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Notation and Symbols

Vectors are bold lower case and matrices bold upper case. An exception is the
response variable, �, where bold upper case means the vector random variable.
Primes denote derivatives of a function and � the transpose of a vector or matrix.

R – the real line
R� – the Euclidean space of dimension �

� – observed response variable
� – vector of observed response variables
� – random variable
� – vector of random variable
����, � – arbitrary function of �

�M��� – arbitrary multivariate function of �
���� – probability density function
������ – conditional density
�m��� – mixture density
�m����� – conditional mixture density
�B��1��2� – bivariate distribution
�M��� – multivariate distribution
	 , �	 , 	 ���, �	 ��� – cumulative distribution function
	 ����� – conditional cumulative distribution function
	m��� – mixture cumulative distribution function
	B��1��2� – bivariate cumulative distribution function
	T��1��2��3� – trivariate cumulative distribution function
	M��� – multivariate cumulative distribution function

, �
, 
���, �
��� – survival function

����� – conditional survival function

m��� – mixture survival function

B��1��2� – bivariate survival function

M��� – multivariate survival function
����, ����� – integrated intensity function
������ – conditional integrated intensity function
����, ����� – hazard, or intensity (function)
������ – conditional hazard or intensity (function)
��� – probability density function for parameters
����� – conditional density for parameters



xii NOTATION AND SYMBOLS

H� – subject’s response history up to and including re-
sponse �

� – Laplace transform
��1 – inverse Laplace transform
���1� �2� – bivariate Laplace transform
���� – multivariate Laplace transform
�, �̃ – denotes (transformed) cdfs of � for the marginal

distributions of a multivariate distribution
�, �̃ – denotes (transformed) survival functions of � for

the marginal distributions of a multivariate distri-
bution

�̆ – denotes (transformed) integrated intensity functions
of � for the marginal distributions of a multivariate
distribution

�B��1��2� – bivariate copula
�T��1��2��3� – trivariate copula
�F��1��2��3��4� – 4-variate copula
�M��� – multivariate copula
F – denotes Fréchet classes
F� – Fréchet lower bound
F� – Fréchet upper bound
P – product copula or independence
��

B��1��2��
���

B ��1��2��
����

B ��1��2�

��� – associated copulas in the bivariate case

��B��1��2� – bivariate survival copula��M��� – multivariate survival copula
�B��1��2� – bivariate joint survival function of univariate cdfs
�M��� – multivariate joint survival function of univariate

cdfs
�, � – additive generators of the copula
���1�, ���1� – pseudo-inverses of additive generators
� – multiplicative generator of the copula
� – number of margins
� – number of observations or repeated measurements
� – index for time
�, �, � – other arbitrary indices



1
Ordinal models

Ordinal data have always been present in many different fields of research. The
current worldwide trend to accumulate information has revealed the importance
of categorical and more specifically ordinal responses. In parallel, the design of
studies has become more complex in order to understand better the relationships
among variables or factors influencing certain outcomes. This can for instance
clearly be seen in the pharmaceutical sector where there is a growing concern
for assessing patients’ quality of life. In most cases, patients will be followed
over time and have their state measured repeatedly. Hence, there is a growing
need for elaborate analysis methods to take into account the dependence among
observations recorded on the same individual.

Much work has been done for continuous responses. Although a number of
distributions were available, the Gaussian distribution had the most success due to
its very tractable mathematical properties. Due to the growth in computer power,
various other methods have started to be investigated over the last decade. Unfor-
tunately, few statisticians have been attracted to ordinal data leaving many topics
to be investigated compared to other statistical fields.

This thesis will primarily be concerned with the analysis of dependent ordinal
responses.

The first chapter introduces basic concepts including various regression mod-
els for univariate ordinal responses. Several different parametrizations are con-
sidered to take advantage of the order among categories.

The second chapter covers a variety of techniques used in different statistical
fields to introduce dependence among observations. These concepts are the bases
required to construct various multivariate distributions for ordinal data discussed
in chapters four and five.

In chapter three, different particular combinations of distributions are consid-
ered in order to obtain closed form mixture distributions that will be useful for
constructing dynamic longitudinal dependencies in chapter five.

Chapter four is devoted to models generated from copulas. Several specific
types of dependencies are obtained by investigating different methods of com-
bining Archimedean copulas. Most of these models will be most suitable for the
analyses of clustered and multiple response data. Note that the term “multiple
response” is used for datasets including several different kinds of responses ob-
served per individual. On the other hand, the term “multivariate” is more general
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because it also includes repeated measurements of the same type of response.
The fifth chapter covers dynamic models for longitudinal data. This includes

dynamically updated models and hidden Markov chains. Although these mod-
els are mainly oriented towards repeated measurements over time, dynamically
updated models are in certain cases found to correspond to Archimedean copu-
las. When this occurs, such models could then also be used to analyze multiple
response and clustered data.

Chapter six describes methods to represent graphically ordinal data collected
over time as well as results from dynamic models.

Finally, chapter seven illustrates a few of these different methods through the
analyses of clinical trials and smaller studies.

1.1 Variables

At the start of any study or clinical trial, the unit of observation must be defined.
This can be any unit of interest, such as a person, an animal, a litter of mice, or a
clinical centre. A group of these units or subjects can then be divided up according
to differences in a common characteristic. For instance, this common characteris-
tic might be sex, a measurement of blood pressure, or a personal appreciation of
current health. This classifies the subjects into different categories depending on
the type of characteristic they have. But such a classification will only be useful
if all subjects have this characteristic and each subject can take only one type of
this characteristic. Hence, a classification which creates such mutually exclusive
and exhaustive categories will be called a variable. A variable can take different
values, one corresponding to each category or type of characteristic. In the case
of the variable sex, the possible values are male and female.

Because not all variables are the same, they can themselves be classified ac-
cordingly to the characteristics of their values.

� A variable is called a ratio variable when the values are numerical measures
with a natural zero point.

� A variable is called an interval variable when the values are numerical mea-
sures without a natural zero point.

� A variable is integral if the values are counts.
� A variable is ordinal if the values are ordered but have no measure of dis-

tance between them.
� A variable is nominal if the values have no natural ordering and no numer-

ical relationship among them.

The variables belonging to the two first types are commonly referred to as be-
ing continuous whereas the remaining ones are called discrete or categorical. A
discrete or categorical variable that can only take two possible values is called a
binary variable.

A variable can be moved downwards through this list but not upwards. Un-
fortunately this is not achieved without loss of information. For instance, mea-
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surements of blood pressure can be grouped into a small number of categories
(discretized) or the order of an ordinal variable can always be ignored to obtain a
nominal one. In a similar way, statistical methods are usually developed for vari-
ables of one particular type but could be applied to others above in this list. But it
is always best to apply methods appropriate for the actual type of variable under
consideration, which will then use as much as possible if not all the information
available.

When variables are measured, two factors can influence the recording qual-
ity. The accuracy corresponds to how close the measurement made is to its “true”
value whereas precision refers to the unit of measurement. For example, a watch
always off by two minutes is not accurate and recording time of an event to the
second is more precise than to half a minute. As all measuring instruments can
only record to a finite precision, a discrete or categorical variable is always pro-
duced. But, in practice, the distinction between continuous and discrete variables
is made accordingly to the number of categories they can take. Variables that can
take a lot of values will generally be treated as continuous.

Another distinction still can be made among variables. A nominal variable is
qualitative because its different categories refer to a characteristic or quality, not
to a quantity. An integral or continuous variable is quantitative because the pos-
sible values it can take indicate a certain amount of the characteristic of interest.
On the other hand, the position of an ordinal variable in this classification is not
clear because the categories possess a magnitude of a characteristic but no actual
measure of distance separating them.

An ordinal variable can often be thought to correspond to an underlying con-
tinuous variable which is usually not measurable. This is the approach that will
be used in this text. In such a case, (if possible) the categories should be chosen
carefully because it is often best to have them corresponding to similar ranges
of the underlying continuous scale. This can enable one in some cases to take
advantage of the variety of methods available for continuous variables.

Finally, a distinction is usually made between a response and a covariate (or
explanatory variable). The response refers to the variable under investigation
whereas covariates are additional variables collected to describe changes or ex-
plain patterns of this response. The main interest of this work is the analysis of
ordinal responses with dependencies. All models developed for this purpose can
include both continuous and discrete covariates.

1.2 Generalized linear models

Generalized linear models (Nelder and Wedderburn, 1972) are based on the ex-
ponential family of distributions which provides a range of univariate models.
However, they are not meant to take into account the dependence among related
observations. All members of the exponential family have their density or proba-
bility mass function of the form

����;��� � �0���������e������� (1.1)
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where �� is the response for individual �, � � is the vector of canonical parameters,
�0���� is the normalizing constant of the distribution, ��� �� are the canonical
statistics, and ����� is a remaining function of �. This exponential representation
is called the canonical parametrization of the family. Though it is not obvious
at first sight, this family includes the two most common discrete distributions.
Indeed, the binomial (which includes the Bernoulli as a special case) and the
Poisson distributions are part of this family; see respectively Equations (B.46)
and (B.45).

Now, a regression model can be obtained by equating some function of the
location parameter to a linear function of other parameters. This can then be
written as

����� � �0 �∑
�

����� (1.2)

where �0 (usually) is an unknown parameter for the intercept and � � is (usually)
an unknown parameter for the  th covariate � �� corresponding to individual �.

Notice that this is a function linking the distribution’s location parameter � �

to the regression. If ����� � !�, this function ���� is called the canonical link. A
linear model for the mean response is obtained when the identity link, ��� �� � ��,
is chosen.

1.3 Univariate linear regression

Several methods are possible to analyze nominal and ordinal responses. The most
common method is to classify the response values into a contingency table. Each
cell of this table contains the number of observations recorded in a particular
category, generally referred to as frequencies. Unfortunately, this is not most
suitable when individual data are involved. Hence, an alternative approach will
now be considered.

For simplicity, the special but important case of binary responses is first dis-
cussed. The two possible types of outcomes are usually referred to as “success” or
“failure” and will respectively be represented by 1 and 0. It is generally assumed
that the observations on different individuals occur independently. The response
�� for individual � can then be described by a Bernoulli distribution, see Equation
(B.47). The Bernoulli probability mass function is

����;"�� � "
��
� �1�"��

1���

� �1�"��

�
"�

1�"�

���
� �1�"��e

�� ln
�

��
1���

�
(1.3)

where the (location or mean) parameter " � denotes the probability of success for
individual �, leaving 1�"� as probability of failure (Agresti, 1990, p. 81). We see

that ln
�

��
1���

	
is the canonical link function.
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This can now be extended to allow for �� categories (taking in some cases
advantage of their order) as long as the constraint ∑��

	�1 "�	 � 1 always holds. The
remainder of this section covers different parametrizations of the distribution’s
location using this link function and then generalizations by the use of a variety
of other link functions.

Note that the total number of categories and covariates are denoted respec-
tively by �� and ��� and that all models collapses to the binary case if there are
only two categories. Further, if there are more than two categories but no covari-
ates included in the model then these parametrizations reduce to the multinomial
model.

1.3.1 BINARY

The binary model (Agresti, 1990, pp. 91–97) is now straightforward with the
canonical link function (��� 2). The probability " � of subject � being observed
in category 1 is

"� �
e
�∑���

��1�����

1� e
�∑���

��1�����

and 1�"� of being observed in category 0.
The probability of a sample can then be written as

Pr���;"�� � ∏
�



�"��

���1�"��
1����

which corresponds to a product of Bernoulli distributions.
Sometimes, several subjects will have the same combination of covariate val-

ues. In this case, a contingency table containing all different possible covariate
patterns with non-empty cells can be built to improve computation time. The
sample probability can then be written as

Pr���;"�� � ∏
�



�"��

�1�1�"��
� ���1�

where �� � is the total number of subjects with covariate pattern � and � �1 is the
number of subjects observed in category 1 with such a pattern.

The score equations and Fisher’s information matrix are given in Appendix
Section A.2 (Agresti, 1990, p. 118).

1.3.2 MULTINOMIAL

A first extension to allow additional categories, without taking their order into
account, is called the multinomial model (Agresti, 1990, pp. 315–317). The prob-
ability "�	 of observation � being in response category � is

"�	 �
e
��∑���

��1������

1�∑���1
��1 e
��∑���

��1������

for all but the last category which is 1� ∑���1
��1 "�� (equivalent to #�� � ���� �

0� �  ).
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The sample probability can then be written as

Pr���;"�� � ∏
�

����1

∏
��1

�"���
��

�
1�

���1

∑
��1

"��

�� ��∑���1
��1 ��

��
The score equations and Fisher’s information matrix are given in Appendix Sec-
tion A.3.

1.3.3 SIMPLIFIED MULTINOMIAL

A simplification of the previous model can be obtained by constraining the covari-
ates to have the same coefficients for each possible response category with only
the intercept changing. The probability " �	 of observation � being in response
category � is

"�	 �
e
��∑���

��1�����

1�∑���1
��1 e
��∑���

��1�����

for all but the last category which is 1�∑���1
��1 "��.

The sample probability can then be written as

Pr���;"�� � ∏
�

����1

∏
��1

�"���
��

�
1�

���1

∑
��1

"��

�� ��∑���1
��1 ��

��
The score equations and Fisher’s information matrix are given in Appendix Sec-
tion A.4.

1.3.4 CONTINUATION RATIO

A second extension to allow additional categories, this time taking their order
taken into account, is called the continuation ratio model (Agresti, 1990, pp. 319–
320; Greenland, 1994). This model contrasts all categories on one side of the
scale to the immediately following one. It is therefore not symmetric, allowing
both upward and downward parametrizations. Note that only one of these should
be used, depending on the question to be answered.

� Upwards
If �	 is defined as

�	 �
e
��∑���

��1�����

1� e
��∑���

��1�����
(1.4)

for all but the last category then the probability " �	 of observation � being
in response category � is
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"�1 � �1�2�3 $ $ $ �����1

"�2 � �1��1��2�3 $ $ $ �����1

"�3 � �1��2��3 $ $ $ �����1

...

"���� � �1������1�

The sample probability can then be written as

Pr���;"�� �

∏
�

�
��1�

�1�1��1�
�2 $ $ $������1�

∑���1
��1 ���1������1�

� ��∑���1
��1 ��

	
� Downwards

If �	 is defined as

�	 �
e
��∑���

��1�����

1� e
��∑���

��1�����
(1.5)

for all but the first category then the probability " �	 of observation � being
in response category � is

"�1 � �1��2�

"�2 � �2�1��3�

"�3 � �2�3�1��4�

...

"���� � �2�3 $ $ $ ����

The sample probability can then be written as

Pr���;"�� �

∏
�

�
�1��2�

� ��∑��

��2����2�
∑��

��2�� $ $ $�1������
�����1������

����
	

The score equations and Fisher’s information matrix are given in Appendix Sec-
tion A.5.

1.3.5 PROPORTIONAL ODDS

Another extension to allow additional categories, with their order taken into ac-
count, is called the proportional odds model (McCullagh, 1980; Agresti, 1990,
pp. 322–324). This model contrasts lower to higher categories around various cut
points and is therefore symmetric.
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If �	 is defined as

�	 �
e
��∑���

��1�����

1� e
��∑���

��1�����
(1.6)

for all but the last category then the probability " �	 of observation � being in
response category � is

"�1 � �1

"�2 � �2��1
...

"���� � 1������1

The sample probability can then be written as

Pr���;"�� � ∏
�

���1�
�1��2��1�

�2 $ $ $ �1������1�
���� �

The score equations and Fisher’s information matrix are given in Appendix Sec-
tion A.6.

1.3.6 ADJACENT CATEGORIES

The last extension considered to allow additional categories, with their order taken
into account, is called the adjacent categories model(Agresti, 1990, p. 318). This
model contrasts immediately adjacent categories and is therefore symmetric.

The probability "�	 of observation � being in response category � is

"�	 �
e�∑�

��1
��∑���

��1�����

1�∑���1
��1 e�∑�

��1
��∑���

��1�����

for all but the last category which is 1�∑���1
��1 "��.

The sample probability can then be written as

Pr���;"�� � ∏
�

����1

∏
��1

�"���
��

�
1�

���1

∑
��1

"��

�� ��∑���1
��1 ��

��
The score equations and Fisher’s information matrix are given in Appendix Sec-
tion A.7.

1.3.7 LINKS

As can be seen in Equation (1.3), the Bernoulli distribution does indeed have
the characteristic form of the exponential family shown in Equation (1.1). It has
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ln
�

��
1���

	
as canonical link which is called the logit link. Hence, with this link,

the distribution’s location is described by the S-shaped curve

"� �
e
�∑���

��1�����

1� e
�∑���

��1�����
�

1

1� e��
�∑���

��1������
(1.7)

called the logistic regression function due to its similarity to the logistic cumula-
tive distribution function (cdf) presented in Equation (B.29). The parameter # is
the intercept and represents the distribution’s location when all covariates are set
to zero. Note that the latter form is computationally more attractive as it is faster
to compute.

This suggests that the binary model can be generalized by allowing the distri-
bution’s location to be described by

�� � 	

�
#�

���

∑
��1

�����

�
where 	 ��� is a continuous cdf. In this case, the canonical link presented in Equa-
tion (1.2) would be replaced by the corresponding quantile function, %���.

%���� � #�
���

∑
��1

�����

McCullagh (1980) shows that this generalization can also be applied to pro-
portional odds models. This can be seen from Equation (1.6) which also corre-
sponds to the logistic cdf presented in Equation (B.29).

%���� � #	�
���

∑
��1

����� (1.8)

Two link functions are suggested in that paper. The probit link

Φ�1���� � #	�
���

∑
��1

�����

corresponding to the Gaussian distribution, where Φ�1��� is defined in Equation
(B.43), and the complementary log-log

ln�� ln�1����� � #	�
���

∑
��1

����� (1.9)

corresponding to the Gompertz distribution, see Equation (B.19).
McCullagh (1980) also relates models with a complementary log-log link to

proportional hazards models (Cox, 1972). This is done by rewriting Equation
(1.9) as

� ln�1���� � e
��∑���

��1�����

� !	e�∑���

��1����� (1.10)

where !	 � e
� and � ���.
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A related link function is the log-log link

ln�� ln����� � #	�
���

∑
��1

����� (1.11)

corresponding to the Gumbel distribution, see Equation (B.17). Indeed, if the
complementary log-log link models the probability of a success then the proba-
bility of a failure will be modelled by the log-log link (Agresti, 1990, p. 105).

For the two continuation ratio parametrizations, it can be seen that Equations
(1.4) and (1.5) also corresponds to the logistic cdf presented in Equation (B.29).
The link function is identical to one used for the proportional odds models, see
Equation (1.8).

Although generalization is possible, it has not often been implemented. This
can be explained by the additional complexity in estimating the parameters when
other links than the logit are used. Fortunately, this is no longer a problem as
numerical optimization can be used instead (see Subsection 1.4.2).

Finally, many other quantile functions could be used as links possibly incorpo-
rating additional unknown parameters as is suggested in the discussion following
the paper of McCullagh (1980). For instance, quantile functions of generalized
distributions could be useful in selecting among several known distributions. But
any model with such a link function will no longer be linear in its parameters.
Hence, numerical optimization will have to be used in order to obtain the maxi-
mum likelihood estimates of all parameters (see Subsection 1.4.2).

1.4 Maximum likelihood estimates

1.4.1 LINEAR REGRESSION

The likelihood corresponding to a particular set of independent observations is
obtained by multiplying together the density or probability mass function for each
of these observations.

L���;��� � ∏
�

����;���

For linear regression, parameter estimates are obtained by solving the first
derivatives set to zero called the score equations. This is done along with the
second derivatives called Fisher’s information matrix if using Newton-Raphson
method (Agresti, 1990, pp. 114–117). The solutions obtained are called the max-
imum likelihood estimates. Note that by “linear regression”, it is implied that the
model is linear in its unknown parameters, not in possible covariates included in
the regression model.

If there is linearity in the parameters to be estimated, only a small number of
specific derivatives written in a general form are required for each model. For the
first derivatives, two equations are usually sufficient. One is obtained by taking
a derivative with respect to an intercept parameter and the other with respect to
a covariate parameter. However, it is slightly more complex to obtain the second



1.5. MAXIMUM LIKELIHOOD ESTIMATES 11

derivatives for a nominal or ordinal parametrization (��� 3). A minimum of three
equations are required. These are obtained with respect to two intercept param-
eters, to two covariate parameters, and to an intercept and a covariate parameter.
But in most cases, for ordinal data additional (second derivative) equations are
required due to special cases such as derivatives for the first and last categories
or second derivatives taken twice with respect to the same parameter. Because
Fisher’s information matrix is symmetric, the set of second derivative equations
is obtained regardless of the order in which the two derivatives are performed
(under the appropriate regularity conditions).

Each of the equations obtained for a particular model is written in a general
form so that maximum likelihood estimates can be obtained for any linear regres-
sion by repeating the different score equations to match the number of categories
and covariates included as well as extending accordingly Fisher’s information
matrix.

1.4.2 NON-LINEAR REGRESSION

When the regression is non-linear, maximum likelihood estimates for the param-
eters can still be obtained by using the set of first and second derivatives. Unfor-
tunately, these can no longer be written in a general form as they will be specific
to each particular non-linear regression chosen. Hence, the score equations and
Fisher’s information matrix given in Appendix A cannot be used in this case. For-
tunately, nowadays computers are fast enough to be able to optimize numerically
most likelihoods in a reasonable amount of time.

In order to fit non-linear models, specialized software is required. For in-
stance, link functions with additional parameters or cdfs such as the ones found in
Appendix B must be programmed. But most of all, a special interface is required
to specify non-linear regressions.

In a linear regression formula, parameters can be omitted as their position can
be implicitly assumed. Unfortunately, this assumption is no longer possible for
any non-linear regression. Hence, a notation is required where the parameters
appear explicitly. This can be obtained by adapting the Wilkinson and Rogers
(1973) notation. To implement this improved notation, the software must be able
to distinguish automatically among existing variables, unknown parameters, and
mathematical functions included in the regression formula. Such an interface
has been implemented in the freely available software R, a fast clone of S-Plus
developed by Ross Ihaka, Robert Gentleman, and the R core group (Ihaka and
Gentleman, 1996).

Finally, additional shape or family parameter(s) introduced through link func-
tions could also depend (non-)linearly on covariates. For instance, a distribution
could perhaps be changing shape over time. Hence, the nonlinear interface can
also be used for such parameters in order to obtain models as flexible as possible.
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1.5 Previous work on multivariate ordinal models

The literature on univariate ordinal models is vast; no attempt will be made to
cover it here. Due to the generalization brought by McCullagh (1980) and to
the wide availability of software, the proportional odds model has since been the
most widely used parametrization for univariate ordinal data. However, Green-
land (1994) provides an alternative choice of models and discusses different situ-
ations motivating the use of several of these particular parametrization.

Another, quite different, approach to ordinal data has been proposed by Good-
man (1979 and 1981). It will not be further considered here.

For a general introduction to ordinal data, see Agresti (1990).
Since, several extensions have been considered in order to handle multivari-

ate ordinal responses. The most popular approach consists in including random
effects. Bartholomew (1980) discusses multiple integration of the random effects
in general, for both binary and ordinal responses. The particular case of a probit
link is considered for ordinal responses because the model can then always be
expressed in terms of bivariate integrals. Jansen (1990) uses Gaussian quadra-
ture to approximate the multiple integrals and applies the EM algorithm to obtain
the parameter estimates. Ezzet and Whitehead (1991) discuss random effects for
two period cross-over trials. In this case, the bivariate random effect model is
evaluated numerically using the Newton-Raphson method allowing choice of dif-
ferent distributions for the random effects. Hedeker and Gibbons (1994) provide
an implementation of multiple random effects for both an ordinal probit and logit
model. For this, Gauss-Hermite quadrature is used to integrate out numerically
the multivariate Gaussian random effects. Multilevel Gaussian random effects for
ordinal data have also been considered by Keen and Engel (1997) — using itera-
tive re-weighted restricted maximum likelihood to obtain the parameter estimates
— and Ribaudo et al. (1999) — using second order penalized quasi-likelihood
estimation. The adjacent category and proportional odds parametrizations are
used by Hartzel et al. (2001) to model a multicentre ordinal clinical trial. A
multivariate Gaussian random effect is once again chosen where the integrals are
approximated by adaptive Gauss-Hermite quadrature and the parameter estimates
are obtained using the Newton-Raphson or quasi-Newton methods.

Due to the complexity of evaluating multiple integrals, other random effect
models have developed where the multivariate distribution could be obtained in
closed form. This general approach is based on the mixture model proposed by
Farewell (1982) to capture overdispersion in ordinal data. The mixture proposed
combines an extreme value distribution, corresponding to either the complemen-
tary log-log, with a log-gamma mixing distribution. Conaway (1990) uses a mul-
tivariate generalized logistic distribution to model binary data. Crouchley (1995)
extends this model to ordinal responses and generalizes the mixing distribution to
the power variance family (Hougaard, 1986a). The multivariate model obtained
includes the gamma, inverse Gaussian, and positive stable distributions as special
cases. Ten Have (1996) and Pulkstenis et al. (1998) adapted the model based on
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the log-gamma mixing distribution to include discrete failure times with ordinal
responses. In the later case, this is used to model dropouts.

The Rasch model can be interpreted as a non-parametric random effect (Lind-
say et al., 1991). This model was first extended for multinomial responses by
Conaway (1989) and then for ordinal responses by Agresti and Lang (1993). Ken-
ward and Jones (1991) applied the multinomial Rasch model to cross-over trials.

Other types of dependencies have also been introduced for longitudinal stud-
ies. Generalized estimating equations which replace the multinomial dispersion
matrix have been considered by Gange et al. (1995). Lindsey et al. (1997) induce
serial correlation among repeated ordinal observation by including the lagged re-
sponse as a covariate in a continuation ratio model. First order Markov chain
models are developed by Albert et al. (1997) for ordinal responses with a propor-
tional odds parametrizations.

The Dale model and its multivariate extension, the Plackett model, have both
been used to analyze ordinal data. Molenberghs and Lesaffre (1994) apply these
models to cross-over trials and longitudinal clinical trials. Kenward et al. (1994)
consider the application of such models using maximum likelihood and gener-
alized estimating equations for the analysis of longitudinal studies. Lesaffre et
al. (1996) and Molenberghs et al. (1997) use these models to analyze longitudi-
nal ordinal studies taking the dropout mechanism in account. Lapp et al. (1998)
consider these models in the case of multiple responses.

Finally, Agresti (1989 and 1999) and Gibbons and Hedeker (2000) provide
reviews the different models available to analyze multivariate ordinal data.





2
Inducing dependencies

Many different types of associations or dependencies can occur among observa-
tions. Although fundamental differences reside among these, the proposed ap-
proach to introduce certain dependency structures will be based on a common
theoretical background gathered from several statistical fields.

The first section introduces mixtures including the particular case of Laplace
transforms. Because Laplace transforms can often be obtained in a closed form,
they will extensively be used in the remaining chapters. Thus, several properties
are investigated as well as some generalization methods.

The second section considers three possible methods to construct multivari-
ate distributions. In the first approach, multivariate distribution are obtained
from products of conditional distributions. On the other hand, the second studies
multivariate dependence structures which are independent from their univariate
marginal distributions. These are called copulas and can be produced for instance
by combining strictly decreasing or increasing convex functions. In this particu-
lar case, the Archimedean copulas are obtained which are investigated further due
to their tractable properties. Finally in the last approach, Laplace transforms are
extended to the multivariate case.

2.1 Mixtures

A first approach consists in introducing an additional parameter into an available
distribution. This parameter will then be used to induce the desired dependence
structure in Chapter 5. One possible procedure to achieve this consists in com-
bining two known distributions. Such a resulting distribution is usually called a
compound or mixture distribution.
DEFINITION 2.1 [Wetherill, 1961; Harvey, 1989, p. 163]
A mixture density, �m���, is obtained by integration of the product of a density
and a conditional density.

�m��� �

� ∞

0
����&���&�d& (2.1)

The density ��&� is called the mixing distribution and the conditional density
����&� is a density, given the random parameter of this mixing distribution. This
can be interpreted as the parameter & of ����&� varying randomly in a population
according to ��&�. �
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Under regularity conditions, Equation (2.1) can be rewritten in terms of cdfs

	m��� �

� ∞

0
	 ���&���&�d&

�

� ∞

0
	 ���&�d	 �&� (2.2)

where 	m��� is the resulting mixture cumulative distribution function, 	 ���&� is
the conditional cumulative distribution function, and 	 �&� is the mixing cumula-
tive distribution function (Johnson and Kotz, 1969, pp. 27–28).

A similar relationship can also be obtained in terms of survival functions


m��� � 1�	m���

� 1�
� ∞

0
	 ���&�d	 �&�

�

� ∞

0
d	 �&��

� ∞

0
	 ���&�d	 �&�

�
� ∞

0
�1�	 ���&��d	 �&�

�

� ∞

0

���&�d	 �&� (2.3)

where 
m��� is the resulting mixture survival function, and 
���&� is the condi-
tional survival function.

A mixture will only have additional parameters if at least one parameter
from the mixing distribution and one from the conditional density remain un-
confounded. In such a case, this can result in the creation of a new distribution.

2.1.1 LAPLACE TRANSFORMS

A tractable form of mixtures, using a Laplace transform, arises when the expo-
nential distribution is inserted as the conditional survival function of Equation
(2.3).
DEFINITION 2.2 [Abramowitz and Stegun, 1965, p. 1020; Hougaard, 1984;

Joe, 1997, pp. 85–86 and 119; Nelsen, 1999, p. 65]
Let 	 �&� be a univariate cdf of a positive random variable with 	 �0� � 0 and

���� be the Laplace transform of 	 �&�. Then

���� �
� ∞

0
e���d	 �&� � ' 0 (2.4)

is an exponential mixture survival function, if 	 �&� is a mixing cdf. Note that
����� is the moment generating function of 	 �&�. �

The density corresponding to a Laplace transform can be obtained by inserting
the exponential distribution into Equation (2.1),

�m��� �
� ∞

0
&e�����&�d& �

(�1������

(�
���

�
���
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where �m��� is an exponential mixture distribution (Cox and Oakes, 1984, p. 19).
This is the Laplace transform of &��&�.
PROPERTY 2.3 [Abramowitz and Stegun, 1965, p. 1020;

Salas and Hille, 1990, pp. 216–217; Joe, 1997, p. 373]
Laplace transforms are strictly decreasing functions because the derivative

�
�
��� ��

� ∞

0
e���&��&�d&

is negative. Under regularity conditions, higher order derivatives can be obtained
by

������� � ��1��
� ∞

0
e���&���&�d&

which leads to the conclusion that a Laplace transform is also a convex function
because its second derivative is positive. �

Further useful relationships can now be obtained from survival theory (Cox
and Oakes, 1984, pp. 14–15)

����&� � ����&�e������� (2.5)


���&� � 1�	 ���&� (2.6)

����&� � � ln�
���&��
����&� � ����&�


���&�
where ����&� is a conditional density, 
���&� is the corresponding conditional
survival function, ����&� is the corresponding conditional integrated hazard, and
����&� is the corresponding conditional hazard or intensity.

