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Chapter 1

Introduction

With the development of psychopharmaca and their evaluation in clinical trials came

also the development of rating scales for mental health conditions. Rating scales

consist of a list of questions or statements that the doctor or patient answers and each

response is given a score. Finally, all the scores are added up to obtain a total score.

Before being used, however, such scales need to be checked on their reliability and

validity. On the evaluation of these two properties, a whole tradition of psychometric

research exists. Nevertheless, the classical psychometric methods are not sufficiently

flexible to be applied in clinical trials with complex designs.

The main objective of this thesis is to extend classical psychometric methods for

the evaluation of reliability to more general settings, that may include complex data

structures such as longitudinal and multivariate measurements.

One of the distinctive characteristics of reliability is that it is a population-

dependent concept. Indeed, an instrument that gives reliable measurements for one

group of individuals might less do so when it is applied to a different group. There-

fore, it is advisable to investigate the reliability of an instrument, not only in the

developmental phase, but also each time it is used in a different population. How-

ever, since reliability research implies additional investment of time and resources, it

is often omitted. In the present work, we look for methods to evaluate the reliability

of outcome scales using clinical trial data. Such an approach will bring indubitable

advantages. For instance, it will allow to study reliability in more realistic settings,

i.e, the settings in which the scales are frequently applied in scientific research and

1



2 Chapter 1. Introduction

clinical practice. It will also allow to check the reliability of the scale every time it is

used in clinical investigation, increasing our understanding of its performance across

different populations. Furthermore, clinical trials are known for their stringent pro-

cedures in order to assure the quality of the data and they frequently involved large

sample sizes. Therefore, using clinical studies for reliability research will guarantee

that accurate results can be obtained.

1.1 Mental Health Measurement

In the Middle Ages mental illness was seen as alienation from God. Confession and

penance were essential to the cure. In addition, treatments using purgatives, blood-

letting, and such practices as trepanation were used. In the growing cities and towns,

facilities were developed where the poor, outcast, and mentally ill could be confined

and maintained. However, hospitals specifically for the care of the mentally ill were

rare. The 18th century, Enlightenment influences resulted in a more optimistic out-

look for the treatment of insanity. Nevertheless, treatments were available only to a

select few.

In 1899, Sigmund Freud published The Interpretation of Dreams, and psychoanal-

ysis became one of the most influential treatment methods in the twentieth century,

but again, only a few individuals could afford it (Merkel 26.6.2008). By the mid-1940s,

treatment of the mentally ill took a new turn, with the advent of electroconvulsive

therapy (ECT), insulin shock therapy, and the use of frontal lobotomy. In modern

times, insulin shock therapy and lobotomies are viewed as being almost as barbaric as

earlier “treatments”, though in their own context they were seen as the first options

which produced any noticeable effect on their patients. ECT is still used in the West,

but it is seen as a last resort for treatment of mood disorders, and is administered

much more safely than in the past (NCLS 26.6.2008). By the mid-1950s, the first

psychiatric drugs became available for the treatment of mental illness which revolu-

tionized psychiatric care and provided new ways for many of the severely mentally ill

to return to normal life in society. Newly developed antidepressants were used to treat

cases of depression, and the introduction of muscle relaxants allowed ECT to be used

in a modified form for the treatment of severe depression and a few other disorders.

Nowadays a combination of drug treatment and psychotherapy is a common approach

to mental illness. Psychotherapy has evolved to a discipline with several systems, such

as psychodynamic, existential, cognitive, behavioral and systemic therapy.
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Since World War II, clinical trials have evolved into a standard procedure in the

evaluation of new drugs. Its features include the use of a control group of patients

that do not receive the experimental treatment, the random allocation of patients to

the experimental or control group, and the use of blind or masked assessment so that

neither the researchers nor the patients know which subjects are in either group at the

time the study is conducted. A difficulty in clinical trials for psychopharmacological

drugs, however, is the outcome measurement. Even though there is agreement on the

existence of a biological basis for several mental diseases, laboratory tests to measure

the condition of a patient do not exist. Therefore, outcome measurement is based on

rating scales that assess the presence and severity of symptoms.

The use of rating scales in clinical research in psychiatry developed increasingly in

the late 1950s with the introduction of antipsychotics and antidepressants. To eval-

uate the effectiveness of these new drugs when compared to placebo in randomised

clinical trials, it became important to use instruments with a sufficiently high degree

of reliability and validity. The rating scales most widely used in the 1960s and 1970s

were the Brief Psychiatric Rating Scale (BPRS) which was mainly used to evaluate

the effectiveness of antipsychotics, and the Hamilton Depression and Anxiety Scales

(HAMD and HAMA) which were used to evaluate the effectiveness of the antidepres-

sants and the antianxiety drugs (Bech and Jha 26.6.2008).

Besides being used as the primary outcome measurement in psychopharmacolog-

ical trials, rating scales are extensively used in the measurement of quality of life in

general pharmacological research. In the context of cancer research, the FDA has

stated that efficacy with respect to overall survival and/or improvements in quality

of life might provide the basis for drug approval (O’Shaughnessy et al 1991).

1.2 Psychometrics

Psychometrics is the scientific discipline concerned with the theory and technique

of psychological measurement. Much of the early theoretical and applied work in

psychometrics was undertaken in an attempt to measure intelligence. Pioneers in this

field were Charles Spearman and L.L. Thurstone. In their research on intelligence,

both psychometricians made important contributions to the theory and application

of factor analysis.

More recently, psychometric theory has been applied in the measurement of per-

sonality, attitudes and beliefs, academic achievement, and in health-related areas.
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Measurement of these unobservable phenomena is difficult, and much of the research

in this domain has been developed in an attempt to properly define and quantify such

intangible traits.

Psychometric theory involves several distinct areas of study. First, psychometri-

cians have created a large body of theory used in the development of mental tests

and analysis of data collected from these tests. This work can be roughly divided

into classical test theory and item response theory. Second, psychometricians have

developed methods for working with large matrices of correlations and covariances.

Techniques in this general tradition include factor analysis, multidimensional scaling,

data clustering, and more recently, structural equation modelling and path analysis.

It is within the context of mental test development, studied in classical test theory

(CTT), that the concepts of reliability and validity play a key role. Reliability refers

to the extent in which a measurement is free of measurement error. A reliable scale

is therefore an instrument that measures consistently. A valid scale, on the other

hand, measures what it is supposed to measure in the context in which it is applied.

An instrument may be consistent without necessarily being valid. A broken ruler,

for example, may always under-measure a quantity by the same amount each time

(consistently), but the resulting quantity is still wrong, that is, invalid.

In the literature, different concepts are captured by the general term reliability.

A first concept is reproducibility, that indicates the degree in which a repetition of a

measurement, under the same conditions, gives the same results as the first measure-

ment. When the repeated measurement is performed by a second rater, we talk about

inter-rater reliability. When the repeated measurement is taken at a later time point,

it is called test-retest reliability. The Pearson correlation coefficient and the intra-

class correlation coefficient (ICC) are the most commonly used statistics in this area.

A second concept that is frequently mentioned under the reliability label is internal

consistency, indicating to which extent the different items of an instrument measure

the same underlying construct. Internal consistency may be assessed by correlating

performance on two halves of a test (split-half reliability). A commonly used measure

is Cronbach’s α, which is equivalent to the mean of all possible split-half coefficients.

Also validity can be studied in different ways. We can differentiate content validity,

construct validity, and criterion validity. Content validity can be defined as the extent

to which the instrument assesses all the relevant or important content or domains. The

term face validity is used to indicate whether the instrument appears to be assessing

the desired qualities at face. This form of validity consists of a judgement by experts
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in the field. To study construct validity the investigator examines whether a measure

is related to other variables as required by theory. The most commonly used methods

to explore construct validity are the analysis of extreme groups (for example, an

instrument is applied to cases and non-cases), convergent and discriminant validity

testing (correlation with other measures of this construct and no correlation with

dissimilar or unrelated constructs) and the multitrait-multimethod matrix (Campbell

and Fiske 1959). Criterion validity can be assessed by correlating measures with a

criterion instrument known to be valid. When the criterion measure is collected at the

same time as the measure being validated the term concurrent validity is used; when

the criterion is collected later one refers to predictive validity. The most commonly

used method to assess criterion validity is by calculation of the Pearson correlation

coefficient.

A different but nowadays widely used approach in mental test development is

found in item response theory (IRT). Item response theory is typically used in ed-

ucational assessment to measure abilities in domains such as reading, writing, and

mathematics. Item response models are latent trait models in which the probability

of correct responses are modelled as function of examinee’s ability and the item char-

acteristics, such as their difficulty. Psychometricians apply IRT in order to achieve

tasks such as developing and refining exams, maintaining banks of items for exams,

and equating for the difficulties of successive versions of exams, for example, to allow

comparisons between results over time. In spite of having been developed mainly for

educational assessment, IRT can be also applied in many other areas.

1.3 Structure of the Thesis

In this thesis the focus lies on the development of psychometric techniques to be

used in clinical trials where repeated measurements are taken. Because methods will

be illustrated on real case studies, we start by introducing two clinical studies in

Chapter 2. The following three chapters provide a general theoretical background.

In Chapter 3, a summary on the classical approach to reliability is provided, whereas

Chapter 4 discusses important alternative approaches. In Chapter 5 we introduce the

general modelling framework used in the thesis.

In Chapter 6 begins our search for methods to extend the classical psychometrical

techniques to more general settings such as the ones provided by clinical trials. In

this chapter we extend the intraclass correlation coefficient, a commonly used method
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to calculate reliability, to more complex situations. In Chapter 7 we take one step

back by reexamining the definition of reliability and by formulating a set of basic

properties that any measure for reliability should fulfill. In the same chapter we

introduce a new measure for reliability, the RT coefficient. The application of this

measure in a real case study is extensively illustrated in Chapter 8. Chapter 9 places

the RT coefficient in a broader framework and Chapter 10 introduces another measure

for reliability, RΛ, that is mathematically very close to the first measure, but bears a

whole different interpretation. The common basis of both new measures is dealt with

in Chapter 11, as well as their link with existing reliability measures. In Chapter 12

we argue that these new measures and the modelling framework on which they are

based can deal with some previously unresolved problems in reliability research. In

Chapter 13 we further illustrate that the previously introduced methodology forms a

complementing set of measures that are easy to obtain as well as easy to interpret.

Where all the methodology introduced so far is developed in a longitudinal frame-

work, in Chapter 14 we show that the proposed measures can be directly applied in

a multivariate cross-sectional setting.

Finally, in Chapter 15 we summarize the most important conclusions and we

further reflect on some questions in the area of psychometric validation of scales that

are still open for future research.



Chapter 2

Motivating Case Studies

In this chapter we introduce two clinical studies on the evaluation of psychopharma-

cological drugs, the first one for the treatment of schizophrenia and the second one

for the treatment of a major depressive disorder. In later chapters, newly developed

methods will be applied to study the reliability of the outcome scales that were used

for the evaluation of the patients in these trials.

2.1 Schizophrenia

Schizophrenia is a chronic, severe, and disabling mental illness. It has long been

described as a complex and heterogeneous condition with variable symptoms. Two

distinct syndromes in schizophrenia are often discerned; the positive syndrome is

composed of florid symptoms, such as delusions and hallucinations. The negative

syndrome is characterized by deficits in cognitive, affective and social functions in-

cluding blunting of affect, poverty of speech and passive withdrawal. Other groups of

symptoms are cognitive symptoms (disorganized thoughts, difficulty concentrating,

memory problems,...) and affective symptoms (mainly depression).

Schizophrenia affects about 1 percent of people all over the world. Onset of the

disorder typically occurs in late adolescence or early adulthood, with males tending

to show symptoms earlier than females. The cause of schizophrenia is unknown and

schizophrenia cannot be cured, but it can be treated. There are various theories to

explain the development of this disorder. Genetic factors may play a role, but also

7



8 Chapter 2. Motivating Case Studies

psychological and social factors may have an influence.

The clinical study contains five double-blind randomized clinical trials, comparing

the effects of risperidone to conventional antipsychotic angents for the treatment

of schizophrenia. Since the label in most countries recommends that risperidone is

most effective in schizophrenia at doses ranging from 4 to 6 mg/day, we include

in our analyses only patients who received either these doses of risperidone or an

active control like haloperidol, levomepromazine, perphenazine, or zuclopenthixol.

Depending on the trial, treatment was administered for a duration of 4–8 weeks. For

example, in the international trials by Peuskens et al (1995), Chouinard, Jones, and

Remington (1993), and Hoyberg et al (1993) patients received treatments for 8 weeks;

in the study by Blin, Azorin, and Bouhours (1996) patients received treatments for

4 weeks, while in the study by Huttunen et al (1995) patients were treated over a

period of 6 weeks. The sample sizes were 453, 176, 74, 49, and 71, respectively.

Measurements were taken at baseline and, depending on the trial, after 1, 2, 3, 4, 6,

and 8 weeks.

Three different rating scales were used as outcome measures to assess the patient’s

condition: the Positive and Negative Syndrome Scale (PANSS), the Brief Psychiatric

Rating Scale (BPRS), and the Clinical Global Impression (CGI).

The Brief Psychiatric Rating Scale (BPRS) developed by Overall and Gorham

(1962) is one of the most widely used scales in psychiatric research. The original 16-

item instrument was expanded to 18 items in 1966. Each item represents a symptom

that is scored from 1 (not present) to 7 (extremely severe). The assessment is based

on interview with the patient and on observations of the patient’s behavior over the

previous 2 to 3 days or on reports of the patient’s behavior from family members or

carers.

The PANSS is composed of the entire BPRS supplemented by 12 items from the

Psychopathology Rating Schedule (Sing and Kay 1975), resulting in a 30-item instru-

ment (Kay, Fiszbein, and Opler 1987). The scale was developed to provide a bal-

anced representation of positive and negative symptoms. The positive-and negative-

symptom item groups are often reported separately. Each item is scored on the same

seven-point severity scale as used in the BPRS.

The CGI (Guy 1976) is a global assessment tool and is designed to assess global

severity of illness and change in the clinical condition over time. The scale is used

widely in psychopharmacology trials, and it is not specific for schizophrenia. There

are three subscales; severity of illness, global improvement, and efficacy index. The
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Figure 2.1: Schizophrenia data. Mean profiles (top) and individual profiles for 20

randomly selected patients (bottom).

global improvement scale measures the change versus baseline measurement on a scale

with scores ranging from 1 (very much improved) to 7 (very much worsened).

The study data are illustrated in Figure 2.1, based on the first trial (Peuskens et

al 1995). The three graphs on top show the mean profiles over time for the three

different rating scales. It can be seen that on average the total scale scores decrease

over time, indicating that patients improve. The graphs below plot the individual

profiles of 20 randomly selected patients, illustrating that different patients evolve in

fairly different ways. It can also be seen that not for all patients all six measurements

were taken.
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2.2 Major Depressive Disorder

Major depression is a serious medical illness. Unlike normal emotional experiences of

sadness, loss, or passing mood states, major depression is persistent and can signifi-

cantly interfere with an individual’s thoughts, behavior, mood, activity, and physical

health. There is not one specific way that people look and behave when they have

major depression. However, most people will either have depressed mood or a general

loss of interest in activities they once enjoyed, or a combination of both. In addi-

tion they will have other physical and mental symptoms that may include fatigue,

difficulty with concentration and memory, feelings of hopelessness and helplessness,

headaches, body aches, and thoughts of suicide.

Among all medical illnesses, major depression is the leading cause of disability in

the western world. In adults, major depressive disorder affects twice as many women

as men. Within an entire lifetime, major depression will affect 10 to 25 percent of

women and 5 to 12 percent of men. At any one point in time, between 5 and 9 percent

of women and between 2 and 3 percent of men are likely to be clinically depressed.

There is no single cause of major depression. Psychological, biological, and envi-

ronmental factors may all contribute to its development. Scientists have also found

evidence of a genetic predisposition to major depression. Whatever the specific causes

of depression, scientific research has firmly established that major depression is a bi-

ological, medical illness. Although major depression can be a devastating illness, it is

highly treatable. Between 80 and 90 percent of those diagnosed with major depression

can be effectively treated and return to their usual daily activities and feelings.

The case study data come from two identical randomized double-blind clinical

trials to investigate the efficacy of duloxetine in the treatment of major depressive

disorder (study 5 and study 6 in Mallinckrodt et al 2003). The primary efficacy mea-

sure was the total score on the Hamilton Depression Rating scale (HAMD). Secondary

measures were the total scores on the Hamilton Anxiety Rating Scale (HAMA) and

the Montgomery-Åsberg Depression Rating Scale (MADRS). The first trial contained

a total of 354 patients of which 90 were assigned to the placebo group, 91 received

Duloxetine (40 mg/d), 84 received Duloxetine (80 mg/d) and 89 received Paroxetine

(20 mg/d). The sample size of the second trial was 353 with 89, 86, 91, and 87 pa-

tients in the respective treatment groups. Measurements were taken at baseline and

after 1, 2, 4, 6, 8 and 10 weeks.

The HAMD scale was developed in the late 1950s to assess the effectiveness of the
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first generations of antidepressants. The scale quickly became the standard measure

of depression severity for clinical trials of antidepressants and is until now the most

commonly used measure for depression. The original rating form included 21 items,

although Hamilton (1960) indicated that only 17 items should contribute to the total

scale score because 1 of the last 4 items represented depressive type rather than

depression severity, and 3 other items did not occur with sufficient frequency. Nine

of the 17 items are rated from 0 to 4, whereas 8 items are rated 0 to 2. Several other

versions have been developed later on, but the most commonly used version is the

17-item scale.

Concurrently, Hamilton (1959) developed one of the first rating scales to quantify

the severity of anxiety symptomatology: HAMA. The scale consists of 14 items, each

defined by a series of symptoms. Each item is scored on a scale of 0 (not present)

to 4.

Several conceptual and psychometric problems with the HAMD scale have been

described in the literature. The MADRS was designed to address the limitations of

the HAMD scale, and was supposed to measure contemporary definitions of depression

and to be more sensitive to change (Montgomery and Åsberg 1979). The scale is a

10-item checklist.

Figure 2.2 illustrates the depression data based on the first trial. The mean pro-

files on top illustrate that on average patients improve over time, in all the treatment

groups. The individual profiles of 20 randomly selected patients illustrate that not

only between different patients large differences appear, but also the profiles of indi-

vidual patients can be rather unstable.
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Figure 2.2: Depression data. Mean profiles (top) and individual profiles for 20 ran-

domly selected patients (bottom).



Chapter 3

Classical Approach to

Reliability

In Chapter 1 we have seen that research on the measurement of unobservable human

phenomena dates back more than one hundred years. Psychometric methods have

been developed to assess the quality of such measurements. In this chapter we sum-

marize some of the most important contributions to the study of reliability. We will

also stress the importance of having reliable measurements.

3.1 Early Psychometric Literature

The first attempt to quantify the reliability of measurements was carried out by

Charles Spearman at the beginning of the 20th century. The concept of correlation

was already known, but Spearman was the first to consider various hidden underlying

causes affecting the true correlation. He proposed a formula to correct for attenuation

when finding the true relationship between two variables (Spearman 1904).

In 1910, Spearman introduced the term reliability coefficient as “the correlation

between one half and the other half of several measures of the same thing”. The

Spearman (1910) and Brown (1910) computational formula for estimation of reliability

is based on splitting the test into two halves, a and b, typically by selecting the odd

13
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and the even numbered items, to obtain the split-half coefficient of reliability

ρ =
2rab

1 + rab
,

where rab equals the Pearson correlation between the obtained scores on the two

halves. The constant 2 in the numerator of the formula is associated with the fact

that the original test was halved. As the result was an estimate of the reliability of a

test twice as long as each half, the formula became known as a prophecy formula. In

a more general form, the Spearman-Brown formula can be written as

ρ =
kρXX′

1 + (k − 1)ρXX′

,

where ρ is the reliability of a composite of k parallel tests, and ρXX′ is the correlation

between two parallel tests which is assumed to be constant for all pairs of tests. When

all the items are interpreted as separate tests, ρ is the reliability of a test consisting

of k items, and the ρXX′ is the common reliability of the items. This formula clearly

shows that the reliability of a test depends on the true underlying correlation across

items as well as on the number of items. In fact, it illustrates that the reliability of a

test is an increasing function of its number of items.

Apart from the assumption of equal correlations between all pairs of tests, the

Spearman-Brown formula for composite tests further assumes that these tests all

measure the same dimension equally (e.g., an assortment of math problems of equal

difficulty), and that all test variances are equal. These strong assumptions underlying

the Spearman-Brown formula have led to many criticisms, but despite this, the for-

mula was used in the psychological, educational, and sociological research for decades.

The method was simple and no real alternative appeared to exist. For a long time in

a pre-computers era, simplicity was an important issue, because the calculations were

done mostly by hand.

In 1937, Kuder and Richardson introduced a collection of new reliability measures,

of which one became especially popular: the Kuder-Richardson formula 20 or, KR-20

for dichotomous items

ρ =
k

k − 1




1 −

k∑

j=1

pjqj

σ2
u




,

with k the number of items, pj is the proportion of correct responses on item j,

qj = 1 − pj , and σ2
u the variance of the total score. In this approach, items are



15

compared with each other, rather than comparing one half of the items with the

other half. It can be shown mathematically that the Kuder-Richardson reliability

coefficient is actually the mean of all split-half coefficients resulting from different

splittings of a test. Alternatively, KR-21 assumes that all the items are equally

difficult and its expression is very similar to the one of the KR-20 but substituting

pi by the average proportion of correct responses. For both measures it is assumed

that all items measure the same thing. Thanks to ease of calculation and uniqueness

of estimate, compared to split-half methods, the KR-20 became a classic tool for the

evaluation of reliability.

Alternative forms of the formula were suggested, but the most famous variation,

known as alpha, was presented by Cronbach (1951). Cronbach’s alpha extends the

previous measure to non-dichotomous items, and equals KR-20 in the dichotomic case

α =
k

k − 1




1 −

k∑

j=1

σ2
xj

σ2
u




.

Here σ2
xj

denotes the variance of the jth item. As previous proposals, this coefficient

was introduced as a measure for reliability. However, only under quite restrictive con-

ditions the coefficient α is an estimate of the reliability of a composite measurement.

Whenever these assumptions are not met, alpha only provides a lower bound to the

reliability (Novick and Lewis 1967). Nevertheless, many textbooks in psychology and

education, as well as practical investigations of test reliability, continued to regard

coefficient alpha as an estimator of reliability. In the years to follow, test theorists

began to think of coefficient alpha, as well as of its predecessors, as mere measures of

internal consistency or item homogeneity. High values then indicate that the items

in the test form a relatively homogeneous set.

3.2 The Classical Test Theory

Much of the literature on reliability originates in the classical test theory (CTT).

Important contributions in this field came from many scholars, such as Spearman,

Yule (1912), Guttman (1945, 1953), and Gulliksen (1950). However, most referred to

in this context is the work of Novick (1966) and Lord and Novick (1968).
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In CTT, the outcome of a test for subject i, i = 1, . . . , n, is modelled as

Xi = τi + εi, (3.1)

where Xi represents the observed score, τi is the true score and εi the corresponding

measurement error. One rarely thinks of τi as an actual true score, but it is often de-

fined as the expected value of Xi if the subject were remeasured an infinite number of

times. Further, it is assumed that the measurement errors are mutually uncorrelated

as well as uncorrelated with the true scores. Under these assumptions

Var(Xi) = Var(τi) + Var(εi).

The reliability of a measurement instrument is then defined as the ratio of the true

score variance to the observed score variance

R =
Var(τi)

Var(Xi)
=

Var(τi)

Var(τi) + Var(εi)
. (3.2)

It also equals the squared correlation between the observed and the true scores

Corr(Xi, τi)
2 =

[Cov(Xi, τi)]
2

Var(Xi)Var(τi)
=

Var(τi)

Var(Xi)
= R (3.3)

as well as the correlation of two parallel tests, i.e., two tests with equal true scores

and equal error variances

Corr(X1i, X2i) =
Cov(X1i, X2i)√

Var(X1i)
√

Var(X2i)
=

Var(τi)

Var(τi) + Var(εi)
= R. (3.4)

From the theoretical definition of reliability (3.2), and taking into account that vari-

ances cannot be negative, the upper and lower limit of the reliability coefficient can

easily be derived as 0 ≤ R ≤ 1, and R = 0 if the test contains nothing but measure-

ment error. On the other hand, if no measurement error is present, the observed-score

variance equals the true score variance and the measurement instrument is perfectly

reliable (assuming that there is true-score variation). In this scenario the reliability

coefficient reaches its upper bound, i.e., R = 1. It is important to point out that

the observed-score variance is population dependent, as is the reliability coefficient.

Indeed, the variability of the true scores is a population-specific parameter and there-

fore, every time a scale is used in a new population its reliability should be reassessed.

Notice also that in the previous modelling framework, the true scores τi are un-

observable latent quantities what makes the direct estimation of their variability im-

possible. As a consequence, the direct estimation of the reliability coefficient (3.2) is



17

also problematic. One way to circumvent this problem is to estimate reliability by

correlating the test with a parallel test, as expressed in (3.4). Such parallel tests might

be formed by different versions of a test containing different items but measuring the

same underlying construct, for example two halves of a test, or by repeating the same

test more than once. However, in both situations it might be practically unfeasible

to obtain the required conditions of equal true scores and equal error variances.

To overcome the stringent assumptions of the parallel model, relaxations to the

model have been proposed. Two tests are said to be tau-equivalent if the true scores are

equal but the error variances differ. When the true scores only differ by a constant,

the tests are said to be essentially tau-equivalent. It is under the assumptions of

the essentially tau-equivalent model that Cronbach’s alpha equals the reliability of

a composite measurement (Novick and Lewis 1967). A major limitation of essential

tau-equivalence is that it requires equal covariances between test parts, which will

rarely be encountered in practice. A further relaxation is allowed in the case of

congeneric tests: the true scores of the tests can now be linearly related so that true

score variances, error variances and population means can differ.

The analysis of congeneric measures, as developed by Jöreskog (1971), can serve as

an alternative to coefficient α if items are suspected to have different true variances.

Congeneric measures have pairwise perfectly correlated true scores, but may have

different true variances. For congeneric tests, the true scores can be written in terms

of a latent variable τ . This implies that for test j we have

τj = µj + βjτ.

Further, the observed score is expressed as the sum of the true score and the error

Xj = µj + βjτ + εj .

Without loss of generality, Var(τ) can be set to 1. The observed variance for the jth

test can then be written as

Var(Xj) = β2
j + σ2

j

Hence, the reliability of the jth test is equal to the square of the slope divided by the

total variance

ρjj =
β2

j

Var(Xj)
=

β2
j

β2
j + σ2

j

. (3.5)

In some situations one may want to combine some of the tests into a linear composite.

If a′ = (a1, a2, . . . , ap) is a vector of relative weights then we can define the new test
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as Y = a′X = a′µ+ (a′β)τ + a′ε, and the reliability of Y is

ρ =
(a′β)2

(a′β)2 + a′Θa
,

where Θ a diagonal matrix with error variances. Maximum likelihood estimation

is proposed by Jöreskog for parameter estimation. Note that if a equals a vector

of ones the composite is formed by the simple sum of test scores. The weights can

further be selected in such a way that the reliability of this composite measurement

is maximized.

With more than three tests, the assumption that tests are congeneric can be

evaluated. It is possible that the congeneric model does not fit, for example when

the one-factor model is not valid, i.e., when all items or subtests are not measuring

exactly the same underlying construct. Then a structural model with more than one

dimension can be fit. Werts, Rock, Linn and Joreskög (1978) tried to enhance the

procedure and find a way to estimate the reliability of a factorially more complex

composite. For a composite test composed of p tests they used the measurement

model

X = Bτ + ε,

where τ is a vector of order p of the true scores, B is a p × p identity matrix and ε

is a p-dimensional vector of the measurement errors. Further, they let Cov(ε) = Θ

(diagonal) and Cov(τ ) = Γ.

The true score vector τ is assumed to have an underlying factor model with k

common factors, so that τ = Λξ + η, where ξ is a vector of order k of common

factors, η is a vector of order p of the unique factors and Λ is a p× k matrix of factor

loadings. It is assumed that E(η) = 0, E(ξη′) = 0, Cov(η) = Ψ (diagonal), and

Cov(ξ) = Φ. The covariance matrix of the p observed variables is given by

Σ = BΓB′ + Θ = B(ΛΦΛ′ + Ψ)B′ + Θ,

the identity matrixB is there only for reasons of compatibility with earlier introduced

models by the same authors. The reliability of a composite test Y = a′X, with a a

vector of weights, is then

ρ =
a′Γa

a′Σa
=
a′ΛΦΛ′a+ a′Ψa

a′Σa
.

In this proposal, the effect of the unique variances is included in the true variation.

Tarkkonen and Vehkalahti (2005) argue that this choice can cause problems in iden-

tification and they suggest to include the unique variance in the error variance.
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3.3 Estimating Reliability in Practice

The estimation of the reliability of an instrument will always rely on a repetition of

measurement results. This repetition can be achieved either by considering differ-

ent subtests or items on a single measurement occasion, or by repeating the whole

measurement. In Section 3.1, several simple methods have been described that can

be applied in the single-occasion case. For example, the KR-20 and KR-21 formu-

las resulted from attempts to determine reliability from a single administration of a

test. This quest held considerable appeal for many people, because the test-retest

and parallel-forms methods were time-consuming and expensive.

However, further research in this area has clearly shown that these methods quan-

tify the reliability of an instrument only when a restrictive set of assumptions is

satisfied. For instance, the Spearman-Brown formula requires parallel measurements,

whereas Cronbach’s α and KR-20 need essentially tau-equivalence. Whenever these

assumptions are not met, these methods provide merely a lower bound to reliability.

Additionally, the lower bound will be very poor, except for tests that are relatively

homogeneous or long (Novick and Lewis 1967). The value of the Cronbach’s α coeffi-

cient can even get negative if the sum of all item covariances is negative. Better lower

bounds than coefficient alpha have been found, such as λ4, proposed by Guttman

(1945), and the greatest lower bound (glb) to reliability, by Jackson and Agunwamba

(1977).

The methods described in Section 3.1 are nowadays mainly considered as estimates

for the internal consistency of an instrument, which indicates the homogeneity of the

items, or, an indication of how much they measure the same underlying construct.

A second approach is based on the idea of repeating the measurements using

the same test. An entire measurement can be repeated by either asking two different

raters to evaluate the same group of subjects, or by administering the same test to the

same subjects at two points in time. The former is referred to as inter-rater reliability,

the latter as test-retest reliability. The repeated measurements are then assumed to

be parallel (equal true scores and equal error variances). Following (3.4), reliability

can then be derived as the intraclass correlation (ICC). ICC may be conceptualized

as the ratio of between-groups variance to total variance and can be obtained from a

one-way analysis of variance with subjects as factor (Bartko 1966, Fleiss 1986). Note

that sometimes the product-moment correlation instead of ICC is used for estimating

reliability. ICC is preferred over Pearson’s correlation only when sample size is small
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(< 15) or when there are more than two tests (Shrout and Fleiss 1979).

Also for estimating the inter-rater reliability, it might be difficult to fulfill the

required assumptions. One rater might, for example, tend to give higher scores than

his colleague. In that case extensions can be made to a two-way analysis of variance.

Rater can then be considered as a random effect so that a two-way random effects

model is obtained. If rater is considered as fixed, a two-way mixed effects model can

be applied (Dunn 1989).

Test-retest reliability has its specific difficulties as well. Generally it is found that

the shorter the time interval the higher the estimate of reliability. For a simple repli-

cation study with two measurements, it is often advised to take the time interval

between two measurement occasions sufficiently short so that it is safe to assume that

the underlying process is unlikely to have changed. Off course, the appropriate length

of the interval depends on the stability of the trait that is being measured. Neverthe-

less, if both measurements are taken sufficiently close in time, it is also quite likely

that the rater will recall the previous ratings and the assessments will be influenced

by them. Usually the rater will give similar ratings in each of the replications, making

them appear more consistent than they in fact are (Dunn 1989, Streiner and Norman

1995). A second and related problem has to do with the assumption that the errors of

measurement are uncorrelated, while correlated error terms are very common among

repeated measurements (Bohrnstedt 1983).

A third problem is related to the assumption of equal true scores. Whenever

measuring living organisms, it is clear that the characteristics being measured might

change from one replication to another. In this case, stability of the trait or char-

acteristic being measured will be confounded with test reliability. If one wishes to

disentangle the effects of lack of stability from the effects of poor instrument relia-

bility, then more data are needed. Wiley and Wiley (1970) formulated a model in

which a subject’s true score at a particular moment is linearly related to the true

score of another moment of observation. At least three measurement occasions are

necessary to estimate the reliabilities at the different moments of observation. Inter-

estingly, this approach also shows that the reliability of a test may change with time.

Unfortunately, the approach does not allow for correlated measurement error across

time.
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3.4 Consequences of Low Reliability

In scientific research, population parameters are mostly estimated based on a random

sample. Statistical models include the sampling variation to correct for uncertainty

induced by the sampling process. A second source of uncertainty can be found,

however, in the measurement process, through the occurrence of random measurement

error. In many cases this source of uncertainty is ignored by the assumption that

subjects are measured without error.

Clearly, some variables are more likely to be measured without or with negligible

error, like many biological parameters, compared to others that need, for example,

subjective judgement of a clinician. In spite of a widely accepted biological basis for

many psychiatric disorders, no laboratory tests exist that can be used in treatment

efficacy evaluation in this area. As a consequence, psychopharmacological studies

generally rely on the use of rating scales for outcome measurement. Evaluation of the

impact of measurement error is therefore crucial in such studies.

Fleiss (1986) stated that “the most elegant design of a clinical study will not over-

come the damage by unreliable or imprecise measurement.” In clinical trials, one

typically wants to differentiate between treatments. However, if the reliability of the

outcome measurements is low, the ability to differentiate between the different sub-

jects in various treatment groups decreases. Fleiss (1986) and Lachin (2004) discuss

a number of consequences of low reliability in clinical studies. To start with, mea-

surement error may result in biased sample selection in clinical studies when patients

are selected with a minimum level of a certain measurement. Second, the correlation

between two variables, X and Y , is affected by the reliability with which they are

measured, as expressed by

Corr(τX , τY ) =
Corr(X, Y )√

RXRY

,

with τX and τY referring to the true scores of the two variables X and Y , and RX

and RY to the respective reliability coefficients. This expression is known as the at-

tenuation formula (Lord and Novick 1968). Knowing that reliability coefficients lie

between 0 and 1, the formula shows that the observed correlation might be seriously

decreased compared to the true correlation if one or both variables are measured with

considerable error. Further continuing to regression models, the reliability of a covari-

ate affects its estimated effect. There is a direct relationship between the reliability

of the measurement and the power of a study. Indeed, the lower the reliability of the
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measurements, the larger the sample size that is needed to achieve certain power. One

can easily show that for a paired t-test, the required sample size becomes n = n∗/R

where n∗ denotes the required sample size for a measurement without error. When

sample size calculations ignore information on the reliability of the measurements,

the power of the study might be lower than expected. Using unreliable measure-

ment scales can therefore conceal treatment effects and might lead to the rejection of

promising treatments.

Additionally, Lord and Novick (1968) link the concept of reliability to the one of

validity by proving that

Corr(X, Y ) ≤ Corr(τX , X) =
√

RX .

This means that the validity of a measure X in relation to a second measure Y cannot

exceed the square root of its reliability. The reliability of a measurement thus defines

an upper bound for the validity of this measurement.

