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Introduction 

A quiver is an oriented graph. More formally a quiver is a 4-tuple Q = 
(Qo, Q1, h, t) where Qo denotes the set of vertices, Q 1 denotes the set of ar­
rows and t , h : Q 1 ---* Q0 are the maps which associate to an arrow it starting 
and ending vertex. We tacitly assume our quivers to be finite: IQol, IQ1 I < oo. 

A representation of Q over a base field 1k consists of a family of finite di­
mensional Jk-vector spaces (V;)iEQo together with a family of Jk-linear maps 
(Vx : Ytx ---* Vhx)xEQ1 • The representations of Q form an Abelian category. In 
particular we may speak of indecomposable representations. 

If V is a representation of Q then its dimension vector dim V E NQ0 is defined 
by (dim V)i = dim "V;. If a E NQ0 then any representation with dimension vector 
a is isomorphic to a representation of the form ((Jk"'•)iEQo, (</>x)xEQ

1
) where 

¢x E Homlk(Jk°''x,]k°'hx) = Mat°'txXl>hx(Jk). Thus if we define Rep(Q,a) = 
fixEQ

1 
Mat°''x xa,.x (Jk) then every representation with dimension vector a is 

isomorphic to a representation corresponding to a point in Rep(Q, a). We refer 
to Rep( Q, a) as the representation space of the pair ( Q, a). 

Define Gl(a) = rriEQo Gl(ai, k). The group Gl(a) acts on by Rep(Q, a) by 
conjugation and two elements of Rep(Q, a) correspond to isomorphic represen­
tations if and only if they are in the same Gl(a)-orbit. Thus the problem of 
classifying isomorphism classes of representations with dimension vector a is 
equivalent to describing the orbit space Rep(Q, a)/ Gl(a). 

Example 1 If Q consists of one vertex and one loop then the Gl(a)-orbits in 
Rep(Q, a) are characterized by the Jordan normal form of the corresponding 
matrices. So the representation theory of quivers may be viewed as a natural 
extension of a classical linear algebra problem. 

Let us now assume that 1k is algebraically closed. A fundamental result is that 
quivers may be naturally separated into three classes. To explain this let us 
assume that Q is not the disjoint union of two smaller quivers. 

1. If for any a there are only a finite number of indecomposable representa­
tions (up to isomorphism) with dimension vector a then we say that Q is 
of finite representation type. This is equivalent to the underlying unori­
ented graph of Q being a (simply laced) Dynkin diagram. In this case the 
isomorphism classes of indecomposable representation of Q may be listed. 
The simplest example of this type is given by a quiver consisting of one 
vertex and no arrows. 

2. If for any a the indecomposable representations (up to isomorphism) with 
dimension vector a depend on at most one parameter then we say that 
Q is of tame type. T his is equiva lent to the underlying unoriented graph 
of Q being a (simply laced) extended Dynkin diagram. In this case the 
indecomposable representations of Q can still be classified. The simplest 
example of this type is given by the one loop quiver. It is clear that in this 
case the indecomposable representations are given by the Jordan blocks. 
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3. A quiver which is neither of finite representation type or tame is said to be 
wild. The simplest example is given by a quiver consisting of one vertex 
and two loops. 

In the wild case a full classification of indecomposable representations seems to 
be out of reach. As a first approximation one may consider the case lk = IF q . 

Since this field is not algebraically closed is· natural to consider absolutely inde­
composable representations, i.e. those representations which remain indecom­
posable after tensoring with lk. 

Victor Kac [Kac83] proved that the number of orbits OQ,a(q) and absolutely 
indecomposable orbits aQ,a(q) in Rep(Q, a) are polynomials in q with integer 
coefficients. He conjectured that the coefficients of aQ,a(q) are non-negative 
and that in addition aQ,a(O) is given by the multiplicity of a viewed as a root 
of a Kac-Moody Lie algebra naturally associated to Q. When Kac made these 
conjectures he had very little evidence in the wild case. Such evidence was 
provided by Le Bruyn, Molenberghs and recently Hua [LB88, LBM88, Hua98]. 
Very recently Crawley Boevey and Van den Bergh succeeded in proving the 
positivity conjecture for indivisible dimension vectors and the constant term 
conjecture for dimension vectors which are 1 in some vertex [CBVdBOl]. 

The results in this thesis center around Kac's conjectures. Although we do 
not succeed in proving them, we find some equivalent statements, and also some 
related results which we think are interesting in their own right. 

After a first introductory chapter containing basic definitions we present in 
Chapter 2 some more evidence on the positivity conjecture: we prove that it 
holds for an m-loop quiver with dimension vector up to 5 and m arbitrary. 

In Chapter 3, which is based on [SV dB99b] we use the theory of symmetric 
functions to find a combinatorial reformulation of the constant term conjecture. 
The final statement amounts to a signed counting of certain words. While it 
seems quite plausible that such a counting may be carried out, we have not 
succeeded in doing it. An interesting side result of this chapter is an explicit 
expression for the Hall-Littlewood polynomial corresponding to a hook in terms 
of Schur functions. This generalizes a conjecture by Carbonara (proved by 
MacDonald) [Car98] . It is a tantalizing question if a similar result exists for 
more general partitions. 

The Ringel-Hall algebra of a quiver is an algebra whose basis consists of the 
isomorphism classes of indecomposable representations. After adding a diagonal 
part and performing a Drinfeld double construction one obtains a Hopf algebra 
which looks very much like the quantum enveloping algebra of a Lie algebra 
[Gre95, Kap97, Xia97]. In Chapter 4 we carry out this construction in detail. 
As a result we obta in the precise relations which hold in the resulting algebra. 
These relations are used in the next chapter. 

In Chapter 5, based on [SV dB99a], we introduce three isomorphisms between 
the (double) Ringel-Hall algebras of quivers with the same underlying graph. 
By composing these isomorphisms we obtain a new construction of Lusztig's 
braid group action on a quantum enveloping algebra. 

In Chapter 6, based on [SVdBOl] we show that the Ringel-Hall algebra is 
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a quantized enveloping algebra of a generalized Kac-Moody Lie algebra. Such 
objects had been introduced by Kang [Kan95J in the generic case. Our methods 
are different and more general that those of Kang since they also apply in the 
non-generic case. One of our main results is a Weyl-Borcherds character formula 
for the Hall algebra. This yields another reformulation of Kac's constant term 
conjecture, this time in terms of the multiplicities of the imaginary simple roots 
of the Ringel-Hall algebra. 

Our work in Chapters 4, 5, 6 has been the basis for [DXOla, DXOlb, DXOlc, 
XYOl] where our results are generalized to arbitrary finite dimensional heredi­
tary algebras (using similar methods). The connection with our work is given 
by the path algebra which is a certain hereditary algebra naturally associated 
to any quiver. 

Inleiding 

Een quiver ( of pijlkoker) is een georienteerde graaf. Als men aan elk punt een 
vectorruimte hecht , en aan elke pijl een lineaire afbeelding, heeft men een repre­
sentatie van de quiver. Via basisveranderingen werken groepen Gln (samen G1

0
) 

op de verzameling van representaties met een vaste dimensievector. We kun­
nen directe sommen nemen van representaties, en zodoende onontbindbaarheid 
definieren. 

We onderscheiden 3 klassen van quivers. Degene met slechts een eindig 
aantal onontbindbare representaties (op isomorfisme na) hebben als onderliggen­
de graaf een Dynkin diagram. Een tweede klasse bestaat uit de tamme quivers, 
waarvan de representatie-theorie vergelijkbaar is met die van de 1-lus quiver. 
Deze quiver staat in feite voor het Jordan probleem. Een representatie is een 
vectorruimte en een endomorfisme. Elke (absoluut) onontbindbare represen­
tatie is isomorf met een Jordan blok. Een antler voorbeeld is de situatie van 2 
vectorruimtes en 2 lineaire afbeeldingen tussen deze twee ruimtes. Ondanks dat 
tamme quivers oneindig veel representaties hebben, zijn deze geklassificieerd. 
Helaas zijn de meest e quivers wild. 

Het kleinste voorbeeld van een wilde quiver is er een met een punt en 2 
lussen. Het komt overeen met het probleem om koppels van vierkante matrices 
the klassificieren. Dit is al lang een open probleem. Elke quiver waarvan de 
representatie theorie dit probleem bevat is wild. Het lijkt op <lit moment onmo­
gelijk om voor elke klasse (t.o.v. van de actie Gla) een canonische representant 
te vinden, zoals dit kan voor de Jordan blokken. Om iets te kunnen zeggen over 
het aantal klassen werken we over eindige velden lF q . Kac bewees <lat zowel het 
aantal OQ,a(q) klassen als het aantal absoluut onontbindbare klassen aQ,a(q) een 
veelterm is in Z[q] . Kac uitte ook de vermoedens dat de coefficienten allen posi­
tief zijn, en de de constante term aQ,a(O) (als er geen lussen zijn) de dimensie 
van g0 in een Kac-Moody algebra g geassocieerd aan de quiver. 
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Na een inleidend eerste hoofdstuk, waar basisdefinities van de quiver the­
orie worden gegeven, geven we in hoofdstuk 2 bescheiden aanwijzingen voor het 
vermoeden <lat de coefficienten positief zijn. We vermelden <lat Kac nauwelijks 
voorbeelden had van de veeltermen voor wilde quivers. We zullen aantonen dat 
voor elke m-lus quiver (met een enkele hoekpunt) het vermoeden waar is tot en 
met dimensie 5. 

In het derde hoofdstuk vinden we een combinatorische herformulering 
van het constante-term-vermoeden. We gebruiken hierbij de theorie van sym­
metrische functies. We vertalen het vermoeden naar een eigenschap van Gaussi­
aanse multinomiaal coefficienten. Het is goed mogelijk <lat dit nieuw vermoeden 
te bewijzen is met combinatoriek maar we zijn er niet in geslaagd. 

De Ringel-Hall algebra van een quiver is een algebra met als basis de iso­
morfismeklassen van representaties van de quiver. Door een diagonaal gedeelte 
bij te voegen kunnen we hier een Hopf algebra van maken, en door een Drinfeld 
double constructie uit te voeren krijgen we een algebra U( Q) die goed lijkt op 
de quantum omhullende algebra van een Lie algebra. De constructie wordt in 
hoofdstuk 4 uitgelegd. 

In het 5de hoofdstuk definieren we 3 isomorfismen op de Ringel-Hall alge­
bras. We bewijzen een opmerking van Lusztig <lat de Hall algebra onafhankelijk 
is van de orientatie, waarbij we Fourier transformaties gebruiken. Anderzi­
jds breiden we de reflectiefunctoren die op quivers bestaan uit tot de volledige 
Hall a lgebra. Door beide isomorfismen te combineren krijgen we automorfis­
men van U(Q) die, op zijn minst op de samenstellingsalgebra, de vlechtrelaties 
respecteren. 

Ten slotte breiden we in hoofdstuk 6 de quantum omhullende van een Lie 
algebra uit. Daarmee kunnen we bewijzen dat de Hall algebra als een veral­
gemeende quantum omhullende algebra van een Kac-Moody Lie algebra kan 
warden beschouwd en <lit leidt tot een nieuwe vertaling naar dit onderzoeks­
domein van het constante-term vermoeden. 
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Chapter 1 

An Introduction to the 
Representation Theory of 
Quivers 

In the 30 years that have elapsed since Peter Gabriels' stunning paper [Gab72], 
quivers have studied at from various angles. In this introduction we will follow 
to some extent the introductory paper of Kraft and Riedtmann [KR86). 

1.1 Quiver Conventions 

1.1.1 A Quiver and its Representations 

A quiver Q = (Qo, Q1, h, t) is a quadruple consisting of two finite sets and two 
maps. The first set is the set Qo of vertices. In most cases this will be either 
{O, 1, ... , n} or {1, ... , n }. The second set is the set Q1 of arrows. The two maps 
define the tail and head points of the arrows: t, h : Q1 --+ Q0 . Of course t hese 
names correspond to the graphical presentation of a quiver. 

5 .,.._E__ 4 

~ p11µ w r( 
1 - 2---3 
~ -y-

Qo = {1,2,3, 4, 5} 

Q1 = {cp,~ ,'l/J,X,P, (,µ, w } 

e.g. tcp = 1, hep = 2, hw = 5 

Thus, a quiver is in fact an oriented graph. The corresponding unoriented 
graph is denoted by Q. 

Below we only will consider connected quivers. This means that there is a 
path of arrows (possibly reversed) between any two vertices. 
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A quiver is used to encode information about linear maps between vector 
spaces over a base field Tu:. In this section 1k: is arbitrary but in the rest of the 
manuscript it will often be C or !Fq , 

A representation V over 1k: of a quiver Q consists of 2 sets: a set of finite 
dimensional lk:-vector spaces {V; I i E Q0 } and a set of lk:-linear maps between 
them {V,,, : lit,,, ---* vh<p I ({) E Q1}. 

l'5 ~ v:i 

Vµ //vµ /v( 
v; V,t, 

Vi ____:L... v; -+----'--- Vi ~2~ 
X ~ 

The dimension vector a = dim V = V E NQ0 of a representation V is 
defined by a:i = dim K 

An important example of a representation is the following: choose a ver­
tex i and suppose that all vector spaces are zero, except the one in vertex i, 
which is one-dimensional. Let all maps be 0-maps. Then one obtains a simple 
representation denoted by Si. 

A morphism between 2 representations V and W of a fixed quiver is a set 
{Ji : V; ---* Wi I i E Qo} of linear maps, such that for each arrow rp E Q1 we 
have W,,,Jt ,p = Jh,p V,,,, or in other words the following diagram has to commute 
for each arrow rp. 

Vt,,, 
v,. 

----'--+ vh,,, 

J,,. l l J,.,. 

Wt,,, ----'--+ wh,,, 
w,. 

The category of representations of Q is described by Rep(Q). If all maps 
Ji are isomorphisms, then J is an isomorphism and V and W are said to be 
isomorphic. In that case: a = V = W. 

After choosing bases we get in this case Ji E Gl0 i . We define Glo: = 
rriEQo Gia; . Clearly Glo: 3 g acts on the set of representations. 

g. V = g. (V,,,),,,EQ1 = (gh<p V,,,g~1 ),pEQ1' 

Given V and W the direct sum V EB W is defined as the representation 
U for which Ua = Va EB Wa and U,,, : Vt,,, EB Wt,,, --+ Vh,p EB Wh,p : (v, w) H 

(V,,,(v), W,,,(w)), or in matrix representation U,,, = (~ :,,,) . 

A representation is decomposable if it is isomorphic to a non trivial direct 
sum and indecomposable otherwise. From the Krull-Schmidt theorem it follows 
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that the decomposition of a representation into indecomposable representations 
is unique, up to isomorphism. 

If the field 1k is not algebraic closed, it is possible that an indecomposable 
representation (over 1k) decomposes over a field extension. If this is not the case 
then we call the representation absolute indecomposable. This will turn out to 
be a much more fundamental notion than indecomposability. 

The affine space of representations of dimension a is denoted by Rep( Q, a). 
Since a representation may be viewed as a set of linear maps, and linear maps 
may be regarded as matrices, we may identify Rep(Q, a) = ffi'f' Mat°'t.,,xo:h,,,, 

where Mataxb denotes the set of ax b matrices. 

1.1.2 The Three Classes of Quivers 

We have to make a distinction between 3 classes of quivers. This distinction can 
be introduced in several ways. The simplest way is using Dynkin and extended 
Dynkin diagrams, which are fundamental in Lie theory. 

• The connected quivers of finite representation type are the (simply laced) 
Dynkin diagrams, when the orientation is omitted. The quivers of finite 
representation type are the disjoint unions of Dynkin diagrams. These 
quivers have only a finite number of indecomposable representations, up 
to isomorphism [Gab72]. The 3 types of simply laced Dynkin diagrams 
are listed below (Q0 = {1, ... ,n}). 

l --2--3 ............... - -n 

2 ~ 
3 --4 .. . ............ - -n 

1/ 
6 

I 
E5: 1--2--3--4--5 

7 

I 
E1: 1--2--3-- 4-- 5--6 
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8 

I 
Es: 1-2--3--4--5--6--7 

• The connected quivers which we obtain by putting an orientation on an 
extended Dynkin diagram are called tame. The quivers that are disjoint 
unions of Dynkin and extended Dynkin diagrams, with at least one of the 
latter are the tame quivers. In this case the indecomposables exist in one 
parameter families [DR76]. 

Below is the list of simply laced extended Dynkin diagrams. The index 
of the diagrams is one less than the numbers of vertices, the numbers 
on the vertices correspond to the dimension vector <5, which is the small­
est dimension vector for which there are more than one indecomposable 
representation. 

~1~ 
1-1--1·· ··· ·········· --1 

1~ 

2 --2 ········· · ···· 

1/ 
1 

I 
2 

I 
1 - 2--3-- 2--1 

2 

I 
1 - 2--3--4-- 3--2--1 

3 

I 
l -2 - -3--4--5-6--4--2 Es: 

• All other quivers (and thus most quivers) are called wild. 

4 



The main difference between the classes may be explained by looking at 
the representation theory of some easy examples. The quiver A3 has 6 inde­
composable representations. One can easily work this out by performing some 

base changes. Start with a random representation 1 ~ 2 ~ 3. First find a 
basis {b1, . . . , bn, c1, ... , ck, d1, ... , d1, e1, ... , em} of V2 such that the c;'s span 
Im V'+' n Im V,t,, the bi's and c/s together Im V'P and the c/s and d;'s Im V,t, . 

After a base change in Vi and Vi, V'P becomes (Iok g), and a similar ma­

trix occurs for V,t,. Clearly one can decompose a representation in at most 6 
distinct representations, which have as dimension vectors respectively 1- 0-0 
(the representation 8 1), 1- 1- 0 (bi's), 1- 1- 1 (ci), 0- 1-0 (ei, the represen­
tation 8 2 ), 0- 1- 1 (di), 0-0-1 (the representation 83). Note that a slight 
generalization of this example to a quiver Tn with n arrows pointing from n 
distinct vertices to the a single central vertex, shows that the problem of the 
behavior of n subspaces of m dimensional space is encoded in Tn. 

3 2~! ·· .... 
Tn: l-O-n 

For n 2: 5, this problem is wild. 

As an illustration of the representation theory of tame quivers we note 
that the representation theory of Ao = ( { 0}, { r.p}, h, t) is nothing else than the 
Jordan problem. 

The "smallest" wild problem is the 2-loop quiver L2 = ( { 1}, { 'lj!, r.p} , h, t) . 
The representations are given by couples of n x n-matrices, up to conjugation. 
It is well known that the corresponding classification problem is hard. A wild 
quiver is defined as one whose representation theory includes the former prob­
lem 1. 

1.1.3 Associated Structures 

Below we list some structures commonly associated to a quiver Q. 
We define a bilinear form on LQ0 (L , depending on the context, being equal 

to lk, Z, IFq, C) via 

(i,i)Q 

(i, j)Q 

1 - I{ loops in i}I 

- !{arrows from i to j}I, for i =/- j E Qo. 

(1.1) 
(1.2) 

1The precise definition is: a quiver is wild iff its category of representations contains the 
category of representations of L2 as full embedding. 
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The symmetrization of(.,.) is defined as (x, y)Q = (x, Y)Q + (y, x)Q. If the 
quiver is fixed the subscript Q is dropped. Note that the symmetrized bilinear 
form is independent of the orientation. 

The Tits form is given by QQ(x) = (x, x) = L x;- L XtrpXhrp· Note that 

(x, y) = q(x + y) - q(x) - q(y). 
iEQo rpEQ1 

The matrix of the symmetrized bilinear form is called the Cartan matrix. It 
has diagonal entries Cii = 2 - 2 · /{loops in i}/ while the off diagonal entries are 
Cij = - I { edges linking i and j} 1-

The classification into finite type, tame type and wild type can be made 
via Tits form: 

• The quiver is of finite representation type if and only if q is positive defi­
nite. 

• The quiver is tame if and only if q is positive semidefinite. In this case 
there is a unique 8 E NQ0 such that {o: I Co:~ O} = {o: / Co:= O} = No. 
The vector 8 is indicated on the extended Dynkin diagrams on page 4. 

• In all other cases the quiver is wild. 

