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1 
Introduction 

Progress in digital data acquisition, distribution, retrieval and storage tech­
nology has resulted in the growth of massive databases. One of the greatest 
challenges facing organizations and individuals is how to turn their rapidly 
expanding data collections into accessible, and actionable knowledge. 

The attempts to counter these challenges gathered researchers from ar­
eas such as statistics, machine learning, databases and probably many more, 
resulting in a new area of research, called Data Mining. 

Data mining is usually mentioned in the broader setting of Know ledge 
discovery in databases, or KDD, and is viewed as a single step in a larger 
process called the KDD process [27]. This process includes: 

• Developing an understanding of the application domain, the relevant 
prior knowledge, and the goals of t he end-user. 

• Selecting the target data set on which discovery is t o be performed, and 
cleaning and transforming this data if necessary. 

• Choosing the data mining task, the algorithm, and deciding which mod­
els and parameters may be appropriate. 

• Performing the actual data mining to extract patterns and models. 

• Visualizing, interpreting and consolidating the discovered knowledge. 

This process is iterative in the sense that each step can inspire rectifications to 
preceding steps. It is interactive in the sense t hat a user must be able to limit 
the amount of work done by the system to that what he is really interested in. 

1 



2 Chapter 1. Introduction 

The data mining step is concerned with the task of automated information 
extraction from data that might be valuable to the owner of the data store. 
A working definition of this discipline is the following [43] : 

Data mining is the analysis of ( often large) observational data 
sets to find unsuspected relationships and to summarize the data 
in novel ways that are both understandable and useful to the data 
owner. 

In order to do this analysis, several different types of tasks have been identi­
fied, corresponding to the objectives of what needs to be analyzed and more 
importantly, what the intended outcome should describe. These tasks can be 
categorized as follows [43] . 

Exploratory Data Analysis The goal is here to explore the data without 
any clear ideas of what is wanted to be found. Typical techniques include 
graphical display methods, projection techniques and summarization methods. 

Retrieval by Content The user has a specific pattern in mind in advance 
and is looking for similar patterns in the data set. This task is most commonly 
used for the retrieval of information from large collections of text or image 
data. The main challenge here is to define similarity and how to find all 
similar patterns according to this definition. A well known example is the 
Google search engine (http://www. google. com) of Brin and Page [17], which 
finds web pa.ges that contain information similar to the set of key-words given 
by the user. 

Descriptive Modelling As the name suggests, descriptive models try to 
describe all of the collected data. Typical descriptions include several statis­
tical models, clusters and dependency models. 

Predictive Modelling Predictive techniques such as classification and re­
gression try to answer questions by examining prior knowledge and answers in 
order to generalize t hem for future occasions. An impressive example of clas­
sification is the SKICAT system of Fayyad et al. [26], that can perform as well 
as human experts in classifying stars and galaxies. T heir system is in routine 
use at NASA for automatically cataloging millions of stars and galaxies from 
digital images of the sky. 

Pattern Discovery The aim here is to find local patterns that occur fre­
quently within a database. A lot of algorithms have been studied for sev­
eral types of patterns, such as sets [3], tree structures [82], graph struc­
tures [54, 49], or arbitrary relational structures [23, 32], and association rules 
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over these structures. The most well studied type of patterns are sets of items 
that occur frequently together in transaction databases such as market bas­
ket logs of retail stores. An interesting application of association rules is in 
cross-selling applications in a retail context [15]. 

During the past few years, several very goo<l books and surveys have been 
published on these topics, to which we refer the interested reader for more 
information [43, 39, 47]. 

In this thesis we focus on the Frequent Pattern Discovery task and how 
it can be efficiently solved in the specific context of itemsets and association 
rules. 

The original motivation for searching association rules came from the need 
to analyze so called supermarket transaction data, that is, to examine cus­
tomer behavior in terms of the purchased products. Association rules describe 
how often items are purchased together. For example, an association rule 
"beer::::;, chips (80%)" states that four out of five customers that bought beer 
also bought chips. Such rules can be useful for decisions concerning product 
pricing, promotions, store layout and many others. 

Since their introduction in 1993 by Argawal et al. [3], the frequent itemset 
and association rule mining problems have received a great deal of attention. 
Within the past decade, hundreds of research papers have been published 
presenting new algorithms or improvements on existing algorithms to solve 
these mining problems more efficiently. 

In Chapter 2, we explain the frequent itemset and association rule mining 
problems. We present an in depth analysis of the most influential algorithms 
which made significant contributions to several efficiency issues of these mining 
problems. 

Since the data mining process is an essentially interactive process, it moti­
vated the idea of a "data mining query language" [37, 38, 47, 48, 60]. A data 
mining query language allows the user to ask for specific subsets of association 
rules by specifying several constraints within each query. 

In Chapter 3, we present new techniques in order to efficiently find all fre­
quent patterns that satisfy the constraints given by the user. For that purpose, 
we study a class of constraints on associations to be generated, which should be 
expressible in any reasonable data mining query language: Boolean combina­
tions of atomic conditions, where an atomic condition can either specify that a 
certain item occurs in the antecedent of the rule or the consequent of the rule. 
Efficiently supporting data mining query language environments is a challeng­
ing task. Towards this goal, we present and compare t hree approaches. In the 
first extreme, the integrated querying approach, every individual data mining 
query will be answered by running an adaptation of the mining algorithm in 
which the constraints on the rules and sets to be generated are directly in­
corporated. The second extreme, the post-processing approach, first mines as 
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much associations as possible, by performing one major, global mining opera­
tion. After this relatively expensive operation, the actual data mining queries 
issued by the user then amount to standard lookups in the set of materialized 
associations. A third approach, the incremental querying approach, combines 
the advantages of both previous approaches. 

In Chapter 4, we describe a combinatorial problem which is implicit to 
a wide range of frequent pattern mining algorit hms. Our contribution is to 
solve this problem by providing hard and tight combinatorial upper bounds 
on the amount of work that a typical range of frequent itemset algorithms will 
need to perform. By computing our upper bounds, we have at all t imes an 
airtight guarantee of what is still to come, on which then various optimization 
decisions can be based, depending on the specific algorithm t hat is used. 



2 
Survey on Frequent Pattern 
Mining 

Frequent itemsets play an essential role in many data mining tasks that try to 
find interesting patterns from databases, such as association rules, correlations, 
sequences, episodes, classifiers, clusters and many more of which the mining of 
association rules is one of the most popular problems. The original motivation 
for searching association rules came from t he need to analyze so called super­
market transaction data, that is, to examine customer behavior in terms of the 
purchased products. Association rules describe how often items are purchased 
together. For example, an association rule "beer ::::} chips (80%)" states that 
four out of five customers t hat bought beer also bought chips. Such rules can 
be useful for decisions concerning product pricing, promotions, store layout 
and many others. 

Since their introduction in 1993 by Argawal et al. [3], the frequent itemset 
and association rule mining problems have received a great deal of attention. 
Within the past decade, hundreds of research papers have been published 
presenting new algorithms or improvements on existing algorithms to solve 
these mining problems more efficiently. 

In this chapter, we explain the basic frequent itemset and association rule 
mining problems. We describe the main techniques used to solve these prob­
lems and give a comprehensive survey of the most influential algorithms that 
were proposed during the last decade. 

5 



6 Chapter 2. Survey on Frequent Pattern Mining 

2.1 Problem Description 

Let I be a set of items. A set X = {ii, . . . , ik} ~ I is called an itemset, or a 
k-itemset if it contains k items. 

A transaction over I is a couple T = ( tid, I) where tid is the transaction 
identifier and J is an itemset. A transaction T = ( tid, I) is said to support an 
itemset X ~ I, if X ~ I. 

A transaction database 'D over I is a set of transactions over I. We omit 
I whenever it is clear from the context. 

The cover of an itemset X in 'D consists of the set of transaction identifiers 
of transactions in 'D that support X: 

cover(X, 'D) := { tid I ( tid,I) E 'D, X ~ I} . 

The support of an itemset X in 'D is the number of transactions in the cover 
of X in 'D: 

support(X, 'D) := lcover(X, 'D) I. 

The frequency of an itemset X in 'D is t he probability of X occurring in a 
transaction TE 'D: 

support(X, 'D) 
frequency(X, 'D) := P(X) = IVI . 

Note that IVI = support({} , 'D). We omit 'D whenever it is clear from the 
context. 

An itemset is called frequent if its support is no less than a given absolute 
minimal support threshold O"abs, with O :S aabs :S l'DI . When working with 
frequencies of itemsets instead of their supports, we use a relative minimal 
frequency threshold CTrel, with O :S CTrel :S 1. Obviously, O"ab5 = !O"rel • l'Dll In 
t his thesis, we will only work with the absolute minimal support t hreshold for 
itemsets and omit the subscript abs unless explicitly stated otherwise. 

Definition 2.1. Let 'D be a transaction database over a set of items I, and 
CT a minimal support threshold. The collection of frequent itemsets in 'D with 
respect to CT is denoted by 

F('D,a) := {X ~II support(X, 'D) 2: a}, 

or simply F if 'D and a are clear from t he context. 

Problem 2.1. (Itemset Mining) Given a set of items I , a transaction 
database 'D over I, and minimal support threshold a , find F('D, CT ) . 
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In practice we are not only interested in the set of itemsets :F, but also in 
the actual supports of these itemsets. 

An association rule is an expression of the form X => Y, where X and Y 
are itemsets, and X n Y = {}. Such a rule expresses the association t hat if 
a transaction contains all items in X, then that transaction also contains all 
items in Y . X is called the body or antecedent, and Y is called the head or 
consequent of the rule. 

The support of an association rule X =>Y in V, is the support of XU Y 
in V, and similarly, the frequency of the rule is the frequency of X U Y . An 
association rule is called frequent if its support (frequency) exceeds a given 
minimal support (frequency) threshold O'abs (are/). Again, we will only work 
with the absolute minimal support threshold for association rules and omit 
t he subscript abs unless explicitly stated otherwise. 

T he confidence or accuracy of an association rule X => Y in V is the 
conditional probability of having Y contained in a transaction, given that X 
is contained in that transaction: 

confidence(X => Y, V) := P(YIX) = support(~ UY,~) . 
support X, V 

T he rule is called confident if P(YIX) exceeds a given minimal confidence 
threshold 'Y, with O :S 1 '.S 1. 

Definition 2.2. Let V be a transaction database over a set of items I, a 
a minimal support threshold, and I a minimal confidence threshold. The 
collection of frequent and confident association rules with respect to CT and 1 
is denoted by 

R(V,CT, 1 ) := {X => YI X, Y ~ I,X n Y = {}, 

XU YE :F(V,CT), confidence(X => Y, V) ~ , }, 

or simply R if V, CT and , are clear from the context. 

Problem 2.2. (Association Rule Mining) Given a set of items I, a trans­
action database V over I, and minimal support and confidence thresholds a 
and 1 , find R(V,CT, 1 ) . 

Besides the set of all association rules, we are also interested in the support 
and confidence of each of these rules . 

Note t hat the Itemset Mining problem is actually a special case of the 
Association Rule Mining problem. Indeed, if we are given the support and 
confidence thresholds a and , , then every frequent itemset X also represents 
the trivial rule X ::::} {} which holds with 100% confidence. Obviously, the 
support of t he rule equals t he support of X. Also note that for every itemset 
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I , all rules X :::::} Y, with XU Y = I, hold with at least CY rel confidence . Hence, 
the minimal confidence threshold must be higher than the minimal frequency 
threshold to be of any effect. 

Example 2.1. Consider the database shown in Table 2.1 over the set of it ems 

I= {beer, chips, pizza, wine}. 

tid X 

100 {beer, chips, wine} 
200 {beer, chips} 
300 {pizza, wine} 
400 { chips, pizza} 

Table 2.1: An example transaction database V. 

Table 2.2 shows all frequent itemsets in V with respect to a minimal sup­
port threshold of 1. Table 2.3 shows all frequent and confident association 
rules with a support threshold of 1 and a confidence threshold of 50%. 

The first algorithm proposed to solve t he association rule mining problem 
was divided into two phases [3]. In the first phase, all frequent itemsets are 
generated ( or all frequent rules of the form X :::::} {}) . The second phase con­
sists of the generation of all frequent and confident association rules. Almost 
all association rule mining algorithms comply wit h t his two phased strategy. 
In the following two sections, we discuss t hese two phases in further detail. 
Nevertheless, there exist a successful algorithm, called MagnumOpus, t hat 
uses another strategy to immediately generate a large subset of all association 
rules [79]. We will not discuss this algorithm here, as the main focus of t his 
survey is on frequent itemset mining of which association rules are a natural 
extension. 

Next to t he support and confidence measures, a lot of other interestingness 
measures have been proposed in order to get better or more interesting asso­
ciation rules. Recently, Tan et a l. presented an overview of various measures 
proposed in statistics, machine learning and data mining literature [76]. In this 
survey, we only consider algorithms within the support-confidence framework 
as presented before. 
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Itemset Cover Support Frequency 
{} {100, 200, 300, 400} 4 100% 
{beer} {100,200} 2 50% 
{chips} {100,200,400} 3 75% 
{pizza} {300,400} 2 50% 
{wine} {100,300} 2 50% 
{beer, chips} {100,200} 2 50% 
{beer , wine} {100} 1 25% 
{ chips, pizza} {400} 1 25% 
{ chips, wine} {100} 1 25% 
{pizza, wine} {300} 1 25% 
{beer, chips, wine} {100} 1 25% 

Table 2.2: Itemsets and their support in D. 

Rule Support Frequency Confidence 
{beer} => {chips} 2 50% 100% 
{beer} => {wine} 1 25% 50% 
{chips} => {beer} 2 50% 66% 
{pizza} => {chips} 1 25% 50% 
{pizza} => {wine} 1 25% 50% 
{wine} => {beer} 1 25% 50% 
{wine} => {chips} 1 25% 50% 
{wine} => {pizza} 1 25% 50% 
{beer , chips} => {wine} 1 25% 50% 
{beer, wine} => {chips} 1 25% 100% 
{ chips, wine} => {beer} 1 25% 100% 
{beer} => { chips, wine} 1 25% 50% 
{wine} => {beer , chips} 1 25% 50% 

Table 2.3: Association rules and their support and confidence in D. 
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2.2 Itemset Mining 

The task of discovering all frequent itemsets is quite challenging. The search 
space is exponential in the number of items occurring in t he database. The 
support threshold limits the output to a hopefully reasonable subspace. Also, 
such databases could be massive, containing millions of transactions, making 
support counting a tough problem. In this section, we will analyze these two 
aspects into further detail. 

2.2.1 Search Space 

The search space of all itemsets contains exactly 21II different itemsets. If I 
is large enough, then the naive approach to generate and count the supports 
of all itemsets over the database can't be achieved within a reasonable period 
of time. For example, in many applications, I contains thousands of items, 
and then, the number of itemsets is more than the number of atoms in the 
universe (~ 1079 ). 

Instead, we could generate only those itemsets that occur at least once 
in the transaction database. More specifically, we generate all subsets of all 
transactions in the database. Of course, for large transactions, this number 
could still be too large. Therefore, as an optimization, we could generate only 
those subsets of at most a given maximum size. This technique has been 
studied by Amir et al. [8] and has proven to pay off for very sparse transaction 
databases. Nevertheless, for large or dense databases, this algorithm suffers 
from massive memory requirements. Therefore, several solutions have been 
proposed to perform a more directed search through the search space. 

During such a search, several collections of candidate itemsets are gener­
ated and and their supports computed until all frequent itemsets have been 
generated. Formally, 

Definition 2.3. (Candidate itemset) Given a transaction database V , a 
minimal support threshold a-, and an algorithm that computes F(V, a-), an 
itemset J is called a candidate if t hat algorithm evaluates whether I is frequent 
or not . 

Obviously, the size of a collection of candidate itemsets may not exceed the 
size of available main memory. Moreover, it is important to generate as few 
candidate itemsets as possible, since computing the supports of a collection of 
itemsets is a time consuming procedure. In the best case, only t he frequent 
itemsets are generated and counted. Unfortunately, this ideal is impossible 
in general, which will be shown later in this section. T he main underlying 
property exploited by most algorithms is t hat support is monotone decreasing 
with respect to extension of an itemset. 
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Proposition 2.1. (Support monotonicity) Given a transaction database 
V over I, let X, Y s;;; I be two itemsets. Then, 

X s;;; Y =} support(Y) ~ support(X) . 

Proof. This follows immediately from 

cover(Y) s;;; cover(X) . 

D 

Hence, if an itemset is infrequent, all of its supersets must be infrequent. 
In the literature, this monotonicity property is also called the downward clo­
sure property, since the set of frequent itemsets is closed with respect to set 
inclusion. 

The search space of all itemsets can be represented by a subset-lattice, 
with the empty itemset at the bottom and the set containing all items at the 
top. T he collection of frequent itemsets :F(V, a-) can be represented by the 
collection of maximal frequent itemsets, or the collection of minimal infre­
quent itemsets, with respect to set inclusion. For this purpose, Mannila and 
Toivonen introduced the not ion of the Border of a downward closed collection 
of itemsets [58]. 

Definition 2.4. (Border) Let :F be a downward closed collection of subsets 
of I. T he Border Bd(:F) consists of those itemsets X s;;; I such that all subsets 
of X are in :F, and no superset of X is in :F: 

Bd(:F) := {X s;;; I I VY C X: y E :F} . 

Those itemsets in Bd(:F) that are in :F are called the positive border Bd+(:F): 

and those itemsets in Bd(:F) that are not in :F are called the negative border 
Bd- (:F): 

Bd- (:F) := {X s;;; I I W 2 X : Yr/. :F}. 

The lattice for the frequent itemsets from Example 2.1, together with its 
borders, is shown in Figure 2.1. 

Several efficient algorithms have been proposed to find only t he positive 
border of all frequent itemsets, but if we want to know the supports of all item­
sets in the collection, we still need to count them. Therefore, these algorithms 
are not discussed in this survey. From a t heoretical point of view, the border 
gives some interesting insights into the frequent itemset mining problem, and 
still poses several interesting open problems [35, 58, 57] . 
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{} 

{beer} {chips} {pizza} {wine} 

{beer, chips, pizza} [ .. {beer,_chips, wine ) ! {beer, pizza, wine} u~~~P..s:_?.i~:a: ~ i~~}_ 

C ) 
positive border {beer, chips, pizza, wine) negative border 

Figure 2.1: The lattice for the itemsets of Example 2.1 and its border. 

Theorem 2.2. /58} Let 1) be a transaction database over I, and a a minimal 
support threshold. Finding the collection F(1J, a) requires that at least all 
itemsets in the negative border l3d- ( F) are evaluated. 