In the present section we have mainly focussed on the impact of reliability on

scientific studies. However, besides its central role in scientific research, measurement

is also part of every day life and important decisions might be taken based on the

results of it. Think, for instance, of medical screening tests, or psychological tests as

part of a selection process for a job. Obviously, also in these situations the effect of

measurement error needs to be restricted to a minimum.



Chapter 4

Alternative Approaches to

Reliability

In this chapter, we briefly discuss two important methods in the field of psychometrics:

generalizability theory (G-theory) and item response theory (IRT). Both approaches

play a prominent role in research and applications and offer alternative visions on

how reliability can be defined and estimated.

Technically, classical, generalizability, and item response theory are not directly

comparable against each other because they have different foci. In IRT the interest

lies in the unobserved theoretical latent trait and the primary goal is to estimate

a subject’s score on this trait. In classical and in G-theory the interest lies in the

observed score from the test and one aims at evaluating the quality of this score by

estimating reliability coefficients and standard errors. Also, whereas the fundamental

unit of analysis for IRT is the item, the unit of analysis for both classical and G-theory

is the overall score.

In spite of the fact that G-theory was initiated more recently than IRT, the latter

is often referred to as the “modern test theory”; perhaps due to its many recent

expansions and its unique ability to work with modern computerized adaptive tests.

In the next section we will briefly describe the main ideas and concepts behind IRT.

23
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4.1 Item Response Theory

The central feature of item response theory is that it relates item responses to char-

acteristics of individual persons (latent traits) and characteristics of the assessment

(item parameters). The latent trait is the human capacity or attribute measured

by the test. Since most of the research has dealt with variables such as scholastic,

reading, and mathematical abilities, the generic term “ability” is often used in IRT to

refer to such latent traits. The most important item parameter is the item location

which, in the case of attainment testing, is referred to as the item difficulty. Often

also the discrimination of the item is estimated, that is, the degree to which the item

discriminates between persons in different regions on the latent continuum. For items

such as multiple choice, a third parameter can be introduced to account for the ef-

fect of guessing on the probability of a correct response. For example, in the three

parameter logistic (3PL) model (Lord 1980), the probability of a correct response to

item i is given by

pi(θ) = ci +
(1 − ci)

1 + e−Dai(θ−bi)

where θ is a person-specific random effect describing the latent trait the test tries

to assess (ability), ai denotes the item discrimination parameter, bi denotes the item

difficulty parameter, and ci is the guessing parameter. Further, D denotes a constant

with value 1.701 which rescales the logistic function to closely approximate the cumu-

lative normal ogive. The model was originally developed using the normal ogive but

the logistic model with the rescaling provides virtually the same results while greatly

simplifying computations involved with its application. Simplifications with respect

to the 3PL model are the two parameter logistic (2PL) model (Birnbaum 1968) in

which ci = 0 and thus no correction for guessing is made, and the one parameter

logistic (1PL) model where ci = 0 and ai = a, i.e., all items are assumed to have

equal discrimination capacity. The 1PL model is sometimes also referred to as the

Rasch model. Even though the development of the Rasch model (Rasch 1960) was in-

dependent of the 1PL model, they both have similar features and are mathematically

equivalent. Extensions of these models have been made, among others for polytomous

responses. Actually, most extant item response models are special cases of generalized

linear or nonlinear mixed models (GLMM and NLMM), which form two general and

flexible model families for repeated categorical data (De Boeck and Wilson 2004).

Many IRT models are based on the assumption that the items are measuring a

single continuous latent variable. The unidimensionality of a scale can be evaluated
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by performing a factor analysis to explore the factor structure underlying the ob-

served covariation among item responses. However, extensions to multidimensional

IRT models have been made. A second assumption of IRT models is local indepen-

dence: when the abilities influencing the test performance are held constant, subjects’

responses to any pair of items are assumed to be statistically independent. When this

property holds items can be linked together on a common metric allowing the cre-

ation of questionnaires that may use a different set of items depending on the target

audience of responders. In other words, two responders that administered two dif-

ferent assessments can have scores comparable on a similar metric. IRT is therefore

the foundation of computerized adaptive testing. For parameter estimation, marginal

maximum likelihood (Bock and Aitkin 1981) or conditional maximum likelihood (An-

dersen 1972) are frequently used, however, a Bayesian approach is available as well

(Swaminathan and Gifford 1986).

Compared to CTT, IRT has a different view on the concept of reliability. It is

assumed that precision is not uniform across the entire range of item scores. Scores at

the edges of the test’s range, for example, generally have more error associated with

them than scores closer to the middle of the range. Item response theory uses the con-

cept of item and test information to replace reliability. Information is also a function

of the model parameters. For example, according to Fisher’s information theory, the

item information supplied in the case of the Rasch model for dichotomous response

data is simply the probability of a correct response multiplied by the probability of

an incorrect response (qi)

I(θ) = pi(θ)qi(θ).

The standard error of estimation is then the reciprocal of the test information, at a

given trait level

SE(θ) =
1√
I(θ)

.

Thus more information implies less error of measurement. For other models, such as

the two and three parameter models, the discrimination parameter plays an important

role in the function. The item information function for the two parameter model is

I(θ) = a2
i pi(θ)qi(θ).

In general, item information functions tend to look bell-shaped. Highly discriminating

items have tall, narrow information functions; they contribute greatly but over a

narrow range. Less discriminating items provide less information but over a wider
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range. Because of local independence, item information functions are additive. Thus,

the test information function is simply the sum of information functions of the items

on the test (Lord 1980).

Item response theory has recently been the center of much attention among psy-

chometricians and test specialists. One possible reason for such attention, is the fact

that IRT has gained considerable visibility for its use in many prominent, large-scaled

testing programs, such as the National Assessment of Educational Progress (NAEP),

the Scholastic Aptitude Test (SAT), and the Graduate Record Examination (GRE) in

the United States. Additionally, it has also been applied in large international assess-

ment programs such as the Third International Math and Science Survey (TIMSS)

and the Programme of International Student Assessment (PISA). Another possible

reason for the attention given to IRT is the technical challenges presented by its many

new statistical developments and developments in computer and other technologies

(Suen and Lei 2007). However, in spite of the recent attention given to IRT, the

classical test theory and G-theory remain important tools in many commercial, psy-

chological and academic tests; particularly in small-scaled testing programs. In the

following section, we will introduce some of the main ideas underlying G-theory.

4.2 Generalizability Theory

Generalizability Theory was originally introduced by Cronbach and colleagues (1963,

1972) in response to the limitations of the true-score model of classical test theory.

While this model may be reasonable for carefully equated parallel forms of tests,

it is overly restrictive and often unrealistic in situations where, for instance, raters

differ in the central tendency and variance, observations depend on the context in

which they occur, and constructs are obviously heterogeneous. In classical test theory

an observation is assumed to be a combination of an individual’s true score and a

random measurement error. The sources of variation in the measurements are not

explicitly modelled. In G-theory one sets out to systematically investigate the sources

of variation of measurements. Each of the multiple forms of reliability that were

mentioned in the previous chapter identifies and quantifies only one source of error

variance at a time.

G-theory is a theory regarding the adequacy with which one can generalize from

a sample of observations to a universe of observations from which the sample was

drawn. This theory acknowledges that the reliability of an observation depends on the
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universe about which the investigator wants to draw inferences. Because a particular

measure may conceivably be generalized to many different universes, a measure may

vary in how reliably it permits inferences about these universes and, therefore, be

associated with different reliability coefficients. “Facets” is the term used in G-theory

for the variables or factors that might contribute to the variability in the observations.

Examples of facets are time, alternate test forms, raters, etc. The term “conditions”

is used to refer to the levels of the factors. Facets may be considered fixed or random.

If fixed, the specified conditions are the only conditions of interest; one generalizes

only to them. If random, one generalizes to a population which has been sampled.

In that case the levels of the facet included in the generalizability study must be

representative of the population (universe).

Let us start by considering a test X composed by a set of nβ different items

I = {i1, i2, . . . , inβ
}. Further, let us assume that the following measurement model

holds

Xij = µ + αi + βj + εij (4.1)

αi ∼ N(0, σ2
α)

βj ∼ N(0, σ2
β)

εij ∼ N(0, σ2
ε)

αi, βj , εij are independent for all (i, j),

where Xij denotes the observed score for subject i at item j, µ denotes a general mean,

αi denotes the subject’s effect, βj denotes the item’s effect, and εij is the measurement

error. Note that model (4.1) could be enlarged by adding an interaction term (αβ)ij .

However, given the fact that every subject answers every item only one time, this

interaction term will be essentially unidentifiable with respect to the error term εij .

In G-theory, the items that conform the test are considered a sample from a generic

population of items. Even though thinking of a population of items can seem at first

odd, this assumption emanates naturally from a model that contemplates a random

effect for the item. Basically, we should think about this population as the one defined

by the set of all items of potential interest for the domain under investigation.

In practice, decisions usually will be based on multiple observations rather than

on a single observation. G-theory typically uses the mean score metric (e.g., mean of

multiple item scores) rather than the total score metric (e.g., sum of multiple item

scores). We will denote the mean of the observed scores for subject i over a sample
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of nβ items I by X̄i·, i.e.,

X̄i· =
1

nβ

nβ∑

j=1

Xij .

G-theory recognizes that the decision maker might want to make two types of

decisions based on a behavioral measurement: relative or norm-referenced and abso-

lute or domain-referenced. A relative decision concerns the relative ordering of the

individuals (e.g., norm-referenced interpretations of test scores). In this scenario the

score of a subject i (X̄i·) is only used to evaluate his/her relative performance with

respect to other individuals. Therefore, we are not interested in the absolute value

of the score X̄i· but only in how it ranks with respect to other scores X̄i′·. If all the

individuals answer the same set of items I then the complexity of the items, captured

by the random effects βj , becomes irrelevant. In this case we can ignore the effect of

the items and we can condition on I. If we calculate the average of the Xij over I

then from (4.1) we get

Yi = µ + αi + ε̃i, (4.2)

where Yi = X̄i· and ε̃i = β̄· + ε̄i·, with β̄· =
1

nβ

nβ∑

j=1

βj and ε̄i· =
1

nβ

nβ∑

j=1

εij .

Notice that if subjects i and i′ are evaluated using the same set of items I then

Yi − Yi′ = (αi − αi′ ) + (ε̄i· − ε̄i′·),

and this expression clearly shows that the effect of the items is irrelevant for relative

decisions. We can then condition on I which leads to

Var(Yi|I) = Var(αi|I) + Var(ε̃i|I).

Owing to the independence between αi and βj , Var(αi|I) = σ2
α. Further,

Var(ε̃i|I) = Var(β̄·|I) + Var(ε̄i·|I).

Obviously, conditional on I, β̄· is a constant, hence Var(β̄·|I) = 0. On the other hand,

Var(ε̄i·|I) =
1

n2
β

nβσ2
ε =

σ2
ε

nβ
.

This implies that the variance of the observed scores is

Var(Yi|I) = σ2
α +

σ2
ε

nβ
.
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Using model (4.2), we can now define the generalizability coefficient for relative deci-

sions, which is analogous to the reliability coefficient in classical test theory, i.e.,

Eρ2 =
σ2

α

σ2
α +

σ2
ε

nβ

. (4.3)

Note that, like with the Spearman-Brown prophesy formula, (4.3) is an increasing

function of the number of items. Therefore, the larger the number of items we condi-

tion on, the more reliable the instrument will be for relative discrimination.

On the other hand, an absolute decision focuses on the absolute level of an individ-

uals’s performance independently of the performance of other subjects. Hence, in this

scenario we are mainly interested in the absolute interpretation of X̄i·, regardless the

values of other scores X̄i′·. Obviously, in this setting the complexity of the items plays

a prominent role and, as a consequence, we can not condition on I. Like before, we

will base our calculations on model (4.2). The main difference is that in the present

setting β̄· will not have variance zero because we are not conditioning on I. We then

have

Var(Yi) = Var(αi) + Var(ε̃i),

where, similar as before, Var(αi) = σ2
α and

Var(ε̃i) = Var(β̄·) + Var(ε̄i·)

=
1

n2
β

nβ∑

j=1

Var(βj) +
1

n2
β

nβ∑

j=1

Var(εij)

=
1

n2
β

nβσ2
β +

1

n2
β

nβσ2
ε =

σ2
β

nβ
+

σ2
ε

nβ
.

The variance of the observed scores takes then the form

Var(Yi) = σ2
α +

σ2
β

nβ
+

σ2
ε

nβ
,

which leads to the absolute reliability coefficient, also called the index of dependability

Φ =
σ2

α

σ2
α +

σ2
β

nβ
+

σ2
ε

nβ

. (4.4)

All the previous calculations can be extended in a straightforward manner to a setting

where more facets are included in model (4.1) (Brennan 2001, Webb, Shavelson and

Haertel 2007).
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In G-theory two different types of studies are identified. In a generalizability (G)

study, a sample is used to estimate the variance components related to different facets

of measurement error. A decision (D) study uses the information provided by the G-

study to design the best possible application of the measurement for a particular

purpose. The number of items used in a D-study does not necessarily need to equal

the number of items used in the G-study. Therefore the previous expressions are also

valid if a different number of items n′
β is used.

The flexibility of the modelling framework used in G-theory has allowed its appli-

cation to different types of data structure. For instance, it has been used to evaluate

reliability in a longitudinal framework. Nevertheless, longitudinal data present some

of the most difficult challenges for evaluating reliability, an issue that will be further

discussed in the next chapter.



Chapter 5

Setting the Modelling

Framework

Frequently in clinical practice and clinical trials patients are measured repeatedly over

time. For instance, in psychiatry, this type of longitudinal evaluations constitutes a

very powerful tool to obtain precise diagnostics as well as to evaluate the efficacy of

new treatments or therapeutic procedures. However, longitudinal studies also bring

some methodological challenges, especially from a statistical modelling perspective.

Indeed, in such studies, patients usually exhibit a systematic change or evolution

over time in addition to an individualized evolution that is characterized by corre-

lated subject-specific effects. Moreover, serial correlation and heterogenous variance

components are frequently present as well (Verbeke and Molenberghs 2000). A lon-

gitudinal modelling framework should be able to address the special characteristics

of this type of data in order to avoid estimation bias. Chapter 3 has clearly outlined

the restrictions of the classical test theory with regards to complex data structures.

But also the more flexible generalizability theory has some limitations when repeated

measurements need to be analyzed (Shavelson, Webb and Rowley 1989). Essentially,

the G-theory modelling framework can be applied to a longitudinal setting only if

strong and unrealistic assumptions are made. In what follows, we will address in

some detail these assumptions and illustrate their restrictive nature.

No true-score change over time: One of the main problems we face when applying

31
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G-theory to a longitudinal framework is the need to assume that the true scores are

stable across time. In most of the longitudinal studies, such an assumption will be

unrealistic. Indeed, most longitudinal studies are designed to model developmental

changes or evolutions over time, not stability. It is also very implausible that patients

in a clinical trial or in medical practice will not exhibit a systematic change over time

as a result of the treatment they received or any other intervention. Ignoring this time

evolution in the model will result in biased estimates for the variance components

(Diggle, Liang, and Zeger 1994, Verbeke and Molenberghs 2000) and this will lead to

biased estimates of the G-coefficients. Typically, the systematic variability not taken

into account in the mean structure of the model will be “absorbed” into the variability

of the measurement error and the actual reliability will be underestimated.

Uncorrelated error structure: Correlated error structures occur frequently in lon-

gitudinal studies. Usually, observations close in time exhibit a stronger association

than observations that are further apart. Ignoring this type of correlation will induce

bias in the variance-component estimates and, as a consequence, in the generalizabil-

ity coefficients. This has been described by some authors. For example, Smith and

Luecht (1992) investigated the effect of ignoring correlated errors in a longitudinal

framework. Their results show that not taking into account this correlation will lead

to an overestimation of the variance of the subject-specific parameter and an over-

estimation of the generalizability coefficient as a result. In their simulations, Smith

and Luecht (1992) considered a stationary correlated error structure, i.e., the error

terms were correlated but they had equal variance over time. Bost (1995) studied

this issue further by examining the effect of both stationary and non-stationary au-

toregressive error covariance matrices. His results showed that, in the presence of

non-stationary autoregressive error, the G-coefficients were usually underestimated

and the magnitude of the bias increased with the number of observations. Clearly,

these results indicate that variance-component estimates and the resulting generaliz-

ability coefficients can be severely biased when longitudinal data are analyzed under

the assumption of independent errors across time. Incorrectly assuming a stationary

variance for the error structure also induces bias. Unfortunately, the classic modelling

paradigm used in G-theory does not take into account this type of associations and

assumes equal variance over time for the error terms.

Uncorrelated random effects : Another assumption underlying the G-coefficients

is the independence of the random effects used in the model. This assumption can

also be unrealistic in many longitudinal studies. Let us consider, for example, a
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study in which patients have both a random intercept, characterizing their status at

the beginning of the study, and a random slope, describing their personalized time

evolution. Typically, the time evolution of a patient is related to his/her initial status

or condition. Ignoring this association will once again induce bias in the estimation

of the variance components and G-coefficients.

Missing data problem: Missing data are an omnipresent problem in clinical re-

search. Frequently, in longitudinal studies, some patients miss one or more of the

measurements originally planned or even drop out from the study altogether after a

number of visits, thus creating a missing data problem. We will address this point,

but first set out with some preliminary reflections on the estimation method. In

its most classical formulation, G-theory estimates the variance components by calcu-

lating the mean square for each effect from an analysis of variance model and then

equating each source to its expectation (Cronbach et al. 1972, Shavelson and Webb

1991, Brennan 2001). This expected mean square (EMS) estimation method for the

variance components in G-theory has many severe limitations specifically in a longitu-

dinal setting. For instance, the EMS method frequently produces negative estimates

for the variance components which has led to ad hoc rules, such as setting nega-

tive variance estimates equal to zero (Cronbach et al. 1972). An even more serious

limitation for its application in a longitudinal framework is that the EMS is only ap-

plicable to balanced designs without missing data (Marcoulides 1987, Searle, Casella

and McCulloch 1992). Further, the EMS estimation procedure assumes that the er-

ror terms are independent across time. In situations where the balance of the study

has been broken due to missing values, it has often been recommended to randomly

discard some observations in order to recover balance (Shavelson and Webb 1991).

This approach will not only imply an important loss of information but it also fully

ignores the missing data generating mechanism. Indeed, such a procedure will only

be valid under a missing completely at random mechanism (MCAR), a very strong

and unrealistic assumption (Little and Rubin 2002, Verbeke and Molenberghs 2000,

Molenberghs and Kenward 2007). In general, like all frequentist methods, EMS will

be biased when data are incomplete, unless the strong and hence unrealistic MCAR

assumption holds. It is fair to point out that, if all other assumptions are met, the

classical G-theory analysis of variance model with random effects could still be applied

in an incomplete data setting. However, we should then abandon the EMS procedure

and use instead a likelihood or Bayesian approach.

Many proposals have appeared over the last decades to solve some of these mod-
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elling limitations. They are frequently based on path analysis or structural equations,

and have been developed to estimate reliability in a longitudinal setting dropping the

assumption of stability for the true scores (Heise 1969, Jagodzinski and Kühnel 1987,

Werts et al 1980, Wiley and Wiley 1970). In any event, to dodge the requirement of

true score stability when estimating reliability, these models often impose additional

assumptions that may also have questionable validity in a longitudinal setting. For

example, it is usually assumed that the changes in the true scores across time follow a

simplex pattern (Heise 1969, Wiley and Wiley 1970, Werts, Linn, and Joreskøg 1977).

Some of these approaches also make strong assumptions regarding the pattern of

measurement errors across time, for instance, they assume equal reliabilities over time

(Heise 1969), equal error variances over time (Wiley and Wiley 1970) or uncorrelated

error structures (Tisak and Tisak 1996). Raykov (2000) criticizes the equal-reliability

assumption of Heise (1969) and proposed a model that circumvents this limitation.

However, his model still assumes uncorrelated error terms, another doubtful assump-

tion in several longitudinal studies. Many other authors have discussed the merits

and disadvantages of using a first-order autoregressive structure to describe within-

subject evolution over time (Kenny and Zautra 1995, Hertzog and Nesselroade 1987,

Cole, Martin and Steiger 2005). The model discussed by Kenny and Zautra (1995)

decomposes the observed scores as an overall constant that is allowed to change over

time but does not depend on any covariate, a trait or subject-specific parameter, a

term representing the state and a random error. This model is known as the trait-

state-error model (TSE) and it assumes that the variance explained by each source is

the same for all time points. Another important assumption is that the TSE imposes

a first-order autoregressive structure for the state factor. Hertzog and Nesselroade

(1987) criticized the first-order autoregressive assumption and claim it is not flexible

enough to be applied to some data structures.

In the present work, we will outline our proposals for quantifying reliability within

a linear mixed models framework. This modelling paradigm will allow us to incorpo-

rate many of the previously discussed features, such as varying true scores, correlated

error terms, including different types of serial correlation, heteroscedastic error com-

ponents, and correlated random effects, in a very natural way (Laird and Waire 1982,

Verbeke and Molenberghs 2000). Accounting for all of these complexities within the

same modelling paradigm is of the utmost importance to guarantee unbiased results

when estimating reliability. For instance, we can incorporate the systematic vari-

ability of the true scores into the fixed-effects structure of the model in a very flex-
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ible manner using, for example, fractional polynomials (Royston and Altman 1994)

or non-parametric approaches such as splines (Verbyla et al 1999). Unlike in the

model of Kenny and Zautra (1995), we could incorporate many different structures

to account for serial correlation like Gaussian, first-order autoregressive, exponential,

m-dependent structures, among others. The assumption of equal error variance over

time can also be dropped and fully general variance functions can be considered. A

linear mixed-effects model can generally be written as

Y i = Xiβ +Zibi + ε(1)i + ε(2)i, (5.1)

bi ∼ N(0,D),

ε(1)i ∼ N(0,ΣRi),

ε(2)i ∼ N(0,THiT),

b1, . . . , bn, ε(1)1, . . . , ε(1)n, ε(2)1, . . . , ε(2)n independent,

where Y i is the pi-dimensional vector of responses for subject i, with n denoting the

number of subjects, pi denoting the number of observations per subject, and Xi and

Zi denoting fixed (pi × q) and (pi × r) dimensional matrices of known covariates.

Further, β denotes the q-dimensional vector containing the fixed effects, bi is the

r-dimensional vector containing the random effects, and ε(2)i is an pi-dimensional

vector of components of serial correlation. The error ε(1)i is an pi-dimensional vector

of residual components. Moreover,D is a general symmetric (r×r) covariance matrix,

ΣRi is an (pi × pi) covariance matrix, Hi is an (pi × pi) correlation matrix, and

T = diag(τj). In many cases, however, τj = τ for all j, so that THiT = τ2Hi.

The matrices Hi and ΣRi depend on i only through their dimension pi, i.e., the set

of unknown parameters will not depend upon i. For a more complete and detailed

account about linear mixed models we remit the reader to, for example, Diggle, Liang

and Zeger (1994) and Verbeke and Molenberghs (2000).

Model (5.1) implies the marginal model Y i ∼ N(Xiβ,V i), where

V i = ΣDi
+ Σi (5.2)

with ΣDi
= ZiDZ

′
i and Σi = THiT + ΣRi. Note that the total variability is

decomposed into a component stemming from the subject-specific random effects and

a residual variability component. The remaining variability is the sum of a serial

correlation part and an error part, but we will generically refer to it as the error

variability.
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Based on this modelling framework the next chapter proposes an extension of the

concept of reliability to a longitudinal setting, using a generalization of the intraclass

correlation coefficient.



Chapter 6

Generalizing the Intraclass

Correlation Coefficient

One frequently used method to estimate reliability is to set up a simple replication

study, and to calculate the intraclass correlation coefficient (ICC) based on an analysis

of variance model with subject as factor. This procedure is based on the equivalence

between reliability and correlation that emanates from classical test theory and that

is expressed in (3.4). This method is valid under the assumptions of parallel mea-

surements. Specifically, these assumptions include that (1) the errors are mutually

uncorrelated, (2) the errors are uncorrelated with the true scores, (3) the error vari-

ances are homogeneous, and (4) the true scores are stable over the two test occasions.

In the present chapter, we investigate how the ICC can be generalized as a mea-

sure for reliability in a longitudinal scenario, based on more complex models where

these stringent assumptions do not hold. We will propose several models of increasing

complexity and we will extend (3.4) to these more general settings. The methodology

will be illustrated by applying it to the data of the schizophrenia study, described in

Section 2.1, to derive the reliability of the PANSS. Using this rating scale, the pa-

tient’s global condition was assessed at several occasions. Obviously, the assumptions

described above cannot be fulfilled in such a clinical setting. We will study how we

can cope for that by using a more flexible model for this specific data structure.

37
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6.1 Model 1

First, we assume a linear mixed model with a random intercept. In that case, the

repeated PANSS scores for subject i satisfy model (5.1) withX i the design matrix for

the fixed effects which includes an intercept term, time, treatment and the interaction

between time and treatment. Time is modelled as a factor with seven levels such that

we obtain a saturated cell means model for time and treatment. Zi is a pi-dimensional

vector of ones, bi ∼ N(0, σ2
b ) and ε(1)i ∼ N(0, σ2I), ε(2)i = 0.

At the level of an individual measurement we can write the model as

Yij = µij + bi + εij , (6.1)

where Yij is the observed score at time point j for subject i; µij groups the fixed-effects

structure, bi is the random intercept and εij is the measurement error.

For model (6.1) we assume that (1) the errors are mutually uncorrelated, (2) the

errors are uncorrelated with the true scores, (3) the error variances are homogeneous

and (4) the individual-specific component is stable over different time points.

Applying (3.4) to the random-intercept model, we obtain for measurements at

time points s and t

R = Corr(Yis, Yit)

=
Cov(µis + bi + εis, µit + bi + εit)√

Var(bi + εis)
√

Var(bi + εit)

=
Cov(bi, bi)

σ2
b + σ2

=
σ2

b

σ2
b + σ2

. (6.2)

Reliability is thus calculated based on the estimated variance components of the

model. Like in the simple setting considered in CTT, (6.2) expresses the ratio of

the variance explained by the subjects (true scores) to the total observed variance.

For data containing two measurements per subject, this measure is equivalent to

the test-retest reliability of the instrument. In general, for any series of repeated

measurements, if model (6.1) holds then (6.2) gives a global measure of reliability. For

the PANSS data, the estimated variance parameters, based on restricted maximum

likelihood (REML), equal σ̂2
b = 311.00 and σ̂2 = 125.14, which leads to a global
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reliability measure of R̂ = 0.713 (s.e. 0.012). The standard error is calculated using

the delta method.

Note that the assumption of parallel measurements is not met. The mean PANSS

score decreases from 92.4 at baseline to 68.8 at the last measurement. Even though

classical reliability studies usually require the assumption of parallel measurements,

the present approach, due to the flexibility of the linear mixed model, obviates the

need for this, since the mean and variability structures can be clearly separated. In

particular, the linear mixed model will account for systematic time and treatment

effects by including them into the fixed effects component of the model. Although

the steady state is not taken care of by design as it would be in the classical test-

retest design, the steady state is provided through modelling at the analysis stage.

A conceptually useful way to think about this is through the two-stage approach as

the mixed effects model has been introduced historically, by Laird and Ware (1982).

If we derive the individual residuals for a linear regression model including the fixed-

effects parameters as in (6.1) and subsequently apply a random intercept model on the

obtained residuals without a fixed effect component (µjk = 1), the same estimates

for σ2
b and σ2 would be obtained. Furthermore, as stated in Chapter 5, there are

additional advantages of using the linear mixed model: this model can be applied when

(1) not all subjects have the same number of measurements (due to missingness or

irregularly spaced measurement times), and (2) more complicated variance-covariance

structures within subjects exist. To study these advantages further, we will consider

more elaborate models in subsequent sections.

6.2 Model 2

The use of a random intercept in the assessment of reliability dates back to Bartko

(1966) and has been described by Dunn (1989). Model 1 builds upon this work. In

addition, we will introduce serial correlation and then generalize the calculation of

reliability to this situation. Explicitly, the second model combines a random inter-

cept with serial correlation. This component takes into account that the correlation

between pairs of measurements depends on the distance, or time lag, between these

measurements. The assumption we made in Section 6.1 that the errors are indepen-

dent is then violated, or Cov(εis, εit) 6= 0.

Typical choices for such serial correlation structures for unequally spaced data are

based on exponentially or Gaussian decaying processes. In order to choose the covari-
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Figure 6.1: Schizophrenia study. Empirical variogram of the PANSS data.

ance structure that best fits the data, an empirical variogram was created (Diggle,

Liang and Zeger 1994, Verbeke and Molenberghs 2000), shown in Figure 6.1. The

value of the variogram at time lag zero is an indication for the relative importance

of the measurement error, the discrepancy between the variogram at the largest time

lag, and the process variance (represented as a level straight line at the top of the

plot) is an indication for the importance of the random intercept. The strength of

the serial correlation process is indicated by the amount of increase between zero and

the maximum time lag, while the shape of the curve is indicative of the shape of the

process of serial decay.

Figure 6.1 suggests that the largest component of variability is attributable to a

random intercept. However, there is a hint that a serial component may be present

as well. We opt for the Gaussian serial process. Model (5.1) still applies, with Xi,

Zi, bi, and ε(1)i as in Section 6.1, however now ε(2)i ∼ N(0, τ2H i). Then Σi, the

variance-covariance matrix grouping the measurement error and serial components,

equals σ2Ii + τ2H i with the following diagonal and off-diagonal elements

Σiss = τ2 + σ2,

Σist = τ2 exp

(−u2
st

ρ2

)
, s 6= t,

where σ2 denotes the measurement error variance and the remaining part is the serial
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variance component with ust denoting time lag between measurements Yis and Yit for

subject i, and ρ indicates the strength of the serial correlation.

At the level of the individual measurement, the model can then be written as

Yij = µij + bi + wij + εij , (6.3)

where wij is the serial correlation component with wij ∼ N(0, τ2). For time points s

and t, it then follows that

Var(Yis) = σ2
b + τ2 + σ2 = Var(Yit) (6.4)

and

Cov(Yis, Yit) = σ2
b + τ2 exp

(−u2
st

ρ2

)
.

In this model we no longer assume the errors to be mutually uncorrelated, instead we

correct for dependence in the model. We do assume that (1) the errors are uncorre-

lated with the true scores, (2) the error variances are homogeneous (Σss = τ2 +σ2 for

all s), and (3) the individual-specific component is stable over different time points.

Note that, in case assumption (2) is too stringent for the data at hand, compound

symmetry can be relaxed further. Instead of a Gaussian serial process a more general

structure can be chosen, in such a way that the variances on the main diagonal

of the variance-covariance matrix are allowed to vary. In such a case assumption

(2) could be restricted to stating that the residual error variances are homogeneous

(V ar(ε(1)i) = σ2I).

Extending the expression for the ICC (3.4) to the present model, the reliability

can then be calculated as a function of time lag ust between two measurements at

time points s and t

R(ust) = Corr(Yis, Yit)

=
Cov(Yis, Yit)√

Var(Yis)
√

Var(Yit)

=
σ2

b + τ2 exp
(

−u2
st

ρ2

)

σ2
b + τ2 + σ2

. (6.5)

The estimated covariance parameters of this model, applied to the PANSS data, are

σ̂2
b = 103.21, τ̂2 = 274.97, ρ̂ = 6.38, and σ̂2 = 65.21. After correction for the fixed

time and treatment effects, the covariance parameter estimates show a considerable
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Figure 6.2: Schizophrenia study. Reliability as a function of the time-lag u between

any two measurements.

remaining serial component in the PANSS data. As can be seen from equation (6.5),

a strong serial effect will lead to a fast decreasing correlation for increasing time

lags. Figure 6.2 shows that the correlation is 0.80 or higher for measurements no

further apart than two weeks but declines rapidly thereafter. If we carry forward the

equivalence between reliability and correlation implied by CTT, then the previous

graph will also indicate a fast decreasing of reliability as a function of the time lag.

Even though this decreasing tendency can be easily elucidated from the correlation

perspective, it is a bit more difficult to intuitively grasp its meaning when these

correlations are interpreted as reliability coefficients.

6.3 Model 3

After adding serial correlation in model 2 to the random intercept model (model 1),

we now add a random slope for time. Model (5.1) therefore still holds, with Xi, Zi,

ε(1)i, and ε(2)i as in Section 6.2, but bi ∼ N(0,D), with

D =

(
σ2

b0 σb0b1

σb0b1 σ2
b1

)
,
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where σ2
b0 is the variance of the random intercepts bi0, σ2

b1 is the variance of the

random slopes bi1 and σb0b1 is the covariance between intercepts and slopes.

The model can now be written as follows

Yij = µij + bi0 + bi1tj + wij + εij , (6.6)

where tj refers to time point j. For time points s and t, we then have

Var(Yis) = zsDz
′
s + τ2 + σ2,

Var(Yit) = ztDz
′
t + τ2 + σ2,

Cov(Yis, Yit) = zsDz
′
t + τ2 exp(−u2

st/ρ2),

where zs is the design row in Z corresponding to time s. Note that considering

random slopes in addition to random intercepts extends beyond compound symmetry

in the sense that the overall variance becomes a non-constant function of time.

The assumptions of this model are that (1) the errors are uncorrelated with the

true scores and (2) the residual error variances are homogeneous (V ar(ε(1)i) = σ2I).

The test-retest reliability for observations at time point s and time point t and

time lag ust between them, can be derived as the following extension of (3.4)

R(ust) = Corr(Yis, Yit) =
zsDz

′
t + τ2 exp(

−u2
st

ρ2 )
√
zsDz′s + τ2 + σ2

√
ztDz

′
t + τ2 + σ2

. (6.7)

Equation (6.7) can be used to calculate the different reliabilities for any specific time

point and for any given time lag. However, fitting model 6.6 to the data leads to a

non-positive definite Hessian matrix. For this reason the results will not be presented

here, instead we will investigate a simpler model.

6.4 Model 4

Only the random intercept and the random slope are retained in (6.6). For this model

it is assumed that (1) the errors are mutually uncorrelated, (2) the errors are uncorre-

lated with the true scores, and (3) the residual error variances are homogeneous. Note

that the third assumption does not imply compound symmetry; the present model

contains random slopes for time that allows for non-constant variance in function of

time. The model can be written as

Yij = µij + bi0 + bi1tj + εij . (6.8)
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Table 6.1: Schizophrenia study. Estimated test-retest reliabilities of PANSS using

random intercept + random slope model.

Time point

Time point 0 1 2 3 4 5 6 7 8

0 0.80 0.79 0.76 0.72 0.68 0.62 0.57 0.52 0.47

1 . 0.79 0.79 0.76 0.73 0.69 0.65 0.61 0.57

2 . . 0.80 0.79 0.78 0.75 0.72 0.69 0.66

3 . . . 0.81 0.81 0.80 0.78 0.75 0.73

4 . . . . 0.82 0.82 0.82 0.80 0.79

5 . . . . . 0.84 0.84 0.84 0.83

6 . . . . . . 0.86 0.86 0.86

7 . . . . . . . 0.87 0.88

8 . . . . . . . . 0.89

Subsequently, the reliability of measurements observed on time s and time t is

R(s, t) =
zsDz

′
t√

zsDz′s + σ2
√
ztDz

′
t + σ2

. (6.9)

The estimated covariance parameters for the PANSS data are σ̂2
b0 = 315.21, σ̂b0b1 =

−8.01, σ̂2
b1 = 7.07, σ̂2 = 79.63. Table 6.1 displays the reliability coefficients estimated

from the random intercept and slope model; only the upper diagonal is shown for this

symmetric generalized test-retest reliability matrix. Not surprisingly we observe again

that the reliability is decreasing with increasing time lag. Another result that occurs

is a slight increase in the reliability measures as time goes by, but for a fixed time lag.

