice, if we already can find an
explicit expression for the symmetric displacement map, it is although no evidence
to find a map @ satisfying the prescribed conditions. However, Takens proved a
generalisation of the Preparation Theorem of Mather for symmetric functions and
this result will be the key in stating generic conditions for a Hopf-Takens bifurcation
in terms of normal forms.

Theorem 138 (Preparation Theorem of Mather for symmetric functions)
Let Uy x Wo C R x R” be an open neighbourhood of (0,A°), and let be given a C*
(respectively C* ) function D : Uy x Wy — R such that

i) D) =r*2F(r), Vrel with Fy (0) # 0
ii) D(OXN=0, YAcW )
iii) D(r,A)=D(-rA), VY(r,\)elUyxW;
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1. (0,0) is a Hopf singularity or Hopf point of codimension L, i.e.
fo(A) =...=fi1 (A°) =0 and f; (X\°) #0
2. The map f = (fo, f1,-.-, fi—1) is a submersion at AL,

Theorem 140 can be rephrased in terms of normal forms using the technical propo-
sition derived in chapter 1. We provide a proof of this theorem since it is not given

in [T].

Theorem 141 Let (X,), be a C* (respectively C*) family of planar vector fields
(X)), of type (1.27). Furthermore, let (1.30) be a normal form for the family with
N > 1. Then the family (X)), ezhibits a generic Hopf-Takens bifurcation of codi-

mension | (the sign £ of its type X(;) is given by the sign of d; (A°)) if and only
if
1. (0,0) is a Hopf singularity of codimension [, i.e.
do(\°) =...=dj_1 (A°) =0 and d; (\°) #0
2. The map d = (do, dy,...,di—1) is a submersion at X°.

Proof. For the family (X iNJ ) Takens constructed a symmetric displacement map as
follows: in polar coordinates the family (Xim) » corresponds to the following scalar
differential equation:
R=R-(f(R%\) + G (Rcosf, Rsin0, \)) (2.3)
with ju (G (-, ,/\))(00) =0 and f(0,A) = dg (A).
If R(#,r,)) is an integral curve of (2.3) with R (0,r,A) = r, then
D(r,A) =r(R(2n,rA) —r— R(2n,—1,A) +71) (2.4)

defines a symmetric displacement map for the family (X)(\N)} a- Denote the displace-
ment map of X E\N), corresponding to the transverse section {# = 0} and parametrised
by the radial variable r, by

8" (r,A) =8} (r).

Now there exists the following relation between D and §':
D (r,A) =7 (8" (rA) — &' (-1, N)) . (2.5)
As a consequence of (2.5), we have for all j € N :
% §%-1
o =2 g1
——D (1, ) =]
r=0
By equalities (2.6) , proposition 50, theorem 54 (and remark 57 in the C™ case), and

lemma 9 (1,2), the conditions of theorem 140 are equivalent to the ones stated in the
current theorem. =

& (r,\)
r=0 (2.6)
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This for sure guarantees the occurence of a system with [ limit cycles for A = :\D, but
it for sure does not imply to have a full unfolding of the considered Hopf singularity.
As a trivial counterexample it suffices to consider the 1-parameter family

a
i 2 _ e
ag-i—('r £ )r =

Similar examples can be found for any value of [.

2.3 Hopf-Takens bifurcations near centers

2.3.1 Regular hypersurface of centers

In this section we deal with a C°° (respectively C*) family of planar vector fields
(X(v,s))(,,‘s) of type (1.27), (v,€) ~ (¥°,0) € R~ x R, such that centers in this
family occur on a regular hypersurface (as defined in section 1.3). Hence, there exists
a strictly positive integer k such that if § is a family of displacement maps for this
family, then there exists a C™ (respectively C*) function &, which is not divisible by
£, with

8 (s,v,6) =" (s,v,€). (2.7)

We will only consider families in which no centers occur for € > 0.

Of course for € = 0, the origin e = (0,0) is always a center and no limit cycle
occurs in a neighbourhood of the origin. For fixed £ > 0, one can apply theorems
140, 141, 142 or 143 in order to guarantee that the subfamily (X(,,,E))%U(E) exhibits a

generic Hopf-Takens bifurcation with respect to certain neighbourhoods U () of v° in
R?~! and W (¢) of the origin ¢ in R? (depending on £). When & decreases to 0, these
neighbourhoods U () (respectively W (£)) might however shrink to 1/* (respectively
e). However, in many cases, it is imperative to have the result in a uniform way, i.e.
on a fixed 7 C U (g) and W C W (), for all 0 < £ < &, with £ > 0.

Chow, Li and Wang [CLW| have proved such a uniform result (with respect to &)
for the Hopf bifurcation of codimension 1. We state here five general uniform results.
The conditions are expressed in terms of either the reduced symmetric displacement
map (theorem 144), or normal forms (theorem 145), or reduced Lyapunov quantities
(theorems 146 and 147), or the first non-zero (reduced) Melnikov function (theorem
148). Depending on the concrete situation, one can apply one of these theorems to
investigate the presence of a generic Hopf-Takens bifurcation (uniformly with respect
to e > 0).

To obtain the announced results, we reduce the current situation to a non-degenerate
one, where again the result of Takens applies. Then we can give sufficient conditions
on the ‘reduced symmetric displacement map’ in order to have a uniform result on
generic Hopf-Takens bifurcations near a regular hypersurface of centers.

Firstly, we reduce the family (X, . to a family of symmetric normal forms,
€)) (v,e)

(X {fﬁ‘g)}(,,_s); let 6' and D be the traditional displacement map and the symmetric
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We can restate this theorem where the conditions are expressed in terms of normal
forms:

Theorem 145 Suppose that the centers of a given C™ (respectively C*) family of
planar vector fields (X(!,'E)) of type (1.27), occur on a regular hypersurface, as de-
scribed by (2.7) . Purthermore, let (1.30) be a normal form for the family with N > [.
Then, there exist C® functions d; such that

di = EN,; (2.12)

and the family (X (,.)) () exhibits a generic Hopf-Takens bifurcation of codimension

l, uniformly with respect to € > 0 (the sign £ of its type X(;) is given by the sign of

df (V{Js 0))1' ‘lf
1. (0,0) is a Hopf singularity of codimension l, i.e.
d; (¥°,0) =0,Y0 <j <l—1 andd; (+°,0) #0

2. The mapd: (RP~1 0°%) — R:v s (do (v,0),...,di— (,0)) is a submersion at
0
0,

Proof. Theorem 54 (3.) implies the existence of functions d;, defined by (2.12)
(therefore the so-called reduced coefficients in the expansion of the considered normal
form). The statement on the generic Hopf-Takens bifurcations follows immediately
from theorem 144 using the relations in (2.11), lemma 9 (3.) and theorem 54 (3.) (as
in the proof of theorem 141 where D plays the role of D). ®

Next, we would like to give a uniform result with respect to £ > 0 in terms of
Lyapunov quantities. Recall from section 1.3.3 that in current situation a given set of
Lyapunov quantities defines a set of reduced Lyapunov quantities (after division by
k).

Theorem 146 Suppose that the centers of a giwen C* (respectively C*) family of
planar vector fields (X{,_,,E)) of type (1.27), occur on a reqular hypersurface, as de-
scribed by (2.7) . Furthermore, let {17', i EN } be a set of reduced Lyapunov quantities

for this family. The family (X, . exhibits a generic Hopf-Takens bifurcation of
(»e) (v,2) 0
l

codimension [, _um'_fmmly with respect to € > 0, (the sign + of its type X' is given
by the sign of V; (1°,0) ) if

1. (0,0) is a Hopf singularity of codimension I, i.e.

V; (1°,0) =0,Y0 <5 <11 and V; (+°,0) #0

2. the map V : (RP~1,0%) - R:v s (Vo (1,0),...,Vi_1 (v,0)) is a submersion at
0
.
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Theorem 148 Suppose that the centers of a given C* (respectively C*) family of
planar vector fields (X)) of type (1.27), occur on a regular hypersurface, as de-
scribed by (2.7) . Furthermore, let My be the reduced first non-zero Melnikov function.
Then, the family (X(y,g))(v,ﬂ ,(v,€) ~ (¥°,0) , € > 0 ezhibits a generic Hopf-Takens
bifurcation of codimension l, uniformly with respect to € > 0, if

1. (0,0) is a Hopf singularity of codimension 1, i.e.

o' My,
0
(»*0)=0,Y0<j<l-1 and =

07 My,
oh

(¢°,0) #0;

2. the map v — (Mk (u,{]),%l\fv‘_ﬁr (v, 0),...,-;%Mk (v, 0)) is a submersion at

9,

500
Moreover, the sign of of its type Xf:) is determined by the sign of %% (+°,0).
Proof As we did in section 1.3.2, we can introduce coordinates like in (1.64) , m which

h= 2 , and continue working in these coordinates. Since My, (r,v) = rMi(% 5 ,u} we
have the following relations: Vj € Ny, there exist A;, B; € Qﬂ such that

3j o%+1
FI% My (h,v) ' =A;- arzj,“Mk(T‘, v,€) " o
6.‘5‘ dﬁj-l—l '
=By 5eF (6 2ch‘i({] u,e)) I (2.13)

Combining relations (2.13) and theorem 54 (3.), it follows from lemma 9 (3.) that the
conditions stated in this theorem are equivalent to those of theorem 145. m

2.3.2 Bautin ideal with more than one generator

When working with aualytlc families, the Bautin Ideal can be more complicated than
merely generated by £ or ¥ (k € N). It does not get more complicated to study the
local cyelicity, or the diversity of phase portraits; only the bifurcation diagram gets
more involved. We do not want to make a complete general study but introduce
one example with some interesting properties. We suppose that the Bautin Ideal is
regular having two generators, let us call them (g1,£2). To keep the conditions as
non-degenerate as possible we take factor functions having as order respectively 1
and 3. As a model we consider

5(r,v,e1,8) =er(v +12) + &g (2.14)

with v, 1,62 € R and small. Clearly the local phase portraits near the origin exhibit
at most one limit cycle. Also the bifurcation diagram is easy to obtain. There are
however two bifurcation types and not one as in the classical Hopf bifurcations. On
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expressed by (2.16) and (2.17) are transverse, it is easy to prove that the bifurcation
diagram of (2.15) is C* diffeomorphic to the one described by the model (2.14).

Now checking on the analytic family that we have a displacement map like in
(2.15) can again be done either by calculating a normal form of the vector field or by
calculating the Lyapunov quantities. One has to check the folowing three conditions
on the Lyapunov quantities:

1. The Lyapunov ideal has to be (g1,e2), i.e. it is generated by the germs at
(0,0,0) of the analytic functions

(v,e1,€2) — €1 and (v,&1,62) — &2

2. The divergence (i.e., twice the 0-th Lyapunov quantity) has to be 3 + ve; +
(0] (||(51,£2)|[2) , up to a strictly positive function;

3. The first Lyapunov quantity, under the condition that the divergence is zero,
has to be £1 + O (£2) + O (e2) , up to a strictly positive function.
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2. we say that (E)), exhibits a generic Hopf-Takens bifurcation of codimension |
if and only if the family (X, ), does.

In article ([F02]), the cyclicity was computed following the Frangoise-Yomdin ap-
proach based on a recurrency relation for the coefficients of the return map and a
complex analysis method (Bernstein’s inequality) for the classical Liénard equations.
Here, in section 3.2, we use instead techniques of R. Roussarie, based on a minimal
system of generators for the Bautin ideal which provides a lower bound for the cyclic-
ity (section 1.2.3). Finding this lower bound is closely related to the existence of
Hopf-Takens bifurcations. This last approach is developed later, in section 3.3, for
generalized Liénard equations. It would be certainly interesting to discuss also the
Francoise- Yomdin approach for generalized Liénard equations in the future.

Here, attention not only goes to bounding the cyclicity, but also to local division
of the displacement map and presence of Hopf-Takens bifurcations. To the best of
our knowledge, these three aspects have not been jointly discussed previously. But
perhaps the most original contribution of this chapter is section 3.3, where we discuss
these topics for a family of generalized Liénard equations.

In our approach, we use results from sections 1.2.3, 1.2.4, 2.2.3 and 2.3.1, concern-
ing Bautin ideal, Lyapunov quantities and Hopf-Takens bifurcations. In particular,
we use a slightly generalised result on Hopf-Takens bifurcations (cfr. theorems 142,
143, 146 and 147), in case the first 7 Lyapunov quantities identically vanish (or equiv-
alently, the traditional displacement maps dy all are divisible by s*"+?). Let us now
gather together these results.

Let (X,), be a C* family of planar vector fields of type (1.27), let (d)), be an as-
sociated family of displacement maps (parametrised by s such that s = 0 corresponds
to e = (0,0)), and let {V; : i € N} be a set of Lyapunov quantities for the focus e.
Assume that

Vi=0,¥0 <i<rand Viyy £0 (3.1)
Notice that fact (3.1) is equivalent to the fact that the displacement maps dy are divis-
ible by "3 and 6&2”3) # (. There are two possible situations: the non-degenerate
situation,
AeN:Vj<r+1:V;(A°) =0and Voyg (A°) #0 (3.2)
or the degenerate situation,
VieN:V; (A% =0 (3.3)

Since the family (dy), is analytic, the vector field Xyo is of center type, in case of
(3.3). Let | be a positive integer such that the Bautin ideal at A" is generated by the
germs of the analytic functions V,;,1 < j < I at A%, Then, the following properties
hold:

1. In both cases (3.2) and (3.3), the family (4,), can locally be expanded as:

]
3(s,X) =08 (8) =822 Vs (W) By (5,4) ;8 ~ 0,4 ~ X (3.4)

i=1
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where f(z,A) is a function of class C7 (y € {oo,w}) with f(0,A) = 0. If f is
sufficiently differentiable, then we can write

aN
f@ ) =Y fiNa'+0 @),z -0,

i=1

for N € N and certain functions f;,j € N of class C7.
In section 3.2.1, we see that the first N Lyapunov quantities are given by fo;,1 <

j < N, to arrive in section 3.2.2, where we give results concerning cyclicity, displace-
ment map, and presence of a (degenerate) Hopf-Takens bifurcation, as was explained
at the end of section 3.1.