1.2 The Weyl Group 

We call a loop free vertex i, considered as element of 'll,Qo a fundamental mot. 
We define 

r;(o:) = o: - 2(o:, i)i, (1.3) 

for i E Q0 and a E 'll.,Qo. Note that this defines a reflection on 'll,Qo . We call the 
ri the fundamental reflections of the quiver, and the group generated by these 
reflections is the Weyl Group W(Q). Put e(w) = -1 if w is the product of an 
odd number of r;'s and + 1 otherwise. ri is independent of the orientation and 
thus W is independent of the orientation. 

Consider a = L aii E NQ0
• We call the support Supp(a) of a the set of 

iEQo 

those elements i in Qo for which o:i -=J. 0. If o: has connected support and for all 
j E Qo we have (a,j)::; 0, then we say that o: is in the fundamental set M. 

All elements of 'll,Qo that can be reached from fundamental root by using 
fundamental reflections, are called real roots: 

.6.re(Q) = {w(i)lw E W(Q); i E Qo loop free}. 

The elements reachable from the fundamental set are the imaginary roots: 

.6.im(Q) = LJ w(M U -M). 
w E W 
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These two classes of roots form the root system 6. ( Q) = 6. re U 6. im. If S c 6. 
then the positive elements of S are defined as S+ = Sn NQ0 and the negative 
elements are defined as S _ =Sn ( -NQ0 ). Note that 6. = 6.+ U 6._ and hence 
S = S+ US_. In cases when there is no confusion we will omit the Q, in 
notations related to roots. 

The finite, tame and wild quivers, have different types of root systems, as 
can be seen from the following results: 

• The following statements are equivalent for a quiver Q. 

- Q is of finite type, 

- Q has no imaginary roots, 

- Q has a finite number of roots, 

- the Weyl group of Q is finite. 

• A quiver with at least 2 vertices is tame iff there is at least one imaginary 
root, and in addition all imaginary roots lie on a line. Note that a quiver 
with a single vertex always has all its roots on a line. 

• A quiver is wild iff there is a positive root a with support equal to Q and 
if in addition ( a, i) < 0 for all vertices i. 

To the bilinear form ( , ) one may associate a Kac-Moody Lie algebra g, 
whose root system coincides with the one defined above. This can be done as 
follows [Kac80J. 

Let r be the free Abelian group with basis Q0 . 

Then there is a unique complex r-graded Lie Algebra g(Q) = E9ga with 

the following properties: 

1. every graded ideal which intersects go trivially is zero. 

2. g(Q) is generated by the elements ei, Ji, hi for i E Qo, such that 9ai = Cei 
and 9- a; = Cfi- Furthermore the h;'s form a basis for g0 and the following 
relations hold for i, j E Qo: 

[hi, hj ] = 0, [ei, fi l = i5ijhi [hi, ej] = aijej [hi, fJ] = - %Ji 

An element a Er is called a root of the Kac-Moody algebra g(Q) if 9a i- 0, 
and ma = dim 9a is the multiplicity of the root a. 

We introduce a formal symbol p and we extend the action of W to CQ0 $Cp 
by rip = p - 1.i. The ma may be computed by the following identity in formal 
power series: 

(1.4) 
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1.3 Representations and Reflections 

Many of the above notions have a direct interpretation in terms of representa­
tions. If V is a representation, we then write [VJ for its isomorphism class. 

The Euler form of V, W E Rep(Q) is defined as 

(V, W)q = (V, W) = dimHom(V, W) - dimExt1 (V, W) 

One may show that (V, W) = (V, W) (this is not obvious if Q has a loop). 

We also put (V, W) = (V, W) + (W, V). Again (V, W) = (V, W) 

If no arrow starts in i E Qo then i is called a sink and if no arrow ends in 
i then it is a source. 

Let i be a source. A representation V is i-admissible if the combination 

e : V; --+ EB vh<p of all maps v.,, starting in i is injective. Dually, if j a 
t<p=i 

sink, a representation is j-admissible if EB Vi:.,, --+ V; is surjective. In both 
h<p= j 

cases we denote the full subcategory of i-admissible representations in Rep(Q) 
by Admi(Q). 

If I E Qo is a source then we define the quiver TiQ as the quiver which is 
equal to Q, except that the orientation of the edges starting in i changed. Then 
i becomes a sink of TiQ. We have (a,/J)q = (Tia,Ti/J)r,Q· 

We define a bijection Ti between the isomorphism classes of Adm(Q) and 
AdmhQ). Given an i-admissible representation V = ({V;-},{V.,,}) of Q we 
define a representation 

(1.5) 

of Q' such that if j i=- i then Wj = V; and Wi = Coker 8. Since 8 is injective, 

we may consider V; as a subset of 3 = E9 vh.,,, and wi as 3/V;. Define e' as 
t<p= i 

the canonical projection from 3 on Wi and for each arrow <pending at i (in Q') 
define w.,, : wt'<p -+ w i as the restriction of 8' to wt'<p = vh<p· 

Note that~ = V - (V, i)i = Ti V and Aut(V) ~ Aut(Ti V). So we get as 
well 

(~, GW) = (v, w). (1.6) 

There is an obvious dual construction Ti : Adm(TiQ)/s.: -+ Adm(Q) / e,, and 
clearly Tiri = Id. 

We finish this section with the following fact. If i is a source or sink then 
every representation is the sum of an i-admissible representation and a number 
of copies of the simple representation Si. Indeed if for example i is a source then 
V ~ VI ker e EB ker e, where we have identified ker e with a representation of 
Q concentrated in i. The decomposition is obtained by choosing a complement 
of ker e in V;. 
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1.4 The Conjectures of Kac 

A decade after the paper of Gabriel [Gab72] it was generally assumed that a 
similar approach to the wild cases would not exist. One of the problems in the 
wild case is that the number of absolute indecomposables over an algebraically 
closed field lk is infinite and not classified by lP'(lk) as in the tame case. 

Victor Kac showed that it was possible to obtain meaningful ideas in the 
wild case in [Kac80]. This chapter gives only a brief account of the results 
contained in this startling paper. 

Theorem 1.1 ([Kac80]) Fix a quiver Q. If the base field lk is algebraically 
closed then 

1. there is an indecomposable representation of dimension a if! a is a positive 
root, 

2. moreover if a is a real root this indecomposable representation is unique 
(up to isomorphism). 

3. If a is imaginary the set of absolute indecomposable representations (up to 
isomorphism) with dimension vector a is parameterized by a finite union 
of algebraic varieties. The maximal dimension of these varieties is 1 -
(a,a)>O. 

The last part clearly means that the number of iso classes of representations 
will be infinite, for tame and wild quivers. We would like to be able to count 
these iso classes so we have to shift our discussion to finite fields. 

Put lk = IFq. Denote 

OQ ,o:(q) number of iso classes of representations of Q over IF q, 

of dimension a, 

number of indecomposable isomorphism classes, of dimension a, 

number of absolute indecomposable isomorphism classes, 

of dimension a . 

Kac proved 

T heorem 1.2 fKacBOj For a fixed quiver Q and dimension a the functions in 
q: OQ,o:(q), iQ,o:(q), aQ,o: (q) are polynomials inq independent of the orientation 
of Q, moreover aQ,o: (q) has integer coefficients. 

It is easy to find examples where iQ(q) has non-integer coefficients. Com­
puting numerous examples gives evidence for 

Conjecture 1.1 [Kac80j aQ ,o: (q) has positive coefficients. 
From our own research we conjectured that OQ,o:(q) has positive coefficients 

as well. However it turns out that this fact is already implied by conjecture 1.1, 
as was shown by Hua [Hua98, conjecture 2, page 56]. 
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Kac also with conjectured that the coefficients of polynomials aQ,a (q) 
would have a geometric meaning. In particular he explicitly conjectured the 
following: 

For instance 

Conjecture 1.2 [Kac83j the constant term of aQ,a(q) is equal to the multiplic­
ity ma of a in the associated Kac-iVloody Lie algebra g. 

One easily deduces from Theorem 1.1 that this conjecture is correct for real 
roots and non-roots. So it remains only to be proven for imaginary roots. Thus 
for Dynkin quivers it is trivially true. For tame quivers the conjecture follows 
from results in [DR76]. 

In the wild case the conjecture has not yet been fully proved for even 
a single quiver; although we computed that for the quiver ·====*· the conjecture 
holds up to dimension (20, 20). A small list of other computer results is included 
in section 3.5. The computations are based on Theorem 3.2 below. 

10 



Chapter 2 

Some Evidence for the 
Conjectures 

2.1 Introduction 

In this chapter we show that conjecture 1.1 holds for them-loop quiver Lm 
for dimension up to 5. It is somewhat remarkable that a computer computation 
allows us to prove a result valid for an infinite number of quivers. 

2.1.1 Rest ating the m-loop Problem 

We put 1k = Fq, with q = p 8 (with p prime) . The group Gin of invertible 
n X n-matrices acts by conjugation on Matn = Matnxn = ]knxn, the set of 
all n x n-matrices. This action extends to m-tuples of n x n-matrices and we 
are interested in the orbits of Mat;::' under this action. In fact in this way we 
redefined the representations of Lm. 

2.1.2 T he Generalized Jordan Problem 

One may ask for a method of selecting out a canonical representant for each 
orbit. If n = l each orbit consists of one point, so the problem is t rivial. 

If m = 1 the Jordan form gives a representant for each orbit (possible over 
a field extension). T he orbits corresponding to absolutely indecomposable rep­
resentations are given by Jordan blocks. 

It seems very likely t hat in t he remaining cases such a specific answer does 
not exist and hence one should try to solve a weaker problem. 

A possible first step is trying to count the numbers of orbits. Of course this 
only makes sense over finite fields. 

2.1.3 Some Results on the Positivity Conj ecture of Kac 

We introduce the shorthand 0£=,n = Om,n, iL=,n = im,n and aL-m,n = am,n · 
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In this notation conjecture 1.1 becomes: 

Conjecture 2.1 am,n(q) E N[q]. 

As an exercise, the reader may verify the conjecture for n or m equal to 1. 
The cases (m,n) E {(*,2),(2,3),(3,3),(2,4),(2,5)}; were checked by Le 

Bruyn in [LB88) and in [LBM88] this result was extended to the cases ( m, n) E 

{(2, 6), (2, 7), (2, 8)}. This was done by hand, which is rather amazing. In this 
thesis we use the computer to check these results, and we carry them further. 

Theorem 2.1 Kac's conjecture 2.1 holds for n-<:; 5 and all m. 

We will prove the theorem in section 2.3. 

2.2 An Amazing Piece of Handwork 

This section is based mainly on [LB88]. We note that the formulae introduced 
in chapter 3 simplify and generalize the results stated here. 

We will use examples to illustrate the formulas rather than proving them. 

2.2.1 Calculating Dm,n(q) 

Using the Burnside formula one easily deduces: 

Om ,n(q) = JG~ j ~ ai(q)qim 
n iESn 

where Sn = {i J =3µ : ~µJ = i and ~µj = n} and ai(q) is the number of 
elements in Gln such that its commutator ring has dimension i. Note that this 
number does not depend on m, so that the problem of calculating Om,n(q) can 
be tackled by fixing n but without fixing m. 

The idea in [LB88] was to calculate all except 2 of these a i and then to use 
the fact that their sum is J Gln J and that 01,n(q) is already known, to calculate 
the remaining ones. 

2.2 .2 From Dm,n(q) to im,n(q) 

Each representation over Ik has a unique decomposition as a direct sum of 
indecomposable representations over Ik. This gives us an easy way of getting 
from im,n(q) to Om,n(q). Unfortunately we have to go the other way, but using 
recursion it is possible to do this. 

If V = Vt 1 EB ··· EB Vt2 is the decomposition of V into distinct indecompos­
ables then the representation type T = T(V) of Vis defined as the 2 x j -matrix 

. (dim v;) with columns ai ' . 
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As example consider V = V? EB Vi EB Vi where Vi and Vi are distinct 1-
dimensional indecomposable representations and Vi is a 2-dimensional inde-

composable representation. Then T = (~ ~ D. Note that the sum of the 

product of the entries in each column (here 1 · 2 + 1 · 1 + 2 · 1) is the dimension of 
the representation (here 5). So the products of the columns form a partition of 
the dimension of the representation. We will call Ta product partition of dim V. 

For a given representation the type is unique (up to permutation of the 
columns) . So we can count the number IT(q) of orbits for each type T, and add 
them up to get Om,n ( q). 

In our example we get IT(q) = im,1(q)(im,1(q) - l )im,2(q) orbits with type 
T, since there are im,1(q) choices for Vi, im,1(q) - 1 choices for Vi and im,2(q) 
possibilities for Vi. In this way we get a formula for Om,n(q) using all imk(q) 
with k ~ n. Obviously im,n(q) appears only once. We get 

(2.1) 
T 

where T runs over all product partitions of n, except ( 7) . 
Note that the IT(q)'s contain all im,k(q) fork< n. So this is a very recursive 

formula inn. In chapter 3 we will give the precise formula for an arbitrary quiver. 
Note that m is not really involved in (2.1) (i.e. if IT is written out for some T, 

m only appears as index of the im,n's). 

2.2.3 From im,n(q) to am,n(q) 

Again the obvious way is to go in the other direction : each indecomposable is, 
over a large enough field extension , a direct sum of absolute indecomposables, 
and this yields a recursive formula for am,n(q). 

So an indecomposable may decompose over a field extension. To illustrate 
this let's take n = 12. In which way will absolute indecomposables over field 
extensions build up to an indecomposable W of dimension 12? Obviously a 
12-dimensional absolutely indecomposable over IF q will also be indecomposable. 
Its clear that any indecomposable summand (over a field extension) of an inde­
composable should have dimension divisible by 12. 

Now take a 6-dimensional absolute indecomposable representation V defined 
over some extension IFqr (r chosen to be minimal), which is a summand over 
W ®IFq Fqr· Obviously r -# l. On the other hand r can not be more then 2, since 
t he only way V EB V' can be defined over IF q is when V and V' are conjugate in 
the Frobenius sense. Hence r = 2. 

For each pair of conjugate absolute indecomposable representations over IF q2 

which are not defined over IF q, we get exactly one indecomposable representation 
1 

of twice the dimension over IFq . This contributes exactly 2(am,6(q2) - am,6(q)) 

orbits to im,12(q) . 
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1 
In the same way we find a contribution of 3(am,4 (q3) - am,4(q)) to im,12(q) 

coming from 4-dimensional representations (since the Frobenius has period 3). 
Analogous we can find as contribution from 4-dimensional representations, 

since Frobenius works in this case with triples. 
In the case of 3-dimensional representation, we consider absolute indecom-

posable representations over lF qL This time the contribution is ~ ( am,3 ( q4) -

am,3(q2)). 
Leaving the 2-dimensional case to the reader, we now consider the restric­

tion of a I-dimensional absolute indecomposable representation. In this case 
there are 2 possible ways of disturbing the build up of a 12-dimensional inde­
composable from a 1-dimensional representation over lF q12 . Such a r- will not 
be indecomposable if it was already defined over lF q6 or lF q4. This seems to yield 

1 
a contribution of 

12 
(am,1(q12) - am,1(q6) - am,1(q4)), but the representations 

defined over lF q2 are subtracted twice in this sum, so one should additionally 
add them again. 

This is clearly a case of Mobius inversion. The whole calculation is captured 
in [Kac83]: 

im,n(q) = L 1 L µ(e)am ,-;i (q) q~, 
d in eld 

where, for p(e) the number of primes dividing e, µ(e) = (- l)P(e) whenever e is 
square free and µ( e) = 0 otherwise. 

This leads again to a recursive formula for am,n(q) in terms of im,n(q) and 
am,k(q), with k < n. 

Repeatedly substituting this form into itself we obtain that am,n(q) is linear 
combination of terms of the form qim 

So whereas one usually fixes a quiver (represented here by the number n), 
and varies the dimension vector (the number m) it is more convenient to fix the 
dimension vector and vary the quiver. 

2 .3 Proof of Theorem 2.1 

The cases with n = 1 (being trivial) and n = 2 (done by Le Bruyn) are omitted. 

2.3.1 n = 3 

First we will prove the theorem for n = 3. The same idea will be used to treat 
the cases n = 4 and n = 5. 

Using the computations of Le Bruyn one finds 

1 9m 1 5m q - q 
(q3 _ l)(q2 _ l)q3 (q - l) (q2 _ l)q3 

1 + q3m 
(q3 - l) (q - l)q2 . (2.2) 
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To stress the general argumentation we will write 

(2.3) 

where ti(q) is a rational function in q whose denominator a divisor of / Gl3 I, 
and i E S3. 

Using a computer it is easy to see that for a fixed m this is a polynomial 
with positive coefficients, but to prove this for all m is more problematic. The 
problem is caused by the fact that the ti(q)'s are not polynomials but rational 
functions. The denominator of this rational functions indicates the severeness 
of the problem. Both the number of problems (read the number of different 
terms) as their severeness can be reduced with the following trick. 

Let P, Q, R be polynomials in q such that P (q) = Q(q) -qd R(q) (with d E N) 
and such that Rand P have positive coefficients, then Q will also have positive 
coefficients. This simple fact gives us a tool to prove recursively t hat am,3(q) 
has positive coefficients. 

We know that a1 ,3 (q) = q has positive coefficients . 
Consider 

am+1,3(q) - q3am,3(q) 

tg(q)q9(m+l) _ q3tg(q)q9m + ... + tg (q)q3(m+l) _ q3tg(q)q3m 

(q6 - l)tg(q)q9m+3 + (q2 _ l)ts(q)q5m+3 

So we have lost one term. The severeness of the problems is also become 
more bearable since certain factors of q6 - 1 (resp. q2 

- 1) will cancel parts of 
the denominator of tg (resp. ts). 

The actual comput ation gives the following result. 

2 + 1 1 9m Sm 
bm,g(q) = q - q q9m _ - - qSm = q9m+l + q - q 

q- 1 q - 1 q - 1 

While from (2.2) it is not even clear that am,3 is a polynomial for each m, 
bm,3 (q) is obviously a polynomial with positive coefficients. 

Using as induction hypothesis that am,3(q) is a polynomial with positive 
coefficients it follows that am+1,3(q) = bm,3 (q) + q3am,3(q) also has positive 
coefficients. 

2.3.2 n = 4 

The problem of getting the method to work for n = 4, mainly comes down to the 
question which power we should use to eliminate a term and to make the other 
terms easier to handle. Clearly it should be in S4. To figure out mathematically 
what is the best choice one should be concerned mainly with what power is best 
for canceling parts of the factors of / Gl4 I. But it will be the computer that 
really answers the question. 
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To start we define 

The new expression is not easy to handle so we add another step: 

The new expression is still not that nice, but good enough for our purposes. 
Note that this reduction should not be repeated too often since it would create 
minus signs! In this case we already have denominator q - 1. The result is: 

Cm,4(q) = 
q18 _ q17 + ql6 + ql4 _ ql3 + 2q12 _ qll + qlO + qB _ q1 + q6 
.;:__---"-----=------=------=-----=------"-----=-----=--ql6m 

q - 1 
9 6 7 6 

+ - q - q 10m + - q - q 6m 
q q . 

q - 1 q - 1 

One can check that for each m this has positive coefficients by writing it as 
qu _ qv 

a sum of terms of the form with u > v. 
q-1 

2.3.3 n = 5 

The basic principle remains the same. This time we have : 

bm,5(q) = am+1,5(q) - q5am,s(q) and 

Cm,5(q) = bm+1,5(q) - q9bm,5(q) . 

The denominator of Cm,n(q) still contains (q3 - l)(q - 1). 
Define "-J by 

( ) _ '"' "-j(q) jmH 
Cm,5 q - 6 (q3 - l)(q - 1) q 

J 

where j E {25, 17, 13, 11, 7}. 
Following Le Bruyn we denote the polynomials as tuples of coefficients ending 

with the constant term. For instance in stead of ,-,7 (q) = q6 + 2q5 + 2q4 + q3 
we write K-7(q) = (1, 2, 2, 1, 0, 0, 0) . For reasons to be expla ined afterwards we 
arrange this coefficients in a 3-row matrix, where the exponents are decreasing 
with 1 along the columns and with 3 along the rows. 