A possible interpretation for this phenomenon is a learning effect of the raters.

Table 6.2 summarizes the parameter estimates and the log likelihood of the dif-

ferent models described in this and previous sections.

6.5 Conclusion

In this chapter we have attempted a generalization of the concept of reliability based

on two pillar elements: 1) the linear mixed model and 2) the equivalence between

reliability and correlation found in classical test theory and captured by expression
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Table 6.2: Schizophrenia study. Estimated variance components for various models.

Effect RI RI+SC RI+RS

Random effects:

Var. rand. int. σ2

b1 311.00 103.21 315.21

Cov. (rand. int., rand. slope) σb0b1 -8.01

Var. rand. slope σ2

b1 7.07

Residual variance:

Serial process variance τ 2 274.97

Serial process corr. par. ρ 6.38

Measurement error var. σ2 125.14 65.21 79.63

−2 log likelihood 33870.7 33232.4 33331.4

RI = Random Intercept, RS = Random Slope, SC = Serial Correlation

(3.4). In general, this is a very appealing approach. Indeed, as stated in Chapter 3,

the concept of correlation was at the core of the first reliability ideas developed by

Charles Spearman at the beginning of the 20th century. Additionally, correlation is a

well defined and understood probabilistic concept that has been successfully applied

in many different areas. The equivalence between correlation and reliability, obtained

in CTT, is another important element that suggested the extension proposed in the

present chapter. Finally, pairwise correlations between the different observations of

an individual profile are easily obtainable from the fitted LMM.

Nevertheless, our previous analyses have shown that such an extension can lead

to conclusions with an unclear intuitive interpretation, specially for models with a

complicated correlation structure as the one used in Section 6.2. Furthermore, the

main output of this approach is an entire p × p dimensional matrix of correlations

what can hinder the interpretation of the results.

In the next chapter we will attempt the extension from a totally different perspec-

tive. Essentially, we will not use as starting point the equivalence between correlation

and reliability observed in CTT but we will focus on the main intuitive properties

one would expect a meaningful measure of reliability should satisfy.





Chapter 7

Reliability: An Axiomatic

Approach

In this chapter, we will propose an axiomatic definition of reliability. The idea is to

extend the concept through its fundamental properties rather than mimicking any

specific functional expression or relationship. This approach has been successfully

applied in many different areas, especially in mathematics, statistics, and probability.

We will try to exemplify the general idea using two very well-known examples. When

extending the classical concept of distance from the plane or the three-dimensional

space to more general and complex mathematical structures, mathematicians used a

very similar procedure. Omitting technical details, they essentially defined a distance

as any function d satisfying the following three properties: (i) a distance should be

positive, d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y; (ii) a distance should be

symmetric, d(x, y) = d(y, x); and (iii) a distance should satisfy the triangle inequality,

d(x, z) ≤ d(x, y) + d(y, z). A second important example is the classical definition of

probability density function used in probability and statistics. Here again, the concept

is defined by a set of properties. Basically, a probability density function is a function

f that satisfies: (i) f(x) ≥ 0 for all x and (ii)
∫

f(x)dx = 1.

In the classical setting the reliability of a test has been defined in three equivalent

ways as (1) the squared correlation between observed scores and true scores, (2)

the proportion of the total observed score variance that is due to variance in the true

47



48 Chapter 7. Reliability: An Axiomatic Approach

scores, and (3) one minus the proportion of total variance that is due to error variance

(Lord and Novick 1968). Based on these formulations, some properties automatically

follow. From (1) we obtain that a measure of reliability lies between 0 and 1. From

(2) we conclude that if the true score variance is equal the total variance the reliability

equals 1. Further, from (3) it becomes clear that in case the error variance is equal

to the total variance, the reliability equals 0. These three basic properties are going

to be the cornerstone of our approach.

7.1 An Axiomatic Definition

Along the lines discussed above, we propose the following axiomatic definition of

reliability. Following the notation introduced in Chapter 5 we will state that R is a

measure of reliability if it satisfies

i. 0 ≤ R ≤ 1,

ii. R = 0 if and only if there is only measurement error: V i = Σi,

iii. R = 1 if and only if there is no measurement error: Σi = 0,

iv. When model (3.1) holds, the classical expression for reliability (3.2) is recovered.

The first property defines a range for the values of the measurement. Note that

most of the previous reliability measures are also confined to the [0, 1] interval with

some important exceptions like the Cronbach α. Properties (ii)–(iii) establish that R

should reach its extreme values, zero and one, when only measurement error or no

measurement error, respectively, is present in the observations. Finally, (iv) states

that the new measures should allow recovery of the appealing, classical definition of

reliability when the necessary assumptions are met. Once these defining properties

are given, the most imperative task is to find and study measures of reliability that

satisfy them. The next section introduces one of such measures.

7.2 A Measure for Reliability RT

We will now introduce a new measure of reliability that fulfills the properties (i) –

(iv) presented in the previous section. Following the notation described in Chapter 5
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the so-called RT coefficient is given by

RT =
1

n

n∑

i=1

tr(V i) − tr(Σi)

tr(V i)
,

where tr(A) denotes the trace of the matrix A. Even though it is not explicitly

required by the defining properties (i)–(iv), the previous expression closely resembles

the formula of reliability used in CTT. Indeed, in this expression tr(V i) accounts for

the total variability in the observations for patient i, whereas tr(Σi) accounts for the

measurement error variability. Therefore

tr(V i) − tr(Σi)

tr(V i)
,

is the proportion of all the variability in the observations of subject i that is not due

to measurement error. This becomes clearer if the expression for RT is rewritten as

RT =
1

n

n∑

i=1

(
1 − tr(Σi)

tr(V i)

)

= 1 − 1

n

n∑

i=1

tr(Σi)

tr(V i)
. (7.1)

Notice that the RT coefficient can be seen as the average of all patients’ contributions.

In case of a balanced study design where Σi = Σ and V i = V for all i, the following

simplification follows

RT = 1 − tr(Σ)

tr(V )
. (7.2)

In the following developments, and without loss of generality, the assumptions that

lead to (7.2) are going to be considered to simplify the notation. It is important to

point out that these assumptions are frequently encountered in clinical trials, precisely

the scenario we are working in.

If data from K clinical trials are available, then it is possible to show that

RT =

K∑

k=1

nk

n

(
tr(V k) − tr(Σk)

tr(V k)

)
,

RT =
K∑

k=1

nk

n
RTk,

where nk denotes the sample size of the kth trial and RTk is the corresponding value

of RT in that trial. Basically, this meta-analytic version of the RT coefficient is just
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a weighted sum of the different trial contributions, and the weights are proportional

to the size of the trial. This expression will allow us to study reliability in a meta-

analytic context by combining the information collected in different studies. It also

shows that, without loss of generality, one can concentrate on the study of the single

trial setting.

At the beginning of this section it has been mentioned that the RT coefficient

satisfies the four defining properties for a measure of reliability. A formal proof for

this statement can be found in Appendix A.1. In the next section we construct a

point estimate and an asymptotic confidence interval for RT .

7.3 Estimating RT

If V̂ and Σ̂ denote the maximum likelihood estimator for V and Σ respectively, then

the maximum likelihood estimator (MLE) for RT can be obtained as

R̂T = 1 − tr(Σ̂)

tr(V̂ )
.

Further, under general regularity conditions, the delta method implies that asymp-

totically

R̂T ∼ N
(
RT ,∆ΣP∆′

)
,

where ΣP is the variance-covariance matrix of the variance covariance parameter

estimates and ∆′ =
∂RT

∂ψ
with ψ a vector containing all parameters in D, T, and

ΣR. A (1 − α)% confidence interval for RT can then be given by

[
R̂T ± z1−α

2

√
∆ΣP∆

′
]
.

However, the upper and lower limits of this asymptotic interval can lie, in some circum-

stances, outside the [0, 1] range. To avoid this issue the following logit transformation

was used,

l(RT ) = log

(
RT

1 − RT

)
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and this implies

∂l(RT )

∂ψ
=

[
1 − RT

RT

] ∂RT

∂ψ
(1 − RT (ψ)) + ∂RT

∂ψ
RT

(1 − RT )2

=

∂RT

∂ψ
− ∂RT

∂ψ
RT + ∂RT

∂ψ
RT

RT (1 − RT )

=
1

RT (1 − RT )

∂RT

∂ψ
.

A (1 − α)% confidence interval for l(RT ) is then given by

[
l(R̂T ) ± z1−α

2

√(
∂l(RT )

∂ψ
ΣP

∂l(RT )′

∂ψ

)]

or [
l(R̂T ) ±

z1−α
2

RT (1 − RT )

√
∆ΣP∆′

]
.

A restricted (1−α)% confidence interval for RT can then be obtained by transforming

back the previous interval, leading to

[
el1

1 + el1
,

el2

1 + el2

]
,

with l1 the lower limit and l2 the upper limit for l(RT ). More details on the derivation

of the different elements of ∆ can be found in Appendix B.1.

7.4 RT and the Number of Measurements

We have defined RT as a measure of reliability in a longitudinal setting. The most

distinctive characteristic of a longitudinal design is the repeated evaluation over time

of all the patients included in the study. It is therefore appealing to investigate the

relationship between this new measure and the number of repeated measurements per

patient.

Let us start by calculating RT for a random intercept model. Then, model (5.1)

holds with Z a p-dimensional vector of ones, bi ∼ N(0, σ2
b ) and ε(1)i ∼ N(0, σ2I),

ε(2)i = 0. It follows that V = σ2
bJ + σ2I and Σ = σ2I. In this setting RT takes the

form

RT = 1 − tr(Σ)

tr(V )
= 1 − pσ2

p(σ2
b + σ2)

=
σ2

b

σ2
b + σ2

. (7.3)
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Note that, under the random intercept model, RT also coincides with the classical

definition of reliability, exactly as in the cross-sectional setting. From the above

expression, it can be seen that for this simple model RT does not depend on the

number of time points p. This result can help us to understand the intuitive meaning

of the RT coefficient. Indeed, under the random intercept model the response Yij of

subject i at time point j is given by the equation (6.1). This implies that at each

time point the reliability of Yij equals R(tj) =
σ2

b

σ2
b + σ2

, precisely the value found in

(7.3). This hints on interpreting the RT coefficient as some kind of average reliability

over the different time points.

Let us now move forward to study the effect of increasing the number of measure-

ments under a fully general model, where multiple random effects are considered as

well as a general error covariance structure. If model (5.1) holds and every patient

was evaluated at p different times points, then we can write RT as follows

RTp = 1 − tr(Σp)

tr(ΣDp) + tr(Σp)
= 1 −

tr(Σp)

tr(ΣDp)

1 +
tr(Σp)

tr(ΣDp)

= 1 − xp

1 + xp
,

with xp =
tr(Σp)

tr(ΣDp)
. If we define f(xp) =

xp

1 + xp
, then the derivative of this function

equals f ′(xp) =
1

(1 + xp)2
≥ 0, and this implies that f(xp) is an increasing function

of xp. Hence, RTp = 1 − f(xp) decreases when xp increases.

When a new time point p + 1 is added, then xp+1 takes the form

xp+1 =
tr(Σp) + σ2

p+1

tr(ΣDp) + zp+1Dz
′
p+1

.

It is easy to show that xp > xp+1, and thus RTp < RTp+1 if and only if

tr(Σp)

tr(ΣDp)
>

σ2
p+1

zp+1Dz
′
p+1

.

Essentially, this implies that the expanded sequence of observations will have a

higher reliability if and only if the ratio of error variance to true variance of the new

observation is smaller than the ratio of error variance to true variance of the previous

p measurements. Therefore, the RT coefficient can either increase or decrease when

a new observation is added, depending on the “quality” of the new measurement.

Clearly, the previous findings confirm the intuitive interpretation of RT as the average

reliability over an entire sequence of measurements.
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7.5 A Simulation Study

We further investigate the performance of the point estimator and the asymptotic

confidence interval for RT under various conditions via simulations. We considered

36 different simulation settings. In a first stage, the data were generated based on the

following linear mixed model with random intercept

Yij = β0 + β1tj + β2Zi + bi + εij , (7.4)

where Yij refers to an observation for subject i at time tj , and Zi is the treatment

indicator variable. Further, bi ∼ N(0, σ2
b ), εij ∼ N(0, σ2I), σ2

b = 300, σ2 = 30, 300,

or 3000 and the sample size was set to n = 50, 150 or 300. These choices for σ2
b and

σ2 allow us to study the performance of RT when the error variance is 9%, 50%, and

90% of the total variance, respectively. These settings correspond to high, medium,

and low reliability. In a second stage, data were generated based on a linear mixed

model with random intercept and random slope for time

Yij = β0 + β1tj + β2Zi + b1i + b2itj + εij , (7.5)

where (b1i, b2i)
′ ∼ N(0,D), and εij ∼ N(0, σ2I) and

D =

(
300 −1

−1 5

)
.

The same choices for σ2 and n are made as before. The norm ||D|| was used as an

indication of the “size” of the random-effects variance and based on this, the values

of the error variance account again for 9%, 50%, and 90% of the total variance.

The mean parameters were fixed at β0 = 85, β1 = 2.5, and β2 = 3. These

values are based on the results obtained when the previous models were fitted using

the schizophrenia case study data. We considered p = 3, 6, and 9 time points of

measurement and 500 data sets were simulated in each setting.

Table 7.1 presents the true values, estimated values, and the coverage probabilities

for a 95% confidence interval for RT , where the random intercept model has been used

as a data generating mechanism. Table 7.2 presents the results for the data coming

from a model with random intercept and slope.

Let us first look at the closeness of the point estimates to the real value of RT . In

general, the point estimates are always very close to the true values, even for small

sample sizes. Only when the measurement error accounts for 90% of all the variability



54 Chapter 7. Reliability: An Axiomatic Approach

Table 7.1: Simulation study on RT : random intercept model (7.4). Effect of sample

size (n), number of repeated measurements (p), and error percentage (%) on the esti-

mate for RT (R̂T ), and the coverage probabilities (CP) for a 95% confidence interval.

n = 50 n = 150 n = 300

% p RT R̂T CP R̂T CP R̂T CP

9 3 0.909 0.908 95.0 0.909 96.8 0.909 98.2

9 6 0.909 0.907 96.6 0.909 97.4 0.909 97.8

9 9 0.909 0.907 96.8 0.909 97.8 0.909 97.6

50 3 0.500 0.510 91.2 0.508 93.6 0.506 96.4

50 6 0.500 0.502 95.2 0.504 95.2 0.501 95.0

50 9 0.500 0.499 94.6 0.502 96.0 0.501 95.2

90 3 0.091 0.129 86.5 0.101 93.1 0.098 94.2

90 6 0.091 0.101 93.8 0.096 96.0 0.094 97.2

90 9 0.091 0.096 96.4 0.094 96.6 0.093 97.6

in the data and only three repeated measurement per patient were taken, lager samples

sizes are required to achieve a good estimate. The bias in this problematic setting

seems to be larger for the more complicated model, i.e., the model including a random

intercept and a slope. Note further the values for RT , based on a random intercept

model with homogeneous error variances, do not depend on the number of time points,

as previously shown.

Let us now look at the coverage probabilities of the confidence intervals. The

tables show that coverage probabilities below 95% appear almost exclusively in the

settings where only three repeated measurements per subject were taken and the

measurement error accounted at least for 50% of the total variability. As one would

expect the situation worsens when the error variability increases to 90%. Further,

smaller sample sizes, larger error variability, and more complex data seem to increase

the chance of a low coverage probability. However, it is important to indicate that

in all the settings, the point estimator and asymptotic confidence interval perform

reasonably well when a sample size of 150 patients and 6 repeated measurements

where considered.

Finally, we draw the attention to the fact that both, the point estimators and the
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Table 7.2: Simulation study on RT : random intercept and slope model (7.5). Effect of

sample size (n), number of repeated measurements (p), and error percentage (%) on

the estimate for RT (R̂T ), and the coverage probabilities (CP) for a 95% confidence

interval.

n = 50 n = 150 n = 300

% p RT R̂T CP R̂T CP R̂T CP

9 3 0.917 0.917 92.5 0.917 93.2 0.916 95.2

9 6 0.940 0.940 97.2 0.940 98.8 0.940 99.4

9 9 0.961 0.960 99.2 0.960 99.8 0.961 100

50 3 0.523 0.574 83.6 0.556 83.4 0.536 90.8

50 6 0.612 0.616 94.5 0.614 94.8 0.612 96.0

50 9 0.711 0.710 96.0 0.710 96.0 0.709 95.0

90 3 0.099 0.248 61.8 0.179 73.6 0.145 82.0

90 6 0.136 0.173 88.3 0.152 95.8 0.144 96.2

90 9 0.197 0.213 95.5 0.202 96.6 0.199 95.1

confidence intervals, are based on the asymptotic properties of maximum likelihood,

or restricted maximum likelihood, estimators of the variance components. The results

of the simulations illustrate that these asymptotic results work pretty well, even with

small sample sizes, and the bias is negligible in almost all settings considered.

7.6 Conclusion

In the present chapter we introduced an axiomatic definition of reliability. The general

idea is to capture the fundamental characteristics of the concept in a reduced and

simple set of properties. If successful, these type of definitions can usually bring a lot of

flexibility while keeping the intuitive interpretation of the concept one tries to extend.

The definition also brings a degree of consistency by requiring that all measures of

reliability, no matter how different they could be, should satisfy a minimum set of

properties.

One obvious issue that such a definition rises, is the evaluation of the suitability of

the chosen properties. However, in any axiomatic approach it is logically impossible to
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prove theoretically that the selected set is the most appropriate one. Nevertheless, the

RT coefficient that emanates from this definition seemed to give sensible results when

applied in simulations, reinforcing our confidence on the plausibility of the proposed

definition.

One of the main advantages of the RT coefficient is that it allows to summarize the

reliability of an entire sequence of observations in a single yet meaningful measure.

This, however, does not preclude the possibility of calculating the measure at each

time point in order to construct a reliability function over time. In the next chapter

we will further study the performance of the RT coefficient, this time by applying it

to the case study in schizophrenia.



Chapter 8

Estimating Reliability of

Three Rating Scales for

Schizophrenia

In this chapter the methodology introduced in Chapter 7 is applied to evaluate the re-

liability of the rating scales used in the schizophrenia case study described in Chapter

2. Data from the clinical trial by Peuskens et al (1995) were used to estimate the relia-

bility of the three outcome scales; the Positive and Negative Syndrome Scale (PANSS),

the Brief Psychiatric Rating Scale (BPRS), and the Clinical Global Impression (CGI).

All three scales are regularly used for measuring the severity of schizophrenia. The

comparison of reliability estimates, based on a single population, is therefore an in-

teresting excercise. More so given the relatively large differences in size and therefore

assessment time between the three scales.

The methodology is entirely model-based, model building is thus a crucial step

towards reliability estimation. To this effect, model building guidelines, as laid out

in, for example, Verbeke and Molenberghs (2000, Ch. 9) ought to be followed. In the

following sections we will give an outline of the model building exercise for each of the

scales. In a final section we will summarize the results of the reliability estimations.

The clinical trial contains 453 patients with chronic schizophrenia, randomly as-

signed to treatment with risperidone or a conventional antipsychotic drug. Patients

57
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Figure 8.1: PANSS. Individual profiles per treatment group.

were evaluated at baseline and after 1, 2, 4, 6, and 8 weeks.

8.1 Model Building for PANSS

The Positive and Negative Syndrome Scale (PANSS) contains 30 items to be scored

in 7 grades. As a consequence, the total score of the scale ranges between 30 and 210,

with higher scores indicating worse conditions.

8.1.1 Exploratory Data Analysis

The individual profiles are displayed in the left panel of Figure 8.1. The graph suggests

a subject-specific nonlinear downward trend over time in both treatment groups.

Additionally, the figures also indicate differences between the subjects at the beginning

of the study. From the individual profiles it can also be learned that some patients

dropped out before the end of the study.

In addition to the average evolution, the covariance structure is also important

to build up an appropriate longitudinal model. Notice that properly modelling the

covariance structure is especially relevant in this application, given the crucial role of

the variance components in the estimation of reliability coefficients. The right panel
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Figure 8.2: PANSS. Variance of detrended observations for all patients (left), and per

treatment group (right).

of Figure 8.1 shows the detrended profiles and the corresponding variance function

is plotted in Figure 8.2. On the left, the variance plot is given for all data and on

the right it is plotted separately per treatment group. The overall variance function

increases over time, suggesting a model with a random time effect. Interestingly,

the right graph in Figure 8.2 shows a different variance profile for each treatment

group. The difference results mainly from a higher variability in the treatment group

compared to the control group at week 6. This is an unexpected peculiar feature that

deserves some attention. As a first step, we decided to explore whether missingness

might lie at the basis of this finding.

Table 8.1 reveals some interesting patterns, for instance, it shows that there is

more missingness in the control group than in the treatment group and this difference

is largest, precisely, at week 6. Additionally, Figure 8.3 illustrates another prominent

issue. Indeed, the bottom left graph in Figure 8.3 clearly shows that the patients

dropping out at week 6 in the control group are those with the worse average profile.

The boxplots for the control group confirm the higher PANSS scores for patients

dropping out at week 6, and further show a larger variability in the group of patients

dropping out compared to the patients that stayed in the study. In the treatment

group, the difference between patients dropping out at week 6 and patients staying
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Table 8.1: PANSS. Number (percentage) of missing values per time point of measure-

ment and for both treatment groups.

Baseline Week 1 Week 2 Week 4 Week 6 Week 8

Control 0 6 (2.7) 21 (9.3) 33 (14.6) 52 (23.0) 61 (27.0)

Treatment 0 1 (0.4) 8 (3.5) 23 (10.1) 31 (13.7) 48 (21.2)

in the study is much less pronounced. The fact that a relatively large number of

control-group patients drops out at week 6 could explain why the observed variability

decreases at week 6 for the control group. Basically, we observed that at this week

a large proportion of the patient with a bad evolution abandoned the study in the

control group. This group of patient is fairly variable and their departure redounded

in a more homogeneous subsample of patients in the control group at week 6. This

pattern is not observed in the treatment group where much less patients dropped out

from the study at that point. We therefore believe that the characteristics of the

missing data process can explain the peculiarity of the variance function displayed in

Figure 8.2.

The previous discussion clearly shows the importance of missing data. Missing

data are an almost unavoidable problem in longitudinal studies. In the next section,

linear mixed models will be adopted, as proposed in Chapter 5. However, because

fitting linear mixed models has a likelihood basis, the ensuing inferences are valid

for both balanced as well as unbalanced data. Also, when the data are incompletely

observed, the methodology remains statistically valid if the missing data mechanism is

missing at random (Rubin 1976), in the sense that missingness is allowed to depend on

observed data but, given these, not further on unobserved data. All analyses discussed

in this chapter are performed under this assumption. The finding that dropping out is

more likely for patients with worse evolutions, as shown in Figure 8.3, gives additional

support to this assumption.

Further, we explored the intra-subject correlation by displaying individual scatter

plots of standardized residuals, as shown in Figure 8.4. The graph seems to show that

a slowly decaying correlation over time is present in the data.

Finally, we evaluated if subject-specific profiles could be described by a linear

regression model. As a first exploratory tool, we calculated the subject-specific co-
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Figure 8.3: PANSS. Top: boxplots at week 4 for patients without and with missing

value at week 6. Bottom: mean profiles for patients without and with missing value

at week 6.
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meta of multiple determination for first-stage models which assume

linear (left), quadratic (middle) and cubic (right) subject-specific profiles.

efficient of multiple determination R2
i as well as the overall coefficient of multiple

determination R2
meta, for three different linear regression models (Verbeke and Molen-

berghs 2000); with linear, quadratic, and cubic time effect. We obtain, respectively,

R2
meta = 0.6380, R2

meta = 0.8430, and R2
meta = 0.9185. These values strongly suggest

that a model with quadratic time effect fits the data better than a model with linear

subject-specific time trend. Furthermore, a model with a cubic trend still seems to

improve the fit to a certain degree. These results are illustrated in Figure 8.5, where

a scatter plot of R2
i values against the number of time points on top and a histogram

of the R2
i values in the bottom are shown. From the left-hand histogram it can be

observed that for a large number of subjects a linear trend does not fit well, repre-

sented by low R2
i values. A clearly smaller amount of subjects have low R2

i values

in the middle and right-hand histograms. However, it is important to point out that

missingness might partially distort this picture. Indeed, when there are only two mea-

surements for a subject, a linear time effect leads to a perfect fit, which is captured

by R2
i = 1 for this individual. The same happens with a quadratic time effect in case

of three measurements and with a cubic effect in case of 4 measurements, which is

clearly visible in the three scatter plots in Figure 8.5. Table 8.1 however shows that
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Table 8.2: PANSS. Model building results.

Random effects Residual covariance −2Res. LogL. AIC

1 Cubic simple 18994.3 19016.3

2 Quadratic, by treat. simple 19032.0 19058.0

3 Quadratic simple 19054.3 19068.3

4 Quadratic, by treat. banded main diagonal 18962.0 18998.0

5 Quadratic banded main diagonal 18987.1 19011.1

6% of the patients have no more than 3 measurements whereas 12% has no more

than 4.

As a second exploratory tool, we used an F test to compare the different first-stage

models (Verbeke and Molenberghs 2000). Comparing the first model with intercept

and time to the second model which assumes quadratic subject-specific evolutions

yields Fmeta = 3.3851 on 426 and 1105 degrees of freedom, which is significant on

the 5% level (p < 0.0001). This confirms that the second model fits the data better

than the first one. Further we compared the second model to the third one resulting

in Fmeta = 1.6143, 403 and 702 degrees of freedom (p < 0.0001). This informal test

thus suggests a cubic random-effects structure.

8.1.2 Model Fitting

We opted for a saturated mean structure with one parameter for each treatment by

time combination. This choice was motivated by the fact that interest primarily lies

in the estimation of the covariance structure. Eventually, such a general structure for

the fixed effects should help to guarantee unbiased estimates for the parameters of

the variance components, which are the building blocks of the reliability coefficients

(Diggle, Liang and Zeger 1994).

The exploratory data analysis suggested a model with a random time effect, more

precisely a quadratic or even cubic effect of time. Furthermore, we have observed that

the variance plot takes different shapes for the two treatments, what might indicate

a different random-effects structures for both groups. A model building exercise was

carried out to investigate which of the random-effects structures, suggested by the
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ance functions for model 1 (top left), model 3 (top right), and model 2 (bottom; control

left, treatment right).

exploratory analysis, describes the data best.

We fitted a random-effects structure with a linear, quadratic, and cubic time effect.

Both a general and a treatment-specific random-effects structure were explored. The

errors were assumed to follow a simple structure, with equal variances over time and

zero covariances. The time variable (originally in weeks from 0 to 8) was centralized to

stabilize the computations. Restricted maximum likelihood was used for parameter

estimation (Verbeke and Molenberghs 2000) and the Akaike Information Criterion

(AIC) was used to select the best model. The best results were obtained with the

models 1–3 in Table 8.2. Figure 8.6 shows the variance of the detrended observations

(as in Figure 8.2) together with the estimated variance function for the three models:

top left for model 1 (cubic random-effects model), top right for model 3 (quadratic

random-effects model), bottom left for the control arm of model 2 (quadratic random

effects, per treatment group), and bottom right for the treatment arm of model 2. The

two graphs in the bottom suggest that including separate random effects structures

for the two treatment groups does not drastically improve the fit of the variance

structure. This finding adds to the hypothesis that missing data lie at the basis of

the difference in the variance plots for both treatment groups, observed in Figure 8.2.
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Figure 8.7: PANSS. Variance plots for models 1, 2 and 3. For all patients (top), and

per treatment group (bottom).

Apart from the random-effects structure, the covariance structure of the errors

also needs to be correctly specified. It is then important to know whether the error

variances are homogeneous and if a serial correlation is present. To get an idea about

the homogeneity of the error variances we further investigated the residual variance

of the models 1–3. Figure 8.7 shows the variance of the residuals for these models

over time; for all data (top), and per treatment group (below). The graphs show

obviously that there remains some heterogeneity in the error variances for all three

random-effects structures.

Finally, we explore the correlation structure among the residuals. Figure 8.8

shows the scatter plot matrix of the standardized residuals for model 1. Looking

at this figure, no remaining correlation seems to be present between the residuals

of pairs of measurements. This indicates that a serial correlation component in the

residual covariance structure would not be needed. Scatter plot matrices for models 2

and 3 (not shown) had a similar form. In Figure 8.4 we clearly observed a strong

correlation between measurements coming from the same subject. The absence of

such a correlation in Figure 8.8 indicates that the within-subject correlation is entirely

captured by the random-effects structure in the model.

Based on the above findings, we opted for a residual variance-covariance ma-
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Figure 8.9: PANSS. Individual residual profiles for model 5.

trix with different elements on the main diagonal and zeros elsewhere (banded main

diagonal). Fitting this covariance structure for the residuals together with a cu-

bic random-effects structure lead to convergence problems. In combination with a
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Figure 8.10: PANSS. Individual observed (dots) and fitted (solid line) profiles for 9

randomly selected patients, based on model 5.

quadratic random-effects structure (by treatment and general) it leads to the result

presented in the lower half of Table 8.2. Following the AIC, model 4 thus emerged

as the best fitting model. Several arguments, however, lead us to select model 5 as

the final model to be used for reliability estimation. First, model 5 is much more

parsimonious and the difference in AIC is relatively small. Second, from a clinical

point of view, model 5 is more meaningful than model 4. Essentially, random effects

capture subject-specific characteristics not explained by the covariates included in the

model. Since the patients in the study were randomly allocated to either treatment

group, there is no scientific reason to believe that differences in these characteristics

may exist between both treatment groups. Third, it is not unlikely that missingness

in the control group lies at the basis of the difference in variance profiles for the two

treatment groups, as argumented in Section 8.1.1. This hypothesis was further sup-

ported in Figure 8.6, showing that separate random effects structures do not lead to

an obviously better fit of the variance profiles. We therefore conclude by selecting

model 5 as the final model, and we further present two additional graphs in support

of this model.

Figure 8.9 shows the individual residual profiles for the final model. Essentially,

no systematic pattern can be detected in this plot what hints on the appropriateness
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Table 8.3: BPRS. Model building results.

Random effects Residual covariance −2Res. LogL. AIC

1 Cubic simple 16428.5 16450.5

2 Quadratic, by treat. simple 16470.2 16496.2

3 Quadratic simple 16488.4 16502.4

of the chosen model. Figure 8.10 plots the individual observed (dots) and fitted (solid

line) profiles for nine randomly selected patients. Also these graphs show a good fit

for the individual profiles.

8.2 Model Building for BPRS

Since PANSS contains all 18 items of BPRS complemented with 12 additional items,

it is not surprising that both scales are strongly correlated and exhibit very similar

behavior. A model building exercise as performed for PANSS in Section 8.1 therefore

delivered very similar results. For that reason we will restrict this section to the

presentation of the best fitting models and the selection of the final one. Note that

also here the time variable was centralized to stabilize the computations.

Like in Section 8.1.2, a saturated model was selected for the means structure.

Table 8.3 presents the three best random-effects models, assuming a simple variance-

covariance structure for the residuals. Among these models the first one with cubic

random effects leads to the best fit. However, a very large condition number reveals an

ill-conditioned D matrix for this model. The second model, with treatment-specific

random-effects structure, has a slightly lower AIC value than the third model, with

one general structure for the random effects.

As for PANSS, the graphical exploration suggests a residual covariance structure

with heterogeneous diagonal elements and off-diagonal elements equal to zero (banded

main diagonal). Models with quadratic random effects (by treatment and general)

and this residual covariance structure lead, however, to large condition numbers for

the residual covariance matrix indicating that it was not positive definite. Basically,

the estimated variance for the last time point was close to zero.

Following the AIC, model 2 is then the best model. For the same reasons as
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Figure 8.11: CGI. Variance plots for all patients (left), and per treatment group

(right).

mentioned in Section 8.1.2, however, we select model 3 as the final model.

8.3 Model Building for CGI

The CGI scale is a one-item instrument indicating the change of a patient with re-

spect to his/her baseline condition at each follow-up time. The scale has 7 grades

with the following interpretation: 1) ‘very much improved’, 2) ‘much improved’, 3)

‘minimally improved’, 4) ‘unchanged’, 5) ‘minimally worse’, 6) ‘much worse’, 7) ‘very

much worse’.

It is clear that the scale outcome is essentially ordinal. Whether such data should

be analyzed by linear models has been a topic of heated debate between statisticians

and measurement theorists for the latest semi-century (Gaito 1980, Townsend and

Ashby 1984, Abelson and Tukey 1963). Model (5.1) assumes that the observed scores

are of a continuous nature, i.e., it is assumed they are measured on an interval or ratio

scale. Such a strong type of measurements is very rare in psychology and psychiatry.

Therefore, some will argue that statistical procedures based on the assumption of

continuous responses would be inadequate in this setting. Statisticians have generally

rejected the proscription of statistical methods based only on this type of measurement
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Figure 8.12: CGI. Scatter plot matrix of detrended observations.

considerations. We adopt this point of view in the present work and follow the view-

points of Tukey (1961, 1962), stating that statistical procedures should not be seen as

sanctification and rubber stamping for approval, but merely as nevertheless valuable

approximations rooted in reality. He argued that science in general and statistics in

particular rely upon the test of experience as the ultimate standard of validity. We,

therefore, feel encouraged by the many applications of linear models to analyze CGI

data that have given very useful and meaningful practical results in full agreement

with the specific knowledge of the field.

8.3.1 Exploratory Data Analysis

The variance function of the detrended observations is plotted in Figure 8.11, for all

data (left), and per treatment group (right). An increase in variance is observed in

both treatment groups, suggesting again a model with a random time effect. Two

other exploratory tools, the overall coefficient of multiple determination R2
meta and an

F test to compare the different first-stage models (Verbeke and Molenberghs 2000),

point in the same direction. They suggest a quadratic or even cubic random-effects

structure. Note also that Figure 8.11 indicates distinct variance functions for the

two treatment groups. As for the PANSS data, there is clearly less variability in the
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Table 8.4: CGI. Four models for the random-effects structure assuming a saturated

mean model and a simple error variance structure.

Random-effects structure −2Res. LogL. AIC

1 Cubic 5001.7 5023.7

2 Quadratic 5011.0 5025.0

3 Linear 5050.0 5058.8

4 Intercept 5229.9 5233.9

control group than in the treatment group at week 6. The fact that this observation

is repeated for all three scales is in agreement with the hypothesis that it might be

caused by a disproportionate drop-out of a specific subgroup of patients. In such a

case, one should not correct for this difference in the model. As a result, models

with different random-effects structures for both treatment groups will no longer be

considered.

To explore the correlation structure, Figure 8.12 displays individual scatter plots

of standardized residuals obtained from pairs of measurement occasions. The size of

the dots in the graphs indicate the number of observations it represents. One can

clearly observe the within-subject correlations for pairs of measurements, as well as a

decrease of these correlations as the time between two measurements goes up.

8.3.2 Model Fitting

Once more a saturated mean structure was considered. Further, we successively fitted

models with random intercept, linear, quadratic, and cubic time effect. The time

variable (originally in weeks from 1 to 8) was centralized to stabilize the computations.