Note that t he number of itemset s in the positive or negative border of any 
given downward closed collection of itemsets over I can still be large, but it 
is bounded by (uJ~

2
J). In combinatorics, this upper bound is well known as 

Sperner 's theorem. 
If the number of frequent itemsets for a given database is large, it could 

become infeasible to generate them all. Moreover , if the transaction database 
is dense, or the minimal support threshold is set too low, t hen there could 
exist a lot of very large frequent itemsets, which would make sending them 
all t o t he output infeasible to begin with. Indeed, a frequent itemset of size 
k includes the existence of at least 2k - 1 other frequent itemset s, i.e. all 
of its subset s. To overcome this problem , several proposals have been made 
to generate only a concise representation of all frequent itemsets for a given 
t ransaction database such that , if necessary, the support of a frequent itemset 
not in that represent ation can be efficiently computed or estimated without 
accessing the database [56, 66, 14, 18, 19] . These techniques are based on 
the observation that the support of some frequent it emsets can be deduced 
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from the supports of other itemsets. We will not discuss these algorithms in 
this survey because all frequent itemsets need to be considered to generate 
association rules anyway. Nevertheless, several of these techniques can still 
be used to improve the performance of the algorithms that do generate all 
frequent itemsets, as will be explained later in this chapter. 

2.2.2 Database 

To compute the supports of a collection of itemsets, we need to access the 
database. Since such databases tend to be very large, it is not always possible 
to store them into main memory. 

An important consideration in most algorithms is the representation of the 
transaction database. Conceptually, such a database can be represented by 
a binary two-dimensional matrix in which every row represents an individual 
transaction and the columns represent the items in I. Such a matrix can be 
implemented in several ways. The most commonly used layout is the horizontal 
data layout. T hat is, each transaction has a transaction identifier and a list 
of items occurring in that transaction. Another commonly used layout is the 
vertical data layout, in which the database consists of a set of items, each 
followed by its cover [70, 80]. Table 2.4 shows both layouts for the database 
from Example 2.1. Note that for both layouts, it is also possible to use the 
exact bit-strings from the binary matrix [71 , 64]. Also a combination of both 
layouts can be used, as will be explained later in t his chapter. 

beer wine chips pizza beer wine chips pizza 
100 1 1 1 0 100 1 

,--
1 1 0 

200 1 0 1 0 200 1 0 1 0 
300 0 1 0 1 300 0 1 0 1 
400 0 0 1 1 400 0 0 1 1 

Table 2.4: Horizontal and Vertical database layout of V. 

To count t he support of an itemset X using the horizontal database layout , 
we need to scan the database completely, and test for every transaction T 
whether X ~ T . Of course, this can be done for a large collection of itemsets 
at once. An important misconception about frequent pattern mining is that 
scanning t he database is a very I/0 intensive operation. However, in most 
cases, this is not the major cost of such counting steps. Instead, updating 
the supports of all candidate itemsets contained in a transaction consumes 
considerably more time than reading t hat transaction from a file or from a 
database cursor. Indeed, for each transaction, we need to check for every 
candidate itemset whether it is included in that transaction , or similarly, we 
need to check for every subset of that transaction whether it is in the set 



14 Chapter 2. Survey on Frequent Pattern Mining 

of candidate itemsets. On the other hand, the number of transactions in 
a database is often correlated to the maximal size of a transaction in the 
database. As such, the number of transactions does have an influence on the 
time needed for support counting, but it is by no means the dictating factor. 

The vertical database layout has the major advantage t hat the support of 
an itemset X can be easily computed by simply intersecting the covers of any 
two subsets Y, Z ~ X, such that YU Z = X. However, given a set of candidate 
itemsets, this technique requires that the covers of a lot of sets are available 
in main memory, which is of course not always possible. Indeed, the covers of 
all singleton itemsets already represent the complete database. 

2.3 Association Rule Mining 

The search space of all association rules contains exactly 3II I different rules. 
However, given all frequent itemset s, this search space immediately shrinks 
tremendously. Indeed, for every frequent itemset I, there exists at most 21II 
rules of the form X ::::} Y , such that X U Y = I. Again, in order to efficiently 
traverse this search space, sets of candidate association rules are iteratively 
generated and evaluated, until all frequent and confident association rules are 
found. The underlying technique to do this, is based on a similar monotonicity 
property as was used for mining all frequent itemset s. 

Proposition 2.3. (Confidence monotonicity) Let X, Y, Z ~ I be three 
itemsets, such that X n Y = {}. Then, 

confidence(X \ Z =} YU Z) :s; confidence(X ::::} Y). 

Proof. Since XU Y ~XU Yu Z, and X \ Z ~ X, we have 

support(X UY U Z) < support(X UY) 
support(X \ Z) support(X) 

D 

In other words, confidence is monotone decreasing with respect to exten­
sion of the head of a rule. If an item in the extension is included in the body, 
then it is removed from the body of that rule. Hence, if a certain head of an 
association rule over an itemset I causes the rule to be unconfident, all of the 
head's supersets must result in unconfident rules. 

As already mentioned in the problem description, the associat ion rule min­
ing problem is actually more general than the frequent itemset mining problem 
in the sense that every itemset I can be represented by the rule I=} {}, which 
holds with 100% confidence, given its support is not zero. On the other hand, 
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{beer, chips, wine}=>{ } 

{ chips, wine}=> {beer} {beer, wine}=>{chips} { beer, chips}=> {wine} 

{ wine }=>{beer, chips} {chips}=> { beer, wine} {beer}=> { chips, wine} 

{}=>{beer, chips, wine} 

Figure 2.2: An example of a lattice representing a collection of association 
rules for {beer, chips, wine}. 

for every itemset I , the frequency of the rule {} => I equals its confidence. 
Hence, if the frequency of I is above the minimal confidence threshold, then 
so are all other association rules t hat can be constructed from I. 

For a given frequent itemset I , the search space of all possible associat ion 
rules X => Y, such that XUY = I, can be represented by a subset-lattice with 
respect to the head of a rule, with the rule with an empty head at the bottom 
and the rule with all items in the head at the top. F igure 2.2 shows such a 
lattice for the itemset {beer , chips, wine}, which was found to be frequent on 
the artificial data set used in Example 2.4. 

Given all frequent itemsets and their supports, the computation of all 
frequent and confident association rules becomes relatively straightforward. 
Indeed, to compute the confidence of an association rule X => Y , with XUY = 
I, we only need to find t he supports of I and X, which can be easily retrieved 
from the collection of frequent itemsets. 

2.4 Example Data Sets 

For all experiments we performed in this thesis, we used four data sets with 
different characteristics. We have experimented using t hree real data sets, 
of which two are publicly available, and one synthetic data set generated 
by the program provided by t he Quest research group at IBM Almaden [5]. 
The mushroom data set contains characteristics of various species of mush­
rooms, and was originally obtained from the UCI repository of machine learn-
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Data set #Items #Transactions minlTI maxlT\ avg\T\ 
T40I10D100K 942 100000 4 77 39 
mushroom 119 8 124 23 23 23 
BMS-Webview-1 497 59602 1 267 2 
basket 13103 41373 1 52 9 

Table 2.5: Data Set Characteristics. 

ing databases [11]. The BMS-WebView-1 data set contains several months 
worth of clickstream data from an e-commerce web site, and is made publicly 
available by Blue Martini Software [52]. The basket data set contains t ransac­
tions from a Belgian retail store, but can unfortunately not be made publicly 
available. Table 2.5 shows the number of items and the number of transac­
tions in each data set, and the minimum, maximum and average length of the 
transactions. 

Additionally, Table 2.6 shows for each data set the lowest minimal support 
threshold that was used in our experiments, the number of frequent items and 
itemsets, and the size of the longest frequent itemset that was found. 

Data set (Y \F1\ \F\ max{k \ \Fk\ > O} 
T40Il0D100K 700 804 550126 18 
mushroom 600 60 945309 16 
BMS-Webview-1 36 368 461521 15 
basket 5 8051 285 758 11 

Table 2.6: Data Set Characteristics. 

2.5 The Apriori Algorithm 

The first algorithm to generate all frequent itemsets and confident association 
rules was the AIS algorithm by Agrawal et al. [3], which was given together 
with the introduct ion of this mining problem. Shortly after t hat, the algo­
rithm was improved and renamed Apriori by Agrawal et al. , by exploiting 
the monotonicity property of the support of itemsets and the confidence of 
association rules [6, 73]. The same technique was independently proposed by 
Mannila et al. [59]. Both works were cumulated afterwards [4] . 

2.5 .1 Itemset Mining 

For the remainder of this thesis, we assume for simplicity that items in trans­
actions and itemsets are kept sorted in their lexicographic order unless stated 
otherwise. 
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T he itemset mining phase of the A priori a lgorithm is given in Algorithm 1. 
We use the notation X [i], to represent the ith item in X. The k-prefix of an 
itemset Xis t he k-itemset {X[l], ... , X [k]}. 

Algorithm 1 Apriori - Itemset mining 
Input: 'D, <I 

Output: F('D , <I) 
1: C1 := {{ i} I i EI} 
2: k := 1 
3: while ck =/= {} do 
4: // Compute t he supports of all candidate itemsets 
5: for all transactions ( tid, I) E 'D do 
6: for all candidate itemsets X E C k do 
7: if X ~ I then 
8: X. support++ 
9: end if 

10: end for 
11: end for 
12: / / Ext ract all frequent itemsets 
13: Fk := {X IX.support~ <I} 
14: // Generate new candidate itemset s 
15: for all X, YE Fk, X[i] = Y[i] for 1 ::; i::; k - 1, and X[k] < Y[k] do 
16: J = Xu {Y[k]} 
17: if VJ C I , IJ I = k: J E Fk then 
18: ck+i := ck+i u 1 
19: end if 
20: end for 
21: k++ 
22: end while 

T he algorithm performs a breadth-first search through the search space of 
a ll itemsets by iteratively generating candidate itemsets Ck+l of size k + 1, 
starting with k = 0 (line 1). An itemset is a candidate if all of its subsets are 
known to be frequent . More specifically, C1 consist s of all items in I, and at 
a certain level k, all itemsets of size k + 1 in Bd- (Fk) are generat ed. T his is 
done in two steps. First, in the join step, Fk is joined with itself. The union 
XU Y of itemsets X, Y E Fk is generated if they have the same k - I-prefix 
(lines 20- 21). In the prune step, XU Y is only inserted into Ck+l if all of its 
k-subsets occur in Fk (lines 22- 24) . 

To count the supports of all candidate k-itemsets, the database, which 
retains on secondary storage in the horizontal database layout, is scanned one 
transaction at a time, and the supports of all candidate itemsets that are 
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included in that transaction are incremented (lines 6-12) . All itemsets that 
turn out to be frequent are inserted into :Fk (lines 14- 18). 

Note that in this algorithm, the set of all itemsets that were ever generated 
as candidate itemsets, but turned out to be infrequent, is exactly Bd- ( :F). 

If the number of candidate k + 1-itemsets is too large to retain into main 
memory, the candidate generation procedure stops and the supports of all 
generated candidates is computed as if nothing happened. But then, in the 
next iteration, instead of generating candidate itemsets of size k + 2, the 
remainder of all candidate k + 1-itemsets is generated and counted repeatedly 
until all frequent itemsets of size k + 1 are generated. 

2.5.2 Association Rule Mining 

Given all frequent itemsets, we can now generate all frequent and confident 
association rules. The algorithm is very similar to the frequent itemset mining 
algorithm and is given in Algorithm 2. 

Algorithm 2 Apriori - Association Rule mining 
Input: 'D, er, 1 
Output: R('D, a, 1 ) 

1: Compute :F('D, a) 
2: n := {} 

3: for all I E :F do 
4: n := nu I =} {} 

5: C1:= {{i}liEI}; 
6: k := 1; 
7: while ck =/= {} do 
8: / / Extract all heads of confident association rules 
9: Hk := {XE Ck I confidence(!\ X =} X, 'D) 2: 1 } 

10: / / Generate new candidate heads 
11: for all X, YE Hk, X[i] = Y[i] for 1 :s; i :s; k - 1, and X[k] < Y[k] do 
12: I = Xu {Y[k]} 
13: if VJ C I, IJI = k: J E Hk then 
14: ck+i := ck+i u I 
15: end if 
16: end for 
17: k++ 
18: end while 
19: / / Cumulate all association rules 
20: n := nu {I\ x =} x Ix E H1 u ... uHk} 
21: end for 
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First, all frequent itemsets are generated using Algorithm 1. Then, every 
frequent itemset I is divided into a candidate head Y and a body X = I \ Y. 
This process starts with Y = {}, resulting in the rule I =} {}, which always 
holds with 100% confidence (line 4). After that, the algorithm iteratively 
generates candidate heads Ck+l of size k + 1, starting with k = 0 (line 5). 
A head is a candidate if all of its subsets are known to represent confident 
rules. This candidate head generation process is exactly like the candidate 
itemset generation in Algorithm 1 (lines 11- 16). To compute the confidence 
of a candidate head Y, the support of I and X is retrieved from F. All heads 
that result in confident rules are inserted into Hk (line 9). In the end, all 
confident rules are inserted into R (line 20). 

It can be seen that this algorithm does not fully exploit the monotonicity of 
confidence. Given an itemset I and a candidate head Y, representing the rule 
I\ Y =} Y, t he algorithm checks for all Y' CY whether the rule I\ Y' =} Y' 
is confident, but not whether the rule J \ Y =} Y' is confident. Nevertheless, 
this is perfectly possible if all rules are generated from an itemset I, only if all 
rules are already generated for all itemsets I' C I. 

However, exploiting monotonicity as much as possible is not always the 
best solution. Since computing the confidence of a rule only requires the 
lookup of the support of at most 2 itemsets, it might even be better not to 
exploit the confidence monotonicity at all and simply remove the prune step 
from the candidate generation process, i.e., remove lines 13 and 15. Of course, 
this depends on the efficiency of finding the support of an itemset or a head 
in the used data structures. 

Luckily, if the number of frequent and confident association rules is not 
too large, then the time needed to find all such rules consists mainly of t he 
time that was needed to find all frequent set s. 

Since the proposal of this algorithm for the association rule generation 
phase, no significant optimizations have been proposed anymore and almost 
all research has been focused on the frequent itemset generation phase. 

2.5.3 Data Structures 

The candidate generation and the support counting processes require an ef­
ficient data structure in which all candidate itemsets are stored since it is 
important to efficiently find the itemsets that are contained in a transaction 
or in another itemset. 

Hash-tree 

In order to efficiently find all k-subsets of a potential candidate itemset, all 
frequent itemsets in Fk are stored in a hash table. 
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Candidate itemsets are stored in a hash-tree [4] . A node of the hash-tree 
either contains a list of itemsets (a leaf node) or a hash table (an interior 
node). In an interior node, each bucket of the hash table points to another 
node. The root of the hash-tree is defined to be at depth 1. An interior node 
at depth d points to nodes at depth d + 1. Itemsets are stored in leaves. 

When we add a k-itemset X during the candidate generation process, we 
start from the root and go down the tree until we reach a leaf. At an interior 
node at depth d, we decide which branch to follow by applying a hash function 
to the X[d] item of the itemset, and following the pointer in the corresponding 
bucket. All nodes are initially created as leaf nodes. When the number of 
itemsets in a leaf node at depth d exceeds a specified threshold, the leaf node 
is converted into an interior node, only if k > d. 

In order to find the candidate-itemsets that are contained in a transaction 
T, we start from the root node. If we are at a leaf, we find which of the 
itemsets in the leaf are contained in T and increment their support. If we are 
at an interior node and we have reached it by hashing the item i, we hash on 
each item that comes after i in T and recursively apply this procedure to the 
node in the corresponding bucket. For the root node, we hash on every item 
in T. 

Trie 

Another data structure that is commonly used is a trie (or prefix-tree) [8, 
13, 16, 9]. In a trie, every k-itemset has a node associated with it, as does 
its k - I -prefix. The empty itemset is the root node. All the 1-itemsets are 
attached to the root node, and their branches are labelled by the item they 
represent. Every other k-itemset is attached to its k - I-prefix. Every node 
stores the last item in the itemset it represents, its support, and its branches. 
The branches of a node can be implemented using several data structures such 
as a hash table, a binary search tree or a vector. 

At a certain iteration k, all candidate k-itemsets are stored at depth kin the 
trie. In order to find the candidate-itemsets that are contained in a transaction 
T, we start at the root node. To process a transaction for a node of t he trie, 
(1) follow the branch corresponding to the first item in the transaction and 
process the remainder of the transaction recursively for that branch, and (2) 
discard the first item of the transaction and process it recursively for the node 
itself. T his procedure can still be optimized, as is described in [13]. 

Also the join step of the candidate generation procedure becomes very 
simple using a trie, since all itemsets of size k with the same k - I-prefix 
are represented by the branches of the same node ( that node represents the 
k-1-prefix). Indeed , to generate all candidate itemsets with k-1-prefix X, we 
simply copy all siblings of the node that represents X as branches of that node. 
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Moreover, we can try to minimize the number of such siblings by reordering 
the items in the database in support ascending order [13, 16, 9]. Using this 
heuristic, we reduce the number of itemsets that is generated during the join 
step, and hence, we implicitly reduce the number of times the prune step needs 
to be performed. Also, to find the node representing a specific k-itemset in 
the trie, we have to perform k searches within a set of branches. Obviously, 
the performance of such a search can be improved when these sets are kept as 
small as possible. 

An in depth study on the implementation details of a trie for Apriori can 
be found in [13] . 

All implementations of all frequent itemsets mining algorithms presented 
in this thesis are implemented using t his trie data structure. 

2.5.4 Optimizations 

A lot of other algorithms proposed after the introduction of Apriori retain the 
same general structure, adding several techniques to optimize certain steps 
within t he algorithm. Since the performance of the Apriori algorithm is al­
most completely dictated by its support counting procedure, most research 
has focused on that aspect of the Apriori algorithm. As already mentioned 
before, the performance of this procedure is mainly dependent on the number 
of candidate itemsets that occur in each transaction. 

AprioriTid, AprioriHybrid 

Together with the proposal of the A priori algorithm, Agrawal et al. [6, 4] pro­
posed two other algorithms, AprioriTid and AprioriHybrid. The AprioriTid 
algorithm reduces the time needed for the support counting procedure by re­
placing every transaction in the database by the set of candidate itemsets that 
occur in that transaction. This is done repeatedly at every iteration k. The 
adapted transaction database is denoted by Ck . The algorithm is given in 
Algorithm 3. 