We get 

,c,,(q) - ('.1 -1 1 - 1 3 - 2 2 -1 ~1) 2 -1 2 - 2 2 -1 2 
- 1 2 -2 3 - 1 1 - 1 

C 0 - 2 0 ~1) K-17(q) = 0 -2 0 - 2 
- 1 0 -2 0 - 1 
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K:13(q) = ( ~ 
- 1 

=~ ~2 ~110 01) 
-1 - 2 

,,,(q) - G : f) 
,,(q) - G ~ f) 

Dividing a polynomial written down like this by ( q3 - 1) comes down to 
writing down the matrix of cumulative totals in the rows. The problem is that 
we have to concatenate the 5 matrices. For the sake of the argument let m be 
a multiple of 3 greater than 4. Then the matrix of (q3 - l)(q - l)cm,5 would 
be a matrix formed by the matrix of K:25 followed by zeros, then K17 and so on 
until finally K:7 and zeroes without any importance. Note that m > 4 is needed 
to avoid that the right row of the matrix of K:13 gets mixed up with the left of 
Ku and the multiple of 3 condition makes sure that the rows are in the right 
position. Now write down the matrix with cumulative totals in the rows. We 
get 

(q - l)c,,,,,(q) - ( ~l 
0 1 
1 0 
0 2 

- 2 -2 0 · · ") 
- 2 -2 0 · · · 
- 2 -1 0 · · · 

Now we can divide by q - l by taking the cumulative totals down the columns, 
and taking them back up at the top of the next column. This time we get 

Cm,s(q) = (~ ~ ! 
1 2 5 

11 
9 
7 

5 0 
3 0 
1 0 

.. . ···) 
It is essential that all entries in this matrix are positive. To see this we don't 
really have to calculate them. Kac already proved that at the end O's have to 
appear (since am,n(q) is polynomial and thus Cm,s(q)) , so the only thing to note 
is that the cumulative total gets never beneath zero. This follows easy since 
( except for the second coefficient) all positive coefficients in ( q - l )em,5 ( q) are 
in front of the negative ones. 

Since the cases m :s; 4 are readily checked and the analogous arguments 
easily carry over to the cases m = 3k + 1 and m = 3k + 2 (swapping (and 
shifting) rows in 2 matrices), this ends our proof. 
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Chapter 3 

The Constant Term 
Conjecture and Gaussian 
Multinomial Coefficients: 
A Reformulation 

In this chapter we reformulate Kac's Conjecture 1.2 in terms of Gaussian multi­
nomial coefficients. Apart from the fact that this makes calculations easier, as 
indicated above, the main interest is theoretical. Gaussian multinomial coeffi­
cients have many non-trivial combinatorial properties, so it is conceivable that 
this could be used to gain insight in conjecture 1.2. 

F irst we will deduce a recurrence relation for the OQ,a(q) 's. 

3.1 A Recurrence Relation for the o's 

We fix a quiver Q. For simplicity we omit Q from most of the notations. By 
the Burnside formula we have: 

1 
oa(q) = fGll I: / Aut(V)/. 

a V ERep(Q,a) 

We will need a modification of this formula in subsequent calculations. Define 

1 
ta(q) = fGll I: / End(V)/. 

a V ERep(Q,o:) 

Note that any endomorphism ~ of V can be characterized by an internal 
decomposition V = Vn EB Va, with ~ = (~n, ~a), such that ~n acts nilpotently 
on Vn, and ~a is an automorphism of V8 • Let Nil(V) be the set of nilpotent 
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endomorphisms of V and let 'lpf3,'Y be the number of ways in which one can 
decompose simultaneously the vector spaces 11; involved in the representation 
V in spaces of dimensions /Ji and 'Yi. We obtain 

ta(q) I G:o I L 'lpf3,'Y L L I Nil(Vn)II Aut(Va)I 
{3+-y=o VnERep(Q,{3) VaER ep(Q,-y) 

L ( 1c~ I :E INil(Vn)I). ( 1c~ I :E IAut(Va) I). 
f3+-y= o /3 Vn 'Y Va 

To obtain the last equation note tha t 

II 
./, II I Glo, I 

'lpf3,'Y = '//{3;,'Yi = I GI . 1.1 GI . 1 · 
iEQo iEQo (3, 'Y• 

So we get 

t0 (q) = L Tf3(q)o-y(q) , (3.1) 
f3+-y=o 

where ra(q) = ( I G:a I L I Nil(Vn)I). Since adding the identity 
VnE Rep(Q,a) 

morphism to a nilpotent morphism gives a unipotent morphism, we may equally 
write 

1 
ra(q) = -

1 

GI I l{(U, V) E Gla x Rep(Q, a) I U • V = V, Uunipotent}I. 
0 (3.2) 

The point of this exercise is that we may evaluate the function ta(q) in 
another way. If we start by taking a representation V , t hen its contribution 

I ~;~:~) I to t0 ( q) will be the same as for all representations in its orbit. The 

I GI°' I . 
number of elements in its orbit is I Aut(V) I' Now takmg one representant 11; 

for each orbit we get: 

~ I End(V;)I 
ta(q) = 8 1 Aut(V;)I' (3.3) 

Now let W be a representation, with dimension different from 0, and sup­
pose W = ffi WiEBa, is a decomposition into distinct indecomposables. Clearly 

I End(W)I = II I Hom(Wi, wjw,aj' while the automorphisms are given by au­
i,j 

tomorphisms of the Wt' and morphisms between the different indecomposables, 
which leads to 
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I Aut(W)I =III Gla1 (End(W1))I. II I Hom(Wi, wjwiaj. 
l i-1} 

Whence 

I End(W) J _III Mata, (End(W1)J 
I Aut(W) I - 1 I Gla1 (End(W1) I · 

The residue field llq of End(Wi) is a finite extension of IF q · Now we consider 
the unit group Gla, (End(W1)) of Mata, (End(W1)). It is the inverse image of 
Gla, (lk:1), hence 

IMata1(End(Wz ))I _ IMata1 (lk1) I 
I Gla1 (End(W1)) I - I Gla1 (lk:1) I · 

(3.4) 

The right-hand side is clearly divisible by q (in (QJ) , so by (3.3) t0 (q) is divisible 
by q as well, whenever a =I- 0. This holds for all powers of p, hence, as a rational 
function, t 0 (q) must have a zero in 0. 

Now reconsider (3.1). Using induction on a, together with the facts that 
0 0 (q) is a polynomial, and o0 (q) = 1, leads that ra(q) has no pole in zero, which 
means that we can evaluate r0 in 0. So equation (3.1) becomes 

0 = ta(O) = L r13(0)o,(O), (3.5) 
13+,=<> 

when a =I- 0. Trivially 1 = to(q) = oo(q)ro(q). 
We can summarize this by: Va E NQo : 80 0 = I:13+,=<> 013(0)r,(O) , with /3, 

'YE NQ0 • 

A more elegant way to write this is by using generating functions. To this 
end we need a formal exponential e, satisfying e(a)e(/3) = e(a + /3). In this way 
the relation becomes: 

(3.6) 

The general formula for going from oa(q) to i13(q)'s as indicated on the simple 
example 2.1 for the m-loop quiver above is : 

Again this formula can be expressed more compactly in terms of formal 
power series. 

(3.7) 
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By [Kac83] ia(O) = aa(O), so by 3.6 and 3.7 

IT (1- e(a)t"(o) = I:>a(O)e(a). (3.8) 
Q Q 

Comparing this with (1.4) we get the following reformulation of conjecture 
1.2 

Theorem 3.1 Conjecture 1.2 is equivalent to 

( ) - {1:(w) 
ra O -

0 

if a= p - w(p) 

otherwise. 
(3.9) 

This result was discovered by us in 1998. We were informed by V. Kac 
that a similar result also appeared in Hua's thesis [Hua98] and furthermore the 
function ra(q) is also present in unpublished work of Stanley. The work of Hua 
and Stanley is purely combinatorial however. 

3.2 Gaussian Multinomial Coefficients 

The ordinary Newtonian multinomial coefficient for a, b1 , ... , bn E N counts 
the cardinality of the set W of words in the letters u1 , u2, ... , Un of length 
a where the letter Uk appears bk times, for each k. Thus IWI = b t:bn!. To 
define Gaussian multinomial coefficients we need the polynomials <Pa(t) = (ta -
l)(ta- l - 1) · · · (t - 1). The Gaussian multinomial coefficient corresponding to 
a, b1, .. . , bn is then 

(3.10) 

We will use the short hand [:] for [b : _ a] and define [:] = 0 if b < 0. 

A function (: W ------+ N linking Newtonian and Gaussian multinomial coeffi­
cients in the sense of (3.11) below is called a Mahonian statistic [CS97],[FZ90]. 

L t(<w) = [bi.~- bJ . (3.11) 
wEW 

An example of a Mahonian statistic is the number of inversions in each word: 
((w) = ((ui1 · ··uiJ = /{(r , s) I ir < i s, r > s}I. 

After choosing a Mahonian statistic the evaluation of a sum involving Gaus­
sian multinomial coefficients becomes a word counting problem (which may or 
may not be easier). We will reformulate the constant term conjecture 1.2 in 
terms of Gaussian multinomial coefficients and thus into a word counting prob­
lem. 

Now letµ be a partition of n. We define the following short hand. 

[µ] = [ µ1 ] 
µ1 - µ2 , µ2 - µ3 , • · · 
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3.3 On Symmetric Functions 

Symmetric functions are a classical area in combinatorics [Mac95]. Two types of 
functions that appear rather naturally in this context are the Schur functions sµ 

and Hall-Littlewood polynomials Pµ- Both are indexed by the set of partitions. 

3.3.1 Partitions 

We need to define some extra notations for a partitionµ of n = /µ /: µ' = (µDi = 
l{j I µj 2: i}I is the conjugate partition, l(µ) = max{ i E N I µi =I= O} = µ'i is 
the length ofµ and n(µ) = I::Ci - l)µi is the content. For instance for (l n) = 
(1, 1, 1, ... , 1, 0, ... ) we have l((ln)) = n, n((In)) = n(n- 1)/2, (ln)' = (n, 0, 0, ... ). 
Attach a diagram to a partition in a plane. 

(4,3,2), w (1'), ~ 
On this diagram we can indicate all structures defined above. The number 

of boxes is /µ I, l (µ) is the number of rows, while n(µ) is the sum of the numbers 
in the boxes in the right diagram below: 

1 2 3 4 
5 6 7 
8 9 * 9 = jµ/ 

0 0 0 0 
1 1 1 
2 2 n(µ) = 4.0 + 3.1 + 2.2 = 7 

The conjugate partition is obtained as a reflection around the diagonal. 

(4,3,2)', w-(3,3,2,1) 

Finally we can define for each cell y of this diagram its hook length h(y), as 
the total number of cells below and to the right of y. 

wh(y) - ·----+1~111 

Given n we define a partial order on the set of partitions as follows. >.--< µ 
iff for all j = 1, ... , n : I:;{=1 Aj 2: 'I:;{=1 µj. 
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3.3.2 Symmetric Functions 

Now we introduce symmetric functions, following (Mac95J. Consider the 
ring Z[x1, ... , Xnl, and the action of the symmetric group En on this ring by 
permuting the variables. A polynomial is symmetric if it is invariant under this 
action. The symmetric functions form a subring An of Z[x1, ... , xnJ· 

Define A~ the set of all symmetric polynomials of degree k of n variables, to­
gether with the zero polynomial. In this way An = EB A~ is graded. 

For each a= (a1, ... , an) E Nn we denote by xa the monomial 

If a partitionµ has length l(µ) $ n then we put 

summed over all distinct permutations a ofµ= (µ1, ... , µn)· The polynomial 
mµ is clearly symmetric, and the mµ 's ( as µ runs through all partitions of length 
l(µ) $ n) form a Z-basis of An. This basis respects the grading. The mµ for 
which jµj = k and l(µ) $ n form a basis of A~. In particular if n 2:': k themµ 
form a basis of A~. 

In the theory of symmetric functions, the number of variables is usually 
irrelevant, provided only that it is large enough, and it is often more convenient 
to work with symmetric functions in infinitely many variables. To make this 
idea precise, let m 2:': n and consider the homomorphism 

which sends each of Xn+l, ... , Xm to zero and the other xi to themselves. On 
restriction to Am this gives a homomorphism 

The effect of Pm,n on the basis elements (mµ) is easily described; it sends 
mµ(x1, ... ,xm) to mµ(x1, ... ,xn) if l(µ) $ n, and to O if l(µ) > n. It fol­
lows that Pm,n is surjective. 

The restriction P~,n of Pm,n to A~ defines again a surjective homomorphism 

P~,n : A~ ---+ A~, 

which becomes an isomorphism if m 2:': n 2:': k. 
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We now form the inverse limit 

Ak = lim Ak 
+-- n 
n 

of the Z--modules A~ relative to the homomorphisms p~ n= an element of Ak 
is by definition a sequence f = Un)n, where each fn ~ A~, and where, for 
m 2: n, fm(x1, ... , Xn, 0, ... , 0) = fn(x1, ... , Xn). Since P~,n is an isomorphism 
if m 2: n 2: k, it follows that the projection 

which sends f to fn is a isomorphism for all n 2: k. Hence Ak has a Z--basis 
consisting of the monomial symmetric functions mµ, (for all partitions µ of k) 
defined by 

for all n 2: k. Thus Ak is a free Z-module of rank p(k), the number of partitions 
of k. 

Now let A= EBk>O Ak, so that A is the free Z--module generated by themµ, 
for all partitions µ. We have surjective homomorphisms 

Pn = EB P! : A ---+ An 
k 

for each n 2: 0. 
It is clear the A has the structure of a graded ring such that Pn are ring 

homomorphisms. The graded ring A is called the ring of symmetric functions 
in countable many independent variables. 

Now we will define the Schur functions. First we suppose we have a 
finite number of variables x1 , ... , Xn . Recall x°' = xf1 .•• x~n, and consider the 
polynomial aa obtained by anti-symmetrizing x°' : 

aa = aa(x1, ... , Xn) = L E(w) .w(x°') 
w EEn 

where E( w) is the sign of the permutation w. This polynomial is skew-symmetric, 
i.e. we have w(aa) = E(w)aa, for any w E En, In particular aa vanishes unless 
ai, ... , an are all distinct. Hence we may as well assume that a 1 > a 2 > · · · > 
an 2: 0, and therefore we may write a = µ + 8, whereµ is a partition of length 
l(µ) :::; n, and 8 = (n - 1, n - 2, ... , 0). Then 

aa = aµ, +8 = LE(w).w(xµ,+.5 ) 
w 

which can be written as a determinant 

( µ,+n - j) 
aµ,+o = det xi 1 

1::5 i,j:'.5n · 
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This determinant is divisible in Z[x1 , ... ,xn] by each of the differences xi - Xj 
(1 :::; i < j :::; n), and hence by their product, which is the Vandermonde 
determinant 

IT (xi - Xj) = det(xf-j) = a0. 
1=::;i<j =s; n 

So aµ+o is di visible by a0 in Z[x1 , . .. , xn] and the quotient 

is symmetric. So sµ E An. It is called the Schur function in the variables 
x1, . .. ,xn, corresponding to the partitionµ (where l(µ) :::; n) and is homoge­
neous of degree lµ I. 

The Schur functions sµ(x1, ... , Xn) (where l(µ) :::; n) form a basis of An. 
Now let us consider the effect of increasing the number of variables. If 

l(µ) :=:; n, it is clear that aa(x1, ... , Xn, 0) = aa(X1, ... , Xn). Hence 

It follows that for each partitionµ the polynomials sµ define a unique element 
sµ E A, homogeneous of degree lµ I. Thus the sµ form a Z--basis of A, and for 
each k ~ 0 the sµ such that lµ I = k form a Z-basis of Ak. 

Hall-Littlewood polynomials are generalizations of Schur functions de­
pending on an extra parameter. They were introduced by Hall as a means 
of counting subgroups of Abelian groups. 

To explain this idea more precise let ¢n ( t) = ( t - 1) ... ( tn - 1) be as above, 

for n > 0 (<po(t) = 1) and if n ~ m ~ 0 denote 'l/Jn,m = ( ~n(t) ( ) 
'Pm t 'Pn-m t 

For a partition µ set ni = >< - >.~+1 and b >-. ( t) = IL 'Pn, . 
If the Schur-function S;>.. occurs in the product sµsl'" then>. - µ is a vertical 

strip of length m. Let mi = >.~ - µ~ (Thus I: mi = m). In that case set 

If S;>.. does not occur in the product set F;i_-m (t) = 0. 
T he Hall-Littlewood polynomials may be defined inductively as a symmetric 

functions in x 1 , x2 , ••• with as coefficients polynomials in t, by the following rule: 

Po(t) = 1, Pi= = em 

P;>.. = PµPi= - L F:1mPv , 
v>- >. 

where µ is obtained by removing the last column from the diagram of >. and m 
is the length of that removed column, and em is them-th elementary symmetric 
function, the sum of all products of m distinct variables. 
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We get that A(O) = s;.. and may extend the definition of F;Jt) by 

PµPv = LF;v(t)P;... 
;.. 

Now we can come back to Hall's idea. Fix a prime p. An Abelian p-group 
may be characterized by a partition. Denote by g;;_v the number of subgroups 
M of type µ of a p-group G of type >.. such that G / M has type v. The numbers 
g;;_v can serve as structure constants of an algebra. In fact denoting n.\ = 

>.'(>.' - 1) L i ~ , we get 
i 

g;;.v = pn:,. -n,,-v F;v(l/p) 

To write the Hall-Littlewood polynomials explicitly, we first define :E~ as the 
subgroup of :En consisting of those permutations w such that µw(i) = µi, for 
1 :S: i :S: n. 

The Hall-Littlewood polynomials in n + l variables, corresponding to the 
partitionµ with l(µ) :s'. n may be defined by 

In (Mac95] it is proven that , if l(µ) :s'. n, 

Pµ(X1, .. . , Xn, O; t) = Pµ(x1, ... , Xni t). 

Hence we can again pass to the limit to define the Hall-Littlewood function 
Pµ(x;t) to be the limit element of A[t] whose image in An [t], for each n ~ /(µ) 
is Pµ(x1, .. . , Xn i t) . Again Pµ(x; t) is homogeneous of degree lµI . 

The Kostka-Foulkes polynomials are defined by: 

s;.. = LK.\µ(t)P11 (x;t) (3.12) 
µ 

Using the partial order on partitions, the matrix is upper-triangular with 
l 's on the diagonal (Mac95, III. (2.6)]. Hence in particular the Kostka-Foulkes 
polynomials are invertible. It is a deep theorem that the K.\µ(q) have positive 
coefficients. T he modified Kostka-Foulkes polynomials are defined by 

Below Uµ is an arbitrary unipotent element of Gln of type µ, with central­
izer C(uµ) . Put cµ( q) = IC(uµ) I. This is a polynomial in q. According to 
MacDonald [Mac95, Example III.3.2] we get for xq = (q- 1, q- 2 , .. . ) : 

-1 qn(µ) 
Pµ(Xqj q ) = -(-) 

Cµ q 
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(as formal power series in q-1 ). A slight variation of another formula in loc. 
cit. [Mac95, Example I.3.2] gives: 

where H>.(q) = Il(qh(y) - 1) (the product runs over the cells of the diagram 
attached to >.). 

Now we look back at (3.12) and conclude that for q = 0 we have: 

L K>.µ(O) = { (- l )n i f>. = (ln) 
cµ(O) 0 otherwise. 

µ 

(3.13) 

Let a be a dimension vector. A multipartition >. of a E NQ0 is a list of 
partitions >. = (>.i)iEQo such that Ai is a partition of ai . We will write >.(j) for 
the dimension vector ( >.(j)i)iEQo = (>.i j )iEQo. The multipartition of a consisting 
of ( 1 o; ) is denoted by ( 1 °) again. 

We put U>. = (u>.JiEQo E Gl0 , and we define for a multipartition >. of a a 
function that maps a multipartition into Z[q] 

t>. (µ) = II k>..µ. (q). 
i 

We will need the following result: 

Lemma 3.1 Let W be a representation o/ Gl0 (1F,,) over IF,,. Then the function 
µ i---+ qdimFp W"" is a linear combination of the functions J>. with coefficients in 
Z[q]. 