For the residuals we assumed a simple variance-covariance structure. The results are

shown in Table 8.4, indicating an almost equal fit for models with cubic and quadratic

random-effects structure, both however obviously better than a model with linear

subject-specific trend.

We further investigated the residual variance plots for model 1 and model 2 (Figure

8.13). The graphs show very low remaining variance, after the random effects have

been added to the model. Furthermore, the variance seems to be homogeneous over
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Figure 8.13: CGI. Variance plots for model 1 (left) and model 2 (right).
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Figure 8.14: CGI. Scatter plot matrix of residuals for model 2.

time.

Finally, we explored the correlation structure among the residuals. Figure 8.14

shows the scatter plot matrix of the residuals for model 2. From this figure we learn
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Table 8.5: CGI. Five best fitting models.

Random effects Residual covariance −2Res. LogL. AIC

5 Linear unstructured banded 4992.1 5016.1

6 Quadratic banded main diagonal 4995.7 5017.7

1 Cubic simple 5001.7 5023.7

7 Linear Toeplitz 2 bands 5013.9 5023.9

2 Quadratic simple 5011.0 5025.0

that there remains a correlation between the residuals of measurements that are one

time point apart (e.g., between the residuals of week 6 and 8). Between measurements

further apart, no residual correlation is suggested by the graph. Similar results were

obtained when this graph was constructed for model 1. Based on the scatterplot,

two correlation structures can be suggested: ‘Toeplitz with two bands’ and ‘banded

unstructured’. They have the following forms, respectively




σ2 σ1 0

σ1 σ2 σ1

0 σ1 σ2


 and




σ2
1 σ12 0

σ12 σ2
2 σ23

0 σ23 σ2
3


 .

Additionally, we also considered models with a full serial correlation structure, fol-

lowing gaussian, exponential, and power patterns. In this final model building step

we included models with linear, quadratic, and cubic subject-specific random slope

for time. The fit statistics for the 5 best models are shown in Table 8.5.

Contrary to what Figure 8.13 suggested, the two best fitting models, 5 and 6,

contain heterogeneous error variances. The table further indicates almost equal fit

for these two models. Without any practical or clinical arguments in favor of either

model, we follow the AIC to select model 5 as the final model, which contains a linear

random-effects structure and a ‘banded unstructured’ variance-covariance structure

for the residuals.

Figure 8.15 shows the individual residual profiles for model 5 and Figure 8.16

plots the individual observed (dots) and fitted (solid line) profiles for nine randomly

selected patients for this model. These graphs indicate a good fit of the final model.
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Figure 8.16: CGI. Individual observed (dots) and fitted (solid line) profiles for 9 ran-

domly selected patients, based on model 5.
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Table 8.6: Schizophrenia study. Reliability estimates and 95% confidence interval for

PANSS, BPRS, and CGI.

Scale R̂T 95 % confidence interval

lower limit upper limit

PANSS 0.890 0.871 0.907

BPRS 0.856 0.839 0.871

CGI 0.733 0.622 0.822

8.4 Reliability Estimation

Once the best fitting models for the observed data are selected, reliability estimates

can be obtained from the resulting covariance parameter estimates, following the

methodology elaborated in Chapter 7. Table 8.6 presents the reliability estimates for

PANSS, BPRS and CGI, together with 95% confidence intervals.

Clearly both, PANSS and BPRS, have very high reliabilities, characterized by es-

timates of RT that largely exceed 80%. These results are in agreement with findings

of Kay, Fiszbein, and Opler (1987) and Bell et al (1992) that reported test-retest

reliabilities of similar magnitudes. They also agree with the empirical evidence found

in clinical practice. Indeed, the ample empirical experience with these scales in com-

mon clinical practice have clearly validated them as very useful instruments for the

evaluation of psychiatric patients.

As expected, we observe that PANSS has higher reliability than BPRS. More

remarkably, however, is that the difference is very small. Historically, PANSS was

conceived as a completion of BPRS, but these results illustrate that this additional

complexity does not bring much gain in reliability. Analogous results were found by

Alonso et al (2002) when studying criterion validity. In that setting, similar values

were obtained for trial-level validity and individual validity for PANSS and BPRS.

This may suggest that in some practical situations the use of a simpler scale like

BPRS could be more advisable. Nevertheless, we should point out that the choice

between different instruments usually is not based only on statistical considerations

and clinical aspects must be taken into account as well.

The reliability estimate for the CGI scale was based on model 5 in Table 8.5.
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However, as stated in Section 8.3.2, the fit of model 6 in this table was almost equally

good. This illustrates that sometimes it can be difficult to select a single ‘best’

model. In such a case, it is advisable to estimate reliability based on all models that

give similar fit and compare the results. When the resulting reliability estimates are

similar, conclusions are straightforward. If the estimates coming from different models

exhibit large differences, results ought to be interpreted with care. The reliability

estimate and confidence interval for the CGI based on model 6 in Table 8.5 is given

by RT = 0.789 (0.743; 0.829). This value is a bit higher than the one based on

model 5, but the interpretation of the results essentially does not change much. The

CGI scale is obviously less reliable than PANSS and BPRS, a result that is not

surprising given the simplicity of the scale. The fact that we find values above 70%

indicates, however, that also this scale has an acceptable reliability when applied in

a population of chronic schizophrenic patients.

As pointed out in Section 7.6, we can also compute the RT coefficient at each time

point. Such an analysis can help us to evaluate the evolution of reliability over time

and is an important complement to the overall estimate. Such values are plotted in

Figure 8.17, and are calculated as

RTj =
zjDz′j

zjDz′j + σ2
j

for time point tj and express the reliability at each of the measurement occasions

separately.

It can be observed that although BPRS performs a bit better than PANSS at

the beginning of the study, it is outperformed by this scale at later observations.

Noticeably, PANSS exhibits a substantial increase of its reliability over time. In the

same way, BPRS finds its reliability growing over time as well, but the grow is much

less pronounced. We speculate that this increasing reliability over time could be the

result of a learning effect of the rater. Such a learning effect could also explain the

relative performance of both scales at the beginning of the study. Indeed, BPRS

is used more frequently than PANSS in clinical practice and, therefore, it is better

known by clinicians. It is also a simpler scale and the combination of these two factors

might well explain why it leads to more reliable results than PANSS at the beginning

of the study. This effect is reversed once the rater gets more experience in the use of

PANSS somewhere after the second measurement. Apart from a gain in experience

when using the scale, enhanced familiarity with a patient during follow-up could also

lie at the basis of the increasing reliability over time. It is important to point out that
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Figure 8.17: Schizophrenia study. RT over time for PANSS, BPRS and CGI.

these are only plausible interpretations of the patterns we observed in the data but, of

course, they are just speculative, a posteriori explanations and should be taken very

carefully.

Also for CGI we observe higher reliabilities at later time points. Given the simplic-

ity of the scale, a learning effect might not be a very likely explanation, however, also

here it may play that a larger observation period leads to more information about

the patient, what in its turn could result in a better judgement. Recall that CGI

scores the change of a patient’s condition compared to the baseline measurement.

Intuitively, one would indeed expect that this gets easier as the patients change more,

thus leading to less measurement error.

The results for PANSS, as presented in Table 8.6 are based on model 5 in Table 8.2,

including one general D-matrix for all patients. Model 4, with separate D-matrices

for the two treatment groups, however, fitted the data slightly better as indicated by

the AIC. Note that different random-effects structures can imply different reliability

estimates for the two groups. However, Table 8.7 shows that the estimated reliabilities

for the two groups are identical, and extremely similar to the ones found for model 5.

The same results were obtained for BPRS, when considering model 2 in Table 8.3.
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Table 8.7: PANSS. Reliability estimates and 95% confidence interval for PANSS,

separate for the two treatment groups.

R̂T 95 % confidence interval

lower limit upper limit

Control 0.892 0.869 0.912

Treatment 0.892 0.870 0.911

8.5 Conclusion

In the present chapter we analyzed a real case study to illustrate how the methodology

introduced in Chapter 7 can be used for estimating the reliability of rating scales using

clinical trial data. A crucial step in this methodology is the selection of the model

that most closely describes the true data generating mechanism. For that reason

an appropriate model building exercise is of utmost importance. Once more, one

should remark that all reliability measures are, essentially, model based quantities.

Therefore, their scope and applicability will never surpass the scope and applicability

of the model they are based on.

We estimated the reliability of three outcome scales used to measure the severity

of schizophrenia: PANSS, BPRS, and CGI. High reliabilities were found for all three

the scales, a finding that is in full agreement with the literature and clinical practice.

Interestingly, despite the fact that PANSS is almost twice the size of BPRS, their

reliabilities are strikingly similar. Further, given the simplicity of CGI, it is not a

surprise that its overall performance is a bit lower compared to the other two scales.

However, after an observation period of eight weeks, the CGI proved to be very useful

for distinguishing between patients that have improved and the ones that have not.



Chapter 9

A Family of Measures for

Reliability

The definition introduced in Chapter 7 does not lead to a unique measure of reliability.

In fact, in the present chapter we will illustrate that the RT coefficient can be framed

into a more general family of measures for reliability. Further, we will study some

special member of this family in detail.

9.1 The Omega Family

Alonso et al (2004) introduced a family of parameters to evaluate the criterion validity

of psychiatric symptom scales based on canonical correlations. In the evaluation of

criterion validity a new scale is compared to a criterion scale with known performance.

If this is applied in a longitudinal setting, canonical correlations are a useful tool to

quantify the amount of information shared by both instruments. In the context of

reliability, we study the reproducibility of a single scale, which implies that canonical

correlations are no longer applicable. Nevertheless, we will show that the role played

by canonical correlations in the validity research, is in the reliability context assumed

by the generalized eigenvalues associated with specific variance-covariance matrices.

Let us start by introducing the following theorem.

79
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Theorem 1 Given the function q(λ) = |Σ − λV |, if model (5.1) holds then: (i) all

roots of q(λ) = 0, the so-called generalized eigenvalues, are real, and (ii) if λj is a

root of q(λ) = 0 then 0 ≤ λj ≤ 1.

A detailed proof of Theorem 1 can be found in Appendix C.1. Based on this theorem

we can now define the following family

Ω =



θ : θ =

p∑

j=1

wjρ
2
j with wj > 0

p∑

j=1

wj = 1



 . (9.1)

The elements wj are weights assigned to the parameters ρ2
j where ρ2

j = 1 − λj and

the λj ’s are the roots of the equation q(λ) = 0. It is useful to note that the λj ’s

could be equivalently defined as the eigenvalues of the matrix H = V −1/2ΣV −1/2,

where V 1/2 denotes the symmetric square root of V . The matrix H is symmetric

and, therefore, it can be written as H = PΛP ′, where P is an orthogonal matrix

and Λ = diag{λj}. Using the previous results it immediately follows that

Σ = V 1/2HV 1/2 = V 1/2PΛP ′V 1/2 = Q′ΛQ, (9.2)

V = Q′Q, (9.3)

where Q = P ′V 1/2. Using Theorem 1 it is easy to prove that all the members of the

Ω family satisfy properties (i)–(iv), introduced in Section 7.1. This proof is provided

in Appendix A.2.

This family is structurally similar to the family introduced by Alonso et al (2004)

in the validity context. The main difference is that here the ρ2
j are not the canonical

correlations associated with the new and criterion scales, but rather a function of

the generalized eigenvalues associated with the total and error variance-covariance

matrices.

Note also that, even though the Ω family is uncountable, it clearly delineates our

search for reliability measures. In general this is not a new situation. In other fields,

concepts like the mathematical concept of distance are defined through a minimum

set of properties that lead to many specific instances. Having many elements to

quantify a concept is not always undesirable. Indeed, it could allow us to approach

a wide variety of problems in a very flexible way. For example, the Mahalanobis

distance has been successfully used in cluster analysis and classification analysis in

multivariate statistics, whereas the distance based on the uniform norm is the basic

concept underlying the Kolmogorov-Smirnov test. In what follows, we will study some
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specific, important members of the Ω family in more detail and we will try to shed

light on their specific meaning and interpretation.

9.2 RT as Member of the Ω Family

A first special member of the Ω family is the measure RT , introduced in Chapter 7.

Indeed, plugging (9.2) and (9.3) into expression (7.2) for RT in a balanced setting,

we obtain

RT = 1 − tr(Q′ΛQ)

tr(Q′Q)
= 1 − tr(QQ′Λ)

tr(QQ′)
.

If we call S = QQ′ = P ′V P , we have

RT = 1 − tr(SΛ)

tr(S)
= 1 −

p∑

j=1

wjλj ,

with wj =
sjj

tr(S)
and sjj the jth element in the diagonal of S. Note that V is positive

definite and, as a consequence, sjj > 0 for all j. Further, we also have

p∑

j=1

wj =

p∑

i=j

sjj

tr(S)
=

1

tr(S)

p∑

j=1

sjj = 1.

The rationale of these derivations is that RT is an element of Ω, since

RT =

p∑

j=1

wj(1 − λj) =

p∑

j=1

wjρ
2
j with wj > 0 and

p∑

j=1

wj = 1.

9.3 Other Members of the Ω Family

The uncountable nature of the Ω family implies that the choice of some special mem-

bers to be scrutinized further must be based on pragmatic considerations. Retaining

RT is evident. Another intuitive choice is to set all weights equal to wj = 1/p. We

then have that

Rp =

p∑

j=1

1

p
ρ2

j =

p∑

j=1

1

p
(1 − λj)

= 1 − 1

p

p∑

j=1

λj = 1 − 1

p
tr(ΣV −1).
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The above expression applies for a single-trial setting and a balanced study design,

assuming that Σi = Σ and V i = V . In general, we can write Rp as

Rp = 1 −
n∑

i=1

1

np
tr(ΣiV

−1
i ), (9.4)

where i denotes the subject and n denotes the total number of subjects.

It would also be appealing to consider the elements of Ω corresponding to the

largest and smallest generalized eigenvalues, let us say, θ̃max = ρ2
(1) and θ̃min = ρ2

(p),

where ρ2
(j) = 1− λ(j) and λ(j) is the jth largest generalized eigenvalue. However, the

restrictions placed on the weights (wj > 0) imply that θ̃max and θ̃min are not members

of the Ω family. Actually, θ̃max and θ̃min can be interpreted as an upper and lower

bound of Ω in the sense that for any given scale, and independently of the element

of Ω that one may use in the analysis, the reliability of the instrument will always lie

in the interval (θ̃min, θ̃max). Nevertheless, we can approximate θ̃max and θ̃min using

elements of the family by defining

θmax =

p∑

j=1

wjρ
2
(j) with w1 >> wj for j 6= 1, (9.5)

θmin =

p∑

j=1

wjρ
2
(j) with wp >> wj for j 6= p. (9.6)

Note that, if the weights wj are carefully chosen, we can be rather confident that in

any practical situation if θ denotes any arbitrary element of Ω then θmin ≤ θ ≤ θmax.

In the next section we will study in some more detail the special measures previously

proposed, via simulations.

9.4 A Simulation Study

In this section, we investigate the characteristics of the “special members” of the

Ω family, introduced in sections 9.2 and 9.3, by mean of simulations. To study the

behavior of the different measures under various conditions, data were generated with

various amounts of measurement error, different numbers of repeated measurements

per patient, and different sample sizes. For a detailed description of the simulation

study we entirely refer to Section 7.5, on the simulation study for RT . Essentially,

the same data were used for the investigation of these members of Ω.

Moreover, the parameters θmin and θmax were specified in the following way
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Table 9.1: Simulation study on θmax: random intercept model (7.4). Effect of sam-

ple size (n), number of repeated measurements (p), and error percentage (%) on the

estimate for θmax (θ̂max), and the coverage probabilities (CP) for a 95% confidence

interval.

n = 50 n = 150 n = 300

% p θmax θ̂max CP θ̂max CP θ̂max CP

9 3 0.967 0.966 99.0 0.967 98.4 0.967 99.6

9 6 0.983 0.982 100 0.983 100 0.983 100

9 9 0.988 0.988 99.6 0.988 100 0.988 100

50 3 0.749 0.752 95.6 0.754 97.0 0.753 98.6

50 6 0.856 0.854 97.2 0.857 97.6 0.857 97.8

50 9 0.899 0.897 97.2 0.899 98.8 0.899 97.6

90 3 0.231 0.290 87.9 0.245 93.9 0.242 94.6

90 6 0.375 0.383 93.8 0.383 95.8 0.378 95.8

90 9 0.473 0.468 96.4 0.476 95.4 0.477 96.0

• θmin =

p∑

j=1

wjρ
2
(j) where wj = 0.999 for j = p and wj =

0.001

p − 1
otherwise, and

• θmax =

p∑

j=1

wjρ
2
(j) where wj = 0.999 for j = 1 and wj =

0.001

p − 1
otherwise.

A confidence interval, based on the delta method, can be derived for all members

of the Ω family, assuming the weights are known constants. Details on this can be

found in Appendix B.2. Note, however, that this assumption is not fulfilled by the

RT coefficient. Therefore, confidence intervals for RT were calculated as described

in Section 7.3. Using restricted maximum likelihood, we can then obtain the point

estimates, the confidence intervals, and the coverage percentage (CP) of the confidence

intervals. For each of the measures, two tables are presented: Tables 9.1 and 9.3

contain the results for θmax and Rp that arise from the random intercept model given

in (7.4), whereas Tables 9.2 and 9.4 show the findings for the data generated by the

random intercept and random slope model given in (7.5). All tables display the true

values, estimated values, and the coverage probabilities for a 95% confidence interval
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Table 9.2: Simulation study on θmax: random intercept and slope model (7.5). Effect

of sample size (n), number of repeated measurements (p), and error percentage (%) on

the estimate for θmax (θ̂max), and the coverage probabilities (CP) for a 95% confidence

interval.

n = 50 n = 150 n = 300

% p θmax θ̂max CP θ̂max CP θ̂max CP

9 3 0.969 0.969 99.0 0.969 99.2 0.969 100

9 6 0.988 0.988 100 0.988 100 0.988 100

9 9 0.994 0.994 100 0.994 100 0.994 100

50 3 0.759 0.783 95.5 0.778 94.6 0.766 97.8

50 6 0.896 0.895 97.5 0.896 97.8 0.895 97.4

50 9 0.952 0.951 98.6 0.952 99.6 0.952 99.6

90 3 0.240 0.423 70.4 0.331 80.8 0.289 86.5

90 6 0.464 0.493 92.5 0.477 96.7 0.468 97.2

90 9 0.670 0.670 96.6 0.670 98.2 0.670 95.7

for the respective measure. To see the results for RT , we refer to Tables 7.1 and 7.2

in Chapter 7. The parameter θmin took values very close to 0 in all settings and this

measure is therefore not further considered.

The results of this simulation study clearly show that accurate point estimates for

all parameters can be obtained with a relative small sample size of 50 patients. A

larger sample size, as expected, produces narrower confidence intervals. Furthermore,

the coverage probabilities for all the asymptotic confidence intervals are generally

around the pre-specified 95% level. Only when a large amount of measurement error

is present and a limited number of patients is available, the asymptotic confidence

intervals fail to reach the pre-specified level of confidence. However, the problem is

solved when the sample size increases.

Considering the values of the point estimates, Tables 7.1 and 7.2 in Chapter 7

show that the RT coefficient produces results in line with intuition. We obtain values

close to 1 when the error variance is small compared to the total variance, we settle

for values in the neighborhood of 0.50 in case the error variance is half of the total

variance, and values are close to 0 when error variances are large.
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Table 9.3: Simulation study on Rp: random intercept model (7.4). Effect of sample

size (n), number of repeated measurements (p), and error percentage (%) on the esti-

mate for Rp (R̂p), and the coverage probabilities (CP) for a 95% confidence interval.

n = 50 n = 150 n = 300

% p Rp R̂p CP R̂p CP R̂p CP

9 3 0.323 0.322 99.2 0.323 100 0.323 100

9 6 0.164 0.164 100 0.164 100 0.164 100

9 9 0.110 0.110 100 0.110 100 0.110 100

50 3 0.250 0.251 94.6 0.251 98.2 0.251 99.4

50 6 0.143 0.143 98.6 0.143 99.4 0.143 99.8

50 9 0.100 0.100 100 0.100 100 0.100 100

90 3 0.077 0.097 86.8 0.082 95.6 0.081 96.6

90 6 0.063 0.064 92.8 0.064 96.0 0.063 97.6

90 9 0.053 0.052 95.8 0.053 97.0 0.053 98.4

Interestingly, θmax takes higher values in all settings. This is to be expected when

we consider the definition of the measure. From (9.5) it can be seen that it is based on

the maximum of the elements ρ2
j , and can therefore be interpreted as the maximum

obtainable reliability measure of the Ω family. No other member of this family will

provide higher values. In Tables 9.1 and 9.2 it can further be seen that the θmax

values increase with an increasing number of time points. This happens, in contrast

to RT , also in the random intercept model. To gain intuition about this behavior, let

us recall that θmax ≈ ρ2
(1) = 1−λ(1) and consider the random intercept model, where

Σ = σ2I and V = σ2
bJ + σ2I. It can be shown that in this scenario

θmax ≈ ρ2
(1) =

pσ2
b

pσ2
b + σ2

. (9.7)

From (9.7), it can be seen that this measure increases with the number of time points.

Turning to the third measure, Rp, we observe again a totally different pattern. This

measure generally gives low values. Even when the error variance is small compared

to the total variance, Rp reaches values far below 1. Studying Rp under the random

intercept model, it can easily be shown that, if σ2 6= 0
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Table 9.4: Simulation study on Rp: random intercept and slope model (7.5). Effect of

sample size (n), number of repeated measurements (p), and error percentage (%) on

the estimate for Rp (R̂p), and the coverage probabilities (CP) for a 95% confidence

interval.

n = 50 n = 150 n = 300

% p Rp R̂p CP R̂p CP R̂p CP

9 3 0.509 0.506 97.1 0.508 97.2 0.509 98.2

9 6 0.313 0.312 99.0 0.313 99.8 0.313 99.8

9 9 0.216 0.215 99.8 0.216 99.8 0.216 100

50 3 0.291 0.339 91.6 0.319 90.9 0.303 96.0

50 6 0.224 0.222 95.7 0.222 98.2 0.225 96.2

50 9 0.177 0.175 99.6 0.177 99.6 0.177 99.6

90 3 0.084 0.199 72.4 0.151 76.6 0.124 82.8

90 6 0.090 0.110 91.1 0.099 96.7 0.095 95.4

90 9 0.091 0.098 94.6 0.093 98.7 0.092 99.1

Rp =
σ2

b

pσ2
b + σ2

. (9.8)

Note that, unlike θmax, Rp is a decreasing function of the number of time points.

The expression further shows that, even when the error variance is very small, the

measure Rp can never exceed 1/p. Additionally, Rp is not a continuous function of

σ2 for σ2 = 0. Indeed,

lim
σ2→0

Rp =
1

p
6= 1 = Rp(σ

2 = 0).

The previous discussion clearly illustrates that these measures convey different type

of information. The RT coefficient seems to be closer to the classical idea of reliability.

Indeed, it seems to express best the ratio between the true score variability and the

error variability. On the other hand, θmax exhibits a totally different behavior, it is an

increasing function of the number of measurements and it always leads to very high

quantification of reliability. This last characteristic can be logically derived from the

fact that θmax, by definition, is the maximum attainable reliability. Finally, the Rp
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coefficient appears to behave in a very counter-intuitive manner. The entire meaning

of these new proposals and their interpretation will be further studied and clarified

in the subsequent chapters.

9.5 Conclusion

In this chapter, we have defined an entire family of which all members satisfy the four

defining properties. The family is built based on the generalized eigenvalues related to

the error and total variance-covariance matrices. Different weights assigned to these

eigenvalues lead to different members of the family.

The uncountable nature of the Ω family naturally rises the question of finding an

“optimal” element. Indeed, having an infinitude of parameters to evaluate reliability,

faces us with the problem of choosing the most appropriate element to be used in

a given application. We believe, however, that posting this optimality problem is

inappropriate in the present context. Basically, we argue that such a general optimal

element does not exist.

To illustrate this point let us recall the example previously introduced over the

mathematical definition of distance. The set of properties used to define a mathe-

matical distance does not lead to a unique quantification in any given space. For

instance, the Euclidian distance, the Mahalanobis distance or the distance based on

the uniform norm all satisfy the defining properties. We believe that such a diversity

of measures is one of the strengths of this type of axiomatic definitions. However,

the question about the “optimal” distance function is somewhat sterile if it is set in

a general way, because its answer will essentially depend on the specific application.

A second important example, previously mentioned, is the classical definition of

probability density function used in probability and statistics. Here again, the concept

is defined by a set of properties. Once more, the set of defining properties is satisfied

by an uncountable class of functions. The normal distribution, the chi-squared, the

beta, and the Cauchy distributions are merely some examples. As before, this diversity

gives the possibility of approaching several practical and theoretical problems in a very

flexible way. Note that some densities can even have very counterintuitive properties.

For instance, the Cauchy density does not have a finite mean or variance but it

nevertheless plays an important role in some applications in physics. Here again, it

is impossible to define a general optimal density and choosing one over another one

will depend on the specific application.
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Our simulations have clearly illustrated that different elements of the Ω family

may have different interpretations and they seem to capture different aspects of the

reliability of the observations. Therefore, in the next chapters we will argue that none

of them can be considered optimal in a general sense and, like in the the previous

examples, their utility will depend on the specific problem we are working on.

In a similar fashion, a family of parameters has been introduced to evaluate the

criterion validity of psychiatric symptom scales (Alonso et al 2004). It is appealing

to see that the two most important psychometric characteristics of a scale can be

investigated using similar methodologies.

The previous arguments will be further sustained by the developments in the next

chapter where a new measure of reliability will be introduced and studied. This new

measure is strongly related to the ones presented in this chapter and will help us to

get a better insight about some elements of the Ω family.



Chapter 10

Reliability of a Sequence of

Ratings

In Chapter 7 we proposed an axiomatic definition of reliability and introduced a

measure that satisfied it, the so-called RT coefficient. Notably, and even though it

was not required by the definition, the RT coefficient mimics the general functional

form of the classical definition of reliability. Indeed, the trace of a variance-covariance

matrix is usually regarded, in multivariate analysis, as a plausible generalization of

the univariate concept of variance. From this perspective, it is easy to see that the

functional form of the RT coefficient is very similar to the one used in CTT. In the

present chapter, we will summarize the variability in this multivariate setting, using

another plausible generalization of the concept of variance: the determinant of the

variance-covariance matrix. Remarkably enough, such a change leads to a completely

new measure of reliability, with different mathematical properties and interpretation.

10.1 An Alternative Measure for Reliability: RΛ

As stated above, in multivariate analysis the generalized variance of a random vector

can be defined using either the trace or the determinant of the corresponding variance-

covariance matrix. Replacing the trace in the definition of the RT coefficient by the

89
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determinant leads to the following expression for reliability

RΛ =
1

n

n∑

i=1

|V i| − |Σi|
|V i|

,

or, equivalently,

RΛ = 1 − 1

n

n∑

i=1

|Σi|
|V i|

= 1 − 1

n

n∑

i=1

|ΣiV
−1
i |.

Without loss of generality and in a similar fashion as in the previous chapters, in

what follows we will focus on the single-trial setting with balanced design, assuming

that Σi = Σ and V i = V . In this scenario, the RΛ coefficient can be written as

RΛ = 1 − |ΣV −1|. (10.1)

Note that RΛ is closely related to the Wilks’ Lambda statistic (Johnson and Wichern

1998), well-known in multivariate analysis.

Interestingly, this apparently small replacement introduces fundamental changes.

For instance, the RΛ coefficient does not fully satisfy the definition proposed in Chap-

ter 7. In fact, this new measure satisfies properties (i), (ii), and (iv), but not (iii).

Notwithstanding, it satisfies a milder version of (iii) that states: (iii’) RΛ = 1 if and

only if |Σ| = 0. Only if Σ = σ2I, (iii’) is equal to (iii). In general, property (iii’)

contains (iii) in that, if θ satisfies (iii), then it will also satisfy (iii’) and therefore,

the latter provides a more flexible defining set of properties for reliability. Basically,

(iii’) implies certain degeneracy in the distribution of the error terms which, at the

same time, implies a deterministic relationship between a linear combination of the

observed scores and one of the true scores. Therefore, we argue that properties (i),

(ii), (iii’), and (iv) lead to a more general definition of reliability and in what follows

we will adopt them as such. The proof that RΛ satisfies the properties (i), (ii), (iii’),

and (iv) is given in Appendix A.3. The reason why we still consider RΛ a useful tool

in the study of reliability will become clear in the following sections.

Details on the estimation of RΛ and the calculation of an asymptotic confidence

interval for this measure can be found in Appendix B.3.

10.2 RΛ: The Reliability of an Entire Sequence

To acquire a better insight into this new measure, as well as to better understand

its relationship with the RT coefficient, we will study its behavior in an important
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special case: the random intercept model. Let us then start by assuming that model

(5.1) holds with bi ∼ N(0, σ2
b ) and ε(1)i + ε(2)i = εi ∼ N(0, σ2I). In Section 7.4 we

have shown that, in this setting, RT =
σ2

b

σ2
b + σ2

, and does not depend on the number

of time points p.

We will now also derive the expression for RΛ under this model, where Σ = σ2I and

V = σ2I + σ2
bJ . From Section 10.1 we know that

RΛ = 1 − |ΣV −1|.

Additionally, applying the identity (aIp + bJp)
−1 =

1

a

(
Ip − b

a + pb
Jp

)
for a 6= 0

and a 6= −pb, we obtain that V −1 =
1

σ2

(
I − σ2

b

σ2 + pσ2
b

J

)
. Using the previous result

we get

ΣV −1 = σ2I
1

σ2

(
I − σ2

b

σ2 + pσ2
b

J

)

= I − σ2
b

σ2 + pσ2
b

J .

Using now that |aIp + bJp| = a−1(a + pb) we have

|ΣV −1| =

∣∣∣∣I −
σ2

b

σ2 + pσ2
b

J

∣∣∣∣ = 1 − pσ2
b

σ2 + pσ2
b

,

so that

RΛ = 1 − |ΣV −1| =
pσ2

b

pσ2
b + σ2

,

RΛ =
σ2

b

σ2
b + σ2

p

. (10.2)

This expression is very interesting from a theoretical as well as a practical point

of view. First, let us note that (10.2) is similar to the Spearman-Brown prophecy

prediction formula (Spearman 1910, Brown 1910) and it implies that reliability in-

creases with the number of observations. A second important issue is that RΛ goes

to one as the number of time points goes to infinity. This shows that, unlike RT , the

RΛ coefficient does not capture the average reliability but rather the reliability of the

sequence as a whole. Increasing the number of measurements, we also increase the

amount of useful information about the patient, even if it comes contaminated with
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measurement error. Actually, (10.2) confirms an old clinical truth: the longer one

follows a patient, the more reliable will be the conclusions about that patient that

one can make.

The practical implications of this result are also appealing. We can study the

number of repeated measurements needed to obtain a certain level of reliability RΛ,

which can be derived as

p =
σ2

σ2
b

RΛ

1 − RΛ
.

Note that, if we aim at a reliability of 1, p will go to infinity. The equation further

shows that, as long as σ2
b 6= 0, it will always be possible to achieve convergence:

there will always be a certain number of repeated measurements p that results in a

pre-specified value for RΛ.

Until now, we have used the random-intercept model to gain some insight into the

meaning of the measure RΛ. However, the assumptions on which this model is based

will be too restrictive in many real applications. The following theorem extends the

previous result to a totally general scenario and confirms our interpretation for this

measure.

Theorem 2 Let us assume that model (5.1) holds for a balanced study design in which

p time points have been considered. Further, let us denote by RΛ(p) the corresponding

value of the RΛ coefficient in this setting. If q additional observations are taken, then

the new value of RΛ for the p+q time points sequence satisfies that RΛ(p+q) ≥ RΛ(p).

The theorem proves that increasing our information about the patients can only

increase the reliability of our conclusions, a very plausible and appealing result. A

proof of an equivalent result is provided in Appendix C.5.

It is important to point out that the usual approach followed to estimate reliability

in a longitudinal framework is based on the calculation of the reliability at each time

point separately (Tisak and Tisak 1996, Wiley and Wiley 1970, Raykov 2000). This

typically leads to a function of reliability that changes over time. Note further that

both, the RT and the RΛ coefficients, can also be calculated at each time point, leading

again to a general function of reliabilities across time. However, they also offer a global

measure of reliability that nicely complements their functions over time. We believe

this is an important issue because having a global measure of reliability, valid under

such a general scenario, can substantially facilitate the interpretation of the results

when two or more scales are compared and can expedite the understanding of their
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psychometric properties. It is intuitively clear that a single meaningful measure is

much easier to analyze, understand and interpret, than several functions of changing

reliabilities over time.

We believe that in a longitudinal framework, a measure as RΛ might be more

attractive than the classical reliability functions previously proposed. Indeed, the

main objective of longitudinal studies is to get information from the entire profile and

not to analyze each time point separately. The RΛ coefficient quantifies precisely this,

i.e., the reliability of the whole profile we have at hand.

10.3 The Relationship Between RΛ and Ω

We will now investigate the link between the measure RΛ and the Ω family that was

introduced in Chapter 9. We have seen that every member of Ω is a weighted sum

of the elements ρ2
j = 1 − λj . Actually, RΛ can also be written as a function of these

elements. Let us note first that from (9.2) and (9.3) we have

|Σ| = |Q′||Q||Λ| = |Q|2|Λ|,
|V | = |Q|2,

and therefore

RΛ = 1 − |Σ|
|V | = 1 −

p∏

j=1

λj = 1 −
p∏

j=1

(1 − ρ2
j).

Let us further look at the relationship between the RΛ coefficient and the elements

θ ∈ Ω. If wj > 0 and
∑

wj = 1 then

p∑

j=1

wjλj ≥
p∏

j=1

λ
wj

j ≥
p∏

j=1

λj .

Note that the first part of the inequality is the general form of the well-known rela-

tionship between the arithmetic and geometric means, whereas the second part comes

from the fact that if 0 ≤ wj ≤ 1 then λ
wj

j ≥ λj . From this expression we have

θ = 1 −
p∑

j=1

wjλj ≤ 1 −
p∏

j=1

λj = RΛ.

This final inequality shows that θ ≤ RΛ for all θ ∈ Ω and therefore the RΛ coefficient

can be interpreted as an upper bound for the family. This result totally coincides
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with our interpretation of RΛ as a measure of reliability for the entire sequence and

our interpretation of the Ω family as summary measures of “average” reliability.

Let us also look at the relationship between RΛ and some special members of

Ω that were considered in Chapter 9. Notice first that under the random intercept

model, the expressions for RΛ (10.2) and θ̃max (9.7) are identical. We have seen that

θ̃max, like RΛ, is an upper bound of the Ω family. Additionally, and similarly to the

RΛ coefficient, θ̃max does not satisfy the definition given in Chapter 7 but the more

general version introduced in Section 10.1. Indeed, it is easy to show that θ̃max does

not satisfies (iii) but the most general (iii’). In general we have

RΛ = 1 −
p∏

j=1

(1 − ρ2
j) = 1 − (1 − ρ2

(1))
∏

ρ2
j
6=ρ2

(1)

(1 − ρ2
j)

≥ 1 − (1 − ρ2
(1)) = θ̃max,

and therefore, RΛ ≥ θ̃max. The previous expression indicates that θ̃max can be inter-

preted as an approximation of RΛ when ρ2
j ≈ 0 with j 6= (1). In spite of the preceding

inequality, θ̃max and RΛ are frequently close as illustrated in Figure 10.1, that gives

the true values for both measures under the various simulation settings, described in

Section 7.5.