3.2.1 Calculation of Lyapunov quantities

Lyapunov quantities of the Liénard equation (3.5) are defined as Lyapunov quantities
of the corresponding system of first order differential equations:

X,\H{; =, {m_f(x,)\)y (3.6)

As usual, system (3.6) , is transformed into:

X = Y+HR(EXA)
{ e 5o o 1 (3.7)
by use of the near-identity transformation
g b oty — s s VY s b P (s ) == / £, (3.8)

0

From proposition 58, it follows that Lyapunov quantities of (3.7) are given by the
coefficients of odd order in x of Fj (z,A), and hence, by the coeflicients of even order
in z of the function f (z,A). More precisely:

Corollary 150 Let {V; :i € N} be a set of Lyapunov quantities of (3.5). Then Vy =
0, and V1<i< N:
Vi= cif?imOd(vafd: =Sl f‘ZN—‘Z) 1

where ¢; € Q@ \ {0}.

3.2.2 Conclusions

By corollary 150 and the remarks at the end of section 3.1, we have the following
results for a general family of classical Liénard equations

i+ f(z,\) & +1z=0. (3.9)

In the non-degenerate situation (3.2) :
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2. If {f2j : 1 < j < N} is a set of generators, then
Cyecl (X,\, (e,A?)) <N -1

If, furthermore, the map A +— (fa(A),fa(A) ..., fon (X)) is a submersion at
A0 then
Cyecl (X», (e,A%)) =N —1.

Theorems 151 and 152 are stated in the most general case, in the sense that we
consider families that do not necessarily depend in a polynomial way on (z,y), but
are sufficiently differentiable in (z,y). Theorem 153 below contains the analoguous
results in case the Liénard equations are polynomials. Let the integer part of NV/2 be
denoted by [N/2].

Theorem 153 Consider a family of polynomial Liénard equations (3.9) with
N »
f@ ) =Y Azl A= (A1, An) €RY
=1

Fiz a parameter value \° = (Ay, Az, ..., An).

1. If there exists 1 < | < [N/2] such that Ag; = 0,V1 < i <1—1 and Ay # 0,
then the family of Liénard equations ezxhibits a generic Hopf-Takens bifurcation
of codimension | — 1. Moreover, the sign of its type Xj(f_l) is given by the sign
of —Ag. Particularly,

Cyel (X, (,A%)) =1-1

2. If forall1 <1 < [N/2] : Ay = 0, then the Bautin ideal is generated by the
germs of the analytic functions Az, Aa, ..., Ag[ny2) ot A, and the displacement
map can be written as:

(v/2)
5(s,A) =523 Agjhi(s,A),

j=1
for analytic functions h; with
hj (,A) =n5 (A) s% 2 +0(s¥72%),5— 0,
for certain n; (A\%) < 0,V1 < j < [N/2]. Particularly,

Cyel (X3, (e,A%)) = [N/2] — 1.

The following theorem deals with the special situation of (3.3), in which centers
occur on the regular hypersurface {(v,£) € RP : £ = 0}.






132

3.3.1 Calculation of Lyapunov quantities

The generalized Liénard equation can be written as the following system of first order
differential equations:

13
g = —g{m,A)—f(x,/\)y

Again, we perform transformation (3.8) to obtain the system:

& Y + F (z,A)
Y = —g(z,A)
To transform the family (3.10) to a family of type (3.7), we will introduce (inspired
by Cherkas’article ([Cher]) a new (locally defined) coordinate X = zA(z,\) such

that (3.11) is equivalent to a system of type (3.7). In the coordinates (X,Y), system
(3.11) is transformed into

£

where & = X B (X, \) denotes the inverse transformation of X = zA (x, ). Hence A
has to be defined such that

Il

(3.11)

I

(Y + Fi (XB(X),)) (A(z,A) +z2A(z, N)

A
X (AN +agAEN) 3 (A(z, ,\g;(:ma)iA(z, )

Il

g(x,}) =1
zA(z,2) (A (z,)) + 22 A(z,N))
This is equivalent to
J 2
29(2,3) = 5- ((mA (z, ) ) .
Therefore, A can formally be written as
A(z,A) =, ’ 14> a (N,
i=1
where Vi > 1 :
= 20t (312)

i+2°
After division by A (z, A) + 3:3‘?544 (z,A), we obtain the desired system with
F(X,A) =F,(XB(X),A).

Now, it is clear that Lyapunov quantities for the generalized Liénard equation are
given by the coefficients of odd order in X appearing in the expansion of F. Let us
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The second part follows from the following observation. If [ = 2k + 1 is odd in (3.18),
then ¢ has to be odd (since j even); as a consequence, there must be at least one odd

index i;,. ®
From proposition 160 and corollary 159, we can deduce the following corollaries.

Corollary 161 Suppose that pajy1 = 0,Vj € N,

1. Then
{ ds = —‘%;pqu, and Vk > 2:
dogt1 = —5pagek—1mod (q1,G3,---,qok—3)
2, If, for instance, po = —1, then
{ da = 1q, andVk>2:
doky1 = 302k—1mod (q1,43, .-, q2k—3)

Corollary 162 Lyapunov quantities Vi,i > 1, in the generalized Liénard system
4 f(z,A)z+g(z,A) =0

with
f(z,A) = 2z+o(z),z—0
f@N = —f(-a))

g (55'1 ’\) T+ de' (’\) it
=2

are given by:

{ Vi(A\)
Vi (A)

392(A), and Vk > 2
ser192k (A) mod (g2 (A) , 94 (A) - -, g2k—2 (X))

Il

3.3.2 Conclusions
The conclusions deal with the following family of generalized Liénard equations:

T+ f(z, )i +g(z,A)=0 (3.19)
where f, g are C* or C* with
flzA) = 2z4+0(2),2—0
@) = —f(=zX)
g(z,A) = z+ Zg,: (A) z*
i=2

Combining corollary 162 and the results of section 3.1, we can draw conclusions on
the presence of Hopf-Takens bifurcations in these generalized Liénard equations, as
we did in section 3.2.2 for the classical Liénard equations.

Again, we start by stating the results for general families, and next, for polynomial
ones. In situation (3.2), we arrive at the following theorem:
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through A° (i.e. . (0) = Gy (0) = A?) such that
Cyel (X, (T, A?)) = Cyel (X¢. (e, (T, 0)) (4.1)
Mult (X, (I, A%)) = Mult (X, (o), (T, 0)) (4.2)

Throughout this chapter we will not really make an explicit distinction between the
parametrization v : I — R™ and its image 7 (I). Neither will we always specify I
since we are essentially interested in germs. In any case “analytic curve” will mean
that v : I — R™ is analytic, and the same holds for “algebraic curve” and “linear
curve”, in the sense that the components of  are respectively polynomial and affine.
The main concern is the existence of an algebraic or linear curve of maximal cyclicity
(respectively multiplicity) in each of these families. We now give a precise definition
of a curve of maximal cyclicity (respectively multiplicity):

Definition 167 Consider an analytic p-parameter family of planar vector fields (X))
unfolding a vector field of center type Xyo (A € R?), and let I’ be a non-isolated pe-
riodic orbit of Xyo. An analytic curve ¢ (g) having property (4.1) (respectively (4.2))
is called a curve of maximal cyclicity (respectively a curve of maximal multiplicity).
Shortly, we say that ¢ is an mce (respeclively an mmc).

The problem is interesting, since, in studying bifurcations of vector fields of center
type (e.g., Hamiltonian ones), the technique of Melnikov functions is generally used.
Often one only computes Melnikov functions for 1-parameter subfamilies, sometimes
merely induced by straight lines in parameter space. In this chapter, it becomes clear
that one needs more information than only these computations to derive the right
conclusions on the cyclicity of the whole family.

Besides general analytic families of planar vector fields (X ), , our attention goes
to the following ones: algebraic systems, i.e.

o tip=N :
XN+ Y, WA (4.3)
i1+eaotip=1
and linear systems, i.e.
Xy =Xo+MX1+... 4+ pX;, (4.4)

where the analytic vector fields Xo, X, .4, (1 <iz+...4+i, <N), X; (1<i<p)
only depend on (z,y) , and the vector field Xy is a vector field of center type; attention
also goes to these kind of families with a regular or principal Bautin ideal.

Using the algorithms of Frangoise or Poggiale (section 1.2.2), the index of 1-
parameter subfamilies can be computed; therefore, we also investigate the existence
of curves in parameter space such that the index of the induced 1-parameter family
is equal to the index of the p-parameter family. In [R00], using the desingularisation
theory of Hironaka, R. Roussarie proved that there exists an analytic curve ¢ with

Index (X, (T, A%)) = Index (X¢ (o), (T,0)) - (4.5)
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Figure 4.1: Cone of curves surrounding ¢

be found in section 4.6.2. In section 4.6.2, the open subanalytic set W with the
‘good’ properties is constructed. Next, we apply the curve selection lemma for open
subanalytic sets on W, to guarantee the existence of algebraic mcc’s (respectively
mmc’s).

If the family (X ), does not satisfy the condition, then we do not yet know whether
an algebraic mce (respectively mme) always do exist. In the algebraic example (4.28),
there is an algebraic mce (respectively mme) present. Moreover, for the moment we
don’t have an example of a linear family that does not satisfy the condition.

Finally, in section 4.7, we discuss some extra remaining problems, such as the
problem of the minimal degree of an algebraic mcc (respectively mmc) for certain
specific families. However, we do not know whether a uniform bound exists on the
degree (only depending on the degree of algebraicity in A). Yet we still have one
result for analytic families of planar vector fields with a [-dimensional regular Bautin
ideal and Indez= [ — 1 : there exists an algebraic mec (and mmc) of degree < [H£2]
and every analytic curve with the same [52'—2]-jet enters the me-stratum (and mm-
stratum) at A° (precise conditions on the Bautin ideal are formulated in theorem 214).
As a consequence, for a 2-dimensional regular Bautin ideal with index 1, there exists
a linear mec (mme).

4.2 Curves of maximal cyclicity and multiplicity

In this section, it turns out that the theory of analytic geometry is an interesting tool
in the study of zeroes of analytic functions (and hence limit cycles of analytic planar
vector fields). For instance the set B,, of all parameter values with n zeroes can be
described by a subanalytic set. In this way, the parameter space can be partitioned
in subanalytic sets with respect to the number of zeroes (multiplicity included or not)
of the associated function in a fixed interval I C R. A very useful lemma is the curve
selection lemma (lemma 170), that ensures the existence of an analytic 1-parameter
subfamily such that every map in this family has exactly n zeroes in I. Moreover,
under certain conditions on sy € I, we can achieve that these zeroes all converge to
sp. These results are extended and discussed in detail in section 4.2.1. Afterwards,
in section 4.2.2, this study is translated to analytic families of planar vector fields by
way of the associated family of displacement maps. As a consequence, there exists an
analytic curve in parameter space such that for each parameter value on this curve
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configurations of zeroes that arise after perturbation from a non-isolated zero sg € 1
of fo, e.g., sp = 0. For 0 < £ < 7 the function f. has exactly three simple roots in 7,
namely &, —s,% — £. The first two zeroes converge both to sg. However the last zero
tends to the boundary of I when £ | 0, and escapes from I for € = 0. Hence only the
first two zeroes result from sy after perturbation of fy. These zeroes are the interesting
ones, as being the zeroes that arise after perturbation of a given non-isolated zero sg
of f AD.

To avoid that some of the zeroes &; (¢) in the configuration e do not converge to a
given non-isolated zero sy (for instance because they escape through the boundary of
I), we will look at the set C,, in the product space B x I"™, that contains all ordered
(p + n)-tuples (A, &1,-..,&), of which the first p coordinates refer to a parameter
A that gives rise to the configuration ¢, and the other coordinates are the ordered
zeroes £; < ... < &, of fy in I with prescribed multiplicities mq,...,my. This set C,
also is subanalytic (proposition 169 below). Again due to the curve selection lemma
for subanalytic sets, we know that for every configuration that appears for infinitely
many parameters arbitrarily close to A%, and for which the zeroes in this configuration
approximate $g infinitely close, there exists an analytic curve ¢ in parameter space B
through A° (i.e. ¢(0) = A%) such that every parameter { (¢) on this curve gives rise
to the configuration o in I. Moreover, this time, the ordered zeroes & (¢),...,&, (£)
of fe(ey in I in this configuration depend analytically on &, and since §; (0) = so
(Vi=1,...,n) they all tend to so. In other words, these zeroes originate from the
same non-isolated zero sg of fyo after perturbation. This is the content of theorem
171.

We give now precise statements of the propositions announced above, the curve
selection lemma and theorem 171. For a complete description of the properties of
subanalytic sets and the curve selection lemma, we refer the reader to the literature,
e.g., [BM], [DS], [Loj]. We just recall the basic facts.

A set will be called subanalytic if it is (locally) a linear projection of a relatively
compact semi-analytic set. A semi-analytic set is determined by a finite number of
equalities and inequalities of analytic functions; i.e. it can be written as

ko1
U _ﬂ{xifsj (x)0i;0}

where k,[ € N, f;; are analytic functions and o;; corresponds to one of the signs <, >
or =. Proposition 169 can be checked using basic properties of subanalytic sets: a
finite union or intersection of subanalytic sets is again subanalytic, a projection or a
complement of a subanalytic set results again in a subanalytic set.

Proposition 169 Let o denote an existing configuration in I, then

1. the subset B, is subanalytic (the set B, is even analytic); moreover,
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1. for every configuration o € A, there ezxists an analytic curve ¢ : [0, E] — B with
¢ (0) = A such that Ve € |0, E] : € (£) gives rise to the configuration a.

