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1
Introduction

In the 1970s Codd introduced the now standard relational data model, in which a
database is a finite collection of relations, where a relation is a finite set of tuples. To
express queries in the relational model, Codd introduced the relational algebra (RA)
with operators selection (called restriction by Codd), projection, union, difference and
join [14]. Since then the relational algebra has been extensively studied [1]. A very
important result is that its expressive power is equivalent to the expressive power of
first-order logic, called relational calculus in database theory [15].

The “semijoin” operator, which is non-primitive in Codd’s relational algebra, se-
lects a set of tuples in one relation that have a joining tuple in another relation. The
semijoin operator has also been extensively studied in the past. For example, while
computing project-join queries in general is NP-complete in the size of the query
and the database, this can be done in polynomial time when the database schema
is acyclic [61], a property known to be equivalent to the existence of a semijoin pro-
gram [11, 13, 12]. Semijoins are often used as part of a query pre-processing phase
where dangling tuples are eliminated, i.e., the database is resized to the part that is
relevant for answering the query. Another interesting property is that the size of a
relation resulting from a semijoin is always linear in the size of the input. Therefore,
a query processor will try to use semijoins as often as possible when generating a
query plan for a given query (a technique known as “pushing projections” [19]). Also
in distributed query processing, semijoins have great importance, because when a
database is distributed across several sites, they can help avoid the shipment of many
unneeded tuples.

Interestingly, to the best of our knowledge, the “semijoin algebra”, which is the
algebra obtained by replacing the join operator in Codd’s relational algebra by the
semijoin operator, was never really considered before our work.

We show that the semijoin algebra (SA) is equivalent in expressive power to the
guarded fragment of first-order logic. This fragment was introduced by Andréka,

1



2 Introduction

van Benthem and Németi [4] to extend modal logic from Kripke structures to ar-
bitrary relational structures, while retaining the nice properties, such as the finite
model property. Since its introduction, the guarded fragment has been studied ex-
tensively [26, 23, 25, 24, 39].

The “Codd theorem” for the semijoin algebra has a number of interesting con-
sequences. A first consequence is that the nice properties of the guarded fragment
are inherited by the semijoin algebra. One of the most important ones for database
query processing is decidability. Indeed, GF has the “finite model property” [3] and
is therefore decidable. Hence, the following problem, called the satisfiability problem,
is decidable:

Input: An SA expression E.

Output: Is there a database D such that the result of E evaluated on D is non-
empty?

As a direct consequence, we have that the equivalence problem for SA is also decid-
able. This means that there is an algorithm for checking whether two SA expressions
always return the same result. This suggests the existence of algorithms for rewriting
SA expressions into equivalent expressions that can be evaluated more efficiently. In-
terestingly, the satisfiability problem for first-order logic, and hence for the relational
algebra and for SQL without grouping and aggregation, is not decidable.

Another consequence, related to the one above, is that using the known complex-
ity result on the satisfiability problem for GF, we have been able to pinpoint the
complexity class of the satisfiability problem for SA. The satisfiability problem for SA
is exptime-complete.

The Codd theorem for SA also has a number of applications. A first application
is showing that a certain query can not be expressed in SA. To show that a query
is not expressible in GF, there is a tool known as “guarded bisimulation”. Indeed,
Andréka et al. have shown that GF equals the class of first-order formulas invariant
under guarded bisimulation [4].

After giving the necessary background on logic and database theory in Chapter 2,
we discuss the Codd theorem, its consequences and the aforementioned application
in Chapter 3.

Another application of the Codd theorem for SA is discussed in Chapter 4: linear
query processing. Consider an RA expression E to be linear if on every input database
D, the result of every subexpression of E has size linear in the size of D. In other
words, when computing the result of a linear RA expression, any intermediate result
has size linear in the input database. We will show that a query is expressible by
a linear RA expression if and only if it is expressible by an SA expression. We will
simultaneously show that an RA expression is either linear or quadratic.

This result can explain why certain operations are hard on the query processor.
We elaborate on relational division and on the more general “set joins”. Relational
division was first identified by Codd [15] and is the prototypical example of a set join.
Set joins relate database elements on the basis of sets of values, rather than single
values as in a standard join. Thus, the division R(A,B) ÷ S(B) returns all A’s for
which the set of B’s related to A by R contains the set S. There is also a variant
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Person
pName Symptom

An headache
An sore throat
An neck pain
Bob headache
Bob sore throat
Bob memory loss
Bob neck pain
Carol headache

Disease
dName Symptom

flu headache
flu sore throat

Lyme headache
Lyme sore throat
Lyme memory loss
Lyme neck pain

Symptoms
Symptom
headache
neck pain

Person 1
Person.Symptom⊇Disease.Symptom

Disease

pName dName
An flu
Bob flu
Bob Lyme

Person÷ Symptoms
pName

An
Bob

Figure 1.1: An illustration of set-containment join and division.

of division, where the set of B’s must equal the set S. More generally, one has the
set-containment join R 1

B⊇D
S of R(A,B) and S(C,D), which returns

{
(a, c) | {b | R(a, b)} ⊇ {d | S(c, d)}

}
,

and again the analogous set-equality join. In principle, any other predicate on sets
could as well be used in the place of ⊇ or = [53, 55]. Note that a set join with
predicate “intersection nonempty” boils down to an ordinary equijoin!

Example 1.1. Figure 1.1 is an illustration of the relational division operator and the
set containment join. In the upper part, three relation instances Person, Disease, and
Symptoms are shown. Person relates persons and symptoms; Disease relates diseases
and symptoms; finally, Symptoms is a set of symptoms. The set containment join
of Person and Disease on Person.Symptom ⊇ Disease.Symptom is shown on the left
in the lower part of Figure 1.1. The join relates a person to a disease if that person
suffers all symptoms of the disease. The division of Person and Symptoms, shown on
the right in the lower part, returns the persons that suffer all symptoms in relation
Symptoms.

It has long been observed that division is not well handled by classical query pro-
cessing [27, 28]. Indeed, while set joins are expressible in the relational algebra using
combinations of equijoins and difference operators, the resulting expressions tend to
be complex and inefficient. We show in this text that division and (an emptiness
test for) set containment/equality join can not be expressed in SA. Therefore, any
RA expression for these operators must produce intermediate results of quadratic
size. Our work thus provides a formal justification of work done by various authors
on implementing set joins directly as special-purpose operators, or on implementing
them by compiling to the more powerful version of the relational algebra that includes
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grouping, sorting, and aggregation operators [37, 48, 52]. For instance, division (and
set-equality join) can be implemented efficiently in time O(n log n) using sorting or
counting tricks.1

Processing of semijoin algebra expressions can thus be accomplished using linear
space, but how many passes through the data do we need to compute the answer to
a semijoin algebra expression? We answer this question in Chapter 5. In database
query processing, one-pass and two-pass algorithms are distinguished [19]. One-pass
algorithms read the data only once from disk. Two-pass algorithms read the data from
disk a first time, process the data in some way, write the data to disk, and finally read
the data a second time to further process it. Processing of the data after the first
scan usually includes sorting or hashing. It is clear that the selection operator only
requires a single pass through the data, as each tuple in the database can be processed
independently. When duplicate elimination is abandoned, also the projection and the
union operator can be implemented by doing a single pass. The difference and the
semijoin of two relations intuitively can not be computed in a single pass.

To prove this formally we introduce a model called finite cursor machines (FCMs).
A finite cursor machine works on a number of lists of tuples and can operate in a
finite number of modes using an internal memory in which it can store bit strings.
An FCM accesses each relation through finitely many cursors, each of which can read
one tuple of a list at any time. A list of tuples can be produced as output. The model
incorporates certain “streaming” or “sequential processing” aspects by imposing two
restrictions: First, the cursors can only move on the lists sequentially in one direction.
Thus once the last cursor has left a tuple of a list, this tuple can never be accessed
again during the computation. Second, the internal memory is limited. The model
is clearly inspired by the abstract state machine (ASM) methodology [31, 32], and
indeed we will formally define our model using this methodology.

We prove that the semijoin and difference operation can not be computed by an
FCM, not even when the FCM is allowed to store bit strings of size o(n), where n is
the length of the input lists. When on all sorted versions of the database relations are
provided as input, however, every operator of the semijoin algebra can be computed
by an FCM. Consequently, every query in the semijoin algebra can be computed by a
query plan composed of finite cursor machines and sorting operations. In such query
plans, in general, a lot of intermediate sorting operations are introduced. In some
cases, intermediate sorting can be avoided by choosing in the beginning a particularly
suitable ordering that can be used by all the operations in the expression [56]. The
question then arises: are intermediate sorting operations really needed? Equivalently,
can every semijoin algebra query already be computed by a single machine on sorted
inputs? We answer this question negatively in a very strong way: Just a composition
of two semijoins Rn (SnT ) with R and T unary relations and S a binary relation, is
not computable by a finite cursor machine with internal memory size o(n) working on
sorted inputs. We simultaneously show that, while FCMs working on both ascendingly
and descendingly sorted inputs are strictly more powerful — i.e., they can compute
more relational algebra queries — than FCMs working on ascendingly sorted inputs
only, descending sorting can not help in avoiding intermediate sorting.

1For set-equality join, where the result size alone can already be quadratic, we should really say
in time O(n log n) plus output size.
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From the streaming aspects of finite cursor machines, in Chapter 6 we move
on to the topic of stream query processing, which has received a lot of attention
in the database systems research community over the past few years. We give just
a few references here [57, 9, 10, 47, 20]; much more has been published. Stream
queries are typically “continuous” in that their result must be continually updated
as new data arrives: indeed, stream applications are “data-driven”. Consequently,
continuous stream queries must be computed in an incremental fashion, using so-called
“non-blocking” operators. Relational algebra operators that are monotone are non-
blocking; query operators that are not monotone, such as difference, or grouping and
aggregation, are typically made non-blocking by restricting them to sliding windows.

We first offer a theoretical framework that attempts to clarify various philosophical
questions about stream queries. For instance, if streams are thought of as infinite,
and arbitrary queries are modeled as functions from streams to streams, what does it
mean for a query to be computable? Is computability the same concept as continuity?
What is the precise connection between continuity and monotonicity? Can one give
a formal definition of what it means for an arbitrary operator to be non-blocking?

Earlier work in this direction has already been reported by Arasu and Widom [7]
and by Law, Wang and Zaniolo [41]. Our work has the following new features.

First, we distinguish from the outset between timed and untimed applications.
In a timed setting, the timestamps in the output stream of some stream query are
synchronized with the timestamps in the input stream; in an untimed setting, they
are not. The usual applications mentioned in the data stream literature, such as stock
quotes or sensors, are timed. Nevertheless, untimed streams also find applications,
e.g., in audio or video streams, or Internet broadcasts, where the logical order among
arriving packets is more important than precise timing information. More fundamen-
tally, however, much of the theory of stream queries can already be developed on the
more basic untimed level, viewing timed streams merely as a special case of untimed
streams. Nonetheless, we will also identify some specific aspects of timed queries, in
particular, their non-predicting nature (in a sense that will be made precise later).

Second, our formal definitions of abstract computable stream queries are grounded
in the theory of type-2 effectivity (TTE) [60]. This is a well-established theory of
computability on infinite strings (and much more, which we will not use here). The
basic idea of TTE, strikingly analogous to the idea of continuous stream queries,
is that arbitrary long finite prefixes of the infinite output can be computed from
longer and longer finite prefixes of the infinite input. A basic insight from TTE is
that computable functions on infinite strings are indeed “continuous”, but now in the
precise sense of mathematical topology. More specifically, under a natural metric on
infinite strings (known as the Cantor metric), where two strings are closer the longer
they agree on their prefixes, computable functions can be shown to be continuous in
the standard mathematical sense of the word. Continuity is a useful property for it
provides us with a principled way to prove that not just any function from streams
to streams can be naturally considered to be a stream query.

And finally, our theory is abstract in the sense that elements from a stream can
come from an arbitrary universe, equipped with predicates and functions. In math-
ematical logic one speaks of a structure, and we will refer to the universe as the
background structure. In particular, we do not concern ourselves with the encoding
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of stream elements as bit strings (finite or infinite), or with Turing machine compu-
tations on those bit strings, since those aspects are already well understood from the
TTE. Consequently, our theory is very general, and computable stream queries will
turn out to be the same thing as continuous functions from streams to streams (where
we introduce a variant of the Cantor topology that accommodates finite as well as
infinite streams).

We will argue that finite cursor machines are unrealistically powerful in the stream-
ing context. We therefore introduce a new model, again based on the Abstract State
Machine methodology [31, 32]. We call our model “streaming ASM”. We show that
every computable stream query is computable by a streaming ASM with an appropri-
ate background structure. Moreover, streaming ASMs allow us to prove impossibility
results. Specifically, we focus on bounded memory machines: such machines can only
remember a constant number of previously seen stream elements. Bounded memory
machines are natural in the context of query processing; for example, any query oper-
ator that applies a sliding window (typical in streaming applications) is computable in
bounded memory. We will prove that there exist simple queries that are not bounded
memory computable, one of the simplest being the query intersect: finding the
common elements in two interleaved streams.

As FCMs are certainly at least as powerful as streaming ASMs and since we
already know that the query intersect mentioned above is not even computable
by an FCM, it follows by a reduction that the query is also not computable by a
streaming ASM. Yet, we will give a direct proof of this result, that is much simpler
and thus provides more direct insight on the limitations of bounded memory stream
processing. Moreover, we will see that there exist stream queries that are computable
by an FCM, but not by a streaming ASM.

Finally, in Chapter 7 we study the expressive power of the semijoin algebra in
the presence of arbitrary predicates in the selection and join conditions. Note that
the Codd theorem for the semijoin algebra in Chapter 3 only considers equi-semijoins.

The first part of the study deals with repetitions and permutations of columns.
The projection operator of Codd’s relational algebra can permute and repeat columns.
This permuting and repeating of columns, however, does not add expressive power to
the relational algebra. Indeed, the two existing perspectives on the relational model,
namely the named perspective, in which tuples are viewed as functions from the
set of attributes to the domain, and the unnamed perspective, in which tuples are
viewed as ordered lists of domain values, are equivalent [1], whereas permuting and
repeating of columns can not be done in the named perspective. For completeness,
we will explicitly show that any relational algebra expression can be rewritten into
an equivalent relational algebra expression where no projection operator permutes or
repeats columns.

While in the full relational algebra permuting and repeating of columns does not
add expressive power, this is not clear for the semijoin algebra. Indeed, the rewrite
rule to replace a permuting or repeating projection in a relational algebra expression
with a non-permuting and non-repeating one uses the join operator, that the semijoin
algebra lacks. Nevertheless, we show that any semijoin algebra expression can still be
simulated by semijoin algebra expressions where no projection operator permutes or
repeats columns. The notion of “simulation”, however, becomes more complicated.
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The idea is that given an arbitrary expressionE, one can produce a set of permutation-
and repetition-free expressions that return the relevant values of the output tuples of
E, up to certain repetitions and permutations which are produced as a by-product
of the translation. In particular, for boolean expressions, there is always a single
equivalent boolean expression that is permutation- and repetition-free.

In a second part of the study, we define an Ehrenfeucht-Fräıssé game, that char-
acterizes the discerning power of the semijoin algebra in the presence of arbitrary
predicates in the selection and join conditions. Using the Ehrenfeucht-Fräıssé game
as a tool, we will particularly study the expressive power of SA6= and SA<,<. The
selection and join conditions in these algebras are quantifier-free formulas over the
vocabulary {=} and {=, <}, respectively.



2
Preliminaries

In this chapter we give the necessary background on logic and database theory.

From the outset, we assume a universe U of basic data elements. Over this uni-
verse, various predicates are defined. The names of these predicates and their arities
are collected in the vocabulary Ω. The equality predicate (=) is always in Ω. Further-
more, we assume the existence of two disjoint infinite sets of variablesX = {x1, x2, . . .}
and Y = {y1, y2, . . .}. We will use V to denote X ] Y .

We recall:

Definition 2.1 (conjunctive formula, quantifier-free formula). An atomic formula
over Ω is either a formula of the form v1 = v2, or a formula of the form p(v1, . . . , vn),
where v1, . . . , vn are variables in V and p is a predicate in Ω.

All atomic formulas over Ω are conjunctive formulas over Ω. If ϕ and ψ are
conjunctive formulas, then so is ϕ∧ψ. All atomic formulas over Ω are quantifier-free
formulas over Ω. If ϕ and ψ are quantifier-free formulas, then so are ¬ϕ and ϕ ∧ ψ.

The set of all conjunctive formulas over Ω is denoted by cf(Ω); the set of all
quantifier-free formulas over Ω is denoted by qff(Ω).

Throughout the text, we fix an arbitrary database schema S. A database schema
is a finite set of relation names, where each relation name R in S has an associated
arity, denoted by arity(R). A relation instance of R is a finite subset of Un, where n
is the arity of R. Elements of a relation instance are often called tuples, or rows. A
database D over S is an assignment of a relation instance D(R) to each R ∈ S. By
adom(D), we denote the set of elements in U occurring in D; we will refer to this set
as the active domain of D. Database names will be denoted by upper case letters.
We will use D when only a single database is the object of case; in other cases we
will use A, B, . . . . A query is a mapping Q from databases to relations, such that
the relation Q(D) is the answer to the query Q on database D.

9
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A list instance of R is a finite list of n-tuples, i.e., elements of Un, where n is the
arity of relation name R in S. A list database with schema S assigns a list instance
to each relation name R ∈ S.

2.1 First-order logic and its guarded fragment

We now recall the definition of first-order logic and of its “guarded” fragment, which
we will use in this text.

Definition 2.2 (First-order logic (FO)). Formulas in FO are defined inductively as
follows.

1. Every quantifier-free formula over S is a formula in FO.

2. If ϕ and ψ are formulas in FO, then so are ¬ϕ and ϕ ∧ ψ.

3. If ϕ is in FO and v is a variable in V , then also ∃vϕ is a formula in FO.

An occurrence of a variable v in a formula ϕ is free if ϕ is an atomic formula; or if
ϕ = ψ∧ξ and the occurrence of v is free in ψ or in ξ; or if ϕ = ∃yψ and the occurrence
of v is free in ψ. An occurrence of v in ϕ is bound if it is not free. The set of free
variables in ϕ, denoted free(ϕ), is the set of all variables that have at least one free
occurrence in ϕ.

The semantics of an FO formula interpreted on a database D is defined in terms
of valuations over the set of free variables. A valuation over free(ϕ) is a total function
ν from free(ϕ) to adom(D). Database D satisfies ϕ under ν, denoted D |= ϕ[ν], if

• ϕ = R(v) and ν(v) ∈ D(R); or

• ϕ = ψ ∧ ξ and D |= ψ[ν|free(ψ)] and D |= ψ[ν|free(ξ)]; or

• ϕ = ¬ψ and D 6|= ψ[ν]; or

• ϕ = ∃vψ and for some d ∈ adom(D), we have D |= ψ[ν ∪ {v → d}].

Here, ν ∪ {v → d} denotes the valuation with domain dom(ν) ∪ {v} that is identical
to ν and maps v to d.

Proviso. When ϕ stands for a first-order formula, then we will write ϕ(v1, . . . , vn)
to indicate that all free variables of ϕ are among v1, . . . , vn, i.e., free(ϕ) ⊆ {v1, . . . , vn}.
Also, for a tuple (a1, . . . , an) of elements in U, we will write ϕ(a) to denote the truth
value of ϕ under the valuation ν that maps each free variable vi to element ai.

Definition 2.3 (Guarded fragment (GF)). Formulas in GF are inductively defined
as follows.

1. Every quantifier-free formula over S is a formula in GF.

2. If ϕ and ψ are formulas in GF, then so are ¬ϕ and ϕ ∧ ψ.



Preliminaries 11

3. Let ϕ(x, y) be a formula in GF and let α(x, y) be a relation atom over S (i.e., an
atomic formula R(. . .) with R ∈ S). If all free variables of ϕ do actually occur
in α then ∃y(α(x, y) ∧ ϕ(x, y)) is a formula in GF.

As the guarded fragment is a fragment of first-order logic, the semantics of GF is that
of first-order logic.

An FO (GF) query is an expression of the form {e1, . . . , en | ϕ} where ϕ is a
formula in FO (GF) and e1, . . . , en are variables such that {e1, . . . , en} = free(ϕ). Let
Q be an FO (GF) query and let D be a database. The semantics of Q on D, denoted
Q(D), is

Q(D) = {(ν(e1), . . . , ν(en)) | D |= ϕ[ν] and ν is a valuation over free(ϕ)}.

Example 2.4. Suppose S is Ullman’s well-known example schema [58]

{Likes(drinker,beer), Serves(bar,beer), Visits(drinker,bar)}.

Let us call a bar lousy if it only serves beers nobody likes. The query that asks for
the lousy bars can be expressed in GF as follows:

{x | ∃yVisits(x, y) ∧ ¬∃x
(
Serves(y, x) ∧ ∃y Likes(y, x)

)
}.

The guarded fragment has been studied extensively [4, 23, 25, 16]. An important
result is the invariance under an equivalence relation on databases, known as “guarded
bisimilarity”. Before we define guarded bisimilarity and state the invariance property
of the guarded fragment, we need to introduce the notions of “guarded set” and
“guarded tuple”.

Definition 2.5 (guarded set, guarded tuple). Let D be a database over schema S.

• A set X ⊆ U is guarded in D if there exists a tuple (a1, . . . , ak) ∈ D(R) (for
some R in S) such that X = {a1, . . . , ak}.

• A tuple (a1, . . . , an) ∈ Un is guarded in D if {a1, . . . , an} ⊆ X for some guarded
set X in D.

For completeness, we recall the definition of partial isomorphism.

Definition 2.6 (partial isomorphism). Let A and B be two databases over schema
S. For X,Y ⊆ U, a mapping f : X → Y is a partial isomorphism from A to B
if it is bijective, and for each R ∈ S, of arity n, and all x1, . . . , xn ∈ X , we have
(x1, . . . , xn) ∈ A(R)⇔ (f(x1), . . . , f(xn)) ∈ B(R).

Definition 2.7 (guarded bisimulation, guarded bisimilarity). A guarded bisimulation
between two databases A and B is a non-empty set I of finite partial isomorphisms
from A to B, such that the following back and forth conditions are satisfied:

Forth. For every f : X → Y in I and for every guarded set X ′, there exists a partial
isomorphism g : X ′ → Y ′ in I such that f and g agree on X ∩X ′.
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A B

R
1 2
2 3

S
1 2

T
2 3

R
6 7
7 8
9 10
10 11

S
6 7
9 10

T
7 8
10 11

Figure 2.1: Databases A and B to illustrate the notion of guarded bisimulation.

Back. For every f : X → Y in I and for every guarded set Y ′, there exists a partial
isomorphism g : X ′ → Y ′ in I such that f−1 and g−1 agree on Y ∩ Y ′.

Now let A be a database and a a guarded tuple in A, and let B, b be another such
pair. We say that A, a and B, b are guarded bisimilar—denoted by A, a ∼g B, b—if
there exists a guarded bisimulation I between them that contains a 7→ b.

We illustrate the notion of guarded bisimilarity with an example.

Example 2.8. Let A and B be the databases shown in Figure 2.1. The following set
I of partial isomorphisms is a guarded bisimulation between A and B:

1 7→ 6

(1, 2) 7→ (6, 7) (2, 3) 7→ (7, 8)

(1, 2) 7→ (9, 10) (2, 3) 7→ (10, 11)

Let us check the back property for one particular partial isomorphism f : (1, 2) 7→
(6, 7). We consider all guarded sets Y ′ of B: if Y ′ is (6, 7), we choose g as f ; if Y ′ is
(9, 10), we also choose g as f (the intersection of Y and Y ′ is empty, so any g will do);
if Y ′ is (7, 8), we choose (2, 3) 7→ (7, 8) for g (the intersection of Y and Y ′ is {7} and
f−1 and g−1 both map 7 to 2); finally, if Y ′ is (10, 11), we choose (2, 3) 7→ (10, 11)
for g (the intersection of Y and Y ′ is {10} and f−1 and g−1 both map 10 to 2). The
other properties can be checked analogously. We thus have A, 1 ∼g B, 6.

We can now recall [4]:

Proposition 2.9 (Andréka et al. [4]). An FO formula ϕ is invariant under guarded
bisimulations if and only if ϕ is in GF.

2.2 The relational algebra and the semijoin algebra

We define the relational algebra (RA) and the semijoin algebra (SA) parameterized by
the allowed selection and (semi)join conditions. Let Ωσ, Ω./, and Ωn be subsets of Ω.
The predicates in Ωσ are called selection predicates; the predicates in Ω./ are called
join predicates; and the predicates in Ωn are called semijoin predicates. Furthermore,
let Φσ, Φ./, and Φn be subsets of qff(Ωσ), qff(Ω./), and qff(Ωn) respectively. The
sets Φσ, Φ./, and Φn define the selection conditions, join conditions, and semijoin
conditions.
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Definition 2.10 (relational algebra, RA). The syntax and semantics of the relational
algebra are inductively defined as follows:

1. Each relation name R ∈ S is a relational algebra expression. Its arity comes
from S.

2. If E1, E2 ∈ RA have arity n, then also E1 ∪ E2 (union), E1 − E2 (difference)
belong to RA and are of arity n.

3. If E ∈ RA has arity n and i1, . . . , ik ∈ {1, . . . , n}, then πi1,...,ik(E) (projection)
belongs to RA and is of arity k.

4. If E ∈ RA has arity n and θ(x1, . . . , xn) is a condition in Φσ, then σθ(E)
(selection) belongs to RA and is of arity n.

5. Let E1, E2 ∈ RA with arities n and m, respectively. If θ(x1, . . . , xn, y1, . . . , ym)
is a condition in Φ./, then E1 1θ E2 (join) belongs to RA and is of arity n+m.

Let E be an RA expression and let D be a database. Then the result of E on D,
denoted E(D), is defined inductively as follows:

1. R(D) := D(R).

2. E1 ∪ E2(D) := E1(D) ∪ E2(D), E1 − E2(D) := E1(D)− E2(D).

3. πi1,...,ikE(D) := {(ai1 , . . . , aik) | (a1, . . . , an) ∈ E(D)}.

4. σθE(D) := {a ∈ E(D) | θ(a) is true}.

5. E1 ./θ E2(D) := {(a, b) | a ∈ E1(D), b ∈ E2(D) : θ(a, b) is true}.

Codd [14, 15] has shown that every FO query can be expressed as an RA query
and vice versa. We recall the result here as a theorem:

Theorem 2.11 (Codd [14, 15]). The class of first-order queries and the class of
relational algebra queries coincide.

Definition 2.12 (semijoin algebra, SA). The semijoin algebra is the variant of RA
obtained by replacing the join operator E1 1θ E2 by the semijoin operator E1 nθ E2.
The semantics of the semijoin operator is as follows:

E1 nθ E2(D) := {a ∈ E1(D) | ∃b ∈ E2(D) : θ(a, b) is true}

Notation. To refer to RA with selection and join conditions Φσ and Φ./ respectively,
we will use the notation RA[Φσ, Φ./] and similarly for SA[Φσ, Φn]. Furthermore, we
use the following abbreviations:

RA = RA[qff(=), cf(=)]

SA = SA[qff(=), cf(=)]

SA 6= = SA[qff(=), qff(=)]

RA<,< = RA[qff(=, <), qff(=, <)]

SA<,< = SA[qff(=, <), qff(=, <)]

SA<,= = SA[qff(=, <), cf(=)].
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Example 2.13. Suppose again the beer-drinkers database schema of Example 2.4. The
query that asks for the visitors of lousy bars can be expressed in SA as follows:

E :=
(
π2(Visits)− π1(Serves)

)
∪

(
π1(Serves)− π1(Serves n

2=2
Likes)

)
.

The left operand of the union returns the bars that do not serve any beers; the right
operand of the union returns the bars that serve at least one beer, but that do not
serve a beer somebody likes.

The query that asks for the drinkers that visit a lousy bar can be expressed in SA
as follows:

π1

(
Visits n

2=1
E

)
.

Note that in the example above, we have only written the subscripts in the semijoin
condition x2 = y1, i.e., 2 = 1. We will often do so for selection and join conditions as
well.