In the case of the exponential distribution, these relationships are

����&� � &e��� (2.7)


���&� � e���

����&� � &�

����&� � &

(Cox and Oakes, 1984, p. 16; others are given in Appendix B). Two important
properties of the exponential distribution can now clearly be seen. It has a constant
hazard and the conditional parameter & has a multiplicative effect in the integrated
hazard.

A generalization can be obtained by allowing the function argument � to be
replaced by an arbitrary function of �, say ����, in Equation (2.5)

�������&� � �������&�e���������� (����

(�

where �����
�� is the Jacobian corresponding to the transformation imposed by the

function ����.
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This can for example be applied to the exponential density in Equation (2.7).

�������&� � &e������(����

(�
(2.8)

Letting the function ���� be an arbitrary integrated hazard, say �����, Equation
(2.8) becomes

�� ������&� � &e�� ����� (
�����

(�

� &e�� ���������� (2.9)

where ����� is the hazard corresponding to the integrated hazard �����.
The corresponding conditional survival function, integrated hazard, and haz-

ard to the conditional density �� ������&� are


� ������&� � e�� ����� (2.10)

�� ������&� � & ����� (2.11)

�� ������&� � &�����
Equation (2.11) corresponds to imposing a multiplicative effect of the conditional
parameter & in the integrated hazard as was suggested by Hougaard (1984).

Simplification of Equation (2.10) results in the power of a survival function.


� ������&� � e�� �����

� e���� ln� �������
� �
����

This relationship can now be used as the conditional survival function of a mixture
distribution to obtain a special case of Laplace transform.
THEOREM 2.4 [Joe, 1997, p. 86]
For an arbitrary survival function 
m��� of a strictly positive random variable (no
mass at zero), there exists a unique survival function �
��� such that

�� ������ �
� ∞

0
e�� �����d	 �&�

�

� ∞

0

�
����d	 �&�

� 
m��� (2.12)

where �
���� is the power of a survival function and ����� is the corresponding
integrated hazard. This Laplace transform is indeed a survival function because
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the transformation ����� applied to the domain of � does not affect its range.
This theorem holds for any survival function 
m��� because it is invertible

�
��� � e��
�1��m���� (2.13)

where ��1 is an inverse Laplace transform. �

A similar relationship also exists for cdfs when the function ���� is chosen to
be � ln� �	 ���� where �	 ��� is an arbitrary cdf (Joe, 1997, p. 86).
LEMMA 2.5 [Joe, 1997, p. 86]
For an arbitrary cdf 	m���, there exists a unique cdf �	 ��� such that

��� ln� �	 ����� �

� ∞

0

�	 ����d	 �&�

� 	m��� (2.14)

where �	 ���� is the power of a cdf. In this case, the result is a cdf because the
transformation� ln� �	 ���� applied to the domain of � inverts its range.
Similarly, this lemma holds for any cdf 	m��� because it is invertible

�	 ��� � e��
�1��m���� (2.15)

where ��1 is an inverse Laplace transform. �

Theorem 2.4 and Lemma 2.5 are the foundation blocks for mixtures of powers
used in Sections 2.2.3 and 4.3.4.

2.2 Multivariate distributions

Many different techniques can be used to obtain multivariate distributions. But
first the concept of a multivariate distribution must be defined. As the responses
under study are nominal or ordinal, the following definition is given in terms of
multivariate cdfs.
DEFINITION 2.6 [Schweizer and Sklar, 1983, p. 82; Nelsen, 1999, pp. 40–41]
Let � be an integer greater than or equal to two. An �-dimensional cdf is a
function 	M satisfying the conditions

(1) Dom�	M� � R� where Dom�	M� denotes the domain of 	M.
(2) The range of 	M includes zero (grounded).
(3) The volume of 	M is non-negative for any �-dimensional interval (�-

increasing).
(4) 	M�∞�∞� $ $ $ �∞� � 1

A joint or multivariate cdf is a function 	M for which there is an integer � � 2
such that 	M is an �-dimensional cdf. �

From this definition, a general approach to obtain multivariate distributions is
to consider the necessary and sufficient conditions for a right continuous function
� on R� to be a multivariate distribution. These are that � has the appropriate
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domain and that the rectangle inequality holds. If � has �th-order derivatives,
this last condition is fulfilled when these � partial derivatives have the appro-
priate signs. Note that using this replacement condition will also ensure that the
multivariate distribution has a closed form density.

For example, a multivariate cdf (	M) is obtained if 0 � 	M � 1 and all �

partial derivatives of 	M are positive (Joe, 1997, pp. 11–12). On the other hand,
a multivariate survival function (
M) is obtained if 1 � 
M � 0 and the � partial
derivatives of 
M have alternating signs (Nelsen, 1999, p. 122; Hougaard, 2000,
p. 222).

Three approaches which fulfill these two conditions will now be considered.
Note that, in Subsections 2.2.2 and 2.2.3, multivariate distributions are obtained
from given marginal distributions. In this case, the marginal distributions will
usually be either (transformed) cdfs of � denoted by � or (transformed) survival
functions of � denoted by �.

2.2.1 PRODUCTS OF CONDITIONAL DISTRIBUTIONS

A first approach is to consider the relationship between conditional and multivari-
ate distributions.

����� ��1� $ $ $ ����1� �
�M��1� $ $ $ ����

�M��1� $ $ $ ����1�
(2.16)

Note that in general, the ratio of two multivariate distributions does not produce a
conditional distribution of the same form.

From recursion of Equation (2.16), a multivariate distribution can be con-
structed from a hierarchical series of conditional distributions.

�M��1� $ $ $ ���� � �1��1��2��2��1� $ $ $ �������1� $ $ $ ����1� (2.17)

The multivariate distribution obtained is a product of terms implying that the con-
ditional distributions are independent. However, it is important to notice that there
is a strict one-way ordering among the conditional distributions. Hence, care must
be taken because each response conditions on a different number of previous re-
sponses.

Such an ordering is suitable when there is a specific ordering among the series
of observations such as with time. But usually responses do not depend on all
of the information brought by previous observations. Hence, dependence of a
response on previous ones can be chosen in order to attain a stationary process. A
common method used is to create a Markov process of order ) where responses
�� � up to � are assumed to be (conditionally) independent for � ' ) . Note
that the first terms remain special because they condition on different numbers
of previous observations. This requires some initial conditions, at the start of the
series, to be estimated or specified.

Many other types of dependencies can also be created. In some cases, the
multivariate distribution obtained may then be invariant to reordering. Such de-
pendencies are therefore suitable to model clustered or multiple response data.
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Hence, the product of conditional distributions is a very flexible method to
create a multivariate distribution. Indeed, many different multivariate distribu-
tions can be obtained. This is due to all the different combinations of series of
conditional distributions and to the various specific types of dependencies which
can be induced.

2.2.2 COPULAS

A multivariate distribution can also be obtained by defining separately the univari-
ate marginal distributions and the dependence structure linking them together. But
first several definitions are required to be in a position to state this relationship.
DEFINITION 2.7 [Schweizer and Sklar, 1983, pp. 82–83; Nelsen, 1999, p. 8]
A function ��B that satisfies the conditions

(1) Dom
� ��B

�
� *1 �*2 where *1 and *2 are subsets of the interval �0�1�

containing 0 and 1.
(2) The range of ��B includes zero (grounded).
(3) The volume of ��B is non-negative for any two-dimensional interval (2-

increasing).
(4) ��B��1�1� � �1 and ��B�1��2� � �2 for every �1 	*1 and every �2 	 *2.

is called a two-dimensional subcopula. �

A subclass of main interest contains subcopulas whose domain is the entire
unit surface �0�1�2.
DEFINITION 2.8 [Frank, 1979; Genest and MacKay, 1986b; Nelsen, 1999, p. 8]
A function �B mapping �0�1�2 to �0�1� satisfying the conditions

(1) �B��1�1� � �1 and �B�1��2� � �2 for �1��2 	 �0�1�
(2) �B��1�0� � �B�0��2� � 0
(3) The range of �B includes zero (grounded).
(4) The volume of �B is non-negative for any two-dimensional interval (2-

increasing). Hence, for every �1���1���2���2� in �0�1� such that �1� � �1�

and �2� � �2�,

�B��1���2����B��1���2����B��1���2����B��1���2��� 0

is called a bivariate copula. �

These definitions can now be extended to the multivariate case.
DEFINITION 2.9 [Schweizer and Sklar, 1983, pp. 82–83; Nelsen, 1999, pp. 39–40]
Let � be an integer greater or equal to two. A function ��M that satisfies the
conditions

(1) Dom
� ��M

�
� *1�*2� $ $ $�*� where all *� are subsets of the interval

�0�1� containing 0 and 1, for � � 1� $ $ $ ��.

(2) The range of ��M includes zero (grounded).
(3) The volume of ��M is non-negative for any �-dimensional interval (�-

increasing).
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(4) ��M has (one-dimensional) margins ��� which satisfy ������ � � for all � 	
*� , for � � 1� $ $ $ ��.

is called an �-dimensional subcopula. �

Thus, a multivariate distribution with all univariate margins being +�0�1� is a
function �M called a (multivariate) copula.
DEFINITION 2.10 [Schweizer and Sklar, 1983, pp. 78–85;

Molenberghs, 1992, pp. 59–60; Nelsen, 1999, p. 41]
A (multivariate) copula is a function �M mapping �0�1�� to �0�1� satisfying the
conditions

(1) �M�1� $ $ $ �1����1� $ $ $ �1� � �� for � � 1� $ $ $ �� and �� 	 �0�1�.
(2) �M��1� $ $ $ ���� � 0 if �� � 0 for any �.
(3) The range of �M includes zero (grounded).
(4) The volume of �M is non-negative for any �-dimensional interval (�-

increasing).

It can also be shown that for any �-dimensional copula greater than or equal to
three, each �-dimensional margin of this copula is a �-dimensional copula, for
2� � , �. �

Hence, a copula is an �-dimensional subcopula whose domain is the entire
unit �-dimensional cube �0�1��. Although, this distinction may appear to be a
minor one, it is rather important because every subcopula can be extended to a
copula but not in a unique way.
THEOREM 2.11 [Schweizer and Sklar, 1983, pp. 83–84 (proof); Nelsen, 1999, p. 40]
Given any subcopula ��M, there is a copula �M such that

�M��1� $ $ $ ���� � ��M��1� $ $ $ ����

for all � in the domain of ��M. �

The range of a subcopula ��M is also a subset of the unit interval �0�1�.
LEMMA 2.12 [Schweizer and Sklar, 1983, p. 83 (proof); Nelsen, 1999, p. 40]
An �-dimensional subcopula ��M is uniformly continuous on its domain and

0� ��M��1� $ $ $ �����min��1� $ $ $ ����

for any � in the domain of ��M. �

Note that the term “copula” was chosen to emphasize the manner in which a
copula “couples” a joint distribution function to its univariate margins.

We are now in a position to relate multivariate distributions to their univariate
marginal distributions obtained by integrating over all but one of the dimensions.
THEOREM 2.13 [Schweizer and Sklar, 1983, pp. 83–84 (proof);

Nelsen, 1999, pp. 19 and 41]
If 	M is a multivariate cdf with univariate marginal cdfs 	1, . . . , 	� then there

exists an �-dimensional subcopula ��M, with domain equal to Ran�	1�� $ $ $�
Ran�	�� where Ran�	�� denotes the range of 	�, such that
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	M��1� $ $ $ ���� � ��M�	1��1�� $ $ $ �	������ (2.18)

for all �1� $ $ $ ��� 	 R. The �-dimensional subcopula is given by

��M��1� $ $ $ ���� � 	M�	�1
1 ��1�� $ $ $ �	

�1
� �����

for all ��1� $ $ $ ���� in the domain of ��M, where 	�1
� is the quantile function

corresponding to 	� .
Conversely, let 	1, . . . , 	� be cdfs, let ��M be any �-dimensional subcopula
whose domain contains the set Ran�	1�� $ $ $�Ran�	�� and 	M be defined by
Equation (2.18). Then 	M is a multivariate cdf with margins 	1, . . . , 	�. �

Extension from subcopulas to copulas results as an immediate consequence
of Theorems 2.11 and 2.13.
THEOREM 2.14 [Schweizer and Sklar, 1983, p. 84; Molenberghs, 1992, pp. 61–62;

Joe, 1997, pp. 12–13; Nelsen, 1999, pp. 19 and 41]
Let 	M be a multivariate cdf with margins 	1, . . . , 	�. Then there is a copula
�M (generally non-unique) such that

	M��1� $ $ $ ���� � �M�	1��1�� $ $ $ �	������ (2.19)

for all �1� $ $ $ ��� 	 R.
If the functions 	1, . . . , 	� are all continuous on� then �M is unique, otherwise
�M is uniquely determined on Ran�	1�� $ $ $�Ran�	��. �

By means of quantile functions corresponding to the univariate cdfs 	 1 to 	�,
copulas can be written in terms of uniform univariate margins.
COROLLARY 2.15 [Schweizer and Sklar, 1983, p. 83; Genest and MacKay, 1986a;

Joe, 1997, p. 13; Nelsen, 1999, pp. 19 and 41]
By letting the univariate margins of the copula be � � �	����� in Equation (2.19),
we obtain

�M��1� $ $ $ ���� � �M��� � 	M
�
	�1

1 ��1�� $ $ $ �	
�1
� ����

�
where the univariate margins �1, . . . , �� are represented by the vector � and the
multivariate cdf 	M is now in terms of the quantile functions 	 �1

� ���� � �� . �

Copulas belong to the Fréchet class F , the class of multivariate distributions
with given univariate margins, which allows us to define the bounds.
THEOREM 2.16 [Joe, 1997, p. 58 (proof); Nelsen, 1999, pp. 8–9, 26, and 42]
If 	M 	 F �	1� $ $ $ �	�� then for all � 	��,

max
0�	1 � $ $ $�	�� ���1��� 	M �min
	1� $ $ $ �	��

are the Fréchet lower and upper bounds, respectively F� and F� . �

As mentioned earlier, copulas are just dependency structures linking the mar-
gins together. Copulas can therefore be considered to be “independent” from their
univariate margins (Joe, 1997, p. 13; Nelsen, 1999, p. 21).
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THEOREM 2.17 [Joe, 1997, p. 13; Nelsen, 1999, p. 22 (proof)]
A copula �M��� is invariant under strictly increasing transformations of its ran-
dom variables �. �

This theorem can be generalized to strictly monotone transformations which
also includes strictly decreasing transformations. In the case where at least one of
the transformations is strictly decreasing, the copula is no longer invariant to the
transformation but will change in a predictable way yielding an associated copula.
PROPERTY 2.18 [Joe, 1997, pp. 15–16; Nelsen, 1999, pp. 21–22]
If a copula has � margins, there are �2�� 1� ways of applying these strictly

decreasing transformations each one yielding an associated copula.
In the bivariate case, the three relationships between a copula and its associated
copulas are:

(1) If a transformation is strictly increasing on the range of its random variable
�1 and a transformation is strictly decreasing on the range of its random
variable �2, then

��
B��1��2� � �1��B��1�1��2� � �1��B��1��2�

(2) By interchanging the transformations applied on the ranges of its random
variables �1 and �2, the second associated copula � ��

B ��1��2� is obtained.
(3) If transformations are strictly decreasing on both the range of its random

variable �1 and the range of its random variable �2, then

����
B ��1��2� � �1 ��2�1��B�1��1�1��2�

� �1 ��2�1��B��1��2� (2.20)

This can also be extended to the multivariate case using the standard relation-
ship between multivariate cdfs and multivariate survival functions, see Equation
(5.35). Note that only a permutation symmetric copula will have � distinct asso-
ciated copulas. �

DEFINITION 2.19 [Joe, 1997, p. 16; Nelsen, 1999, p. 28]
When a copula is applied to survival functions, the resulting associated copula

is called a survival copula. For the bivariate case, this can be seen by rewriting
Equation (2.20) as

��B��1��2� � �1 ��2�1��B�1��1�1��2�

� 1��1��2 ��B��1��2�

� �B��1��2�

where ��B��1��2� is a bivariate survival copula. Note that the survival copula��M��� should not be confused with � M���, the joint survival function of uniform
+�0�1� random variables whose joint cdf is the copula �M���. �
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A tractable form of a (survival) copula is obtained if it can be written as a sum
of functions of the marginals.

���M���� � ���1�� $ $ $������ �
�

∑
��1

�����

DEFINITION 2.20 [Frank, 1979; Nelsen, 1999, p. 90]
If � is a continuous strictly decreasing function mapping �0�1� to �0�∞� such that
��1� � 0, then its pseudo-inverse is the function � ��1� which maps �0�∞� to �0�1�.
It is defined as follows.

���1���� �

�
��1��� 0� �� ��0�
0 ��0�� �� ∞

Hence, it is continuous and non-increasing on �0�∞�, and strictly decreasing on
�0���0��. Furthermore, � ��1������� � � on �0�1�, and

�����1����� �

�
� 0� �� ��0�
��0� ��0�� �� ∞

� min�����0��

Finally, if ��0� � ∞ then � ��1���� � ��1���, the inverse function. �

Additional constraints are necessary to ensure that a multivariate distribution
is indeed obtained and is also a copula.
LEMMA 2.21 [Frank, 1979; Nelsen, 1999, pp. 90–91 (proof)]
Let � be a continuous strictly decreasing function mapping �0�1� to �0�∞� such
that ��1� � 0, and let � ��1� be the pseudo-inverse of � as just defined. If �M���
is a function mapping �0�1�� to �0�1� given by

�M��� � ���1�

�
�

∑
��1

�����

�

then �M��� satisfies the boundary conditions for a copula. But this multivariate
function is a copula if and only if � is convex. �

This provides a simple class of copulas which has been widely used in the
literature.
DEFINITION 2.22 [Joe, 1997, p. 87; Nelsen, 1999, pp. 92 and 98]
A (survival) copula of the form

�M��� � ���1�

�
�

∑
��1

�����

�
(2.21)

is called an Archimedean (survival) copula. Notice that it is permutation symmet-
ric in its � margins. �
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The meaning of the term Archimedean comes from the similarities with the
Archimedean axiom for the positive real numbers.
LEMMA 2.23 [Frank, 1979 (proof)]
Similarly, there exists a continuous strictly increasing function mapping �0�1� to
�0�∞� such that ��0� � 0 with pseudo-inverse � ��1� given by

���1���� �

�
��1��� 0� �� ��1�
0 ��1�� �� ∞

If ��1� � ∞ then � ��1���� � ��1���.
If �M��� is a function mapping �0�1�� to �0�1� given by

�M��� � ���1�

�
�

∑
��1

�����

�

then �M��� satisfies the boundary conditions for a copula. But this multivariate
function is a copula if and only if � is convex.
Finally, a (survival) copula of the form

�M��� � ���1�

�
�

∑
��1

�����

�
is also called an Archimedean (survival) copula. �

DEFINITION 2.24 [Frank, 1979; Nelsen, 1999, p. 92]
Note that the functions � and � are called additive generators of the copula. For
instance, if we set ���� � exp������� and � ��1���� � ���1��� ln���� we then
obtain

�M��� � ���1�

�
�

∏
��1

�����

�
so that � is a multiplicative generator. �

If ��0� � ∞ then � is called a strict generator. In this case, � ��1� � ��1 and
�M��� � ��1

�
∑�
��1 �����

�
is said to be a strict Archimedean (survival) copula.

A subclass of Archimedean (survival) copulas is obtained when the additive
generator � is chosen to be a univariate inverse Laplace transform. Recall from
Property 2.3 that they are decreasing convex functions (Joe, 1997, p. 373; Nelsen,
1999, p. 106).

Thus, a multivariate cdf or Archimedean copula

	M��� � �M��� � �

�
�

∑
��1

��1����

�
(2.22)

can directly be obtained from Equation (2.21). Equivalently, a multivariate sur-
vival function or Archimedean survival copula
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M��� � ��M��� � �

�
�

∑
��1

��1����

�
(2.23)

can be obtained.
The methods described in this subsection create general families of multivari-

ate distributions where the multivariate structure can be represented by a (sur-
vival) copula. Because the dependence structure is invariant to transformations of
the margins, care must taken not to confuse different multivariate distributions.

Indeed, it is important to know exactly what margins have been inserted into
a (survival) copula. The simplest example is to consider a survival copula ��M���
where the margins are survival functions and its associated copula �M��� where
the margins are cdfs. These are respectively a multivariate survival function and
a multivariate cdf. Although both have identical dependence structures, the cor-
responding densities obtained by taking partial derivatives with respect to each of
the margins will generally be different.

2.2.3 MULTIVARIATE LAPLACE TRANSFORMS

The last method to be considered consists in extending the definition of a Laplace
transform to the multivariate case.
DEFINITION 2.25 [Abramowitz and Stegun, 1965, p. 1020; Hougaard, 2000, p. 498]
A bivariate Laplace transform is

���1��2� �
� ∞

0
e��1�e��2�d	 �&� �

� ∞

0
e����1��2�d	 �&� � ���1 � �2�

where the two univariate exponential survival functions have & as common param-
eter and �� is either a (transformed) cdf or survival function. Note that bivariate
Laplace transforms can in some cases be interpreted as bivariate cdfs or survival
functions. �

This relationship can also be generalized to �-dimensions,

��	� �

� ∞

0
e���∑�

	�1 �	�d	 �&� � �

�
�

∑
��1

��

�
(2.24)

where ��	� is a multivariate Laplace transform.
Depending on the choice of �� , these relationships can generate interesting

multivariate distributions.
For instance by choosing �� to be� ln��� �, minus the logarithm of an arbitrary

survival function corresponding to the integrated intensity �̆ � � ������, yields a
multivariate survival distribution (Hougaard, 2000, p. 222).


M��̆� � �

�
�

�

∑
��1

ln��� �

�
� �

�
�

∑
��1

�̆�

�
(2.25)

On the other hand, choosing �� to be � ln��� �, minus the logarithm of an
arbitrary cdf, yields a multivariate cdf.
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	M�� ln��1�� $ $ $ �� ln����� � �

�
�

�

∑
��1

ln��� �

�
(2.26)

It can also be seen that Equations (2.25) and (2.26) can respectively be rewrit-
ten as a mixture of powers of survival functions and cdfs as was done in Equations
(2.12) and (2.14). Now respectively inserting Equations (2.13) and (2.15) yields


M��� �
� ∞

0

�

∏
��1

���� d	 �&� � �

�
�

�

∑
��1

ln��̃� �

�
� �

�
�

∑
��1

��1����

�

	M��� �

� ∞

0

�

∏
��1
���� d	 �&� � �

�
�

�

∑
��1

ln��̃� �

�
� �

�
�

∑
��1

��1����

� (2.27)

which are respectively Equations (2.23) and (2.22). Thus, this can be seen as an-
other method to obtain the subclass of Archimedean (survival) copulas mentioned
earlier (Joe, 1997, pp. 86–87; Nelsen, 1999, pp. 65–66).

Finally, notice that Equations (2.25) and (2.26) could respectively be obtained
by inserting mixture margins of the form of Equation (2.12) into an Archimedean
survival copula and of the form of Equation (2.14) into an Archimedean copula.

2.3 Further reading



3
Closed form mixtures

This chapter illustrates certain possible examples of closed form mixtures that
will be used to induce dependencies in Chapter 5. Many of these are well known
because they have been used widely to handle over-dispersion for univariate data.
The two first sections cover mixture cdfs and mixture survival functions, whereas
the third section contains mixture densities. Each of the subsections correspond
to the mixing distribution used to provide certain properties which will later char-
acterize the type of dependence induced.

Due to the close relationship between cdfs and survival functions presented
in Equation (2.6), specific mixtures are only presented in one of the two first
sections. Although the mixture density corresponding to a specific mixture cdf
and survival function (or vice-versa) can be obtained from the relationships given
in Appendix B.1, each of these is not automatically the result of a mixture. Hence,
the two first sections are somewhat complementary whereas the third only has the
corresponding mixtures for certain particular combinations of distributions but
includes additional cases.

Many of the mixtures considered can be related to Laplace transforms. Al-
though the classical method consists in choosing the conditional survival function
of Equation (2.4) to be an exponential distribution, this must not necessarily be
the case. Indeed, any mixture involving a conditional or mixing distribution which
includes an exponential of � can be regarded as a Laplace transform.

Certain mathematical functions given in Section B.2 are required in order to
specify the different distributions and mixtures. These are Γ��� the gamma func-
tion, K ��� �� the fractional Bessel function of the third kind, and B��� the beta
function respectively defined in Equations (B.1), (B.2), and (B.3).

Finally, each closed form mixture is obtained by rearranging the terms of the
integral into two distinct parts. The first part includes all the terms involving the
variable of integration, always defined as & in the below developments. Addi-
tional constants with respect to the variable of integration are then introduced in
order to obtain a known distribution. The second part consists of the remaining
terms which do not involve the variable of integration and can therefore come out
of the integral. Hence, the second part corresponds to the resulting mixture as
the remaining integral is a distribution and evaluates to unity. The distribution
integrated out is each time mentioned as it is of major interest in Chapter 5 along
with the notions of “closed under sampling” and “recursively closed” (respec-
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tively given in Definitions 5.2 and 5.5).

3.1 Cumulative distribution functions

The distributions obtained in this section are mixture cdfs resulting from Equation
(2.2).

3.1.1 EXPONENTIAL

The following mixture has a one parameter exponential density, Equation (B.5),
as mixing distribution. The closed form mixture is obtained by integrating out a
re-parameterized one parameter exponential distribution (recursively closed).

Gumbel
The conditional cdf is a two parameter Gumbel, Equation (B.16), where the loca-
tion is re-parameterized as #�� ln�&�� and the scale is set equal to �.
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When � � �, the resulting mixture has the form of a two parameter logistic cdf,
Equation (B.27).
(Johnson and Kotz, 1970b, p. 3)

3.1.2 GAMMA

The following mixture has a two parameter gamma density, Equation (B.8), as
mixing distribution. The closed form mixture is obtained by integrating out a
re-parameterized two parameter gamma distribution (recursively closed).

Gumbel
The conditional cdf is a two parameter Gumbel, Equation (B.16), where the loca-
tion is re-parameterized as ��� ln�&�� and the scale is set equal to �.

	m��� �

� ∞

0
e���e

�
�
� �
&
�1e���

Γ�#�
d&
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�

� ∞

0

�
&
�1e
��
�
���e

�
�
�

�

Γ�#�
d&

�

� ∞

0

�
�
���e�


�
�

�

�

���e�

�
�

�

&
�1e

��
�
���e

�
�
�

�

Γ�#�
d&

�

�
�

���e�

�
�

�


The resulting mixture has the form of a four parameter generalized logistic cdf,
Equation (B.31).
(Johnson and Kotz, 1970a, p. 289; Johnson and Kotz, 1970b, p. 17 [corrected])

3.1.3 INVERSE GAUSSIAN

The following mixture has a two parameter inverse Gaussian density, Equation
(B.9), as mixing distribution. The closed form mixture is obtained by integrating
out a re-parameterized two parameter inverse Gaussian distribution (recursively
closed for one parameter inverse Gaussian distribution where � � �).

Gumbel
The conditional cdf is a two parameter Gumbel, Equation (B.16), where the loca-
tion is re-parameterized as #�� ln�&�� and the scale is set equal to �.
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Where � �

�
�
�
��2�e�


��
�

�
and � � ��

� with Jacobian d& � �
� d�.

3.1.4 GENERALIZED INVERSE GAUSSIAN

The following mixture has a three parameter generalized inverse Gaussian density,
Equation (B.10), as mixing distribution. The closed form mixture is obtained by
integrating out a re-parameterized three parameter generalized inverse Gaussian
distribution (recursively closed).

Gumbel
The conditional cdf is a two parameter Gumbel, Equation (B.16), where the loca-
tion is re-parameterized as #�� ln�&�� and the scale is set equal to �.
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3.2 Survival functions

The distributions obtained in this section are mixture survival functions resulting
from Equation (2.3). The special case of Laplace transform occurs when the
conditional survival function is chosen to be an exponential distribution, Equation
(B.6).

A generalization of survival mixtures is obtained if the argument � of the con-
ditional Weibull survival function is replaced as by ����, an arbitrary function of
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�. Note that this function ���� must therefore be a strictly increasing transforma-
tion of � in order not to affect the range of the survival mixture. The conditional
survival functions will then be of form

e������� (3.1)

e���������

where ���� defines the distribution. For instance, the Weibull, Gompertz, and
generalized Gompertz distributions are obtained when ���� is respectively cho-
sen to be �, e�, and e�

�
.

3.2.1 EXPONENTIAL

The following mixtures are all based on one parameter exponential densities,
Equation (B.5), as mixing distribution. Each closed form mixture is obtained
by integrating out a re-parameterized one parameter exponential distribution (re-
cursively closed).

Exponential
The conditional survival function is a one parameter exponential, Equation (B.6),
resulting in an exponential Laplace transform.
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Weibull
The conditional survival function is a two parameter Weibull, Equation (B.13),
where !
 has been re-parameterized to &.
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Gompertz
The conditional survival function is a two parameter Gompertz, Equation (B.18),
where !� has been re-parameterized to &.
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When � � 1, the resulting mixture has the form of a one parameter logistic cdf,
Equation (B.28). In such a case, this also corresponds to the mixture cdf obtained
when a Gumbel density is used.

Generalized Gompertz
The conditional survival function is a three parameter generalized Gompertz,
Equation (B.22), where !� has been re-parameterized to &.
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Generalization
The conditional survival function is chosen to have the form presented in Equation
(3.1).
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3.2.2 GAMMA

The following mixtures are all based on two parameter gamma densities, Equation
(B.8), as mixing distribution. Each closed form mixture is obtained by integrating
out a re-parameterized two parameter gamma distribution (recursively closed).