More implementation details of t his algorithm can be found in [7] . Al­
though the AprioriTid algorithm is much faster in later iterations, it performs 
much slower t han Apriori in early iterations. This is mainly due to the addi­
tional overhead that is created when Ck does not fit into main memory and 
has to be written to disk. If a transaction does not contain any candidate 
k-itemsets, then Ck will not have an entry for this transaction. Hence, the 
number of entries in Ck may be smaller than the number of transactions in 
the database, especially at later iterations of the algorithm. Additionally, at 
later iterations, each entry may be smaller than the corresponding transaction 
because very few candidates may be contained in the transaction. However, in 



22 Chapter 2. Survey on Frequent Pattern Mining 

Algorithm 3 AprioriTid 
Input: 'D, CT 

Output: F('D, CT) 

1: Compute F1 of all frequent items 
2: C 1 := 'D (with all items not in F1 removed) 
3: k := 2 
4: while Fk- l =/- {} do 
5: Compute Ck of all candidate k-itemsets 
6: ck:= {} 
7: / / Compute the supports of all candidate itemsets 
8: for all transactions ( tid, T) E Ck do 
9: Cr:={} 

10: for all X E Ck do 
11: if {X[l], ... , X [k - 1]} ET/\ {X[l], ... , X[k- 2], X [k]} E T then 
12: Cr:= Cr u {X} 
13: X.support++ 
14: end if 
15: end for 
16: if Cr =I- {} then 
17: Ck:= Ck u {(tid,Cr)} 
18: end if 
19: end for 
20: Extract Fk of all frequent k-itemsets 
21: k++ 
22: end while 
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early iterations, each entry may be larger than its corresponding transaction. 
Therefore, another algorithm, AprioriHybrid, has been proposed [6, 4] that 
combines the Apriori and AprioriTid algorithms into a single hybrid. This 
hybrid algorithm uses Apriori for the initial iterations and switches to Apri­
oriTid when it is expected that the 8et Ck fits into main memory. Since the 
size of Ck is proportional with the number of candidate itemsets, a heuristic 
is used that estimates the size that Ck would have in the current iteration. If 
this size is small enough and there are fewer candidate patterns in the current 
iteration than in the previous iteration, the algorithm decides to switch to 
AprioriTid. Unfortunately, this heuristic is not airtight as will be shown in 
Chapter 4. Nevertheless, AprioriHybrid performs almost always better than 
A priori. 

Counting candidate 2-itemsets 

Shortly after the proposal of the Apriori algorithms described before, Park et 
al. proposed another optimization, called DHP (Direct Hashing and Pruning) 
to reduce the number of candidate itemsets [65]. During the kth iteration, 
when the supports of all candidate k-itemsets are counted by scanning the 
database, DHP already gathers information about candidate itemsets of size 
k + l in such a way that all ( k + l )-subsets of each transaction after some 
pruning are hashed to a hash table. Each bucket in the hash table consists of 
a counter to represent how many itemsets have been hashed to that bucket so 
far. Then, if a candidate itemset of size k + l is generated, the hash function 
is applied on that itemset. If the counter of the corresponding bucket in the 
hash table is below the minimal support threshold, the generated itemset is 
not added to the set of candidate itemsets. Also, during the support counting 
phase of iteration k, every transaction trimmed in the following way. If a 
transaction contains a frequent itemset of size k + l, any item contained in 
that k + l itemset will appear in at least k of the candidate k-itemsets in Ck. 
As a result, an item in transaction T can be trimmed if it does not appear 
in at least k of the candidate k-itemsets in Ck. These techniques result in 
a significant decrease in the number of candidate itemsets that need to be 
counted, especially in the second iteration. Nevertheless, creating the hash 
tables and writing the adapted database to disk at every iteration causes a 
significant overhead. 

Although DHP was reported to have better performance than Apriori and 
AprioriHybrid, this claim was countered by Ramakrishnan if the following 
optimization is added to Apriori [72]. Instead of using the hash-tree to store 
and count all candidate 2-itemsets, a triangular array C is created, in which 
the support counter of a candidate 2-itemset { i, j} is stored at location C [i] [j] . 
Using this array, the support counting procedure reduces to a simple two-level 
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for-loop over each transaction. A similar technique was later used by Orlando 
et al. in their DCP and DCI algorithms [63, 64]. 

Since the number of candidate 2-itemsets is exactly (1~1 I), it is still possi­
ble that this number is too large, such that only part of t he structure can be 
generated and multiple scans over the database need to be performed. Nev­
ertheless, from experience, we discovered that a lot of candidate 2-itemsets 
do not even occur a t all in the database, and hence, their support remains 
O. Therefore, we propose the following optimization. When all single items 
are counted, resulting in the set of all frequent items F 1, we do not generate 
any candidate 2-itemset. Instead, we start scanning the database, and remove 
from each transaction all items that are not frequent , on the fly. T hen, for 
each trimmed transaction, we increase the support of all candidate 2-itemsets 
contained in that t ransaction. However, if the candidate 2-itemset does not 
yet exist s, we generate the candidate itemset and initialize its support to 1. 
In this way, only those candidate 2-itemsets that occur at least once in the 
database are generated . For example, this technique was especially useful for 
the basket data set used in our experiments, since in that data set there exist 
8 051 frequent items, and hence A priori would generate (8 

~
51

) = 32 405 275 
candidate 2-itemsets. Using this technique, this number was drastically re­
duced to 1708203. 

Support lower bounding 

As we already ment ioned earlier in this chapter, apart from t he monotonicity 
property, it is sometimes possible to derive information on the support of an 
itemset , given the support of all of its subsets. The first algorithm that uses 
such a technique was proposed by Bayardo in his MaxMiner and Apriori-LB 
algorithms [9]. The presented t echnique is based on the following property 
which gives a lower bound on t he support of an itemset. 

P roposition 2.4. Let X, Y, Z ~ 'I be itemsets. 

supporl(X U Y U Z) 2 support(X UY)+ support(X U Z) - support(X) 

Proof. 

support(X UY U Z) = lcover(X u Y) n cover(X U Z) I 

= lcover(X UY)\ ( cover(X UY)\ cover(X U Z))I 

2 I cover(X UY) \ ( cover(X) \ cover(X U Z)) I 
2 lcover(X U Y)l - l(cover(X) \ cover(X U Z))I 

= lcover(X U Y)I - (lcover(X)l - lcover(X U Z)I) 
= supporl(X UY) + support(X U Z) - supporl(X) 

D 
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In practice, this lower bound can be used in the following way. Every 
time a candidate k + 1-itemset is generated by joining two of its subsets of 
size k, we can easily compute this lower bound for that candidate. Indeed, 
suppose the candidate itemset XU{i1, i2} is generated by joining XU{i1} and 
XU { i2}, we simply add up the supports of these two itemsets and subtract 
the support of X. If this lower bound is higher than the minimal support 
threshold, then we already know that it is frequent and hence, we can already 
generate candidate itemsets of larger sizes for which this lower bound can 
again be computed. Nevertheless, we still need to count the exact supports of 
all these itemsets, but this can be done all at once during the support counting 
procedure. Using the efficient support counting mechanism as we described 
before, this optimization could result in significant performance improvements. 

Additionally, we can exploit a special case of Proposition 2.4 even more. 

Corollary 2.5. Let X, Y, Z ~ I be itemsets. 

support(X UY) = support(X) =} support(X UY U Z) = support(X U Z) 

This specific property was later exploited by Pasquier et al. in order to 
find a concise representation of all frequent itemsets [66, 14]. Nevertheless, it 
can already be used to improve the Apriori algorithm. 

Suppose we have generated and counted the support of the frequent itemset 
X U { i} and that its support is equal to the support of X. Then we already 
know that the supports of every superset XU { i } UY is equal to the support 
of X U Y and hence, we do not have to generate all such supersets anymore, 
but only have to keep the information that every superset of X U { i} is also 
represented by a superset of X. 

Recently, Calders and Goethals presented a generalization of all these tech­
niques resulting in a system of deduction rules that derive tight bounds on the 
support of candidate itemsets [19]. These deduction rules allow for construct­
ing a minimal representation of all frequent itemsets, but can also be used to 
efficiently generate the set of all frequent itemsets. Unfortunately, for a given 
candidate itemset, an exponential number of rules in the length of the itemset 
need to be evaluated. The rules presented in this section, which are part of the 
complete set of derivation rules, are shown to result in significant performance 
improvements, while the other rules only show a marginal improvement. 

Combining passes 

Another improvement of the Apriori algorithm, which is part of the folklore, 
tries to combine as many iterations as possible in the end , when only few 
candidate pat terns can still be generated. The potential of such a combination 
t echnique was realized early on [6], but the modalities under which it can be 
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applied were never further examined. In Chapter 4, we study this problem 
and provide several upper bounds on the number of candidate itemsets that 
can yet be generated after a certain iteration in the Apriori algorithm. 

Dynamic Itemset Counting 

The DIC algorithm, proposed by Brin et al. tries to reduce the number of 
passes over the database by dividing the database into intervals of a specific 
size [16]. First, all candidate patterns of size 1 are generated. The supports 
of the candidate sets are then counted over the first interval of the database. 
Based on these supports, a new candidate pattern of size 2 is already generated 
if all of its subsets are already known to be frequent, and its support is counted 
over the database together with the patterns of size 1. In general, after every 
interval, candidate patterns are generated and counted. The algorithm stops if 
no more candidates can be generated and all candidates have been counted over 
the complete database. Although this method drastically reduces the number 
of scans through the database, its performance is also heavily dependent on 
the distribution of the data. 

Although the authors claim that the performance improvement of reorder­
ing all items in support ascending order is negligible, this is not true for Apriori 
in general. Indeed, the reordering used in DIC was based on the supports of 
the 1-itemsets that were computed only in the first interval. Obviously, the 
success of t his heuristic also becomes highly dependent on the distribution of 
the data. 

The CARMA algorithm (Continuous Association Rule Mining Algorithm), 
proposed by Hidber [45] uses a similar technique, reducing the interval size 
to 1. More specifically, candidate itemsets are generated on the fly from every 
transaction. After reading a transaction, it increments the supports of all can­
didate itemsets contained in that transaction and it generates a new candidate 
itemset contained in that transaction, if all of its subsets are suspected to be 
relatively frequent with respect to the number of transactions that has already 
been processed. As a consequence, CARMA generates a lot more candidate 
itemsets than DIC or Apriori. (Note that the number of candidate itemsets 
generated by DIC is exactly the same as in Apriori.) Additionally, CARMA 
allows the user to change the minimal support t hreshold during the execut ion 
of t he algorithm. After the database has been processed once, CARMA is 
guaranteed to have generated a superset of all frequent itemsets relative to 
some threshold which depends on how the user changed the minimal support 
threshold during its execution. However, when the minimal support threshold 
was kept fixed during the complete execution of the algorithm, at least all 
frequent itemsets have been generated. To determine the exact supports of all 
generated itemsets, a second scan of the database is required. 
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Sampling 

The sampling algorithm, proposed by Toivonen [77], performs at most two 
scans through the database by picking a random sample from the database, 
then finding all relatively frequent patterns in that sample, and then verifying 
the results with the rest of the database. In the cases where the sampling 
method does not produce all frequent patterns, the missing patterns can be 
found by generating all remaining potentially frequent patterns and verifying 
their supports during a second pass through the database. The probability of 
such a failure can be kept small by decreasing the minimal support threshold. 
However, for a reasonably small probability of failure, the threshold must be 
drastically decreased , which can cause a combinatorial explosion of the number 
of candidate patterns. 

Partitioning 

The Partition algorithm, proposed by Savasere et al. uses an approach which 
is completely different from all previous approaches [70]. That is, the database 
is stored in main memory using the vertical database layout and the support 
of an itemset is computed by intersecting the covers of two of its subsets. 
More specifically, for every frequent item, the algorithm stores its cover. To 
compute the support of a candidate k-itemset I , which is generated by joining 
two of its subsets X, Y as in the Apriori algorithm, it intersects the covers of 
X and Y, resulting in the cover of I. 

Of course, storing the covers of all items actually means that the com­
plete database is read into main memory. For large databases, this could be 
impossible. Therefore, the Partition algorithm uses the following trick. The 
database is partitioned into several disjoint parts and the algorithm generates 
for every part all itemsets that are relatively frequent within that part, using 
the algorithm described in the previous paragraph and shown in Algorithm 4. 
The part s of the database are chosen in such a way that each part fits into 
main memory on itself. 

The algorithm merges all relatively frequent itemsets of every part to­
gether. This results in a superset of all frequent itemsets over de complete 
database, since an itemset that is frequent in the complete database must be 
relatively frequent in one of the parts. Then, the actual supports of all itemsets 
are computed during a second scan through the database. Again, every part 
is read into main memory using the vertical database layout and the support 
of every itemset is computed by intersecting the covers of all items occurring 
in that itemset. The exact Partition algorithm is given in Algorithm 5. 

The exact computation of the supports of all itemsets can still be op­
timized, but we refer to the original article for further implementation de-
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Algorithm 4 Partition - Local Itemset Mining 
Input: 7J, CT 

Output: F(D, <T) 
1: Compute F 1 and store with every frequent item its cover 
2: k := 2 
3: while F k - 1 -=/- {} do 
4: Fk := {} 
5: for all X , Y E Fk-l, X [i] = Y[i] for 1 ~ i ~ k-2, andX[k-1] < Y [k-1] 

do 
6: I = {X[l], ... , X[k - 1], Y[k - 1]} 
7: if VJ c I: J E Fk- 1 then 
8: I.cover := X.cover n Y. cover 
9: if II.cover ! 2'. CT then 

10: Fk := Fk U I 
11: end if 
12: end if 
13: end for 
14: k++ 
15: end while 

Algorithm 5 Partition 
Input: D , CT 

Output: F(D, <T) 
1: Partition 1) in D 1, ... , Dn 
2: / / Find all local frequent itemsets 
3: for 1 ~ p ~ n do 
4: Compute GP := F(Dp, I CT rel · IDpll) 
5: end for 
6: / / Merge all local frequent itemsets 
7: Gglobal := LJ1 <;p <;n GP 

8: / / Compute actual support of all itemsets 
9: for 1 ~ p ~ n do 

10: Generate cover of each item in Dp 
11: for all I E Gglobal do 
12: I .support := I.support+ II[ I]. cover n · · · n I[ II l].coverl 
13: end for 
14: end for 
15: // Extract all global frequent itemsets 
16: F := {I E Gglobal I I. support 2'. CT} 
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tails [70]. 
Although the covers of all items can be stored in main memory, during 

the generation of all local frequent itemsets for every part) it is still possible 
that the covers of all local candidate k-itemsets can not be stored in main 
memory. Also) the algorithm is highly dependent on the heterogeneity of t he 
database and can generate too many local frequent itemsets) resulting in a 
significant decrease in performance. However, if the complete database fits 
into main memory and the total of all covers at any iteration also does not 
exceed main memory limits, then the database must not be partitioned at all 
and outperforms Apriori by several orders of magnitude. Of course, this is 
mainly due to the fast intersection based counting mechanism. 

2.6 Depth-First Algorithms 

As explained in the previous section, the intersection based counting mech­
anism made possible by using the vertical database layout shows significant 
performance improvements. However, this is not always possible since the 
total size of all covers at a certain iteration of the local itemset generation 
procedure could exceed main memory limits. Nevertheless, it is possible to sig­
nificantly reduce this total size by generating collections of candidate itemsets 
in a depth-first strategy. The first algorithm proposed to generate all frequent 
itemsets in a depth-first manner is the Eclat algorithm by Zaki [80, 84]. Later, 
several other depth-first algorithms have been proposed [1, 2, 41] of which the 
FF-growth algorithm by Han et al. [41, 40] is the most well known. In this 
section, we explain both the Eclat and FF-growth algorithms. 

Given a transaction database 1) and a minimal support threshold CT, denote 
the set of all frequent k-itemsets with the same k-1-prefix I s,;; I by F[I](V, CT) . 
(Note that F[{}](D, CT) = F(V, CT).) Both Eclat and FF-growth recursively 
generate for every item i EI the set F[{i}](V,CT). 

For t he sake of simplicity and presentation, we assume that all items that 
occur in the transaction database are frequent. In practice, all frequent items 
can be computed during an initial scan over the database, after which all 
infrequent items will be ignored. 

2.6 .1 Eclat 

Eclat uses the vertical database layout and uses the intersection based ap­
proach to compute the support of an itemset. The Eclat algorithm is given in 
Algorithm 6. 

Note that a candidate itemset is now represented by each set I U { i, j} of 
which the support is computed at line 6 of the algorithm. Since the algorithm 
doesn't fully exploit the monotonicity property, but generates a candidate 
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Algorithm 6 Eclat 
Input: D, o-, I s;;; 'I 
Output: F [I ](D, o-) 

1: F[J] := {} 

Chapter 2. Survey on Frequent Pattern Mining 

2: for all i E 'I occurring in 1) do 
3: .F[J] := F[I] u {I u {i}} 
4: // Create 1)i 

5: 1)i := {} 

6: for all j E 'I occurring in 1) such that j > i do 
7: C := cover( { i}) n cover( {j}) 
8: if ICI ~ o- then 
9: Di := Di u {(j, C)} 

10: end if 
11: end for 
12: / / Depth-first recursion 
13: Compute F[I U { i}](Di, o-) 
14: F[J] := F [J] u F[J U {i }] 
15: end for 

itemset based on only two of its subsets, the number of candidate itemsets 
that are generated is much larger as compared to the breadth-first approaches 
presented in t he previous section. As a comparison, Eclat essentially generates 
candidate itemsets using only the join step from Apriori, since the itemsets 
necessary for the prune step are not available. Again, we can reorder all items 
in the database in support ascending order to reduce the number of candi­
date itemsets t hat is generated, and hence, reduce the number of intersections 
that need to be computed and the tot al size of t he covers of all generated 
itemsets. In fact, such reordering can be performed at every recursion step 
of the algorithm between line 10 and line 11 in the algorithm. In comparison 
with Apriori, counting the supports of all itemsets is performed much more 
efficiently. In comparison with Partition, the total size of all covers that is 
kept in main memory is on average much less. Indeed, in the breadth-first 
approach, at a certain iteration k, all frequent k-itemsets are stored in main 
memory together with their covers. On t he other hand, in the depth-first 
approach, at a certain depth d, the covers of at most all k-itemsets wit h t he 
same k - 1-prefix are stored in main memory, wit h k ~ d . Because of t he item 
reordering, t his number is kept small. 

Recently, Zaki and Gouda [81, 83] proposed a new approach to efficiently 
compute the support of an itemset using t he vertical database layout. Instead 
of storing the cover of a k-itemset I , t he difference between the cover of I and 
the cover of the k - 1-prefix of I is stored, denoted by t he diffset of I. To 



2.6. Depth-First Algorithms 31 

compute the support of I, we simply need to subtract the size of the diffset 
from the support of its k-1-prefix. Note that this support does not need to be 
stored within each itemset but can be maintained as a parameter within the 
recursive function calls of the algorithm. The diffset of an itemset I U { i, j}, 
given the two diffsets of its subsets JU{i} and JU{j}, with i < j, is computed 
as follows: 

diffset(I U { i, j}) := diffset(I U {j}) \ diffset(I U { i} ). 

This technique has experimentally shown to result in significant performance 
improvements of the algorithm, now designated as dEclat [81]. The original 
database is still stored in the original vertical database layout. Observe an 
arbitrary recursion path of the algorithm starting from the itemset { ii}, up 
to the k-i temset I = { i 1 , ... , i k}. The i temset { i 1} has stored its cover and 
for each recursion step that generates a subset of I, we compute its diffset. 
Obviously, the total size of all diffsets generated on the recursion path can be 
at most I cover( {ii}) I- On the other hand, if we generate the cover of each 
generated itemset, the total size of all generated covers on that path is at 
least (k - 1) · er and can be at most (k- 1) · lcover({ii})I. Of course, not all 
generated diffsets or covers are stored during all recursions, but only for the 
last two of them. This observation indicates that the total size of all diffsets 
that are stored in main memory at a certain point in the algorithm is less 
than the total size of all covers. These predictions were supported by several 
experiments [81] . 