3
A Codd theorem for the

semijoin algebra

In this chapter, we show a completeness theorem for the semijoin algebra. In par-
ticular, we show that the class of semijoin algebra queries and the class of guarded
fragment queries coincide.

3.1 Motivating example

Relational algebra expressions are built up from relation names in the database schema
using the operations selection, projection, union, difference, and join. Semijoin alge-
bra expressions are built up in the same way, using the same set of operations, except
for the join. Instead of the join operation, the semijoin operation is available. Intu-
itively, the semijoin operation is less powerful than the join operation: the semijoin
operation can not produce combinations of tuples from different relations. Checking
whether a join is empty or not can be accomplished, however, using a semijoin. In-
deed, for all relations R and S and for all conditions θ, we have that R 1θ S 6= ∅

if and only if R nθ S 6= ∅. Checking whether an arbitrary join expression—i.e., an
expression with only relation names and join operators—is empty or not, however, is
outside the capabilities of the semijoin operation: there is a join expression E1 for
which there is no semijoin expression En such that E1(D) 6= ∅ iff En(D) 6= ∅, for ev-
ery database D. In fact, the join expressions E1 for which there exists such a semijoin
expression En have been characterized by “acyclic join expressions” [11, 12, 13].

Example 3.1. Consider the beer-drinkers database schema from Example 2.13. The
boolean query Q:

Is there a drinker that visits a bar that serves a beer he likes?

15
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will return true on a database if and only if the result of the following relational
algebra expression is nonempty:

(Serves 1
2=2

Likes) 1
3=1
1=2

Visits.

The query Q is an example of a cyclic join query and hence, there is no semijoin
expression for Q.

Note that semijoin expressions can use only semijoins, while semijoin algebra
expressions can also use selection, projection, union, and difference. It is therefore
still an interesting question whether the inclusion SA ⊆ RA is strict. The intuition is
SA ( RA. In this chapter we confirm this intuition. Before being able to do so, we
more thoroughly study the expressive power of SA. Motivated by Codd’s completeness
theorem (see Theorem 2.11), we ask ourselves the question: “To which fragment of
FO is SA equivalent?” We thus want to fill in the lower left question mark in the
following diagram:

SA
?
( RA

9 9

?
?
( FO

The fragment of FO that SA is equivalent to will turn out to be the well-known
guarded fragment. Hence it will follow that both inclusions in the above diagram are
strict.

3.2 Codd theorem for SA

Before we prove that SA is subsumed by GF, we need a lemma that says that each
tuple in the result of an SA expression E on a database D is guarded. For the
definitions of “guarded set” and “guarded tuple”, see Chapter 2.

Lemma 3.2. For every SA expression E, for every database D over S, and for every
tuple a in E(D), we have that a is guarded.

Proof. By structural induction on expression E.

The set of guarded k-tuples in databases over schema S = {R1, . . . , Rt} can be
defined by the following formula [25]:

Gk(x1, . . . , xk) :=

t∨

i=1

∃y



Riy ∧

k∧

l=1

∨

j

xl = yj





Note that this formula is syntactically not in GF. Nevertheless, it can be equivalently
expressed in GF as follows. For any complete equality type on {x1, . . . , xk} specified
by a quantifier-free formula η(x) in the language of just =, let xη be a subtuple of x
comprising precisely one variable from each =-class specified by η. Let α(xη, y) be an
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atomic formula over S in which all variables in xη actually occur and the y are new,
i.e., disjoint from x. It is clear that the formula

∨

η

∨

α

η(x) ∧ ∃yα(xη, y)

is in GF and is equivalent to Gk(x1, . . . , xk). The following lemma is now clear. It
will also be of use in the proof of Theorem 3.4.

Lemma 3.3. If ϕ(x, y) is in GF, then ∃y(G(x, y)∧ϕ(x, y)) and ∀y(G(x, y)→ ϕ(x, y))
can be equivalently expressed in GF.

This lemma implies that, if we regard Gm as a relation symbol, with m the max-
imal arity of relation symbols in S, each GF sentence is equivalent to a sentence of
the guarded logic where we always use Gm as the guard. It is interesting to note
that historically, GF has its roots in relativized cylindric algebras, where we indeed
relativize all operations to a single relation [34, 51, 50].

Proviso. In the rest of this chapter, we use m to denote the maximal arity of the
relation names in S.

We now prove that SA is subsumed by GF.

Theorem 3.4. For every SA expression E of arity k, there exists a GF formula
ϕE(x1, . . . , xk) such that for every database D over S and for every tuple a in Uk, we
have a ∈ E(D) iff D |= ϕE(a).

Proof. The proof is by structural induction on E.

• if E is R, then ϕE(x1, . . . , xk) := R(x1, . . . , xk).

• if E is E1 ∪ E2, then

ϕE(x1, . . . , xk) := ϕE1(x1, . . . , xk) ∨ ϕE2(x1, . . . , xk).

• if E is E1 − E2, then

ϕE(x1, . . . , xk) := ϕE1(x1, . . . , xk) ∧ ¬ϕE2(x1, . . . , xk).

• if E is σi=j(E1), then ϕE(x1, . . . , xk) := ϕE1(x1, . . . , xk) ∧ xi = xj .

• if E is πi1,...,ik(E1) with E1 of arity n, then, by induction, we have a formula
ϕE1(z1, . . . , zn). Now replace in ϕE1(z), for j = 1, . . . , k, each occurrence of zij
by xj , and replace, for l 6∈ {ij | j = 1, . . . , k}, each occurrence of zl by yl. Let
the resulting formula be ψ(x, y). By Lemma 3.2, ψ(x, y) is equivalent to the
formula Gn(x, y) ∧ ψ(x, y). Now, ϕE(x1, . . . , xk) is the formula

∃y(Gn(x, y) ∧ ψ(x, y))

which can be written guarded by Lemma 3.3.
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• if E is E1nθE2 with θ =
∧s
l=1 xil = yjl and E2 of arity n, then, by induction, we

have formulas ϕE1(x1, . . . , xk) and ϕE2(z1, . . . , zn). Now replace in ϕE2(z), for
l = 1, . . . , s, each occurrence of zjl by xil , and replace, for i 6∈ {jl | l = 1, . . . , s},
each occurrence of zi by yi. Let the resulting formula be ψ(x, y). By Lemma 3.2,
ψ(x, y) is equivalent to the formula Gn(x, y) ∧ ψ(x, y). Now, ϕE(x1, . . . , xk) is
the formula

ϕE1(x1, . . . , xk) ∧ ∃y(Gn(x, y) ∧ ψ(x, y))

which can be written guarded by Lemma 3.3. Note that condition θ is enforced
by repetition of variables xil .

The literal converse statement of Theorem 3.4 is not true, because the guarded
fragment contains all quantifier-free first-order formulas, so that one can express ar-
bitrary Cartesian products in it, such as {(x, y) | S1(x)∧S2(y)}. Cartesian products,
of course, can not be expressed in the semijoin algebra. Nevertheless, the result of
any GF query restricted to guarded k-tuples, where k 6 m, is always expressible in
SA.

It is clear that for every database D over S and for every k 6 m, the set of guarded
k-tuples in D equals Gk(D), where Gk is the SA expression

⋃

R∈S

{πi1,...,ikR | 1 6 i1, . . . , ik 6 arity(R)}.

We now prove

Theorem 3.5. For every GF formula ϕ(x1, . . . , xk) with k 6 m, there exists an SA

expression E
(x1,...,xk)
ϕ such that for every database D and for every guarded tuple a in

D, we have D |= ϕ(a) iff a ∈ E
(x1,...,xk)
ϕ (D).

Proof. By structural induction on ϕ, we construct the desired semijoin expression

E
(x1,...,xk)
ϕ .

• if ϕ(x1, . . . , xk) is R(xi1 , . . . , xil) then E
(x1,...,xk)
ϕ := Gk nθ R, where θ is (xi1 =

y1) ∧ (xi2 = y2) ∧ . . . ∧ (xil = yl);

• if ϕ(x1, . . . , xk) is (xi = xj) then E
(x1,...,xk)
ϕ := σi=j(Gk);

• if ϕ(x1, . . . , xk) is ψ(x1, . . . , xk) ∨ ξ(x1, . . . , xk) then E
(x1,...,xk)
ϕ := E

(x1,...,xk)
ψ ∪

E
(x1,...,xk)
ξ ;

• if ϕ(x1, . . . , xk) is ¬ψ(x1, . . . , xk) then E
(x1,...,xk)
ϕ := Gk − E

(x1,...,xk)
ψ ;

• suppose ϕ(x1, . . . , xk) is ∃z1, . . . , zp(α(x, z) ∧ ψ(x, z)). First, note that not ev-
ery xi may effectively occur in α. So, let xi1 , . . . , xir be the variables among
x1, . . . , xk that effectively occur in α. By induction, we have expressions

E
(xi1 ,...,xir ,z1,...,zp)
α and E

(xi1 ,...,xir ,z1,...,zp)

ψ .
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Note that we can use the induction hypothesis on ψ(x, z), because all variables
in ψ must effectively occur in α and therefore |x| + |z| 6 m. Now, let θ1 be
∧r
i=1 xi = yi and let θ2 be

∧r
j=1 xij = yj . Then, E

(x1,...,xk)
ϕ is

Gk nθ2 (E
(xi1 ,...,xir ,z1,...,zp)
α nθ1 E

(xi1 ,...,xir ,z1,...,zp)

ψ ).

3.3 Decidability and complexity

Note that our translation from SA to GF is effectively computable. Thus, any decid-
ability result of GF carries over to SA. In particular, by the decidability of GF [4, 23],
we obtain:

Corollary 3.6. Satisfiability of SA expressions is decidable.

By the finite model property of GF [3], we obtain:

Corollary 3.7. The semijoin algebra has the finite model property.

For a fixed finite vocabulary—in logic, the names and arities of relation names
are collected in a “vocabulary” instead of in a database schema—the satisfiability
problem for GF is in exptime [23]. Note that our translation from SA to GF is
exponential in general, so an exptime complexity result for SA does not directly
follow from Theorem 3.4. Nevertheless, we have the following:

Theorem 3.8. For every fixed database schema S, the satisfiability problem for SA
is in exptime.

Proof. Given an SA expression E of arity k over S, we apply the same translation
procedure as in Theorem 3.4, but we use a new k-ary relation symbol Hk instead of
formula Gk. From the translation it is clear that if Gk is used, then k 6 m, where
m is the maximal arity of relation symbols in S. The translation thus gives us a
GF formula ϕ′

E(x1, . . . , xk) over S′ := S∪ {H1, . . . , Hm}. Now consider the following
sentence over S′:

ζ :=

m∧

k=1

∀x(Gk(x)→ Hk(x)) ∧

m∧

k=1

∀x(Hk(x)→ Gk(x))

By Lemma 3.3, ζ is in GF. We now prove the following: E is satisfiable if and only if
ϕ′
E(x1, . . . , xk) ∧ ζ is satisfiable.

Let a ∈ E(D). By Theorem 3.4, D |= ϕE(a). Define D′ as the S′-structure with
Hk(D

′) = Gk(D), for all k. On all S-relations R, R(D) and R(D′) coincide. It is now
clear that D′ |= ϕ′

E(a) ∧ ζ.
For the other direction, let D′ |= ϕ′

E(a) ∧ ζ. From the definition of ζ, it follows
that Hk(D

′) = Gk(D
′), for all k. Therefore, D |= ϕE(a) and thus, by Theorem 3.4,

a ∈ E(D).
Note that ζ depends only on S and is thus constant, and that ϕ′

E is computable
from E in polynomial time. We have thus reduced the satisfiability problem for SA
in polynomial time to the satisfiability problem for GF.
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Now consider the translation from GF to SA in the proof of Theorem 3.5. As
this translation is linear, we can transfer lower complexity bounds known for GF.
But some care has to be taken because we consider database schemas, which are
finite vocabularies, and Grädel’s proof of exptime-hardness for GF [23] considers
an infinite (though bounded-arity) vocabulary. In fact, it is not hard to see that
satisfiability for the guarded fragment with only unary predicates is np-complete.

Theorem 3.9. For every fixed database schema S with at least one relation symbol
of arity two, the satisfiability problem for SA is exptime-hard.

Proof. We give a sketch only. exptime-hardness of the guarded fragment can be
shown by an encoding of the local-global satisfiability problem for modal logic K.
(Given two formulas φ and ψ, is φ satisfiable in a Kripke model in which ψ holds in
every world? [50].) Every modal formula is locally equivalent to the guarded formula
obtained by the standard translation. Whence we obtain exptime-hardness for vo-
cabularies with an unbounded number of unary predicates and one binary predicate.
Using a technique described by Halpern [35] we can reduce the number of proposi-
tional variables to just one and obtain an equisatisfiable formula. In the equivalent
guarded formula we can now replace the unary predicate Px by R(x, x), and again
obtain an equisatisfiable formula. Whence the result.

Combining Theorems 3.8 and 3.9, we obtain

Theorem 3.10. For every fixed database schema S with at least one relation symbol
of arity two, the satisfiability problem for SA is exptime-complete.

3.4 Fixed point extensions

In this section we define the fixed point extension µSA of SA and show that it corre-
sponds to µGF in the same way that SA corresponds to GF. We recall the definition
of guarded fixed point logic µGF [26]. For background on fixed point logics, we refer
to Ebbinghaus and Flum [17].

Definition 3.11 (µGF). The guarded fixed point logic µGF is obtained by adding
to GF the following rules for constructing fixed-point formulae:

Let W be a k-ary relation variable and let x = (x1, . . . , xk) be a k-tuple of distinct
variables. Further, let ψ(W,x) be a guarded formula where W appears only positively
and not in guards. Moreover we require that all the free variables of ψ(W,x) are
contained in x. For such a formula ψ(W,x) we can build the formula [LFP Wx.ψ](x).

The semantics of the fixed point formulae is the usual one: Given a database D
and a valuation χ for the free second-order variables in ψ, other than W , the formula
ψ(W,x) defines an operator on k-ary relations W ⊆ Uk, namely ψD,χ := {a ∈ Uk |
D,χ |= ψ(W,a)}. Since W occurs only positively in ψ, this operator is monotone and
therefore has a least fixed point LFP(ψD,χ). Now, the semantics of a least fixed point
formula is defined by D,χ |= [LFP Wx.ψ(W,x)](a) iff a ∈ LFP(ψD,χ).

Correspondingly, we will now define the fixed point extension µSA of SA. We
assume a database schema V disjoint from S. The relation names in V will be called
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relation variables. For each µSA expression E, we also define the set F (E) of free
relation variables in E and the sets pos(E) and neg(E) that contain the relation
variables that occur positively and negatively in E, respectively.

Definition 3.12 (µSA). The syntax and semantics of µSA are inductively defined
as follows:

1. Each relation symbol R ∈ S is in µSA. F (R) = ∅, pos(R) = {R} and neg(R) =
∅. Its arity comes from S.

2. Each relation variable X ∈ V is in µSA. F (X) = {X}, pos(X) = {X} and
neg(R) = ∅. Its arity comes from V .

3. If E1, E2 ∈ µSA have arity n, then also E := E1 ∪ E2 belongs to µSA and is
of arity n. F (E) = F (E1) ∪ F (E2), pos(E) = pos(E1) ∪ pos(E2) and neg(E) =
neg(E1) ∪ neg(E2).

4. If E1, E2 ∈ µSA have arity n, then also E := E1 − E2 belongs to µSA and is
of arity n. F (E) = F (E1) ∪ F (E2), pos(E) = pos(E1) ∪ neg(E2) and neg(E) =
neg(E1) ∪ pos(E2).

5. If E ∈ µSA has arity n; if i, j ∈ {1, . . . , n}, and i1, . . . , ik are elements of
{1, . . . , n}, then E′ := σi=j(E) and E′′ := πi1,...,ik(E) belong µSA and are of
arity n and k respectively. F (E′) = F (E′′) = F (E), pos(E′) = pos(E′′) =
pos(E) and neg(E′) = neg(E′′) = neg(E).

6. If E1, E2 ∈ µSA have arities n and m, and θ(x1, . . . , xn, y1, . . . , ym) is a conjunc-
tion of equalities of the form

∧s
l=1 xil = yjl , then also E := E1 nθ E2 belongs

to µSA and is of arity n. F (E) = F (E1) ∪ F (E2), pos(E) = pos(E1) ∪ pos(E2)
and neg(E) = neg(E1) ∪ neg(E2).

7. If E is a µSA expression such that X 6∈ neg(E) and X ∈ F (E), then also E′ :=
[LFP X.E] is a µSA expression. F (E′) = F (E)−{X}, pos(E′) = pos(E)−{X}
and neg(E′) = neg(E).

Let E be a µSA expression and let D be a database over S ∪ F (E). Then the
result of E on D, denoted E(D), is defined inductively as follows:

1. For R in S ∪ F (E), R(D) := D(R).

2. E1 ∪ E2(D) := E1(D) ∪ E2(D), E1 − E2(D) := E1(D)− E2(D).

3. σi=jE(D) := {a ∈ E(D) | ai = aj}.

4. πi1,...,ikE(D) := {(ai1 , . . . , aik) | (a1, . . . , an) ∈ E(D)}.

5. E1 nθ E2(D) := {a ∈ E1(D) | ∃b ∈ E2(D) : θ(a, b)}.

LetD be a database over S∪F (E)−{X}. Let k be the arity ofX . Then [LFPX.E](D)
is defined as the least fixed point of the operatorED on k-ary relations on U, defined as
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follows: ED(r) := E(D, r). Here, by (D, r) we denote the database D′ over S∪F (E)
defined by 





D′(R) = D(R) if R ∈ S
D′(Y ) = D(Y ) if Y ∈ V, Y 6= X
D′(X) = r

This least fixed point always exists because ED is monotone, as shown in Lemma 3.13.

Lemma 3.13. Let E be a µSA expression such that X ∈ F (E). Let D be a database
over S ∪ F (E) − {X}. If X 6∈ neg(E), then the operator ED is monotone; if X 6∈
pos(E), then ED is anti-monotone.

Proof. The proof is by structural induction on E. Suppose X 6∈ neg(E). The base
case where E = X is clear. Suppose the lemma is true for E1 and E2, then the
lemma also holds for σi=jE1, πi1,...,ikE1, E1 ∪ E2 and E1 nθ E2 because selection,
projection, union and semijoin are monotone operators. If E = E1 − E2 and X 6∈
neg(E), then X 6∈ neg(E1) and X 6∈ pos(E2), so ED1 is monotone and ED2 is anti-
monotone by induction. Then, clearly ED is monotone. The case where X 6∈ pos(E)
is analogous.

We now prove that µSA and µGF are equivalent in the same way as the logics
without fixed point extensions: µSA is subsumed by µGF, and conversely, the result
of any µGF query restricted to guarded tuples is always expressible in µSA.

Theorem 3.14. For every µSA expression E of arity k, there exists a µGF formula
ϕE(x1, . . . , xk) such that for every database D and for every tuple a in Uk, we have
a ∈ E(D) iff D |= ϕE(a).

Proof. The proof is by structural induction. All cases except least fixed point are
handled as in the proof of Theorem 3.4. In particular, if X ∈ F (E1), then X does
not appear in a guard of ϕE1 ; if X 6∈ neg(E1), then X is positive in ϕE1 . Consider
now the case where E is of the form [LFP X.E1]. Now, [LFP Xx.ϕE1(x)](x) is a
well-defined µGF formula equivalent to E.

To go from µGF to µSA, the following lemma proved by Grädel et al. [25] is
particularly instrumental:

Lemma 3.15. Any formula of µGF is logically equivalent to one in which all fixed
points are of the form [LFP Wx.(ψ(x) ∧G(x))](x).

Theorem 3.16. For every µGF formula ϕ(x1, . . . , xk) with k 6 m, there exists a
µSA expression Eϕ such that for every database D and for every guarded tuple a in
Uk, we have D |= ϕ(a) iff a ∈ Eϕ(D).

Proof. The proof is by structural induction. All cases except least fixed point are
handled as in the proof of Theorem 3.5. Consider now the case where ϕ(x1, . . . , xk) is
of the form [LFP Wx.ψ(x)](x). By Lemma 3.15, we may assume that ψ(x) is of the

form χ(x)∧G(x). By induction we have that [LFP X.E
(x)
χ ] is equivalent to ϕ(x).

Using an argument similar to that of Theorem 3.8, and given that for any fixed
database schema, satisfiability for µGF is in exptime [26], we obtain that satisfiability
for µSA is in exptime. It is actually exptime-complete, since satisfiability for SA is
already exptime-hard (Theorem 3.9).
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3.5 Generalizations of GF and SA

The semijoin operator can be seen as a relativized version of the product operator
(expressible by a join with an always true join condition, e.g., an empty conjunction);
thus, SA is a relativized version of RA. Indeed, let I be a function mapping pairs
(D, k), where D is a database over S and k is a natural number, to relations, such that
I(D, k) is a k-ary relation on D. Define the syntax and semantics of the relational
algebra relativized to I, as follows:

• The syntax is that of the relational algebra;

• The semantics of the selection, projection, union and difference operator are
the same as in the relational algebra. The semantics of the product operator
relativized to I is defined as follows:

E1 × E2(D) := {(a, b) | a ∈ E1(D), b ∈ E2(D),

(a, b) ∈ I(D, arity(a) + arity(b))}

We denote RA relativized to I by RAI . Then, if we define IGF(D, k) := Gk(D),

for all D and k, it is clear that RAIGF

is equivalent to SA (and thus also to GF).
Indeed, let r and s be relation instances with arities nr and ns respectively. Then
the relativized product r × s can be expressed in SA as (Gnr+ns

nθr
r) nθs

s, where
θr =

∧nr

i=1 xi = yi and θs =
∧ns

i=1 xnr+i = yi. Furthermore, the semijoin r nθ s with

θ =
∧k
`=1 xi` = yj` can be expressed in RAIGF

as π1,...,nr
σϕ(r × πj1,...,jks), where

ϕ =
∧k
`=1 i` = nr + j`.

In literature, generalizations of GF based on loosening the guards have been con-
sidered [59, 22, 49]. In the packed fragment for example [49], all quantifications are
relative to the set of packed tuples. A tuple a is packed in a database D over S if each
ai and aj appear together in some tuple d ∈ R(D). If we define IPF(D, k) := Pk(D),
where Pk returns all packed k-tuples in D, then it is easy to adapt our proofs of
Theorem 3.4 and 3.5 and show that RAIPF

is equivalent to the packed fragment.

3.6 Evaluation complexity

For a fixed database schema S, we can consider the evaluation problem for SA, defined
as follows:

Input: A database D over S, a SA expression E and a tuple a ∈ D.

Decide: Is a ∈ E(D)?

It is known that the corresponding problem for GF is decidable in linear time on a
RAM (Random Access Machine), provided a suitable array-based representation is
used to represent finite structures [21]. Actually, in that article, this linear evaluation
complexity was shown for a language called Datalog LIT, and it is an easy matter to
provide a linear translation from SA to Datalog LIT. We can thus conclude:

Theorem 3.17. For every fixed database schema S, the evaluation problem for SA
can be solved in linear time.
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A B

Visits(alex, pareto bar) Visits(bart, fuel bar)
Serves(pareto bar, westmalle) Visits(daniel, goof bar)
Likes(alex, westmalle) Serves(fuel bar, orval)

Serves(goof bar, westvleteren)
Likes(bart, westvleteren)
Likes(daniel, orval)

Figure 3.1: Two databases A and B showing that the query “Is there a drinker that
visits a bar that serves a beer he likes?” is not expressible in SA.

3.7 Application

An important application of the Codd theorem for the semijoin algebra is showing that
a certain query can not be expressed in SA. To show that a query is not expressible
in GF, there is a tool known as “guarded bisimulation”. Indeed, Andréka et al.
have shown that GF equals the class of first-order formulas invariant under guarded
bisimulation [4].

As a corollary of the SA ⊆ GF part (Theorem 3.4) of the Codd theorem and the
invariance of GF under guarded bisimulations (see Proposition 2.9), we have:

Corollary 3.18. If A, a ∼g B, b, then for any SA expression E we have:

a ∈ E(A) ⇔ b ∈ E(B).

Consider for example, the query Q from Example 3.1 in the beginning of this
chapter. Figure 3.1 shows two databases A and B. In A, Alex visits the Pareto bar,
which serves Westmalle, which he likes. But in B no drinker visits a bar that serves a
beer he likes. Nevertheless, (A, alex) ∼g (B, bart), so any SA expression that returns
alex on A will also return bart on B and therefore cannot have the semantics of Q.
To see that (A, alex) ∼g (B, bart), we invite the reader to verify that the following
set I is a guarded bisimulation between A and B:

I = {alex 7→ bart}

∪
⋃{
{a 7→ b | a ∈ A(R) and b ∈ B(R)} | R = Visits, Serves,Likes

}

3.8 Discussion

Our characterization of the guarded fragment by using semijoins suggests generaliza-
tions of GF in directions other than those considered up to now, based on loosening
the guards. Specifically, we can allow other semijoin conditions than just conjunctions
of equalities.
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But, as the following example shows, such generalizations are not innocent. For
instance, let us allow nonequalities in semijoin conditions. This variant of the semijoin
algebra, denoted SA[qff(=), qff(=)] or also SA6=, is strictly more expressive than GF.
Consider for example the query that asks whether there are at least two distinct
elements in a single unary relation S. This is expressible in SA6= as S nx1 6=y1 S, but
is not expressible in GF. Indeed, a set with a single element is “guarded bisimilar” to
a set with two elements [4].

Unfortunately, it follows from a result by Grädel that these nonequalities in semi-
join conditions make SA undecidable.

Theorem 3.19. Satisfiability of SA 6= expressions is undecidable.

Proof. Grädel [23, Theorem 5.8] shows that GF with functionality statements in the
form of functional[D], saying that the binary relation D is the graph of a partial
function, is a conservative reduction class. Since functional[D] is expressible in SA6=

as D nx1=y1∧x2 6=y2 D = ∅, it follows that SA6= is undecidable.

A generalization of guarded bisimilarity to the semijoin algebra with arbitrary
semijoin conditions is proposed in Chapter 7.

We note that it has already been observed that boolean acyclic non-recursive
stratified Datalog (NRSD) programs have the same expressive power as GF sen-
tences [18, 21]. Each rule in such a program is an acyclic join query. By the well-
known correspondence between acyclic join queries and semijoin programs [11], these
acyclic NRSD programs also correspond to SA. Hence, the correspondence we have
shown between SA and GF could also have been derived by combining these previous
results. Nevertheless, the equivalence proof we give is direct and elementary.



4
Linear space query processing

In this chapter, we show a dichotomy theorem stating that every relational algebra
expression is either linear or quadratic. Furthermore, we will characterize the class of
linear relational algebra queries as the class of semijoin algebra queries.

4.1 Introduction

Consider a relational algebra expression to be linear if on every database, the size
of every intermediate result is linear in the size of the input database. Examples of
linear RA expressions are σ1=2R, π2,3R− S, and R ∪ S. An example of a non-linear
RA expression is R ∪ (S 12=2 T ). Indeed, the size of the join of S and T grows
quadratically with S and T .

It is also clear that all operators of RA except for the join produce results of linear
size. Therefore, one might think that the linear RA expressions are exactly those
that do not use joins, but this is false: Linear expressions exist that do use joins. An
example of such an expression is R 12=1 π1S = π1,2,2(Rn2=1 S), where R and S are
binary relation names. On the other hand, every SA expression is linear. Therefore,
the question arises whether there exist other linear queries than SA queries.

In this chapter, we answer this question negatively: we show that every query
that can be expressed by a linear RA expression can already be expressed by an SA
expression. We will use guarded bisimulations (Chapter 2, Chapter 3) to prove our
result. The result says that guarded bisimulations can be used as a tool to show that
certain queries can only be expressed by quadratic RA expressions and are therefore
hard on the query processor. We will apply the result to division and set (containment
and equality) joins: any RA expression for these operators must produce intermediate
results of quadratic size. This provides an a posterior justification of work done by var-
ious researchers on implementing division and set joins as special-purpose operators,

27
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or on implementing them by compiling to the more powerful version of the relational
algebra that includes grouping, sorting, and aggregation operators [37, 48, 52].

