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Chapter 1

Introduction

Correlated data often occur in health-related research, like clinical trials or epidemi-

ological studies, and consist of responses grouped according to matched sets, such

as subjects or clusters. Examples include measurements on children within classes,

within schools, within regions,..., or a subject characteristic measured repeatedly over

time (the so-called longitudinal data). Naturally, observations within a cluster tend to

be more alike than observations from different clusters. Therefore, classical modeling

techniques such as linear regression, analysis of variance, or generalized linear models,

may not be valid. Instead, these data require specific methodology which take into

account the multiple sources of variation.

In the case of longitudinal data several model families are available. In so-called

marginal models, focus is on population averages while the joint dependence structure

is treated as nuisance. However, when interest lies in the association structure or

specific effects for each unit, subject-level terms are added to the model. These

unobserved parameters take the same value for each observation within a subject,

but different values among subjects. As such, the so-called random-effects model

contains a vector b of unobserved subject-specific effects, conditional upon which it is

then often assumed that the observed responses within each subject are independent.

Random-effects models for normal or Gaussian responses are well established.

In this setting, the linear mixed model (Verbeke and Molenberghs, 2000) offers a

unifying framework which can handle a wide variety of correlated data, including

repeated measurements and longitudinal data as well as clustered, hierarchical and

1



2 Chapter 1. Introduction

spatial data. Thanks to the choice of the normal distribution for the random effects,

the model marginalizes to a multivariate normal with easily interpretable mean and

variance components.

When dealing with non-Gaussian data, the most commonly used subject-specific

model is the generalized linear mixed model (Diggle et al., 2002; Molenberghs and

Verbeke, 2005). It is a straightforward extension of the generalized linear model

(McCullagh and Nelder, 1989), and accounts for correlation among clustered observa-

tions. Model fit is based on classical likelihood techniques, and requires maximization

of the marginal likelihood, which is obtained by integrating out the random effects

over their assumed distribution. The commonly used normal distribution for these

random effects generally leads to integrals that cannot be calculated in a closed form.

However, several numerical approximations have been implemented and are available

in standard software tools.

Obviously, estimation and inferences, based on such models, depend on the as-

sumption that the model and therefore, the random-effects distribution is correctly

specified. Since the random effects are unobserved, the validity of this assumption

can be difficult to verify. Therefore, the question naturally arising is concerned with

the impact of a misspecified random-effects distribution on the maximum likelihood

estimators and the inferential procedures in generalized linear mixed models. In the

present work, we will address this question via an extensive simulation study. Ad-

ditionally, we will propose a set of diagnostic tools which can detect this, and even

more general types of model misspecification. Finally, we will conclude with some

guidelines on how to proceed when facing the consequences of possible random-effects

misspecification.

This thesis can be structurally divided into three parts. The first part presents a

concise introduction to mental health, and to the key motivating study on schizophre-

nia, which is used throughout this work (Chapter 2). Chapter 3 provides a brief

review of the generalized linear mixed model and a short discussion on some of the

challenges involved in its application. The introductory part ends with Chapter 4,

which describes an initial analysis of the case study using a logistic-normal model.

The second part, consisting of 4 chapters, presents an overall picture of the effect

of random-effects misspecification on maximum likelihood estimation. First, some im-

portant contributions by White (1982) on likelihood inferences under general model

misspecification are summarized in Chapter 5. Chapter 6 focuses on random-effects

misspecification in the special case of linear mixed models, whereas Chapter 7 un-
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dertakes the study of the impact of this type of misspecification on the maximum

likelihood estimators in generalized linear mixed models. Guidelines are supplied to

distinguish those situations in which the misspecification has a negligible impact, from

those in which the misspecification can have serious consequences. Finally, Chapter 8

provides a theoretical result which states that whenever a subset of fixed-effects pa-

rameters, not included in the random-effects structure, equals zero, the corresponding

maximum likelihood estimator will consistently estimate zero. This implies that un-

der certain conditions a significant effect could be considered as a reliable result, even

if the random-effects distribution is misspecified.

The third part of this work comprises 5 additional chapters, which focus on re-

medial measures for random-effects misspecification. Following some ideas by White

(1982), Chapters 9 and 10 introduce a set of diagnostic tools to detect misspecifi-

cation. The availability of such a toolbox then naturally raises the issue of how to

proceed in the presence of misspecification. When the number of subjects and the

number of repeated measurements per subject are sufficiently large, it will be shown

in Chapter 11 that the maximum likelihood estimators of the mean structure remain

asymptotically robust, irrespective of the distribution of the random effects. However,

when the available information is not sufficiently large to rely on asymptotic results,

alternative approaches need to be considered. Since at the moment there does not

seem to exist a model family which is generally robust against this type of misspeci-

fication, Chapter 12 proposes a sensitivity analysis, where different distributions are

considered for the random effects. In some specific situations, robust alternative mod-

els can be found. For instance, the linear mixed model for normal responses is known

to be robust against random-effects misspecification. In Chapter 13, it will be shown

that another example is given by the Poisson-gamma model for repeated counts. Fi-

nally, Chapter 14 recapitulates some concluding remarks and offers a perspective on

possible future research.





Chapter 2

A Case Study in Mental

Health

2.1 Introduction

The World Health Organization (WHO) defines mental health as “not merely the

absence of disease” but rather as “a state of complete physical, mental and social

well-being”. Together with physical health, mental health contributes to the overall

well-being of individuals, societies and communities. Recent advances in neuroscience

and behavioral medicine have shown that, like many physical illnesses, mental and

behavioral disorders are the result of a complex interaction between biological, psy-

chological and social factors. They are known to have a basis in the brain and they

can affect people of all ages in all countries.

Today, around 450 million people are estimated to be suffering from a mental

disorder, and mental disorders are estimated to account for 12% of the global disease

burden. Fortunately, in most cases, the presence of mental disorders can be diagnosed

and treated cost-effectively, so that people affected by them can have a better chance

of living a full and productive life within their own community. However, only few of

those affected receive even the most basic treatment. In most parts of the world, men-

tal disorders are not regarded with the same importance as physical disorders. Today,

more than 40% of the countries have no mental health policy. Those that do foresee a

5



6 Chapter 2. A Case Study in Mental Health

mental health budget, spend less than 1% of their total health expenditures on mental

and behavioral disorders. In developing countries, most individuals diagnosed with

severe mental disorders do not receive any help to cope with depression, dementia,

schizophrenia and substance dependence. Instead, they become targets of stigma and

discrimination (The World Health Report 2001, available at http://www.who.int).

The economic cost of mental disorders on society should not be underestimated.

Indeed, it is long lasting and huge. Studies estimating the aggregate economic burden

on social service needs, lost employment and reduced productivity obtained that

mental disorders account for about 2.5% of the gross national product in the United

States. In Europe, some studies have estimated the expenses of mental disorders as

a proportion of all health costs. In the Netherlands, this amounted to 23.2%, and in

the United Kingdom, for patients residing in hospitals only, the costs were up to 22%

(Burzykowski, Molenberghs and Buyse, 2005).

The occurrence of mental disorders is truly universal, affecting people of all coun-

tries and societies, all ages, both women and men, rich and poor, from urban and

rural environments. Mental disorders are said to be present in about 10% of the

adult population at any given point in time. One in four families is likely to have at

least one member diagnosed with a mental disorder. And the problem will only grow

as experts expect further increases in the number of diagnoses in view of the ageing

population, worsening social problems and civil unrest. Already, mental disorders rep-

resent four of the 10 leading causes of disability worldwide. Most common disorders,

with usually severe disabilities, include depressive disorders, substance use disorders,

epilepsy, Alzheimer, mental retardation and schizophrenia (The World Health Report

2001, available at http://www.who.int).

The topic of our case study, schizophrenia, is one of the most disabling and emo-

tionally devastating illnesses known to man. This disease has been misunderstood for

a very long time, and its victims were frequently undeservingly stigmatized. Although

accounts relating to symptoms of schizophrenia go back as far as 2000 BC, it was not

until 1908 that the term was first used by Eugene Bleuler, a Swiss psychiatrist, to

refer to the lack of interaction between thought processes and perception. The term

is actually derived from two Greek words and literally means “split” or “shattered

mind”. This perhaps confusing term has led to the common misconception that af-

fected people suffer from a split personality. Nevertheless, although patients may

suffer from hallucinations or delusions, it generally does not involve changing among

distinct personalities.
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Schizophrenia is most commonly diagnosed during late adolescence or early adult-

hood, and approximately equally in men and women. Symptoms are often described

in terms of “positive” and “negative” manifestations. Positive symptoms include

delusions, auditory hallucinations and thought disorder and are typically regarded as

manifestations of psychosis. Negative symptoms include the loss or absence of normal

traits or abilities, and include features such as a lack of emotional expression, poverty

of speech and lack of motivation. Additionally, deficits in the form of reduced or im-

paired psychological functions such as memory, attention, problem-solving, executive

function or social cognition may be present.

By the first half of the twentieth century, schizophrenia was considered by many a

hereditary disease, and individuals affected by schizophrenia were often removed from

the evolutionary cycle through sterilization. During the regime of Adolf Hitler, be-

tween 75,000 to 250,000 people diagnosed with schizophrenia, or labeled as “mentally

unfit” were murdered in the context of the Nazi “cleansing” program.

Nowadays, it is suggested that schizophrenia can affect anyone at any point in life.

Although no common cause of schizophrenia has been identified in all individuals di-

agnosed with the condition, it is believed that genetic vulnerability and environmental

stressors can act together to result in its diagnosis. The extent to which these factors

influence the likelihood of being diagnosed with schizophrenia is debated widely, and

currently controversial. Although it does have a strong heritable component (some

estimates are as high as 80%), research is showing that also stressful life events can

cause or trigger the disease (Day et al., 1987; Harrison and Owen, 2003; Corcoran et

al., 2003).

With modern advances in science, including drug therapy and psychological care,

almost half of the individuals developing schizophrenia can expect a full and lasting

recovery. Of the remainder, only about one-fifth continue to face serious limitations

in their day-to-day activities. Part of the treatment of schizophrenia focuses on the

treatment of the psychotic symptoms using so-called antipsychotic drugs. Risperidone

is one such antipsychotic, which is generally accepted as a first-line treatment for

newly-diagnosed patients. Although not effective for everyone, its side effects are

usually minimal at regular maintenance dosages. In the case study that motivated

the present work, the effect of risperidone was compared to that of conventional

antipsychotic agents for the treatment of chronic schizophrenia (Alonso et al., 2004).

The data obtained from this randomized clinical trial will be described in the next

section.
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Table 2.1: The Clinical Global Impression (CGI) questionnaire.

Considering your total clinical experience with this particular population,

how severe is the patient’s schizophrenia at this time?

2 1. Normal (not at all ill)

2 2. Borderline mentally ill

2 3. Mildly ill

2 4. Moderately ill

2 5. Markedly ill

2 6. Severely ill

2 7. Extremely ill

2.2 Data From Clinical Trials in Schizophrenia

Like many mental illnesses, the diagnosis of schizophrenia is based upon the behavior

of the person being assessed. Several measures can be used to evaluate a patient’s

global condition. The Clinical Global Impression (CGI) is generally accepted as a

subjective but useful clinical measure of change. It is a 7-grade scale used to charac-

terize a subject’s mental condition (see the questionnaire in Table 2.1). In the case

study, the binary response variable Yi for the ith patient is a dichotomous version of

the CGI which equals 1 for those subjects classified as normal to mildly ill, and 0 for

those classified as moderately to extremely ill. Since it is recommended that risperi-

done is most effective at doses ranging from 4 to 6 mg/day, we considered only those

patients receiving either these doses of risperidone, i.e., the treatment group zi = 1,

or the active control, i.e., the control group zi = 0. Treatment was administered for

2 months and the outcome was measured at weeks 0, 1, 2, 4, 6, and 8. In total,

128 patients were included in the trial, from which 64 were assigned to the treatment

group. These data are shown in Appendix A.

Figure 2.1 summarizes the probability of being classified as normal to mildly ill

(P (Y = 1)), by time point and treatment group. Further, Table 2.2 summarizes

the dropout per time point and per treatment group. From this table we can

see that the dropout is slightly higher in the control group. Additionally, in both

groups around 50% of the participants are missing near the end of the study. A full

discussion and analysis of this missing data problem goes beyond the scope of the

present work. Therefore, in what follows, we will assume that the underlying missing

data generating mechanism was missing at random (MAR), i.e., conditional on the

observed data the missingness is independent of the unobserved measurements. We
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Figure 2.1: Schizophrenia data. Evolution over time of the observed probabilities of

being classified as normal to mildly ill, by treatment group (Z = 0 for the control

group and Z = 1 for the treatment group).

Table 2.2: Schizophrenia data. Dropout (in %) per time point and treatment group,

where z = 0 (z = 1) represents the control (treatment) group.

Time z = 0 z = 1

0 0 0

1 2 0

2 14 8

4 25 17

6 47 34

8 52 42

refer to Molenberghs and Verbeke (2005) and Kenward and Molenberghs (2007) for

more details on this topic in the context of discrete longitudinal data.

As mentioned in Chapter 1, the analysis of these data requires a model which takes

into account the correlation between observations coming from the same subject. One

such approach, given by the generalized linear mixed model, will be introduced in

the next chapter along with a discussion of some of the challenges involved in its

application.





Chapter 3

Generalized Linear Mixed

Models

The generalized linear mixed model has become a powerful parametric tool for the

analysis of non-Gaussian longitudinal data with multiple sources of variation. Its

implementation in popular statistical packages, such as the SAS procedures MIXED,

NLMIXED, and GLIMMIX, or the R functions lme and glmm, has substantially con-

tributed to its wide use in different areas like, for example, toxicology (Molenberghs

and Verbeke, 2005), epidemiology (Kleinman, Lazarus and Platt, 2004), dairy science

(Tempelman, 1998), etcetera. In this chapter, the model is briefly introduced, and

some general issues in its estimation are discussed.

3.1 Model Formulation

Let yij be the jth response of subject i, i = 1, . . . , n and j = 1, . . . , ni. Conditional

on a vector of individual random effects bi, the outcome variables are assumed to be

independent, with density functions belonging to the exponential family

f(yij |θij , ϕ) = exp[ϕ−1{yijθij − ψ(θij)} + c(yij , ϕ)], (3.1)

where ϕ is a scale parameter, c(.) is a function only depending on yij and ϕ, and

ψ(.) is a function satisfying E(yij |bi) = ψ′(θij) and Var(yij |bi) = ϕψ′′(θij). Further,

11
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µij = E(yij |bi) = v(xT
ijβ + zT

ijbi), where v(.) denotes a known link function, xij and

zij are vectors of covariates, and β is a vector of unknown fixed regression coefficients.

The subject-specific effects bi are often assumed to be normally distributed with mean

zero and variance-covariance matrix D. Examples of generalized linear mixed models

include the linear mixed model for continuous data (see Section 3.3), the logistic-

normal model for binary data, and the Poisson-normal model for count data. Fitting

these models requires maximization of the marginal likelihood, obtained by integrating

out the random effects. Let the contribution to the likelihood of subject i be given

by

fi(yi|β, D, ϕ) =

∫ ni∏

j=1

f(yij |θij , ϕ)f(bi|D)dbi, (3.2)

then we can derive the marginal likelihood as

L(β, D, ϕ) =
n∏

i=1

∫ ni∏

j=1

f(yij |θij , ϕ)f(bi|D)dbi. (3.3)

The commonly used normal distribution for the random effects generally leads to an

intractable likelihood function. Only in a few special cases can (3.2) be worked out

analytically. For instance, in linear mixed models, (3.2) corresponds to the density

of a multivariate normal distribution. The extension of the linear mixed model to

non-Gaussian data does not exhibit the same behavior. One of the problems is that

there is no analogue to the multivariate normal distribution for generalized linear

mixed models. This, together with the nonlinearity introduced by the link function

v, implies that the parameters of the random-effects model and the induced marginal

model have different interpretations.

Even though (3.2) cannot be calculated in closed form, several numerical approx-

imations to the likelihood have been implemented in the available software tools.

These include approximations of the integrand, approximations of the data and ap-

proximations of the integral itself. When interest is in approximating the integrand,

Laplace-type approximations can be used to obtain a closed-form expression for the

likelihood. The second class of approximations is based on the decomposition of the

data into a Taylor series expansion of the mean and an appropriate error term. This

approach includes, for example, penalized and marginal quasi-likelihood. An exten-

sive discussion of these numerical approximation techniques is given in Molenberghs

and Verbeke (2005). In this manuscript, we will mainly focus on approximations of the

integral via Gaussian quadrature, as implemented in the SAS procedure NLMIXED.
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3.1.1 Gaussian Quadrature

Gaussian quadrature is a technique designed to approximate integrals of the form

∫
f(z)φ(z)dz, (3.4)

where f(z) is a known function and φ(z) represents the density of the (multivariate)

standard normal distribution. If we define a new set of random effects ai = D−1/2bi,

then ai follows a normal distribution with mean 0 and variance-covariance matrix I.

Hence, the likelihood contribution (3.2) for every subject i can be rewritten as

fi(yi|β, D, ϕ) =

∫ ni∏

j=1

f(yij |θij , ϕ)f(bi|D)dbi

=

∫ ni∏

j=1

f [yij|θij(ai), ϕ,D]φ(ai)dai. (3.5)

Expression (3.5) is of the form (3.4), and can easily be evaluated via Gauss-Hermite

polynomials, i.e.,
∫ ∞

−∞

f(z)φ(z)dz ≈
Q∑

q=1

P (zq)wq . (3.6)

In this formula, the integral is approximated by a weighted sum evaluated at Q values

zq, called quadrature points. The weights wq depend only on Q and the normal

density. In the simple setting of univariate integration, the approximation consists of

subdividing the integration region in intervals, and approximating the area under the

curve by the sum of the areas of the so-obtained rectangles. In general, the higher Q,

the smaller the intervals and the better the approximation. This technique is called

Gaussian quadrature and is illustrated in the left panel of Figure 3.1, for Q = 10.

Note that the quadrature points zq are independent of the function f(z), so de-

pending on the support of f(z), the zq will or will not lie in the region of interest. For

example, in the left panel of Figure 3.1, the mode z̃ of f(z) lies remote from 0. Then,

for a small value of Q, the quadrature points zq will be inappropriate. In that case,

it might be useful to rescale and shift the quadrature points such that more points

lie in the region of interest: centered at z̃ and with spread depending on the shape

of f (as illustrated in the right panel of Figure 3.1). This goes by the name of adap-

tive Gaussian quadrature, where the quadrature points are centered and scaled as if

f(z)φ(z) would follow a normal distribution. The mean of this normal distribution
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Figure 3.1: Gaussian and adaptive Gaussian quadrature obtained from 10 quadrature

points. The black triangles indicate the position of the quadrature points, while the

rectangles indicate the contribution of each point to the integral (ref. Molenberghs and

Verbeke, 2005).

corresponds to the mode z̃ of ln[f(z)φ(z)]; the variance of this distribution equals

τ̂ =

[
− ∂2

∂z2
ln[f(z)φ(z)]

∣∣∣∣
z=z̃

]−1

. (3.7)

Hence, the new quadrature points are given by z∗q = z̃+
√
τ̂ zq, the corresponding new

weights by w∗
q =

φ(z∗

q )

φ(zq)

√
τ̂wq, and, as a result, the integral in (3.5) is approximated by

∫ ∞

−∞

f(z)φ(z)dz ≈
Q∑

q=1

P (z∗q )w∗
q . (3.8)

Maximizing this approximate likelihood still involves first and second order deriva-

tives. Additionally, an approximation of the likelihood contribution for each one of the

n subjects is needed to determine the mode of ln[f(z)φ(z)]. So, even though typically,

with adaptive Gaussian quadrature (much) less quadrature points are needed than

with non-adaptive Gaussian quadrature, this does not always imply fewer function

evaluations, and therefore, adaptive Gaussian quadrature can become time consum-

ing.
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3.2 Inferential Procedures

Once an approximation to the marginal likelihood is available, inferences for the

model parameters are obtained from classical maximum likelihood theory. Indeed,

assuming that the model is correctly specified, the maximum likelihood estimators

are asymptotically normally distributed with the correct values as means, and the

inverse Fisher information matrix as covariance matrix. Hence, Wald-type tests for

the mean structure parameters can easily be constructed, as well as likelihood ratio

and score tests.

However, when inferences for some variance components in D are of interest, clas-

sical tests may not be valid as the hypotheses to be tested tend to be on the boundary

of the parameter space. For instance, when testing for the presence of a random in-

tercept, one generally tests the hypothesis that the variance σ2
b of the random effect

equals zero. Since variances cannot be negative, the null-hypothesis H0 : σ2
b = 0 is

clearly on the boundary of the parameter space. As a result, none of the classical

Wald, likelihood ratio or score tests are valid. In this setting, appropriate alterna-

tives can be constructed for which the asymptotic null distribution is a mixture of

chi-squared distributions (Verbeke and Molenberghs, 2003; Silvapulle and Silvapulle,

1995; and Hall and Praestgaard, 2001).

It should be pointed out that inferences in generalized linear mixed models are

based on the marginal model (3.2) rather than on the original hierarchical model

given by (3.1). In practice this could lead to negative estimates of the variance

components. Indeed, the representation of the marginal model does not explicitly

assume the presence of random effects representing the natural heterogeneity between

the subjects, but merely a specific structure for the marginal covariance matrix. As

far as this covariance matrix is positive definite, a valid marginal model is obtained.

However, in this case the resulting model does not allow any hierarchical interpretation

since no random-effects structure could ever induce such a model. Although the

marginal model follows naturally from the random-effects model, both models are

not equivalent. Different random-effects models can produce the same marginal model

and some marginal models cannot be obtained from any hierarchical counterpart.

Finally, note that the estimates of the random effects bi can be useful for predicting

cluster-specific evolutions. They reflect between-subject variability and can therefore

be valuable to detect outlying profiles or groups of individuals evolving different over

time. Since random effects are assumed to be random variables, a natural method to
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obtain estimates follows from Bayesian methodology. Indeed, the posterior density of

the random effects is given by

fi(bi|yi,β, D, φ) =

∏ni

j=1 f(yij |θij , φ)f(bi|D)
∫ ∏ni

j=1 f(yij |θij , φ)f(bi|D)dbi
. (3.9)

Therefore, the so-called empirical Bayes (EB) estimates of bi are readily given by

the posterior mode of this density, i.e., the value of bi that maximizes the posterior

density, in which the unknown parameters have been replaced by their maximum

likelihood estimates.

3.3 Special Case: the Linear Mixed Model

An important special case of generalized linear mixed models is obtained when the

response vector yi is continuous and assumed to follow a normal distribution. In this

setting, the following linear mixed model was proposed by Laird and Ware (1982).

Conditional on a vector of subject-specific random effects bi, the outcomes yi are

modeled as
yi = Xiβ + Zibi + εi, (3.10)

where Xi and Zi now represent ni×p and ni×q matrices of known covariates, and the

random effects bi are assumed to be sampled from a multivariate normal distribution

with mean zero and covariance matrix D. Finally, the residual vector εi is assumed

to be independent from bi and to be normally distributed with zero mean and some

covariance matrix Σi.

As before, estimation is based on maximization of the marginal likelihood of yi,

i.e., fi(yi) =
∫
fi(yi|bi)f(bi)dbi. In this expression, the normal random-effects dis-

tribution is conjugate to the normal distribution of the outcome, conditional on the

random effects. As a result, the linear mixed model (3.10) implies a multivariate nor-

mal marginal model for yi with mean Xiβ and covariance matrix Vi = ZiDZ
T
i + Σi.

This connection between the hierarchical and the marginal specification of the model

allows both a marginal and a hierarchical interpretation for the fixed-effects param-

eters β. The fitting of a linear mixed model is usually based on the marginal model

for the response vector yi. However, an extensive description of estimation and infer-

ences related to this model would be outside the scope of this manuscript. Instead,

we refer to Verbeke and Molenberghs (2000) for an elaborate discussion.



Chapter 4

Initial Analysis of the Case

Study

Let us recall the case study introduced in Section 2.2. Given the discrete nature of

the repeated outcomes, the generalized linear mixed model can be considered as an

appropriate choice for the analysis of these data. Therefore, in this chapter we will use

the techniques previously introduced in Chapter 3 to study the effect of risperidone

on the evolution of patients suffering from chronic schizophrenia.

We analyzed the data using a random-intercept model by considering different link

functions and linear predictors. In the model building exercise, a total of nine models

were fitted. These models were constructed as combinations of three link functions,

i.e., the logit, log-log and probit link, and three different linear predictors (LP) which

can be summarized as

• LP1: β0 +β1zi +β2tj + β3zitj (4.1)

• LP2: β0 +β1zi +β2tj (4.2)

• LP3: β0 +β2tj + β3zitj (4.3)

where zi = 1 (0) denotes the treatment (control) group and tj denotes the occasion of

measurement. The random intercept bi was always assumed to follow a normal dis-

tribution with mean zero and variance σ2
b . All the previous models were fitted using

the SAS procedure NLMIXED with adaptive Gaussian quadrature and 20 quadrature

17
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Table 4.1: Schizophrenia data. Maximum likelihood estimates (standard errors) and

AIC values from the different random-intercept models obtained as combinations of

three link functions and the three linear predictors defined in (4.1)-(4.3).

Link β0 β1 β2 β3 σ2

b AIC

Logit LP1 -7.36 (1.23) 2.12 (1.25) 0.65 (0.14) 0.006 (0.170) 21.01 (6.81) 393.9

LP2 -7.37 (1.18) 2.14 (1.08) 0.65 (0.09) 21.01 (6.81) 391.9

LP3 -6.20 (0.90) 0.56 (0.12) 0.16 (0.14) 21.17 (6.65) 394.9

Log-log LP1 -6.14 (0.94) 1.80 (0.95) 0.51 (0.11) -0.059 (0.127) 11.74 (3.85) 395.1

LP2 -5.99 (0.87) 1.57 (0.81) 0.47 (0.07) 11.76 (3.86) 393.3

LP3 -5.15 (0.67) 0.43 (0.09) 0.068 (0.106) 12.08 (3.90) 396.9

Probit LP1 -4.07 (0.67) 1.18 (0.69) 0.36 (0.07) 0.002 (0.091) 6.47 (2.07) 394.2

LP2 -4.07 (0.64) 1.18 (0.60) 0.36 (0.05) 6.47 (2.07) 392.9

LP3 -3.42 (0.48) 0.31 (0.06) 0.081 (0.077) 6.48 (2.02) 395.3

points. The corresponding maximum likelihood estimates obtained from all combi-

nations of link functions and linear predictors are displayed in Table 4.1. We used

Akaike’s Information Criterion (AIC) to select the best fitting model (the smaller the

value of the criterion, the better the model). Given the AIC values shown in the last

column of Table 4.1, it follows that the model with the best fit is given by

logit{P (yij = 1|bi)} = β0 + β1zi + β2tj + bi. (4.4)

Figure 4.1 displays the fitted probabilities obtained from this model against the ob-

served probability of being classified as normal to mildly ill (i.e., P (Y = 1)) by time

point and treatment group. The fitted probabilities are calculated by numerically

integrating out the random effect for each subject. Until week 4 there seems to be a

reasonable agreement between the fitted and the observed values. Nevertheless, some

discrepancy is observed in the last two measurement occasions. As stated before, the

proportion of dropouts is significantly high for these two measurements, specially in

week 8 for the control group (see Table 2.2). In the presence of missing data such a

discrepancy is not necessarily an evidence of lack of fit (Molenberghs and Verbeke,

2005). However, a full discussion of the missing data problem would be outside the

scope of this work. Instead, as stated in Chapter 2, we will assume that the missing

data generating mechanism is MAR, making our likelihood approach a valid option.

Note that, even though the model given by (4.4) emerged as the best fitting model



19

Time

0 1 2 4 6 8

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Observed (Z=0)
Observed (Z=1)
Fitted (Z=0)
Fitted (Z=1)

Figure 4.1: Schizophrenia data. Evolution of the observed and estimated (using

model (4.4)) probabilities of being classified as normal to mildly ill, by treatment

group.

among all the ones considered in the model building exercise, it produces relatively

extreme estimates for the intercept and the variance component. We believe this is

the result of some extreme response pattern in the data. For example, in the control

group a high proportion of the patients (75%) have a response pattern of nothing

but zeros, whereas in the treatment group a more variable pattern of responses is

observed. There, only 56% of the patients have a response pattern consisting solely

of zeros. Hence, the large estimate for the variance of the random component could

be explained by the high intra-subject correlation that these data seem to suggest.

Allowing σ2
b to vary among the treatment groups did not improve the fit. Indeed,

this analysis resulted in a random-effect variance of 20.00 (s.e. 7.93) for the treatment

group and 22.61 (s.e. 10.69) for the control group. Clearly, these high variances hint

on a very strong within-subject correlation within both treatment groups.

Arguably, these circumstances could render the assumption of a normal distri-

bution for the random effects questionable. However, this situation should not be

considered exceptional or infrequent. Indeed, in a typical placebo controlled clinical

trial such an extreme pattern of all zeros could be expected in the placebo control

group, whereas a more variable pattern should be expected in the responses of the



20 Chapter 4. Initial Analysis of the Case Study

treated group. This naturally leads to concerns about the impact of a misspecified

random-effects distribution on our estimates and related inference procedures. There-

fore, in what follows, we will study how such misspecification can affect maximum

likelihood estimation, starting with a review in Chapter 5 of some available theory on

likelihood inference under general model misspecification.



Chapter 5

Maximum Likelihood

Estimation in Misspecified

Models

In a landmark paper, White (1982) analyzed in detail the whole problem of likelihood

inferences under general model misspecification. Some of his results will play a central

role in the present work, and therefore this chapter is devoted to summarize his

findings.

Let us consider a random variable y with density function h, and a parametric

family of density functions F = {f(y, ξ) : ξ ∈ Υ}. If there exists a ξ0 ∈ Υ such

that F contains the true distribution (i.e., h(y) can be written as f(y, ξ0)), then

the maximum likelihood estimator ξ̂n of ξ0 is consistent and asymptotically normal.

However, since in practice h is unknown, it can be difficult to check whether h belongs

to F or not.

In general, when h does not belong to F, White (1982) has shown that the max-

imum likelihood estimator ξ̂n will (strongly) converge to the value of ξ, denoted by

ξ∗, which minimizes the so-called Kullback-Leibler Information Criterion (KLIC)

I(h : f, ξ) = E

[
log

h(y)

f(y, ξ)

]
. (5.1)

Here and in what follows, the expectations are taken with respect to the true distri-

21
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bution h. The following assumptions provide the necessary conditions to prove this

result.

Assumption 5.1 The independent random vectors Yi (i = 1, . . . , n) have common

joint distribution function H on Ω, a measurable Euclidean space, with measurable

Radon-Nikodým density h =
dH

dv
.

Assumption 5.2 The family of distribution functions F (y, ξ) has Radon-Nikodým

densities f(y, ξ) =
dF (y; ξ)

dv
, such that

• f is measurable in y for every ξ ∈ Υ, where Υ is a compact subset of a p-

dimensional Euclidean space, and

• f is continuous in ξ, for every y ∈ Ω.

Assumption 5.3 The following properties hold:

• E[log h(y)] exists and | log f(y, ξ)| ≤ m(y) for all ξ ∈ Υ, where m is integrable

with respect to H, and

• I(h : f ; ξ) has a unique minimum at ξ∗ ∈ Υ.

Note that Assumption 5.3 ensures that the KLIC is well-defined, and together with

Assumptions 5.1 and 5.2 it specifies the regularity conditions needed for the following

consistency theorem.

Theorem 5.1 (Consistency) Given Assumptions 5.1-5.3, ξ̂n
a.s.−→ ξ∗.

Next, White (1982) studied the asymptotic normality of the maximum likelihood esti-

mators under model misspecification. To this end, we need to introduce the following

additional notation

A(ξ) = E

{
∂2 log f(y, ξ)

∂ξk∂ξℓ

}
, (5.2)

B(ξ) = E

{
∂ log f(y, ξ)

∂ξk
· ∂ log f(y, ξ)

∂ξℓ

}
, (5.3)

An(ξ) =

{
1

n

n∑

i=1

∂2 log f(yi, ξ)

∂ξk∂ξℓ

}
, (5.4)

Bn(ξ) =

{
1

n

n∑

i=1

∂ log f(yi, ξ)

∂ξk
· ∂ log f(yi, ξ)

∂ξℓ

}
, (5.5)
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for k, ℓ = 1, . . . , p, where p refers to the number of parameters in the model. Further,

let V (ξ) = A−1(ξ)B(ξ)A−1(ξ), and Vn(ξ) = A−1
n (ξ)Bn(ξ)A−1

n (ξ). Finally, we need

to consider the following additional assumptions.

Assumption 5.4 The functions

∂ log f(y, ξ)

∂ξk

are measurable with respect to y for each ξ ∈ Υ, and continuously differentiable of ξ

for each y ∈ Ω.

Assumption 5.5 The functions
∣∣∣∣
∂2 log f(y, ξ)

∂ξk∂ξℓ

∣∣∣∣ and

∣∣∣∣
∂ log f(y, ξ)

∂ξk
· ∂ log f(y, ξ)

∂ξℓ

∣∣∣∣

are dominated by functions integrable with respect to H for all y ∈ Ω and all ξ ∈ Υ.

Assumption 5.6 The following properties hold:

• ξ∗ is an interior point of Υ,

• B(ξ∗) is nonsingular, and

• ξ∗ is a regular point of A(ξ) (i.e., A(ξ) has constant rank in some open neigh-

borhood of ξ)

Using these elements, White (1982) showed that

Theorem 5.2 (Asymptotic normality) Given Assumptions 5.1-5.6,

√
n(ξ̂n − ξ∗) ∼ N(0, V (ξ∗)). (5.6)

Moreover, Vn(ξ̂n)
a.s.−→ V (ξ∗), element by element.

Under a correctly specified model, classical asymptotic normality of the maximum

likelihood estimators can be recovered from Theorem 5.2. However, before this idea

can be formalized, an extra assumption is needed.

Assumption 5.7 The functions
∣∣∣∣
∂

∂ξℓ

[
∂f(y, ξ)

∂ξk
· f(y, ξ)

]∣∣∣∣

are dominated by functions integrable with respect to v, for all ξ ∈ Υ, and the minimal

support of f(y, ξ) does not depend on ξ.



24 Chapter 5. Maximum Likelihood Estimation in Misspecified Models

Theorem 5.3 (Information Matrix Equivalence) Given Assumptions 5.1-5.7, and

given that h(y) = f(y, ξ0) belongs to F, then

1. ξ∗ = ξ0, and (5.7)

2. A(ξ0) = −B(ξ0). (5.8)

This theorem states that, under a correctly specified model, the information crite-

rion (5.1) attains its unique minimum at ξ∗ = ξ0. Hence, ξ̂n is a consistent estimator

for ξ0, and

V (ξ0) = −A−1(ξ0). (5.9)

This theorem also implies that, under misspecification, the information matrix equiv-

alence given by (5.8) does not necessarily hold. As a result, classical tests such as

the Wald test may no longer be valid. Nevertheless, an appropriate correction of the

Wald test can be obtained from Theorem 5.2. To this end, suppose that the null and

alternative hypotheses are of the following form

H0 : s(ξ∗) = 0,

HA : s(ξ∗) 6= 0,

where s : ℜp → ℜr is a continuous function such that its Jacobian ∇s(ξ∗) is finite

and of full rank r. The appropriate form of the Wald statistic is then given by

Theorem 5.4 (Wald Test)

ns(ξ̂n)T [∇s(ξ̂n)Vn(ξ̂n)∇s(ξ̂n)T ]−1s(ξ̂n) ∼ χ2
r . (5.10)

Additionally, from Theorem 5.3, it follows that, under a correctly specified model,

A(ξ0) + B(ξ0) = 0. As a consequence, deviations from the model assumptions are

expected to distort this equality. Therefore A(ξ∗)+B(ξ∗) could be used as a potential

indicator of misspecification. Note that, although these two matrices are unobserv-

able, they can be consistently estimated using An(ξ̂n) and Bn(ξ̂n).

As discussed by White (1982), it may be prohibitive to base a test for misspecifi-

cation on all elements of An(ξ̂n) + Bn(ξ̂n). So, for simplicity reasons, we will focus

only on its diagonal elements. Let d(y, ξ) represent the p× 1 vector with elements

dk(y, ξ) =

{
∂ log f(y, ξ)

∂ξk

}2

+
∂2 log f(y, ξ)

(∂ξk)2
. (5.11)
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Then,

Dn(ξ̂n) =
1

n

n∑

i=1

d(yi, ξ̂n) (5.12)

represents the p × 1 vector containing the diagonal elements of An(ξ̂n) + Bn(ξ̂n).

Further, let D(ξ) = E[d(y, ξ)] and define the p× p Jacobian matrices

∇D(ξ) = E

{
∂dk(y, ξ)

∂ξℓ

}
, and

∇Dn(ξ) =

{
1

n

n∑

i=1

∂dk(yi, ξ)

∂ξℓ

}
. (5.13)

Finally, let us consider

C(ξ) = E
{
[d(y, ξ) −∇D(ξ)A−1(ξ)∇ log f(y, ξ)]

×[d(y, ξ) −∇D(ξ)A−1(ξ)∇ log f(y, ξ)]T
}
.

The following assumptions guarantee that C(ξ) is well-defined.

Assumption 5.8 The functions

∂dk(y, ξ)

∂ξℓ

exist and are continuous functions of ξ for each y.

Assumption 5.9 The functions

|dk(y, ξ)dm(y, ξ)|,
∣∣∣∣
∂dk(y, ξ)

∂ξℓ

∣∣∣∣ , and

∣∣∣∣dk(y, ξ)
∂ log f(y, ξ)

∂ξℓ

∣∣∣∣

are dominated by functions integrable with respect to H for all y and ξ in Υ.

Assumption 5.10 C(ξ∗) is nonsingular.

White (1982) showed that C(ξ∗) is the asymptotic covariance matrix of
√
nDn(ξ̂n),

and a consistent estimator for C(ξ∗) is given by

Cn(ξ̂n) =
1

n

n∑

i=1

[d(yi, ξ̂n) −∇Dn(ξ̂n)A−1
n (ξ̂n)∇ log f(yi, ξ̂n)]

×[d(yi, ξ̂n) −∇Dn(ξ̂n)A−1
n (ξ̂n)∇ log f(yi, ξ̂n)]T . (5.14)

Using these elements, White (1982) proposed the following general test for model

misspecification.
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Theorem 5.5 (Information Matrix Test) Given the Assumptions 5.1-5.10, and

if the model is correctly specified, then

1.
√
nDn(ξ̂n) ∼ N(0, C(ξ0)),

2. Cn(ξ̂n)
a.s.−→ C(ξ0), and Cn(ξ̂n) is nonsingular almost surely for all n sufficiently

large,

3. the Information Matrix Test (IMT) statistic

ℑ(n) = nDT
n (ξ̂n)C−1

n (ξ̂n)Dn(ξ̂n) (5.15)

is distributed asymptotically as χ2
p.