Exponential
The conditional survival function is a one parameter exponential, Equation (B.6),
resulting in a gamma Laplace transform.
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The resulting mixture has the form of a two parameter Pareto survival function,
Equation (B.24).
(Johnson and Kotz, 1970a, pp. 233–234; Cox and Oakes, 1984, pp. 19–20)

Weibull
The conditional survival function is a two parameter Weibull, Equation (B.13),
where !
 has been re-parameterized to &.
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This mixture has the form of a three parameter Burr distribution, Equation (B.37).
(Johnson and Kotz, 1970a, p. 266)

Gompertz
The conditional survival function is a two parameter Gompertz, Equation (B.18),
where !� has been re-parameterized to &.
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Generalized Gompertz
The conditional survival function is a three parameter generalized Gompertz,
Equation (B.22), where !� has been re-parameterized to &.
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Generalization
The conditional survival function is chosen to have the form presented in Equation
(3.1).
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3.2.3 INVERSE GAUSSIAN

The following mixtures are all based on two parameter inverse Gaussian densities,
Equation (B.9), as mixing distribution. Each closed form mixture is obtained by
integrating out a re-parameterized one parameter inverse Gaussian distribution
(recursively closed for one parameter inverse Gaussian distribution where ���).
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Exponential
The conditional survival function is a one parameter exponential, Equation (B.6),
resulting in a inverse Gaussian Laplace transform.
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Where � �
�

����2�� and � � ��
� with Jacobian d& � �

� d�.

Weibull
The conditional survival function is a two parameter Weibull, Equation (B.13),
where !
 has been re-parameterized to &.
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Gompertz
The conditional survival function is a two parameter Gompertz, Equation (B.18),
where !� has been re-parameterized to &.
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Where � �
�

� ���2e���, � � ��
� with Jacobian d& � �

� d�.

Generalized Gompertz
The conditional survival function is a three parameter generalized Gompertz,
Equation (B.22), where !� has been re-parameterized to &.
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Where � �
�

� ���2e����, � � ��
� with Jacobian d& � �

� d�.

Generalization
The conditional survival function is chosen to have the form presented in Equation
(3.1).
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Where � �
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� ���2������, and � � ��
� with Jacobian d& � �

� d�.

3.2.4 GENERALIZED INVERSE GAUSSIAN

The following mixtures are all based on three parameter generalized inverse Gaus-
sian densities, Equation (B.10), as mixing distribution. Each closed form mixture
is obtained by integrating out a re-parameterized three parameter generalized in-
verse Gaussian distribution (recursively closed).

Exponential
The conditional survival function is a one parameter exponential, Equation (B.6),
resulting in a generalized inverse Gaussian Laplace transform.
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Weibull
The conditional survival function is a two parameter Weibull, Equation (B.13),
where !
 has been re-parameterized to &.
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Gompertz
The conditional survival function is a two parameter Gompertz, Equation (B.18),
where !� has been re-parameterized to &.
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Generalized Gompertz
The conditional survival function is a three parameter generalized Gompertz,
Equation (B.22), where !� has been re-parameterized to &.
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Generalization
The conditional survival function is chosen to have the form presented in Equation
(3.1).
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3.3 Densities

The distributions obtained in this section are mixture densities resulting from
Equation (2.1). A generalization is obtained if the argument � of the conditional
Weibull density is replaced as by ����, an arbitrary function of �. Note that this
function ���� must therefore be a strictly increasing transformation of � in order
not to affect the range of the mixture density. The conditional densities will then
be of form

.&����������1e������� (3.2)

.&�����������1e��
������

where ���� defines the distribution and �����
�� � ���� is the corresponding Jaco-

bian. For instance, the Weibull, Gompertz, and generalized Gompertz distribu-
tions are obtained when ���� is respectively chosen to be �, e�, and e�

�
.

3.3.1 GAUSSIAN

The following mixtures are all based on two parameter Gaussian densities, Equa-
tion (B.41), as mixing distribution. Each closed form mixture is obtained by inte-
grating out a re-parameterized two parameter Gaussian distribution (closed under
sampling).

Gaussian
The conditional density is a two parameter Gaussian, Equation (B.41).
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The resulting mixture has the form of a two parameter Gaussian density, Equation
(B.41).
(Johnson and Kotz, 1970a, pp. 87–88)

3.3.2 EXPONENTIAL

The following mixtures are all based on one parameter exponential densities,
Equation (B.5), as mixing distribution. Each closed form mixture is obtained
by integrating out a re-parameterized two parameter gamma distribution, Equa-
tion (B.8). Note that in the case of an exponential, Gumbel, or general type of
density presented in Equation (3.2), the shape parameter # is fixed at two.

Poisson
The conditional density is a Poisson, Equation (B.45).
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Gamma
The conditional density is a two parameter gamma, Equation (B.8).
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Exponential
The conditional density is a one parameter exponential, Equation (B.5), resulting
in the mixture density corresponding to an exponential Laplace transform.

�m��� �

� ∞

0
&e����e���d&

�
� ∞

0
�&e�������d&

�

� ∞

0

�

�����2 �����2&e�������d&

�
�

�����2

Generalization
The conditional density is chosen to have the form presented in Equation (3.2).
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Gumbel
The conditional density is a two parameter Gumbel, Equation (B.15), where the
location is re-parameterized as #�� ln�&�� and the scale is set equal to �.
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When � � �, the resulting mixture has the form of a two parameter logistic den-
sity, Equation (B.26).
(Johnson and Kotz, 1970b, p. 3)

3.3.3 GAMMA

The following mixtures are all based on two parameter gamma densities, Equa-
tion (B.8), as mixing distribution. Each closed form mixture is obtained by inte-
grating out a re-parameterized two parameter gamma distribution (closed under
sampling).

Gaussian
The conditional density is a two parameter Gaussian, Equation (B.41).
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(Johnson and Kotz, 1970a, p. 88)
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Poisson
The conditional density is a Poisson, Equation (B.45).
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The resulting mixture has the form of a two parameter negative binomial distribu-
tion, Equation (B.48).
(Johnson and Kotz, 1969, pp. 124–125)

Gamma
The conditional density is a two parameter gamma, Equation (B.8).
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The resulting mixture has the form of a two parameter beta distribution, Equation
(B.34), where � is transformed by �

��� with Jacobian �
�����2

.
(Johnson and Kotz, 1970a, p. 195)

Exponential
The conditional density is a one parameter exponential, Equation (B.5), resulting
in the mixture density corresponding to a gamma Laplace transform.

�m��� �

� ∞

0
&e���

�
&
�1e���

Γ�#�
d&

�
� ∞

0

�
&
e�������

Γ�#�
d&

�

� ∞

0

#�


�����
�1

�����
�1&
e�������

Γ�#�1�
d&



3.3. DENSITIES 47

�
#�


�����
�1

The resulting mixture has the form of a two parameter Pareto density, Equation
(B.23).
(Johnson and Kotz, 1970a, pp. 233–234; Cox and Oakes, 1984, pp. 19–20)

Generalization
The conditional density is chosen to have the form presented in Equation (3.2).
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When the conditional density is chosen to be a two parameter Weibull, Equation
(B.12), the resulting mixture has the form of a three parameter Burr density, Equa-
tion (B.35).
(Johnson and Kotz, 1970a, p. 266)

Gumbel
The conditional density is a two parameter Gumbel, Equation (B.15), where the
location is re-parameterized as #�� ln�&�� and the scale is set equal to �.

�m��� �

� ∞

0
&e�


��
� ���e

� 
��
� ��&��1e���

Γ���
d&

�

� ∞

0

��e�

��
� &�e

��
�
���e

�
��
�

�
Γ���

d&

�

� ∞

0

���e�

��
��

���e�

��
�

���1

�
���e�


��
�

���1
&�e

��
�
���e

�
��
�

�

Γ���1�
d&

�
���e�


��
��

���e�

��
�

���1

The resulting mixture has the form of a four parameter generalized logistic den-
sity, Equation (B.30).
(Johnson and Kotz, 1970a, p. 289; Johnson and Kotz, 1970b, p. 17 [corrected])
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Laplace
The conditional density is a two parameter Laplace, Equation (B.39).
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(Johnson and Kotz, 1970b, p. 32)

Simplex
The conditional density is a two parameter simplex, Equation (B.40), where & �
1
 2 .
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Lognormal
The conditional density is a three parameter lognormal, Equation (B.44), where
& � 1

 2 .

�m��� �

� ∞

0

�
&e�

�
2 �ln���!����2

��� !�
�

2"

�
&
�1e���

Γ�#�
d&



3.3. DENSITIES 49

�

� ∞

0

�
&
�
1
2 e
��
�
��

�ln�
������2
2


��� !�

�
2"Γ�#�

d&

�

� ∞

0

Γ�#� 1
2 ��




Γ�#���� !�
�

2"
�
�� �ln���!����2

2

	
� 1
2

�
�� �ln���!����2

2

	
� 1
2
&
�

1
2 e
��
�
��

�ln�
������2
2



Γ�#� 1
2�

d&

�
Γ�#� 1

2��



Γ�#���� !�
�

2"
�
�� �ln���!����2

2

	
� 1
2

�
�2��


B
�
#� 1

2

�
��� !� �2���ln��� !����2�
�

1
2

3.3.4 INVERSE GAUSSIAN

The following mixtures are all based on two parameter inverse Gaussian densities,
Equation (B.9), as mixing distribution. When combined with a gamma, the closed
form mixture is obtained by integrating out a re-parameterized three parameter
generalized inverse Gaussian distribution. On the other hand when combined
with an exponential density, a density of the form presented in Equation (3.2), a
Gumbel, or Laplace density, the closed form mixture is obtained by integrating
out a re-parameterized one parameter random walk distribution, Equation (B.11).

Gamma
The conditional density is a two parameter gamma, Equation (B.8).
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Exponential
The conditional density is a one parameter exponential, Equation (B.5), resulting
in the mixture density corresponding to an inverse Gaussian Laplace transform.
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Where � �
�

����2�� and � � ��
� with Jacobian d& � �

� d�.

Generalization
The conditional density is chosen to have the form presented in Equation (3.2).
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� d�.

Gumbel
The conditional density is a two parameter Gumbel, Equation (B.15), where the
location is re-parameterized as #�� ln�&�� and the scale is set equal to �.
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Laplace
The conditional density is a two parameter Laplace, Equation (B.39).
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3.3.5 GENERALIZED INVERSE GAUSSIAN

The following mixtures are all based on three parameter generalized inverse Gaus-
sian densities, Equation (B.10), as mixing distribution. Each closed form mixture
is obtained by integrating out a re-parameterized three parameter generalized in-
verse Gaussian distribution (closed under sampling).

Poisson
The conditional density is a Poisson, Equation (B.45).
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Gamma
The conditional density is a two parameter gamma, Equation (B.8).
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Exponential
The conditional density is a one parameter exponential, Equation (B.5), resulting
in the mixture density corresponding to an generalized inverse Gaussian Laplace
transform.
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Generalization
The conditional density is chosen to have the form presented in Equation (3.2).
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Gumbel
The conditional density is a two parameter Gumbel, Equation (B.15), where the
location is re-parameterized as #�� ln�&�� and the scale is set equal to �.
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Laplace
The conditional density is a two parameter Laplace, Equation (B.39).
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3.4 Further reading





4
Multiple response & cluster models

In this chapter, the multivariate models introduced are based on the Archimedean
copulas and multivariate Laplace transforms described in Subsection 2.2.2. Sec-
tion 4.1 describes the method used to take the appropriate differences of a multi-
variate cdf in order to obtain the multivariate probability mass function.

As a first approach, the method to obtain the copula corresponding to known
multivariate distributions is discussed in Section 4.2. Unfortunately, this approach
is limited as only few multivariate distributions are available and certain of these
are based on the same multivariate dependence structure (copula).

From Equations (2.21) and (2.24), we see that these Archimedean copulas are
permutation symmetric in their margins. This corresponds to a frailty model in
a survival context. Although exchangeability can be very useful, for example in
the case of clustered data, methods of combining Archimedean (survival) copulas
together will be discussed in Section 4.3,in order to obtain more specific types
of dependencies. For instance, this will allow introduction of features such as
asymmetries among margins or higher concordance among certain margins than
others which can be useful to model multiple response data.

At the end of Subsection 4.3.5, these techniques are adapted to induce differ-
ent types of structured dependencies required in the case of longitudinal data. But
this field will only be briefly discussed because Chapter 5, dedicated to longitudi-
nal data models, will cover more extensively these types of responses.

4.1 Probabilities in � dimensions

Because multivariate cdfs are not linear in their parameters, numerical optimiza-
tion will be used to obtain (simultaneously) maximum likelihood estimates of the
dependence parameters as well as the (nonlinear) regression parameters in each
margins. Obviously for this, the multivariate likelihood must be constructed. This
will be illustrated for the special case where the multivariate cdf is a copula.

Recall from Theorem 2.14 and Corollary 2.15 that (survival) copulas are just
dependency structures linking the margins together. Hence, a specific set of uni-
variate cdfs must be chosen for the margins in order to define a multivariate cdf.
Because the responses under study are nominal or ordinal, the margins are chosen
as univariate cdfs corresponding to one of the parametrizations mentioned in Sub-
sections 1.3.1 to 1.3.6. But for ordinal data, the joint probabilities are needed for
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Fig. 4.1. The cumulative probabilities (���	� ) and probabilities (�	� ) for binary margin �
corresponding to an underlying continuous variable �� with cut point ��1.

the multivariate likelihood, not the joint cumulative probabilities. This requires
the multivariate probability mass function which can be obtained by taking the
appropriate differences of the multivariate cdf.

For simplicity, a bivariate copula with binary margins will first be considered.
The cumulative probabilities (��		 ) and probabilities ("		 ) are shown in Figure
4.1 for one of the two margins. Note that � ��		�1 is the cumulative probability of
margin � (� � 1�2) observed in category � � (�� � 0�1), so that ��0 is equal to zero
whereas ��2 is equal to one.

In some cases, it is reasonable to assume that the nominal or ordinal responses
observed are the result of the discretization of a continuous multivariate family
	M 	 F �	1� $ $ $ �	��. In other words, the responses are following an underlying
continuous variable or latent variable 
  	M. Sometimes, it is also reasonable
further to assume that each of the univariate margins is as well following a latent
variable 0�  	� . This latent variable 0� will then have cut points #��		�1 for
�� � 0� $ $ $ �����2� where �� denotes the number of observable categories.

The bivariate cumulative probabilities are shown in Figure 4.2a. Note that
there are four joint cumulative probabilities because each margin has two possible
outcomes. These are �B��1	1 ��2	2�, �B��1	1 �1� � �1	1 , �B�1��2	2� ��2	2 , and
�B�1�1� � 1. Recall from Definition 2.8 that �B��1	1 �0� � �B�0��2	2� � 0.

Now, the bivariate probabilities can be obtained by taking the appropriate dif-
ferences. It follows from Figure 4.2b that the four joint probabilities are

Pr��1 � 0��2 � 0� � �B��1	1 ��2	2���B��1	1 �0���B�0��2	2���B�0�0�

� "00

Pr��1 � 0��2 � 1� � �B��1	1 �1���B�0�1���B��1	1 ��2	2���B�0��2	2�

� �1	1 �"00

� "01

Pr��1 � 1��2 � 0� � �B�1��2	2���B�1�0���B��1	1 ��2	2���B��1	1 �0�

� �2	2 �"00

� "10

Pr��1 � 1��2 � 1� � �B�1�1���B�1��2	2���B��1	1 �1���B��1	1 ��2	2�

� 1��2	2 ��1	1 �"00

� "11
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a) Cumulutative probabilities
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b) Probabilities
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Fig. 4.2. The joint cumulative probabilities (a) and joint probabilities (b) of a bivariate
copula with binary margins.

Extension to more than two categories is straightforward because the appropriate
differences always have the same form in the bivariate case.

Pr��1 � �1��2 � �2� � �B��1�	1�1��2�	2�1���B��1�	1�1��2�	2�

��B��1�	1 ��2�	2�1���B��1�	1 ��2�	2�

The bivariate probability mass function for �� categories can be written as

Pr��1 � �1��2 � �2� �
	1�1

∑
�1�	1

	2�1

∑
�2�	2

��1�2�∑2
��1�	������B��1��1 ��2��2�

where �� � 0� $ $ $ �����1� for � � 1�2.
Finally, the multivariate probability mass function is

Pr��1 � �1� $ $ $ ��� � ��� �
	1�1

∑
�1�	1

$ $ $
	��1

∑
���	�

��1���∑�
��1�	������M��1��1 � $ $ $ �������

where the number of differences has been adapted accordingly to the dimension
of the copula.

As mentioned earlier, this same procedure works for any multivariate cdf, not
just copulas. In the case of multivariate survival functions, the technique must
slightly be adapted. Indeed, differences must in such a case be taken between
a given category and a combination of higher ones (no longer a combination of
lower categories).
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4.2 Remapping margins of multivariate distributions

The first approach to obtain flexible families of multivariate distributions is to ex-
tend already existing multivariate distributions. A method found in the literature
consists in remapping the univariate marginal distributions of a known multivari-
ate distribution.

This can be achieved using Corollary 2.15.

1	M��� � 	M

�
	�1

� �	1��1�
�

� $ $ $ �	�1
� �	�����

��
� �M

� �	1��1�� $ $ $ � �	�����
�

(4.1)

A new multivariate distribution 1	M is obtained from a known multivariate distri-
bution 	M by inserting remapped margins of the form

	�1
� �	 ���

�
where 	�1 is the quantile function corresponding to the univariate case of 	 M

and �	 is an arbitrarily chosen cdf different from 	 .
By this technique, new multivariate distributions are generated through the in-

termediate step of copulas. This implies that the marginal univariate distributions
	 chosen defines the resulting multivariate distribution. Hence, many general
families of multivariate distributions can be produced where the family is deter-
mined by the copula or the known multivariate distribution with uniformly �0�1�
standardized margins.

In situations where it is reasonable to assume that a nominal or ordinal re-
sponse is following an underlying continuous variable (see Section 4.1 and Sub-
section 5.3.1), the multivariate density 2M corresponding to a (survival) copula
�M will be of interest.

Note that the assumption of an underlying continuous variable will generally
not be made unless clearly stated. Therefore, the probabilities will usually be ob-
tained from the probability mass function which takes the appropriate differences
of the (survival) copula as is done in Section 4.1. But in the particular case where
this assumption is made, the multivariate density — obtained by taking deriva-
tives of the (survival) copula with respect to each of the univariate margins — is
used.

From Equation (4.1), the multivariate density 1�M constructed by remapping
the margins of a multivariate distribution has as general form

1�M��� � 2M

� �	1��1�� $ $ $ � �	�����
�

�1��1� $ $ $ ������

where 2M must be multiplied by the appropriate Jacobians corresponding to the
transformations applied to its respective margins (Joe, 1997, p. 299; Song, 2000).
As the transformation applied to margin � of 2M is a univariate cdf 	�, the Jacobian
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is the corresponding univariate density � �. Note that care must be taken if starting
out from a multivariate density because the joint function corresponding to the
copula must also include the Jacobians of the quantile transformations.

A first example would be to consider the Gaussian copula obtained from
the multivariate Gaussian distribution, Equation (B.58), and univariate Gaussian
quantile functions, the inverse of the standardized Gaussian function given in
equation (B.4). The one-parameter family of copulas obtained in the bivariate
case is discussed by Joe (1997, pp. 140–141). The general multivariate case is
described by Song (2000) where the full covariance matrix of dependence param-
eters is available. This paper mainly discusses the case where members of the
exponential dispersion family are inserted into the Gaussian copula generating
multivariate dispersion distributions.

Multivariate elliptically-contoured distributions could also be used to generate
families of copulas. The two most well known are the multivariate power expo-
nential and the multivariate Student t distributions respectively given in Equations
(B.56) and (B.57).

The multivariate power exponential distribution was obtained by Gómez et
al. (1998) as a generalization of the univariate power exponential distribution. It
includes the multivariate Gaussian, the multivariate Laplace, and the multivariate
uniform distributions as special cases. A full covariance matrix of dependence
parameters is available although care must be taken if independence is wanted
among certain observations (see Lindsey, 1999, pp. 54–55 for further details).

The multivariate Student t distribution includes the multivariate Cauchy and
multivariate Gaussian distributions as special cases. Hence, a full covariance ma-
trix of dependence parameters is also available.

Other multivariate distributions which will be of interest are the multivariate
Burr, multivariate logistic, multivariate generalized logistic, multivariate Pareto,
and multivariate exponential distributions respectively given in Equations (B.49),
(B.50), (B.52), (B.54), and (B.55). Note that these multivariate distribution have
only one dependence parameter but that the multivariate cdf or survival function
has a closed form.

Finally, multivariate distributions obtained dynamically can also be used in
this context. Indeed, Jones (1993) shows how the multivariate Gaussian distribu-
tion, Equation (B.58), can be built through dynamically updated equations. Thus,
the multivariate dynamic distributions provided in Chapter 5 will also be suitable
for margin remapping.

4.3 Archimedean copulas

From the theory presented in Subsection 2.2.2, many bivariate and multivariate
Archimedean (survival) copulas can easily be obtained from strictly decreasing
and convex functions on �0�1�. But a parameter measuring the strength of depen-
dence among the margins is still missing.

Two straightforward methods exist for adding a dependence parameter to
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these generators creating a large class of one-parameter families of Archimedean
(survival) copulas.
THEOREM 4.1 [Nelsen, 1999, p. 114 (proof)]
Let ���� be in Ω the set of continuous strictly decreasing convex functions �

from �0�1� to �0�∞� with ��1� � 0. And let # and � be positive real numbers.
Then let

�
�1��� � ���
� and �1����� � ������� (4.2)

(1) If � � 1 then �1����� is an element of Ω.
(2) If # is in �0�1� then �
�1��� is an element of Ω.

(3) If ���� is twice differentiable and ��
�
��� is nondecreasing on �0�1� then

�
�1��� is an element of Ω for all # ' 0.

The one-parameter Archimedean (survival) copulas obtained in this way will re-
spectively be referred to as alpha-generated and beta-generated families. �

Appendix C.1 contains a list of one-parameter families of Archimedean (sur-
vival) copulas. A total of 22 families are presented in their bivariate and mul-
tivariate form, along with their respective generator(s) or Laplace transform(s),
parameter range, boundary and independence cases, and plots of a bivariate de-
pendency for certain choices of margins.

An interesting property can be seen for alpha-generated and beta-generated
families of Archimedean (survival) copulas.
THEOREM 4.2 [Nelsen, 1999, p. 115 (proof)]
Let ���� be in Ω and let �
�1��� and �1����� be defined as in Theorem 4.1. Fur-
ther assume that �
�1��� and �1����� respectively generate copulas �
�1��� and
�1����� where � � 1 and # is an element of a subset of �0�∞� which includes
�0�1�.

(1) If ���� is continuously differentiable and �
�
�1� �� 0 then

�0�1��� � lim

�0�

�
�1��� �
�

∏
��1

��

(2)

�1∞��� � lim
��∞

�1����� � F�

Hence, all the alpha-generated families include independence as a limiting case,
while all the beta-generated families include the Fréchet upper bound as a limiting
case. This can indeed be seen for the relevant Archimedean (survival) copulas
presented in Appendix C.1. �

In the bivariate case, the parameter range can sometimes be extended to in-
clude a negative dependence. Such an extension is known for two families of
bivariate Archimedean (survival) copulas of Appendix C.1 and can be found in
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Appendix C.4 with plots of a negative bivariate dependency for certain choices of
margins.

Hence, this section will now concentrate on extensions introducing additional
parameters to Archimedean (survival) copulas and specific parametrizations of
these to model certain types of dependent observations.

4.3.1 ADDITIONAL PROPERTIES

The following series of definitions are generally used to obtain specific properties
or characteristics of (bivariate) Archimedean (survival) copulas. Certain of the
properties deduced will be of particular interest in the following subsections in
order to obtain proper higher order dependency models.

As a starting point, we shall look at three special cases of Archimedean (sur-
vival) copulas. All three, respectively the Fréchet lower bound (F�), indepen-
dence, and the Fréchet upper bound (F� ), are functions obtained when the appro-
priate one-sided limit of the dependence parameter approaches an end point of its
interval (see Theorem 2.16 for the Fréchet bounds).

(1) THEOREM 4.3 [Joe, 1997, pp. 61–62 (proof);
Nelsen, 1999, p. 42 (proof from Sklar)]

A necessary and sufficient condition for the F� to be a multivariate cdf (or
survival function) is that either
� ∑� �� � 1 whenever 0 , �� , 1 or
� ∑� �� ���1 whenever 0 , �� , 1,

for � � 1� $ $ $ ��. Hence depending on �, there exists an Archimedean (sur-
vival) copula �M��� equal to the F�, but in general the F� is never a copula
for � ' 2. �

(2) DEFINITION 4.4 [Nelsen, 1999, pp. 9, 42, and 112]
An important Archimedean (survival) copula occurs at independence and

will be called the product copula P . �

(3) DEFINITION 4.5 [Joe, 1997, p. 58 (proof); Nelsen, 1999, pp. 9, 42, and 112]
The F� is a multivariate cdf or survival function and therefore a (survival)
copula but not Archimedean. �

Figure 4.3 shows the contour plots of the bivariate cumulative probabilities corre-
sponding to the Fréchet lower bound, independence, and the Fréchet upper bound.

Now, methods to obtain the boundaries and independence are required. The
following two techniques can generally be used, although sometimes l’Hôpital’s
rule (Salas and Hille, 1990, pp. 591 and 597) might also be required.

(1) THEOREM 4.6 [Genest and MacKay, 1986a; Nelsen, 1999, p. 112 (proof)]
Let �M��;!� for ! 	Θ be a family of Archimedean (survival) copulas with
differentiable generators �!��� in Ω. Then the limit of �M��;!� is equal to
the F� or independence if and only if there exists a function � in Ω such
that for all �1, �2 in �0�1�,
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Fig. 4.3. Contour plots of bivariate cumulative probabilities: a) the Fréchet lower bound,
b) independence, and c) the Fréchet upper bound.

lim
�!��1�

�
�
!��2�

�
���1�

�
�
��2�

which denotes the appropriate one-sided limit as ! approaches an endpoint
of the parameter interval Θ. �

(2) THEOREM 4.7 [Nelsen, 1999, p. 113 (proof)]
Let �M��;!� for ! 	Θ be a family of Archimedean (survival) copulas with
differentiable generators �!��� in Ω. Then the limit of �M��;!� is equal to
the F� if and only if for � in �0�1�,

lim
�!���

�
�
!���

� 0

which denotes the appropriate one-sided limit as ! approaches an endpoint
of the parameter interval Θ. �

We then introduce the concept of bivariate tail dependence which relates to
the amount of dependence in the upper or lower quadrant tail of a bivariate distri-
bution. This concept is relevant to dependence in extreme values (which depends
mainly on the tails). The definition will be given in terms of copulas due to in-
variance to increasing functions.
DEFINITION 4.8 [Joe, 1997, p. 33]
If a bivariate copula �B is such that

lim
"�1

1�2���B�����

1��
� &�

exists then �B has upper tail dependence if &� 	 �0�1� and none if &� � 0. Sim-
ilarly, if

lim
"�1

�B�����

�
� &�

exists then �B has lower tail dependence if &� 	 �0�1� and none if &� � 0. �
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Next, we consider two very specialized but interesting properties.

(1) THEOREM 4.9 [Frank, 1979 (proof); Genest and MacKay, 1986a;
Joe, 1997, pp. 140 and 143; Nelsen, 1999, pp. 31–33 and 107]

Radial or reflection symmetry is obtained if and only if

�B��1��2� � ��B��1��2�

where the survival copula ��B��1��2� has cdf margins. Hence, the copula
�B��1��2� or survival copula ��B��1��2� are symmetric with respect to the
line � � 1��. �

The Frank family (nÆ3 in Appendix C.1) is the only bivariate Archimedean
(survival) copula to have this property. Note that this property does not hold
for its permutation symmetric multivariate extension.

(2) DEFINITION 4.10 [Nelsen, 1999, pp. 12 and 96]
A family of (survival) copulas which includes the F�, the P , and the F� is
called comprehensive. �

Now, we move on to defining max-infinite and min-infinite divisibility. This
property will be most important in Subsection 4.3.5 to introduce higher order
dependencies.
DEFINITION 4.11 [Joe, 1997, p. 30]
For a univariate cdf 	 , all positive powers 	 � for . ' 0 are cdfs. This is not
always the case for multivariate cdfs. In general, for a multivariate cdf 	 M, 	 �

M is
a multivariate cdf for all .���1. If 	 �

M is a multivariate cdf for all . ' 0 then
	M is max-infinitely divisible. �

The equivalent relationships are also valid for a survival function 
 and a mul-
tivariate survival function 
M. However, if 
�

M is a multivariate survival function
for all . ' 0 then 
M is min-infinitely divisible (Joe, 1997, p. 30).
THEOREM 4.12 [Joe, 1997, pp. 9 and 101 (proof)]
If we define �M��� to be an Archimedean (survival) copula with Laplace trans-
form ���� then

� ��
M��� is max-infinitely divisible up to dimension � if � ln ������ 	 L�

and
� ��

M��� is max-infinitely divisible for all � if � ln ������ 	 L∞

where L is the class of functions 3 mapping �0�∞� to �0�∞� given that

� 3�0� � 0,
� 3�∞� � ∞,
� and the � partial derivatives of 3 have alternating signs

for � � 1�2 $ $ $ �∞.
Thus, this property holds for Archimedean (survival) copulas obtained with a
strict generator. �

Finally, we define concordance ordering respectively for the bivariate and the
multivariate cases.
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� DEFINITION 4.13 [Joe, 1997, p. 36]
Let 	 , �	 	F �	1�	2� where 	1 and 	2 are univariate cdfs. Then �	 is more
concordant than 	 , if

	 ��1��2�� �	 ��1��2� � �1��2 	 ��∞�∞�

The equivalent relationship exists for survival functions by replacing the
cdfs with survival functions. �

� In the multivariate case (� � 3), the orderings of cdfs and survival func-
tions are no longer equivalent. Therefore, there are various possible ver-
sions that could be considered as a multivariate dependence ordering.
DEFINITION 4.14 [Joe, 1997, pp. 37 and 39]
Let 	M, �	M 	 F �	1� $ $ $ �	�� where 	1, . . . , 	� are univariate cdfs. Then�	M is more concordant than 	M, if

	M���� �	M��� � � 	 R�

and


M���� �
M��� � � 	 R�

both hold.
Then bivariate concordance, when �	M is more concordant than 	M, implies
that for all 1� � , � ��

	B�������� �	B������� � �����

where 	B and �	B are the ����� bivariate margins. �

Note that by the term “concordance”, we mean that if �� �	 and� 	 then the
components of �� are more likely than those of � to take small values (or large
values) simultaneously.

Further properties for bivariate and multivariate dependence ordering can be
found in Joe (1997, pp. 38–39).

4.3.2 INSERTING MATCHING MIXTURE MARGINS

Before trying to extend the number of dependence parameters available, a method
to obtain simple forms of multivariate distributions from Archimedean (survival)
copulas will be considered. From the definition in Subsection 2.2.2, a (survival)
copula is a function describing the dependence structure among +�0�1� margins.
This implies that the margins must be chosen in a way such that they have their
range on �0�1�. Usually, univariate cdfs or survival functions are chosen.