4.2 A dichotomy theorem

Before we can state the theorem we need precise definitions of what we mean by
“linear” and “quadratic” expressions. Beware that “linear” is an upper-bound notion,
while “quadratic” is a lower-bound notion.

Definition 4.1. The size of a relation is defined as its cardinality. The size of a
database D, denoted by |D|, is the sum of the sizes of its relations.

For our definitions of linear and quadratic, we will use the familiar O and Ω
notation. For a function f : N→ N, recall that f = O(n) if for some c > 0 and some
n0, f(n) 6 cn for all n > n0; and f = Ω(n2) if for some c > 0, f(n) > cn2 infinitely
often [2].

Definition 4.2. For any RA expression E, define the function

c(E) : N→ N : n 7→ max{|E(D)| : |D| = n}.

Then E is called

• linear if for each subexpression E′ of E, c(E′) = O(n);

• quadratic if for some subexpression E′ of E, c(E′) = Ω(n2).

We will prove:

Theorem 4.3. Every RA expression is either linear or quadratic.

In other words, intermediate complexities such as O(n log n) are not achievable in
RA. Anyone who has played long enough with RA expressions will intuitively know
that, but we have never seen a proof. Moreover, we also have the following variant:

Theorem 4.4. Every RA expression that is not quadratic, is equivalently expressible
in SA.

Note that the equi-semijoin operator can be expressed in RA in a linear way; for
example, if R and S have arity two, then

R n
2=1

S = π1,2(R 1
2=1

π1(S)).

From the above theorems we therefore obtain:

Corollary 4.5. A query is expressible by a linear RA expression if and only if it is
expressible by an SA expression.

We will prove Theorem 4.3 and Theorem 4.4 simultaneously. Our crucial lemma
is Lemma 4.10. In order to state it, we need two definitions.
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Definition 4.6. Let E be an RA expression of the form E1 1θ E2. We view θ ≡
∧k
s=1 xis = yjs as the set of pairs {(is, js) | s = 1, . . . , k}. For ` = 1, 2, the sets

constrained`(E) and their complements unc`(E) are now defined as follows:

constrained1(E) := {i | ∃j : (i, j) ∈ θ}

unc1(E) := {1, . . . , arity(E1)} − constrained1(E)

constrained2(E) := {j | ∃i : (i, j) ∈ θ}

unc2(E) := {1, . . . , arity(E2)} − constrained2(E)

Example 4.7. For the expression E = R 13=1 S, where R and S are ternary, we get:

θ = {(3, 1)}

constrained1(E) = {3} unc1(E) = {1, 2}

constrained2(E) = {1} unc2(E) = {2, 3}.

Definition 4.8. Let D be a database and let E be an RA expression of the form
E1 1θ E2. For any a ∈ E1(D), we denote the set of elements occurring in a by set(a).
We now define the set of free values of a as follows:

FE1 (a) := set(a)− {ai | i ∈ constrained1(E)}

The set FE2 (b) of free values of a tuple b ∈ E2(D) is defined analogously.

Example 4.9. Take again expression E from Example 4.7. Suppose that relation R
contains the tuples a = (1, 2, 3) and b = (4, 5, 4), and that relation S contains the
tuples c = (3, 4, 5) and d = (3, 3, 3). Then:

FE1 (a) = {1, 2} FE2 (c) = {4, 5}

FE1 (b) = {5} FE2 (d) = ∅

We can now state the following crucial lemma:

Lemma 4.10. Let E = E1 1θ E2, where E1 and E2 are SA-expressions. Assume
there exists a database D and a tuple (a, b) ∈ E1 1θ E2(D) such that FE1 (a) 6= ∅ and
FE2 (b) 6= ∅. Then there exists a sequence (Dn)n>1 of databases such that for some
constant c > 0 and for all n:

1. |Dn| 6 cn, and

2. |E1 1θ E2(Dn)| > n2.

Before we prove this lemma, we define the notion of “tuple space” used in the
proof.

Definition 4.11. Let D be a database over database schema S. The tuple space TD
of database D is defined as

⋃
{D(R) | R ∈ S}.
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From the definition of guarded set, it is clear that for each tuple d ∈ TD, we have
that set(d) is guarded and conversely, for each guarded set X there is a tuple d ∈ TD
with set(d) = X .

Proof. We give a proof by construction.
The desired sequence is constructed as follows. For D1 we take D. For k > 1, we

construct Dk+1 from Dk as follows:

1. for each x ∈ FE1 (a) and for each x ∈ FE2 (b), we choose a fresh new element
new(k)(x) from U, i.e., new(k)(x) ∈ U− adom(Dk).

2. for each tuple t = (t1, . . . , tn) ∈ TD satisfying set(t) ∩ FE1 (a) 6= ∅, we construct

a tuple f
(k)
1 (t) = (r1, . . . , rn) with

ri =

{
new(k)(ti) if ti ∈ F

E
1 (a)

ti else

We put this tuple in Dk+1 in precisely the same relations as t. Note that by

construction t 7→ f
(k)
1 (t) is a partial isomorphism.

3. for each tuple t = (t1, . . . , tn) ∈ TD satisfying set(t) ∩ FE2 (b) 6= ∅, we construct

a tuple f
(k)
2 (t) = (r1, . . . , rn) with

ri =

{
new(k)(ti) if ti ∈ F

E
2 (b)

ti else

We put this tuple in Dk+1 in precisely the same relations as t. Note that by

construction t 7→ f
(k)
2 (t) is a partial isomorphism.

Note that the active domain of Dk+1 extends the active domain of Dk; also note that
the tuple space TDk+1

of Dk+1 extends tuple space TDk
of Dk:

adom(Dk+1) = adom(Dk) ∪ {new(k)(x) | x ∈ FE1 (a) or x ∈ FE2 (b)}

TDk+1
= TDk

∪ {f
(k)
1 (t) | t ∈ TD and set(t) ∩ FE1 (a) 6= ∅}

∪ {f
(k)
2 (t) | t ∈ TD and set(t) ∩ FE2 (b) 6= ∅}

To illustrate this construction, let database D be the one shown in the upper
part of Figure 4.1 and let expression E be (R n1=2 T ) 13=1 (S n2=1 T ). Let a be
(1, 2, 3) and let b be (3, 4, 5). Then, FE1 (a) = {1, 2} and FE2 (b) = {4, 5}. For each
i ∈ FE1 (a) ∪ FE2 (b), we denote new(1)(i) by i′ and new(2)(i) by i′′. Databases D2 and
D3 are shown in the lower part of Figure 4.1.

Now take c := 2|D|. Because in each step at most 2|D| tuples are added, the first
requirement for the sequence holds.

We now check the second requirement. First, we show that for each n and k with
1 6 k 6 n− 1

D, a ∼g Dn, f
(k)
1 (a)

Take an arbitrary n and consider the set I = {g
(k)

t
| t ∈ TD with set(t) ∩ FE1 (a) 6= ∅,

1 6 k 6 n− 1} ∪ {ht | t ∈ TD}, where



Linear space query processing 31

D(R)
1 2 3
8 9 10

D(S)
3 4 5

D(T )
6 1
4 7

D2(R)
1 2 3
8 9 10
1′ 2′ 3

D2(S)
3 4 5
3 4′ 5′

D2(T )
6 1
4 7
6 1′

4′ 7

D3(R)
1 2 3
8 9 10
1′ 2′ 3
1′′ 2′′ 3

D3(S)
3 4 5
3 4′ 5′

3 4′′ 5′′

D3(T )
6 1
4 7
6 1′

4′ 7
6 1′′

4′′ 7

Figure 4.1: Databases D = D1, D2 and D3 in the construction for E = (R n1=2

T ) 13=1 (S n2=1 T ).
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• g
(k)

t
: t 7→ f

(k)
1 (t), and

• ht : t 7→ t.

In our running example, I = {

(1, 2, 3) 7→ (1′, 2′, 3), (6, 1) 7→ (6, 1′), (1, 2, 3) 7→ (1, 2, 3),

(1, 2, 3) 7→ (1′′, 2′′, 3), (6, 1) 7→ (6, 1′′), (3, 4, 5) 7→ (3, 4, 5),

(3, 4, 5) 7→ (3, 4′, 5′), (7, 4) 7→ (7, 4′), (6, 1) 7→ (6, 1),

(3, 4, 5) 7→ (3, 4′′, 5′′), (7, 4) 7→ (7, 4′′), (7, 4) 7→ (7, 4),

(8, 9, 10) 7→ (8, 9, 10)}.

From the construction it follows that each of these functions is a partial isomor-
phism between D and Dn. Now we check the back and forth properties of I:

Forth. Take an arbitrary partial isomorphism f in I and an arbitrary guarded setX ′

in D. Let t
′
be a tuple in TD such that set(t

′
) = X ′. Suppose f is g

(k)

t
for some

t and k. We distinguish 2 cases: i) X ′∩FE1 (a) 6= ∅. Then, f agrees with partial

isomorphism g
(k)

t
′ on set(t)∩X ′. Indeed, they both map values x ∈ FE1 (a) onto

new(k)(x) and they map values y 6∈ FE1 (a) onto y. ii) X ′ ∩ FE1 (a) = ∅. Then,
f agrees with ht′ on set(t) ∩X ′. When f is ht for some t, f clearly agrees with
ht′ on set(t) ∩X ′.

Back. Take an arbitrary partial isomorphism f in I and an arbitrary guarded set Y ′

in Dn. We distinguish 2 cases: i) Y ′ = set(f
(l)
1 (u)) for some 1 6 l 6 n− 1 and

u ∈ TD; and ii) Y ′ = set(t
′
) for some t

′
∈ TD ∩TDn

. In case i), f−1 agrees with

(g
(l)
u )−1 on set(f(t))∩ Y ′. In case ii), f−1 agrees with (ht′)

−1 on set(f(t))∩ Y ′.

Furthermore, for each 1 6 k 6 n − 1, a 7→ f
(k)
1 (a) is an element of I. A similar

argument leads to

D, b ∼g Dn, f
(k)
2 (b)

for each 1 6 k 6 n− 1.
By Corollary 3.18 we have that for each 0 6 k, l 6 n − 1: f

(k)
1 (a) ∈ E1(Dn) and

f
(k)
2 (b) ∈ E2(Dn), where for simplicity we define f

(0)
1 and f

(0)
2 as the identity function.

In our running example, only (1, 2, 3) satisfies R n1=2 T in D, but in D3 also
(1′, 2′, 3) and (1′′, 2′′, 3) satisfy this expression; also in D3 the tuples (3, 4, 5), (3, 4′, 5′)
and (3, 4′′, 5′′) satisfy S n2=1 T .

We now show that each pair of tuples (f
(k)
1 (a), f

(l)
2 (b)) with 0 6 k, l 6 n − 1

satisfies θ. Let (i, j) ∈ θ and let k, l ∈ {0, . . . , n − 1}. Then i ∈ constrained1(E) and

j ∈ constrained2(E). By construction, the i-th component of f
(k)
1 (a) equals ai and the

j-th component of f
(l)
2 (b) equals bj . Because (a, b) satisfies θ, we have ai = bj. Thus,

the i-th component of f
(k)
1 (a) equals the j-th component of f

(l)
2 (b). We conclude that

(f
(k)
1 (a), f

(l)
2 (b)) also satisfies θ. This gives us at least n2 tuples in E1 1θ E2(Dn),

which completes the proof.
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Using Lemma 4.10, we can now prove Theorems 4.3 and 4.4. By structural in-
duction, we will prove that any RA expression that is not quadratic, is linear and
equivalently expressible in SA.

The base case is clear: R is not quadratic, is linear, and is in SA. For the case
of selection, consider an expression of the form σE that is not quadratic (the actual
selection condition does not matter here). Then E is not quadratic either, and by
induction, E is linear and equivalently expressible in SA as E′. We conclude that σE
is linear and equivalently expressible in SA as σE′. The cases of projection, union
and difference are handled similarly.

The only nonstraightforward case is E = E1 1θ E2. Assume E is not quadratic.
Then, neither E1 nor E2 is quadratic, and by induction, E1 and E2 are linear and
equivalently expressible in SA as E′

1 and E′
2, respectively. Because E is not quadratic,

the conditions of Lemma 4.10 cannot be satisfied. Hence, we know that for each
database D and each joining pair of tuples (a, b) in E′

1(D) 1θ E
′
2(D), either FE1 (a)

or FE2 (b) is empty (or both). If FE1 (a) is empty, a can be completely retrieved from
E′

2(D); if FE2 (b) is empty, b can be completely retrieved from E′
1(D). E can thus be

written as Z1 ∪ Z2, where

Z1 = {(a, b) ∈ E′
1 1θ E

′
2 | F

E
1 (a) = ∅}

Z2 = {(a, b) ∈ E′
1 1θ E

′
2 | F

E
2 (b) = ∅} (4.1)

We can now express Z1 and Z2 in SA, as follows:

Z2 =
⋃

f : unc2(E)→constrained2(E)

πp(E
′
1 nθ σϕE

′
2)

Here,

ϕ ≡
∧

j∈unc2(E)

j = f(j)

and p = 1, . . . , arity(E′
1), g(1), . . . , g(arity(E′

2)) where

g(j) =

{

min{i | (i, j) ∈ θ} if j ∈ constrained2(E)

min{i | (i, f(j)) ∈ θ} if j ∈ unc2(E)

The use of the minimum function is arbitrary here; any function that chooses an
element out of a set will do.

The SA expression for Z1 is entirely analogous. Since SA expressions are always
linear, it also follows that E is linear, as desired. This concludes the proof of Theo-
rems 4.3 and 4.4.

4.3 Division, set join, and friends

By Corollary 4.5, to prove that a query can only be expressed in the relational algebra
by quadratic expressions, it suffices to show that it is not expressible in SA. And to
show nonexpressibility in SA, we have guarded bisimilarity (see Corollary 3.18) as a
tool.
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A B

R
1 7
1 8
2 7
2 8

S
7
8

R
1 7
1 8
2 8
2 9
3 7
3 9

S
7
8
9

Figure 4.2: Two databases A and B showing that division is inexpressible in SA.

We are thus fully armed now to justify the work done by various authors on
implementing division and set join directly as special-purpose operators, or on im-
plementing them by compiling to the more powerful version of the relational algebra
that includes grouping, sorting, and aggregation operators [37, 48, 52]:

Proposition 4.12. Division is expressible in RA only by quadratic expressions. Fur-
thermore, every RA expression that is empty if and only if the set join is empty, must
be quadratic.

Note that it would not be very interesting to claim that the set join itself can
only be expressed by quadratic expressions, because the output size of the set join is
already quadratic.

To prove Proposition 4.12, we need to show that R ÷ S is not expressible in SA.
Thereto, consider the databases A and B shown in Figure 4.2. Then R ÷ S equals
{1, 2} in A, but is empty in B (regardless of whether we use the set containment, or
the set equality variant of division). Nevertheless, A, 1 ∼g B, 1, so any SA expression
that returns 1 on A will also return 1 on B and therefore cannot express R÷S. To see
that A, 1 ∼g B, 1, we invite the reader to verify that the following set I is a guarded
bisimulation:

I = {1 7→ 1} ∪ {a 7→ b | a ∈ A(R) and b ∈ B(R), or a ∈ A(S) and b ∈ B(S)}

For the set-join version of Proposition 4.12, consider the databases A and B as in
Figure 4.2 where now a column with always the same value 4 is inserted into relation
S (this will be the first column of the new relation). Then the above I is still a
guarded bisimulation.

Set joins with other set predicates As mentioned in the Introduction in Chap-
ter 1, for both division and set join, any other predicate on sets could as well be used
in the place of ⊇ or = [53, 55]. For example, if R(A,B) and S(C,D) are relations and
P is a binary set predicate, then we can define the set join with predicate P between
R and S as follows:

R ./set
P S :=

{
(a, c) | P

(
{b | R(a, b)}, {d | S(c, d)}

)}
.

Thus, set-containment and set-equality join are set joins with predicate P (X,Y ) :=
X ⊇ Y , and P (X,Y ) := X = Y , respectively. The set join with predicate P (X,Y ) :=
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X ∩ Y 6= ∅ is the standard equijoin. While the set-containment and set-equality join
are not expressible by a linear RA expression, the (emptiness test for the) standard
equijoin is expressible by a linear RA expression. It is therefore an interesting open
question for which predicates P the set join is linear.

Other queries Clearly, the applicability of the techniques we have developed in this
chapter is not restricted to division and set joins! For example, over the beer-drinkers
database schema, consider the query Q from Example 3.1:

Is there a drinker that visits a bar that serves a beer he likes?

We showed in Section 3.7 that Q can not be expressed in SA. Therefore, any RA
expression of this query must be quadratic.

4.4 Generalizing the dichotomy

In this section, we will generalize the dichotomy theorem to relational algebra queries
where besides the equality predicate “=” also an order predicate “<” is available in
selection and join conditions. So, we assume that there is a linear order < on the
elements in the universe U.

The part of finite model theory that studies the expressive power of logics over
finite structures that are embedded into infinite ones—here, a finite database is em-
bedded into the structure with universe U equipped with a linear order—is called
“embedded finite model theory”. Embedded finite model theory has been studied
extensively [46].

It is well known that relational algebra expressions that can use a given linear
order can express more order-invariant queries than relational algebra expressions
that do not use the linear order [1, Exercise 17.27]. Therefore, an interesting question
is whether Theorem 4.4 still holds in this more powerful setting with order. We will
prove:

Theorem 4.13. Every RA<,< expression that is not quadratic, is equivalently ex-
pressible in SA<,=.

The proof of this dichotomy theorem is similar to the proof of Theorem 4.4. For
example, the non-quadratic RA<,< expression σi<jE can be expressed in SA<,= as
σi<jE

′, where E′ is the SA<,= expression equivalent to the non-quadratic expression
E, which exists by induction. The non-trivial case again is the non-quadratic join
E = E1 1θ E2, where E1 and E2 are SA<,= expressions. We write E as

⋃

ξ∈ΞE1 1ξ

E2, where
∨

ξ∈Ξ ξ is θ written in disjunctive normal form (i.e., each ξ is a conjunction
of atomic and negated atomic formulas over {=, <}). It is clear that if E is not
quadratic, then Eξ := E1 1ξ E2 is not quadratic, for all ξ ∈ Ξ. Note that the
conditions in Ξ have the form

ξ =

k∧

s=1

is αs js with αs ∈ {=, 6=, <, 6<}, (4.2)

with is ∈ {1, . . . , arity(E1)}, and js ∈ {1, . . . , arity(E2)}.
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We now prove that Lemma 4.10 is still valid for SA<,= expressions E1 and E2 and
for conditions ξ of the above form. First, we need to define for such expressions Eξ
the sets constrained`(Eξ) and unc`(Eξ) for ` = 1, 2.

Definition 4.14. Let Eξ be an RA expression of the form E1 1ξ E2 where E1, E2 ∈

SA<,=, and where ξ =
∧k
s=1 is αs js with αs ∈ {=, 6=, <, 6<}. For α ∈ {=, 6=, <, 6<},

we define ξα as the set of pairs {(is, js) | αs is α, s = 1, . . . , k}. For ` = 1, 2, the sets
constrained`(Eξ) and their complements unc`(Eξ) are now defined as follows:

constrained1(Eξ) := {i | ∃j : (i, j) ∈ ξ=}

unc1(Eξ) := {1, . . . , arity(E1)} − constrained1(Eξ)

constrained2(Eξ) := {j | ∃i : (i, j) ∈ ξ=}

unc2(Eξ) := {1, . . . , arity(E2)} − constrained2(Eξ)

For an RA expression Eξ, a database D, and tuples a ∈ E1(D) and b ∈ E2(D),

the sets of free values F
Eξ

1 (a) and F
Eξ

2 (b) are defined identically as for ordinary RA
expressions (Definition 4.8).

To show Lemma 4.10 in this new setting, we also need to adapt the notion of
guarded bisimulation to accommodate for the order <. A <-guarded bisimulation is
a non-empty set I of finite <-partial isomorphisms satisfying the same back and forth
properties as ordinary guarded bisimulations (Definition 2.7). We use the notation
A, a ∼<g B, b to denote that A, a and B, b are <-guarded bisimilar.

Definition 4.15 (<-partial isomorphism). Let A andB be two databases over schema
S. For X,Y ⊆ U, a mapping f : X → Y is a <-partial isomorphism from A to B if it
is a partial isomorphism from A to B, and moreover, for all x1 and x2 in X , we have
x1 < x2 if and only if f(x1) < f(x2).

Concerning the proof of Lemma 4.10, now remark the following:

1. We can assume that, in each step k in the construction, each new domain
element new(k)(x) of Dk+1 and x itself can be chosen to have the same relative
order with respect to the other elements in U. This is clear for the case where
the order < is dense in U (e.g., if U is the set of real numbers). But it is possible
in general to choose new(k)(x) with the same relative order as x. If in some step
k this were not possible, then create an isomorphic copy D′

k of Dk such that for
any two values r, s in D′

k with r < x < s, there exists u ∈ U different from x
such that r < u < s.

To illustrate this, consider the running example from the proof (see Figure 4.1).
If the underlying universe is the set of reals, then we could choose new(1)(1) =
1′ = 1.5 and new(2)(1) = 1′′ = 1.75, and similarly for the other values. If
the underlying universe is the set of integers, then we could replace D1 by the
isomorphic database D′

1 obtained by multiplying each value in each tuple by a
factor 2.

2. It is easy to see that if new(k)(x) and x have the same relative order with respect

to the other elements in U, then each mapping t 7→ f
(k)
1 (t) and each mapping
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t 7→ f
(k)
2 (t) is a <-partial isomorphism from D to Dk+1. Therefore, as the back

and forth properties of guarded and <-guarded bisimulations are identical, we
obtain that

D, a ∼<g Dn, f
(k)
1 (a), and

D, b ∼<g Dn, f
(k)
2 (b)

for each 1 6 k 6 n− 1.

3. SA<,= is invariant under <-guarded bisimulation: If A, a ∼<g B, b, then for

any SA<,= expression E we have: a ∈ E(A) ⇔ b ∈ E(B). The proof is by
structural induction.

4. We thus obtain n tuples f
(k)
1 (a) (for k = 0, . . . , n − 1) in E1(Dn) and n tuples

f
(l)
2 (b) (for l = 0, . . . , n− 1) in E2(Dn). We now show that each pair of tuples

(f
(k)
1 (a), f

(l)
2 (b)) with 0 6 k, l 6 n− 1 satisfies ξ.

Let (i, j) ∈ ξ= and let k, l ∈ {0, . . . , n− 1}. Then, an identical argument as in

the proof of Lemma 4.10 leads to the pair (f
(k)
1 (a), f

(l)
2 (b)) satisfying ξ=.

The pair of tuples (f
(k)
1 (a), f

(l)
2 (b)) also satisfies ξ<. Let (i, j) ∈ ξ<. By con-

struction, the i-th component of f
(k)
1 (a) equals either ai or new(k)(ai), and the

j-th component of f
(l)
2 (b) equals either bj or new(l)(bj). Because (a, b) satisfies

ξ, we have ai < bj . By choosing new(k)(ai) and new(l)(bj) with the same relative
order as ai and bj , respectively, we also have new(k)(ai) < bj, ai < new(l)(bj),

and new(k)(ai) < new(l)(bj). The arguments that (f
(k)
1 (a), f

(l)
2 (b)) satisfies ξ 6=

and ξ 6< are similar.

We now return to the non-quadratic join E = E1 1θ E2, written as
⋃

ξ∈ΞE1 1ξ

E2 =
⋃

ξ∈ΞEξ. Each Eξ can be written in SA<,= as Z1 ∪Z2, where Z1 and Z2 are as

in Equation 4.1. Here, Z2 can be written in SA<,= as follows:

Z2 =
⋃

f : unc2(E)→constrained2(E)

πp
(
σψ(E′

1 nξ= σϕE
′
2)

)

where f , p, and ϕ are as in the proof of Theorem 4.4, and where

ψ ≡
∧

α∈{6=,<, 6<}

∧

(i,j)∈ξα

i α g(j),

where g is also defined as in the proof of Theorem 4.4.
This concludes the proof of Theorem 4.13.
Note that the expressive power of the relational algebra with order in join condi-

tions collapses to the expressive power of the relational algebra with order in selection
conditions. In fact, any join R 1θ S can equivalently be written as σθ(R 1ϕ S), where
ϕ is the formula true (expressed as an empty conjunction), so that one does not need
any predicates at all in join conditions. But it is still an interesting question whether
order in join conditions, and more generally, arbitrary quantifier-free formulas over
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{=, <}, allows one to express more linear relational algebra queries. We have an-
swered this question negatively in this section. Indeed, according to Theorem 4.13
every query expressible by a linear RA[qff(=, <), qff(=, <)] expression is already ex-
pressible by an SA[qff(=, <), cf(=)] expression; and an SA[qff(=, <), cf(=)] expression
can be expressed linearly in RA[qff(=, <), cf(=)].

Remark 4.16. If we allow constants in selection and join conditions in both RA and
SA, then a generalization of the dichotomy in Theorem 4.4 as in Theorem 4.13 does
not hold. Consider for example the RA expression E = R 12=1 σ1=‘b′∧2=‘c′S, where
R and S are binary relations. E is clearly linear, but can not be expressed in SA
because SA expressions can only return guarded tuples, even when constants can
be used in selection and semijoin conditions (cf. Lemma 3.2). The output of E,
however, can contain non-guarded tuples. Indeed, let D(R) = {(a, b)} and let D(S) =
{(b, c)}. Then E(D) = {(a, b, b, c)}. The tuple (a, b, b, c) is not guarded in database
D. Therefore, E can not be expressed in SA, not even when constants can be used
in selection conditions.

We should note that a dichotomy in the style of Theorem 4.4 is still valid in the
setting where the order predicate and constants can be used in selection and join
conditions, but then in the semijoin algebra a constant-tagging operator is needed.
We have published this particular dichotomy in a journal article [43].

Division

From Theorem 4.13 it follows that division can also not be expressed by a linear
RA<,< expression. Indeed, databases A and B shown in Figure 4.2 are also <-
guarded-bisimilar. (Here, we take the natural numbers as our universe U, with the
natural order <.) Therefore, A and B can not be distinguished by SA<,= expressions.
Hence the result.

4.5 Discussion

On the technical side, our work leaves open the generalisation where the universe
of data elements is not merely equipped with a total order, but where arbitrary
predicates are present which can be used in join conditions. One cannot expect our
Theorem 4.4 to hold in all such cases, as this will depend on the predicates at hand.
A related issue is to investigate the impact of integrity constraints on our results.

Practical query processing uses a more powerful relational algebra including group-
ing, sorting, and aggregation operators. Proving complexity lower bounds in such a
rich setting seems very challenging to us. However, containment-division can be ex-
pressed by the linear expression

πA
(
γA,count(B)(RnB=C S) n

count(B)=count(C)
γ∅,count(C)S

)

using grouping (γ) and aggregation (counting). Equality-division can be expressed
by an analogous linear RA expression with grouping and counting [27, 28].
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In this chapter, we introduce and analyze finite cursor machines, an abstract model of
database query processing. In particular, we will study query processing of relational
algebra and semijoin algebra expressions.

5.1 Introduction

A finite cursor machine (FCM) works on a number of lists of tuples and can operate in
a finite number of modes using an internal memory in which it can store bit strings.
An FCM accesses each list through finitely many cursors, each of which can read one
tuple of a list at any time. A list of tuples can be produced as output. The model
incorporates certain “streaming” or “sequential processing” aspects by imposing two
restrictions: First, the cursors can only move on the lists sequentially in one direction.
Thus once the last cursor has left a tuple of a list, this tuple can never be accessed
again during the computation. Second, the internal memory is limited. We will
formally define the model using the abstract state machine (ASM) methodology [31].