Proof Since the />. (µ) 's form an upper triangular matrix with q-powers on 
the diagonal it is clear that we can express limF,, W "•· as linear combination of 
the f>. 'S with coefficients in Z[q,q- 1] . 

Now let q be a fixed power of p and let V be the permutation representation 
of W ©F,, IFq (over C). Then qdim W "" = Tr(uµ, V). By Green's formula for 
the irreducible characters of Gl0 (1Fq) we can express the values of the character 
of V at unipotent elements as a ({}-linear combination of products of Green 
polynomials [Zel81, p.135]. Furthermore the denominators are bounded in terms 
of a. Expressing these Green polynomials further in terms of the />. [Mac95, 
III. (7.11)] we find, for a fixed q , that qdim W "" is a linear combination of the 
J>.(q) with coefficients in IQ, whose denominator is still bounded in terms of a. 

If we now let q go to oo we see that if we consider q as a variable again, the 
remark of the first paragraph yields that the coefficients must be in Z[q]. 

This finishes the proof of the lemma. 
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3.4 A Reformulation of the Conjecture 

It follows from the previous lemma that there are Pµ, E Z[q] such that 

I Rep(Q, at>- I = LPµ, f µ, (A). 
/J, 

From this we can calculate P(l"') as follows. 

f Rep(Q,at"'I = LP,,II qn()..i)Kµ; )..,(q-1). 

µ 

(3.14) 

Now we multiply with II q-n()..,)K;,(l"' i/q- 1) and summing over A gives 
i 

entries of the matrix product of K and K - 1 , resulting in 

" fR (Q )u"'fII - n().. ·)K-1 ( - 1) P(l") = L.., ep , a q ' )..,(I"i) q · 
),, i 

Now we finally get back to the r 0 -function. It is rather easy to see that 

(using 3.14) 

Evaluation at q = 0, using 3.13, we get: 

(3.15) 

So we are interested in 

(- l )L<>,P(l"') = (- l)L<>, L I Rep(Q, a)u"' I II q -n()..,) KA;(l"•)(q-1 ). 
),, 

Now we plug in the following formula (see appendix B for the proof) 

>,'. (>,'. +1) 

K,x,id(t) = (- l )l()..)+dtI:;~2 ~ [>.']. (3.16) 

This gives the following element of Z[q]: 

L(- l)LA:1q8>- II[><]q-1 
),, 

L q- L()..'(j),),,'(j)) / 2 II (- 1l:1qC),,:1 (A:1 + 1))/2[>.;]q-1 , 
),, 

28 



where the crucial steps happen in the exponent of q: 

( 
~ ,\' ( >..' . + 1)) 

dimRep(Q,at>- - ~ n(,\i) - ~ '3 
; 

~ a · ,\' .,\' . _ ~ ( (~ ,\'.2) _ ,\~1(,\~1 + 1)) 
L ik ,3 k3 L L •J 2 

ikEQo i j 

= -1;2L(,\'(j),,\'(j)) + L,\~1(At1 + 1) _ 
j . 

Now we finally obtain the following reformulation conjecture 1.2. We define 
the Laurent polynomial 

IIa(t) (- l)L a.P(l") (C1) 

L tDJ1.U) ,J1.(j))/2 IT ( - l lilc(Ai1 (J\.;1 +1))/2 [,\i]. 

JI. 

Clearly Ila(t) E Z[r1
], and by equation 3.15 and Theorem 3.1 we get: 

Theorem 3.2 Conjecture 1.2 is equivalent to 

Ila(oo) = { ~( w) 
if a = p- w(p) 

otherwise. 

3.5 Some Examples of II0 

(3.17) 

To indicate the use of the Laurent polynomials Ila we first look at the case of 
a one-vertex quiver without loops. We get for each a that 

IIa(t) = L (- l)µ 1tL• µ; - µ1(µ1+1)/2[µ ] 

[µ[ =a 

is a polynomial in r 1
. On the other hand if a > 1 we get that for each 

partition the exponent oft is at least 1, while [µ] is a polynomial int. T herefore 
Ila(t) E tZ[t]. It follows that IIa(t) is identically zero. 

The next case we consider is the m-arrow quiver. We get for dimension 
vector ( a, b) the polynomial 

IIa,b(t) = L ( - ltl +J1.1t L; µf+ I:. >.;- m L; Aiµ;- µ1(µ1 +1)/2- >.1 (J\.1 +1)/2[µ][,\] 

fµ l=a 
IJ1. l=b 

If we take a » b we can repeat t he above method to obtain t hat: 

Theorem 3.3 The Laurent polynomial IIa,b(t) is identically zero if a» b 
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In fact we used a computer (see the next section) to obtain the following 
conjecture. 

Conjecture 3.1 The Laurent polynomial IIa,b(t) is identically zero if and only 
if a 2': mb + 2 or b 2': ma + 2 

We include a small computer program in appendix C, which can be used 
to check conjecture 1.2 and conjecture 3.1 for them-arrow quiver. 

We tested the following cases. 

• b ::; a ::; 20 and m = 3 

• b < 6 and a< 21 form = 4 

• m < 31, a = m + 1 and b = 1, which is p - r1r2p for the given m . 

• m < 7, a = m(m + 1) and b = m, which is p - r 1r 2r1p (the calculation for 
the case m = 6 lasted over ten hours on a Pentium II -400). 
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Chapter 4 

Ringel-Hall Algebras 

In this chapter we will introduce the notion of a Hopf algebra and its Drinfeld 
double. From this we will carry on to introduce the double Ringel-Hall algebra 
U(Q) of a quiver Q. 

In the next chapter we will prove the independence of U ( Q) of the orientation 
of Q, by constructing isomorphisms between different U(Q)'s. We will also 
define an automorphism on U(Q), which generalizes the work of Lusztig. 

In chapter 6 we will construct another Hopf algebra, the quantized general­
ized enveloping algebra of a Kac-Moody Lie algebra, which basically is a new 
quantum group, depending on a certain datum. As it will turn out, both notions 
will be equivalent if the latter is obtained from a datum connected to the quiver 
Q. 

4.1 A Short Account of Hopf Algebras 

4.1.1 The Definition of a Hopf Algebra 

An algebra A has a multiplication µ and a unit1 ry. By dualizing we get a 
coalgebra C with a comultiplication ~: C --+ C®C and a co-unit c . It is useful 
to introduce the following notation, due to Sweedler: ~(a) = I: a(l) ®a(2). This 
notation may become cumbersome in some calculations, so where we will just 
write ~(a) = a1 ® a2, omitting the summation sign and the parentheses. This 
extends to ~ 2(a) = ~(~ 0 l)(a) = ~(1 ® ~)(a) = a1 0 a2 0 a3. 

A vector space with the structure of an algebra and a coalgebra is a bialgebra, 
if the comultiplication and co-unit are algebra morphisms, or equivalently if the 
multiplication and the unit are coalgebra morphisms. 

Finally a Hopf Algebra H is a bialgebra with an antipode S, such that the 
following three maps are equal. 

'f/c = µ(S ® Id)~= µ(Id ®S)~. 

1 This is a categorical way of saying that there is a 1. The relation between them is as 
follows: 'f/ : lk --t H : a ~ a · l. 
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Thus a Hopf-Algebra over 1k is lk-vector space H together with linear maps 

(multiplication) µ: H 0 H ~ H, 

satisfying 

(unit) r,: 1k ~ H, 

(comultiplication) ~: H ~ H 0 H, 

(co-unit) c: H ~ 1k, 

(antipode) S: H ~ H, 

µ(Id 0 r,) = Id = µ(r, 0 Id), 

µ(µ 0 Id) = µ(Id 0 µ), 

(Id 0c)~ = Id = (c 0 Id)~, 

(~ 0 Id)~= (Id®~)~, 

'/Jc = µ(S 0 Id)~ = µ(Id 0S)~, 

µ(c 0c) = cµ, 

~µ = (µ 0 µ)r23( ~ 0 ~ ), 

where Tij(h1©· ··® hi®·· ·0 hj 0 · · ·® hn) = (h10· · ·0 hJ 0 · ·· ®hi®·· ·0hn)­
Below 1k = ([ and all Hopf algebras have invertible antipode2 . 

4.1.2 The Drinfeld Double 

The following definition is the classical way to introduce the Drinfeld double. 
Underneath we will give a definition by generators and relations which will be 
more convenient. 

Given two Hopf algebras A and Ba (skew-)Hopf pairing is a bilinear function 
1/; : A x B ~ R into an integral domain, satisfying the following relations (given 
a,a' E A and b,b' EB): 

'l/J(l, b) = EB(b),'1/;(a, 1) = EA(a), (4.1) 

'1/;(a, bb') = '1/;(~A(a), b 0 b') = 'l/;(a1 , b)'lj;(a2 , b'), (4.2) 

'1/;(aa' , b) = 'l/J(a 0 a', ~'ffP(b )) = '1/;(a, b2)'1/;(a' , b1) and ( 4.3) 

'l/J(SA(a), b) = '1/;(a, Si/(b)). (4.4) 

Given a skew Hopf pairing 1/; on A x B t he Drinfeld Double D is defined as 
the following Hopf structure on A 0 B . 

1. The multiplication is characterized by 

(a) (a 0 l) (a' 0 1) = aa' 0 1, 

2 All naturally appearing Hopf a lgebras have invertib le antipodes. A Hopf algebra with this 
property is said t o be regular. 
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(b) (a 0 1)(1 0 b) = a 0 b, 

(c) (10 b)(l 0 b') = 1 0 bb' and 

(d) (10 b)(a 0 1) = 'I/J(a1, Ss(b3))(a2 0 b2)'1/J(a3, b1), 

while the unit is 1 0 1. 

2. The coalgebra structure is given by E = EA 0 <'-B and D. = T23(D.A 0 b.s). 

3. The antipode is S(a 0 b) = (10 S8 (b))(SA(a) 0 1). 

The Hopf algebra D contains A = A 0 1 and B = 1 0 Bcoop as sub-Hopf 
algebras. 

Now we will give an alternative definition. 

Theorem 4.1 D can be defined as the free product A * B divided out by the 
following relations 

(4.5) 

For the proof we write DD for the algebra defined by (4.5). First note the 
following equivalent form of (ld). 

Lemma 4.1 (ld} is equivalent to 

( 4.6) follows from (ld) since 

'1f(a2,S(b3))'1f(a1, b4)(a3 0 b2)'1f(a4, b1) 

'1f(a2a1, l)(a3 0 b2)'1f(a4, b1) 

(c(a2a1)a3 0 b2)'1/J(a4, b1) 

(a1 0 b2)'1f(a2, b1). 

and, on the other hand (ld) follows from ( 4.6) by 

(4.6) 

'1f(a1, Ss(b3))(a2 0 b2)('1/J(a3, b1)) 'I/J(a1, Ss(b3))'1f(a2, b2)(1 0 b1)(a3 0 1) 

'1f(a2a1, 1)(10 b)(a3 0 1) 

= (1 0 b)(a01), 

where we used twice that 

This finishes the proof of the lemma. 
From the lemma it follows that the map from DD to D sending a* 1 to a ,~ 1 

and 1 * b to 1 0 b is well defined. Moreover it is the inverse of the linear map 
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sending a© b to a* b. So both maps are isomorphism. Similarly the linear map 
a© b H (b * a) is an isomorphism of vector spaces. 

This proves that D and DD are isomorphic as algebras, while the Hopf 
algebra structure is uniquely determined by demanding that A©l and l ©Bcoop 
are sub-Hopf algebras. 

We will need the following lemma 

Lemma 4.2 Assume A , B are N-graded. Assume that A is generated over Ao 
by a vector space VA and similarly that B is generated over Bo by a vector 
space VB. Then we only have to impose the relation (4.5) for a E Ao UVA and 
b E Bo U VB 

Let H denote the algebra obtained by imposing the relations as in the lemma. 
We have to show that (4.5) holds for arbitrary a, b. 

We do this by induction on the degree of a and b. So let b (/c B0 U VB then 
we can write b = I: cidi where the ci's and the d/s have smaller degree. ( 4.5) 
is clearly additive in b, so we may assume b = ed. Thus we have to show that 
the following expression can be reduced to the similar expressions for c and d. 

Assuming that for b1 of lower degree than b the equation ( 4.5) is satisfied, 
we get 

c1 (d1 * a3)1/J(a1, c2}1/;(a2, d2) 

c1 * a2 * d21/J(a1, c2)'l/;(a3, d1) 

a1 * c2 * d21/J(a2, c1)1/J(a3, d1) 

(a1 * c2d2)1/J(a2, c1d1) 

In the same way we can reduce the degree of a until a E Ao U VA 

4.2 The Ringel-Hall Algebra and its Double 

4.2.1 The Ringel-Hall Algebra H(Q) 

Fix a quiver Q = (Qo,Q1 ,t,h), and a finite field 1k = JB'g. We put v = q- 112 . 

The Ringel-Hall algebra H(Q) is defined as follows. 
As a vector space, H(Q) has a basis given by the isomorphism classes of 

representations of Q. If A and B are two representations, then the corresponding 
product is given by 

[AJ[B] = v-<A,B) I>;?B[C], 
[CJ 

(4.7) 

where the number g;?B is the cardinality of { X C C I X ~ A, C / X ~ B}. Note 
that only for a finite number of isomorphism classes the above set is not empty, 
leaving a finite sum in the definition of the product. 
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The algebra obtained here is opposite to the a lgebra of Ringel. Also note we 
will need some identities of these structure constants whose proof we postpone 
to appendix A. 

Fixing a dimension vector a, we define H(Q)0: as the subspace with basis 
the isomorphism classes of a-dimensional representations. This makes H ( Q) 
into a NQ0 -graded algebra. 

It is possible to put the structure of a certain type of twisted Hopf algebra 
[Gre95] on H(Q). To obtain a real Hopf algebra, we have to add a diagonal part 
in degree zero. This is explained in the next section. 

4.2.2 Adding a Diagonal Part 

Consider {K0:la E _zQo} as basis of the group algebra of _zQo, and consider a 
crossed product B(Q) with H(Q) having following multiplication: 

-,, 
K 0 [AJ • K,g [BJ = v-((B,A)+(/3,A)) Lg;iBK0:+,g[C]. 

[CJ 

By defining Ka = Ka[O] and [A] = K 0 [A], where o = (0, ... , 0), we get both 
H(Q) and _zQo as subalgebras of B(Q). We extend the NQ0 -grading to B(Q) by 

putting l[AJI = A and IK, I = 0. Here we follow Lusztig's convention [Lus93J 
of writing !xi for the degree of a homogeneous element. 

The algebra B(Q) is made into a Hopf algebra [Kap97, Xia97] by defining 
t:., E and Son the generators as follows. 

t:.[AJ = ~ - (C,B) A I Aut(B)II Aut(C)I [BJ K [CJ 
Lt v gBC I Aut(A)I 0 B 

[B!,[CJ 

!::.(Ka) = Ka © Ka 

c(Ka[A]) = 8[A],[OJ 

For the antipode we need to sum over the set CA,n of chains of t he form 
0 = Ao C A1 C · · · C An = A, where \/i: Ai/= A i+l· We define 

00 n ITn I Aut(A- / A- 1) l[A/A- 1] S[AJ = L L IJ (- l)nv-(A, /A;_ ,,A;- 1) J=l J J- J J- K - 1 
n = O CA,n i= l I Aut(A)I ;f 

4.2.3 The Algebra U( Q) 

B(Q) has a skew Hopf pairing with itself: 

So we can define the Drinfeld double structure D(Q) on B(Q) 0 B(Q) . 
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After dividing out K 0 © 1 - 1 © K _0 , one obtains a new Hopf algebra 
denoted by U(Q). We put [A], [AJ- and Ka: for the class of [AJ © 1, 1 iz, [A] 
and Ka:© 1 = 1 © K - o:· In section 4.2.4 we will show that U(Q) is the algebra 
generated by [Al, [AJ- and Ka: and satisfying the following relations. 

Ka = [OJ [oJ- = 1, 

K aK/3 = Ka+/3, 

[Al[B ] v- (B,A) I>1s[C], 
[Ai- [s]- v- <B,A) L91s[CJ-, 

[A]Kcx v- (o:,A) Ko: [A], 
-,; 

[A] - Ko: v<o:, A) Ka [Ai- and 

L iifv-(B- N,M-N) [Ml[NrKil-N 
[M],[N] 

= L g.t¥fv-<A -M,N-M)[Ni-[MJKA- M' 
[M],[N] 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

( 4.15) 

where for M, N, A, BE Rep(Q) we write g1ff for the number of exact sequences 

0 --------+ M ~ A ~ B ~ N ----+ 0 
( 4.16) 

divided by I Aut(A) JI Aut(B) I. We refer to appendix A for relations between 
gf/Jv 's and g11c 's, and other properties of these numbers. For instance, we will 
use t he equation 

MN I Aut(M)I J Aut(N)J" A B 
9AB = I Aut(A) IJ Aut(B) J 0 9MP9PNI Aut(P)J. 

[P] 

(4.17) 

There is a classical decomposition U(Q) = U(Q)_ © U(Q) 0 © U(Q)+, where 
the algebra U(Q) - is generated by the [AJ- 's, the algebra U(Q)+ is generated 
by the [AJ's, and U(Q) 0 is generated the Ka's. Note that U(Q) _ ~ H (Q) ~ 
U(Q)+· 

We will need the identity (4.15) in the special case that B = Si . Since N 
is either a quotient or a subset of Si it has to be either equal to Si or 0. In 
the former case A ~ M , in the latter A - M = i . Putting the t erms where N 
equals Si on the lefthand side and t he others r ight we obtain: 

[AJ[S.]- - [S·J - [A] = "q(l/2)(M,S,) J Aut(M) JgA K[MJ 
i i L-J I Aut(A) J s,M i 

[M ] 

- "q(l/2)(S,,M) I Aut(M) I gA [M]K . (4.18) 
0 I Aut(A) I MS, -i · 

[M] 

Note that if i is a source or sink and in addition if A is admissible one of the 
two terms on the righthand side of this equation disappears. 
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Finally it is easy to verify that there is an automorphism w on U(Q) of 
order 2 such that wK0 = K _0 and w[A] = [AJ- . 

4.2.4 Calculations of the Given Relations 

From the given equations only the last one does not follow immediately from 
the construction of B(Q). We will show that (4.15) follows from (l d) on page 
33 (or rather from its equivalent form (4.6)) in the case a= [A] and b = [BJ. 

For the lefthand side A we get: 

A = 't/J(a1, b2)(l © b1)(a2 © 1) 

_ ~ - (F,E) -(D,C) A B JAutCI IAutDJjAutEJjAutFj 
- L v 9cn9EF I AutAII AutBI 

[CJ, [D] 
[El,[FJ 

.'t/J([C],KpJ [F])(l © [E])(K0 [D] © 1) 

In the non-zero terms we need to have C ~ F , since otherwise 't/J([C], KpJ [F]) = 

0. We also note that C = A - iJ and 't/J([C], KE [Cl) = I A:t C j. Furthermore 

we have K 0 [D]@ 1 = (K0 © l)([D] © 1) = K0 [D] = v(C,D)[D]K0 . Thus we 
get 

_ ~ -(C,E) -(D ,C) A B jAutCII AutDIIAutEII AutCj 
A - L v 9cn9Ec I AutAII AutBI 

[CJ,[D] 
[E] 

.?/J([C], K pJ[C])(l © [E])(K0 [D] © 1) 

~ - (C,E)+(C,D) A 8 jAutCII AutDIIAutEj[E] - [D]K 
L v 9cn9Ec I AutAII AutBj c 

[C], [D] 
[E] 

L v- (A-D,E- D)[Er[D]K A-D 
[D], [E] 

jAutD//AutEj ~ A B 

. jAutAI IAutBJ L9cn9Ec / AutCI 
[CJ 

= L gfiiv- (A-D,E- D) [Er[D]K-;;t_IJ · 
[DJ,[E] 
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A similar calculation works for the righthand side. This time [EJ is forced 
to be equal to D leading to: 

(a1 ®b2)7f;(&i,b1) 

_ ~ - (F ,E)-(D,C) A B [AutC [/ AutD![AutE[ !AutF/ 
- ~ v 90D

9EF [AutA!!AutB! 
[CJ,[D] 
[E],[F] 

.([CJ® KE[F])?j;(KC [D]' [El) 

_ ~ -(F,E) - (E,C) A B [AutC![AutE[!AutE[/AutF! 
- ~ v 90E9EF !AutA![ AutB! 