The IMT provides a unified framework for testing misspecification in a wide variety

of settings. One could expect the test to be consistent against any alternative which

renders the usual maximum likelihood inference invalid. If model misspecification is

detected, this may imply inconsistency of some maximum likelihood estimators. In

this case, proper inferences can be drawn for ξ∗ using, for example, the corrected Wald

test as described in Theorem 5.4, but inferences for the parameters of interest may be

difficult to obtain. Clearly, in such a situation it is of the utmost importance to know

how much bias may be introduced in the estimation procedures. If the maximum

likelihood estimators are severely affected, then alternative approaches would need to

be considered.

In the present work, we are mainly concerned with the impact of random-effects

misspecification in generalized linear mixed models. Verbeke and Lesaffre (1997)

studied in detail how estimation and inferential procedures associated with linear

mixed models are affected by this type of misspecification. In the next chapter, we

summarize their findings for this relevant special case.



Chapter 6

Random-effects

Misspecification in Linear

Mixed Models

Classical likelihood theory has shown that, if the assumed model is correctly specified,

the maximum likelihood estimators are consistent and asymptotically normally dis-

tributed with the inverse of the Fisher information matrix as asymptotic covariance

matrix. Similar results can be obtained in linear mixed models, when the random-

effects distribution is misspecified as normal (Verbeke and Lesaffre, 1997). Let us

start by introducing some model notation.

6.1 Model Notation

First, it is important to explicitly distinguish the correct model from the model used

for parameter estimation. Let the correct model for the continuous outcomes yi,

conditional on a vector of random effects bi, be specified as

yi = Xiβ0 + Zibi + εi. (6.1)

Under this correct model, the vector β0 describes the true population mean, while

the random effects bi have zero mean and density function f0(bi|ψ0) with ψ0 a vector
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of unknown parameters. Further, the error terms εi are assumed to be independent

from the bi, and to follow a normal distribution with mean zero and covariance matrix

σ2
0Ini

. Marginally, this model induces a multivariate normal distribution for yi, with

mean Xiβ0 and covariance matrix Vi0 = ZiD0Z
T
i + σ2

0Ini
, where D0 = D0(ψ0) =

Var(bi).

On the other hand, for parameter estimation, we will assume that the responses yi,

conditionally on the random effects bi can by modeled by (3.10), where bi ∼ N(0, D)

and εi ∼ N(0, σ2Ini
). In this case, the marginal distribution for yi is a normal

distribution with mean Xiβ and covariance matrix Vi = ZiDZ
T
i + σ2Ini

.

6.2 Consistency and Asymptotic Normality

Let ξ denote the vector of all parameters in model (3.10), including the fixed effects

β, all variance components in D, and σ2; let ξ0 represent the vector of true param-

eter values β0, D0 and σ2
0 . Maximum likelihood estimates β̂n, D̂n and σ̂2

n for the

parameters in ξ are obtained by maximizing the marginal likelihood function for yi.

Without assuming any specific structure for D, Verbeke and Lesaffre (1994, 1997)

proved that

Theorem 6.1 (Consistency) Under general regularity conditions, β̂n, D̂n, and σ̂2
n

are strongly consistent estimators for β0, D0, and σ2
0 , as n→ ∞.

This theorem implies that, under general regularity conditions, the vector ξ∗, which

minimizes the KLIC in (5.1), and to which the maximum likelihood estimators con-

verge, equals the vector of true parameters ξ0. Hence, the maximum likelihood es-

timators for all parameters in the model, including the variance components, are

consistent, even when the distribution of bi is misspecified. Simulations with differ-

ent distributions for the random effects have confirmed these results. However, these

simulations also suggested that the rate of convergence heavily depends on the shape

of the correct random-effects distribution, especially for the components in D.

Further, note that, although the inverse Fisher information matrix does not yield

correct standard errors when the model is misspecified, valid asymptotic estimates for

the standard errors of the maximum likelihood estimators can still be obtained using

Theorem 5.2. Indeed, using the notation introduced by the Expressions (5.2)-(5.5),

we have that
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Theorem 6.2 (Asymptotic Normality) Under general regularity conditions, ξ̂n

is asymptotically normally distributed with mean ξ0 and with the covariance matrix

given by
1

n
A−1(ξ0)B(ξ0)A

−1(ξ0), as n→ ∞.

Although calculation of A(ξ0) and B(ξ0) in Theorem 6.2 requires knowledge of the

correct model, correct standard errors can still be obtained from the following theo-

rem.

Theorem 6.3 (Correction of Standard Errors) The results in Theorem 6.2 re-

main valid when A(ξ0) and B(ξ0) are replaced by An(ξ̂n) and Bn(ξ̂n) respectively.

Note that the corrected asymptotic covariance matrix suggested by Theorem 6.3

corrects for possible misspecification of the random-effects distribution. To study

the effect of this last correction, we can compare the corrected covariance with

the naive uncorrected one obtained from classical likelihood theory. To this end,

we can compare the corrected variance of any linear combination vT ξ̂n, given by
1

n
vTA−1

n (ξ̂n)Bn(ξ̂n)A−1
n (ξ̂n)v, with the uncorrected variance

1

n
vTA−1

n (ξ̂n)v by study-

ing the following ratio

λmin ≤ vTA−1
n (ξ̂n)Bn(ξ̂n)A−1

n (ξ̂n)v

vTA−1
n (ξ̂n)v

≤ λmax, (6.2)

where λmin (λmax) is the smallest (largest) eigenvalue of −Bn(ξ̂n)A−1
n (ξ̂n). Note

that the left hand (right hand) inequality in (6.2) becomes an equality for v equal to

an eigenvector associated with λmin (λmax). Obviously, λmin = λmax = 1 would

indicate that both inferences yield similar results. Therefore, λmin ≈ λmax ≈ 1 may

be an indicator of the random effects being approximately normally distributed.

Through extensive simulations, Verbeke and Lesaffre (1997) showed that the cor-

rected and uncorrected standard errors for the parameters in the mean structure are

very similar, even when the random effects are not normally distributed. This was

not observed for the parameters in D. The simulations showed that, in this case,

the corrected standard errors clearly outperformed the uncorrected ones. However,

it should be noted that occasionally, even the corrected standard errors for these pa-

rameters were not performing adequately. This was the case for instance when the

random effects were generated from a lognormal distribution. Further, although the

corrected standard errors are generally good estimates for the variability of the pa-

rameter estimators, it should be noted that they may still yield incorrect confidence

intervals for small samples, due to the bias present in the parameter estimates.
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6.3 Discussion

The implications of these results are clearly very important. Indeed, even if the

random-effects distribution is misspecified, linear mixed models still yield reliable

conclusions, as far as the mean and the covariance structure are correctly specified.

The maximum likelihood estimators of the fixed effects remain consistent and, even

though we need to correct the standard errors, this correction seems to have a minor

impact on the standard errors of the mean structure. Thus, the misspecification of

the random-effects distribution does not dramatically affect the type I error and the

power for testing the parameters of the mean structure. In the next chapter, we will

study via simulations whether this is also true for the generalized linear mixed model.



Chapter 7

Random-effects

Misspecification in

Generalized Linear Mixed

Models: A Simulation Study

The conventional belief among data analysts seems to be that the choice of the

random-effects distribution is not crucial for the quality of the inferences related to

the regression coefficients. This believe appears to be reinforced by the results for the

linear mixed model acquired by Verbeke and Lesaffre (1997) and previously described

in Chapter 6. However, results obtained in recent years show that moving away from

the realm of normality leads to qualitative differences. For instance, Neuhaus, Hauck,

and Kalbfleisch (1992) examined the performance of a random-intercept logistic re-

gression model with misspecified random-effect distribution. They showed that the

maximum likelihood estimators of the model parameters are inconsistent but that the

magnitude of the bias is typically small. Simulations by Chen, Zhang, and Davidian

(2002) with a comparable model also indicate that the estimation of the regression

coefficients may be subject to negligible bias only. According to Agresti, Caffo, and

Ohman-Strickland (2004), the choice of the random-effects distribution seems to have,

31
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in most situations, little effect on the maximum likelihood estimators. However, when

there is a severe polarization of subjects, e.g., by omitting an influential binary co-

variate, this can affect the predictive qualities of characteristics involving the random

effects as well as the fixed effects. Similarly, Heagerty and Kurland (2001) found sub-

stantial bias while using a logistic-normal model, when the variance of the random

effects depends on measured covariates.

These results clearly illustrate the wide range of opinions which exist in the lit-

erature regarding the impact of misspecifying the random-effects distribution on the

maximum likelihood estimators in generalized linear mixed models. In general, there

seems to be a consensus about the presence of bias due to the misspecification. How-

ever, most of the research till now seems to indicate that this bias is typically small. It

is important to note that each of these simulation studies was performed using a lim-

ited number of distributions for the random effects, and in most of them, only small

variances for the random effects were considered. As we will show in the subsequent

sections, the magnitude of this variance can have an important effect on the bias

induced by the misspecification, where larger biases associate with larger variances.

Moreover, as was seen from the analysis of the case study in Chapter 4, small vari-

ances may not always be realistic in some important practical settings. Another issue

which has not received so much attention in the previous studies concerns the impact

of the misspecification on commonly used inferential procedures such as the Wald

test. Therefore, the main objective of this chapter is to use a wide set of simulations

to study the impact of random-effects misspecification on the quality of the maximum

likelihood estimators, as well as on the power and type I error rate of frequently used

tests for the linear predictor parameters. The results presented in this chapter are

based on Litière, Alonso, and Molenberghs (2007b).

7.1 Simulation Settings

In this simulation study, binary response data were generated using the logistic

random-intercept model obtained from the analysis of the case study, i.e.,

logit{P (yij = 1|bi)} = β0 + β1zi + β2tj + bi. (7.1)

Recall that this model includes a binary covariate zi and a within-cluster covariate

tj , reminiscent of time, with values 0, 1, 2, 4, 6, and 8. For the linear predictor

parameters, values close to the estimates obtained from the analysis of the case study
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Figure 7.1: Graphical representation of the random-effects distributions with variance

σ2
0b used in the simulation study: σ2

b0 = 1 (solid line), σ2
b0 = 4 (dotted line), σ2

b0 = 16

(dash-dotted line) and σ2
b0 = 32 (dashed line).

were chosen: β0
0 = −8, β0

1 = 2, and β0
2 = 1. Further, 9 different distributions for

the random intercept bi, each with variance σ2
0b = 1, 4, 16, and 32, were included in

the study. These were a mean zero normal density, a uniform, an exponential, a chi-

square, a lognormal, a power function distribution, a discrete distribution with equal

probability at two support points, and finally both a symmetric and an asymmetric

mixture of two normal densities (see Figure 7.1). Observe that this selection covers
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a wide range of densities varying from very symmetric to very skewed, and with

potentially very heavy tails. Further, the settings where σ2
0b = 16 and 32 will help

us to investigate scenarios with variances in the same order of magnitude as the one

observed in the case study. On the other hand, the smaller values considered for

σ2
0b should allow us to study the performance of the maximum likelihood estimators

in less extreme settings. In this way, we cover a wide range of practically relevant

situations.

The simulations were performed with 7 different sample sizes, including 25, 50,

100, 200, 400, 800, and 1600 subjects. For each setting, 500 data sets were gener-

ated, and the model given by (7.1) was then fitted to the generated data, assuming

normally distributed random effects. All analyses were carried out using the SAS

procedure NLMIXED with adaptive Gaussian quadrature and 50 quadrature points

to approximate the likelihood function.

7.2 Consistency

Consistency was studied through the evolution of the relative distance between the

estimates and the real values, over increasing sample size. Let ξ0 = (β0
0 , β

0
1 , β

0
2 , σ

2
0b)

T

represent the vector of true parameter values and ξ̂n = (β̂0n, β̂1n, β̂2n, σ̂
2
bn)T the corre-

sponding vector of maximum likelihood estimates, then the relative distance between

ξ0 and ξ̂n is defined by

dn(ξ0) =
||ξ̂n − ξ0||

||ξ0||
, (7.2)

where ||.|| denotes Euclidean distance. If the estimators remain consistent after mis-

specification of the random-effects distribution, then dn(ξ0) should converge to zero

as the sample size increases. Figure 7.2 displays the evolution of the median rela-

tive distance dn(ξ0) over increasing sample size and for the different values of σ2
0b.

Although the bias observed for small values of σ2
0b is generally negligible, it should

be noted that for the exponential density, the power function, and the asymmetric

mixture, the overall bias exceeds 20%, even for σ2
0b = 4. On the other hand, sub-

stantial bias is always observed for larger values of σ2
0b, especially for skewed densities

such as the exponential, the lognormal function, the power function, and the asym-

metric mixture. Therefore, skewness of the underlying random-effects distribution

could be considered an indicator for strong inconsistency of the maximum likelihood

estimators.
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Figure 7.2: Consistency of the parameter estimates - evolution of the median relative

distance dn(ξ0) for each random-effects distribution, over increasing sample size and

for the different values of the random-effects variance: σ2
b0 = 1 (solid line), σ2

b0 = 4

(dotted line), σ2
b0 = 16 (dash-dotted line) and σ2

b0 = 32 (dashed line).

By definition, dn(ξ0) is an indicator of the relative bias for all parameters jointly.

However, it is also of interest to know which parameters are most affected. To this end,

we have displayed in Table 7.1 the median maximum likelihood estimates obtained

for the variance component σ2
b . Note that Table 7.1, as well as all other tables

discussed in this thesis, displays only the results from the converging analyses. A lack

of convergence occurred mainly for small σ2
0b, in combination with small sample sizes.
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Table 7.1: Median of the maximum likelihood estimates σ̂2
bn of σ2

0b, obtained from fitting the logistic-normal model given

by (7.1) to the binary data generated using model (7.1), considering different sample sizes (n) and different random-

intercept distributions with variance σ2
0b.

n σ2

0b = 1 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32 σ2

0b = 1 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32 σ2

0b = 1 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32

Normal distribution Uniform distribution Exponential distribution

25 1.335 3.427 14.702 30.378 1.380 3.864 16.509 39.841 1.769 5.188 20.359 46.930

50 1.046 3.845 15.681 31.986 1.022 4.117 16.787 41.612 1.215 5.119 21.200 46.754

100 1.013 3.740 15.645 32.524 0.977 4.355 17.160 41.663 1.326 5.276 21.784 45.450

200 0.977 3.980 15.723 31.445 0.913 4.248 17.289 41.374 1.211 5.392 21.534 45.081

400 0.997 3.888 15.832 32.382 0.938 4.218 17.122 42.058 1.288 5.440 21.687 46.251

800 1.001 4.030 15.761 32.106 0.975 4.210 17.186 40.952 1.321 5.504 21.437 45.247

1600 0.990 3.977 15.927 32.406 0.962 4.222 17.052 40.619 1.302 5.470 21.673 44.619

Chi-square distribution Lognormal distribution Power function distribution

25 1.847 5.009 18.180 37.477 1.392 3.802 9.336 14.111 1.034 2.327 6.272 10.960

50 1.420 5.182 19.014 37.874 1.305 4.222 9.358 13.854 0.747 2.038 6.149 11.207

100 1.355 5.259 20.117 38.540 1.286 4.074 10.004 13.906 0.680 1.904 6.221 11.928

200 1.358 5.386 20.597 37.271 1.275 4.296 9.560 13.854 0.685 1.967 6.184 11.577

400 1.445 5.532 20.197 38.390 1.302 4.248 9.691 14.225 0.661 1.979 6.183 11.499

800 1.456 5.500 20.376 38.165 1.320 4.397 9.827 14.147 0.672 2.009 6.217 11.610

1600 1.460 5.472 20.429 37.900 1.338 4.354 9.811 14.036 0.656 1.994 6.214 11.546

Discrete distribution Symmetric mixture of two normals Asymmetric mixture of two normals

25 1.101 4.173 19.939 37.158 1.225 3.885 17.655 41.795 1.138 2.167 5.992 7.998

50 1.029 4.272 19.404 38.611 0.963 4.345 18.222 41.058 1.003 2.155 5.932 8.358

100 1.035 4.309 20.077 39.341 0.922 3.995 18.856 40.093 0.806 2.103 6.095 8.388

200 0.976 4.332 19.788 39.225 0.987 4.218 18.443 40.845 0.799 2.109 6.306 8.432

400 0.981 4.330 19.873 40.156 0.999 4.227 18.911 40.714 0.788 2.116 6.241 8.324

800 1.003 4.396 19.812 39.884 0.980 4.220 18.497 40.462 0.805 2.163 6.315 8.354

1600 1.009 4.386 19.819 39.613 1.006 4.194 18.616 40.460 0.792 2.156 6.258 8.359
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The proportion of non-converging analyses could be as high as 30%, when the data

were generated using a power function distribution with σ2
0b = 1 and only 25 subjects.

However, this rate quickly drops to 7% and less, as of 100 subjects, or when σ2
0b was

increased to 4.

The results displayed in Table 7.1 clearly show that the estimates of the variance

component are severely affected by the misspecification in most settings. Note that

substantial bias can occur, even for small variance of the random intercept. This is

clear in the results for the lognormal distribution, the power function distribution and

the asymmetric mixture of two normals. Additionally, the direction of the bias can

change depending on the true underlying distribution. For most of the distributions

considered here, the variance component is overestimated. However, in the case of the

lognormal distribution, the power function distribution and the asymmetric mixture,

we observe serious underestimation of the variance of the random intercept.

On the other hand, the maximum likelihood estimates of the linear predictor pa-

rameters seem to be less affected by the misspecification (see Tables 7.2-7.4). The

observed bias is generally small when the variance of the random intercept is small.

However, more substantial biases associate with larger variances. For instance, when

the random intercept was generated from an exponential or a lognormal distribution,

with σ2
0b = 16, bias of 15% and more for the intercept β0, and 25% and more for

the treatment effect β1 can occur, even for relatively big sample sizes of 400 subjects.

Although less dramatic, similar results can be observed for the power function distri-

bution and the asymmetric mixture of two normals. Given that the estimate of the

variance component is the only tool to study the variability of the true random-effects

distribution, this highly biased estimate makes it difficult to evaluate whether or not

problems can occur in the linear predictor as well.

Note that the relative bias of the time effect remained under 5% in all scenarios,

even for moderate sample sizes of 100 subjects. This concurs with results obtained by

Heagerty and Kurland (2001) and Chen et al. (2002). The latter argue that, since the

estimation of the treatment effect and the intercept is subject to between-individual

variation, we could expect misspecification of the random-effects distribution to affect

the quality of these estimates. However, a covariate which changes within subjects,

would be roughly orthogonal to between-individual effects and therefore less affected

by the misspecification.
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Table 7.2: Median of the maximum likelihood estimates β̂0n of β0
0 , obtained from fitting the logistic-normal model given

by (7.1) to the binary data generated using model (7.1), considering different sample sizes (n) and different random-

intercept distributions with variance σ2
0b (note that β0

0 = −8).

n σ2

0b = 1 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32 σ2

0b = 1 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32 σ2

0b = 1 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32

Normal distribution Uniform distribution Exponential distribution

25 -8.714 -8.089 -8.153 -8.185 -8.949 -8.410 -8.271 -7.321 -8.807 -8.697 -9.269 -11.347

50 -8.258 -8.181 -8.115 -8.111 -8.209 -8.069 -7.892 -8.257 -8.201 -8.223 -9.108 -10.773

100 -8.115 -7.924 -7.936 -8.150 -8.053 -8.042 -7.797 -7.991 -8.096 -8.253 -9.063 -10.107

200 -8.040 -8.099 -8.052 -8.027 -7.955 -8.098 -7.989 -8.051 -8.073 -8.295 -9.092 -9.816

400 -7.993 -7.956 -8.008 -8.032 -8.029 -8.006 -7.797 -7.861 -8.108 -8.302 -9.214 -10.269

800 -8.022 -8.016 -7.993 -8.027 -8.009 -8.011 -7.831 -7.785 -8.091 -8.349 -9.115 -10.130

1600 -7.978 -7.989 -8.008 -8.056 -7.997 -8.012 -7.807 -7.740 -8.079 -8.320 -9.181 -10.054

Chi-square distribution Lognormal distribution Power function distribution

25 -8.849 -8.486 -8.738 -8.763 -8.716 -8.566 -9.393 -9.638 -8.447 -8.173 -7.425 -6.454

50 -8.434 -8.407 -8.597 -9.149 -8.221 -8.665 -9.010 -9.782 -8.150 -7.888 -7.410 -6.767

100 -8.182 -8.430 -8.624 -8.738 -8.212 -8.432 -9.099 -9.485 -8.062 -7.855 -7.330 -6.851

200 -8.197 -8.357 -8.653 -8.606 -8.104 -8.390 -8.934 -9.566 -8.016 -7.776 -7.318 -6.924

400 -8.144 -8.372 -8.577 -8.697 -8.108 -8.360 -8.956 -9.395 -7.951 -7.765 -7.240 -6.670

800 -8.148 -8.369 -8.597 -8.699 -8.104 -8.442 -8.934 -9.463 -7.922 -7.748 -7.276 -6.749

1600 -8.160 -8.354 -8.599 -8.618 -8.084 -8.386 -8.951 -9.434 -7.934 -7.760 -7.262 -6.732

Discrete distribution Symmetric mixture of two normals Asymmetric mixture of two normals

25 -8.554 -8.514 -8.321 -7.817 -8.557 -8.234 -8.129 -8.594 -8.614 -7.882 -7.229 -6.450

50 -8.301 -8.204 -8.019 -7.184 -8.148 -8.172 -8.009 -7.741 -8.427 -7.555 -7.143 -6.343

100 -8.151 -8.145 -8.044 -7.354 -7.963 -8.013 -8.002 -7.972 -8.033 -7.577 -7.091 -6.350

200 -8.014 -8.115 -7.942 -7.069 -8.042 -8.049 -7.876 -7.874 -7.993 -7.493 -7.162 -6.314

400 -7.999 -8.149 -8.142 -7.410 -8.021 -8.048 -7.910 -7.847 -7.976 -7.476 -7.155 -6.272

800 -8.029 -8.117 -7.982 -7.348 -7.985 -8.056 -7.910 -7.819 -7.952 -7.472 -7.133 -6.330

1600 -8.040 -8.141 -8.039 -7.178 -8.005 -8.026 -7.937 -7.805 -7.959 -7.489 -7.122 -6.298
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Table 7.3: Median of the maximum likelihood estimates β̂1n of β0
1 obtained from fitting the logistic-normal model given

by (7.1) to the binary data generated using model (7.1), considering different sample sizes (n) and different random-

intercept distributions with variance σ2
0b (note that β0

1 = 2).

n σ2

0b = 1 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32 σ2

0b = 1 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32 σ2

0b = 1 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32

Normal distribution Uniform distribution Exponential distribution

25 2.154 2.038 2.102 2.110 2.432 2.323 2.916 0.794 2.330 2.472 2.650 4.356

50 2.116 2.059 2.097 2.109 2.047 1.905 1.960 2.570 2.052 2.069 1.974 2.955

100 2.012 2.028 2.039 2.038 1.929 1.794 1.759 2.330 2.043 2.139 2.290 2.642

200 2.021 2.048 2.029 1.979 1.984 1.895 1.954 2.375 2.055 2.200 2.416 2.147

400 2.006 1.969 1.977 2.023 1.986 1.898 1.873 1.858 2.116 2.233 2.525 2.891

800 2.009 2.008 1.983 2.022 1.993 1.971 1.924 1.845 2.063 2.202 2.364 2.609

1600 1.989 1.992 1.994 2.023 1.982 1.931 1.858 1.833 2.054 2.191 2.473 2.601

Chi-square distribution Lognormal distribution Power function distribution

25 2.401 2.656 1.959 2.311 2.236 2.338 2.478 2.573 2.115 1.889 1.582 1.339

50 2.166 2.260 2.165 2.427 2.074 2.257 2.460 2.636 2.044 1.946 1.768 1.926

100 2.129 2.213 2.080 2.090 2.095 2.202 2.462 2.602 1.998 1.919 1.736 1.807

200 2.095 2.211 2.161 2.113 2.047 2.199 2.374 2.599 1.973 1.896 1.749 1.969

400 2.085 2.240 2.121 2.046 2.060 2.202 2.375 2.562 1.952 1.836 1.638 1.634

800 2.092 2.217 2.098 2.088 2.076 2.227 2.423 2.552 1.951 1.858 1.728 1.706

1600 2.098 2.247 2.126 2.081 2.080 2.211 2.387 2.553 1.939 1.839 1.682 1.702

Discrete distribution Symmetric mixture of two normals Asymmetric mixture of two normals

25 2.254 2.180 1.809 2.883 2.193 1.861 1.981 1.931 2.086 2.107 1.778 1.670

50 2.088 1.939 1.553 1.356 2.048 2.004 1.822 1.904 2.104 1.920 1.794 1.781

100 2.070 1.982 1.642 1.688 2.015 1.989 1.731 2.013 1.969 1.944 1.717 1.782

200 2.031 2.033 1.751 1.340 2.033 1.960 1.723 1.909 1.969 1.924 1.796 1.703

400 2.066 2.117 1.993 2.041 2.020 1.952 1.720 1.928 1.974 1.924 1.798 1.703

800 2.036 2.040 1.793 1.895 1.984 1.956 1.786 1.886 1.970 1.915 1.760 1.715

1600 2.072 2.069 1.890 1.517 1.996 1.955 1.761 1.919 1.964 1.925 1.760 1.702
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Table 7.4: Median of the maximum likelihood estimates β̂2n of β0
2 , obtained from fitting the logistic-normal model given

by (7.1) to the binary data generated using model (7.1), considering different sample sizes (n) and different random-

intercept distributions with variance σ2
0b (note that β0

2 = 1).

n σ2

0b = 1 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32 σ2

0b = 1 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32 σ2

0b = 1 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32

Normal distribution Uniform distribution Exponential distribution

25 1.089 1.015 1.011 1.000 1.099 1.038 0.985 0.984 1.091 1.046 0.994 1.065

50 1.037 1.012 1.017 1.022 1.023 1.017 0.996 1.000 1.021 1.000 1.037 1.051

100 1.013 0.988 0.998 1.018 1.013 1.021 0.981 0.974 1.016 0.997 1.005 1.006

200 1.005 1.013 0.999 1.012 0.995 1.011 0.988 0.973 1.004 0.994 0.998 1.001

400 0.999 0.998 1.000 1.008 1.006 1.006 0.981 0.978 1.002 1.000 1.004 1.008

800 1.001 1.002 0.997 1.002 1.000 1.005 0.980 0.972 1.000 1.004 1.002 1.006

1600 0.997 0.999 0.999 1.007 1.001 1.004 0.980 0.971 1.001 1.000 0.999 1.009

Chi-square distribution Lognormal distribution Power function distribution

25 1.093 0.996 1.023 1.003 1.081 1.027 1.045 1.036 1.055 1.062 1.029 0.990

50 1.041 1.013 1.000 1.038 1.015 1.048 1.006 1.039 1.036 1.021 1.023 0.987

100 1.013 1.009 1.018 1.022 1.009 1.014 1.024 1.003 1.018 1.012 1.012 0.992

200 1.004 1.002 1.009 1.001 1.003 1.006 0.995 1.005 1.012 1.007 1.008 0.995

400 1.007 1.006 1.011 1.009 1.004 1.004 1.001 0.993 1.003 1.008 1.008 0.982

800 1.006 1.005 1.003 1.002 1.002 1.008 1.002 1.000 0.999 1.004 1.007 0.985

1600 1.006 1.002 1.005 1.005 1.002 1.004 0.999 0.995 1.002 1.004 1.009 0.984

Discrete distribution Symmetric mixture of two normals Asymmetric mixture of two normals

25 1.070 1.069 1.000 0.880 1.062 1.043 0.986 1.007 1.098 1.044 1.046 1.028

50 1.044 1.030 0.997 0.878 1.025 1.035 0.991 0.989 1.058 1.016 1.022 1.016

100 1.016 1.018 1.003 0.883 1.003 1.004 1.006 0.976 1.010 1.011 0.997 1.006

200 1.001 1.014 0.987 0.874 1.002 1.016 0.984 0.965 1.006 1.001 1.019 1.003

400 0.996 1.012 0.989 0.871 1.004 1.011 0.987 0.965 1.003 1.002 1.011 0.997

800 0.999 1.016 0.986 0.871 0.998 1.007 0.985 0.967 0.998 1.003 1.013 1.005

1600 1.001 1.011 0.988 0.874 1.003 1.005 0.989 0.961 1.001 1.002 1.009 1.000
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Further, to study the extent to which the results obtained from a logistic-normal

model generalize to scenarios with more than one random effect, we generated binary

responses using the model given by

logit{P (yij = 1|bi)} = β0 + β1zi + β2tj + b0i + b1itj , (7.3)

which now also includes a random slope b1i for time. For the linear predictor parame-

ters, we considered β0
0 = −6, β0

1 = 2, and β0
2 = 1. The random effects were generated

from two multivariate distributions, including a multivariate normal bi ∼ N(0, V )

and a symmetric mixture of two multivariate normals bi ∼ 1
2N(µ, D) + 1

2N(−µ, D),

where

D =

(
d d12

d12 d

)
.

In the case of the mixture, µ = (4, 4)T , d = 1, 4, and d12 was chosen such that

ρ = corr(b0i, b1i) = 0.5, 0.9. Note that these values lead to the following overall

covariance matrices V = Var(bi) = {σkℓ}k,ℓ=1,2,

V1 =

(
5 4.5

4.5 5

)
, V2 =

(
5 4.9

4.9 5

)
,

V3 =

(
8 6

6 8

)
, V4 =

(
8 7.6

7.6 8

)
. (7.4)

These same covariance matrices were then also used to generate the multivariate

normal random effects bi ∼ N(0, V ).

The simulations were performed with 50 and 100 subjects. For each setting, 500

data sets were generated, and the model given by (7.3) was fitted to the generated

data, assuming normally distributed random effects. The medians of the correspond-

ing maximum likelihood estimates are shown in Table 7.5. Clearly, including an

additional random effect increased the impact of the misspecification. Even though

the variances used to generate the random effects were moderate, considerable bias is

now also observed for all parameters in the linear predictor. Interestingly, and unlike

the results previously obtained from the logistic-normal model, now the time effect is

also severely underestimated. Likely, adding a random time effect induced a bias in

the corresponding fixed effect estimate under misspecification. Finally, observe that

the estimates of the variance components were again most affected in this scenario,

where a large bias was observed for all elements in the covariance matrix.
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Table 7.5: Median of the maximum likelihood estimates obtained from fitting

model (7.3) assuming normally distributed random effects, to binary data generated

using model (7.3), considering different sample sizes (n) and random effects gener-

ated from a multivariate normal, i.e. bi ∼ N(0, V ), as well as a symmetric mixture

of two multivariate normal densities, i.e., bi ∼ 1
2N(µ, D) + 1

2N(−µ, D), such that

Var(bi) = V .

Real Normal Mixture

value V n = 50 n = 100 n = 50 n = 100

Fixed effects

β0 -6 V1 -6.45 -6.14 -10.34 -10.52

V2 -6.34 -6.33 -9.76 -9.28

V3 -6.46 -6.19 -9.65 -9.37

V4 -6.71 -6.37 -10.06 -9.49

β1 2 V1 2.09 2.04 3.27 2.52

V2 2.10 2.09 3.19 2.43

V3 2.03 2.10 3.17 2.04

V4 2.11 2.01 3.69 2.73

β2 1 V1 1.04 1.04 -0.63 -0.13

V2 0.99 1.02 -0.14 -0.25

V3 0.98 0.88 -0.09 0.15

V4 0.99 0.94 -0.23 0.03

Variance structure

σ11 5 V1 4.98 5.00 48.60 57.38

V2 5.32 5.89 45.43 49.18

8 V3 8.63 8.12 41.97 49.32

V4 8.87 8.32 49.16 59.76

σ22 5 V1 6.84 5.84 967.80 500.26

V2 6.41 6.37 969.68 597.18

8 V3 9.23 8.21 912.06 415.04

V4 11.17 10.20 962.09 453.80

σ12 4.5 V1 4.20 3.64 189.05 125.19

4.9 V2 4.10 4.82 174.16 134.14

6 V3 6.15 5.60 167.51 115.42

7.6 V4 7.76 7.36 176.39 131.02
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We should note that, when the random effects were generated from a mixture, we

observed a high proportion of non-converging analyses (ranging between 57% and 72%

of the total of 500 runs). We also observed that, as a result of the misspecification, in

some of the simulations the procedure to maximize the likelihood had converged to

an ill-conditioned maximum, leading to some extreme estimates. In any case, these

results clearly illustrate that the impact of the random-effects misspecification is even

worse in the presence of complicated covariance structures.

7.3 Asymptotic Normality

To check the extent to which asymptotic normality holds under misspecification, we

constructed gamma plots of the maximum likelihood estimates of ξ. Note that these

plots are based on the ordered (from smallest to largest) squared general distances

d2
k = (ξ̂kn − ξ0)

TS−1(ξ̂kn − ξ0),

where ξ̂kn refers to the vector of maximum likelihood estimates obtained from the kth

simulation, and S denotes the corresponding estimated sample covariance matrix, ob-

tained from the simulated replicas. When the maximum likelihood estimates follow a

multivariate normal distribution, then each of the squared distances d2
k should behave

like a chi-square random variable (Johnson and Wichern, 1998). To verify this result,

we have displayed in Figure 7.3 the pairs (qχ2,4[(k − 1/2)/N ], d2
k), where N denotes

the number of simulations and qχ2,4[(k − 1/2)/N ] is the 100(k − 1/2)/N quantile of

the chi-square distribution with 4 degrees of freedom. The graphical display of these

pairs in Figure 7.3 is restricted to σ2
0b = 4 and 32, and to those settings for which

consistency was most problematic, i.e. the lognormal, the power function and the

asymmetric mixture distribution, for a selection of sample sizes. Further, gamma

plots for the normal distribution were included to illustrate the asymptotic behavior

of the maximum likelihood estimates under a correctly specified model. In this figure,

a clear deviation from multivariate asymptotic normality can be observed when the

random-effects distribution is misspecified, especially for large variance of the random

effects. Interestingly, this deviation becomes more pronounced with increasing sample

size.
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Figure 7.3: Asymptotic normality of ξ̂n - Gamma plots of the pairs (qχ2,4[(k −
1/2)/N ], d2

k), where d2
k is obtained from fitting the logistic-normal model given by (7.1)

to the binary data generated using model (7.1), with a random intercept sampled from

a normal, lognormal, power function and asymmetric mixture distribution with vari-

ance σ2
0b; each row represents a different sample size (n).
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Further, to study asymptotic normality on the level of each parameter separately,

histograms were constructed of the standardized (again w.r.t. ξ0) parameter esti-

mates obtained from fitting the logistic-normal model given by (7.1). For instance,

Figures 7.4(a) and (b) show the distributions of the standardized estimates, when the

true random-effects distribution corresponds to a normal and an asymmetric mixture

of two normal distributions, respectively. In comparison, the continuous curve repre-

sents the standard normal distribution. Note that we have limited the display to the

rather extreme scenario of σ2
0b = 32 for illustrative purposes.

Contrary to the gamma plots, the histograms in Figures 7.4(a) and (b) reveal

approximately normally distributed maximum likelihood estimates. However, under

the misspecified model, the histograms are shifted such that the estimates are not

centered on the real parameter values given by ξ0. Further, note that this shift did

not only occur for the highly biased variance component. When focusing on fixed

effects such as the intercept and the treatment effect, although less pronounced, we

observe the same behavior. They are over- and underestimated, respectively, when

the true random-effects distribution is an asymmetric mixture of normal distributions

with variance σ2
0b = 32. Finally, our previous statements on how the time effects seems

to be unaffected by the misspecification, are again confirmed in the histograms of β̂2n

in Figure 7.4(b).

These findings concur with the results described in Chapter 5. It is clear from

these simulations that, under misspecification of the random-effects distribution, the

maximum likelihood estimators ξ̂n are no longer consistent or asymptotically nor-

mal with respect to ξ0. The higher the variance and the skewness of the underlying

random-effects distribution, the bigger the discrepancy between the two vectors. Fur-

ther, it is important to realize that the estimates of the variance components are

always subject to considerable bias when the random-effects distribution is misspec-

ified. Although variance components are generally treated as nuisance parameters,

this highly biased component can have an important impact in studies where they

are of primary interest. This is the case, for instance, in fields like surrogate marker

validation, the evaluation of the reliability of rating scales, or studies of the criterion

and predictive validity of psychiatric scales.
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(b) Asymmetric mixture of two normal distributions

Figure 7.4: Asymptotic normality of bξ
n

- Histograms of the standardized maximum likelihood

estimates obtained from fitting the logistic-normal model given by (7.1) to binary response

data generated using model (7.1), with the random intercept sampled from (a) a normal and

(b) an asymmetric mixture, each with variance σ2

0b = 32. Each row represents a different

sample size (n). The continuous curve represents the standard normal distribution.
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As stated before, the bias induced in the estimates of the linear predictor parameters

appears to depend on the magnitude of the variance components, whereby large bias

is associated with large random-effects variances. Clearly, in any practical situation,

the bias present in the estimators for the variance components under misspecification,

will make it hard to distinguish between the two scenarios, that is, small or larger

variance components. As a consequence, it can also be difficult to determine how

severe the impact on the parameter estimates can be.

7.4 Hypothesis Testing

In many situations, data analysts consider test statistics and corresponding p-values

to evaluate, for example, whether or not a drug has a significant influence. Therefore,

the impact of misspecifying the random-effects distribution on the type I and the type

II error is very important from a practical point of view. Even though consistency

has been studied to some extent in the literature, there does not seem to be too much

research done on the behaviour of the test statistics.

To explore this effect, additional simulations were carried out for different values

of the treatment effect β0
1 . Again, the binary responses were generated using the

logistic random-intercept model given by (7.1) with β0
0 = −8 and β0

2 = 1. However,

five different values for the treatment effect β0
1 were considered: 0, 0.5, 1, 2 and

5. The simulations were performed for three different sample sizes, namely 25, 100,

and 400 subjects, and considering four random-effects distributions with variance

σ2
0b = 1, 4, 16 and 32, including the normal, the power function, the discrete, and the

asymmetric mixture of two normals. For each setting, 500 data sets were generated,

and the model given by (7.1) was used to analyze these generated data, assuming

normally distributed random effects. We then determined the proportion of cases in

which a treatment effect different from zero (at a 5% significance level) was detected.

When β0
1 = 0, this proportion corresponds to the type I error; otherwise, it represents

the power of the test. The results of these simulations are displayed in Figure 7.5.