Our main results are concerned with evaluating relational algebra queries in the
finite cursor machine model. We prove that, when all sorted versions of the database
relations are provided as input, every operator of the relational algebra can be com-
puted, except for the join. The latter exception, however, is only because the output
size of a join can be quadratic, while finite cursor machines by their very definition
can output only a linear number of different tuples. Semijoins can be computed by
finite cursor machines when sorted versions of the database relations are provided as
input. Consequently, every query in the semijoin algebra can be computed by a query
plan composed of finite cursor machines and sorting operations. This is interesting
because it models quite faithfully what is called “one-pass” and “two-pass process-
ing” in database systems [19]. The question then arises: are intermediate sorting

39
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operations really needed? Equivalently, can every semijoin algebra query already be
computed by a single machine on sorted inputs? We answer this question negatively
in a very strong way: Just a composition of two semijoins Rn (S n T ) with R and T
unary relations and S a binary relation is not computable by a finite cursor machine
with internal memory size o(n) working on sorted inputs, where n is the size of the
input relations. This result is quite sharp, as we will indicate.

We note that finite cursor machines can compute queries beyond the semijoin
algebra, and even queries beyond the relational algebra. We will discuss this matter
at the end of this chapter.

The chapter is structured as follows: After recalling the basic terminology from
many-sorted logic in Section 5.2, the notion of finite cursor machines is introduced in
Section 5.3. The power of O(1)-FCMs and of o(n)-FCMs is investigated in Sections 5.4
and 5.5. Some concluding remarks and open questions can be found in Section 5.6.

5.2 Preliminaries from logic

To formally introduce our computation model, we need some basic notions from math-
ematical logic such as many-sorted vocabularies, structures, terms, and atomic for-
mulas. We give a quick reminder of these notions in this section.

A many-sorted vocabulary is a tuple Υ = (S, F, P, C, τ), where S is a set of sorts ;
F is a set of function symbols ; P is a set of predicate symbols ; and C is a set of
constant symbols. Moreover, τ is a mapping on F ∪ P ∪ C that assigns a function
signature to each function symbol; a predicate signature to each predicate symbol;
and a sort to each constant symbol. Here, a function signature is an expression of the
form s1, . . . , sk → s, where s and the si’s are sorts; a predicate signature is simply a
tuple of sorts. To indicate the value of τ on some symbol ` we write ` : τ(`).

A structure A over Υ is a mapping on S ∪ F ∪ P ∪C, giving an interpretation to
all the symbols of the vocabulary:

• if s is a sort, then sA is a set, called the elements of sort s.

• if f : s1, . . . , sk → s is a function symbol, then fA is a function of type sA1 ×
· · · × sAk → sA.

• if p : (s1, . . . , sk) is a predicate symbol, then pA is a subset of sA1 × · · · × s
A
k .

• if c : s is a constant symbol, then cA ∈ sA.

Terms are expressions built up as follows. Every constant symbol is a term.
If t1 : s1, . . . , tk : sk are terms, and f : s1, . . . , sk → s is a function symbol, then
f(t1, . . . , tk) : s is also a term. Every term t : s evaluates in a structure A to an
element tA of sort s in the obvious manner.

Atomic formulas are expressions of the form p(t1, . . . , tk), with p : (s1, . . . , sk) a
predicate symbol and ti : si terms. In a structure A, this formula evaluates to the
truth value of (tA1 , . . . , t

A
k ) ∈ pA.
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5.3 Finite Cursor Machines

In this section we formally define finite cursor machines using the methodology of
Abstract State Machines (ASMs). Intuitively, an ASM can be thought of as a tran-
sition system whose states are described by many-sorted first-order structures (or
algebras)1. Transitions change the interpretation of some of the symbols—those in
the dynamic part of the vocabulary—and leave the remaining symbols—those in the
static part of the vocabulary—unchanged. Transitions are described by a finite collec-
tion of simple update rules, which are “fired” simultaneously (if they are inconsistent,
no update is carried out). A crucial property of the sequential ASM model, which we
consider here, is that in each transition only a limited part of the state is changed.
The detailed definition of sequential ASMs is given in the Lipari guide [31], but our
presentation will be largely self-contained.
We now describe the formal model of finite cursor machines.

The vocabulary: The static vocabulary of a finite cursor machine (FCM) consists of
two parts, Υ0 (providing the background structure) and ΥS (providing the particular
input).

Υ0 consists of three sorts: Element, Bitstring, and Mode. Furthermore, Υ0 may
contain an arbitrary number of functions and predicates, as long as the output sort of
each function is Bitstring. In particular, Υ0 contains all the predicates from Ω (recall
Chapter 2), taken as predicates on the sort Element. Finally, Υ0 contains an arbitrary
but finite number of constant symbols of sort Mode, called modes. The modes init ,
accept , and reject are always in Υ0.

ΥS provides the input. For each relation name R ∈ S, there is a sort RowR in ΥS.
Moreover, if the arity ofR is k, we have function symbols attributeiR : RowR → Element

for i = 1, . . . , k. Furthermore, we have a constant symbol ⊥R of sort RowR. Finally,
we have a function symbol nextR : RowR → RowR in ΥS.

The dynamic vocabulary ΥM of an FCM M contains only constant symbols. This
vocabulary always contains the symbol mode of sort Mode. Furthermore, there can
be a finite number of symbols of sort Bitstring, called registers. Moreover, for each
relation name R in the database schema, there are a finite number of symbols of sort
RowR, called cursors on R.

The initial state: Our intention is that FCMs will work on databases. Database
relations, however, are sets, while FCMs expect lists of tuples as inputs. Therefore,
formally, the input to a machine is an enumeration of a database, which is a list
database (see Chapter 2) consisting of enumerations of the database relations, where
an enumeration of a relation is simply a listing of all tuples in some order. An FCM
M that is set to run on an enumeration of a database D then starts with the following
structureM over the vocabulary Υ0 ∪ΥS ∪ΥM : The interpretation of Element is U;
the interpretation of Bitstring is the set of all finite bit strings; and the interpretation
of Mode is simply given by the set of modes themselves. For technical reasons, we must
assume that U contains an element ⊥. For each R ∈ S, the sort RowR is interpreted

1Beware that “state” refers here to what for Turing machines is typically called “configuration”;
the term “mode” is used for what for Turing machines is typically called “state”.
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by the set D(R) ∪ {⊥R}; the function attributeiR is defined by (x1, . . . , xk) 7→ xi,
and ⊥R 7→ ⊥; finally, the function nextR maps each row to its successor in the list,
and maps the last row to ⊥R. The dynamic symbol mode initially is interpreted by
the constant init ; every register contains the empty bit string; and every cursor on a
relation R contains the first row of R.

The program of an FCM: A program for the machine M is now a program as
defined as a basic sequential program in the sense of ASM theory, with the important
restriction that all basic updates concerning a cursor c on R must be of the form
c := nextR(c).

Thus, basic update rules of the following three forms are rules: mode := t, r := t,
and c := nextR(c), where t is a term over Υ0 ∪ΥS ∪ΥM , and r is a register and c is
a cursor on R. The semantics of these rules is the obvious one: Update the dynamic
constant by the value of the term. Update rules r1, . . . , rm can be combined to a new
rule par r1 . . . rm endpar, the semantics of which is: Fire rules r1, . . . , rm in parallel;
if they are inconsistent do nothing. Furthermore, if r1 and r2 are rules and ϕ is an
atomic formula over Υ0∪ΥS ∪ΥM , then also if ϕ then r1 else r2 endif is a rule. The
semantics is obvious.

Now, an FCM program is just a single rule. (Since finitely many rules can be
combined to one using the par. . . end construction, one rule is enough.)

The computation of an FCM: Starting with the initial state, successively apply
the (single rule of the FCM’s) program until mode is equal to accept or to reject .
Accordingly, we say that M terminates and accepts, respectively, rejects its input.

Given that inputs are enumerations of databases, we must be careful to define the
result of a computation on a database. We agree that an FCM accepts a database D
if it accepts every enumeration of D. This already allows us to use FCMs to compute
decision queries. In the next paragraph we will see how FCMs can output lists of
tuples. We then say that an FCM M computes a query Q if on each database D, the
output of M on any enumeration of D is an enumeration of the relation Q(D). Note
that later we will also consider FCMs working only on sorted versions of database
relations: in that case there is no ambiguity.

Producing output: We can extend the basic model so that the machine can out-
put a list of tuples. To this end, we expand the dynamic vocabulary ΥM with a
finite number of constant symbols of sort Element, called output registers, and with
a constant of sort Mode, called the output mode. We expand the static vocabulary
Υ0 with a number of functions with output sort Element, called output functions.
These output functions can only be used to update the output registers. The output
registers can be updated following the normal rules of ASMs. The output registers,
however, can not be used as an argument to a static function.

In each state of the finite cursor machine, when the output mode is equal to the
special value out , the tuple consisting of the values in the output registers (in some
predefined order) is output; when the output mode is different from out , no tuple is
output. In the initial state each output register contains the value ⊥ and the output
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mode is equal to init . We denote the output of a machine M working on a database
D by M(D).

Space restrictions: We define the size of a database D as the total number of
tuples in D. For considering FCMs whose bit string registers are restricted in size,
we use the following notation: Let M be a finite cursor machine and F a class of
functions from N to N. Then we say that M is an F-machine (or, an F-FCM ) if
there is a function f ∈ F such that, on each database enumeration D of size n, the
machine only stores bit strings of length f(n) in its registers. We are mostly interested
in O(1)-FCMs and o(n)-FCMs. Note that the latter are quite powerful. For example,
such machines can easily store the positions of the cursors. On the other hand, O(1)-
machines are equivalent to FCMs that do not use registers at all (because bit strings
of constant length could also be simulated by finitely many modes).

Example 5.1. Consider a query Q defined on a ternary relation R over the set of
natural numbers N that returns the sum of the first and second attribute of each
row with a third attribute at least 100. Consider a static vocabulary containing at
least the predicate “> 100” and the output function + on N. Then an FCM can
compute query Q with a single cursor and a single output register. The following
FCM program computes Q.

if outputmode = out then

par

outputmode := init
c := nextR(c)

endpar

else

if attribute3
R(c) > 100 then

par

outputmode := out
out1 := attribute1

R(c) + attribute2
R(c)

endpar

else

c := nextR(c)
endif

endif

5.3.1 Discussion of the model

Storing bit strings instead of data elements: An important question about our
model is the strict separation between data elements and bit strings. Indeed, data
elements are abstract entities, and our background structure may contain arbitrary
functions and predicates, mixing data elements and bit strings, with the important
restriction that the output of a function is always a bit string. At first sight, a
simpler way to arrive at our model would be without bit strings, simply considering
an arbitrary structure on the universe of data elements. Let us call this variation of
our model the “universal model”.
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Note that the universal model can easily become computationally complete. It
suffices that finite strings of data elements can somehow be represented by other data
elements, and that the background structure supplies the necessary manipulation
functions for that purpose. Simple examples are the natural numbers with standard
arithmetic, or the strings over some finite alphabet with concatenation. Thus, if we
would want to prove complexity lower bounds in the universal model, while retaining
the abstract nature of data elements and operations on them, it would be necessary
to formulate certain logical restrictions on the available functions and predicates on
the data elements. Finding interesting such restrictions is not clear to us. In the
model with bit strings, however, one can simply impose restrictions on the length of
the bit strings stored in registers, and that is precisely what we will do. Of course,
the unlimited model with bit strings can also be computationally complete. It suffices
that the background structure provides a coding of data elements by bit strings.

Element registers: The above discussion notwithstanding, it might still be inter-
esting to allow for registers that can remember certain data elements that have been
seen by the cursors, but without arbitrary operations on them. Formally, we would
expand the dynamic vocabulary ΥM with a finite number of constant symbols of
sort Element, called element registers. It is easy to see, however, that such element
registers can already be simulated by using additional cursors, and thus do not add
anything to the basic model.

Running time and output size: A crucial property of FCMs is that all cursors
are one-way. In particular, an FCM can perform only a linear number of steps where
a cursor is advanced. As a consequence, an FCM with output can output only a
linear number of different tuples. On the other hand, if the background structure is
not restricted in any way, arbitrary computations on the register contents can occur
in between cursor advancements. As a matter of fact, in this chapter we will present a
number of positive results and a number of negative results. For the positive results,
registers will never be needed, and in particular, FCMs run in linear time. For the
negative results, arbitrary computations on the registers will be allowed.

Look-ahead: Note that the terms in the program of an FCM can contain nested
applications of the function nextR, such as nextR(nextR(c)). In some sense, such
nestings of depth up to d correspond to a look-ahead where the machine can access the
current cursor position as well as the next d positions. It is, however, straightforward
to see that every k-cursor FCM with look-ahead 6 d can be simulated by a (k × d)-
cursor FCM with look-ahead 0. Thus, throughout the remainder of this chapter we
will w.l.o.g. restrict attention to FCMs that have look-ahead 0, i.e., to FCMs where the
function nextR never occurs in if-conditions or in update rules of the form mode := t
or r := t.

The number of cursors: In principle we could allow more than constantly many
cursors, which would enable us to store that many data elements. We stick with
the constant version for the sake of technical simplicity, and also because our upper
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bounds only need a constant number of cursors. Note, however, that our main lower
bound result can be extended to a fairly big number of cursors (cf. Remark 5.23).

5.4 The power of O(1)-machines

We start with a few simple observations on the database query processing capabilities
of FCMs, with or without sorting, and show that sorting is really needed.

Let us first consider compositions of FCMs in the sense that one machine works
on the outputs of several machines working on a common database.

Proposition 5.2. Let M1, . . . ,Mr be FCMs working on a schema S, let S′ be the
output schema consisting of the names and arities of the output lists of M1, . . . ,Mr,
and let M0 be an FCM working on schema S′. Then there exists an FCM M working
on schema S, such that M(D) = M0(D

′), for each database D with schema S and
the database D′ that consists of the output relations M1(D), . . . ,Mr(D).

The proof is obvious: Each row in a relation Ri of database D′ is an output row
of a machine Mi working on D. Therefore, each time M0 moves a cursor on Ri, the
desired finite cursor machine M will simulate that part of the computation of Mi on
D until Mi outputs a next row.

Let us now consider the operators from relational algebra: Clearly, selection can be
implemented by an O(1)-FCM. Also, projection and union can easily be accomplished
if either duplicate elimination is abandoned or the input is given in a suitable order.
Joins, however, are not computable by an FCM, simply because the output size of
a join can be quadratic, while FCMs can output only a linear number of different
tuples.

In stream data management research [9], one often restricts attention to sliding
window joins for a fixed window size w. This means that the join operator is suc-
cessively applied to portions of the data, each portion consisting of a number w of
consecutive rows of the input relations. The following example illustrates how an
O(1)-FCM can compute a sliding window join.

Example 5.3. Consider a sliding window join of binary relations R and S with con-
dition x2 = y1 where the windows slide simultaneously on either relation by the size
of the windows, say w (on both R and S). A finite cursor machine for this job has
w cursors ciR on R, and w cursors ciS on S, for i = 1, . . . , w. The machine begins
by advancing the ith cursor i− 1 times on each of the two relations. Then, all pairs
of cursors are considered, and joining tuples are output, using rules of the following
form for 1 6 i, j 6 w:

if mode = check i,j and attribute2
R(ciR) = attribute1

S(cjS) then

par

outputmode := out

out1 := attribute1
R(ciR)

out2 := attribute2
R(ciR)

out3 := attribute1
S(cjS)

out4 := attribute2
S(cjS)
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mode := next-modei,j
endpar

endif

Here, next-modei,j is the mode in which the next pair of the w2 pairs of tuples seen
by the cursors is joined. So, if neither i nor j equals w, then next-modei,j is either
check i,j+1 or check i+1,1. Next — after mode was equal to checkw,w — all cursors are
advanced w times. This continues until the end of the relations. This machine has
a large number of similar rules, which could be automatically generated or executed
from a high-level description.

Of course, the general case with relations of arbitrary arity, and arbitrary join
condition θ can be treated in the same way.

While we already noted that joins can not be computed in general by an FCM
simply because join outputs can be quadratic in size, we can actually show something
much stronger. Indeed, we can show that even checking whether the join is nonempty
(so that output size is not an issue) is impossible for FCMs. Specifically, we will
consider the problem whether two sets intersect, which is the simplest kind of join. We
will give two proofs: an elegant one for O(1)-machines, using a proof technique that is
simple to apply, and an intricate one for more general o(n)-machines (Theorem 5.24).
Note that the following result is valid for arbitrary (but fixed) background structures.

Theorem 5.4. There is no O(1)-FCM that checks for two sets R and S whether
R ∩ S 6= ∅.

Proof. LetM be an O(1)-FCM that is supposed to check whether R∩S 6= ∅. Without
loss of generality, we assume that U is totally ordered by a predicate < in Υ0. Using
Ramsey’s theorem, we can find an infinite set V ⊆ U over which the truth of the
atomic formulas in M ’s program on tuples of data elements only depends on the way
these data elements compare w.r.t. < (details on this can be found, e.g., in Libkin’s
textbook [46, Section 13.3]). Now choose 2n elements in V , for n large enough,
satisfying a1 < a′1 < · · · < an < a′n, and consider the run of M on R = {a1, . . . , an}
(listed in that order) and S = {a′n, . . . , a

′
1}. We say that a pair of cursors “checks” i

if in some state during the run, one of the cursors is on ai and the other one is on a′i.
By the way the lists are ordered, every pair of cursors can check only one i. Hence,
some j is not checked. Now replace a′j in S by aj , obtaining set S′, and consider the
run of M on R and S′. When there is a cursor on a′j , there will be no cursor on aj ,
and vice versa. Furthermore, the element a′j has the same relative order as aj with
respect to the other elements in the lists, and therefore any tuple of elements will
satisfy the same predicates as the tuple obtained by replacing aj by a′j . The run of M
on R and S′ will thus be the same as the run of M on R and S. The intersection of
R and S, however, is empty, while the intersection of R and S′ is not. So, M cannot
exist.

Of course, when the sets R and S are given as sorted lists, an FCM can easily
compute R ∩ S by performing one simultaneous scan over the two lists. The same
holds for the difference R − S. Moreover, will the full join is still not computable
by an FCM working on sorted inputs, simply because the output size can be too
large, semijoins R nθ S now become also computable by FCMs on sorted inputs.
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Specifically, this will be possible for a class of “allowed” join conditions θ which we
define next.

Definition 5.5. Recall the definition of a join condition θ(x1, . . . , xn, y1, . . . , ym) from
Chapter 2, and assume that the vocabulary Ω includes a total order < on U. We say
that θ is allowed if it is of the form ϕ∧ψ, where ϕ is a conjunction of equalities, and
where ψ is a conjunction of at most two inequalities of the form xi < yj or xi > yj .
(As a special case, ψ can simply be true.)

When ψ is not of the form xi < yj ∧ xk < yl (i.e., two smaller than predicates
between an x and a y), we call θ A-allowed ; otherwise θ is called AD-allowed.

In the following Examples we will show how A-allowed semijoins can be com-
puted by O(1)-FCMs on sorted inputs. The AD-allowed case will be discussed in the
following section.

Example 5.6. Let R and S be ternary relations and consider the semijoin R nθ S,
where θ is the A-allowed join condition x1 = y1 ∧ x2 > y2. The FCM computing this
semijoin works by doing a synchronized scan of R and S sorted on their respective
first columns. Suppose for a tuple r in R, a tuple s in S is found with r1 = s1, i.e., the
first component of r equals the first component of s. Then, the FCM searches for the
minimum value for s′2 of all tuples s′ in S with s′1 = s1(= r1); note that these tuples
occur in a contiguous region following s in S. We denote this minimum value by v.
Then, a cursor on R visits all tuples r′ with r′1 = r1 and outputs all of these tuples
having r′2 > v. Again, note that these tuples occur in a contiguous region following r
in R. Then, the next tuple r in R is considered. And so on.

When θ is the condition x1 = y1 ∧ x2 < y2, the semijoin is computed using a
similar strategy, except that instead of the minimum value, here the maximum value
for s′2 is searched and the tuples r′ in R with r′2 < v are output.

Example 5.7. Consider again the semijoin Rnθ S, where now θ is the A-allowed join
condition x1 = y1 ∧ x2 > y2 ∧ x3 > y3. The FCM computing this semijoin works on
R and S sorted lexicographically on their respective first columns first, and on their
second columns second. Again, the FCM first searches for a tuple r in R for which
there exists a tuple s in S with r1 = s1. Then, the FCM searches the first tuple s′

in S with s′1 > s1(= r1) or s′2 > r2 and searches for the minimum value for s′′3 of
all tuples s′′ in the region starting at s and ending at (not including) s′. We denote
this minimum value by v. Then, a cursor on R visits all tuples r′ with r′1 = r1 and
r′2 = r2. Of these tuples the ones with r′3 > v are output.

While visiting the tuples r′, three things can occur: (1) the end of R is reached;
(2) a tuple r′′ is found with r′′2 > r2; or (3) a tuple r′′ is found with r′′1 > r1. In
case (1), the FCM stops. In case (2), the cursor that was positioned at s′ is moved
forward to search again for the first tuple s′ with s′1 > s1(= r1) or s′2 > r′′2 . Also,
the minimum value v for s′′3 of all tuples s′′ in the region between s and the new s′ is
updated. Again, a cursor on R visits all tuples r′ with r′1 = r1 and r′2 = r′′2 and the
ones with r′3 strictly greater than v are output. Finally, in case (3), the FCM starts
searching again for a tuple s with s1 = r′′1 . And so on.

When θ is the condition x1 = y1 ∧ x2 > y2 ∧ x3 < y3, the semijoin is computed
using a similar strategy, except that instead of the minimum value, here the maximum
value for s′′3 is searched and the tuples r′ in R with r′3 < v are output.
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Note that also semijoins where the condition θ is a disjunction of allowed join
conditions can be computed by an FCM on sorted inputs by computing the semijoins
with condition ϕ for each allowed join condition ϕ in the disjunction θ and then
computing the union of these results.

The easy observations above motivate us to extend FCMs with sorting, in the
spirit of “two-pass query processing” based on sorting [19]. Formally, assume that U

is totally ordered by a predicate < in Υ0. Then a relation of arity p can be sorted
“lexicographically” in p! different ways: for any permutation ρ of {1, . . . , p}, let sortρ
denote the operation that sorts a p-ary relation ρ(1)-th column first, ρ(2)-th column
second, and ρ(p)-th column last. By an FCM working on sorted inputs of a database
D, we mean an FCM that gets all possible sorted orders of all relations of D as input
lists. We then summarize the above discussion as follows:

Proposition 5.8. Each operator of the semijoin algebra (i.e, union, intersection,
difference, projection, selection, and semijoin with A-allowed join condition) can be
computed by an O(1)-FCM on sorted inputs.

Corollary 5.9. Every semijoin algebra query with A-allowed join conditions can be
computed by a query plan composed of O(1)-FCMs and sorting operations.

Proof. From the expression tree of the given semijoin algebra expression we construct
a query plan as follows: we replace each selection, projection and union operator by an
FCM computing that operator; we replace each intersection, difference and semijoin
operator by an FCM computing that operator on sorted inputs ; and finally, we insert
sorting operations so that the FCMs computing intersection, difference and semijoin
have access to all possible sorted orders.

The following example illustrates the construction in the proof of Corollary 5.9.

Example 5.10. Consider the query Q :=
(
σx1<y2(R∪S)

)
nx2=y2 σx2<y1T . The expres-

sion tree of Q is shown in Figure 5.1 on the left. The query plan obtained by using
the construction in the proof of Corollary 5.9 is shown on the right of Figure 5.1.
Here, Mα is used to denote the O(1)-FCM computing the operator α.

The simple proof of Corollary 5.9 introduces a lot of intermediate sorting opera-
tions. In some cases, intermediate sorting can be avoided by choosing in the beginning
a particularly suitable ordering that can be used by all the operations in the expres-
sion [56].

Example 5.11. Consider the query (R − S) nx2=y2 T , where R, S and T are binary
relations. Since the semijoin compares the second columns, it needs its inputs sorted
on second columns first. Hence, if R − S is computed on sort(2,1)(R) and sort(2,1)(S)
by some machine M , then the output of M can be piped directly to a machine M ′

that computes the semijoin on that output and on sort(2,1)(T ). By compositionality
(Proposition 5.2), we can then even compose M and M ′ into a single FCM. A stupid
way to compute the same query would be to compute R − S on sort(1,2)(R) and
sort(1,2)(S), thus requiring a re-sorting of the output.

The question then arises: can intermediate sorting operations always be avoided?
Equivalently, can every semijoin algebra query already be computed by a single ma-
chine on sorted inputs? We can answer this negatively. Our proof applies a known
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nx2=y2

σ1<2

∪

R S

σ1>2

T

Mnx2=y2

sort1,2 sort2,1 sort1,2 sort2,1

Mσ1<2 Mσ1>2

M∪

R S

T

Figure 5.1: On the left: expression tree for SA query Q =
(
σx1<y2(R ∪ S)

)
nx2=y2

σx1>y2T . On the right: query plan computing Q, composed of O(1)-FCMs and sorting
operations.

result from the classical topic of multihead automata, which is indeed to be expected
given the similarity between multihead automata and FCMs.

Specifically, the monochromatic 2-cycle query about a binary relation E and a
unary relation C asks whether the directed graph formed by the edges in E consists
of a disjoint union of 2-cycles where the two nodes on each cycle either both belong
to C or both do not belong to C. Note that this query is indeed expressible in the
semijoin algebra as “Is e1 ∪ e2 ∪ e3 empty?”, where

e1 := E − (E n
x2=y1
x1=y2

E)

e2 := E n
x2=y1
x1 6=y2

E

e3 := (E n
x1=y1

C) n
x2=y1

((π1(E) ∪ π2(E)) − C)

Here, expression e1 selects the edges that do not have a reverse edge; expression
e2 selects the edges that have a follow-up edge; and expression e3 selects the edges
whose end points have different colors. The semijoin E n

x2=y1
x1 6=y2

E is an abbreviation for

the union of the allowed semijoins E n
x2=y1
x1<y2

E and E n
x2=y1
x1>y2

E.

Before proving that the monochromatic 2-cycle query can not be computed by an
O(1)-FCM on sorted inputs, we recall the result on multihead automata as a lemma.

One-way multihead deterministic finite state automata are devices with a finite
state control, a single read-only tape with a right endmarker $ and a finite number of
reading heads which move on the tape from left to right. Computation on an input
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word w starts in a designated state q0 with all reading heads adjusted on the first
symbol of w. Depending on the internal state and the symbols read by the heads, the
automaton changes state and moves zero or more heads to the right. An input word w
is accepted if a final state is reached when all heads are adjusted on the endmarker $.
A one-way multihead deterministic finite state automaton with k heads is denoted by
1DFA(k). A one-way multihead deterministic sensing finite state automaton, denoted
by 1DSeFA(k), is a 1DFA(k) that has the ability to detect when heads are on the
same position. Formal definitions have been given by Rosenberg [54].

For natural numbers n and f , consider the following formal languages over the
alphabet {a, b}:

Lfn := {w1bw2b · · · bwfbw
′
fb · · · bw

′
2bw

′
1 |

∀i = 1, . . . , f : wi, w
′
i ∈ {a, b}

∗ and |wi| = |w
′
i| = n}

P fn := {w1bw2b · · · bwfbw
′
fb · · · bw

′
2bw

′
1 ∈ L

f
n | ∀i = 1, . . . , f : wRi = w′

i}

We recall the following result:

Lemma 5.12 (Hromkovič [40]). Let M be a one-way, k-head, sensing DFA, and let
f >

(
k
2

)
. Then for sufficiently large n, if M accepts all strings in P fn , then M also

accepts a string in Lfn − P
f
n .

Actually, we will need a slight strengthening of the above Lemma, which can be
proven in exactly the same way as Lemma 5.12. To make this text self-contained and
also for easy reference, we still provide a polished proof below. The strengthening
deals with oblivious right-to-left heads that can only move from right to left on the
input tape sensing other heads, but can not read the symbols on the tape.

Lemma 5.13. Let M be a one-way, k-head, sensing DFA with oblivious right-to-left
heads, and let f >

(
k
2

)
. Then for sufficiently large n, if M accepts all strings in P fn ,

then M also accepts a string in Lfn − P
f
n .

Proof. On any string in P fn , consider the sequence of “prominent” configurations of
M , where a prominent configuration is a halting one, or one in which a left-to-right
head has just left a wi or a w′

i and is now on a b. If s is the number of internal states
of the automaton, there are at most s · (2f(n + 1))k different configurations. Any
given run of M has at most 2fk prominent configurations, so there are at most

p(n) :=
(
s · (2f(n+ 1))k

)2fk

different sequences of prominent configurations. As there are 2fn different strings in
P fn , there is a set G of at least 2fn/p(n) different strings in P fn with the same sequence
of prominent configurations.