Using this depth-first approach, it remains possible to exploit a technique 
presented as an optimization of the Apriori algorithm in the previous section. 
More specifically, suppose we have generated and counted the support of the 
frequent itemset XU { i} and that its support is equal to the support of X 
(hence, its diffset is empty). Then we already know that the support of every 
superset X U { i} U Y is equal to the support of X U Y and hence, we do 
not have to generate all such supersets anymore, but only have to retain the 
information that every superset of XU { i} is also represented by a superset of 
X. 

If the database does not fit into main memory, t he Partition algorithm can 
be used in which the local frequent itemsets are found using Eclat. 

Another optimization proposed by Hipp et al. combines Apriori and Eclat 
into a single Hybrid [46]. More specifically, the algorithm starts generating 
frequent itemsets in a breadth-first manner using Apriori, and switches after 
a certain iteration to a depth-first strategy using Eclat. The exact switching 
point must be given by the user. The main performance improvement of 
t his strategy occurs at t he generation of all candidate 2-itemsets if these are 
generated online as described in Section 2.5.4. Indeed, when a lot of items in 
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the database are frequent , Eclat generates every possible 2-itemset whether or 
not it occurs in the database. On the ot her hand, if the transaction database 
contains a lot of large transactions of frequent items, such that Apriori needs 
to generate all its subset s of size 2, Eclat still outperforms A priori. Of course, 
as long as the number of t ransactions that still contain candidate itemsets is 
too high to store into main memory, switching to Eclat might be impossible, 
while Apriori nicely marches on. 

2.6.2 FP-growth 

In order to count the supports of all generated itemset s, PP-growth uses a com­
bination of t he vertical and horizontal database layout to store the database 
in main memory. Instead of storing t he cover for every item the database, it 
stores the actual transactions from the database in a trie structure and every 
item has a linked list going through all transactions that contain that item. 
This new data structure is denoted by FP-tree (Frequent-Pattern tree) and is 
created as follows [41]. Again, we order the items in the database in support 
ascending order for the same reasons as before. F irst , create the root node of 
the tree, labelled with "null" . For each transaction in the database, the items 
are processed in reverse order (hence, support descending) and a branch is 
created for each t ransaction. Every node in the FP-tree additionally stores a 
counter which keeps track of the number of transactions that share t hat node. 
Specifically, when considering the branch to be added for a transaction, the 
count of each node along the common prefix is incremented by 1, and nodes 
for the items in the transaction following the prefix are created and linked ac­
cordingly. Additionally, an item header table is built so that each item points 
to its occurrences in t he t ree via a chain of node-links. Each item in t his 
header t able also stores its support . T he reason to store transactions in the 
FP-tree in support descending order is that in this way, it is hoped that the 
FP-tree representation of the database is kept as small as possible since the 
more frequently occurring items are arranged closer to t he root of the FP-tree 
and thus are more likely to be shared. 

Example 2.2. Assume we are given a transact ion dat abase and a minimal 
support threshold of 2. First, t he supports of all items is computed, all infre­
quent items are removed from the database and all transactions are reordered 
according to the support descending order resulting in the example transaction 
database in Table 2.7. T he FP-tree for this database is shown in F igure 2.3. 

Given such an FP-tree, the supports of all frequent items can be found in 
the header table. Obviously, the FP-tree is just like the vertical and horizontal 
database layouts a lossless representation of t he complete transaction database 
for the generation of frequent itemsets. Indeed, every linked list starting from 
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tid X 
100 { a, b, c, d, e, f} 
200 {a ,b,c,d,e} 
300 {a ,d} 
400 {b,d , f} 
500 {a,b,c,e,f} 

Table 2.7: An example preprocessed transaction database. 

header table 

node-link 
/ 

/ 

Figure 2.3: An example of an FP-tree. 
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an item in the header table actually represents a compressed form of the cover 
of that item. On t he other hand, every branch starting from the root node 
represents a compressed form of a set of transactions. 

Apart from this FP-tree, the FP-growth algorithm is very similar to Eclat, 
but it uses some additional steps to maintain the FP-tree structure during the 
recursion steps, while E clat only needs to maintain the covers of all generated 
itemsets. More specifically, in order to generate for every i E I all frequent 
itemsets in F[{i}J(D, a-), FP-growth creates t he so called i -projected database 
of D. Essentially, the Di used in Eclat is the vertical database layout of the 
i-projected database considered here. The FP-growth algorithm is given in 
Algorithm 7. 

Algorithm 7 FP-growth 
Input: D, a-, I ~ I 
Output: F[J](D, a-) 

1: F[J] := {} 
2: for all i E I occurring in D do 
3: F [J] := F[J] u {I u {i}} 
4: I I Create Di 
5: Di:={} 
6: H := {} 
7: for all j E I occurring in D such that j > i do 
8: if support(! U { i, j}) ~ O' then 
9: H := HU {j} 

10: end if 
11: end for 
12: for all ( tid, X) E D wit h i E X do 
13: Di:= Di u {(tid, X n H)} 
14: end for 
15: I I Depth-first recursion 
16: Compute F[J U {i}] (Di, a-) 
17: F[I] := F[J] u F[J u {i}] 
18: end for 

The only difference between Eclat an FP-growth is the way they count the 
supports of every candidate itemset and how t hey represent and maintain the 
i-projected database. I.e., only lines 5-10 of t he Eclat algorithm are renewed. 
First, FP-growth computes all frequent items for Di a t lines 6-10, which is of 
course different in every recursion step. This can be efficiently done by simply 
following t he linked list st arting from t he entry of i in the header table. Then 
at every node in the FP-tree it follows its path up to the root node and 
increments the support of each item it passes by its count. Then, at lines 
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11- 13, the PP-tree for the i-projected database is built for those transactions 
in which i occurs, intersected with the set of all frequent items in T) greater 
than i. These transactions can be efficiently found by following the node-links 
starting from the entry of item i in the header table and following the path 
from every such node up to the root of the PP-tree and ignoring all items that 
are not in H. If this node has count n, then the transaction is added n times. 
Of course, this is implemented by simply incrementing the counters, on the 
path of this transaction in the new i-projected PP-tree, by n. However, this 
technique does require that every node in the PP-tree also stores a link to its 
parent. Additionally, we can also use the technique that generates only those 
candidate itemsets that occur at least once in the database. Indeed , we can 
dynamically add a counter initialized to 1 for every item that occurs on each 
path in the PP-tree that is traversed. 

These steps can be further optimized as follows. Suppose that the PP-tree 
consists of a single path. Then, we can stop the recursion and simply enumer­
ate every combination of the items occurring on that path with the support 
set to the minimum of the supports of the items in that combination. Essen­
tially, this technique is similar to the technique used by all other algorithms 
when the support of an itemset is equal to the support of any of its subsets. 
However, PP-growth is able to detect this one recursion step ahead of Eclat. 

As can be seen, at every recursion step, an item j occurring in T)i actually 
represents the itemset I U {i,j}. In other words, for every frequent item i 
occurring in D, the algorithm recursively finds all frequent 1-itemsets in the 
i-projected database T)i. 

Although the authors of the PP-growth algorithm claim that their algo­
rithm [40, 41] does not generate any candidate itemsets, we have shown that 
the algorithm actually generates a lot more candidate itemsets since it essen­
tially uses the same candidate generation technique as is used in Apriori but 
without its prune step. 

The only main advantage PP-growth has over Eclat is that each linked list , 
starting from an item in the header table representing the cover of that item, is 
stored in a compressed form. Unfortunately, to accomplish this gain, it needs 
to maintain a complex data structure and perform a lot of dereferencing, while 
Eclat only has to perform simple and fast intersections. Also, the intended 
gain of this compression might be much less than is hoped for. In Eclat , the 
cover of an item can be implemented using an array of transaction identifiers. 
On the other hand, in PP-growth, the cover of an item is compressed using 
the linked list starting from its node-link in the header table, but, every node 
in this linked list needs to store its label, a counter, a pointer to the next node, 
a pointer to its branches and a pointer to its parent. Therefore, the size of 
an PP-tree should be at most 20% of the size of all covers in Eclat in order 
to profit from this compression. Table 2.8 shows for all four used data sets 
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Data set 11v11 IFP-treel lcoverl 
IFP-treel 

T40I10D100K 3 912 459 : 15 283K 3514917 : 68650K 89% : 174% 
mushroom 174332: 680K 16354: 319K 9%: 46% 
BMS-Webview-1 148 209 : 578K 55 410 : 1082K 37%: 186% 
basket 399 838 : 1 561K 294 311 : 5 748K 73%: 368% 

Table 2.8: Memory usage of Eclat versus FP-growth. 

the size of the total length of all arrays in Eclat (IIVI J), the total number of 
nodes in FP-growth (JFP-treeJ) and the corresponding compression rate of t he 
FP-tree. Additionally, for each entry, we show the size of the data structures 
in bytes and the corresponding compression of t he FP-tree. 

As can be seen, the only data set for which FP-growth becomes an actual 
compression of the database is the mushroom data set. For all other data sets, 
there is no compression at all, on the contrary, the FP-tree representation is 
often much larger than t he plain array based representation. 

2. 7 Experimental Evaluation 

We implemented the Apriori implementation using the online candidate 2-
itemset generation optimization. Additionally, we implemented the Eclat, 
Hybrid and FP-growth algorithms as presented in t he previous section. All 
these algorithms were implemented in C++ using several of the data struc­
t ures provided by the C++ Standard Template Library [75]. All experiments 
reported in this thesis were performed on a 400 MHz Sun Ultra Spare 10 with 
512 MB main memory, running Sun Solaris 8. 

Figure 2. 7 shows the performance of the algorithms on each of t he data 
sets described in Section 2.4 for varying minimal support thresholds . 

The first interesting behavior can be observed in the experiments for the 
basket data. Indeed, Eclat performs much worse than all other algorithms. 
Nevertheless, this behavior has been predicted since t he number of frequent 
items in the basket data set is very large and hence, a huge amount of candi­
date 2-itemsets is generated. The other algorithms all use dynamic candidate 
generation of 2-itemsets result ing in much better performance results. The 
Hybrid algorithm performed best when Apriori was switched to Eclat after 
the second iteration, i.e., when all frequent 2-itemsets were generated. 

Another remarkable result is t hat Apriori performs better than FP-growth 
for the basket data set. This result is due to the overhead created by the 
maintenance of the FP-tree structure, while updating the supports of all can­
didate itemsets contained in each transaction is performed very fast due to 
the sparseness of this data set. 
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For the BMS-Webview-1 data set, the Hybrid algorithm again performed 
best when switched after the second iteration. For all minimal support thresh­
olds higher than 40, the differences in performance are negligible and are 
mainly due to the initialization and destruction routines of the used data 
structures. For very low support thresholds, Eclat clearly outperforms all 
other algorithms. The reason for the lousy performance of Apriori is because 
of some very large transactions for which the subset generation procedure for 
counting the supports of all candidate itemsets consumes most of t he time. To 
support this claim we did some additional experiments which indeed showed 
that only 34 transactions containing more than 100 frequent items consumed 
most of the time of during the support counting of all candidate itemsets of 
sized 5 to 10. For example, counting the supports of all 7-itemsets takes 10 
seconds of which 9 seconds were used for these 34 transactions. 

For the synthetic data set, all experiments showed the normal behavior as 
was predicted by the analysis in this survey. However, this time, the switch­
ing point for which the Hybrid algorithm performed best was after the third 
iteration. 

Also the mushroom data set shows some interesting results. The perfor­
mance differences of Eclat and FP-growth are negligible and are again mainly 
due to the differences in initialization and destruction. Obviously, because of 
the small size of the database, both run extremely fast. Apriori on the other 
hand runs extremely slow because each transact ion contains exactly 23 items 
and of which a many have very high supports. Here, the Hybrid algorithm 
doesn't perform well at all and only performed well when Apriori is not used 
at all. We show the time of Hybrid when the switch is performed after the 
second iteration. 

2 .8 Conclusions 

Throughout the last decade, a lot of people have implemented and compared 
several algorithms that try to solve the frequent itemset mining problem as 
efficiently as possible. Unfortunately, only a very small selection of researchers 
put the source codes of their algorithms publicly available such that fair em­
pirical evaluations and comparisons of their algorithms become very difficult . 
Moreover, we experienced that different implementations of the same algo­
rithms could still result in significantly different performance results. As a 
consequence, several claims that were presented in some articles were later 
contradicted in other articles. For example, a very often used implementa­
tion of the Apriori algorithm is that by Christian Borgelt [13]. Nevertheless, 
when we compared his implementation with ours, the performance of both 
algorithms showed immense differences. While Borgelt his implementation 
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performed much better for high support thresholds, it performed much worse 
for small thresholds. T his is mainly due to differences in the implementation 
of some of t he used data structures and procedures. Indeed, different compil­
ers and different machine architectures sometimes showed different behavior 
for the same algorithms. Also different kinds of data sets on which the algo­
rithms were tested showed remarkable differences in the performance of such 
algorithms. An interesting example of this is presented by Zheng et al. in 
their article on the real world performance of association rule algorithms [85] 
in which five well-known association rule mining algorithms are compared on 
three new real-world data sets. They discovered different performance behav­
iors of the algorithms as was previously claimed by their respective authors. 

In this survey, we presented an in depth analysis of a lot of algorithms 
which made a significant contribution to improve the efficiency of frequent 
itemset mining. 

We have shown that as long as the database fits in main memory, the 
Hybrid algorithm, as a combination of an optimized version of Apriori and 
Eclat is by far the most efficient algorithm. However, for very dense databases, 
the Eclat algorithm is still better. 

If the database does not fit into memory, the best algorithm depends on the 
density of the database. For sparse databases the Hybrid algorithm seems the 
best choice if the switch from A priori to Eclat is made as soon as the database 
fits into main memory. For dense databases, we envisage that the partition 
algorithm, using Eclat to compute all local frequent itemsets, performs best. 

For our experiments, we did not implement Apriori with all possible op­
timizations as presented in this survey. Nevertheless, the main cost of t he 
algorithm can be dictated by only a few very large transactions, for which the 
presented optimizations will not always be sufficient. 

Several experiments on four different data sets confirmed the reasoning 
presented in the analysis of the various algorithms. 



3 
Interactive Constrained 
Association Rule Mining 

The interactive nature of the mining process has been acknowledged from the 
start [27]. It motivated the idea of a "data mining query language" [37, 38, 
47, 48, 60] and was stressed again by Ng et al. [62]. A data mining query 
language allows the user to ask for specific subsets of association rules by 
specifying several constraints within each query. 

In this chapter, we consider a class of conditions on associations to be gen­
erated, which should be expressible in any reasonable data mining query lan­
guage: Boolean combinations of atomic conditions, where an atomic condition 
can either specify that a certain item occurs in the body of the rule or t he head 
of the rule, or set a threshold on the support or on the confidence. A mining 
session then consists of a sequence of such Boolean combinations (henceforth 
referred to as queries). Efficiently supporting data mining query language en­
vironments is a challenging task. Towards this goal, we present and compare 
three approaches. In the first extreme, the integrated querying approach, ev­
ery individual data mining query will be answered by running an adaptation 
of the mining algorithm in which the constraints on the rules and sets to be 
generated are directly incorporated. The second extreme, the post-processing 
approach, first mines as much associations as possible, by performing one ma­
jor, global mining operation. After this expensive operation, the actual data 
mining queries issued by the user t hen amount to standard lookups in the 
set of materialized associations. A third approach, t he incremental querying 
approach, combines the advantages of both previous approaches. 

41 
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Our contribut ions We present the first algorithm to support interactive 
mining sessions efficiently. We measure efficiency in terms of the total number 
of itemsets that are generated, but do not satisfy the query, and the number 
of scans over the database that have to be performed. Specifically, our results 
are t he following: 

l. Although our results show significant improvements of performance, we 
will also show that exploit ing constraints is not always the best solution. 
More specifically, if mining without constraints is feasible to begin with, 
then the presented post-processing approach will eventually outperform 
integrated querying. 

2. T he querying achieved by exploiting the constraints is optimal, in the 
sense that it never generates an itemset that could give rise to a rule 
that does not satisfy t he query, apart from the minimal support and 
confidence thresholds. Therefore, the number of generated itemsets dur­
ing the execution of a query, becomes proport ional to the strength of 
t he constraints in the query: the more specific the query, the faster its 
execution. 

3. Not only is the number of passes through the database reduced, but also 
the size of the database itself, again proportionally to the strength of 
t he constraints in the query. 

4. Within a session, a generated itemset will never be regenerated as a 
candidate itemset: results of earlier queries are reused when answering 
a new query. 

T his chapter is further organized as follows. Section 3.1 gives an overview 
of related work on constrained mining. In Section 3.2, we present a way of 
incorporating query-constraints inside a frequent set mining algorithm. In 
Section 3.3, we discuss ways of supporting interactive mining sessions. We 
conclude t he chapter in Section 3.4. 

Bibliographical note Parts of this chapter have been published before in 
the Proceedings of the Second International Conference on Data Warehousing 
and Knowledge Discovery [31] . 

3.1 Related Work 

T he idea that queries can be integrated in t he mining algorithm was initially 
launched by Srikant, Vu, and Agrawal [7 4], who considered queries t hat are 
Boolean expressions over the presence or absence of certain items in the rules. 
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Queries specified on bodies or heads were not discussed. The authors consid­
ered three different approaches to the problem. The proposed algorithms are 
not optimal: they generate and test several itemsets that do not satisfy the 
query, and their optimizations also do not always become more efficient for 
more specific queries. 

Also Lakshmanan, Ng, Han and Pang worked on the integration of con­
straints on itemsets in mining, considering conjunctions of conditions on item­
sets such as those considered here, as well as others (arbitrary Boolean combi­
nations were not discussed) [55, 62]. Of the various strategies for the so-called 
"CAP" algorithm they present, the one that can handle the queries consid­
ered here, limited to conjunctions, is their "strategy II". Again, this strategy 
generates and tests itemsets that do not satisfy the query. Also, their algo­
rithms implement a rule-query by separately mining for possible heads and 
for possible bodies, while we tightly couple the querying of rules with the 
querying of sets. This work has also been further studied by Pei, Han and 
Lakshmanan [67, 68], and employed within the FP-growth algorithm. 

Still other work focused on other kinds of constraints over association rules 
and frequent sets, such as correlation [33], and improvement [10]. These and 
other statistical measures of interestingness will not be discussed. 