We will further look at the relationship between RΛ and Rp, the other special

member of Ω. Combining (10.2) with (9.8) we can find the following functional

relationship between Rp and RΛ for the random intercept model

Rp =
RΛ

p
. (10.3)

Formula (10.3) helps us to clarify the interpretation of Rp. If RΛ represents the

reliability of an entire sequence with p time points, then Rp quantifies the “average”

contribution of each time point to the total reliability of the sequence. Basically, the

Rp coefficient can be interpreted as the “efficiency” with which the total reliability,

quantified by RΛ, is obtained.

To further explain this point let us notice that for the random intercept model the

RΛ coefficient increases with the number of time points and, in principle, any value

of reliability can be achieved if a sufficiently long sequence is considered. Further,

we have that Rp ≤ 1
p and, therefore, the Rp coefficient is a decreasing function of

p. If for certain sequence we have a low value of Rp, this will be an indication of a

“poor/inefficient” scale that will require a long follow up to achieve a high value of
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Figure 10.1: Simulation study. θmax and RΛ in case of 9, 50, and 90% of error vari-

ance, for the random intercept (RI) model (top) and random intercept and slope (RIS)

model (bottom); and for 3 (left), 6 (middle), and 9 (right) repeated measurements.

total reliability. That long follow up is the price we pay to obtain a high reliability

with a poor instrument. On the other hand, if Rp is large, this will give evidence for

a good instrument from which a few measurements are sufficient to obtain reliable

results.

In what follows we will extend the functional relationship between Rp and RΛ to

a more general setting beyond the random intercept model. Let us recall that

RΛ = 1 −
p∏

j=1

λj (10.4)

⇒ log(1 − RΛ) =

p∑

j=1

log λj . (10.5)

If −1 < x < 1 then the Maclauring series expansion for log(1 − x) is

− log(1 − x) = x +
x2

2
+ . . . +

xn

n
+ . . . (10.6)

Using the previous series expansion we get

− logλj = − log(1 − (1 − λj)) = 1 − λj +
(1 − λj)

2

2
+ . . . +

(1 − λj)
n

n
+ . . .
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It has been shown in Appendix C.1 that 0 ≤ λj ≤ 1, this implies that 0 ≤ 1− λj ≤ 1

and therefore Qj =

∞∑

k=2

(1 − λj)
k

k
≥ 0 for all j. We can then rewrite − logλj as

− log λj = 1 − λj + Qj ⇒ log λj = λj − 1 − Qj.

The previous equality leads to

log(1 − RΛ) =

p∑

j=1

λj − p −
p∑

j=1

Qj

= −p



1 − 1

p

p∑

j=1

λj



−
p∑

j=1

Qj

= −pRp − M,

where M =

p∑

j=1

Qj =

p∑

j=1

∞∑

k=2

(1 − λj)
k

k
. Note that if M can be considered negligible

then

RΛ ≈ 1 − e−pRp

and using again a first order of a series expansion we get

Rp ≈ RΛ

p
. (10.7)

This expression generalizes (10.3) for the random intercept model and confirms our

previous interpretation for this measure of reliability.

10.4 A Simulation Study

We set up a simulation study to investigate the performance of the point estimator

and asymptotic confidence interval for RΛ under various conditions. For a detailed

description of the simulation settings we refer to Section 7.5, on the simulation study

for RT . The same data were used for studying the RΛ coefficient.

Table 10.1 presents the true values, estimated values, and the coverage probabili-

ties for a 95% confidence interval for RΛ, where the random intercept model (7.4) has

been used as a data generating mechanism. Table 10.2 presents the results when the

data were generated using the random intercept and slope model given in (7.5).

We first look at the point estimators. Like before, the estimator seems to work

very well in almost all settings. Only when the measurement error accounts for 90% of
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Table 10.1: Simulation study on RΛ: random intercept model (7.4). Effect of sample

size (n), number of repeated measurements (p), and error percentage (%) on the esti-

mate for RΛ (R̂Λ), and the coverage probabilities (CP) for a 95% confidence interval.

n = 50 n = 150 n = 300

% p RΛ R̂Λ CP R̂Λ CP R̂Λ CP

9 3 0.968 0.967 98.0 0.968 97.6 0.968 97.3

9 6 0.984 0.983 99.4 0.984 99.8 0.984 99.8

9 9 0.989 0.989 99.8 0.989 100 0.989 100

50 3 0.750 0.753 95.8 0.754 96.8 0.754 98.6

50 6 0.857 0.855 97.6 0.858 97.8 0.857 98.0

50 9 0.900 0.898 97.4 0.900 98.8 0.900 98.6

90 3 0.231 0.290 87.9 0.245 93.7 0.242 94.6

90 6 0.375 0.383 94.4 0.384 96.6 0.380 97.4

90 9 0.474 0.469 96.2 0.476 95.2 0.477 96.0

all the variability, biased results can be obtained for small sample sizes. The coverage

probabilities of the confidence intervals are also good in general. There are only a

few instances where it is not in the neighborhood of 95%. This is mainly when the

sample size is small in combination with large measurement error.

Let us now compare the performance of RΛ and RT . Table 7.1 clearly illustrated

that the values of RT , based on a random intercept model with homogeneous error

variances, do not depend on the number of time points. This has also been shown

theoretically in (7.3).

On the other hand, Table 10.1 illustrates that the values for RΛ, under the same

model, increase with the number of time points, a result that has also been derived

theoretically in (10.2). For example, when the error variability is 50% of the total

variability, we still obtain very high values for RΛ in case 6 or 9 measurements are

taken. This means that, when there is a lot of measurement error, still very reliable

information can be obtained when the measurement is repeated a sufficient number

of times. Even repeating the measurement three times, the combined information

could be considered as reliable (RΛ = 0.79). A similar result is found for RΛ under

the random intercept and random slope model (Table 10.2).
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Table 10.2: Simulation study on RΛ: random intercept and slope model (7.5). Effect

of sample size (n), number of repeated measurements (p), and error percentage (%) on

the estimate for RΛ (R̂Λ), and the coverage probabilities (CP) for a 95% confidence

interval.

n = 50 n = 150 n = 300

% p RΛ R̂Λ CP R̂Λ CP R̂Λ CP

9 3 0.986 0.986 99.6 0.986 99.4 0.986 99.8

9 6 0.999 0.999 100 0.999 100 0.999 100

9 9 1 1 100 1 100 1 100

50 3 0.787 0.831 95.2 0.816 94.3 0.799 98.5

50 6 0.943 0.941 98.0 0.942 98.4 0.943 98.2

50 9 0.983 0.982 99.4 0.983 100 0.983 100

90 3 0.250 0.516 74.9 0.410 79.5 0.347 84.4

90 6 0.504 0.576 90.7 0.538 95.8 0.522 95.4

90 9 0.720 0.740 95.8 0.724 98.2 0.722 96.6

Further, even though Table 7.2 shows an increase of RT for an increasing number

of time points, in Section 7.4 we have seen that this does not need to be the case. To

illustrate the difference in this respect between RT and RΛ we set up an additional

simulation study.

We revisit the results of the simulations following the random intercept model for

p = 3. We further generated data with one extra time point (p = 4), in such a way

that the extra measurement satisfies

tr(Σp)

tr(ΣDp)
<

σ2
p+1

zp+1Dz
′
p+1

,

or equivalently, under the present model

∑p
j=1 σ2

j

p
< σ2

p+1,

thereby expecting RT to decrease compared to the results displayed in Table 7.1.

Precisely, the data were generated based on model (7.4), where bi ∼ N(0, σ2
b ), εi ∼

N(0,Σ), with σ2
b = 300, and with Σ a diagonal matrix with the first three diagonal
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Figure 10.2: Simulation study. Effect on RT and RΛ of adding an additional mea-

surement that has a large error variability compared to three previous measurements.

elements equal to σ2 and the fourth diagonal element equal to 2σ2, with σ2 = 30,

300, and 3000. The sample size was set equal to n = 50. Figure 10.2 summarizes our

findings. We indeed observe that the values for RT decrease with a larger number of

time points. However, the values of RΛ increase.

This simulation study illustrates once more that RT and RΛ should be interpreted

in different ways. RT is an average reliability, taken over a number of measurements.

Adding time points with “low” reliability will pull the average down, adding “reliable”

measurements will lift the average up. Unlike RT , RΛ quantifies the reliability of the

whole sequence of measurements. Adding more measurements to the sequence will

never decrease our total information about the true scores. Obviously, the magnitude

of the increase will depend on the amount of measurement error that contaminates

the new observations. Adding measurements with little measurement error will lead

to a faster increase of RΛ than what measurements with a lot of error would do.

10.5 Analysis of the Case Study

In this section we apply the methodology described in this and the previous chapter

to the case study data in schizophrenia (Peuskens et al 1995). We will estimate the
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Table 10.3: Schizophrenia Study. Reliability estimates and 95% confidence intervals

for PANSS, BPRS, and CGI based on three different reliability measures: RT , Rp,

and RΛ.

PANSS BPRS CGI

RT 0.890 [0.871; 0.907] 0.856 [0.839; 0.871] 0.733 [0.622; 0.822]

Rp 0.414 [0.381; 0.478] 0.366 [0.347; 0.385] 0.333 [0.270; 0.403]

RΛ 0.999 [0.996; 1.000] 0.996 [0.995; 0.997] 0.988 [0.726; 1.000]

reliability measures RΛ and Rp for the three rating scales used in that study, PANSS,

BPRS, and CGI. For model building and model selection we refer to Chapter 8. Table

10.3 presents the point estimates and 95% confidence intervals for the RΛ, Rp, and

RT coefficients.

First, let us look at the results obtained with the Rp coefficient. Earlier, we have

argued that this coefficient is an indicator of efficiency, expressing the average con-

tribution of each measurement to the total reliability. Notice that the estimates in

Table 10.3 indicate that the approximation given in (10.7) may be imprecise when the

model deviates from the random intercept case. However, this does not invalidate the

general interpretation derived from this approximation and, therefore, it will be re-

tained in the following discussions. Clearly, the most complex scale, PANSS, exhibits

the largest efficiency, followed by BPRS and CGI. This finding is in full agreement

with the results obtained earlier when the RT coefficient was used in Chapter 8 and

that are also summarized in Table 10.3.

Turning to the RΛ coefficient the table shows very large estimates for the three

scales, all are close to 1. We have previously interpreted the RΛ coefficient as the

reliability of the entire sequence of measurements, increasing each time an extra mea-

surement is taken. The high values observed here are thus the result of two elements:

first, the high average reliability, expressed by high estimates of RT and second, the

fair number of repeated measurements taken in this study. From this finding we can

then conclude that all the instruments can provide very reliable information about

the patients in the population studied in this clinical trial, and that the impact of

measurement error is negligible for all three rating scales in this setting.

We also analyzed the increase of the RΛ coefficient over the number of measure-



101

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PANSS
BPRS
CGI

R
Λ

cu
m

u
la

ti
v
e

Time (weeks)

Figure 10.3: Schizophrenia study. RΛ cumulative over time for the three outcome

scales.

ments, as shown in Figure 10.3. The graph presents the cumulative RΛ values over

time, where the first point indicates the value of RΛ based on the first measurement

alone, the second point indicates the value based on the first and second measurement

jointly, and so on. The figure shows clearly that PANSS and BPRS are indistinguish-

able with respect to their reliabilities. Notice that the same conclusion was drawn in

Chapter 8, where we have seen that RT estimates for both scales are similar. The

graph further indicates that taking a second measurement with either of the two scales

leads to an increase in reliability of about 10% compared to considering the first mea-

surement alone. Nevertheless, after three measurement a further gain in reliability

can hardly be achieved by further increasing the number of measurements.

Based on the same figure, we clearly observe that the CGI scale is less reliable

than PANSS and BPRS, a conclusion that was also drawn in Chapter 8 based on the

RT coefficient. Indeed, for the latter two scales it takes only two measurements to

arrive at RΛ values around 0.90, whereas for CGI it takes five measurements to get to

the same level. However, it is fair to say that at the end of the study CGI reaches the

same level of reliability as the two multi-item scales. We could conclude that when

a small number of measurements is taken, PANSS and BPRS are more reliable than

CGI, but the difference in reliability fades away if, as in the present case study, a
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sufficient number of of repeated measurements is taken.

10.6 Conclusion

In this chapter, we introduced a new parameter to evaluate reliability, the RΛ coef-

ficient. Mathematically, RΛ and RT are very similar, with the only difference being

that for the former determinants instead of traces are used to summarize the vari-

ability in variance-covariance matrices. Interestingly, we have seen that this leads to

a measure that bears a quite distinct interpretation. Unlike RT , RΛ quantifies the

reliability of the complete sequence of observations. The RΛ coefficient cannot de-

crease when the number of measurements goes up, illustrating that even scales with

a relatively low average reliability can lead to reliable results if the follow up of the

patients is long enough. This is a very important and encouraging result. Indeed, the

strong subjective component of many rating scales will frequently produce relatively

small or moderate values of reliability when they are administered once. Neverthe-

less, Theorem 2 shows that such an instrument can still be valuable if it is applied

repeatedly over time.



Chapter 11

Connections with Earlier

Approaches

In this chapter we will discuss some interesting links between the new approach to

reliability, as elaborated in the chapters 7 to 10, and some earlier approaches developed

in the framework of the classical test theory and generalizability theory.

11.1 Reliability as a Measure of Association Be-

tween True and Observed Scores

Correlation has been at the core of reliability research since the pioneering work

of Charles Spearman at the beginning of the 20th century. In CTT it has been

shown that reliability equals the squared correlation between the observed and true

scores, as expressed in (3.3). Essentially, the reliability of a scale tries to quantify the

amount of information that the instrument conveys about the latent, unobserved true

scores. Therefore, this equivalence between reliability on one hand and the correlation

between true and observed scores on the other hand, is very appealing. In this section

we will explore this link further.

As pointed out in Chapter 10, the Ω family and RΛ are both built based on the

same basic elements, namely the ρ2
j = 1 − λj where the λj ’s are the solutions of

the equation q(λ) = |Σ − λV | = 0. Nevertheless, from this definition the practical

103
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interpretation of the ρ2
j is not totally clear. In this section we approach reliability

from an alternative point of view that will help us to clarify the role and interpretation

of the elements ρ2
j .

As previously stated, in the classical test theory, Lord and Novick (1968) have

proven that reliability equals the squared correlation between the observed score Yi

and the true score τi, i.e.,

R = Corr(Yi, τi)
2. (11.1)

In the previous chapters we extended the classical definition to assess reliability in

a more general setting where the steady state condition implied by model 3.1 does

not hold and repeated measurements for each subject are available. Nevertheless,

given the intuitive appeal of (11.1), it would be natural to explore whether such a

connection also holds in the more general scenario considered in chapters 7 to 10.

Therefore, in what follows, we will study the relationship between the measures of

reliability previously introduced and the squared association between Y i and bi. Let

us start by denoting Si =



 Y i

bi



. The following theorem will allow us to quantify

this association.

Theorem 3 If model 5.1 holds then Si ∼ N(µ0i,Σ0i) where

µ0i =



 Xiβ

0



 and Σ0i =



 V i ZiD

(ZiD)′ D



 .

Proof

Let us first prove that Si follows a normal distribution. In what follows we will use

the following result from Johnson and Wichern (1998, p. 165)

A random vector X is multivariate normal distributed, if and only if, for

any vector a (a 6= 0), a′X is univariate normal distributed.

We will now consider the general vector a′ = (a′
1,a

′
2), where a1 ∈ R

pi and a2 ∈ R
q.

We want to prove that a′Si is univariate normal distributed.

a′Si = a′1Y i + a′2bi = a′
1(Xiβ +Zibi + εi) + a′

2bi

= a′1Xiβ + a′
1Zibi + a′

1εi + a′2bi

= a′1Xiβ + (a′
1Zi + a′

2)bi + a′1εi.
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However 

 bi

εi



 ∼ N







 0

0



 ,



 D 0

0 Σi









and, therefore, using again the result from Johnson and Wichern (1998, p. 165) we can

conclude that (a′
1Zi +a′

2)bi +a′1εi is univariate normal distributed. We have proven

that for any a (a 6= 0), a′Si is univariate normal distributed and, as a consequence,

Si is also multivariate normal distributed, with

µ0i = E




 Y i

bi




 =


 E(Y i)

E(bi)


 =


 Xiβ

0


 ,

and

Σ0i =



 Cov(Y i) Cov(Y i, bi)

Cov(Y i, bi)
′ Cov(bi)



 .

We know that Cov(Y i) = V i and Cov(bi) = D. Let us now calculate Cov(Y i, bi).

Cov(Y i, bi) = E{(Y i −Xiβ)b′i}
= E{(Xiβ +Zibi + εi −Xiβ)b′i}
= E{Zibib

′
i + εib

′
i}

= E{Zibibi
′} + E{εib

′
i} = ZiD

The last equality comes from the fact that E{εib
′
i} = 0. Indeed, (εi, b

′
i) are indepen-

dent and E(εi) = 0, E(bi) = 0 what implies that E{εib
′
i} = 0. Finally, we get

Σ0i =


 V i ZiD

(ZiD)′ D


 and therefore Si ∼ N(µ0i,Σ0i). �

Theorem 3 states that Si is multivariate normal distributed. A natural way to

quantify the association between Y i and bi is then to use canonical correlations. From

multivariate analysis (Johnson & Wichern 1998) we know that if

 X1

X2


 ∼ N




 µ1

µ2


 ,


 Σ11 Σ12

Σ21 Σ22




 ,

then we can quantify the association betweenX1 andX2 through the set of canonical

correlations which are the eigenvalues of the matrix Σ
−1/2
11 Σ12Σ

−1
22 Σ21Σ

−1/2
11 . If we
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now consider the case of a single balanced clinical trial, then the matrix Σ0i = Σ0

takes the form

Σ0 =


 V ZD

(ZD)′ D


 ,

where V = ZDZ ′ + Σ. The canonical correlations of Si are then the eigenvalues of

the matrix V −1/2ZDD−1DZ ′V −1/2 = V −1/2ΣDV
−1/2 = V −1/2(V − Σ)V −1/2 =

I −H. We have already proven that the eigenvalues of H are the solutions of the

equation q(λ) = |Σ − λV | = 0. On the other hand, it is easy to show that if λ is an

eigenvalue of the matrix H then 1 − λ is an eigenvalue of the matrix I −H. The

implications of these results are very appealing. In fact, if we want to extend the

concept of reliability using the expression (11.1), then the reliability of Y i should be

based on the canonical correlations associated with Si. The previous results show

that the canonical correlations between Y i and bi equal 1 − λj where λj are the

solutions of the equation q(λ) = |Σ − λV | = 0. Note that in the definition of the Ω

family (9.1), the elements ρ2
j = 1 − λj are just these canonical correlations.

It is appealing to see that two equivalent classical definitions of reliability also

concur in this extended setting. These results clearly show that any extension of the

classical definition of reliability that wants to retain the interpretation derived from

(11.1), should necessarily be based on the ρ2
j . However, a high-dimensional vector of

canonical correlations may be difficult to interpret and difficult to use when comparing

two scales regarding their reliabilities. Therefore, aiming at an easier interpretation,

we have summarized the information about the reliability, contained in the canonical

correlation vector, using meaningful functions of its elements.

Furthermore, with this new interpretation, the Ω family is in a stronger agreement

with the similar family introduced by Alonso et al (2004) to study criterion validity.

In the context of criterion validity the ρ2
j are canonical correlations between two rating

scales, in the context of reliability they are canonical correlations between true and

observed scores.

11.2 Relationship Between the New Proposals and

the G Coefficients

One of the most important attempts to estimate reliability in a longitudinal framework

is based on G-theory and the use of the G coefficients. In this section, we will study
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the relationship between RT , RΛ, and the G coefficients when the assumption of the

G-theory modelling framework are met.

Let us then consider that the following model, used in generalizability theory,

holds

Yij = µ + bi + τj + εij , (11.2)

where Yij denotes the score for subject i (i = 1 . . . n) at time point j (j = 1 . . . p),

µ denotes a constant general mean, bi ∼ N(0, σ2
b ) is a subject-specific effect, τj ∼

N(0, σ2
τ ) denotes the time effect and the error terms are assumed independent with

εij ∼ N(0, σ2). It is further assumed that bi, τj , and εij are independent.

Note that, using vector notation, model (11.2) can be rewritten as

Y i = 1pµ + 1pbi + τ + εi, (11.3)

where Y i = (yi1, yi2, . . . , yip)
′ denotes a column vector with all observations orig-

inating from subject i, 1p = (1, 1, . . . , 1)′ denotes a p-dimensional column vector,

τ = (τ1, τ2, . . . , τp)
′ a column vector with the time effects, and εi = (εi1, εi2, . . . , εip)

′

denotes the column vector with all the error terms associated with subject i. This

model can be seen as a special case of the linear mixed model we considered. Indeed,

model (11.3) is a linear mixed model with only one subject-specific random effect

and the error structure decomposed into a time component (which can be seen as a

special type of serial correlation where the Hi matrix reduces to the identity), and

a component that captures extra residual variability. As we have stated before, it is

important to differentiate the variability emanating from the subject-specific random

effects and the one coming from other sources. In this case, we have only one subject-

specific random effect bi and, therefore, for this model the variance-covariance matrix

associated with the subject-specific random effects is a scalar; D = σ2
b . Using matrix

notation, we can now write

V = Var(Y i) = Jpσ
2
b + Ip(σ

2
τ + σ2), (11.4)

where Jp = 1p1
′
p and Ip is a p × p identity matrix. Employing the notation intro-

duced in Chapter 5, we have V = ΣD + Σ with ΣD = Jpσ
2
b accounting for the

variability coming from the subject-specific effect and Σ = Ip(σ
2
τ + σ2) accounting

for the remaining variability. It now follows that

RT = 1 − tr(Σ)

tr(V )
= 1 − p(σ2

τ + σ2)

p(σ2
b + σ2

τ + σ2)
=

σ2
b

σ2
b + σ2

τ + σ2
.
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Interestingly, this expression equals the index of dependability Φ as expressed in (4.4),

in case there is only one measurement, i.e., p′ = 1. The index of dependability is one

of the two reliability-like coefficients widely used in G-theory, and is appropriate

when scores are given “absolute” interpretations as in domain-referenced or criterion-

referenced situations. In the above, p′ refers to the number of time points in a

D-study. The latter can be seen as a mind experiment to study the reliability that

would be obtained under different circumstances. The RT coefficient thus equals the

expected reliability if we would take only one measurement. This interpretation nicely

corresponds to the previously given interpretation for RT as the average reliability

over the time points.

To calculate the value of the RΛ coefficient we will need the following result:

|aIp + bJp| = ap−1(a + pb) (Searle 1982). We can now write

RΛ = 1 − |Σ|
|V | = 1 − (σ2

τ + σ2)p

(σ2
τ + σ2)p−1(pσ2

b + σ2
τ + σ2)

= 1 − σ2
τ + σ2

pσ2
b + σ2

τ + σ2
=

σ2
b

σ2
b +

σ2
τ

p + σ2

p

.

Note that this expression equals the index of dependability Φ, but now for p′ = p.

The RΛ coefficient thus equals the reliability that is obtained with the number of

measurements equal to the number used in the G-study. However, at first sight, this

equivalence seems to disagree with the interpretation of RΛ as the reliability of the

entire longitudinal sequence. Indeed, as stated in Chapter 4, G-theory typically uses

the mean score metric. The index Φ therefore expresses the reliability of the mean

of the observed scores. On the other hand, we have previously stated that the RΛ

coefficient expresses the reliability of the entire sequence of ratings, this means: the

reliability of the vector of observed scores. The question is then raised as to how both

coefficients can coincide, if a vector is supposed to contain more information than a

mean. To solve this issue, let us define ε∗ij = τj + εij , so that model (11.2) can be

written as

Yij = µ + bi + ε∗ij , (11.5)

where ε∗ij ∼ N(0, σ2
τ + σ2) and Yij |bi ∼ N(µ + bi, σ

2
τ + σ2). In this case, however, Ȳi·

is a sufficient statistic for µ + bi. In other words, Ȳi· contains the same amount of

information about µ + bi as does the entire vector Y i. Furthermore, when p → ∞
then Ȳi·

P→ µ + bi and RΛ → 1. This explains why, in case model (11.2) holds, the

reliability of the mean equals the reliability of the entire vector of measurements.
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The index of dependability Φ is applicable when scores are given “absolute” in-

terpretations. A very similar proof can be constructed to illustrate that, after condi-

tioning on the time points, the RT and the RΛ coefficients equal the generalizability

coefficient Eρ2, as expressed in (4.3), for 1 and p measurements, correspondingly. Eρ2

is a measure for reliability that is applicable when only relative decisions ought to

be taken. This is when we are only interested in the relative position of different

individuals with respect to each other, and not in the absolute values they score on

the scale. Nevertheless, within the context of mental health or health in general, the

absolute interpretation is usually more useful and appealing.

The previous derivations show that, when the modelling assumptions of G-theory

hold, the commonly used G-theory coefficients coincide with the measures of reliability

previously proposed. This implies that these G-coefficients also satisfy our defining

properties and can be framed within the present approach. Given the seminal success

of G-theory in many applications, these results increase our confidence in the newly

proposed reliability definition and measures.

Nevertheless, as stated in Chapter 5, the assumptions required by the G-theory

modelling framework are often too restrictive to be applicable in a longitudinal sce-

nario. If these assumption are violated then severe bias can appear in our estimates.

The next chapter retakes this issue and explores the effect of some of these violations

on the new proposals.





Chapter 12

Impact of Ignoring Serial

Correlation and Memory

Effect on Reliability

Estimates

Test-retest studies are one of the most commonly used methods to evaluate reliability.

In these studies subjects are tested on two different occasions, and the Pearson corre-

lation or the intraclass correlation coefficient is used as a measure for reliability. This

method is valid under the assumptions of the classical test theory, i.e., (i) the true

scores are equal; (ii) the error variances are equal; and (iii) the measurement errors

are independent. Clearly, a test-retest scheme can be seen as the simplest possible

longitudinal design.

However, it is fair to say that test-retest reliability has always been controversial.

A fundamental issue with the approach resides in finding the optimal length of the

time interval between the first and the second measurement. Whenever measuring

living organisms, it is probable that the characteristics being measured will change

from one replication to another. The usual approach is, therefore, to take the time

interval sufficiently short so that it would be safe to assume that the underlying process
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is unlikely to have changed in important ways. Nevertheless, if both measurements

are taken too close in time, it is quite likely that the rater will recall his/her previous

rating and the new assessment could be influenced by the previous one. Usually, the

rater will give similar ratings in each of the replications (Dunn 1989, Streiner and

Norman 1995).

The problem of memory also appears when we want to study reliability in a

more general longitudinal setting, i.e., when subjects are measured at more than two

occasions using the same rating scale. If a memory effect emerges in such a setting,

then it will imply that observations closer in time are more alike than observations

further apart. Basically, this is the effect produced by a serial correlation component,

a term used to capture exactly this type of effect in the association structure (Verbeke

and Molenberghs 2000).

Ignoring serial correlation, originating from memory effects or other sources, can

have a serious impact on the estimated reliability coefficients. In the present chapter,

we study via simulations the bias produced by such uncontrolled sources of serial

correlation, when employing the reliability coefficients proposed in previous chapters.

This study complements previous research that has reported the effect of ignoring

intra-subject serial correlation on the G-coefficients within a generalizability theory

framework.

12.1 Ignoring Intra-subject Serial Correlation

As stated before, an important attempt to extending the concept of reliability to a

longitudinal setting was done using generalizability theory. The utility of G-theory to

evaluate reliability in longitudinal studies depends on the adequacy of its underlying

model (analysis of variance with random effects) to describe the specific data structure

encountered. As has been mentioned in Chapter 5, the G-theory modelling framework

can be applied to a longitudinal setting only if strong and unrealistic assumptions are

made. One such assumption is the presence of an uncorrelated and homoscedastic

error structure. In fact, correlated error structures occur frequently in longitudinal

studies. Usually, observations close in time exhibit a stronger association than ob-

servations with more time separation. Ignoring this correlation will induce bias in

the variance-component estimates and, as a result, in the generalizability coefficients.

This has been documented in the literature and a detailed description of these works

was presented in Chapter 5. Unfortunately, the classic modelling paradigm used in
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G-theory is not designed to capture this type of associations and assumes uncorrelated

error terms with equal variance over time.

In previous chapters we proposed a different extension of the reliability concept

to a longitudinal framework that is based on hierarchical linear models. This type

of models allow to incorporate many of the features of longitudinal data, including

varying true scores, correlated random effects, heteroscedastic error components, and

correlated error terms. Additionally, the LMM framework conveniently offers a large

amount of flexibility for modelling serial correlation. For instance, Gaussian or ex-

ponential structures could be used when data points are not equally spaced, with

heterogeneous versions further allowing for time- and covariate-dependent variance

functions. Furthermore, on top of the serial correlation, additional measurement er-

ror variability can be superimposed.

As stated before, we argue that a memory effect will typically produce the same

correlation pattern as a serial correlation component and, as a result, it could be

absorbed into it. Clearly, other sources of correlation may also contribute to the

presence of serial correlation and, therefore, we should not fully identify these two

related but different concepts. In general, a strong serial correlation can be the

reflection of a strong memory effect, a memory effect combined with other factors, or

simply (a combination of) such other factors. Which of these scenarios is the true one

is irrelevant from a reliability perspective, because what really matters is the fact that

a serial correlation component is able to absorb each one of them. This is because

one’s primary interest is not in making inferences about serial correlation, but rather

about reliability, with serial correlation treated as a nuisance characteristic.

In the next section, we will study the impact of ignored sources of serial correlation

on the RT and RΛ coefficients.

12.2 A Simulation Study

The design of the simulation study was a 2×3×2 complete factorial arrangement with:

2 types of subject specific profiles, (1) random intercept, and (2) random intercept

and random slope; 3 levels of auto-regressive serial correlation 0.1, 0.5, and 0.8; and

two types of analyses (1) ignoring serial correlation and (2) fitting serial correlation.

The random-intercept model can be expressed as

Yij = β0 + β1tij + β2Zi + bi + εij , (12.1)
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Table 12.1: Instability and serial correlation on reliability measures: correlation coef-

ficients. RI refers to random intercept model with serial correlation (12.1), RIS refers

to model (12.1) with random intercept, random slope, and serial correlation. ρ is the

correlation parameter and (Yij , Yik) refer to pairs of measurement occasions.

Model ρ (Yi0, Yi2) (Yi0, Yi4) (Yi0, Yi6) (Yi0, Yi8) (Yi0, Yi,10)

RI 0.1 0.770 0.751 0.748 0.748 0.748

RI 0.5 0.871 0.810 0.779 0.764 0.757

RI 0.8 0.948 0.908 0.875 0.850 0.830

RIS 0.1 0.746 0.683 0.617 0.553 0.492

RIS 0.5 0.845 0.734 0.641 0.564 0.498

RIS 0.8 0.921 0.822 0.718 0.624 0.544

with bi ∼ N(0, σ2
b ), εi ∼ N(0, τ2H), tij denoting the time at which measurement j

for subject i is taken, and Zi the treatment allocation for subject i. We fix σ2
b = 300

and τ2 = 100, corresponding to a situation where the error variability accounts for

one quarter of the total variability. The model with random intercept and slope can

be written as

Yij = β0 + β1tij + β2Zi + b1i + b2itij + εij , (12.2)

where now bi ∼ N(0,D), εi ∼ N(0, τ2H) and

D =


 300 −1

−1 5


 .

Values for the fixed effects were set to β0 = 85, β1 = −2.5, and β2 = 3. Six equally

spaced time points, at weeks 0, 2, 4, 6, 8, and 10, were considered, and the sample

size was set equal to 250. Finally, a total of 250 data sets were generated for each of

these six settings.

Before going to the actual analysis we will illustrate the effect of instability (patient

evolution over time) and serial correlation on ordinary reliability estimates, calculated

as test-retest correlations. Table 12.1 presents Pearson correlations between the out-

come at the first measurement (Yi0) and the outcomes at later measurement occasions

(Yi2 −Yi10), for different strengths of serial correlation (ρ). For the random intercept
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model (RI) one can easily obtain the reliability of the measurement as the ratio of

the true score variability to the total variability

R = RT =
σ2

b

σ2
b + σ2

=
300

300 + 100
= 0.75.

Note that in this model the subject-specific evolution over the various measurements

is constant and, therefore, it does not influence the correlation. Essentially, one

can state that for the random intercept model the steady-state assumption is valid

and all the misspecification is concentrated in the error structure. The upper half

of Table 12.1 clearly shows that test-retest reliability can give a severely distorted

image if serial correlation is present. Indeed, in case of small serial correlation, as

expected, Pearson correlation coefficient can give stable and trustworthy results as

an estimator of reliability, especially when using observations that are far apart. We

must point out, however, that some overestimation can appear, even in this scenario,

if the observations are close in time. Basically, this illustrates that correlation is a

valid estimator for reliability, only when the serial correlation is very small or does

not exist at all. However, with an increasing serial correlation the situation changes

dramatically and reliability is usually strongly overestimated, especially for small time

lags.

The classical definition of reliability does not apply to a model with random in-

tercept and slope (RIS). We will then use the true value of RT as a reference point,

which equals 0.826. For this model, the subject-specific evolution is no longer con-

stant: different subjects can now evolve over time in different ways. The lower half

of Table 1 shows that these changes in the true scores lower the correlations when

time lag increases. This can lead to a severe underestimation of reliability if the two

observations used to calculate the test-retest estimate are far apart. The serial cor-

relation, on the other hand, produces the opposite effect, i.e, it increases the Pearson

correlations. This clearly shows one of the most important problems associated with

test-retest reliability: choosing two time points which are close enough in time to

guarantee the steady-state assumption and, at the same time, far enough from each

other to annul the effect of serial correlation. As the simulation results clearly show,

this optimal time point depends on the value of the unknown serial correlation and it

can be extremely difficult to determine in practice. Notice also that even when such

an optimal time point can be determined, this does not guarantee that bias will be

fully avoided. As a summary, the results presented here illustrate that the classical

approach to reliability is only justified when the necessary assumptions are fulfilled.
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Whenever a serial correlation is present, or whenever subjects evolve differently over

time, this approach will not lead to correct estimates.

Let us now look at the effects of serial correlation on the RT and RΛ coefficients.

We considered two different scenarios for analysis: (i) a correctly specified model that

includes a serial correlation component with an auto-regressive structure and (ii) a

misspecified model that assumes an uncorrelated structure for the residual part, i.e.,

Σ = σ2I. Based on these model fits, we calculated the point estimates and confidence

intervals for RT and RΛ. Tables 12.2 and 12.3 present the true values for RT and

RΛ, and the average of the estimated values over the 250 simulated data sets. The

coverage probability (CP) indicates the percentage of the cases in which the true value

lies within the estimated 95% confidence interval. An asterisk indicates that the 95%

confidence interval around the coverage percentage does not contain the true value of

0.95. The number of simulations ensures that the width of these confidence intervals

is smaller than 0.10 in the expected range. We further have a power of over 80% to

detect a difference of 0.05 in the coverage probabilities resulting from the two analysis

methods.