On any w1bw2b . . . bwfbw
R
f b . . . bw

R
2 bw

R
1 ∈ P fn , we say that M “checks” region

i ∈ {1, . . . , f} if at some point during the run, there is a left-to-right head in wi, and
another left-to-right head in wRi . Every pair of left-to-right heads can check at most
one i, so since f >

(
k
2

)
, at least one i is not checked.

In our set G, the non-checked i is the same for all strings, because they have the
same sequence of prominent configurations. If we group the strings in G further on
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their parts outside wi and wRi , there are at most 2(f−1)n different groups, so there is
a subset H of G of at least 2n/p(n) different strings that agree outside wi and wRi .
For sufficiently large n, we have 2n/p(n) > 2.

We have arrived at two strings in P fn of the form

y1 = w1bw2b..bwib..bwnbw
R
n b..bw

R
i b..bw

R
2 bw

R
1

y2 = w1bw2b..bw
′
ib..bwnbw

R
n b..bw

′R
i b..bw

R
2 bw

R
1

with wi 6= w′
i, and with the same sequence of prominent configurations. But then M

will also accept the following string y ∈ Lfn − P
f
n :

w1bw2b · · · bwib · · · bwnbw
R
n b · · · bw

′R
i b · · · bw

R
2 bw

R
1

Indeed, while a left-to-right head of M is in wi, no left-to-right head is in wRi and
thus the run behaves as on y1; while a left-to-right head of M is in w′R

i , no left-to-
right head is in wi and thus the run behaves as on y2. Since y1 and y2 have the
same sequence of prominent configurations, y has that sequence as well and hence y
is accepted.

We are now able to prove:

Theorem 5.14. The monochromatic 2-cycle query is not computable by an O(1)-
FCM on sorted inputs.

Proof. Note that as a corollary of Lemma 5.13, we have that there is no 1DSeFA(k)
with oblivious right-to-left heads that recognizes the language P := {w ∈ {0, 1}∗ |
w = wR} of palindromes.

Now let M be an O(1)-FCM that is supposed to solve the monochromatic 2-cycle
query. Again using Ramsey’s theorem, we can find an infinite set V ⊆ U over which
the truth of the atomic formulas in M ’s program on tuples of data elements only
depends on the way these data elements compare w.r.t. < (see Theorem 5.4). Hence,
there is an O(1)-FCM M ′ with only the predicate < in the conditions of its if-then-
else rules that is equivalent to M over V . We now come to the reduction. Given a
string w = w1 · · ·wn over {0, 1}, we choose n values a1 < · · · < an ∈ V . Then define
relation E as {(ai, an−i+1) | 1 6 i 6 n} and define relation C as {ai | wi = 1}. It is
clear that w is a palindrome if and only if E and C form a positive instance to the
monochromatic 2-cycle query. Also note that for this particular relation E, a cursor
on sort2,1E can be simulated by a cursor on sort1,2E by simply switching the roles
of the first and second component. We can thus assume that M ′ has no cursors on
sort2,1E. From FCM M ′ we can construct a 1DSeFA(k) with oblivious right-to-left
heads that would recognize P as follows:

• each cursor on sort1,2E corresponds to a pair consisting of a “normal” left-to-
right head and an oblivious right-to-left head;

• each cursor on sort1C corresponds to a normal head;

• each time a cursor on sort1,2E is advanced, the normal head of the corresponding
pair of heads is moved one position to the right and the oblivious head is moved
one position to the left;
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• each time a cursor on sort1C is advanced, the corresponding head is moved to
the next 1 on the input tape;

• the finite state of the automaton keeps track of the mode of the finite cursor
machine, together with the relative positions of all heads. Note that for example
the element in the second component of a tuple in sort1,2E seen by cursor c is
lower than the element seen by cursor c′ on sort1C if and only if the oblivious
right-to-left head corresponding to c is on a position in w before the normal
head corresponding to c′;

• conditions in if-then-else rules of M ′ are evaluated by examining the finite state
of the automaton.

We conclude that FCM M can not exist.

An important remark is that the above proof only works if the set C is only given
in ascending order. In practice, however, one might as well consider sorting operations
in descending order, or, for relations of higher arity, arbitrary mixes of ascending and
descending orders on different columns. Indeed, that is the general format of sorting
operations in the database language SQL. We thus extend our scope to sorting in
descending order, and to much more powerful o(n)-machines, in the next section.

5.5 Descending orders and the power of

o(n)-machines

We already know that the computation of semijoin algebra queries by FCMs and
sortings in ascending order only requires intermediate sortings. So, the next question
is whether the use of descending orders can avoid intermediate sorting. We will
answer this question negatively, and will do this even for o(n)-machines (whereas
Theorem 5.14 is proven only for O(1)-machines).

Formally, on a p-ary relation, we now have sorting operations sortρ,f , where ρ is as
before, and f : {1, . . . , p} → {1, %} indicates ascending or descending. To distinguish
from the terminology of the previous section, we talk about an FCM working on AD-
sorted inputs to make clear that both ascending and descending orders are available.

Before we show our main technical result, we remark that the availability of sorted
inputs using descending order allows O(1)-machines to compute more relational al-
gebra queries. Indeed, we can extract such a query from the proof of Theorem 5.14.
Specifically, the “Palindrome” query about a binary relation R and a unary relation
C asks whether R is of the form {(ai, an−i+1) | i = 1, . . . , n} with a1 < · · · < an, and
C ⊆ {a1, . . . , an} such that ai ∈ C ⇔ an−i+1 ∈ C. We can express this query in the
relational algebra (using the order predicate in selections). In the following proposi-
tion, the lower bound was already shown in Theorem 5.14, and the upper bound is
easy.

Proposition 5.15. The “Palindrome” query cannot be solved by an O(1)-FCM on
sorted inputs, but can be solved by an O(1)-FCM on AD-sorted inputs.
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Using descending sorting, we can also compute semijoins with AD-allowed join
conditions (recall Definition 5.5):

Proposition 5.16. Every semijoin operation with AD-allowed join condition can be
computed by an O(1)-FCM on AD-sorted inputs.

Rather than proving this proposition formally, we illustrate it by giving an exam-
ple.

Example 5.17. Let R and S be binary relations and consider the semijoin R nθ S,
where θ is x1 < y1 ∧ x2 < y2. The FCM computing this semijoin works on R and S
sorted descendingly on their respective first columns. For each tuple r in R, the set
of tuples s in S with s1 > r1 is a contiguous region starting from the first tuple in
S until right before the first tuple s′ with s′1 6 r1. The FCM then searches for the
maximum value for s′′2 of all tuples s′′ in this region. We denote this maximum by v.
A cursor on R visits all tuples r′ with r′1 = r1 and outputs the ones with r′2 < v. And
so on.

Remark 5.18. We should note that our notion of allowed join condition (Definition 5.5)
probably does not exhaust all possible kinds of semijoins that can be computed on AD-
sorted inputs. It is indeed conceivable that certain predicates other than equalities
and inequalities might exist for which the sorting order of the inputs can still be
exploited for computing the semijoin by an FCM.

Moreover, it remains open to prove that semijoins with non-allowed join conditions
that involve only< are not computable by an FCM on AD-sorted inputs. For example,
we conjecture that R nx1<y1

x2<y2
x3<y3

S for ternary relations R and S, is not computable by

an FCM on AD-sorted inputs.

5.5.1 Intermediate sorting can not be avoided

We now return to the issue of intermediate sorting and establish our main result.
The result will follow from two lemmas, which we extracted from a proof by Nicole

Schweikardt and Martin Grohe [29, Theorem 10]. In both lemmas, FCMs will work
on lists of tuples and their reversals. With respect to sorting, the connection between
a list and its reversal is clear: the reversal of an ascendingly sorted list L is the list L
sorted descendingly, and vice versa. The first lemma concerns the inherent limitations
of FCMs due to the one-way nature of the cursors. In order to state it, we need to
define a number of notions. First, for natural numbers v and n with n a multiple
of v2, divide the ordered set {1, . . . , n} evenly in v consecutive blocks, denoted by
B1, . . . , Bv. So, Bi equals the set {(i−1)nv +1, . . . , inv }. Then, further subdivide each

block Bi evenly in v consecutive subblocks, denoted by B1
i , . . . , B

v
i . So, Bji equals the

set {(i− 1)nv + (j − 1) nv2 + 1, . . . , (i− 1)nv + j nv2 }.
Furthermore, consider the following permutation of {1, . . . , n}:

πn,v : (i− 1)·nv + s 7→ (v − i)·nv + s

for 1 6 i 6 v and 1 6 s 6 n
v . So, πn,v maps subset Bi to subset Bv−i+1, and πn,v

maps subset Bji to subset Bjv−i+1. The permutation πn,v reverses the blocks Bi in
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Figure 5.2: Permutation π16,4.

order but it does not reverse the blocks Bji inside Bi in order. The permutation π16,4

is shown in Figure 5.2.
Let M be a FCM with k cursors. Let v =

(
k
2

)
+ 1 and let n be a multiple of

v2. Suppose M works on a set of lists and their reversals. The reversal of a list L is

denoted by
←−
L . Consider two distinguished lists L1 and L2 of length n on which M

is working. In particular, for a clear understanding, let L1 be the list t11 . . . t
1
n and let

L2 be the list t21 . . . t
2
n for some tuples t11 . . . t

1
n, t

2
1 . . . t

2
n.

Consider the run of M on the lists and their reversals. We say that a cursor c
is on position ` on list L if it has executed ` − 1 update rules c := nextL(c). I.e., if
cursor c is on position ` on L1, then c sees tuple t1` . We use analogous notation for

the lists
←−
L1, L2, and

←−
L2. I.e., if a cursor c is on position ` on

←−
L1 (resp. L2, resp.

←−
L2),

then c sees tuple t1n−`+1 (resp. t2` , resp. t2n−`+1). We say that a pair of cursors of M
checks block Bi if at some state during the run either

• one cursor in the pair is on a position in Bi on L1 (i.e., the cursor sees a tuple
t1` , for some ` ∈ Bi) and the other cursor in the pair is on a position in Bv−i+1

on L2 (i.e., the cursor sees a tuple t2π`, for some ` ∈ Bi), or

• one cursor in the pair is on a position in Bv−i+1 on
←−
L1 (i.e., the cursor sees a

tuple t1` , for some ` ∈ Bi) and the other cursor in the pair is on a position in Bi

on
←−
L2 (i.e., the cursor sees a tuple t2π`, for some ` ∈ Bi).

Note that each pair of cursors working on the lists L1 and L2 or on the lists
←−
L1 and

←−
L2, can check at most one block. There are v blocks and at most

(
k
2

)
< v cursor pairs.

Hence, there is one block Bi0 that is not checked by any pair of cursors working on

L1 and L2 or on
←−
L1 and

←−
L2. We now define the notion of a pair of cursors checking a

subblock Bji , analogously to the notion of a pair of cursors checking a block Bi. We

say that a pair of cursors of M checks subblock Bji if at some state during the run
either

• one cursor in the pair is on a position in Bji on L1 (i.e., the cursor sees a tuple
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t1` , for some ` ∈ Bji ) and the other cursor in the pair is on a position in Bv−j+1
i

on
←−
L2 (i.e., the cursor sees a tuple t2π`, for some ` ∈ Bji ), or

• one cursor in the pair is on a position in Bv−j+1
v−i+1 on

←−
L1 (i.e., the cursor sees a

tuple t1` , for some ` ∈ Bji ) and the other cursor in the pair is on a position in

Bjv−i+1 on L2 (i.e., the cursor sees a tuple t2π`, for some ` ∈ Bji ).

Note that each pair of cursors working either on L1 and
←−
L2 or on

←−
L1 and L2, can

check at most one subblock in Bi0 . There are v subblocks in Bi0 and at most
(
k
2

)
< v

cursor pairs. Hence, there is at least one subblock Bj0i0 that is not checked by any pair

of cursors working either on L1 and
←−
L2 or on

←−
L1 and L2. Note that, since the entire

block Bi0 is not checked by any pair or cursors working either on L1 and L2 or on
←−
L1

and
←−
L2, the subblock Bj0i0 is thus not checked by any pair of cursors (on L1,

←−
L1, L2,

←−
L2).

We say that M checks subblock Bji if at least one pair of cursors of M checks

subblock Bji .
The above argument thus leads to the following

Lemma 5.19 (block-checking lemma). Let M be an FCM with k cursors working on
a set of lists and their reversals. Let v =

(
k
2

)
+ 1 and let n be a multiple of v2. Let L1

and L2 be two distinguished length-n lists in terms of which the notion of “checking
a (sub)block” is defined.

Then, there is at least one subblock Bj0i0 that M does not check.

The block-checking lemma is a building block in the proof of the next lemma,
from which our main result will be proved. In order to state the lemma, we need a
definition.

Definition 5.20 (binary (n, v)-collection with respect to (L1, L2)). Let n and v be
natural numbers such that n is a multiple of v2. Let S be a database schema and let
L1 and L2 be two distinguished relation names in S. A collection L of list databases
with schema S is called a binary (n, v)-collection with respect to (L1, L2) if L is of the
form {Ln(I) | I ⊆ {1, . . . , n}} for which there exist elements x1, . . . , xn, x′1, . . . , x

′
n,

y1, . . . , yn, and y′1, . . . , y
′
n with xi 6= x′i and yi 6= y′i for i = 1, . . . , n such that

• the list instances of L1 and L2 in list database Ln(I) have length n; and

• the i-th element of the list instance of L1 in list database Ln(I) is
{

xi if i ∈ I, and

x′i if i ∈ Ic,

where the complement Ic is taken with respect to {1, . . . , n}; and

• the πn,v(i)-th element of the list instance L2 in list database Ln(I) is
{

y′i if i ∈ I, and

yi if i ∈ Ic,



56 Linear time query processing

• the list instances other than those of L1 and L2 in Ln(I) do not depend on I.
In particular, they are the same in every list database Ln(I) of L. And finally,

• the length of the list instances other than those of L1 and L2 in Ln(I) is bounded
by αn for some fixed α, independent of n.

Lemma 5.21 (fooling lemma). Let M be a o(n)-FCM with k cursors. Let v =
(
k
2

)
+1

and let n be a sufficiently large multiple of v2. If {Ln(I) | I ⊆ {1, . . . , n}} is a binary
(n, v)-collection with respect to (L1, L2), then there exist I, J ⊆ {1, . . . , n} with I 6= J
such that the run of M working on the list database containing:

• the list instance of L1 in Ln(I),

• the list instance of L2 in Ln(J),

• the list instances other than those of L1 and L2 in Ln(I), and

• all reversals of the aforementioned lists

ends in exactly the same way as the run of M on the lists in Ln(I) and their reversals.

Proof. Without loss of generality, we can assume that M accepts or rejects the input
only when all cursors are positioned at the end of their lists.

Let r be the number of registers and let m be the number of modes occurring in
M ’s program.

The proof now consists of two arguments: a counting argument and a fooling
argument. The counting argument gives us two list databases Ln(I) and Ln(J) with
I 6= J such that the runs of M on the list instances in both list databases and their
reversals are very “similar”. In the fooling argument, it is shown that the run of M
on the list database Lerr ends in the same way as the run of M on the lists in Ln(I)
and their reversals.

In the rest of this proof, when considering the run of M on a list database L —
which we will also call instance — we implicitly mean the run of M on the lists in L
and their reversals.

A. Counting argument Consider the set I of 2n list databases {Ln(I) | I ⊆
{1, . . . , n}}. According to the block-checking Lemma 5.19, where block-checking is
defined in terms of the lists L1 and L2, on each list database Ln(I) there is at least
one subblock Bji that M does not check. Because there are only v2 such possible
subblocks and 2n different instances in I, there exists a set I0 ⊆ I of cardinality at
least 2n/v2 and 2 indices i0 and j0, such that M does not check subblock Bj0i0 on any
instance in I0.

At this point it is useful to introduce the following terminology. By “block Bj0i0 on

L1”, we refer to the positions in Bj0i0 of list L1 and to the positions in Bv−j0+1
v−i0+1 of list

←−
L1, i.e., “block Bj0i0 on L1” contains elements x` or x′` where ` ∈ Bj0i0 . By “block Bj0i0
on L2”, however, we refer to the positions in Bj0v−i0+1 of list L2 and to the positions

in Bv−j0+1
i0

of list
←−
L2, i.e., “block Bj0i0 on L2” contains elements yπn,v` or y′πn,v`

where
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` ∈ Bj0i0 . Note that this terminology is consistent with the way we have defined the
notion of “checking a block”.

Now we apply an averaging argument to fix all input tuples outside the critical
block Bj0i0 . We divide I0 into equivalence classes induced by the following equivalence
relation:

Ln(I) ≡ Ln(J) ⇔ I −Bj0i0 = J −Bj0i0

Since Bj0i0 has n
v2 elements, there are at most 2n−

n

v2 equivalence classes. Thus,
since I0 has at least 2n/v2 elements, there exists an equivalence class I1 ⊆ I0 of

cardinality at least 2n/v2

2
n−

n
v2

= 2
n

v2 /v2, such that for any Ln(I) and Ln(J) in I1, we

have I−Bj0i0 = J−Bj0i0 . Note that for larger and larger n, 2
n

v2 /v2 becomes arbitrarily
large.

Let Ln(I) be an element of I1. Consider the run of M on Ln(I). Let c be a
cursor and let MI

c be the state of M in the run on Ln(I) when cursor c has just

left block Bj0i0 on L1 or on L2. Let MI be the k-tuple consisting of these states MI
c

for all cursors c. Note that a state of the machine is completely determined by the
machine’s current mode (one out of m possible values), the positions of each of the k
cursors (where each cursor can be in one out of at most αn possible positions), and
the contents of the r bit string registers (each of which has length o(n)). Hence, there

are only m · (αn)k · 2r·o(n) different states for M . The tuple MI can thus have only

(m · (αn)k · 2r·o(n))k = 2k logm+k2 logαn+k·r·o(n)

different values.
Since I1 has at least 2

n

v2 /v2 elements, there exists a set I2 ⊆ I1 of cardinality

at least 2
n

v2 /v2

2k log m+k2 log αn+k·r·o(n)
= 2

n

v2 −2 log v−k logm−k2 logαn−k·r·o(n), such that for any

Ln(I) and Ln(J) in I2, we have MI = MJ . For large enough n, we have at least
two different instances Ln(I) and Ln(J) in I2.

We recall the crucial properties of Ln(I) and Ln(J):

1. M does not check block Bj0i0 on Ln(I), nor on Ln(J);

2. Ln(I) and Ln(J) differ on L1 and L2 only in block Bj0i0 ; and

3. For each cursor c, when c has just left block Bj0i0 (on L1 or L2) in the run on

Ln(I), the machine M is in the same state as when c has just left block Bj0i0 in
the run on Ln(J).

B. Fooling argument Let V0,V1, . . . be the sequence of states in the run of M on
Ln(I) and let W0,W1, . . . be the sequence of states in the run of M on Ln(J). Let
tIc and tJc be the points in time when the cursor c of M has just left block Bj0i0 in the
run on Ln(I) and Ln(J), respectively. Because of Property 3 above, VtIc equals WtJc
for each cursor c. Note that the start states V0 and W0 are equal.

Now consider list database Lerr containing the list L1 of Ln(I), the list L2 of
Ln(J), all reversals of the aforementioned lists. Consider M running on Lerr. As
long as there are no cursors in block Bj0i0 on L1 and on L2, the machine M running
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on Lerr will go through the same sequence of states as on Ln(I). Indeed, M has not
yet seen any difference between Lerr on the one hand, and Ln(I) on the other hand
(Property 2). At some point, however, there may be some cursor c in block Bj0i0 .

• If this is on L1 or
←−
L1, no cursor on L2 or

←−
L2 will enter block Bj0i0 as long as c is

in this block (Property 1). Therefore, M will go through some successive states
Vi (i.e., M thinks it is working on Ln(I)) until c has just left block Bj0i0 . At that
point, M is in state VtIc = WtJc

(Property 3) and the machine now again goes
through the same sequence of states as on D and as on D′ (Property 2).

• If this is on L2 or
←−
L2, we are in a similar situation: No cursor on L1 or

←−
L1 will

enter block Bj0i0 as long as c is in this block (Property 1). Therefore, M will go
through some successive statesWi (i.e., M thinks it is working on Ln(J)) until c
has just left block Bj0i0 . At that point, M is in state VtIc =WtJc

(Property 3) and
the machine now again goes through the same sequence of states as on Ln(I)
(Property 2).

Hence, in the run of M on Lerr, each time a cursor c has just left block Bj0i0 , the

machine is in state VtIc . Let d be the last cursor that leaves block Bj0i0 . When d has

just left this block, M is in state VtI
d
. After the last cursor has left block Bj0i0 , the run

of M on Lerr finishes exactly as the run of M on Ln(I) after the last cursor has left
block Bj0i0 . This completes the proof of Lemma 5.21.

We can now prove:

Theorem 5.22. The query RST := “Is R nx1=y1 (S nx2=y1 T ) nonempty?”, where
R and T are unary and S is binary, is not computable by any o(n)-FCM working on
AD-sorted inputs.

Proof. Let M be an o(n)-FCM computing RST on sorted inputs. Let k be the total
number of cursors of M . Let v =

(
k
2

)
+ 1 and let n be a multiple of v2. Choose 4n

values in U satisfying a1 < a′1 < a2 < a′2 < · · · < an < a′n < b1 < b′1 < · · · < bn < b′n.
We fix the binary relation S of size 2n as follows:

S :=
{
(a`, bπ`) : ` ∈ {1, . . . , n}

}
∪

{
(a′`, b

′
π`) : ` ∈ {1, . . . , n}

}
,

where π = πn,v. Furthermore, for all sets I, J ⊆ {1, . . . , n}, we define unary relations
R(I) and T (J) of size n as follows:

R(I) := {a` : ` ∈ I} ∪ {a′` : ` ∈ Ic}

T (J) := {b` : ` ∈ J} ∪ {b′` : ` ∈ Jc},

where Ic denotes {1, . . . , n}−I. By D(I, J), we denote the database consisting of the
relations R(I), S, and T (J). It is easy to see that the nested semijoin of R(I), S, and
T (J) is empty if, and only if, (π(I) ∩ J) ∪ (π(I)c ∩ Jc) = ∅. Therefore, for each I,
the query RST returns false on database D(I, π(I)c), which we will denote by D(I)
for short. Furthermore, we observe:

the query RST on D(I, π(J)c) returns true if, and only if, I 6= J . (∗)
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Now, for I ⊆ {1, . . . , n}, consider the list database Ln(I) containing the lists
sort1

(
R(I)

)
, sort1

(
T (π(I)c)

)
, and all sorted versions of S. It is clear that the collection

{Ln(I) | I ⊆ {1, . . . , n}} of these list databases is a binary (n, v)-collection with
respect to (R, T ). (In Definition 5.20, take xi = ai, x

′
i = a′i, yi = bπi, and y′i = b′πi.)

Now, we apply Lemma 5.21. We thus obtain I, J ⊆ {1, . . . , n} with I 6= J such that
the run of M on the list database L containing the lists sort1

(
R(I)

)
, sort1

(
T (π(J)c)

)
,

all sorted versions of S, and all reversals of the aforementioned lists—in particular
the lists sort%

(
R(I)

)
and sort%

(
T (π(J)c)

)
—ends in exactly the same way as the run

of M on the list database Ln(I)′ containing the lists in Ln(I) and their reversals—in
particular the lists sort%

(
R(I)

)
and sort%

(
T (π(I)c)

)
. Note that list databases Ln(I)′

and L contain all possible sorted orders of all relations of D(I) and D(I, π(J)c),
respectively. Therefore, if M computes the RST query correctly on sorted inputs, M
returns false on Ln(I)′ and true on L (cf. (∗)). The runs of M on both list databases,
however, end in the same way. We conclude that M can not exist.

Remark 5.23. (a) An analysis of the proof of Lemma 5.21 shows that we can make
the following, more precise statement: Let k,m, r, s : N→ N such that

k(n)6 · (logm(n)) · r(n) ·max(s(n), logn) = o(n).

Then for sufficiently large n, there is no FCM with at most k(n) cursors, m(n) modes,
and r(n) registers each holding bit strings of length at most s(n) that, for all unary
relations R, T and binary relations S of size n decides if R nx1=y1 (S nx2=y1 T ) is
nonempty. (In the statement of Lemma 5.21, k,m, r are constant.) This is interesting
in particular because we can use a substantial number of cursors, polynomially related
to the input size, to store data elements and still obtain the lower bound result.
(b) Note that Theorem 5.22 is sharp in terms of arity: if S would have been unary
(and R and T of arbitrary arities), then the according RST query would have been
computable on sorted inputs.
(c) Furthermore, Theorem 5.22 is also sharp in terms of register bitlength: Assume
data elements are natural numbers, and focus on databases with elements from 1 to
O(n). If the background provides functions for setting and checking the i-th bit of a
bit string, the query RST is easily computed by an O(n)-FCM.

Using Lemma 5.21 we can also show the following strengthening of Theorem 5.4:

Theorem 5.24. There is no o(n)-FCM working on enumerations of unary relations
R and S and their reversals, that checks whether R ∩ S 6= ∅.

Proof. Let M be an o(n)-FCM that checks whether R ∩ S 6= ∅. Let k be the total
number of cursors of M . Let v be

(
k
2

)
+ 1 and let n be a multiple of v2. Choose 2n

pairwise distinct values a1, a
′
1, a2, a

′
2, . . . , an, a

′
n from U.

For all sets I, J ⊆ {1, . . . , n}, we define unary relations R(I) and S(J) of size n
as follows:

R(I) := {a` : ` ∈ I} ∪ {a′` : ` ∈ Ic}

S(J) := {a` : ` ∈ J} ∪ {a′` : ` ∈ Jc}

where the complements Ic and Jc are taken with respect to {1, . . . , n}. By D(I, J),
we denote the database consisting of the relations R(I) and S(J). It is easy to see
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that the intersection of R(I) and S(J) is empty if, and only if, J = Ic. Therefore, for
each I, the intersection test fails (returns false on) for instance D(I, Ic), which we
will denote by D(I) for short. Furthermore, we observe:

the intersection test fails on D(I, J) if, and only if, J = Ic. (∗∗)

Now, for I ⊆ {1, . . . , n}, consider the list databases Ln(I) containing the following
enumerations R(I)→ and S(Ic)π of R(I) and S(Ic), respectively: The i-th element
of R is ai if i ∈ I and a′i if i ∈ Ic; the πn,v(i)-th element of Sπ is a′i if i ∈ I and
ai if i ∈ Ic. (The subscripts → and π denote that the elements occur in the order
of increasing indices and this latter order permuted by π, respectively.) It is clear
that the collection {Ln(I) | I ⊆ {1, . . . , n}} of these list databases is a binary (n, v)-
collection with respect to (R,S). (In Definition 5.20, take xi = yi = ai, x

′
i = y′i = a′i.)

Now, we apply Lemma 5.21. We thus obtain I, J ⊆ {1, . . . , n} with I 6= J such
that the run of M on the list database L containing the lists R(I)→, S(Jc)π , and
their reversals ends in exactly the same way as the run of M on the list database
Ln(I)

′ containing the lists in Ln(I) and their reversals. If M computes the query
R∩S 6= ∅? correctly, M returns false on Ln(I)′ and true on L (cf. (∗)). The runs of
M on both list databases, however, end in the same way. We conclude that M can
not exist.

Note that Theorems 5.22 and 5.24 are valid for arbitrary background structures.

5.6 Concluding remarks

A natural question arising from Corollary 5.9 is whether finite cursor machines with
sorting are capable of computing relational algebra queries beyond the semijoin alge-
bra. The answer is affirmative:

Proposition 5.25. The boolean query over a binary relation R that asks if R =
π1(R) × π2(R) can be computed by an O(1)-FCM working on sort(1,2),(1,1)(R) and
sort(2,1),(1,1)(R).