[CJ,[F] 
[E] 

.[CJK _ -:e[F]-7j;(K0 [E], [El) 

L g1~v(B-F,F- C>[CJ[Ft K_7J+F 
[C],[F] 

This clearly gives us (4.15). 

Now we will prove that the relations (4.9)-(4.15) are sufficient. We need 
to check that ( 4.6) holds and by lemma 4.2 is suffices to do this on generators. 
The above calculation took care of the case a= [AJ and b = [BJ. We check the 
other cases below. 

• In the case a = Ka and b = K13 we get for the following trivial equalities: 

'lj;(Ka, K 13 )(l ® K 13 )(Ka ® 1) = v- (a,/3) K _/3Ka = 

Ka-f3V-(a ,f3) = (Ka® K f3 )'1j;(Ka, K/3) . 

• To treat the case a = Ka and b = [BJ we put 

b1 = v-(F,E) g:F I Au~:~~~~tF! [E] and b2 = K-:e [F], and obtain for the 

lefthand side 

7j;(a1, b2)(l ® b1)(a2 ® 1) 

= L v-(F,E)g:p I Au~:~~~~tF['lj;(Ka,K-:e[F])(l ® [E])(Ka ® 1) 
[E],[F] 

The only term that survives in the evaluation is the one with [FJ = [OJ, 
and thus [E] = [BJ. Clearly gj0 = 1. Thus the lefthand term is equal to: 
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For the righthand side we obtain 

(a1 0 b2)'1jJ(a2, b1) 

= """"' - (F,E) B JAut EJJAutFJ(K K [F])·'·(K [E]) 
~ v 9EF I AutBJ °' 0 E 'f' a, 

[E],[F] 

= (Ka 0 [B])'lj)(Ka, Ko) 

= Ka[Bt 

This leads to equation (4.14). 

• It is a similar calculation that leads to (4.13), starting from a= [A] and 
b = K13. 
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Chapter 5 

Reflection Isomorphisms 

In this chapter we will introduce three isomorphisms between U(Q)'s for differ­
ent quivers with the same underlying graph. 

The first isomorphism was suggested by Lusztig [Lus90]. It uses the notion 
of Fourier transform to define an isomorphism FQ ,Q' between the Ringel-Hall 
algebras of quivers Q and Q' with the same underlying graph. In other words 
the Ringel-Hall algebra is independent of the orientation of the quiver. 

It turns out (as predicted by Lusztig) that these morphisms are one-to-one 
and therefore the Ringel-Hall algebra is independent of the orientation of the 
quiver. 

A second isomorphism ti (defined for a source i) from U(Q) to U(riQ) is 
obtained by extending the reflections Ti (defined by (1.5)), to the double Ringel­
Hall Algebra. Note that passing to the double is essential to define ti on non­
admissible representations. 

Combining the above isomorphisms one defines an automorphism i i on U(Q) 
for any vertex i. To this end one introduces two auxiliary quivers with the same 
underlying graph as Q: (i) Qi, obtained from Q by making i a source and (ii) 
Qi = riQi . We define ii = Fq ,,QtiFQ,Qi. We find that on the subalgebra gen­
erated by simple representations these automorphism were defined by Lusztig 
[Lus93]. We have thus given a new definition of these automorphisms, and at 
the same time we have extended them to U(Q). 

5.1 Fourier Transform 

5.1.1 Fourier Thansform in General 

First recall the definition of finite Fourier transforms. Let X be a finite set, 
and denote by F(X) the set of functions on X with values in C. Given a map 
f: X -t Y between finite sets we define J* : F(X) -t F(Y) by J*(g) = g o f. 
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On F(X) there is an inner product defined by 

1 ~ -
(f,g) = jxf L. f(x)g(x). 

xEX 

(5.1) 

We will be concerned with a finite set U, and finite dimensional vector 
spaces V and W, both of dimension n over a finite field Ik = IF q· We also assume 
there is a non-degenerate pairing ( - , - ) : V x W -+ Ik. Further we choose a non 
trivial additive character 1/J : Ik -+ (C*. We now define ..:.. : F(U x V) -+ F(U x W) 
and _::_ : F(U x V) -+ F(U x W) by. 

f(u,w) = q=f L f(u,v)'l/J((v,w)). 
vEV 

J(u, w) = q -t L f(u, v)'l/J( (v, w) ), 
vEV 

for f E F(U x V), u E U, w E W. 
Note that 

f(u, -w) = J(u,w), 

J = j = f, 
(f,g) = (J,g) = (i,g). 

These statements are proved as follows. 

(5.2) 

(5.3) 

(5.4) 

Using the fact that L 1/J((v,w)) = 0 except when v = 0, in which case the 
w EW 

sum is equal to IWI = qn, we get (fort E V and u E U): 

}(u,t) = q-n/2 L J(u,w)'l/J((t,w)) 
wEW 

= q- n /2 L (q-n/2 L f(u,v)'l/J((v, - w))) 1/J((t,w)) 
wEW vEV 

= q- n L J(u, v) L 1/J( (t, w) - (v, w)) 
vEV wEW 

= q-n L f(u,v) L 1/J((t-v,w)) 
vEV w E W 

= f(u, t). 
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and 

(!, g) = l~I L ](w)g(w) 
wEW 

=I~/ L (q-n /2 L f(u) 'lf;((u,w))) (q- n/2 L g(v)'I/J ((v ,w))) 
w E W uEV vEV 

=lil 2 L f(u)g(v) L 7/J((u - v,w)) 
u,v EV wEW 

1 ~ -=rn ~ f(u)g(u). 
uEV 

Assuming that U is a H-set, V and Ware H-representations and(-, - ) is 
H -invariant, one hash} = h] for each h E H. 

The Fourier transform is transitive in the following sense. Assume that 
there are spaces Vi, Vi, W1, W2 equipped with nondegenerate pairings(- , -)i: 
Vi x W1 -+ IC, and (- , - )2 : Vi x W2 -+ IC. We set V = Vi EB Vi and W = 
W1 EB W2 and define ( - , - ) = ( - , - )i + ( - , - )2. Then the Fourier transform 
F(U EB V) ---+ F(U EB W) is equal to the composition of the Fourier transforms 
F(U EB v'i. EB Vi) ----+ F(U EB Vi EB W2) and F(U EB Vi EB W2) ---+ F(U EB W1 EB W2). 
We will call this transitivity. 

Finally for a map f : U' ---+ U between finite sets the following diagram is 
commutative 

( .:.) 
F(U' X V) ~ F(U' X W) 

(f,Id)• l 
F(U X V) 

1 (!,Id)• 

( .2. ) 
~ F(U xW) 

It is straightforward to calculate that both compositions yield 

q- n/2 L g(f(u), v)ip( (v, w) ). 
vEV 

(5.5) 

5.1.2 The Fourier Transform for Quiver Representations 

For a fixed quiver Q and dimension vector a we put F(Q, a) = F(Rep(Q, a)) . 
We can consider the a -graded part of H(Q) as a the fixed point set of F(Q,a) 
under the action of Gl0 • This can be done by identifying a representation with 
the characteristic function of its orbit: 

(5.6) 

This formula suggests the possibility to put a product on the space F(Q) = 
EBF(Q,a) which restricts to the product (4.7) on H(Q). It is well known how 
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this should be done. For f E F(Q,a) and g E F(Q,(3) one defines the product 
Jg as 

q(f3,c,;) /2 

(fg)(C) = I Glc,; II Glf3 I f f(A)g(B), (5 .7) 

where the sum runs over all exact sequences Ee 

'f' 0 
Ee : 0 -----------+ A -----------+ C -----------+ B -----------+ 0. 

This is an associative product without unit element. 
The restriction to H(Q)a = F(Q,a)G10 of the bilinear form( - ,-) defined 

by (5.1) becomes 

(5[A],[B] 
([A], [Bl) = I Aut(A)I" 

By linear extension we get a bilinear form (-, - ) on H( Q). 

(5.8) 

Now take a subset E C Q1 of edges of the quiver Q and consider the 
quiver Q' which is obtained from Q by inverting the edges in E. Then 

where 

R(Q,a) = Ua x Va and 

R(Q',a) Ua X We,;, 

Ua = II Hom(ka,,,, kah" ), 
'f'iE 

Va = II Hom( ka,,,, kah,,), 
'{JEE 

We,;= II Hom(kah,, ,ka'" ). 
'{JEE 

For u E Ua, v E Va , w E Wa we denote by Au,v E Rep(Q) , Au,w E Rep(Q') 
the corresponding representations. 

We need to define a pairing on Va x We,;. To that end we first fix a sign 
cr'f' E {- 1, + 1} for each arrow <p E Q1 . Then we define t he pairing 

((A'f')'{J, (B'f')'f') = ~ cr'f' Tr(A'f'B'f') . 
'{JEE 

Given this pairing we may (and will) define a Fourier transform from 
F(Q,a) to F(Q',a) and extend it linearly to a Fourier transform from F(Q) to 
F(Q'). Then we restrict it to a map from H(Q) to H(Q'). We will denote this 
transform by FQ,Q',u· We want the following compatibility relation: 
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where Q" is yet another quiver obtained from Q by inverting a set of edges. To 
do this we must fix for each orientation a sign O' (here for Q) or c, (here for Q' ) 
according to the following law 

if cp EE, 

otherwise. 

Once these signs are fixed we can drop them from the notation. 

5.1.3 H(Q) is Independent of the Orientation 

It was stated without proof by Lusztig [Lus90] that 

Theorem 5.1 The Fourier transform defines an algebra isomorphism between 
H(Q) and H(Q1

). In particular the Ringel-Hall algebra is independent of the 
orientation of Q. 

The remainder of this section will be devoted to the proof of this statement. 

Given f E F(Q,a) and g E F(Q,/3) we have to show that Jg= jg. By 
transitivity (see page 42) we only have to prove it for the case that there is a 
single arrow reversed: E = { cp}. 

We will first rewrite Jg, then rewrite Jg, and then show that the differ­
ences can be eliminated. Before doing this, however, we picture the various 
maps, related to the arrow cp and its 2 associated vertices, that occur in the 
calculations. 

w V 

0 ~--- lk°''"' ---+- lk°''"'+f3,.,, 
<Pt<p 

Wz V2 

• Given u E Ua+f3 and v E Va+f3, we consider exact sequences Fu,v of the 
form 

where u 1 E Ua, u2 E Uf3, and so on. If we want to indicate that the sum 
also runs through all v's, we will use 9u, rather than Fu,v· 

44 



We get: 

fg(u,w) = q(l f2)(- (a1i.,,+/31i...,)(a • ...,+f3,...,)) L (fg)(u ,v)'I/J((v,w)). 

vEV.,+13 

The product is given by: 

q(l/2)( (/3,a)q) 

(f g)(u, v) = I Gla JI GI/3 I ~ J(u1, v1)g(u2, vz). 
u,v 

Combining this we find: 

_ q(l/2)( (/3,a)q-(ai....,+/31i.,,) (a,.,,+/3,...,)) 

fg(u,w) = I Gla II Gl,e I 

x Lf(u1 ,v1)g(u2 ,v2)1/J((v,w)) . (5.10) 
Q,, 

• Next we rewrite Jg. 
T his time we consider the following exact sequences 1iu,w, for u E Ua+/3 
and w E Wa+,6, 

1-lu,w ; 0 --+ Au1,w1 ~ Au,w ~ A u2,w2 ----+ 0. 
(5.11) 

This enables us to write out the product in terms of J and fj explicitly : 

A A q(l/2)(/3,a)q, A A 

(fg)(u,w) = IGlallGl.B I ~ f(u1,w1)g(u2,w2). 
u,w 

Now we know that: 

](u1,w1) = q- a,.,,,a,,,,/2 L J(u1,v1)'1/J((v1,w1)) and 
v , EV, 

fj(u2, wz) = q-.B,.,,,.B,..., /z L g(uz, v2)'1/J( (v2, w2) ). 
v2EV2 

To use these two equations, we first note t hat for each of the q/3,,,,a,.,,, 
maps v compatible with v1 and v2 in the diagram above we have (v, w) = 
( v1, w2) + ( v2, Wz). We can rewrite this as: 

(v1,w1) + (v2,w2) = q- .B,...,a,.,,, L (v,w) 
V1 -+ V -+V2 
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Putting everything together we get 

A A q(l/2)( ({3,01.)q1 - (ct1,,p01.t<p+f31,,,,f3,,,,+20l.h-,,f3,,,,)) 

(Jg)(u, w) = I Gia II Glf3 I 

x I: f ( u1, v1)g( u2, v2 )'1f;( (v, w)) . (5 .12) 
1iu,w 

V I -tV -tV2 

The expressions (5.10) and (5.12) are equal if the exponents of q are equal 
and if the summation happens to be over the same data, except for a part that 
adds up to zero. To prove the former it suffices to check that 

which is no problem. To prove the latter we first note that in both cases v has 
to be compatible with v1 and v2 . The only remaining difference is that in (5.12) 
there are maps w1 and w2 involved, which are not needed to obtain (5.10). We 
have to look what happens for w whether or not there exists w1 and w2 such 
that the diagram is commutative. 

Let us first look at w for which there exist w1 and w2 making the diagram 
commute. It is pretty straightforward that both summations are equal, in that 
case. And thus fg(u,w) = (ig)(u,w) . 

Finally we turn to the w for which there do not exist w1 and w2 • Clearly 
the 1-lu,w is empty in that case, leaving (ifJ)(u, w) = 0. Since L ,., 'I/J( (v, w)) = 0 

as well (v compatible with v1 and v2), making fg(u,w) = 0. 

5.2 Reflections from U(Q) to U(Q') 

Now we return to the reflections of the Weyl group. In the next section we will 
combine these together with the Fourier transform to generate automorphisms 
of U(Q) . In this section we fix a quiver Q with a source i, and the quiver Q' 
obtained by inverting the edges starting in i. Consider the reflections ri defined 
in (1.3) and (1.5). 

We will prove the following result in this section. 

Theorem 5.2 There is a unique algebra isomorphism ti U(Q) ~ U (Q'), 
satisfying 

tiw 

ti[Si] 

ti[A] = 
tiKOI. 

wti, 
- 1/2[8 ·]-K . q i - i, 

hA] if A is admissible, and 
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(5 .13) 

(5.14) 

(5.15) 

(5.16) 



Recall that any representation A of Q is the direct sum of an admissible 
representation B and some copies of S i: A~ Sf EB B (see chapter 1). We note 
that from ( 4. 7) we can easily deduce 

[Sf+1
] = (1 +q+ ... +qa)- 1q-af2 [Sil[Sf] and (5.17) 

[A]= q(B,i)f2[Sf][B]. (5.18) 

(5.13-5.16) yield the value of t i on generators. Hence if ti exists then it must 
be unique. 

• We first prove that ti, restricted to H(Q) -+ U(Q'), is an algebra mor­
phism. 

If ti exists it has to be compatible with the identity (5.17). By induction 
we get 

ti[Sf] = q- a
2

l2 [S fJ - K - ai· 

On the other hand from (5.18) we obtain (for A = B EB Sf; B admissible) 

ti[A] = q-< B ,i)f2ti[Sf]hB]. 

Together this defines ti on the standard basis of H(Q) . The definition oft; 
is obviously compatible with the relations (5.17) and (5.18). This means 
that we only have to check compatibility with the Hall product (4.7) , in 
the case A is admissible and B is either of the form Sf or admissible. 

If A and B are both admissible and C is such that the following sequence 
is exact t hen C is admissible (Si C C is impossible!). 

0 -+ A ----+ C ----+ B -+ 0 

Since ri defines a equivalence between Adm(Q) and Adm(Q'), we trivially 

have li.s = g;:1r;B' while (E, A)Q = (~1 ~)q, (see (1.6)). 

The only case that still needs to be checked is when A is admissible and 
B = Si. The product is in this case 

[AJ[Si] = q1/2(i,A) [Si EB A]+ q1/2(i,A ) I: gi~. [A'] (5.19) 
[A'] EAdm(Q) 

q1/2(i, A) [Si] [A] + q1/2(i, A) ~ A' t 
L.t gAsJA ], (5.20) 

[A']EAdm(Q) 

-,; . 
where we have used g1ft = q-< A,,). 

Now we have to check whether t i is compatible with (5.20). This means 
that the following identity has to hold in U(Q'). 

q- 1l 2 ([riA.J[Sit K -i - q1l 2(i,Al [Si] - K _i[riA]) 

= ql/2{i,A)q L gi~; [riA'] (5.21) 
[A'] EAdm(Q) 
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Using 

q1/2(i, "°X) [Si] - K _i [riA] = q112((i, A)+(i,r; A)) [SiJ- hAJK- i 

= [Si]-hA]K- i 

(the exponent vanishes since (i,ri A) = (rii , A) = - (i, A)), we may 
rewrite (5.21) as: 

[riA][Si]- - [Si]- [riA] = q1/2((i,A)o+l) L 91~, [ri A']K i 
[A'JEAdm(Q) (5 .22) 

We want to rewrite this relation entirely in terms of Q' . To this end we 

use (i, A)Q = hi,riA)Q, = - (i ,~)Q'· Invoking the formula (A.l), 
. A' I Aut(A') I r ;A 

from the appendix, we have 9AS; = I Aut(A) I 9 s,r,A'· Put C = riA and 

C' = riA'. 

We get 

This identity should hold in U ( Q') for all admissible C E Rep( Q') . 

By (4.18) we have 

[C][S] - - [S-] - [C] = ~qc1;2)(M,i)o, I Aut(M) lgc K [M] 
i i ~ I Aut(C) I S,M • 

[M] 

We just have to note that Ki [M ] = q- C1/2)(M,i) [M]Ki and, whenever g<j,M 
is not zero, (i, M)Q, = (i, C)Q, - 1 to see that this is (5.23). 

Thus we have proven that ti : U(Q)+ -+ U(Q') is an algebra morphism. 

• Now we extend ti to a map U(Q) -+ U(Q'). 

We first note that ti acts as it should on K o. 's and also the relation (4.13) 
is satisfied. Thus on B(Q) = U(Q) 0 ® U(Q)+ t i is in fact a lgebra homo­
morphism. Since ti is by definition compatible with w, we also obtain that 
ti: U(Q) 0 @U(Q)+-+ U(Q') . We only need t o check equation (4.15) . By 
lemma 4.2 it suffices to check the equation only in generating cases. So A 
and B are either admissible or Si . Leading to 4 cases (in fact 3 distinct 
cases, see below). 

1. In the case A = Si= B, we may use equation (4.18), which reads 
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Applying ti yields 

-1([SJ [ J- [ ]- [ ] ) Ki - K-i q ; Ki Si K _i - S; K _i Si Ki = . 
q-1 

To check this last equation may be checked using the commutation 
rules. 

2. The case where A is admissible and B = Si may also be proved using 
equation (4.18). This time we obtain (in U(Q)): 

[AJ[s] - _ [s-J- [AJ = _ ~ q(l/2)(S, ,M)Q / Aut(M) /gA [MJK . 
i i ~ / Aut(A)/ MS, -,, 

[M] 

since gi;M = 0. After applying of ti we obtain 

q-1l2([riA][Si ]Ki - [Si]Ki[riA]) 

= - ~q(l/2)(S;,M)Q / Aut(M)/gA [r·M]K (5.24) 
~ / Aut(A) / MS, i i 

[M] 

Next we multiply with q112 K _ ; and use 

(Si, M)Q = (i, A)Q - 1 = - (i, GA) - 1. 

We also use again equation (A.I) which implies 1

1
~~w~m gfts, = 

r;M 
gS;r;A· 
The equation (5.24) is transformed into 

[r;AJ[Si] - q-(1/2)(~,il[S;l[r;A] = - q(l/2)(i,~)Q, L9~:~A[r;M] . 

[M] 

Now multiplying with -q(lf2)(D,S,) and putting C = r;A and N = 
riM, we finally get 

[Si][D] _ q(l/2)(D,S;) [Dl[S;] = qC1/2)(D,S; ) 

[N] EAdm(Q') 

which is nothing else then a Q'-analogue of the equation (5.19). This 
finishes the proof of (4.15). 