It is clear from these graphs that misspecification can severely affect the power

of the analysis, depending on the shape and the variance of the real random-effects

distribution. Actually, the power can be seriously affected even in settings where the

random intercept accounts for a small variability. For example, let us consider in

Figure 7.5 the graphs corresponding to a sample of 100 patients, when β0
1 = 1. Even

with σ2
0b = 1, the power to detect a significant treatment effect can drop as low as
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Figure 7.5: Power of the analysis with the logistic-normal model (7.1) to detect a

significant treatment effect in binary response data generated using model (7.1), over

a range of possible β0
1 values, sample sizes n, and for 4 random-effects distributions

with variance σ2
0b: normal (solid line), power function (dotted line), discrete (dash-

dotted line) and asymmetric mixture (dashed line).
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Table 7.6: Type I error for detecting a significant treatment effect when β0
1 = 0, when

the logistic-normal model given by (7.1) is fitted to binary response data generated us-

ing model (7.1), considering different sample sizes (n) and a random intercept sampled

from a normal (No), a power function (PF), a discrete (D) or an asymmetric mix-

ture of two normal distributions (AM), each distribution with variance σ2
0b. Values

for which the lower bound of the corresponding 95% confidence interval was larger

than 0.05 are highlighted.

n σ2
0b = 1 σ2

0b = 4 σ2
0b = 16 σ2

0b = 32

No 25 0.012 0.025 0.029 0.025

100 0.041 0.052 0.050 0.026

400 0.050 0.046 0.052 0.058

PF 25 0.008 0.023 0.036 0.016

100 0.041 0.040 0.050 0.028

400 0.046 0.064 0.076 0.050

D 25 0.023 0.012 0.014 0.004

100 0.032 0.016 0.084 0.018

400 0.048 0.080 0.024 0.088

AM 25 0.014 0.014 0.018 0.038

100 0.053 0.066 0.036 0.038

400 0.053 0.057 0.036 0.032

20% for the power function distribution, whereas for the correctly specified model,

we observed a value around 70%. This makes it difficult to interpret negative results,

i.e., do we fail to reject the null hypothesis because there is no real treatment effect

or because of a lack of power due to misspecification?

Interestingly, the corresponding type I error rate (presented in Table 7.6) rarely ex-

ceeded the specified 5% level of significance in all the scenarios displayed in Figure 7.5.

These findings concur with results obtained by Neuhaus et al. (1992). Indeed, these

authors showed for a similar logistic random-intercept model that when β0
1 = 0, the

corresponding maximum likelihood estimator consistently estimates zero. It is possi-

ble to prove that in this situation the type I error rate will be asymptotically preserved

and therefore, a significant effect could be considered as a reliable result, even though

caution may be needed in the interpretation of the point estimates. Whether this
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statement holds also in more general settings than the one presented here, will be

studied in Chapter 8.

7.5 Numerical Precision

In general, lack of consistency can also be due to issues other than those related

to the statistical procedures. Calculation of the maximum likelihood estimates is

computationally intensive, and rounding errors and inadequate precision can interfere

with the statistical results. In this section, we will show that inconsistency and lack

of normality are not only due to model misspecification; arguably, they can also

be ascribed to numerical approximations. Let us illustrate this with an example.

Consider binary responses generated using the model given by (7.1) with β0
0 = −8,

β0
1 = 2, and β0

2 = 1, and with a random intercept sampled from a normal distribution

with variance σ2
0b = 32. In total, 500 data sets were generated using this model, each

with information on 1600 subjects, and the logistic-normal model (7.1) was used to

analyze these generated data. During the first run, the SAS procedure NLMIXED was

allowed to automatically determine the number of quadrature points. By default, the

number of quadrature points is selected adaptively by evaluating the log-likelihood

function until the relative distance between two successive likelihood calculations is

sufficiently small. Figure 7.6(a) shows the results of these first analyses. Surprisingly,

some lack of normality with respect to the real values already occurs in the estimation

of the parameters, even when the random-effects distribution is correctly specified

and the sample size is very large. When we compare this to Figure 7.6(b), where the

estimates are obtained by fixing the number of quadrature points to 50, it is clear

that the lack of normality was introduced by imprecise numerical approximation.

Further, let us reconsider the motivating case study. In order to investigate the

accuracy of the numerical integration method for the estimation of the treatment

effect in this example, the data were analyzed using the logistic-normal model given

by (7.1), with varying numbers of quadrature points. The results are summarized

in Table 7.7. With the default setting, considering in this case 3 quadrature points,

the analysis resulted in a non-significant treatment effect. However, increasing the

number of quadrature points leads to an increase of the estimated treatment effect,

and as a result, we can also observe a change from a non-significant to a significant

effect. In a similar example, Lesaffre and Spiessens (2001) showed that increasing

the number of quadrature points could even change a treatment effect from being
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(a) default number of quadrature points
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(b) 50 quadrature points

Figure 7.6: Histograms of standardized maximum likelihood estimates, obtained from

analyzing simulated binary data with a correctly specified model, using NLMIXED

with (a) the SAS default and (b) 50 quadrature points.

Table 7.7: Schizophrenia data. Effect of the number of quadrature points on the esti-

mates of the treatment effect β1 obtained from fitting the logistic-normal model (7.1)

with NLMIXED.

Q β̂1n s.e. p-value -2loglik

3 (default) 1.89 1.21 0.1225 388.8

4 2.09 1.06 0.0508 379.1

5 2.09 0.99 0.0367 389.3

10 2.17 1.14 0.0594 384.4

20 2.14 1.08 0.0490 383.9

50 2.15 1.09 0.0499 384.0

100 2.15 1.09 0.0498 384.0

highly significant to not significant at all. In practice, this could lead to accepting

a potentially inferior drug over a standard treatment or, as was the case for the

schizophrenia data, not being able to detect the potential (borderline) benefit of

risperidone over the conventional antipsychotic agents. It is therefore important to
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remember that, even for an efficient method like adaptive Gaussian quadrature, it is

not always safe to rely on the default settings of standard software.

Note that from Table 7.7 it follows that both the estimates and standard errors

seem to stabilize when 20 or more quadrature points are used. The same can be

observed for the other parameter estimates obtained from model (7.1). This result

indicates that in this particular setting using 50 quadrature points would be sufficient

to obtain adequate approximations to the likelihood function and its derivatives.

Therefore, in all our simulations, analyses were performed using adaptive Gaussian

quadrature with 50 quadrature points.

7.6 Summary

A commonly encountered perception among data analysts is that the choice of the

random-effects distribution is not crucial for the quality of the inferences related with

model parameters in generalized linear mixed models. However, this is not a generally

valid conclusion. We found that the induced bias in the linear predictor estimators

is negligible only when the variance of the underlying random-effects distribution is

small. This was the case for σ2
0b = 1 and 4 in our simulations. However, caution is

necessary when the variance of the random effects is 16 or higher. Note that large

random-effects variances are not exceptional in clinical trials, like our case study,

when little variability in the response is expected in one of the two groups. In such

a scenario, the linear predictor parameters, including the treatment effect, could be

subject to considerable bias under misspecification.

On the other hand, the estimates of the variance components are always severely

affected, even for small variances of the underlying random-effects distribution. Given

that these estimates are the only available tool to study the variability of the true

distribution, the bias induced by the misspecification can make it difficult to evaluate

whether problems in the linear predictor will also occur. Additionally, as stated before,

this bias in the variance components can have severe consequences in applications in

which the main interest is in the association structure.

Finally, note that the power can also be affected in important ways by such mis-

specification, regardless of the variance of the random effects. Interestingly, the type I

error rate seems to be maintained for the treatment effect. In the next chapter we will

study whether this robustness of the type I error rate holds as well in more general

scenarios.



Chapter 8

Type I Error under

Misspecification of the

Random-effects Distribution

In the previous chapter we studied how misspecification of the random-effects distri-

bution can affect the properties of the maximum likelihood estimators. Interestingly,

we found that the type I error associated with the treatment effect was maintained

around its pre-specified level, irrespectively of the underlying random-effects distri-

bution. In this chapter, we will further explore whether this finding is valid only for

the settings considered in our simulations, or whether the type I error also remains

unaffected under more general conditions for certain covariates in the model. The

results in this chapter are based on Litière, Alonso and Molenberghs (2007a).

8.1 To Have or Not To Have an Associated Random

Effect

First, let us note that a distinctive characteristic of the treatment covariate in the

model given by (7.1) is that it does not have an associated random effect. It then

seems plausible to presume that the type I error related to covariates, that are also

53
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Table 8.1: Type I error for detecting a significant intercept when β0
0 = 0, when the

logistic-normal model given by (7.1) is fitted to binary response data generated using

model (7.1), considering different sample sizes (n) and a random intercept sampled

from a normal (No), a power function (PF), a discrete (D) or an asymmetric mixture

of two normal distributions (AM), each distribution with variance σ2
0b. Values for

which the lower bound of the corresponding 95% confidence interval was larger than

0.05 are highlighted.

n σ2
0b = 1 σ2

0b = 4 σ2
0b = 16 σ2

0b = 32

No 25 0.014 0.035 0.016 0.023

100 0.042 0.048 0.040 0.034

400 0.060 0.046 0.054 0.050

PF 25 0.019 0.031 0.028 0.022

100 0.043 0.164 0.320 0.370

400 0.158 0.682 0.946 0.962

D 25 0.021 0.046 0.087 0.073

100 0.040 0.060 0.136 0.156

400 0.080 0.252 0.594 0.604

AM 25 0.015 0.025 0.011 0.045

100 0.030 0.328 0.408 0.886

400 0.076 0.924 0.986 1.000

included in the random-effects structure, may be more sensitive to misspecification of

the random-effects distribution. To clarify this issue, we designed a new simulation

study. We generated binary responses using the model given by (7.1), considering

now β0
0 = 0, β0

1 = 2, and β0
2 = 1. Similar to the simulations described in the

previous chapter, the random intercept was sampled from a normal distribution, a

power function, a discrete and an asymmetric mixture of two normal distributions,

each distribution with variance σ2
0b = 1, 4, 16, and 32. The sample sizes were set at 25,

100, and 400 subjects. For each setting, 500 data sets were generated, and the model

given by (7.1) was fitted to the generated data, assuming normally distributed random

effects. The performance of the Wald test associated with the intercept parameter β0

can be seen in Table 8.1. Unlike for the treatment effect, the results presented in

this table clearly illustrate that the type I error associated with β0 can be severely
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affected by the misspecification. Even when the variance of the random intercept is

small, e.g., when σ2
0b = 1, the type I error rate can be inflated up to 16%. With

σ2
0b = 4, we observed a type I error as high as 68% when the random intercept was

sampled from a power function distribution, or even up to 92% using an asymmetric

mixture.

Remarkably, the situation seems to worsen as the sample size increases. This could

be explained using the results introduced in previous chapters. Indeed, in Chapters 5

and 7 we saw that under misspecification, the maximum likelihood estimator β̂0n is

consistent, not with respect to the real value of the parameter, i.e., β0
0 , but with

respect to β∗
0 , the value of β0 which minimizes the KLIC (5.1). Likely, in the settings

considered in our simulations β∗
0 6= 0 even though β0

0 = 0. As a consequence, the

Wald test implemented in SAS is not testing the hypothesis H0 : β0
0 = 0 as we would

expect, but rather the new hypothesis H0 : β∗
0 = 0. Obviously, larger sample sizes

would increase the power to detect any deviation of β∗
0 from zero. This results in the

observed inflation of the type I error associated with the hypothesis of interest, i.e.,

H0 : β0
0 = 0.

The previous results suggest that the type I error rate could be robust for param-

eters which do not have an associated random effect, like for instance the treatment

effect β1 in (7.1). On the other hand, the type I error could be severely affected for

parameters which do have a random counterpart, like for the intercept β0. The ques-

tion remains whether this is true only for the specific model used in these simulations,

or whether the type I error also remains unaffected in more general situations. The

following theorem will help us to answer this question.

Theorem 8.1 Let yij denote the jth measurement for the ith subject, with i =

1, . . . , n and j = 1, . . . , ni. Conditional on a vector bi of individual random effects for

subject i, it is assumed that all responses yij are independent with density belonging

to the exponential family (3.1), where θij is modeled as

θij = η(β0 + xT
ijβ + zT

ijbi), (8.1)

and η(.) denotes a known function, β0 is an intercept, xij = (xM
ij ,x

R
ij) denotes a

p-dimensional vector of covariates with xM
ij

⋂
xR

ij = ∅, zij = xR
ij is a q-dimensional

vector, β = (βM ,βR) is a vector of fixed parameters and bi is a vector of random

effects assumed to follow a density f(bi, D) with E(bi) = 0. Without loss of generality,

the covariates are assumed to be centered around zero, i.e. E(xij) = 0.
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If h(bi) represents the true random-effects distribution (h(bi) 6= f(bi, D)) and

if for certain subset xM
Sij of xM

ij , the vector of true parameter values βM0
S = 0, then

under Assumptions 5.1-5.3, βM∗
S , which minimizes the KLIC, is also zero. Therefore,

the maximum likelihood estimator β̂
M

Sn, based on a model with a misspecified random-

effects distribution, satisfies

β̂
M

Sn
P−→n 0. (8.2)

The general idea of the proof of Theorem 8.1 is as follows (the full proof can be found

in Appendix B). For simplicity of notation we will work out the proof for xM
Sij = xM

ij .

The proof for any other subset xM
Sij can be obtained in a similar way.

First note that there always exists a lower triangular matrix U , so that bi = Uai

with E(ai) = 0 and V (ai) = I. This allows to write (8.1) as θij = η(β0 + xT
ijβ +

zT
ijUai). Let us further denote by H and F the true and the assumed distribution

functions of the random effects. According to White (1982), the maximum likelihood

estimator of ξ = (β0,β, U) converges to the unique value ξ∗ = (β∗
0 ,β

∗, U∗) which

minimizes the KLIC (5.1), i.e. ξ∗ minimizes

I(H : F, ξ) = ExEy|x log

{
fH(y|ξ0,x, z)

fF (y|ξ,x, z)

}
, (8.3)

where the expectation is taken with respect to the true model. In the previous ex-

pression,

fH(y|ξ0,x, z) =

∫ ∏

j

exp[ϕ−1{yjθ
0
j − ψ(θ0j )} + c(yj , ϕ)]dH(a),

fF (y|ξ,x, z) =

∫ ∏

j

exp[ϕ−1{yjθj − ψ(θj)} + c(yj , ϕ)]dF (a),

with

θ0j = η(β0
0 + xT

j β
0 + zT

j U
0a),

θj = η(β0 + xT
j β + zT

j Ua).

For simplicity of notation, the subject index i has been omitted from the previous

equations. To find ξ∗ we have to differentiate (8.3) with respect to β0, β and U . This
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leads to the following system of simultaneous equations

Ex

[∫
λ(y|x, z)

{∫ ∑

i

ki(x,a)dF (a)

}
dy

]
= 0, (8.4)

Ex

[∫
λ(y|x, z)

{∫ ∑

i

xM
i ki(x,a)dF (a)

}
dy

]
= 0, (8.5)

Ex

[∫
λ(y|x, z)

{∫ ∑

i

xR
i ki(x,a)dF (a)

}
dy

]
= 0, (8.6)

Ex

[∫
λ(y|x, z)

{∫ ∑

i

Qiki(x,a)dF (a)

}
dy

]
= 0, (8.7)

where λ(y|x, z) = fH(y|ξ0,x, z)/fF (y|ξ,x, z) and

ki(x,a) = η′(ξ)ϕ−1{yi − ψ′(θi)}
∏

j

(exp[ϕ−1{yjθj − ψ(θj)} + c(yj , ϕ)]).

If βM0 = βM∗ = 0, then λ(y|x, z), η(β∗
0 + xT

i β
∗ + zT

i U
∗a), ψ(θ∗i ), ψ′(θ∗j ) and

ki(x,a) are functions which are independent of xM
i . Hence, the left-hand side of

(8.5) is zero for all β0
0 , βR0, U0, β∗

0 , βR∗ and U∗. Note now that equations (8.4),

(8.6), and (8.7) determine β∗
0 , βR∗, and U∗ in terms of β0

0 , βR0, and U0. Thus, when

βM0 = βM∗ = 0, we have found the unique solution for ξ∗ given by (β∗
0 ,0,β

R∗, U∗).

Therefore, if βM0 = 0, then βM∗ = 0, and the maximum likelihood estimator β̂
M

n

consistently estimates zero.

It is important to note that this result, as well as the ones that will follow, should

be interpreted in an asymptotic way, i.e., when n tends to infinity. From a practical

perspective these results can be considered approximately correct when n is suffi-

ciently large. How large is sufficiently large, is difficult to establish theoretically and

will be studied later on using simulations.

Theorem 8.1 implies that if the parameters associated with a subset of variables,

which are not included in the random-effect structure, equal zero then the corre-

sponding maximum likelihood estimators will consistently estimate zero. The main

implication of this theorem is stated in the following corollary.

Corollary 8.1 Consider the hypothesis testing problem

H0 : βM0
S = 0 vs H1 : βM0

S 6= 0, (8.8)

and the corresponding Wald test statistic W = (β̂
M

Sn)T V̂ −1
n (β̂

M

Sn), where V̂n is the

sandwich estimator of the asymptotic covariance matrix corresponding to the maxi-

mum likelihood estimate β̂
M

Sn, calculated using a misspecified model. Let p0 denote the
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dimension of βM0
S . Then, given the assumptions stated in Theorem 8.1, the type I

error rate associated with the critical region W > χ2
p0,1−α

2

is asymptotically preserved,

even under misspecification of the random-effects distribution, i.e.,

P (W > χ2
p0,1−α

2

| βM0
S = 0) ≤ α (8.9)

Proof

White (1982), studying the hypothesis testing problem

H0 : βM∗
S = 0 vs H1 : βM∗

S 6= 0, (8.10)

showed that the Wald statistic W = (β̂
M

Sn)T V̂ −1
n (β̂

M

Sn) under the null hypothesis

follows a χ2 distribution with p0 degrees of freedom (see Theorem 5.4). It then

follows that asymptotically

α = P (W > χ2
p0,1−α

2

| βM∗
S = 0). (8.11)

However, in our context, we are not directly interested in the hypothesis defined in

(8.10) but in testing (8.8). We propose to test (8.8) using the same testing statistic

and critical region previously defined for (8.10), and we will find an upper bound for

P (W > χ2
p0,1−α

2

| βM0
S = 0).

Note that, if βM0
S = 0 then, according to Theorem 8.1, also βM∗

S = 0, and as a

consequence

P (W > χ2
p0,1−α

2

| βM0
S = 0) ≤ P (W > χ2

p0,1−α
2

| βM∗
S = 0) = α. (8.12)

Therefore, even under misspecification of the random effects, the type I error associ-

ated with (8.8) and W will be upper-bounded by α. 2

This corollary implies that the type I error will be maintained, even under a misspeci-

fied random-effects distribution, provided that the corresponding subset of covariates

is not included in the random-effects structure. Therefore, the corollary fully explains

our previous findings. Indeed, the treatment variable in the logistic random-intercept

model given by (7.1) is not included in the random-effects structure. Therefore, in

this case, the type I error shown in Table 7.6 was maintained in almost all settings,

even with relatively small sample sizes. Unlike the treatment variable, the intercept

does have an associated random effect. This means that β∗
0 may be different from

zero, and as a result the type I error, shown in Table 8.1, is severely affected.
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Table 8.2: Type I error, based on corrected standard errors, for detecting a significant

treatment effect when β0
1 = 0, and a significant intercept when β0

0 = 0, when the

logistic-normal model given by (7.1) is fitted to binary response data generated using

model (7.1), considering different sample sizes (n) and a random intercept sampled

from a normal (No), a power function (PF), a discrete (D) or an asymmetric mixture

of two normal distributions (AM), each distribution with variance σ2
0b =1, 4, 16 and

32. Values for which the lower bound of the corresponding 95% confidence interval

was larger than 0.05 are highlighted.

β0

1 = 0 β0

0 = 0

n σ2

0b = 1 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32 σ2

0b = 1 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32

No 25 0.015 0.029 0.047 0.041 0.020 0.043 0.022 0.021

100 0.036 0.052 0.050 0.028 0.044 0.052 0.038 0.036

400 0.052 0.044 0.054 0.058 0.060 0.046 0.054 0.050

PF 25 0.031 0.030 0.056 0.028 0.024 0.046 0.049 0.065

100 0.038 0.038 0.050 0.026 0.045 0.174 0.308 0.366

400 0.046 0.060 0.074 0.050 0.174 0.708 0.952 0.966

D 25 0.051 0.032 0.026 0.022 0.029 0.054 0.064 0.082

100 0.034 0.018 0.100 0.018 0.040 0.052 0.098 0.098

400 0.050 0.078 0.024 0.088 0.074 0.212 0.494 0.510

AM 25 0.027 0.032 0.034 0.040 0.025 0.042 0.071 0.249

100 0.048 0.064 0.032 0.036 0.028 0.354 0.428 0.892

400 0.053 0.057 0.036 0.032 0.080 0.938 0.992 0.998

Clearly, both theorems can play a relevant role in studies where randomization is

used. For example, in a clinical trial, where patients are randomized, the treatment

variable will usually not be included in the random-effects structure and therefore, if

a significant treatment effect is observed, one could generally be confident about this

result.

8.2 The Sandwich Correction

So far, only the inverse of the Fisher information matrix has been used in all our

analyses and simulations to obtain standard errors for the estimates of the model

parameters. However, as discussed in Chapter 5, this matrix only yields valid results
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when the model is correctly specified. In the presence of model misspecification, ap-

propriate standard errors can be obtained by replacing the estimate of the asymptotic

covariance matrix by
1

n
A−1

n (ξ)Bn(ξ)A−1
n (ξ) (see Theorem 5.2). The results presented

in Table 8.2 now reflect the impact of using such corrected standard errors on the type

I error rates from the previously presented simulations. Clearly, in these settings, the

use of the sandwich correction had only a mild impact on the results. Therefore, it

seems unnecessary to carry out some extra programming in order to obtain this cor-

rection. In principle, the results offered in the standard SAS output could be directly

used to test the hypothesis of interest.

8.3 Implications for the Schizophrenia Data

Let us now recall the case study on schizophrenia, analyzed in Chapter 4. Assuming

that the linear predictor is correctly specified by (4.4), the results obtained in Theo-

rem 8.1 and Corollary 8.1 allow us to feel relatively confident about the presence of

a treatment effect of risperidone on the CGI scores of patients suffering from chronic

schizophrenia. Although care is necessary when interpreting the estimated size of the

effect, this is undoubtedly a valuable clinical finding.
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A Family of Diagnostic Tools

In the previous chapters we have shown that the estimates of variance components

are always subject to considerable bias when the random-effects distribution is mis-

specified. This can have an important impact in studies where these parameters are

of main interest. Further, we found that bias can also be present in the estimates of

the linear predictor parameters, especially when complex random-effects structures

are considered. Finally, we observed that the misspecification can also affect both the

power and the type I error rate associated with the most commonly used inferential

procedures.

Evidently, in these circumstances, the development of diagnostic tools is of great

importance. The problem of studying the impact of random-effects misspecification

is complex due to the latent nature of the random effects. This renders difficult the

evaluation of the associated distributional assumptions. Diagnostic tools to analyze

the random-effects distribution are therefore not straightforward. For instance, one

should be careful in using empirical Bayes estimates of the random effects to detect

departures from normality. Indeed, unlike in the linear mixed model, the posterior

density of the empirical Bayes estimates in generalized linear mixed models is, in

general, not normal, even when the random-effects distribution is correctly specified

as normal (Molenberghs and Verbeke, 2005).

Waagepetersen (2006) proposed a simulation-based test to evaluate the appropri-

ateness of the choice of the random-effects distribution, by generating random effects

while conditioning on the observations. The intuition behind this test is that if the

61
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joint model for the observations and the random effects is correctly specified, then

the marginal distribution of the simulated random effects should coincide with the

assumed distribution. Although simulations with Poisson responses showed a reason-

able power, this test required very large cluster and sample sizes to produce similar

results with binary outcomes. Tchetgen and Coull (2006) introduced a diagnostic test

to verify the validity of the choice of the random-effects distribution by comparing

marginal and conditional maximum likelihood estimators of a subset of fixed effects

in the model. They argue that the conditional estimators are robust to the choice of

the random-effects distribution, whereas the estimators from the marginal model will

be affected if this distribution is misspecified. Therefore, they propose a test statistic

based on the difference between these estimates, focusing on the covariates which vary

within each cluster. Clearly, the test is restricted to those applications which involve

at least one within-cluster covariate. This would make it inapplicable, for instance, to

study the appropriateness of the normal distribution to describe the heterogeneity of

the latent trait involved in the Rasch model and other item response models (Agresti,

2002).

White (1982) proposed a general test for model misspecification. However, this In-

formation Matrix Test (IMT) requires third-order partial derivatives of the likelihood

function. Even though the calculation of higher order derivatives might not be an issue

in cases where the likelihood is available in a closed form, it can become an important

problem when working with complicated likelihood functions, like in generalized linear

mixed models. Hence, one has to resort to numerical approximations, which can be

burdensome and less than straightforward to carry out using conventional statistical

packages. In what follows, we propose three new tests for misspecification, follow-

ing the general idea introduced in Chapter 5. Given that under a correctly specified

model, and using the notation of Chapter 5, A(ξ0) = −B(ξ0), deviations from the

model assumptions are expected to distort this equality. Our proposals focus on the

matrix Bn(ξ)[−A−1(ξ)] and on its properties under a correctly specified model, as

a potential indicator of misspecification. All proposals share the desirable property

of avoiding the use of third order derivatives, and can be easily implemented using

standard software like the SAS procedures NLMIXED and IML (Appendix C shows

some exemplary SAS code). The results in this chapter are based partly on Alonso,

Litière and Molenberghs (2007).
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9.1 The Determinant Tests

Let us start by considering the score statistic for each subject i = 1, . . . , n, given by

S(yi, ξ) =

{
∂ log f(yi, ξ)

∂ξ

}
, (9.1)

where f denotes the marginal model given by (3.2), derived from the hierarchical

model defined in (3.1). If the model is correctly specified then, following the notation

in Chapter 5, there exists a ξ0 ∈ Υ such that h(y) = f(y, ξ0). Further assuming that

S(yi, ξ0) ∼ Np[0,−A(ξ0)], where p denotes the dimension of ξ, and given the results

established by Anderson (1963) and Girschick (1939) on the large sample distribution

of the eigenvalues of a covariance matrix, it is easy to show that if γ1, . . . , γp represent

the eigenvalues of −A(ξ0) and γ̂1n, . . . , γ̂pn the eigenvalues of Bn(ξ0), then under a

correctly specified model, asymptotically,

√
n(γ̂n − γ) ∼ Np(0, 2Γ2), (9.2)

where Γ is the diagonal matrix of eigenvalues γ1, . . . , γp, or after applying the delta

method,
√
n(log γ̂n − logγ) ∼ Np(0, 2I), where I is the p× p identity matrix. Using

these results, we can obtain the following theorem.

Theorem 9.1 (Determinant Tests) Let us define δd1(n) = log |Bn(ξ0)[−A−1(ξ0)]|
and δd2(n) = |Bn(ξ0)|| −A−1(ξ0)|. Then, if the model is correctly specified,

1.
n

2p
[δd1(n)]2 ∼ χ2

1. (9.3)

2.
n

2p
[δd2(n) − 1]2 ∼ χ2

1. (9.4)

Proof

To simplify the notation, we will omit the index n that denotes the functional depen-

dence of γ̂n on the sample size.

1. The first test statistic can be rewritten as

δd1(n) = log

(
p∏

k=1

γ̂k

)
− log

(
p∏

k=1

γk

)
=

p∑

k=1

(log γ̂k − log γk). (9.5)

Since for each k = 1, . . . , p, the distribution of log γ̂k is given by (log γ̂k −
log γk) ∼ N(0, 2/n), it follows that

δd1(n) =

p∑

k=1

(log γ̂k − log γk) ∼ N

(
0,

2p

n

)
, (9.6)
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which is equivalent to
n

2p
[δd1(n)]2 ∼ χ2

1.

2. The second test statistic can also be rewritten as a function of the eigenvalues

of the matrices Bn(ξ0) and −A(ξ0), such that

δd2(n) = |Bn(ξ0)|| −A−1(ξ0)| =

p∏

k=1

γ̂k

γk
. (9.7)

The variance of δd2(n) follows from applying the delta method. First, we deter-

mine the gradient of δd2(n) evaluated in γ̂ = γ:

∂δd2(n)

∂γ̂k

∣∣∣∣bγ=γ
=




∏

ℓ 6=k

γ̂ℓ

γℓ



 1

γk

∣∣∣∣∣∣bγ=γ

=
1

γk
. (9.8)

Next, using the distribution of γ̂k given in (9.2) and applying the delta method,

leads to δd2(n) ∼ N(1, 2
n∆T Γ2∆), where ∆T =

(
1
γ1

. . . 1
γp

)
. Finally, note that

∆T Γ2∆ = p. Hence, under a correctly specified model δd2(n) ∼ N(1, 2p/n), or

equivalently,
n

2p
[δd2(n) − 1]2 ∼ χ2

1. 2

When Theorem 9.1 is applied in a practical situation, A−1(ξ0) in (9.3) and (9.4) can

be substituted by its consistent estimator under the null, given by A−1
n (ξ̂n). Each

subject’s contribution to An(ξ̂n) andBn(ξ̂n) can be readily obtained from NLMIXED,

by fitting the final model by subject, keeping all parameters fixed (maxiter = 0) and

saving the corresponding first and second order derivatives (see Appendix C).

Note further that, δd1(n) and δd2(n) are merely two variations to the same theme.

However, whether or not the logarithm is used can play an important role in the

asymptotic behavior of the tests as well as in their small sample performance.

Essentially, (9.3) and (9.4) try to detect departures from the equality B(ξ0) =

−A(ξ0) using the determinant of the matrix Bn(ξ0)[−A−1(ξ0)]. The use of the de-

terminant in this setting is a plausible and sensible choice to quantify the “distance”

between Bn(ξ0) and −A−1(ξ0). Another intuitive and appealing possibility consists

in combining the determinant and the trace into a test statistic to quantify the “dis-

tance” between the two matrices of interest. We will explore this approach in the

next section.
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9.2 The Determinant-Trace Test

Consider the test statistic, which incorporates both the trace and the determinant of

A(ξ0) and Bn(ξ0), given by

δdt(n) =
tr[Bn(ξ0)]

tr[−A(ξ0)]
− |Bn(ξ0)|

| −A(ξ0)|
, (9.9)

or equivalently by

δdt(n) =

p∑

k=1

(
γ̂kn∑

ℓ γℓ

)
−

p∏

k=1

γ̂kn

γk
. (9.10)

If we further denote

σδn
=

p∑

k=1

(
γk∑
ℓ γℓ

− 1

)2

,

then the following result allows us to establish the distribution under the null of δdt(n).

Theorem 9.2 (Determinant-Trace Test) If the model is correctly specified, then

n[δdt(n)]2

2σδn

∼ χ2
1. (9.11)

Proof

Like before, to simplify the notation, we will omit the index n that denotes the

functional dependence of γ̂n on the sample size. Here again, we can apply the delta

method to obtain an expression for the variance of δdt(n). First, we determine the

gradient of δdt(n), evaluated in γ̂ = γ:

∂δdt(n)

∂γ̂k

∣∣∣∣bγ=γ
=

1∑
ℓ γℓ

−




∏

ℓ 6=k

γ̂ℓ

γℓ



 1

γk

∣∣∣∣∣∣bγ=γ

=
1∑
ℓ γℓ

− 1

γk
. (9.12)

If we let ∆T =
(

1P
ℓ

γℓ
− 1

γ1

. . . 1P
ℓ

γℓ
− 1

γp

)
, then under a correctly specified

model δdt(n) ∼ N

(
0,

2

n
σδn

)
, where

σδn
= ∆T Γ2∆ =

p∑

k=1

(
γk∑
ℓ γℓ

− 1

)2

. (9.13)

This is equivalent to the distribution specified in (9.11). 2



66 Chapter 9. A Family of Diagnostic Tools

In principle, other alternatives using these eigenvalues could be considered as well.

We have chosen three that are intuitively appealing and mathematically tractable

when calculating their null distribution. Obviously, these tests are based on some as-

sumptions. For instance, the individual contributions to the score are assumed to be

normally distributed. Departures from this assumption may affect the distributional

results in (9.2) and the performance of the proposed tests. In this case, Waternaux

(1976) showed that the estimators of the eigenvalues obtained from the observed co-

variance matrix will still be normally distributed and centered around their population

values, however, the covariance matrix of these estimators may require a correction

depending on the shape of the real distribution. Essentially, this assumption is the

price to pay in order to gain simplicity and avoid the use of high order derivatives.

In what follows, we will empirically study the performance of these tests via sim-

ulations. This study will help us to evaluate the impact of this assumption and the

behavior of these asymptotic results in finite sample sizes.

9.3 Simulation Study

To explore the behavior of the aforementioned diagnostic tools, we designed a simu-

lation study comparing the performance of these tests to detect random-effects mis-

specification in both linear and generalized linear mixed models. We considered a

number of practically relevant settings, including small sample sizes, and small and

large variances for the random effect.

9.3.1 Linear Mixed Models

When dealing with mixed models for normal responses, the marginal likelihood can

be written down in a closed form (see Section 3.3). Therefore, all derivatives in-

volved in the calculation of the IMT can be solved analytically. An overview of these

derivatives is presented in Appendix D. Hence, in this setting, we can easily compare

the performance of the proposed diagnostic tools with this general test for model

misspecification. For this purpose, normal responses were generated using the linear

random-intercept model given by

yij = β0 + bi + β1zi + β2tj + εij , (9.14)
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including an intercept, a binary covariate zi, a within-cluster covariate tj taking values

0, 1, 2, 4, 6, and 8, measurement error terms εij drawn from N(0, 1), and a random

intercept bi sampled from the 5 following mean-zero distributions, each with variance

σ2
0b = 4 and 32: a normal, a power function, and a lognormal distribution, as well as a

discrete distribution with equal probability at two support points, and an asymmetric

mixture of two normal densities.

The parameters in the mean structure were fixed at β0
0 = −8, β0

1 = 2, and β0
2 = 1.

Six different sample sizes were considered, including 50, 100, 200, 350, 500, and 1000

subjects. For each setting, 500 data sets were generated and the model given by (9.14)

was fitted to these data, assuming normally distributed random effects. We then

determined the proportion of cases in which each test produced a significant result

at the 5% significance level. When the random effects were generated from a normal

distribution, this proportion corresponds to the type I error; otherwise, it represents

the power of the test to detect random-effects misspecification. The results of these

simulations are shown in Table 9.1.

In general, White’s IMT shows a good power and type I error rate for reasonable

sample sizes (n = 350). The only exception to the previous behavior is observed

when the true distribution of the random effect is an asymmetric mixture with small

variance. Nevertheless, it should be noted that for small variances this asymmetric

mixture can be reasonably well approximated by a normal density.

The newly proposed tests exhibit an excellent type I error rate, especially for

small sample sizes. However, in general they are less powerful than the IMT to

detect misspecification. Only when the true random-effects distribution is a very

heterogenous asymmetric mixture are they able to outperform the IMT. In contrast,

they fail to detect the asymmetric mixture with small variance. Additionally, these

tests may require up to 500 subjects to achieve an acceptable power of 60% and more

when the random intercept was generated from a power function distribution.

As a conclusion we could state that the three tests showed a similar general per-

formance in the linear case. Further, the IMT showed a very good power to detect

misspecifications of the random-effects distribution in this scenario. In the following

section we will approach this problem in the more challenging generalized linear mixed

model setting.
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Table 9.1: Power and type I error for detecting a misspecified random-effects distri-

bution, using ℑ(n), δd1(n), δd2(n) and δdt(n) in the setting of linear mixed models: a

normal random intercept is assumed, whereas the random effects are generated from

a normal (No), a power function (PF), a discrete (D), an asymmetric mixture of two

normals (AM) or a lognormal distribution (LN), each with variance σ2
0b = 4 or 32.

Those settings for which the new proposals outperform the IMT are highlighted.

σ2

0b = 4 σ2

0b = 32

N ℑ(n) δd1(n) δd2(n) δdt(n) ℑ(n) δd1(n) δd2(n) δdt(n)

No 50 0.266 0.164 0.000 0.022 0.232 0.172 0.000 0.012

100 0.208 0.110 0.006 0.038 0.190 0.098 0.012 0.028

200 0.106 0.084 0.024 0.038 0.116 0.080 0.034 0.036

350 0.084 0.066 0.046 0.056 0.096 0.074 0.036 0.042

500 0.048 0.058 0.042 0.054 0.078 0.080 0.056 0.058

1000 0.042 0.042 0.036 0.052 0.054 0.060 0.046 0.056

PF 50 0.372 0.160 0.004 0.020 0.368 0.242 0.004 0.034

100 0.432 0.122 0.110 0.144 0.460 0.166 0.120 0.144

200 0.640 0.256 0.288 0.322 0.676 0.264 0.310 0.336

350 0.778 0.508 0.550 0.576 0.848 0.488 0.534 0.574

500 0.876 0.650 0.692 0.720 0.888 0.614 0.648 0.678

1000 0.958 0.898 0.904 0.918 0.974 0.870 0.878 0.904

D 50 1.000 1.000 0.968 0.824 1.000 1.000 1.000 0.916

100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

350 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

AM 50 0.136 0.226 0.008 0.040 0.562 0.990 0.420 0.586

100 0.156 0.178 0.024 0.052 0.562 0.998 0.996 0.992

200 0.220 0.170 0.056 0.112 0.610 1.000 1.000 1.000

350 0.504 0.208 0.124 0.148 0.642 1.000 1.000 1.000

500 0.666 0.202 0.134 0.162 0.702 1.000 1.000 1.000

1000 0.960 0.318 0.256 0.324 0.784 1.000 1.000 1.000

LN 50 0.694 0.138 0.014 0.042 0.850 0.344 0.053 0.115

100 0.840 0.202 0.266 0.320 0.941 0.239 0.306 0.361

200 0.960 0.734 0.778 0.796 0.982 0.806 0.843 0.857

350 0.970 0.958 0.968 0.982 0.988 0.976 0.982 0.984

500 0.970 0.992 0.992 0.992 0.992 0.996 0.998 1.000

1000 0.966 1.000 1.000 1.000 0.990 1.000 1.000 1.000
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9.3.2 Generalized Linear Mixed Models

To study the performance of the new proposals with generalized linear mixed models,

binary responses were generated using the logistic random-intercept model given by

(7.1). Recall that the linear predictor of this model included an intercept, a binary

covariate zi taking at random values 0 and 1, and a within-cluster covariate tj taking

values 0, 1, 2, 4, 6, and 8. The random intercept bi, sampled from the same distri-

butions considered in the previous simulation study, formed the random part. The

parameters in the linear predictor were fixed at β0
0 = −8, β0

1 = 2, and β0
2 = 1, in

accordance with the values in Table 4.1, estimated from the case study. As in the

previous section, we considered 50, 100, 200, 350, 500, and 1000 subjects. For each

setting, 500 data sets were generated and the model given by (7.1) was fitted to these

data under the assumption of normally distributed random effects. The type I error

and the power of the proposed diagnostic tools are reported in Table 9.2. The first

part of the table displays the results for the small variance setting (σ2
0b = 4). In this

scenario, most of the tests exhibit a good type I error rate for reasonable samples of

200 or 350 subjects. The only exception seems to be the determinant-trace test δdt(n)

with a considerably large type I error rate of up to 13%, even with 1000 subjects.

The determinant tests now present the best global behavior when both power and

type I error are taken into account. Especially the test based on δd1(n) successfully

detects the discrete and lognormal distribution for sample sizes of 350 or larger. The

determinant-trace test δdt(n) had a high power to detect many of the considered

misspecifications. However, its inflated type I error would make its results unclear

in a real situation where the true distribution is unknown. Finally, note that for

small variances, the asymmetric mixture and power densities can be reasonably well

approximated by a normal distribution. As a consequence, all tests need a large

sample size to achieve a moderate power in detecting these misspecifications.