In Section 2.1, Laplace transforms were found to be univariate mixture cdfs
or univariate mixture survival functions. In the univariate context, mixtures are
often used to introduce an additional parameter in order to model overdispersion.
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Hence when mixtures are inserted as margins of Archimedean (survival) cop-
ulas, the multivariate distributions obtained have as general form

�M ��1 ��1� � $ $ $ � �� ����� � �

�
�

∑
��1

��1 ��� �����

�
where �� and � are Laplace transforms respectively corresponding to the univari-
ate mixture margin � and the Archimedean (survival) copula.

If these Laplace transforms are all chosen to be the same with identical param-
eters, these Archimedean (survival) copulas reduce to the simpler general form

�M ��1 ��1� � $ $ $ � �� ����� � �

�
�

∑
��1

��

�

which at independence yields ∏�
��1 ����� a product of mixtures. This also works

with transformed univariate mixture margins, such as � � �� ln ��� �� or �� �� �����,
which have general form

�M ��1 �� ln �	 ��1��� � $ $ $ � �� �� ln �	 ������� � �

�
�

�

∑
��1

ln ��� �

�

�M ��1 �� ��1�� � $ $ $ � �� �� ������ � �

�
�

∑
��1

�����

�
These Archimedean (survival) copulas or multivariate distributions can also be
interpreted as multivariate Laplace transforms, see Equations (2.24) to (2.26) in
Subsection 2.2.3.

4.3.3 EXTENSION TO TWO-PARAMETER FAMILIES

Two-parameter families of Archimedean (survival) copulas can be generated in a
similar way to the one-parameter case. These can be obtained using generators
(Nelsen, 1999, pp. 115–116) given by

�
����� � �1�� Æ�
�1��� � �1�� ��
�1���� � ����
��� (4.3)

which are composites of Equations (4.2) where Æ represents a composition (Salas
and Hille, 1990, p. 32). An example is listed in Appendix C.2 (n Æ1).

Another method is to combine two Laplace transforms together to obtain a
two-parameter inverse generator.
THEOREM 4.15 [Joe, 1997, p. 374 (proof)]
If �Æ��� is a Laplace transform such that � ln��Æ���� 	 L∞ and �!��� is another
Laplace transform then

4Æ!��� � �! �� ln��Æ����� (4.4)

is a Laplace transform. �
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Seven examples of two-parameter families of Archimedean (survival) copulas
generated this way are shown in Appendix C.2.

Of course this method could be used, to some extent, recursively to build up
different types of dependencies.

Finally, two-parameter families of Archimedean (survival) copulas can also be
obtained from a simplification of the higher order dependence (survival) copulas
presented in Subsections 4.3.4 and 4.3.5.

4.3.4 MIXTURES OF ARCHIMEDEAN COPULAS

More general families of Archimedean (survival) copulas can be generated by
mixtures of powers. This method has already been applied in Equations (2.27) to
generate Archimedean (survival) copulas. Because powers of Archimedean (sur-
vival) copulas are multivariate (survival functions) cdfs (see Subsection 4.3.1),
these can in turn be used as part of mixtures of powers.
DEFINITION 4.16 [Joe, 1997, pp. 87–89 and 155–157]
A possible trivariate generalization of bivariate Archimedean (survival) copulas
is

	T�� ln �5� �� ln���1��� ln���2��� �� ln���3�� �
� ∞

0
5� �� ln���1��� ln���2�����3 d	1���

�

� ∞

0

� ∞

0
��
1 ��
2 d	2�#;�����3 d	1���

where: � 	2�#;�� is the distribution with Laplace transform 5��#�

� 5���� � e���
�1
Æ ������� � e����

�1
Æ Æ������ � 5����

Then by recursively applying Equations (2.27), the corresponding trivariate (sur-
vival) copula is

�T��1��2��3;Æ�!� � �Æ

�
��1
Æ Æ�!

�
��1
! ��1����1

! ��2�
�
���1

Æ ��3�
�

with intermediate step

�Æ

�� ln �5 �� ln���1��� ln���2������1
Æ ��3�

�
where the composition ��1Æ�	L∞ in order for �T��1��2��3;Æ�!� to be a trivari-
ate distribution. �

Notice that this method only produces (survival) copulas with at most ���1�
distinct dependencies which are no longer symmetric. But on the other hand, these
mixtures of Archimedean (survival) copulas have several desirable properties.

� PROPERTY 4.17 [Joe, 1997, p. 87]
All the bivariate margins of mixtures of Archimedean (survival) copulas
have the form of a bivariate Archimedean (survival) copula. �

� PROPERTY 4.18 [Joe, 1997, pp. 88 and 163]
Mixtures of Archimedean (survival) copulas simplify to Archimedean (sur-
vival) copulas when the same Laplace transform with the same dependence
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parameter is used for both the mixture and the Archimedean (survival) cop-
ula. �

� COROLLARY 4.19 [Joe, 1997, pp. 90 and 156 (proof)]
Let �Mi��� � ��

�
∑�
��1 ��1

� ����
�

where �� is a Laplace transform with de-

pendence parameter !� for � � 1�2. Suppose ��1
1 Æ�2 	 L∞ then �M2 is

more concordant than �M1. �

� COROLLARY 4.20 [Joe, 1997, pp. 101–102 (proof)]
If we define �M��� to be a partially symmetric (survival) copula with com-
positions ��1

� Æ�� 	 L� for sufficiently large �� (greater than or equal to
the number of terms in the argument of composition �) then � �

M��� is max-
infinitely divisible. �

Generalizations to higher dimensions can be obtained if at each level of nest-
ing of Laplace transforms (say �# within ��) the condition ��1

� Æ�# 	 L∞ is sat-
isfied in order for the result to be a multivariate distribution.
DEFINITION 4.21 [Joe, 1997, pp. 87–89 and 155–157]
In four dimensions, there are two possible nestings of Laplace transforms.

�F��1��2��3��4;!12�Æ�/� �

�$

�
��1
$ Æ�Æ

�
��1
Æ Æ �!12

�
��1
!12

��1�� ��1
!12

��2�
�
���1

Æ ��3�
�
���1

$ ��4�
�

�F��1��2��3��4;!12�!34�!� �

�!

�
��1
! Æ�!12

�
��1
!12

��1����1
!12

��2�
�
���1

! Æ �!34

�
��1
!34

��3�� ��1
!34

��4�
��

(4.5)

There is therefore no simple multivariate generalization, because in higher dimen-
sions there are many possible nestings. �

Hence, this method of introducing additional parameters yields (survival) cop-
ulas with partial symmetry which are for instance suitable to model clustered data.
Care must be taken because the clusters must be nested and cannot overlap (for
an overlapping structure see Subsection 4.3.5).

Clustering The general form given by Equation (4.5) appears to be the most
suitable for clustering.

As a first illustration, we shall consider the situation of a multicentre trial
where patients have been recruited in several clinics and several measurements
were collected during the same visit. Let there be 6 clinics denoted by � (� �
1� $ $ $ �6), �	 patients per clinic (� � 1� $ $ $ ��	), and ��	 observations per patient
(� � 1� $ $ $ ���	). Then �� and � must respectively be multivariate Laplace trans-
forms of dimensions ��	 and �	. This generates

�M��;�� � �

�
�

∑
��1

��1 Æ��

�
�	�

∑
��1

��1
� ����	�

��
(4.6)
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where �� and � respectively have dependence parameters ! � and !. These are
contained in the dependence parameter vector � of the (survival) copula. Notice
that for two clinics each containing two patients, Equation (4.5) is obtained.

Observations are exchangeable or permutable within a patient (� ��	 within
��), as are entire patients (�� within �). The parameter !� can be considered
as measuring the dependence between patient �’s observations or within patient
�, whereas the parameter ! can be considered as measuring the between patient
dependence (within clinics).

As a second illustration, consider the situation of a multicentre trial where
several different measurements are collected per patient at each point in time. Let
there be 6 clinics denoted by � (� � 1� $ $ $ �6), �	 patients per clinic (� � 1� $ $ $ ��	),
��	 different variables collected per patient (� � 1� $ $ $ ���	), and  ��	 measure-
ments over time per different variable collected for each patient (� � 1� $ $ $ �  ��	).
Then ��� , �� , and � must respectively be multivariate Laplace transforms of di-
mensions  ��	 , ��	, and �	. This generates

�M��;�� � �

�
�

∑
��1

��1 Æ��

�
�	�

∑
��1

��1
� Æ ���

�
��	�

∑
��1

��1
�� �����	�

���
(4.7)

where ��� , �� , and � respectively have dependence parameters ! �� , !� , and !.
These are contained in the dependence parameter vector � of the (survival) copula.

Measurements over time within each variable collected per patient are ex-
changeable or permutable (����	 within ��� , which is probably not a reasonable
assumption because of changes over time), so is each variable collected per pa-
tient (��� within ��), and entire patients (�� within �). The parameter !�� can
be considered as measuring the dependence between measurements over time of
variable � observed on patient �. The parameter ! � can be considered as mea-
suring the between variable dependence for patient �. And parameter ! can be
considered as measuring the between patient dependence.

Finally, it must be kept in mind that all Laplace transforms can be chosen to be
the same. This particular choice will only simplify to an Archimedean (survival)
copula if the dependence parameters at all levels become equal. The model will
then become permutation symmetric in all its arguments. Hence, such (survival)
copulas are suitable models for multi-level clustered data.

4.3.5 MIXTURES OF POWERS OF MAX-INFINITE DIVISIBLE DISTRIBUTIONS

Finally, families of (survival) copulas can be obtained with a dependence param-
eter for each bivariate margin as well as higher order dependencies. This is ob-
tained by further extending the definition of mixtures of powers to min-infinite
and max-infinite divisible distributions (Joe, 1997, pp. 30–31 and 98–101).

This extension is straightforward from the definition of a min-infinite or max-
infinite divisible distribution introduced in Subsection 4.3.1. Hence from Equa-
tions (2.27), we can obtain
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where 7���� and +���� are respectively min-infinite and max-infinite divisible
distributions for � � 1� $ $ $ �� (with ���).

Because Archimedean (survival) copulas and mixtures of these are all max-
infinite (min-infinite) divisible distributions, this can be used to introduce an ad-
ditional global dependence through the parameter of the Laplace transform �.
DEFINITION 4.22 [Joe, 1997, pp. 98–99]
Let 8� be +� ���� or 7� ���� and let 9�� �8��8�� be bivariate (survival) copulas that
are (min-infinite) max-infinite divisible for 1� � , � ��.
Then consider the mixture
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which has univariate margins of the form 	 � � �
�
� ln����

&�

�
where � �
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$����1 .

This mixture will be a (survival) copula if 8� is chosen to be e�&���1�"�� for � �
1� $ $ $ ��. Inserting these yields the (survival) copula
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where the parameter ! of the Laplace transform � can be seen as a global de-
pendence measuring the minimal level or common dependence. The parameter
Æ�� of each bivariate (survival) copula 9 �� �8��8�� can be considered to model the
pairwise dependence beyond this global dependence. These are contained in the
dependence parameter vector Æ of the (survival) copula. On the other hand, the / �

parameters contained in the vector � lead to bivariate and multivariate asymmetry.
�

It is important to notice the difference with mixtures of Archimedean (sur-
vival) copulas introduced in Subsection 4.3.4 where the (survival) copulas could
not overlap.

Hence from Definition 4.22, we are now able to generate families of (survival)
copulas with 1� ����1�

2 dependencies and � asymmetry parameters. But two
useful simplifications will still be considered.

(1) The asymmetries can be removed by setting all / � to zero.
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(2) Another method of generating two-parameter families of (survival) copulas
(with and without asymmetries) for Subsection 4.3.3 is to consider the case
where this technique is applied to one Archimedean (survival) copula (Joe,
1997, pp. 103 and 149).
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It can be shown that the inverse generators for the (survival) copulas without
asymmetries are obtained by combining the Laplace transform � !��� with
the one of the Archimedean (survival) copula 9, say � Æ���. This combin-
ing method was introduced in Equation (4.4) and produces two-parameter
Laplace transforms of the form 4Æ!��� � �! �� ln��Æ�����.
In this special case where no overlapping occurs, we then obtain (survival)
copulas

�M��;Æ�!� � 4Æ!

�
�

∑
��1

4�1
Æ! ����

�

which are also Archimedean (Joe, 1997, p. 150). Note that combining two
identical Laplace transforms � as well as keeping both parameters identical
(!) yields a one-parameter Laplace transform 4! but does not reduce back
to the Laplace transform �!.

Mixtures of max-infinitely (min-infinite) divisible distributions are themselves
max-infinitely (min-infinite) divisible.
COROLLARY 4.23 [Joe, 1997, p. 102 (proof)]
In general, consider

	M��� � ��� ln�9�����

where 9��� is a max-infinite (min-infinite) divisible distribution and� ln������	
L�. Then 	M��� is also max-infinitely (min-infinite) divisible. �

Several interesting modifications can still be brought to Definition 4.22 either
to obtain full dependencies or to obtain a specific type of dependence among the
margins. Certain interesting possibilities will now be considered in the remaining
subsection.
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Clustering The general form presented in Equations (4.11) can be interpreted
as a model with one level of nesting. To allow for several clusters, we obtain from
Equations (4.8)
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where there are � clusters each containing �� subjects.
Notice that these (survival) copulas are never Archimedean as all dependen-

cies at the bivariate level are not available. Indeed, the different clusters are inde-
pendent one from another. Therefore when the outer parameter (! in this case) is
set to independence, these (survival) copulas reduce to a function of a product of
one-parameter Archimedean (survival) copulas.

Hence, this (survival) copula is different from the one of Equation (4.6) and
can therefore be considered as an alternative way to model clustered data.

Higher levels of nesting can also be achieved as such (survival) copulas are
themselves max-infinitely (min-infinite) divisible. This recursive method will be
covered in the next subsection.

4.3.6 FULL UNSTRUCTURED DEPENDENCIES

The method just described in Subsection 4.3.5 can be generalized to combine
(survival) copulas in an overlapping way. In the case where trivariate (survival)
copulas 9��	 are combined without asymmetry parameters, this extends to
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where the general correction factor due to overlapping can be obtained by C �
���1�!

��1�!����! with � representing the size of the overlapping (survival) copula

(for � � �). Thus in the present case, we have C � �2�3��2
2 . The parameter

vectors Æ and � respectively contain the bivariate and trivariate dependencies, and
! is a global dependence measuring the minimum level or common dependence.

It is now possible to use these mixtures of min-infinite or max-infinite divis-
ible distributions recursively to obtain (survival) copulas with full unstructured
dependencies. This produces (survival) copulas with 2�� ��� 1� dependence
parameters.

Of course, the Laplace transforms involved can all be chosen to be identical in
order to have all dependencies of the same type. Note that under no circumstances
will these (survival) copulas collapse back to an Archimedean form.

For instance, a trivariate (survival) copula with all three bivariate dependen-
cies and its trivariate dependency is obtained when the (survival) copula of Equa-
tion (4.9) has three margins. When the same Laplace transform is used, these
have the form
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where Æ is the trivariate dependence parameter.
A four dimension (survival) copula with all six bivariate dependencies, four

trivariate dependencies, and its 4-variate dependency is obtained when the (sur-
vival) copula of Equation (4.13) has four margins and the trivariate (survival)
copulas 9��	 have the form of the (survival) copula of Equation (4.9). When the
same Laplace transform is used, these have as general form
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where the vector � contains four univariate marginal distributions, the vector Æ
contains all dependence parameters including Æ (the 4 way dependency), and 8 � is
of the form

e
� 1

2�
�1
Æ�	�

�
e�

1
3�

�1
Æ ����

�

for  � �����.
Special parametrizations of (survival) copulas with full unstructured depen-

dencies will now be discussed.

One dependency per level As a first simplification, we shall consider the case
where all dependencies at each level are set to be equal. This results in a (survival)
copula which has in total ��� 1� dependency parameters (one bivariate, one
trivariate, . . . ).

The trivariate (survival) copula presented in Equation (4.14) becomes
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with two parameters Æ and ! respectively measuring a common bivariate depen-
dence and the trivariate dependence.
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Clustering Once again, models for clustered data can be generated. As we
now have all dependencies at all levels available, multiple levels of nestings are
obtained by setting the appropriate parameters equal. This can be achieved in two
ways, with and without overlapping dependencies.

In the case of no overlapping, a (survival) copula with two levels of nesting,
comparable to one presented in Equation (4.7), is obtained. This (survival) copula
has as general form
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for � � 1� $ $ $ �  ��	 . The dependence parameter vector � contains !, ! � , and !��
respectively corresponding to the Laplace transforms �, � � , and (survival) cop-
ulas 9�� . As in Equation (4.7), there are three levels of nesting among 6 clin-
ics (� � 1� $ $ $ �6): �	 clusters corresponding to the number of patients per clinic
(� � 1� $ $ $ ��	), ��	 clusters corresponding to the number of different variables
collected per patient (�� 1� $ $ $ ���	), and  ��	 clusters corresponding to the num-
ber of measurements over time per different variable collected for each patient
(� � 1� $ $ $ �  ��	).

Notice that when the parameter of the higher level of nesting (! in this case)
is set to independence, this (survival) copula does not reduce to Equation (4.12)
although this corresponds to a logical two level nesting extension. Thus, the (sur-
vival) copulas presented in Equations (4.6) and (4.12) would be alternatives to
consider if one of the two levels of nesting disappeared. On the other hand, the
case of multiple levels of nesting with overlap can be obtained in many ways.

As an illustration, consider the situation of a continent wide multicentre trial.
Then suppose the same dependence is expected among all different variables col-
lected per patient but still allowing for within and between clinic dependencies.
Hence, let there be 6 countries denoted by � (� � 1� $ $ $ �6), �	 clinics per country
(� � 1� $ $ $ ��	), ��	 patients per clinic (� � 1� $ $ $ ���	), and  different variables
collected per patient. This requires the (survival) copula

�M��;Æ��� � �

�
�

�

∑
��1

ln

�
��

�
� ∑

1�#%��(
ln �9#� �8#�8���

���
where : is the total number of observations

�
 �∑	 ∑� ��	

�
and 8� is of the

form

e�
��1
	 ����
��1

for �� 1� ; , ��: . The parameter Æ captures the pairwise dependence among
all different variables collected per patient regardless of the patient, clinic and
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country through the bivariate (survival) copula 9 #�. On the other hand, the de-
pendence parameter vector � contains !� and ! respectively measuring the depen-
dence within and between clinics through the Laplace transforms � � and �.

An alternative method would be to consider setting the appropriate parame-
ters equal in (survival) copulas with full dependencies but this becomes rapidly
unfeasible. Indeed, the dimension of a (survival) copula with full unstructured
dependencies would have to correspond to the total number of observations (: ).
In other words, this (survival) copula would have : Laplace transforms where
most of the dependence parameters would be set to independence.

Auto-regression and Markov chains This remaining type of dependence is
useful in cases where there is a specific ordering, and perhaps a certain measure
of distance, among the margins (such as for repeated measurements over time).
The dependencies will then take some of the previous history of a subject into
account as a decaying process (over time).

A first-order auto-regression dependence in continuous time consists in hav-
ing only one bivariate dependency but where the dependence among margins is
kept proportional to some measure of distance separating them. This measure of
distance, say Δ, is usually chosen as ���� ��� the time difference between consid-
ered margins. This can be reduce to ��� �� the difference between margin indices
under a balanced design yielding a first-order stationary Markov chain. Hence,
the strength of the bivariate dependencies is adjusted by setting the dependence

parameter to <Δ, e�
Δ
� , or e

� Δ2

�2 respectively called power, exponential and Gaus-
sian structures.

Such a model could be obtained in several ways, but we shall just consider the
case resulting from Equation (4.10). This yields a (survival) copula with general
form
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where the parameter of the Laplace transform � is set to independence, the bivari-
ate dependencies have a power structure, � � is the observation time of margin �,
and the time distance Δ is set to ��� � ��� the time lag between margins � and �.

4.4 Further reading



5
Longitudinal models

This chapter will introduce multivariate models mainly for dependencies among
time ordered observations, although in certain special cases the dependence no
longer takes the ordering into account and is then also suitable for multiple re-
sponses or clustered data. Such models will be produced as products of condi-
tional distributions, as described in Subsection 2.2.1, where each conditional dis-
tribution corresponds to a time point (or margin) given the previous one(s). Two
different methods are considered to introduce dependencies among observations
of the same subject.

The first approach consists in re-parameterizing the conditional distributions.
This is performed by allowing some parameters to be a function of responses at
the previous time points, creating sets of updating equations. The general ap-
proach is outlined in Section 5.1. In Section 5.2, the procedure for continuous
variables is presented. The conditional distributions are all chosen to be differ-
ent parametrizations of the same distribution yielding one general set of updating
equations. Hence, different types of dependencies can be introduced through spe-
cific systems of updating equations. In Section 5.3, this is adapted for ordinal
data.

The second methods allows the subjects to switch over time between a pre-
defined number of different underlying or hidden states. All possible switches
between hidden states at all available time points must then be considered. This
is done by summing up the product of conditional distributions corresponding to
each possible combination of states by time points together. A dependence among
observations of the same subject is induced through a transition matrix contain-
ing the probabilities of changing from one hidden state to another. Note that the
summation process just described expands exponentially with respect to the num-
ber of time points available and hidden states considered. Hence, the summation
process must be ordered in a particular way to be computationally feasible; this is
described in Section 5.4.

The models just described are fundamentally different from the marginal ones
introduced in Chapter 4. In the case of marginal models such as (survival) copu-
las, all the information of a time point is collapsed together. On the other hand,
the conditional models presented in this chapter are constructed dynamically, im-
plying that the information is gathered (chronologically) throughout the series of
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each subject separately. This construction difference is very important because, in
a marginal model, the regression constraints are applied to the underlying popu-
lation (or “average”) curve whereas in a conditional model they are applied to the
individual curves. Note that these two types of regression constraints are identi-
cal in the case of continuous responses modeled with a linear regression with a
Gaussian distribution but should not be assumed in general.

For certain dynamically updated models discussed in Section 5.2 and Sub-
section 5.3.2, the corresponding marginal model is found to be a known distribu-
tion, namely certain families of Archimedean (survival) copula from Section 4.3.
Hence, the population probabilities of being in each category at each time point
are available and can be obtained as described in Section 4.1. But additionally, for
dynamic models, subject specific probabilities of being in each category at each
time point can also be extracted. In the case of dynamic updates, Subsection 5.3.3
describes the method necessary to calculate individual or recursive probabilities
for the two ordinal approaches. These probabilities are subject specific as they
take into account the subject’s previous history or variation captured by the set of
updating equations. For hidden Markov chains, the end of Section 5.4 describes
how to obtain the probability that a specific subject is in a particular hidden state
given this subject’s previous state history. The method to calculate the individual
or recursive probabilities over time within each state is then described.

5.1 Dynamically updated models

Subsection 2.2.1 describes a method to generate multivariate densities from the
product of independent univariate conditional distributions. Unfortunately, an ex-
tension to this approach which can be used to model nominal or ordinal responses
is not straightforward.

Constructing multivariate distributions Extreme care must be taken in order
to extend Equation (2.17) to products of cdfs. This can be shown by considering
the bivariate case.
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From this development, it is clear that 	B��1��2� �� 	1��1�	2��2��1� because the

term 	1��1�
�*2��2��1�

��1
is generally different from zero unless �1 and �2 are inde-

pendent. Nevertheless, this can be overcome under certain assumptions or solved
for certain very particular cdfs.

This leads to the following two different alternatives:

(1) The multivariate distribution is assumed to be following an underlying con-
tinuous (or latent) process.
This hypothesis requires the conditional cdfs to be converted to conditional
probabilities. Thus, it is necessary to adapt Equation (2.17) as

Pr��1 � �1� $ $ $ ��� � ��� � Pr��1 � �1�Pr��2 � �2��1 � �1� $ $ $ (5.2)

Pr��� � ����1 � �1� $ $ $ ����1 � ���1�

where Pr��� � �� ��1 � �1� $ $ $ ����1 � ���1� is obtained by taking the ap-
propriate univariate differences of the conditional cdfs corresponding to the
categories of the ordinal data (the cumulative probability of the lower cate-
gory is subtracted from the cumulative probability of the higher category).
The multivariate likelihood is then obtained by multiplying together the re-
sult of Equation (5.2) for each subject.

(2) No assumptions are made about the discrete processes.
In this case, the full multivariate cdf is obtained. This is achieved by
the product of certain conditional cdfs 	 �

� ��� ��1� $ $ $ ����1� which factor as
�M��1�+++��	�

�M��1�+++��	�1�
. The problem illustrated in Equation (5.1) does not occur for

these particular conditional cdfs as they do not correspond to the condi-
tional densities of the multivariate distribution obtained.
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Hence, the multivariate likelihood is then obtained by taking the appropriate
multivariate differences (see Section 4.1) for each subject and multiplying
them together.

These cases will respectively be referred to as the latent and product of condi-
tional cdfs approaches. But before proceeding on, several additional improve-
ments are considered to allow these techniques to be more flexible and generate
wider classes of multivariate distributions.

Generalizations First of all, this entire approach could alternatively be based on
survival distributions due to their tractable relationships with cdfs. For univariate
distributions, this was given in Equation (2.6) and extends to
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in the multivariate case.
Next, the conditional distributions can be chosen to be mixtures. These are

of major interest as many can be obtained in closed form (see Chapter 3). More
specifically, the gamma Laplace transform (or corresponding density) is chosen
for illustrative purposes below (see Subsections 3.2.2 and 3.3.3). The choice to
focus on mixtures is also motivated by the introduction of additional regression
parameters. These are then used to induce dependence on the previous responses.

Until now, each conditional mixture has been assumed to be a function of the
response �. Because this response is in the present case either nominal or ordi-
nal, the method would be much more flexible if these conditional mixtures where
given in terms of an arbitrary cdf. This requires the argument � of each of the
conditional mixtures to be transformed to an arbitrary function ���� involving a
cdf (or a survival function). However, care must be taken because this function
���� must be a strictly increasing transformation of � (in order not to affect the
range of the conditional mixtures). For instance, the argument � could be replaced
by an arbitrary integrated hazard ����� �� ln��
���� �� ln�1� �	 ����. Equations
(2.8) and (2.9) illustrate such transformations applied to the argument of densi-
ties. As dependence on previous responses is only induced through the additional
parameters of the mixture distributions, this generalization has the advantage that
the conditional dependencies and the choice of the arbitrary function ���� remain
independent.

Finally, recall from Subsection 2.2.1 that the conditional mixtures are inde-
pendent one from another. This implies that each one could be chosen as a differ-
ent distribution than the others. However only the case where they are all obtained
from the same distribution will be considered here.

Hence, these changes allow families of multivariate distribution to be pro-
duced where the family is determined by the constructed joint function. In the
case where joint cdfs (or survival functions) are constructed, this might seem
to be another method of obtaining (survival) copulas (introduced in Subsection
2.2.2). Indeed these joint cdfs (or survival functions) are in terms of an arbitrary
function ���� involving a univariate cdf (or survival function). But this will in
general not be a (survival) copula unless the univariate cdfs (or survival functions)
inserted also correspond to the marginal distributions of the resulting multivariate
distribution.

5.2 Updating for continuous variables

The conditional mixture densities are directly used in Equation (2.17) to construct
the multivariate distributions. Note that the arbitrary function ���� inserted into
the mixture will be denoted by 8 and recall that the conditional densities are all
chosen to be the same mixture density obtained from Equation (2.1).
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DEFINITION 5.1 [Bayes, 1958]
Let us consider Bayes’s formula

�&�8� � ��8�&��&�� ∞
0 ��8�&��&�=&

�
��8�&��&�

�m�8�
(5.4)

where �&�8� is the posterior density, ��8�&� is a conditional density, �&� is a
prior density, and �m�8� is a mixture density. �

If the subject’s response history is taken into account, Equation (5.4) can be
rewritten as

�&�� �H��� �
��8�� �&�� �H����1��&�� �H����1�

�m�8�� �H����1�
(5.5)

where H�� denotes subject �’s response history up to and including response �.
This sequential or recursive procedure yields a new distribution at each step

by updating. This is particularly interesting when the posterior density has the
same form as the prior density.
DEFINITION 5.2 [Barnard, 1954; Wetherill, 1961]
In Bayes’s formula, if the posterior and prior densities have the same form, then
the prior density is the conjugate of the conditional density. In this case, it is
said to be closed under sampling. This also implies that the mixture must have a
closed form. �

For closed under sampling cases (see Section 3.3), the posterior can be used
as a prior for the next time point. The fact that the posterior remains of the same
form as the prior implicitly suggests that the prior could be updated, by the sub-
ject’s response history, to the posterior. This updating process is quite similar
to autoregressive serial dependence where the mean at a specific time point is
“corrected” or updated by the residual of the previous time point. These updat-
ing equations can then be deduced from the posterior density of Equation (5.5).
Thus, the choice of the prior and therefore of the mixture is important in order to
generate a sequence of densities of the same form.

Table 5.1 shows the updating equations for all the mixture densities closed un-
der sampling presented in Section 3.3. These are obtained by comparing the mix-
ing distribution (prior) to the re-parameterized distribution integrated out (poste-
rior) in each of these mixtures.

Now, Equation (2.17) can be rewritten in terms of mixture densities.

�M���� � �m�8�1��m�8�2�H�1� $ $ $ �m�8���H����1� (5.6)

Note that care must be taken with the first term of the series as it is unconditional
and some of the parameters might not be identifiable.

Example In the case of an exponential density, Equation (B.5), with a two pa-
rameter gamma mixing density, Equation (B.8), or prior
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Table 5.1. (Part 1) Updates for mixture densities.

Density Mixing (prior) Updates (from posterior)

N
�
���2

�
N
�
	�
2

�
	�� �

�2�����1�$
2
����1���

$2
����1��

2


2
�� � 
2

����1
�2

$2
����1��

2

N
�
�� 1

�

�
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�

0� 1
� ��

�
��� � �����1 �

�������
2

2
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1
2

Po��� Ga
�

0� 1
� ��

�
��� � �����1 �1
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�
0� 1

� ��
�

Ga
�

0� 1
� ��

�
��� � �����1 ���

��� � �����1 ��

E
�
0� 1

�

�
Ga
�

0� 1
� ��

�
��� � �����1 ���

��� � �����1 �1

S
�
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� �	
�
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�
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� ��

�
��� � �����1 ����� �

�

��� � �����1 �1

Gu���� ln������� Ga
�

0� 1
� ��

�
��� � �����1 ��e�

�����

�

��� � �����1 �1
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�
�� 1

�

�
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0� 1
� ��

�
��� � �����1 � ��� ���

��� � �����1 �1

Si
�
�� 1

�

�
Ga
�

0� 1
� ��

�
��� � �����1 �

�������
2

2��� �1������2�1���2
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2
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�
�� 1

� ��
�
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�

0� 1
� ��

�
��� � �����1 �

�ln�����!����2

2

��� � �����1 �
1
2

Here N�mean�variance� is a Gaussian distribution, Po�mean = variance� is a Poisson dis-
tribution, Ga�location�scale�shape� is a gamma distribution, E�location�scale� is an expo-
nential distribution, S�location�parameter 1�parameter 2� is a Weibull, Gompertz, or gen-
eralized Gompertz distribution where ���� is a function of � determining the distribution,
Gu�location�scale� is a Gumbel distribution, La�location�scale� is a Laplace distribution,
Si�location�scale� is a Simplex distribution, and LN�location�scale�parameter 3� is a log-
normal distribution.