All previously mentioned works do not discuss the reuse of results acquired 
from earlier queries within a session. Nag, Deshpande, and DeWitt proposed 
the use of a knowledge cache for this purpose [61]. Several caching strategies 
were studied for different cache sizes. However , their work only considers 
mining sessions of queries where only constraints on the support of t he itemsets 
are allowed. No solutions were provided for other constraints like those studied 
here. Also J eudy and Boulicaut have studied the use of a knowledge cache 
for finding a condensed representation of all itemsets, based on the concept of 
free sets [50] . 

3.2 Exploiting Constraints 

As already mentioned in t he introduction, the constraints we consider are 
Boolean combinations of atomic conditions. An atomic condition can either 
specify that a certain item i occurs in the body of the rule or the head of the 
rule, denoted respectively by Body(i) or Head(i) , or set a threshold on the 
support or on the confidence. 

In t his section, we explain how we can incorporate these constraints in the 
mining algorithm. We first consider t he special case of constraints where only 
conjunctions of atomic conditions or their negations are allowed. 
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3.2.1 Conjunctive Constraints 

Let bi, ... , be be the items that must be in the body by the constraint; b~, 
... , b~, those that must not; hi, ... , hm those that must be in the head; and 
h~, ... , h'm, those that must not. 

Recall that an association rule X ::::} Y is only generated if X U Y is a 
frequent set. Hence, we only have to generate those frequent sets that contain 
every bi and hi, plus some of the subsets of these frequent sets that can serve 
as bodies or heads. Therefore we will create a set-query corresponding to the 
rule-query, which is also a conjunctive expression, but now over the presence 
or absence of an item i in a frequent set, denoted by Set(i) and ,Set(i). We 
do this as follows: 

1. For each positive literal Body( i) or Head( i) in the rule-query, add the 
literal Set( i) in the set-query. 

2. If for an item i both ,Body( i) and ,Head( i) are in t he rule-query, add 
the negated literal ,Set( i) to the set-query. 

3. Add the minimal support threshold to the set-query. 

4. All other literals in the rule-query are ignored because they do not re­
strict t he frequent sets that must be generated. 

Formally, the following is readily verified: 

Lemma 3.1. An itemset Z satisfies the set-query if and only if there exists 
itemsets X and Y such that X U Y = Z and the rule X ::::} Y satisfies the 
rule-query, apart from the confidence threshold. D 

So, once we have generated all sets Z satisfying the set-query, we can 
generate all rules satisfying the rule-query by splitting all these Z in all pos­
sible ways in a body X and a head Y such that the rule-query is satisfied. 
Lemma 3.1 guarantees that this method is "sound and complete" . 

So, we need to explain two things: 

1. Finding all frequent Z satisfying the set-query. 

2. Finding, for each such Z, the frequencies of all bodies and heads X and 
Y such that X U Y = Z and X =} Y satisfies the rule-query. 

Finding the frequent sets satisfying the set-query Let P os := { i I 
Set(i) in set-query} and Neg := {i I , Set(i) in set-query}. Note that Pos = 

{bi, ... , be, hi, ... , hm}- Denote the data set of transactions by 'D. We define 
the following derived data set 'Do: 

'Do:= {t - (Pos U Neg) It E 1) and Pos ~ t} 
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In other words, we ignore all transactions that are not supersets of Pos and 
from all transactions that are not ignored, we remove all items in Pos plus all 
items that are in Neg. 

We observe: 

Lemma 3.2. Let p be the support threshold defined in the query. Let So be 
the set of itemsets over the new data set Do, without any further conditions, 
except that their support is at least p. Let S be the set of itemsets over the 
original data set D that satisfy the set-query, and whose support is also at least 
p. Then 

S = {s U Pos Is E So}. 

Proof. To show the inclusion from left to right , consider Z E S . We show that 
s := Z - Pos is in So. T hereto, it suffices to establish an injection t t--t to from 
the transactions t in the support set of Z in D (i.e., the set of all transactions 
in D containing Z) into the transactions to in the support set of s in Do. 

Let t be in D and containing Z. Since Z satisfies the set-query, Z contains 
P os, and hence t contains P os as well. Thus, to : = t - ( P os U Neg) is in 
Do. Since Zn Neg = 0 (again because Z satisfies the set-query), to contains 
Z - Pos = s. Hence, to is in the support set of s in D0 , as desired. 

To show the inclusion from right to left, consider s E So. We show that 
Z := s U Pos is in S. Thereto, it suffices to establish an injection to t--t t from 
the transactions to in the support set of s in Do into the transactions t in the 
support set of Z in D. 

Let to be in Do and containing s . Obviously, a transaction t E D exist s, 
such that to U Pos ~ t - Neg~ t. Since t contains s U Pos, it is in the support 
set of Z in D, as desired. D 

We can thus perform any frequent set generation algorithm, using only 
Do instead of D. Note that the number of t ransactions in Do is exactly the 
support of Pos in D. Also, the search space of all itemsets is halved for every 
item in Pos U Neg. In practice, the search space of all frequent itemsets is 
at least halved for every item in Pos and at most halved for every item in 
Neg. Still put differently: we are mining in a world where itemset s that do 
not satisfy the query simply do not exist. The correctness and optimality of 
our method is thus automatically guaranteed. 

Note however that now an itemset I , actually represents t he itemset IUPos! 
We thus head-start with a lead of k, where k is the cardinality of Pos, in 
comparison with standard, non-constrained mining. 

Finding the frequencies of bodies and heads We now have all frequent 
sets containing every bi and hi, from which rules that satisfy the rule-query can 
be generated. Recall that in the standard association rule mining algorithm 
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rules are generated by taking every item in a frequent set as a head and t he 
others as body. All heads that result in a confident rule, with respect to the 
minimal confidence threshold, can then be combined to generate more general 
rules. But , because we now only want rules that satisfy t he query, a head 
must always be a superset of {h1 , ... , hm} and may not include any of the h~ 
and bi (the latter because bodies and heads of rules are disjoint ). In this way, 
we head-start with a lead of m. Similarly, a body must always be a superset 
of {b1, ... , be} and may not include any of the b~ and hi . 

The following lemma (which follows immediately from Lemma 3.2) tells us 
that these potential heads and bodies are already present, albeit implicitly, in 
So: 

Lemma 3.3. Let So be as in Lemma 3. 2. Let B (HJ be the set of bodies 
(heads) of those association rules over V that satisfy the rule-query. Then 

B = { s U { b1, ... , be} I s E So and s n { b~ , ... , b~,, h 1 , ... , hm} = 0} 

and 

1-f. = {s U {h1 , ... , hm} I s E So ands n {h~ , ... , h~, b1) . . . , be}= 0}. 

So, for the potential bodies (heads) , we use, in So , all sets that do not 
include any of the b~ and hi (h~ and bi) , and add all bi (hi) . Hence, all we 
have to do is to determine the frequencies of these subsets by performing one 
additional scan through the data set. (We do not necessarily yet have these 
frequencies because these sets do not contain either items bi or hi, while we 
ignored t ransactions that did not contain all items bi and hi-) 

Each generated itemset can thus have up to three different "personalit ies:" 

1. A frequent set that satisfies the set -query; 

2. A frequent set that can act as body of a rule that satisfies the rule-query; 

3. A frequent set that can act as head of a rule that satisfies the rule-query. 

Hence, we finally have at most three families of set s, i.e., those sets from 
which rules must be generated, the rule-sets (So with all bi and hi added); a 
family of possible bodies, t he body-sets ( So with all bi added, minus all those 
set s that include any of t he b~ and hi ); and yet another family of possible 
heads, t he head-sets (So with all hi added, minus all those set s t hat include 
any of the h~ and bi ) - Note that the frequencies of t he body-set s and head-sets 
need not necessarily to be recounted since their frequencies are equal to t he 
frequencies of their corresponding set s in So if the query consists of negated 
atoms only. We finally generate the desired association rules from t he rule­
set s, by looking for possible bodies and heads only within the body-sets and 
head-set s respectively, on condition t hat they have enough confidence. 
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So jj s II B 1i 
{} {1 ,3} {1} {3} 

{2} {1 , 2,3} - {2,3} 
{4} {1,3,4} {1, 4} -

{6} {1,3,6} {1,6} {3,6} 
{8} {1,3, 8} {1,8} {3,8} 

{2,6} {1,2,3,6} - {2,3,6} 
{4,8} {1,3,4,8} {1,4,8} -

Table 3.1: An example of generated sets, which can represent a frequent set, 
as well as a body, as well as a head. 

Optimality Note that every rule-set, body-set , and head-set is needed to 
construct the rules potentially satisfying the rule-query so that these can be 
tested for confidence, and moreover, no other sets are ever needed. In this 
precise sense, our method is optimal. 

Example 3.1. We illustrate our method with an example. Assume we are 
given the rule-query 

Body(l) /\ ,Body(2) /\ Head(3) /\ ,Head( 4) 

/\ ,Body(5) /\ , Head(5) /\ support ~ 1 /\confidence~ 50%. 

We begin by converting it to the set-query 

Set(l) /\ Set(3) /\ ,Set(5) /\support~ 1. 

Hence Pos = {1, 3} and Neg = {5}. Consider a database consisting of the 
three transactions {2, 3, 5, 6, 9}, {1, 2, 3, 5, 6} and {1 , 3, 4, 8}. We ignore the 
first transaction because it is not a superset of Pos . We remove items 1 and 
3 from the second transaction because they are in Pos, and we also remove 
5 because it is in Neg. We only remove items 1 and 3 from the third trans­
action. Table 3.1 shows the itemsets t hat result from the mining algorithm 
after reading, according to Lemma 3.1 and 3.2, t he two resulting transactions. 
For example, the itemset { 4, 8} actually represents the set {1, 3, 4, 8}. It also 
represents a potential body, namely {1, 4, 8}, but it does not represent a head, 
because it includes item 4, which must not be in the head according to the 
given rule-query. As another example, the empty set now represents the set 
{1, 3} from which a rule can be generated. It also represents a potential body 
and a potential head. 
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3.2.2 Boolean Constraints 

Assume now given a rule-query that is an arbitrary Boolean combination of 
atomic condit ions. We can put it in disjunctive normal form (DNF) and then 
generate all frequent itemsets for every disjunct (which is a conjunction) in 
parallel by feeding every transaction of the database to every disjunct, and 
processing them there as described in the previous subsection. 

However, this approach is a bit simplistic, as it might generate some 
sets and rules multiple times. For example, consider t he following query: 
Body(l) V Body(2) . If we convert it to its corresponding set-query ( disjunct 
by disjunct) , we get Set(l )VSet(2). Then, we would generate for both d isjuncts 
all supersets of {1 , 2}. We can avoid this problem by putting the set-query 
to disjoint DNF. * T hen, no itemset can satisfy more than one set-disjunct . 
On the other hand this does not solve the problem of generating some rules 
multiple times. Consider the equivalent disjoint DNF of the above set-query : 
Set(l) V (Set(2) /\ , Set(l)). The first disjunct thus contains t he set {l , 2} and 
all of its supersets. If we generate for every itemset all potential bodies and 
heads according to every rule-disjunct, both rule-disjuncts will still generate 
all rules with the itemset {l, 2} in the body. The easiest way to avoid this 
problem is to already put t he rule-query in disjoint DNF. Obviously, this does 
not mean its corresponding set-query is also in disjoint DNF, and hence, we 
still have to put it in disjoint DNF. 

After all sets have been generated according to t he set-query, we still have 
to generate all rules according to the rule-query. This can be done for every 
rule-disjunct (which is a conjunction) in parallel after some modifications to 
the algorithm described in t he previous subsection. 

Indeed, a single set -disjunct can now contain sets from which rules can 
be generated satisfying several rule-disjuncts. Hence, a set generated in one 
set-disjunct has now possibly even more personalities. More specifically, for 
every rule d isjunct, it can possibly represent a set from which rules can be 
generated, a body of such a rule and a head of such a rule. We illustrate t his 
with the rule-query given in the previous paragraph. 

E xample 3.2. Assume we are given the rule-query 

Body(l ) /\ (Body(2) V Head(2)). 

In disjoint DNF, t his gives 

(Body(l) /\ Body(2)) V (Body(l ) /\ Head(2)). 

*In disjoint DNF, the conjunction of any two d isjuncts is unsatisfiable. Any boolean 
expression has an equivalent disjoint DNF. 
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Converted to its corresponding set-query in disjoint DNF, we get 

Set(l) /\ Set(2). 

Obviously, this single set-disjunct contains sets from which rules satisfying the 
first rule-disjunct can be generated. Following the methodology described in 
t he previous subsection, this means we still have to count the frequencies of 
all these sets without item 1 and item 2 included, since they will occur as 
heads in the rules satisfying the first rule disjunct. But now, the set-disjunct 
also contains sets from which rules satisfying the second rule-disjunct can be 
generated. Hence, we still have to count the frequencies of the generated sets 
with item 1 included, which can serve as bodies for the rules satisfying the 
second rule-disjunct, and the sets with item 2 included, which can serve as 
heads. 

Until now, we have disregarded the possible presence of negated thresholds 
in the queries, which can come from the conversion to disjoint DNF, or from 
the user himself. In the latter case, it would not be possible to exploit this 
constraint in an Apriori-like algorithm, because it is an essentially bottom-up 
algorithm. Algorithms that generate sets also in a top-down strategy could 
exploit this constraint. Another source for negated thresholds is the conversion 
from the user's query to a disjoint DNF formula. Before we discuss this, we 
first have to explain how we are going to convert a given formula to disjoint 
DNF. 

We first put the Boolean expression ¢ in DNF, obtaining an expression 
of the form ¢1 V ¢2 V · · · V <Pn, in which <Pi is a conjunction of atomic con­
ditions or their negations. Of course, any two of these disjuncts may not be 
disjoint. A good way to obtain a disjoint DNF is to add to every disjunct <Pi 
the negated disjuncts <Pj with j < i . We thus become the equivalent formula 
¢1 V (¢2 /\ ·¢1) V · · · V (<Pn I\ •<Pn- 1 I\ ··· I\ •¢1) in which all disjuncts are 
pairwise disjoint. Our problem is not yet solved, because our formula is not 
even in DNF anymore. We thus still have to convert every disjunct on itself 
to disjoint DNF. For example, take ( ¢2 /\ ·¢1) with ¢1 = Pl /\ P2 I\ · · · /\ Pe in 
which Pi is an atomic condition or its negation. The disjunct thus becomes 
(¢2 /\ • P1) V (¢2 /\pi I\ •P2) V · · · V (¢2 /\p1 /\p2 /\ · · · /\Pe- 1 /\ ,pe), which is 
in disjoint DNF. 

An example showing that negated thresholds can be introduced in this 
process, is the following. 

Example 3.3. Assume we are given the rule-query 

(Body(l) /\ support :2: 10) V (Body(2) /\ support :2: 5). 
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As equivalent disjoint DNF, we obtain 

(Body(l) /\ support 2 10) V (Body(2) /\ support 2 5 /\ ,Body(l )) 

V (Body(2) /\ support 2 5 /\ Body(l) /\support < 10). 

Notice the maximal support threshold in the last disjunct , which is needed to 
avoid generating itemsets satisfying Body(2) /\ support 2 10 /\ Body(l) that 
are already generated by the first disjunct. 

Negated support t hresholds can be avoided however. After putting t he 
user's formula in DNF, but before putting the DNF in disjoint DNF, we sort 
all disjuncts on their support threshold, in ascending order. This guarantees 
that the conversion to disjoint DNF does not introduce any negated support 
thresholds. 

Note that we cannot avoid negated confidence thresholds at the same time: 
we have already sorted on support, and thus cannot sort anymore on confidence 
at the same time. Since we are here already in phase 2, it is less of an efficiency 
issue to just ignore maximal confidence thresholds. 

Furthermore, if a set-disjunct (rule-disjunct) consists of nothing but a 
negated support (confidence) threshold, we can of course easily switch the 
generation algorithm and generate the candidate sets (heads) in a top-down 
manner. 

3.2.3 Experimental Evaluation 

For our experiments, we have implemented an extensively optimized version of 
the Apriori algorithm, equipped with the querying optimizations as described 
in the previous sections. 

For each data set, we generated 100 random Boolean queries consisting of 
at most three atomic conditions. Figure 3.1 shows the improvement on the 
performance of the algorithm exploiting the constraints. The y-axis shows 
the time needed for the algorithm exploiting our queries, relative to the time 
needed without exploiting the queries. The x-axis shows the number of pat­
terns satisfying the given query, relative to the total number of patterns. As 
can be seen, the time improvement is proportional to the selectivity of the 
constraints. Notice that the proportionality factor is around 1. 

3.3 Interactive Mining 

3.3.1 Integrated Querying or Post-Processing? 

In the previous section, we have seen a way to integrate constraints tightly 
into t he mining of association rules. We call this integrated querying. At t he 
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other end of the spectrum we have post-processing, where we perform standard, 
non-constrained mining, save the resulting itemsets and rules, and then query 
those results for the constraints. 

Integrated querying has the following two obvious advantages over post­
processing: 

1. Answering one single data mmmg query using integrated querying is 
much more efficient than answering it using post-processing. 

2. It is well known that, by setting parameters such as minimal support 
too low, or by the nature of t he data, association rule mining can be 
infeasible, simply because of a combinatorial explosion involved in the 
generation of rules or frequent itemsets. Under such circumstances, of 
course, post-processing is infeasible as well; yet, integrated querying can 
still be executed, if the query conditions can be effectively exploited to 
reduce the number of itemsets and rules from the outset. 

However, as already mentioned in the introduction, data mining query 
language environments must support an interactive, iterative mining process, 
where a user repeatedly issues new queries based on what he found in t he 
answers of his previous queries. Now consider a situation where minimal sup­
port requirements and data set particulars are favorable enough so that post­
processing is not infeasible to begin with. Then the global, non-constrained 
mining operation, on the result of which the querying will be performed by 
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post-processing, can be executed once and its result materialized for the re­
mainder of the data mining session. 

In that case, if the session consists of, say, 20 data mining queries, these 
20 queries amount to standard retrieval queries on the materialized mining 
results. In contrast, answering every single one of the 20 queries by integrated 
querying will involve at least one, and often many more, passes over the data, 
as each query involves a separate mining operation. Also, several queries could 
have a non-empty intersection, such that a lot of work is repeated several times. 
Hence, the total time needed to answer the integrated queries is guaranteed 
to grow beyond the post-processing total time. 

The naively conceived advantages of integrated querying over post-process­
ing become much less clear now. Indeed, if the number of data mining queries 
issued by the user is large enough, then the post-processing approach clearly 
outperforms the integrated querying approach. We have performed several 
experiments which all confirmed this predicted effect. For the post-processing 
approach, we only materialized all frequent itemsets, since the time needed 
to generate all association rules that satisfy the query t urned out to be as 
fast as finding all such rules from the materialized results. Moreover, storing 
all frequent and confident association rules requires huge storage capabilities, 
and hence, it is preferable to generate the necessary association rules on the 
fly. Figure 3.2 shows the total time needed for answering up to 20 different 
queries on the BMS-Webview-1 data set. Since the time needed to generate all 
association rules is the same for both approaches, we only recorded the time to 
generate all itemset s that were needed to generate all association rules. The 
queries were randomly generated , only those queries with an empty output 
were replaced, but all used the same support threshold as was used for the 
initial mining operation of the post-processing approach. As can be seen, 
the cut-off point from where the post-processing approach outperforms the 
integrated querying approach occurs already after the eighth query. 