Proof. The list sort(1,2),(1,1)(R) can be viewed as a list of subsets of π2(R), numbered
by the elements of π1(R). The query asks whether all these subsets are in fact equal
to π2(R). Using an auxiliary cursor over sort(2,1),(1,1)(R), we check this for the first
subset in the list. Then, using two cursors over sort(1,2),(1,1)(R), we check whether
the second subset equals the first, the third equals the second, and so on.

Note that, using an Ehrenfeucht-game argument (see Section 7.2), one can indeed
prove that the query from Proposition 5.25 is not expressible in the semijoin algebra.

We have not been able to solve the following:

Open Problem 5.26. Is there a boolean relational algebra query that cannot be
computed by any composition of O(1)-FCMs (or even o(n)-FCMs) and sorting oper-
ations?
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There are, however, many queries that are not definable in relational algebra,
but computable by FCMs with sorting. By their sequential nature, FCMs can easily
compare cardinalities of relations, check whether a directed graph is regular, or do
modular counting—and all these tasks are not definable in relational algebra. One
might be tempted to conjecture, however, that FCMs with sorting cannot go beyond
relational algebra with counting and aggregation, but this is false:

Proposition 5.27. On a ternary relation G and two unary relations S and T , the
boolean query “Check that G = π1,2(G)×(π1(G)∪π2(G)), that π1,2(G) is deterministic,
and that T is reachable from S by a path in π1,2(G) viewed as a directed graph” is not
expressible in relational algebra with counting and aggregation, but computable by an
O(1)-FCM working on sorted inputs.

Proof. (a): If this query was expressible in relational algebra with counting and
aggregation, then deterministic reachability would be expressible, too. However, since
deterministic reachability is a non-local query, it is not expressible in first-order with
counting and aggregation (see [36]).
(b): A finite cursor machine that solves this query can proceed as follows: The first
check follows by Proposition 5.25; the determinism check is easy. The path can now
be found using a cursor sorted on the third column of G, which gives us n copies of
the graph π1,2(G).

Finally, we recall the open problem already mentioned in Remark 5.18: can the
semijoin Rnx1<y1

x2<y2
x3<y3

S be computed by an FCM on AD-sorted inputs?



6
Streaming

In this chapter, we offer a theoretical framework that attempts to clarify various
philosophical questions about stream queries. For instance, if streams are thought of
as infinite, and arbitrary queries are modeled as functions from streams to streams,
what does it mean for a query to be computable? Is computability the same concept
as continuity? What is the precise connection between continuity and monotonicity?
Can one give a formal definition of what it means for an arbitrary operator to be
non-blocking?

Furthermore, we define a concrete computation model for stream queries, called
“streaming ASM”, and prove impossibility results. Specifically, we focus on bounded
memory machines: such machines can only remember a constant number of previously
seen stream elements. Bounded memory machines are natural in the context of query
processing; for example, any query operator that applies a sliding window (typical in
streaming applications) is computable in bounded memory.

6.1 Abstract computability

Basically, we assume a universe E of data elements. For example, E could be the uni-
verse U from which tuples and relations are constructed as in the preceding chapters;
E could contain U together with all tuples over U, . . . . A stream is a possibly infinite
sequence of data elements. The set of all streams is denoted by Stream, and the set
of all finite streams is denoted by finStream. Thus finStream ⊆ Stream. We denote
the i-th element of a stream s by si.

Our model of streams is very abstract and thus very general.

Example 6.1. Consider measurements coming from sensors, where each entry is a pair
of the form (i,m) with i a sensor identifier and m a measurement. Suppose, at each
discrete time point t (with time points modeled by natural numbers), we collect all
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entries that arrived in the interval (t− 1, t]. Then E would contain sets of entries as
data elements.

In a setting where time points would be more fine-grained, so that at most one
entry can arrive per clock tick, E would contain entries directly as data elements, plus
possibly some dummy element to indicate no entry arrived.

Mathematically, a stream query is simply a mapping from Stream to Stream.
Not all such mappings make sense in the streaming context, however. To make
formal which queries do make sense, we define the notion of abstract computabil-
ity. Intuitively, a stream query Q is abstract computable if there exists a function
K : finStream → finStream such that the result ofQ can be obtained by concatenating
the results of K applied to larger and larger prefixes of the input.

Formally, for any K as above, we define the function

Repeat(K) : s 7→

size(s)
⊙

k=0

K(s6k) of type Stream → Stream,

where s6k is the prefix of s of length k, and size(s) is the length of s in case s is
finite, and ∞ in case s is infinite (in which case the index k ranges over all natural
numbers). Here

⊙
denotes concatenation. We now define:

Definition 6.2. A query Q : Stream → Stream is abstract computable if there exists
a function K such that Q = Repeat(K). We call K a kernel for Q.

The following example shows an abstract computable stream query:

Example 6.3. Let Q be the running average query, defined on streams of natural
numbers and returning at each step the average value of the numbers arrived so far.
The function returning (

∑
ui)/n on input stream u1 . . . un (and returning the empty

stream when the input is the empty stream) is a kernel for Q.

In connection to finite streams, we make the following two important observations:

1. The answer to an abstract computable query on an infinite stream can be finite.

Example 6.4. Consider the queryQ that returns all elements in the input stream
satisfying a certain predicate P . On a stream with only a finite number of
elements satisfying P , the result of Q will be finite. Note that this query Q
indeed has a kernel: for example the function K that given a finite stream,
returns its last element if it satisfies P , and returns the empty stream otherwise,
is a kernel for Q.

2. The answer to an abstract computable query on a finite stream must be finite.
Indeed, the result of K is always a finite stream and on a finite input stream,
K is applied only a finite number of times. So, queries transforming finite
streams into infinite streams will never be computable in our model. This is
not a problem since our model is primarily meant to capture input-data-driven
computations.

We note:
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Proposition 6.5. Abstract computable stream queries are closed under composition.

Proof. Let Q1 and Q2 be abstract computable by F1 and F2, respectively. Then,
the query Q = Q2 ◦ Q1 is abstract computable by the function F that maps a finite
stream su to

length(F1(su))
⊙

k=1

F2(Q1(s)F1(su)
6k),

and that maps the empty stream to

F2(())�

length(F1(()))⊙

k=1

F2(F1(())
6k).

6.2 Continuity

We will now see that abstract computability and continuity of stream queries coincide.
Recall from elementary calculus [8] that a real function f : R→ R is called contin-

uous if for all x ∈ R, for every neighborhood around f(x), there exists a neighborhood
around x that is completely mapped into the neighborhood of f(x). In order to gener-
alize this definition of continuity to stream queries, we must first agree on a definition
of neighborhood of a stream s. In other words, we need to define a suitable topology
on streams.

For infinite streams, there is a standard topology, known from computable anal-
ysis [60], called the Cantor topology. This topology arises from the following metric
(distance function) on infinite streams:

d(s, s′) =

{

0 if s = s′,

2−n if s 6= s′ and n = min{i | si 6= s′i}.

According to this topology, open balls around an infinite stream s are sets of the form
B(p), with p some finite prefix of s, defined as follows:

B(p) = {s′ infinite stream | p is a prefix of s′}.

Here, we generalize this notion of open ball to the setting of both finite and infinite
streams, as follows:

Definition 6.6. Let p ∈ finStream. Then

B(p) := {s′ ∈ Stream | p is a prefix of s′}.

Any set of the form B(p), for some p ∈ finStream, is called an open ball. Elements
of B(p) are called continuations of p.

This notion of open ball gives rise to a topology on streams, and the notion of
continuity then amounts to the following:
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Definition 6.7. Q : Stream → Stream is continuous if for every open ball B, the
pre-image Q−1(B) is a union (possibly infinite) of open balls.

Remark 6.8. The Cantor metric described above has only been defined on infinite
streams. One may wonder whether the topology on Stream given by Definition 6.6
can be given by some metric of that sort but applicable to finite as well as infinite
streams. The answer is negative: metrizable topologies must be Hausdorff, and our
topology is not. Indeed, an infinite stream q and a finite prefix p of q can not
be separated as each open ball containing p contains q. For basic background on
topology, we refer to Hocking and Young [38].

Theorem 6.9. Let Q be a stream query mapping finite inputs to finite outputs. Then
Q is abstract computable if and only if Q is continuous.

Proof. For the only-if direction letK be a kernel forQ, i.e., Q = Repeat(K). Consider
X := B(p). Let s be a stream in Q−1(X). Then, from some natural number ` on,

we know that
⊙`

k=0K(s6k) starts with p. Consider then the open ball B(s1 . . . s`).
Every s′ ∈ B(s1 . . . s`) is mapped into X. Indeed,

Q(s′) =
⊙̀

k=0

K(s6k)�

size(s)
⊙

k=`+1

K(s′6k)

clearly starts with p. Thus, s ∈ B(s1 . . . s`) ⊆ Q
−1(X), as desired.

For the if-direction, we define a kernel K for Q as follows. K(()) := Q(()), and
K(su) := Q(su)−Q(s), where the difference is to be interpreted as removing a prefix,
so that Q(su) = Q(s)�K(su). Note that Q(s) and Q(su) are both finite.

For K to be well-defined, we must show that Q(s) is indeed a prefix of Q(su).
Consider X = Q−1(B(Q(s))). By continuity, X is a union of open balls. Thus, there
must be an open ball B(p) with s ∈ B(p) ⊆ X. Clearly, p must be a prefix of s. But
then also su ∈ B(p) ⊆ X, and therefore Q(su) ∈ B(Q(s)). This means that Q(s) is
a prefix of Q(su).

We now show that Repeat(K) = Q by showing that they have the same prefixes.
By construction, Repeat(K) coincides with Q on finite streams. Let s = s1s2 . . . be
an infinite stream and let v1 . . . vj be an arbitrary prefix of Repeat(K)(s). Let i be
the smallest natural number such that v1 . . . vj is a prefix of Repeat(K)(s1 . . . si) =
Q(s1 . . . si). Since Q(s) ∈ B(Q(s1 . . . si)), we have v1 . . . vj also as a prefix of Q(s).
We conclude that every prefix of Repeat(K)(s) is also a prefix of Q(s).

For the other direction, let v1 . . . vj be an arbitrary prefix of Q(s). By continu-
ity, v1 . . . vj is also a prefix of Q(s1 . . . si) for some i. Since Repeat(K)(s1 . . . si) =
Q(s1 . . . si), we have v1 . . . vj also as a prefix of Repeat(K)(s1 . . . si), which by con-
struction is itself a prefix of Repeat(K)(s), as desired.

Theorem 6.9 can be used to prove that there are simple stream queries that are
not abstract computable.

Example 6.10. Consider the following query check. Let a, b ∈ E and let s be a stream
over E. Then check(s) is the stream (a) if b does not occur in s; otherwise, check(s)
is the empty stream (). This query is not abstract computable; we prove that check
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is not continuous. Consider the open ball B(a). Clearly, the empty stream () is in
check

−1(B(a)). The only open ball that contains the empty stream is B(()). This
open ball, however, is not included into check

−1(B(a)). Indeed, (b) ∈ B(()), but
check(b) = () 6∈ B(a).

Remark 6.11. In connection to Theorem 6.9 we remark the following:

1. Suppose we would have extended the Cantor metric to finite (as well as infinite)
streams in the obvious manner; in particular, if s is a finite prefix of s′, but
s 6= s′, then we define d(s, s′) = 2−(n+1) with n the length of s. In the resulting
topology, abstract computable queries need no longer be continuous. A simple
example is provided by the query Q from Example 6.4. Let E := {a, b} and
let P be true of a and false of b. Consider the open ball B containing only the
empty stream (). Then Q maps the infinite stream b containing only b’s into
B. Any open ball B(p) around b, however, contains the stream pa which is not
in Q−1(B). Thus, Q is not continuous.

2. The qualification in Theorem 6.9 that Q must map finite inputs to finite outputs
is important for the if-direction. Indeed, any constant query, that always outputs
some fixed infinite stream, is continuous, but not abstract computable (precisely
because it maps finite to infinite).

6.3 The finite case

Considering only finite streams makes the situation simpler. Define a finite stream
query as a mapping from finStream to finStream. Define abstract computability of
finite stream queries in the same way as for queries on Stream, and consider the
topology on finStream induced by the topology on Stream, i.e., the open balls are
now finite continuations of finite streams. We will use the notation Bfin(p) to denote
the set of all finite continuations of the finite stream p. We then indeed have:

Proposition 6.12. A finite stream query is abstract computable if and only if it is
continuous.

In the finite case, there is also a third equivalent notion: monotonicity. A query
Q : finStream → finStream is called monotone if for all s, s′ ∈ finStream, s v s′ implies
Q(s) v Q(s′), where v denotes the “prefix of” relation.

Proposition 6.13. A finite stream query is continuous if and only if it is monotone.

Proof. For the if-direction let Q : finStream → finStream be monotone. Consider
X := Bfin(p). Let s be a stream in Q−1(X). Then, s ∈ Bfin(s) ⊆ Q

−1(X). Indeed,
s′ ∈ Bfin(s) implies s v s′, which by monotonicity implies Q(s) v Q(s′). As Q(s) has
p as a prefix, Q(s′) has p as a prefix too and thus Q(s′) ∈ X.

The only-if direction is proved by the argument already used in the proof of
the if-direction of Theorem 6.9, where we showed that K is well-defined. Con-
cretely, let Q : finStream → finStream be continuous. Let s v s′. Consider X :=
Q−1(Bfin(Q(s))). By continuity, X is a union of open balls. Thus, there must be
an open ball Bfin(p) with s ∈ Bfin(p) ⊆ X. Clearly, p must be a prefix of s. But
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then also s′ ∈ Bfin(p) ⊆ X, and therefore Q(s′) ∈ Bfin(Q(s)). This means that
Q(s) v Q(s′).

As a corollary we obtain the following equivalence already noted by Law, Wang and
Zaniolo (LWZ), who referred to our notion of abstract computability as computability
by a “nonblocking” operator:

Corollary 6.14 ([41]). Let Q be a finite stream query. Q is computable by a non-
blocking operator if and only if Q is monotone.

The proof given by LWZ is slightly confusing. Their formalism is based on a notion
of queries on finite streams that are computable by (not necessarily non-blocking)
“operators”. They fail to mention, however, that any query on finite streams is
computable by such an operator.

6.4 Time

In some applications, the output stream is synchronized with the input stream. In
such cases, we need an additional requirement on stream queries beyond mere abstract
computability.

Example 6.15. Consider the following instance of the query from Example 6.4: the
input is a stream of numbers (e.g., sensor readings) and the output consists of all
readings below a certain threshold, say 0. In an “untimed” setting, where the original
time points of the output readings are not required by the client of the query, we can
simply formalize this stream query as being abstract computable with kernel function
K0 with K0(()) = (), and

K0(su) =

{

u if u < 0

() otherwise.

On the other hand, in a “timed” setting stream positions in the output are sup-
posed to be synchronized with stream positions in the input [7, 6]. In that case, the
above formalization is inadequate, because, the 5th element of the output may well
be, say, the 10th element of the input!

A more proper computation would be given by the functionK1 with againK1(()) =
(), and now

K1(su) =

{

u if u < 0

null otherwise.

where null is an explicitly visible element denoting that the reading at this time
point was not below 0.

The above discussion motivates:

Definition 6.16. A stream query Q is synchronous abstract computable (SAC) if
Q = Repeat(K) for some kernel K : finStream → finStream such that K(()) = () and
every other K(s) is of length one. We will call such kernel K a length-one kernel.
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SAC stream queries can be characterized by means of non-predicting queries. Here
and below, N0 stands for the set of natural numbers without zero.

Definition 6.17. A stream query Q is non-predicting if for all streams s and s′ and
for all t ∈ N0 such that s6t = (s′)6t, we have Q(s)t = Q(s′)t.

We note that non-predicting is part of the definition of “stream operator” by
Arasu, Babu and Widom [7, 6].

Proposition 6.18. A stream query is SAC if and only if it is non-predicting.

Proof. Let K be a length-one kernel for stream query Q. Let s, s′ ∈ Stream and
t ∈ N0 such that s6t = (s′)6t. Then

Q(s)t = K(s6t) = K((s′)6t) = Q(s′)t

and thus Q is non-predicting.
For the “if” direction, let Q be non-predicting. For each finite stream p of length

t, define π(p) as the infinite stream with π(p)i = pi for i 6 t and with π(p)i = pt
for i > t. Then the following function K is a length-one kernel for Q. If p is a finite
stream of length t then K(p) := Q(π(p))t.

Furthermore, for each stream s and any time instant t, define π′(s, t) as the infinite
stream with π′(s, t)i = si for i 6 t and with π′(s, t)i = st for i > t. We now prove
that K is indeed as desired. Let s be a stream and let t be a time instant. Then

Q(s)t = Q(π′(s, t))t = Q(π(s6t))t = K(s6t).

Here, the first equality follows from the fact that Q is non-predicting; the second
equality follows from the fact the definition of π′(s, t); and the third equality follows
from the definition of K.

We also have:

Proposition 6.19. SAC stream queries are closed under composition.

Proof. Let Q1 and Q2 be abstract computable by F1 and F2, respectively. It is easy to
verify that given that F1 and F2 satisfy the properties in Definition 6.16, the function
F constructed in the proof of Proposition 6.5 also satisfies these properties and makes
Q2 ◦ Q1 synchronous abstract computable.

6.5 Complexity limitations

The definition of abstract computability does not impose any restriction on K: the
function is not even required to be computable, neither in the classical sense nor in
the sense of TTE. The results in the previous sections are thus very general.

To further study the limitations of streaming applications, however, such restric-
tions are necessary. Concretely, for a class C of functions from finStream to finStream,
we say that a query Q : Stream → stream is abstract computable modulo C if Q has
a kernel K in C. The class C could for example be the class of functions computable
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in the classical sense or in the sense of TTE; or—as in the “streaming model of com-
putation” [9]—C could be the class of functions incrementally computable in polylog
space and in polylog time per data element.

In the next section, we will define several classes C of functions computable by a
concrete model based on the Abstract State Machine (ASM) methodology [31], that
we will call “streaming ASM” (sASM). We will study abstract computability modulo
the classes C obtained by altering the computation power of the model.

6.6 Streaming ASMs

An abstract state machine (ASM) is a transition system whose states are many-sorted
first-order structures. Transitions change the interpretation of some of the function
and relation symbols—those in the dynamic part of the vocabulary—and leave the
remaining symbols—those in the static part of the vocabulary—unchanged. The part
of the structure that is never changed during state transitions, i.e., the structure
over the static part of the vocabulary, is typically called the background structure.
Transitions are described by simple rules that produce state updates which are “fired”
simultaneously (if they are inconsistent, no update is carried out). A crucial property
of the sequential ASM model is that in each transition only a limited part of the
state is changed. The detailed definition of sequential ASMs is given in the Lipari
guide [31].

We now describe the streaming abstract state machine (sASM) model.

The states: The base set of any state, i.e., the universe of the structure in the sense
of logic, contains at least our universe E of data elements. We assume that E contains
an element ⊥.

The static functions and predicates on the base set include, but are not limited
to, the functions and predicates defined on E.

Each state of an sASM contains a finite number of dynamic functions on the
base set. There are always the nullary dynamic function in and a number of nullary
dynamic functions, called output registers, denoted by out , possibly with subscripts.
The output registers and in take values in E.

The names of the static and dynamic functions and predicates are collected in a
vocabulary.

The program: A program for an sASM is a basic sequential program in the sense of
ASM theory. Concretely, a basic update rule has the form: f(t1, . . . , tn) := t0 where
f is a function name and t0, . . . , tn are terms in the vocabulary. To fire the basic
update rule at a state A, evaluate the terms t0, . . . , tn in A to elements a0, . . . , an in
the base set and then change the interpretation of f in (a1, . . . , an) to a0.

Update rules r1, . . . , rm can be combined to a new rule par r1 . . . rm endpar, the
semantics of which is this: Fire rules r1, . . . , rm in parallel; if they are inconsistent
then do nothing.

Furthermore, if r1 and r2 are rules and ϕ is a quantifier-free formula in the vocab-
ulary, then if ϕ then r1 else r2 endif is also a rule. The semantics is obvious.
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Now, an sASM program is just a single rule.

The run and the output: An sASM M that is set to work on a finite stream s
starts in the state where all dynamic functions have the interpretation ⊥, except for
the function in: In the initial state, the function in contains the first element of the
stream s.

The run of M on s is the sequence of states obtained as follows: start from the
initial state and fire (the rule of) M ’s program, in each step interpreting the function
in as the next element in s. The sASM halts when the end of s is reached. The
interpretation of in is dynamic but it is controlled by the environment rather than by
the machine; in is an external function.

We define the final output of M on a finite stream s as the stream obtained by
concatenating the interpretations of the output registers in some predefined order
when M has halted, and where ⊥-elements are disregarded.

We now say that an sASM M computes a function K : finStream → finStream
(meant as a kernel for a stream query) if for all finite streams s, the final output of
M on s equals K(s). By KM we denote the function K computed by M .

It is important to note that the final output of an sASM M on a stream s1 . . . sn+1

can be simply obtained by running M on the input s1 . . . sn first, and then making
one final step upon reading sn+1. Consequently, on any stream s (finite or infinite),
we can compute Repeat(KM )(s) simply by continuously running M on s, at each step
producing the current output. We refer to Repeat(KM ) as the stream query computed
by M .

Example 6.20. Recall Example 6.1. In the setting where E contains sets of entries,
there could for example be a function defined on E that given a set of entries, returns
the set of sensor identifiers that measured an alarmingly high value.

In the setting where E contains entries directly, there could for example be a pred-
icate defined on E that checks whether an entry has an alarmingly high measurement
and a function that given an entry, returns the sensor identifier of the entry.

Example 6.21. Consider the sliding window join between two streams of tuples of
natural numbers over the attributes {A,B} and {C,D}, where the join condition is
B = C. The output tuples have attributes {A,B,D}. The universe E then contains⊥,
TupleAB, TupleCD, and TupleABD, with TupleAB the set of tuples over the attributes
{A,B}, and similarly for TupleCD and TupleABD. The function joinB=C : TupleAB×
TupleCD → TupleABD checks whether two tuples join on their B- and C-attributes
and returns the joined tuple; the result is ⊥ if the tuples do not join.

The output of the sliding window join depends on two streams, whereas streaming
ASMs work on a single stream. Moreover, the output depends on the particular
interleaving in which the streams arrive. By choosing an appropriate universe E,
however, we can represent the two input streams and their interleaving as a single
stream.

Concretely, we extend the universe E with the set TaggedTuple of elements of the
form 〈r:u〉 and 〈s:v〉 with u ∈ TupleAB and v ∈ TupleCD. A tagged tuple encodes
an element and its origin. For example, the stream of tagged tuples

〈r:(1, 2)〉〈s:(2, 3)〉〈s:(3, 4)〉 . . .
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is a representation of the interleaving of the tuple (1,2) arriving in the first stream,
followed by the tuples (2,3) and (3,4) arriving in the second stream, and so on.
Furthermore, we add the predicates R and S to the universe E to test whether
an element is of the form 〈r:u〉 or 〈s:v〉, respectively. Finally, we add a function
strip : TaggedTuple → TupleAB ∪ TupleCD that removes the tag of a tagged tuple.
Static functions return ⊥ when one of the arguments is ⊥.

Assume for simplicity that the window size is 2. We then equip the sASM with 4
nullary dynamic functions regRi , and regSi for i = 1, 2. The following is now a program
for an sASM computing the sliding window join described above.

par

if R(in) then

par

regR1 = in
regR2 = regR1
out1 = joinB=C(strip(in), strip(regS1 ))
out2 = joinB=C(strip(in), strip(regS2 ))

endpar

endif

if S(in) then

par

regS1 = in
regS2 = regS1
out1 = joinB=C(strip(regR1 ), strip(in))
out2 = joinB=C(strip(regR2 ), strip(in))

endpar

endif

endpar

6.7 Bounded-memory and o(n)-bit string sASMs

Due to the extreme generality of the ASM model, one should not expect that restrict-
ing attention to stream queries that are computable by an sASM would imply any
limitation. Indeed, the only restriction that comes from our sASM model is that at
each step in the computation of the stream query, only a constant number of elements
can be output. More concretely, since the background structure of an sASM could, a
priori, be anything, we have the following proposition and corollary (which in itself
are philosophically entirely uninteresting):

Proposition 6.22. Let k be a fixed natural number and let K : finStream → finStream
be any kernel function such that the length of K(s), for any finite stream s, is at most
k. Then the stream query Repeat(K) is computable by some sASM.

sketch. It is an easy matter for an sASM to compute Repeat(K) if it has 1) a back-
ground structure containing a) the set of all finite streams finStream, b) the append
function of sort finStream × E → finStream, c) the function K, and d) functions
element i for i = 1, . . . , k to extract elements out of a finite stream; and 2) a nullary



Streaming 73

dynamic function s containing at each step the part of the stream that has already
arrived.

At each step, the sASM uses the append function to update the dynamic function
s; it appliesK to the stream s; and it uses the extraction functions element i to update
the output registers.

Corollary 6.23. Every SAC query is abstract computable by an sASM.

In order to formulate a relevant complexity limitation on stream queries, we pro-
pose “bounded-memory sASMs”.

Definition 6.24. A bounded-memory sASM is an sASM with the following restric-
tions: 1) no output register can ever be used as an argument to a function; 2) all
dynamic functions are nullary; and 3) non-nullary (static) functions can only be ap-
plied in rules of the form out := t0, with out an output register and t0 a term over
the vocabulary.

Example 6.25. The sASM computing the sliding window join in Example 6.21 is a
bounded-memory sASM. The obvious sASM for computing the running average query
from Example 6.3, however, is not bounded-memory (but see later, when we introduce
bit string sASMs).

Every CQL-query where a finite window is applied to the input streams ([6]) is
computable by a bounded-memory sASM. Indeed, let Q be such a CQL-query. Then,
Q = Repeat(KM ), where M is the following sASM. For each window of Q of size
n, the sASM M has n dynamic constants. When M receives a new input element,
say with tag 〈r:〉, the sASM simulates the sliding of the window(s) on input stream
r by updating the corresponding dynamic constants accordingly. In each step, the
output is computed in a brute-force way. This technique was already illustrated in
Example 6.21.

Moreover, every duplicate-eliminating SPJ-query computable in bounded memory
in the sense defined by Arasu et al. is computable by a bounded-memory sASM [5].

Bounded-memory sASMs also have some limitations: even the very simple stream
query that checks whether two streams intersect, is not computable by a bounded-
memory sASM. We extend the universe E with the set TaggedElement of elements of
the form 〈r:u〉 and 〈s:u〉 with u ∈ E. A stream over TaggedElement then represents
the interleaving of two streams over E (see Example 6.21). Furthermore, we extend E

with the boolean values true and false. The query intersect is defined on streams
over E and checks whether a common element has been seen in the interleaved streams.
Concretely, the result of intersect on a stream s over E is the stream s′ such that
the n-th element of s′ is true if and only if for some i, j ∈ N0 with i, j < n and for
some u ∈ E, we have si = 〈r:u〉 and sj = 〈s:u〉.

Proposition 6.26. intersect is not computable by a bounded-memory sASM.

Proof. LetM be a bounded-memory sASM such that intersect equals Repeat(KM ).
Let Γ be the set of predicates of M . Then for each predicate p ∈ Γ of arity k

and for each k-sequence α of elements in {r, s}, define the predicate pα on E to be
true of a tuple (u1, . . . , uk) iff p is true of (〈α1:u1〉, . . . , 〈αk:uk〉). Let Γ′ := {pα | p ∈
Γ and α ∈ {r, s}k where k = arity(p)}.
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Without loss of generality, we assume that E is totally ordered by a predicate <.
Using Ramsey’s theorem, we can find an infinite set V ⊆ E over which the truth of
the predicates in Γ′ on tuples of elements in E only depends on the way these data
elements compare w.r.t. < (details on this can be found, e.g., in Libkin’s textbook [46,
Section 13.3]). Now choose 2n elements in V , for n large enough, satisfying v1 < v′1 <
· · · < vn < v′n. Let s be the input stream 〈r:v1〉 . . . 〈r:vn〉 and consider the run of M
on s. After the step where 〈r:vn〉 is processed there will be at least one element 〈r:v`〉
that M has not stored in its registers. Then, consider the streams s′ and s′′ of length
n+ 1 that have s as a prefix, and with s′n+1 = 〈s:v`〉 and s′′n+1 = 〈s:v′`〉. The runs of
M on s′ and s′′ will be identical to the run of M on s until right after the step where
〈r:vn〉 is processed. In the next step, the machine receives either 〈s:v`〉 or 〈s:v′`〉.
Because v` and v′` have the same relative order with respect to the other v-elements,
each tuple of elements from the set {v1, . . . , v`, . . . , vm} satisfies the same predicates
in Γ′ as the tuple obtained by replacing v` by v′`. By definition of Γ′, also each tuple
of elements from the set {〈r:v1〉, . . . , 〈s:v`〉, . . . , 〈r:vm〉} satisfies the same predicates
in Γ as the tuple obtained by replacing 〈s:v`〉 by 〈s:v′`〉. Therefore, the output of M
on s′ will be identical to the output of M on s′′. As a consequence, Repeat(KM )(s′)
and Repeat(KM )(s′′) are equal while intersect(s′) and intersect(s′′) are different.
Thus, M is wrong.