�&�� �H����1� �
�

��	�1
����1 &


��	�1�1
�� e����	�1��	

Γ�#����1�

the posterior density is also a two parameter gamma distribution (Subsection
3.3.3)
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Table 5.1. (Part 2) Updates for mixture densities.

Density Mixing (prior) Updates (from posterior)

Po��� GIG
��

�
� �
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� � �

�
��� � �����1 �2
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�
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GIG
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1
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Gu ���� ln������� GIG
��

�
� �

1
� � �

�
��� � �����1 �2�e�
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�
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�
GIG

��
�
� �

1
� � �

�
��� � �����1 �2��� ���

��� � �����1 �1

Here GIG�location�scale� family� is a generalized inverse Gaussian distribution.

�&�� �H��� �
������1 � 8�� �


��	�1�1&

��	�1
�� e���	 ����	�1���	 �

Γ�#����1 �1�
(5.7)

�
�

�	
�� &


�	�1
�� e���	��	

Γ�#���

and the mixture density is a Pareto distribution, see Equation (B.23) and Subsec-
tion 3.3.3,

�m�8�� �H����1� �
#����1�


��	�1
����1

������1 � 8�� �

��	�1�1

(8��

(���
(5.8)

where
���	
���	

is the Jacobian.
PROPERTY 5.3
When 8 is chosen to be an arbitrary integrated hazard and # and � tend to infinity
together, the Pareto distribution presented in Equation (5.8) reduces to the chosen
corresponding density.

lim

���∞

�
#�


��� ������
�1
������� e� ���������� � �����

This limit is equivalent to holding the location 

� of the gamma mixing distribution

equal to unity while letting the variance 

�2 go to zero. �
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The updating equations can now be deduced from the posterior, Equations
(5.7).

��� � �����1 � 8��

#�� � #����1 �1
(5.9)

Care must now be taken with �m�8�1�, the first term of Equation (5.6), because
the two parameters ��0 and #�0 are not identifiable. Because the gamma mixing
distribution has a multiplicative effect, its theoretical mean 


� should be held to

unity. Hence in the initial state, these parameters are defined as � �0 � #�0 �
1
Æ .

From the updating equations, the sequence of conditional Pareto mixtures are

�m�8�1;Æ� �
1
Æ

� 1
Æ

� 1
Æ� 1

Æ � 8�1
� 1
Æ�1

(8�1

(��1
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� 1
Æ �1
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Æ � 8�1

� 1
Æ�1�

1
Æ � 8�1 � 8�2

� 1
Æ�2

(8�2

(��2
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�
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Æ �2
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1
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� 1
Æ�2�

1
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Æ�3

(8�3

(��3

...

�m�8���H����1;Æ� �
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��
1
Æ �∑��1

��1 8��

� 1
Æ���1
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��1 8��
� 1
Æ��

(8��
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Applying Equation (5.6), the multivariate Pareto density is

�M���;Æ� �

�
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Æ

� 1
Æ 1
Æ

�
1
Æ �1

�
$ $ $
�

1
Æ ���1
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Æ �∑�
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��1
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�
Γ
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Æ ��

�
Γ
�

1
Æ
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1
Æ

� 1
Æ

�
1
Æ
�

�

∑
��1

8��

�� 1
Æ�� �

∏
��1

(8��

(���
(5.10)

which is invariant to reordering of the observations. It is therefore a frailty mul-
tivariate density, which is suitable for modelling clustered or multiple response
data, and will from now on be referred to as the frailty multivariate Pareto den-
sity.

Although the updating equations obtained by applying Bayes’s formula (see
Table 5.1 for the mixtures closed under sampling in Section 3.3) appear to require
an ordered sequence of observations, they all generate multivariate distributions
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which are invariant to reordering. These updating equations will from now on be
referred to as frailty updates.

It can be seen from Table 5.1 (Part 1) that the Gaussian mixture obtained
in Subsection 3.3.1 has updating equations quite different from any other distri-
bution. Indeed, other distributions have one update accumulating the subject’s
response history (corresponding to another than the location one) while the other
update acts as a counting process. In the Gaussian case, the update accumulat-
ing the subject’s response history corresponds to the location parameter while the
second update corresponding to the scale parameter mixes the variability of the
two Gaussian distributions.

This difference can be explained by the way the conditional density binds to
the mixing distribution. For the Gaussian distribution, the mixing distribution
acts additively whereas it has a multiplicative effect (Laplace transform “style”
mixture) for other distributions — see Equation (2.11) for the exponential case.

Updating equations Although the set of updates provided by Bayes’s formula
appears to be the most logical choice, many other updates are possible. Recall
that the conditional mixtures of Equation (5.6) are independent. Hence, any re-
parametrization of these conditional mixtures can be applied to introduce depen-
dence on previous responses. But in order to keep the same form for all con-
ditional mixtures, the general structure of the updating equations provided by
Bayes’s formula must be kept.

For instance, the updates could be adapted in order to take the amount of
elapsed time between two observations or a measurement of distance between
two margins. Thus, a serial update can be generated by modifying the Pareto up-
dates presented in Equations (5.9) as

��� � <)�	�)��	�1�����1 �
�1�<)�	�)��	�1�

Æ
� 8��

#�� � <)�	�)��	�1#����1 �
�1�<)�	�)��	�1�

Æ
�1

(5.11)

where < can be called the discount parameter as it reduces the influence of pre-
vious observations, ��� � �����1 represents the elapsed time or a measurement of
distance between observations � � 1 and � for subject �, and Æ is the initiation
parameter (Lindsey, 1999, p. 72).

Similarly, a Markov update can be generated by

��� �
1
Æ
�<)�	�)��	�18����1 � 8��

#�� � <)�	�)��	�1#����1 �
�1�<)�	�)��	�1�

Æ
�1

(5.12)

In this case, the parameter ��� depends only on its previous value discounted in
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function of the distance between the two observations, rather than an accumula-
tion of all the subject’s previous values (Lindsey, 1999, p. 72).

Independence is obtained for both of these dependencies by setting < � 0.
Care must be taken when the dependence < gets large as this could indicate that
there is little variability among the individual series. In this case, a uniform de-
pendence over the succeeding observations should perhaps be considered instead.
This is possible in the case of the serial update as the frailty dependence is ob-
tained when <� 1.

Linking conditional to marginal models The gamma Archimedean copula
(Kimeldorf and Sampson, 1975) can be written as

CM��;Æ� �

�
�

∑
��1

��Æ� � ���1�

�� 1
Æ

(5.13)

where �� is a +�0�1� cdf for margin �, � is a vector containing the univariate
margins, � represents the number of univariate margins, and Æ is the dependence
between these margins (see Appendix C.1).

The corresponding multivariate density (Cook and Johnson, 1981) can then
be obtained by taking partial derivatives with respect to each margins.
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� (5.14)

� 2M��;Æ�

From Property 2.18 or Definition 2.19, the associated gamma Archimedean
survival copula can be written as
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CM��;Æ� �

�
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∑
��1

��Æ� � ���1�

�� 1
Æ

(5.15)

where �� is a survival function for margin �, and � is a vector containing the
survival functions of the different univariate margins.

The corresponding multivariate density can then be obtained by taking partial
derivatives with respect to each of the margins.
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Now, recall from Subsection 4.3.2 that the Archimedean (survival) copula
simplifies if the univariate margins are chosen to be mixtures obtained with the
same Laplace transform.

In the particular case of the gamma Archimedean (survival) copula, these mix-
ture margins are

��8�� � �1� Æ8��
� 1
Æ (5.17)

with Jacobians

��1� Æ8��
� 1
Æ�1 (8�

(��
(5.18)

(see Theorem 2.4 for the special case where 8� is an arbitrary integrated hazard).
Hence, inserting these mixture margins into Equation (5.16) yields
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which is identical to the frailty multivariate Pareto presented in Equation (5.10).
From Definition 4.4, the (survival) copula simplifies to the product of its mar-

gins at independence. In the case of the gamma Archimedean survival copula,
this occurs as Æ tends to zero. Hence at independence, the frailty multivariate
Pareto density of Equation (5.10) yields a product of gamma Laplace transforms.
In the special case where 8� is chosen to be an arbitrary integrated hazard, the
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frailty multivariate Pareto density reduces to the chosen corresponding density
(see Property 5.3).

Now a similar relationship could be found for the gamma Archimedean copula
given in Equation (5.14).

Recall from Property 2.18 and Definition 2.19 that Equations (5.13) and (5.15)
are different multivariate distributions. Indeed, although their ranges are the same,
their domains are inverted because cdfs go from zero to one and survival functions
from one to zero. It can be seen by comparing multivariate densities given in
Equations (5.14) and (5.15) that this domain inversion has led to an additional
factor of ��1��.

Hence, a dynamic model corresponding to the gamma Archimedean copula
can be constructed from conditional Pareto mixtures of the form

�m�8�� �H����1� �� #����1�

��	�1
����1

������1 � 8��

��	�1�1

(8��

(���
(5.19)

with frailty updates given in Equations (5.9) and where 8 �� is an arbitrary strictly
decreasing function (thus inverting the domain) such as� ln�	 ����. This will also
have the form of a frailty multivariate Pareto density.
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(5.20)

Hence, this multivariate density is obtained when mixture margins and Jacobian
respectively given in Equations (5.17) and (5.18) are inserted into the gamma
Archimedean copula (see Lemma 2.5 for the special case where 8 � is minus the
logarithm of an arbitrary cdf).

Next, Property 5.3 is adapted as follows.
PROPERTY 5.4
When 8 is chosen to be minus the logarithm of an arbitrary cdf and # and � tend
to infinity together, the Pareto distribution presented in Equation (5.19) reduces
to the chosen corresponding density.

lim

���∞

�
� #�
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�1

�
�
������	 ���

��
� e��� ln� �� ����� ������	 ���

� �����
As previously, this limit is equivalent to holding the location 


� of the gamma
mixing distribution equal to unity while letting the variance 


�2 go to zero. �

Hence at independence and in the special case where 8 � is chosen to be mi-
nus the logarithm of an arbitrary cdf, the frailty multivariate Pareto density of
Equation (5.20) also reduces to the chosen corresponding density.

Now, Cook and Johnson (1981) have related these two families of multivariate
distributions to several well known cases.
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� A multivariate generalized logistic distribution, Equation (B.53), is ob-
tained by inserting gamma mixture cdf margins of the form

�� �


1� e��	

�� 1
Æ

with Jacobian

e��	

Æ



1� e��	

�� 1
Æ�1

into the multivariate gamma copula, Equation (5.14).
� A multivariate Burr distribution, Equation (B.49), is obtained by inserting

gamma mixture survival margins of the form

�� �


1�����

�� 1
Æ

with Jacobian

��.���1
�

Æ



1�����

�� 1
Æ�1

into the multivariate survival gamma copula, Equation (5.16).
� A multivariate Pareto distribution, Equation (B.54), is obtained by inserting

gamma mixture survival margins of the form

�� �
���

!

�� 1
Æ

with Jacobian

� 1
Æ!
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�� 1
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into the multivariate gamma survival copula, Equation (5.16).
� A multivariate Gaussian distribution
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where ����� is the standardized Gaussian density and Φ��� is the corre-
sponding cdf, respectively presented in Equations (B.42) and (B.43), is ob-
tained by inserting Gaussian cdf margins of the form

�� � Φ����

with Jacobian

������

into the multivariate gamma copula, Equation (5.14).
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Similarly, all other frailty multivariate distributions obtained from the frailty
updates of Table 5.1 can be linked to Archimedean (survival) copulas. In addi-
tion, these distributions conserve one of the main properties of (survival) copulas.
Indeed at independence, the product of the univariate marginal distributions is ob-
tained as both the dependence structure of the copula and of the mixture vanish.

5.3 Updating for ordinal responses

5.3.1 LATENT APPROACH

In this approach, the multivariate distribution is assumed to be following a latent
process (Joe, 1997, pp. 221 and 236–237). Hence to build the likelihood, the
appropriate differences of conditional mixture cdfs are used requiring Equation
(2.17) to be adapted as shown in Equation (5.2). Note that the arbitrary function
���� inserted into the mixture will involve the cdf (or survival function) of one
of the (nominal or ordinal) parametrizations of Section 1.3 and be denoted by 8.
Also recall that the conditional cdfs are all chosen to be the same mixture cdf
obtained from Equation (2.2).

If the subject’s response history is taken into account, the conditional mixture
cdf can be written as

	m�8�� �H����1� �

� ∞

0
	 �8�� �&�� �H����1�=	 �&�� �H����1�

where H�� denotes subject �’s response history up to and including response �.
The conditional probabilities are then obtained by taking the appropriate differ-
ences

Pr�0�� � �� �H����1� � 	m�0�� � �� �H����1��	m�0�� � �� �1�H����1�

where Pr�0�� � �� �H����1� denotes the conditional probability of observation �

from individual � being in category � for � � 0� $ $ $ �����1�.
Now to be able to update recursively the conditional mixture cdf, we must

ensure that the mixing distribution used matches the distribution integrated out to
obtain a closed form.
DEFINITION 5.5
A closed form mixture cdf or mixture survival function is said to be recursively

closed, if the distribution integrated out and the mixing distribution have the same
form. �

Tables 5.2 and 5.3 respectively show the updating equations for the mixture
cdfs (see Section 3.1) and mixture survival functions (see Section 3.2) that are
recursively closed. These are obtained by comparing the mixing distribution to
the re-parameterized distribution integrated out in each of these mixtures.

The joint density for individual � is then obtained by rewriting Equation (5.2)
in terms of conditional probabilities.
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Table 5.2. Updates for mixture cdfs.

CDF Mixing Updates
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Here Gu�location�scale� is a Gumbel distribution, E�location�scale� is an exponential dis-
tribution, Ga�location�scale�shape� is a gamma distribution, IG�location�scale� is an in-
verse Gaussian distribution, and GIG�location�scale� family� is a generalized inverse Gaus-
sian distribution.

Pr�0�1 � �1� $ $ $ �0�� � ��� �

Pr�0�1 � �1�Pr�0�2 � �2�H�1� $ $ $Pr�0�� � ���H����1� (5.21)

Notice that in this case, the conditional terms are also independent one from an-
other. In this case, as previously care must be taken with the first term of the series
as it is unconditional and some of the parameters might not be identifiable.

Example In the case of an exponential survival function, Equation (B.6), with a
two parameter gamma mixing density, Equation (B.8), the distribution integrated
out is also a two parameter gamma distribution (Subsection 3.2.2)
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and the mixture survival function corresponds to a Pareto distribution, see Equa-
tion (B.24) and Subsection 3.2.2,


m�8�� �H����1� �

�
�����1

�����1 � 8��

�

The updating equation can now be deduced from the distribution integrated out,
Equations (5.22).

��� � �����1 � 8��

Now, if the proportional odds parametrization of Subsection 1.3.5 is chosen,
then the cumulative probability of being observed in category � is given by the
cdf 	 ���� � ��� � ��		 .
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Table 5.3. Updates for mixture survival functions.

Survival function Mixing Updates

E
�
0� 1

�

�
E
�

0� 1
�

�
��� � �����1 ���

W
�
0� 1

� �	
�

E
�

0� 1
�

�
��� � �����1 ����

Go
�
� ln���
� � 1

�

�
E
�

0� 1
�

�
��� � �����1 � e����

GGo
�
� ln���
� � 1

� �

�

E
�

0� 1
�

�
��� � �����1 � e��

�
��

S
�
0� 1

� �	
�

E
�

0� 1
�

�
��� � �����1 ������

�

E
�
0� 1

�

�
Ga
�

0� 1
� ��

�
��� � �����1 ���

W
�
0� 1

� �	
�

Ga
�

0� 1
� ��

�
��� � �����1 ����

Go
�
� ln���
� � 1

�

�
Ga
�

0� 1
� ��

�
��� � �����1 � e����

GGo
�
� ln���
� � 1

� �

�

Ga
�

0� 1
� ��

�
��� � �����1 � e��

�
��

S
�
0� 1

� �	
�

Ga
�

0� 1
� ��

�
��� � �����1 ������

�

E
�
0� 1

�

�
IG
�

1� 1
�

�
��� �

�
�����1

�
�����1 �2��

�
W
�
0� 1

� �	
�

IG
�

1� 1
�

�
��� �

	
�����1

�
�����1 �2���

�
Go
�
� ln���
� � 1

�

�
IG
�

1� 1
�

�
��� �

�
�����1

�
�����1 �2e����

�
GGo

�
� ln���
� � 1

� �

�

IG
�

1� 1
�

�
��� �

	
�����1

�
�����1 �2e��

�
��

�
S
�
0� 1

� �	
�

IG
�

1� 1
�

�
��� �

�
�����1

�
�����1 �2���� ��

�
E
�
0� 1

�

�
GIG

��
�
� �

1
� � �

�
��� � �����1 �2��

W
�
0� 1

� �	
�

GIG
��

�
� �

1
� � �

�
��� � �����1 �2���

Go
�
� ln���
� � 1

�

�
GIG

��
�
� �

1
� � �

�
��� � �����1 �2e����

GGo
�
� ln���
� � 1

� �

�

GIG
��

�
� �

1
� � �

�
��� � �����1 �2e��

�
��

S
�
0� 1

� �	
�

GIG
��

�
� �

1
� � �

�
��� � �����1 �2���� �

�

Here W�location�scale�shape� is a Weibull distribution, Go�location�scale� is a Gompertz
distribution, GGo�location�scale� family� is a generalized Gompertz distribution, and ����

is a function of � determining the distribution S�location�parameter 1�parameter 2�.

The corresponding conditional mixture cdf is then

	m�0�� � �� �H����1� � 1�
�

�����1

�����1� log


1���		

��


(5.23)

The conditional probabilities are obtained by taking the appropriate differ-
ences of the conditional cumulative probability, corresponding to the cut-off point
of each response category. Hence, the conditional probability of observation �

from individual � being in category � is



5.3. UPDATING FOR ORDINAL RESPONSES 93

Pr�0�� � 0�H����1� � 1�
�

�����1

�����1� log �1���0�

�

Pr�0�� � ;� �H����1� �

�
1�
�

�����1

�����1� log


1���#	

��
�

�
�

1�
�

�����1

�����1� log


1����#	�1

��
�

�

�
�����1

�����1� log


1����#	�1

��


�
�

�����1

�����1� log


1���#	

��


Pr�0�� � ���1�H����1� �

�
�����1

�����1� log �1�������1�

�

where 0 , ;� , ����1�.

The multivariate density obtained by applying Equation (5.21) consists of
products of differences. Unfortunately, these do not simplify as for continuous
responses. It is therefore not possible to relate dynamic models obtained using
this technique directly to Archimedean (survival) copulas.

Updating equations In this case, the set of updates provided by Bayes’s for-
mula also appears to be the most logical choice. But many other updates are
possible because the conditional probabilities of Equation (5.21) are independent.
PROPOSITION 5.6
An interesting case occurs when the corresponding density can also be obtained
as a (closed under sampling) mixture and the set of frailty updates deducted is
used. It can directly be noticed that this only provides a second updating equa-
tion. But in fact, the conditional mixture cdfs (before taking differences) now
correspond to the conditional mixture densities which would be obtained in the
case of continuous responses. Indeed,

(	m�8�� �H����1�

(8��
� �m�8�� �H����1� (5.24)

as subject �’s history H����1 is a constant with respect to 8�� and the updating
equations do not change the form of the conditional mixtures (due to the closed
under sampling or recursively closed property). Hence, using the set of frailty
updates asymptotically tends to a frailty model corresponding to an Archimedean
(survival) copula as the number of categories increases towards infinity. �

As an illustration, consider the case of conditional gamma mixture cdf pre-
sented in Equation (5.23) with the set of frailty updates given in Equation (5.9).
The conditional mixture cdf is
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	m�8�� �H����1� � 1�
�

�����1

�����1 � 8��

�

� 1�

�
1
Æ �∑��1

#�1 8�#
1
Æ �∑�

#�1 8�#

� 1
Æ���1

and the conditional mixture density is

�m�8�� �H����1� �
#����1�


��	�1
����1

������1 � 8���

��	�1�1 �

� 1
Æ � ��1

�� 1
Æ �∑��1

#�1 8�#

� 1
Æ���1

�
1
Æ �∑�

#�1 8�#

� 1
Æ��

where #�0 ���0 �
1
Æ (recall that #�0 and ��0 are not identifiable in the initial state).

Thus, the relationship of Equation (5.24) does hold.
Obviously, the serial and Markov updates respectively given in Equations

(5.11) and (5.12) also provide possible alternative sets of updating equations.

5.3.2 PRODUCT OF CONDITIONAL CDFS APPROACH

In this approach, no hypotheses are made about the discrete process. Hence, the
appropriate differences in � dimensions of the multivariate cdf (see Section 4.1)
are used to construct the likelihood. As previously, the arbitrary function ����
inserted into the mixture will involve the cdf (or survival function) of one of the
(nominal or ordinal) parametrizations of Section 1.3 and be denoted by 8.

Recall that all conditional mixture cdfs are chosen to be the same. Hence, all
the mixture cdfs (see Section 3.1) and mixture survival functions (see Section 3.2)
must be recursively closed. They are respectively shown in Tables 5.2 and 5.3.

From Equation (5.3), it can be seen that an appropriate multivariate cdf is not
usually produced from the product

	m�8�1�	m�8�2�H1�$$$	m�8���H��1�

where
��m���	 �H	�1�

���	
� �m�8�� �H��1�. Hence, the multivariate cdf is constructed

from the product

	M�8�1� $ $ $ �8��� � 	 �8�1�
	M�8�1�821�

	M�8�1�
$ $ $

	M�8�1� $ $ $ �8���

	M�8�1� $ $ $ �8����1�
(5.25)

� 	 �8�1�	
�
m�8�2�H1� $ $ $	

�
m�8����H��1�

where the first term of the series is 	 �8�1� and the conditional cdfs 	 �
m�8�� �H��1�

correspond to the marginal ratios
�M���1�+++���	�

�M���1�+++����	�1�
.

Unfortunately, mixtures recursively closed do not always correspond to this
ratio once updated.
PROPOSITION 5.7
A recursively closed mixture corresponds to the ratio

�M���1�+++���	�

�M���1�+++����	�1�
once up-

dated, if the following conditions are satisfied.
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� The mixture is a ratio where the numerator and/or the denominator involves
some parameter, say Æ, corresponding to the update equation which is only
added to (or subtracted from) the response or 8 �� .

� This ratio is equal to a constant (with respect to the parameter Æ) when
the response or 8�� is set equal to zero (the numerator is then equal to the
denominator).

Hence, the updating equation is Æ�� � Æ����1 � 8�� and the ratio has general form

2�1

�
��Æ���

��Æ����1�

�,2

(5.26)

where 2�1 and 22 are constants with respect to Æ and ���� is an arbitrary function.
Proof: The denominator is one step behind the numerator. Each numerator must
cancel with the denominator at the previous step, see Equation (5.25). Any con-
stants (22) acting as a power or any arbitrary function (����) will automatically
cancel out as long as they are applied to both the numerator and denominator. All
the constants acting multiplicatively (2�1) remain as normalizing constants of the
resulting multivariate distribution in addition to the normalizing constant of the
first unconditional term. Hence, the ratio can be simplified to

Æ��

Æ����1
�

Æ����1 � 8��

Æ����1

where the numerator will indeed cancel with the denominator at the previous step.
From this, it can also be seen that the resulting multivariate distribution will corre-
sponds to a multivariate Laplace transform (Subsection 2.2.3) or an Archimedean
(survival) copula with mixture margins (Subsection 4.3.2) because it has general
form �

�
�
Æ�0 �∑�

��1 8��
�

��Æ�0�

�,2 �

∏
��1

2�1

where the updating parameter is defined as Æ �0 in the initial state. �

Examples In the case of an exponential survival function, Equation (B.6), with
a one parameter exponential density, Equation (B.5), the distribution integrated
out is also a one parameter exponential distribution (Subsection 3.2.1)

��&�� �H��� � ������1 � 8�� �e���	 ����	�1���	 � (5.27)

� ���e���	��	

and the mixture survival function is


m�8�� �H����1� �
�����1

�����1 � 8��
(5.28)
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The updating equation can now be deduced from the distribution integrated out,
Equations (5.27).

��� � �����1 � 8��

The mixture survival function presented in Equation (5.28) matches the gen-
eral form presented in Equation (5.26) where 2 �1 is unity, ���� is the identity func-
tion, and 22 is minus one. Thus, this will result in a proper multivariate survival
function of the form


M��� �

�
1�

∑�
��1 8��

Æ�0

��1

The complementary log-log link given in Equation (1.9) corresponds to the
cdf of a Gompertz distribution. Hence, the proportional hazard model of McCul-
lagh (1980) presented in Equation (1.10) is the integrated hazard of a Gompertz
distribution. This can therefore be chosen as the 8 �� . Then the multivariate sur-
vival function is


M�0�1 � �1� $ $ $ �0�� � ��� �

�
1�

∑�
��1 !		e

�∑���

��1����	�

Æ�0

��1

(5.29)

where !		 and �� are respectively the intercept and (time-varying) covariate (� ���)
regression parameters. Hence, 8�� corresponds to the integrated hazard of a Gom-
pertz distribution, Equation (B.21).

Because each univariate marginal survival function has the form of a univari-
ate generalized logistic distribution, Equation (B.33),


�0�� � ��� �

�
1�

e

�	�∑���

��1����	�

Æ�0

��1

this multivariate survival function can be identified as a multivariate generalized
logistic distribution.

Note that this multivariate distribution does not correspond to the multivari-
ate logistic distribution presented in Equation (B.51) when Æ �0 is fixed to unity.
Indeed, care must be taken because constructing a multivariate cdf and a multi-
variate survival function will produce two different multivariate distributions.

For instance, the log-log link given in Equation (1.11) corresponds to the sur-
vival function of a Gompertz distribution. The equivalent of the proportional
hazards model presented in Equation (1.10) can then be obtained

� ln���� � e
��∑���

��1����� (5.30)

� !	e�∑���

��1�����

where !	 � e
� and � ���.
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By choosing Equation (5.30) for the 8 �� , the range of the multivariate distribu-
tion is inverted resulting in a multivariate cdf which corresponds to the associated
copula.

This first illustration was quite simple because the dependence among ob-
servations was fixed. Indeed, this can be seen to be a special case of a gamma
Archimedean survival copula where the dependence is fixed at unity (note that
this does not correspond to independence).

In this second example, an exponential survival function, Equation (B.6), is
combined with a generalized inverse Gaussian, Equation(B.10), mixing distribu-
tion,

�&�� �H����1� �
&��1
�� e

���	���	�1
2 � 

2��	

2
�

�
���	�1

� �
2 K

��
������1� �-��

the distribution integrated out is also a one parameter exponential distribution
(Subsection 3.2.4)

��&�� �H��� �
&��1
�� e

���	
2 ����	�1�2��	�� 

2��	

2
�

�
���	�1�2��	

� �
2 K

��
�������1 �28���� �-�

� (5.31)

�
&��1
�� e

���	��	
2 � 

2��	

2
�

�
��	

� �
2 K

��
���� � �-�

�
and the mixture survival function obtained is


m�8�� �H����1� �
K
��

�������1 �28���� �-�
�

K
��

������1� �-��
�

�����1

�����1 �28��

� �
2

(5.32)

The updating equation can now be deduced from the distribution integrated out,
Equations (5.31).

��� � �����1 �28��

The mixture survival function presented in Equation (5.32) matches the gen-
eral form presented in Equation (5.26) where 2 �1 is unity, 22 is � �

2 , and the func-
tion ���� is separated in two parts

�1��� � K
��

��� �-�
�

and �2���, the identity function. Thus, this will result in a proper multivariate
survival function of the form
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M��� �
K
��

�
�
Æ�0 �2∑�

��1 8��
�
� �-�
�

K
��

�Æ�0� �-��
�

1�
2

Æ�0

�

∑
��1

8��

�� �
2

(5.33)

Hougaard (2000, p. 246) considers that this model can easily be obtained as the
generalized inverse Gaussian belongs to the exponential family.

If the responses are ordinal and the proportional odds parametrization of Sub-
section 1.3.5 is used with a Weibull link function then the multivariate survival
function obtained is


M�0�1 � �1� $ $ $ �0�� � ��� �

K
��

�


Æ�0 �2∑�

��1�#		 �∑���

��1 ��������
�
� �-�
�

K
��

�Æ�0� �-�
�

�
1�

2
Æ�0

�

∑
��1

�
#		 �

���

∑
��1

������

���� �
2

(5.34)

where #		 and �� are respectively the intercept and (time-varying) covariate (� ���)
regression parameters and 8�� corresponds to the integrated hazard of a Weibull
distribution, Equation (B.14).

Note that each univariate marginal survival function is a mixture distribution
of the form


m�0�� � ��� �

K
��

�


�����1 �2

�
#		 �∑���

��1 ������
���

� �-�
�

K
��

������1� �-���
�����1

�����1 �2
�
#		 �∑���

��1 ������
��
� �

2

and has yet to be named as the multivariate distribution obtained. Hougaard
(2000, p. 352) confirms that models obtained from Equation (5.33) have not been
examined in detail.

The likelihood corresponding to Equations (5.29) and (5.34) can now be ob-
tained by taking the appropriate differences as described in Section 4.1.

Finally, it is important to remember that the multivariate distribution corre-
sponding to the associated copula can always be considered as an alternative
model. Recall that although the respective multivariate cdf and multivariate sur-
vival functions have a similar form, they do not correspond to the same multivari-
ate distribution.

Updating equations Although all the mixtures in Tables 5.2 and 5.3 satisfy the
conditions stated in Proposition 5.7, the latter can be adapted for multiplicative
updates.
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PROPOSITION 5.8
A recursively closed mixture corresponds to the ratio

�M���1�+++���	�

�M���1�+++����	�1�
once up-

dated, if the following conditions are satisfied.

� The mixture is a ratio where the numerator and/or the denominator involves
some parameter, say Æ, corresponding to the update equation which is only
multiplied (or divided) by the response or 8 �� .