The second part of the table summarizes the results for the large variance sce-

nario (σ2
0b = 32). Unlike in the previous setting, all the tests now exhibit a very good

type I error rate, even for small samples of 50 subjects. The best overall behavior is

now observed for the determinant-trace test. Even when the random intercept was

drawn from the asymmetric mixture, the determinant-trace test displayed a remark-

able power to detect this misspecification. Regarding power, all tests perform quite

well already with sample sizes of 200 subjects.
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Table 9.2: Power and type I error for detecting a misspecified random-effects distribu-

tion, using δd1(n), δd2(n) and δdt(n) in the setting of generalized linear mixed models:

a normal random intercept is assumed, whereas the random effects are generated from

a normal (No), a power function (PF), a discrete (D), an asymmetric mixture of two

normals (AM) or a lognormal distribution (LN), each with variance σ2
0b = 4 or 32.

The test with the best performance for each setting is highlighted.

σ2

0b = 4 σ2

0b = 32

n δd1(n) δd2(n) δdt(n) δd1(n) δd2(n) δdt(n)

No 50 0.126 0.010 0.048 0.074 0.042 0.032

100 0.106 0.030 0.098 0.052 0.026 0.020

200 0.096 0.054 0.126 0.048 0.044 0.032

350 0.098 0.072 0.152 0.062 0.050 0.026

500 0.100 0.084 0.164 0.054 0.040 0.018

1000 0.074 0.068 0.126 0.052 0.038 0.012

PF 50 0.167 0.004 0.094 0.422 0.014 0.448

100 0.208 0.034 0.240 0.542 0.214 0.754

200 0.262 0.092 0.422 0.734 0.558 0.968

350 0.334 0.200 0.570 0.926 0.846 0.996

500 0.392 0.278 0.648 0.990 0.980 1.000

1000 0.640 0.580 0.894 1.000 1.000 1.000

D 50 0.412 0.010 0.266 0.914 0.458 0.840

100 0.502 0.176 0.600 0.986 0.942 0.992

200 0.716 0.550 0.858 1.000 0.998 1.000

350 0.894 0.782 0.972 1.000 1.000 1.000

500 0.954 0.926 0.994 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000

AM 50 0.145 0.006 0.095 0.266 0.014 0.500

100 0.116 0.016 0.148 0.322 0.094 0.722

200 0.152 0.054 0.288 0.456 0.264 0.904

350 0.164 0.086 0.328 0.602 0.474 0.998

500 0.170 0.108 0.404 0.704 0.602 1.000

1000 0.312 0.260 0.620 0.934 0.918 1.000

LN 50 0.076 0.088 0.169 0.091 0.113 0.178

100 0.267 0.369 0.583 0.172 0.260 0.474

200 0.676 0.766 0.936 0.476 0.578 0.868

350 0.914 0.954 0.996 0.690 0.786 0.982

500 0.994 0.996 1.000 0.874 0.924 1.000

1000 1.000 1.000 1.000 0.998 1.000 1.000
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Clearly, the power of the tests considerably improved when the variance of the ran-

dom effects was large. This is a desirable behavior given the results obtained in

Chapter 7. Indeed, we found that for small values of the random effects variance,

the bias introduced by the misspecification on the linear predictor parameters was

negligible. Nevertheless, considerable bias could appear under misspecification when

the variance was more substantial. Precisely, the setting where the proposed tests

showed the larger power and best general performance.

9.4 Application: The Schizophrenia Data

In this section, we will apply the different tests to assess the suitability of the logistic-

normal model given by (4.4) for the analysis of the case study in Chapter 4. The

determinant tests lead to δd1(n) = 0.075 and δd2(n) = 1.078 with corresponding p-

values of 0.763 and 0.754, respectively, while the determinant-trace test delivers the

following output: δdt(n) = 0.001 accompanied by p = 0.996.

These results imply that, with the data at hand, we do not have evidence of a

departure from the assumption of normally distributed random effects or any other

misspecification in the model. While the sample size is likely not large enough to

detect very small deviations, n = 128 might be considered sufficient to detect gross

departures. Therefore, the clearly non-significant p-values certainly allow us to enter-

tain a comfortable level of confidence in the final model.

Even though overall the proposed tests show good performance, none of them

consistently detects random-effects misspecification in all the settings considered in

this chapter. Clearly there is still some room for improvement. For instance, the

previous tests impose some distributional assumptions on the subject’s contribution

to the score function that do not need to hold in a practical situation. In the next

chapter we will introduce and study two diagnostic tools that try to overcome some

of the limitations and problems of the tests analyzed here.





Chapter 10

Alternative Information

Matrix Tests

In the previous chapter, we introduced a family of tests for detecting model misspec-

ifications based on the eigenvalues of the matrix Bn(ξ0)[−A−1(ξ0)]. Even though

in the simulation studies, these tests showed a good general performance, the new

proposals are clearly not powerful enough in some settings. Therefore, in this chap-

ter we will continue the search for more efficient diagnostic tools. We propose two

new alternatives, along the ideas of the IMT, and study the power of these tests

to detect random-effects misspecification, as well as violations of other important

model assumptions. This chapter is based on results obtained in Litière, Alonso and

Molenberghs (2007c) and Alonso et al. (2007).

10.1 The Sandwich Estimator Test

In this section, we focus on the difference between V (ξ0) and −A−1(ξ0) as a potential

indicator of misspecification. More specifically, we will focus on the diagonal elements

of V (ξ0) +A−1(ξ0).

Let us first define Ṽn(ξ) = A−1(ξ)Bn(ξ)A−1(ξ) and vn(ξ) = diag[Ṽn(ξ)+A−1(ξ)].

Note that vn(ξ) can also be written as ∆vec[Ṽn(ξ) +A−1(ξ)], where ∆ is the p× p2

73
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matrix specified as

∆ =





1 for k = 1, . . . , p and ℓ = (k − 1)p+ k

0 otherwise,
(10.1)

and p refers to the number of parameters in the model. Further, let us consider

bi(ξ) = vec

{
∂ log f(yi, ξ)

∂ξk
· ∂ log f(yi, ξ)

∂ξℓ

}
, (10.2)

and let µb(ξ) and Vb(ξ) represent the mean and the covariance matrix of bi(ξ). An

unbiased estimator of µb(ξ) is given by µ̂b(ξ) = 1
n

∑n
i=1 bi(ξ) = vec[Bn(ξ)], whereas

Vb(ξ) can be estimated through

V̂b(ξ) =
1

n− 1

n∑

i=1

[bi(ξ) − µ̂b(ξ)][bi(ξ) − µ̂b(ξ)]
T . (10.3)

Additionally, let us denote by

Cv(ξ) =
1

n
∆[A−1(ξ) ⊗A−1(ξ)]Vb(ξ)[A

−1(ξ) ⊗A−1(ξ)]∆T . (10.4)

Using all of these elements, we can now establish the following result.

Theorem 10.1 (Sandwich Estimator Test) Under general regularity conditions,

if the model is correctly specified, then as n→ ∞

vn(ξ0) ∼ Np(0, Cv(ξ0)),

and therefore

δs(n) = vT
n (ξ0)[Cv(ξ0)]

−1vn(ξ0) ∼ χ2
p. (10.5)

Proof

It is possible to show, using some properties of the Kronecker product and the vec

operator, that

vec[Ṽn(ξ)] = [A−1(ξ) ⊗A−1(ξ)]vec[Bn(ξ)].

= [A−1(ξ) ⊗A−1(ξ)]

[
1

n

n∑

i=1

bi(ξ)

]
(10.6)
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Further, we have that

E{vec[Ṽn(ξ)]} = [A−1(ξ) ⊗A−1(ξ)]
1

n

n∑

i=1

E[bi(ξ)]

= [A−1(ξ) ⊗A−1(ξ)]µb(ξ),

and

cov{vec[Ṽn(ξ)]} = [A−1(ξ) ⊗A−1(ξ)]cov{vec[Bn(ξ)]}[A−1(ξ) ⊗A−1(ξ)]T . (10.7)

Since

cov{vec[Bn(ξ)]} = cov

[
1

n

n∑

i=1

bi(ξ)

]

=
1

n2

n∑

i=1

cov[bi(ξ)]

=
1

n
Vb(ξ), (10.8)

we can rewrite (10.7) as

cov{vec[Ṽn(ξ)]} =
1

n
[A−1(ξ) ⊗A−1(ξ)]Vb(ξ)[A

−1(ξ) ⊗A−1(ξ)]. (10.9)

Under general regularity conditions, (10.6) and the central limit theorem imply that,

asymptotically,

vec[Ṽn(ξ)] ∼ Np2

(
[A−1(ξ) ⊗A−1(ξ)]µb(ξ), cov{vec[Ṽn(ξ)]}

)
. (10.10)

Since

vn(ξ) = ∆vec[Ṽn(ξ) +A−1(ξ)]

= ∆vec[Ṽn(ξ)] + ∆vec[A−1(ξ)],

it easily follows that

vn(ξ) ∼ Np

(
∆[A−1(ξ) ⊗A−1(ξ)]µb(ξ) + ∆vec[A−1(ξ)],∆cov{vec[Ṽn(ξ)]}∆T

)
,

or

vn(ξ) ∼ Np

(
∆[A−1(ξ) ⊗A−1(ξ)]µb(ξ) + ∆vec[A−1(ξ)], Cv(ξ)

)
. (10.11)
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Under a correctly specified model, B(ξ0) = −A(ξ0). In this case,

µb(ξ0) = E

[
vec

{
∂ log f(y, ξ0)

∂ξk
· ∂ log f(y, ξ0)

∂ξℓ

}]

= vec

[
E

{
∂ log f(y, ξ0)

∂ξk
· ∂ log f(y, ξ0)

∂ξℓ

}]

= vec[B(ξ0))]

= vec[−A(ξ0)].

It can now be easily seen that

E[vn(ξ0)] = ∆[A−1(ξ0) ⊗A−1(ξ0)]µb(ξ0) + ∆vec[A−1(ξ0)]

= ∆[A−1(ξ0) ⊗A−1(ξ0)]vec[−A(ξ0)] + ∆vec[A−1(ξ0)].

The first term in this expression can also be written as

[A−1(ξ0) ⊗A−1(ξ0)]vec[−A(ξ0)] = −vec[A−1(ξ0)A(ξ0)A
−1(ξ0)] = −vec[A−1(ξ0)].

Therefore,

E[vn(ξ0)] = −∆[A−1(ξ0)] + ∆vec[A−1(ξ0)] = 0 (10.12)

and as a consequence

vn(ξ0) ∼ Np(0, Cv(ξ0)).

2

When Theorem 10.1 is applied in a practical situation, A−1(ξ0) in (10.5) is substi-

tuted by its consistent estimator under the null, given by A−1(ξ̂n), and Vb(ξ0) by

its consistent estimator V̂b(ξ̂n) given by (10.3). All the necessary calculations are

illustrated with some exemplary SAS code in Appendix C.

Unlike the previously defined tests, the SET uses the available information in a

more sophisticated fashion and does not impose distributional assumptions on the bi’s.

This could have a positive impact on its asymptotic and small sample behavior. To

explore this issue further, we have applied the test to the data generated in Chapter 9.

In the first panel of Table 10.1, we compare the performance of the SET δs(n) with

the IMT, when the data are generated from the linear mixed model given by (9.14),

considering different random-effects distributions, and analyzed using model (9.14),

assuming a normally distributed random intercept.
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Table 10.1: Power and type I error over different sample sizes (n), for detecting a

misspecified random-effects distribution, using the IMT ℑ(n), the SET δs(n) and the

MIMT ℑm(n) in linear and/or generalized linear mixed models: a normal random

intercept is assumed, whereas the random effects are generated from a normal (No),

a power function (PF), a discrete (D), an asymmetric mixture of two normals (AM)

or a lognormal distribution (LN), each with variance σ2
0b = 4 or 32.

LMM GLMM

σ2

0b = 4 σ2

0b = 32 σ2

0b = 4 σ2

0b = 32

n ℑ(n) δs(n) ℑm(n) ℑ(n) δs(n) ℑm(n) δs(n) ℑm(n) δs(n) ℑm(n)

No 50 0.266 0.298 0.344 0.232 0.284 0.300 0.278 0.259 0.234 0.154

100 0.208 0.204 0.238 0.190 0.172 0.222 0.192 0.242 0.122 0.102

200 0.106 0.088 0.122 0.116 0.090 0.126 0.098 0.180 0.072 0.072

350 0.084 0.058 0.090 0.096 0.060 0.104 0.046 0.108 0.038 0.056

500 0.048 0.034 0.054 0.078 0.064 0.082 0.044 0.080 0.040 0.048

1000 0.042 0.026 0.044 0.054 0.040 0.056 0.026 0.054 0.016 0.032

PF 50 0.372 0.458 0.474 0.368 0.482 0.524 0.242 0.589 0.264 0.762

100 0.432 0.490 0.510 0.460 0.516 0.498 0.172 0.515 0.288 0.922

200 0.640 0.636 0.658 0.676 0.686 0.688 0.092 0.620 0.406 0.996

350 0.778 0.780 0.793 0.848 0.848 0.858 0.086 0.710 0.650 1.000

500 0.876 0.864 0.882 0.888 0.886 0.892 0.096 0.820 0.812 1.000

1000 0.958 0.952 0.958 0.974 0.972 0.974 0.164 0.952 0.998 1.000

D 50 1.000 1.000 1.000 1.000 1.000 1.000 0.304 0.782 0.710 0.982

100 1.000 1.000 1.000 1.000 1.000 1.000 0.306 0.914 0.830 0.998

200 1.000 1.000 1.000 1.000 1.000 1.000 0.430 0.968 0.948 1.000

350 1.000 1.000 1.000 1.000 1.000 1.000 0.688 0.988 0.996 1.000

500 1.000 1.000 1.000 1.000 1.000 1.000 0.848 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 0.986 1.000 1.000 1.000

AM 50 0.136 0.228 0.222 0.562 0.660 0.634 0.230 0.471 0.242 0.788

100 0.156 0.182 0.188 0.562 0.592 0.592 0.146 0.374 0.172 0.926

200 0.220 0.226 0.264 0.610 0.612 0.628 0.092 0.458 0.114 0.996

350 0.504 0.500 0.526 0.642 0.618 0.650 0.070 0.514 0.136 1.000

500 0.666 0.646 0.674 0.702 0.692 0.704 0.064 0.588 0.098 1.000

1000 0.960 0.948 0.960 0.784 0.782 0.786 0.058 0.784 0.166 1.000

LN 50 0.694 0.736 0.750 0.850 0.915 0.904 0.355 0.446 0.480 0.547

100 0.840 0.856 0.868 0.941 0.972 0.972 0.251 0.545 0.338 0.772

200 0.960 0.958 0.966 0.982 0.984 0.990 0.198 0.792 0.430 0.984

350 0.970 0.968 0.978 0.988 0.990 0.988 0.224 0.964 0.724 1.000

500 0.970 0.972 0.976 0.992 0.990 0.992 0.332 0.996 0.892 1.000

1000 0.966 0.964 0.972 0.990 0.988 0.992 0.780 1.000 1.000 1.000
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Clearly, the IMT and the SET have a very similar performance in all the settings

considered. Combined with its computational simplicity, this is a strong point for the

SET. Further, when comparing the results in Tables 9.1 and 10.1, we observed that

its performance is stabler than that of the diagnostic tools introduced in Chapter 9.

Indeed, although the tests based on the eigenvalues of the matrix −Bn(ξ0)A
−1(ξ0)

may show a good power in some settings, they encounter serious problems to detect

the misspecification in others, even when a large sample size is available. However,

the IMT and the SET always achieve a power of at least 67%, even when the true

distribution of the random effect is an asymmetric mixture with small variance.

The power of the SET to detect random-effects misspecification, when the data

are generated using the logistic random-intercept model given by (7.1), considering

different random-effects distributions, and analyzed using the same model, but assum-

ing a normal random intercept, is shown in the second panel of Table 10.1. Compared

to the results in Table 9.2, we now observe a similar behavior of the SET and the

diagnostic tools in Chapter 9, especially when the variance of the random intercept

is large. In this case, a good power and type I error rate is generally observed for

the SET with reasonable samples as of 350 subjects. As discussed in the previous

chapter this is a desirable behavior given that, under misspecification, considerable

bias can appear in the fixed-effects estimates when the variance of the random effects

is large. Still, like for the linear mixed model, the asymmetric mixture appears to be

a misspecification difficult to detect. In the next section, we will introduce another

diagnostic tool that will exhibit a greater power to detect this misspecification.

10.2 The Modified Information Matrix Test

While developing the SET, the variability of vec[Bn(ξ)] was estimated using the

empirical covariance estimator (10.3). In this section, we will use the same approach

to obtain an empirical estimate of the variability of vec[An(ξ)]. This will allow us

to approximate the variability of the IMT test statistic, without the need for third

order derivatives. Consider again Dn(ξ), as defined in (5.12), which corresponds to

the vector of diagonal elements of An(ξ) +Bn(ξ). Note that Dn(ξ) = ∆vec[An(ξ) +

Bn(ξ)], where ∆ is given by (10.1). From this expression it follows that

CD(ξ) = cov[Dn(ξ)] = cov{∆vec[An(ξ) + Bn(ξ)]}
= ∆cov{vec[An(ξ)] + vec[Bn(ξ)]}∆T ,



79

where

cov{vec[An(ξ)] + vec[Bn(ξ)]} = cov{vec[An(ξ)]} + cov{vec[Bn(ξ)]}
+ cov{vec[An(ξ)], vec[Bn(ξ)]} + cov{vec[Bn(ξ)], vec[An(ξ)]}.(10.13)

Note that, from (10.8), we have that cov{vec[Bn(ξ)]} = n−1Vb(ξ), and Vb(ξ) can be

consistently estimated using (10.3). Similarly to (10.2), we can now define

ai(ξ) = vec

(
∂2 log f(yi, ξ)

∂ξk∂ξℓ

)
. (10.14)

Let µa(ξ) and Va(ξ) represent the mean and the covariance of ai(ξ). It is then easy to

show that cov{vec[An(ξ)]} = n−1Va(ξ), and an unbiased estimator of Va(ξ) is given

by

V̂a(ξ) =
1

n− 1

n∑

i=1

[ai(ξ) − µ̂a(ξ)][ai(ξ) − µ̂a(ξ)]T , (10.15)

where µ̂a(ξ) = 1
n

∑n
i=1 ai(ξ). Finally, let Cab(ξ) and Cba(ξ) denote the covariance

between ai(ξ) and bi(ξ), and bi(ξ) and ai(ξ) respectively. Then,

cov{vec[An(ξ)], vec[Bn(ξ)]} = cov

[
1

n

n∑

i=1

ai(ξ),
1

n

n∑

i=1

bi(ξ)

]

=
1

n2

n∑

i=1

cov[ai(ξ), bi(ξ)]

=
1

n
Cab(ξ), (10.16)

and similarly, cov{vec[Bn(ξ)], vec[An(ξ)]} = 1
nCba(ξ). Unbiased estimators for these

quantities are given by

Ĉab(ξ) =
1

n− 1

n∑

i=1

[ai(ξ) − µ̂a(ξ)][bi(ξ) − µ̂b(ξ)]
T

Ĉba(ξ) =
1

n− 1

n∑

i=1

[bi(ξ) − µ̂b(ξ)][ai(ξ) − µ̂a(ξ)]T .

Using all these elements, we can now formulate the following theorem.

Theorem 10.2 (Modified Information Matrix Test) Under general regularity con-

ditions, and if the model is correctly specified, then, as n→ ∞,

Dn(ξ0) ∼ Np(0, CD(ξ0)), (10.17)
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and therefore

ℑm(n) = DT
n (ξ0)[CD(ξ0)]

−1Dn(ξ0) ∼ χ2
p. (10.18)

Proof

First, let us recall that

vec[An(ξ) +Bn(ξ)] =
1

n

n∑

i=1

[ai(ξ) + bi(ξ)], (10.19)

and therefore

E{vec[An(ξ) +Bn(ξ)]} = µa(ξ) + µb(ξ).

Using (10.19) and the central limit theorem, under general regularity conditions, it

follows that, asymptotically,

vec[An(ξ) +Bn(ξ)] ∼ Np2 (µa(ξ) + µb(ξ), C
∗(ξ)) ,

where C∗(ξ) is given by (10.13). Hence,

Dn(ξ) ∼ Np(∆[µa(ξ) + µb(ξ)], CD(ξ)).

Finally, note that under a correctly specified model,

µa(ξ0) + µb(ξ0) = vec[A(ξ0)] + vec[B(ξ0)]

= vec[A(ξ0) +B(ξ0)] = 0,

such that (10.17) holds. 2

To study how the Modified Information Matrix Test (MIMT) ℑm(n) performs, relative

to the SET and the IMT in the setting of linear mixed models, we have applied the

test to the normal response data generated in Chapter 9. The power obtained from

the MIMT is displayed next to the results from the IMT and the SET in the first

panel of Table 10.1. From this table we can see that the MIMT performs very similar

to both the IMT and the SET.

Further, the second panel of Table 10.1 displays the type I error and the power

of the MIMT to detect random-effects misspecification in generalized linear mixed

models. Recall that, in this setting, the SET encountered problems to detect mis-

specification when the random intercept was generated from a power function or an
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asymmetric mixture of two normal distributions, especially when σ2
0b = 4. The MIMT

clearly outperforms the SET, as well as the determinant and the determinant-trace

tests, in the settings considered. Indeed, a good power can generally be observed with

samples of 350 subjects or larger. Additionally, the MIMT has a very high power to

detect the misspecification when σ2
0b = 32, irrespective of the shape of the real distri-

bution. In most settings displayed here, we observed a power of 70%, even when the

data contained information on only 50 subjects. This clearly shows the potential of

the MIMT to detect misspecification of the random-effects distribution, especially in

those settings in which the misspecification can have a substantial negative impact.

Note that even though the SET and the MIMT were initially developed as tools

to detect misspecification of the random-effects distribution, they are also suitable

to detect other types of misspecifications. In the following section, we will further

explore this possibility.

10.3 Misspecification of the Random-effects Struc-

ture

Heagerty and Kurland (2001) studied the impact of some random-effects misspecifica-

tions in a number of different settings. They estimated the bias induced by different

violations of the random effects assumptions, including the fitting of a logistic-normal

model, (i) when the random effect is generated from a non-normal distribution, (ii)

when the variance of the random effect depends on a covariate in the linear predictor,

(iii) when the random structure includes both a random intercept and slope, and (iv)

when the random effects are auto-correlated.

Up to now we have mainly focused on the first setting, i.e., the random effects are

generated from a non-normal distribution, but assumed to be normal in the model

fitting. However, these authors found that the other misspecifications above could also

induce an important bias in the estimates of the fixed effects parameters. Therefore,

in this section, we will move away from the misspecification that constitutes the

core of the present work and we will evaluate the performance of the previous tests

to detect the other violations of the model assumptions studied by Heagerty and

Kurland (2001).
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10.3.1 Random Intercept Variance Depending on a Binary Co-

variate

In this setting, binary responses were generated using the model given by

logit{P (yij = 1|bij)} = β0 + β1zi + β2tj + β3zitj + bij , (10.20)

where zi is a binary covariate (randomly assigned zi = 0 or zi = 1 with equal

probabilities), tj is a within-cluster covariate representing a linear trend, with tj =

(j − 1)/(ni − 1), the variance of the random intercept bij = bi0 is sampled from a

distribution given by

bi0 ∼
{

N(0, σ2
0) when zi = 0

N(0, σ2
1) when zi = 1,

(10.21)

and ni = 6. The parameters in the linear predictor were fixed at β0
0 = −2, β0

1 = 1,

β0
2 = 0.5 and β0

3 = −0.25. Further, three sample sizes were considered, including

100, 350 and 500 subjects. In total, 500 data sets were generated using the previous

specifications, and model (10.20) was fitted to these generated data, assuming that

bij = bi0 ∼ N(0, σ2
b ).

Heagerty and Kurland (2001) found that substantial bias can occur for all coeffi-

cients in the model, when σ0 and σ1 are very different. For example, they reported

38% and 31% of relative bias in the estimation of β1 and β3 respectively, when σ0 = 1

and σ1 = 2. Additionally, they observed that as the discrepancy between the two

parameters increases, so does the bias in the parameter estimates.

To study the performance of our proposals in this particular setting, we applied

the tests introduced in Chapter 9, the SET and the MIMT to the generated data sets

and determined the proportion out of the 500 repetitions in which the tests were able

to detect the misspecification (at a 5% significance level). The corresponding powers,

for n = 500 are displayed in Table 10.2 as a function of σ0 and σ1 (the results for the

other sample sizes are shown in Table E.1). Note that, when σ0 = σ1, these values

correspond to the type I error rate.

Remarkably, all the tests introduced in Chapter 9 have, in general, a poor per-

formance in this setting. The observed type I error largely exceeds the pre-specified

value in some scenarios and the power is usually very small. They failed to detect

the misspecification, even when the difference between σ0 and σ1 was largest. For

instance, the determinant-trace test δdt(n) shows an excellent power when σ1 = 3.0
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Table 10.2: Power of the determinant tests δd1(n) and δd2(n), the determinant-trace

test δdt(n), the SET δs(n) and the MIMT ℑm(n) to detect model misspecification,

when a logistic-normal model is assumed, but the variance of the random intercept

depends on a binary cluster-level covariate, [bi0|zi = 0] ∼ N(0, σ2
0) and [bi0|zi = 1] ∼

N(0, σ2
1). (sample size n = 500).

σ1 σ0 δd1(n) δd2(n) δdt(n) δs(n) ℑm(n)

0.5 0.5 0.100 0.080 0.106 0.040 0.064

1.0 0.056 0.060 0.090 0.102 0.514

2.0 0.176 0.108 0.026 0.984 1.000

3.0 0.594 0.478 0.248 1.000 1.000

1.0 0.5 0.134 0.072 0.184 0.078 0.696

1.0 0.050 0.042 0.070 0.018 0.038

2.0 0.072 0.048 0.044 0.620 0.980

3.0 0.227 0.165 0.107 0.994 1.000

2.0 0.5 0.364 0.236 0.638 0.770 1.000

1.0 0.154 0.116 0.242 0.452 0.980

2.0 0.062 0.046 0.064 0.020 0.020

3.0 0.062 0.044 0.028 0.244 0.608

3.0 0.5 0.740 0.584 0.926 0.992 1.000

1.0 0.444 0.328 0.654 0.974 1.000

2.0 0.100 0.068 0.086 0.184 0.630

3.0 0.066 0.064 0.046 0.016 0.014

and σ0 = 0.5, but fails to detect the reverse situation, when σ1 = 0.5 combined with

σ0 = 3.0, in 75% of the cases. Conversely, the SET showed a good power if differences

between the two variance parameters were larger than 1.0. Nevertheless, the test with

the best overall performance is the MIMT. This test is clearly able to detect problems

in most of the considered settings, and especially in those for which the maximum

likelihood estimators of the linear predictor are most affected. It is important to point

out that both the SET and the MIMT can produce inflated type I error rates when

small sample sizes are used (see Table E.1). However, this problem disappears when

the sample size is increased.
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10.3.2 Ignoring a Random Effect

Another type of misspecification in the random structure occurs when a random slope

is incorrectly ignored. To study the performance of our proposals in this scenario, we

have generated binary responses from the model given by (10.20), with bij = bi0+bi1tj ,

and σ2
0 and σ2

1 representing the variance of the random intercept bi0 and slope bi1,

respectively.

Simulations by Heagerty and Kurland (2001) showed that when these data are

analyzed wrongly assuming that bij = bi0, moderate bias can appear in the estimation

of the regression coefficients. For instance, they observed asymptotic relative biases

as large as 30-50% in the estimates of β2 and β3 when σ0 is small and σ1 is large. On

the other hand, the bias for the estimators of the intercept β0 and the cluster-level

covariate effect β1 remained below 15% for all considered pairs of (σ0, σ1).

Table 10.3 shows the power of the diagnostic tools, for n = 500 subjects, to detect

this type of misspecification, as a function of σ0 and σ1 (the results for the other

sample sizes are displayed in Table E.2). As one would expect, all tests fail to detect

the misspecification when σ1 is small. However, the bias calculations by Heagerty

and Kurland (2001) showed that little bias is present in this case. The SET and the

MIMT increase their power when also σ1 is increased, relative to σ0. Nevertheless,

when σ1 = 1 and σ0 = 0.5, precisely the setting in which bias as large as 52% was

obtained for β2 and β3, we only observed a power of 55% with the SET to detect the

misspecification, and 61% with the MIMT.

10.3.3 Autoregressive Random Effects

In the analysis of longitudinal data one often observes that the dependence be-

tween repeated measurements within a subject seems to decay as the time sepa-

ration between the measurements increases. This could be accounted for with a

generalized linear mixed model including autocorrelated random effects bij for which

cov(bij , bik) = σ2ρ|tij−tik|. Simulations by Heagerty and Kurland (2001) with this

type of misspecification have shown that substantial negative bias can arise in the

estimated fixed effects, with increasing bias as σ increases and especially when ρ is

small. Note that the random intercept model follows as a special case of the autore-

gressive model when ρ = 1. For models with ρ < 1, a potentially large negative bias

can be observed in σ̂n, given that it estimates the common variance and therefore

approximates the true covariances σ2ρ|tij−tik|. These authors observed that as ρ de-
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Table 10.3: Power of the determinant tests δd1(n) and δd2(n), the determinant-trace

test δdt(n), the SET δs(n) and the MIMT ℑm(n) to detect model misspecification,

when a logistic-normal model is assumed, but the data are generated using both a

random intercept and slope (bij = bi0 + bi1tj), with variance σ2
0 and σ2

1 , respectively.

(sample size n = 500).

σ1 σ0 δd1(n) δd2(n) δdt(n) δs(n) ℑm(n)

0.2 0.5 0.078 0.070 0.110 0.030 0.066

1.0 0.056 0.040 0.076 0.012 0.032

2.0 0.050 0.048 0.048 0.008 0.018

3.0 0.070 0.060 0.042 0.022 0.036

0.5 0.5 0.070 0.068 0.094 0.052 0.098

1.0 0.066 0.068 0.102 0.026 0.056

2.0 0.062 0.090 0.086 0.006 0.024

3.0 0.058 0.067 0.053 0.013 0.032

0.8 0.5 0.068 0.116 0.120 0.230 0.282

1.0 0.120 0.166 0.172 0.070 0.156

2.0 0.178 0.242 0.224 0.022 0.076

3.0 0.190 0.234 0.198 0.014 0.034

1.0 0.5 0.138 0.178 0.174 0.546 0.610

1.0 0.210 0.300 0.260 0.234 0.394

2.0 0.356 0.434 0.380 0.054 0.166

3.0 0.368 0.468 0.394 0.044 0.012

creases, the negative bias in σ̂n increases, ranging between −30% and −50% when

ρ = 0.7, and between −47% and −70% when ρ = 0.5. As a result, substantial neg-

ative bias can also arise in the estimated regression coefficients, with increasing bias

as σ increases. For instance, when (ρ, σ) = (0.5, 3.0) negative bias as high as −45%

occurred in each of the linear predictor parameter estimates.

Table 10.4 shows the power of the diagnostic tools to detect this type of mis-

specification, as a function of σ and ρ. From the table it follows that, unlike in

the previous misspecification settings, the SET and especially the MIMT are not as

powerful as δd1(n), δd2(n) and δdt(n). When σ ≥ 2, these tests are able to detect

the misspecification in over 80% of the data. Further, all the diagnostic tools exhibit
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Table 10.4: Power of the determinant tests δd1(n) and δd2(n), the determinant-trace

test δdt(n), the SET δs(n) and the MIMT ℑm(n) to detect model misspecification,

when a logistic-normal model is assumed, but the data are generated using autocorre-

lated random effects bij such that cov(bij , bik) = σ2ρ|tij−tik|. (sample size n = 500).

ρ σ δd1(n) δd2(n) δdt(n) δs(n) ℑm(n)

0.5 0.5 0.067 0.080 0.103 0.013 0.054

1.0 0.182 0.267 0.333 0.046 0.064

2.0 0.852 0.910 0.938 0.696 0.264

3.0 0.992 0.998 0.998 0.980 0.594

0.7 0.5 0.095 0.099 0.128 0.019 0.071

1.0 0.232 0.306 0.366 0.044 0.056

2.0 0.954 0.970 0.972 0.888 0.544

3.0 1.000 1.000 1.000 1.000 0.958

0.9 0.5 0.076 0.062 0.103 0.024 0.064

1.0 0.092 0.148 0.190 0.018 0.034

2.0 0.768 0.864 0.834 0.368 0.306

3.0 0.998 0.998 0.998 0.922 0.924

a very good performance for σ = 3. Given that the bias in the estimation of the

linear predictor parameters was seen to be more substantial as of σ ≥ 2 (Heagerty

and Kurland, 2001), this is a very desirable property.

10.4 Application: The Schizophrenia Data

In this section, we will apply the SET and the MIMT to assess the suitability of

model (4.4) with normal random effects for the analysis of the case study. It follows

that δs(n) = 0.324 and compared to a χ2 distribution with 4 degrees of freedom, this

leads to p = 0.988. Additionally, ℑm(n) = 0.695 with corresponding p = 0.952. These

results imply that, with the data at hand, we do not have evidence of a departure

from the assumption of normally distributed random effects or, in fact, of any other

misspecification in the model. Given the power exhibited by the MIMT, even for small

sample sizes, n = 128 might be considered sufficient to detect some gross departures.

Therefore, these clearly non-significant p-values again allow us a comfortable level of
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confidence in the final model.

Obviously, the availability of easily accessible diagnostic tools raises questions on

how to proceed when the tests do produce significant results. Frequently, in statis-

tics, estimators and inferential procedures show asymptotic robustness against some

departures from the assumptions they are based on. In Chapter 11, we will explore

this issue further. If the available sample size does not allow to rely on asymptotic

arguments, alternative approaches are of the utmost importance. In Chapter 12, we

will discuss some of these alternatives, including the use of the heterogeneity model

and its implementation within a more general sensitivity analysis framework.





Chapter 11

Asymptotic Robustness

In the context of shared parameter models, where interest lies in the association

structure between a longitudinal and a survival process, Rizopoulos, Verbeke and

Molenberghs (2007) studied the effect of misspecifying the random-effects distribution

on the parameter estimates. They argued that the impact of the misspecification

on the estimation of the mean structure in the longitudinal process diminishes as

the number of repeated observations per subject increases. They also claimed that

the maximum likelihood estimator of the variance components remains biased, even

when both the number of subjects and the number of observations per subject go

to infinity. In this chapter, we bring this result into the generalized linear mixed

models framework including any number of random effects, and analyze its practical

implications in the light of all our previous findings.

11.1 Asymptotic Robustness: Consistency

In the context of linear mixed models, Verbeke and Lesaffre (1997) have shown that

the maximum likelihood estimators are consistent, even when the random-effects dis-

tribution is misspecified, as far as the mean and the covariance structure are correctly

specified (see Chapter 6). These authors analyzed consistency when the number of

subjects increases, and the number of observations per subject is kept constant. As

was illustrated in Chapter 7, such a result does not necessarily hold for generalized

linear mixed models. We observed that severe bias is usually present in the esti-

89
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mates of the variance components, and the fixed effects estimates can also be severely

affected, especially when the underlying population is very heterogeneous.

Regularly, consistency for the model parameters is stated as the number of clusters

(n) increases (Agresti, 2002). In the following theorem, we will argue that, in order

to obtain maximum likelihood estimates of the fixed effects parameters close to the

real values, both the number of clusters n and the number of observations per cluster

ni should be sufficiently large.

Theorem 11.1 (Asymptotic Robustness) Let yij denote the jth measurement

for the ith subject, with i = 1, . . . , n and j = 1, . . . , ni. Conditional on a vector

bi of individual random effects for subject i, it is assumed that all responses yij are

independent with density belonging to the exponential family (3.1), where

µij = E(yij |bi) = v(xT
ijβ + zT

ijbi), (11.1)

v(.) denotes a known link function, xij denotes a p-dimensional vector of covariates,

zij is a q-dimensional vector, β is a vector of fixed parameters and bi is a vector of

random effects assumed to follow a density f(bi|δ), with E(bi) = 0, which differs from

the true random-effects distribution denoted by h(bi). Further, let β̂F (n,m) denote the

maximum likelihood estimator of β, under the assumed model, where m = min(ni),

and let β0 represent the true value for β.

Then, under general regularity conditions, as n→ ∞ and m→ ∞,

β̂F (n,m)
P−→ β0. (11.2)

Proof

Under the assumed model, the likelihood contribution for every subject i can be

written as

fi(yi|β, δ) =

∫
fi(yi|β, bi)f(bi|δ)dbi, (11.3)

and the marginal loglikelihood has the form

ℓ(β, δ) =

n∑

i=1

log

∫
fi(yi|β, bi)f(bi|δ)dbi. (11.4)

Further, the posterior distribution of bi can be written as

fi(bi|yi,β, δ) =
fi(yi|β, bi)f(bi|δ)∫
fi(yi|β, bi)f(bi|δ)dbi

, (11.5)
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therefore, ∫
fi(yi|β, bi)f(bi|δ)dbi =

fi(yi|β, bi)f(bi|δ)
fi(bi|yi,β, δ)

. (11.6)

This implies that

log

∫
fi(yi|β, bi)f(bi|δ)dbi = log fi(yi|β, bi) − log fi(bi|yi,β, δ) + log f(bi|δ).

As a result, the marginal loglikelihood can be written as

ℓ(β, δ) =

n∑

i=1

[log fi(yi|β, bi) − log fi(bi|yi,β, δ) + log f(bi|δ)]. (11.7)

Since f(bi|δ) does not depend on β, maximizing (11.7) with respect to β is equivalent

to maximizing

ℓ1(β, δ) =

n∑

i=1

[log fi(yi|β, bi) − log fi(bi|yi,β, δ)]. (11.8)

Now, if b0i denotes the value of the random effects for subject i, then under some

regularity conditions, the Bayesian central limit theorem (see Appendix F) guarantees

that, as ni → ∞,

fi(bi|yi,β, δ)
P−→ N(b0i, H

−1(b0i)),

where

H(b0i) = E

(
−∂

2 log fi(yi|β, bi)

∂bij∂bik

)∣∣∣∣
bi=b0i

. (11.9)

Note that (11.9) depends only on fi(yi|β, bi), i.e., the conditional distribution of the

responses, which is assumed to be correctly specified. Therefore, when m → ∞, we

have that, irrespective of the prior distribution used to model the random effects,

ℓ1(β, δ)
P−→ Q(β, δ), (11.10)

where

Q(β, δ) =

n∑

i=1

[log f(yi|β, bi) − log N(b0i, H
−1(b0i))]. (11.11)

Now, let ℓ1F (β, δ) and ℓ1H(β, δ) correspond to (11.8) under the assumed and the

correct distribution for the random effects. Then, (11.10) implies that, for all ε > 0

when m→ ∞,

P [|ℓ1F (β, δ) −Q(β, δ)| < ε] → 1 (11.12)

P [|ℓ1H(β, δ) −Q(β, δ)| < ε] → 1. (11.13)
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Further, the inequality

|ℓ1F (β, δ) − ℓ1H(β, δ)| ≤ |ℓ1F (β, δ) −Q(β, δ)| + |ℓ1H(β, δ) −Q(β, δ)|,

implies that

P [|ℓ1F (β, δ) − ℓ1H(β, δ)| < ε]

≥ P
[
|ℓ1F (β, δ) −Q(β, δ)| < ε

2
and |ℓ1H(β, δ) −Q(β, δ)| < ε

2

]
.