3. This case may be reduced to the previous one by applying w. 

4. Finally we check the case that both A and B are admissible. 

We will first show that the lefthand side A is invariant under the t; . 
So we have 

A = L lffq- (l/2) (B-N,M-N) [M][NJ- K :;i_N. 
[MJ,[N] 
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We first rewrite this in generators. These are either admissible or 
equal to Si. Since M is a subset of A it has to be again admissible. 
However N may contain copies of Si . Set N = N' EB Sf with N' ad­
missible. We note in passing that if i is a sink (like in Q') the situation 

~-is exactly opposite. We know that [NJ-= q-(1/ 2) (N ,m) [SfJ-[N'J- . 
Now we apply ti to obtain 

tiA = L gf/Jvq(l/2)((B - N,M-N)-(J1',ni) - n2
) 

[MJ,[N'],n 

We rewrite this formula using a number of equalities. First setting 
U = r,M EB Sf we obtain 

[ri M ][Sf] = q-(1/2)(Sf,r;M)o, [r;M EB Sf] = q(l/2)(ai ,M) [UJ. 

Commuting Kai with [riN'J- gives 

By lemma (A.2) we get 

gMN _ q(ni,M)+(I1' ,ni)gUr,N' 
AB - r;Ar;B· 

This turns expression (5.25) into the expression 

tiA = L g~]~~qw1
2

[UJ[riN'JK~-;:;B' (5.26) 
[U],[N'] 

where 

W = (B - N,M - N) - (N',n.i) - n2 

- (ai, M) - (ai, N') + 2(ai, M) + 2(N', ai) 
--:± ~~ ~ = (riH - riN , U - riN )Q, 

Putting V = riN' yields the formula 

tiA = L g~~r,BqCl/2)(;:;B-V,U- V)Q, [UJ[v] - K~- v· 
[U],[V] 

A similar calculation for the r ighthand side yields 

~ gvu. qC1/2)(~-u.v-u)0 , [vJ - [U]K-t -=-t . 
L._,; r,B1-iA riA- u 

[U],[V] 

(5.27) 

Clearly these are the lefthand and righthand side of the equation (4.15) 
applied to U(Q'). This finishes the proof that t i exists and is well defined. 
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• Finally we show that ti is invertible by constructing an explicit inverse. 
Indeed: 

t~w 

tasi] 

t~ [A] 

t~Ka 

wt~, 

q112 [Si]- Ki, 

[riA] if A is admissible, 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

defines an inverse of ti . The proof that t~ is an algebra morphism is almost 
identical to the proof for ti, except that i is a sink in Q', and thus care 
has to be taken. 

To prove that t~ti = Id = tit~ the only difficulty rises to check it on [Si], 
where 

t~ti[S;] = t~(q- 1l 2 [si]- K _i ) = q- 1l2 t~(w[Si]K-i) 

= q- 1l 2w(q112[Si]-K i)Ki = q-1l 2q1l 2[Si]K - iKi = [Si] 

= q1/2q- 1;2[Si]KiK-i = q1/ 2w(q- 1/2[s i] - K _i)K- i 

= q112ti (w[Si])K_i = t i(q112 [SiJ- Ki)= t it~ [Si] -

This finishes the proof ti defines an isomorphism between U ( Q) and U ( Q' ). 

5.3 An Automorphism of U(Q) 

5.3.1 Definition 

It is time to put both isomorphisms together. First we note that the Fourier 
transform may be defined on the whole of U(Q) by 

f (Ka) = K a, 

f( [A]) = FQ,q,( [A]), 

J([AJ-) = (Fq,Q,([A]))-, 

(5.32) 

(5.33) 

(5.34) 

where F Q,Q' is defined as FQ,Q' using the character -:;jj instead of 7P · We will 
still write FQ,Q' for the extension of FQ,Q' to U(Q) . That this extension is well 
defined, follows from the functoriality of the Drinfeld double construction, the 
compatibility of the bilinear forms (cfr. (5.8)) and the properties (5.2)-(5.4) . 

Starting from a vertex i of a quiver Q we change the orientation of certain 
arrows to obtain a quiver Qi in which i is a source (we are allowed to change 
the orientation of arrows not attached to i). Define: 

(5.35) 
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The first question is of course whether this definition depends on the choice 
of Qi. Let Qi another choice for Qi and let Qi = riQi. We should have 

Fo,,QtiFQ,o' = FQ,,QtiFQ,Q'· 

Multiplying on the left with FQ ,O; and on the right with FQi,Q, this is 
equivalent to 

tiFQi ,Oi = FQ,,o,k 

This follows from the commutativity of the diagram below (for Qi and Qi 
quivers containing i as a source and quivers Qi and Qi obtained from Qi and 
Qi by inverting the edges starting in i). 

U(Qi) ~ U(Qi) 

FQ;,0 ; l lFQ;,O; (5.36) 

U(Qi) -t U(Qi) 
t, 

We only have to check this on U(Q)+ since the commutativity on U (Q)0 is 
clear and the commutativity of U(Q)_ follows by applying wand conjugating the 
character 'If;. It is enough to show commutativity on admissible representations 
and on [SJ The latter is clear from: 

tiFq;,o, [Si] ti[Si] 

q-1l 2 [Si] - K _ 1 

Fq,,o.(q- 1l2[Si]-K _1) 

Fq;,oJi[Si], 

while the former easily follows from (5.5), considering the fact that the respective 
sets of edges involved in both operations are disjoint. 

5.3.2 A Special Case 

To shorten the statement of the following theorem we introduce the quantum 
factorial defined by 

, (vn - v- n)(vn- l - vl- n) ... (v _ v- l) 
[n]~ = (v - v - 1 )n . (5.37) 

We also define ain) = an /[n]~. Note the [n]~ = [nJ~-i . 
In the theory of quantum groups it is customary to define v-binomial coef­

ficients differently from combinatorics [Mac95]. In order to avoid confusion we 
use a different notation. 

{n} [n];, 
t - [t]~[n - t]~ 

These are Laurent polynomials in v with integer coefficients. Given a Laurent 
polynomial 1r( v) and a rational number d we use the notation 1r d for the Laurent 
polynomial 1r ( vd) . 
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Theorem 5.3 For a quiver Q, a vertex i and a representation A of Q, such 
that Ai = 0 we have 

ti[A] = ~ ( - l) sqs/2[S·](s) [A][S·](t) L...., t ql/2 2 ql/2 • 

s+t=-(A,i) 

We may assume, without loss of generality, that i is a source in Q, and 
that Q' is the quiver obtained by inverting all the arrows starting in i. We put 
B = r;A. Note that we may also consider A as a representation of Q', since for 
all non zero maps A'I', the arrow cp is left unchanged. A similar argument yields 

FQ, ,Q[A] = [A] . Let C be a quotient of B, and put b = dimB; = - (A,i). 
For an element u of U(Q'), with lul =awe set 

p;(u) = [Si]u - q(o:,i)/2u[Si] -

For t E {O, ... ,n} let Pd be the set of Q'-representations D with dimD; = d 
for which B-» D-» C, up to isomorphisms leaving Band C fixed. 

We get as in (5.19) 

p;[C] = q(l/2)(0,i) L g~:crc'], 
(C']Adm 

and considering ( A. l) we have 

This gives us 

p;[C] 

where c = dim C; . 

c' _ I Aut(C')I r,C 
9s,c - I Aut( C) I 9r,C' s, · 

= q(l/2)(C,i) ~ I Aut(C") lgr,C [r·C"] 
L...., I Aut(C)I C"S, 2 

(C"J 

ll/2)(0,i) ~ I Aut(C") I [ ·C"] 
L...., I Aut(C)I r, 

r, C/C"""'S, 

ll/2)(0,i) ~ I Aut(C')I [C'] 
L...., IAut(C) I ' 

C'EPc+1 

This formula becomes nice if we introduce [CJ = I Aut(C)l[C]: 

p;[C] = q(l/2)(0,i) L [C'] . 
C 1 EPc+1 

Now we denote by /b the number of complete flags in ab-dimensional space 
over Jk, which is the number of ways to go from A to B (stepwise), as Q'­
representations. This leads to 
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But 
I' = (qb - l) ... (q - 1) = qb(b- 1)/4[b]! 

J b ( q _ l )b ql/ 2 • 

We obtain, (using I Aut(A)I = I Aut(B) I), 

Pt[A] = q- b(b+l)/4l(b- 1)/4[b]~1;2[B ] = q-b/2[b]~1,12[B] . 

On U(Q) we define the Pi in the same way. We clearly get 

---? . 

From Pi[AJ = [Sil[AJ - q(A,,)12 [Al[Si ] we claim that 

b 

Pt [AJ = L vs[Si]8 [A][sl-s, 
s =O 

where 
[b]' _ (-l)s (s-b)/2 q

1
/

2 
Vs - q 1 1 • 

[s]~1;2 [b - s]~1;2 

This will be proved below. 
This formula allows us to calculate ti( [A]): 

t i([A]) = FQ,,Qti[AJ 

FQ, ,Q[B ] 

qb/2 b 
FQ,,Q-[b]' Pi[A] 

ql / 2 

qb/2 b 

-[b]' PiFQ,,Q[A] 
q l/2 

qb/2 b 

-[b] ! Pi [A] 
ql/2 

= L (- l )8
q

8 12
[Si]~~~2 [Al[Si]~?12 

s+t=-(X,i) 

It remains to prove the claim (5 .38). 

(5.38) 

We define the operators Lx = [Si]x and Rx = q(lxl,i)/2x[Si]. Clearly we have 
Pi = L - Rand RL = qLR. So to calculate Pt we can use the skew binomium 
formula (B.1). We recall that 

Here t = q. Thus 

lb] _ (1/2)(a(b- a)) [b]~i /2 

- q ' ' a [at
1
1;2 [b - a]~1;2 
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Pt[A) (L - R)b[A] 
b 

~(-l)j [b ~ j] Lb- j RJ[AJ 

b 

2)-l)l [~] Lb-j [A] [Si]l qL:{:~Ct +ki,i)/2 
j=O J 

b 

2)- l)j [~] [sl- j [AJ[Si]lq- bj/2+j(j - 1)/2 
j=O J 

b [b]' 
2::(-l)j[sl- j [Al[Si]1qj/2 

. , q
112

., 

j=O [J]q1/2[b - J]q1 /2 

This finishes the proof. 

5.3.3 Comparison with Lusztig's Automorphisms 

Q is a again a quiver without loops. The bilinear form (-, - ) defines a simply 
laced Cartan datum with simple roots i. We may [Jan87] , associate a quantum 
enveloping algebra Uv(g) to this datum. Uv(g) is the C-algebra with generators 
Ei, Fi (for i E Qo) and La. (for a E ZQ0 ) and with relations: 

L 0 = 1 

La.Lf3 = La.+f3 , 

La.Bi = v(a.,i) EiLa., 

La.Fi = v - (a. ,i) FiLm 

Li - L _i 
EiFj - FjEi = Dij v _ v-l , 

(for i f. j) 

(for i f. j) 

I: (- 1)8 (Ei)~8 )Ej(Ei)~t) = 0 
s+t 

=1- (i,j) 

I: (- 1)8(Fi)~s)Fj(Fi)~t) = 0 
s+t 

=1-(i,j) 

It is well known that Uv(g) is a Hopf algebra ([Jan87]). 

(5.39) 

(5.40) 

(5.41) 

(5.42) 

(5.43) 

(5.44) 

(5.45) 

Let u(Q) be the subalgebra of U(Q) generated by [Si], [Si]- and K a . We 
may invoke Theorem 5.3, from the previous section, to obtain the following list 
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(i # j). 

ii([Si]) = q- 112 [SiJ- K_i, 

ti([Si]- ) = q-1l 2 [Si]Ki, 

ii([Sj]) = L (-1)•q•l2 [Si]~~~2[S1)[Si]~~/2 
s+t=n 

s+t=n 

fi(Ka) = Kr;o: 

It follows from these formulas that u(Q) is preserved under ii. Xiao ([Xia97)) 
constructed a Hopf algebra isomorphism B between Uq- 112 (9) and u( Q) sending 
E i to - q112 [Si] - , Fi to [Si] and Li to K - i· 

Lusztig ([Lus93]) defined the following automorphism T['_ 1 of Uv(g) for 
i E Qo. ' 

TI:_ 1(Ei) = - FiL-i , 

TI:_1(Fi) = - LiEi, 

TI:- 1(Ej) = L (- 1)8v8 (Ei)~t)Ej(Ei )~s) j # i 
s+t= (i,j) 

r;:_1(FJ) = L (- 1)8v- •(Fi)~•)FJ(Fi)~t) j # i 
s+t=(i ,j) 

r;:_1 (La) = Kr,a 

A simple verification yields 

ll II ' Theorem 5.4 uTi _1 = t;(). 
Indeed we have' for Ei: 

BTI:_1 (Ei ) = B(-FiL- i ) = - [Si]Ki and 
' ' 1/2 - 1/2 - 1/2 tiB(Ei ) = ti(- q [Si] ) = - q q [Si]Ki 

and for Fi 

BT[:_1(Fi ) = B(-LiEi) = +K - 1q112 [Si]- and 

iiB(Fi ) = ii([Si]) = q-112 [si]-K _i = q- 1/ 2+(i,-i)/2 K_1 [s ii- . 
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If j =I= i we have for Ej, using v = q- 112 : 

er::-1(Ej) = (} ( L (- l) 8
V

8 (Ei)tt)Ej(Ei)£s) ) 
s+t=(i,j) 

= L(- l)'"v·'( -v-(s+t+1l)( [Sit)£tl [Sj] - ([Si]- )£sl 

= (- l)v :EC-l)tv- t([si] -)£t) [Sj] - ([Sit )£s) 

1/2 A [ = -q ti Sj]-

= t;BEj, 

while for Fj 

BTf:_1(Ej) = () ( L .. (- l) 8 v- 8 (Fi)ts) Fj(Fi)£t)) 
s+t=(i,J) 

= L(-I)sv-s([Si])£s) [Sj]([Si])£t) 

= ii[Sj] 

= iiBFj. 

Finally we have the trivial 

This result gives a new proof that the automorphisms Tf:_ 1 are indeed 
automorphisms. It also gives a global definition for them, which was not the 
case in Lusztig's work. 

Remark : Based on our work in chapter 6 Deng and Xiao have given an 
alternative definition of an isomorphism between H(Q) and H(riQ) [DXOla] It 
is very likely that this isomorphism coincide with the one given by the Fourier 
transform. In [DXOlc] it is shown that the resulting automorphisms of U(Q) 
satisfy the braid relations, thereby generalizing an important result by Lusztig 
for quantum enveloping algebras. 
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Chapter 6 

The Quantized Generalized 
Enveloping Algebra of a 
Kac-Moody Lie Algebra 

In this chapter we introduce the quantized generalized enveloping algebra of 
a Kac-Moody Lie algebra (QGEA). The aim is to show that the Ringel-Hall 
algebra can be considered as the positive part of a QGEA (Theorem 6.5) , which 
gives another translation of Kac's constant term conjecture. 

In the case of generic parameter the QGEA were introduced by S.J. Kang 
[Kan95] . Unfortunately in the case of the Hall a lgebra the parameter is not 
generic, and since Kang makes essential use of specialization arguments we 
cannot use his results directly. Luckily it turns out that as long as the defining 
parameter is not a root of unity one can simply generalize the arguments by 
Borcherds [Bor88] and Kac [Kac90] to the quantum case. Additionally the proof 
of Theorem 6.5 uses the positive definiteness of the Green bilinear form on the 
Hall algebra (see Proposition 6.3). T his argument seems to be new. 

6.1 Initial Data 

First we fix an algebraically closed ground field Tu:. We will need to take rational 
powers of elements in Jk:. To be able to do this we define a inverse system 
(Ta)a>O, where all Ta = Jk:* and the transit ion maps are 1l,a ~ Ta : x H xb . 

Fix an element v E Jk:* and let v = ( va)a be a fixed element of the inverse limit 
such that v1 = v. If r = c/d E Q then we define vr = v~. Clearly this is 
independent of the choice of c and d. We assume in addition that v is not a 
root of unity, such that vr = vr' implies r = r' . 

The initial data are a vector space Y over Ik, a countable linear indepen­
dent subset I of Y and a bilinear form. The role of Y will be rather marginal. I 
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is not necessarily a basis for Y, so Y may be enlarged if needed. Y is equipped 
with a Q-valued Kac-Moody bilinear form (-, -) [Bor88] . This means 

• ( - , - ) is symmetric, 

• for i =I= j E I we have (i,j)::; 0 and 

• if ( i, i) > 0 then 2
((i,J)) E Z. 
i,i 

The elements of I will be called simple roots. We make a distinction between 
real (simple) roots i for which (i,i) > 0, and the imaginary (simple) roots j for 
which (j, j) ::; 0. We write I = J re U Jim for the corresponding decomposition 
of I. 

6.2 Three Algebra Structures 

Now we are ready to construct some Hopf algebras associated to this data. 
These Hopf algebras are generalizations of the quantum enveloping algebras 
introduced in section 5.3.3. 

6.2.1 The Hopf Algebra U 
First we define the algebra U generated by symbols Ei, Fi, Ki, K; 1 for each 
i E I and satisfying 

KiKi- 1 

K iKj 

EiFj - FjEi 

K iEj 

KiFj 

1 = K; 1Ki 

= KjKi 

(Ki - K i- 1)8ij 

v(i,j) EjKi 

v-(i,j)p K 
J i 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

Note that the Ki's commute. Thus it is safe to define for any a E Z 1 the 
symbol Ka = fLKf•. In particular Ki- I = K - i · We put a Y-grading on U 
by deg K 0 = 0, deg Ei = - deg Fi = i. As before we write lxl for the degree 
of a homogeneous element x. From the relations it is clear that any word in 
the symbols Ei , Fi, Ki, Ki-l can be rewritten as the sum of v-weighted words 
of the form ekf where e is a word in the symbols Ei, k = K0 for some a 
and f a word in the Fi. It is classical that this is an isomorphism (cfr. Kac's 
argument for Lie algebras). In this way there is a triangular decomposition 
U = U + © U0 © fj_, where U + is generated by the E/s, U0 generated by the 
K 0 's and U _ is generated by the F;'s. 
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We may put a Hopf Algebra structure on this algebra by defining the 
co-unit as c:(Ei) = c:(Fi) = 0, c:(Ki) = 1, the comultiplication as 

~(Ki) = Ki 0 Ki, 

~(Ei) = Ei 0 Ki + 1 0 Ei, 

~(Fi) = Ki-i 0 Fi+ Fi 0 1 

and, finally, the antipode as 

S(Ki) = Ki- 1
, 

S(Ei) = - EiK i- 1
, 

S(Fi) = - KiFi. 

There is a unique automorphism w of U satisfying w(Ei) = Fi, w(Fi) = 
Ei, w(Ki) = K;1

. It is clear that w is an anti-automorphism on the level of 
coalgebras. 

6.2.2 Serre Relations and The Hopf Algebra U 

For a real simple root i put 

.. - - 2 (i,j) 
a,J - ( .. ) 

i,i 
and 

d . - (i,i) 
i - 2 . 

We define the Quantized Generalized Enveloping Algebra of the Kac-Moody 
Lie Algebra U (or shorter the QGEA) to be the quotient of U by the quantum 
Serre relations. 

O.ij+l 

L (-l)P {aij / 
1

} . Ef EjE;,1+1- p = 0 
p=O d, 

°'ij+l 

L (- I)P {aij / l} . Ff FjF;°''j+l-p = 0 
p= O d, 

EiEj - EjEi = 0 

FiFj - Fj Fi = 0 

if i is real 

if i is real 

if(i,j) = O 

if (i,j) = 0 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

We denote the images of Ei, Fi and Ki in U by the same symbols. The triangular 
decomposition of U induces a triangular decomposition U = U+ ® U

0
@U_ (this 

may be proved as in [Lus93, Cor. 3.2 .5]), where U0 = U0 , U+ is obtained by 
dividing U+ by the relations (6.6) and (6.8), and U_ is defined by dividing [J_ 
by the relations (6.7) and (6.9). 
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6.2.3 The Drinfeld Double and The Algebra U 

Put U>o = U+ ®U0 and U<o = U0 ® U_. We define a symmetric pairing [- ,-] 
on(;?.~ as follows: on the generators we have [Ka, Ki1J = v- (o.,.6), [Ei, Ej] = bij 
and [Ka, Ei] = [Ei, Ko.] = 0. The form given by linear extension of this is a 
skew Hopf pairing. 