2. Moreover, if & = (n,ma, ..., my), then there exist analytic curves &;:[0, E] — Iy
with & (0) = 80,V1 < i < n, such that Ve € [0, E] : & (g) < ... < &n (€) are the
zeroes of fe(e) in Iy with respective multiplicities my, ..., My,

4.2.2 Configuration of limit cycles in analytic families of pla-
nar vector fields

Let (X)), be an analytic family of planar vector fields, unfolding a vector field of
center type X,o, with an associated analytic family of displacement maps (d,), .
Then the following corollary 172 is the analoguous one of theorem 171 for limit cycles
in analytic families of planar vector fields. As a consequence, any configuration of
limit cycles of X, arbitrarily close to I', A near A% can be detected by studying all
one-parameter subfamilies (X¢(z)),,, » induced by an analytic curve ¢ through A° (i.e.
¢(0) = A%). In particular, this implies the existence of an analytic curve { through
A such that the cyclicity Cyel (X¢ (), (I',0)) is attained for each parameter value on
this curve, a so-called curve of maximal cyclicity.

Corollary 172 Suppose we are given an analytic family of planar vector fields (Xy), ,
that unfolds an analytic vector field of center type Xyo, and I' a non-isolated reqular
periodic orbit of Xyo. Denote by A the set of all configurations of limit cycles that
appear in any sufficiently small neighbourhood of T' for any small variation of the
parameter value \°.

1. For every configuration o € A, there exists an analytic curve ¢ through \°,
such that for each parameter value { (g) # A°, the vector field Xy has this
configuration of limit cycles in a small neighbourhood of I'; moreover when ¢ ()
tends to A0, the limit cycles of X¢(ey in this configuration tend to I'.

2. In particular, there exists a curve ¢ : [0,1] — RP with ¢ (0) = A° of mazimal
cyclicity (respectively multiplicity).

An important. consequence of this corollary is that one can find upperbounds for

the cyclicity of the family X by studying 1-parameter subfamilies (X C(f))g , induced
by analytic curves ¢ through A%,

4.3 General case

4.3.1 Linear curves

Theorem 173 1. There are algebraic families without a linear mic, mme or mce.
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To end this section we give another technical proposition, that gives some insight
in the search for examples without a linear mic; it lies on the ground of the example
given in the proof of theorem 173.

Proposition 177 Suppose that {¢1,...,¢1} is a minimal set of generators for the
Bautin ideal of the analytic family (X»), of planar vector fields such that the map

A% (01 (N) -0t (A)

is a submersion at \Y and suppose furthermore that the corresponding factor functions
have an inereasing order at sy such that

0 = orderH; (sp) < ... < orderH; (sp) =1 —1,
Furthermore, suppose that the semi-analytic set
Vi={:lei N Sl ¥i=1,...,1

does not contain the germ of a linear curve at \°. Then there doesn’t exist a linear
mic (neither a linear mee, neither a linear mmc).

Proof. Since the map ¢ is a submersion at A, it follows that the Bautin ideal is
regular. As a consequence, by theorems 40 and 45, it follows that

Cyel (X, (T, A%)) = Mult (X3, (T, A%)) = Index (X, (T,A\%)) =1-1  (4.14)
If we define analoguously the semi-analytic sets V;,¢ =1,...,[:
Vi={A s NI < i (W), Vi=1,...,1},
then by the division-derivation algorithm (theorem 7), it follows that
Mult((Xx) ey, » (T, A%)) < Index ((Xa) ey, 5 (T, A?)) = orderH; (so) =i — 1.

Take a straight line R through A\Y, then by assumption there exists a neighbourhood
Wi C W of A such that RNW) is contained in some V; (i € {1,...,1 — 1}). Therefore,

Index ((X))yeg, (0,A%)) =i—1<1-1 (4.15)

Comparing (4.14) and (4.15), it follows that there does not exist a linear mic; fur-
thermore by (1.22) ;there does not exist a linear mme, or a linear mcc. ®

4.3.2 Algebraic curves

Theorem 178 There does always exist an algebraic mic.
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Lemma 180 Suppose that ¢:I — R? is an algebraic curve, where I is an open inter-
val, 0 € I,((0) =0. Then there erists a neighbourhood V' of 0 such that

)N {(e,sine) : e e R} NV = {0}.
Proof. Let the algebraic curve be given by
Cle) = (are+... +agef e+ ...+ be') e €1,

where k,l € N* a;,b; € R (Vi=1,...,k,Vj=1,...1). We can restrict to the case
agxby # 0. Suppose now that ¢ (I) has infinitely many intersection points with the
graph of sin that accumulate on 0; then, the following analytic equation would hold
for infinitely many & close to 0,

bie + ...+ be'=sin (a1 + ... + axe®) , (4.18)

implying that the equality must hold on all of R. This leads into a contradiction,
because the left-hand side of (4.18) has at most [ zeroes. ®

Remark 181 In this evample, the me-stratum (and mm-stratum) is nowhere dense,
since for each M > 0, the interior of the subanalytic set Zyy is given by

Zu ={(M,22) : Ir € |R — M, R+ M| such that f (r, 1, A2) = 0}
= {(A1,A2) : Ay =sinAg}

is empty (i.e. Zy = 0). In section 4.6, it will be proven that there ezists an algebraic
mme (repectively mee) if the family (X)), has a stratum of mazimal multiplicity
(respectively cyclicity) with non-empty interior at A°.

4.4 Regular Bautin Ideal

If the Bautin ideal is regular, then we show below, for instance, that there does
always exist a linear mic. Hence, in bounding the cyclicity, we can restrict to linear
1-parameter subfamilies, i.e. induced by a straight line through A°. However, there
remains the problem of checking whether the Bautin ideal is regular. Therefore, we
provide an equivalent characterisation for the Bautin ideal to be regular, in terms of
linear 1-parameter subfamilies in section 4.4.1 (in case the dimensions of the Bautin
ideal and the parameter space coincide).

4.4.1 Linear curves

Theorem 182 If the Bautin ideal is regular, then there exists a linear mic ' :

¢t () = A + ae, a € RP, |a|| = 1.
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Next, we apply these results on analytic families of vector fields having a stratum
of maximal cyclicity (respectively multiplicity) with non-empty interior at A°, Since
the stratum of maximal cyclicity (respectively multiplicity) cannot be defined by a
subanalytic set, the existence of an algebraic mee (respectively mme) cannot be proven
in a straightforward way.

This problem is situated in section 4.6.2. Next, in section 4.6.2, the condition de-
scribed above is defined precisely. Then, in section 4.6.2, we can construct, under this
condition, an appropriate open subanalytic set W, and we can apply the specifications
of the curve selection lemma to this open subanalytic set W, leading to the existence
of an algebraic mee (. (respectively mme (). Moreover, we prove the existence of
a ‘cone of mcc’s surrounding (.’ (respectively ‘cone of mme’s surrounding p,’); this
‘cone’ is defined as the union of all analytic curves having a certain contact with (.
(respectively &,).

4.6.1 Algebraic curves and determining jets

In section 4.6.1, we state two interesting specifications of the curve selection lemma for
subanalytic sets (theorems 190 and 191), that will be proven in three steps (sections
4.6.1, 4.6.1 and 4.6.1). To end, in section 4.6.1, we give an example to illustrate
the proof of theorem 191. The framework of this section is the theory of analytic
geometry.

Statement of the results

Theorem 190 For any open subanalytic set V' C RP, that accumulates at \° ¢ V,
there always exists an algebraic curve 7,

V() = (PL(€) .-, Py (e)),7(0) = A°

where Py, ..., P, are polynomials in &, such that the curve v (¢) lies in V for alle >0
small enough.

This theorem is a consequence of the curve selection lemma (lemma 170) and the
following improvement of it:

Theorem 191 Let V be an open subanalytic set in R?, that accumulates on A°,
and let v be an analytic curve that starts at A° (i.e. v(0) = A°). Suppose that
v(e) € V\{A}, for all € > 0 small enough. Then there exists a positive integer n
such that for every analytic curve % with jn (v — %)y = 0, we also have

g () € V\{A}, for e > 0 sufficienily small.

Theorem 191 will be proven in the following three steps: first when v is a regular
parametrisation of a straight line (section 4.6.1), next when +y is merely regular (section
4.6.1), finally when 7 is not regular (section 4.6.1). The existence of an analytic curve
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Proof. By a compactness-argument we clearly see that for any 0 < r; < 1, there
must exist n € Ny with the property that

ConnN{(\p)eRP:ri <A<1}C V.

Hence, the problem is concentrated near the origin. As such, if we suppose that no
C,, € V, we do not only find a sequence (A, itr) € Cy \ 'V, but we also may assume
that a certain subsequence (\,,) tends to 0 for k — co. Since V¢ and [0,1] x {0}
are closed subanalytic sets, they are regularly situated (cfr. corollary 193); hence,
there exist a neighbourhood W of (0,0) in R?, and positive constants C,r such that
V(A up)eW:

d((Ap) V) +d((A ), [0,1]  {0}) > Cd (A, ), (0,0))"

Since (Any,pn,) — (0,0), there is a positive integer N € N such that Yk > N :
(Angs Mny) € WNVE and ARE~T < C. Therefore, Vk > N :

llns || = @ ((Angs i), [0,1] X {0}) = C |(Anys )" = CAZ, > ARE.
This is in contradiction with (A, fin,) € Cp,. ®
Remark 195 The sequence of cones (C“)neﬁi is nested (i.e. Cpyq C Cp,¥n € Ny.)

We return to the proof of theorem 191 in case 7 is a straight line. Since V' is open,
we obtain after a linear coordinate transformation that

(10,1 x {oh U ({1} x B(0,1)) € V;

and that the image of 7y belongs to the positive A-axis. This coordinate transformation
does not matter when determining the positive integer n of theorem 191. This is
expressed in the following proposition that we state without proof.

Proposition 196 Let h: RP — R? be a C¥ diffeomorphism with h(0) = 0. Suppose
that v and 4 are C* curves with v (a) = 4(a) = 0. If jo (v —%), = 0, then also
jn(hoy—ho%), =0.

Let us also recall that a regular analytic reparametrisation of a curve has no
influence on the contact of the jets:

Proposition 197 Suppose p: I C R — RP is an analytic function with
Jn (@)o = 0,
and h is a diffeomorphism of the form
h(iry=ar+o(7), 7 —0,

with a # 0, then also 3
Jn(@oh)y=0.
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The analytic curve ~ is not regular

Upon a linear coordinate transformation and an analytic reparametrisation, we can
suppose that the curve 7 is parametrised by

g™, alE)yor-a W (€),s

withVi=2,...,p:
vi(e) =™ +o(e"),e |0,

and n; € Ny (Vi =1,...,p). Consider the blow-up map & defined by
@(.ﬁl:ﬁ'%---’ﬁp} = (ﬁ?l!ﬁza”'!ﬁ‘p)'

Then V and ~ are blown up to respectively the open subanalytic set =1 (V) and the
regular curve o () = (5,72 (€),...,vp (£)). Hence, there exists a positive integer n
such that every analytic curve &, with j, (¢ — &) (0) =0, enters @1 (V) U {0}.

Now we claim that every analytic curve 4 with jp,4n-1 (7 — %), = 0, enters V U
{0} . Indeed, if we write 4 (£) = (51 (&) ;.- .,9p (€)) , then

f(e)=e"(1+9g(e)

with
g(e)=0(e""1),e >0,

Y T
Gi(e) =i(e) =vi(e) + O (s""+“_1) =0;(e)+ O (") ,e = 0.
Since &, is defined by &1 (£)™ = 41 (¢),, we have

61(e) =e(1+g(e)/™
=e(1+5(e) =+ 0("),

from which the result follows.

Example

In figure 4.2, we illustrate the proof of theorem 191 for the open subanalytic set V|
defined by
{()t,p:) eR?: ) < (e~ 1)° < 21%)

(in fact this set even is semi-analytic). The analytic curve v, implicitly defined by
(e -1 =8)% A\ p>0,
lies inside of V; an analytic parametrisation of v is given by

¢ (e) = (£°,log (1 +2¢%)) ,e | 0.
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4.6.2 Algebraic mcc and mmc

Now we turn back to analytic families (X)), of planar vector fields, with an associated
analytic family of displacement maps (0)), . The goal of this section is to prove
the existence of algebraic mec’s (respectively mme’s) in certain circumstances. By
theorem 190, it suffices to construct an open subanalytic set V' with the property: if
¢ :[0,1] — RP? is an analytic curve with ¢ (0) = A%,¢ (]0,1]) € V, then ¢ is an mce
(respectively mmc).

The construction of such a set is not that evident, as is explained in section
4.6.2. Then, in section 4.6.2, we give a precise definition of a family of vector fields
having a stratum of maximal cyclicity (multiplicity) with non-empty interior at A°.
This property is a sufficient condition to guarantee the existence of an algebraic mce
(respectively mme), as is proven in section 4.6.2. Finally, in section 4.6.2, we show
that if ¢ is an mec (respectively mme), then the curves &; (1 <i < n) are continuous,
where &; (g) is a zero of d;(),V1 <i < n.

Situation of the problem

Suppose that Cycl (X 2 (05A%) = n and let M > 0 and let W be a neighbourhood
of AY such that &, has at most n zeroes in [sq — M, 59 + M]. Then we can define the
subanalytic set Z}, by

ZW ={AeW:36,....6n€l80— M, 80+ M[:£1 < ... <&, (4.22)
and 0y (&) =0,Vi=1,...,n} i
Let us denote the interior of ZY¥ by Z!¥. Remark that the chosen neighbourhood
W in the definition of ZE does not play a very important role: if we take a smaller
neighbourhood W, then the set Z;y* = Z}y N W, is just the intersection of Z}, with
W;. For fixed M > 0, the germs of the sets Z3¥ at A, remain the same for every
neighbourhood Wof A°. For this reason, we will often omit the dependence on W in
our notation ZJY, writing Zy meaning Z}/, for a certain neighbourhood W of A°.