This last inequality, together with (11.12) and (11.13) implies that, when m→ ∞,

P [|ℓ1F (β, δ) − ℓ1H(β, δ)| < ε] → 1. (11.14)

If we denote by β̂F (n,m) and β̂H(n,m) the maximas associated with ℓ1F (β, δ) and

ℓ1H(β, δ) respectively, then under certain regularity conditions (11.14) implies that,

for all ε > 0 as m→ ∞,

P [|β̂F (n,m) − β̂H(n,m)| < ε] → 1. (11.15)

Further, β̂H(n,m) is a consistent estimator for β0, so as n→ ∞,

P [|β̂H(n,m) − β0| < ε] → 1. (11.16)

Finally, the following inequality

|β̂F (n,m) − β0| ≤ |β̂F (n,m) − β̂H(n,m)| + |β̂H(n,m) − β0|

implies that

P [|β̂F (n,m) − β0| < ε]

≥ P
[
|β̂F (n,m) − β̂H(n,m)| < ε

2
and |β̂H(n,m) − β0| <

ε

2

]
.

Therefore, this last inequality, together with (11.15) and (11.16), implies that, as

n→ ∞ and m→ ∞, we have

P [|β̂F (n,m) − β0| < ε] → 1. (11.17)

2

In practice, this suggests that we need both the number of clusters as well as the

number of observations per cluster to go to infinity, to guarantee consistency of the
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maximum likelihood estimators for the fixed effects in the model. The same result

cannot be reproduced for the variance components associated with bi. In this case, the

prior distribution of the random effects cannot be discarded from the likelihood and

its impact does not fade away. This essentially implies that the maximum likelihood

estimator of the variance components will be inconsistent under misspecification, even

when both the number of clusters as well as the number of observations per cluster

go to infinity.

Note that the previous result is intuitively appealing, especially from a Bayesian

perspective. Indeed, it is known from asymptotic Bayesian analysis that the impact

of the prior distribution on our inferences fades away when a lot of data are available.

Precisely the situation we have when both m and n go to infinity. Even though this

theorem represents an elegant asymptotic result, its use can be limited if unrealistic

sample sizes are required. Hence, it is of interest to know how many repeated mea-

surements per subject are required for this result to hold. In the next section, we

will study the practical implications of Theorem 11.1 via simulations with different

numbers of subjects and observations per subject.

11.2 Impact of Increasing the Number of Observa-

tions per Cluster

The practical scope of Theorem 11.1 basically depends on two important factors: i)

the magnitude of the sample size required to achieve a reasonable level of precision,

and ii) the practical plausibility of the assumptions it relies on. In this section, we

will explore the first factor via simulations, and in what follows we will try to analyze

the second issue in some detail. Essentially, Theorem 11.1 is based on the asymptotic

normality of the posterior distribution. There is a large literature available on the

regularity conditions required to justify mathematically this important result. Those

who have contributed to the field include, Chen (1985), Sweeting and Adekola (1987),

Fu and Kass (1988), Fraser and McDunnough (1984), Sweeting (1992), and Gosh et

al. (1994).

Gelman et al. (1995) offered some counterexamples to the Bayesian central limit

theorem. These counterexamples generally correspond to situations in which the

prior distribution has an impact on the posterior, even in the limit of infinite sample

sizes. They claim that problems can arise, for example, when the model is underi-
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dentified, in the presence of aliasing or when the posterior has thick tails. Bernardo

and Smith (1994, Section 5.3) proposed three basic conditions which are sufficient

to ensure a valid normal approximation for the posterior. He called these assump-

tions steepness, smoothness and concentration. A detailed description of all of them

can be found in Appendix F. A closer look to the concentration assumption shows

that it requires the probability outside any neighborhood of the posterior mode to

become negligible when the sample size increases. This may not be the case for

multimodal posteriors, to mention one example. In general, multimodal priors could

in principle lead to multimodal posteriors and therefore, Theorem 11.1 could fail if

the real unknown distribution has several modes. In any practical application, the

real random-effects distribution will be totally unknown and previous asymptotic re-

sults should be considered with care. Further, when the variance components are

of interest, misspecification of the random-effects distribution may continue to be a

problem.

In this section, we will study the implications of Theorem 11.1 via simulations

with a logistic random-intercept model. Let binary responses be generated using

model (7.1), including an intercept, a binary covariate zi, a within-cluster covariate

tj , and a random intercept bi. We will consider longitudinal sequences of 3 different

lengths, including

• 4 repeated measurements, taking values 0, 1, 2, and 4,

• 6 repeated measurements, taking values 0, 1, 2, 4, 6, and 8, and

• 8 repeated measurements, taking values 0, 1, 2, 4, 6, 8, 10, and 12.

The random intercept bi was sampled from 5 distinct mean-zero distributions, in-

cluding a normal, power function, and lognormal distribution, as well as a discrete

distribution with equal probability at two support points, and an asymmetric mixture

of two normal densities, and each with variances σ2
0b = 1, 4, 16, and 32. Further, the

parameters in the linear predictor were fixed at β0
0 = −8, β0

1 = 2, and β0
2 = 1. Six dif-

ferent sample sizes were considered, namely 50, 100, 200, 400, 800, and 1600 subjects.

For each setting, 500 data sets were generated, and the model given by (7.1) was used

to analyze these generated data, assuming normally distributed random effects.

First, we would like to point out that a high number of non-converging analyses were

obtained, especially for those settings with few repeated measurements and subjects

(see Table 11.1 for the convergence rates of the analyses based on 4 repeated measure-
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Table 11.1: Percentage of converged analyses with model (7.1) assuming a normal

random intercept, when the data were generated using model (7.1), with 4 repeated

measurements, n subjects and 5 different random-intercept distributions incl. a nor-

mal (No), a lognormal (LN), a power function (PF) a discrete (D), and an asymmetric

mixture (AM) of two normal distributions, each with variance σ2
0b.

n No LN PF D AM n No LN PF D AM

σ2
0b = 1 σ2

0b = 4

50 42 54 33 35 32 50 77 80 49 67 63

100 56 72 38 44 34 100 94 93 61 82 77

200 70 88 47 59 50 200 99 100 69 91 90

400 82 99 59 68 60 800 100 100 90 99 99

800 85 100 63 76 62 800 100 100 90 99 99

1600 95 100 68 82 65 1600 100 100 95 100 100

σ2
0b = 16 σ2

0b = 32

50 99 86 95 100 95 50 98 90 100 100 100

100 100 97 100 100 99 100 100 97 100 100 100

200 100 100 100 100 100 200 100 98 100 100 100

400 100 100 100 100 100 400 100 100 100 100 100

800 100 100 100 100 100 800 100 100 100 100 100

1600 100 100 100 100 100 1600 100 100 100 100 100

ments per subject). For instance, more than half of the analyses with 50 subjects failed

to converge when σ2
0b = 1. This low convergence rate can most likely be attributed to

the limited amount of available information. Likely, with only 50 subjects and 4 time

points, there is not enough information to distinguish the variability introduced by

a random intercept with variance σ2
0b = 1, from the overall variability. Additionally,

we observed that in many simulations, the procedure NLMIXED converged to an

ill-conditioned maxima, resulting in extreme values for both the parameter estimates

and their standard errors.

The median of the maximum likelihood estimates of β0, β1, β2, and σ2
b obtained

from the converged analyses are displayed in Tables 11.2 to 11.5. In general, the

results of this new simulation study fully resemble our previous findings.



9
6

C
h
a
p
ter

1
1
.

A
sym

p
to

tic
R
o
bu

stn
ess

Table 11.2: Median of the maximum likelihood estimates β̂0n obtained from fitting model (7.1) to the data generated using

different numbers of time points, sample sizes n and different random-effects distributions including a normal (No), a

lognormal (LN), a power function (PF) a discrete (D) distribution, as well as an asymmetric mixture (AM) of two

normal distributions, each with variance σ2
0b (note that β0

0 = −8 was used to generate the data).

4 time points 6 time points 8 time points

n σ
2

0b
= 1 σ

2

0b
= 4 σ

2

0b
= 16 σ

2

0b
= 32 σ

2

0b
= 1 σ

2

0b
= 4 σ

2

0b
= 16 σ

2

0b
= 32 σ

2

0b
= 1 σ

2

0b
= 4 σ

2

0b
= 16 σ

2

0b
= 32

No 50 -23.92 -8.95 -8.02 -8.12 -8.26 -8.18 -8.12 -8.11 -8.18 -8.00 -8.06 -8.19
100 -9.25 -8.12 -8.00 -7.83 -8.12 -7.92 -7.94 -8.15 -8.06 -8.03 -8.05 -7.94
200 -8.64 -8.13 -8.17 -8.00 -8.04 -8.10 -8.05 -8.03 -8.05 -8.03 -8.09 -7.95
400 -8.14 -8.01 -8.00 -8.05 -7.99 -7.96 -8.01 -8.03 -7.98 -8.01 -8.03 -8.00
800 -8.20 -8.02 -8.04 -8.02 -8.02 -8.02 -7.99 -8.03 -8.00 -7.99 -7.98 -8.03
1600 -8.06 -8.00 -7.98 -8.01 -7.98 -7.99 -8.01 -8.06 -8.01 -8.00 -8.00 -8.00

LN 50 -20.50 -12.31 -13.46 -16.84 -8.22 -8.67 -9.01 -9.78 -8.19 -8.22 -8.53 -8.63
100 -10.31 -10.70 -13.62 -15.58 -8.21 -8.43 -9.10 -9.48 -8.06 -8.15 -8.39 -8.70
200 -9.25 -10.63 -12.91 -14.56 -8.10 -8.39 -8.93 -9.57 -7.99 -8.20 -8.45 -8.63
400 -9.06 -10.91 -12.68 -14.69 -8.11 -8.36 -8.96 -9.40 -8.02 -8.18 -8.41 -8.59
800 -8.95 -10.76 -12.74 -14.38 -8.10 -8.44 -8.93 -9.46 -8.05 -8.19 -8.40 -8.61
1600 -8.95 -10.65 -12.72 -14.06 -8.08 -8.39 -8.95 -9.43 -8.04 -8.18 -8.41 -8.58

PF 50 -34.93 -11.00 -6.85 -6.01 -8.15 -7.89 -7.41 -6.77 -8.25 -8.03 -7.93 -7.51
100 -10.81 -8.28 -6.62 -5.89 -8.06 -7.85 -7.33 -6.85 -8.10 -8.08 -7.78 -7.29
200 -8.72 -7.74 -6.60 -5.93 -8.02 -7.78 -7.32 -6.92 -8.01 -8.06 -7.73 -7.19
400 -8.51 -7.71 -6.62 -5.94 -7.95 -7.76 -7.24 -6.67 -8.05 -8.00 -7.64 -7.21
800 -8.13 -7.56 -6.60 -5.97 -7.92 -7.75 -7.28 -6.75 -8.03 -8.00 -7.74 -7.26
1600 -8.01 -7.48 -6.66 -5.94 -7.93 -7.76 -7.26 -6.73 -8.00 -8.00 -7.70 -7.20

D 50 -32.94 -7.84 -5.74 -4.98 -8.30 -8.20 -8.02 -7.18 -8.04 -7.92 -7.54 -7.29
100 -9.58 -7.60 -5.77 -4.88 -8.15 -8.14 -8.04 -7.35 -8.03 -7.99 -7.65 -7.63
200 -8.39 -7.43 -5.80 -4.92 -8.01 -8.11 -7.94 -7.07 -8.07 -8.00 -7.86 -7.71
400 -8.29 -7.40 -5.79 -4.96 -8.00 -8.15 -8.14 -7.41 -8.05 -8.07 -7.92 -7.96
800 -8.07 -7.28 -5.76 -4.90 -8.03 -8.12 -7.98 -7.35 -8.02 -8.01 -7.81 -7.80
1600 -7.96 -7.25 -5.75 -4.83 -8.04 -8.14 -8.04 -7.18 -8.03 -8.01 -7.85 -7.77

AM 50 -34.33 -8.21 -6.83 -5.89 -8.43 -7.55 -7.14 -6.34 -8.14 -7.64 -8.03 -7.41
100 -10.76 -7.84 -6.67 -5.72 -8.03 -7.58 -7.09 -6.35 -8.06 -7.66 -8.07 -7.41
200 -8.65 -7.51 -6.69 -5.70 -7.99 -7.49 -7.16 -6.31 -8.03 -7.63 -8.02 -7.37
400 -8.28 -7.41 -6.62 -5.74 -7.98 -7.48 -7.15 -6.27 -8.03 -7.65 -7.95 -7.44
800 -8.09 -7.31 -6.64 -5.68 -7.95 -7.47 -7.13 -6.33 -8.02 -7.64 -7.95 -7.38
1600 -7.95 -7.31 -6.60 -5.72 -7.96 -7.49 -7.12 -6.30 -8.01 -7.61 -7.99 -7.38
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Table 11.3: Median of the maximum likelihood estimates β̂1n obtained from fitting model (7.1) to the data generated using

different numbers of time points, sample sizes n and different random-effects distributions including a normal (No), a

lognormal (LN), a power function (PF) a discrete (D) distribution, as well as an asymmetric mixture (AM) of two

normal distributions, each with variance σ2
0b (note that β0

1 = 2 was used to generate the data).

4 time points 6 time points 8 time points

n σ
2

0b
= 1 σ

2

0b
= 4 σ

2

0b
= 16 σ

2

0b
= 32 σ

2

0b
= 1 σ

2

0b
= 4 σ

2

0b
= 16 σ

2

0b
= 32 σ

2

0b
= 1 σ

2

0b
= 4 σ

2

0b
= 16 σ

2

0b
= 32

No 50 2.48 2.47 2.03 2.06 2.12 2.06 2.10 2.11 2.07 1.99 2.00 1.87
100 2.27 2.12 2.12 1.85 2.01 2.03 2.04 2.04 2.00 2.04 2.04 1.95
200 2.28 1.99 2.11 2.05 2.02 2.05 2.03 1.98 2.01 2.02 2.03 1.94
400 2.07 2.00 1.99 2.00 2.01 1.97 1.98 2.02 1.99 1.99 2.03 1.95
800 2.07 2.00 2.02 2.01 2.01 2.01 1.98 2.02 2.01 2.00 1.97 2.01
1600 2.02 2.00 2.01 1.99 1.99 1.99 1.99 2.02 2.00 1.99 1.99 1.99

LN 50 2.24 2.67 3.12 3.24 2.07 2.26 2.46 2.64 2.05 2.04 2.02 2.03
100 2.50 2.21 2.53 2.52 2.10 2.20 2.46 2.60 2.04 1.99 2.02 2.02
200 2.33 2.28 2.47 2.41 2.05 2.20 2.37 2.60 2.01 2.02 2.04 2.03
400 2.11 2.39 2.44 2.37 2.06 2.20 2.38 2.56 2.01 2.01 2.01 2.02
800 2.11 2.34 2.40 2.28 2.08 2.23 2.42 2.55 2.02 2.02 1.99 2.02
1600 2.09 2.32 2.36 2.23 2.08 2.21 2.39 2.55 2.02 2.01 2.00 1.99

PF 50 2.11 2.36 1.99 1.76 2.04 1.95 1.77 1.93 2.09 2.05 2.16 2.29
100 2.43 2.12 1.86 1.81 2.00 1.92 1.74 1.81 2.03 2.02 2.04 1.99
200 2.19 2.00 1.93 1.89 1.97 1.90 1.75 1.97 2.00 1.96 1.85 1.86
400 2.13 1.99 1.93 1.85 1.95 1.84 1.64 1.63 1.97 1.93 1.79 1.69
800 2.05 1.98 1.92 1.84 1.95 1.86 1.73 1.71 1.99 1.96 1.84 1.80
1600 2.02 1.95 1.95 1.87 1.94 1.84 1.68 1.70 1.98 1.92 1.80 1.75

D 50 2.06 2.28 1.64 1.79 2.09 1.94 1.55 1.36 1.86 1.76 1.59 2.01
100 2.48 2.22 1.81 1.76 2.07 1.98 1.64 1.69 2.00 1.97 2.05 2.65
200 2.28 2.07 1.83 1.77 2.03 2.03 1.75 1.34 1.99 2.06 2.32 2.90
400 2.17 2.10 1.90 1.91 2.07 2.12 1.99 2.04 2.07 2.14 2.46 3.27
800 2.08 2.04 1.81 1.77 2.04 2.04 1.79 1.89 2.03 2.06 2.29 2.96
1600 2.04 2.00 1.77 1.60 2.07 2.07 1.89 1.52 2.04 2.08 2.33 3.01

AM 50 2.03 2.28 2.06 2.04 2.10 1.92 1.79 1.78 2.04 1.97 1.87 1.61
100 2.45 2.26 1.97 1.97 1.97 1.94 1.72 1.78 2.00 1.99 1.88 1.73
200 2.31 2.10 1.98 1.96 1.97 1.92 1.80 1.70 1.98 1.99 1.89 1.74
400 2.11 2.03 1.98 1.95 1.97 1.92 1.80 1.70 2.02 1.97 1.86 1.75
800 2.10 2.01 1.97 1.93 1.97 1.92 1.76 1.71 2.00 2.01 1.85 1.69
1600 2.05 2.00 1.97 1.94 1.96 1.92 1.76 1.70 2.00 1.99 1.87 1.69
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Table 11.4: Median of the maximum likelihood estimates β̂2n obtained from fitting model (7.1) to the data generated using

different numbers of time points, sample sizes n and different random-effects distributions including a normal (No), a

lognormal (LN), a power function (PF) a discrete (D) distribution, as well as an asymmetric mixture (AM) of two

normal distributions, each with variance σ2
0b (note that β0

2 = 1 was used to generate the data).

4 time points 6 time points 8 time points

n σ
2

0b
= 1 σ

2

0b
= 4 σ

2

0b
= 16 σ

2

0b
= 32 σ

2

0b
= 1 σ

2

0b
= 4 σ

2

0b
= 16 σ

2

0b
= 32 σ

2

0b
= 1 σ

2

0b
= 4 σ

2

0b
= 16 σ

2

0b
= 32

No 50 1.55 1.06 1.00 1.02 1.04 1.01 1.02 1.02 1.01 1.00 1.01 1.02
100 1.06 1.01 1.02 1.01 1.01 0.99 1.00 1.02 1.01 1.00 1.01 1.01
200 1.03 1.02 1.02 0.99 1.00 1.01 1.00 1.01 1.00 1.00 1.01 1.00
400 1.01 0.99 1.00 1.01 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.01
800 1.02 1.00 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1600 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00

LN 50 1.14 1.08 1.02 1.14 1.02 1.05 1.01 1.04 1.03 1.03 1.04 1.01
100 1.07 1.02 1.08 1.07 1.01 1.01 1.02 1.00 1.01 1.02 1.02 1.04
200 1.03 1.03 1.05 1.06 1.00 1.01 0.99 1.00 1.00 1.02 1.03 1.02
400 1.03 1.05 1.02 1.07 1.00 1.00 1.00 0.99 1.00 1.02 1.03 1.02
800 1.02 1.02 1.03 1.06 1.00 1.01 1.00 1.00 1.00 1.02 1.02 1.02
1600 1.01 1.03 1.04 1.05 1.00 1.00 1.00 0.99 1.00 1.02 1.02 1.02

PF 50 7.66 1.12 1.02 0.99 1.04 1.02 1.02 0.99 1.04 1.01 1.01 0.98
100 1.17 1.07 1.00 0.98 1.02 1.01 1.01 0.99 1.01 1.02 1.01 0.98
200 1.02 1.03 0.98 0.98 1.01 1.01 1.01 1.00 1.00 1.02 1.01 0.97
400 1.05 1.02 0.98 0.98 1.00 1.01 1.01 0.98 1.01 1.01 1.01 0.99
800 1.02 1.02 0.99 0.98 1.00 1.00 1.01 0.98 1.01 1.01 1.01 0.98
1600 1.01 1.00 0.99 0.97 1.00 1.00 1.01 0.98 1.00 1.01 1.01 0.98

D 50 3.08 1.06 0.95 0.93 1.04 1.03 1.00 0.88 1.01 1.00 0.94 0.83
100 1.06 1.03 0.96 0.92 1.02 1.02 1.00 0.88 1.01 1.00 0.93 0.81
200 1.04 1.02 0.96 0.92 1.00 1.01 0.99 0.87 1.01 1.00 0.93 0.81
400 1.04 1.00 0.96 0.92 1.00 1.01 0.99 0.87 1.00 1.00 0.93 0.81
800 1.03 1.00 0.95 0.92 1.00 1.02 0.99 0.87 1.00 1.00 0.93 0.81
1600 1.01 0.99 0.95 0.92 1.00 1.01 0.99 0.87 1.00 0.99 0.93 0.80

AM 50 5.64 1.10 1.03 0.99 1.06 1.02 1.02 1.02 1.03 1.01 1.03 1.01
100 1.12 1.06 1.01 1.00 1.01 1.01 1.00 1.01 1.01 1.01 1.05 1.01
200 1.07 1.02 1.01 0.99 1.01 1.00 1.02 1.00 1.01 1.01 1.03 1.01
400 1.03 1.02 1.00 0.99 1.00 1.00 1.01 1.00 1.00 1.01 1.02 1.01
800 1.02 1.00 1.00 0.98 1.00 1.00 1.01 1.00 1.00 1.01 1.02 1.01
1600 1.01 1.00 0.99 0.99 1.00 1.00 1.01 1.00 1.00 1.00 1.02 1.01
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Table 11.5: Median of the maximum likelihood estimates σ̂2
bn obtained from fitting model (7.1) to the data generated using

different numbers of time points, sample sizes n and different random-effects distributions including a normal (No), a

lognormal (LN), a power function (PF) a discrete (D) distribution, as well as an asymmetric mixture (AM) of two

normal distributions, each with variance σ2
0b.

4 time points 6 time points 8 time points

n σ
2

0b
= 1 σ

2

0b
= 4 σ

2

0b
= 16 σ

2

0b
= 32 σ

2

0b
= 1 σ

2

0b
= 4 σ

2

0b
= 16 σ

2

0b
= 32 σ

2

0b
= 1 σ

2

0b
= 4 σ

2

0b
= 16 σ

2

0b
= 32

No 50 2.26 4.13 14.98 30.80 1.05 3.84 15.68 31.99 0.97 3.61 15.43 30.29
100 1.99 3.99 15.55 31.55 1.01 3.74 15.64 32.52 0.96 3.83 16.08 31.07
200 1.50 3.82 16.31 31.44 0.98 3.98 15.72 31.45 0.96 3.96 16.24 31.80
400 1.09 3.92 15.92 31.96 1.00 3.89 15.83 32.38 0.98 4.00 15.95 32.25
800 1.11 4.06 16.03 32.25 1.00 4.03 15.76 32.11 0.99 3.97 15.82 32.08
1600 0.99 4.00 15.89 31.97 0.99 3.98 15.93 32.41 0.99 4.00 16.00 32.04

LN 50 3.26 16.34 35.33 71.68 1.30 4.22 9.36 13.85 1.08 3.00 6.12 7.47
100 4.05 14.33 39.67 68.44 1.29 4.07 10.00 13.91 1.00 3.12 6.02 8.10
200 3.87 14.19 38.62 59.57 1.27 4.30 9.56 13.85 0.99 3.04 6.33 7.84
400 3.96 15.40 36.52 61.19 1.30 4.25 9.69 14.22 1.05 3.17 6.22 8.09
800 3.87 15.24 38.10 59.92 1.32 4.40 9.83 14.15 1.06 3.18 6.27 8.08
1600 3.94 14.78 37.90 57.86 1.34 4.35 9.81 14.04 1.07 3.22 6.25 8.07

PF 50 2.01 2.05 2.43 5.30 0.75 2.04 6.15 11.21 0.99 3.16 10.11 17.55
100 1.79 1.66 2.37 5.14 0.68 1.90 6.22 11.93 0.97 3.22 9.94 17.22
200 1.28 1.02 2.42 5.40 0.68 1.97 6.18 11.58 0.92 3.31 9.97 16.87
400 0.87 1.00 2.54 5.44 0.66 1.98 6.18 11.50 0.92 3.26 10.00 17.52
800 0.58 0.88 2.48 5.51 0.67 2.01 6.22 11.61 0.94 3.32 10.05 17.41
1600 0.48 0.84 2.55 5.49 0.66 1.99 6.21 11.55 0.92 3.26 10.02 17.27

D 50 2.24 1.80 3.61 9.92 1.03 4.27 19.40 38.61 0.93 3.84 15.32 36.05
100 1.75 1.54 3.67 10.03 1.04 4.31 20.08 39.34 0.95 3.90 15.61 37.49
200 1.08 1.33 3.72 10.19 0.98 4.33 19.79 39.22 0.99 3.91 16.00 38.02
400 0.96 1.25 3.60 10.09 0.98 4.33 19.87 40.16 0.95 3.92 16.01 38.52
800 0.71 1.25 3.67 10.14 1.00 4.40 19.81 39.88 0.98 3.92 15.95 38.08
1600 0.67 1.26 3.73 10.19 1.01 4.39 19.82 39.61 1.00 3.96 15.94 37.81

AM 50 2.13 1.92 3.12 3.39 1.00 2.16 5.93 8.36 1.00 2.79 14.05 22.06
100 1.72 1.51 3.03 3.41 0.81 2.10 6.09 8.39 0.92 2.86 14.71 22.22
200 1.26 1.38 2.89 3.45 0.80 2.11 6.31 8.43 0.95 2.89 14.59 22.26
400 0.79 1.31 2.95 3.52 0.79 2.12 6.24 8.32 0.99 2.93 14.55 22.84
800 0.65 1.26 2.99 3.41 0.80 2.16 6.31 8.35 0.97 2.96 14.49 22.74
1600 0.46 1.33 2.90 3.45 0.79 2.16 6.26 8.36 0.98 2.92 14.52 22.57
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Table 11.6: Median maximum likelihood estimates obtained from fitting the logistic-

normal model (7.1) to binary response data generated using 20 time points, σ2
0b = 32,

and a random intercept sampled from an asymmetric mixture of two normals, a power

function and a discrete distribution.

Asymmetric Power function Discrete

n β̂0n β̂1n β̂2n σ̂2
bn β̂0n β̂1n β̂2n σ̂2

bn β̂0n β̂1n β̂2n σ̂2
bn

50 -7.78 2.15 0.98 30.46 -7.65 1.96 0.99 24.61 -7.39 1.73 0.97 31.45

100 -7.86 2.07 0.97 31.54 -7.76 2.08 0.99 25.21 -7.78 2.41 0.97 32.73

200 -7.83 2.05 0.98 31.96 -7.74 2.03 0.99 25.67 -7.65 2.17 0.97 32.73

400 -7.85 2.09 0.97 31.85 -7.78 2.09 0.99 26.20 -7.85 2.58 0.96 33.06

800 -7.84 2.07 0.97 32.11 -7.73 2.02 0.99 25.94 -7.81 2.42 0.97 32.99

1600 -7.81 2.05 0.97 32.04 -7.69 1.99 0.99 25.78 -7.71 2.27 0.96 33.01

Indeed, even though the bias decreases when the number of observations per subject

increases, the rate of convergence to the true values is smaller when the variance of

the random effects is large. Similarly, the estimators of parameters which are included

in the random-effects structure seem to have a slower convergence rate to the true

value. So here, like before, large variances are associated with poorer performance

of our estimators, and parameters included in the random-effects structure are more

difficult to estimate.

Overall, increasing the number of time points seems to reduce the observed bias

in the estimation of the linear predictor parameters. Still, some misspecifications

seem to require more repeated measurements for asymptotic robustness to hold. For

instance, in the case of the asymmetric mixture, the maximum likelihood estimators

tend to underestimate the treatment effect, even when the data contain 8 time points

if σ2
0b = 16 or 32. Actually, increasing the number of time points in these settings

seems to increase the magnitude of the bias. However, as can be seen from the first

panel in Table 11.6, increasing the number of time points to 20 reduces the bias of

the treatment effect to a magnitude similar to the one observed with 4 time points.

Unlike in the previous case, when the random effects were generated from a power

function distribution, increasing the number of time points seems to decrease the
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bias in a more consistent way (see the second panel in Table 11.6). Note that in both

cases the intercept was more poorly estimated than the treatment and the time effect.

Actually, here like in Chapter 7, the time effect was estimated with a negligible bias,

even when only a small sample of 50 subjects was used. Nevertheless, we have also

shown in that chapter that the situation immediately worsened when a random slope

was also included in the model.

Remarkably, increasing the number of time points does not seem to reduce sig-

nificantly the bias in the parameter estimates, when the random effects are gener-

ated from a two-point discrete distribution. For instance, even though for the other

random-effects distributions displayed here, the bias related to the estimation of the

time effect remained below 10%, in the case of the discrete distribution, increasing

the number of repeated measurements seems to increase the bias for the time effect

up to 20%. Additionally, we also observed problems when estimating β1, especially

for very heterogenous random-effects distributions. Increasing the number of time

points to 20, in this case, does not considerably improve these results (see the third

panel in Table 11.6).

This may be an illustration of the impact of violating the conditions underlying

the Bayesian central limit theorem. Indeed, it can be seen in Appendix F that this

theorem is based on a Taylor series expansion of both the likelihood and the prior

distribution. This requires these functions to be continuous and differentiable, and

even though this holds for the assumed normal distribution, this condition is violated

for the true discrete distribution. Therefore, the estimates from the assumed model

may no longer converge to the true effects.

In Section 7.4 we have shown that the power and the type I error can also be

affected by random-effects misspecification. We will now repeat these simulations,

varying the number of repeated measurements, to study the impact on the corre-

sponding Wald test. As in the aforementioned section, binary responses were gener-

ated using the logistic random-intercept model given by (7.1) with β0
0 = −8, β0

2 = 1,

and five different values for the treatment effect β0
1 : 0, 0.5, 1, 2, and 5. Further, we

considered again 4, 6, and 8 time points. The simulations were performed for three

different sample sizes, namely 25, 100, and 400 subjects. The random intercept was

drawn from a normal, a power function, a discrete, and an asymmetric mixture of

two normals, each with variance σ2
0b = 1, 4, 16, and 32. For each setting, 500 data

sets were generated and the model given by (7.1) was fitted to these data under the

assumption of normally distributed random effects. We determined the proportion
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of cases in which a treatment effect different from zero (at a 5% significance level) was

detected. When β0
1 = 0, this proportion corresponds to the type I error; otherwise,

it represents the power of the test. The results of these simulations are displayed in

Figures 11.1 and 11.2 for 4 and 8 repeated measurements, and in Figure 7.5 for 6

repeated measurements. As can be seen from these graphs, increasing the number

of repeated measurements improves the power of the analysis to detect a significant

treatment effect. This is an expectable result, given that more information is now

available.

Further, the corresponding type I error rates displayed in Table 11.7 again confirm

the results in Theorem 8.1. Indeed, since β1 does not have an associated random

effect, its type I error seems to be maintained around 5% in most settings. On the

other hand, the type I error rate related to β0, obtained from similar simulations with

parameter values β0
0 = 0, β0

1 = 2 and β0
2 = 1, and displayed in Table 11.8, is seriously

affected by the misspecification. Increasing the cluster size only induces a minor

improvement in most of the cases considered here, while increasing the sample size

further inflates the type I error rate. Indeed, in Chapters 7 and 8 we saw that, under

misspecification, the maximum likelihood estimator β̂0n is consistent with respect to

β∗
0 , the value of β0 which minimizes the KLIC (5.1). Likely, in the settings considered

in our simulations, β∗
0 6= 0. Therefore, the Wald test, implemented in SAS, is not

testing the hypothesis H0 : β0
0 = 0 as one would expect, but rather the hypothesis

H0 : β∗
0 = 0. In this context, larger sample sizes will increase the power to detect any

deviation of β∗
0 from zero. This results in the observed inflation of the type I error

associated with the hypothesis of interest, i.e., H0 : β0
0 = 0. Even though increasing

the number of observations per subject would decrease the bias in the maximum

likelihood estimates, it will not remove it completely. When additionally the number

of subjects grows, so does the power to detect this bias, even if it is now smaller.

These simulations illustrate, that the previous asymptotic results should be con-

sidered in a careful way, especially in finite samples with only few number of repeated

observations per subject. Note that in some scenarios a large number of time points

may be needed before reasonable results can be obtained. In the following chapter

we will discuss alternative strategies for the analysis when the normality assumption

is questionable and the sample size at hand does not allow us to resort to asymptotic

arguments.
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Figure 11.1: Power of the analysis of the logistic-normal model (7.1) to detect a

significant treatment effect in binary response data generated using model (7.1), over a

range of possible β0
1 values, sample sizes (n), considering 4 time points and 5 random-

effects distributions with variance σ2
0b: normal (solid line), power function (dotted

line), discrete (dash-dotted line), lognormal (dash-triple dot) and asymmetric mixture

(dashed line).
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Figure 11.2: Power of the analysis of the logistic-normal model (7.1) to detect a

significant treatment effect in binary response data generated using model (7.1), over a

range of possible β0
1 values, sample sizes (n), considering 8 time points and 5 random-

effects distributions with variance σ2
0b: normal (solid line), power function (dotted

line), discrete (dash-dotted line), lognormal (dash-triple dot) and asymmetric mixture

(dashed line).
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Table 11.7: Type I error for detecting a significant treatment effect when β0
1 = 0, when the logistic-normal model given

by (7.1) is fitted to binary response data generated using model (7.1), considering different sample sizes (n) and a random

intercept sampled from a normal (No), a power function (PF), a discrete (D) or an asymmetric mixture of two normal

distributions (AM), each distribution with variance σ2
0b. Values for which the lower bound of the corresponding 95%

confidence interval was larger than 0.05 are highlighted.

4 time points 6 time points 8 time points

n σ2

0b = 1 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32 σ2

0b = 1 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32 σ2

0b = 1 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32

No 25 0.013 0.073 0.048 0.035 0.012 0.025 0.029 0.025 0.035 0.040 0.040 0.024

100 0.010 0.032 0.042 0.028 0.041 0.052 0.050 0.026 0.052 0.046 0.034 0.058

400 0.000 0.033 0.050 0.056 0.050 0.046 0.052 0.058 0.068 0.062 0.048 0.048

LN 25 0.136 0.309 0.304 0.299 0.008 0.020 0.017 0.017 0.050 0.023 0.032 0.030

100 0.070 0.058 0.026 0.067 0.035 0.048 0.032 0.048 0.042 0.062 0.058 0.046

400 0.039 0.014 0.149 0.178 0.046 0.060 0.034 0.042 0.036 0.044 0.050 0.046

PF 25 0.033 0.034 0.047 0.031 0.008 0.023 0.036 0.016 0.022 0.014 0.008 0.018

100 0.054 0.044 0.030 0.040 0.041 0.040 0.050 0.028 0.030 0.024 0.026 0.026

400 0.098 0.080 0.086 0.078 0.046 0.064 0.076 0.050 0.022 0.030 0.040 0.046

D 25 0.000 0.019 0.032 0.030 0.023 0.012 0.014 0.004 0.029 0.022 0.020 0.014

100 0.010 0.028 0.033 0.030 0.032 0.016 0.084 0.018 0.033 0.036 0.028 0.024

400 0.077 0.045 0.078 0.098 0.048 0.080 0.024 0.088 0.048 0.038 0.018 0.030

AM 25 0.016 0.023 0.044 0.020 0.014 0.014 0.018 0.038 0.027 0.033 0.044 0.056

100 0.053 0.023 0.019 0.039 0.053 0.066 0.036 0.038 0.063 0.050 0.042 0.056

400 0.040 0.057 0.046 0.040 0.053 0.050 0.036 0.032 0.074 0.042 0.052 0.042
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Table 11.8: Type I error for detecting a significant intercept when β0
0 = 0, when the logistic-normal model given by (7.1) is

fitted to binary response data generated using model (7.1), considering different sample sizes (n) and a random intercept

sampled from a normal (No), a power function (PF), a discrete (D) or an asymmetric mixture of two normal distributions

(AM), each distribution with variance σ2
0b. Values for which the lower bound of the corresponding 95% confidence interval

was larger than 0.05 are highlighted.

4 time points 6 time points 8 time points

n σ2

0b = 1 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32 σ2

0b = 1 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32 σ2

0b = 1 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32

No 25 0.019 0.023 0.018 0.016 0.014 0.035 0.016 0.023 0.022 0.023 0.032 0.018

100 0.042 0.046 0.050 0.052 0.042 0.048 0.040 0.034 0.028 0.036 0.046 0.032

400 0.053 0.052 0.046 0.044 0.060 0.046 0.054 0.050 0.052 0.044 0.046 0.050

LN 25 0.014 0.051 0.154 0.309 0.014 0.042 0.177 0.284 0.023 0.051 0.175 0.296

100 0.040 0.215 0.634 0.847 0.056 0.159 0.667 0.880 0.051 0.206 0.673 0.882

400 0.116 0.597 0.994 1.000 0.114 0.600 0.996 1.000 0.109 0.618 0.992 1.000

PF 25 0.016 0.011 0.004 0.007 0.019 0.031 0.028 0.022 0.003 0.021 0.021 0.034

100 0.068 0.110 0.196 0.275 0.043 0.164 0.320 0.370 0.039 0.146 0.260 0.368

400 0.110 0.510 0.912 0.934 0.158 0.682 0.946 0.962 0.112 0.674 0.944 0.972

D 25 0.020 0.066 0.076 0.073 0.021 0.046 0.087 0.073 0.009 0.045 0.092 0.107

100 0.054 0.106 0.180 0.134 0.040 0.060 0.136 0.156 0.043 0.082 0.190 0.154

400 0.060 0.278 0.526 0.448 0.080 0.252 0.594 0.604 0.034 0.160 0.418 0.438

AM 25 0.013 0.034 0.027 0.021 0.015 0.025 0.011 0.045 0.010 0.039 0.020 0.036

100 0.037 0.352 0.461 0.946 0.030 0.328 0.408 0.886 0.039 0.306 0.418 0.739

400 0.074 0.936 0.980 1.000 0.076 0.924 0.986 1.000 0.072 0.956 0.954 1.000



Chapter 12

Alternative Approaches

In the previous chapter we have illustrated that under certain conditions, consis-

tency of the maximum likelihood estimators of the linear predictor parameters can

be achieved under random-effects misspecification, if the number of clusters as well

as the number of repeated observations per cluster go to infinitive. Although this

robustness is a nice asymptotic result, its use in practice may, however, be limited.

For instance, when the measurement of the response of interest in a clinical trial is

invasive for the patient and/or very expensive, it may be unethical and/or costly to

subject the patient to 6 or more repeated measurements.