3.3.2 Incremental Querying: Basic Approach 

From the above discussion it is clear that we should try to combine the ad­
vantages of integrated querying and post-processing. We now introduce such 
an approach, which we call incremental querying. 

In the incremental approach, all itemsets that result from every posed 
query, as well as all intermediate generated itemsets, are stored into a cache. 
Initially, when the user issues his first query, nothing has been mined yet , and 
thus we answer it using integrated querying. 

Every subsequent query is first converted to its corresponding rule- and set­
query in disjoint DNF. For every disjunct in the set-query, the system adds all 
currently cached itemsets that satisfy the disjunct to the data structure holding 
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itemsets, that is used for mining that disjunct, as well as all of its subsets that 
satisfy the disjunct (note that these subsets may not all be cached; if they are 
not, we have to count their supports during the first scan through the data 
set). We also immediately add all candidate itemsets. 

If no new candidate itemsets can be generated, which means that all nec­
essary itemsets were already cached, we are done. However, if this is not the 
case, we can now begin our queried mining algorithm with t he important gen­
eralization that in each iteration, candidate itemsets of different cardinalit ies 
are now generated. In order for this to work, candidate itemsets that turn 
out to be infrequent must be kept such that they are not regenerated in later 
iterations. This generalization was first used by Toivonen in his sampling 
algorithm [77]. 

Caching all generated itemsets gives us another advantage t hat can be ex­
ploited by the integrated querying algorithm. Consider a set-query stating 
that items 1 and 2 must be in the itemsets. In the first iteration of the algo­
rithm, all single itemsets are generated as candidate sets over the new data 
set Do (cf. Section 3.2.1). We explained that these single itemsets actually 
represent supersets of {1, 2}. Normally, before we generate a candidate item­
set, we check if all of its subsets are frequent. Of course, this is impossible 
if t hese subsets do not even exist in Do. Now, however, we can check in the 
cache for a subset with too low support; if we find this, we avoid generating 
the candidate. 

We thus obtain an algorithm which reuses previously generated itemsets 
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as if they had been generated in previous iterations of the algorithm. We 
are optimal in the sense that we never generate and test itemsets that were 
generated before. For rule generation, we again did not cache the results, but 
instead generated all association rules when needed for t he same reasons as 
explained in the previous subsection. 

In the worst case, the cached results do not contain anything that can 
be reused for answering a query, and hence t he time needed to generate the 
itemsets and rules that satisfy the query is equal to the time needed when 
answering that query using the integrated querying approach. In the best 
case, all requested itemsets are already cached, and hence the time needed to 
find all itemsets and rules that satisfy the query is equal to the time needed for 
answering that query using post-processing. In the average case, part of the 
needed itemsets are cached and will then be used to speed up the integrated 
querying approach. If the time gained by this speedup is more than the time 
needed to find the reusable sets, then the incremental approach will always 
be faster than the integrated querying approach. In the limit, all itemsets 
will be materialized, and hence all subsequent queries will be answered using 
post-processing. 

3.3.3 Incremental Querying: Overhead 

Could it be that the time gained by the speedup in the integrated querying 
approach is less than the time needed to find and reuse t he reusable itemsets? 
This could happen when a lot of itemsets are already cached, but almost none 
of them satisfy the constraints. It is also possible that the reusable itemsets 
give only a marginal improvement. We can however counter this phenomenon 
by estimating what is currently cached, as follows. 

We keep track of a set-query </>sets which describes the stored sets. This 
query is initially false. Given a new query (rule-query) 'lf;, the system now goes 
through the following steps: (step 1 was described in Section 3.2.1) 

l. Convert the rule-query 'lf; to the set-query ¢ 

2. <Pmine := </> I\ ·</>sets 

3. <Psets := <Psets V </> 

After this, we perform: 

1. Generate all frequent sets according to </>mine, using the basic incremental 
approach. 

2. Retrieve all cached sets satisfying ¢ /\ ·<Pmine · 

3. Add all needed subsets that can serve as bodies or heads. 
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4. Generate all rules satisfying 'lf; . 

Note that t he query ¢mine is much more specific than the original query 
¢ . We thus obtain a speedup, because we have shown in Section 3.2 that the 
speed of integrated querying is proportional to t he selectivity of the query. 

3.3.4 A voiding Exploding Queries 

The improvement just described incurs a new problem. The formula ¢sets 

becomes longer with t he session. When, given the next query ¢, we mine for 
¢/\·¢sets, and convert this to disjoint DNF which could explode. 

To avoid this, consider ¢sets in DNF: ¢1 V · · · V ¢n· Instead of the full query 
¢/\·¢sets, we are going to use a query ¢ /\ ·¢~ets , where ¢~ets is obtained from 
¢sets by keeping only the least selective disjuncts ¢i (their negation will thus 
be most selective). In this way¢/\ ,¢~ets is kept short. 

But how do we measure selectiveness of a ¢i? Several heuristics come to 
mind. A simple one is to keep for each ¢i the number of cached sets that 
satisfy it. These numbers can be maintained incrementally. 

3.3.5 Experimental Evaluation 

For each data set, we experimented with a session of 100 queries using the inte­
grated querying approach, the post-processing approach and the incremental 
approach. For the same reasons as explained in the previous section, we only 
show the time needed to generate the necessary itemsets . Again, t he queries 
used for the sessions were randomly generated. Figure 3.3 shows the evolution 
of the sessions in t ime. 

For all four sessions, the cut-off point where the integrated querying ap­
proach loses against the post-processing approach is the same for the incremen­
tal querying approach since not enough it emsets could be reused before that . 
Except for the mushroom data set , the incremental approach starts paying off 
after the twentieth query. However, as can be seen, the incremental approach 
shows a significant improvement on the integrated querying approach. Only 
for t he mushroom data set, the cut-off point occurs at the fifth query, and 
almost all iternsets have been generated after the eighteenth query. As can be 
seen, the performance of the post-processing approach is very good compared 
to the other approaches. Nevertheless, if we still lowered the support t hresh­
olds, the post-processing approach became infeasible to begin with, due to an 
overload of frequent itemsets. In that case, the integrated and incremental ap­
proach are still feasible and perform very similarly as they do in the presented 
experiments. 
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3.4 Conclusions 

This study revealed several insights into the association rule mining prob­
lem. First, due to recent advances on association rule mining algorithms, the 
performance has been significantly improved, such that the advantages of in­
tegrating constraints into the mining algorithm suddenly become less clear. 
Indeed, we showed that as long as mining without any constraints is feasible, 
t hat is, if the number of frequent itemsets does not reach massive amounts, 
the total time spent to query the frequent itemsets and confident association 
rules becomes less after a certain amount of queries, compared to integrated 
querying, in which every query is pushed into the mining algorithm. The in­
cremental approach still improves the integrated approach by reusing as much 
previously generated results as possible. If the cut-off point would lie beyond 
the number of queries in which the user is interested, the incremental approach 
is obviously the best choice to use. 

Of course, if the user is interested in some frequent itemsets and associa­
tion rules which have very low frequencies, and hence mining without any con­
straints becomes infeasible, the incremental approach can still be performed. 

Also note that if a user is still interested in all frequent sets and association 
rules, but mining without constraints is infeasible, our queries can be used to 
divide the task over several runs, without spending much more time. For 
example, one can ask different queries of which the disjunction still gives all 
sets and rules. Essentially, this technique forms the basis of the Eclat [80] and 
FF-growth [41 J algorithms. 



4 
Tight Upper Bounds on the 
Number of Candidate 
Patterns 

Several improvements on the Apriori algorithm try to reduce the number of 
scans through the database by estimating the number of candidate patterns 
that can still be generated. 

At the heart of all these techniques lies the following purely combinatorial 
problem, that must be solved first before we can seriously start applying them: 
given the current set of frequent patterns at a certain iteration of the algorithm, 
what is the maximal number of candidate patterns that can be generated in the 
iterations yet to come? 

Our contribution is to solve this problem by providing a hard and t ight 
combinatorial upper bound. By computing our upper bound after every it­
eration of the algorithm, we have at all times an airtight guarantee on the 
size of what is still to come, on which we can then base various optimization 
decisions, depending on the specific algorithm that is used. 

In the next section, we will discuss existing techniques to reduce the num­
ber of database scans, and point out the dangers of using existing heuristics 
for this purpose. Using our upper bound, these techniques can be made wa­
tertight. In Section 4.2, we derive our upper bound, using a combinatorial 
result from the sixties by Kruskal and Katona. In Section 4.3, we show how 
to get even more out of this upper bound by applying it recursively. We will 
then generalize the given upper bounds such that they can be applied by a 

59 



60 Chapter 4. U pper Bounds 

wider range of algorithms in Section 4.4. In Section 4.5, we discuss several 
issues concerning the implementation of the given upper bounds on t op of 
Apriori-like algorithms. In Section 4.6, we give experimental results, showing 
t he effectiveness of our result in estimating, far ahead, how much will still be 
generated in the future. Finally, we conclude t he chapter in Section 4.7. 

B ibliographical note Parts of this chapter have been published before in 
the Proceedings of the 2001 IEEE International Conference on Data Min­
ing [30] . 

4.1 Related Work 

Nearly all frequent pattern mining algorithms developed after the proposal of 
the Apriori algorithm, rely on its levelwise candidate generation and prun­
ing strategy. Most of them differ in how they generate and count candidate 
patterns as we described in Chapter 2. 

Several strategies try to reduce the number of scans through the database. 
However, such a reduction often causes an increase in the number of candidate 
patterns that need to be explored during a single scan. This tradeoff between 
the reduction of scans and t he number of candidate patterns is important 
since, as we recall, t he t ime needed to process a transaction is dependent on 
the number of candidates that are covered in that transaction, which might 
blow up exponentially. Our upper bound can be used to predict whether or 
not this blowup will occur. 

The Partition algorithm, proposed by Savasere et al. [70], reduces the 
number of database scans to two. Nevertheless, its performance is heavily 
dependent on the distribution of the data, and could generate much too many 
candidates. 

The Sampling algorithm proposed by Toivonen [77] performs at most 
two scans through the database by first mining a random sample from t he 
database. In the cases where t his sample does not produce all frequent pat­
terns, t he missing patterns can be found by generating all remaining poten­
tially frequent patterns and verifying their frequencies during a second scan 
through t he database. The probability of such a failure can be kept small by 
decreasing the minimal support threshold . However, for a reasonably small 
probability of failure, the threshold must be drastically decreased, which can 
again cause a combinatorial explosion of the number of candidate patterns. 

Other successful algorithms attempt to generate frequent patterns using a 
depth-first search. Generating patterns in a depth-first manner implies that 
t he monotonicity property cannot be exploited anymore. Hence, a lot more 
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patterns will be generated and need to be counted, compared to the breadth­
first algorithms. 

The first heuristic specifically proposed to estimate the number of can­
didate patterns that can still be generated was used in t he AprioriHybrid 
algorithm [6, 4], as we explained in Chapter 2. This algorithm uses Apriori in 
the initial iterations and switches to AprioriTid if it expects it to run faster. 
This AprioriTid algorithm does not use the database at all for counting the 
support of candidate patterns. Rather, an encoding of the candidate patterns 
used in the previous iteration is employed for this purpose. The AprioriHy­
brid algorithm switches to AprioriTid when it expects this encoding of the 
candidate patterns to be small enough to fit in main memory. The size of the 
encoding grows with the number of candidate patterns. Therefore, it calcu­
lates the size the encoding would have in the current iteration. If this size is 
small enough and there are fewer candidate patterns in the current iteration 
than the in previous iteration, the heuristic decides to switch to AprioriTid. 

This heuristic (like all heuristics) is not waterproof, however. Take, for 
example, two disjoint data sets. The first data set consists of all subsets of 
a frequent pattern of size 20. The second data set consists of all subsets of 
1000 disjoint frequent patterns of size 5. If we merge these two data set s, 
we get (~0

) + 1 oooG) = 11140 patterns of size 3 and (21) + 1 oooG) = 9845 
patterns of size 4. If we have enough memory to store the encoding for all these 
patterns, then the heuristic decides to switch to AprioriTid. This decision is 
premature, however, because the number of new patterns in each pass will 
start growing exponentially afterwards. 

Another improvement of the Apriori algorithm, which is part of the folk­
lore, tries to combine as many iterations as possible in the end, when only few 
candidate pat terns can still be generated. The potential of such a combination 
t echnique was realized early on [6], but the modalities under which it can be 
applied were never further examined. Our work does exactly that. 

4. 2 The Basic Upper Bounds 

In all that follows, L is some family of patterns of size k. 

Definition 4 .1. A candidate pattern for L is a pattern ( of size larger than k) 
of which all k-subsets are in L. For a given p > 0, we denote the set of all 
size-k + p candidate patterns for L by Ck+p(L). 

For any p 2:: 1, we will provide an upper bound on ICk+p(L)I in terms of 
ILi. The following lemma is central to our approach. (A simple proof was 
given by Katona [51].) 
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Lemma 4.1. Given n and k ) there exists a unique representation 

n = ( :k) + ( ;~-~) + .. . + ( :r), 
with r 2: 1, mk > mk-1 > .. . > mr, and mi 2: i for i = r, r + 1, . . . , k. 

This representation is called the k-canonical representation of n and can 
be computed as follows: The integer mk satisfies (rrf/) s n < (m\+1), the 

integer mk-1 satisfies (~ ~-/) S n - (rr;/ ) < (m%"=_1-/1), and so on, until n -

(rr;.k) _ (~~-/) - . . . - (":-r) is zero. 
We now establish: 

T heorem 4.2. If 

in k-canonical representation, then 

ICk+v (L) I s (kr:\) + (k :i1-~ p) + .. . + (s :;+~ 1} 
wheres is the smallest integer such that m 8 < s + p. If no such int eger exists, 
we set s = r - 1. 

Proof. Suppose, for t he sake of contradiction, that 

C (L)I (mk) (mk-1) (ms+l ) (s +p) 
I k+v 2: k + p + k - 1 + p + ... + s + P + 1 + s + P . 

Note that this is in k + p-canonical representation. A theorem by Kruskal and 
Katona [29, 51, 53] says t hat 

IL i 2: (:k) + (;~-o + · · · + (::+~) + (8: P). 
But t his is impossible, because 

(mk) (mk-1) . . . (ms+l) '""" (i + p - l) 
< k + k-1 + + s l + L., i + O:<;:i'.Ss 

= (:k) + (;~-o + · · · + (::+O + (8 : p). 
T he first inequality follows from the observation that m s S s + p - l implies mi s i + p - l for all i = s, s - 1, ... , r. T he last equality follows from a 
well-known binomial identity. D 
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Notation We will refer to the upper bound provided by the above theorem 
as KK~+P (ILI) (for Kruskal-Katona). T he subscript k , the level at which we 
are predicting, is important, as the only parameter is the cardinality ILi of L, 
not L itself. T he superscript k + p denotes the level we are predicting. 

Proposition 4.3 (Tightness). The upper bound provided by Theorem 4,2 is 
t ight: for any given n and k there always exists an L with ILi = n such that 

for any given p, ICk+p(L)I = KK~+P(IL I). 

Proof. Let us write a finite set of natural numbers as a string of natural num­
bers by writing its members in decreasing order. We can then compare two 
such sets by comparing their strings in lexicographic order. The resulting or­
der on the sets is known as the colexicographic (or colex) order. An intuitive 
proof of the Kruskal-Katona theorem, based on this colex order, was given by 
Bollobas [12]. Let 

be the k-canonical representation of n. T hen, Bollobas has shown that all k-p­

subsets of the first n k-sets of natural numbers in colex order , are exactly the 
first 

(km_kp) + (k ~~-~ p) +···+Cr:\) 
k - p-sets of natural numbers in colex order , with s the smallest integer such 
that s > p. Using the same reasoning as above, we can conclude t hat all k + p­

supersets of the first n k-sets of natural numbers in colex order are exactly 
the first K Kt+p ( n) k + p-sets of natural numbers in colex order. D 

Analogous tightness properties hold for all upper bounds we will present 
in t his chapter, but we will no longer explicitly state this. 

Example 4.1. Let L be the set of 13 patterns of size 3: 

{{3, 2, 1},{4,2, 1}, {4,3, 1} ,{4,3,2}, 
{5,2, 1}, {5,3, 1}, {5, 3,2}, {5,4,1},{5,4,2},{5,4,3} , 
{6, 2, 1}, {6,3, 1} ,{6,3,2}}. 

T he 3-canonical representation of 13 is (~) + (~) and hence the maximum 
number of candidate patterns of size 4 is KKj(l3) = (~) + (~) = 6 and the 
maximum number of candidate patterns of size 5 is KK~(13) = (~) = 1. T his 
is t ight indeed, because 

C4(L) = {{4, 3, 2, 1}, {5,3,2,1},{5,4, 2,1}, 

{5,4,3, 1},{5,4,3,2},{6,3, 2, 1}} 
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and 
Cs(L) = {{5,4,3,2,1}}. 

Estimating the number of levels The k-canonical representation of IL i 
also yields an upper bound on the maximal size of a candidate pattern, de­
noted by maxsize( L). Recall that this size equals the number of iterat ions the 
standard A priori algorithm will perform. Indeed, since ILi < (m\+1

), there 
cannot be a candidate pattern of size mk + 1 or higher, so: 

Proposit ion 4.4. If (mf) is the first term in the k-canonical representation 
of IL i, then maxsize(L) :S mk, 

We denote t his number mk by µk(ILI). From the form of KK!+P as given 
by Theorem 4.2, it is immediate thatµ also tells us t he last level before which 
KK becomes zero. Formally: 

Proposition 4.5. 

Estimating all levels As a result of t he above, we can also bound, at any 
given level k, the total number of candidate patterns t hat can be generated, 
as follows: 

Proposition 4.6. The total number of candidate patterns that can be gener­
ated from a set L of k-pattems is at most 

KK%otal(ILI) := L KK!+p(ILI). 
p2'.l 

4 .3 Improved Upper Bounds 

T he upper bound KK on itself is neat and simple as it takes as parameters 
only two numbers: the current size k, and t he number ILi of current frequent 
patterns. However, in reality, when we have arrived at a certain level k, 
we do not merely have the cardinality: we have t he actual set L of current 
k-patterns! For example, if t he frequent patterns in t he current pass are 
all disjoint, our current upper bound will still estimate t heir number to a 
certain non-zero figure. However, by the pairwise d isjointness, it is clear that 
no further patterns will be possible at all. In sum, because we have richer 
information than a mere cardinality, we should be able to get a better upper 
bound. 