Let us first focus on the random-intercept setting, i.e., when the data where gen-

erated using model (12.1). The first half of table 12.2 illustrates that, when the model

used to fit the data does not include a serial correlation component, both R̂T and R̂Λ

overestimate the true values. As one would expect, for the smallest values of ρ, the

bias present in RT is only minor and the misspecification seems to exert a weak impact

only on the coverage probability of the corresponding confidence interval. However, a

totally different image emerges when larger values of ρ are considered. In such scenar-

ios, a large bias is observed in the point estimates of RT and the coverage probability

of the corresponding confidence interval is considerably smaller than the pre-specified

95% value.

Interestingly, RΛ seems to be more sensitive to the misspecification. Indeed, even

for the smallest values of ρ, a moderate bias appears in the point estimate of RΛ

and the coverage probability of the confidence intervals is also more seriously affected

compared to RT . Unsurprisingly but with important ramifications, the situation

worsens considerably for larger values of serial correlation.

Note that these findings fully coincide with the results reported by Smith and

Luecht (1992) and Bost (1995) in their studies of the effect of ignoring a stationary

correlated error structure on the estimation of the G-coefficients. Fortunately, un-

like in the modelling framework used in G-theory, linear mixed models allow for the
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Table 12.2: Effect of ignoring intra-subject correlation on reliability measures: random

intercept model (12.1). ρ is the correlation coefficient; both reliability measures are

considered, with RT and RΛ the true values, R̂T and R̂Λ the simulation averages, and

CP· referring to coverage probability.

Correlation structure ρ RT R̂T CPRT
RΛ R̂Λ CPRΛ

variance components 0.1 0.750 0.757 90.4* 0.939 0.949 50.0*

variance components 0.5 0.750 0.815 3.2* 0.889 0.963 0*

variance components 0.8 0.750 0.902 0* 0.824 0.982 0*

auto-regressive 0.1 0.750 0.748 95.2 0.939 0.938 96.4

auto-regressive 0.5 0.750 0.746 95.2 0.889 0.886 96.0

auto-regressive 0.8 0.750 0.734 95.2 0.824 0.808 96.0

(*) the 95% confidence interval around the CP does not contain 0.95.

absorption of such a correlation structure. The second part of Table 12.2 shows the

results obtained when the models fitted to the data included a serial correlation com-

ponent. As one would expect, neither the RT nor the RΛ point estimates are biased

in this case. Furthermore, the confidence intervals now enjoy coverage very close to

their nominal level.

Interestingly, the true value of RΛ decreases when the serial correlation increases,

an entirely plausible feature. Indeed, it has been shown that RΛ has the ability to

increase with the number of time points, owing to the fact that every new observa-

tion purports additional information, even if it comes contaminated by measurement

error. Nevertheless, for a given number of time points, we have less information when

different observations are strongly correlated, explaining lower RΛ for larger values of

ρ.

Table 12.3 displays the results obtained under the second setting, i.e., when the

data where generated from model (12.2). The conclusions in this case are almost

identical to the earlier ones. Note that, if the serial correlation is ignored, then

the bias of the point estimates and the problem with the coverage probabilities of

the confidence intervals seem to aggravate in this scenario, stemming from the more

complicated random-effects structure. The second half of the table shows the results
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Table 12.3: Effect of ignoring intra-subject correlation on reliability measures: random

intercepts and slope model (12.2). ρ is the correlation coefficient; both reliability

measures are considered, with RT and RΛ the true values, R̂T and R̂Λ the simulation

averages, and CP· referring to coverage probability.

Correlation structure ρ RT R̂T CPRT
RΛ R̂Λ CPRΛ

variance components 0.1 0.826 0.837 83.2* 0.986 0.990 35.2*

variance components 0.5 0.826 0.900 0* 0.972 0.997 0*

variance components 0.8 0.826 0.960 0* 0.965 0.999 0*

auto-regressive 0.1 0.826 0.825 97.6 0.986 0.986 96.8

auto-regressive 0.5 0.826 0.821 96.8 0.972 0.968 97.2

auto-regressive 0.8 0.826 0.812 88.1* 0.965 0.955 91.9

(*) the 95% confidence interval around the CP does not contain 0.95.

when the correct model was fitted to the data. Here again, there is no bias in the point

estimate and the coverage probabilities are close to their nominal value. Only when

the serial correlation was largest a moderate under-coverage was observed for the

confidence intervals of both RT and RΛ. Nevertheless, some additional simulations

(details not shown) proved that the problem completely disappears when the sample

size was increased to 500 patients.

12.3 Conclusion

The conclusions of the simulation study fully coincide with the results found by Smith

and Luecht (1992) and Bost (1995) in their study about the effect of ignoring a sta-

tionary correlated error structure on the estimation of the G-coefficients. This mis-

specification can seriously affect both, the point estimates of the reliability parameters

and the inferential procedures related to the RT and RΛ coefficients. However, the

more general modelling framework on which they are based allows us to adjust for

the presence of such a correlation structure. Clearly, our results together with the

findings of Smith and Luecht (1992) and Bost (1995) suggest the use of linear mixed

models and RT and RΛ as a more appropriate choice for the evaluation of reliability
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in a longitudinal scenario.

We put a strong focus on the problem of memory effect. In case of such an

effect, the condition of the subject at consecutive and/or close measurement times

will appear more similar than they actually are. This effect is one typical source of

serial correlation, providing the opportunity to accommodate such an effect using the

serial correlation structure of a linear mixed model. The reason we chose to emphasize

memory effect is because it has permeated reliability research for a long time. Many

attempts to solving this problem were circumscribed to finding an optimal length for

the interval between two consecutive observations. The issue of finding this optimal

length has been largely based on knowledge specific to the area of application and

is mainly effective when solely two repeated measurements per subject are taken. In

the present work, we approached the problem from a statistical modelling perspective

by considering more general hierarchical models that can account for both, the time

evolution of the patients and a potential memory effect.

It is useful to recall that the terms memory effect and serial correlation are not

fully interchangeable. In fact, a memory effect is but one of the possible causes leading

to serial correlation. Our simulations have shown that, regardless of the actual source

of serial correlation, it will distort the reliability estimates and should always be taken

into account.





Chapter 13

Reliability of Outcome Scales

in a Depression Trial

We will now apply the methodology introduced in previous chapters to the depres-

sion case study, presented in Chapter 2. Basically, we will investigate the reliability

of the three rating scales used in this study: the Hamilton Depression Rating Scale

(HAMD), the Hamilton Anxiety Rating Scale (HAMA), and the Montgomery-Åsberg

Depression Rating Scale (MADRS). The case study contains two identical clinical

trials to investigate drug effectiveness in major depressive disorder. A general pre-

sentation of the data in trial 1 can be seen in the first row of Figure 13.1, where the

individual profiles for each scale are displayed. Reliability will be investigated for

both trials separately.

Section 13.1 gives a general outline of the model building exercise that was carried

out to find the best fitting models for the observed data. In Section 13.2 we present

and discuss the results of the reliability estimation for the different scales.

13.1 Model Building

Because interest primarily lies in the covariance structure, a complex mean model is

adopted to avoid bias in the estimation of the variance components (Diggle, Liang and

Zeger 1994). We considered a mean structure including time categorically, treatment,

investigator, and the interaction between treatment and time. Regarding the random

121
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Table 13.1: Depression study. Selected models for the three scales, HAMD, MADRS,

and HAMA, separately for the two trials.

Scale Random effects structure Structure of Σ

Trial 1 HAMD linear slope heterogeneous autoregressive

MADRS linear slope heterogeneous autoregressive

HAMA linear slope banded unstructured

Trial 2 HAMD quadratic slope heterogeneous autoregressive

MADRS quadratic slope heterogeneous autoregressive

HAMA quadratic slope autoregressive

effects we considered models with: (a) subject-specific intercept; (b) subject-specific

intercept and linear slope over time; and (c) subject-specific intercept and quadratic

slope. For the covariance matrix of the error terms, Σ, we considered five structures

that allow correlation, and two structures that do not allow for such a correlation. The

correlation structures considered are: (a) autoregressive; (b) exponential; (c) serial

Gaussian; (d) power; and (e) banded unstructured. The latter structure, in contrast

to the other four, only allows correlation between errors of measurements taken at

adjacent occasions and assumes zero correlations for other pairs of measurements.

The latter structure further assumes heterogeneity of the error variances, whereas

the structures (a)–(e) were fitted with homogeneous as well as heterogeneous error

variances. This distinction can also be found in the two remaining error variance-

covariance structures without error correlation: (f) features an unstructured main

diagonal, while (g) is a so-called ‘simple’ or ‘variance-components’ structure, both

with the off-diagonal elements equal to zero. Akaike’s information criterion (AIC)

was applied for selecting the best fitting model and parameter estimation was based

on the restricted maximum likelihood method (REML). Table 13.1 summarizes the

structure of the final models obtained for the three scales in each trial. Models selected

for the first trial’s data encompass a linear subject-specific time trend, the models for

the second trial all include a quadratic term, indicating that individual subject profiles

tend to be curved. All models further include an error variance-covariance structure

Σ that allows correlated errors terms. Given the fact that the measurements are not
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Figure 13.1: Depression study. Individual patient profiles for three rating scales:

observed (top) and residual (bottom) profiles.

HAMD

0 2 4 6 8 10

0
10

20
30

40

MADRS

0 2 4 6 8 10

0
10

20
30

40

HAMA

0 2 4 6 8 10

0
10

20
30

40

0 2 4 6 8 10

0
10

20
30

40

0 2 4 6 8 10

0
10

20
30

40

0 2 4 6 8 10

0
10

20
30

40

0 2 4 6 8 10

0
10

20
30

40

0 2 4 6 8 10

0
10

20
30

40

0 2 4 6 8 10

0
10

20
30

40

Figure 13.2: Depression study. Individual observed profiles (dots) and fitted profiles

(solid line) for three randomly selected patients.
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Table 13.2: Depression study. Estimates of RT and RΛ with 95 % confidence intervals

for the three outcome scales, HAMD, MADRS, and HAMA, separeately for the two

trials.

Scale RT CIRT
RΛ CIRΛ

Trial 1 HAMD 0.493 [0.405; 0.581] 0.829 [0.734; 0.895]

MADRS 0.474 [0.378; 0.571] 0.812 [0.704; 0.886]

HAMA 0.612 [0.545; 0.676] 0.955 [0.897; 0.980]

Trial 2 HAMD 0.629 [0.513; 0.731] 0.932 [0.872; 0.966]

MADRS 0.692 [0.603; 0.769] 0.977 [0.957; 0.988]

HAMA 0.675 [0.601; 0.741] 0.964 [0.930; 0.986]

entirely equally spaced, it is a bit surprising that an autoregressive structure leads

to a better model fit than the spacial structures. This indicates most likely that a

difference in time lag of one week does not influence the error correlation too much.

Further we find that all but one of the selected structures include unequal diagonal

elements, indicating heterogeneous error variances for the different time points. The

second row of Figure 13.1 shows the residual patient profiles for the three scales,

resulting from the best fitting models in trial 1. No systematic pattern seems to

emerge from the graphs, indicating that the models capture the most important data

features reasonably well. Further, Figure 13.2 plots the predicted and observed values

for three randomly chosen patients in trial 1. Here again, a reasonable agreement

between the models and the data is observed, reinforcing our confidence in the results

of the model building step. Similar results (not shown) were found for trial 2.

Once sufficiently adequate models have been selected, reliability can be estimated

using the variance components estimates emanating from these models.

13.2 Reliability Estimation

Reliability estimates are obtained separately for both clinical trials. The general

results are presented in Table 13.2, estimates per time point are plotted in Figure 13.3.

Let us first compare the HAMD and MADRS depression scales. For the two different

trials, the graphs at the top of Figure 13.3 show the RT values for these scales at
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Figure 13.3: RT per time point and RΛ cumulative over time points.

each time point. These graphs illustrate that both scales perform rather poorly at

the beginning of the trials. However, we can see that in both studies, the RT values

increase with time. For trial 1 we observe a gradual increase, whereas in trial 2 the

increase is more abrupt. Arguably, such an increase could have been induced by

a learning effect of the raters, stemming from gaining experience and/or enhanced

familiarity with the patients during follow-up.

To compare the two scales, it is also useful to look at the general RT values (Ta-

ble 13.2) that give the average reliability over the different time points. Interestingly,

regarding the point estimates in the first trial, HAMD performs slightly better than

MADRS, whereas in trial 2 the opposite behavior is observed. Irrespective of these

small differences in the point estimates, Table 13.2 reveals that the confidence inter-

vals for RT of the two scales largely overlap in both trials. Clearly, based on the

present data, we encounter no evidence that MADRS is a more reliable scale than

HAMD. Taking into account that MADRS was created to address some of the limi-

tations of HAMD, this finding is somehow unexpected. However, similar results were

found by Maier et al (1988) for inter-rater reliabilities. They compared HAMD and

MADRS based on three different studies, but did not find differences in reliabilities

in any of them.

It can further be noted that the reliability estimates for the two scales are clearly
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higher in the second trial than in the first one. Reliability is known to be a population-

dependent concept, and will generally take higher values in more heterogenous groups.

However, it is highly unlikely that this can explain the observed difference between

the two trials since both studies were developed from one protocol and they were

identical in every way. Other factors might have had an influence as well, such as

training, experience, and quality of the raters. Also on this matter, equality of the

two trials was aimed for. At a single start up meeting, all sites in both studies were

present to be trained on the protocol and to qualify raters. Investigative sites were

randomly selected to be part of either trial. But there is no guarantee that this random

assignment truly equalized quality of sites and raters. Even though it is difficult to

identify the reasons for the differences in reliability between the two trials, it is very

interesting to relate this finding to the clinical outcomes of the studies. Both studies

tested 3 arms of what are now proven to be effective doses of anti-depressants. Trial 1,

however, had worse separation from placebo than trial 2 (Mallinckrodt et al 2003).

The finding that the reliability of the measurements was also lower in the first trial

might explain why the clinical effects were stronger in the second trial. This finding

illustrates that measurement error or low reliability can have an effect on the results

found in clinical studies, as emphasized by Fleiss (1986) and Lachin (2004).

The average reliabilities per time point (RT ) that were found for HAMD and

MADRS for the two trials are lower than the reliabilities generally mentioned in

the literature (Bagby et al 2004). Also Zimmerman, Posternak, and Chelminski

(2005) report that, in spite of other psychometric flaws of HAMD, the inter-rater

and test-retest reliabilities are mostly good. The fact that the obtained RT values

are lower than their counterparts reported in the literature can have several reasons.

As indicated before, reliability is a population-dependent concept and tends to be

lower in more homogeneous populations. The studies on which the present estimates

are based were conducted in a patient segment suffering from a major depressive

disorder, likely reducing variability between the patients. It is not always clear on

which populations the reliability estimates in the literature are based. Note also that,

in our case study, a serial correlation term was present for all scales in both trials.

The simulation study in Chapter 12 showed that ignoring this type of correlation can

lead to a serious overestimation of the reliability parameters, what may also explain

the higher values of reliability reported in the literature.

Let us now turn to the second reliability measure, RΛ, quantifying the reliability

of the accumulated observations. As stated in previous chapters, when we measure
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a patients once, we obtain a certain amount of information. By measuring a second

time, we can only increase the amount of information on the patient even if it comes

contaminated by measurement error. This accumulation of valuable information is

nicely captured by RΛ. The lower half of Figure 13.3 shows the cumulative RΛ values

over the different time points. At the first time point, the RΛ coefficient expresses the

reliability of the first measurement, which is equal to the RT coefficient at the first

time point. At the second time point, the RΛ coefficient captures the reliability of

the information contained in the first and the second measurement combined, and so

on. The values shown in Table 13.2 present the results for the entire study, capturing

the reliability of the whole sequence of observations. The RΛ coefficient illustrates

that, whenever a scale has low reliability, reliable results can still be obtained when

the scale is applied repeatedly over time and the repeated outcomes are considered

together. Obviously, the lower the reliability of the scale at each time point, the more

measurements will be needed to obtain a pre-specified degree of cumulative reliability.

Figure 13.3 shows that, in the first trial, a value of 0.80 was reached only at the last

measurement. In the second trial 5 and 4 measurements, respectively, were needed to

reach the same level of reliability for HAMD and MADRS.

While in the first trial, the cumulative evolutions of RΛ are very similar for both

depression scales, a better performance is observed for MADRS compared to HAMD

at the beginning of the second trial. The relatively high reliability for MADRS at the

first time point gives this scale a head start. Towards the end of the trial, HAMD

has caught up with MADRS, leading to a small difference in the final RΛ values, as

shown in Table 13.2.

To find out whether, in the second trial, the RΛ’s for MADRS and HAMD differ

significantly at the beginning of the study, we plot the 95% confidence bands for the

cumulative RΛ values for both scales, as shown in Figure 13.4. The figure shows wide

confidence intervals for the earlier time points, while they get narrower towards the

end of the study, when more information becomes available. The intervals for the two

scales overlap at any of the time points. Hence, we do not find evidence of MADRS

being a more reliable scale than HAMD, or vice versa.

Let us finally look at the results for HAMA. This particular scale measures anxiety

and should therefore not be compared directly to the two depression scales. Table 13.2

shows somewhat better reliabilities in the second trial, which is in agreement with

earlier findings. However, the differences are not too large. The average reliabilities,

RT , are 0.61 and 0.68, respectively, indicating a decent, however not excellent, reli-
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Figure 13.4: Trial 2. 95% confidence bands around RΛ cumulative over time points.

ability. The results for trial 1 clearly illustrate that, even when the RT values are

stable over time or decrease, the total information, as expressed by RΛ, still increases.

When a level of 0.80 is aimed at, four measurements are needed in case of the first

trial and three in case of the second trial.

13.3 Conclusion

The analysis of this second case study illustrates that the proposed methodology gives

meaningful results when applied to real data. The new coefficients not only behave

in an stable and coherent way but they also lead to conclusions that are in line with

the clinical knowledge and experience.

Even though we have mainly focussed on the evaluation of reliability in a longitu-

dinal framework, in many situations the repeated evaluation of the subjects over time

is impossible or impractical. This raises the question about the applicability of these

ideas in a cross-sectional setting. The following chapter explores this issue further.



Chapter 14

A Unified Approach to

Multi-item Reliability

Hitherto, the study of reliability has mainly followed two parallel lines of research,

depending on the structure of the available data, i.e., single administration versus

multiple administration. As a consequence, and despite the fact that the same concept

is targeted in both settings, measures of reliability in these two scenarios are often

conceptually different. In this chapter, we aim at bringing some degree of conceptual

unity to the evaluation of reliability.

We apply the methodology introduced for a longitudinal framework (Chapters 7

to 10), to estimate reliability in a setting where cross-sectional multivariate measure-

ments are taken. The link with existing literature on reliability in such settings is

extensively discussed.

14.1 Single Administration of a Test

Test-retest reliability requires re-measuring which is often time consuming and ex-

pensive. This explains the large amount of attention that has gone to the evaluation

of reliability based on a single administration of a test. For instance, the Spearman-

Brown formula, the Kuder-Richardson formulas, including the well-known KR-20, its

slight and famous variation known as Cronbach’s α, the five lower bounds introduced

129
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by Guttman, and the measure proposed by Mosier, are some of the proposals to quan-

tify reliability in this context (Spearman 1910, Brown 1910, Kuder and Richardson

1937, Cronbach 1951, Guttman 1945, Mosier 1943). It has been extensively shown,

however, that these measures equal reliability only under rather stringent assump-

tions. Indeed, parallel tests are required for the Spearman-Brown formula and Cron-

bach’s alpha requires essentially tau-equivalent tests (Novick and Lewis 1967). One

of the requirements is unidimensionality which means that all items of an instrument

or composite test measure the same thing. When these assumptions are not met,

the previous measures can not be considered a proper quantification of reliability but

merely a lower bound for it (Guttman 1945, Novick and Lewis 1967). Therefore, they

are nowadays mainly considered as measures for the internal consistency of an instru-

ment, which indicates the homogeneity of the items, or, equivalently said, how much

they measure a unidimensional underlying construct. In spite of these limitations, the

study of these measures has received a lot of attention in the psychometric literature

and they are routinely applied in many practical situations (Barchard and Hakstian

1997, Ten Berge and Hofstee 1999, Ten Berge and Soĉan 2004).

To deal with the fact that the items (or parts) of many tests are not unidimen-

sional, Werts et al (1978) proposed a procedure for estimating the reliability of in-

struments derived from a multidimensional scale, based on factor analytic models. A

similar approach has been recently proposed by Tarkkonen and Vehkalahti (2005).

We will start by introducing in the next section the measurement model that will

be used through the rest of the chapter.

14.2 Measurement Model

We assume that we have a multi-item scale, formed by p items. Further, we assume

that for the ith subject the following measurement model holds

X i = µ+Bτ i + εi, (14.1)

where Xi = (Xi1, Xi2, . . . , Xip)
′ denotes the p-dimensional vector of observed scores,

τ i = (τi1, τi2, . . . , τik)′ is a k-dimensional vector of true scores, εi = (εi1, εi2, . . . , εip)
′

is a p-dimensional vector of measurement errors,B is a p×k matrix that describes the

functional relationship between the observed and true scores and µ = (µ1, µ2, . . . , µp)
′

is a vector describing the mean of the observed scores. Additionally, we assume that:
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i) E(εi) = 0 with Cov(εi) = Σ, ii) E(τ i) = 0 with Cov(τ i) = D, and finally that iii)

τ i and εi are independent.

Based on the previous assumptions if we define G = BDB′, then the variance-

covariance matrix of the measured items V = Cov(Xi) can be written as

V = G+ Σ. (14.2)

Model (14.1) comprises many model families. For instance, it contains as a special

case the true-score model used in classical test theory. It is also related to factor

analysis and the modeling framework used in generalizability theory. However, unlike

the measuring model used in CTT and the analysis-of-variance models with random

effects typically used in G-theory, the previous model allows a multidimensional vec-

tor of correlated random effects for describing the true scores. Note that, stemming

from identifiability issues, some restrictions may be needed to estimate the param-

eters. For instance, if one assumes that D = I and that Σ is a diagonal matrix,

then model (14.1) reduces to the classical orthogonal factor analytic model. While

these connections are appealing and insightful, in what follows, we will work with

model (14.1) in its most general form.

Model (14.1) also contains as special cases three models that have played a promi-

nent role in the quantification of reliability of multi-item scales. They all assume a

unidimensional true score and can be defined as

1. Parallel tests : obtained when µ and τi are scalars, B = β = (1, 1, . . . , 1)′ = 1,

and Cov(εi) = σ2I

2. Essentially tau-equivalent tests: obtained when B = β = 1, τi is a scalar and

Cov(εi) = diag(σ2
j ), with j = 1, . . . , p

3. Congeneric tests : obtained when B = β = (β1, β2, . . . , βp)
′, τi is a scalar and

Cov(εi) = diag(σ2
j ).

Interestingly, expression (14.2) closely resembles the decomposition of the total

variance-covariance matrix in the longitudinal framework, as expressed in (5.2). For

the longitudinal setting we introduced an axiomatic definition of reliability based on

four properties, aiming at an extension of the concept to more general scenarios. In

the present chapter we argue that the same set of defining properties should be valid

in a cross-sectional setting, i.e, they should be universally valid for the definition of

reliability. It then logically follows that the measures defined in the chapters 7, 9, and
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10 could be also applied to estimate reliability in this context. In the next sections

we will expand these ideas further.

We will start by analyzing in some detail the parallel, essentially tau-equivalent

and congeneric tests. As stated before, these models have played a prominent role

in the evaluation of reliability of multi-item scales. Indeed, an important part of the

earlier work focused on estimating the reliability of the scale Yi = 1′Xi,—or, more

generally Yi = a′Xi with a ∈ R
p,—under the conditions defined by models (1)–(3).

In the next section, we will apply the RT and RΛ coefficients to quantify reliability

in these scenarios. It is important to point out that these measures are valid in

more general settings than those defined by (1)–(3). However, their performance in

these special cases will help to increase our understanding of their properties and

interpretation.

14.3 Reliability with Unidimensional True-score

Models

Let us first consider the simplest of the three special cases: the parallel test. The

assumptions behind parallel tests are very restrictive and unlikely to hold in practice.

Under this model, the decomposition of the variance-covariance matrix given in (14.2)

takes the form V = σ2
τ11′ + σ2I. It is then easy to show that

RT =
σ2

τ

σ2
τ + σ2

.

Note that if we assume that the items of a scale form parallel tests, then each single

item satisfies the model used in classical test theory, i.e.,

Xij = µj + τi + εij ,

and the reliability of every item equals ρxx = σ2
τ/(σ2

τ + σ2). Earlier, we have described

RT as a measure of average reliability over time points. The previous results show

that in the present context this measure retains its interpretation, but now as an

average reliability over items.

When applied to this specific setting, RΛ takes the form

RΛ =
pρxx

(p − 1)ρxx + 1
.
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Remarkably, under these assumptions, the RΛ coefficient equals the Spearman-Brown

formula. Like before, RΛ quantifies in this context the reliability of an entire vector

of observations. However, this vector is now formed by all the item scores instead

of a collection of different scores over time. The previous expression for RΛ clearly

indicates that the reliability of the instrument is an increasing function of the number

of items. This is an intuitive and appealing result. Obviously, each new item added

to the scale will bring certain level of information about the true score τi, even if this

information is contaminated by measurement error. As a consequence, the expanded

scale will always contain more or at least the same amount information about τi than

the original scale. Intuitively, the reliability of a scale is the amount of information

on the true scores that the scale conveys. Therefore, it is reasonable that adding new

items to the instrument can only increase the reliability of the conclusions derived

from it.

It is important to recall at this point that RΛ quantifies the reliability of the

entire scale, i.e., the multivariate vector Xi. However, the Spearman-Brown formula

was originally obtained as the reliability of the scale Yi = 1′Xi under the parallel

test assumptions. We thus find that, under these assumptions, the reliability of the

entire scale Xi equals the reliability of the simple sum score. Nevertheless, as we will

illustrate later, in more general settings Yi no longer has the same reliability as the

entire scale Xi but rather, as expected, the reliability of a summary statistic like Yi

is usually smaller than the one of the entire instrument.

Let us proceed with model (2). Essentially tau-equivalent tests relax the assump-

tions of parallel tests by allowing item-specific error variances in model (14.1) so that

V = σ2
τ11′ + Σ, where Σ = diag(σ2

j ). Under these assumptions, RT takes the form

RT =
σ2

τ

σ2
τ + S

,

where S = (
∑

j σ2
j )/p. Note that RT is a decreasing function of S and, therefore, if a

new item (p + 1) is added to a scale, then

RT (p) ≤ RT (p + 1) if and only if σ2
p+1 ≤

∑
j σ2

j

p
.

Essentially, this implies that the expanded instrument will have a higher average

reliability if and only if the error variance of the new item is smaller than the average

error variance of the other items of the scale. Therefore, the RT coefficient can either

increase or decrease when a new item is added, depending on the “quality” of such
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an addition. Clearly, the previous findings confirm the intuitive interpretation of RT

as the average item reliability of the scale.

Turning to RΛ, we first need to compute the determinant of V . It is easy to show

that if V = σ2
τββ

′ + Σ then

|V | = (1 + σ2
τβ

′Σ−1β) · |Σ|. (14.3)

For essentially tau-equivalent tests β = 1 and Σ = diag(σ2
j ), and the previous ex-

pression for the determinant leads to

RΛ =
S

1 + S
,

which is an increasing function of S, with S =
∑p

j=1 σ2
τ/σ2

j . Obviously, adding a new

item to the scale can only increase the value of S and, therefore, RΛ is always an

increasing function of the number of items. Note however that, if the new item comes

contaminated with a lot of measurement error then σ2
τ/σ2

p+1 will be negligible and

RΛ will remain nearly constant.

Finally, congeneric tests are the most general ones among the three special cases

considered so far. In this scenario the variance-covariance matrix takes the more

general form V = σ2
τββ

′ + Σ. For this specific set of assumptions,

RT =
σ2

τ

σ2
τ + S

,

with S =
∑

j σ2
j /
∑

j β2
j . Like before, adding a new item can increase or decrease the

value of RT depending on the impact of the new item on S.

Moreover, with |V | as in (14.3), it easily follows that RΛ = σ2
τS/(1 + σ2

τS), with

S =
∑

i β2
i /σ2

i , and like for tau-equivalent tests, RΛ can only increase its value when

a new item is added.

The above reflections are a useful aid in understanding the meaning and the com-

plementarity of the two new measures. Whereas RT provides us with information

on the quality of the items in a scale, regardless of their number, the RΛ coefficient

informs us on the amount of information the total package of items contain on the

underlying traits.

However, due to the strong assumptions on which they are based, the modelling

frameworks analyzed in this section have limited practical value. In the next sec-

tion we will apply the new measures in the more general scenario defined by model
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(14.1). Notice that the weaker assumptions that this model requires enhance its prac-

tical value and, as a consequence, the newly proposed measures will also allow us to

approach the reliability problem in more general settings.

14.4 Reliability with Multidimensional True-score

Models

In models (1)–(3), τi is a scalar, which means that unidimensionality of the instrument

is assumed. Werts et al (1978) extended the measurement model by assuming a factor

model for the true scores, thence allowing multiple dimensions in the measurement

instrument. The specific factors in their model are considered as part of the true

scores, so that the model contains specific factors as well as an error component.

Such a model might, however, lead to identifiability problems. In their data example,

Werts et al (1978) assume the specific factors to be zero. Tarkkonen and Vehkalahti

(2005) suggested considering the specific factors as measurement errors.

In general, these authors are mainly concerned with the evaluation of the reliability

of a new scale Yi formed as a weighted sum of the item scores. When model (14.1)

holds and a ∈ R
p, Yi can be written as

Yi = a′Xi = a′µ+ a′Bτ i + a′εi.

If σ2
Y = Var(Yi), then (14.1) implies σ2

Y = a′Ga + a′Σa = a′V a. Tarkkonen and

Vehkalahti (2005) proposed to quantify the reliability of Yi as

ρ(a) =
a′Ga

a′V a
= 1 − a′Σa

a′V a
. (14.4)

Notice that the previous expression matches the classical definition (CTT) of relia-

bility for the measure Yi. Similarly to Chapter 9, we can define H = V −1/2ΣV −1/2,

where V 1/2 denotes the symmetric square root of V . Like before, H is a symmetric

matrix and, therefore, it can be written as H = PΛP ′, where P is an orthogonal

matrix and Λ = diag{λj}. It is easy to show that in this setting the λj ’s coincide

again with the generalized eigenvalues associated with the matrices Σ and V . Finally,

from the previous developments directly follows that

Σ = Q′ΛQ, (14.5)

V = Q′Q, (14.6)
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where Q = P ′V 1/2. Using these results one can rewrite ρ(a) as

ρ(a) = 1 − a′Q′ΛQa

a′Q′Qa
. (14.7)

This last expression for ρ(a) will play an important role in the subsequent develop-

ments.

Werts et al (1978) proposed a quantification of reliability very similar to (14.4),

actually, their proposal equals (14.4) when the specific factors, included in their model,

are assumed to be zero. Tarkkonen and Vehkalahti (2005) further proved that, in

general, ρ(1) ≥ α and the equality is obtained if and only if G = σ2
τ11

′ with σ2
τ > 0

and Σ diagonal, i.e., exactly the conditions defined by (2).

In what follows, we will apply RT and RΛ to evaluate the reliability of the pre-

viously defined scale Yi. Furthermore, we will study the relationship between the Ω

family and the family of scales formed by different weight vectors a.

14.5 RT , RΛ and ρ for a Weighted Score

The reliability coefficient proposed by Werts et al (1978) and Tarkkonen and Vehkalahti

(2005) quantifies the reliability of a univariate weighted sum Yi = a′Xi. When apply-

ing the measures RT and RΛ to this weighted sum, and assuming that model (14.1)

holds, we find that both measures equal the coefficient ρ: RT (a) = RΛ(a) = ρ(a).

Obviously, in this univariate scenario, the average and total reliability coincide and,

therefore, RT and RΛ are equal.

14.6 The Ω Family

As stated before, a considerable part of the psychometric literature has focussed on

studying the reliability of a family of scales, constructed as the weighted sums of the

items of a multi-item scale Xi, i.e., the family Ψ∗ = {Yi = a′Xi : a ∈ R
p}. Moving

from a high-dimensional instrument Xi to a univariate version Yi can considerably

facilitate the practical use of the scale and the clinical interpretation of the results.

Actually, in clinical practice, psychiatrists and psychologists frequently work with

weighted sums of multivariate scales.

On the other hand, in Chapter 9, we introduced a general family of plausible

reliability measures Ω. Different measures can be formed by assigning different weights

to the generalized eigenvalues λ1, . . . , λp in (9.1). The following two theorems will shed
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light on the relationship between the family of scales Ψ∗ and the family of measures

Ω.

Theorem 4 If model (14.1) holds and θ ∈ Ω then there exists a vector a ∈ R
p so

that θ equals the reliability of the weighted scale Yi = a′Xi, or θ = ρ(a).

Given a member of the Ω family θ = 1−
∑

j wjλj , it is possible to show that there is

a vector δ = (δ1, δ2, . . . , δp)
′ so that wj = δ2

j /
∑

m δ2
m. Theorem 4 then becomes an

immediate consequence of (14.7) with a = Q−1δ. A detailed proof of the previous

result can be found in Appendix C.2. Basically, Theorem 4 shows that any member

of Ω can be interpreted as the reliability of certain member of Ψ∗. Actually, different

choices of a can lead to scales with the same reliability and, therefore, each θ ∈ Ω

is associated with more than one Yi in Ψ∗. The reverse relationship can be also of

interest, i.e., one would like to know whether the reliability of any scale in Ψ∗ is a

member of Ω. Theorem 5 focuses on this issue.

Theorem 5 Let us assume that model (14.1) holds. If a ∈ R
p, a 6= 0, then there

exists a θ ∈ Ω so that θ is the reliability of the weighted scale Yi = a′Xi {θ = ρ(a)},
if and only if a ∈ C, where C = {a : (Qa)j 6= 0 ∀j}.

A proof of this result can be found in Appendix C.3. It is clear from Theorem 5 that

Ω does not contain the reliability of all the scales in Ψ∗. Indeed, the previous result

shows that the Ω family is only equivalent to the family Ψ = {Yi = a′Xi : a ∈ C}.
Formally, Ψ∗ will be equivalent to a more general family Ω∗ which can be defined as

Ω∗ =




θ : θ = 1 −
p∑

j=1

wjλj , wj ≥ 0 and

p∑

j=1

wj = 1




 .

Note, however, that the elements of Ω∗ do not necessarily satisfy the properties (i)–

(iv) introduced in Chapter 7. In what follows we will argue that the Ω family contains

the reliabilities of those scales Yi that are meaningful; or in other words, that only

those scales included in Ψ should be considered in general.

Truthfully, not all vectors a will lead to meaningful scales. To illustrate this, let

us denote by ℓ(B) the vector space generated by the columns of B. Further, we

will consider a ∈ ℓ⊥(B), where ℓ⊥(B) denotes the vector space orthogonal to ℓ(B).