This obviously raises the question of how to proceed with only few repeated ob-

servations, when the diagnostic tools introduced in the Chapters 9 and 10 hint on

the presence of misspecification. In this case, one could consider a few of the alter-

native approaches which have been presented in recent literature. For instance, a

non-parametric approach could guard against possible misspecification. In this case,

one replaces the normal random-effects distribution by a non-parametric distribution,

which is estimated through a set of mass points and their corresponding probabilities

(Aitkin, 1999). Although it is an appealing approach in many settings, there can be

some loss of efficiency when using a non-parametric method, compared to paramet-

ric assumptions close to the true distribution (Agresti, 2004). Additionally, model

comparison can be difficult as standard asymptotic theory does not apply. Finally,

a non-parametric approach is definitely not appropriate when the distribution of the

random effects is of primary interest like, for example, in surrogate marker evalu-

107
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ation, the evaluation of the psychometric properties of rating scales, or when one

wants to predict individual profiles or evolutions. Chen et al. (2002) suggested a

semi-parametric random-effects distribution, allowing the random-effects density to

be skewed, multi-modal, fat- or thin-tailed, and including the normal as a special case.

Lee and Thompson (2007) used Markov Chain Monte Carlo methods to fit models

with random effects following a t distribution, and skew extensions to the normal

and to the t distribution. In the present chapter, we will study another approach

which consists in replacing the normal random-effects distribution by a finite mixture

of normals, the so-called heterogeneity model (Fieuws, Spiessens and Draney, 2004;

Molenberghs and Verbeke, 2005). This allows one to cover a wide range of shapes for

the random-effects density, including unimodal as well as multimodal, and symmetric

as well as very skewed distributions.

Further, we will show that, although using more flexible families of distributions

can be a valid strategy in some settings, these more general families are not fully

robust either. Therefore, we will propose to incorporate them into a more general

sensitivity analysis framework. In this scenario, different distributions are considered

for the random effects. If the estimates of the parameters of interest and the associated

inferential procedures are similar, irrespective of the distribution used to obtain them,

the analyst can feel relatively confident about his/her results. On the other hand, if

the results vary considerably, then they are obviously sensitive to the distributional

assumptions for the random effects, and caution is needed. The results presented in

this chapter are based partly on Litière et al. (2007b).

12.1 The Heterogeneity Model

The heterogeneity model is an extension of the generalized linear mixed model,

obtained by sampling the random effects bi from a mixture of k normal distribu-

tions with mean vectors µr and covariance matrix D, i.e., bi ∼ ∑k
r=1 πrN(µr, D).

In principle, many distributions can be approximated with high precision by finite

mixtures of normal densities, making this approach theoretically very appealing.

For instance, Figure 12.1 shows a few realizations of the two-component mixture

πN(µ1, σ
2) + (1 − π)N(µ2, σ

2).

Observe that, with this distribution for the random-effects, the probability for a

subject to belong to component r is πr , and
∑k

r=1 πr = 1. Note further that each

component has the same covariance matrix D. This constraint is necessary to avoid
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Figure 12.1: Density functions of the mixture πN(−2, σ2)+(1−π)N(2, σ2), for varying

values of π and σ2. The dashed lines represents the densities of the normal compo-

nents; the solid line represents the density of the mixture.

unbounded likelihoods (Böhning, 2000). Let us now define πT = (π1, ..., πk) and let

ξ be the vector containing the remaining parameters, i.e., the vector β of unknown

parameters common to all subjects, as well as all parameters in µr and D. The joint

density function of yi can then be written as fi(yi) =
∑k

r=1 πrfir(yi|ξ) where

fir(yi|ξ) =

∫
fi(yi|β, bi)φr(bi)dbi,

and φr(bi) denotes the multivariate normal with mean µr and covariance matrix D.
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Estimation is now based on the maximization of

ℓ(γ|y) =

n∑

i=1

ln

{
k∑

r=1

πrfir(yi|ξ)
}
,

where γT = (ξT ,πT ), using the Expectation-Maximization (EM) algorithm described

in Dempster, Laird and Rubin (1977).

Initially, the EM algorithm was developed for missing data problems. In our

context, the algorithm is very useful if we treat the component membership indicator

zir, defined as

zir =

{
1 if bi is sampled from the rth component in the mixture

0 otherwise,
(12.1)

as missing observations. Using these indicators, the log-likelihood function can be

rewritten as

ℓ(γ|y, z) =

n∑

i=1

k∑

r=1

zir[lnπr + ln fir(yi|ξ)], (12.2)

where z is the vector of all unobserved zir. This function is easier to maximize,

however maximizing ℓ(γ|y, z) with respect to γ will lead to estimates of γ which

depend on the unobserved indicators zir. To avoid this, it has been suggested to use

the EM algorithm so that the expected value of (12.2) rather than ℓ(γ|y, z) itself, will

be maximized with respect to γ (with the expectation taken over all unobserved zir).

More specifically, in the E step (Expectation) the conditional expectation of ℓ(γ|y, z),
given the observed data y, is determined. In the M step (Maximization), the so-

obtained expected log-likelihood function is maximized with respect to γ, providing

an updated estimate for γ. The algorithm is repeated until the difference between

two successive loglikelihood evaluations is small enough.

In practice, the heterogeneity model can easily be fitted using a SAS macro based

on the SAS procedures NLMIXED and IML (described in Fieuws et al., 2004). This

macro allows the fitting of nonlinear and generalized linear mixed models with finite

normal mixtures as random-effects distributions.

To explore the actual performance of this model, we applied it to the binary

response data, generated for the simulation study described in Section 7.1. Recall

that these data were generated using the logistic random-intercept model given by

(7.1). We considered only those data for which the random intercept was drawn from

a mean zero normal density, a uniform distribution, a lognormal distribution, a power
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function distribution and an asymmetric mixture of two normal densities, each with

variance σ2
0b = 4, 16, and 32. Further, we limited this study to 50, 100, and 200

subjects, and to 100 repetitions per setting. Finally, model (7.1) was fitted to the

generated data, assuming that the random intercept followed a mixture of two normal

distributions. The median maximum likelihood estimates obtained from this model

are shown in Table 12.1.

When comparing these results to the estimates displayed in Tables 7.1 to 7.4,

obtained from fitting a logistic-normal model, we can see that the difference between

the performance of the two models is negligible for the linear predictor parameters,

when the variance of the random effect is small. However, as the variance increases,

the heterogeneity model seems to perform better in the estimation of the intercept and

the treatment effect, especially when the sample size is small. Additionally, like in the

generalized linear mixed model, from Table 12.1 we can observe that the heterogeneity

model seems to be robust to the random-effects misspecification when estimating the

time effect. The relative bias remained under 5% in all scenarios considered, even for

σ2
0b = 32.

However, we still observed substantial bias when estimating the variance of the

random effects, especially for the lognormal and the power function distribution.

Expectedly, using the heterogeneity model considerably improved the bias in the case

of the asymmetric mixture of normals. Clearly, the heterogeneity model is a correctly

specified model in this case. Nevertheless, the overall variance of the random intercept

was still considerably underestimated.

It should be noted that, when the random intercept was drawn from a normal

distribution, the heterogeneity model loses efficiency compared to the classical gen-

eralized linear mixed model. However, in a practical model building exercise, the

comparison of the one- and two-component mixture would most likely lead to the

simpler and more efficient generalized linear mixed model.

Further, recall that the simulations in Section 7.4 showed that the type I error and

the power of the analysis with a generalized linear mixed model can be seriously af-

fected by random-effects misspecification. To study whether the heterogeneity model

offers a solution to this problem, additional simulations were carried out for different

values of the treatment effect β1. These simulations were performed for 3 different

sample sizes (namely, 50, 100 and 200 subjects) and a total of 5 different β0
1 values

(including 0, 0.5, 1, 2 and 5).
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Table 12.1: Median of the maximum likelihood estimates β̂0n, β̂1n, β̂2n and σ̂2
bn obtained from fitting model (7.1) with the

random intercept assumed to follow a mixture of two normal distributions, to the binary response data generated using

different random-effects distributions with variance σ2
0b and considering different sample sizes (n). (Note that β0

0 = −8,

β0
1 = 2 and β0

2 = 1.)

β̂0n β̂1n β̂2n σ̂2
bn

n σ2
0b: 4 16 32 4 16 32 4 16 32 4 16 32

Normal 50 -7.86 -8.37 -8.34 2.02 2.06 1.56 1.02 1.03 1.01 3.92 14.93 24.50

100 -8.00 -7.86 -8.14 1.97 1.94 1.72 0.97 0.99 1.03 3.80 12.96 25.27

200 -7.87 -8.08 -7.87 2.02 1.86 1.95 1.00 1.01 1.00 3.68 14.32 27.17

Uniform 50 -8.48 -8.13 -9.09 2.20 1.99 2.64 1.06 1.04 0.99 4.98 15.65 38.26

100 -8.25 -8.05 -8.34 2.21 2.16 2.36 1.01 0.99 1.00 4.02 15.12 33.92

200 -8.20 -7.88 -8.26 2.15 1.99 2.38 1.02 0.99 0.97 4.50 14.53 35.53

Lognormal 50 -8.51 -8.65 -8.86 2.19 2.29 2.03 1.07 1.05 1.06 3.53 7.15 9.87

100 -8.41 -8.47 -8.49 2.15 2.16 2.11 1.00 1.00 1.00 3.50 6.89 9.21

200 -8.31 -8.27 -8.73 2.13 1.98 2.13 1.02 0.99 1.02 3.91 6.70 9.45

Power 50 -8.43 -7.81 -7.64 2.21 2.33 2.55 1.07 1.02 1.03 3.33 8.49 13.91

function 100 -8.13 -7.53 -7.04 2.13 2.08 2.17 1.01 0.98 0.98 3.16 6.92 12.07

200 -7.97 -7.43 -7.23 1.99 2.00 2.17 1.02 1.00 1.00 2.79 7.46 13.60

Asymmetric 50 -7.63 -7.92 -7.33 2.16 2.09 1.92 1.01 1.04 1.01 3.50 11.51 14.96

mixture 100 -7.99 -8.01 -7.67 2.15 2.05 2.05 1.04 1.01 1.02 3.04 12.36 21.08

200 -7.50 -7.81 -7.43 1.99 1.94 2.05 1.00 0.99 1.01 2.64 11.92 21.24
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For each setting, 100 data sets were generated, and the model given by (7.1) was fitted

to these data, assuming that the random intercept follows a normal and a mixture of

two normal distributions. The proportion of the cases in which these models detected

a treatment effect different from zero (on a 5% significance level) was recorded. Like

before, when there is no treatment effect, this proportion corresponds to the type I

error; for the other values of β0
1 , this proportion represents the power of the analysis.

The results of these simulations are summarized in Figures 12.2 and 12.3.

Again we observe very little difference between the performance of both models,

when σ2
0b is small. However, as the variance increases, we can clearly see an increased

power of the heterogeneity model to detect a treatment effect. For example, let

us consider in Figures 12.2(e) and 12.3(e) the graphs corresponding to a sample of

100 patients, when β0
1 = 2 and the random intercept was drawn from a uniform

distribution. By increasing the number of components k in the assumed random-

effects distribution, the power to detect a significant treatment effect increases from

31% for k = 1 to 73% for k = 2. Similarly, when the random effects are generated

from an asymmetric mixture, the use of two components increases the power from

79% to 97%.

Additionally, the graphs also support the results implied by Theorem 8.1, i.e.,

that the type I error rate associated with the test for the presence of a covariate

effect will not be affected by the (possibly incorrect) choice of the random-effects

distribution, as far as this covariate is not included in the random-effects structure.

Indeed, the type I error rates corresponding to the treatment effect (presented in

Table 12.2) rarely exceeded the specified 5% level of significance in all the scenarios

displayed in Figures 12.2 and 12.3. To study whether the type I error associated with

β0 improves using the heterogeneity model, we repeated the simulations described in

Section 7.4, with β0
0 = 0 (and β0

1 = 2, β0
2 = 1), and with random effects generated

from a mean zero normal density, a uniform distribution, a lognormal distribution, a

power function distribution and an asymmetric mixture of two normal densities. We

considered again 50, 100 and 200 subjects, and for each of these settings 100 data

sets were generated. Model (7.1) was then used to analyze these data, assuming that

the random intercept followed a normal and a mixture of two normal distributions.

The corresponding type I error rates associated with the intercept parameter β0 are

shown in Table 12.3.

The results clearly illustrate that here, although the type I error is severely affected

by the random-effects misspecification when a normal random intercept is assumed,
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Figure 12.2: Power of the logistic-normal model given by (7.1) under the assumption

of normal random effects, to detect a significant treatment effect in binary response

data generated using model (7.1), over a range of possible β0
1 values, sample sizes (n),

and for 5 random-effects distributions with variance σ2
0b: asymmetric mixture (solid

line), normal (dotted line), lognormal (dash-dotted line), uniform (dashed line), and

power function (dash-triple dotted line).

it now remains below the specified significance level when the data are analyzed using

the two-component heterogeneity model.

Therefore, although we cannot provide a clear indication that the model is fully
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Figure 12.3: Power of the heterogeneity model given by (7.1), when the random ef-

fects are assumed to be drawn from a mixture of two normals, to detect a significant

treatment effect in binary response data generated using model (7.1), over a range

of possible β0
1 values, sample sizes (n), and for 5 random-effects distributions with

variance σ2
0b: asymmetric mixture (solid line), normal (dotted line), lognormal (dash-

dotted line), uniform (dashed line), and power function (dash-triple dotted line).

robust against random-effects misspecification, we have seen from the simulations

that the heterogeneity model tends to perform slightly or considerably better than the

classical generalized linear mixed model, especially for small sample sizes. It is difficult
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Table 12.2: Type I error of the heterogeneity model and the logistic-normal model

(GLMM) for detecting a significant treatment effect when β0
1 = 0 in binary response

data generated using model (7.1), considering different samples sizes (n) and 5 distri-

butions with variance σ2
0b for the random intercept. Values for which the lower bound

of the corresponding 95% confidence interval was larger than 0.05 are highlighted.

Heterogeneity model GLMM

Distribution n σ2

0b = 4 σ2

0b = 16 σ2

0b = 32 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32

Normal 50 0.035 0.120 0.094 0.040 0.040 0.030

100 0.068 0.126 0.091 0.050 0.040 0.030

200 0.043 0.070 0.070 0.050 0.040 0.000

Uniform 50 0.000 0.043 0.073 0.020 0.060 0.040

100 0.111 0.016 0.077 0.090 0.030 0.060

200 0.019 0.048 0.040 0.070 0.040 0.040

Lognormal 50 0.051 0.090 0.042 0.020 0.042 0.041

100 0.067 0.072 0.074 0.040 0.050 0.060

200 0.033 0.057 0.078 0.050 0.060 0.030

Power 50 0.053 0.088 0.101 0.040 0.000 0.030

function 100 0.052 0.071 0.070 0.050 0.060 0.060

200 0.081 0.060 0.050 0.020 0.010 0.030

Asymmetric 50 0.065 0.054 0.084 0.050 0.040 0.020

mixture 100 0.038 0.143 0.053 0.030 0.130 0.050

200 0.057 0.119 0.030 0.090 0.060 0.010

to assess the full power of the heterogeneity model using simulations, mainly due to

computational and time constraints. For instance, we have only considered models

with two components having different means but equal variances. One could wonder

if considering two or more components with equal means and different variances for

the random effects could significantly improve the performance in some cases. This,

together with the promising results obtained from the inferential procedures, leads us

to believe that the heterogeneity model is a tool worthy of consideration.
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Table 12.3: Type I error of the heterogeneity model and the logistic-normal model

(GLMM) for detecting a significant intercept when β0
0 = 0, in binary response data

generated using model (7.1), considering different samples sizes (n) and 5 distributions

with variance σ2
0b for the random intercept. Values for which the lower bound of the

corresponding 95% confidence interval was larger than 0.05 are highlighted.

Heterogeneity model GLMM

Distribution n σ2

0b = 4 σ2

0b = 16 σ2

0b = 32 σ2

0b = 4 σ2

0b = 16 σ2

0b = 32

Normal 50 0.000 0.021 0.095 0.040 0.000 0.070

100 0.000 0.020 0.030 0.080 0.040 0.040

200 0.000 0.000 0.010 0.060 0.030 0.040

Uniform 50 0.000 0.011 0.079 0.000 0.030 0.020

100 0.000 0.010 0.020 0.060 0.030 0.080

200 0.000 0.030 0.040 0.050 0.040 0.060

Lognormal 50 0.000 0.000 0.019 0.160 0.440 0.620

100 0.000 0.000 0.028 0.180 0.540 0.880

200 0.000 0.000 0.039 0.360 0.930 1.000

Power 50 0.000 0.000 0.084 0.050 0.160 0.120

function 100 0.033 0.010 0.010 0.060 0.250 0.320

200 0.010 0.000 0.000 0.290 0.580 0.760

Asymmetric 50 0.000 0.000 0.000 0.160 0.113 0.429

mixture 100 0.026 0.010 0.025 0.370 0.370 0.910

200 0.000 0.040 0.011 0.660 0.790 1.000

12.2 The Schizophrenia Data: A Sensitivity Analy-

sis

The simulation studies discussed in this and previous chapters, seem to lead to two

relevant remarks: i) misspecification of the random effects distribution can induce a

severe bias in the estimation of the variance components as well as a large bias in

the estimation of the linear predictor parameters, ii) more robust alternatives like the

heterogeneity model can represent a significant improvement in some scenarios but can

still suffer from severe bias in others. In this section, we propose to incorporate these

alternatives within a sensitivity analysis framework, considering different distributions

for the random effects. This approach will be illustrated with the schizophrenia data.
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Table 12.4: Schizophrenia data. Parameter estimates and standard errors using a

logistic random-intercept model with the random effect (RE) assumed to follow a nor-

mal distribution (GLMM), a chi-square (χ2), an exponential, a uniform, a lognormal,

a mixture of 2 or 3 normals, and finally a non-parametric (NP) distribution with 2

or 3 support points.

Model β̂0n (s.e.) β̂1n (s.e.) β̂2n (s.e.) σ̂2
bn (s.e.) AIC

GLMM -7.37 (1.18) 2.14 (1.08) 0.65 (0.096) 21.01 (6.81) 391.9

RE, χ2 -6.99 (1.18) 1.92 (0.88) 0.66 (0.096) 18.20 (6.07) 392.5

RE, exp. -6.35 (1.00) 1.70 (0.88) 0.64 (0.098) 10.71 (2.76) 397.3

RE, uni. -5.47 (0.75) 1.38 (0.64) 0.56 (0.082) 9.54 (1.93) 408.3

RE, logn. -5.17 (0.78) 1.20 (0.71) 0.57 (0.086) 19.34 (7.52) 409.6

Mixture, k = 2 -7.88 (1.23) 1.99 (0.94) 0.67 (0.096) 28.03 (8.66) 395.1

Mixture, k = 3 -7.77 (4.28) 2.70 (0.85) 0.68 (0.094) 20.20 (31.6) 396.0

NP, k = 2 -4.84 (0.59) 1.28 (0.33) 0.52 (0.085) - -

NP, k = 3 -5.67 (0.72) 2.06 (0.54) 0.59 (0.097) - -

First, we will analyze these data using a heterogeneity model with a mixture of two

and three normal distributions, and a non-parametric model with two and three mass

points. As discussed in the previous sections, these mixture models can easily be

fitted using the SAS macro for fitting nonlinear and generalized linear mixed models

with finite normal mixtures as random-effects distributions. Additionally, we will

also consider some non-normal distributions for the random intercept, including a

chi-square, an exponential, a uniform and a lognormal density. Recent research has

shown that such analysis can easily be carried out with standard statistical software

packages like the SAS procedure NLMIXED using probability integral transformations

(Nelson et al, 2006). The parameter estimates obtained from fitting model 7.1, with

these random-effects distributions are displayed in Table 12.4.

Observe that the point estimates are all similar, especially if we exclude the ones

coming from the models that used the uniform and lognormal distributions (and

incidently produced the highest AIC values). Moreover, the inferential results were

similar in all the cases as well. For instance, the treatment effect was significant in all
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the models except for the ones with the lognormal and exponential random effects,

which produced borderline p-values of 0.054 and 0.094, respectively. The variance of

the random effect was rather large in all scenarios considered, with a median value

around 19. Therefore, all the models consistently hint on a very strong within-subject

association. One could now apply some known model selection criteria to select the

distribution that fits the data best. For instance, using the AIC displayed in the last

column of Table 12.4, the logistic-normal model emerged as the most appropriate one.

Further, the task of choosing the number of components k in the heterogeneity

model is not an easy one. One approach consists in fitting models with increasing

numbers of components, and comparing them using likelihood ratio tests. For in-

stance, we can consider testing H0 : k = 1 versus HA : k = 2. However, this null

hypothesis can also be expressed as H0 : π2 = 0, which is clearly on the boundary of

the parameter space. In this case, bootstrap simulations are required to derive the

distribution of the likelihood ratio test statistic under the null (Böhning, 2000). An

alternative ad-hoc approach consists in increasing the number of components k until

some of the subpopulations reflect very small weights πr, or until some subpopula-

tions coincide (Verbeke and Molenberghs, 2000). Here we will use the AIC to select

the best fitting model. This results, again, in a preference for the one-component

logistic-normal model.

Finally, as stated before, when the random-effects distribution is not primarily of

interest, one can resort to a nonparametric approach. In this case the random-effects

distribution can be approximated by a discrete distribution with a finite number of

support points. The results of this analysis are shown in the final part of Table 12.4.

The estimates stabilized with 3 support points, and with this model we obtained values

very close to the ones from the logistic-normal model. For instance, the estimate of

the treatment effect was close to the one obtained with the logistic-normal model

and it was significantly different from zero. After carrying out this analysis, we

can therefore be rather confident about the results obtained from the logistic-normal

model, and about the presence of a moderate treatment effect on the CGI scores of

the schizophrenic patients.

It should be pointed out that our sensitivity analysis is not a robust alternative

to the classical generalized linear mixed model, but rather an alternative to the lack

of robustness of the generalized linear mixed model. Indeed, given that we consider

different choices for the random-effects distribution, we expect the outcome to be op-

timal when the true random-effects distribution is very similar to one of them. The
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idea is then to see how sensitive are our conclusions with respect to the distribu-

tional assumptions for the random effects. Similar results obtained under different

assumptions will increase our confidence, different ones will increase our caution.

It is becoming clear that there probably will not be a general, easy answer on

how to deal with this type of model misspecification. If marginal summaries are ad-

equate for the analysis, then one could focus more on fitting marginal models. For

instance, tools such as Generalized Estimating Equations (GEE) are known to be

robust against misspecification of the association structure. Further, Heagerty and

Kurland (2001) have observed from their simulations that when a marginal regression

structure is specified, rather than a conditional mean structure, the corresponding

maximum likelihood estimates are much less susceptible to bias resulting from a mis-

specified random-effects distribution. On the other hand, when the subject-specific

effects are of main interest, perhaps in some specific situations, good alternative mod-

els can be found by using, for example, random-effects distributions conjugate to the

distribution of the outcome, as suggested by Lee and Nelder (1996) and Lee, Nelder

and Pawitan (2006). One such special case given by the Poisson-gamma model will

be the topic of our next chapter. However, we believe that in general, the proposed

diagnostic tools in Chapters 9 and 10, together with the ability to consider several

random-effects distributions, would allow for a useful and, arguably, necessary sensi-

tivity analysis.



Chapter 13

Conjugacy

In the previous chapter, we proposed a sensitivity analysis as a plausible alternative to

the lack of robustness of the generalized linear mixed model to misspecification of the

random-effects distribution. Ideally, one would prefer to find a family of models that

exhibits certain degree of robustness to this misspecification, like we observed in the

linear mixed model. It is not clear at the moment if such a family exists, but in the

present chapter we speculate that the use of a conjugate distribution for the random

effects could increase robustness. Actually, in linear mixed models the normal density

used for the random effect is the conjugate distribution of the normal likelihood one

encounters in that setting. In this chapter, we will study another example where

conjugacy and robustness come together: the Poisson-gamma model.

13.1 The Poisson-Gamma Model

As before, let yij denote the jth measurement for the ith subject, with i = 1, . . . , n

and j = 1, . . . , ni. Conditional on a random intercept bi for subject i, it is assumed

that all responses yij are independent with Poisson density

f(yij |bi) =
1

yij !
µ

yij

ij exp(−µij), (13.1)

where µij is modeled as

µij = bi exp(xT
ijβ). (13.2)
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In this expression, xij denotes a p-dimensional vector of covariates, β is a p-dimensional

vector of fixed parameters, and the random intercept bi is assumed to follow a gamma

distribution specified by

f(bi|λb) =

(
1

λb

)1/λb 1

Γ(1/λb)
b
(1/λb)−1
i exp(−bi/λb). (13.3)

Note that µij could also be written as µij = exp(xT
ijβ+ bi). In this case, the random

intercept bi would be assumed to follow a log-gamma distribution.

Given that the gamma distribution is conjugate to the conditional Poisson distri-

bution of the outcomes, we can easily derive a closed-form expression for the marginal

model implied by (13.1)–(13.3). Indeed, recall that the marginal distribution of the

vector of outcomes yi for subject i follows from

fi(yi) =

∫
fi(yi|bi)f(bi)dbi. (13.4)

In this case,

fi(yi|bi) =

ni∏

j=1

f(yij |bi)

=

( ni∏

j=1

1

yij !
µ

yij

ij

)
exp

(
−

ni∑

j=1

µij

)

=

{ ni∏

j=1

1

yij !
[bi exp(xT

ijβ)]yij

}
exp

[
−bi

ni∑

j=1

exp(xT
ijβ)

]
.

Using this expression, it follows that

fi(yi) =

∫ { ni∏

j=1

1

yij !
[bi exp(xT

ijβ)]yij

}
exp

[
−bi

ni∑

j=1

exp(xT
ijβ)

]

×
(

1

λb

)1/λb 1

Γ(1/λb)
b
(1/λb)−1
i exp(−bi/λb)dbi

=

{ ni∏

j=1

1

yij !
[exp(xT

ijβ)]yij

}(
1

λb

)1/λb 1

Γ(1/λb)

×
∫
b
P

j
yij+(1/λb)−1

i exp{−bi[
∑

j

exp(xT
ijβ) + (1/λb)]}dbi

For simplicity of notation, let µi. =
∑

j exp(xT
ijβ) and yi. =

∑
j yij , and let α =
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yi. + (1/λb) and γ = [µi. + (1/λb)]
−1 then

fi(yi) =

{ ni∏

j=1

1

yij !
[exp(xT

ijβ)]yij

}(
1

λb

)1/λb 1

Γ(1/λb)

× Γ[yi. + (1/λb)]

[µi. + (1/λb)]yi.+(1/λb)

∫
bα−1
i exp(−bi/γ)

γαΓ(α)
dbi.

Observe that the integral in the last part of this equation corresponds to a gamma

probability density function with parameters α and γ. As a result,

fi(yi) =

( ni∏

j=1

1

yij !
[exp(xT

ijβ)]yij

)(
1

λb

)1/λb 1

Γ(1/λb)

Γ[yi. + (1/λb)]

[µi+ + (1/λb)]yi.+(1/λb)
. (13.5)

Finally, since y! = Γ(y + 1), it follows that the marginal density fi(yi), induced

by (13.1)-(13.3), can be written as

fi(yi) =

{ ni∏

j=1

1

Γ(yij + 1)
[exp(xT

ijβ)]yij

}(
1

λb

)1/λb 1

Γ(1/λb)

Γ[yi. + (1/λb)]

[µi. + (1/λb)]yi.+(1/λb)
.

(13.6)

Using this closed-form expression for the marginal likelihood, we can prove the fol-

lowing theorem.

Theorem 13.1 (Consistency Poisson-Gamma Model) Consider the model given

by (13.1)-(13.3). Let h be the true density of bi, such that h(bi) 6= f(bi, λb) and

Eh(bi) = 1. Further, let G be the marginal distribution of Y induced by h. If βg de-

notes the real values of the parameter β, and β̂n the maximum likelihood estimator of

β associated with model (13.1)–(13.3), then, under Assumptions 5.1–5.3, β̂n satisfies

β̂n
a.s.−→ βg. (13.7)

Proof

First, note that, under the true model, yi, conditional on bi, follows a Poisson distri-
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bution with mean E(yi|bi) = bi exp(xT
ijβg). Moreover, marginally we have that

Eg(yi) =

∫
yig(yi)dyi

=

∫
yi

[∫
fi(yi|bi)h(bi)dbi

]
dyi

=

∫ [∫
yifi(yi|bi)dyi

]
h(bi)dbi

=

∫
E(yi|bi)h(bi)dbi

=

∫
bi exp(xT

ijβg)h(bi)dbi

= exp(xT
ijβg)

∫
bih(bi)dbi

= exp(xT
ijβg)Eh(bi)

= exp(xT
ijβg).

The previous expression illustrates that, like in linear mixed models, the parameters

in the mean structure of the Poisson-gamma model have both a marginal and a hier-

archical interpretation. Now, let ξ = (β, λb) denote the vector of model parameters.

From the maximum likelihood theory in misspecified models described in Chapter 5,

it is known that the maximum likelihood estimator ξ̂n
P−→ ξ∗, which minimizes the

KLIC

I(g : f ; ξ) = Eg

[
log

g(yi)

f(yi, ξ)

]
. (13.8)

The Assumptions 5.1–5.3 ensure that the KLIC is well-defined and that its minimum

is unique. Observe that Expression (13.8) can also be written as

I(g : f ; θ) =

∫
g(yi) log g(yi)dyi −

∫
g(yi) log f(yi, ξ)dyi, (13.9)

and that minimizing I with respect to ξ is equivalent to maximizing

I1 =

∫
g(yi) log f(yi, ξ)dyi. (13.10)
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After substituting the marginal density (13.6) of yi in this expression, it follows that

I1 =

∫
g(yi){

∑

j

[(xT
ijβ)yij − log Γ(yij + 1)] − 1

λb
logλb − log Γ(1/λb)

+ log Γ[yi. + (1/λb)] − [yi. + (1/λb)] log[µi. + (1/λb)]} dyi

=

∫
g(yi)

∑

j

[(xT
ijβ)yij ]dyi −

∫
g(yi)

∑

j

[log Γ(yij + 1)]dyi −
1

λb
logλb

− log Γ(1/λb) +

∫
g(yi) log Γ[yi. + (1/λb)]dyi

−
∫
g(yi)[yi. + (1/λb)] log[µi. + (1/λb)]dyi

=

∫
g(yi)

∑

j

[(xT
ijβ)yij ]dyi −

∫
g(yi)

∑

j

[log Γ(yij + 1)]dyi −
1

λb
logλb

− log Γ(1/λb) +

∫
g(yi) log Γ[yi. + (1/λb)]dyi

− log[µi. + (1/λb)]

∫
g(yi)yi.dyi −

1

λb
log[µi. + (1/λb)]

=
∑

j

(xT
ijβ)Eg(yij) −

∑

j

Eg[log Γ(yij + 1)] − 1

λb
logλb − log Γ(1/λb)

+Eg{log Γ[yi. + (1/λb)]} − log[µi. + (1/λb)][
∑

j

Eg(yij) + (1/λb)].

To obtain ξ∗, we need to determine the derivatives of I1 with respect to the parameters

of interest, i.e.,

∂I1
∂β

=
∑

j

Eg(yij)xij − [
∑

j

Eg(yij) + (1/λb)]
∂

∂β
log[µi. + (1/λb)]

=
∑

j

Eg(yij)xij −
∑

j Eg(yij) + (1/λb)

µi. + (1/λb)

∂

∂β
[µi. + (1/λb)]

=
∑

j

exp(xT
ijβg)xij −

∑
j exp(xT

ijβg) + (1/λb)∑
j exp(xT

ijβ) + (1/λb)

∑

j

exp(xT
ijβ)xij , (13.11)

and

∂I1
∂λb

=
1

λ2
b

logλb −
1

λ2
b

+
1

λ2
b

Γ′(1/λb)

Γ(1/λb)
+

1

λ2
b

log[µi. + (1/λb)] +

∑
j Eg(yij) + 1/λb

λ2
b [µi. + (1/λb)]

−
∫
g(yi)

Γ′[yi. + (1/λb)]

λ2
bΓ[yi. + (1/λb)]

dyi. (13.12)
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Evaluating this expression in β = βg leads to
∂I1
∂β

∣∣∣∣
β=βg

= 0 and to

∂I1
∂λb

∣∣∣∣
β=βg

=
1

λ2
b

(logλb − 1 + Ψ(1/λb) − Eg{Ψ[yi. + (1/λb)]} + log[µi. + (1/λb)])

+

∑
j exp(xT

ijβg) + (1/λb)

λ2
b

∑
j exp(xT

ijβg) + (1/λb)

=
1

λ2
b

(logλb + Ψ(1/λb) − Eg{Ψ[yi. + (1/λb)]} + log[µi. + (1/λb)]) ,

(13.13)

where Ψ(.) = Γ′(.)
Γ(.) represents the digamma function.

Note that the system of equations given by (13.11) and (13.12) represents a sys-

tem of p+ 1 equations in p+ 1 variables. For β = βg the system reduces to a single

equation (13.13), in one single variable λb. Let λ∗b denote the value of λb for wich the

right hand side of Expression (13.13) becomes zero, then, (βg, λ
∗
b ) is a solution to the

system (13.11)-(13.12). Under our set of assumptions, it then follows that βg = β∗,

and therefore the maximum likelihood estimator β̂n, based on the Poisson-gamma

model given by (13.1)–(13.3) is a consistent estimator for βg, even when the distri-

bution of the random intercept is misspecified. 2

This theorem suggests that the maximum likelihood estimators of the mean structure

parameters in the Poisson-gamma model are consistent, even when the distribution of

bi is misspecified, as far as all the other aspects of the model are correctly specified.

However, the same result can not be reproduced for the variance component λb.

Therefore, caution is still needed in studies where the variance component is of main

interest. Following a different approach, a similar result was obtained by Lawless

(1987). In the following section, we will illustrate Theorem 13.1 via a practical case

study containing repeated counts of epileptic seizures.

13.2 Application: The Epilepsy Data

The data considered in this section are coming from a randomized, double-blind,

parallel group, multi-center study for the comparison of placebo with a new anti-

epileptic drug (AED), in combination with one or two other AEDs (Molenberghs and

Verbeke, 2005). The first 12-week period served as a stabilization period for the use
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Figure 13.1: Epilepsy data. (a) Frequency plot of the number of epileptic seizures,

over all visits and both treatment groups. (b) Observed number of epileptic seizures

at each visit. (c) Average evolution of the number of epileptic seizures over time.

of the AED’s. After this baseline period, 45 patients were assigned to the placebo

group, 44 to the active (new) treatment group. Patients were then measured on a

weekly basis. The study was considered double-blind during the first 16 weeks, after

which the patients were entered into a long-term open-extension study. Some were

followed for up to 27 weeks.

The outcome of interest is given by the number of epileptic seizures experienced

during the last week, i.e., since the last time the outcome was measured. Of interest is

whether or not the additional new treatment reduces the number of epileptic seizures.

Figure 13.1(a) shows a frequency plot of the number of epileptic seizures, over all
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Table 13.1: Epilepsy data. Parameter estimates, standard errors and p-values for the

regression coefficients in model (13.14), where the random intercept bi is assumed to

follow a gamma distribution with parameter λb, as specified in (13.3).

Parameter Estimate (s.e.) p-value

Fixed effects

β0 1.211 (0.061) < 0.001

β1 -0.166 (0.075) 0.029

β2 -0.014 (0.004) < 0.001

β3 0.002 (0.006) 0.726

Variance components

λb 1.142 (0.103)

visits, whereas Figure 13.1(b) displays the observed number of epileptic seizures at

each visit. From these graphs it is clear that the distribution of the outcomes is very

skewed, with up to 73 seizures in one week time. Further, Figure 13.1(c) shows the

average evolution of the number of epileptic seizures over time, by treatment group.

Note that the unstable behavior can be explained by the presence of extreme values,

but is also the result of the fact that very little observations are available at some of

the visits, especially past week 16, i.e., the end of the actual double-blind period.

Let yij represent the number of epileptic seizures experienced by patient i during

week j. Further, let zi = 1 (0) denote the treatment (control) group and let tj denote

the time-point at which yij was measured, tj = 1, 2, . . . until at most 27. We will use

the following model to analyze the data

Yij |bi ∼ Poisson(µij),

log(µij) = β0 + β1zi + β2tj + β3zitj + log(bi) (13.14)

where the random intercept bi is assumed to follow a gamma distribution as specified

in (13.3), with parameter λb.

Recall from the sensitivity analysis in Chapter 12 that this model can easily be

fitted via the SAS procedure NLMIXED, using probability integral transformations

(Nelson et al., 2006). Fitting this model required nonadaptive Gaussian quadrature

with 61 quadrature points. The results are summarized in Table 13.1. Assuming that

(13.14) is correctly specified, then Theorem 13.1 would guarantee the consistency of
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our maximum likelihood estimates, and we could be confident about the fixed effects

estimates presented in this table, even in the presence of possible random-effects

misspecification.

Still, it should be noted that the use of the results presented in Theorem 13.1

is limited. Clearly, in its present format, the theorem is valid only when a random

intercept is the only random effect considered. It would be of interest to study whether

there exists a “multivariate” extension of the theorem, with a generalization of the

univariate gamma distribution, which would allow for more than one random effect.

However, different formulations of a multivariate gamma are available in the literature

(for an overview of these distributions, we refer to Kotz, Balakrishnan and Johnson,

2000). Therefore, further research should focus on finding that specific generalization,

which would allow the results presented in Theorem 13.1 to be extended to Poisson

models with more than one random effect.

Additionally, given the current lack of a general model that can guard against the

effects of random-effects misspecification, it would also be of interest to find other

examples, like the Poisson-gamma model, in which conjugacy between the random-

effects distribution and the conditional distribution of the outcome could preserve the

consistency of the maximum likelihood estimators under this type of misspecification.

In this context, the h-likelihood models proposed by Lee and Nelder (1996) seem to

provide a promising approach and deserve further attention.





Chapter 14

Concluding Remarks and

Further Research

14.1 Concluding Remarks

Does misspecification of the random-effects distribution affect the maximum likeli-

hood estimators in generalized linear mixed models? Although data analysts often

assume that the choice of the random-effects distribution is not crucial for the qual-

ity of their inferences, we have shown in this work that this is not a generally valid

truth. First, the estimates of the variance components are always subject to consid-

erable bias. Even by increasing both the number of subjects as well as the number

of repeated observations per subject, consistency cannot be guaranteed. Clearly this

bias can have severe consequences in applications in which the association structure

is of main interest. It could also provoke misleading results when we want to pre-

dict subject-specific trajectories or use subject-specific parameters for classification

purposes.

On the other hand, the linear predictors seem to be less affected. When the

variance of the random effects is sufficiently small, the observed bias is generally

negligible. However, caution is still necessary when the random effects show a lot

of variability, or when complicated covariance structures are used. Note that large

random-effects variances are not exceptional in clinical trials, as illustrated by our

131



132 Chapter 14. Concluding Remarks and Further Research

case study. Indeed, one could expect little variability in the response, for instance,

when a placebo control group is used, whereas a more variable outcome pattern is

expected in the treated group. In such a scenario, the linear predictors, including the

treatment effect, could be subject to considerable bias under misspecification.

Although this bias in the linear predictors can be considerably reduced in some

settings by increasing the number of repeated observations per subject, in some situ-

ations this may simply not be possible. For instance, when the response of interest in

a clinical trial is invasive for the patient and/or very expensive, it may be unethical

and/or costly to subject a patient to many measurement occasions. Given that the

heavily biased variance components are the only available tool to study the variability

of the true distribution, this can make it difficult to evaluate whether or not problems

in the linear predictors will occur.