If Zy # 0 accumulates on A, then (by theorem 190) there exists an algebraic
curve ¢ : [0,1] — RP with ¢ (0) = A°. However, this curve is not necessarily an mcc.
To situate exactly the problem, let us recall the definition of an mecc: the analytic
curve ¢ : I C R — RP with ¢ (0) = A° is an mcc if and only if

1. Ve € I, the map d¢(,) has exactly n zeroes in [s0 — M, s0 + M], say

E1(e) <...< & (8)

2. Fore | 0,
lif‘.{{f* () =s0;Vi=1,...ym
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and A? = (0,0) , then Cycl (X}, (I', A?)) = 1. Limit cycles of X correspond to isolated
zeroes of & (+, A) . It is clear that § (-, A) only has a non-isolated zero if Ay # 0. If Ay # 0,
the zero of § (-, A) can be written as:

/\‘2

S(Al,/\z) =1-— —1.

A5

As a consequence, YM > 0 and for every neighbourhood W of 0 in R? :
Zi; = {0 A) € W (M| < /M Ao}

Hence, Z}¥ = |"}‘,|,,.10Zﬂ"",;r = {(A1,A2) € W : A\; = 0}. Clearly, the curve 7 (g) = (0,¢)
is an algebraic (even a linear) mece. Moreover, for every analytic curve 4 : I ¢ R — R?
with
71 ('Y = '3’)(] =0,
and for every M > 0, there exists E (M) > 0 such that
¥(e) € Zm,V0<e < E(M).

Hence, 4 also is an mcc. Notice also that the zero s (5 (¢)) of 6 (-,4 (¢)), depends
continuously on &.

These facts hold in general, in case that the family (X)), has an me-stratum with
non-empty interior at A° (theorem 201, corollary 204 and proposition 203).

In example (4.24), the limiting set Z, contains an algebraic mce. This is not
always the case; a non-empty Z§" does not need to contain an algebraic mec. Consider
for instance the family (X3)5 obtained from (4.24) after application of the analytic
coordinate transformation in parameter space

()\1,/\2) Iﬁr (11,:\2) = ()‘1 + sin /\z,/\g)

in example (4.24); more precisely, X X (Ri—sta s N ) Then, the limiting set

(Grikz)
Zy is given by the graph of sin :

Z_'rtlv = {(X},Xg) eW: ;1 = Sil]jkg}
The analytic curve 7 (g) = (sing,€),2 > 0 is an mec, since it is contained in 25
clearly, there is no algebraic curve inside Z". Since for every open neighbourhood W
of 0 € R? and VM > 0, the subanalytic sets

2% - {(:\1,12) Wi K — i) /e |x?|3}

are open, the family (X3); has an mc-stratum with non-empty interior at A”. It can
be checked analoguously as above that the quadratic curve { (g) = (£ +£2,¢€) is an

mce; moreover, every analytic curve tf with ja (Q — C)n =0, is an mcc with

VM > 0,3E(M)>0:Y0<e < E(M):((e) € Zn.
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To finish this section, we quickly discuss the problems in proving the existence of
algebraic mme’s. The problems are of the same kind as for the algebraic mcc’s. In
fact, we can use the same examples to describe the problems. In example (4.23), one
has that

Mult (X(‘\,”_), (F,G)) =

and VM > 0 : 9y = Zy and ¥ = Z. Clearly, the germs of 1) and ¥ys are equal at

0,¥M > 0; hence, the germs at A° stabilize. Notice again that ¥y = [ ¥as is empty
M0

and that ¢ (g) = (&,0) is a linear mmc.
But in general, the sequence of the germs of ¥, at A° does not stabilize, as is
illustrated by example (4.24), where

Mult (X5, 4, (T,0)) = 1.

In this example the concepts mmec and mee coincide. Moreover, VM > 0: ¥y = Z g,
and
do = [ 9m = Zo.
M0

As we noticed, there is a linear mme. Moreover, for every analytic curve 4 : I C
R — R? with

j 1 (’Y i "?)0 i Ol
and for every M > 0, there exists £ (M) > 0 such that

A(e) € Iy, V0 < e < E(M).

Hence, 4 also is an mmec. Moreover, notice that the zero s(%(g)) of 4 (-, (g)),
depends continuously on e. These facts hold in general, in case that the family (X)),
has an mm-stratum with non-empty interior at A° (theorem 202, corollary 206 and
proposition 205).

In example (4.24), the limiting set ¥y contains an algebraic mmec. In general, this
is not always the case; a non-empty ¥y does not need to contain an algebraic mme.
This fact can again be demonstrated by investigating the family of planar vector fields
defined by X (5, uy) = X(A;—sin u1,u), Since in this example the concepts mce (respec-
tively Zjs) and mme (respectively ¥y) coincide. It can be checked analoguously as
above that the quadratic curve ¢ (&) = (s + &2, e) is an mmc; moreover, every analytic

curve ¢ with ja(¢ — f)u =0, is an mmec with
VM >0,3E(M)>0:Y0<e< E(M):((e) € In.

Hence, again, it is clear that in a non-stabilizing situation, we can not prove
the existence of an (algebraic) mme by considering ¥y. Therefore, in proving the
existence of an algebraic mme we need to construct an open subanalytic set with
‘good’ properties (see below in section 4.6.2).
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In case the family does not have a me-stratum (respectively mm-stratum) with
non-empty interior at A’, we are not yet sure whether an algebraic mce do exist, For
instance, consider again example (4.16) above: the me-stratum (respectively mm-
stratum) does not have a non-empty interior at A% and there does not exist an
algebraic mce (respectively mme). In the same way, we can construct an algebraic
family (X)), of type (1.2) where the mc-stratum (respectively mm-stratum) does not
have a non-empty interior at A° :

8(s,A) = Az ((s e T ¢ Ag)“) (4.28)

However, in this case there obviously does exist an algebraic mce (respectively mme),
but not a linear one.

It is not clear at all if this phenomenon is possible in linear families. In most
examples encountered in the literature, nearby vector fields, with maximal cyclicity
(respectively multiplicity) are structurally stable and hence occur in open subanalytic
sets of the parameter space. In the rest of this section, we will now limit to this case,
proving the existence of algebraic mec’s (respectively mme’s).

Existence

Theorem 201 If the stratum of mazimal cyclicity has a non-empty interior at \°,
then there exists an algebraic mec (. Moreover, there exists a positive integer k such
that every analytic curve ¢ with j;(¢ — ()o = 0, is an mce.

Proof. Without loss of generality, we can suppose that \” = 0 € R?,s5 = 0 € R.
Since the family (X,), has an me-stratum with non-empty interior at 0, there exist
M > 0, a neighbourhood W of 0 in R? and an analytic curve w = ((,&1,...,&) : [ =
[0,1] — R? x [-M, M]" such that

¢(0)=0

£(0)=0,Yi=1,...,n

6¢(5) (&i(e))=0,¥e,¥i=1,...,n

—M <€ (e)<...<&(e) < M,Ve>0
((g) € Zu,Ve>0

where Zy = Z}Y is defined in (4.22) above. In this way, the analytic curve  is an
mee.
Now we reduce the subanalytic set Zy; to an open subanalytic set Zj; in such a
way that
C(e) € Zy,el0,e#0 (4.29)

and such that any analytic curve ¢ with

£(0) =0and { (e) € Ziy,e | 0,6 # 0, (4.30)
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In this way, the curve (* is a reparametrisation of ¢ in function of thg i-th zero s
(perhaps up to its sign). If i € J (meaning that & = 0), then we define (* (s) = s and
put o; = 1,1; = 1 (after developing this curve around the s-axis in R?*!, we obtain
the natural cone). Now, we define the sets K, and K_ by the ‘cones’ around the
s-axis:

Ky ={(\s)eRP xR:0<5<8,8)(s)=0

INIZ < 3¢ @) v1 <i < n} (4.34)
and
-={\ SJER”XR'US—SSS,E,\(S)zo

INIZ < 3¢ (=9)[* V1 < i<}
Now the set Z}, is defined by

(4.35)

Ziy = Zn \ (m (Ky) Un (K-) Un({(A, 5) : 65 (s) = 0 and s* > 5%}))
where 7 is the natural projection
7:RPXR—RP:(A,8)— A

Clearly, the set Z3, is open. By construction of Zj};, and since ¢ is an mcc, there
exists E' > 0 such that ((€) € Z};,V0 <& < E. We are left to prove that the set Zj;
is subanalytic and that every curve ¢ that enters Z} +r at 0 (i.e. satisfying (4.30)) is
necessary arn Imcc.
Let us start with the last property. Denote the corresponding zeroes by §1 (e) <
.. < &, (€). Then we need to prove that there exists a sequence (£m),,en With £m, | 0
such that V1 < j <n: .
& (em) = 0,m — o0

By the compactness of [—M, M], there exists a sequence (&), With &, | 0 and
V1 < j <n,&(em) — 85 € [-5,9].

We now show that s; = 0,V1 < j < n. If s; > 0, then there exists an index N such
that Vm > N : .
‘Sj (Em) > 0.

Since ¢ (6,,) & 7 (K1), it follows that Vm > N : 31 < i (m) < n with
A 2
i(m) (£
[eem]] > 3 | (& em)]
Since {1,2,...,n} is finite, there is at least one index 1 < + < n that occurs infinitely

many times in the sequence i (m) ,m > N. Hence, there exists a subsequence (m;) oy
in N with mo > N and m, — oo as p — oo with Vp e N

)

Jé = 7
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meaning that one of the n roots of 4, is fixed at 0,YA € Zj;. We also could have
deleted the parameters A € Zp; for which one zero is situated at the origin. Hence,
this root surely will not escape through the boundary, and we can replace everywhere
n by n — 1 in the definition of W},, in order to get Wf,, non-empty. Moreover, we
may suppose that w (g) € Wgy, Ve € ]0,1], and continue considering the case in which
the original n leads to Wy # 0, the other case can be treated similarly.

We prefer not to neglect possible zeroes located at 0, because if we do, then the
proof cannot be generalised in a straightforward way to the case of a family having a
stratum of maximal multiplicity with non-empty interior at A’ implying the existence
of an algebraic mme. The reason that we cannot simply neglect the possible zeroes
located at 0, is that now we don’t only count zeroes, but also the corresponding
multiplicities. In particular, it can happen that s = 0 appears as zero for §, with
different multiplicities for different parameter values X close to A%

This fact is illustrated by the family of planar vector fields (X,), of type (1.2)
with A = (/\1,)\2,/\3} € R? and

5(5,2) =X (52 + A) (5" +A3) (52— D) + N + (M — a)?)
(=2 23+ (A —2)?)
Let be I' = {(0,0)} and A° = (0,0,0) . One can easily check that
Mult (X, (T, A%)) =6

For this family, there exist small parameter values for which s = 0 is a zero with
different multiplicities. Indeed, the curve ¢!, defined by

Cl (Al) = (AI.}O:AI) !’\] l 0!

is a (linear) mmc with corresponding zeroes £ (A1) = 0 and &} (A\y) = Ay, with
respective multiplicities 4 and 2; the curve (2, defined by

¢2(A2) = (0,22, A2), A2 | O,

also is a (linear) mmc with corresponding zeroes £7 (A1) = 0 and &3 (A2) = Az, with
respective multiplicities 2 and 4.
If the family (X)), has a stratum of maximal mulfiplicity with a non-empty

interior at A\° = 0, then we can take an analytic curve w = ((,&1,...,&) : I =
[0,1] — R? x [-M, M]" such that
(( ¢(0)=0

& (0)=0Vi<i<n

) 5%3(1-) (Eﬁ (E)) :U,VE,V]. Sj S My — ]-,V]_ S g E o
50 (£ (€)) #0

._.M<(§1(E)<.<£n(5){M’v€>o

L C(e) € Ipr, V>0
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with
VO<7<1:w(r)€ W,y andw(0)= (X s0,---,50)- (4.36)
From (4.36) , it follows that
¢(r)ev(0,1]),Yo< T <L (4.37)
By (4.37), the analytic set
A= {(r,e) €[0,1]?:v(e) =¢(7)}

accumulates at (0, 0) since v (0) = ¢ (0) = A°. The curve selection lemma then ensures
the existence of an analytic curve

h:[0,1] — (0,1 : x — (b1 (x) , ha (X))
with ki (0) = ha (0) = 0 and h(x) € A,Vx € [0,1]. Hence,
Vx € [0,1] : v (hi (x)) = ¢ (B2 (X)) ; (4.38)

In particular, it follows that hy (x) > 0 if ¥ > 0. As a consequence, we can write for
a certain positive integer r and a constant ¢ > 0 :

hi (x) =ax" +o(x"),x 10
=& (x)

where k is a local analytic diffeomorphism at x = 0 with
£(x)=a'"x-(1+0(1)),x | 0

Hence, it follows from (4.38) that 30 < £ < 1 such that V0 < e < E :
¥(€) =Cohgor™! (61/'") :
Therefore, by (4.36) , the zeroes of d,(,) are given by
6@{5):&),:0!1205'_](61/'.), f=1,0u50

Since the right-hand side of this equality clearly is continuous in ¢, it follows that
V1 < i < n: the zero ¢ depends continuously on ¢ € [0,E]. ®
Combining theorem 201 and proposition 203, we get the following corollary:

Corollary 204 If the family (X)) has a stratum of mazimal eyclicity with non-empty
interior at A°, then there exist an analytic curve ¢ : [0,1] — RP, a constant M > 0 and
a positive integer k such that, if ¢ : [0,1] — RP? is an analytic curve with j5(C—¢)p =0,
then
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exist a uniform bound n, inducing an algebraic mee ¢ (respectively mmc) of degree
n? The answer also is negative; a counter-example is provided by a simple adaptation
of example (4.12) : replace A; by A, with 2k > n. However, under rather generic con-
ditions, there always exists an algebraic mce ¢ (respectively mmc) without (uniform)
limitation on the degree, as we have seen in section 4.6.