� This ratio is equal to a constant (with respect to the parameter Æ) when
the response or 8�� is set equal to unity (the numerator is then equal to the
denominator).

Hence, the updating equation is Æ�� � Æ����18�� and the ratio has general form

2�1

�
��Æ���

��Æ����1�

�,2

where 2�1 and 22 are constants with respect to Æ and ���� is an arbitrary function.
The resulting multivariate distribution will corresponds to an Archimedean (sur-
vival) copula, constructed from a multiplicative generator, with mixture margins
(Subsection 4.3.2) because it has the general form�

�
�
Æ�0 ∏�

��1 8��
�

��Æ�0�

�,2 �

∏
��1

2�1

where the updating parameter is defined as Æ �0 in the initial state. �

Propositions 5.7 and 5.8 can both be adapted for continuous responses by
splitting the constants into two parts to allow for the changes brought by the sec-
ond updating equation (and writing it in terms of densities). It can now be better
understood why the Gaussian mixture obtained in Subsection 3.3.1 cannot be up-
dated to correspond to a frailty model linked to an Archimedean (survival) copula.

Linking conditional to marginal models The conditional cdf or survival dis-
tribution may not necessarily be a mixture distribution. For instance, the power
variance Laplace transform (Hougaard, 1986a; Hougaard, 2000, pp. 504–506)

���� � e�
Æ
� ��!�����!��

obtained from the moment generating function also satisfies the conditions of
Proposition 5.7. It therefore corresponds to the general form presented in Equa-
tion (5.26) where the function ���� is

���� � e�
Æ
��

�

and 2�1 and 22 are fixed at unity.
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The power variance Archimedean copula (Hougaard, 2000, pp. 241–243) can
be written as

CM��� � e
� Æ
�

��
∑�
	�1�!

���
Æ ln�"	 ��

1
�����1�!

�
�!�

�

where �� is a +�0�1� cdf for margin �, � is a vector containing the univariate
margins and � represents the number of univariate margins (see Appendix C.3).

Crouchley (1995) has used this copula to model ordinal data. The univariate
marginal distributions were chosen to be power variance functions with the 8 ��
chosen as the integrated intensity of a Gompertz distribution, Equation (B.21).
Recall from Equation (5.30) that this is equivalent to a proportional odds model
(Subsection 1.3.5) with a log-log link.

The corresponding multivariate cdf was used to model the ordinal responses
and is given for the bivariate and the trivariate cases. In the bivariate case, this
is similar to the relationship linking copulas and associated copulas (see Property
2.18). This can be generalized to � dimension (Joe, 1997, p. 10) as

	M��� � 1�
�

∑
#�1

��1�#
��� �

∑
��1


R��Θ	 � (5.35)

where 
R��Θ	 � is a univariate survival function if ; is unity and otherwise a joint
survival function of dimension ;. The subscript Θ � denotes the margins involved.
Hence in the trivariate case, the relationship is

	T��1��2��3� � 1�
��1��
��2��
��3�

�
B��1��2��
B��1��3��
B��2��3��
T��1��2��3�

The likelihood is then obtained by taking the appropriate differences as de-
scribed in Section 4.1.

Crouchley (1995) also considers the special cases where the power variance
Laplace transform (see Appendix C.3) reduces to a positive stable and a gamma
Laplace transform. The later special case has also been considered by several
other people.

Conaway (1990) used the gamma survival copula to model clustered binary
data. The multivariate distribution was obtained from a mixture combining a
Gompertz survival function, Equation (B.20), and a log-gamma mixing density
which was then integrating with respect to the mixing distribution. Using the
present method, this is equivalent to inserting the proportional hazard model of
McCullagh (1980) presented in Equation (1.10) in a gamma Laplace transform.
Hence, the univariate marginal distributions were gamma mixtures and the binary
parametrization of Subsection 1.3.1 was used with the log-log link. In addition,
serial dependence was added in the model by introducing the lagged response
to the regression model. A first order Markov model was also considered by
imposing certain constraints among these regression coefficients.
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Finally, Ten Have (1996) also uses the special case of the gamma survival
copula where gamma mixture margins are inserted (Subsection 4.3.2) with the 8 ��
chosen as the integrated intensity of a Gompertz distribution, Equation (B.21).
The model is used to analyze ordinal responses in several dimensions and ex-
tended to include discrete failure times with ordinal responses. Pulkstenis et al.
(1998) apply this specific model to binary data where the dropout process is also
taken into account.

5.3.3 RECURSIVE PROBABILITIES

5.4 Hidden Markov chains

The dependence structure in dynamically updated models was constructed con-
ditionally by taking each subject’s previous observed history into account. De-
pendence among each subject’s observations will now be induced differently for
the case where the responses are generated in several different unknown states.
In such a case, it is assumed that subjects change over time among a number of
different underlying (hidden) processes, called states. As the subjects are not re-
stricted to be influenced by the same set of external factors (covariates) in each
of these states, a (linear or non-linear) regression is required for each one. Obvi-
ously, the model can be simplified by allowing common parameters among these
different regression equations. Now, the dependence is induced conditional on
the subject’s previous state history rather than its previous observed history. This
type of dependence can be called spells.

All possible changes of state over time must be taken into account by the prob-
ability model as they are not observed. Each subject’s possible “path” through the
states corresponds to a product of conditional probabilities. Because the depen-
dence is conditioning on each subject’s previous state history, it is calculated by
multiplying the probability of a particular subject at a specific time point by what
is called a transition probability. Hence, the transition probabilities are depen-
dencies measuring the probabilities of changing state (or remaining in it). This
ensures (as they are probabilities) that summing all these products of conditional
probabilities together produces the joint probability over time and all possible
states for a particular subject. The sample probability is then obtained by multi-
plying these sum of products of conditional probabilities together over all indi-
viduals, yielding a likelihood.

One last problem remains concerning the initial conditions. At the first time
point, no previous information is available to estimate the probability of being
in a particular state. This can be solved by either introducing �� 1 additional
parameters for � states or by using the marginal transition probabilities. This
latter case assumes that stationarity of the hidden process has been reached. This
solution is chosen and has ���� 1� transition probabilities to be estimated along
with the regression parameters. Note that the probability of remaining in state ;

is equal to 1�∑��1
'�1 �'# where �'# are the transition probabilities.

Consider a simple case with two states and three time points. The transition
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Fig. 5.1. Transition probabilities for a two state model.

probabilities are shown in Figure 5.1 and the marginal probabilities are Æ � �2
�1��2

and 1�Æ respectively for state 1 and state 2 (MacDonald and Zucchini, 1997, pp.
67–68). The joint probability over time and all possible states for subject � is then

Pr���1 � �1� $ $ $ ���� � ��� �

Æ



Pr���1 � �1��11��1��1�

�
Pr���2 � �2��21� �1��1� Pr���3 � �3��31�

��1 Pr���3 � �3��32�

�

��1

�
Pr���2 � �2��22� �2 Pr���3 � �3��31�

��1��2�Pr���3 � �3��32�

�

��1�Æ�



Pr���1 � �1��12� ��2

�
Pr���2 � �2��21� �1��1� Pr���3 � �3��31�

��1 Pr���3 � �3��32�

�

�1��2�

�
Pr���2 � �2��22� �2 Pr���3 � �3��31�

��1��2�Pr���3 � �3��32�

�

where Pr���� � �� �
��� is the probability of the response being observed in cate-
gory � at time � for subject � given it is in state � at time �.

Notice that this collapses to the product of independent probabilities if there
is only one state.

Unfortunately, the number of terms expands exponentially as the number of
time points increases and quadratically for the number of states considered. This
expression is therefore not computationally feasible as it stands for any reasonable
number of states and/or time points. However, it can be rearranged in a recursive
form over time (MacDonald and Zucchini, 1997, pp. 78–79; Lindsey, 1999, p.
73). The joint probability over time and all possible states for subject � can then
be written as
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Pr���1 � �1� $ $ $ ���� � ��� � Æ-
�

∏
��1

�����		 �
- (5.36)

where Æ is a row vector containing the marginal probabilities, � is the transition
matrix, ���		 is an ��� matrix containing on the diagonal the probabilities of the
response being observed in category � at time � for subject � given the various
possible states, and  is a row vector of ones.

The likelihood can then be obtained by multiplying Equation (5.36) over all
subjects. Note that at the first time point the Equation (5.36) reduces to

Pr���1 �� � �1Æ
-���		

-

as the vector of marginal probabilities Æ is obtained by solving Æ - ����� � 0.
In the two state and three time point example above, the vector of marginal

probabilities is

Æ �

�
�2

�1 ��2

�1

�1 ��2

�
and the transition matrix is

� �

�
1��1 �1

�2 1��2

�
as presented in Figure 5.1.

Finally, as the responses are nominal or ordinal, the probabilities at time �

contained on the diagonal of � � are obtained using one of the parametrizations
presented in Section 1.3.

Filtered and recursive probabilities Two types of recursive probabilities can
now be extracted from this model.

These are obtained from the intermediate values

5��# �
�

∑
'�1

5����1�'�'# Pr���� � �� �
�#�

calculated while constructing the joint probability over time and all possible states
for subject � are required, where

5�1# � Æ# Pr���1 � �1�
1#�

is obtained for the first time point.
A filtered probability is the probability that a specific subject is in a particular

hidden state given this subject’s previous state history. Hence, the probability of
subject � being in state ; at time � is

���# �
5��#

∑�
'�1 5��#

which is obtained by standardizing the 5 ��# .
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The probabilities of the response being observed in category � at time � for
subject � can then be calculated by

>�� �
�

∑
'�1

���' Pr���� � �� �
�'�

which is the recursive probabilities for subject �.

5.5 Further reading



6
Graphical representation
of longitudinal ordinal data

6.1 Visualizing the collected data

In contrast to continuous longitudinal responses, an individual profile plot of lon-
gitudinal ordinal data is not very informative. Indeed, due to the few different
possible levels of outcome, most profiles overlap. Hence, a different type of graph
such as a plot of the cumulative probabilities over time will be more informative.

Such plots are quite different from individual profile plots as they do not repre-
sent the data at an individual level. Indeed, the outcomes of a particular individual
cannot be followed over time in this way. On the other hand, they give a general
idea of changes in time of the patients’ distribution over the possible outcomes.

The cumulative probabilities over time can also be plotted separately for var-
ious groups.

Cumulative probability plots are useful to picture ordinal responses as these
are directly modelled by the regression curve.

6.2 Visualizing predicted probabilities

Because a dynamic dependence has been created among the repeated observa-
tions, two totally different types of curves can be obtained: individual or recursive
fitted values and population or average predictions. Indeed, a recursive curve is
fundamentally different from an average curve as it is not representative of the
entire population but of a particular subject. In other words, a specific recursive
curve represents all individuals who not only have identical covariate patterns but
who would also respond to the covariates in exactly the same way over time. This
is due to the dynamic part of the model which readjusts the recursive curve at each
time point accordingly to the previous response of the person under consideration.
Hence, recursive curves are necessarily individual specific.

Nevertheless, both types of curves can be represented by cumulative prob-
abilities or highest probability categories. A recursive mean curve can also be
computed but is less informative if the underlying scale has not been respected.
In other words, if the categories do not correspond to identical ranges of the un-
derlying scale then the recursive mean curves will be distorted.

Thus, a dynamic model for ordinal responses with a significant dependence
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can be represented by at least five distinct curves: two population and three recur-
sive curves.

6.2.1 UNDERLYING MEAN PROFILES

6.2.2 RECURSIVE OR INDIVIDUAL PROFILES

The computed recursive means yield smooth curves typical of a cumulative de-
pendence. The dynamic process can clearly be observed from these curves. In-
deed, all recursive mean curves follow the underlying population curve but are
slightly pulled towards a patient’s observations. The recursive highest probabili-
ties can be very useful as they represent a specific response category. These curves
follow each patient’s observations reasonable well.

6.2.3 TIME SPENT IN A HIDDEN STATE



7
Data analysis and model comparison

As the modelling process is exploratory, the inference criterion used for compar-
ing the models under consideration is their ability to predict the observed data,
that is how probable they make the data. In other words, models are compared
directly through their minimized minus log likelihood. When the numbers of pa-
rameters in models differ, they are penalized by adding the number of estimated
parameters, a form of the Akaike information criterion (AIC, see Akaike, 1973;
Lindsey and Jones, 1998). Smaller values indicate more preferable models. This
criterion allows direct comparisons among models, that are not required to be
nested.

7.1 The heart examination clinical trial

This clinical trial involved patients requiring a heart examination. Doctors are
able to assess the left ventricular volume and ejection fraction for each patient
by intermittent harmonic colour Doppler. This is only possible if each patient
remains within a particular range of a Doppler signal induced by a drug admin-
istered by intravenous infusion. The aim of the trial is to study the relationship
between the concentration of the drug administered and the amount of time the
patients spent within the required signal range.

The trial involves 85 patients randomized into three concentration groups: 17
receiving 2.5g, 30 receiving 4g, and 38 receiving 8g of the drug under study. The
Doppler signal of each patient was recorded continuously over time. This was
then discretized into four ordered categories, namely no signal, an insufficient
signal, an appropriate signal, and an excess signal. These were respectively coded
as levels 0 (baseline), 1, 2, and 3.

The signal was discretized at frequent regular intervals over time resulting in
a total of 19690 observations being collected. Indeed, all patients were catego-
rized at the same time points but have series of different lengths. This is due to
different rates of drug intake and wearing off among the patients. The series have
a maximum length of 781 seconds for the 2.5g group, 2089 for the 4g group, and
1643 for the 8g group.

The responses are also unbalanced with respect to the chosen discretization
time points. These were chosen very close together in time (a few seconds apart)
at the start of the trial, slightly further apart (up to thirty seconds) during the period
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where an appropriate signal level was observed, and finally far apart (up to sixty
seconds or more) when the drug effect started wearing off.

The intravenous infusion rate started at 1ml per minute. Depending on the
patient’s response to the drug, this infusion rate could either be decreased to 0.5ml
per minute, or increased to 2 or 4ml per minute. This was necessary in a few cases
to obtain or maintain a particular patient at the appropriate signal level.

The data are shown in this way in Figure 7.1. The change over time of the
probability of being in a particular category is represented in Figure 7.1a. Most
patients have no Doppler signal during the first 50 seconds of the trial. Then,
patients have a rapid increase in signal level. During the next 50 seconds patients
have an insufficient signal level. After 100 seconds, the majority of the patients
remain at an appropriate signal level for almost 13 minutes. From then on, a
patient’s signal level slowly disappears.

The cumulative probabilities over time are also plotted separately for the three
concentration groups. Patients who had a higher concentration of the drug ad-
ministered (Figures 7.1c and 7.1d) have longer observed series and also spend a
longer time at the appropriate signal level compared to the reference group of 2.5g
(Figure 7.1b).

Finally, more variability appears in the two lower concentration groups (2.5g
and 4g) once the drug effect starts wearing off (roughly between 500 and 1200
seconds after study initiation).

To begin, an independent multinomial regression was fitted. This null model
just contains the three intercept parameters and has an AIC of 19720. This pro-
vides us with a reference point for comparison with further fitted models.

Cumulative probability plots are useful to picture ordinal responses as these
are directly modelled by the regression curve. From the plots in Figure 7.1, it
is clear that the cumulative probabilities have a somewhat parabolic shape over
time. For a start, a reasonable regression curve might therefore be a second-
degree polynomial in time. This five-parameter proportional odds model, still
with independence among observations, lowers the AIC to 16591.

However, it is also clear from Figure 7.1 that the curve is not symmetric.
Hence, non-linear regression models must now be considered. Among several
models fitted, a sum of exponentials

�1�
�
exp

�
1� times

�2

�
� exp

�
times
�3

��
fits better than the second-degree polynomial. Indeed, this six parameter model
lowers the AIC to 14811. This regression curve is similar to a first-order one-
compartment model used in pharmacokinetics where � 1 would correspond to a
volume parameter, �2 to the absorption rate, and �3 to the elimination rate. (All
non-linear regression curves are presented without the intercepts; the appropriate
intercept for a given ordinal category must be added.)

A model where the flow rate is linearly added to the equation has seven param-
eters and an AIC of 14669. This model is further improved by also linearly adding
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Fig. 7.1. The area below the solid line indicates no signal, that between the solid and
the dashed line, an insufficient signal, between the dashed and dotted line, an appropriate
signal, and above the dotted line, an excess signal.
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the concentration groups, lowering the AIC to 14620 with nine parameters.
Next, the various concentration groups can be allowed to evolve differently

over time. This is introduced into the model by creating interactions between the
groups and time. Each group requires a different curve. A fourteen-parameter
model is fitted which further lowers the AIC to 14448:

�1�
�
exp

�
1� times

�2

�
� exp

�
times
�3

��
��4�flow��5�group4�

�6�group8��7�group4�
�
exp

�
1� times

�8

�
� exp

�
times
�9

��
�

�10�group8� exp

�
1� times

�11

�
where �1 to �3 describes the change over time for the reference (2.5g) group, � 4

is the infusion rate parameter, �5 is the 4g group, �6 is the 8g group, parameters
�7 to �9 describe the change over time for the 4g group, and � 10 and �11 describe
the change over time for the 8g group.

All these models assumed independence among the response observations.
An over-dispersion model introduces an additional parameter, but on the other
hand, the interaction involving the 4g group can now be simplified. This results
in a thirteen-parameter model with a slightly lower AIC of 14441:

�1�
�
exp

�
1� times

�2

�
� exp

�
times
�3

��
��4�flow��5�group4�

�6�group8��7�group4� exp

�
1� times

�2

�
�

�8�group8� exp

�
1� times

�9

�
Now, we introduce different types of dependencies among successive observa-

tions by applying the gamma Laplace mixture with the proportional hazard model
of McCullagh (1980) presented in Equation (1.10) inserted shown as illustration
in the latent approach (Subsection 5.3.1). In each case, the regression is identi-
cal to that of the over-dispersion model. The cumulative model yields an AIC
of 12858 with thirteen parameters, the serial dependence yields an AIC of 10618
with fourteen parameters, and the Markov dependence yields an AIC of 13426
with fourteen parameters, as can be seen in Table 7.1.

The lowest AIC is obtained using the serial update to introduce dependence
among the succeeding observations. The dependence parameter is estimated to
be 0.95, indicating a very strong dependence on the previous responses. Unfortu-
nately, this dependence close to 1 combined with a particular feature of this trial
creates an undesirable effect.

Looking closely at the individual series, we notice that, due to the high fre-
quency of observation, the series consist of long sequences of values at a partic-
ular signal level with very few changes. Due to this lack of variability, the high
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Table 7.1. AICs for the different steps of the model building

AIC Parameters
Multinomial 19720 3
Prop. Odds 14448 14
Over-dispersion 14441 13
Serial 10618 14
Markov 13426 14
Cumulative 12858 13

Prop. Odds: proportional-odds with covariates.

dependence is enough to predict the outcome at the next time point without any re-
gression model. As the model is dynamic, a wrong prediction is rapidly overcome
by automatically readjusting the model before the following prediction. Hence,
the underlying population mean curve is unnecessary and can simply be described
by a simple intercept model.

Due to the presence of a strong dependence and the lack of variability among
the responses in this particular trial, we decided that the serial update is not suit-
able to model the problem at hand. Among the remaining models, the cumulative
model has the lowest AIC (12858).

The parameter estimates from this model, and their standard errors, are pre-
sented in Table 7.2. The infusion rate coefficient (�4) is positive implying that
an increased rate leads to higher response levels. The sum of exponentials used
to induce a nonlinear regression curves requires the time covariate measured in
seconds to be rescaled. This explains the relatively large values for coefficients
�2, �3, and �9 which involve times up to 2089 seconds. The coefficients for the
4g (�5) and 8g (�6) concentration groups main effects are negative but the inter-
action coefficients are positive. This implies that the two higher concentration
groups will have intercepts slightly lower than the reference (2.5g) group. But
they will also increase faster to an appropriate signal level. Finally, the depen-
dence introduced by the cumulative update is estimated to be 0.17.

The population predicted cumulative frequencies, for combinations of con-
centrations (2.5g, 4g, and 8g) and infusion rates (0.5ml/min, 1ml/min, 2ml/min,
and 4ml/min) which occurred, are presented in Figure 7.2. It can be seen from
these plots that, as for the serial update, the long series of identical response cause
a distortion. Indeed, the probabilities of being in the highest category (level 3: ex-
cess Doppler signal) are significantly increased.

A rough estimate of the time a patient would spend at an appropriate Doppler
signal level, can be obtained from these mean predictions. Table 7.3 summarizes
the time spent at the required level depending on the concentration of drug ad-
ministered and whether the patient requires a particular adjustment of its infusion
rate during the trial.

Recursive fitted response levels are presented in Figure 7.3 for three indi-
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Fig. 7.2. Mean predicted cumulative frequencies for the 3 drug concentrations (2.5g, 4g,
and 8g), and by the 4 infusion rate (0.5ml/min, 1ml/min, 2ml/min, and 4ml/min).
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Table 7.2. Estimates for the non-linear proportional-oddsmodel with cumulative
dependence.

Estimates Standard Errors

Main effects (Intercepts)
Level 1 -12.88 0.161
Level 2 -10.00 0.149
Level 3 -5.50 0.152

Regression
�1 3.94 0.059
�2 87.55 1.363
�3 1626.00 31.331
�4 1.25 0.054
�5 -0.90 0.070
�6 -1.56 0.132
�7 0.51 0.062
�8 0.91 0.049
�9 443.87 51.003

Dependence
Æ 0.17 —

Table 7.3. Estimated time spent at an appropriate or excess Doppler signal level.

Infusion rates
Conc. 0.5ml/min 1ml/min 2ml/min 4ml/min
2.5g — 11 min, 46 sec — —
4.0g 11 min, 57 sec� 23 min, 06 sec�� — 5 min, 17 sec
8.0g 25 min, 59 sec� 22 min, 49 sec 17 min, 31 sec 8 min, 24 sec

�: includes approximately 7 minutes and 30 seconds spent at an excess signal level.
��: includes approximately 3 minutes spent at an excess signal level.

viduals in each concentration group who remained at an infusion rate of 1ml/min
during the entire trial. The computed recursive means yield smooth curves typical
of a cumulative dependence. The dynamic process can clearly be observed from
these curves. Indeed, all recursive mean curves follow the underlying population
curve but are slightly pulled towards a patient’s observations. The recursive high-
est probabilities can be very useful as they represent a specific response category.
These curves follow each patient’s observations reasonable well.

7.2 The rhinitis allergy clinical trial

The aim of this seasonal rhinitis clinical trial was to relieve patients from six dif-
ferent types of symptoms due to rhinitis. The 416 patients enrolled were random-
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Fig. 7.3. Recursive fitted response levels for the 3 treatment groups (2.5g, 4g, and 8g).
Solid line: mean fitted response levels. Dashed line: highest probability fitted response
levels. Circles: observations.
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ized into three groups: treatment A, treatment B, and placebo. The six symptoms
recorded are blockage on waking, blockage during the day, sneezing, nasal itch-
ing, runny nose, and eye watering. Each of these were recorded by the patients
themselves on a 0 to 3 ordered scale for 28 consecutive days. The presence of
the symptom respectively increases with the scale (no symptom, little, moderate,
bad). Further details of the trial can be found in Lindsey et al. (1997).

Due to missing observations, blockage on waking has a total of 10605 obser-
vations, sneezing has a total of 10648 observations, and the other symptoms have
a total of 10647 observations. These missing observations occur among the first
two treatment days, patients dropping out half way through, one patient who was
not included due to unknown treatment, and another patient who withdrew before
treatment assignment. Because the missingness does not appear to depend on the
treatment, it will be assumed to be missing at random. This implies that the data
are not balanced because each patient has a response series of different length and
possibly different recording times.

7.3 The tick activity data

This dataset consists of 28 ticks from the same species observed over a period of
181 days. Colored numbered tags, used by bee-keepers to identify the queens,
were applied to the ticks for individual identification. They are then placed into
4 different columns corresponding to their originating locality (all in Zambia,
Africa): Michembo, Genda, Nkolowondo, and Lundazi. The activity of each tick
is measured daily and recorded into three categories: active, not active, not visi-
ble. Several environmental variables are also available such as relative humidity,
temperature, and VDP (a nonlinear combination of relative humidity and temper-
ature.

7.4 Three Mile Island Stress data

This study investigates the psychological effect due to the nuclear accident at the
Three Mile Island power plant in the spring of 1979. This is measured by the
changes in levels of stress of mothers of young children living within 10 miles of
the plant. Four interviews were conducted following the accident: winter 1979,
spring 1980, fall 1981, and fall 1982. At each interview, subjects are classified
into one of three categories, low, medium, or high stress, based on a composite
score from a 90-item checklist. Observations are available for the 267 subjects
who completed all four interviews. These are stratified into two groups, those
living within 5 miles and 10 miles from the plant. Further details of this study can
be found in Conaway (1989).





Appendix A
Linear categorical regression

A.1 Global notation

� Number of categories: ��
� Number of covariates: ���
� Frequency for response category k at line i of frequency table: � �	

� Regression intercept coefficient: #

� Regression intercept coefficient for response category k: #	

� Regression covariate coefficient for covariate l: � �
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A.5 Continuation ratio

As categories are ordered, only the first or the last level can be set as the reference
category. This yields the following two distinct cases.
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Appendix B
Distributions

This appendix defines the parametrization of distributions that has been used in
most cases. The first section gives the relationships among the cdf, survival func-
tion, density, integrated hazard, and hazard in the univariate case. Then, various
mathematical functions such as the gamma, beta, Bessel, and standard Gaussian
function are defined in Section B.2. Univariate distributions are covered in Sec-
tions B.3 and B.4. Multivariate distributions are covered in Section B.5. As can
be noticed in these sections, there is no unique multivariate extension from a uni-
variate distribution. Indeed, infinitely many multivariate distributions can have
the same univariate marginal distributions.

B.1 General univariate relationships

The standard relationships linking the cdf or survival function to the density, in-
tegrated hazard, and hazard of a same univariate distribution are

� Density ���� � �� ���
��

� CDF 	 ��� � 1�
���

� Survival function 
��� � 1�	 ���

� Integrated hazard ���� � � ln�
����

� Hazard ���� � *���
����

Note that most distributions are defined from their density and do not have a
closed form cdf and survival function. Nevertheless, the few distributions that
on the contrary have explicit cdfs and survival functions will be of major interest
because the responses under study are nominal or ordinal. Note that if the cdf and
survival function have a closed form and their first derivative exists then all other
relationships can also be explicitly worked out.
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B.2 Functions in distributions

GAMMA FUNCTION

The gamma function is

Γ��� �
� ∞

0
8
�1e��d8 (B.1)

where the parameter # is positive. Note that Γ
� 1

2

�
�
�

".
(Johnson and Kotz, 1969, p. 6)

INCOMPLETE GAMMA FUNCTION

The incomplete gamma function is

Γ����� �

� �

0
8��1e��d8 � Γ���	 ���

where 	 ��� is a one parameter gamma cdf and the parameter � is positive.
(Johnson and Kotz, 1969, p. 6; Johnson and Kotz, 1970a, p. 167)

FRACTIONAL BESSEL FUNCTION OF THE THIRD KIND

The fractional Bessel function of the third kind is

K ��� ���� � 1
2

� ∞

0
8��1e�

�� � 1
 �

2 d8 (B.2)

and this has a closed form when � �� 1
2 .

K
�

��
1
2

�
�

�
"

2�
e��

(Jørgensen, 1982, p. 170; Seshadri, 1993, p. 46; Hougaard, 2000, pp. 510–511)

BETA FUNCTION

The beta function is

B�#��� �

� ∞

0
8
�1�1� 8���1d8 �

Γ�#�Γ���
Γ�#���

(B.3)

where the parameters # and �@�� are positive.
(Johnson and Kotz, 1970b, pp. 37–38 and 40)

STANDARDIZED GAUSSIAN FUNCTION

The standardized Gaussian function is

Φ�8� �

� �
�∞ e�

 2
2 d8�

2"
(B.4)

(Johnson and Kotz, 1970a, p. 40)
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B.3 Continuous univariate distributions

EXPONENTIAL DISTRIBUTION

Two parameter distribution

� Density ���� � e�

��
�

 

� &e�������

� CDF 	 ��� � 1� e�������

� Survival function 
��� � e�������

� Integrated hazard ���� � &�����

� Hazard ���� � &

The responses � are non-negative and & � 1
 . The location is � , �, and the scale

is A ' 0.
(Johnson and Kotz, 1970a, p. 207)
One parameter distributions

� Density ���� � e�


�

 

� &e��� (B.5)

� CDF 	 ��� � 1� e���

� Survival function 
��� � e��� (B.6)

� Integrated hazard ���� � &�

� Hazard ���� � &

The responses � are non-negative and & � 1
 . The location is set to zero (� � 0)

and the scale is A ' 0.
(Johnson and Kotz, 1970a, p. 207)

� Density ���� � e������

� CDF 	 ��� � 1� e������

� Survival function 
��� � e������

� Integrated hazard ���� � ���

� Hazard ���� � 1
The responses � are non-negative. The location is � , � and the scale is set to
unity

�
& � 1

 � 1
�
.

(Johnson and Kotz, 1970a, p. 207)
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Zero parameter distribution

� Density ���� � e��

� CDF 	 ��� � 1� e�� (B.7)

� Survival function 
��� � e��

� Integrated hazard ���� � �

� Hazard ���� � 1
The responses � are non-negative. The location is set to zero (�� 0) and the scale
is set to unity

�
& � 1

 � 1
�
. This is the standard form called the unit exponential.

(Johnson and Kotz, 1970a, p. 207)

GAMMA DISTRIBUTION

Three parameter distribution

� Density ���� � �������1e�

��
�

 �Γ�
�

� ���������1e���
���
Γ�
�

� CDF 	 ��� �
Γ��������
�

Γ�
�

� Survival function 
��� � Γ�
��Γ��������
�
Γ�
�

� Integrated hazard ���� � ln�Γ�#��� ln�Γ�#��Γ��������#��

� Hazard ���� � ���1e�

Γ�
��Γ��������
�

The responses � are positive and � � 1
 . The location is � , �, the scale is A ' 0,

and the shape is # ' 0. The exponential distribution is obtained when # � 1.
(Johnson and Kotz, 1970a, p. 166)
Two parameter distributions

� Density ���� � ���1e�


�

 �Γ�
�

� �����1e��

Γ�
� (B.8)

� CDF 	 ��� � Γ����
�
Γ�
�

� Survival function 
��� �
Γ�
��Γ����
�

Γ�
�

� Integrated hazard ���� � ln�Γ�#��� ln�Γ�#��Γ����#��

� Hazard ���� � �����1e��

Γ�
��Γ����
�

The responses � are positive and � � 1
 . The location is set to zero (� � 0), the
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scale is A ' 0, and the shape is # ' 0. The theoretical mean and variance are
respectively E�B� � 


� and Var�B� � 

�2 .