Finally, a topic which has not received a lot of attention in the literature concerns

the power and type I error related with commonly used inferential procedures like the

Wald test. We have seen from our simulations that these statistical concepts can be

affected in important ways by random-effects misspecification, regardless the variance

of the random effects. For instance, the type I error related with the fixed intercept

was found to be severely inflated, even for small variance of the random effect. In

this case, increasing the number of repeated observations per subject did not help to

overcome this issue. Fortunately, not all parameters are affected in the same way.

Indeed, we have found that the type I error associated with a test for a covariate’s

effect will not be asymptotically affected, as far as this variable is not included in the

random-effects structure.

Clearly, in the light of these results, detecting those cases in which the random-

effects misspecification can have a serious impact on our model inferences is of the

utmost importance. Therefore, in this work, we have developed a family of diagnostic

tools, along the ideas introduced by White (1982). These include a number of tests

based on the eigenvalues of the matrix Bn(ξ0)A
−1(ξ0), which corresponds to an iden-

tity matrix under a correctly specified model. We have also proposed two variants of

Whites Information Matrix Test. Simulations with these tools have shown that the

Sandwich Estimator Test and the Modified Information Matrix Test, introduced in

Chapter 10, showed the best overall performance in detecting misspecification of the

random-effects structure.

The availability of such tools obviously raises the question on how to proceed

when facing possible misspecification. In this work, we proposed to counter the lack
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of robustness of the generalized linear mixed model by incorporating a few non-normal

random-effects distributions in a sensitivity analysis framework. We argued that we

can feel confident about the maximum likelihood estimates, if these are all similar,

irrespective of the distribution used to obtain them. On the other hand, if the results

vary considerably, then they are obviously sensitive to the distributional assumptions

for the random effects, and caution is still needed.

14.2 Further Research

Although we have tried to provide a complete picture of the impact of random-effects

misspecification on the maximum likelihood estimation in generalized linear mixed

models, some aspects still deserve some further attention.

For instance, in our case study, the main response obtained using the CGI-scale is

by definition an ordinal variable with 7 categories. Clearly, collapsing it into a binary

response considerably reduces the amount of available information and can lead to a

loss of efficiency. Still, we have focused our analysis and simulations on the logistic-

normal model for binary data, as this easy categorization is often of main interest from

a clinician’s point of view. Given that binary data convey very little information,

we can consider this example as a worst-case scenario to study the impact of the

misspecification. On the other hand, it would also be of interest to study whether

similar results are obtained with ordinal mixed models, which take into account the

entire response scale.

Another prominent situation of non-Gaussian outcomes is given by the case of

repeated counts. Indeed, the Poisson model has specific features, such as the existence

of closed-form solutions for the mean and the variance in the marginal model. Also,

the nature of overdispersion is quite different between the binary and Poisson model.

Therefore, the Poisson case deserves also its own treatment.

Further, the diagnostic tools we have presented in Chapters 9 and 10 use the

marginal distribution of the responses to assess the validity of the model. It is a wide

known fact in mixed model literature that different random-effects distributions can

generate similar marginal distributions. It is then not clear whether our diagnostic

tools would, for instance, detect cases in which the normal random effects assumption

is much poorer than another assumption, unless the marginal fits were quite different.

Additionally, it is still not very clear how the random-effects misspecification affects

the Hessian or the matrix of cross-product derivatives. Therefore, promising research
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may focus on diagnostic tools in terms of the conditional distribution of the responses,

or at the level of the random effects.

Furthermore, incomplete data is almost an unavoidable problem in longitudinal

studies. However, it is also a problem which has received very little attention in the

present work. For instance, it would be of interest to study how the performance of

the diagnostic tools may be affected by the several missing data mechanisms.

Finally, future research should also be directed towards robust models under

random-effects misspecification. One research angle is provided by the multivari-

ate extension of the robust Poisson-gamma model. However, it would also be of

interest to study whether conjugacy between the random-effects distribution and the

conditional response distribution will lead to robust maximum likelihood estimates

in other settings as well. In that sense, the h-likelihood approach, by Lee and Nelder

(1996), could to be a promising alternative.
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Appendix A

Case Study: the Data

subject Z Y0 Y1 Y2 Y4 Y6 Y8 CGI0 CGI1 CGI2 CGI4 CGI6 CGI8

1 0 0 0 0 0 0 . 5 5 5 5 5 .

2 1 0 0 0 1 0 0 4 5 5 2 5 6

3 0 0 0 0 0 . . 7 6 5 6 . .

4 1 0 0 0 0 0 . 6 6 5 5 6 .

5 0 0 0 0 . . . 6 7 7 . . .

6 1 0 0 0 0 . . 6 6 5 6 . .

7 0 0 0 0 0 0 0 5 4 5 5 5 5

8 1 1 1 1 . . . 3 3 3 . . .

9 0 0 0 0 . . . 5 4 5 . . .

10 0 0 0 0 0 0 0 5 4 4 4 5 5

11 1 0 0 0 0 . . 6 6 6 7 . .

12 1 0 0 0 0 . . 5 5 5 5 . .

13 0 1 1 1 1 1 1 3 2 2 2 2 2

14 0 0 0 0 0 0 0 4 4 4 4 5 5

15 1 0 1 1 1 1 1 4 3 2 2 3 3

16 0 0 0 0 0 . . 5 5 4 5 . .

17 1 1 1 1 1 1 1 3 2 2 2 2 2

18 1 0 0 0 0 0 1 6 4 4 4 4 3

19 0 0 0 1 0 0 1 4 4 3 4 4 3

20 1 0 0 0 0 0 0 4 4 4 4 4 4

21 1 0 0 0 0 . . 5 4 4 5 . .
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subject Z Y0 Y1 Y2 Y4 Y6 Y8 CGI0 CGI1 CGI2 CGI4 CGI6 CGI8

22 0 0 0 . . . . 5 5 . . . .

23 1 0 1 1 1 1 1 4 3 3 3 3 3

24 0 0 0 0 0 0 . 5 5 5 6 6 .

25 1 0 0 0 0 . . 5 4 6 5 . .

26 0 0 0 0 0 1 1 4 4 4 4 3 3

27 0 0 0 0 0 . . 5 4 4 4 . .

28 0 0 . 0 0 0 0 5 . 4 5 4 4

29 1 0 0 0 0 0 0 5 4 4 4 4 5

30 1 0 0 0 0 1 1 5 5 5 5 3 3

31 0 0 0 0 0 0 0 5 4 4 4 4 5

32 0 0 0 . . . . 6 6 . . . .

33 1 0 0 0 . . . 4 4 4 . . .

34 0 0 0 0 0 0 0 5 5 5 5 5 5

35 1 0 0 0 0 0 0 6 5 5 5 5 5

36 1 0 0 0 0 0 . 6 6 6 5 6 .

37 0 0 0 0 . . . 5 5 5 . . .

38 0 0 0 1 0 . . 4 4 3 4 . .

39 1 0 0 0 . . . 5 5 5 . . .

40 1 0 0 1 1 . . 5 5 3 3 . .

41 0 0 0 0 0 . . 5 4 4 4 . .

42 0 0 0 0 0 . . 6 6 6 6 . .

43 1 0 0 0 0 0 0 6 6 6 6 6 6

44 1 0 0 0 0 0 0 6 5 6 5 5 5

45 0 0 0 0 0 0 0 5 5 5 4 4 4

46 0 0 0 . . . . 6 6 . . . .

47 1 0 0 0 . . . 4 4 6 . . .

48 0 0 0 0 0 . . 5 6 6 5 . .

49 1 1 1 1 . . . 3 3 3 . . .

50 0 0 0 . . . . 5 5 . . . .

51 1 0 0 0 0 1 1 5 4 4 4 3 3

52 1 0 0 0 0 0 0 5 4 4 4 4 4

53 0 0 0 0 . . . 4 5 5 . . .

54 1 0 1 1 1 1 1 5 3 3 2 2 2

55 1 1 0 1 0 1 1 3 4 3 4 3 3

56 0 0 1 1 1 1 1 7 3 3 3 3 3

57 0 0 0 1 1 1 1 4 4 3 3 2 2
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subject Z Y0 Y1 Y2 Y4 Y6 Y8 CGI0 CGI1 CGI2 CGI4 CGI6 CGI8

58 0 0 0 0 . . . 6 5 6 . . .

59 1 0 0 1 1 1 1 5 5 3 3 3 3

60 0 0 0 . . . . 5 5 . . . .

61 1 0 0 0 1 1 0 6 5 4 3 3 4

62 0 0 0 . . . . 5 5 . . . .

63 1 0 0 . . . . 4 4 . . . .

64 0 0 0 0 0 0 0 5 5 5 4 4 5

65 1 0 0 0 0 . . 4 4 4 4 . .

66 1 0 1 1 0 . . 4 3 3 4 . .

67 1 0 0 0 0 0 0 5 5 5 4 4 4

68 0 0 0 0 0 . . 6 5 5 5 . .

69 1 0 0 0 0 0 0 6 4 4 5 4 4

70 0 0 0 0 . . . 7 5 7 . . .

71 0 0 0 0 0 . . 5 5 5 5 . .

72 0 0 0 0 0 0 0 5 5 5 4 4 4

73 1 0 0 0 1 1 1 4 4 4 3 3 3

74 0 0 0 0 0 0 0 4 5 4 4 4 4

75 1 0 1 1 1 1 1 5 3 3 2 2 2

76 0 0 0 0 0 0 0 5 4 4 4 4 4

77 1 0 0 0 0 0 0 5 4 4 4 4 4

78 1 0 0 0 0 . . 6 4 4 4 . .

79 0 0 0 0 0 0 0 6 6 6 5 5 4

80 0 0 0 0 . . . 6 5 6 . . .

81 1 0 0 0 0 1 1 6 5 4 4 3 3

82 0 1 0 0 0 1 1 3 4 4 4 3 2

83 1 0 1 0 1 1 0 5 3 4 3 3 4

84 0 0 0 0 0 1 . 5 5 4 4 3 .

85 1 0 1 1 1 1 1 4 3 3 3 2 2

86 0 0 0 0 0 0 0 5 5 4 4 5 5

87 1 0 0 0 0 1 1 6 5 4 4 3 2

88 0 0 0 0 0 0 0 4 4 4 4 5 5

89 1 0 0 . . . . 4 5 . . . .

90 0 0 0 . 0 . . 5 5 . 5 . .

91 1 0 0 0 . 0 0 4 5 5 . 5 4

92 1 0 0 0 0 . . 5 5 5 5 . .

93 0 0 0 0 1 1 1 5 5 5 3 3 3
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subject Z Y0 Y1 Y2 Y4 Y6 Y8 CGI0 CGI1 CGI2 CGI4 CGI6 CGI8

94 0 1 1 1 1 1 1 2 3 3 3 3 2

95 1 0 0 0 0 0 0 5 5 5 5 5 5

96 0 0 0 0 0 . . 5 5 5 6 . .

97 0 0 0 1 1 1 1 5 4 3 3 3 3

98 1 0 0 0 0 0 0 6 6 6 6 6 6

99 0 0 0 0 . . . 4 4 5 . . .

100 1 0 0 0 0 0 0 6 5 5 5 6 6

101 0 0 0 0 0 0 0 4 4 4 4 4 4

102 1 1 1 1 1 1 1 3 3 3 3 3 3

103 0 0 0 0 1 0 0 5 5 4 3 4 4

104 1 0 1 1 1 1 1 4 3 2 2 2 2

105 0 0 0 . . . . 5 5 . . . .

106 1 0 0 . . . . 4 4 . . . .

107 1 0 0 0 1 . . 5 5 4 3 . .

108 0 0 0 0 0 . . 5 5 4 4 . .

109 1 0 0 0 0 1 . 4 4 4 4 3 .

110 0 0 0 0 0 0 0 4 4 4 4 4 4

111 1 0 0 0 0 0 . 4 4 4 4 4 .

112 0 0 1 0 0 1 1 5 2 4 4 2 2

113 1 0 0 0 1 0 . 6 5 4 2 4 .

114 1 0 0 . . . . 5 5 . . . .

115 0 0 0 0 0 . . 4 4 4 5 . .

116 1 0 0 0 0 . . 6 6 5 5 . .

117 0 0 0 . . . . 4 4 . . . .

118 0 1 1 1 1 1 1 3 3 2 2 2 2

119 1 1 1 1 1 1 1 3 3 2 2 2 2

120 0 0 0 0 0 0 0 5 5 4 4 4 4

121 1 0 0 0 0 0 0 5 5 5 5 5 5

122 1 0 0 0 0 0 0 5 5 4 4 4 4

123 0 0 0 0 0 0 1 5 5 4 4 4 3

124 0 0 0 0 0 1 1 4 4 4 4 3 3

125 1 0 0 0 0 1 1 5 5 4 4 3 3

126 0 0 0 0 0 . . 5 5 5 6 . .

127 1 0 0 0 0 0 0 4 4 4 4 4 4

128 1 0 0 . . . . 5 5 . . . .



Appendix B

Type I Error under

Random-Effects

Misspecification

The proof of Theorem 8.1 is as follows. For simplicity of the notation we will work

out the proof for xM
Sij = xM

ij . The proof for any other subset xM
Sij can be obtained in

a similar way.

Given V (bi) = D, there always exists a lower triangular matrix U , such that

bi = Uai, where

U =





u11 0 · · · 0

u12 u22 · · · 0
...

...
. . .

...

u1q u2q · · · uqq




,

is the Cholesky decomposition of D, i.e.,

V (bi) = D = UUT ,

and E(ai) = 0 and V (ai) = I. Therefore E(bi) = E(Uai) = 0 and V (bi) =

V (Uai) = UV (ai)U
T = UUT = D. This allows us to write (8.1) as θij = η(β0 +

xT
ijβ + zT

ijUai). Let us further denote by H and F the true and the assumed dis-

tribution of the random effects. According to White (1982), the maximum likeli-
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hood estimator of ξ = (β0,β, U) converges to the unique value of ξ, denoted by

ξ∗ = (β∗
0 ,β

∗, U∗), which minimizes the KLIC, i.e. ξ∗ minimizes

I(H : F, ξ) = ExEy|x log

{
fH(y|ξ0,x, z)

fF (y|ξ,x, z)

}
, (B.1)

where the expectation is taken with respect to the true model. In the previous ex-

pression,

fH(y|ξ0,x, z) =

∫ ∏

j

exp[ϕ−1{yjθ
0
j − ψ(θ0j )} + c(yj , ϕ)]dH(a),

fF (y|ξ,x, z) =

∫ ∏

j

exp[ϕ−1{yjθj − ψ(θj)} + c(yj , ϕ)]dF (a),

with

θ0j = η(β0
0 + xT

j β
0 + zT

j U
0a),

θj = η(β0 + xT
j β + zT

j Ua).

For simplicity in the notation, the subject index i has been omitted from the previous

equations. To find ξ∗ we have to differentiate (B.1) with respect to β0, β and U . Let

us start by determining the derivative of the KLIC with respect to β0. Since x is

independent from ξ we have that

∂

∂β0
ExEy|x log

{
fH(y|ξ0,x, z)

fF (y|ξ,x, z)

}
= Ex

∂

∂β0
Ey|x log

{
fH(y|ξ0,x, z)

fF (y|ξ,x, z)

}

= Ex

∂

∂β0

∫
log

{
fH(y|ξ0,x, z)

fF (y|ξ,x, z)

}
fH(y|ξ0,x, z)dy

= Ex

∂

∂β0

∫
log {fH(y|ξ0,x, z)} fH(y|ξ0,x, z)dy

−Ex

∂

∂β0

∫
log {fF (y|ξ,x, z)} fH(y|ξ0,x, z)dy

= −Ex

∫
∂

∂β0
[log {fF (y|ξ,x, z)} fH(y|ξ0,x, z)] dy

= −Ex

∫
fH(y|ξ0,x, z)

∂

∂β0
log {fF (y|ξ,x, z)} dy

= −Ex

∫
fH(y|ξ0,x, z)

fF (y|ξ,x, z)
∂

∂β0
fF (y|ξ,x, z)dy

If we let

λ(y|x, z) =
fH(y|ξ0,x, z)

fF (y|ξ,x, z) ,
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then

∂

∂β0
ExEy|x log

{
fH(y|ξ0,x, z)

fF (y|ξ,x, z)

}
= −Ex

∫
λ(y|x, z) ∂

∂β0
fF (y|ξ,x, z)dy. (B.2)

Further, if we study
∂

∂β0
fF in more detail, we obtain that

∂

∂β0
fF (y|ξ,x, z) =

∫
∂

∂β0

∏

j

exp
{
ϕ−1[yjθj − ψ(θj)] + c(yj , ϕ)

}
dF (a). (B.3)

The derivative of a product of functions, such as the one given in (B.3), can easily be

determined as

(
n∏

i=1

fi

)′

= f ′
1f2 . . . fn + f1f

′
2 . . . fn + . . .+ f1f2 . . . f

′
n

=
n∑

i=1



f ′
i

∏

j 6=i

fj



 . (B.4)

Therefore, applied to (B.3), we find that

∂

∂β0
fF (y|ξ,x, z) =

∫ ∑

i

∂

∂β0
[exp

{
ϕ−1[yiθi − ψ(θi)] + c(yi, ϕ)

}
]

×
∏

j 6=i

exp
{
ϕ−1[yjθj − ψ(θj)] + c(yj , ϕ)

}
dF (a). (B.5)

On the other hand,

∂

∂β0

[
exp

{
ϕ−1[yiθi − ψ(θi)] + c(yi, ϕ)

}]

= exp
{
ϕ−1[yiθi − ψ(θi)] + c(yi, ϕ)

} ∂

∂β0

{
ϕ−1[yiθi − ψ(θi)] + c(yi, ϕ)

}

= exp
{
ϕ−1[yiθi − ψ(θi)] + c(yi, ϕ)

}{
ϕ−1

[
yi
∂θi

∂β0
− ψ′(θi)

∂θi

∂β0

]}
(B.6)

Substituting (B.6) in (B.5) we obtain

∂

∂β0
fF (y|ξ,x, z) =

∫ ∑

i

{
ϕ−1

[
yi
∂θi

∂β0
− ψ′(θi)

∂θi

∂β0

]}

×
∏

j

exp
{
ϕ−1[yjθj − ψ(θj)] + c(yj , ϕ)

}
dF (a) (B.7)
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Since

∂θi

∂β0
=

∂

∂β0
η(β0 + xT

i β + zT
i Ua)

= η′(β0 + xT
i β + zT

i Ua), (B.8)

it is clear that

∂

∂β0
fF (y|ξ,x, z) =

∫ ∑

i

η′(ξ)ϕ−1[yi − ψ′(θi)]

×
∏

j

exp
{
ϕ−1[yjθj − ψ(θj)] + c(yj , ϕ)

}
dF (a). (B.9)

For simplicity of notation we have referred to η′(β0 +xT
i β+zT

i Ua) as η′(ξ). Finally,

substituting this last expression in (B.2) leads to the derivative of the KLIC (B.1)

with respect to β0, given by

∂

∂β0
ExEy|x

{
log

fH(y|ξ0,x, z)

fF (y|ξ,x, z)

}
= −Ex

∫
λ(y|x, z) ×

∫ ∑

i

η′(ξ)ϕ−1[yi − ψ′(θi)]
∏

j

exp
{
ϕ−1[yjθj − ψ(θj)] + c(yj , ϕ)

}
dF (a)dy. (B.10)

Similar calculations are needed to determine the derivative of the KLIC (B.1) with

respect to β. However, they will require an expression for
∂θi

∂β
. First, let c and x be

two n × 1 vectors such that cTx is a scalar. By definition, the derivative of cTx by

x is given by

∂cTx

∂x
=





∂cTx

∂x1

∂cTx

∂x2
...

∂cTx

∂xn





= c. (B.11)

Therefore,

∂θi

∂β
=

∂

∂β
η(β0 + xT

i β + zT
i Ua)

= η′(β0 + xT
i β + zT

i Ua)xi, (B.12)
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and the derivative
∂

∂β
fF is given by

∂

∂β
fF (y|ξ,x, z) =

∫ ∑

i

xT
i η

′(ξ)ϕ−1[yi − ψ′(θi)]

×
∏

j

exp
{
ϕ−1[yjθj − ψ(θj)] + c(yj , ϕ)

}
dF (a). (B.13)

Therefore, the derivative of the KLIC (B.1) with respect to β is determined by

∂

∂β
ExEy|x

{
log

fH(y|ξ0,x, z)

fF (y|ξ,x, z)

}
= −Ex

∫
λ(y|x, z) ×

∫ ∑

i

xiη
′(ξ)ϕ−1[yi − ψ′(θi)]

∏

j

exp
{
ϕ−1[yjθj − ψ(θj)] + c(yj, ϕ)

}
dF (a)dy. (B.14)

Finally, determining the derivative of the KLIC (B.1) with respect to U will require

∂θi

∂U
=

∂

∂U
η(β0 + xT

i β + zT
i Ua)

= η′(ξ)
∂(zT

i Ua)

∂U
. (B.15)

Since

zT
i Ua = (zi1 · · · ziq)





u11 0 · · · 0

u12 u22 · · · 0
...

...
. . .

...

u1q uq2 · · · uqq









a1

a2

...

aq





= (zi1 · · · ziq)





u11a1

u12a1 + u22a2

· · ·
u1qa1 + u2qa2 + . . . uqqaq





=

q∑

k=1

zik ·
∑

l≤k

ulkal,

this implies that

∂zT
i Ua

∂ulk
=

{
zikal if ulk 6= 0

0 otherwise
(B.16)
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Furthermore, the derivative of a function f w.r.t. a matrix A is defined as

∂f

∂A
=





∂f

∂a11
· · · ∂f

∂a1q
...

. . .
...

∂f

∂aq1
· · · ∂f

∂aqq




. (B.17)

Therefore, the derivative of zT
i Ua with respect to U is given by

∂zT
i Ua

∂U
=





zi1a1 0 · · · 0

zi2a1 zi2a2 · · · 0
...

...
. . .

...

ziqa1 ziqa2 · · · ziqaq




= Qi. (B.18)

Substituting (B.18) in (B.15) leads to

∂θi

∂U
= η′(ξ)Qi. (B.19)

This results in the derivative of the KLIC (B.1) with respect to U being equal to

∂

∂U
ExEy|x log

{
fH(y|ξ0,x, z)

fF (y|ξ,x, z)

}
= −Ex

∫
λ(y|x, z) ·

∫ ∑

i

Qiη
′(ξ)ϕ−1[yi − ψ′(θi)]

∏

j

exp{ϕ−1[yjθj − ψ(θj)] + c(yj , ϕ)}dF (a)dy. (B.20)

Now ξ∗, which minimizes the KLIC (B.1), is the solution to the following system of

equations 




Ex

∫
λ(y|x, z)

∫ ∑
i ki(x,a)dF (a)dy = 0

Ex

∫
λ(y|x, z)

∫ ∑
i xiki(x,a)dF (a)dy = 0

Ex

∫
λ(y|x, z)

∫ ∑
iQiki(x,a)dF (a)dy = 0

(B.21)

where ki(x,a) = η′(ξ)ϕ−1[yi −ψ′(θi)]
∏

j exp{ϕ−1[yjθj −ψ(θj)] + c(yj , ϕ)}. The rest

of the proof is based partly on the assumption that ξ∗ is unique (A3 in White, 1982).

Therefore, if we assume that the p0-dimensional vector βM∗ = 0 and if we can find a

solution for (B.21) under this assumption, then we have found the unique minimum

of the KLIC.

Recall that E(x) = 0. If βM0 = βM∗ = 0 then it is clear that λ(y|x, z), η(β∗
0 +

xT
i β

∗ + zT
i U

∗a), η′(β∗
0 + xT

i β
∗ + zT

i U
∗a), ψ(θ∗i ), ψ′(θ∗j ) and hi(x,a) are functions
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which are independent of xM
i . In this case the second equation in (B.21) can also be

written as

Ex





∫
λ(y|xR)

∫ ∑
i x

M
i ki(x

R,a)dF (a)dy

∫
λ(y|xR)

∫ ∑
i x

R
i ki(x

R,a)dF (a)dy

= 0



 , (B.22)

or equivalently as the two equations

Ex

[∫
λ(y|xR)

∫ ∑

i

xM
i ki(x

R,a)dF (a)dy

]
= 0, (B.23)

and

Ex

[∫
λ(y|xR)

∫ ∑

i

xR
i ki(x

R,a)dF (a)dy

]
= 0. (B.24)

First note that, if K(y|x) =
∫ ∑

i x
M
i ki(x

R,a)dF (a), then

Ex

∫
λ(y|xR)K(y|x)dy =

∫ [∫
λ(y|xR)K(y|x)dy

]
f(x)dx

=

∫ ∫
λ(y|xR)K(y|x)f(x)dxdy

=

∫ [∫
λ(y|xR)K(y|x)f(x)dx

]
dy

=

∫
Ex[λ(y|xR)K(y|x)]dy. (B.25)

Second, if (x1,x2) are independent and identically distributed according to a function

f then, for any function g

Ex[g(x)] =

∫ ∫
g(x1,x2)f(x1,x2)dx1dx2

=

∫ ∫
g(x1,x2)f(x1)f(x2)dx1dx2

=

∫ {∫
g(x1,x2)f(x1)dx1

}
f(x2)dx2

= Ex2
{Ex1

[g(x)]}

Taking into account that xM and xR are independent, applied to (B.23) we obtain
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that

Ex

[∫
λ(y|xR)

∫ ∑

i

xM
i ki(x

R,a)dF (a)dy

]

=

∫
Ex

[
λ(y|XR)

∫ ∑

i

xM
i ki(x

R,a)dF (a)

]
dy

=

∫
ExR

{
ExM

[
λ(y|xR)

∫ ∑

i

xM
i ki(x

R,a)dF (a)

]}
dy

=

∫
ExR

{
λ(y|xR)ExM

[∫ ∑

i

xM
i ki(x

R,a)dF (a)

]}
dy

=

∫
ExR

{
λ(y|xR)

∑

i

ExM (xM
i )

∫
ki(x

R,a)dF (a)

}
dy. (B.26)

Therefore,

∫
ExR

{
λ(y|xR)

∑

i

ExM (xM
i )

∫
ki(x

R,a)dF (a)

}
dy = 0. (B.27)

Since ExM (xM
i ) = 0 it follows that the p0 dimensional left-hand side of (B.27) becomes

zero. This means that the second equation in (B.21) leads to p − p0 equations.

Together with the first and third expression in (B.21), this lead to a total of 1 + (p−
p0) + (q)(q+1)

2 equations. The number of parameters also corresponds to 1 + (p −
p0) + q(q+1)

2 . Thus, when βM0 = βM∗ = 0 we can find a solution for the system of

1 + (p − p0) + q(q+1)
2 equations (B.21) with 1 + (p − p0) + q(q+1)

2 parameters, and

this solution is unique. Therefore when βM0 = 0, then also βM∗ = 0. And since the

maximum likelihood estimator β̂
M

n , based on a GLMM with a misspecified random-

effects distribution, consistently estimates βM∗ = 0, this implies that (8.2) holds.

2



Appendix C

Implementation of the

Diagnostic Tools

In this appendix, we briefly illustrate, using some exemplary SAS code, how the

diagnostic tools presented in Chapters 9 and 10 can be calculated for the example

of the case study. The first step to obtain the test statistics and corresponding p-

values consists in running the statistical model to obtain the maximum likelihood

estimates and the Hessian. For, instance, consider model (4.4) for the analysis of the

schizophrenia data.

proc nlmixed data=new qpoints=50 hess;

parms beta0=1 beta1=1 beta2=1 s2u1=1;

eta = beta0 + beta1*Z + beta2*time + u;

expeta=exp(eta);

p=expeta/(1+expeta);

model Y ~ binary(p);

random u ~ normal(0,s2u1) subject=subject;

ods output ParameterEstimates=pe Hessian=hess;

run;

Next, we run the following macro, which will determine each subjects contribution to

An(ξ) and Bn(ξ). Note that the subjects in the data require an identification number,

going from 1 to n, the total number of subjects.
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%macro individual(data=, n=);

data glmmgrad; set _NULL_; run;

data hessind; set _NULL_; run;

%do i = 1 %to &n;

data hulp;

set &data;

if subject ^= &i then delete;

run;

proc nlmixed data=hulp qpoints=50 maxiter=0 hess;

parms / data=pe;

eta = beta0 + beta1*Z + beta2*time + u;

expeta=exp(eta);

p=expeta/(1+expeta);

model Y ~ binary(p);

random u ~ normal(0,s2u1) subject=subject;

ods output ParameterEstimates=pe1 Hessian=hess1;

run;

data glmmgrad; set glmmgrad pe1; run;

data hessind; set hessind hess1; run;

%end;

%mend;

%individual(data=new, n=128);

Note that running this macro will lead to a repetition of the following error:

ERROR: QUANEW Optimization cannot be completed.

ERROR: QUANEW needs more than 0 iterations or 500 function calls

This does not reflect an error in the program, but is a result of the NLMIXED model

fitting, with fixed parameters, to each subject in the data set separately.

The files glmmgrad and hessind contain the first and second order derivatives of

the likelihood for each subject in the data set. We can now use IML to calculate the

test statistics.
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proc iml; reset noprint;

n=128;

/* determining A */

use hess; read all into hess;

na = ncol(hess);

np = nrow(hess);

A = -hess[,2:na]; An = A/n; print An;

/* determining B */

use glmmgrad; read all into gradient;

i=1; B = {0};

begin=1;

do while (i <= n);

end = begin -1 + np;

first = gradient[begin:end, 2];

B = B + first*first‘;

begin = end + 1;

i = i+1;

end;

Bn = B/n; print Bn;

/* the determinant tests */

delta1 = log(det(-Bn*inv(An)));

test_det1 = (n/(2*np))*(delta1**2);

prob_det1 = 1 - PROBCHI(test_det1,1);

print delta1 test_det1 prob_det1;

delta2 = det(Bn)*det(-inv(An));

test_det2 = (n/(2*np))*((delta2-1)**2);

prob_det2 = 1 - PROBCHI(test_det2,1);

print delta2 test_det2 prob_det2;

/* the determinant-trace tests */

delta_dt = trace(Bn)/trace(-An) - det(Bn)/det(-An);

Eb = eigval(-An);
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sigma = sum((Eb/trace(-An) - 1)##2);

test_dettr = (n/2)*(delta_dt**2)/sigma;

prob_dettr = 1-probchi(test_dettr,1);

print delta_dt test_dettr prob_dettr;

/* the SET */

* mean of bi;

meanBi = shape(t(Bn), ncol(Bn)**2,1);

* covariance matrix of bi;

begin=1; varBi={0};

do s=1 to n;

end = begin -1 + np;

first = gradient[begin:end, 2];

Prb = shape(t(first*first‘), ncol(first*first‘)**2, 1);

varBi = varBi + (Prb-meanBi)*(Prb-meanBi)‘;

begin = end + 1;

end;

varBi = varBi/(n*(n-1));

* matrix Delta as defined in (10.1);

delta = J(np, np**2, 0);

i = 1;

do while (i <= np);

j = (i-1)*np + i;

delta[i, j] = 1;

i = i+1;

end;

* the test;

Vn = inv(An)*Bn*inv(An);

vd = vecdiag(Vn + inv(An));

Cv = delta * (inv(An)@inv(An))*VarBi*(inv(An)@inv(An)) * t(delta);
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test_SET = t(vd)* inv(Cv) * vd;

prob_SET = 1- PROBCHI(test_SET,np);

print vd test_SET prob_SET;

/* the MIMT */

use hessind; read all into hessind;

meanAi = shape(t(An), ncol(An)**2,1);

begin=1; varAi={0}; covAB={0}; covBA={0};

do s=1 to n;

end = begin -1 + np;

first = gradient[begin:end, 2];

Prb = shape(t(first*first‘), ncol(first*first‘)**2, 1);

second = -hessind[begin:end, 2:5];

Pra = shape(t(second), ncol(second)**2, 1);

varAi = varAi + (Pra-meanAi)*(Pra-meanAi)‘;

covAB = covAB + (Pra-meanAi)*(Prb-meanBi)‘;

covBA = covBA + (Prb-meanBi)*(Pra-meanAi)‘;

begin = end + 1;

end;

varAi = varAi/(n*(n-1));

covAB = covAB/(n*(n-1));

covBA = covBA/(n*(n-1));

Dn = vecdiag(An + Bn);

Cd = delta * (varAi + varBi + covAB + covBA) * t(delta) ;

test_MIMT = t(Dn)*inv(Cd)*Dn;

prob_MIMT = 1- PROBCHI(test_MIMT,np);

print Dn test_MIMT prob_MIMT;

quit; run;
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The Information Matrix Test

for Linear Mixed Models

In linear mixed models, the normal random-effects distribution is conjugate to the

normal distribution of the outcome. Consequently, in this setting, the marginal like-

lihood is available in closed form. Hence, first, second and third order derivatives of

the corresponding loglikelihood, necessary to calculate the Information Matrix Test

statistic ℑ(N) defined in Theorem 5.5, can easily be obtained analytically.

Consider the marginal model, induced by a linear mixed model as described in

Section 3.3, such that yi ∼ N(Xiβ, Vi), where Vi = ZiDZ
T
i + σ2Ini

. Let p represent

the number of parameters, and q the dimension of D. Further, let ξ represent the

u = p + q(q+1)
2 + 1 dimensional vector containing all parameters of interest: the

fixed effects β, the vector d = (d11, d12, . . . , d1q, d22, . . . , d2q, . . . , dqq)
T containing all

q(q + 1)/2 variance components in the upper triangular part of D, and σ2. The

marginal likelihood of this model, on subject level, is then given by

f(yi, ξ) = (2π)−ni/2|Vi|−1/2 exp

{
−1

2
(yi −Xiβ)TV −1

i (yi −Xiβ)

}
, (D.1)

and the corresponding marginal loglikelihood function follows as

log f(yi, ξ) = −ni

2
ln(2π) − 1

2
ln |Vi| −

1

2
(yi −Xiβ)′V −1

i (yi −Xiβ). (D.2)

Recall that the IMT statistic ℑ(N) is based on dk(yi, ξ) and the covariance matrix
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Cn(ξ). This first component was defined as

dk(yi, ξ) =

{
∂ log f(yi, ξ)

∂ξk

}2

+
∂2 log f(yi, ξ)

(∂ξk)2
. (D.3)

where k = 1, . . . , u, whereas Expression (5.14) for Cn(ξ), requires the calculation of

∂dk(yi, ξ)

∂ξℓ
= 2

∂2 log f(yi, ξ)

∂ξℓ∂ξk

∂ log f(yi, ξ)

∂ξk
+
∂3 log f(yi, ξ)

∂ξℓ(∂ξk)2
. (D.4)

Therefore, to determine ℑ(N), we need expressions for

• ∂ log f(yi, ξ)

∂ξ

• ∂2 log f(yi, ξ)

∂ξT ⊗ ∂ξ
, and

• the derivative of the diagonal elements of
∂2 log f(yi, ξ)

∂ξT ⊗ ∂ξ
with respect to ξℓ.

However, before we start to work these out, we first provide in the next section an

overview of some mathematical tools which will be used throughout this appendix.

D.1 Some properties of matrix derivatives

Chain rule for matrices

If z = f1(r) and r = f2(x), where z is a scalar, and r and x are vectors, then

∂z

∂x
=
∂rT

∂x
· ∂z
∂r
. (D.5)

Derivative of a quadratic form

If A is a n× n matrix and x is a n× 1 vector, then

∂(xTAx)

∂x
= Ax+ATx. (D.6)
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Derivatives of an inner product

If A is a n× n matrix and x is a n× 1 vector, then

∂(Ax)

∂x
= vec(A), (D.7)

∂(Ax)

∂xT
= A, (D.8)

∂(xTA)

∂xT
= (vec(AT ))T , (D.9)

∂(xTA)

∂x
= A. (D.10)

(D.11)

Derivative of the natural logarithm of a determinant

For any symmetric or non-symmetric matrix A and for a scalar y:

∂ ln |A|
∂y

= tr

(
A−1 ∂A

∂y

)
. (D.12)

Derivative of the trace of a matrix

First, recall the following properties of the trace of a matrix. If A, B and C are

matrices such that ABC is a square matrix, then

tr(ABC) = tr(BCA) = tr(CAB) (D.13)

Further, if A and B are two n× n matrices, then

tr(A+B) = tr(A) + tr(B), (D.14)

tr(A′) = tr(A) (D.15)

Now, let y be a scalar. Then

∂tr(A)

∂y
= tr

(
∂A

∂y

)
(D.16)

Derivative of an inverse matrix

If A is a square, non-singular matrix, and y is a scalar, then

∂A−1

∂y
= −A−1 ∂A

∂y
A−1. (D.17)
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D.2 First-Order Derivatives

First, observe that

∂ log f(yi, ξ)

∂ξ
=





∂ log f(yi, ξ)

∂β
∂ log f(yi, ξ)

∂d
∂ log f(yi, ξ)

∂σ2




.

In this section, we will work out the first-order derivative for each of these components

separately.

With respect to β

The first-order derivative of the marginal loglikelihood with respect to β is given by

∂ log f(yi, ξ)

∂β
= −1

2

∂ ln |Vi|
∂β

− 1

2

∂

∂β
(yi −Xiβ)TV −1

i (yi −Xiβ). (D.18)

Since Vi does not depend on β, the first term in (D.18) disappears. Further, let us

denote by ri the vector yi −Xiβ then, applying the chain rule (D.5), we obtain

∂(rT
i V

−1
i ri)

∂β
=
∂rT

i

∂β
· ∂(rT

i V
−1
i ri)

∂ri
.

The first factor in this expression corresponds to

∂rT
i

∂β
=
∂(yi −Xiβ)T

∂β
= −∂β

TXT
i

∂β

(D.10)
= −XT

i ,

while the second factor can easily be obtained following the rule for the derivative of

a quadratic form (D.6), i.e.,

∂(rT
i V

−1
i ri)

∂ri
= V −1

i ri + (V −1
i )Tri = 2V −1

i ri.

Substituting these results in (D.18) now leads to the following expression for the

first-order derivative of the marginal loglikelihood with respect to β

∂ log f(yi, ξ)

∂β
= XT

i V
−1
i ri. (D.19)
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With respect to d

Recall that this subset of ξ contains the elements in the upper triangular part of

D. To simplify notation, we will work out the first-order derivative of the marginal

loglikelihood with respect to d, for each element separately. Therefore, for each

1 ≤ a ≤ b ≤ q, we need to determine

∂ log f(yi, ξ)

∂dab
= −1

2

∂ ln |Vi|
∂dab

− 1

2

∂

∂dab
(yi −Xiβ)TV −1

i (yi −Xiβ). (D.20)

The first term in (D.20) can be written as

∂ ln |Vi|
∂dab

(D.12)
= tr

(
V −1

i

∂Vi

∂dab

)
. (D.21)

Note that

Vi = ZiDZ
T
i + σ2Ini

=





Zi11 . . . Zi1q

...
. . .

...

Zini1 . . . Ziniq









d11 . . . d1q

...
. . .

...

dq1 . . . dqq









Zi11 . . . Zini1

...
. . .

...