Definition 208 The “detectibility degree of maximal cyclicity” (respectively multi-
plicity) is the minimal degree of an algebraic mcc (respectively mme), shortly denoted
by “ddme” (respectively “ddmm”). In case no algebraic mcc (respectively mme) ea-
ists, we say that ddme(X),) = oo (respectively ddmm(X,) = oo ).

Problem 209 Does there exist a uniform upperbound for the ddme (respectively
ddmm) depending on the degree N of the algebraic families given in (4.3)?

In section 4.3.1 we have already observed that ddmm(X,) > 1 and ddme(X,) > 1
in case X linearly depends on A.

Definition 210 The “conic degree of maximal cyclicity” (respectively multiplicity)
is the minimal value of n € Ny such that there exists an mee y (respectively mme) with
the property that an analytic curve 4 is an mee (respectively mme), if jn (7 — )y = 0.
It is shortly denoted by cdme (respectively cdmm).

Problem 211 Does there exist a uniform upperbound on the cdme (respectively edmm,),
depending on the degree N of the family (4.3)?

We have two general theorems that provide a starting point in answering these
questions. First we will give an auxiliary lemma, that is a consequence of proposition
196. Roughly speaking, this lemma says that upperbounds for cdme are preserved by
diffeomorphisms that keep the origin on site.

Lemma 212 Let h: V — W be a C* diffeomorphism with h (0) =0, where V is an
open set in RP with 0 € V, and W = h (V) C RP. Suppose that there is an algebraic
curve yw of degree at most n, with v (0) = 0, with yw (€) € W,Ve | 0. Moreover,
we suppose that there exists an integer k > n such that for every analytic curve fw
the following property holds:

if Jk (Yw —Aw ) = 0, then 4w () € W, Ve | 0.

Then there exists an algebraic curve vy of degree at most k with vy (0) = 0 and
v (g) € V,Ve | 0 such that for every analytic curve Yy the following property holds:

if jk (yv —Av )y = 0, then 4y (g) € V,Ve | 0.
Proof. Denote p = h™! o v, and define the algebraic curve of degree at most k by

W =3k (P)o- (4.39)
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Proof. We only prove the statements concerning the cyclicity. The statements con-
cerning the multiplicity then easily follow, since in this case an mce also is an mmc.
Moreover, we only have to prove these statements in case the displacement map
looks like (4.42). The other case then follows. Indeed, part (4.44) follows from the
following observation: if ¥ = (y1,...,7%) is an mcc in case of (4.42), then the analytic
curve
e (g,6m(€),.-008m (e)

is an mcc in case of (4.43). For part (4.45), we notice that, if
n (Y =A)p =0, (€) =+ O (") ,e = 0,

then ju (Y —4 046 ')y =040 07 ' (€) ==

To prove the second statement in case (4.42), we construct an algebraic mcc with
the required conical contact, subsequently in the folllowing three cases: I = 2, [ is
even and [ is odd.

In this case the displacement maps are wrtten:

§(S,a,b)=8*+aS+b (4.46)
Then, Ya € [§,1],Vb <0, the curve
7v:[0,1] = R? : £+ £ (a,b)

is a linear mcc. Indeed, first of all, it is clear that Ve > 0, the map 4 (-, (¢))
has exactly two zeroes, say & (£) and & (¢) . Next, when ¢ tends to 0, these zeroes
also tend to 0; it suffices to check this property for a sequence (&,),, such that the
corresponding sequences of zeroes converge, say

& (Em) — 51 and & (Em) —* S3.

Since & (€m) and & (€,,) are zeroes of the quadratic polynomial § (-, ema,emb) , we
find by taking the limit for m — oo :

81+ 82 = limm(—.ema) =0 and 57 -850 = mlim (emb) =0

As a consequence, s, = 82 = 0.

Analoguously, one shows that every analytic curve 4 : [0,1] — R? with j; (y — §)y =
0 is an mce. For later use, we also notice that zeroes of 4 (-, a,b) stay outside the in-
terval [-1,1] if 1 <a<1,b< -3

Case [ is even and [ > 4 ] Write | = 2n, with n > 2. From the quadratic case, it
follows that the displacement map

m:

§(S,a) = (32 + eaS +ebg) = By S o, (4.47)

k

1
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for analytic functions h; such that V1 <i <1[:
hi(8,A) =¢; (A) (s — sy trs ((3 - so)"‘”_l) .8 — S
with ¢; (0) # 0,¥1 < i <l,n € N. Then we have:
1. there exists a linear mie
2. Cycl (X, ([,0) =1—-1
3. there exists an algebraic mec and mme of degree [%’—3] ; GS 4 CONSEqUENCE,

ddme, ddmm < P—;—Q]

Moreover,

edme, cdmm < [%E]

Proof. Statements 1. and 2. are clear. Hence, we are left to prove statement 3.
From example 175, we know that the given family (X) has a stratum of maximal
cyclicity (multiplicity) with non-empty interior at A°.

Without loss of generality, we can also assume that n = 0 and sy = 0. By the
regularity of the Bautin ideal, there exists a local C* diffeomorphism H : (RP,0) —
(R?,0) at A = 0 € R? such that the map ¢ = (¢1,..., ) takes the form

oM (AyeeyAp) = (Aryeen Ar)

(proposition 44). By lemma 212, it suffices to prove statement 3. in the new coordi-
nates A. In these coordinates A = (X1,...,Ap), we denote the family of displacement
maps by &, and factors by h;,1 <i<1l:

6(s,A) =6 (s, H(A zl:
Ei(s,i)zhg(s,'}t(/\)), _V15:g£

By lemma 212, it suffices to prove statement 3. in the new coordinates A. By Rolle’s
theorem, to have at least [ zeroes, it is necessary that this curve lies in a region of
parameter space with X; = ¢ (¢) small but non-zero (for & # 0). For A\ # 0, we can
write

I -
e A n
- ,\1 ._E : :\—Ihi (3, )«)

g B e S
= MF(8, =, .cc,—=—, ALy v s Ap)y 4.55
1F(s ¥ ;7 l p) ( )
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where P (8,b) = by 4 baS + ... + b_1S72 + B S*~ 1. From (4.59), we see that zeroes
s of 6 (+,A) correspond to zeroes S of P (-,b).

By (4.58), (4.59) and (4.56) , we have the following relations between A = (A1, ..., Ap)
and b= (by,...,b):

by = dix(1+ ()

bt = Tidti (145 ()
bg = /_\g

These relations clearly define a local diffeomorphism
h: (R?,0) — (R”,0) : A (b () ;M1 05 Ap) -

Hence, from theorem 213 and lemma 212, statement 3. is proven. m

These problems constitute a good starting point in studying the relation between
the structure of the bifurcation set of limit cycles, more precisely the structure of the
stratum of maximal cyclicity (respectively multiplicity) and the algebraic nature of
the perturbation in p-parameter perturbations from a center.






192

For z > 0, the Abelian integral I, is the first order Melnikov function (perhaps up to
its sign). Remark that here, we use the terminology ‘Abelian integral’ for any integral
I,, associated to a C°° unfolding (X (V-E))(V,s) ; originally, this name was reserved for
integrals of type (5.3) where H and ©, are polynomials.

Recall that the results in paper [DR] are concerned with the question ‘“To what
extent the Abelian integral I, allows to study the limit cycles which bifurcate from
I

In case that T' is a periodic orbit, then it follows from catastrophy theory, that
results on the zero-set of I, can be transferred in a straightforward way to results on
the set of limit cycles of X(, . (section 1.2.2).

The transfer is not that evident, in case that I is a bounded hyperbolic polycycle,
also-called a k-saddle cycle, i.e. ' is a compact connected curve, made by &k hyperbolic
saddle points, say si,..., Sk, and saddle connections of Xy (the eigenvalues at the
linear part of Xy at the saddle points s; (1 <1i < k) have a non-zero real part). In
case k = 1, then I is also called a saddle loop or saddle connection.

However, if I" is a saddle loop, it is proven in [Mar] using the methods of [R86], that
the configuration of the limit cycles of X(,, ), for £ near 0, is completely analoguous to
the configuration of zeroes of the Abelian integral I, (x), for z near 0, under certain
genericity conditions on I,,. One could say that the limit cycles shadow the zeroes of
the Abelian integral I,,. These results are recalled in section 1.5.

In [DR], using results from [DRR] and [Mo, it is seen that it cannot be the same
as soon as the number of the saddles in the polycycle is at least 2, if the unfolding
breaks more than one connection. In case of generic unfoldings of a 2-saddle cycle,
breaking both connections in I' in the bifurcation for € = 0, the Abelian integral is a
very bad approximation of the displacement map. The Abelian integral has only one
zero while there are at least two limit cycles bifurcating from I' (section 1.6.3). More
generally, for generic k-parameter unfoldings of a k-saddle cycle [Mo], breaking more
than one connection, the associated Abelian integral has exactly one zero, although
there are more than k limit cycles that bifurcate from I'. As a conclusion, we can say
that almost all limit cycles are alien limit cycles, since almost none of the limit cycles
can be traced by zeroes of the Abelian integral.

The important point to observe is that, although the bifurcation diagram for the
zeroes of I is stable, the bifurcation diagram for the limit cycles is no longer trivial in
the e-direction: it is not a trivial product of the one for I times [0, &o[, as it is the case
for the generic unfoldings of a regular Hamiltonian periodic orbit or a saddle loop.

In [DR], one finds a way to handle the transfer, although the Abelian integral
cannot completely control the limit cycles bifurcating from a 2-saddle cycle T', that
breaks only one connection. To be more precise, it is shown in [DR], that the cyclicity
of (Xy), along I can be bounded in terms of the Abelian integral, if the codimension
of the related Abelian integral is finite. This result is recalled in section 1.6.4. It is
striking to notice that this upperbound is strictly bigger than the maximal possible
number of zeroes of the Abelian integral, as soon as its codimension is at least 3.

In particular, in [DR], it is proven that there exist generic unfoldings of the 2-
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the Abelian integral; moreover, A|,_, = 0, and hence, one can write
A (z,v,e) = eA (z,v,€);

in this way, A (z,1,0) = 1, ().

In section 1.6.4, we recalled two important results from [DR]: theorem 129 recalls
the asymptotic expansion for the reduced difference map A in the asymptotic scale
W (defined in (1.135)), that permits to perform a division-derivation algorithm with
respect o this scale, in order to obtain the finite cyclicity result in theorem 134.

In this finite cyclicity result, it is striking to notice that the upperbound stated
for the cyclicity is strictly bigger than the codimension of the Abelian integral I,, (if
codimg I, > 3), and hence strictly bigger than the maximal possible number of zeroes
of the Abelian integral.

In [DR], one defines a generic unfolding of the 2-saddle cycle, breaking only one
connection, by putting certain genericity conditions on the coefficients that appear
in the normal forms and the related Abelian integral I,,, in case the codimension of
the related Abelian integral is 3. By these genericity conditions, one obtains a full
unfolding of the difference map A of codimension 4 in the scale W, meaning that the
first 4 coefficients in this asymptotic expansion of A, can be seen as independent small
parameter variables, and the 5-th coefficient is non-zero. By the division-derivation
algorithm, the cyclicity is bounded from above by 4. Now, by use of the implicit
function theorem, one proves in [DR] the existence of a quadruple zero (a multiple
zero of order 4) xg, along a path ¢ (zg) in parameter space with ¢ (zg) — 0 for zg — 0 :
& A =0,V0<i<3
6$|f (-TmC(ﬂ:O)) Sy St 0.

By the genericity conditions and catastrophy theory, this result implies the existence
of generic unfoldings of the 2-saddle cycle, breaking only one connection, with cyclicity
4, while the Abelian integral has at most 3 zeroes [DR].

Recall that for k € N, we say that the difference map A admits a generic unfolding of
codimension k in the asymptotic scale W, if, at the bifurcation value, the (k + 1)-th
coefficient is the first non-zero coefficient in the expansion of A, and the first k coeffi-
cients appearing in the expansion of A with respect to W can be seen as independent
parameter variables. In this case, one expects that the upperbound for the maximal
possible zeroes, bifurcating from z = 0, obtained by the division-derivation algorithm
(i.e. k) is optimal. In section 5.2.2, we prove that the coefficients in the asymptotic
expansion of A with respect to the scale W, can not be seen as independent parameter
variables (proposition 223 below). As a consequence, the upperbound in the above
mentioned finite cyclicity result is not sharp enough.

An interesting question is whether the gap between the cyclicity and the maximal
possible zeroes of the related Abelian integral persists; in other words, whether there
exist systematically alien limit cycles, as in the example of codimension 4 in [DR],
where there is at least one alien limit cycle.
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with respect to £, was sufficient for unfoldings X of codimension 4 (corresponding
to codimension 3 for the related Abelian integral). This fact becomes clear from the
proof of the result in [DR], proving the existence of generic unfoldings of a 2-saddle
cycle, that leave one connection unbroken, with cyclicity 4. From the formulas in
section 5.2.2 for the coefficients in the expansion of A, it seems that one can study
the precise cyclicity along a generic 2-saddle cycle I', breaking only one connection,
by the (k + 1)-th order approximation of the difference map A, with respect to ¢, in
case codimpgl, = 2k or 2k 4+ 1.

5.2.1 Settings

Suppose that the ratio of hyperbolicity at s; of X (respectively sy of —X) is given
by 1+ eV (respectively 1 + ea(®). Then, near the saddles s; and sz, we can
use normalizing coordinates (introduced in [R86]), denoted respectively by (z,y) and
(z,w), such that the vector fields X respectively —X) in these coordinates read as:

{g? el (5.4)

i = z(1+eaV (v,€) +eg1 (z,y,,€))
respectively
{ t; = ;(’*-1" + ea@ (v,€) +ega (2,w,v,€)) (95}
for certain C™ functions g1, ¢2 : (R* x RP~! x R, (0, v°,0)) — R such that
{ Joo(91 (7314 00) (@:9) = T2, By} () ()’
doo(92 (1, €)00) (2 w) = £i2y B (v;) (2w),

for certain €™ functions B,;(J) : (RP xR,2%,0) > R,i>1,5=1,2.