To get inspiration, let us recall that t he candidate generation process of 
t he Apriori algorithm works in two steps. In the join step, we join L with 
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itself to obtain a superset of Ck+l · The union p U q of two patterns p, q E L is 
inserted in Ck+l if they share their k - 1 smallest items: 

insert into ck+l 
select p[l], p[2], ... ,p[k], q[k] 
from Lk p, Lk q 
where p[l] = q[l], ... , p[k - 1] = q[k - 1], p[k] < q[k] 

Next, in the prune step, we delete every pattern c E Ck+l such that some 
k-subset of c is not in L. 

Let us now take a closer look at the join step from another point of view. 
Consider a family of all frequent patterns of size k that share their k - 1 
smallest items, and let its cardinality be n. If we now remove from each of 
these patterns all these shared k - 1 smallest items, we get exactly n distinct 
single-item patterns. The number of pairs that can be formed from these 
single items, being G), is exactly the number of candidates the join step will 
generate for the family under consideration. We thus get an obvious upper 
bound on the total number of candidates by taking the sum of all (n{) , for 
every possible family f. 

This obvious upper bound on ICk+i l, which we denote by obviousk+i(L) , 
can be recursively computed in the following manner. Let I denote the set of 
items occurring in L. For an arbitrary item x, define the set Lx as 

Then 

L x = { s - { x} I s E L and x = min s}. 

if k = 1; 

if k > 1. 

This upper bound is much too crude, however, because it does not take 
the prune step into account, only the join step. The join step only checks two 
k-subsets of a potential candidate instead of all k + 1 k-subsets. 

However, we can generalize this method such that more subsets will be 
considered. Indeed, instead of taking a family of all frequent patterns sharing 
their k - 1 smallest items, we can take all frequent patterns sharing only their 
k' smallest items, for some k' ::; k - 1. If we then remove these k' shared 
items from each pattern in the family, we get a new set L' of n patterns of size 
k - k'. If we now consider the set C' of candidates ( of size k - k' + 1) for L', 
and add back to each of them t he previously removed k' items, we obtain a 
pruned set of candidates of size k + 1, where instead of just two ( as in the join 
step), k - k' + 1 of the k-subsets were checked in the pruning. Note that we 
can get the estimate KKt::°::+l (IL'I) on the cardinality of C' from our upper 
bound Theorem 4.2. 
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Doing this for all possible values of k' yields an improved upper bound 
on ICk+1I, which we denote by improvedk+l(L), and which is computed by 
refining the recursive procedure for the obvious upper bound as follows: 

{ 
( ILi) if k = 1 · 

improvedk+l(L) := 2 ' 
min{KKt+l(ILI), l:xEI improvedk(Lx)} if k > l. 

Actually, as in the previous section, we can do this not only to estimate 
ICk+il, but also more generally to estimate ICk+pl for any p 2: 1. Henceforth 
we will denote our general improved upper bound by KKk+p(L). The general 
definition is as follows: 

(For the base case, note that KK~+P(ILI), when k = 1, is nothing but (~~D .) 
By definit ion , KKk+p is always smaller than KK~+P. We now prove for­

mally t hat it is still an upper bound on the number of candidate patterns of 
size k + p: 

T heorem 4. 7. 

Proof. By induction on k. The base case k = l is clear. For k > 1, it suffices 
to show that for all p > 0 

Ck+p(L) ~ LJ Ck+p- 1(Lx) + x. 
xEI 

(For any set of patterns H, we denote {h U {x} I h E H} by H + x.) 
From the above containment we can conclude 

xEI 

xEI 

xEI 

~ LKKk+p- 1(Lx) 
xEI 

where the last inequality is by induction. 

(4.1) 
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To show ( 4.1), we need to show that for every p > 0 and every s E C k+p ( L), 
s - {x} E Ck+p-1 (Lx), where x = min s. This means that every subset of 
s - {x} of size k - 1 must be an element of Lx. Lets - {x} - {y1, ... ,Yp} 
be such a subset. This subset is an element of Lx iff s - {y1, ... , Yp} E Land 
x = min(s - {y1, ... , Yp} ). The first condition follows from s E Ck+p(L), and 
the second condition is trivial. Hence the theorem. D 

A natural question is why we must take the minimum in the definition of 
KK*. The answer is that the two terms of which we take the minimum are 
incomparable. The example of an L where all patterns are pairwise disjoint, 
already mentioned in the beginning of this section, shows that, for example, 
KK~+ 1(JLI) can be larger than the summation I:xEI KKi,,(Lx). But the con­
verse is also possible: consider L = { {1, 2}, {1, 3} }. Then KK~(L) = 0, but 
the summation yields 1. 

Example 4.2. Let L consist of all 19 3-subsets of {1, 2, 3, 4, 5} and {3, 4, 5, 6, 7} 
plus the sets {5, 7, 8} and {5) 8, 9}. Because 21 = (~)+(~),we have KKj(21) = 
15, KK~(21) = 6 and KKg(21) = l. On the other hand, 

KK4(L) = KK3(L 1
) + KK3(L2

) + KK;(L3
) + KK;(L4

) 

and 

+ KK2((L5 )6) + KK2((L5
)
7

) + KK2((L5 )8) + KK2((L5 )9) 
+ KK3(L6

) + KK;(L7
) + KK;(L8

) + KK3(L9
) 

=4+1+4+1+0+···+0 

= 10 

KK'?)L) = KK4(L 1
) + KK4(L2

) + KK4(L3 ) + KK4(L4 ) 

+ KK3((L5 )6) + KK;((L5 )7) + KK;((L5
)

8
) + KK3((L5

)
9

) 

+ KK4(L6
) + KK4(L7

) + KK4(L8
) + KK4(L9 ) 

= 1 + 0+1+0+0+···+0 

= 2. 

Indeed, we have 10 4-subsets of {1, 2, 3, 4, 5} and {3, 4, 5, 6, 7}, and the two 
5-sets themselves. 

We can also improve t he upper bound µk(IL I) on maxsize(L). In analogy 
with Proposition 4.5, we define: 

µi,,(L) := k + min{p I KKk+p(L) = O} - l. 

We then have: 



68 Chapter 4 . Upper Bounds 

Proposition 4.8. 
maxsize(L) ::::; µk(L) :::; µk(L). 

We finally use Theorem 4.7 for improving the upper bound KKiotal on the 
total number of candidate patterns. We define: 

KK;otai(L) := L KKk+p(L). 
p 2: l 

Then we have: 

Proposition 4.9. The total number of candidate patterns that can be gener­
ated from a set L of k -patterns is bounded by KK;otai(L) . Moreover, 

KK* (L) < KKtotaI(L) total - k · 

4.4 Generalized Upper Bounds 

T he upper bounds presented in t he previous sections work well for algorithms 
t hat generate and test candidate patterns of one specific size at a time. How­
ever, a lot of algorithms generate and test patterns of different sizes within 
the same pass of the algorithm [16, 9, 77]. Hence, t hese algorithms know in 
advance that several patterns of size larger than k are frequent or not . Since 
our upper bound is solely based on the patterns of a certain length k, it does 
not use information about patterns of length larger t han k. 

Nevertheless, these larger sets could give crucial information. More specif­
ically, suppose we have generated all frequent patterns of size k , and we also 
already know in advance that a certain set of size larger thank is not frequent. 
Our upper bound on the total number of candidate patterns t hat can still be 
generated, would disregard t his information. We will therefore generalize our 
upper bound such that it will also incorporate t his additional information. 

4.4 .1 Generalized KK-Bounds 

From now on, L is some family of sets of patterns Lk , Lk+1, . . . , L k+q which 
are known to be frequent, such t hat L k+p contains patterns of size k + p , and 
all k + p - 1-subsets of all patterns in Lk+p are in Lk+p- 1· We denote by IL i 
the sequence of numbers ILkl, ILk+il, . . . , ILk+ql· 

Similarly, let I be a family of sets of patterns Ik, I k+1, . .. , Ik+q which are 
known to be infrequent , such that h +P contains patterns of size k + p and all 
k + p - 1-subsets of all patterns in I k+p are in Lk+p- 1· We denote by III the 
sequence of numbers 1Ikl, Jlk+1I, . . . , lh+l Note that for each p ~ 0, Lk+p 
and h +p are disjoint. 

Before we present the general upper bounds, we also generalize our notion 
of a candidate pattern. 
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Definition 4.2. A candidate pattern for (L, I) of size k +pis a pattern which 
is not in Lk+p or h+p, all of its k-subsets are in Lk, and none of its subsets 
of size larger than k is included in h U h+1 U · · · U Ik+q· For a given p, we 
denote the set of all k + p-size candidate patterns for (L, I) by Ck+p(L, I). 

We note: 

Lemma 4.10. 

if p = 1; 

if p > l. 

Proof. The case p = 1 is clear. For p > 1, we show the inclusion in both 
directions. 

=> For every set in Ck+p(Ck+p-i(L,I) U Lk+p-l), we know that all of its 
k-subsets are always contained in a k + p - 1 subset , and these are 
in Ck+p- 1(L,I) U Lk+p-1· By definition, we know that for every set in 
C k+p-1 ( L , I), all of its k-su bsets are in L k. Also , for every set in L k+p- I, 

all of its k-subsets are in Lk. By definition, for every set in Ck+p-i(L, I), 
all of its k+p-i-subsets are not in h+p- i· Also, for every set in Lk+p-1, 
all of its k + p - i-subsets are in Lk+p- i and hence they are not in Ik+p-i 
since they are disjoint. By definition, none of the patterns in Lk+p U Ik+p 
are in Ck+p(L, I). 

C It suffices to show that for every set in Ck+p(L , I), every k+p- 1-subset 
s is in Ck+p-1(L, I) U Lk+p-I· Obviously, this is true, since if it is not 
already in Lk+p- 1, still all k-subsets of s must be in Lk, s can not be in 
Ik+p- 1 and none of its subsets can be in any h +p-£ with f_ > l. 

Hence, we define 

gKKz+P (1L1 , III) := 

{
KK~+l(ILkl) - ILk+il - lik+ll 
1a<Z!:-1 (gKKz+p-1(1£1, III)+ !Lk+p-11) - 1Lk+p1 - 1h+p1 

and obtain: 

Theorem 4.11. 

if p = 1; 

i[ p > 1, 

D 
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Proof. The first inequality is clear by Lemma 4.10. The second inequality is 
by induction on p. T he base case p = 1 is by definition. For p > 1, we have: 

gKKZ+P(IL I, II I)= KKZ!~- l(gKK~+p-1(1LI , III)+ ILk+p-11 ) 

- ILk+vl - lh+pl 

::; KKZ!~-l(KKz+p-l(ILkl) - IIk+p- 11) - ILk+vl - IIk+vl 

::; KKZ! ; -1 (KKz+P- 1(1Lkl)) - 1Lk+p1 - 1I k+p1 

= KKz+P(ILkl) -1Lk+p1 -1I k+p1 

where the first inequality is by induction and because of the monotonicity of 
KK, the second inequality also because of the monotonicity of KK and the 
last equality follows from 

KKZ+p(ILkl)) = KKZ!;-1(KKZ+p- l(ILkl)). 

0 

Again, we can also generalize the upper bound on the maximal size of 
a candidate pattern, denoted by maxsize( L, I) , and the upper bound on the 
total number of candidate patterns, both also incorporating (L , I): 

We obtain: 

gµ(ILI, III) := k + min{p I gKK~+P(ILI, II I) = O} - 1 

gKK1otal(ILI, II I) := L gKK~+P(ILI, II I) , 
p~l 

Proposition 4.12. 

maxsize(L,I) :S; gµ(IL I, III) :S; µ(ILi). 

Proposition 4 .13. The total number of candidate patterns that can be gen­
erated from (L,I) is bounded by gKK1otal(ILl,III). Moreover, 

gKK1otal(ILI, III) :S; KK1otal(ILkl). 

Example 4.3. Suppose L 3 consists of all subsets of size 3 of the set { 1, 2, 3, 4, 
5,6}. Now assume we already know that I4 contains patterns {1,2,3,4} and 
{3, 4, 5, 6}. The KK upper bound presented in the previous section would 
estimate t he number of candidate patterns of sizes 4, 5, and 6 to be at most 
(~) = 15, (~) = 6, and (~) = 1 respectively. Nevertheless, using the additional 
information, gKK can already reduce these numbers to 13, 3, and 0. Also, µ 
would predict the maximal size of a candidate pattern to be 6, while gµ can 
already predict this number to be at most 5. Similarly, KK total would predict 
the total number of candidate patterns that can still be generated to be at 
most 22, while gKK total can already deduce this number to be at most 16. 
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4.4.2 Generalized KK* -Bounds 

Using the generalized basic upper bound, we can now also generalize our im­
proved upper bound KK*. For an arbitrary item x, define the family of sets 
Lx as L% , L%+1 , ... ,L%+q' and JX as Ik,Ik+l ' ... ,Ik+q· We define: 

gKKk+p(L, I):= 

{
gKK~+P(jLJ, [II) 
min{gKK~+P(ILI, III), I:xEJ gKKk+p- l (Lx, JX)} 

We then have: 

Theorem 4.14. 

if k = 1; 

if k > 1. 

ICk+p(L, I)I s gKKk+p(L, I) s KKk+p(Lk) - ILk+pl - lh+pf • 
Proof. The proof of the first inequality is similar to the proof of Theorem 4. 7, 
instead that we now need to show that for all p > 0, 

Ck+p(L,I) ~ LJ Ck+p-1 (Lx,JX) +x. 
xEI 

Therefore, we need to show that for every s E Ck+p(L,I) the subsets - {x} 
is in Ck+p-1 (Lx,JX), where x = mins. First, this means that every subset 
of s - {x} of size k - 1 must be in L%. Lets - {x} - {Yi, ... ,Yp} be such a 
subset. This subset is an element of L% if and only if s- {y1, .. . , Yp} E Lk and 
x = min(s - {Y1, ... , yp} ). The first condition follows from s E Ck+p(L,I), 
and the second condition is trivial. Second, we need to show that s - { x} is 
not in Lk+p· Since s E Ck+p(L,I), s is not in Lk+p and hence s - {x} cannot 
be in Lk+p· Finally, we need to show that none of the subsets of s - { x} of 
size greater t han k - 1 are in Ik+l' ... , Ik+ _ 1. Let s - {x} - {y1, ... , Ym} be 
such a subset. Since s E Ck+p(L, I), s - {Yi, ... , Ym} is not in h+p- m, and 
hences - {x} - {y1 , ... ,Ym} cannot be in Ik+p-m· 

We prove the second inequality by induction on k. The base case k = 1 is 
clear. For all k > 0, we have 

gKKk+p(L, I) = min{gKK~+P(ILI, II I), L gKKk+p-l (Lx, I x)} 
xEI 

xEI 

xEI 

= KKk+p(Lk) - ILk+pl - IIk+pl 

where the left hand side of the minimum in the inequality is by Theorem 4.11 
and the right hand side is by induction. D 
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Again, we get an upper bound on maxsize(L,I): 

gµ*(L, I) := k + min{p I gKKk+p(L,I) = O} - 1, 

and on the total number of candidate patterns that can still be generated: 

gKK;ota1(L, I) := L gKKk+p(L, I ). 
p 2:1 

We then have the following analogous propositions to 4.8 and 4.9: 

Proposition 4.15. 

maxsize(L, I) ::; gµ* (L,I) ::; µ* (L ). 

Proposition 4.16. The total number of candidate patterns that can be gen­
erated from (L, I) is bounded by gKK;otai(L, I). Moreover7 

Example 4.4. Consider the same set of patterns as in the previous example. 
I.e. , L3 consists of all subsets of size 3 of the set {1, 2, 3, 4, 5, 6} and {1, 2, 3, 4} 
and {3, 4, 5, 6} are included in J4. The KK* upper bound presented in the 
previous section would also estimate the number of candidate patterns of sizes 
4, 5, and 6 to be at most (1) = 15, (~) = 6, and (~) = 1 respectively. Nev­
ertheless, using the additional information, gKK* can perfectly predict these 
numbers to be 13, 2, and 0. Again, µ* would predict the maximal size of a 
candidate pattern to be 6, while gµ* can already predict this number to be at 
most 5. Similarly, KK;otal would predict the total number of candidate pat­
t erns that can still be generated to be at most 22, while gKK;otal can already 
deduce t his number to be at most 15. 

4.5 Efficient Implementation 

For simplicity reasons, we will restrict ourselves to the explanation of how 
the improved upper bounds can be implemented. The proposed implementa­
tion can be easily extended to support the computation of the general upper 
bounds. 

To evaluate our upper bounds we implemented an optimized version of 
the Apriori algorithm using the trie data structure to store all generated pat­
terns. This trie structure makes it cheap and straightforward to implement 
the computation of all upper bounds. Indeed, a top-level subtrie (rooted at 
some singleton patt ern { x}) represents exactly the set Lx we defined in Sec­
tion 4.3. Every top-level subtrie of this subtrie (rooted at some two-element 
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pattern { x, y}) then represents (Lx)y, and so on. Hence, we can compute the 
recursive bounds while traversing the trie, after the frequencies of all candidate 
patterns are counted, and we have to traverse the trie once more to remove 
all candidate patterns that turned out to be infrequent. This can be done as 
follows. 

Remember, at that point , we have the current set of frequent patterns of 
size k stored in the trie. For every node at depth d smaller thank, we compute 
the k - d-canonical representation of the number of descendants this node has 
at depth k, which can be used to compute µk-d (cf. Proposition 4.4), KKLd 

for any C :S µk - d (cf. T heorem 4.2) and hence also KK%0~':.l (cf. Proposition 4.6). 
For every node at depth k - l, its KK* and µ* values are equal to its KK 
and µ values respectively. Then compute for every p > 0, the sum of the 
KKk- d+p- l values of all its children, and let KKk-d+p be the smallest of 

this sum and KKt:~+P until this minimum becomes zero, which also gives 
us the value ofµ*. Finally, we can compute KK;otal for this node. If this is 
done for every node, traversed in a depth-first manner, then finally the root 
node will contain the upper bounds on the number of candidate patterns that 
can still be generated, and on the maximum size of any such pattern. The 
soundness and completeness of this method follows directly from the theorems 
and propositions of the previous sections. 

We should also point out that, since the numbers involved can become 
exponentially large (in the number of items), an implementation should take 
care to use arbitrary-length integers such as provided by standard mathemat­
ical packages. Since the length of an integer is only logarithmic in its value, 
the lengths of the numbers involved will remain polynomially bounded. 

4.6 Experimental Evaluation 

The algorithm was implemented in C++ and uses the GNU MP library for 
arbitrary-length integers [34]. 

The results from the experiment with the real data sets were not immedi­
ately as good as t he results from the synthetic data set. T he reason for this, 
however, turned out to be the bad ordering of the items, as explained next. 

Reordering 

From the form of Lx, it can be seen that the order of the items can affect the 
recursive upper bounds. By comput ing the upper bound only for a subset of 
all frequent patterns (namely Lx), we win by incorporating the structure of 
the current collection of frequent patterns, but we also lose some information. 
Indeed, whenever we recursively restrict ourselves to a subtrie Lx, then for 
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Figure 4.1: Time needed to compute upper bounds is linear in the number of 
nodes. 

every candidate pattern s with x = min s, we lose the informat ion about 
exactly one subpattern in L , namely s - x. 