Zi1q . . . Ziniq



+





σ2 . . . 0
...

. . .
...

0 . . . σ2





=





∑q
j=1 Zi1jdj1 . . .

∑q
j=1 Zi1jdjq

...
. . .

...
∑q

j=1 Zinijdj1 . . .
∑q

j=1 Zinijdjq









Zi11 . . . Zini1

...
. . .

...

Zi1q . . . Ziniq



+





σ2 . . . 0
...

. . .
...

0 . . . σ2





=





∑q
k=1 Zi1k(

∑q
j=1 Zi1jdjk) + σ2 . . .

∑q
k=1 Zinik(

∑q
j=1 Zi1jdjk)

...
. . .

...
∑q

k=1 Zi1k(
∑q

j=1 Zinijdjk) . . .
∑q

k=1 Zinik(
∑q

j=1 Zinijdjk) + σ2





If we define δlm = 1 if l = m and δlm = 0 otherwise, then

Vi =






q∑

k=1

Zimk(

q∑

j=1

Ziljdjk) + σ2δlm





1≤l,m≤ni

. (D.22)
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As a result, when a = b, then it follows that

∂Vi

∂daa
= {ZimaZila}lm

=





Zi1aZi1a . . . Zi1aZinia

...
. . .

...

ZiniaZi1a . . . ZiniaZinia





=





Zi1a

...

Zinia




(
Zi1a . . . Zinia

)

= Zi.aZ
T
i.a, (D.23)

where Zi.a represents the ath column of Zi. On the other hand, when a < b, we find

that

∂Vi

∂dab
= {ZimaZilb + ZimbZila}lm

= Zi.bZ
T
i.a + Zi.aZ

T
i.b. (D.24)

Therefore, combining (D.23) and (D.24), leads to the following result for a ≤ b

∂Vi

∂dab
= Zi.bZ

T
i.a + (1 − δab)Zi.aZ

T
i.b = Uab. (D.25)

Substituted in (D.21), this leads to

∂ ln |Vi|
∂dab

= tr(V −1
i Uab)

= tr(V −1
i Zi.bZ

T
i.a) + (1 − δab)tr(V

−1
i Zi.aZ

T
i.b)

(D.13)
= tr(ZT

i.aV
−1
i Zi.b) + (1 − δab)tr(Z

T
i.bV

−1
i Zi.a)

(D.15)
= ZT

i.aV
−1
i Zi.b + (1 − δab)Z

T
i.aV

−1
i Zi.b

= (2 − δab)Z
T
i.aV

−1
i Zi.b. (D.26)

The second term in (D.20) corresponds to

∂(rT
i V

−1
i ri)

∂dab
= rT

i

∂V −1
i

∂dab
ri (D.27)

Given (D.17) for the derivative of an inverse, it follows that

∂V −1
i

∂dab
= −V −1

i UabV
−1
i , (D.28)
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As a result, the first-order derivative of log f(yi, ξ) with respect to the elements of d,

corresponds to (a ≤ b)

∂ log f(y, ξ)

∂dab
= −1

2
(2 − δab)Z

T
i.aV

−1
i Zi.b +

1

2
rT

i V
−1
i UabV

−1
i ri. (D.29)

With respect to σ
2

Finally, the first-order derivative of log f(yi, ξ) with respect to σ2 is given by

∂ log f(y, ξ)

∂σ2
= −1

2

∂ ln |Vi|
∂σ2

− 1

2

∂

∂σ2
(yi −Xiβ)TV −1

i (yi −Xiβ). (D.30)

The first term in this expression can be worked out as

∂ ln |Vi|
∂σ2

(D.12)
= tr

(
V −1

i

∂Vi

∂σ2

)
= tr(V −1

i Ini
) = tr(V −1

i ), (D.31)

whereas the second term in (D.30) follows from

∂(rT
i V

−1
i ri)

∂σ2
= rT

i

∂V −1
i

∂σ2
ri

(D.17)
= −rT

i V
−1
i

∂Vi

∂σ2
V −1

i ri

= −rT
i V

−2
i ri. (D.32)

Substituting (D.31) and (D.32) in (D.30), leads to

∂ log f(yi, ξ)

∂σ2
= −1

2
tr(V −1

i ) +
1

2
rT

i V
−2
i ri. (D.33)

D.3 Second-Order Derivatives

In this section, we will focus on the second-order derivative of the marginal loglikeli-

hood log f(yi, ξ). Given that

∂2 log f(yi, ξ)

∂ξT ⊗ ∂ξ
=





∂2 log f(yi, ξ)

∂βT ⊗ ∂β

∂2 log f(yi, ξ)

∂dT ⊗ ∂β

∂2 log f(yi, ξ)

∂σ2∂β

∂2 log f(yi, ξ)

∂βT ⊗ ∂d

∂2 log f(yi, ξ)

∂dT ⊗ ∂d

∂2 log f(yi, ξ)

∂σ2∂d

∂2 log f(yi, ξ)

∂βT∂σ2

∂2 log f(yi, ξ)

∂dT∂σ2

∂2 log f(yi, ξ)

∂σ2∂σ2





, (D.34)
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it can be easily seen that the calculation of dk(yi, ξ) in (D.3) is based on the diagonal

elements of this matrix. Further, the elements in the upper triangular part of (D.34)

are required to determine the first term of (D.4).

With respect to β

The second-order derivative of the marginal likelihood with respect to βT and β is

obtained by

∂2 log f(yi, ξ)

∂βT ⊗ ∂β
=

∂

∂βT

(
∂ log f(yi, ξ)

∂β

)

=
∂

∂βT

[
XT

i V
−1
i (yi −Xiβ)

]

=
∂

∂βT

(
−XT

i V
−1
i Xiβ

)

(D.8)
= −XT

i V
−1
i Xi. (D.35)

With respect to d and β

First note that

∂2 log f(yi, ξ)

∂dT ⊗ ∂β
=

[
∂

∂d11

(
∂ log f(yi, ξ)

∂β

)
· · · ∂

∂dqq

(
∂ log f(yi, ξ)

∂β

) ]
, (D.36)

so that we can work out this derivative for each element dab separately. Therefore,

for 1 ≤ a ≤ b ≤ q:

∂

∂dab

(
∂ log f(yi, ξ)

∂β

)
=

∂

∂dab

(
XT

i V
−1
i ri

)

= XT
i

∂V −1
i

∂dab
ri

(D.17)
= −XT

i V
−1
i

∂Vi

∂dab
V −1

i ri

= −XT
i V

−1
i UabV

−1
i ri (D.37)

With respect to σ
2 and β

The second-order derivative of the marginal likelihood with respect to σ2 and β is
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given by

∂2 log f(y, ξ)

∂σ2∂β
=

∂

∂σ2

(
XT

i V
−1
i ri

)

= XT
i

∂V −1
i

∂σ2
ri

(D.17)
= −XT

i V
−2
i ri (D.38)

With respect to d

Recall that the matrix containing the second-order derivatives of the marginal likeli-

hood with respect to the elements of d can be written as

∂2 log f(yi, ξ)

∂dT ⊗ ∂d
=





∂2 log f(yi, ξ)

∂d11∂d11

∂2 log f(yi, ξ)

∂d12∂d11
· · · ∂2 log f(yi, ξ)

∂dqq∂d11

∂2 log f(yi, ξ)

∂d11∂d12

∂2 log f(yi, ξ)

∂d12∂d12
· · · ∂2 log f(yi, ξ)

∂dqq∂d12

...
...

. . .
...

∂2 log f(yi, ξ)

∂d11∂dqq

∂2 log f(yi, ξ)

∂d12∂dqq
· · · ∂2 log f(yi, ξ)

∂dqq∂dqq





.

(D.39)

The elements of this matrix are obtained, for each combination of 1 ≤ c ≤ f ≤ q and

1 ≤ a ≤ b ≤ q, by determining

∂

∂dcf

(
∂ log f(yi, ξ)

∂dab

)
=

∂

∂dcf

[
−1

2
(2 − δab)Z

T
i.aV

−1
i Zi.b +

1

2
rT

i V
−1
i UabV

−1
i ri

]
.

(D.40)

The first term in (D.40) can be written as

∂

∂dcf

[
−1

2
(2 − δab)Z

T
i.aV

−1
i Zi.b

]
= −1

2
(2 − δab)Z

T
i.a

∂V −1
i

∂dcf
Zi.b

(D.17)
=

1

2
(2 − δab)Z

T
i.aV

−1
i

∂Vi

∂dcf
V −1

i Zi.b

=
1

2
(2 − δab)Z

T
i.aV

−1
i UcfV

−1
i Zi.b,(D.41)

while the second term in (D.40) follows as

∂

∂dcf

[
1

2
rT

i V
−1
i UabV

−1
i ri

]
=

1

2
rT

i

∂V −1
i

∂dcf
UabV

−1
i ri +

1

2
rT

i V
−1
i Uab

∂V −1
i

∂dcf
ri

(D.17)
= −1

2
rT

i V
−1
i (UcfV

−1
i Uab + UabV

−1
i Ucf)V −1

i ri. (D.42)
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Substituted in (D.40) this leads to

∂

∂dcf

(
∂ log f(y, ξ)

∂dab

)
=

1

2
(2 − δab)Z

T
i.aV

−1
i UcfV

−1
i Zi.b

−1

2
rT

i V
−1
i (UcfV

−1
i Uab + UabV

−1
i Ucf)V −1

i ri. (D.43)

With respect to σ
2 and d

Observe that

∂2 log f(yi, ξ)

∂σ2 ⊗ ∂d
=

[
∂

∂σ2

(
∂ log f(yi, ξ)

∂d11

)
· · · ∂

∂σ2

(
∂ log f(yi, ξ)

∂dqq

) ]T

, (D.44)

Therefore, the second-order derivative of the marginal loglikelihood with respect to

σ2 and the elements dab of d (1 ≤ a ≤ b ≤ q) is given by

∂

∂σ2

(
∂ log f(yi, ξ)

∂dab

)
=

∂

∂σ2

[
−1

2
(2 − δab)Z

T
i.aV

−1
i Zi.b +

1

2
rT

i V
−1
i UabV

−1
i ri

]
.

(D.45)

This expression can be worked out as a combination of

∂

∂σ2

[
−1

2
(2 − δab)Z

T
i.aV

−1
i Zi.b

]
= −1

2
(2 − δab)Z

T
i.a

∂V −1
i

∂σ2
Zi.b

=
1

2
(2 − δab)Z

T
i.aV

−2
i Zi.b, (D.46)

and

∂

∂σ2

[
1

2
rT

i V
−1
i UabV

−1
i ri

]
=

1

2
rT

i

∂V −1
i

∂σ2
UabV

−1
i ri +

1

2
rT

i V
−1
i Uab

∂V −1
i

∂σ2
ri

= −1

2
rT

i V
−1
i (V −1

i Uab + UabV
−1
i )V −1

i ri. (D.47)

Therefore, (D.45) can be written as

∂

∂σ2

(
∂ log f(yi, ξ)

∂dab

)
=

1

2
(2 − δab)Z

T
i.aV

−2
i Zi.b

−1

2
rT

i V
−1
i (V −1

i Uab + UabV
−1
i )V −1

i ri. (D.48)
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With respect to σ
2

Finally, the second-order derivative of the marginal likelihood with respect to σ2 is

given by
∂2 log f(yi, ξ)

∂σ2∂σ2
=

∂

∂σ2

[
−1

2
tr(V −1

i ) +
1

2
rT

i V
−2
i ri

]
(D.49)

The first term in (D.49) corresponds to

∂

∂σ2

[
−1

2
tr(V −1

i )

]
(D.16)

= −1

2
tr

(
∂V −1

i

∂σ2

)
=

1

2
tr(V −2

i ). (D.50)

Next, it can be easily seen that the second term in (D.49) can be written as

∂

∂σ2

(
1

2
rT

i V
−2
i ri

)
= −rT

i V
−3
i ri. (D.51)

Therefore,
∂2 log f(yi, ξ)

∂σ2∂σ2
=

1

2
tr(V −2

i ) − rT
i V

−3
i ri. (D.52)

D.4 Third-Order Derivatives

The matrix of third-order derivatives
∂

∂ξT

[
∂2 log f(yi, ξ)

∂ξ2k

]

k

required in the second

term in (D.4) can be written as





∂3 log f(yi,ξ)

∂β1∂β2

1

· · · ∂3 log f(yi,ξ)
∂β1∂β2

p

∂3 log f(yi,ξ)

∂β1∂d2

11

· · · ∂3 log f(yi,ξ)
∂β1∂d2

qq

∂2 log f(yi,ξ)
∂β1(∂σ2)2

...
. . .

...
...

. . .
...

...
∂3 log f(yi,ξ)

∂βp∂β2

1

· · · ∂3 log f(yi,ξ)
∂βp∂β2

p

∂3 log f(yi,ξ)
∂βp∂d2

11

· · · ∂3 log f(yi,ξ)
∂βp∂d2

qq

∂2 log f(yi,ξ)
∂βp(∂σ2)2

∂3 log f(yi,ξ)

∂d11∂β2

1

· · · ∂3 log f(yi,ξ)
∂d11∂β2

p

∂3 log f(yi,ξ)

∂d11∂d2

11

· · · ∂3 log f(yi,ξ)
∂d11∂d2

qq

∂2 log f(yi,ξ)
∂d11(∂σ2)2

...
. . .

...
...

. . .
...

...
∂3 log f(yi,ξ)

∂dqq∂β2

1

· · · ∂3 log f(yi,ξ)
∂dqq∂β2

p

∂3 log f(yi,ξ)
∂dqq∂d2

11

· · · ∂3 log f(yi,ξ)
∂dqq∂d2

qq

∂2 log f(yi,ξ)
∂dqq(∂σ2)2

∂3 log f(yi,ξ)

∂σ2∂β2

1

· · · ∂3 log f(yi,ξ)
∂σ2∂β2

p

∂3 log f(yi,ξ)

∂σ2∂d2

11

· · · ∂3 log f(yi,ξ)
∂σ2∂d2

qq

∂2 log f(yi,ξ)
∂σ2(∂σ2)2





.

In what follows, we will work out the expressions for the derivatives in this matrix.
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With respect to β

First observe that, for t = 1, . . . , p,

∂

∂βt

(
∂2 log f(yi, ξ)

∂βT ⊗ ∂β

)
=

∂

∂βt
(−XT

i V
−1
i Xi) = 0.

Therefore, it can be easily seen that, for k = 1, . . . , p,

∂3 log f(yi, ξ)

∂βt∂β2
k

= 0.

Further, for a ≤ b,

∂3 log f(yi, ξ)

∂βt∂d2
ab

=
∂

∂βt

[
1

2
(2 − δab)Z

T
i.aV

−1
i UabV

−1
i Zi.b − rT

i V
−1
i UabV

−1
i UabV

−1
i ri

]
.

(D.53)

It can be easily seen that the derivative of the first term in (D.53) is equal to zero.

The second term can be written as

∂

∂βt

[
−rT

i V
−1
i UabV

−1
i UabV

−1
i ri

]

= −∂r
T
i

∂βt
V −1

i UabV
−1
i UabV

−1
i ri − rT

i V
−1
i UabV

−1
i UabV

−1
i

∂ri

∂βt
. (D.54)

Note that

∂rT
i

∂βt
=

∂(yi −Xiβ)T

∂βt

= −∂(βTXT
i )

∂βt

= −( Xi1t · · · Xinit ) = −XT
i.t,

and similarly
∂(yi −Xiβ)

∂βt
= −Xi.t.

Therefore,

∂

∂βt

(
∂2 log f(yi, ξ)

∂d2
ab

)
= XT

i.tV
−1
i UabV

−1
i UabV

−1
i ri + rT

i V
−1
i UabV

−1
i UabV

−1
i Xi.t.

(D.55)

Finally,
∂

∂βt

(
∂2 log f(yi, ξ)

(∂σ2)2

)
=

∂

∂βt

[
1

2
tr(V −2

i ) − rT
i V

−3
i ri

]
. (D.56)
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The first term in this expression does not depend on βt and therefore vanishes. There-

fore, (D.56) can be written as

∂

∂βt

(
∂2 log f(yi, ξ)

(∂σ2)2

)
= −∂r

T
i

∂βt
V −3

i ri − rT
i V

−3
i

∂ri

∂βt

= XT
i.tV

−3
i ri + rT

i V
−3
i Xi.t (D.57)

With respect to d

Note that, for 1 ≤ c ≤ f ≤ q,

∂

∂dcf

[
∂2 log f(yi, ξ)

∂β2
k

]
= diag

{
∂

∂dcf

[
∂2 log f(y, ξ)

∂βT ⊗ ∂β

]}
. (D.58)

Since

∂

∂dcf

[
∂2 log f(yi, ξ)

∂βT ⊗ ∂β

]
=

∂

∂dcf
(−XT

i V
−1
i Xi)

= −XT
i

∂V −1
i

∂dcf
Xi

= XT
i V

−1
i UcfV

−1
i Xi, (D.59)

if follows that

∂

∂dcf

[
∂2 log f(yi, ξ)

∂β2
k

]
= diag

(
XT

i V
−1
i UcfV

−1
i Xi

)
. (D.60)

Next,

∂3 log f(yi, ξ)

∂dcf∂d2
ab

=
∂

∂dcf

[
1

2
(2 − δab)Z

T
i.aV

−1
i UabV

−1
i Zi.b − rT

i V
−1
i UabV

−1
i UabV

−1
i ri

]
.

(D.61)

The first term in (D.61) can be worked out as

∂

∂dcf

[
1

2
(2 − δab)Z

T
i.aV

−1
i UabV

−1
i Zi.b

]

=
1

2
(2 − δab)Z

T
i.a

∂V −1
i

∂dcf
UabV

−1
i Zi.b +

1

2
(2 − δab)Z

T
i.aV

−1
i Uab

∂V −1
i

∂dcf
Zi.b

= −1

2
(2 − δab)Z

T
i.aV

−1
i (UcfV

−1Uab + UabV
−1Ucf )V −1

i Zi.b, (D.62)
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while the second term in (D.61) follows from

∂

∂dcf

[
−rT

i V
−1
i UabV

−1
i UabV

−1
i ri

]

= −rT
i

∂V −1
i

∂dcf
UabV

−1
i UabV

−1
i ri − rT

i V
−1
i Uab

∂V −1
i

∂dcf
UabV

−1
i ri

−rT
i V

−1
i UabV

−1
i Uab

∂V −1
i

∂dcf
ri

= rT
i V

−1
i (UcfV

−1UabV
−1Uab + UabV

−1UcfV
−1Uab

+UabV
−1UabV

−1Ucf)V −1
i ri. (D.63)

Finally,

∂

∂dcf

[
∂2 log f(yi, ξ)

(∂σ2)2

]
=

∂

∂dcf

[
1

2
tr(V −2

i ) − rT
i V

−3
i ri

]
. (D.64)

First,

∂

∂dcf

[
1

2
tr(V −2

i )

]
(D.16)

=
1

2
tr

[
∂V −2

i

∂dcf

]

=
1

2
tr

(
V −1

i

∂V −1
i

∂dcf

)
+

1

2
tr

(
∂V −1

i

∂dcf
V −1

i

)

= −1

2
tr
(
V −1

i V −1
i UcfV

−1
i

)
− 1

2
tr
(
V −1

i UcfV
−1
i V −1

i

)

(D.13)
= −tr

(
V −1

i UcfV
−1
i V −1

i

)

= −tr
{
V −1

i [Zi.cZ
T
i.f + (1 − δcf )Zi.fZ

T
i.c]V

−1
i V −1

i

}

(D.13,D.15)
= −tr(ZT

i.fV
−3
i Zi.c) − (1 − δcf )tr(ZT

i.fV
−3
i Zi.c)

= −(2 − δcf)ZT
i.fV

−3
i Zi.c. (D.65)

Second,

∂

∂dcf

[
−rT

i V
−3
i ri

]
= −rT

i

∂V −1
i

∂dcf
V −2

i ri − rT
i V

−1
i

∂V −1
i

∂dcf
V −1

i ri − rT
i V

−2
i

∂V −1
i

∂dcf
ri

= rT
i V

−1
i (UcfV

−2
i + V −1

i UcfV
−1
i + V −2

i Ucf)V −1
i ri. (D.66)

With respect to σ
2

As before we can work out the derivative of the marginal loglikelihood with respect
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to σ2 and βk as

∂

∂σ2

[
∂2 log f(yi, ξ)

∂β2
k

]
= diag

{
∂

∂σ2

[
∂2 log f(yi, ξ)

∂βT ⊗ ∂β
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Next, it can be easily seen that

∂3 log f(yi, ξ)

∂σ2∂β2
k

=
∂

∂σ2

[
1

2
(2 − δab)Z

T
i.aV

−1
i UabV

−1
i Zi.b − rT

i V
−1
i UabV

−1
i UabV

−1
i ri

]

(D.68)

The first part of this expression corresponds to
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whereas the second part can be written as
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Finally, the last derivative to be considered here corresponds to
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The first term in this expression follows from
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and the second term from
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∂σ2

[
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i ri
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Therefore,
∂

∂σ2

[
∂2 log f(yi, ξ)
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]
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Appendix E

Alternative Information

Matrix Tests

This appendix can be considered as a supplement to Chapter 10, containing the power

of the diagnostic tools to detect misspecification of the random-effects structure, for

samples of n = 100 and 350 subjects.
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Table E.1: Power of the determinant tests δd1(n) and δd2(n), the determinant-trace

test δdt(n), the SET δs(n) and the MIMT ℑm(n) to detect model misspecification,

when a logistic-normal model is assumed, but the variance of the random intercept

depends on a binary cluster-level covariate, [bi0|zi = 0] ∼ N(0, σ2
0) and [bi0|zi = 1] ∼

N(0, σ2
1). (sample size n = 100 and 350).

σ1 σ0 n δd1(n) δd2(n) δdt(n) δs(n) ℑm(n)

0.5 0.5 100 0.140 0.037 0.066 0.156 0.298

350 0.080 0.064 0.094 0.042 0.076

1.0 100 0.111 0.026 0.046 0.143 0.256

350 0.076 0.066 0.096 0.080 0.402

2.0 100 0.144 0.038 0.048 0.420 0.842

350 0.150 0.070 0.046 0.874 1.000

3.0 100 0.314 0.076 0.038 0.770 0.988

350 0.500 0.334 0.186 1.000 1.000

1.0 0.5 100 0.138 0.028 0.088 0.134 0.380

350 0.146 0.076 0.182 0.068 0.518

1.0 100 0.106 0.042 0.068 0.156 0.190

350 0.062 0.034 0.062 0.030 0.044

2.0 100 0.114 0.026 0.028 0.206 0.382

350 0.088 0.034 0.038 0.424 0.912

3.0 100 0.166 0.048 0.034 0.512 0.896

350 0.246 0.126 0.066 0.980 1.000

2.0 0.5 100 0.182 0.026 0.168 0.166 0.872

350 0.286 0.176 0.486 0.554 1.000

1.0 100 0.136 0.024 0.076 0.142 0.612

350 0.132 0.058 0.182 0.286 0.926

2.0 100 0.078 0.026 0.026 0.092 0.086

350 0.070 0.044 0.050 0.020 0.026

3.0 100 0.090 0.038 0.032 0.124 0.186

350 0.088 0.048 0.032 0.150 0.412

3.0 0.5 100 0.352 0.068 0.314 0.422 0.998

350 0.650 0.496 0.844 0.970 1.000

1.0 100 0.220 0.052 0.134 0.302 0.924

350 0.322 0.204 0.458 0.852 1.000

2.0 100 0.148 0.042 0.042 0.126 0.236

350 0.070 0.032 0.044 0.122 0.500

3.0 100 0.106 0.044 0.032 0.090 0.082

350 0.056 0.046 0.040 0.030 0.034
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Table E.2: Power of the determinant tests δd1(n) and δd2(n), the determinant-trace

test δdt(n), the SET δs(n) and the MIMT ℑm(n) to detect model misspecification,

when a logistic-normal model is assumed, but the data are generated using both a

random intercept and slope (bij = bi0 + bi1tj), with variance σ2
0 and σ2

1 , respectively.

(sample size n = 100 and 350).

σ1 σ0 n δd1(n) δd2(n) δdt(n) δs(n) ℑm(n)

0.2.0 0.5 100 0.101 0.029 0.059 0.134 0.238

0.5 350 0.098 0.066 0.114 0.040 0.086

1.0 100 0.084 0.028 0.056 0.132 0.178

1.0 350 0.072 0.050 0.078 0.026 0.038

2.0 100 0.094 0.050 0.052 0.084 0.096

2.0 350 0.076 0.056 0.062 0.040 0.048

3.0 100 0.116 0.058 0.034 0.082 0.092

3.0 350 0.068 0.058 0.038 0.022 0.026

0.5 0.5 100 0.096 0.034 0.068 0.130 0.256

0.5 350 0.066 0.054 0.096 0.050 0.114

1.0 100 0.078 0.050 0.068 0.104 0.132

1.0 350 0.038 0.042 0.062 0.016 0.044

2.0 100 0.060 0.054 0.056 0.080 0.100

2.0 350 0.046 0.062 0.050 0.014 0.020

3.0 100 0.078 0.058 0.052 0.050 0.076

3.0 350 0.068 0.084 0.070 0.010 0.028

0.8 0.5 100 0.059 0.039 0.061 0.137 0.214

0.5 350 0.068 0.092 0.112 0.136 0.190

1.0 100 0.078 0.050 0.080 0.118 0.146

1.0 350 0.058 0.114 0.098 0.054 0.128

2.0 100 0.068 0.092 0.094 0.046 0.056

2.0 350 0.090 0.134 0.134 0.022 0.046

3.0 100 0.070 0.096 0.076 0.046 0.078

3.0 350 0.124 0.184 0.144 0.020 0.036

1.0 0.5 100 0.050 0.048 0.070 0.194 0.226

0.5 350 0.1.0 0.152 0.146 0.412 0.510

1.0 100 0.046 0.074 0.092 0.114 0.150

1.0 350 0.144 0.234 0.218 0.130 0.238

2.0 100 0.074 0.108 0.104 0.050 0.088

2.0 350 0.194 0.254 0.228 0.018 0.086

3.0 100 0.084 0.138 0.124 0.038 0.040

3.0 350 0.242 0.348 0.278 0.024 0.064
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Table E.3: Power of the determinant tests δd1(n) and δd2(n), the determinant-trace

test δdt(n), the SET δs(n) and the MIMT ℑm(n) to detect model misspecification,

when a logistic-normal model is assumed, but the data are generated using autocor-

related random effects bij such that cov(bij , bik) = σ2ρ|tij−tik|. (sample size n = 100

and 350).

ρ σ n δd1(n) δd2(n) δdt(n) δs(n) ℑm(n)

0.5 0.5 100 0.114 0.051 0.085 0.147 0.217

0.5 350 0.077 0.063 0.080 0.029 0.049

1.0 100 0.064 0.064 0.092 0.073 0.156

1.0 350 0.105 0.158 0.187 0.049 0.105

2.0 100 0.129 0.237 0.275 0.096 0.163

2.0 350 0.658 0.758 0.794 0.446 0.182

3.0 100 0.292 0.452 0.482 0.142 0.148

3.0 350 0.946 0.970 0.984 0.884 0.410

0.7 0.5 100 0.122 0.042 0.071 0.134 0.211

0.5 350 0.093 0.095 0.130 0.023 0.077

1.0 100 0.051 0.076 0.090 0.100 0.182

1.0 350 0.158 0.230 0.272 0.052 0.080

2.0 100 0.222 0.367 0.397 0.096 0.132

2.0 350 0.868 0.916 0.922 0.674 0.382

3.0 100 0.555 0.727 0.741 0.236 0.210

3.0 350 0.998 0.998 0.998 0.968 0.840

0.9 0.5 100 0.122 0.047 0.087 0.139 0.172

0.5 350 0.080 0.072 0.094 0.033 0.074

1.0 100 0.056 0.056 0.078 0.086 0.134

1.0 350 0.070 0.094 0.126 0.018 0.050

2.0 100 0.154 0.290 0.292 0.052 0.108

2.0 350 0.602 0.688 0.696 0.170 0.196

3.0 100 0.420 0.592 0.564 0.082 0.152

3.0 350 0.982 0.992 0.986 0.714 0.780



Appendix F

The Bayesian Central Limit

Theorem

In this appendix we provide a heuristic overview of the large sample approximation

of the posterior random-effects distribution. The following proceedings are based on

the asymptotic inference results discussed in Bernardo and Smith (1994, Section 5.3).

In what follows, we will leave out the subject index i to simplify the notation.

First, observe that the posterior distribution of the random effects can be written as

f(b|y) ∝ f(b)

m∏

j=1

f(yj |b)

∝ exp[log f(b) + log f(y|b)], (F.1)

wherem refers to the number of repeated observations. The logarithmic terms in (F.1)

can be expanded around their maxima b0 and b̂m, determined by setting ∇ log f(b) =

0 and ∇ log f(y|b) = 0, respectively. This leads to

log f(b) = log f(b0) −
1

2
(b− b0)TH0(b− b0) +R0

log f(y|b) = log f(y|b̂m) − 1

2
(b− b̂m)TH(b̂m)(b− b̂m) +Rm.

In these expressions, R0 and Rm denote remainder terms, and the Hessian matrices
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H0 and H(b̂m) are defined as

H0 = −∂
2 log f(b)

∂bk∂bℓ

∣∣∣∣
b=b0

H(b̂m) = −∂
2 log f(y|b)
∂bk∂bℓ

∣∣∣∣
b=bbm

.

Assuming that R0 and Rm are sufficiently small for large m, and ignoring constants

of proportionality, the posterior random-effects distribution can therefore be approx-

imated by

f(b|y) ∝ exp[−1

2
(b− b0)TH0(b− b0) −

1

2
(b− b̂m)TH(b̂m)(b− b̂m)]

∝ exp[−1

2
(b− bm)THm(b− bm)],

where

Hm = H0 +H(b̂m)

bm = H−1
m [H0b0 +H(b̂m)b̂m].

This result suggests that for large m, f(b|y) will resemble a multivariate normal

distribution with mean bm and covariance matrixH−1
m . Further, observe that for large

m, H(b̂m) will become the dominant term in Hm. Consequently, for m sufficiently

large, f(b|y) will also be well approximated by Nq(b|b̂m, H
−1(b̂m)), where q refers to

the dimension of b.

There is a large literature available on the regularity conditions required to justify

mathematically this important result. In what follows, we will base our account on

Bernardo and Smith (1994) and Chen (1985). Let us assume that b ∈ Θ ⊆ ℜq and

that {fm(b),m = 1, 2, . . .} contains a sequence of posterior densities for b, typically

of the form fm(b) = f(b|y1, . . . , ym), based on the parametric model f(y|b) and the

prior f(b).

Further, define Lm(b) = log fm(b), and assume that, for every m, there is a strict

local maximum bm of fm(b), satisfying

L′
m(bm) = ∇Lm(b)|b=bm

= 0,

and implying a positive-definite

Σm = (−L′′
m(bm))−1,

where

{L′′
m(bm)}kℓ =

[
∂2Lm(b)

∂bk∂bℓ

]∣∣∣∣
b=bm

.
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Finally, let |b| = (bT b)1/2 and Bε(b
∗) = {b ∈ Θ; |b − b∗| < ε}, then the following

three basic conditions are sufficient to ensure a valid normal approximation for fm(b)

in a small neighbourhood of bm as m becomes large.

1. Steepness : Let σ̄2
m be the largest eigenvalue of Σm. Then σ̄2

m → 0 as m→ ∞.

2. Smoothness : For any δ > 0, there exists M and ε > 0 such that, for any m > M

and b ∈ Bε(bm), L′′
m(b) exists and satisfies

I −A(δ) ≤ L′′
m(b)[L′′

m(bm)]−1 ≤ I +A(δ),

where I is the q × q identity matrix, and A(δ) is a q × q symmetric positive-

semi-definite matrix whose largest eigenvalue tends to zero as δ → 0.

3. Concentration: For any ε > 0,
∫

Bε(bm)
fm(b)db→ 1 as m→ ∞.

Essentially, the steepness and smoothness condition ensure that, for large m, inside

a small neighbourhood of bm the function fm(b) becomes highly peaked and behaves

like the multivariate normal kernel exp[− 1
2 (b−bm)T Σ−1

m (b−bm)]. The concentration

condition ensures that the probability outside any neighbourhood of bm becomes

negligible.





Samenvatting

Longitudinale gegevens kunnen omschreven worden als bepaalde kenmerken van een

individu of een groep, die herhaaldelijk gemeten worden over tijd. Aangezien metin-

gen van eenzelfde individu gewoonlijk sterker verwant zijn dan metingen van ver-

schillende individuen, moet een geldige analyse rekening houden met dit aspect, de

associatie dus. Verschillende modelfamilies kunnen hiervoor aangesproken worden.

Wanneer men bijvoorbeeld slechts gëınteresseerd is aan het gemiddelde gedrag van de

populatie, kan men gebruik maken van de zogeheten marginale modellen. Als men

daarentegen de associatie tussen de herhaalde metingen wenst te bestuderen, of men

is gëınteresseerd aan effecten specifiek voor elk individu, worden subject-specifieke ter-

men aan het model toegevoegd. Dergelijke parameters, die trouwens niet geobserveerd

worden, blijven dan constant voor een gegeven individu, maar verschillen van individu

tot individu. Dergelijke modellen worden gevat onder de noemer random-effecten of

individu-specifieke modellen.

Naargelang het soort informatie bestaan er verschillende random-effecten model-

len. Het linear mixed model (LMM; Verbeke and Molenberghs, 2000) wordt algemeen

aanvaard als dé basis voor de analyse van normaal verdeelde responsen. Voor niet-

normaal verdeelde gegevens wordt vaak gebruik gemaakt van het generalized linear

mixed model (GLMM; Molenberghs and Verbeke, 2005). Het fitten van dit type

modellen is gebaseerd op de klassieke meest aannemelijke schattingstechnieken (of

maximum likelihood estimation), en vereist het maximaliseren van de marginale aan-

nemelijkheidfunctie of marginale likelihood. Deze wordt verkregen door de random

effecten over hun veronderstelde distributie uit de conditionele likelihood te integre-

ren.

Het correct schatten van de parameters, en het bijhorende testen van hypothesen,

hangen uiteraard af van de veronderstelling dat het model, en bijgevolg ook de ver-

deling van de random effecten, correct gespecificeerd is. Aangezien random effecten
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niet geobserveerd worden, is het moeilijk om deze veronderstelling te valideren. In

het geval van normaal verdeelde uitkomsten werd reeds aangetoond dat, in het LMM,

de meest aannemelijke schatters (of maximum likelihood estimators) van de para-

meters in het model asymptotisch onvertekend zijn, zelfs wanneer de verdeling van

de random effecten verkeerdelijk gespecificeerd is (Verbeke and Lesaffre, 1997). Of

dit ook het geval is voor de GLMM, is de kernvraag die we met dit werk proberen te

beantwoorden.

Aan de hand van simulaties met een logistiek regressiemodel bestuderen we de

gevolgen van het verkeerd specificeren van de verdeling van de random effecten.

Deze simulaties geven aan dat de meest aannemelijke schatters in GLMM niet langer

asymptotisch onvertekend zijn. De schatters van de variantie componenten lijken

altijd bëınvloed te worden door zo’n verkeerde onderstelling. Dit kan aanzienlijke

gevolgen hebben in studies waar het correct schatten van de associatiestructuur van

belang is. Verder kan dit resulteren in misleidende conclusies, wanneer men individu-

specifieke profielen probeert te voorspellen. Anderzijds blijken de lineaire predictoren

minder bëınvloed te worden. Wanneer de variabiliteit van de random effecten klein

is, is ook de resulterende vertekening gering. Niettemin moet men voorzichtig zijn

bij het interpreteren van de resultaten wanneer de random effecten veel variabiliteit

vertonen of wanneer ingewikkelde covariantiestructuren gebruikt worden. Dergelij-

ke situaties zijn niet uitzonderlijk in klinische studies waar men weinig veranderlijke

responsprofielen kan observeren in de placebo groep, terwijl meer variabele profielen

verwacht worden in de behandelingsgroep. In dit geval kunnen de lineaire predic-

toren dan ook onderhevig zijn aan een aanzienlijke vertekening. Tenslotte stellen we

vast dat de type I fout en de kracht van vaak gebruikte testen, zoals de Wald test,

bëınvloed kunnen worden door de misspecificatie.

Deze resultaten doen natuurlijk vragen rijzen over hoe men zich het beste kan

beschermen tegen de gevolgen van het verkeerd onderstellen van de verdeling van de

random effecten. Op de eerste plaats tonen we aan dat de type I fout, geassocieerd

met een test voor de aanwezigheid van een effect, asymptotisch niet bëınvloed zal

worden, zolang dit effect geen deel uitmaakt van de random structuur. Wanneer, in

dit geval, wordt vastgesteld dat een effect significant is, kunnen we dan ook vrij zeker

zijn van de aanwezigheid van dit effect. Verder stellen we een familie van diagnostische

testen voor, gebaseerd op de ideeën van White (1982). Uit simulaties blijkt dat vooral

de Sandwich Estimator Test (SET) en de Modified Information Matrix Test (MIMT)

het beste in staat zijn om de verkeerd gespecificeerde random effecten verdeling vast
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te stellen. Daarnaast illustreren we hoe de voorgestelde diagnostische testen ook

gebruikt kunnen worden om meer algemene vormen van model misspecificatie vast te

stellen.

Als men, na het toepassen van de testen, geconfronteerd wordt met een significant

resultaat is het tevens belangrijk te weten hoe hiermee om te gaan. In de statistiek

wordt dikwijls vastgesteld dat schatters en de conclusies, gebaseerd op deze schat-

ters, robuust zijn tegen afwijkingen van de onderstellingen waarop ze rusten, althans

wanneer de steekproef voldoende groot is. In het geval van GLMM blijkt een grote

steekproef alleen niet voldoende te zijn. In dit werk tonen we aan dat, als zowel

het aantal individuen, als het aantal metingen per individu voldoende talrijk zijn,

dan de schatters van de lineaire predictoren robuust zullen zijn tegen het verkeerd

specificeren van de verdeling van de random effecten. Dit resultaat kan echter niet

uitgebreid worden naar de parameters in de random structuur. Desondanks is het

niet altijd mogelijk om voldoende herhaalde metingen te verzamelen. Als, bijvoor-

beeld, het opmeten van een kenmerk in een klinische studie heel oncomfortabel en/of

heel duur is, kan het onethisch en/of kostelijk zijn om een deelnemer aan meerdere

metingen te onderwerpen.

Als anderzijds de steekproef onvoldoende groot is om op asymptotische argu-

menten te vertrouwen, is het belangrijk te beschikken over alternatieve methodolo-

gie. In dit werk stellen we voor om het gebrek aan robuustheid van de schatters

in GLMM op te vangen door een aantal niet-normale verdelingen voor de random

effecten te integreren in een sensitiviteitsanalyse. Als de schatters gelijkaardig zijn,

onafhankelijk van de gekozen random-effecten verdeling, dan kunnen we vrij zeker

zijn van de verkregen resultaten. Als de resultaten echter aanzienlijk verschillen, dan

zijn de schatters duidelijk gevoelig voor de keuze van de verdeling van de random

effecten. Voorzichtigheid is dan geboden.