In figure 5.2, we represent some transverse sections Cy, Cz, C3, C4 corresponding to
respectively {y = 1},{z = 1},{w = 1} and {z = 1} in the normalizing coordinates;
{w = 0} is a point on a local stable separatrix of sy and {z = 0} is a point on the
unbroken connection.

The difference map A is defined as the composition of the transitions Dy and R,
(respectively Dy and Rjy) defined by the flow of Xy (respectively —X ») as follows.
The transition map D; is the Dulac map at the saddle point s; from C} to C3, and
the transition map R; denotes the regular transition from Cs to Cy. The transition
map Ds is the Dulac map at the saddle point sy from C3 to Cy, and the map Ry
denotes the regular transition from € to Cs.

Let Aq (respectively Ay) be the transition map from C; to Cy, defined by the flow
of X (respectively —X)), then

A1:RloDl,Ag:D20Rga.ndA:A2—A1,
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and
A (z,v,¢) = e (z,v,6) =€ (Az (z,v,8) — Ay (z,1,€))

The map A is called the reduced difference map.

5.2.2 Coefficients in the asymptotic expansion of A

In section 1.6.4, we recalled the useful asymptotic expansion for A, derived in [DR].
By the end of this section, we find recursion formulas for the coefficients in that ex-
pansion for A, in terms of the coefficients arising in the normal forms at the saddle
points and the regular transitions. It turns out that there exist relations in between
coefficients in this expansion, therefore we cannot use these coefficients as new inde-
pendent parameter variables. However, they constitute a map of rank 3k; from this
corollary, one can conjecture that there are at least k limit cycles that are not covered
by zeroes of the Abelian integral.

The organising of this section is as follows. We start by exploiting the structure of
the coefficients in the expansion of the Dulac map, depending on the coefficients in the
normal form at the saddle point. Next, we derive recursion formulas for the coefficients
in the expansion of A; and A,. Finally, by taking the difference, we obtain formulas
for the coefficients that appear in the expansion of A (recalling relation (1.132), to
make one of the compensators to disappear behind the principal parts).

Expansion of the Dulac map

Let us here exploit the coefficients in the expansion of the Dulac map D at the saddle
point s (with ratio of hyperbolicity 1 + ea) of a planar vector field of type

g = =
{ T z(1+ca + eg (z,y)) (5.10)

I

for a certain function g : R> — R with

oo

Joo (9) 0.0 (T ¥) = 3 Bi (zy)*

=1

Starting at (1,70) in the section {z =1} at ¢ = 0, the orbit arrives at the point
(D (yo) , 1) in the section {y = 1} after some time ¢ = T, see figure 5.3.
From (5.10), it follows that 7" = logyg. To caleulate D (yg), one performs the
singular transformation
4. = A
{ ¥y = ¥

In these coordinates (v, y) the system (5.10) reads

v = ev(a+g())
{g = s , (5.11)
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Proposition 215 In the notations introduced above, one has

51 (2)=ea+1 (5.14)
and Vi = 2,
S L—=2
= = s—1 ~a
gi(ﬂ)=E(EC‘EQ+1)' (Bg_:g-i-Bi_lg;(s_l) (EG!) Q )
i—1
+(eaQ+1) > Hys(By,..., Big) (eQ)° _ (5.15)
a=2

where H; s are multi-variate polynomials of degree s in (By;ese; B3),¥2 < 8 <
i—1,Vi>2

Proof. Clearly, go(t) = 0,91 (0) = 1,g;(0) = 0,Vi > 2, and the coefficients g;,7 > 1
satisfy linear differential equations of the form

d
ma1 = eaq 5.16
{ a‘-“-:gﬁ] = eagiy1 +Qit+1(91,92,..-,9i) 548

where @;41 takes the form
it+1

Qi+1(91,925---,9i) = ZBk Z O it Dty en Y G

k=2 i1t Fi=id1
1<i, <t

for certain positive rational numbers @, ...i,. From (5.16) , It follows that
g1 (t) =™, (5.17)

which in turn implies (5.14). From (5.16), we find the following linear differential
equations to be satisfied by the coefficients g;,71 > 2 :

(eaf) + 1) fﬁg, = eag; +0Q; (gl,gz, v -1§i—1) (518)
From (5.18) and (5.14) , one can deduce that the coefficients g;,i > 2 take the form
as proposed in (5.15). =

As a consequence of proposition 215 and relation (5.13), one derives an expansion
for the Dulac map D :

Corollary 216 The Dulac map D at the saddle s of (5.10) is up to terms of order
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Let us now compute the coefficients Gk k—; of z*w] k=7 in A1,0 < j < k,Vk > 2, under
the assumption that n§ ) = OVi<j<k-2.

Proposition 217 Let k > 2. If ") = 0,V1 < j < k — 2, then the coefficients
Gﬁ,}c_j,(] < j < k, in the expansion of A; are given by

k 1 k—1
1 1 1
G»Esgc =(1+eu)- {(Eam) ;(c_)l + — (.-:a“]) B,(,h,_)1
+eb1aWH, . (BY,...,BY )] ,
and V1 <j<k-3,

Gty = (1 +u)-

[(mm)""' (k £ J) o2, + (2a) ;?iﬁ(k b J) BY,

ek=i= l[Hk =1 (BLY,. -’Bi(clw)z)JramHk’*-j‘l(Bl A (I)Z)H

and

2
;(:i = (1+e€u) [Bm + Ea“)knil_)l] )

God = (1+eu)mi,.

2 (k k
) = (1 + ew) [(mm) (5)7 + SeaB(Y, +eHia(B? .. ,3;92;] ,

Proof. If 7}_51) =0,V1 < j < k— 2, then the expansion of the regular transition R in
(5.9) reduces to

Ry (y) = —B+ (1 +eu)y +& (1 +eu) (nf,9* + O (5+1)),y — 0
Hence,
Aj (z) = —eB+ (1 +cu) Dy (z) + (1 +€u) (n,(cl_)l (D, (J?)}k +0 (:ck“w’f“)),a: -0

Only the terms (1 + eu) Dy (z) and £ (1 + u) "?k L (D1 (z))* have a contribution to
the coefficient according to z*w! in A;. The coefficient of zkw{ in D; (z) can be
found in the k-th order term in z in D; (z), and the coefficient of :ﬂ"'w{, 0<j<kin
(D1 (z))* in the first order term in z in Dy (z) (see (5.19)). =
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Let us now compute the coefficients of z"wﬁ 7 in Ay,0 < j < k,Vk > 2, under the

assumption that n}z) =0,V1<j<k-2.
Proposition 219 Let k > 2. If n}z) = 0,V1 < j < k — 2, then the coefficients
fo’,l_j,() < j <k, in the expansion (5.21) of As, are given by
1 k-1
6= (20®)  BZ, + 0P Hyp 1 (BP, ..., BD,),

and V1 < j<k-—3:

6%y = (=) 5 (0 ) B
4 gh—3-1 [Hk.k—j(B?)s ey BE) 40P He 5 1(BP,. .., Bﬁz)] )
and
e3 = gaa@)Bf_‘l +eHi (B2, ...,BY,),
62 = B2, + ca(1 + sayf2,

(2) 2)
Gio= ﬂ:(c-n-

Proof. If n§2} =0,V1 < j < k—2, then the expansion of the regular transition Rz in
(5.9) reduces to
Ry (z)=z+ e{f}ff_)l:ck +0 (zFt1)),z =0

Hence, for £ — 0 :
A (7) = (ea® (wp 0 R) + 1)Ry
+ (e (w0 Ry) + 1)(eB{ (wz 0 R2) +...)R2

=5
k-1
+ (ea(21 (wg 0 Ry) + 1) . [(sBk_lw +eBx_1 Z % (f___ 12) (ea)* ' w)
=2
k-1
+ Z: Hy; (By,...,Bk-2) (ew)i] R«? (5.23)
i=2

1.0 (Ik+lw§+l)

Only the terms ...- Ry and ... R} in the right-hand side of this equation for A, have
a contribution to coefficients according to :r"w{, 0<j<kin Ay, since for s > 2:

(R2(2))* =2° + O (2**%) ,2 - 0
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Proposition 221 The coefficients G33-;,0 < j < 3 in the expansion (5.25) of A
are given by

Ghse = 0(2)(3(2J) a(l)(B(l)) + 1 (3(2)( (2})2 B(U( (l))2
am(am@B(l) (1)+a(l)n 1))+ uB(l)am—l—u(B{l)) )
B u(a(l)) (23(1) (l)+a(1)ﬂ(l})
s = 6(33(230(2) 3B(1) “)-}-(3(2}) (B(U)]
+£2(2B(2)a(2) (2) w(l)amn“) 3(0(1)) 1? %uBé”a“)—u(B{”)z)
—¢ aﬂ)u(w{” i + Sa(l)q(“}

Gu = (BY —BP)+e@BPn —2B"n{" +o@n{ — 3aWnf) — uB{")
—2u(3aWng) + 2B{"n{")
Gz = ﬂ:(zz) = ﬂél) — guny

One can continue the calculations in obtaining Gy x—j,0 < j <k, k > 4; however,
the expressions become longer with increasing &, and hence, one looses insight. Instead
of writing explicit expressions for the coefficients Ggi—;,0 < j < k,k > 4, it is
preferable to compute them modulo some parameter variables.

By (1.132) , we can derive structure formulas for the coefficients Gy x—;,0 < j < k,
in the expansion of A, in case the regular maps take the form R, (y) = —&f +
(1+eu)y+0 (¥*),y - 0and Ry (z) =z + O (z¥) ;¢ — 0, for a certain k > 2:

Proposition 222 Let k > 2, and suppose that
iV =n®P =0vi<i<k-2

then the coefficients Gy k—;,0 < j < k, in the expansion (5.25) of the reduced difference
map A = Ao — Ay, are given by

Geii=CL) ,— G . MO<i<k
As a consequence of propositions 222, 217 and 219, we can easily derive structure

formulas for the coefficients Gy x—;,0 < j < k, modulo certain coefficients from the
expansions of the normal forms, that appear previously in the expansion of A:

Proposition 223 If

B=0
(x(z} :a(]') —Jif 4 2
u=10

=P =0,V1<j<k-2
B”) B =B;V1<j<k-2
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From corollary 224, one could conjecture that the upperbound for the cyclicity in
theorem 134 (i.e. codimX}) is not optimal. To be more concrete, if codiml, = 2k
(respectively 2k + 1), then we can conjecture that the sharpest upperbound for the
cyclicity will be 3k — 1 (respectively 3k), instead of the upperbound codimXy (recall
that codimX) = 2k + k (k — 1) /2, respectively 2k + 1 + k (k + 1) /2). In particular,
one can conjecture that there exist ‘generic’ unfoldings of the 2-saddle cycle leaving
one connection unbroken, for which the cyclicity is at least 3k — 1, while the related
Abelian integral has at most 2k + 1 zeroes (Vk > 4). By this conjecture, there exist
unfoldings of the 2-saddle cycle leaving one connection unbroken, for which there are
at least k — 2 limit cycles that are not shadowed by zeroes of the related Abelian
integral, the so-called alien limit cycles.

Moreover, from the recursion formulas given in propesition 223, it seems that, the
(k + 1)-th order approximation of A with respect to £ will be sufficient to study the
exact cyclicity along a 2-saddle cycle, of which one connection remains unbroken, in
case codimg/l, = 2k or 2k + 1. This conjecture is consistent with the observation we
made in the example given in [DR], where codimg 1, = 3. In this case, linear approx-
imation was not sufficient to study the precise cyclicity, but quadratic approximation
of A with respect to &, is sufficient.

5.3 Particular case

5.3.1 Settings and organising

In this section, we consider a particular subfamily of the unfolding (X ), of a 2-saddle
cycle T, that keeps one connection unbroken of type (5.1). Suppose again that the
normal form of X, at the saddle point s; (respectively —X at the saddle point s5)
is given by (5.4) (respectively (5.5)). In this section, we suppose that the coefficients
al), BJ(-‘), 7 = 1 depend analytically on the parameter A = (v, ). Then, the subfamily
that is subjected to our investigation, is defined by the conditions

oM (A)=a®? (A\)=a #£0, (5.28)
for a fixed non-zero value & € R, and the conditions
B (v,6) = BP (v,6) =0,Vi > 1. (5.29)

Furthermore, we suppose that the conditions (5.28) and (5.29) define an analytic
submanifold M in parameter space. We denote the restrictions of the maps A, I to
M, by AM M and we suppose that (v,&) are analytic coordinates of a local chart
for M at 0.

Let us first investigate the conditions (5.28) and (5.29). By condition (5.28),
the coefficient 7 = 0 according to ‘zloga’ disappears in the expansion of AM (and
also from IM). This condition simplifies our study, since we are left with only 1
compensator w = Weo. As a consequence, we don’t need the compensators wy_; and
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Then, the reduced difference map A can be written explicitly as:
AM (z,v,€) = B — ua't + 7 [Fy (z,v,6) — (1 +-eu) fr (1% v€)],  (5.30)
where the C™ function Fj is defined by the equation
(1 +efo (z,v,€)) T =1+ eF (z,0,8) . (5.31)

5.3.3 Genericity conditions
For this particular subfamily, the expansion of the Abelian integral reduces to
oo (IM)g (@) = oo (BM (,11,0))g () = —B+uz + S a® -ne (s32)
=2

We notice that for this particular subfamily the map I} expands in the Taylor scale
7. In general, the Abelian integral admits an asymptotic expansion in the logarithmic
scale L. Here, the expansion of IM in £ displays gaps: only pure powers of = show
up, the terms containing z*logx are missing. This was to be expected. Since the
Dulac map now reduces to the identity for £ = 0, only the regular transitions 12; and
R contribute to the Abelian integral IM, and hence the Abelian integral I;; M ig O™,

Let k > 2. Recall that the Abelia.n integral I, has codimension 2k (denot.ed by
codimgIM = 2k) if and only if

A(0) =u(0) = (P —n) (0) = 0,V1 < i < k—2 and (2, — i) (0) #0. (5.33)

Clearly, if codimoIM = 2k, then the Abelian integral IM has at most k zeroes.
Let us introduce the notation

0 we) = @P we),.... 0 (ne),  Vi=1,2Vi>1.