Assuming that model (14.1) holds, we have

Yi = a′Xi = a′(µ+Bτ i + εi) = a′µ+ a′Bτ i + a′εi = a′µ+ a′εi.
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Note that this scale does not contain any information about the true scores τ i. Obvi-

ously, such a scale would not have any practical value. We will show that Yi 6∈ Ψ, or

what is the same, that the reliability of this scale ρ(a) is not an element of Ω. Indeed,

if model (14.1) holds, then from (14.2) we have

Qa = P ′V −1/2BDB′a+ P ′V −1/2Σa⇒ Qa = P ′V −1/2Σa. (14.8)

Further, using H = V −1/2ΣV −1/2 = PΛP ′, we get

P ′V −1/2Σ = ΛP ′V 1/2 ⇒ P ′V −1/2Σa = ΛQa. (14.9)

Substituting (14.9) into (14.8), and denoting δ = Qa, we finally obtain δ = Λδ or,

equivalently, δj = λjδj for all j. Note that V 6= Σ and therefore there is at least

a k so that λk 6= 1 and this immediately implies that δk = (Qa)k = 0 and, as a

consequence, Yi 6∈ Ψ, or equivalently, ρ(a) 6∈ Ω. The previous discussion illustrates

that meaningless scales like this one are not elements of Ψ.

To enhance insight into this issue in more generality, let us consider a vector

a ∈ R
p and like before let δ = Qa. Note that a ∈ C if and only if δj 6= 0 for all j.

We then have

Yi = a′Xi = (Q−1δ)′Xi = δ′(Q′)−1Xi.

Further, let us denote X∗
i = (Q′)−1Xi. Note that (Q′)−1 defines a bijective map

from R
p to R

p. In fact, (Q′)−1 is an invertible matrix and therefore X∗
i and Xi

contain the same amount of information about the true scores τ i. Actually, as one

would expect in such a case, they have the same value of RΛ,

RΛ(X∗
i ) = 1 − |V ∗|

|Σ∗| = 1 − |Q|−2|V |
|Q|−2|Σ| = 1 − |V |

|Σ| = RΛ(Xi).

We can then rewrite Yi as Yi = δ′X∗
i . We have already stated that a ∈ C if and only

if δj 6= 0 for all j. Therefore, the scales that are not included in Ψ, or equivalently,

the scales whose reliabilities do not belong to Ω, are those for which δk = 0 at least

for one k. Let us assume, without loss of generality, that k = 1. Clearly, if δ1 = 0,

then the scale Yi will not use any information coming from the first item of X∗
i . So,

we are essentially removing one of the items of X∗
i when calculating the weighted

average. Such a choice can only reduce the amount of information about the true

scores τ i contained in Yi and, therefore, working with a Yi 6∈ Ψ can only imply a loss

of information about the true scores.
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As stated at the beginning of this section, moving from a high-dimensional scale,

like Xi, to a univariate counterpart Yi brings practical and interpretational advan-

tages. However, these profits come at a price. The following section explores this

issue further.

14.7 Weighted Score versus Multivariate Score

Different scales can be constructed on the same set of items when different weights

are applied. However, the reliability of such a sum is always smaller than or equal to

the reliability of the entire scale, as the following theorem establishes.

Theorem 6 If model (14.1) holds and a ∈ R
p, then the reliability of Yi = a′Xi

is always smaller than or equal to the reliability of Xi, i.e., ρ(a) ≤ RΛ. Equality

is obtained if and only if λ(2) = λ(3) = · · · = λ(p) = 1 and a = V −1/2u(1), where

(λj ,uj) are the eigenvalues and eigenvectors associated with the matrix H and λ(j)

denotes the jth largest eigenvalue with u(j) its corresponding eigenvector.

For a detailed proof we refer the reader to Appendix C.4. This theorem clearly

underscores the price for simplicity. However, this not necessarily implies that uni-

dimensional versions of Xi, like Yi, should never be considered in practice. Indeed,

even though the previous result unequivocally states that the multivariate scale Xi

will always convey more information than its univariate counterparts, it can be very

difficult to grasp the clinical meaning of a p-dimensional vector of observations. A

balanced trade-off between interpretability and reliability may, in many situations,

well suggest sacrificing a bit of the latter to increase the former. A comparison be-

tween estimates of RΛ and ρ(a) thus provides important information for making such

a trade-off. The theorem establishes RΛ as an upper bound for the reliability of an

entire family of instruments constructed from the original set of items. Notice that

if the value of this measure is low, then any instrument derived as a weighted sum of

the original items will have an even lower reliability and will be basically useless.

Let us expand upon the conditions for the equality of RΛ and ρ(a). For the

special case implied by the parallel tests, we have that V = σ2
τ11′ + σ2I. It is

not difficult to show that ΣV −1 = I − σ2
τ (σ2 + pσ2

τ )−111′. Moreover, ΣV −1 has

eigenvalues 1 with multiplicity p − 1 and σ2/(σ2 + pσ2
τ ) with multiplicity 1. It is

also possible to show that, in this case, v1 = 1, where v1 denotes the eigenvector

associated to the smallest eigenvalue of ΣV −1. Moreover, it can be proven that if
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(λj ,uj) is an eigenvalue-eigenvector pair associated with H, then (λj ,V
1/2uj) is the

corresponding eigenvalue-eigenvector pair associated with ΣV −1. All these results

explain our previous findings when analyzing the parallel-test setting. Indeed, in this

scenario λ(2) = λ(3) = · · · = λ(p) = 1 and a = 1 up to a multiplicative constant, and

therefore Yi = 1′Xi has the same reliability asXi. In other words, this explains why,

under parallel-test assumptions, RΛ equals the Spearman-Brown formula, which was

proposed as a measure of reliability for the simple sum of item scores. To finish, we

will say a few more words on the correspondence between these two measures.

In the special cases considered in Section 14.3, we showed that RΛ is an increasing

function of the number of items. The following theorem extends this result to the

more general scenario implied by model (14.1).

Theorem 7 Let us assume that model (14.1) holds. Further, denote by RΛ(p) the

corresponding value of RΛ for the p-dimensional scale Xi. If q additional items are

added to Xi, then the value of RΛ for this new (p + q)-dimensional scale satisfies

RΛ(p + q) ≥ RΛ(p).

A detailed proof is given in Appendix C.5. Note that, as stated before, adding new

items to an existing scale can only bring more information about the true scores.

This fact is nicely captured by RΛ, which, like the Spearman-Brown formula in the

parallel setting, is an increasing function of the number of items. Actually, all these

findings indicate that RΛ can be interpreted as a generalization of the Spearman-

Brown formula, that is applicable in settings where the original formulation would

not be valid.

14.8 Analysis of the Case Study in Schizophrenia

We will now illustrate the methodology presented in previous sections using the

schizophrenia case study introduced in Chapter 2. Particularly, the reliability of

PANSS will be analyzed based on a cross-sectional measurement. First we will pro-

vide more background information on the origin of the scale.

14.8.1 The Positive And Negative Syndrome Scale

Schizophrenia is a complex and heterogeneous disorder with variable symptoms. To

improve research clarifying the diversity in the disorder, Kay et al (1987) developed a
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standardized instrument; the Positive And Negative Syndrome Scale (PANSS). The

instrument contains 30 items (symptoms), which are all scored on a 7-grade scale rang-

ing from “absent” to “extreme.” As reflected by the name of the scale, schizophrenia

is often described in terms of positive and negative symptoms. Positive symptoms

include hallucinations and delusions and are typically regarded as manifestations of

psychosis. Negative symptoms are so-named because they are considered to be the

loss or absence of normal traits or abilities, and include features such as blunted affect,

apathy, and social withdrawal. Besides these two dimensions, general psychopathol-

ogy was included as a third, a priori factor in PANSS (Kay et al 1987). However,

empirical research evidenced the existence of five factors, which can be described as;

negative syndrome, positive syndrome, excitement, depressive symptoms, and cog-

nitive dysfunction (Lindenmayer et al 1995). Many other studies have confirmed a

five-factor structure for this scale (e.g. Van der Gaag et al 2006a).

Even though the five-factor model is confirmed by several studies, differences are

often found in the exact allocation of the items to the factors. Such differences

might be related to the use of different statistical techniques or model assumptions,

but also to differences in the investigated populations. Dolfus and Petit (1995), for

example, did not observe a depression dimension in an acute population while it was

observed in a chronic population. A plausible explanation is that depressive symptoms

cannot be expressed when positive symptoms are very severe. In many of the studies

investigating the factor structure of PANSS, models have been developed where each

item loads only on one factor. The underlying aim is to divide the scale in separate

sub-scales composed of clearly distinguished sets of items. Van der Gaag et al (2006b)

showed, by means of a cross-validation study, that allowing some items to load on

more than one factor leads to a better model fit.

14.8.2 Data Analysis

We investigate the reliability of PANSS, based on clinical trial baseline measurements

taken from 520 in-patients with a diagnosis of chronic schizophrenia after a single-

blind placebo washout period (Chouinard et al 1993, Marder and Meibach 1994).

The first step in the reliability analysis is to find a well fitting model for the data,

thence providing us with the variance-covariance parameter estimates, necessary for

the estimation of reliability. As expressed in (14.2), variability in the observations

comes from two sources, the latent variables (random effects) and the measurement

errors. Since both are unobserved, model restrictions will be inevitable to avoid
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identifiability problems. A factor-analytic approach is applied to fit and compare

different models.

We start with an exploratory factor analysis (EFA), where we assume that D = I,

Σ is a diagonal matrix, and B unstructured. This means that the factors are assumed

to be independent, as well as the measurement errors, and each item can load on every

factor. Models with one until seven factors are compared.

We further use confirmatory factor analysis (CFA) to fit two models that were

proposed in the literature. Restrictions are now mainly laid on the B matrix by

allowing the items to load only on pre-defined factor(s). In the first model, each of

the items loads on one factor only. The model follows the five sub-scales proposed

by Marder, Dabis, and Chouinard (1997) where D is an unstructured correlation

matrix, indicating that factors are allowed to correlate and Σ is a diagonal matrix.

The second model is the one proposed by Van der Gaag et al (2006b). In this model,

several items can load on more than one factor. Further, some factors are assumed

to be correlated and also some pre-specified measurement errors can be correlated.

All models were fitted using maximum likelihood estimation. Table 14.1 presents

fit statistics for the various fitted models. Two goodness-of-fit measures are based on

the direct comparison of the sample and model-implied variance-covariance matrices.

The Adjusted Goodness-of-Fit Index (AGFI) is generally a number between 0 and 1

with a better fit when values are closer to 1 (Mulaik et al 1989). The Root Mean

Square Residual (RMR) is the mean of the squared residuals, with values closer to

0 indicating a better fit. Further we present three likelihood-based goodness-of-fit

measures: Akaike’s Information Criterion (AIC), the Consistent Akaike’s Informa-

tion Criterion (CAIC), and the Schwarz’s Bayesian Criterion (SBC). The latter two

incorporate a penalty term based on sample size and therefore tend to select simpler

models than does AIC. The model that yields the smallest value of each of these three

criteria is considered best.

Comparing the seven EFA models, we find the smallest CAIC value for a model

with five factors. The other four fit statistics, however, point in the direction of a

more complex seven-factor model. This can be partly due to the large size of the data

set. We observe indeed that the SBC value of the 7-factor model does not show a

very substantial improvement compared to the 5-factor model.

When we further take into account the CFA models, the smallest CAIC and SBC

values are found for the model proposed by Van der Gaag (2006b) (CFA2), obviously a

more parsimonious model than the EFA models, but closer to the observed data than
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Table 14.1: Various fit statistics for the models considered. The models are indicated

by ‘Exploratory Factor Analysis’ (EFA) 1 to 7 or ‘Confirmatory Factor Analysis’

(CFA) 1 and 2. The fit statistics: AGFI: Adjusted Goodness-of-Fit Index; RMR:

Root Mean Square Residual; AIC: Akaike’s Information Criterion; CAIC: Consistent

Akaike’s Information Criterion; SBC: Schwarz’s Bayesian Criterion.

model AGFI RMR AIC CAIC SBC

EFA1 0.42 0.30 3598 1478 1883

EFA2 0.60 0.18 1956 -13 363

EFA3 0.68 0.12 1211 -611 -263

EFA4 0.74 0.10 707 -973 -652

EFA5 0.83 0.07 304 -1240 -945

EFA6 0.84 0.06 189 -1224 -954

EFA7 0.87 0.05 74 -1213 -967

CFA1 0.73 0.20 1271 -796 -401

CFA2 0.82 0.14 527 -1420 -1048

the even simpler model by Marder et al (1997) (CFA1). On the other hand, according

to AGFI, RMR and AIC the 7-factor EFA model still fits the data best. In factor

analysis, the interpretability of the model is often an important additional criterion

for the selection of a model. Preference is then given to a model that corresponds to

the knowledge in the field. Taking this into account, preference could then go to the

model proposed by Van der Gaag (2006b) or to the five factor EFA model. Looking

at the factor loadings after varimax rotation, the latter corresponds very closely to

the five-factor model commonly proposed in the literature (e.g., Lindenmayer et al

1995).

Selecting the best model based on factor analysis is very difficult. Indeed, such

models are heavily latent and specify a lot about the unobserved, leading to differ-

ent models that seem to fit the data equally well. Table 14.2 presents the reliabil-

ity estimates and confidence intervals for the three models yielding the best results.

For details on the calculation of the confidence intervals, we refer the reader to Ap-

pendix B.4. The table shows similar results for the three models, indicating a certain

degree of “robustness” for the reliability estimations. The previous results seem to
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Table 14.2: PANSS. Point estimates and 95% confidence intervals for the three reli-

ability measures: RT , RΛ, and ρ(1).

model RT RΛ ρ(1)

EFA5 0.479 [0.436; 0.522] 1.000 [0.999; 1.000] 0.911 [0.872; 0.939]

EFA7 0.521 [0.481; 0.562] 1.000 [1.000; 1.000] 0.918 [0.878; 0.946]

CFA2 0.446 [0.424; 0.468] 1.000 [1.000; 1.000] 0.888 [0.765; 0.952]

indicate that while finding the ‘best’ model can be hard, it is sufficient to find a good

fitting model in order to estimate reliability.

The measure RT indicates the average item reliability and lies around 0.50, which

is, for a single item, certainly an acceptable level. As stated before, RΛ represents

the information available when all items are considered jointly, i.e., it expresses the

reliability of the entire multivariate scale. The fact that individual items already

achieve a decent reliability level and that PANSS contains no less than 30 items,

explains why we obtain values for RΛ equal to one. Essentially, such a high value of

RΛ indicates that the scale conveys a lot of information on the latent variables.

In practice, the sum score of the PANSS items is mostly used for clinical evaluation

and data analysis. We have already shown that working with the sum of the item

scores always leads to a certain amount of information loss. Table 14.2, however,

shows that the reliability of the sum score, expressed by ρ(1), is indeed lower than

RΛ, but still has a very high value. The results thus show that summing PANSS

items leads to a relatively small loss of information. It is important to point out

here that these two reliability measures are valid at two different levels. Indeed, the

RΛ coefficient quantifies the amount of information shared by the vector of observed

scores and the vector of true scores, whereas ρ(1) quantifies the information shared

by a well-chosen linear combination of the observed scores and a corresponding linear

combination of the true scores. At any rate, the high reliability of the sum score

obtained for this scale suggests that working with the sum for clinical evaluation and

data analysis may be a sensible idea given the substantial simplification that it brings.

Interest may also lie in estimating the patients’ scores on PANSS sub-scales. For

example, Marder et al (1997) investigated drug-effectiveness on the different dimen-

sions of schizophrenia. Reliability estimates for the separate sub-scales can then be

obtained by replacing the full matrices Σ and V by sub-matrices, ΣS and V S , re-
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Table 14.3: PANSS. Point estimates of the three reliability measures for the five

selected sub-scales.

Positive Negative Cognitive Excitement Depression

RT 0.401 0.571 0.436 0.590 0.466

RΛ 0.949 0.942 0.914 0.902 0.858

ρ(1) 0.798 0.894 0.829 0.836 0.754

lated to the variances and covariances between the items in the sub-scale. Table 14.8.2

presents the point estimates of the three reliability measures, for each of the five sub-

scales. The estimates are based on the five-factor exploratory factor-analytic model.

The results show that all five sub-scales have good reliability. Additionally, the sum

score reliabilities are all above 0.75. Interestingly, the negative sub-scale clearly has

a higher average (RT ) and sum score [ρ(1)] reliability than the positive sub-scale,

however the RΛ’s are similar. This owes to the fact that the positive sub-scale has

8 items whereas the negative sub-scale has 7. For the positive sub-scale, about 15%

of information is lost due to summing the item scores, for the negative sub-scale only

5% is lost.

PANSS is a widely used and appreciated scale to evaluate the severity of schizophre-

nia and our previous results clearly confirm the quality of this instrument. Obviously,

the methodology described in this chapter can also be applied to less widely known

scales. For example, all of these measures can be useful tools in the developmental

phase of a rating scale. Indeed, during this process, one could calculate the reliability

per item (RTj) and items with low values could then be reconsidered or discarded.

Furthermore, in order to find an optimal length for the scale, RΛ could be very helpful

as well. By calculating RΛ cumulatively, i.e., recalculating its value for each new scale

constructed by adding an item to the previous one, the additional gain in information

of a new item could be quantified, on top of items already included. Obviously, once

a pre-defined level of reliability has been achieved no other items would need to be

added. The combination of both measures would allow selecting the most informative

items, limiting at the same time, the length of the scale.

Finally, we would like to remark that our measurement model (14.1) assumes that

the observed scores are of a continuous nature, i.e., it is assumed they are measured

on an interval or ratio scale, whereas the items of PANSS are strictly only ordinal
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measurements. In the same way as argued in Section 8.3 for the CGI scale we follow

the predominant view among statisticians and nicely expressed by Tukey (1961, 1962),

who states that science in general and statistics in particular rely upon the test of

experience as the ultimate standard of validity. We, therefore, feel encouraged by the

many successful applications of factor-analytic models to rating scale data, among

others to PANSS. Results stemming from such applications have given very useful

and meaningful practical results in full agreement with the specific knowledge of the

field.

14.9 Conclusion

In this chapter we have shown that the concepts previously introduced for the eval-

uation of reliability in a longitudinal context can also be meaningfully applied in a

cross-sectional scenario. We believe this brings some degree of conceptual unity to

the evaluation of reliability. Indeed, to our knowledge, and in spite of being targeting

the same concept, research in these two settings, i.e, the cross-sectional and longitu-

dinal, has run on parallel lines. We proposed a unifying approach that is based on an

axiomatic definition of reliability. Interestingly, the developments derived from this

definition can be applied in both, the single- and multiple-administration scenarios.

As previously shown, an uncountable number of reliability measures emerges from

this approach, the so-called Ω family. One special member of this family is RT , a

measure that in a cross-sectional setting can be interpreted as the average item relia-

bility. Additionally, we have shown that the elements of Ω account for the reliability

of all “meaningful” scales constructed as the weighted sum of the item scores of the

original instrument. We have also shown that working with such a univariate coun-

terpart can substantially simplify the clinical interpretation but it always implies a

loss of information, which then further translates in a decreased reliability.

We also studied the RΛ coefficient which is not an element of the Ω family. This

measure, originally defined in a longitudinal scenario, provides an upper limit for

the Ω family and expresses the amount of information that is available in a multi-

item scale. Like the Spearman-Brown formula, RΛ is an increasing function of the

number of items. However, unlike the former, RΛ is valid in more general settings

than the one defined by the parallel tests. Remarkably, under parallel tests, RΛ

equals the Spearman-Brown measure. Basically, the RΛ coefficient can be seen as a

generalization of the Spearman-Brown formula to more complex modelling scenarios.



Chapter 15

Concluding Remarks and

Further Research

15.1 Concluding Remarks

Rating scales are frequently used for the primary outcome measurement in psy-

chopharmacological trials. When using such scales in research or in clinical practice,

information on their psychometric properties should be available. These properties

are generally investigated when a scale is being developed, however, the reliability

of a scale is not a fixed characteristic of the instrument, but is rather population

dependent. More heterogeneous populations give rise to more reliable measurements.

Furthermore, reliability can also depend on other external factors like, for instance,

the skills or the level of training of the raters. It is therefore useful to evaluate the

reliability of certain rating scale, whenever this scale is applied. However, many ap-

proaches for estimating reliability are based on very restrictive modelling frameworks.

A common feature in present-day psychopharmacological trials is the presence of

repeated measurements. The modelling frameworks used in CTT or G-theory will

frequently be inappropriate to study reliability in this scenario. In the present work

we have tried to extend the concept of reliability to this more general setting.

A psychiatric symptom scale will be useful only if it can discriminate among

different patients, essentially those who have a mental illness from those that do not,
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or those patients who are in a more advanced stage of a disease from those who are

in a more primary stage, or those patients who have made progress from those who

have not, or did so to a lesser extent. This discriminating capability will be possible

only if the scale’s values vary more between subjects than what they vary within the

same subject. This relation between the within and between-subject variability is

what we try to determine when we study the reliability of the scale. The reliability of

a scale is therefore the capacity of the scale to discriminate between different subjects

or different groups of subjects.

The appraisal of reliability has certainly been among the most central issues in

psychometrics during the past century. Despite the fact that they are all targeting

the same concept, measures used to quantify reliability have largely depended on the

data structure. This lack of a unifying approach has resulted in a myriad of measures,

which sometimes lead to different conclusions and varying interpretations. Hitherto,

the two main contexts for the appraisal of reliability, i.e., the cross-sectional and

longitudinal scenario (single-administration and multiple-administration) have been

studied using different approaches. In the present work we have introduced a general

definition of reliability based on a simple set of properties. This definition can be

equally applied in the cross-sectional and longitudinal setting.

The definition lead to a whole family of reliability measures, the Ω family. All

the members of this family are built upon the same basic elements: the roots of the

equation q(λ) = |Σ − λV | = 0; where Σ expresses the within-subject variability and

V the total variability, and therefore V − Σ the between-subject variability.

The usefulness of two of these measures, RT and RΛ, has been extensively illus-

trated. In a longitudinal context, the RT coefficient expresses the average reliability

over the different measurement occasions. Having a single measure has the advantage

of facilitating interpretation and is very useful whenever two scales should be com-

pared on their reliability. On the other hand, it is possible to obtain RT values per

time point, which can be useful when one is interested in the evolution of reliability

over the course of the study. Typically, one observes a slight increase of RT over

time, plausibly due to an increase of the raters’ skills and their knowledge about the

patients.

The RΛ coefficient, even though structurally similar to RT , bears a totally different

interpretation. This measure expresses the reliability of the longitudinal sequence as

a whole. It captures not the average reliability per time point, but the reliability of

the information that is available when considering the repeated measures jointly. As
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a consequence, RΛ will always increase when the number of measurements increases.

Relevantly, this implies that we can always obtain a pre-specified level of reliability

if the patient is followed long enough. Indeed, even if we only have to our disposal a

scale that is permeated by a relatively large amount of measurement error, we can still

increase the reliability of our conclusions by repeating the measurement over time.

The previous developments were first considered within a longitudinal framework,

and based upon the presence of repeated measurements. However, in psychometric

research, much interest has always gone to the study of reliability in the context of

cross-sectional, multivariate measurement. We have illustrated that the same mea-

sures as proposed in the longitudinal context also apply when studying reliability in

a multivariate setting. The RT coefficient then expresses the average reliability per

item whereas the RΛ coefficient refers to the reliability of the information available

in the entire scale.

In practice clinicians frequently work with scales constructed by the (weighted)

sum of the item scores. While a loss of information is then unavoidable, interpretabil-

ity is can be gained. We have seen that any member of the Ω family corresponds to

the reliability of different but meaningful weighted sum scores.

Finally, we want to point out that a set of SAS macro’s has been written for the

calculation of the point estimates and asymptotic confidence intervals for RT , RΛ and

some elements of the Ω family. Manuals explaining the macros and the interpretation

of their results are also available.

15.2 Further Research

The approach to reliability presented in this work is entirely based on the class of

linear mixed models which forms a very powerful tool for the analysis of continuous

data. Obviously, further extensions for categorical data deserve special attention. In

this direction links with IRT are, undoubtedly, an interesting line of research.

The impact of missing data on the performance of the proposed measures is also

worth investigating as well as the impact of model misspecifications on the accuracy

of their point estimates and the performance of their asymptotic confidence intervals.

Even though the connection between reliability and sample size has been well

established in a simple cross-sectional scenario, it has not been studied with more

complicated data structures like longitudinal data. Therefore, it would be interesting

to explore the relationship between statistical concepts like power and sample size on
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one hand and quantifications of reliability like RT and RΛ on the other hand.

Clearly, many interesting issues have not been explored in the present work and

deserve to be further studied. On the other hand, the evaluation of the new proposals

have been limited by time constraints and the availability of real data. Probably, only

through the future application and study of the ideas introduced in this work one will

be able to fully clarify their potential value as well as their limitations.
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Appendix A

Four Defining Properties for

Reliability Measures

A.1 RT Satisfies the Four Defining Properties

We will prove the statement that RT satisfies the properties (i) – (iv) introduced in

Section 7.1. Without loss of generality we will provide the proof in the single trial

setting with a balanced study design, where V = V i and Σ = Σi.

i. 0 ≤ RT ≤ 1

i.1 RT ≥ 0

To prove (i.1) it is sufficient to show that tr(Σ) ≤ tr(V ) so we only have to prove

that tr(ΣD) ≥ 0. Note that

tr(ΣD) = tr(ZDZ ′) =

p∑

j=1

zjDz
′
j

where p is the number of time points and zj is the jth row of Z. As D is positive

definite zjDz
′
j ≥ 0 for all j and we get (i.1). �

i.2 RT ≤ 1 is obvious. �

ii. RT = 0 if and only if V = Σ

Note that RT = 0 if and only if tr(Σ) = tr(V ). Additionally, tr(V ) = tr(ΣD)+tr(Σ)
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and therefore tr(Σ) = tr(V ) if and only if tr(ΣD) = 0, or equivalently if zjDz
′
j = 0

for all j. Being D positive definite the previous equality can only be obtained in the

degenerated case where D = 0 and as a consequence V = Σ. �

iii. RT = 1 if and only if Σ = 0 is obvious. �

iv. In the classical setting RT =
σ2

b

σb + σ2

In the classical cross-sectional case, model (5.1) reduces to:

Yi = µ + bi + εi

bi ∼ N(0, σ2
b ),

εi ∼ N(0, σ2).

Now V = σ2
b + σ2 and Σ = σ2 so that RT = 1 − σ2

σ2
b + σ2

=
σ2

b

σ2
b + σ2

. �

A.2 All Members of Ω Satisfy the Four Defining

Properties

We will prove that all the members of Ω (9.1) satisfy the properties (i)–(iv), intro-

duced in Section 7.1.

i. 0 ≤ θ ≤ 1 for all θ ∈ Ω

i.1 θ ≥ 0

Note first that θ = 1 −
∑

j wjλj and, therefore, θ ≥ 0 if and only if
∑

j wjλj ≤ 1.

However, from Theorem 1 we have
∑

j wjλj ≤∑j wj = 1. �

i.2 θ ≤ 1 is obvious. �
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ii. θ = 0 if and only if V = Σ

θ = 1 −
p∑

j=1

wjλj = 0 ⇔ 1 =

p∑

j=1

wjλj

⇔ λj = 1 for all j

⇔ Σ = V �

Note that the last equivalence is a direct consequence of (9.2) and (9.3).

iii. θ = 1 if and only if Σ = 0

θ = 1 −
p∑

j=1

wjλj = 1 ⇔ λj = 0 for all j

⇔ Σ = 0 �

Here again the last equivalence is a direct consequence of (9.2).

iv. In the classical setting θ =
σ2

b

σ2
b + σ2

for all θ ∈ Ω.

In the classical setting p = 1, Σ = σ2 and V = σ2
b + σ2, so that

q(λ) = |σ2 − λ(σ2
b + σ2)| = 0

and

θ =

p∑

j=1

wjρ
2
j = ρ2

1 = 1 − σ2

σ2
b + σ2

=
σ2

b

σ2
b + σ2

. �

A.3 RΛ Satisfies a Modified Set of Properties

We will prove that RΛ fulfills properties (i), (ii), (iv), introduced in Section 7.1, and

property (iii’), as defined in Section 10.1. Let us note first that from (9.2) and (9.3)

we have

V = Q′Q,

Σ = Q′ΛQ,
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so that

|Σ| = |Q′||Q||Λ| = |Q|2|Λ|,
|V | = |Q|2,

and

RΛ = 1 − |Σ|
|V | = 1 −

p∏

j=1

λj .

We can now prove that RΛ fulfills the properties (i), (ii), (iii’), and (iv).

i. 0 ≤ RΛ ≤ 1

i.1 RΛ ≥ 0

We have seen already that 0 ≤ λj ≤ 1 so that RΛ = 1−∏p
j=1 λj ≥ 1−∏p

j=1 1 = 0. �

i.2 RΛ ≤ 1 is obvious. �

ii. RΛ = 0 if and only if V = Σ

RΛ = 1 −
p∏

j=1

λj = 0 ⇔
p∏

j=1

λj = 1

⇔ λj = 1 for all j

⇔ Σ = V � (A.1)

iii’. RΛ = 1 if and only if |Σ| = 0

RΛ = 1 −
p∏

j=1

λj = 1 ⇔
p∏

j=1

λj = 0

⇔ there exists k so that λk = 0

⇔ |Σ| = 0. �

iv. In the classical setting RΛ =
σ2

b

σ2
b + σ2

In the classical setting Σ = σ2 and V = σ2
b + σ2 therefore:

RΛ = 1 − |Σ|
|V | = 1 − σ2

σ2
b + σ2

=
σ2

b

σ2
b + σ2

. �



Appendix B

Estimation and Asymptotic

Confidence Intervals for the

Reliability Measures

B.1 Details on the Calculation of an Asymptotic

Confidence Interval for RT

We will provide more details on the derivation of the elements of ∆. Let us first note

that in case of a balanced design, and assuming that Σi = Σ and V i = V , we have:

RT =
tr(V ) − tr(Σ)

tr(V )

=
tr(ZDZ ′ + THT + ΣR) − tr(THT + ΣR)

tr(ZDZ′ + THT + ΣR)

=
tr(ZDZ ′)

tr(ZDZ ′) + tr(T2) + tr(ΣR)
.

Note further that tr(T2) =
∑p

j=1 τ2
j and tr(ΣR) =

∑p
j=1 σ2

jj′ . We can now derive the

different elements of ∆.

In what follows we will calculate
∂RT

∂z
, with z a scalar. For z an element of D, we
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find:

∂RT

∂z
=

∂tr(ZDZ ′)

∂z
[tr(ZDZ ′) + tr(T2) + tr(ΣR)] − ∂tr(ZDZ ′)

∂z
tr(ZDZ ′)

[tr(ZDZ ′) + tr(T2) + tr(ΣR)]2

=
[tr(T2) + tr(ΣR)]

∂tr(ZDZ ′)

∂z
[tr(ZDZ ′) + tr(T2) + tr(ΣR)]2

,

From Searle (1982) we know that

∂tr(XA)

∂X
= A+A′ − diag(A),

so that

∂tr(ZDZ ′)

∂z
=

∂tr(DZ ′Z)

∂z
= Z ′Z +Z ′Z − diag(Z ′Z) = 2Z ′Z − diag(Z ′Z),

and therefore
∂RT

∂z
=

[tr(T2) + tr(ΣR)][2Z ′Z − diag(Z ′Z)]

[tr(ZDZ ′) + tr(T2) + tr(ΣR)]2
.

For z an element of T2, where z = τ2
j , the following expression is obtained:

∂RT

∂z
= − tr(ZDZ ′)

[tr(ZDZ ′) + tr(T2) + tr(ΣR)]2
.

Finally, for z an element of ΣR, we obtain:

∂RT

∂z
= − tr(ZDZ ′)

[tr(ZDZ ′) + tr(T2) + tr(ΣR)]2
.

Note that in practice it frequently occurs that τ2
j = τ2 for all j, in that case the

second and the third formulae simplify to:

∂RT

∂z
= − p tr(ZDZ ′)

[tr(ZDZ′) + pτ2 + tr(ΣR)]2

∂RT

∂z
= − tr(ZDZ ′)

[tr(ZDZ′) + pτ2 + tr(ΣR)]2
.
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B.2 Asymptotic Confidence Interval for the Elements

of Ω

To derive a confidence interval for the elements of Ω we will first introduce some

results from differential calculus for matrices.

Important results of differential calculus for matrices

Definition 1: Derivative of a matrix with respect to a scalar

Let Y be a p × q matrix of variables that are functions of z, so that y is a matrix

function of z. Then the derivative of Y with respect to z is the p × q matrix:

∂Y

∂z
=




∂y11

∂z
∂y12

∂z ...
∂y1q

∂z
∂y21

∂z
∂y22

∂z ...
∂y2q

∂z

... ... ... ...
∂yp1

∂z
∂yp2

∂z ...
∂ypq

∂z




Theorem 8 Derivative of a product

Let X and Y be m × n and n × r matrices of variables which depend on z. The

derivative of XY with respect to z is the m × r matrix:

∂

∂z
(XY ) =

∂X

∂z
Y +X

∂Y

∂z
.

Theorem 9 Some important derivatives

1.
∂

∂z
ln |Y | = tr

(
Y −1 ∂Y

∂z

)

2.
∂

∂z
tr(XY ) = tr

(
∂X

∂z
Y

)
+ tr

(
X

∂Y

∂z

)

3.
∂

∂z
Y −1 = −Y −1 ∂Y

∂z
Y −1

4.
∂

∂z
(AY B) = A

∂Y

∂z
B
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Asymptotic Confidence Interval for the Elements of Ω

Let θ be any member of Ω as defined in (9.1). Let ψ be the vector of the covariance

parameters of a linear mixed-effects model. We know from ML theory that ψ̂ ∼
N(ψ,ΣP ) where ΣP is the variance-covariance matrix of ψ̂. Applying now the Delta

method to θ̂ we get: θ̂ ∼ N(θ,∆ΣP∆′) where ∆ =
∂θ

∂ψ
. A (1 − α)% confidence

interval for θ can then be given by

[
θ̂ ± z1−α

2

√
∆ΣP∆′

]
.

To avoid confidence limits that exceed the [0, 1] range, a logit transformation is ap-

plied, with l(θ) = log

(
θ(ψ)

1 − θ(ψ)

)
. A restricted (1 − α)% confidence interval for θ is

then given by [
el1

1 + el1
,

el2

1 + el2

]
,

with l1 the lower limit and l2 the upper limit of the confidence interval

[
l(θ̂) ±

z1−α
2

θ(1 − θ)

√
∆ΣP ∆′

]
.

In the remainder, we provide more detailed information on the derivation of the

different elements of ∆. Let us note that θ = 1 −∑j wjλj and

|Σ− λV | = 0 ⇔ |ΣV −1 − λI | = 0,

and therefore the λj are the eigenvalues of ΣV −1. This implies that there exists a

nonsingular matrix P so that Λ = P−1ΣV −1P with Λ = diag(λj). On the other

hand,

θ = 1 − tr(WΛ) where W = diag(wj)

= 1 − tr(WP−1ΣV −1P )

θ = 1 − tr(QΣV −1) where Q = PWP−1.

In what follows we will calculate
∂θ

∂z
, with z a scalar:

∂θ

∂z
= − ∂

∂z
tr(QΣV −1).
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Applying now (2) from Theorem 9 we get:

∂θ

∂z
= − ∂

∂z
tr(QΣV −1)

= −tr

(
∂Q

∂z
ΣV −1

)
− tr

(
Q

∂

∂z
(ΣV −1)

)

∂θ

∂z
= −tr

(
Q

∂

∂z
(ΣV −1)

)
,

but from the product rule in Theorem 8 we get:

∂

∂z
(ΣV −1) =

∂Σ

∂z
V −1 + Σ

∂V −1

∂z

=
∂Σ

∂z
V −1 + ΣV −1 ∂V

∂z
V −1

=

(
∂Σ

∂z
− ΣV −1 ∂V

∂z

)
V −1,

so that
∂θ

∂z
= tr

[
Q

(
ΣV −1 ∂V

∂z
− ∂Σ

∂z

)
V −1

]
,

where:

∂Σ

∂z
=

∂T

∂z
HT + T

∂H

∂z
T + TH

∂T

∂z
+

∂ΣR

∂z
∂V

∂z
= Z

∂D

∂z
Z ′ +

∂Σ

∂z
.