This result can also be obtained via a reduction from a result on Finite Cursor
Machines (FCMs). Indeed, in Chapter 5 we showed that no matter how rich the
background is, even an FCM can not check whether two sets intersect using bit string
registers of size o(n), where n is the size of the input (Theorem 5.24, page 59).

The proof we gave here is more direct and therefore provides more insight on the
limitations of bounded memory stream processing. The reduction argument, however,
can easily be generalized to accommodate for bit string registers of size o(n). A bit
string sASM is an sASM defined as in Definition 6.24 with the following relaxation
of restriction 3: non-nullary (static) functions can be used also to update non-output
registers, as long as those functions produce bit strings. An o(n)-sASM then is a bit
string sASM such that on each stream s and for each step n in the run on s, the
sASM stores bit strings of length o(n).

Example 6.27. We can model a version of the running average query (Example 6.3)
using o(n)-bit string sASMs. Indeed, consider streams of natural numbers such that
the value in the n-th position of the stream (for any n) is at most 2polylog(n). Then
with a static function from natural numbers to their binary representations, and
the addition and division function on binary numbers, we can compute the running
average with an o(n)-sASM.

Proposition 6.28. The query intersect is not computable by an o(n)-sASM.

Proof. Let M be an o(n)-sASM M working on a stream of tagged elements such
that intersect is equal to Repeat(KM ). From M , we can then construct an o(n)-
FCM M ′ working on two lists of elements in E that checks whether they have a
common element. The FCM M ′ has the same number of bit string registers as M ,
and has an element register for every dynamic constant of M . For every element in an
element register, M ′ remembers from which input list the element was copied, using
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its internal mode. Furthermore, let Γ be the set of predicates of M , including the
predicates naturally corresponding to M ’s boolean output functions. Then the set of
predicates of M ′ is the set Γ′ as defined in the proof of Proposition 6.26. Finally, if F
is the set of functions of M , then the set of functions F ′ of M ′ is similarly constructed
from F as Γ′ is constructed from Γ.

Consider the input lists R and S. The FCM M ′ has a single cursor on R and a
single cursor on S. Now, M ′ computes as follows. At each odd step, M ′ moves its
cursor on R to the next element u, updating the (element and bit string) registers as
M would do when receiving the element 〈r:u〉 from the stream. The internal mode is
changed so that it contains the origin of each element in the registers. At each even
step, M ′ moves its cursor on S to the next element v, updating the registers as M
would do when receiving the element 〈s:v〉 from the stream. The internal mode is
again changed accordingly. M ′ can simulate this behaviour using the functions in F ′,
or the predicates in Γ′ together with its internal mode. For example, if M applies a
predicate p to an element in a dynamic constant reg — i.e., an element of the form
〈r:u〉 or 〈s:v〉 — the FCM M ′ would use its internal mode to obtain the origin of
the element in the register corresponding to reg and then apply the right predicate
pr or ps to the element in that register — i.e., to u or v. Once M outputs true, M ′

enters the accept state and halts. As long as M outputs false, M ′ continues until it
has detected the ends of the input lists. In that case, M ′ enters the reject state and
halts. Note that M ′ can use the predicates corresponding to the boolean functions of
M to obtain the output M produces. Because M works correctly, it will also work
correctly on this particular interleaving. Therefore, M ′ correctly checks whether R
and S intersect. Hence the contradiction.

We conclude by pointing out that on finite streams, finite cursor machines are
indeed more powerful than bounded-memory sASMs: Consider the query sort-

intersect that given two finite streams A and B, checks if they are both sorted
and if so, outputs their intersection; if the inputs are not sorted, sort-intersect,
outputs false. Then,

Proposition 6.29. The query sort-intersect is computable by an FCM but not
by a bounded-memory sASM.

Proof. An FCM would compute the query sort-intersect using one cursor on each
list to check if they are sorted and another cursor on each list to do a synchronized scan
of both list to search for common elements. Inspection of the proof of Proposition 6.26
reveals that a bounded-memory sASM can not even check whether two finite sorted
streams intersect.

6.8 Conclusion

An interesting open problem is to relax the definition of bounded-memory sASM in
other ways than with using o(n)-length bit strings.



7
The expressive power of the

semijoin algebra

In this chapter, we study the expressive power of the semijoin algebra in the presence
of arbitrary predicates in the selection and join conditions. Note that the Codd
theorem for the semijoin algebra (Chapter 3) only considers equi-semijoins.

The first part of this chapter deals with repetitions and permutations of columns.
While in the full relational algebra permuting and repeating of columns does not
add expressive power, this is not clear for the semijoin algebra. Indeed, the rewrite
rule to replace a permuting or repeating projection in a relational algebra expression
with a non-permuting and non-repeating one uses the join operator, that the semijoin
algebra lacks. Nevertheless, we show that any semijoin algebra expression can still be
simulated by semijoin algebra expressions where no projection operator permutes or
repeats columns. The idea is that given an arbitrary expression E, one can produce a
set of permutation- and repetition-free expressions that return the relevant values of
the output tuples of E, up to certain repetitions and permutations which are produced
as a by-product of the translation. In particular, for boolean expressions, there is
always a single equivalent boolean expression that is permutation- and repetition-
free.

In a second part of this chapter, we define an Ehrenfeucht-Fräıssé game, that
characterizes the discerning power of the semijoin algebra in the presence of arbitrary
predicates in the selection and join conditions. In Section 3.8, we already remarked
that allowing nonequalities in semijoin conditions strictly increases the expressive
power of the semijoin algebra. Unfortunately, the increase in expressive power leads
to an undecidable satisfiability problem. Nevertheless, it is still interesting to study
the expressive power of this more powerful semijoin algebra. Moreover, using the
Ehrenfeucht-Fräıssé game as a tool, we will particularly study the expressive power
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of SA6= and SA<,<.

7.1 Repetitions and permutations of columns

7.1.1 The restrictions SA−r and SA−rp

The restrictions RA−r and SA−r of RA and SA, respectively, are obtained by restrict-
ing the projection operator πi1,...,ik (see Chapter 2) by requiring that the numbers
i1, . . . , ik are all different. So, repeating columns in the projection list is not al-
lowed. The restrictions RA−rp and SA−rp are obtained by requiring the projection
list i1, . . . , ik to be strictly increasing, i.e., i1 < · · · < ik. So, permutations are not
allowed. Note that this also excludes repeating columns.

Remark 7.1. Note that the intersection operator ∩ is expressible in RA using the
projection and the join operator: R ∩ S = π1,...,arity(R)(R ./θ S), where θ is the

formula
∧arity(R)
i=1 xi = yi. By definition of the semijoin operator, the intersection

R ∩ S is also expressible in SA as Rnθ S, where θ is as before.

Example 7.2. Let S be the schema containing a single binary relation Knows. Then
the SA−r (and, hence, RA−r) expression Knows ∩ π2,1(Knows) defines all pairs of
persons who know each other. The expression is not SA−rp (nor RA−rp), but it can
be equivalently written in SA−rp (and RA−rp) as Knows n

1=2
2=1

Knows

7.1.2 Expressive power of SA−r and SA−rp

Here, we show the main result of Section 7.1: allowing permuting and repeating of
columns in projections does not add expressive power to the semijoin algebra. Note
that this property is clear for the full relational algebra. Indeed, if R is a relation of
arity n and i1, . . . , ik are values between 1 and n, then πi1,...,ikR is equivalent to the
RA−rp expression

πf(1),...,f(k)

(
((R ./

θ
R) ./

θ
. . .) ./

θ
R

︸ ︷︷ ︸

k times R

)

where f(j) is (j − 1)n+ ij and θ is x1 = y1 ∧ . . . ∧ xn = yn.

Example 7.3. The RA−r expression π2,1(Knows) can be expressed in RA−rp as

π2,3(Knows ./
1=1
2=2

Knows).

This trick for RA does not work for SA, where we do not have the full join. Indeed,
a projection with repetitions like π1,1R cannot be equivalently expressed in SA−rp.
The same holds for a nonincreasing projection like π2,1R. Nevertheless, for any SA
expression E that can use projections with arbitrary repetitions and permutations,
we can still obtain the tuples returned by E, by means of SA−rp expressions. We
formally state and prove this in the following theorem. But first, we introduce a
notation: Let f be a function from {1, . . . ,m} to {1, . . . , n} and let a be an n-tuple.
Then f(a) is the m-tuple (af(1), . . . , af(m)).
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Theorem 7.4. Let E be an SA expression of arity n. Then there exists a set P of
pairs of the form (F, f), where F is an SA−rp expression and f is a function from
{1, . . . , n} to {1, . . . , `} with ` the arity of F , such that for each database D:

E(D) =
⋃

(F,f)∈P

{f(a) | a ∈ F (D)}.

Before we prove the theorem, we give an example and make a remark.

Example 7.5. If E is the expression π2,1,1R, then a set P according to Theorem 7.4 is
the singleton {(R, f)}, where f is the function from {1, 2, 3} to {1, 2} with f(1) = 2
and f(2) = f(3) = 1.

If E is the expression (π2,1,2R)n2=1(π3,1S), then a set P according to Theorem 7.4
is the singleton {(Rn1=3 S, f)}, where f(1) = f(3) = 2 and f(2) = 1.

Remark 7.6. To see why in general P contains more than one element, consider the
schema {R,S}, where R and S are binary relations. Let E be R ∪ π2,1(S). Consider
database D:

R(D) := {(1, 2)}

S(D) := {(3, 4)}

Let P be the singleton {(F, f)}, where F is an SA−rp expression and f is a function
from {1, 2} to the set X , which can be either {1} or {1, 2}. If X is {1}, then f(1) =
f(2) = 1. It is clear that in this case each tuple (x, y) in the set {f(a) | a ∈ F (D)}
has x = y. If X is {1, 2}, then f can be the identical function or the permutation
switching 1 and 2, i.e., f(1) = 2 and f(2) = 1. An easy inductive argument shows
that each tuple (x, y) in the result of a binary SA−rp expression F on database D
will have x < y. Therefore, either each tuple (x, y) in the set {f(a) | a ∈ F (D)} will
have x < y (if f is the identical function), or each tuple (x, y) in that set will have
x > y (if f permutes 1 and 2). In the set E(D) = {(1, 2), (4, 3)}, however, none of
these three properties hold.

Proof. The construction of the set P and the correctness proof are by structural
induction. We will write PE to denote that the set P corresponds to expression E.

1. If E = R, then PE := {(R, Id)}, where Id denotes the identity function.

2. If E = σθE1, then PE := {(σθf
F, f) | (F, f) ∈ PE1}, where θf := θ[xi/xf(i)]. In

proof:

a ∈ σθE1(D) ⇔ a ∈ E1(D) and a satisfies θ

⇔ a ∈
⋃

(F,f)∈PE1

{f(b) | b ∈ F (D)} and a satisfies θ

⇔ a ∈
⋃

(F,f)∈PE1

{f(b) | b ∈ σθf
F (D)}
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3. If E = πi1,...,inE1, then

PE := {(F, f ′
i1,...,in) | (F, f) ∈ PE1}

where f ′
i1,...,in

is the function mapping j to f(ij) for all 1 6 j 6 n. In proof:

a ∈ πi1,...,inE1(D)

⇔ ∃ b ∈ E1(D) such that (a1, . . . , an) = (bi1 , . . . , bin)

⇔ ∃ b ∈
⋃

(F,f)∈PE1

{f(c) | c ∈ F (D)}

such that (a1, . . . , an) = (bi1 , . . . , bin)

⇔ a ∈
⋃

(F,f)∈PE1

{f ′
i1,...,in(c) | c ∈ F (D)}

where f ′
i1,...,in is defined as above.

4. If E = E1 ∪ E2, then PE := PE1 ∪ PE2 .

5. If E = E1 − E2, then

PE := {(F1 −
⋃

(F2,f2)∈PE2

F1 nθf1∩f2
F2, f1) | (F1, f1) ∈ PE1}

where θf1∩f2 :=
∧n
i=1 xf1(i) = yf2(i). In proof:

a ∈ E1 − E2(D)

⇔ a ∈
⋃

(F,f)∈PE1

{f(b) | b ∈ F (D)} −
⋃

(F,f)∈PE2

{f(c) | c ∈ F (D)}

⇔ ∃(F1, f1) ∈ PE1 , ∃b ∈ F1(D) : a = f1(b)

and ∀(F2, f2) ∈ PE2 , ∀c ∈ F2(D) : a 6= f2(c)

⇔ ∃(F1, f1) ∈ PE1 , ∃b ∈ F1(D) : a = f1(b)

and ∀(F2, f2) ∈ PE2 , ∀c ∈ F1 nθf1∩f2
F2(D) : a 6= f1(c)

⇔ ∃(F1, f1) ∈ PE1 , ∃b ∈ F1 −
⋃

(F2,f2)∈PE2

F1 nθf1∩f2
F2(D) : a = f1(b)

⇔ a ∈
⋃

(F1,f1)∈PE1

{
f1(b) | b ∈ F1 −

⋃

(F2,f2)∈PE2

F1 nθf1∩f2
F2(D)

}

6. If E = E1 nθ E2, then

PE := {(F1 nθf1f2
F2, f1) | (F1, f1) ∈ PE1 , (F2, f2) ∈ PE2}
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where θf1f2 := θ[xi/xf1(i), yj/yf2(j)]. In proof:

a ∈ E1 nθ E2(D)

⇔ a ∈ E1(D) and ∃b ∈ E2(D) such that θ(a, b) holds

⇔ a ∈
⋃

(F1,f1)∈PE1

{f1(c) | c ∈ F1(D)}

and ∃b ∈
⋃

(F2,f2)∈PE2

{f2(d) | d ∈ F2(D)} such that θ(a, b) holds

⇔ ∃(F1, f1) ∈ PE1 , ∃c ∈ F1(D) : a = f1(c)

and ∃(F2, f2) ∈ PE2 , ∃d ∈ F2(D), ∃b : b = f2(d)

such that θ(f1(c), f2(d)) holds

⇔ a ∈
⋃

(F1,f1)∈PE1

(F2,f2)∈PE2

{f1(c) | c ∈ F1 nθf1f2
F2(D)}

This concludes our proof.

If one is only interested in “boolean” queries, i.e., yes/no properties of databases,
which is often the case in practice, e.g., integrity constraints or decision queries, then
we can strengthen our simulation result into a full equivalence result:

Corollary 7.7. Let E be an SA expression of arity n. Then there exists an SA−rp

expression E′ such that for each database D:

E(D) 6= ∅ ⇔ E′(D) 6= ∅.

Proof. From Theorem 7.4, it follows that E(D) 6= ∅ if and only if for some pair
(F, f) in the set PE , we have: F (D) 6= ∅. Note that each F is an SA−rp expression.
Expression E′ is now defined as

⋃

(F,f)∈PE

π()F.

where () is the empty projection list.

7.1.3 Complexity issues

The algorithm in the proof of Theorem 7.4 has an exponential worst-case complexity.
In order to make this statement precise, define size(E), for an SA expression E, as
the number of operators in E. Furthermore, for a set P of pairs as in Theorem 7.4,
define size(P ) as the sum of the sizes of the SA−rp expressions F in P , i.e., size(P ) =
∑

(F,f)∈P size(F ). We then have:

Proposition 7.8. Let E be an SA expression and let PE be the set constructed by
the algorithm in the proof of Theorem 7.4. Then, size(PE) 6 23·size(E).
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Proof. We simultaneously show by structural induction that size(PE) 6 23·size(E) and
|PE | 6 2size(E). Here, we only present the case where E = E1 − E2. The other cases
are similar but easier. For E = E1 − E2, we have

|PE | = |PE1 | 6 2size(E1) 6 2size(E1)+size(E2)+1 = 2size(E),

and

size(PE) = size(PE1) + |PE1 |+ size(PE1) · |PE2 |

+ size(PE2) · |PE1 |+ 2 · |PE1 | · |PE2 |

6 23·size(E1) + 2size(E1) + 23·size(E1)+size(E2)

+ 23·size(E2)+size(E1) + 2size(E1)+size(E2)+1

6 22 · 23·size(E1)+3·size(E2) + 2size(E1)+size(E2)+1

6 23·size(E1)+3·size(E2)+3

= 23·size(E)

This upper bound is sharp. Indeed, let E be the expression

((
(π2,1R− S1)− S2

)
− · · ·

)

− Sn,

where R and Si are binary relations for all i. Then the set PE constructed by the
algorithm in the proof of Theorem 7.4 is the singleton {(En, f)}, where f(1) = 2 and
f(2) = 1, and where En is inductively defined as follows:

E1 := R−R n
2=1
1=2

S1

Ei+1 := Ei − Ei n
2=1
1=2

Si+1 (for 1 < i 6 n).

Clearly, the size of En is exponential in the size of E.
For this particular expression E, however, there is a set P ′

E of pairs satisfying
the conditions in Theorem 7.4 of size polynomial in the size of E. Indeed, note that
expression E is equivalent to the expression π2,1F , where F is

R−R n
2=1
1=2

(S1 ∪ · · · ∪ Sn).

Therefore, a set P ′
E polynomial in the size of E would be the singleton {(F, f)}.

The question whether, in Theorem 7.4 in general, such a polynomial-size set P
always exists, remains open.

7.1.4 Conclusion

We have shown that SA expressions that employ repetitions and permutations in
projection lists can be simulated using SA expressions that do not employ these fea-
tures. The same holds for the full relational algebra RA, but there this is trivial to
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prove, while here the proof is not trivial. There are probably no practical applica-
tions of the theorem, and indeed, neither are we aware of practical applications of
the corresponding theorem for RA. Nevertheless, as already mentioned in the Intro-
duction, the distinction between the “named” and the “unnamed” perspective in the
relational model has received sufficient attention in a renowned textbook [1], and SA
is a sufficiently important fragment of RA, so that it seems warranted, if only for the
didactical purpose of thorough theoretical understanding of SA, to investigate the
named–unnamed distinction for SA as well as for RA, as we have done in the present
section.

7.2 An Ehrenfeucht-Fräıssé game for the semijoin

algebra

In this section, we describe an Ehrenfeucht-Fräıssé game that characterizes the dis-
cerning power of the semijoin algebra. For technical reasons, we will restrict attention
to the expressive power of SA−rp expressions. This is not a limitation. Indeed, accord-
ing to Theorem 7.4 and Corollary 7.7, SA and SA−rp have equal expressive power.
Furthermore, we assume that the set of selection predicates Ωσ equals the set of
semijoin predicates Ωn (see Chapter 2), and we will refer to them by Ω.

Let A and B be two databases over the same schema S. The semijoin game on
these databases is played by two players, called the spoiler and the duplicator. They,
in turn, choose tuples from the tuple spaces TA and TB, which are defined as follows:

TA :=
⋃

R∈S

arity(R)
⋃

k=1

{
πi1,...,ik(A(R)) | i1, . . . , ik ∈ {1, . . . , arity(R)} strictly increasing

}
,

and TB is defined analogously. So, the players can pick tuples from the databases
and projections of these. The restriction to projections with a strictly increasing
projection list, is only for technical reasons, which will become clear in the proof of
Theorem 7.11.

At each stage in the game, there is a tuple a ∈ TA and a tuple b ∈ TB. We will
denote such a configuration by (A, a;B, b). The conditions for the duplicator to win
the game with 0 rounds are:

1. ∀R ∈ S, ∀i1, . . . , ik ∈ {1, . . . , arity(R)} strictly increasing:

a ∈ πi1,...,ik(A(R))⇔ b ∈ πi1,...,ik(B(R)),

where k is the arity of a and b

2. for every atomic formula (equivalently, for every quantifier-free formula) θ over
Ω, θ(a) holds iff θ(b) holds.

In the game with m > 1 rounds, the spoiler will be the first one to make a move.
Therefore, he first chooses a database (A or B). Then he picks a tuple in TA or in TB
respectively. The duplicator then has to make an “analogous” move in the other tuple
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space. When the duplicator can hold this for m times, no matter what moves the
spoiler takes, we say that the duplicator wins the m-round semijoin game on A and
B. The “analogous” moves for the duplicator are formally defined as legal answers in
the next definition.

Definition 7.9 (legal answer). Suppose that at a certain moment in the semijoin
game, the configuration is (A, a;B, b). If the spoiler takes a tuple c ∈ TA in his
next move, then the tuples d ∈ TB, for which the following conditions hold, are legal
answers for the duplicator:

1. ∀R ∈ S, ∀i1, . . . , ik ∈ {1, . . . , arity(R)} strictly increasing:

c ∈ πi1,...,ik(A(R))⇔ d ∈ πi1,...,ik(B(R)),

where k is the arity of c and d

2. for every atomic formula θ over Ω, θ(a, c) holds iff θ(b, d) holds.

If the spoiler takes a tuple d ∈ TB, the legal answers c ∈ TA are defined identically.

In the following, we denote the semijoin game with initial configuration (A, a;B, b)
and that consists of m rounds, by Gm(A, a;B, b).

We first state and prove

Proposition 7.10. If the duplicator wins Gm(A, a;B, b), then for each SA−rp expres-
sion E with 6 m nested semijoins and projections, we have a ∈ E(A)⇔ b ∈ E(B).

Proof. We prove this by induction on m. The base case m = 0 is clear. Now consider
the case m > 0. Suppose that a ∈ E1 nθE2(A) but b 6∈ E1 nθE2(B). Then a ∈ E1(A)
and ∃c ∈ E2(A) : θ(a, c), and either (*) b 6∈ E1(B) or (**) ¬∃d ∈ E2(B) : θ(b, d).
In situation (*), a and b are distinguished by an expression with m − 1 semijoins or
projections, so the spoiler has a winning strategy; in situation (**), the spoiler has a
winning strategy by choosing this c ∈ E2(A) with θ(a, c), because each legal answer of
the duplicator d has θ(b, d) and therefore d 6∈ E2(B). So, the spoiler now has a winning
strategy in the game Gm−1(A, c;B, d). In case a projection distinguishes a and b, a
similar winning strategy for the spoiler exists. In case a and b are distinguished by an
expression that is neither a semijoin, nor a projection, there is a simpler expression
that distinguishes them, so the result follows by structural induction.

We now come to the main theorem concerning the discerning power of SA. This
theorem concerns the game G∞(A, a;B, b), which we also abbreviate as G(A, a;B, b).
We say that the duplicator wins G(A, a;B, b) if the spoiler has no winning strategy.
This means that the duplicator can keep on playing forever, choosing legal answers
for every move of the spoiler.

Theorem 7.11. The duplicator wins G(A, a;B, b) if and only if for each SA−rp

expression E, we have a ∈ E(A)⇔ b ∈ E(B).

Proof. The ‘only if’ direction of the proof follows directly from Proposition 7.10, be-
cause if the duplicator wins G(A, a;B, b), he wins Gm(A, a;B, b) for every m > 0. So,
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Table 7.1: Queries delineating the expressive power of SA6=.
Expressible Inexpressible

R× S ∩ T R× S ⊆ T
T ⊆ R× S T = R× S

R ◦ S ∩ T
T ⊆ R ◦ S
R ◦ S ⊆ T

∃ path of length k
∃ simple path of length k (k 6 2) ∃ simple path of length k (k > 3)
∃ cycle of length k (k 6 2) ∃ cycle of length k (k > 3)

∃ > k elements (k > 3)

a and b are indistinguishable through all semijoin expressions. For the ‘if’ direction,
it is sufficient to prove that if the duplicator loses, a and b are distinguishable. We
therefore construct, by induction, an SA−rp expression Ema such that (i) a ∈ Ema (A),
and (ii) b ∈ Ema (B) iff the duplicator wins Gm(A, a;B, b). We define E0

a as

σθa

( ⋂

R∈S

⋂

{L∈Zk|a∈πL(A(R))}

πL(R)
)
−

⋃

R∈S

⋃

{L∈Zk|a6∈πL(A(R))}

πL(R)

In this expression, Z is a shorthand for {1, . . . , arity(R)}; k is the arity of a; and θa
is the atomic type of a over Ω, i.e., the conjunction of all atomic and negated atomic
formulas over Ω that are true of a. Furthermore, the projection list L is supposed to
be strictly increasing.

We now construct Ema in terms of Em−1
a :

⋂

c∈TA

(
E0
a nθa,c

Er−1
c

)
∩

(
E0
a −

s⋃

j=1

⋃

θ

(
E0
a nθ

⋂

c∈TA

θ(a,c)

(Em−1
c )compl

))

In this expression, θa,c is the atomic type of a and c over Ω; s is the maximal arity
of a relation in S; θ ranges over all atomic Ω-types of two tuples, one with the arity
of a, and one with arity j. The notation Ecompl, for an expression of arity k, is a
shorthand for

( ⋃

R∈S

⋃

L∈{1,...,arity(R)}k

πL(R)
)
− E

7.2.1 The expressive power of SA 6=

In this section, we present some queries that delineate the expressive power of SA6=.
They are summarized in Table 7.1. The operation R ◦S for binary relations R and S
is a shorthand for π1,4

(
σ2=3(R× S)

)
.

We now discuss the results presented in the table. The semijoin algebra lacks the
Cartesian product operator, but nevertheless one can check if T ⊆ R × S. Indeed,
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A(R)
a
b

A(S)
1
2

A(T )
a 1
a 2
b 1
b 2

B(R)
a
b
c

B(S)
1
2
3

B(T )
a 1
a 2
b 2
b 3
c 1
c 3

Figure 7.1: In A, T = R× S, but not in B.

A(R)
1 a
3 b

A(S)
a 2
b 4

A(T )
1 2
3 4

B(R)
1 a
3 b

B(S)
b 2
a 4

B(T )
1 2
3 4

Figure 7.2: In A, T = R ◦ S, but in B neither T ⊆ R ◦ S nor T ⊇ R ◦ S.

T ⊆ R× S iff T − (T ∩ R× S) = ∅, and T ∩ R× S = (T n1=1∧2=2 R) n3=1∧4=2 S.
Conversely, it is impossible to check if T ⊇ R × S. In Figure 7.1, two databases A
and B are shown that are indistinguishable through semijoin expressions because the
duplicator has an obvious winning strategy. But A satisfies T ⊇ R × S and B does
not. The same databases actually show that it is impossible to check if T = R× S.

Although one can check in SA if a relation is contained in a Cartesian product, it
is impossible to check if a relation is contained in or subsumed by a join. Using our
semijoin game, one can show that databases A and B in Figure 7.2 satisfy the same
semijoin expressions. But A satisfies T = R ◦ S, while B satisfies neither T ⊆ R ◦ S
nor T ⊇ R ◦ S. Note that a binary relation R is transitive if and only if R ◦ R ⊆ R.
This is a special case of R ◦ S ⊆ T ; yet, a similar argument shows that transitivity is
also inexpressible in the semijoin algebra.