Definition 225 Consider an unfolding (X)), of a 2-saddle cycle T', that keeps one
connection unbroken of type (5.1). Consider the particular subfamily (Xx)ycpr, de-
fined by the conditions (5.28) and (5.29). Then, we say that the subfamily (Xx) e
is generic of codimension 2k — 1 if the following genericity conditions are satisfied:

1. codimIM = 2k, i.e.
B(0) =u(0) = (n® —n®) (0) =0,¥1 < i < k—2 and (7, —nf?;) (0) #0,
nh2y (0) #0,

3. the map @, : (R%*~1,0) — (R*1,0) :

w,e) ~ (B, u ™y (1,6) , 0Py (118) ,€) (5.34)

is a local diffeomorphism at 0.
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We denote by A! the reduced difference map A, expressed in the parameter variable
(vl,e) :
Al (z,v',e) =AM (2, P, (v',¢)) -

To end this section, let us consider the particular subfamily of (X)), , defined by
the conditions (5.28) and (5.29), but now we suppose that a = 0. Then, the Dulac
maps at the saddle points become the identity maps, and hence, the reduced difference
map A is C® :

AM (z,v,6) = B —uz + 2 [fa (x,v,€) — (1 +eu) fi (z,v,€)]

o0
=B—uz+ Y (> — (1 +eu)n)z*+.
=1

Hence, if & = 0, the map A™ can not produce more zeroes than the related Abelian
integral. As a consequence, such a subfamily cannot produce alien limit cycles, and,
generically, it can be studied by its linear approximation.

5.3.4 New compensators

In section 5.3.5, we will perform some rescalings such that the reduced difference map
admits an asymptotic expansion in a sequence W*, that will be defined in this section.
This sequence W* looks very similar to the simple asymptotic scale deformation W of
the logarithmic scale, in which the reduced displacement map is expanded, in case of
a saddle loop [Mar]. But, it is striking to notice that, in contrast to the saddle loop
case, where only one compensator shows up, now a sequence of compensators play a
role.

In this section, we give a precise definition of these new compensators and we
show that the sequence W* is a simple asymptotic scale deformation of the restricted
logarithmic scale £* (defined in (1.82) in section 1.4.2). Recall that the definition of
simple asymptotic scale deformation can be found in section 1.4.4 in definition 93.

The sequence of compensators {w;,i > 1} is defined by

w; = w(x,teq) ,¥i > 1. (5.40)

Notice that w;, for i > 1, is the compensator associated to a saddle point with ratio of
hyperbolicity 1+ ice, and that w; is an unfolding of log z for £ — 0. Let us also stress
that these new compensators w; are not the ones we have encountered before, where
the subindex denoted the corresponding saddle point s; (with ratio of hyperbolicity
r{) =1 4 o). Furthermore, notice that w; is in fact the traditional compensator
w.

Let us now give two other characterisations for the compensator w;, i > 1.
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of the division-derivation algorithm, this factor is cancelled out of the sequence by
division.

Using the calculation rules summarised in proposition 228, one can check by in-
duction on k > 1, that the sequences W3, _, and W3, produced in the (2k — 1)-th
and (2k)-th steps of the derivation-division process, are respectively given by:

2k—1 . 2k—1 i 2k-1 i 2k—1 &3
Wie—1 = {1, owigd* ' 295" 1o T Wigk—1920 1% 925 1038 2 1}
and
2 —1_2k —1_2k ' ~1 3k =10 Vi
Wy = {l,wk g1 TWIkWE G2 5o oy T Wit kW 933 T Wy 92§+1s---|%21}’

where the functions gf (i >1,j > 1), appearing in the sequence W}, j > 1, are of the
following type: ‘ :

G+ B o)

4 (wl“i,. .-,w,?l)

gl

for certain constants Cf,Cj (meaning that they depend only on the parameter £ in
a polynomial way), and for certain multivariate polynomials P/,Q7 with P} (0) =
Q7 (0) =0, and r < [“LFL] (where [u] means the integer part of u € R). m

5.3.5 Rescaling of the reduced difference map A

By introduction of new compensators, we can regroup the building terms in the
asymptotic expansion (5.30) of AM.

Nevertheless, we cannot find extra (i.e. alien) limit cycles by considering merely
this expansion. The extra limit cycles can only be found by using the extra terms in
the expansion of AM | that are not seen in the related Abelian integral.

Since, for € = 0, the reduced difference map coincides with the Abelian integral,
all of these extra terms are divisible by . Hence, the considered expansion cannot
be generic, since the coefficients in the expansion cannot be seen as independent
parameter variables (as soon as the codimension of the Abelian integral is at least 6,
ie. 2k > 6).

In this section, by means of a weighted rescaling of both the phase variable = as
well as the parameter variable 7, the map AM is reduced to a map Z. This map Z will
serve as the new reduced difference map; in particular, = admits a generic expansion
in W*.

By the rescaling (Z,7,2) — (z,1,£), a ‘cone’ around the e-axis, in the product
space of the phase variable and the parameter variable, is blown up to a full neigh-
bourhood of 0, in the (Z, 7, £)-space, uniformly with respect to e. Therefore, to study
limit cycles, bifurcating from I', in such a generic subfamily (X)), We can study
isolated zeroes of the unfolding E, in a neighbourhood of 0 in the (z, 7, )-space, that,
afterwards, are blown down, to obtain results on a ‘cone’ around the e-axis in the
(z, v, )-space.
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Let us denote by A? the reduced difference map AY | written in the parameter variable

(v%e) :

A? (z,v%,6) =AM (z,P o P, (v*,2)).
In th.‘lS way, the asymptotic expansion for the reduced difference map AM in (5.53),
for 12 = (B,u, 7™M, 7?), can be rewritten as:

A? (z,02,8) = B+ z'te [ —u -+ Z( Eﬁf”:ﬂ‘u, ﬁfn} )+ U (z, P2 (V,2)) |

=1
s (5.59)
where n(:’ )1, j =1,2 depends on (uz E) as follows:
“(” = »(1) u, T PioP €
?2) ¥ 42)1( P ]1( 10 F5(1%,)) 1€) (5.60)
My = e 1(”:”&,-1 (P1°P2 (V 15)) s Vk—1+E)

where ~;_; is defined in (5.55) with (v',€) = P» (¢, ) . Notice that now the gener-
icity conditions 1., 2. and 3. are translated into

A9 (0) =0,V1 <i <k —2,Vj=1,2and (", (0) #0 and 2, (0) £0, (5.61)

and the map, defined in (5.57), is a local diffeomorphism af: 0.

Notice that the coefficients, according to z'w; in the expansion of A? in (5.59),
all are divisible by £. This was to be expected, since for £ = 0, we obtain the Abelian
integral,

&2|e=ﬂ = Igfopz(l-’za“)’
and, as we have seen in (5.32), the logarithmic terms have disappeared from the
expansion of the Abelian integral IM. Therefore, expansion (5.59) is not generic in
the sense that the coefficients in this expansion can be seen as independent parameter
variables for £ = 0. To solve this problem, we rescale the parameter variables with &,
in order to obtain coefficients, all divisible by the same factor of .

However, by the genericity conditions (5.61), the coefficients according to TFwi_1
and z* are not small, and therefore these coefficients cannot be rescaled by a factor
of £. To get rid of this problem, we rescale first the variable x :

r = £°%.

By the rescaling in z, also the compensators w; are affected. Let us use the
notation @; = w; (Z,2a),1 <i <k — 1, and look at the effect of this rescaling on the
compensators w;. One has,

( 2eie 1) ==t +$£sa w1
cicy
Eumsia =1
= '(—-*———l (1 = s E‘I'.Q{IJ,;) + Wy
£l
= (1 +iacloge (1 + @i (cloge))) @; + loge (1 + i (eloge)),

Wi =
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In particular, the genericity conditions 1., 2. and 3. are translated into (5.52) and
the map P, defined in (5.64) or (5.44), is a local diffeomorphism at 0. Furthermore,
one can easily check that the component functions of P are of type (5.45) .

Finally, after rescaling of the parameter variable (v3,£) by the formulas (5.48),
the reduced difference map A? is divisible by the factor £2*. This induces the map =
in relation (5.49). The other statements of the theorem follow, if we define the C*
function ¥y by

Uy, (€27, Py o Ps (VP €)) = eX200, (2,7,¢). (5.66)

The asymptotics of ¥y, stated in (5.51), follows from (5.54) and (5.66), and implies
that the map W} satisfies the remainder property of order 2k — 1 with respect to the
simple asymptotic scale deformation W* (see corollary 88).

To end, notice that the coefficients "y,(cj_) i =1 Dols2esgrteag, ) and eaghrea
in the expansion (5.50) of =, depend on the parameter variable (7,¢) as described in
(5.65) , by means of the rescaling formulas in (5.48). =

5.3.6 Maximal cyclicity

In section 5.3.5, the study of the cyclicity of a generic subfamily (X)), ,, along I' can
be reduced to the one of the cyclicity of = at 0. Recall that the notion of cyclicity for
an unfolding E is defined in definition 78 in section 1.4.1. It is the maximal possible
number of isolated zeroes that can bifurcate from Z = 0, at the bifurcation value
(7,€) = (0,0) € R%*—1,

This reduction was obtained by rescaling the parameter variable v as well as the
phase varibale = with . Therefore, the study of isolated zeroes in the unfolding =
cannot result in the understanding of the complete bifurcation diagram of limit cycles
of (X)senr near I' and (v,€). By means of E, we can just study the bifurcation
diagram of limit cycles in a conical region around the -axis.

Nevertheless, we have good reasons to expect that, one can find the maximal
cyclicity (i.e. 2k — 1) in this region. At the end of this section, we show that, for
a generic subfamily (X)), of codimension 2k — 1 (as defined by definition 225 in
section 5.3.3), the cyclicity is at least 2k — 2. As a consequence, since the related
Abelian integral has at most k zeroes, there are at least k& — 2 alien limit cycles. As
a consequence, already in this simple particular subfamily, there occur alien limit
cycles.

Let us now compare the asymptotic expansions of = and 5 with respect to the
simple asymptotic scale W* of the restricted logarithmic scale £* and W of the loga-
rithmic scale £ respectively, given in (5.50) and (1.108) respectively. The unfolding =
expands in a simple asymptotic scale deformation of the restricted logarithmic scale,
i.e. the logarithmic scale without the ¥ log Z-term.

The reason lies in the fact that, for this particular subfamily (X)),c,,, the pa-
rameter 7 = 0 (by condition (5.28)). However, this point of difference is not essential.
Besides, the non-identically vanishing of 7 could produce only one extra zero; more-
over, this zero would not correspond to an alien limit cycle, since 7 is attached to
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particular subfamily (X3)y\cay -
Let us explain the difficulty in this transfer more precisely. We can find sequences
(Z5) e s 1 <0 < land (75),ey such that

Vi<i<l: lim z% - 0and lim 7, -0
n—+oo n—0a

and 0 < £, < ... < Z. are simple zeroes of Z(-,7,,0), i.e. YR e N,V1 <i<I:
E (2}, 7n,0) =0

%E (Z3,,7n,0) #£0

To translate this result into a result for A, we need to blow down to the (z,#,£)-
space by means of (5.48) and x = £%z. By this blow down, the sequence of parameter
values ((7n,0)),,cy reduces to the constant sequence ((0,0)),,cy ; moreover, the corre-
sponding zeroes T, reduce all to 0 (1 <1i <[, & N). Clearly, this result says nothing
about the cyclicity of the particular subfamily.

From this observation, it is seen that we need to be able to lift the result on
cyclicity, that we obtain for the restriction E|,_, to a similar result on cyclicity for
e > 0. Next, this last result can be translated into a result on the cyclicity of the
particular subfamily (X)),cp, near T' and (7,¢) = (0,0). This lifting is possible by
the following proposition, of which the conditions are satisfied by the map =, defined
in theorem 230 and | = 2k — 2.

Proposition 232 Let R, E > 0, let W be a neighbourhood of 7 = 0 in R and let

Z:]0,R[x Wx [0, E[ — R be a continuous map such that %; 10, R[xWx[0,E] —+ R

is a well-defined continuous map. If there exist sequences (7y),cy in W and (z%)
in ]0,R[,1 <1i <! such that

nex

lim 7, =0 and¥1 <i<1l: lim z, =0 (5.67)

n—no n—+00

and such thatVn € N : ZL < ... < &l are simple zeroes of = (-, 7p,0) , i.e., V1 <i <1

E (&}, 7n,0) =0 (5.68)
%E () 7, 0) # 0. (5.69)

Then, there exist sequences (gn) ey [0, B[ and (&, (€n)),,cn i 10, R[,1 < i <1
such that
lim £, =0 and V1 <i<l: lim & (g,) =0
n—+00

n—00

and such that 0 < &} (e,) < ... < &, (en,) are simple zeroes of E(+,¥p,&n), ¥n € N.
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the homogenous polynomials Fy;.; (0 < j < k) are odd with respect to y

the homogenous polynomials Fy;45 (0 < j < k — 1) are even with respect to y

. the coeflicients corresponding to odd powers of y in Fyi 9 are equal to asgqq,

up to multiplication by a rational number

. the k-th Lyapunov quantity Vi is equal to asgy1, up to multiplication by a

rational number different from zero.