We have to check the conditions ( 4.1) on the generators. Indeed clearly 
[Ki, l] = v0 = 1 = s(Ki) and [Ei, l] = 0 = s(Ei) = [l, Ei]. 

Furthermore we have to check [a, bb'J = [~(a), b ® b'J. We have, for instance: 

[Ko., K i1K,,J = v - (a,.6+r) = v-(a,.6)v- (o.,1') = [Ko., Ki1J[Ka, K,,J 

[~(Ei), Ei ® 1] = [Ei, Ei] [Ki, l] + [l , Eil[Ei, l] = [Ei, Ei]v0 + 0 = [Ei, Ei] 

From this we can also define a skew Hopf pairing between U?.o and US,o, 
using w. We define [a, b]w = [a,w(b)J. From the relations we get , for all a E U?.o 
and b E US,o, 

a,b a,b 

The Serre relations (6.6-6.9) are in the radical of these pairings (when they 
are defined). Indeed, for instance, let A denote the lefthand side of (6.6). Note 
that, for a homogeneous, [A, a] = 0 is trivial if IAI =/=- !al. Thus it suffices to 

[ J £ £ k a ·+l- k check A, a = 0 or a of the orm Ei EJEi '' . This follows from a tedious 
calculation analogue to [Lus93, 1.4.3-6]. 

Therefore the pairings are as well defined on U. We denote the algebra 
with Uthe Hopf algebra obtained from (; (or U) by factoring out the left and 
right radical of [- , - ]w, restricted to U+ x U_ . We again have a triangular 
decomposition U = U + ® Uo ® u _. 

6.3 Borcherds Character and U = U 

6.3.1 Casimir and Verma 

We fix homogeneous bases (au)u, (bu)u for U+, (J_ which are dual for the form 
[- , - ]w defined above. Put u = lbul = -Jaul · For n: = I:i n:ii E NI write 
ht n: = I: n:i . Let M be a U-module such that for all m E M we have that 
(U_) _am = 0 for htn: » 0. 

Then the action of the operator 

u 

is well defined on M. Using (6.10) , one verifies that it satisfies [Lus93] 

nEi = EinKf 

nKi = K in 

nFi = K i-2 Fin. 
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We denote by O the category of Y-graded 0-modules M satisfying 

• Ki acts on Ma by multiplication with v(a,i). 

• All Ma are finite dimensional. 

• The set of a such that Mo: =/; 0 is mntained in the tu1ion of a finite number 
of sets of the formµ + NI. 

One may use the operator n to construct a true Casimir operator on objects 
in 0. This is done as follows (cfr [Lus93]) . Enlarging Y if necessary we may 
assume that there exists p E Y such that (p, i) = ! ( i, i) for all i E J. Let M E 0 
and let C be the operator which acts on Ma by v-Ca,a- 2p)n. Then C commutes 
with the U-action on M. This follows from the formulas (6.11). 

Particular objects in O are the so-called (lowest weight) Verma modules 
defined by 

M(µ) = (j 1c2:J O Fi + L U(Ki - v(µ,i))) . 

i 

As usual we denote by L(µ) the unique simple quotient of M(µ) in the category 
0 . It is clear that C acts on M(µ) and L(µ) by multiplication with v -(µ,µ- 2p). 

6.3.2 The Character Ch 

As before, if i Ere we write Ti(X) = x - 2cCt,;f i . Clearly Ti is a reflection on Y. 
Again, we denote the group generated by the Ti by W. This is the Weyl group 
of the root datum (Y, I,(-, - )). We define the character E : W-+ { - 1, + 1} by 
1:(si) = - 1. 

For a E Y we introduce a symbol e(a), in such a way that e(a + /3) = 
e(a)e(/3) . We also put w · e(a) = e(wa) for w E W. For a Y-graded vector 
space V we put 

Ch(V) = L dim V0 e(a ). 
o:EY 

We will now recall how the Weyl group acts on Ch(U+). 
For i E Jre let Ui be the subalgebra of U generated by Ei, F';,, K i . Since 

Uv(.sC2) is simple as a Hopf algebra it follows that Ui ~ Uv(.s[2). As usual we 
can make U and U into Ui-modules using a twisted adjoint action: 

Ad0 (Ei)(a) = Eia - v(i,lal)aEi 

Ad0 (Fi)(a) = (Fia - aFi)Ki 

Ad0 (Ki)(a) = v(i,lalla. 

For i,j E I, p EN put T;,j,p = Ad0 (Ei)P(Ej ) EU+ and denote by Ti,j,p the 
corresponding images in U. Let ll; , V; be respectively the subalgebras of U U 
generated by all T;,j,p, Ti,j,p, j =/; i. 

The following properties are easily established. 
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1. l1i is Ad0 U,-stable. It is sufficient to check this on the Ti,j,p· The stability 
under Ad0 

Ei and Ad° Ki is obvious, while the stability under Ad° Fi 
follows from the relations in Ui. 

2. The action of Ui on l1i is locally finite. This follows from the fact that 
the Serre relation between Ei and Ej implies that Ti,i,%+ 1 = 0 and 
hence v; is generated by the finite dimensional Ui-representations given 
by I:p T;,j,p. k. 

3. Every element of U+ can be written as a sum I:n Efbn with bn E l"i­

Let us now temporarily define U+ * U+ as U+ ® U+ with the new multiplication 

(a* b)(n d) = v-(lbl ,lcl)(an bd) 

(for homogeneous a, b, c, d). 
It is easy to see that there is an algebra homomorphism b : U+ ~ U+ * U+ 

given by b(Ei) = 1 ® Ei + Ei ® 1. By induction on degree one shows 

[a, be] = I)ai, bl[a~ , c] (6.12) 

if b (a) = I:i ai ®a~. We now define linear maps bi : U + ~ U + by the properties 

bi ( Ej) = bii and 

bi(bc) = bi(b)c + v-(i,/bl)Mi(c) 

(for homogeneous b). One shows by induction that [E ia, b] = [a, bib]. Further­
more it is also easy to see that if a E U+ is such that bi(a) = 0 then one also 
has bi(Ad0 (Ei)(a)) = 0. It follows that bi / V; = 0. Thus 

[Efa, Efb] = [Ef- 1a, bi(Efb)] = [Ef' - 1a , bi(Ef )b] = >.[Ef'- 1a, Ef-1b] 

where >. is some non-zero scalar (using the fact that v is not a root of unity). 
Now it follows that 

4. If a, b E ~ then [Efa, Efb] = 0 unless m = n. In that case it is a non-zero 
multiple of [a, b]. 

By taking images a similar statement is true for U +. 
Let V; be the image of l1i in (J +. The corresponding properties hold also 

for V;. Note that it follows from 4 that in (J the decomposition given by 3 is 
unique, since [- , - ] is non-degenerate. 

Let i E r e. Properties 3 and 4 imply that Ch(U+) = (I:n e(ni)) Ch(V;). 
Hence we find 

e(- p) Ch(U+)-1 = (e( - p) - e(-p + i)) Ch(V;)- 1 

Properties 1 and 2 imply that ri Ch(V;) = Ch(V;). Since also ri(e(-p) - e(-p+ 
i)) = ( e( - p + i) - e( - p)), we deduce the following result. 

Lemma 6.1 e(-p) Ch(U+)- 1 is W-skew invariant. 
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Using this lemma one can now generalize the Borcherds character formula 
[Bor88]. Let p _ be the set of allµ E Y such that 

- 2(µ , i)/(i, i) EN if i E Fe and (µ, i) :SO for all i E Jim_ 

Forµ E P_ define Sµ = ~E(s)e(s) wheres runs over the sums of elements in 
Jim and E( s) is ( - 1 t if such a sum consists of n distinct pairwise orthogonal 
terms, each orthogonal to µ. Otherwise E( s) = 0. 

Proposition 6 .1 The character of U+ is given by 

Ch(U+) = (L:>(w)e(p-wp)w(S0 ))-
1

. (6.13) 
w 

The character of L(µ), µ E P_ is given by 

ChL(µ) = (L E(w)e(p + w(µ - p))w(Sµ)) Ch(U+) (6.14) 
w 

The proof is a copy of [Bor88] or [Kac90, Chapter 11]. One observes first 
that if µ is in P _ then L(µ) is integrable, in the sense that for i E re, E i and 
Fi act locally nilpotently. Hence Ch(L(µ)) is W-invariant. 

Secondly, as in the Lie algebra case [Kac90, Prop 9.8] 

Ch(L(µ)) = LCµ>. Ch(M(A)) 
>. 

for Cµ>. E Z, Cµµ = 1 where the sum is over the A such that A>µ (that is A - µ 
is a sum of simple roots) and (µ, µ - 2p) = (A , A - 2p). 

From Ch(M(,\)) = e(A) Ch(U+) one obtains 

e(- p)L(µ) " 
Ch(U+ ) = ~ Cµ>. e(>. - p). (6.15) 

Using lemma 6.1 we find that the lefthand side of the (6.15) is skew invariant 
under W. Then as in [Bor88] or [Kac90, Chapter 11] it follows that the righthand 
side of (6.15) is equal to 

L E(w)e(w(µ - p))w(Sµ)-
wE W 

This yields (6.14). (6.13) follows from consideringµ = 0, and thus proposition 
6.1 is proven. 

6.3.3 U = U 

The following result is also proved in the same way as in the ordinary Kac­
Moody case [Kac90]. See also [Jos95, §4.1.17], where the notion of primitive 
vector is replaced by U+-homology. 
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Proposition 6.2 The bilinear form [-,-] is non- degenerate on U+· In partic­
ular O = U. 

To start we need to know something about the minimal generators as a two­
sided ideal of J = ker(U+ -t U+) - We follow the method of [Kac90]. It is easy to 
see that the degrees of the minimal generators of J are the same as the degrees 

- - E· -of the minimal generators of the left U+-module R = ker( EBiEJU+ (- i) ~ U+ ), 
where U+(-i) is the graded U+-module satisfying (U+( - i)) 0 = (U+)c.-i· 

There is a canonical map of 0-modules EBiErM(i) -t M(O) with cokernel 
L(O). It is clear that R is isomorphic as U+ module to ker(EBiErM(i) -t M(O)). 
In this way R acquires a 0-structure. 

Since R C fB;EJ M( i) it follows in particular that R is in O and hence by 
[Kac90, Remark 9.3] R is generated as U+ module by its primitive vectors 
(homogeneous elements which are annihilated by the F/s modulo a submodule) . 
Let v E R be such a primitive vector of degree a . Looking at the action of C on 
v (modulo the submodule) one finds that (a,a - 2p) = (i,i - 2p), for at least 
one i E J. This yields (a, a) = 2(p, a). 

Asswne that /3 has minimal height such that (rad[- , -] n U+)f3 # 0. We 
claim that for all i E J we have (/3, i) :S 0. It is clearly sufficient to check 
this for i E 1re. By properties 3,4 and the minimality of /3 it follows that 
(rad[- , -] n Yi)p =I- 0. 

Since Ui acts on rad[- , - ]nYi = ker(V; -t V.) we find that Ch(rad[- , - ]nV;) 
is ri-invariant. In particular (rad[-, - ] n Yi)r,f3 # 0. Now if i E r e were such 
that (/3, i) > 0 then ht(ri/3) < ht(/3). This would yield a contradiction with the 
choice of /3. 

Choose O # r E (rad[- , -] n U+)13. Clearly r is the image of a minimal 
generator of J. Hence /3 is the degree of a minimal generator of R. As was 
already said above R is generated by its primitive vectors, and so the degrees of 
the primitive vectors contain the degrees of the minimal generators. In partic­
ular /3 is also the degree of a primitive vector in R . We now have the following 
information on (3 . 

1. (/3, i) :S O for all i E J. 

2. (/3, /3) = 2(p, /3). 

As in [Kac90, Lemma 11.13.2] this implies that /3 is the sum of pairwise orthog­
onal, not necessarily distinct elements of Jim. To finish the proof one shows 
directly (using (6.8) and (6.9)) that (rad[- , -] n U+)f3 is zero for such (3. 
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6.4 The Ringel-Hall-Algebra as a 
Quantized Generalized Enveloping Algebra 
of a 
Kac-Moody Lie Algebra 

6.4.1 The Algebra A 

For simplicity we will assume in this section that the base field is R If v E IR+ 
and a E IR then va denotes the usual a'th power of v. It is clear that this is 
compatible with the convention which was in force in the previous section. 

Below let et the canonical t 'th basis element of zn. In this section we consider 
the following data. 

1. A Nn-graded IR-algebra with the following .properties. 

(a) Ao = IR. 

(b) dimA0 < oo for all o: E Nn. 

(c) Ae, =/ D for all t E {1, ... ,n}. 

2. A symmetric positive definite bilinear form [-, - ] : Ax A-+ IR, which is 
zero on Aa x A,a if o: # (3. We also assume [1, 1] = 1. 

3. An element v E]O, l [. 

4. A symmetric bilinear form ffi.n x ffi.n -+ IR such that (ei, ei) > 0 and such 
that 

aij = 2( ei, ej) /( ei, ei) 

is a generalized Cartan matrix in the sense of [Kac90, Chapter I]. 

We make A ® A into an algebra by the rule 

(a ® b)(c ® d) = v-(degb,degc)(ac ® bd) (6.16) 

for homogeneous a, b, c, d. 
Throughout we now make the following extra hypotheses. 
Let 8 be the map A -+ A® A, which is adjoint under [-, -] to the multi­

plication. Then 8 is an algebra morphism for the algebra structure on A ® A, 
defined in (6.16). 

Note that the adjointness property implies that {) is coassociative, and also 
that c = [1, - ] behaves as a co-unit. 

For o: E Nn - {O} define Ha = ( L A,aA,l C A 0 • Here (-)J.. is taken 
/3+,=a 
,B,,#a 

inside Aa with respect to [-, - ] . Since [- , - J is positive definite we can for each 
Ha choose an orthonormal basis. Let (Bi)iEJ be the union of these bases. We 
define a bilinear form on ZI by (i,j) = (deg Bi, deg8j) for i,j E I. 

Lemma 6.2 W e have 
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Remark This lemma was used by Li and Zhang [LZOO] to determine all 8-
primitive elements of H(Q) and to obtain a sufficient and necessary condition 
on H(Q) for which for the composition algebra is the Hall algebra. (The com­
position algebra is the algebra generated by the simples [Sil) 

Indeed choose a homogeneous orthonormal basis (!J)jEJ for A and assume 
that (Bi)iEI C (!J)jEJ· We have 

8(Bi) = L Cj ,k!J ® f k 
j,k 

for Cj,k E JR and hence we find 

[Bi, fdm] = L Cj,k[i}, fzl[fk, fm] 
j ,k 

= Cz,m. 

The statement of the lemma now follows from the definition of (Bi)iEJ· 

Proposition 6.3 1. The bilinear form (-, - ) on ZI satisfies the axioms 
of (Bor88}. That is for i, j E I we have 

(a) (i,j) S O ifi cJj. 

(b) If (i, i) > 0 then 2(i,j)/(i, i) is an integer. 

In addition we have 

(c) (i, i) > 0 if and only if ()i E Ut Ae,. 

( d} dim Ae, = 1 for all t . 

2. A is isomorphic to the positive part of a quantized generalized Kac-Moody 
Lie algebra with simple roots I and bilinear form ( - , - ) . i E I is a real 
simple root if and only if ()i E Ae, for some t. 

Let us prove (la) first. We have 

8(Bi0i) = (Oi ® 1 + 1 ® Oi)(B1 ® 1 + 1 ® 01) 

= ()i ()j ® l + ()i ® 01 + v-(i ,j)()1 ® ()i + 1 ® ()i ()1. 

Assume i -I j. We deduce 

[()i()j, ()i()j] = 1 

[BiB1, B10i] = v-(i ,j). 

The positivity of [-, -] implies for all x,y E JR : 

0 S [x()i()j + yB1Bi , x()i ()j + yB10i] 

= x2 + 2v- (i,j)xy + y 2 . 
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Hence the determinant of the matrix 

( 
1 v - l(i,J)) 

v - (i,J) 

must be positive. Since v < l this implies (i,j) :':'. 0 which proves (la). Since if 
Bi, OJ E Ae, t hen ( i, j) = ( deg Bi , deg OJ) = ( et, et) > 0, (ld) immediately follows. 

Now we prove (le). By hypotheses it is clear that if ei E A e, then (i, i) = 
( et, et) > 0, hence let us prove the converse. Assume ei (/. Ut Aet. Since Ae, =/= 0 
it follows by ( a) that ( et, deg Bi ) :':'. 0 and hence ( a::, deg Bi) :':'. 0 for every a:: E Nn . 
Applying this with a:: = deg ei yields ( i, i) :':'. 0. 

Let us finally prove (lb). Let (i , i) > 0. Then Bi E Ae, for certain t. Hence 
2(i,j)/(i,i) is equal to 2(et, deg 0J) /(et,et) - The latter is a linear combination 
of atu = 2(et, eu)/(et, et) and since by hypotheses the atu form a generalized 
Cartan-matrix, they are integers. 

Now we prove 2. Let U be as in the previous section. Sending Ei to ei 
defines a surjective map of U+ to A which is compatible with the bilinear forms 
(this follows from (6.12)). Since the bilinear form is non-degenerate on A this 
implies that A is equal to U+. By Proposition 6.2 it follows that A is isomorphic 
to U +. This ends the proof of the proposition. 

If S ,T C {1, . . . ,n} then we will say that S , Tare connected to each other 
if there exists s E S, t ET such that a8 t =/- 0 (and hence ats =/- 0 by axiom (C3) 
of [Kac90, §1.1]). 

For a:: = Lt O::tet E Nn write Supp a:: for the set {1 :':'. t :':'. n / O::t =/- O}. 

Lemma 6.3 Assume that 0::1, a::2 E Nn are such that (a::1, a::2) = 0 and (i, a::1) :':'. 
0, ( i, 0::2) :':'. 0 for all i E ire. Then there exist three sets P, Pi, P2 E Nn with the 
following properties. 

1. P, P1 , P2 are not connected to each other. 

2. Supp 0::1 = Pi U P, Supp 0::2 = Au P. 

3. P spans an affine submatrix of (aiJ)iJ · 

We prove this by constructing the sets P, Pi and P2. Let TJ = Supp a::j for 
j = 1, 2 and put Pi = T1 \ T2, P2 = T2 \ T1 and P = T1 n T2. T he fact that 
(0::1,0::2) = 0 together wit h (i,0::1) :S O for i E 1re implies that (i,a::1) = 0 for 
i E T2. If i E P2 is such that { i} is connected to T1 then clearly ( i, a::1) < 0. 
We conclude that P2 is not connected to T1. Hence P2 is not connected to P 
and also not to Pi. By symmetry the same statement holds with Pi and P2 

interchanged. T his proves 1. and 2. Let a::~ = a::1 IP. Then Supp a::~ = P and for 
all i E P : (i, a::1) = (i, a::~) = 0. This implies that P spans an affine submatrix 
of (%)i,J· 

Theorem 6.4 Let 9 be the K ac-Moody Lie algebra associated to the generalized 
Cartan matrix ( a,j )ij. A ssume that there is no P C { 1, .. . , n} such that P 
spans an affine submatrix of ( aij) ij . Let q E N. 

The following are equivalent. 
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1. For all o: E Nn we have that dim U + (g) °' ~ dim A 0 modulo q. 

2. For all o: E Nn the cardinality of the set { i E Jim / deg Bi = o:} is divisible 
by q. 

The proof is given in the remainder of this section. The theorem is a conse­
quence of the Borcherds character formula for A, and the Kac-Weyl character 
formula for U(g). 

Let us write 
Ch'(A) = L dimA0 e(o:). 

o ENn 

Then from Proposition 6.3.2 and (6.13) one deduces that 

Ch'(A) = (L <c(w)e(p - wp)w(Sb)) - 1
. 

w 

(6.17) 

Sb is Lo <c(o:)e(o:) where o: runs over the sums degBi1 +· ··+deg Bi, where 
the ip are pairwise orthogonal and distinct elements of I. Finally 1;(0:) = (-l)t. 