(Johnson and Kotz, 1970a, p. 166)

� Density ���� � �������1e��
���
Γ�
�

� CDF 	 ��� � Γ�����
�
Γ�
�

� Survival function 
��� � Γ�
��Γ�����
�
Γ�
�

� Integrated hazard ���� � ln�Γ�#��� ln�Γ�#��Γ�����#��

� Hazard ���� � ���1e�

Γ�
��Γ�����
�

The responses � are positive. The location is � , �, the scale is set to unity�
� � 1

 � 1
�
, and the shape is # ' 0.

(Johnson and Kotz, 1970a, p. 166)
One parameter distribution

� Density ���� � ���1e�

Γ�
�

� CDF 	 ��� � Γ���
�
Γ�
�

� Survival function 
��� � Γ�
��Γ���
�
Γ�
�

� Integrated hazard ���� � ln�Γ�#��� ln�Γ�#��Γ���#��

� Hazard ���� � ���1e�

Γ�
��Γ���
�

The responses � are positive. The location is set to zero (� � 0), the scale is set to
unity

�
� � 1

 � 1
�
, and the shape is # ' 0. This is the standard form and is called

an Erlang distribution when # is a positive integer.
(Johnson and Kotz, 1970a, p. 166)
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GENERALIZED GAMMA DISTRIBUTION

Four parameter distribution

� Density ���� �
���������1e

�� 
��� �
�

 ��Γ�
�

� ���������1�����e����
����

Γ�
�

� CDF 	 ��� � Γ����������
�
Γ�
�

� Survival function 
��� � Γ�
��Γ����������
�
Γ�
�

� Integrated hazard ���� � ln�Γ�#��� ln �Γ�#��Γ����������#��

� Hazard ���� � ���������1�����e����
����

Γ�
��Γ����������
�
The responses � are positive and � � 1

 . The location is � , �, the scale is A ' 0,
the shape is # ' 0, and the family is . ' 0. It includes the Weibull distribution
(# � 1), the half-normal distribution (# � 1

2 , . � 2, � � 0), and the three param-
eter gamma distribution (. � 1).
(Johnson and Kotz, 1970a, p. 197)
Three parameter distributions

� Density ���� � �����1e��


� ��

 ��Γ�
�

� �����1�����e���
�

Γ�
�

� CDF 	 ��� � Γ������
�
Γ�
�

� Survival function 
��� � Γ�
��Γ������
�
Γ�
�

� Integrated hazard ���� � ln�Γ�#��� ln �Γ�#��Γ������#��

� Hazard ���� � �����1�����e���
�

Γ�
��Γ������
�

The responses � are positive and � � 1
 . The location is set to zero (� � 0), the

scale is A ' 0, the shape is # ' 0, and the family is . ' 0.
(Johnson and Kotz, 1970a, p. 197)
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� Density ���� � ���������1e��
����

Γ�
�

� CDF 	 ��� � Γ��������
�
Γ�
�

� Survival function 
��� � Γ�
��Γ��������
�
Γ�
�

� Integrated hazard ���� � ln�Γ�#��� ln �Γ�#��Γ��������#��

� Hazard ���� �
���������1e��
����

Γ�
��Γ��������
�
The responses � are positive and � � 1

 . The location is � , �, the scale is set to
unity (A � 1), the shape is # ' 0, and the family is . ' 0.
(Johnson and Kotz, 1970a, p. 197)
Two parameter distribution

� Density ���� � �����1e�
�

Γ�
�

� CDF 	 ��� � Γ����
�
Γ�
�

� Survival function 
��� � Γ�
��Γ����
�
Γ�
�

� Integrated hazard ���� � ln�Γ�#��� ln �Γ�#��Γ����#��

� Hazard ���� � �����1e�
�

Γ�
��Γ����
�

The responses � are positive and � � 1
 . The location is set to zero (� � 0), the

scale is set to unity (A � 1), the shape is # ' 0, and the family is . ' 0.
(Johnson and Kotz, 1970a, p. 197)
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INVERSE GAUSSIAN DISTRIBUTION

Two parameter distribution

� Density ���� � e
� �
���2

2��2
�
2� �3

�
�

�
2��3 e

�
��� 1

2

�
���




	
(B.9)
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����e2
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���
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� Integrated hazard
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2 ln���� 1

2 ln�2"�3�� ln

�
1�Φ
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��Φ
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���
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� Hazard ���� � �
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�
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�

1�Φ

���
�
�

��



�

����e2
�
�Φ

���� 
�

�

��



�

���
The responses � are positive, � � 1

 �2 , and � � 1
 . The location is � ' 0 and the

scale is A ' 0.
(Johnson and Kotz, 1970a, pp. 138–139)
One parameter distributions

� Density ���� � e
� �
�1�2

2�
�
2� �3

�
�

�
2��3 e

���
2

�
�� 1




	

� CDF 	 ��� � 1�
�

2��3

�



1�Φ���1�� e2�Φ����1�

�
� Survival function 
��� �

�
2��3

�



1�Φ���1�� e2�Φ����1�

�
� Integrated hazard

���� � 1
2 ln���� 1

2 ln�2"�3�� ln


1�Φ���1�� e2�Φ����1�

�
� Hazard ���� � �e

���
2 �
�

1

 �

2��3�1�Φ���1��e2�Φ����1��
The responses � are positive and � � 1

 . The location is set to unity (� � 1) and
the scale is A ' 0. This is the standard from of the distribution which is called the
Wald distribution.
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(Johnson and Kotz, 1970a, p. 138)

� Density ���� � e
� �
���2

2�2
�
2��3

� e
�
�� 1

2 ��
�
1

 ��

2��3

� CDF

	 ��� � 1�
�

2"�3

�
1�Φ

�
�� 1�

��


�

�
� e2

�
�Φ

�
��� 1�

��


�

��

� Survival function


��� �
�

2"�3

�
1�Φ

�
�� 1�

��


�

�
� e2

�
�Φ

�
��� 1�

��


�

��
� Integrated hazard

���� �� 1
2 ln�2"�3�� ln

�
1�Φ

�
��
�

1
��



�

�
� e2

�
�Φ

�
���

�
1
��



�

��

� Hazard ���� � e
�
�� 1

2 ��
�
1

 �

2��3

���1�Φ

���
�
�

1
��



�

����e2
�

1�Φ

���� 
�

�
1
��



�

���
���

The responses � are positive and � � 1
�2 . The location is � ' 0 and the scale is

set to unity (A � 1).
(Johnson and Kotz, 1970a, pp. 138–139)

GENERALIZED INVERSE GAUSSIAN DISTRIBUTION

Three parameter distribution

� Density ���� � ���1e
� 1

2�

	
1

� 


�2




2��K
�

1
�� ����

	

� ���1e
� 
�

2 � 
2


2
�

�

	�
2 K �

�
�������

(B.10)

The responses � are positive, �� 1
 �2 , and � � 1

 . The location is � ' 0, the scale
is A ' 0, and the family is .. It includes the inverse Gaussian distribution (. �
?� 1

2 ),the random walk distribution or reciprocal inverse Gaussian distribution
(.� 1

2 ), the two parameter gamma distribution (A � ∞, . ' 0), the two parameter
reciprocal gamma distribution (A � ∞, . , 0), and the hyperbola distribution
(. � 0).
(Jørgensen, 1982, p. 1)
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Two parameter distributions

� Density ���� � ���1e
� 1

2� �
1

�
�

2K � 1
� �����

� ���1e
� 
�

2 � �
2


2K �������

The responses � are positive and � � 1
 . The location is set to unity (�� 1), scale

is A ' 0, and the family is ..
(Jørgensen, 1982, p. 1)

� Density ���� � ���1e
� 1

2

	
1

� 


�2




2��K
�

1
� ����

	

� �
�
2 ���1e

� 
�
2 � 1

2


2K �
�
������

The responses � are positive and � � 1
�2 . The location is � ' 0, the scale is set to

unity (A � 1), and the family is ..
(Jørgensen, 1982, p. 1)

RANDOM WALK DISTRIBUTION

Two parameter distribution

� Density ���� � e
� �
��1�2

2��2
�
2� �

�
�

�
2�� e

�
��� 1

2

�
���




	
The responses � are positive, � � 1

 , and � � 1
 �2 . The location is � ' 0 and the

scale is A ' 0. It is also sometimes called a reciprocal inverse Gaussian distribu-
tion.
(Johnson and Kotz, 1970a, pp. 140 [corrected] and 149)
One parameter distributions

� Density ���� � e
� �
�1�2
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�
2� �
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�

�
2�� e

���
2

�
�� 1




	
(B.11)

The responses � are positive and � � 1
 . The location is set to unity (� � 1) and

the scale is A ' 0.
(Johnson and Kotz, 1970a, pp. 140 [corrected] and 149)

� Density ���� � e
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The responses � are positive and � � 1
 . The location is � ' 0 and the scale is set

to unity (A � 1).
(Johnson and Kotz, 1970a, pp. 140 [corrected] and 149)

WEIBULL DISTRIBUTION

Three parameter distribution

� Density ���� � #A�
�����
�1e��

��
� �

�

� #!
�����
�1e��!�������

� CDF 	 ��� � 1� @��!�������

� Survival function 
��� � @��!�������

� Integrated hazard ���� � �!������


� Hazard ���� � #!
�����
�1

The responses � are positive and ! � 1
 . The location is � , �, the scale is A ' 0,

and the shape is # ' 0.
(Johnson and Kotz, 1970a, p. 250)
Two parameter distributions

� Density ���� � #A�
�
�1e��


� �

�

� #!
�
�1e��!��� (B.12)

� CDF 	 ��� � 1� @��!���

� Survival function 
��� � @��!��� (B.13)

� Integrated hazard ���� � �!��


� Hazard ���� � #!
�
�1

The responses � are positive and ! � 1
 . The location is set to zero (� � 0), scale

is A ' 0, and the shape is # ' 0.
(Johnson and Kotz, 1970a, p. 250)

� Density ���� � #�����
�1e�������

� CDF 	 ��� � 1� @�������

� Survival function 
��� � @�������

� Integrated hazard ���� � �����


� Hazard ���� � #�����
�1

The responses � are positive. The location is � , �, the scale is set to unity
(A � 1), and the shape is # ' 0.
(Johnson and Kotz, 1970a, p. 250)



138 DISTRIBUTIONS

One parameter distribution

� Density ���� � #�
�1e��
�

� CDF 	 ��� � 1� @���

� Survival function 
��� � @��
�

� Integrated hazard ���� � �
 (B.14)

� Hazard ���� � #�
�1

The responses � are positive. The location is set to zero (� � 0), the scale is set to
unity (A � 1), and the shape is # ' 0. This is the standard form of the distribution.
(Johnson and Kotz, 1970a, p. 250)

GUMBEL DISTRIBUTION

Two parameter distribution

� Density ���� � e�

��
� �e�


��
�

 

� �e��������e���
���
(B.15)

� CDF 	 ��� � e�e���
���
(B.16)

� Survival function 
��� � 1� e�e���
���

� Integrated hazard ���� � � ln
�
1� e�e���
���	

� Hazard ���� � �e���
����e���
���

1�e�e���
���

The location is �, the scale is A ' 0, and � � 1
 . This distribution belongs to the

extreme value family.
(Johnson and Kotz, 1970a, pp. 272 and 277; Agresti, 1990, p. 105)
One parameter distributions

� Density ���� � e�


� �e�



�

 

� �e����e��


� CDF 	 ��� � e�e��


� Survival function 
��� � 1� e�e��


� Integrated hazard ���� � � ln
�
1� e�e��


	
� Hazard ���� � �e��
�e��


1�e�e��


The location is set to zero (� � 0), the scale is A ' 0 and � � 1
 .

(Johnson and Kotz, 1970a, pp. 272 and 277; Agresti, 1990, p. 105)
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� Density ���� � e�������e��
���

� CDF 	 ��� � e�e��
���

� Survival function 
��� � 1� e�e��
���

� Integrated hazard ���� � � ln
�
1� e�e��
���	

� Hazard ���� � e��
����e��
���

1�e�e��
���
The location is � and the scale is set to unity (A � 1).
(Johnson and Kotz, 1970a, pp. 272 and 277; Agresti, 1990, p. 105)
Zero parameter distribution

� Density ���� � e���e�


� CDF 	 ��� � e�e�
 (B.17)

� Survival function 
��� � 1� e�e�


� Integrated hazard ���� � � ln
�
1� e�e�


	
� Hazard ���� � e�
�e�


1�e�e�

The location is set to zero (� � 0) and the scale is set to unity (A � 1). This is the
standard form of the distribution.
(Johnson and Kotz, 1970a, p. 277; Agresti, 1990, p. 105)

GOMPERTZ DISTRIBUTION

Two parameter distribution

� Density ���� � e

��
� �e


��
�

 

� -!�e����!e
��

� CDF 	 ��� � 1� e��!e
��

� Survival function 
��� � e��!e
�� (B.18)

� Integrated hazard ���� � �!e���

� Hazard ���� � -!�e��

The responses � are positive, - � 1
 , and ! � e��. The location is � ' 0 and the

scale is A ' 0. This distribution belongs to the extreme value family.
(Lindsey, 1999, p. 28)
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One parameter distributions

� Density ���� � e


� �e



�

 

� -e���e�


� CDF 	 ��� � 1� e�e�


� Survival function 
��� � e�e�


� Integrated hazard ���� � e��

� Hazard ���� � -e��

The responses � are positive and - � 1
 . The location is set to zero (� � 0) and

the scale is A ' 0.
(Lindsey, 1999, p. 28)

� Density ���� � e������e
��

� !e��!e


� CDF 	 ��� � 1� e�!e


� Survival function 
��� � e�!e


� Integrated hazard ���� � !e�

� Hazard ���� � !e�

The responses � are positive and ! � e��. The location is � ' 0 and the scale is
set to unity (A � 1). Note that both the hazard and the integrated hazard have the
same form.
(Lindsey, 1999, p. 28)
Zero parameter distribution

� Density ���� � e��e


� CDF 	 ��� � 1� e�e
 (B.19)

� Survival function 
��� � e�e
 (B.20)

� Integrated hazard ���� � e� (B.21)

� Hazard ���� � e�

The responses � are positive. The location is set to zero (� � 0) and the scale is
set to unity (A � 1). Note that both the hazard and the integrated hazard have the
same form. This is the standard form of the distribution.
(Lindsey, 1999, p. 28)
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GENERALIZED GOMPERTZ DISTRIBUTION

Three parameter distribution

� Density ���� � ����1e

���
� �e


���
�

 

� -.���1!�e��
��!�e�


�

� CDF 	 ��� � 1� e�!�e�

�

� Survival function 
��� � e�!
�e�


�

(B.22)

� Integrated hazard ���� � !�e��
�

� Hazard ���� � -.���1!�e��
�

The responses � are positive, - � 1
 , and ! � e��. The location is � ' 0, the scale

is A ' 0, and the family is . ' 0. This distribution belongs to the generalized
extreme value family. It includes the two parameter Gompertz distribution (. �
1).
(Lindsey, 1999, p. 293 [corrected])
Two parameter distributions

� Density ���� � ����1e

�
� �e


�
�

 

� -.���1e��
��e�


�

� CDF 	 ��� � 1� e�e�

�

� Survival function 
��� � e�e�

�

� Integrated hazard ���� � e��
�

� Hazard ���� � -.���1e��
�

The responses � are positive and - � 1
 . The location is set to zero (� � 0), the

scale is A ' 0, and the family is . ' 0.
(Lindsey, 1999, p. 293 [corrected])

� Density ���� � .���1e��
�����e


���

� .���1!e�
��!e


�

� CDF 	 ��� � 1� e�!e

�

� Survival function 
��� � e�!e

�

� Integrated hazard ���� � !e�
�

� Hazard ���� � .���1!e�
�

The responses � are positive and ! � e��. The location is � ' 0, the scale is set
to unity (A � 1), and the family is . ' 0.
(Lindsey, 1999, p. 293 [corrected])
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PARETO DISTRIBUTION

Three parameter distribution

� Density ���� � 
�
�������1

� CDF 	 ��� � 1� �
������

� Survival function 
��� � �
������

� Integrated hazard ���� � # ln������ ln���

� Hazard ���� � 

���

The responses � are positive and greater than �
1
� ��. The parameters #, �, and

� are positive. This form is also called the Lomax distribution.
(Johnson and Kotz, 1970a, p. 234)
Two parameter distributions

� Density ���� � 
��

�������1 (B.23)

� CDF 	 ��� � 1�
�

�
���

�

� Survival function 
��� �

�
�

���

�

(B.24)

� Integrated hazard ���� � # ln������# ln���

� Hazard ���� � 

���

The responses � are positive as well as the parameters # and �, and � � �
.
This form is obtained from the mixture of a one parameter exponential with a two
parameter gamma mixing distribution.
(Johnson and Kotz, 1970a, pp. 233–234; Cox and Oakes, 1984, pp. 19–20)

� Density ���� � 

�������1

� CDF 	 ��� � 1� ������


� Survival function 
��� � ������


� Integrated hazard ���� � # ln�����

� Hazard ���� � 

���

The responses � are positive and greater than 1��, the parameters # and � are
positive, and the parameter � is set to unity.
(Johnson and Kotz, 1970a, p. 234)
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� Density ���� � �
�����2

� CDF 	 ��� � 1� �
���

� Survival function 
��� � �
���

� Integrated hazard ���� � ln������ ln���

� Hazard ���� � 1
���

The responses � are positive and greater than ���, the parameters � and � are
positive, and the parameter # is set to unity.
(Johnson and Kotz, 1970a, p. 234)

� Density ���� � 
�
���1

� 
��

���1

� CDF 	 ��� � 1�
�
�
�

�

(B.25)

� Survival function 
��� �
�
�
�

�

� Integrated hazard ���� � # ln����# ln�.�

� Hazard ���� � 

�

The responses � are positive and greater than the parameter �
1
� (0 , .� �). The

parameters # and � must be positive, the parameter � is set to zero, and � � .
.
This is the original form of the distribution.
(Johnson and Kotz, 1970a, p. 234)
One parameter distributions

� Density ���� � �
�����2

� CDF 	 ��� � 1� �
���

� Survival function 
��� � �
���

� Integrated hazard ���� � ln������ ln���

� Hazard ���� � 1
���

The responses � are positive as well as the parameter �, the parameter # is set to
unity, and � � �
.
(Johnson and Kotz, 1970a, pp. 233–234; Cox and Oakes, 1984, pp. 19–20)



144 DISTRIBUTIONS

� Density ���� � 

�1�����1

� CDF 	 ��� � 1� �1����


� Survival function 
��� � �1����


� Integrated hazard ���� � # ln�1���

� Hazard ���� � 

1��

The responses � are positive as well as the parameter #, and the parameters � and
� are set to unity.
(Johnson and Kotz, 1970a, pp. 233–234; Cox and Oakes, 1984, pp. 19–20)

� Density ���� � ������2

� CDF 	 ��� � 1� 1
���

� Survival function 
��� � 1
���

� Integrated hazard ���� � ln�����

� Hazard ���� � 1
���

The responses � are positive and greater than 1��, the parameters � is positive,
and the parameters # and � are set to unity.
(Johnson and Kotz, 1970a, p. 234)

� Density ���� � �
�2

� CDF 	 ��� � 1� �
�

� Survival function 
��� � �
�

� Integrated hazard ���� � ln���� ln���

� Hazard ���� � 1
�

The responses � are positive and greater than the parameter � (0 , � � �), the
parameter # is set to unity, and the parameter � is set to zero.
(Johnson and Kotz, 1970a, p. 234)
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LOGISTIC DISTRIBUTION

Two parameter distribution

� Density ���� � e�

��
�

 

�
1�e�


��
�

�2 (B.26)

� CDF 	 ��� � 1

1�e�

��
�

(B.27)

� Survival function 
��� � 1

1�e

��
�

� Integrated hazard ���� � ln
�
1� e


��
�

	
� Hazard ���� � 1

 

�
1�e�


��
�

�
The location is � and the scale is A ' 0. This form is obtained from the mixture
of a two parameter Gumbel distribution with a one parameter exponential mixing
distribution.
(Johnson and Kotz, 1970b, pp. 1 and 3)
One parameter distributions

� Density ���� � e�


�

 
�

1�e�


�
	2

� CDF 	 ��� � 1

1�e�


�

� Survival function 
��� � 1

1�e


�

(B.28)

� Integrated hazard ���� � ln
�
1� e



�

	
� Hazard ���� � 1

 
�

1�e�


�
	

The location is set to zero (� � 0) and the scale is A ' 0.
(Johnson and Kotz, 1970b, p. 1)

� Density ���� � e��

�1�e��
�2

� CDF 	 ��� � 1
1�e��


� Survival function 
��� � 1
1�e
��

� Integrated hazard ���� � ln �1� e����

� Hazard ���� � 1
�1�e��
�

The location is � and the scale is set to unity (A � 1).
(Johnson and Kotz, 1970b, p. 1)
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Zero parameter distribution

� Density ���� � e�

�1�e�
�2

� CDF 	 ��� � 1
1�e�
 (B.29)

� Survival function 
��� � 1
1�e


� Integrated hazard ���� � ln �1� e��

� Hazard ���� � 1
�1�e�
�

The location is set to zero (� � 0) and the scale is set to unity (A � 1). This is the
standard form of the distribution.
(Johnson and Kotz, 1970b, p. 3)

GENERALIZED LOGISTIC DISTRIBUTION

Four parameter distribution

� Density ���� � 
��e�

��
��

�� e�

��
�

���1 (B.30)

� CDF 	 ��� �

�
�

�� e�

��
�

�

(B.31)

� Survival function 
��� � 1�
�

�

�� e�

��
�

�

� Integrated hazard ���� � � ln

�
1�
�

�

�� e�

��
�

�
�
� Hazard ���� � 
��e�


��
��

�� e�

��
�

���
�� e�


��
�

��
���


The location is �, the scale is A ' 0, and the two shape parameters # and � are
positive. It includes the two parameter logistic distribution (# � 1 and � � A).
This form is obtained from the mixture of a two parameter Gumbel distribution
with a two parameter gamma mixing distribution.
(Johnson and Kotz, 1970a, p. 289; Johnson and Kotz, 1970b, p. 17 [corrected])
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Three parameter distributions

� Density ���� � 
��e�


��

�� e�


�

	��1

� CDF 	 ��� �

�
�

�� e�


�

�

� Survival function 
��� � 1�

�
�

�� e�


�

�

� Integrated hazard ���� � � ln

�
1�
�

�

�� e�


�

�
�
� Hazard ���� � 
��e�



��

�� e�


�
	��

�� e�


�
	�����

The location is set to zero (�� 0), the scale is A ' 0, and the two shape parameters
# and � are positive.
(Johnson and Kotz, 1970a, p. 289; Johnson and Kotz, 1970b, p. 17 [corrected])

� Density ���� � 
��e��

���e��
���1

� CDF 	 ��� �
�

�
��e��


�

� Survival function 
��� � 1�

�
�

��e��

�


� Integrated hazard ���� � � ln
�
1�
�

�
��e��


�
	
� Hazard ���� � 
��e��


���e��
�����e��
������
The location is �, the scale is set to unity (A � 1), and the two shape parameters
# and � are positive.
(Johnson and Kotz, 1970a, p. 289; Johnson and Kotz, 1970b, p. 17 [corrected])
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The location is �, the scale is A ' 0, the first shape parameter is set to unity
(# � 1) and the second shape parameter � is positive.
(Johnson and Kotz, 1970a, p. 289; Johnson and Kotz, 1970b, p. 17 [corrected])
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(B.32)
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The location is �, the scale is A ' 0, the first shape parameter # is positive and
the second shape parameter is set to unity (� � 1).
(Johnson and Kotz, 1970a, p. 289; Johnson and Kotz, 1970b, p. 17 [corrected])
Two parameter distributions
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The location is set to zero (� � 0), the scale is set to unity (A � 1), and the two
shape parameters # and � are positive.
(Johnson and Kotz, 1970a, p. 289; Johnson and Kotz, 1970b, p. 17 [corrected])
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The location is set to zero (� � 0), the scale is A ' 0, the first shape parameter is
set to unity (# � 1) and the second shape parameter � is positive.
(Johnson and Kotz, 1970a, p. 289; Johnson and Kotz, 1970b, p. 17 [corrected])
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The location is set to zero (� � 0), the scale is A ' 0, the first shape parameter #

is positive and the second shape parameter is set to unity (� � 1). This form is
obtained from the mixture of a two parameter Gompertz distribution with a two
parameter gamma mixing distribution.
(Johnson and Kotz, 1970a, p. 289; Johnson and Kotz, 1970b, p. 17 [corrected])

� Density ���� � �e��

���e��
�2

� CDF 	 ��� � �
��e��


� Survival function 
��� � 1
1��e
��

� Integrated hazard ���� � ln �1��e����

� Hazard ���� � �
��e��


The location is �, the scale is set to unity (A � 1), the first shape parameter is set
to unity (# � 1) and the second shape parameter � is positive.
(Johnson and Kotz, 1970a, p. 289; Johnson and Kotz, 1970b, p. 17 [corrected])
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The location is �, the scale is A ' 0, the first shape parameter # is positive and
the second shape parameter is set equal to the scale (� � A).
(Johnson and Kotz, 1970a, p. 289; Johnson and Kotz, 1970b, p. 17 [corrected])
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One parameter distributions

� Density ���� � �e�

���e�
�2

� CDF 	 ��� � �
��e�


� Survival function 
��� � 1
1��e
 (B.33)

� Integrated hazard ���� � ln �1��e��

� Hazard ���� � �
���e�
�

The location is set to zero (� � 0), the scale is set to unity (A � 1), the first shape
parameter is set to unity (# � 1) and the second shape parameter � is positive.
(Johnson and Kotz, 1970a, p. 289; Johnson and Kotz, 1970b, p. 17 [corrected])

� Density ���� � 
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� Survival function 
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� Integrated hazard ���� � � ln
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e�
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The location is set to zero (� � 0), the scale is set to unity (A � 1), the first shape
parameter # is positive and the second shape parameter is set to unity (� � 1).
(Johnson and Kotz, 1970a, p. 289; Johnson and Kotz, 1970b, p. 17 [corrected])

BETA DISTRIBUTION

Four parameter distribution

� Density ���� � 1
B�
���

�������1�������1

���������1

The responses are included in the interval �� ��� and the two shape parameters
# and � are positive. It is also sometimes called the power function.
(Johnson and Kotz, 1970b, p. 37)
Two parameter distribution

� Density ���� � ���1�1�����1

B�
���
(B.34)

The responses are included in the interval 0� �� 1 as the parameters � and � are
respectively set to zero and unity. The two shape parameters # and � are positive.
This is the standard form of the distribution and is obtained from the mixture of a
two parameter gamma distribution with itself.
(Johnson and Kotz, 1970a, p. 195; Johnson and Kotz, 1970b, p. 37)
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One parameter distribution

� Density ���� � #�
�1

The responses are included in the interval 0 � � � 1 as the parameters � and �

are respectively set to zero and unity. The first shape parameter is # ' 0, and the
second shape parameter is set to unity (� � 1). This form is called the standard
power function density.
(Johnson and Kotz, 1970b, p. 37)

BURR DISTRIBUTION

Four parameter distribution
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� Integrated hazard ���� � # ln��������!��# ln���

� Hazard ���� � !
�������1

��������
The responses are positive and � � A!. The location is � , �, the scale is A ' 0,
and the two shape parameters # and ! are both positive. It includes the two
parameter Pareto distribution (� � 0 and ! � 1).
(Johnson and Kotz, 1970a, pp. 30–31 and 266)
Three parameter distributions
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� Survival function 
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� Integrated hazard ���� � # ln����!��# ln���

� Hazard ���� � !
���1

����

The responses are positive and � � A!. The location is set to zero (� � 0), the
scale is A ' 0, and the two shape parameters # and ! are both positive. This is
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the standard form of the distribution and is obtained from the mixture of a two
parameter Weibull with a two parameter gamma mixing distribution.
(Johnson and Kotz, 1970a, pp. 30–31 and 266)

� Density ���� � !
�������1

�1����������1

� CDF 	 ��� � 1� �1������!��


� Survival function 
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� Integrated hazard ���� � # ln�1������!�

� Hazard ���� � !
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1�������
The responses are positive. The location is � , �, the scale is set to unity (A � 1),
and the two shape parameters # and ! are both positive.
(Johnson and Kotz, 1970a, pp. 30–31 and 266)
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The responses are positive and � � A!. The location is � , �, the scale is A ' 0,
the first shape parameters # is set to unity and the second shape parameter ! is
positive.
(Johnson and Kotz, 1970a, pp. 30–31 and 266)
Two parameter distributions
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The responses are positive. The location is is set to zero (� � 0), the scale is set
to unity (A � 1), and the two shape parameters # and ! are both positive.
(Johnson and Kotz, 1970a, pp. 30–31 and 266)

� Density ���� �
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� Survival function 
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� Integrated hazard ���� � ln����!�� ln���

� Hazard ���� � !���1
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The responses are positive and � � A!. The location is set to zero (� � 0), the
scale is A ' 0, the first shape parameter # is set to unity and the second shape
parameter ! is positive.
(Johnson and Kotz, 1970a, pp. 30–31 and 266)

� Density ���� � !�������1

�1��������2

� CDF 	 ��� � ������
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� Survival function 
��� � 1
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� Integrated hazard ���� � ln�1������!�

� Hazard ���� � !�������1

1�������
The responses are positive. The location is � , �, the scale is set to unity (A � 1),
the first shape parameter # is set to unity and the second shape parameter ! is
positive.
(Johnson and Kotz, 1970a, pp. 30–31 and 266)
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One parameter distribution

� Density ���� � !���1

�1����
2

� CDF 	 ��� � ��
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(B.38)

� Survival function 
��� � 1
1���

� Integrated hazard ���� � ln�1��!�

� Hazard ���� � !���1

1���

The responses are positive. The location is set to unity (� � 1), the scale is set
to unity (A � 1), the first shape parameter # is set to unity and the second shape
parameter ! is positive.
(Johnson and Kotz, 1970a, pp. 30–31 and 266)

LAPLACE DISTRIBUTION

Two parameter distribution

� Density ���� � e�
�
���
�

2 

� �e���
���
2 (B.39)

The location is � and the scale is A ' 0. This form is also called the double
exponential.
(Johnson and Kotz, 1970b, pp. 22–23)
One parameter distributions

� Density ���� � e�
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� �e���
�
2

The location is set to zero (� � 0) and the scale is A ' 0.
(Johnson and Kotz, 1970b, pp. 22–23)