We therefore would like to make it likely that many of these excluded 
patterns are frequent. A good heuristic, which has already been used for 
several other optimizations in frequent pattern mining [9, 16, 2], is to force the 
most frequent items to appear in the most candidate patterns, by reordering 
the single item patterns in ascending order of support. 

After reordering the items in the real life data set, using this heuristic, the 
results became very analogous with the results using the synthetic data sets. 

Efficiency 

The cost for the computation of t he upper bounds is negligible compared to 
the cost of the complete algorithm. Indeed, the time T needed to calculate 
the upper bounds is largely dictated by the number n of currently known 
frequent sets. We have shown experimentally that T scales linearly with n . 
Moreover, the constant factor in our implementation is very small ( around 
0.00001). We ran several experiments using the different data sets and varying 
minimal support thresholds. After every pass of the algorithm, we registered 
the number of known frequent set s and the time spent to compute all upper 
bounds, resulting in 145 different data points. Figure 4.1 shows these results. 
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Upper Bounds 

• Figure 4.2 shows, after each level k, the computed upper bound KK 
and improved upper bound KK* for the number of candidate patterns 
of size k + 1, as well as the actual number ICk+ll it turned out to be. 
We omitted the upper bound for k + 1 = 2, since this upper bound is 
simply (l~I), with ILi the number of frequent items. 

• Figure 4.3 shows the upper bounds on the total number of candidate 
patterns that could still be generated, compared to the actual number 
of candidate patterns, ICtotail, that were effectively generated. Again, 
we omitted the upper bound for k = 1, since this number is simply 
21£1 - ILi - 1, with ILi the number of frequent items. 

• Figure 4.4 shows the computed upper boundsµ andµ* on the maximal 
size of a candidate pattern. Also here we omitted the result for k = 1, 
since this number is exactly the number of frequent items. 

The results are pleasantly surprising: 

• Note that the improvement of KK* over KK, and of µ* over µ, antici­
pated by our theoretical discussion, is indeed dramatic. 

• Comparing the computed upper bounds with the actual numbers, we 
observe the high accuracy of the estimations given by KK*. Indeed, the 
estimations of KKk+l match almost exactly the actual number of candi­
date patterns that has been generated at level k + l. Also note that the 
number of candidate patterns in T40I10Dl00K is decreasing in the first 
four iterations and then increases again. This perfectly illustrates that 
t he heuristic used for AprioriHybrid, as explained in the related work 
section, would not work on this data set. Indeed , since the current num­
ber of candidate patterns is small enough and there are fewer candidate 
patterns in the current iteration than in the previous iteration, these 
observations would be falsely interpreted. The presented upper bounds 
perfectly predict this increase. 

• The upper bounds on the total number of candidate patterns are still 
very large when estimated in the first few passes, which is not surprising 
because at these init ial stages, there is not much information yet. For 
the mushroom and the artificial data sets, the upper bound is almost 
exact when the frequent patterns of size 3 are known. For the basket 
data set, this result is obtained when the frequent patterns of size 4 are 
known and size 6 for the BMS-Webview-1 data set. 

• The results obtained from experimenting with varying minimal support 
thresholds were entirely similar to those presented above. 
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Combining Iterations 

As discussed in the introduction, the proposed upper bound can be used to 
protect several improvements of the Apriori algorithm from generating too 
many candidate patterns. One such improvement tries to combine as many 
iterations as possible in the end, when only few candidate patterns can still be 
generated. We have implemented this technique within our implementation of 
the Apriori algorithm. 

We performed several experiments on each data set and limited the number 
of candidate patterns that is allowed to be generated. If t he upper bound 
on the total number of candidate patterns is below this limit , the algorithm 
generates and counts all possible candidate patterns within the next iteration. 
Figure 4.5 shows the results. The x-axis shows the total number of iterations 
in which the algorithm completed, and the y-axis shows the total time the 
algorithm needed to complete. 

As can be seen, for all data sets, the algorithm can already combine all 
remaining iterations into one very early in the algorithm. For example, the 
BMS-Webview-1 data set, which normally performs 15 iteration, could be 
reduced to six iterations to give an optimal performance. If the algorithm 
already generated all remaining candidate patterns in the fifth iterat ion, the 
number of candidate patterns that turned out to be infrequent was too large, 
such that the gain of reducing iterations has been consumed by the time 
needed to count all these candidate patterns. Nevertheless, it is still more 
effective than not combining any passes at all. If we allowed the generation of 
all candidate patterns to occur in even earlier iterations, although the upper 
bound predicted a too large number of candidate patterns, this number became 
indeed too large to keep into main memory. 

4. 7 Conclusions 

Motivated by several heuristics to reduce the number of database scans in the 
context of frequent pattern mining, we provide a hard and tight combinato­
rial upper bound on the number of candidate patterns and on the size of t he 
largest possible candidate pattern, given a set of frequent patterns. Our find­
ings are not restricted to a single algorithm, but can be applied to any frequent 
pattern mining algorithm which is based on the levelwise generation of candi­
date patterns. Using the standard Apriori algorithm, on which most frequent 
pattern mining algorithms are based , our experiments showed that these up­
per bounds can be used to considerably reduce the number of database scans 
without taking the risk of getting a combinatorial explosion of t he number of 
candidate patterns. 
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Samenvatting 

Een enorme technologische vooruitgang in hardware en software heeft de voor­
bije decennia geresulteerd in de opbouw en groei van gigantische hoeveelheden 
gegevens die opgeslagen zitten in databanken. Een van de voornaamste uitda­
gingen waar tal van ondernemingen en individuen nu voor staan, is hoe ze deze 
gegevens kunnen analyseren en omzetten in handelbare en bruikbare kennis. 

Pogingen om deze uitdagingen aan te gaan brachten onderzoekers samen 
uit verschillende disciplines zoals statistiek, kunstmatige intelligentie, data­
banken en waarschijnlijk nog veel meer, resulterende in het nieuwe onder­
zoeksgebied Data Mining. 

Data mining wordt meestal vernoemd in de bredere context van Knowledge 
Discovery in Databases (KDD) en wordt beschouwd als een enkele stap in het 
zogenaamde KDD pmces [27]. 

In dit proefschrift concentreren we ons op het zoeken naar frequent voorko­
mende patronen in databanken en de efficientie van de methoden die daarvoor 
gebruikt worden. De patronen die we hier beschouwen zijn verzamelingen van 
items en associatieregels in zogenaamde transactie databanken. 

De motivatie om naar zulke patronen te zoeken kwam oorspronkelijk voort 
uit de behoefte om de transactiegegevens van supermarkten te analyseren. 
Meer bepaald, het zoeken naar patronen in het aankoopgedrag van klanten. 
Een associatieregel beschrijft dan hoe frequent verschillende items ( of pro­
ducten) samen aangekocht worden. Bijvoorbeeld, de associatieregel "bier =;, 

chips (80%)" drukt uit dat vier van de vijf klanten die bier aankopen ook 
chips aankopen. Zulke regels kunnen dan gebruikt worden voor beslissingen 
in verband met prijstoekenningen, promoties, productplaatsing en dergelijke 
meer. 

Sinds hun introductie in 1993 door Agrawal et al. [3], hebben het frequente 
item-verzameling-probleem en associatieregel-probleem enorm veel aandacht 
gekregen. In de laatste tien jaar zijn honderden onderzoeksartikels gepubli­
ceerd, die elk nieuwe algoritmes of verbeteringen op algoritmes voorstellen om 
deze problemen efficienter op te lossen. 
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P robleembeschrijving en overzicht: Het aantal keren dat een bepaalde 
verzameling van items in een databank voorkomt, noemen we de support van 
die verzameling. Om aan te duiden wanneer een verzameling van items fre­
quent is, wordt er een minimale support vastgelegd. Een verzameling van items 
is dan frequent als zijn support grater is dan deze minimale drempelwaarde. 
Een associatieregel bestaat uit een antecedent X en een consequent Y die al­
lebei verzamelingen van items zijn, en wordt genoteerd X ::::} Y . De support 
van een regel is gedefinieerd als de support van de unie van het antecedent 
en het consequent. De betrouwbaarheid van een regel wordt berekend door de 
support van de regel t e delen door de support van het antecedent. We noemen 
een regel interessant als zijn betrouwbaarheid hoger ligt dan een vastgelegde 
minimale betrouwbaarheid en als de verzameling van items best aande uit de 
unie van het antecedent en het consequent frequent is. 

Het eerste algoritme dat alle interessante associatieregels efficient kon ge­
nereren was het Apriori algoritme van Agrawal et al. en werd onafhankelijk 
verkregen door Mannila et al. [6, 59, 4] . Het algoritme werd opgedeeld in twee 
fasen. In de eerste fase werden alle frequente verzamelingen gegenereerd en in 
een tweede fase alle interessante associatieregels. 

Het onderliggende principe dat in het Apriori a lgoritme en in tal van zijn 
opvolgers wordt gebruikt is het monotoniciteitsprincipe, <lat zegt dat de sup­
port van een verzameling van items niet grater kan zijn dan de support van 
een van zijn deelverzamelingen. Met andere woorden, als een verzameling niet 
frequent is, dan kan geen enkele uit breiding van die verzameling frequent zijn. 
Het Apriori algoritme werkt als volgt. 

Gegeven is een databank bestaande uit een collectie van verzamelingen 
van items, ook transacties genoemd. Het Apriori algoritme is een iteratief 
algoritme <lat in elke iteratie k alle kandidaat verzamelingen bestaande uit 
k items genereert. E en verzameling is een kandidaat verzameling als al zijn 
deelverzamelingen frequent zijn. In de eerste iteratie wordt de support van 
elk it em apart geteld door heel de database transactie per transactie te scan­
nen. Telkens een item voorkomt in een transactie wordt zijn support met 1 
verhoogd. Wanneer a lle transacties op deze manier verwerkt zijn, bezitten 
we de support van elk item in de databank. Vermits we enkel ge"interesseerd 
zijn in frequente verzamelingen verwijderen we alle items waarvan de sup­
port kleiner is dan de gegeven minimale support. In elke volgende iteratie k, 
warden verzamelingen bestaande uit k - l items gecombineerd tot kandidaat 
verzamelingen bestaande uit k items zodat voor elke gegenereerde verzame­
ling geldt dat a l zijn deelverzamelingen frequent zijn. Daarna wordt telkens 
de databank volledig doorlopen om de supports t e berekenen van alle gege­
nereerde kandidaat verzamelingen. Wanneer er geen kandidaat verzamelingen 
meer gegenereerd kunnen worden, eindigt het a lgoritme en zijn alle frequent 
voorkomende verzamelingen gevonden. 
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Op basis van deze frequente verzamelingen kunnen we nu in de tweede 
fase alle interessante associatieregels genereren. Daarvoor dienen we enkel 
elke frequente verzameling op te delen in een antecedent en consequent en te 
berekenen wat de betrouwbaarheid is van de bekomen regel. Vermits we daar­
voor enkel de support van die verzameling en de support van het antecedent 
nodig hebben kan d it zeer efficient berekend warden. 

Later werden nog tal van artikels gepubliceerd waarin vele mogelijke op-­
timalisaties werden voorgesteld, al dan niet voor speciale situaties. Het on­
derliggende laagsgewijze algoritme werd echter zelden gewijzigd. De meeste 
pogingen die werden ondernomen, trachten het aantal keren dat de database 
doorlopen moet warden te verminderen [77, 70, 16, 45]. Andere pogingen 
trachten aan de hand van allerhande heuristieken en speciale technieken het 
aantal kandidaat verzamelingen te verminderen die dienen geteld te worden. 
Deze twee aspecten zijn immers de belangrijkste kostfactoren van het Apriori 
algoritme. 

Een zeer eenvoudig algoritme, Eclat, dat in 1997 werd voorgesteld door 
Zaki blijkt in verschillende ordes van grootte efficienter te zijn dan Apriori [80]. 
Dit algoritme werkt echter wel alleen zoals gewenst wanneer de volledige data­
bank in het werkgeheugen van de computer geladen kan warden. Het algoritme 
is gebaseerd op de eigenschap dat het aantal transacties waarin een bepaalde 
verzameling I voorkomt, gelijk is aan het aantal transacties waarin twee van 
zijn deelverzamelingen X, Y voorkomen, zodat I = XU Y . Essentieel werkt 
dit algoritme zeer gelijkaardig als het Apriori algoritme, met als grootste ver­
schil dat we nu voor elke verzameling een lijst bijhouden van alle transacties 
waarin die verzameling voorkomt. Om dan de support te kennen van een ver­
zameling I dienen we enkel de doorsnede te nemen van de transactielijst van 
twee van zijn deelverzamelingen X, Y, zodat I = XUY. Met andere woorden, 
als we beginnen door aan elk item zijn lijst van transacties toe te kennen door 
een enkele keer door de databank te scannen, kunnen we vanaf dan recursief 
telkens twee frequente verzamelingen X en Y combineren tot een grotere ver­
zameling I, waarvan we de support direct kunnen berekenen door simpelweg 
de doorsnede te nemen van de transactielijsten van X en Y. 

Recentelijk werd een ander algoritme voorgesteld door Han et al. , genaamd 
FP-growth [41], waarvan werd beweerd dat het alle frequente verzamelingen 
kan vinden zonder daarvoor kandidaat verzamelingen te moeten genereren. 
Ook werd een nieuwe datastructuur voorgesteld waarvan werd beweerd dat 
deze zou resulteren in een veel kleiner geheugengebruik en het mede daardoor 
de meest efficiente methode zou zijn om alle frequente verzamelingen t e vinden. 
Wij tonen echter aan dat deze beweringen onjuist zijn en besluiten dat een 
combinatie van het Apriori algoritme en Eclat momenteel de beste uitkomst 
biedt. 



96 Samenvatting 

Interactieve methodes voor data mining: Vermits data mining een es­
sentieel interactief proces is, waarin de gebruiker herhaaldelijk bepaalde be­
perkingen moet kunnen leggen op het soort van patronen dat hij zoekt aan 
de hand van queries, hebben wij drie verschillende methoden bestudeerd om 
in zulke interactieve data mining sessies deze beperkingen zo goed mogelijk te 
gebruiken en het data mining proces alsdusdanig efficienter te kunnen laten 
verlopen . Meer specifiek bestuderen we een klasse van beperkingen bestaande 
uit Booleaanse combinaties van atomaire condities, waarin zo een atomaire 
conditie kan specificeren of een bepaald item in het antecedent of in het con­
sequent van een associatieregel moet voorkomen. Doordat het genereren van 
associatieregels voornamelijk bestaat uit het genereren van verzamelingen van 
items, vertalen wij zulke condities onmiddellijk naar beperkingen die eisen 
dat een item al dan niet mag voorkomen in een verzameling van items. Deze 
vertaling gebeurt optimaal, in die zin <lat we enkel en alleen die verzame­
lingen genereren die nodig zijn om alle gevraagde associatieregels te kunnen 
construeren. 

In de eerste methode die we voorstellen, wordt elke aparte data mining 
query gefategreerd in de mining algoritmes aan de hand van de volgende tech­
niek. Wanneer een query stelt <lat alleen die verzamelingen van items mogen 
gegenereerd worden waarin de items i1, ... , in voorkomen, dienen we enkel 
de databank aan te passen door alle transacties die die items niet bevatten 
te verwijderen en de items zelf ook nog te verwijderen uit alle overgebleven 
transacties. Wanneer een query bovendien eist dat alleen die verzamelingen 
van items dienen gegenereerd te worden waarin de items j 1 , ... , Jm niet voor­
komen dienen we evenzeer enkel de databank aan te passen door uit alle over­
gebleven transacties ook die items te verwijderen. Als we dan op deze aange­
paste databank om het even welk algoritme dat frequente verzamelingen van 
items genereert uitvoeren, verkrijgen we de correcte uitkomst door achteraf 
aan elke verzameling de items i 1, ... , in terug toe te voe gen. Door elke Bool­
eaanse query om te zetten in disjuncte disjunctieve normaalvorm, kunnen we 
de disjuncts op deze manier beantwoorden. 

In een tweede methode bekijken we de mogelijkheid om eerst alle moge­
lijke frequente verzamelingen te genereren voor een zo laag mogelijke mini­
male support, om daarna elke query t e beantwoorden door gewoon de nodige 
verzamelingen te zoeken aan de hand van zeer efficiente technieken voor data­
banken. We tonen aan dat deze methode na verloop van de data mining sessie 
uiteindelijk veel efficienter wordt dan de eerst voorgestelde methode. 

In een derde methode gebruiken we een combinatie van de twee vorige, 
door in het begin van een data mining sessie elke query te beantwoorden door 
de gegeven condities te integreren in het algoritme om de frequente verzamelin­
gen te genereren zoals hierboven werd beschreven, en telkens te resulterende 
verzamelingen op te slaan in een aparte databank. Daaropvolgende queries 



Samenvatting 97 

worden dan opgedeeld in twee delen, namelijk het deel dat kan beantwoord 
worden aan de hand van de tweede methode en het deel dat dient beantwoord 
te worden aan de hand van de eerste methode. 

Aan de hand van tal van experimenten met deze drie methoden besluiten 
we <lat de tweede voorgestelde methode in veel gevallen de meest efficiente 
uitkomst biedt. Wanneer deze methode echter niet mogelijk is om de reden 
<lat het aantal gegenereerde frequente verzamelingen te groot zou worden, blijft 
de laatste gecombineerde methode de meest efficiente oplossing. 

Bovengrenzen op het aantal kandidaat verzamelingen Zoals reeds 
vermeld, trachten verschillende optimalisatietechnieken het aantal scans door 
de databank te reduceren om het A priori algoritme efficienter te laten verlopen. 
Veel van deze technieken houden echter een groot risico in doordat zij moge­
lijk een te groot aantal kandidaat verzamelingen zouden genereren met een 
tegengesteld effect tot gevolg. Aan de basis van deze technieken ligt volgend 
puur combinatorisch probleem <lat eerst opgelost dient te worden vooraleer 
deze technieken effectief toegepast kunnen worden: gegeven het huidige aantal 
frequente verzamelingen in een bepaalde iteratie, hoeveel kandidaat patronen 
kunnen er nog maximaal gegenereerd word en tijdens komende iteraties? 

Wij beantwoorden deze vraag door een aantal combinatorische bovengren­
zen voor te stellen die na elke iteratie van het apriori algoritme efficient bere­
kend kunnen worden en als dusdanig een waterdichte garant ie geven over het 
aantal kandidaat verzamelingen <lat nog maximaal gegenereerd kan worden. 

Experimenten tonen aan dat onze theoretisch verkregen bovengrenzen op­
merkelijk goede resultaten vertonen in de praktijk en al zeer snel kunnen voor­
spellen hoeveel kandidaat verzamelingen er nog maximaal gegenereerd kunnen 
worden. 
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