Now, we will give the expression for the derivative of θ with respect to the different

parameters, coming from D, T, H , and ΣR. For z an element of D, we find:

∂θ

∂z
= tr

[
V −1QΣV −1

(
Z

∂D

∂z
Z ′

)]
.

For z an element of T, or z = τj , we have:

∂θ

∂τj
= tr

[
V −1Q

(
ΣV −1 − I

) ∂Σ

∂τj

]

and
∂Σ

∂τj
= IjHT + THIj where Ij is a matrix with zeros everywhere and 1 in the

position (j, j). Further,
∂θ

∂τ2
j

= − ∂θ

∂τj

1

τ4
j

.

For z an element of H we have:

∂θ

∂z
= tr

[
V −1Q

(
ΣV −1 − I

)
T

∂H

∂z
T

]
,
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and finally, for z an element of ΣR:

∂θ

∂z
= tr

[
V −1Q

(
ΣV −1 − I

) ∂ΣR

∂z

]
.

Note that in practice it frequently occurs that τ2
j = τ2 for all j, in that case for z = τ2

we find:
∂θ

∂τ2
= tr

[
V −1Q

(
ΣV −1 − I

)
H
]
,

and for z an element of ΣR:

∂θ

∂z
= tr

[
V −1Q

(
ΣV −1 − I

)
τ2 ∂H

∂z

]
.

Finally we will give details on the derivatives of the serial correlations
∂H

∂z
, for some

of the most commonly used serial correlation structures in models for longitudinal

data, being the autoregressive, spatial power, spatial exponential, and spatial gaussian

structure. These structures have in common that measurements taken closer in time

are more strongly correlated than measurements taken further apart, a very common

phenomenon in longitudinal measurements.

Note that the autoregressive structure is a special case of the spatial power structure.

When the measurements are equally spaced, the spatial power structure reduces to

the autoregressive structure. Both structures can be written as H = (ρdst), where ρ

is a correlation parameter and dst is the distance between two measurements at times

s and t. Then:

∂H

∂ρ
=

1

ρ
A⊙H where A⊙H = (cst) = (asthst)

sometimes referred to as the Hadamard product, and

A =
1

ln ρ
ln(H) with ln(H) = (ln hst).

An exponential correlation structure can be written as H =

(
exp

(−dst

φ

))
, so that:

∂H

∂φ
=

1

φ2
A⊙H and A = −φ ln(H).

Finally, a spatial Gaussian correlation can be written as H =

(
exp

(−d2
st

ρ2

))
, and

thus:
∂H

∂ρ
=

2

ρ3
A⊙H and A = −ρ2 ln(H).
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B.3 Estimation and Asymptotic Confidence Inter-

val for RΛ

If D̂, T̂, Ĥ, Σ̂R denote the MLEs for D, T, H, and ΣR, as defined in (5.1), respec-

tively then the MLE for RΛ is given by

R̂Λ = 1 − |Σ̂V̂ −1|,

where V̂ = ZD̂Z ′ + T̂ĤT̂ + Σ̂R and Σ̂ = T̂ĤT̂ + Σ̂R.

We will use once more the delta method to obtain a confidence interval for RΛ.

Let ψ be the vector of the covariance parameters of a linear mixed-effects model,

with ψ̂ ∼ N(ψ,ΣP ). Then: R̂Λ ∼ N(RΛ,∆ΣP ∆′) where ∆ =
∂RΛ

∂ψ
. A (1 − α)%

confidence interval for RΛ can then be given by

[
R̂Λ ± z1−α

2

√
∆ΣP ∆′

]
.

As for previous measures, we use a logit transformation to avoid confidence limits

that exceed the [0, 1] range. with l(RΛ) = log

(
RΛ(ψ)

1 − RΛ(ψ)

)
. A restricted (1 − α)%

confidence interval for RΛ is then given by

[
el1

1 + el1
,

el2

1 + el2

]
,

with l1 the lower limit and l2 the upper limit of the confidence interval

[
l(R̂Λ) ±

z1−α
2

RΛ(1 − RΛ)

√
∆ΣP ∆′

]
.

In what follows we will give more detailed information on the derivation of the different

elements of ∆. We will calculate the
∂RΛ

∂z
with z a scalar. Let us first note that

|ΣV −1| = 1 − RΛ

⇔ ln |Σ| − ln |V | = ln(1 − RΛ) = γ.

For simplicity we will calculate
∂γ

∂z
. Notice that:

∂γ

∂z
= − 1

1 − RΛ

∂RΛ

∂z
,
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and therefore:
∂RΛ

∂z
= (RΛ − 1)

∂γ

∂z
,

where
∂γ

∂z
=

∂

∂z
ln |Σ| − ∂

∂z
ln |V |.

If we call γ1 = ln |Σ| and γ2 = ln |V |, then:

∂γ

∂z
=

∂γ1

∂z
− ∂γ2

∂z
.

From (1) in Theorem 9 we have:

∂γ1

∂z
= tr

(
Σ−1 ∂Σ

∂z

)
,

but Σ = THT + ΣR and therefore

∂Σ

∂z
=

∂T

∂z
HT + T

∂H

∂z
T + TH

∂T

∂z
+

∂ΣR

∂z
.

To calculate the derivative of THT we have applied the product rule of Theorem 8.

On the other hand:
∂γ2

∂z
= tr

(
V −1 ∂V

∂z

)
,

but V = ZDZ ′ + Σ and therefore:

∂V

∂z
= Z

∂D

∂z
Z ′ +

∂Σ

∂z

⇒ ∂γ2

∂z
= tr

[
V −1

(
Z

∂D

∂z
Z ′

)
+ V −1 ∂Σ

∂z

]
,

and finally

∂RΛ

∂z
= (1 − RΛ)tr

[
V −1

(
Z

∂D

∂z
Z ′

)
+
(
V −1 − Σ−1

) ∂Σ

∂z

]
,

where
∂Σ

∂z
=

∂T

∂z
HT + T

∂H

∂z
T + TH

∂T

∂z
+

∂ΣR

∂z
.

Now, we will give the expression for the derivative of RΛ with respect to the different

parameters, coming from D, T, H , and ΣR. For z an element of D, we find:

∂RΛ

∂z
= (1 − RΛ)tr

[
V −1

(
Z

∂D

∂z
Z ′

)]
.
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For z an element of T, or z = τj , we have:

∂RΛ

∂τj
= (1 − RΛ)tr

[
(V −1 − Σ−1)

∂Σ

∂τj

]

and
∂Σ

∂τj
= IjHT + THIj where Ij is a matrix with zeros everywhere and 1 in the

position (j, j). Further,
∂RΛ

∂τ2
j

= −∂RΛ

∂τj

1

τ4
j

.

For z an element of H we have:

∂RΛ

∂z
= (1 − RΛ)tr

[
(V −1 − Σ−1)T

∂H

∂z
T

]
,

and finally, for z an element of ΣR:

∂RΛ

∂z
= (1 − RΛ)tr

[
(V −1 − Σ−1)

∂ΣR

∂z

]
.

Note that in practice it frequently occurs that τ2
j = τ2 for all j, in that case the

second for z = τ2:
∂RΛ

∂τ2
= (1 − RΛ)tr

[
(V −1 − Σ−1)H)

]

and for z an element of ΣR:

∂RΛ

∂z
= (1 − RΛ)tr

[
(V −1 − Σ−1)τ2 ∂H

∂z

]
.

B.4 Asymptotic Confidence Intervals for RT , RΛ and

ρ(a) in the Single-Administration Context

Maximum likelihood estimates for RT , RΛ and ρ(a) can be obtained by filling in the

MLE for Σ and V in, respectively, (7.2), (10.1) and (14.4). Confidence intervals for

RT and RΛ can be obtained using the delta method, in the same way as explained

in sections 7.3 and B.3 in the longitudinal context. One additional element, however,

needs to be taken into account. In model (5.1) Z is a fixed design matrix. The

corresponding matrix B in model (14.1) is a matrix of estimated factor loadings.

This needs to be taken into account in the calculation of ∆. In this section we will

address this point for the calculation of a confidence interval for RT and RΛ. We will

further derive a confidence interval for ρ(a).
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Obtaining ∆ for RT

We will derive the elements of ∆ for RT , with ∆′ =
∂RT

∂ψ
with ψ a vector containing

all parameters in B, D and Σ.

RT =
tr(BDB′)

tr(V )
=

tr(BDB′)

tr(BDB′) + tr(Σ)
.

Therefore, in general, with z a scalar:

∂RT

∂z
=

∂tr(BDB′

)
∂z tr(V ) − ∂(tr(BDB

′

)+tr(Σ))
∂z tr(BDB′)

tr(V )2
. (B.1)

Let us start by deriving
∂RT

∂b
, with b an element of B. From (B.1) we obtain:

∂RT

∂b
=

tr(Σ)∂tr(BDB′

)
∂b

tr(V )2

⇒ ∂RT

∂b
=

(
tr(Σ)

tr(V )2

)
∂tr(BDB′)

∂b
(B.2)

To calculate (B.2), we need to calculate
∂tr(BDB′)

∂b
. Let us first note that:

tr(BDB′) = tr(B′BD) = tr(B̃D) with B̃ = B′B.

Therefore,

∂tr(BDB′)

∂b
=

∂tr(B̃D)

∂b

= tr

(
∂B̃

∂b
D + B̃

∂D

∂b

)

⇒ ∂tr(BDB′)

∂b
= tr

(
∂B̃

∂b
D

)
(B.3)

To obtain (B.3) we have applied formula 2 under Theorem 9. Further, we need to
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calculate
∂B̃

∂b
. Applying Theorem 8 we obtain:

∂(B′B)

∂b
=

∂B′

∂b
B +B′ ∂B

∂b

⇒ ∂tr(BDB′)

∂b
= tr

(
∂B′

∂b
BD +B′ ∂B

∂b
D

)

⇒ ∂tr(BDB′)

∂b
= tr

(
∂B′

∂b
BD

)
+ tr

(
B′ ∂B

∂b
D

)
. (B.4)

If we denote

B =




b11 b12 . . . b1q

b21 b22 . . . b2q

...
...

...
...

bp1 bp2 . . . bpq




and B′ =




b11 b21 . . . bp1

b12 b22 . . . bp2

...
...

...
...

b1q b2q . . . bpq




then if b = bij ,
∂B

∂bij
is a p × q matrix with all elements 0 except the element (i, j).

Further
∂B′

∂bij
=

(
∂B

∂bij

)′

.

Finally, to summarize:

∂RT

∂bij
=

(
tr(Σ)

tr(V )2

)
tr

(
∂B′

∂bij
BD +B′ ∂B

∂bij
D

)

∂B

∂bij
= {ci′j′}p×q with cij =





0 if i′ 6= i and j′ 6= j

1 if i′ = i and j′ = j
(B.5)

∂B′

∂bij
=

(
∂B

∂bij

)′

Further, from (B.1), if dij an element ofD and σij an element of Σ, we can obtain:

∂RT

∂dij
=

tr(Σ)

tr(V )2
tr

(
B′B

∂D

∂dij

)

and

∂RT

∂σij
=

−tr
(

∂Σ
∂σij

)
tr(BDB′)

tr(V )2
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with
∂D

∂dij
and

∂Σ

∂σij
analogous to (B.5).

Obtaining ∆ for RΛ

In this section we will derive the elements of ∆ for RΛ. Analogous to Section B.3, we

will calculate
∂γ

∂z
with γ = ln(1 − RΛ) = ln |Σ| − ln |V |, so that

∂γ

∂z
=

∂ ln |Σ|
∂z

− ∂ ln |V |
∂z

.

If we call γ1 = ln |Σ| and γ2 = ln |V | then
∂γ

∂z
=

∂γ1

∂z
− ∂γ2

∂z
and

∂γ1

∂z
= tr

(
Σ−1 ∂Σ

∂z

)

∂γ2

∂z
= tr

(
V −1 ∂V

∂z

)
.

But V = BDB′ + Σ and therefore:

∂V

∂z
=

∂BDB′

∂z
+

∂Σ

∂z

=
∂B

∂z
DB′ +B

∂D

∂z
B′ +BD

∂B′

∂z
+

∂Σ

∂z

⇒ ∂γ2

∂z
= tr

[
V −1

(
∂B

∂z
DB′ +B

∂D

∂z
B′ +BD

∂B′

∂z
+

∂Σ

∂z

)]

Further we can write:

−∂γ

∂z
= −∂γ1

∂z
+

∂γ2

∂z

= tr

[
V −1

(
∂B

∂z
DB′ +B

∂D

∂z
B′ +BD

∂B′

∂z

)
+
(
V −1 − Σ−1

) ∂Σ

∂z

]

and since

∂γ

∂z
=

∂ ln(1 − RΛ)

∂z
=

−1

1 − RΛ

∂RΛ

∂z
⇒ −∂γ

∂z
=

1

1 − RΛ

∂RΛ

∂z

we obtain the general formula:

∂RΛ

∂z
= (1 − RΛ)tr

[
V −1

(
∂B

∂z
DB′ +B

∂D

∂z
B′ +BD

∂B′

∂z

)
+
(
V −1 − Σ−1

) ∂Σ

∂z

]
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For the elements dij , bij and σij of the matrices D, B and Σ, respectively, we find

the following formulas:

∂RΛ

∂dij
= (1 − RΛ)tr

[
V −1

(
B

∂D

∂d
B′

)]

∂RΛ

∂bij
= (1 − RΛ)tr

[
V −1

(
∂B

∂b
DB′ +BD

∂B′

∂b

)]

∂RΛ

∂σij
= (1 − RΛ)tr

[(
V −1 − Σ−1

) ∂Σ

∂σ

]

with
∂B′

∂bij
=

(
∂B

∂bij

)′

and
∂B

∂bij
calculated as in (B.5). Further,

∂D

∂dij
and

∂Σ

∂σij

are obtained analogous to (B.5).

A confidence interval for ρ(a)

Given a cross-sectional measurement of a multi-item scale, the reliability of the sum

score of the scale can be derived by

RT (a) = RΛ(a) = ρ(a) = 1 − a′Σa

a′V a
=
a′BDB′a

a′V a
.

In this section we will obtain a confidence interval for this measure, using the delta

method. According to this method we have:

ρ̂(a) ∼ N(ρ(a),∆ΣP∆′),

where ΣP is the variance covariance matrix of the parameter estimates and ∆′ =
∂ρ(a)

∂ψ
with ψ a vector containing all parameters in B, D and Σ. In a similar way

as previously, a logit transformation can be applied to avoid that confidence limits

exceed the [0, 1] range. We will now derive the elements of ∆. For z a scalar that can

be any covariance parameter, we can write the general form as follows:

∂ρ(a)

∂z
=

∂(a′BDB′a)
∂z (a′V a) − ∂(a′(BDB′

+Σ)a)
∂z a′BDB′a

[a′V a]2
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For the elements dij , bij and σij , elements of D, B and Σ respectively, we obtain the

following specific forms:

ρ(a)

∂bij
=

a′
[

∂B
∂bij

DB′ +BD ∂B′

∂bij

]
a (a′Σa)

[a′V a]2

ρ(a)

∂dij
=

a′
[
B ∂D

∂dij
B′
]
a (a′Σa)

[a′V a]2

ρ(a)

∂σij
=

−a′
[

∂Σ
∂σij

a′BDB′a
]
a

[a′V a]2

with
∂B′

∂bij
=

(
∂B

∂bij

)′

and
∂B

∂bij
calculated as in (B.5). Further,

∂D

∂dij
and

∂Σ

∂σij
are

obtained analogously.
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Proofs of Theorems

C.1 Proof of Theorem 1

(i) all roots of q(λ) = 0, the so-called generalized eigenvalues, are real.

Note first that

|Σ − λV | = 0

⇔ |V −1/2||Σ− λV ||V −1/2| = 0

⇔ |V −1/2ΣV −1/2 − λI| = 0

⇔ |H − λI| = 0.

The previous equation implies that the generalized eigenvalues associated with the

matrices Σ and V are just the eigenvalues of the matrix H . Finally, one only needs

to notice that matrix H is symmetric and, therefore, all its eigenvalues are real.�

(ii) if λj is a root of q(λ) = 0 then 0 ≤ λj ≤ 1.

We will now show that 0 ≤ λj ≤ 1 for all j. Note that λj > 0 is an immediate

consequence of (9.2). Indeed, to show that let us assume without loss of generality that

λ1 < 0, then if e1 = (1, 0, ..., 0)′ it follows that e′
1
Λe1 = λ1 < 0. Further, e′

1
Λe1 =

e′
1
(Q−1)′Σ(Q−1)e1 and if y = (Q)−1e1 then λ1 = y′Σy < 0. Nevertheless, as a

variance-covariance matrix, Σ needs to be positive-definite and, therefore, yΣy′ > 0

for all y, thus we have a contradiction and λ1 cannot be smaller than zero.
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Additionally we have

V = ΣD + Σ ⇔ (Q′)−1V (Q)−1 = (Q′)−1ΣD(Q)−1 + (Q′)−1Σ(Q)−1.

Moreover, from (9.2) and (9.3) we get

I − Λ = (Q−1)′ΣD(Q−1) = RDR′ with R = (Q−1)′Z.

This implies

1 − λj = rjDrj
′ ≥ 0

where rj is the jth row of R and therefore λj ≤ 1.�

C.2 Proof of Theorem 4

If θ ∈ Ω, then there exists a vector w = (w1, w2, . . . , wp)
′ with wj > 0 for all j and

1′w = 1 so that θ = 1−
∑

j

wjλj . In what follows, we will show that there is at least

a vector δ = (δ1, δ2, . . . , δp)
′ so that wj =

δ2
j∑
j δ2

j

. Thus, we essentially need to solve

the system of equations





δ2
1 + δ2

2 + · · · + δ2
p =

δ2
1

w1
,

δ2
1 + δ2

2 + · · · + δ2
p =

δ2
2

w2
,

...
...

δ2
1 + δ2

2 + · · · + δ2
p =

δ2
p

wp
.

(C.1)

It is easy to see that the previous system of equations does not have a unique solution

but rather an infinite number. Indeed, if we let δ2
1 be a positive number, then

δ2
j =





δ2
1 if j = 1

δ2
1

(
wj

w1

)
if j = 2, . . . , p, .

(C.2)

are solutions of (C.1) and therefore

θ = 1 −
p∑

j=1

δ2
j∑
δ2
j

λj = 1 −
∑

j δ2
j λj∑

j δ2
j

= 1 − δ′Λδ

δ′δ
, (C.3)

with Λ = diag(λj). If we now define a = Q−1δ with Q like in (14.5)–(14.6), then

δ = Qa and
δ′Λδ

δ′δ
=
a′Q′ΛQa

a′Q′Qa
=
a′Σa

a′V a
,
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and therefore

θ = 1 − a′Σa

a′V a
= ρ(a),

i.e., θ is the reliability of the weighted scale Yi = a′Xi �

C.3 Proof of Theorem 5

Using (14.5)–(14.6) it is easy to show that

a′Σa

a′V a
=
a′Q′ΛQa

a′Q′Qa
=
δ′Λδ

δ′δ
,

where δ = Qa. This implies

a′Σa

a′V a
=

p∑

j=1

(
δ2
j∑

m δ2
m

)
λj ,

and therefore

ρ(a) = 1 − a′Σa

a′V a
= 1 −

p∑

j=1

wjλj ,

where wj =
δ2
j∑

m δ2
m

.

Notice that, ρ(a) ∈ Ω if and only if wj > 0 for all j and
∑

j wj = 1. The latter

is an immediate consequence of the expression of wj , taking into account that a 6= 0.

Finally, wj > 0 for all j if and only if δj 6= 0 for all j or, equivalently, if and only if

a ∈ C, where C = {a : (Qa)j 6= 0 ∀j} �

C.4 Proof of Theorem 6

Given that that ρ(a) = 1 − a′Σa

a′V a
then

max
a6=0

ρ(a) = 1 − min
a 6=0

a′Σa

a′V a
.

Further,

min
a6=0

a′Σa

a′V a
= min
a 6=0

a′Σa

a′V 1/2V 1/2a
= min
z 6=0

z′V −1/2ΣV −1/2z

z′z
= min
z 6=0

z′Hz

z′z
,
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where z = V 1/2a and H is like defined in Section 14.4. Note that a 6= 0 if and only

if z 6= 0. From Johnson and Wichern (2007) we know that

min
z 6=0

z′Hz

z′z
= λ(1),

where λ(1) is the smallest eigenvalue of H and this minimum is reached for z = u(1),

the corresponding eigenvector. Moreover,

λ(1) ≥
p∏

j=1

λj ⇒ 1 − λ(1) ≤ 1 −
p∏

j=1

λj = RΛ,

but 1 − λ(1) = 1 − min
a 6=0

a′Σa

a′V a
= max
a6=0

ρ(a) and therefore,

ρ(a) ≤ max
a6=0

ρ(a) ≤ RΛ.

Note that ρ(a) = max
a6=0

ρ(a) when z = u(1) or, equivalently, when a = V −1/2u(1).

Finally, λ(1) =

p∏

j=1

λj if and only if λ(2) = λ(3) = · · · = λ(p) = 1. Taking all

these elements into account, we conclude that the equality is obtained if and only if

λ(2) = λ(3) = · · · = λ(p) = 1 and a = V −1/2u(1). �

C.5 Proof of Theorem 7

Let Xp
i denote a scale with p items and let the RΛ(p) be the reliability of this scale.

We will proof that if a new item is added to construct the new scale Xp+1
i then

RΛ(p) ≤ RΛ(p + 1).

Let us note first that

V p = Σp +BpDB
′
p

where V p and Σp are two p × p matrices, Bp is a p × q matrix and D is a q × q

matrix, with q the number of true scores. We then have

|V p| = |Σp||I +D1/2B′
pΣ

−1
p BpD

1/2|

⇒ |V p|
|Σp|

= |I +D1/2B′
pΣ

−1
p BpD

1/2|.
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Let us assume now that a new item p + 1 has been added to the original scale. Then

we have

V p+1 = Σp+1 +Bp+1DB
′
p+1

where

Bp+1 =

(
Bp

b′p+1

)
, with bp+1 a q × 1 vector

and

Σp+1 =

(
Σp c

c′ c0

)
, with c a p × 1 vector.

Note that Σp+1 is positive definite and therefore

|Σp+1| = |Σp|(c0 − c′Σ−1
p c) > 0 ⇔ d = c0 − c′Σ−1

p c > 0.

Similarly as before we have

|V p+1|
|Σp+1|

= |I +D1/2B′
p+1Σ

−1
p+1Bp+1D

1/2|.

It is possible to show that

Σ−1
p+1 =




Σ−1
p +

qq′

d
−q

d

−q
′

d

1

d


 (C.4)

where d is as before and q = Σ−1
p c. Note further that

Bp+1D
1/2 =

(
Bp

b′p+1

)
D1/2 =

(
BpD

1/2

b′p+1D
1/2

)

⇒ Σ−1
p+1Bp+1D

1/2 =




Σ−1
p BpD

1/2 +
qq′

d
BpD

1/2 −
qb′p+1

d
D1/2

−q
′

d
BpD

1/2 +
b′p+1

d
D1/2




This implies that

D1/2B′
p+1Σ

−1
p+1Bp+1D

1/2 = D1/2B′
pΣ

−1
p BpD

1/2 +
1

d
D1/2B′

pqq
′BpD

1/2

−1

d
D1/2B′

pqb
′
p+1D

1/2 − 1

d
D1/2bp+1q

′BpD
1/2

+
1

d
D1/2bp+1b

′
p+1D

1/2.
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If we define r =D1/2B′
pq and s =D1/2bp+1 then

D1/2B′
p+1Σ

−1
p+1Bp+1D

1/2 = D1/2B′
pΣ

−1
p BpD

1/2 +
1

d
rr′ − 1

d
rs′ − 1

d
sr′ +

1

d
ss′

= D1/2B′
pΣ

−1
p BpD

1/2 +
1

d
(r − s)(r − s)′,

and therefore

I +D1/2B′
p+1Σ

−1
p+1Bp+1D

1/2 = I +D1/2B′
pΣ

−1
p BpD

1/2 +
1

d
(r − s)(r − s)′.(C.5)

Note further that the matrix I + D1/2B′
pΣ

−1
p BpD

1/2 is positive definite and the

matrix
1

d
(r−s)(r−s)′ is semipositive definite. Theorem 22 in Magnus and Neudecker

(1994, pag. 21) then implies

|V p+1|
|Σp+1|

= |I +D1/2B′
p+1Σ

−1
p+1Bp+1D

1/2|

= |I +D1/2B′
pΣ

−1
p BpD

1/2 +
1

d
(r − s)(r − s)′|

≥ |I +D1/2B′
pΣ

−1
p BpD

1/2| =
|V p|
|Σp|

and finally

|V p+1|
|Σp+1|

≥ |V p|
|Σp|

⇒ RΛ(p + 1) = 1 − |Σp+1|
|V p+1|

≥ 1 − |Σp|
|V p|

= RΛ(p)

⇒ RΛ(p + 1) ≥ RΛ(p).�



Samenvatting

In de jaren 50 werden de eerste medicijnen ontwikkeld voor de behandeling van psychi-

atrische stoornissen, zoals antidepressiva en antipschotische medicatie. Rond dezelfde

tijd werd farmaceutisch onderzoek meer en meer gebaseerd op gecontroleerde klinische

studies. In zulke studies wordt gebruik gemaakt van een controlegroep van patiënten

die de experimentele behandeling niet ontvangen, en worden patiënten toevalsgewijs

aan de controlegroep dan wel de experimentele groep toegekend. De gezondheids-

toestand van beide groepen wordt vervolgens vergeleken, maar net daar schuilt een

van de moeilijkheden van het onderzoek naar psychofarmaceutische medicatie. Een

nauwkeurige evaluatie van de gezondheidstoestand in het geval van psychiatrische

problemen is niet evident. Hoewel er consensus bestaat over een gedeeltelijke biolo-

gische oorzaak van verschillende psychiatrische aandoeningen, bestaan er geen labo-

ratoriumtests om de ziekte vast te stellen of de ernst ervan te evalueren. De evaluatie

gebeurt daarom op basis van beoordelingsschalen. Zulke schalen bestaan uit een lijst

van items of vragen die door een zorgverlener of soms de patiënt zelf beantwoord wor-

den aan de hand van meerkeuze-antwoorden. De scores op elk van de vragen worden

vervolgens opgeteld tot een totaalscore die een indicatie geeft van de ernst van de

problematiek.

Om een nauwkeurige resultaatsmeting te garanderen moet de beoordelingsschaal

aan bepaalde voorwaarden voldoen. Een schaal moet valide zijn, dat betekent dat ze

werkelijk meet waarvoor ze bedoeld is. Daarnaast moet een schaal betrouwbaar zijn.

Dit houdt in dat de meting met een aanvaardbare precisie gebeurt, of anders gezegd,

dat meetfout tot een minimum beperkt wordt.

De evaluatie van de betrouwbaarheid van meetschalen, educatieve en psycho-

logische tests komt uitgebreid aan bod in de klassieke psychometrische literatuur.

Nochthans zijn de gangbare methodes vaak niet flexibel genoeg om te worden toegepast

in de vaak complexe settings van klinische studies. De doelstelling van deze thesis is

185
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om die klassieke psychometrische methodes uit te breiden naar meer algemene set-

tings, met longitudinale of multivariate metingen.

In de klassieke test-theorie wordt de geobserveerde score van een patiënt beschouwd

als een som van de ‘ware score’ van deze patiënt en een component te wijten aan

meetfout. Bij de meting van een groep van patiënten wordt de betrouwbaarheid

dan gedefinieerd als de verhouding tussen de variantie die komt van de ware scores

van de patiënten en de totale variantie van de observaties (Lord and Novick 1968).

Aangezien de totale variantie altijd groter is dan de variantie van de ware scores,

is de betrouwbaarheid steeds een getal tussen 0 en 1. Een getal in de buurt van 0

betekent dat de ware-score variantie zeer klein is en de totale variantie bijna volledig

wordt verklaard door meetfout. De meting is dan zeer onbetrouwbaar. Een getal in

de buurt van 1 betekent dat de totale score variantie bijna volledig verklaard wordt

door de ware scores, en dat meetfout een zeer kleine invloed heeft. De meting is

dan zeer betrouwbaar. Een schatting van de betrouwbaarheid is maar mogelijk wan-

neer eenzelfde meting herhaald wordt, door bijvoorbeeld op twee momenten te meten

(test-hertest betrouwbaarheid), door twee verschillende beoordelaars te laten meten

(inter-rater betrouwbaarheid), of door verschillende maar parallelle instrumenten te

gebruiken (interne consistentie).

Bovenstaande benadering is eenvoudig, intüıtief en dus zeer aantrekkelijk. An-

derzijds is ze gestoeld op een aantal veronderstellingen die in veel praktische situaties

niet kunnen gegarandeerd worden. Een van de veronderstellingen is bijvoorbeeld dat

de ware score van een patiënt bij de twee metingen constant is. Het kan nochthans

gebeuren dat een patiënt evolueert in de latente variabele die gemeten wordt, denk

maar aan depressie. In een longitudinale klinische studie is dat onvermijdelijk. Verder

wordt er verondersteld dat de varianties komende van de meetfout constant zijn in

de verschillende metingen en dat de meetfouten waargenomen bij eenzelfde patiënt

niet met elkaar gecorreleerd zijn. Ook deze twee veronderstellingen zijn zeer weinig

plausibel in het geval van herhaalde metingen (Verbeke and Molenberghs 2000).

Om betrouwbaarheid op basis van longitudinale gegevens te kunnen analyseren is

het daarvoor essentieel om uit te gaan van een meetmodel dat rekening houdt met

de typische kenmerken van dit soort gegevens. Daarom baseren we onze methoden

op een linear gemengd model (Laird and Waire 1982, Diggle, Liang and Zeger 1994).

Uitgaande van dit meetmodel herdefiniëren we betrouwbaarheid aan de hand van

een axiomatische benadering. We stellen dat een maat voor betrouwbaarheid moet

beschikken over vier eigenschappen, zijnde (1) de betrouwbaarheid ligt steeds tussen
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0 en 1; (2) de betrouwbaarheid is nul enkel in het geval dat de observaties volledig

te wijten zijn aan meetfout; (3) de betrouwbaarheid is 1 enkel in het geval er geen

meetfout optreedt; en (4) wanneer de veronderstellingen van de klassieke test-theorie

correct zijn, moet elke maat voor betrouwbaarheid samenvallen met de maat die in

deze klassieke theorie werd voorgesteld. Een meer formele omschrijving vindt men in

Hoofdstuk 7.

In hetzelfde hoofdstuk introduceren we de RT coëfficiënt, een maat voor be-

trouwbaarheid die voldoet aan de vier bovengenoemde voorwaarden. Verder beargu-

menteren we dat deze maat in een longitudinaal kader de gemiddelde betrouwbaarheid

weergeeft over de verschillende metingen. Op die manier wordt de betrouwbaarheid

van de herhaalde metingen in de studie aan de hand van een enkel cijfer samengevat.

Zo een beknopte samenvatting kan zeer handig zijn wanneer er een groot aantal

metingen werden afgenomen, of wanneer bijvoorbeeld twee meetschalen met elkaar

moeten vergeleken worden. Anderzijds laat de methode ook toe om de RT coëfficiënt

afzonderlijk te schatten voor elk van de herhaalde metingen, zodat de evolutie van de

betrouwbaarheid over de tijd kan nagegaan worden.

In hoofdstuk 10 introduceren we de RΛ coëfficiënt; een tweede nuttige maat

voor betrouwbaarheid. We beargumenteren dat deze maat een andere, complemen-

taire boodschap geeft. De RΛ coëfficiënt geeft niet de gemiddelde betrouwbaarheid

over de herhaalde metingen weer zoals de RT coëfficiënt, maar ze geeft de ‘totale’

betrouwbaarheid weer van de hele reeks van metingen. We kunnen dit als volgt

toelichten. Wanneer een beoordelingsschaal eenmaal wordt afgenomen bij een groep

van patiënten, levert dat een bepaalde hoeveelheid informatie op. Wanneer de schaal

bij diezelfde groep een tweede maal wordt afgenomen, kan dat enkel maar tot meer

informatie leiden over de patiënten. Hetzelfde geldt voor een derde meting, enzovoort.

Dit intüıtief idee wordt gevat in de RΛ coëfficiënt. We zien dan ook dat deze maat

telkens toeneemt met het aantal herhaalde metingen. Waar de RT coëfficiënt ons

informatie verschaft over de kwaliteit van de schaal, los van de context van de studie,

vertelt de RΛ coëfficiënt ons wat de invloed is van meetfout op het geheel van meting-

en in een longitudinale studie. Vaak zien we dat een schaal slechts matige betrouw-

baarheid vertoont bij een eenmalige meting, maar wanneer de herhaalde metingen

samen beschouwd worden, de impact van meetfout minimaal blijkt. Verder kan de

RΛ coëfficiënt ons een hint geven over het aantal herhaalde metingen die met een

bepaalde meetschaal en in een bepaalde populatie nodig zijn om de impact van meet-

fout tot een bepaald niveau terug te dringen.
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In hoofdstuk 11 tonen we dat er een sterke link bestaat tussen de door ons

voorgestelde benadering en belangrijke eerdere bijdragen uit de psychometrische lite-

ratuur. In hoofdstuk 12 zoomen we in op een gekend probleem bij herhaalde metingen,

namelijk dat van gecorreleerde meetfouten. We tonen dat onze methode standhoudt

waar de klassieke benadering en uitbreidingen ervan tekortschieten.

De methodes worden verder uitgebreid gëıllustreerd aan de hand van twee exem-

plarische studies. De eerste betreft een klinische studie in het domein van schizofre-

nie waar de betrouwbaarheid van drie verschillende meetschalen wordt geëvalueerd

en vergeleken. In het tweede voorbeeld analyseren we de betrouwbaarheid van drie

meetschalen om de ernst van een depressie te evalueren.

Het grootste deel van de thesis betreft de analyse van betrouwbaarheid op basis van

herhaalde metingen. In Hoofdstuk 14 illustreren we dat de daarvoor gëıntroduceerde

methodes perfect vertaalbaar zijn naar een multivariate context. In de psychome-

trische literatuur is veel aandacht gegaan naar de evaluatie van betrouwbaarheid

op basis van een eenmalige meting, maar gebruik makende van de afzonderlijke

item-scores van de meetschaal. Vertaald naar deze context kan de RT coëfficiënt

gëınterpreteerd worden als de gemiddelde betrouwbaarheid over alle items in de be-

oordelingsschaal. De RΛ coëfficiënt geeft anderzijds een indicatie van de hoeveelheid

informatie er aanwezig is in de volledige set van items over de onderliggende latente

variabelen die men wil meten. Verder onderzoeken we uitgebreid de link tussen onze

methodes en bestaande methodes uit de literatuur. We illustreren onze benadering op

basis van de ‘Positive and Negative Syndrome Scale’, een van de beoordelingsschalen

voor de evaluatie van schizofrenie.