� Density ���� � e��
���
2

The location is � and the scale is set to unity (A � 1).
(Johnson and Kotz, 1970b, pp. 22–23)
Zero parameter distribution

� Density ���� � e��
�
2

The location is set to zero (� � 0) and the scale is set to unity (A � 1). This is the
standard form of the distribution.
(Johnson and Kotz, 1970b, pp. 22–23)
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SIMPLEX DISTRIBUTION

Two parameter distribution

� Density ���� � e
� �
���2

2�2
�1�
��2�1���2�
2� 2�3�1���3 (B.40)

The responses are included in the interval 0 , � , 1. The location is 0 , � , 1
and the scale is A.
(Song and Tan, 2000)
One parameter distribution

� Density ���� � e
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2
�1�
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The responses are included in the interval 0 , � , 1. The location is 0 , � , 1
and the scale is set to unity (A � 1).
(Song and Tan, 2000)

GAUSSIAN DISTRIBUTION

Two parameter distribution

� Density ���� � e
� �
���2

2�2�
2� 2

(B.41)

� CDF 	 ��� � Φ
�
���
 

�
The location is � (also theoretical mean) and the scale is A ' 0 (with theoretical
variance A2). This is obtained from the mixture of a two parameter Gaussian
distribution with itself.
(Johnson and Kotz, 1970a, pp. 40 and 87–88)
One parameter distributions

� Density ���� � e
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2
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2� 2
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�
The location is set to zero (� � 0) and the scale is A ' 0.
(Johnson and Kotz, 1970a, p. 40)

� Density ���� � e�
�
���2

2�
2�

� CDF 	 ��� � Φ�����

The location is � and the scale is set to unity (A � 1).
(Johnson and Kotz, 1970a, p. 40)
Zero parameter distribution

� Density ���� � e�

2
2�

2�
(B.42)

� CDF 	 ��� � Φ��� (B.43)
The location is set to zero (� � 0) and the scale is set to unity (A � 1). This form
is called the standardized Gaussian distribution.
(Johnson and Kotz, 1970a, p. 40)
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LOGNORMAL DISTRIBUTION

Three parameter distribution

� Density ���� � e
� �ln�
������2

2�2

���!��2� 
(B.44)

The responses are positive. The location is �, the scale is A, and the parameter !

is is positive. This is also called the antilognormal distribution.
(Johnson and Kotz, 1970a, pp. 112–113)
Two parameter distributions

� Density ���� � e
� �ln�
����2

2�2
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The responses are positive. The location is �, the scale is A, and the parameter !

is set to zero (! � 0). This is the standard form of the distribution.
(Johnson and Kotz, 1970a, pp. 112–113)

� Density ���� � e
� ln�
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The responses are positive. The location is set to zero (� � 0), the scale is A, and
the parameter ! is is positive.
(Johnson and Kotz, 1970a, pp. 112–113)

� Density ���� � e�
�ln�
������2

2

���!��2�

The responses are positive. The location is �, the scale is set to unity (A � 1), and
the parameter ! is is positive.
(Johnson and Kotz, 1970a, pp. 112–113)
One parameter distributions

� Density ���� � e�
ln�
���2

2

���!��2�

The responses are positive. The location is set to zero (� � 0), the scale is set to
unity (A � 1), and the parameter ! is is positive.
(Johnson and Kotz, 1970a, pp. 112–113)

� Density ���� � e
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�2

2�2
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The responses are positive. The location is set to zero (� � 0), the scale is A, and
the parameter ! is set to zero (! � 0).
(Johnson and Kotz, 1970a, pp. 112–113)

� Density ���� � e�
�ln�
����2

2

�
�

2�

The responses are positive. The location is �, the scale is set to unity (A � 1), and
the parameter ! is set to zero (! � 0).
(Johnson and Kotz, 1970a, pp. 112–113)
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Zero parameter distribution

� Density ���� � e�
ln�
�2

2

�
�

2�

The responses are positive. The location is set to zero (� � 0), the scale is set to
unity (A � 1), and the parameter ! is set to zero (! � 0).
(Johnson and Kotz, 1970a, pp. 112–113)

B.4 Discrete univariate distributions

POISSON DISTRIBUTION

One parameter distribution

� Probability mass function Pr��� � �
e��
�! (B.45)

The responses � are discrete (non-negative integers, � � 0�1�2 $ $ $) and the loca-
tion is � ' 0. The theoretical mean � is equal to the theoretical variance.
(Johnson and Kotz, 1969, p. 87)

BINOMIAL DISTRIBUTION

Two parameter distribution

� Density ���� �
�


�

�
"��1�"�
�� (B.46)

The responses � are discrete (non-negative integers, � � 0�1�2 $ $ $ �#). The pa-
rameter # is also a positive integer and the parameter " must be included in the
interval 0� " � 1.
(Johnson and Kotz, 1969, p. 50)
One parameter distribution

� Density ���� � "��1�"�1�� (B.47)
The responses � is binary (� � 0�1). The parameter # is set to unity (# � 1) and
the parameter " must be included in the interval 0� " � 1. This form is called a
Bernoulli distribution.
(Johnson and Kotz, 1969, pp. 50–51)

NEGATIVE BINOMIAL DISTRIBUTION

Two parameter distribution

� Density ���� �
�

���1

�1

��
1

��1

�� �
�

��1
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B�
�������1���
 (B.48)
The responses � are discrete (non-negative integers, � � 0�1�2 $ $ $). The parame-
ters # and � are both positive. This form is obtained from the mixture of a Poison
with a two parameter gamma mixing distribution. It is called sometimes called a
binomial waiting-time distribution or a Pólya distribution and a Pascal distribu-
tion when # is a positive integer.
(Johnson and Kotz, 1969, pp. 122 and 124–125)
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One parameter distribution

� Density ���� � �
���1�
�1

The responses � are discrete (non-negative integers, � � 0�1�2 $ $ $), the parameter
# is set to unity (# � 1), and the parameter � is positive. This form is called a
geometric distribution.
(Johnson and Kotz, 1969, p. 123)

B.5 Multivariate distributions

MULTIVARIATE BURR DISTRIBUTION

Three parameter distribution

� Density
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(B.49)

� Survival function 
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�
1�∑�

��1 ���
�	
�
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The responses are positive. The parameters #, �� , and .� are also all positive.
The marginal cdf is a three parameter Burr distribution, 	 ��� � 1� �1��� ���
,
corresponding to Equation (B.36).
(Johnson and Kotz, 1972, p. 289; Cook and Johnson, 1981 [method corrected])
One parameter distributions

� Density
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The responses are positive. The parameters # and �� are set to unity. The pa-
rameter .� is positive. The marginal cdf is a two parameter Burr distribution,
	 ��� � ��

1��� , corresponding to Equation (B.38).
(Johnson and Kotz, 1972, p. 289; Cook and Johnson, 1981 [method corrected])

MULTIVARIATE LOGISTIC DISTRIBUTION

Two parameter distribution

� Density

�M��� � Γ���1�

�
1�∑�

��1 e
� 
	��	

�	

����1

∏�
��1

e
� 
	��	

�	

 	
(B.50)
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The responses are positive. The location vector contains � � ' 0 and the scale
vector contains A� ' 0. The marginal cdf is a two parameter logistic distribution,
	 ��� � 1

1�e�

��
�

, corresponding to Equation (B.27).

(Johnson and Kotz, 1972, p. 293 [corrected])
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One parameter distributions

� Density �M��� � Γ���1�
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The responses are positive. The location parameters are set to zero (� � � 0) and
the scale vector contains A� ' 0.
(Johnson and Kotz, 1972, p. 293 [corrected])
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��1

The responses are positive. The location vector contains � � ' 0 and the scale
parameters are set to unity (A� � 1).
(Johnson and Kotz, 1972, p. 293 [corrected])
Zero parameter distribution

� Density �M��� � Γ���1�
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� CDF 	M��� �
�
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��1 e��	
��1

The responses are positive. The location is set to zero (� � 0) and the scale is set
to unity (A � 1).
(Johnson and Kotz, 1972, p. 291; Cook and Johnson, 1981)

MULTIVARIATE GENERALIZED LOGISTIC DISTRIBUTION

Three parameter distributions

� Density
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(B.52)

� CDF 	M��� �

#$1�
∑�
	�1 e

� 
	��	
�	




%&�


The responses are positive. The location vector contains � � ' 0, the scale vector
contains A� ' 0, and the parameter # is also positive. It includes the multivariate
logistic distribution (# � 1). The marginal cdf is a three parameter generalized

logistic distribution, 	 ��� �

�
1� e�


��
�




��

, corresponding to Equation (B.32)

where # � 1
 (in both).

(Cook and Johnson, 1981)
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One parameter distribution

� Density �M��� � Γ�
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The responses are positive. The location is set to zero (� � 0), the scale is set to
unity (A � 1), and the parameter # is also positive.
(Cook and Johnson, 1981)
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The responses are positive. The location is set to zero (� � 0), the scale is set
to unity (A � 1), and the parameter # is also positive. This form is obtained by
transforming the response e��	 � #e��	 with Jacobian #.
(Cook and Johnson, 1981)

MULTIVARIATE PARETO DISTRIBUTION

Two parameter distribution

� Density

�M��� � Γ�
���
Γ�
�∏�

	�1 !	

�
∑�
��1

�	
!	
���1

��
��
(B.54)

� Survival function 
M��� �
�

∑�
��1

�	
!	
���1

��

The responses are positive, the parameter # is positive, and 0 , ! � , �� . The
marginal cdf is a two parameter Pareto distribution, 	 ��� � 1� !

�� , corresponding
to Equation (B.25) where ! � .
.
(Johnson and Kotz, 1972, p. 286; Cook and Johnson, 1981 [method corrected])

MULTIVARIATE EXPONENTIAL DISTRIBUTION

One parameter distribution

� Density
�M��� � Γ�
���

Γ�
�
�

�
∑�
��1 e


	
� ���1

��
��
∏�
��1 e


	
� (B.55)

� Survival function 
M��� �
�

∑�
��1 e


	
� ���1

��

The responses are positive and the parameter # is positive. The marginal cdf is a
unit exponential distribution, 	 ��� � 1� e��, corresponding to Equation (B.7).
(Johnson and Kotz, 1972, p. 288 [corrected])

MULTIVARIATE POWER EXPONENTIAL DISTRIBUTION

Three parameter distribution

� Density �M��� �
�Γ��2 �e

� 1
2 ������!��1������

�

21��
2� �

�
2
�
���Γ�1��

2� �
(B.56)

The responses vector is �. The location vector is , the scale is the definite
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positive symmetric matrix�, and the family is . ' 0. It includes the multivariate
Laplace distribution (.� 0$5), the multivariate Gaussian distribution (.� 1), and
the multivariate uniform distribution (.� ∞).
(Gómez, E., Gómez-Villegas, M.A., and Marin, J.M., 1998)

MULTIVARIATE STUDENT T DISTRIBUTION

Three parameter distribution

� Density �M��� �
Γ����2 �

����
�
2
�
���Γ��2 ��1� 1

� �����!��1������
���

2
(B.57)

The responses vector is � and the parameter . is the number of degrees of free-
dom. The location vector is  and the scale is the definite positive symmetric
matrix �. It includes the multivariate Cauchy distribution (. � 1) and multivari-
ate Gaussian distribution (.� ∞).
(Johnson and Kotz, 1972, p. 134)

MULTIVARIATE GAUSSIAN DISTRIBUTION

Two parameter distribution

� Density �M��� � e�
1
2 �����!��1�����

�2��
�
2
�
���

(B.58)

The responses vector is �. The location vector is  and the scale is the definite
positive symmetric matrix �.
(Johnson and Kotz, 1972, pp. 37–38)





Appendix C
Archimedean copulas

C.1 One dependence parameter

LAPLACE TRANSFORMS

(1) The gamma Laplace transform

���� � �1� Æ���11Æ or ���� � �1� ���11Æ

and its inverse

��1��� �
��Æ�1

Æ
or ��1��� � ��Æ�1

generate the bivariate Archimedean copula

�B��1��2� � ���Æ� ��Æ�1��11Æ

and the multivariate Archimedean copula

�M��� �

�
�

∑
��1

��Æ� � ���1�

��11Æ

where Æ � 0.
Independence and the Fréchet upper bound respectively occur at values 0
and ∞ of the dependence parameter Æ.
Figure C.1 shows the bivariate dependence for Æ � 2 with uniform, Gaus-
sian, lognormal, gamma (# � 2), logistic, Cauchy, non-central beta (# � 2,
� � 4, and non-central parameter equals 3), Laplace, and power exponen-
tial (� � 0, A � 1, and . � 3) margins.
This copula is sometimes called the Clayton, generalized Cook and John-
son, or the Pareto family (Kimeldorf and Sampson, 1975; Clayton, 1978;
Cook and Johnson, 1983).
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a) Uniform margins.
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g) Non−central beta margins.
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h) Laplace margins.
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Fig. C.1. Density contours for a bivariate Archimedean copula generated from a gamma
Laplace transform with a) uniform, b) Gaussian, c) lognormal, d) gamma, e) logistic, f)
Cauchy, g) non-central beta, h) Laplace, and i) power exponential margins (Æ � 2).
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(2) The positive stable Laplace transform

���� � e���
1"Æ�

and its inverse

��1��� � �� ln��Æ

generate the bivariate Archimedean copula

�B��1��2� � e���� ln"�Æ��� ln.�Æ�
1"Æ

and the multivariate Archimedean copula

�M��� � e��∑
�
	�1�� ln"	�Æ�

1"Æ

where Æ � 1.
Independence and the Fréchet upper bound respectively occur at values 1
and ∞ of the dependence parameter Æ.
Figure C.2 shows the bivariate dependence for Æ � 3$5 with uniform, non-
central beta (# � 2, � � 4, and non-central parameter equals 3), and Levy
margins.
This copula is sometimes called the Gumbel family (Gumbel, 1960b).

a) Uniform margins.
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b) Non−central beta margins.

First margin

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c) Levy margins.

First margin

0 1 2 3 4

0
1

2
3

4

Fig. C.2. Density contours for a bivariate Archimedean copula generated from a positive
stable Laplace transform with a) uniform, b) non-central beta, and c) Levy margins (Æ �
3�5).



166 ARCHIMEDEAN COPULAS

(3) The logarithmic series Laplace transform

���� � �1
Æ

ln


1� e��

�
e�Æ�1

��
and its inverse

��1��� � � ln
e�Æ)�1
e�Æ�1

generate the bivariate Archimedean copula

�B��1��2� ��1
Æ

ln

�
1�

�e�Æ"�1��e�Æ.�1�
e�Æ�1

�
and the multivariate Archimedean copula

�M��� ��1
Æ

ln

�
1�

∏�
��1�e

�Æ"	 �1�

�e�Æ�1���1

�

where Æ � 0.
Independence and the Fréchet upper bound respectively occur at values 0
and ∞ of the dependence parameter Æ.
Figure C.3 shows the bivariate dependence for Æ � 5 with uniform, logistic,
and Burr (� � 2, A � 2, And . � 2) margins.
This copula is sometimes called the Frank family (Frank, 1979).

a) Uniform margins.
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Fig. C.3. Density contours for a bivariate Archimedean copula generated from a logarith-
mic series Laplace transform with a) uniform, b) logistic, and c) Burr margins (Æ � 5).
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(4) The power series Laplace transform

���� � 1� �1� e��
�11Æ

and its inverse

��1��� �� ln


1� �1� ��Æ

�
generate the bivariate Archimedean copula

�B��1��2� � 1� 
�1���Æ��1� ��Æ� �1���Æ�1� ��Æ
�11Æ

and the multivariate Archimedean copula

�M��� � 1�
 

1�
�

∏
��1



1� �1����

Æ
�!11Æ

where Æ � 1.
Independence and the Fréchet upper bound respectively occur at values 1
and ∞ of the dependence parameter Æ.
Figure C.4 shows the bivariate dependence for Æ � 3 with uniform, gamma
(# � 2), and Cauchy margins.
This copula is sometimes called the Joe family (Joe, 1993).

a) Uniform margins.
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b) Gamma margins.

First margin

0 1 2 3 4

0
1

2
3

4

c) Cauchy margins.

First margin

−2 −1 0 1 2

−
2

−
1

0
1

2

Fig. C.4. Density contours for a bivariate Archimedean copula generated from a power
series Laplace transform with a) uniform, b) gamma, and c) Cauchy margins (Æ � 3).
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(5) The inverse Gaussian Laplace transform

���� � e
1
Æ�
�

1
Æ �

1
Æ�2��

and its inverse

��1��� �
Æ
�

1
Æ � ln���

�2� 1
Æ

2

generate the bivariate Archimedean copula

�B��1��2� � e
1
Æ�
�
� 1
Æ�ln�"��

2
�� 1

Æ�ln�.��
2� 1

Æ2

and the multivariate Archimedean copula

�M��� � e
1
Æ�
�

∑�
	�1�

1
Æ�ln�"	 ��

2����1� 1
Æ2

where Æ � 0.
Independence and the Fréchet upper bound respectively occur at values 0
and ∞ of the dependence parameter Æ.
Figure C.5 shows the bivariate dependence for Æ � 10 with uniform, inverse
Gaussian (� � 2 and A � 1), and power exponential (� � 0, A � 1, and
. � 3) margins.
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b) Inverse Gaussian margins.

First margin

0 1 2 3 4

0
1

2
3

4

c) Power exponential margins.

First margin

−2 −1 0 1 2

−
2

−
1

0
1

2

Fig. C.5. Density contours for a bivariate Archimedean copula generated from an inverse
Gaussian Laplace transform with a) uniform, b) inverse Gaussian, and c) power exponential
margins (Æ � 10).
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DECREASING CONVEX GENERATORS

(1) The generator

��1��� � ln
1� !�1� ��

�
or ��1��� �

1
1� !

ln
1� !���1�

�

and its inverse

���� �
1� !

e�� !
or ���� �

!�1

!� e�1�!��

generate the bivariate Archimedean copula

�B��1��2� �
��

1� Æ�1����1���

and the multivariate Archimedean copula

�M��� �
Æ�1

Æ�∏�
��1

�
1�Æ�"	�1�

"	

	
where �1 , Æ , 1. Independence occurs at value 0 of the dependence
parameter Æ. Figure C.6 shows the bivariate dependence for Æ � 0$5 with
uniform, Burr (� � 2, A � 2, and . � 2), and simplex (� � 0$5 and A � 1)
margins. This copula is sometimes called the Ali-Mikhail-Haq family (Ali
et al., 1978).
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Fig. C.6. Density contours for a bivariate Archimedean copula generated from a decreas-
ing convex generators with a) uniform, b) Burr, and c) simplex margins (Æ � 0�5).
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(2) The generator

��1��� �
1� �

1��!�1��

and its inverse

���� �
1� �

1��!�1��

generate the bivariate Archimedean copula

�B��1��2� � max

�
Æ2��� �1����1���

Æ2� �Æ�1�2�1����1���
�0

�
where Æ ' 1. The Fréchet lower bound occurs at value 1 of the dependence
parameter Æ. Figure C.7 shows the bivariate dependence for Æ � 100 with
uniform, Gaussian, and Cauchy margins.
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Fig. C.7. Density contours for a bivariate Archimedean copula generated from a decreas-
ing convex generators with a) uniform, b) Gaussian, and c) Cauchy margins (Æ � 100).



C.1. ONE DEPENDENCE PARAMETER 171

(3) The generator

��1��� � ln�1� ! ln��

and its inverse

���� � e
1�e�
�

generate the bivariate Archimedean copula

�B��1��2� � ��e�Æ ln" ln.

and the multivariate Archimedean copula

�M��� � e
1�∏�

	�1�1�Æ ln�	 �

Æ

where 0 � Æ , 1. Independence occurs at value 0 of the dependence pa-
rameter Æ. Figure C.8 shows the bivariate dependence for Æ � 0$8 with
uniform, gamma (# � 2), and non-central beta (# � 2, � � 4, and non-
central parameter equals 3) margins. This copula is sometimes called the
Gumbel-Barnett family (Gumbel, 1960a; Barnett, 1980).
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Fig. C.8. Density contours for a bivariate Archimedean copula generated from a de-
creasing convex generators with a) uniform, b) gamma, and c) non-central beta margins
(Æ � 0�8).
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(4) The generator

��1��� � ln
�
2��!�1

�
and its inverse

���� �

�
1� e�

2

��11!

generate the bivariate Archimedean copula

�B��1��2� �
��

�1��1��Æ��1��Æ��11Æ

and the multivariate Archimedean copula

�M��� �

�
1�∏�

��1

�
2��Æ� �1

�
2

��11Æ

where 0� Æ , 1. Independence occurs at value 0 of the dependence param-
eter Æ. Figure C.9 shows the bivariate dependence for Æ � 0$7 with uniform,
logistic, and power exponential (� � 0, A � 1, and . � 3) margins.
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Fig. C.9. Density contours for a bivariate Archimedean copula generated from a de-
creasing convex generators with a) uniform, b) logistic, and c) power exponential margins
(Æ � 0�7).
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(5) The generator

��1��� � ln
�
2� �!

�
and its inverse

���� � �2� e��11!

generate the bivariate Archimedean copula

�B��1��2� � max
�


����Æ�2
�
1��Æ

��
1� �Æ

��11Æ
�0
�

where 0 � Æ , 1
2 . Independence occurs at value 0 of the dependence pa-

rameter Æ. Figure C.10 shows the bivariate dependence for Æ � 0$2 with
uniform, Gaussian, and lognormal margins.
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Fig. C.10. Density contours for a bivariate Archimedean copula generated from a decreas-
ing convex generators with a) uniform, b) Gaussian, and c) lognormal margins (Æ � 0�2).
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(6) The generator

��1��� �

�
1
�
�1

�!
and its inverse

���� �
1

1� �11!

generate the bivariate Archimedean copula

�B��1��2� �
1

1�
��

1
" �1

�Æ
�
�

1
. �1

�Æ	11Æ

and the multivariate Archimedean copula

�M��� �
1

1�

�
∑�
��1

�
1
"	
�1
�Æ�11Æ

where Æ ' 1. The Fréchet upper bound occurs at value ∞ of the dependence
parameter Æ. Figure C.11 shows the bivariate dependence for Æ � 2 with
uniform, Laplace, and Pareto (� � 2 and A � 2) margins.
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Fig. C.11. Density contours for a bivariate Archimedean copula generated from a de-
creasing convex generators with a) uniform, b) Laplace, and c) Pareto margins (Æ � 2).
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(7) The generator

��1��� � �1� ln��!�1

and its inverse

���� � e1��1���1"�

generate the bivariate Archimedean copula

�B��1��2� � e1���1�ln"�Æ��1�ln.�Æ�1�
1"Æ

and the multivariate Archimedean copula

�M��� � e1��∑�
	�1�1�ln"	�Æ����1��

1"Æ

where Æ ' 0. Independence and the Fréchet upper bound respectively occur
at values 1 and ∞ of the dependence parameter Æ. Figure C.12 shows the
bivariate dependence for Æ � 7 with uniform, Cauchy, and Levy margins.
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Fig. C.12. Density contours for a bivariate Archimedean copula generated from a de-
creasing convex generators with a) uniform, b) Cauchy, and c) Levy margins (Æ � 7).
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(8) The generator

��1��� �
�
��11!�1

�!
and its the inverse

���� �
�

1� �11!
��!

generate the bivariate Archimedean copula

�B��1��2� �

 
1�

��
��11Æ�1

�Æ
�
�
��11Æ�1

�Æ�11Æ
!�Æ

and the multivariate Archimedean copula

�M��� �

'()1�

�
�

∑
��1

�
�
�11Æ
� �1

�Æ�11Æ
���
�Æ

where Æ ' 1. The Fréchet upper bound occurs at value ∞ of the dependence
parameter Æ. Figure C.13 shows the bivariate dependence for Æ � 2 with
uniform, Gaussian, and inverse Gaussian (� � 2 and A � 1) margins.
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Fig. C.13. Density contours for a bivariate Archimedean copula generated from a de-
creasing convex generators with a) uniform, b) Gaussian, and c) inverse Gaussian margins
(Æ � 2).
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(9) The generator

��1��� �
�

1� �11!
�!

and its inverse

���� �
�

1� �11!
�!

generate the bivariate Archimedean copula

�B��1��2� � max

#$ 1�
��

1��11Æ
�Æ

�
�

1��11Æ
�Æ�11Æ

!Æ

�0

%&
where Æ ' 1. The Fréchet lower and upper bounds respectively occur at
values 1 and ∞ of the dependence parameter Æ. Figure C.14 shows the
bivariate dependence for Æ � 3 with uniform, Gamma (# � 2), and Pareto
(� � 2 and A � 2) margins. This copula is sometimes called the Genest-
Ghoudi family (Genest and Ghoudi, 1994).
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Fig. C.14. Density contours for a bivariate Archimedean copula generated from a de-
creasing convex generators with a) uniform, b) Gamma, and c) Pareto margins (Æ � 3).
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(10) The generator

��1��� �

�
1�

!

�

�
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where Æ ' 0. The Fréchet lower bound occurs at value 0 of the dependence
parameter Æ. Figure C.15 shows the bivariate dependence for Æ � 50 with
uniform, non-central beta (# � 2, � � 4, and non-central parameter equals
3), and Burr (� � 2, A � 2, and . � 2) margins.
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Fig. C.15. Density contours for a bivariate Archimedean copula generated from a decreas-
ing convex generators with a) uniform, b) non-central beta, and c) Burr margins (Æ � 50).
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where Æ �� 0. Independence and the Fréchet upper bound respectively occur
at values �1 and ∞ of the dependence parameter Æ. Figure C.16 shows the
bivariate dependence for Æ � �10 with uniform, inverse Gaussian (� � 2
and A � 1), and simplex (� � 0$5 and A � 1) margins.
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Fig. C.16. Density contours for a bivariate Archimedean copula generated from a de-
creasing convex generators with a) uniform, b) inverse Gaussian, and c) simplex margins
(Æ ��10).
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where Æ ' 0. The Fréchet upper bound occurs at value ∞ of the depen-
dence parameter Æ. Figure C.17 shows the bivariate dependence for Æ � 1
with uniform, logistic, and non-central beta (# � 2, � � 4, and non-central
parameter equals 3) margins.
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Fig. C.17. Density contours for a bivariate Archimedean copula generated from a de-
creasing convex generators with a) uniform, b) logistic, and c) non-central beta margins
(Æ � 1).
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where Æ � 0. Independence and the Fréchet upper bound respectively occur
at values 0 and ∞ of the dependence parameter Æ. Figure C.18 shows the bi-
variate dependence for Æ � 0$5 with uniform, Levy, and power exponential
margins.
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Fig. C.18. Density contours for a bivariate Archimedean copula generated from a de-
creasing convex generators with a) uniform, b) Levy, and c) power exponential margins
(Æ � 0�5).
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(14) The generator
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where Æ ' 1. The Fréchet lower and upper bounds respectively occur at val-
ues 1 and ∞ of the dependence parameter Æ. Figure C.19 shows the bivariate
dependence for Æ � 3 with uniform, lognormal, and Laplace margins.
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Fig. C.19. Density contours for a bivariate Archimedean copula generated from a de-
creasing convex generators with a) uniform, b) lognormal, and c) Laplace margins (Æ � 3).
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(15) The generator
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where Æ ' 1. The Fréchet lower and upper bounds respectively occur at
values 1 and ∞ of the dependence parameter Æ.
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where 0 , Æ � 1. The Fréchet lower bound and independence respectively
occur at values 0 and 1 of the dependence parameter Æ.
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where Æ ' 2. The Fréchet upper bound occurs at value ∞ of the dependence
parameter Æ.
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C.2 Two dependence parameters

(1) Applying Equation (4.4) to a positive stable (�) and a gamma (�) Laplace
transform, the Laplace transform obtained is
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where Æ � 1 and ! ' 0.
(Joe, 1997, p. 150; Nelsen, 1999, p. 116)

(2) Applying Equation (4.4) to two gamma Laplace transform, the Laplace
transform obtained is
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where Æ ' 0 and ! ' 0.
(Joe, 1997, pp. 150–151)
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(3) Applying Equation (4.4) to a gamma (�) and a positive stable (�) Laplace
transform, the Laplace transform obtained is
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The multivariate Archimedean copula is
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where Æ ' 0 and ! � 1.
(Joe, 1997, p. 151)

(4) Applying Equation (4.4) to a positive stable (�) and a power series (�)
Laplace transform, the Laplace transform obtained is
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where Æ � 1 and ! � 1.
(Joe, 1997, pp. 152–153)

(5) Applying Equation (4.4) to a gamma (�) and a power series (�) Laplace
transform, the Laplace transform obtained is
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where Æ ' 0 and ! � 1.
(Joe, 1997, p. 153)
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(6) The Laplace transform of a discrete power series, on positive integers with
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(Joe, 1997, pp. 153–154)

(7) The negative binomial Laplace transform
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where Æ ' 0 and 0 , ! , 1.
(Joe, 1997, p. 154)
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C.3 Three dependence parameters

The power variance Laplace transform
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where Æ ' 0 and
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*
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. This family includes as special case the

copula obtained from an inverse Gaussian Laplace transform �# � 1
2 �, a gamma

Laplace transform (# � 0), and a positive stable Laplace transform (! � 0).
(Hougaard, 1986a; Joe, 1997, p. 154 (for Æ � #); Hougaard, 2000, pp. 241–243
and 504–506)
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C.4 Bivariate extension to negative dependence

(1) The extended gamma Laplace transform is

���� �

�
e�� Æ � 0
�1� ���11Æ Æ �� 0 and �1 , Æ

and its extended inverse is

��1��� �
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The bivariate Archimedean copula extended for negative dependencies is
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Figure C.20 shows the bivariate dependence for Æ � �0$3 with uniform,
Gaussian, and Laplace margins.
(Genest and MacKay, 1986a; Joe, 1997, pp. 157–158; Nelsen, 1999, pp.
94–95)

a) Uniform margins.
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Fig. C.20. Density contours for a bivariate Archimedean copula generated from a gamma
Laplace transform with a) uniform, b) Gaussian, and c) Laplace margins (Æ ��0�3).
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(2) The extended logarithmic series Laplace transform is
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and the multivariate Archimedean copula extended for negative dependen-
cies is
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Figure C.21 shows the bivariate dependence for Æ � �5 with uniform, lo-
gistic, and Burr (� � 2, A � 2, And . � 2) margins.
(Joe, 1997, pp. 158–159; Nelsen, 1999, pp. 94–95)

a) Uniform margins.
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b) Logistic margins.
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Fig. C.21. Density contours for a bivariate Archimedean copula generated from a loga-
rithmic series Laplace transform with a) uniform, b) logistic, and c) Burr margins (Æ��5).
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