Note that we have changed the notations slightly compared to those in (6.13). 
This is because we are evaluating Ch'(A) and not Ch(A) (recall that Ch(A) 
would be the character for a much finer grading on A). 

From the Weyl character formula it follows that (with the same notations) 

w 

Comparing these two formulas, it follows that statement 1. of the theorem is 
equivalent to 

LE(w)w(e(- p)(Sb-1)) ~ 0 modulo q. (6.18) 
w 

Now e(-p)(Sb - I) is a sum of terms which lie in the inter ior of the fundamental 
chamber of en EB Cp. Since the stabilizer under the Weyl group of a point in the 
interior of the fundamental chamber is trivial [Kac90, Prop. 3.12 , beginning of 
proo~ it follows from (6.18) that Sb~ 1 modulo q. 

Now suppose we have a sum a = deg Bi 1 + · · · + deg Bi, where the ip are 
pairwise orthogonal and distinct. By the previous lemma and the hypotheses 
all deg Bip have disjoint pairwise not connected support . 

An easy induction argument now shows that the number of such sums for all 
o: is divisible by q if and only if the multiplicity of the imaginary simple root s 
is divisible by q. 

6.4.2 H(Q) is the Positive Part of a QGEA 

We now come back to the Hall algebra. 
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Theorem 6.5 The Hall algebra over a finite field of a quiver is the positive part 
of a QGEA. 

There is as well a link with conjecture 1.2 on page 10, that states that a0 (0) 
is the multiplicity of the root o: in g. This is given in 

Theorem 6.6 Assume that no subset of Qo spans a tame subquiver. Then 
conjecture 1.2 is equivalent to the following statement. The multiplicities of the 
imaginary simple roots of the QGEA corresponding to the Hall algebra of Q are 
divisible by q. 

Let Q be a quiver without loops and let H(Q) be the Hall algebra of Q. We 
make H(Q) ® H(Q) into an algebra by defining 

([.4J ® [B])([CJ ®[DJ)= v-(B,c)[Al[CJ ® [Bl[DJ 

Following Green [Gre95J we put 

fl[AJ = '°' - (C,B) A I Aut(B) l · I Aut(C) I [BJ [CJ 
L v 9sc I Aut(A)I 0 

[BJ,[CJ 

and 
[[AJ [Bl] = V- (o ,{3) § [AJ,[BJ 

' I Aut(A)I 

It was shown by Green that 5 is an algebra map H(Q) ~ H(Q)®H(Q) and that 
multiplication and 5 are adjoint under[- , - J. In other words the pair H(Q), v 
satisfies the hypotheses put on the pair A, v in the beginning of section 6.4.1. 
Hence Theorem 6.5 follows from Proposition 6.3. 

We already noted that conjecture 1.2 is equivalent to dimU+(g) 0 = 
dirnH(Q) 0 for all o: E NQ0

• Thus Theorem 6.6 follows from Theorem 6.4. 
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Appendix A 

Some Identities of 
Structure Constants 

A .1 The Structure Constants in a Source 

Let i be a source throughout this appendix. 

Lemma A.1 Fo·r 2 admissible representations A and B we have 

I Aut(B)lgJs~ = I Aut(A)l9s'"~·A· 
' . ' (A.1) 

In the case A =J B + ai, both sides of the equation are 0. 
Assume A = E + ai. Using functoriality the number I of injective maps 

from A to Bis equal to the number of surjective maps from riB to riA is S. 

~xr h A _ J h"l r, B _ f 
vve ave 9BSf - I Aut(B) I w 1 e 9Sf r, A - I Aut(riA)I 

The lemma follows now from I Aut(riA)I = I Aut(A) I. 

Lemma A.2 For A,B,C E Rep(Q) admissible and a E N, we have 

A "' A P 9B C$ Sf = L9Pc9BSf · 
[P J 

Let us denote D = C EB S f . Consider X C A such that A / X ~ D then there 
is a unique P such that X c P c A and such that P / X ~ S f . In that case 
A/ P ~ C. Thus we obtain 

A "'p "AP 
9BD = L 9BSf = L9PC 9BSf · 

P C A [P] 
P"""C 
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Lemma A.3 For the admissible representations A, B, M and N we have 

M N,I,Sf _ (Sf,M)+(N,Sf) r, M ,I,Sf r,N 
gA B - q gr, A r ,B 

First recall ( 4.17) : 

MN j Aut(M) JI Aut(N) I " A 8 
gAB = I Aut(A)I I Aut(B)I L..,gMPgPNI Aut(P) /. 

[PJ 

Combined with lemma A.2 we deduce: 

M NffiS't I Aut(M) /1 Aut(N EB Sf) ! " A B / A ( ) / 
gA B = I Aut(A) II Aut(B) I L..,gMpgp NffiS't ut p 

[P J 

(A.2) 

(A.3) 

I Aut(M)II Aut(N EB Sf) I " A B Q 
I Aut(A) I/ Aut(B) I L.., gMPgQNgPSf / Aut(P) j 

[P], [Q] 

Note that if a term in the la.st expression is non-zero then P C Q c B. In 
particular P and Qare admissible. Hence we can invoke lemma A.l to obtain: 

I Aut(M)II Aut(N EB Sf ) I 
/ Aut(A) II Aut(B) I 

" gr;A gr,B gr;! I Aut(Q) f. L.., r;Mr;P r;Qr;N S; r;Q 
[P],[Q]adm 

Now i is a sink, and we use the appropriate version of lemma A.2. We obtain: 

M N ,I,S'!- I Aut(M)/ 1 Aut(N EB Sf )! " r B r A 
gA B ' = I Aut(A)f I Aut(B) I L.., gr;Qr;Ngr;M ffiS't r,QI Aut(Q) f. 

[Q]adm 

We obtain, by (4.17): 

M N,I,Sf I Aut(M) fl Aut(N EB Sf) ! r, M,I,Sf r, N 
gA B = f Aut(r,M EB Sf)l f Aut(N) j gr,A r,B 

The only remaining problem is to show that the fraction in the above equa­
tion is equal to q18't ,M)+(N,St) . We prove this now. 

It is clear that 

A (N Sa) = (Aut(N) Hom(N, Sf)) 
ut EB i O Gla , 

thus we have 

I Aut(N EB Sf )! = I Aut(N) II Gla /I Hom(N, Sf) f = q(N,Sf)I Aut(N) IJ Gla f. 

A similar calculation yields 

I AuthM EB Sf) f = q(Sf,r; M)I Aut(M)f l Gla I= q~ (Sf,M)I Aut(M) fl Gia f. 

This implies what we want. 
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Appendix B 

Combinatorial Side Results 

In this appendix we prove (3.16). In fact we have the following more general 
formula. 

Theorem B.1 Ifµ = (c, ld) is a hook then 

>.' 
K-1(t) = (- l)l(>.)+l(µ,)t'9[>..'J~ 

>.µ, l - t>.~ , 

h .a _ "°"' A~ ( A~ + 1) ~ , 1 
w ere ·v - L 

2 
- L /\j. 

i~2 j=2 

We were informed by Stanley that in the caseµ = (ln) this formula was 
proved by MacDonald. 

B.1 An Identity of Gaussian Binomial Coeffi­
cients 

We will first prove an identity between Gaussian binomial coefficients using 
non-commutative generating functions. 

Lemma B.2 Let k E N. Letµ E 'I,,k, with µ1 > 0. Define ai = µi-l - µi and 
b = I:;i~2 ai. We have 

L (-1rtE;~2((µ, ;+r;)(µ,;+ r,+1))/2 [b ;/1] [~:] [~:] . .. 
Er,=m 

Suppose x , y are variables satisfying yx = txy. Then it is well known that 

(B.1) 
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We can also write this with negative exponents: 

(x + y) -a = L [ ~t] xuy-a-u 
u::,:o 

L(- ltcau+(u(u-1))12 [a+~-1] xuy-a-u_ 

u:2:0 

Now we introduce variables (xi)i, (yi)i satisfying 

Let k > 2 be finite and ai E N, for 2 :s; i :s; k, while b E N. We calculate 

r;, (xk + Yk)°k · · · (x2 + Y2)°2 (x1 + Y1)-b- l 

L(- lr1 c(b+l)r1 - (r1(ri-l))/2 [b;
1
r1] [~:] [::] ... 

(r;), 

r3 a3 - r3 r2 a2 - r2 r1 -b-l-r1 
x · · · X3 Y3 Xz Y2 X1 Y1 

L(- l r1tt?r [b;
1
r
1
] [~:] [;:] ... x x?x;2x;3 . .. 

(r·;), 

-b-l-r1 a2 - r2 a3-r3 
XY1 Y2 Y3 , 

where 

{Jr __ - bri _ r1(r1 + 1) + ~ 
2 

L.. (ai - ri)r1 . 
1 :2:j<i 

Thus setting all xi = x and Yi = y we get 

(x + y) - b- I+a2+aa+ ... 

= L(-lr,tt?r [b!lr1] 
(r,); 

[az] [a3] "'r· - b- l +"'r ·+"'· a· ... X xu •y u ' u,;,2 ' . 
rz T3 

We suppose now that b = I: ai , and look at the coefficient of xmy-m- l 

using (x + y) - 1 = L(- l)mc(m(m+l))l2xmy- m- l _ We see 
m 

where 
,. _ {) m(m + 1) _ ~ . . ~ ri(ri + 1) 
',r - r + 2 - L.. r,aJ + L.. 2 . 

j>i:2:2 i:2'.2 

Now define vi = µi + ri, and suppose ai = µ i - l - µ;. then 

This yields the lemma. 
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B.2 A Proof of Theorem B.1 

By definition of K;:J(t) we have 

P>-(x; t) = L K;:J(t)sµ(x). 
µ 

Recall that em denotes again the m-th elementary symmetric function. It is 
the sum of all products of m distinct variables. Note that S1m = P l'n = em. 
Pieri's formula for sµ and Pµ gives the multiplication by em. This will lead to 
a recursion formula for the entries of K - 1 . However we first need to introduce 
some notation for partitions. Let us use µ <m v to signify that the v - µ is a 
vertical strip of length m . This means that jµJ + m = lvl, and the diagram of 
µ is included in that of v, and in addition the difference is at most one on each 
horizontal. (Example: (3, 1, 1) <3 (4, 2, 1, 1), while (3, 1, 1) .,c4 (4, 3, 2)). 

Pieri's formula for sµ is classical [Mac95, I(5.17)] 

P ieri's formula for Pµ is similar [Mac95, III.3] 

Pµ,em = L J:,1m(t)Pv, 
µ,<mv 

where 

f v = (t) = IT [vI - vI+l] . 
µ,l v' - µ' 

i 1, 1, 

Substituting in (B.3) the transitions Pv = L K;;,;(t)s0 and 
o:<,;v 

Pµ = L K;:J(t)s13 we obtain: 
{3:<,;µ 

L K ;:J(t)s13em = L L J;, 1m(t)K;;,; (t)s 0 • 

f3Sµ µ<mv o:<,; v 

Using (B.2) on the lefthand side, we obtain 

L L K;:J(t)so = L L f;,1m(t)K;;,;(t)sa. 
{3:<,;µ,/3<m8 µ<mva:<,;v 

(B.2) 

(B.3) 

We note in passing that the summation runs over the Greek letters except µ. 
Now we look at the coefficients of the s8 's in this equation. We get for all 
partitionsµ and c5, for which jµj + m = 181 that 

{3:<,;µ 
f3<mo 
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This relation determines the K;j;~'s uniquely. Indeed apply (B.4) with o = x 
and µ obtained by deleting the last column of '1/J. Then K;j;~ can be calculated 

from K;J 's with lµ J < 1'1/JI and K;;;_ 's wit h v -< '1/J . We may assume that these 
are known by induction. 

In the case o = (c, ld) we find a simplified version of (B.4). Denote 'l/; = 
(c - 1, 1d- m+l) and x = (c, 1d-m) 

K;:,~(t) + K ;:,~ (t) = L J:,l"' K0~,ld)(t) (B.5) 
µ<mv 

We will now use this formula to prove Theorem B.l by induction . First note 
that for A = 1 n T heorem B.l is obvious. So we only need to show that the 
formula in Theorem B.l satisfies the recursion rela tion (B.5). We will assume 
that c > 1, the case c = 1 is similar but requires fewer steps. 

So assume c > 1. Set 'Y = v' and 'ff = µ' . Put b = r,1 , ai = 'Tfi-1 - 'Tfi, 
gi = 'Yi- 1 - 'Yi and Ti = 'Yi - 'T/i· 

Substituting the formula of Theorem B.l in (B.5) we get: 

X [ 'Yl 
92 g3 ] 

1 - fYc [g2] [gT21] .... 
. . . 1 - fY1 T1 

Using the Ti we can eliminate the 1 's and g's and after some manipulation 
we obtain: 

( - 1 ) -m+ltI.:; 2; 2 (17,(17; +1))/2- I.; j;;;~ 11i (2 _ t17c-l _ t11c) 

= (1 - t17c) L (- l)itL.2:2 ((17,+r, )(17,+r ,+l))/2- I.; j ;;;~(17; +r; ) 

Liri=m 

We will rewrite first the second term of the righthand side. Put 

_ {"'i -1 µi = 
'T/i 

i < c 
i '2_ C' 

_ { Ti - 1 i = C 
Ti= 

Ti i cf C 
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We put as well 

{

a· - 1 
ai = fii-1 - !ii = ' 

ai 

i=c 
i -:j:. C' 

bi = b - l. 

With these notations the second term of the righthand side becomes: 

t"lc (1 _ tac) ~ (-l)"ttL,::,2 ((µ,+r,)(µ,+r,+1))/2 [b ;/'1] [~:] [~:] .... 

Li r,=m- 1 

Using lemma B.2 this is equal to 

( -l)m- lt'lc (1 _ tac )tL, ;:, 2 (µ,(µ;+l))/2. 

This is equal to 

( - 1 )m-lt'k (1 _ t ac )tLi;:,2(ru(1J;+l))/2- I:;;;;~ '1;. 

We now subtract this term from the lefthand side of (B.6). We are left with 
proving: 

( - l)mtL , ;:,2 ('1,(1/i +1))/2- Lj=2 '1j (1 _ t'7c) 

L ( - l)r tL, ;:,2((1J,+r, )(1J, +r,+1))/2- Lj=~ (1J;+r;) 

Eiri= m 

With the same µ, a and b as before, the righthand side becomes 

L (-lr'tL,;:,2((µ ,+ r,)(µ,+r;+l))/2- (Jfc+ rc) [b;
1
r1] [::] .. . [i'i\~-1] .... 

Li r i=m 

But 

This leads to 

L (-lY,tL,;:,2((µ,+r, )(µ ,+r,+l))/ 2- (µ-c+rc) [b ;lr1] 

I:iri= m 
[a2] [ i'ic J 
r2 · · · re -1 · · · 

+ L (- 1 r1 tL,;:,2((µ,+r, )(µ , +r;+l)) / 2- µc fb + r1] [a_2J ... [i'ic] .... l r1 r2 re 
E i r i= m 

We can invoke lemma B.2 again on the second part to see it is equal to 

(B.8) 
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The first part we can rewrite with the i'i 's, and again invoke the lemma, to 
obtain 

(B.9) 

Now it is clear that the sum of (B.9) and (B.8) is the lefthand side of (B.7). 
This finishes the proof of the theorem. 
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Appendix C 

Computer program 

Step 1: the Gaussian multinomial coefficients of a partition. 

WITH( combinat): 
prd := b ->PRODUCT(t • a-1,a= l..b): 

gmcp:= PROC (part::LIST) 
LOCAL fl,hulp; 
GLOBAL gmca; 

*1 hulp := prd(part[NOPS(part)])/prd(part[l]); 
FOR fl FROM NOPS(part) BY -1 TO 2 DO 

*2 hulp := hulp/prd(part[fl]-part[fl-11) 
OD; 

gmc(part): =SIMPLIFY (hulp) 
END: 

This procedure encodes the Gaussian multinomial coefficients [µ] . We first 
note that maple denotes its partitions increasing ([1, 1, 3, 4]), rather than de­
creasing. The essential lines are the ones indicated with a * and a number. 
The line *1 assigns to "hulp" for a partitionµ of length n (= NOPS(part)) the 
formula ¢,,,n / ¢,,,1 • Afterwards, in *2, for each two consecutive parts ofµ hulp is 
divided by ¢,,,Ji - µ,1i -i . Clearly that gives the desired coefficient. 

Step 2a: pa calculates the Ila 1 • 

pa:= PROC (a) 
LOCAL ll ,N,f2,sl, hulps,par,curr,p; 
GLOBAL paf; 

hulps := O; 
par:=PARTITION(a) ; 
FOR f2 FROM 1 TO NOPS(par) DO 

1 For a loopfree one vertex quiver we calculate Ila which is en coded in "paf'' . 
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curr := par[f2]; 
N: = NOPS(curr); 
11 := curr[N]; 
gmcp( curr); 

*3 term(f2) := (-1r(11) * t'(SUM(curr[pr2,p= l..N) - 11*(11+ 1)/2)* gmc(curr); 
hulps := SIMPLIFY(hulps + term(f2)) ; 
OD; 

paf := hulps 
END: 

The crucial line here is *3 which assigns for each partition to the local vari­
able "term" , the term that partition contributes to the entire sum II0 • The next 
line adds the term to "hulps", meanwhile simplifying to reduce calculation time. 

Step 2b: pab calculates for a given vector a, b and a number 
of arrows m = "pijl", the polynomial IIa,b= "pabf''. 

pab := PROC (a,b,pijl) 

* 
* 
*4 
* 
* 

LOCAL ll,ml,N,M,f2,f3,sl, hulps,para,parb,curra,currb,p; 
GLOBAL pabf; 

hulps := O; 
para:= PARTITION(a); 
parb:=PARTITION(b); 
FOR £2 FROM 1 TO NOPS(para) DO 

FOR f3 FROM 1 TO NOPS(parb) DO 
curra := para[f2]; 
currb := parb[f3]; 
N:= NOPS( curra); 
M:=NOPS(currb); 
11: = curra[N]; 
ml:= currb[MJ ; 
hulps := SIMPLIFY(hulps + (-1)' (ll+ml) * 

OD; 
OD; 

t ' (SUM( curra[p] '2,p= l..N)+ SUM( currb[p] '2,p=l..M) 
-11*(11+ 1)/2 - ml*(ml+l)/2 
-pijl*(SUM( curra [N-p]*currb[M-p] ,p= O .. (MIN(M,N)-1)))) 
* gmc(curra) * gmc(currb)) 

pabf := hulps 
end: 

The crucial part is the multiline expression *4, where for each 2 partition the 
right term is added to the total "hulps" . 

80 



Step3: An example of running the programs 

As an example we list some of the tests we ran. First of all for each partition 
we calculate the Gaussian multinomial coefficient. 

FOR k FROM 1 TO 20 DO 
FOR 1 FROM 1 TO 

NOPS(partition(k)) DO gmcp(partition(k) [l]) 
OD 

OD: 

Next we run the following program for dimension k ~ s and 3 arrows. 

FOR s FROM 19 TO 20 DO 
FOR k FROM s TO 20 DO 

pab(k,s,3):PRINT(k,s,EVALB(SIMPLIFY(pabf) = O),LIMIT(pabf, t=INFINITY)) 
OD 

OD: 

The output gives the results for (19,19),(19,20) and (20,20): 

19, 19, false, 0 

20, 19, false, 0 

20, 20, false, 0 

For instance the last result means that for dimension vector (20, 20) the test 
if IIa,b is identically zero answered "false" while the limit for t going to infinity 
is 0. 

We obtain a more interesting output for the dimensions (12, 4) , (13, 4) and 
(14, 4) (again in the 3-arrow case). We note that (12, 4) = p - r1r2r1p while 
14 = 3·4+ 2. This means that these 3 consecutive dimensions, behave differently 
under the conjectures we t est. Note that t(r1r2r 1 ) = - 1. This coincides with 
the last number on the output line of (12,4). So the conjecture holds true in 
this particular case. 

12, 4, false, -1 

13, 4, false, 0 

14, 4, true, 0 
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