The existence of a path of length k can be checked with the following inductively
defined semijoin expression:

{
path(1) := R
path(k) := Rn2=1

(
path(k − 1)

)

Problems arise when we require the path to be simple. Let D(k) be the structure
{(1, 2), (2, 3), . . . , (k−1, k), (k, 1)} over the schema S containing a single edge relation
R. Then, the duplicator has a winning strategy in the infinite game played onD(k) and
D(k+1) where k > 4. To see this, note that only three types of moves are possible here:
next tuple (change only first component of pebbled tuple), previous tuple (change only
second component) and other tuple (change both components). The duplicator can
answer every type of move of the spoiler. But D(k+1) contains a simple path of
length k and D(k) does not. For k = 3, note that D(3) and D(4) are distinguishable.
Nevertheless, existence of a simple path of length 3 is still inexpressible because D(4)

is indistinguishable from the structure consisting of two disjoint copies of D(3). For
k = 2, the existence of a path of length 2 is expressible as Rnx2=y1∧x2 6=x1∧y2 6=x2 R.
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Another property that is inexpressible in SA6= is the existence of a cycle of length
k. For k > 4, the inexpressibility result follows because D(k) contains a cycle of length
k and D(k+1) does not. For k = 3, that the structure consisting of two disjoint copies
of D(3) contains a cycle of length 3, but D(4) does not.

A last example of a query that is inexpressible in SA6= is the query that asks if
there are at least k elements in a unary relation S, where k > 3. This property
is inexpressible because the duplicator has a winning strategy in the infinite game
played on two relations, one with 2 and one with k distinct elements.

7.2.2 Impact of order: the expressive power of SA<,<

In this section, we investigate the impact of order. On ordered databases (where Ω
now also contains a total order on the domain), the query that asks if there are at
least k elements in a unary relation S becomes expressible as at least(k), which is
inductively defined as follows:

{
at least(1) := S
at least(k) := S n1<1

(
at least(k − 1)

)

Note that this query is independent of the order. This is very interesting because in
first-order logic, there also exists an order-invariant query that is expressible with but
inexpressible without order ([1, Exercise 17.27] and [17, Proposition 2.5.6]).

Some inexpressible queries presented in Section 7.2.1 remain inexpressible on
ordered databases. An example is the query R × S ⊆ T . Indeed, consider the
following databases A and B: A(R) = B(R) = {1, 2, . . . ,m}, A(S) = B(S) =
{m+1,m+2, . . . , 2m}, A(T ) = A(R)×A(S) and B(T ) = A(T )−{(m+1

2 ,m+ m+1
2 )}.

We will show that when m = 2n + 1, the duplicator has a winning strategy in the
n-round semijoin game Gn(A, 〈〉;B, 〈〉) with Ω = {=, <}. From Lemma 7.10, it then
follows that the query R×S ⊆ T is inexpressible in SA<,<. The duplicator’s winning
strategy consists of playing exact match until the spoiler chooses c to be the special
tuple (m+1

2 ,m+ m+1
2 ) in A. In that case we must distinguish five possibilities for the

previous tuple a: (1) a1 = m+3
2 , (2) a1 = m−1

2 , (3) a1 = m+1
2 and a2 = m + m+3

2 ,

(4) a1 = m+1
2 and a2 = m + m−1

2 and (5) all other cases. The duplicator chooses d
equal to (m−1

2 ,m + m+1
2 ) in case 1, (m+3

2 ,m + m+1
2 ) in case 2, (m+1

2 ,m + m−1
2 ) in

case 3, (m+1
2 ,m+ m+3

2 ) in case 4, and (m−1
2 ,m+ m+1

2 ) in case 5. Let us assume case
1 applies; cases 2 to 5 are analogous. Then, there are two possibilities. First, if the
spoiler chooses a value c1 6= a1 − 1 or if he chooses a value d1 6= b1 + 1 in some next
round, the duplicator can play exact match and the game starts over. Second, if the
spoiler chooses in each next round c1 = a1 − 1 or d1 = b1 + 1, the duplicator answers
d1 = b1 − 1 or c1 = a1 + 1, respectively. The duplicator can follow this strategy for
at least m−3

2 = n − 1 rounds. Counting from the round where the spoiler chose the
special tuple, we thus see that the duplicator wins the game Gn(A, 〈〉;B, 〈〉).

Exactly the same argument shows that also the query R× S = T is inexpressible
in SA with order.

Another query from Table 7.1 that remains inexpressible in SA with order is
R ◦ S ⊆ T . Therefore, consider the following databases A and B: A(R) = B(R) =
{1, . . . ,m}× {2m+ 1}, A(S) = B(S) = {2m+ 1}× {m+ 1, . . . , 2m}, A(T ) = A(R) ◦
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A(S) = {1, . . . ,m}×{m+1, . . . , 2m} and B(T ) = B(R)◦B(S) − {(m+1
2 ,m+ m+1

2 )}.
A similar argument as in the previous paragraph shows that when m = 2n + 1, the
duplicator wins Gn(A, 〈〉;B, 〈〉). Again, this also shows that R◦S = T is inexpressible
in SA with order.

For the remaining SA-inexpressible queries in Table 7.1, the question whether they
become expressible in SA with order remains open.
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Samenvatting

In 1970 stelde Codd het intussen zeer bekende relationeel model voor. In het relatio-
neel model wordt een gegevensbank voorgesteld als een eindige verzameling relaties.
Een relatie is op haar beurt een eindige verzameling van tupels. Om queries, dit zijn
vragen over de gegevens, uit te drukken in het relationeel model stelde Codd de relati-
onele algebra (RA) voor met operatoren selectie, projectie, unie, verschil en join [14].
Sindsdien is de relationele algebra erg grondig bestudeerd [1]. Een zeer belangrijk
resultaat is dat de uitdrukkingskracht van de relationele algebra gelijk is aan die van
eerste-orde logica [15].

De “semijoin”-operator selecteert de tupels in de ene relatie die zouden deelnemen
aan de volledige join met een andere relatie. De operator is dus uitdrukbaar met
de andere operatoren in de relationele algebra, meer bepaald door gebruik te maken
van de join- en de projectie-operator. Deze operator is ook grondig bestudeerd in het
verleden. Bijvoorbeeld, terwijl het berekenen van een project-join query NP-compleet
is in de grootte van de query en de gegevensbank, kan deze berekening in polynomiale
tijd gebeuren als het schema van de gegevensbank acyclisch is [61]. En deze acycliciteit
komt precies overeen met het bestaan van een programma van semijoins [11, 13, 12].
Semijoins worden vaak gebruikt om bij het verwerken van een query de gegevensbank
voor te bereiden. Op die manier kunnen tupels die niet joinen worden geëlimineerd en
de gegevensbank herleid worden tot het gedeelte dat effectief nodig is om het antwoord
op de query te berekenen. Een andere interessante eigenschap is dat het resultaat van
de semijoin-operatie lineair is in de grootte van de invoer relaties. Daarom zal de
query processor de join-operatie overal waar mogelijk vervangen door de semijoin-
operatie. Deze techniek staat bekend als “pushing projections” [19]. Wanneer de
gegevensbank fysisch verspreid is over verschillende computers kan deze techniek veel
netwerkverkeer helpen besparen en zo een aanzienlijke tijdwinst opleveren.

Merkwaardig genoeg echter is — voor zover we weten — de “semijoin algebra”,
dit is de algebra die we bekomen door de join-operatie in de relationele algebra te
vervangen door de semijoin-operatie, nog nooit bestudeerd.

We tonen aan dat de semijoin algebra (SA) dezelfde uitdrukkingskracht heeft als
het guarded fragment van eerste-orde logica. Dit fragment is gëıntroduceerd door
Andréka, van Benthem en Németi [4] met als doel modale logica uit te breiden van
zogenoemde Kripke-structuren naar willekeurige relationele structuren zonder daarbij
de interessante eigenschappen, zoals de “finite model property”, te moeten opgeven.

97
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Ook het guarded fragment is erg grondig bestudeerd [26, 23, 25, 24, 39].
Deze “Codd-stelling” voor de semijoin algebra heeft een aantal interessante gevol-

gen. Een eerste gevolg is dat de semijoin algebra de interessante eigenschappen van
het guarded fragment overerft. Eén van de belangrijkste eigenschappen voor “data-
base query processing” is wel beslisbaarheid. Concreet is het volgende probleem, dat
het “satisfiability probleem” wordt genoemd, beslisbaar:

Invoer: Een SA expressie E.

Uitvoer: Bestaat er een gegevensbank D zodat het resultaat van de evaluatie van E
op D niet leeg is?

Een onmiddellijk gevolg is het equivalentie-probleem voor de semijoin algebra ook
beslisbaar is. Er is dus een algoritme dat controleert of twee gegeven SA expres-
sies altijd hetzelfde resultaat zullen geven, wat ook de gegevensbank is waarop de
expressies worden geëvalueerd. Dit suggereert meteen dat er algoritmes zijn om SA
expressies te herschrijven in equivalente SA expressies die efficiënter kunnen worden
geëvalueerd. Merkwaardig genoeg is het satisfiability probleem niet beslisbaar voor
eerste-orde logica en dus ook niet voor de relationele algebra en voor SQL zonder
groepering en aggregatie.

Een ander gevolg, gerelateerd aan het vorige, is dat we de tijdscomplexiteit van
het satisfiability probleem voor SA hebben kunnen vastleggen door gebruik te maken
van de tijdscomplexiteit van datzelfde probleem voor het guarded fragment. Het
satisfiability probleem voor SA is exptime-compleet.

De Codd-stelling voor SA heeft ook een aantal toepassingen. Een eerste toepassing
is aantonen dat een bepaalde query niet kan worden uitgedrukt in SA. Om aan te
tonen dat een query niet uitdrukbaar is in het guarded fragment, bestaat er immers
al een techniek. Deze techniek is bekend als “guarded bisimulation”. Andréka, van
Benthem en Németi hebben aangetoond dat de verzameling eerste-orde formules die
invariant zijn onder guarded bisimulations precies overeenkomt met de verzameling
formules uit het guarded fragment [4].

In Hoofdstuk 2 definiëren we de nodige begrippen uit de logica en uit de theorie
van gegevensbanken. De Codd-stelling, haar gevolgen en de bovenvermelde toepassing
worden uiteengezet in Hoofdstuk 3 van deze tekst.

Een tweede toepassing van de Codd-stelling voor SA bespreken we in Hoofdstuk 4.
Het betreft het evalueren van queries in lineaire ruimte. Beschouw een RA expressie
E als lineair als voor elke gegevensbank D en voor elke deelexpressie E′ van E,
de grootte van het resultaat van de evaluatie van E′ op invoer D lineair is in de
grootte van D. Met andere woorden, bij de evaluatie van een lineaire RA expressie
zal elk tussenresultaat een lineaire grootte hebben in verhouding tot de grootte van
de invoer-gegevensbank. We tonen aan dat een query uitdrukbaar is door een lineaire
RA expressie als en slechts als ze uitdrukbaar is door een SA expressie. We zullen
tegelijkertijd aantonen dat een RA expressie ofwel lineair is, ofwel kwadratisch.

Dit resultaat kan verklaren waarom bepaalde operaties zwaar zijn voor de query
processor. We gaan in deze tekst dieper in op de delingsoperatie en op de meer algeme-
ne “set joins”. De delingsoperatie voor relaties werd al door Codd gëıntroduceerd [15]
en is hét typevoorbeeld van een set join. Set joins relateren elementen in de gegevens-
bank op basis van verzamelingen van waarden in plaats van op basis van één enkele
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Persoon
pNaam Symptoom

An hoofdpijn
An keelpijn
An nekpijn
Bob hoofdpijn
Bob keelpijn
Bob geheugenverlies
Bob nekpijn
Carol hoofdpijn

Ziekte
zNaam Symptoom
griep hoofdpijn
griep keelpijn
Lyme hoofdpijn
Lyme keelpijn
Lyme geheugenverlies
Lyme nekpijn

Symptomen
Symptoom
hoofdpijn
nekpijn

Persoon 1
Persoon.Symptoom⊇Ziekte.Symptoom

Ziekte

pNaam zNaam
An griep
Bob griep
Bob Lyme

Persoon÷ Symptomen
pNaam

An
Bob

Figuur 1: Illustratie van de delingsoperatie en set-containment join.

waarde, zoals het geval is bij een standaard join-operatie. Concreet is het resultaat
van de deling van R(A,B) door S(B) de verzameling van A-waarden waarvoor de
verzameling B-waarden die door R met A gerelateerd zijn, de hele verzameling S
omvat. Er bestaat ook een variant van deze delingsoperatie waarbij de verzameling
gerelateerde B-waarden gelijk moet zijn aan de verzameling S. Algemener nog heb-
ben we de “set-containment join” R 1

B⊇D
S van R(A,B) en S(C,D), die als resultaat

de verzameling
{
(a, c) | {b | R(a, b)} ⊇ {d | S(c, d)}

}
,

geeft, en opnieuw de analoge “set-equality join”. In principe kan elk op verzamelingen
gedefinieerd predikaat worden gebruikt in de plaats van ⊇ en = [53, 55]. Merk op
dat de set join met als predikaat “de doorsnede is niet leeg” neerkomt op een gewone
equijoin!

Voorbeeld 1. Figuur 1 illustreert de delingsoperatie en de set containment join. Het
bovenste gedeelte toont drie relaties Persoon, Ziekte en Symptomen. Persoon relateert
personen en symptomen; Ziekte relateert ziektes en symptomen; en Symptomen is
een verzameling symptomen. De set containment join van Persoon en Ziekte op
Persoon.Symptoom ⊇ Ziekte.Symptoom is te zien links in het onderste gedeelte. De
join legt het verband tussen een persoon en een ziekte als die persoon alle symptomen
heeft die met de ziekte gepaard gaan. De deling van Persoon en Symptomen is te zien
rechts beneden en toont de personen die alle symptomen hebben uit de verzameling
Symptomen.

Men heeft in het verleden vaak moeten vaststellen dat het berekenen van delingen
met klassieke query processors zeer tijdrovend was [27, 28]. Set joins zijn inderdaad
wel uitdrukbaar in de relationele algebra door gebruik te maken van equijoins en van
de verschil-operatie, maar de expressies hiervoor blijken altijd vrij ingewikkeld en
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inefficiënt. We tonen in deze tekst aan dat de deling en (testen op leegheid van) de
set containment/equality join niet kunnen worden uitgedrukt in de semijoin algebra.
Daarom moet elke RA expressie voor deze operaties tussenresultaten van kwadratische
grootte geven. Op deze manier rechtvaardigen we dus eigenlijk formeel al het werk
dat door vele auteurs is verricht om set joins te implementeren als “special-purpose”
operatoren, of om ze te vertalen naar de krachtigere algebra met groepering, sortering
en aggregratie [37, 48, 52]. Zo kunnen de deling en set-equality join efficiënt worden
gëımplementeerd in O(n logn) tijd door trucs te gebruiken gebaseerd op sorteren en
tellen.

Het berekenen van het resultaat van een semijoin algebra expressie kan dus gebeu-
ren in lineaire ruimte. Maar hoe vaak moeten we nu de gegevens uit de gegevensbank
lezen om tot het resultaat van een SA expressie te komen? We beantwoorden deze
vraag in Hoofdstuk 5. In database query processing wordt een belangrijk onderscheid
gemaakt tussen 1-pass en 2-pass algoritmen [19]. 1-pass algoritmes lezen de gegevens
slechts één keer van de harde schijf. 2-pass algoritmes lezen de gegevens een eerste
keer van de harde schijf, verwerken deze gegevens, schrijven de gegevens naar de har-
de schijf en lezen dan de gegevens opnieuw van de harde schijf om het resultaat te
kunnen berekenen. Het verwerken van de gegevens nadat deze een eerste keer van de
harde schijf zijn gelezen komt meestal neer op het sorteren ervan. Het is onmiddellijk
duidelijk dat de selectie-operatie kan gëımplementeerd worden door een 1-pass algo-
ritme. Elk tupel van de gegevensbank kan immers onafhankelijk van de andere tupels
worden verwerkt. Als we dubbels even buiten beschouwing laten, dan kunnen ook de
projectie- en de unie-operatie gëımplementeerd worden door een 1-pass algoritme. De
verschil- en de semijoin-operatie echter kunnen intüıtief niet worden gëımplementeerd
door een 1-pass algoritme.

Om dit nu echt hard te maken voeren we een model in dat we finite cursor machines
(FCMs) noemen. Een FCM werkt op een aantal lijsten van tupels en kan zich op
elk moment in een bepaalde toestand bevinden. Er zijn slechts een eindig aantal
beschikbare toestanden. Een FCM heeft ook een intern geheugen bestaande uit een
eindig aantal registers waarin bit strings kunnen worden opgeslaan. Het lezen van de
tupels uit de lijsten gebeurt door middel van een eindig aantal cursors. Elke cursor
kan op ieder ogenblik slechts één tupel lezen. Als resultaat kan een lijst van tupels
worden geproduceerd. Om een realistisch model te zijn voor het sequentieel verwerken
van de tupels in een gegevensbank, worden er een aantal beperkingen opgelegd: ten
eerste kunnen de cursors maar in één richting over de lijsten lopen, tupel per tupel.
Eens de laatste cursor een tupel van een lijst heeft verlaten, kan dat tupel dus nooit
meer worden gelezen tijdens de berekening. Ten tweede is het intern geheugen van
een FCM gelimiteerd. Het model is duidelijk sterk gëınspireerd op de methodologie
van abstract state machines (ASMs) [31, 32] en we zullen het model dan ook aan de
hand van ASMs definiëren.

We tonen aan dat de verschil- en de semijoin-operatie niet berekenbaar zijn door
een FCM, zelfs niet wanneer de FCM bit strings mag opslaan met een totale lengte
van o(n), waarbij n de lengte van de invoerlijsten is. Wanneer echter alle gesorteerde
versies van de relaties van de gegevensbank ter beschikking zijn, kan een FCM elke
operator van de semijoin algebra berekenen. Bijgevolg kan elke semijoin algebra query
berekend worden door een uitvoeringsplan dat bestaat uit FCMs en sorteeroperaties.
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In zulke uitvoeringsplannen duiken in het algemeen echter veel tussentijdse sorteer-
operaties op. In sommige gevallen kunnen die tussentijdse sorteeroperaties worden
vermeden door in het begin een slimme sorteervolgorde te kiezen die dan door alle
operaties in het uitvoeringsplan kan worden gebruikt [56]. Daarom rijst natuurlijk de
vraag: zijn tussentijdse sorteeroperaties wel echt nodig? Of anders gezegd, kan elke
semijoin algebra query al worden berekend door een FCM die werkt op gesorteerde
invoerlijsten? We beantwoorden deze vraag negatief: De zeer eenvoudige semijoin
algebra expressie R n (S n T ) met R en T unaire relaties en S een binaire relatie,
is niet berekenbaar door een FCM met intern geheugen van grootte o(n) die werkt
op gesorteerde inputs. We tonen tevens aan dat de tussentijdse sorteeroperaties zelfs
onvermijdelijk zijn bij het berekenen van semijoin algebra queries wanneer FCMs
kunnen werken op combinaties van voorwaartse en achterwaartse sorteringen van de
invoerlijsten. We merken daarbij op dat FCMs inderdaad meer relationele algebra
queries kunnen berekenen wanneer ze kunnen werken op voorwaartse én achterwaart-
se sorteringen.

Met het specifieke karakter van finite cursor machines, meer bepaald de sequentiële
verwerking van gegevens, in gedachten komen we in Hoofdstuk 6 bij het onderwerp
van “stream query processing”. Dit onderwerp heeft de laatste jaren enorm veel
aandacht gekregen in de onderzoeksgemeenschap van gegevensbanksystemen. We ge-
ven hier slechts enkele referenties [57, 9, 10, 47, 20]; de publicatielijst is veel langer.
Stream queries zijn typisch “continu” in de zin dat het resultaat continu moet wor-
den aangepast als er nieuwe gegevens aankomen: stream toepassingen zijn inderdaad
“data-driven”. Bijgevolg moeten stream queries op een incrementele manier worden
berekend. Dat gebeurt met wat men noemt “non-blocking” operatoren. De monoto-
ne relationele algebra operatoren zijn non-blocking; de operatoren die niet monotoon
zijn, zoals bijvoorbeeld het verschil, of groepering en aggregatie, worden meestal non-
blocking gemaakt door ze te beperken tot “sliding windows”.

Eerst geven we een theoretisch raamwerk dat een aantal eerder filosofische kwes-
ties over stream queries tracht te verhelderen. Bijvoorbeeld, als we streams zien als
oneindige lijsten en we zien queries als functies van streams naar streams, wat be-
tekent het dan dat een stream query berekenbaar is? Is berekenbaarheid hetzelfde
als continüıteit? Wat is nu precies het verband tussen continüıteit en montoniciteit?
Kunnen we een formele definitie geven van een non-blocking operator?

Eerder al rapporteerden Arasu en Widom [7] en Law, Wang en Zaniolo [41] over
gelijkaardig werk. Dit werk heeft echter een aantal nieuwigheden:

Ten eerste maken we een onderscheid tussen “timed” en “untimed” toepassingen.
In een timed toepassing zijn de tijdstippen van de uitvoer-stream gesynchroniseerd
met die van de invoer-stream en in een untimed toepassing is dat niet zo. De meeste
toepassingen die in de literatuur worden vermeld, zoals aandelenkoersen of sensor-
netwerken, zijn timed. Toch hebben untimed streams zeker en vast toepassingen,
bijvoorbeeld in audio of video streams en in uitzendingen via het Internet. Daar is
de logische volgorde waarin de pakketten ontvangen of verstuurd zijn veel belang-
rijker dan de juiste tijdstippen waarop de pakketten zijn ontvangen of verstuurd.
Fundamenteler nog, we kunnen timed streams zien als een speciaal geval van unti-
med streams en de theorie omtrent untimed streams gebruiken om timed streams te
bestuderen. Toch zullen we ook enkele eigenschappen specifiek aan timed queries
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bestuderen, zoals bijvoorbeeld het niet-voorspellende karakter.

Ten tweede vinden onze formele definities van abstract berekenbare stream queries
hun oorsprong in de theorie van type-2 effectivity (TTE) [60]. Dit is een theorie
van berekenbaarheid op oneindige strings (en nog veel meer, maar daar gaan we
hier niet op in). Het basisidee van TTE, verrassend analoog aan dat van continue
stream queries, is dat willekeurig lange eindige beginwoorden van de oneindige uitvoer
berekend kunnen worden door te werken op steeds langere eindige beginwoorden van
de oneindige invoer. Een belangrijk inzicht van TTE is dat berekenbare functies op
oneindige strings inderdaad “continu” zijn, maar dan in de betekenis van wiskundige
topologie. Concreet, voor een natuurlijke metriek op oneindige strings (beter bekend
als de Cantor metriek) waarbij twee strings dichter bij elkaar liggen hoe langer hun
langste gemeenschappelijk beginwoord is, toont men aan dat berekenbare functies
continu zijn in de standaard wiskundige betekenis. Continüıteit geeft ons op deze
manier de mogelijkheid om aan te tonen dat niet zomaar elke functie van streams
naar streams beschouwd kan worden als een stream query.

Ten slotte, onze theorie is abstract in de zin dat de elementen van een stream
uit een willekeurig universum komen en dat daarop willekeurige predikaten en func-
ties gedefinieerd kunnen zijn. In wiskundige logica spreekt men van een structuur
en we zullen naar het universum verwijzen als de achtergrondstructuur. We gaan
de stream elementen dan ook niet coderen als bit strings (eindige of oneindige) en
Turing-machine operaties op deze bit strings uitvoeren. Die aspecten zijn immers al
behandeld in de TTE. Bijgevolg is onze theorie erg algemeen. We tonen aan dat de
berekenbare stream queries precies de continue functies zijn van streams naar streams.

We zullen argumenteren dat finite cursor machines onrealistisch krachtig zijn in
het verwerken van streams. Daarom voeren we een nieuw model in en we doen
dat opnieuw door gebruik te maken van de methodologie van abstract state machi-
nes [31, 32]. We noemen dat model “streaming ASM” (sASM). We tonen aan dat elke
berekenbare stream query berekenbaar is door een streaming ASM met een geschikte
achtergrondstructuur. Streaming ASMs laten ons bovendien toe om negatieve resul-
taten te bewijzen. Concreet zullen we sASMs bestuderen met een beperkt geheugen:
zulke machines kunnen enkel een vast aantal elementen onthouden die eerder zijn
aangekomen in de stream. In de context van query processing zijn zulke machines
heel erg natuurlijk: bijvoorbeeld elke operator die werkt volgens de sliding window
semantiek is berekenbaar met een beperkt geheugen. We tonen aan dat er eenvoudige
queries zijn die niet berekenbaar zijn met een beperkt geheugen. Eén van de eenvou-
digste queries is intersect: vind de elementen die gemeenschappelijk zijn in twee
streams.

Aangezien we weten dat FCMs krachtiger zijn dan sASMs en aangezien we al weten
dat de query intersect niet berekenbaar is door een FCM, zouden we per reductie
direct kunnen besluiten dat de query ook niet berekenbaar is door een sASM. We
geven hier echter een rechtstreeks bewijs. Dat heeft het voordeel — naast het feit dat
het bewijs uiteraard eenvoudiger is — dat het een beter inzicht geeft in de beperkingen
van stream query processing met een beperkt geheugen. We zullen bovendien ook zien
dat er stream queries bestaan die berekenbaar zijn door een FCM, maar niet door een
sASM.

Ten slotte, in Hoofdstuk 7 bestuderen we de uitdrukkingskracht van de semijoin
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algebra wanneer er willekeurige ongekwantificeerde formules kunnen worden gebruikt
in de selectie- en join-condities. Merk op dat de Codd-stelling voor de semijoin algebra
in Hoofdstuk 3 enkel geldig is voor equi-semijoins.

In het eerste deel van Hoofdstuk 7 bestuderen we de kracht van het herhalen
en permuteren van kolommen in de projectie-operator van de semijoin algebra. Die
herhalingen en permutaties zijn ook in de relationele algebra toegestaan, maar ze
zijn daar duidelijk niet essentieel. Er bestaan immers twee equivalente perspectieven
over het relationeel model en over de relationele algebra, met name het benoemd
perspectief en het onbenoemd perspectief [1]. In het benoemd perspectief worden
tupels gezien als functies van de verzameling attributen naar het domein; in het on-
benoemd perspectief worden tupels gezien als geordende lijsten van domein waarden.
Het permuteren en herhalen van kolommen in de projectie-operatie is daarom enkel
mogelijk in het onbenoemde perspectief. Ter volledigheid zullen we hier nog eens
expliciet aantonen dat elke relationele algebra expressie kan worden herschreven als
een relationele algebra expressie die geen kolommen herhaalt of permutateert in de
projectie-operaties.

Voor de semijoin algebra is het echter niet direct duidelijk of het herhalen en
permuteren van kolommen in de projectie-operatie invloed heeft op de uitdrukkings-
kracht. De herschrijfregel in het hierboven vermeld bewijs om een projectie in een
RA expressie te vervangen door een projectie die noch permuteert, noch herhaalt,
maakt inderdaad gebruik van de join-operatie en die operatie ontbreekt nu net in de
semijoin algebra. Toch kunnen we aantonen dat elke SA expressie gesimuleerd kan
worden door SA expressies waarin de projectie-operaties geen permutaties of herhalin-
gen van kolommen gebruiken. Het begrip “simulatie” is hier echter iets ingewikkelder.
Het idee is dat we vanuit een gegeven SA expressie E een verzameling SA expressies
zonder herhalingen en permutaties kunnen construeren die de relevante waardes van
de uitvoertupels van E als resultaat hebben. De uitvoertupels van E zelf kunnen dan
worden bekomen door achteraf op de tupels van relevante waardes zekere herhalingen
en permutaties uit te voeren; hoe dat dan precies moet gebeuren, kan worden afgeleid
uit de vertaling. In het bijzonder, voor booleaanse expressies is er altijd een enkele
equivalente booleaanse expressie zonder herhalingen en permutaties.

In een tweede deel van Hoofdstuk 7 definiëren we een Ehrenfeucht-Fräıssé spel
dat de uitdrukkingskracht van de semijoin algebra karakteriseert. De karakterisatie
houdt rekening met de beschikbare predikaten in de semijoin- en selectie-condities. We
gebruiken het Ehrenfeucht-Fräıssé spel om in het bijzonder de uitdrukkingskracht te
bestuderen van de semijoin algebra waarbij willekeurige ongekwantificeerde formules
over enerzijds het vocabularium {=} en anderzijds over het vocabularium {=, <}
kunnen worden gebruikt in selectie- en semijoin-condities.
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