For k = 0, there is nothing to prove, since

:r2+y2

Fy =0, F3(2,9) = and Vo = 5oy

Induction step We show now that P (k — 1) implies P (k). By P (k — 1), we know

that Fb .1 (respectively Fy o) is an odd (respectively even) polynomial with
respect to y, VO < [ < k — 1. The coefficients of Fyyy are found from the

equation
D1 Fopy1 = — [DoFop + D3Fop_ 1 + DyFop_2+ ...+ Dy Fy] (A.1)
For j < 2k + 1 odd, D; = 0; as a consequence, equation (A.1) reduces to

k
Dy Forys ==Y DajFogrsrj) (A.2)

=1

In the right-hand side of equation (A.2), there only appear homogenous polyno-
mials F} with an even index [, where 2 <[ < 2k. Therefore, the right-hand side
of equation (A.2) contains only terms with even powers of y. If f; ; is defined
as the coefficient of F; corresponding to 37, then equation (A.2) defines a linear
system:

foks11 ] g
fokt1,2 0
H *
Fokt : =
Sak41,5 :
: *
| fokt1,2641 | L
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By induction on n € Ny, we prove that dBY (a) and dB] [ ) are non-singular; more-
over,

det dB" (&) = det dBT(b) = S (2) S (3)...5 (n).

As a consequence, and by lemma 234, we find that
detdhy ;o = (=1)" (21310 (n - HH?.

Forn =2,
9 9 I
det dB? (i) = det dB2(b) = det g £ e (X
2 b

Suppose now that n € N3 and that

detdB?~! (&') = detdB}(b) = S(2)S(3)...S(n-1),

where
{ = By e s Bt ) s = (b1s-..bn ~1)
i :{&11--'!&7&—1)1 b (b]_, b 1)
Notice that ¥n € N3 :
Bf = Bi'l+ta,
B} = Bf'+b,
n n.—l 1—1 —
B§k+1 = 2k+l+b sz l+ﬂ«n ?k Vk=1,..-,n—2
-1 = bnB3,_ 3+a“ -2
5:% = b an. 2

where the functions B} on the left-hand side are evaluated at (a,b) and the functions
on the right-hand side are evaluated at (a’,4’) . From the recursion-formulas in (B.3),
it follows that

r 8 pn—1 9 -1 1
o6, B2 o, 1B 1
B
By
Tl a

4B, (b) = (T +b"35 B‘J(k 1));1':'1,..71—1 f=gmed | S ’

7 T an_

mn

b Bain—1) - D Bz(n 1) an— ]

where the functions in the matrix are evaluated at (@’ ,b'). Next, we subsequently
apply the following elementary row-operations on the rows (Ri,..., R,) of dB}'(b) :

{R‘i = Ry, andVk=1,...,n—1:

R;r-}-l = Rk-i-l—bnR?c 3 (BA}
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Euler differential operator, 53, 59, 86
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Hopf bifurcation
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Hopf singularity, 109, 116, 120
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maximal, 22

principal, 28

regular, 30
implicit function theorem, 9
isolated

one-sided, 3

two-sided, 3

k-saddle cycle, 92, 192
Liénard equation

classical, 127
generalised, 131

limit cyele, 3
alien, 191

limit periodic set, 4

local ring, 22

logarithmic scale, 61
deformation, 84
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Lojasiewicz’s inequality, 163

Lyapunov coefficients, 32
reduced, 52

Lyapunov ideal, 36
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mee, 142
mean-value-theorem, 77
Melnikov function, 18
reduced, 48, 49
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minimal set of generators, 25
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minc, 142
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multiplicity, 8
MVT, 77

Nakayama’s lemma, 25
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non-degenerate elliptic singularity, 7
normal forms
symmetric, 112

order, 8

Poincaré map, 7
polycycle, iv, 92, 192
Preparation theorem, 10
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Puiseux expansion, 163
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periodieke verzameling I', waarbij de parameterwaarde X dichtbij A\? ligt. De cycliciteit
van (X)), langsheen I' voor de parameterwaarde A = A’ is het maximaal aantal
limieteyceli die vanuit I' kunnen ontstaan na perturbatie van Xyo. Dit getal wordt
genoteerd door

Cyel (X3, (I',A%)) .

In deze thesis komen er drie problemen aan bod, die respectievelijk onderzocht
worden in hoofdstukken 2 en 3, hoofdstuk 4 en hoofdstuk 5.

Als eerste probleem werd er hoofdzakelijk gezocht naar uniforme resultaten aan-
gaande Hopf-Takens bifurcaties in de nabijheid van een centrum, die uniform zijn in
zowel de fasevariabele alsook de parametervariabele.

Als tweede probleem werd de vraag gesteld hoe 1-parametertechnieken gebruikt
kunnen worden om de cycliciteit langsheen een niet-geisoleerde periodieke baan in een
multi-parameterfamilie te bepalen.

Het derde probleem betreft het cycliciteitsprobleem bij een 2-zadelcyclus, waarvan
in de ontvouwing slechts één connectie gebroken wordt. Indien £ een ééndimensionale
parametervariabele is, die de centra induceert, wordt de overdracht van eindige
cycliciteitsresultaten door lineaire benadering in £ in vraag gesteld.

Hoofdstuk 1. Voorkennis en technische eigenschappen

In dit hoofdstuk worden een aantal gekende technieken herhaald, die gebruikt worden
in de studie van de cycliciteit en bifurcatiediagrammen van limietcycli. Daarnaast
worden er bij deze technieken enkele nieuwe technische resultaten bewezen, en de
notie ‘het voorkomen van centra in een regulier hypervlak’ die gebruikt wordt in
hoofdstuk 2 wordt hier ook ingevoerd en bestudeerd.

Traditioneel wordt aan een familie van vlakke vectorvelden (X)),, nabij een
limiet-periodieke verzameling I', een familie van reéelwaardige functies d) in een 1-
dimensionale variabele s geassocieerd, de zogenaamde ‘verplaatsings-afbeeldingen’.
Dit gebeurt op een manier dat configuraties van limieteycli v van X, nabij I' overeen-
komen met configuraties van geisoleerde nulpunten s van de overeenkomstige ver-
plaatsingsafbeelding 4, nabij sg. Een vectorveld X, van het centrumtype wordt ver-
taald naar het identiek nul zijn van de overeenkomstige verplaatsingsafbeelding ).
Bovendien kan de cycliciteit nitgedrukt worden in termen van () ), , als het maximaal
aantal nulpunten dat kan ontstaan vanuit sy door pertubatie van dy0. Wanneer het
aantal nulpunten berekend wordt met de multipliciteit van elk nulpunt meegerekend,
spreken we van multipliciteit; dit getal wordt genoteerd door Mult (X Aj (T‘, AB)) 3

Indien de limiet-periodieke verzameling I' een reguliere periodieke baan of een
niet-ontaard elliptisch punt is, erft de familie verplaatsingsafbeeldingen de differen-
tieerbaarheidsklasse (C°° of C*) van de familie vectorvelden (X)), , lokaal rond I' en
A% in dit geval spreken we van de reguliere limiet-periodieke verzamelingen. Indien
de limiet-periodieke verzameling T" een hyperbolische polycyclus is (bijvoorbeeld een
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geillustreerd voor een familie van Liénard vergelijkingen.

Deze drie technieken, de techniek van het Bautin ideaal, Melnikovfuncties en
Lyapunov getallen, worden ook bestudeerd in het speciale geval dat centra enkel
geinduceerd worden door parameterwaarden die gelegen zijn in een regulier hyper-
vlak, £ = 0. Dit is de situatie die we zullen tegenkomen in hoofdstuk 2.

Het laatste deel van hoofdstuk 1 betreft een grafiek als limiet-periodieke verza-
meling. In dat geval is de verplaatsingsafbeelding niet langer differentieerbaar in het
punt dat overeenkomt met de grafiek. De hoger vernoemde stellingen kunnen dan niet
meer gebruikt worden voor de studie van limieteycli. ‘Deformaties van een eenvoudige
asymptotische schaal’, vormen een goed kader voor de beschrijving van het type niet-
differentieerbaarheid dat we hier tegenkomen [DR]. Hier wordt ook aangetoond dat
de Abelse integraal (eerste orde Melnikovfunctie) over een polycyclus een asympto-
tische ontwikkeling heeft in de logaritmische schaal. Verder beschrijven we ook het
gebruik van deze deformaties in de studie van de cycliciteit en het bifurcatiediagram
van limietcycli in het geval van de zadelconnectie [Mar] en de 2-zadeleyclus [DR].

Hoofdstuk 2. Hopf-Takens bifurcaties en centra

Een bekend voorbeeld van een stabiel bifurcatiepatroon van limietcyecli is de Andronov-
Hopf bifurcatie in de nabijheid van een niet-ontaard elliptisch punt, de zogenoemde
Hopf-singulariteit. Dankzij de Impliciete functiestelling weten we dat na kleine per-
turbaties van X))o, deze singulariteit blijft bestaan en geen nieuwe singulariteiten
gecreéerd worden. Nochtans is het mogelijk dat de stabliteit van deze singulariteit
verandert onder de perturbatie, en dat deze verandering van stabiliteit gepaard gaat
met het verdwijnen of verschijnen van een limietcyclus, die deze singulariteit omringt.
Dit belangrijke bifurcatiefenomeen wordt de Andronov-Hopf bifurcatie genoemd.

Veralgemeningen van de Andronov-Hopf bifurcatie, die aanleiding geven tot meer-
dere limietcycli, worden veralgemeende Hopf bifurcaties of Hopf-Takens bifurcaties
genoemd. De generische veralgemeende Hopf bifurcaties zijn uitvoerig bestudeerd in
[T], in het geval er geen centra voorkomen.

Nochtans duiken vaak perturbaties op vanuit centra, waarbij men voortdurend
Hopf-Takens bifurcaties beschouwt. Daarom is het interessant om na te gaan hoe de
studie in [T] kan veralgemeend worden naar situaties waarin centra voorkomen. We
beschouwen niet de meest algemene situatie, maar we beperken ons tot de situatie
waarbij centra geinduceerd worden door parameterwaarden in een regulier hyper-
vlak. Daarnaast werken we ook nog een voorbeeld uit, waarbij er twee parameters
verantwoordelijk zijn voor de centra. Hier komen naast de Hopf-bifurcatie ook nog
zogenaamde randbifurcaties voor; dit is het fenomeen waarbij er limietcyeli uit het
domein ontsnappen door de rand.

In [T] worden nodige en voldoende voorwaarden bepaald om de aanwezigheid
van een generische Hopf-Takens bifurcatie te garanderen. In deze thesis drukken we
vooreerst deze nodige en voldoende voorwaarden uit in termen van Lyapunov getallen.
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index, cycliciteit of multipliciteit bestaan, afhankelijk van bepaalde eigenschappen
van de families of het Bautin ideaal. In ieder geval tonen we aan dat voorzichtigheid
is aangewezen, indien men conclusies trekt voor de multi-parameterfamilie op basis
van resultaten van 1-parametersubfamilies, die geinduceerd zijn door rechten in de
parameterruimte.

In het geval dat het ‘stratum van maximale cycliciteit (respectievelijk multi-
pliciteit)’ een niet-leeg inwendige heeft dat ophoopt in A\’, tonen we aan dat er steeds
een polynomiale kromme ¢ van maximale cycliciteit (respectievelijk maximale mul-
tipliciteit) bestaat. In het bijzonder vinden we een kegel van mee’s (respectievelijk
mme’s), die een zeker contact hebben met ¢. Om dit resultaat te bekomen, bewijzen
we eerst een specificatie van het ‘curve selection lemma’ voor open subanalytische
verzamelingen, dat steunt op de Lojasiewicz ongelijkheid.

Tenslotte bespreken we aanverwante vragen zoals het bestaan van een minimale de-
tectiegraad en conische graad van maximale cycliciteit (respectievelijk multipliciteit)
in een aantal specifieke voorbeelden.

De resultaten in dit hoofdstuk zijn gebundeld in [CD2].

Hoofdstuk 5. Twee-zadelcyclus

In dit hoofdstuk beschouwen we C™ families van vlakke vectorvelden (X (,_E))(M),
die een Hamiltoniaans vectorveld Xy ontvouwen voor £ = 0, in de nabijheid van
een 2-zadelcyclus T'. Hierbij stelt £ een kleine, ééndimensionale parameter voor. Het
onderzoek in dit hoofdstuk richt zich op de lineaire benadering I, van de verplaats-
ingsafbeelding é(, .y met betrekking tot £, de zogenaamde Abelse integraal. We on-
derzoeken in welke mate de lineaire benadering van de verplaatsingsafbeelding 4, )
met betrekking tot £, kan bijdragen om de cycliciteit te berekenen.

We weten dat, in het geval dat I' een periodieke baan, een niet-ontaard elliptisch
punt of een zadelconnectie [Mar] is, resultaten aangaande configuraties van nulpunten
van de Abelse integraal I,, op een triviale manier kunnen overgebracht worden naar
resultaten aangaande configuraties van limietcycli, tenminste als de Abelse integraal
een elementaire catastrofe voorstelt.

Wanneer I' een hyperbolisch k-zadelcyclus is (met k > 2), is de overdracht van
resultaten van de Abelse integraal niet meer triviaal in de e-richting. Het bifurcatiedi-
agram van een twee-zadelcyclus is bestudeerd in [DRR], en in het algemeen, van een
k-zadelcyclus in [Mo|. Gebruikmakend van resultaten in [DRR] en [Mo], wordt in [DR]
aangetoond dat de Abelse integraal een slechte benadering is voor de verplaatsingsaf-
beelding, van zodra de ontvouwing meer dan één connectie breekt: onder generische
voorwaarden kan de ontvouwing k limieteycli produceren, waarvan er hoogstens één
limietcyclus kan nagetrokken worden door de Abelse integraal.

Zelfs wanneer de twee-zadelcyclus slechts één connectie breekt, kan het maximaal
aantal nulpunten van de Abelse integraal niet op een triviale manier overgedragen
worden naar het maximaal aantal limietcycli.
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