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Abstract

In this thesis� unsupervised learning of binary vectors from data is stud�
ied using methods from Statistical Mechanics of disordered systems
 In the
model� data vectors are distributed according to a single symmetry breaking
direction
 The aim of unsupervised learning is to provide a good approxima�
tion to this direction
 The di�erence with respect to previous studies is the
knowledge that this preferential direction has binary components


It is shown that sampling from the posterior distribution �Gibbs learning�
leads� for general smooth distributions� to an exponentially fast approach to
perfect learning in the asymptotic limit of large number of examples
 If
the distribution is non�smooth� then �rst order phase transitions to perfect
learning are expected
 In the limit of poor performance� at the other end of
the asymptotics� the binary nature of the preferential direction is irrelevant
and the results are the same as for the spherical case� a second order phase
transition ��retarded learning�� is predicted to occur if the data distribution
is not biased or� if the distribution is biased� learning starts o� immediately


Using concepts from Bayesian inference� the center of mass of the Gibbs
ensemble is shown to have maximal average �Bayes�optimal� performance

This upper bound for continuous vectors is extended to a discrete space�
resulting in the clipped center of mass of the Gibbs ensemble having maximal
average performance among the binary vectors


In order to calculate the performance of this best binary vector� the ge�
ometric properties of the center of mass of binary vectors are �rst studied

The surprising result is found that the center of mass of in�nite binary vec�
tors which obey some simple constraints� is again a binary vector
 When
disorder is taken into account in the calculation� however� the properties of
the Bayes�optimal center of mass change completely� leading to a vector with
continuous components
 The performance of the best binary vector is cal�
culated and shown to always lie above that of Gibbs learning and below the
Bayes�optimal performance


Making use of a variational approach under the replica symmetric ansatz �
an optimal potential is constructed in the limits of zero temperature and mu�
tual overlap �
 Under these assumptions� minimization of this potential in the
binary space is shown not to saturate the best binary bound� except asymp�
totically and for a special case
 The alternative technique of transforming the
components of a continuous vector is studied� showing that� asymptotically
and for the same special case� saturation of both bounds can occur
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Nederlandstalige samenvatting

In dit werk wordt het leren zonder begeleiding van binaire vectoren
bestudeerd aan de hand van technieken uit de statistische mechanica van
systemen met wanorde
 Meer bepaald worden leervoorbeelden gegeven die
isotroop zijn verdeeld met uitzondering van �e�en enkele voorkeursrichting
 De
bedoeling van het leerproces is deze richting in goede benadering terug te
vinden
 Het verschil met vorige studies is het extra gegeven dat deze richting
binaire componenten bezit


We bewijzen dat de Gibbs leerregel voor distributies zonder discontinu�
iteiten leidt tot een exponentieel snelle daling van de orientatiefout in de lim�
iet van een groot aantal leervoorbeelden
 In het geval van discontinuiteiten
in de distributie kan men eerste orde faseovergangen verwachten naar een
perfecte herkenning van de voorkeursorientatie
 Indien het aantal leervoor�
beelden klein is zijn de resultaten identiek aan deze van een voorkeursricht�
ing met continue componenten
 In het bijzonder vindt men leervertraging
gevolgd door een tweede orde faseovergang wanneer de gemiddelde projectie
van de voorbeelden op de voorkeursrichting nul is


Op basis van de Bayes regel kan men bewijzen dat het massacentrum van
de studenten gevormd aan de hand van de Gibbs regel de beste gemiddelde
schatting van de voorkeursrichting geeft
 Verder vindt men de beste binaire
vector door het teken te nemen van de componenten van dit massacentrum


Teneinde de performantie van deze beste binaire vector te berekenen wor�
den eerst de eigenschappen bestudeerd van het massacentrum van binaire
vectoren� die aan eenvoudige geometrische condities gehoorzamen
 We leiden
het verrassend resultaat af dat dit massacentrum opnieuw een binaire vector
is
 Dit resultaat vervalt echter voor de Gibbs vectoren omdat de wanorde
inherent in de keuze van de leervoorbeelden aanleiding geeft tot meer gecom�
pliceerde beperkingen
 Uit een expliciete replica berekening blijkt dat het
massacentrum wel degelijk continue componenten bezit
 Hieruit wordt de
performantie van de beste binaire vector berekend
 Deze ligt tussen die van
de Gibbs vectoren en die van het massacentrum


Aan de hand van een variationele berekening wordt een optimale poten�
tiaal geconstrueerd
 Onder een aantal technische voorwaarden �replica sym�
metrie� temperatuur � en overlap �� kan men bewijzen dat de performantie
van de beste binaire vector niet wordt bereikt� behalve in een triviaal geval

Gebruik makende van een alternatieve benadering� gebaseerd op een trans�
formatie van de componenten van een continue vector kan men de optimale
performantie wel bereiken in de limiet van een groot aantal leervoorbeelden
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Chapter �

Introduction

��� Unsupervised Learning

The goal of unsupervised learning is to �nd structure in high�dimensional
data
 Loose as this de�nition may seem� it can be a good way to summarize
the very many di�erent techniques used in di�erent scienti�c �elds
 Given
N �dimensional vectors f��g� � � �� � � � � p� how can one compress informa�
tion about them and describe the set through some relevant numbers other
than the vectors themselves� Clearly there is more than one answer to this
question
 Clustering� Principal Component Analysis and Independent Com�
ponent Analysis are just a few examples of methods currently employed in
applications of every sort


The focus of the present work� however� is on the theoretical aspects of
a particular model of unsupervised learning� where the �structure� of the
data is represented simply by a symmetry breaking direction in the distri�
bution of the vectors
 Unsupervised learning is thus reduced to learning
this high�dimensional preferential direction
 This type of model has been
studied before under the assumption that the symmetry breaking vector has
real components  BM��� BM��� WN��� BG��!
 The emphasis here will be
instead on results concerning unsupervised learning of binary� or Ising� vec�
tors
 The discrete nature of the search space in this type of problem is
the novelty of the research� which apart from that relies on well stablished
techniques borrowed from the Physics of disordered systems
 The calcula�
tions to be presented are closely related to those introduced by the seminal
work of Gardner  Gar��� GD��!� for the study of the Statistical Mechanics
of Arti�cial Neural Networks


Although the problem of learning a discrete preferential direction has been
studied before for speci�c scenarios  Gyo��� SST��� WN��!� the approach

�



�� Introduction

here is to consider a more general formulation which encompasses speci�c
models and sheds some light on the connections between them


The problem of learning a binary direction shows two main di�erences
with respect to its continuous counterpart� the number of states of the system
is countable" and the absence of di�erentiability makes it extremely di�cult
to devise practical algorithms which lead to a desired con�guration
 These
aspects can be regarded as complementary� the same discreteness that makes
the number of available states in�nitely smaller than for a continuous model�
also generally prevents these very states to be found


One of the possible connections with this work comes from the equiv�
alence between supervised and unsupervised learning which was stablished
in  RVdB��!
 It allows to relate some results of this work with the impor�
tant problem� in the Neural Network community� of supervised learning in
the Ising perceptron  Gyo��� SST��� dM��!
 As opposed to most of the
situations which will be discussed� the classical model of supervised learn�
ing consists in �nding an Ising vector which satis�es some hard constraints
which are determined by the data
 This problem belongs to the class of NP
problems  PV��!
 NP basically means that some su�ciently malicious data
distributions exist� such that no algorithm is known to solve the problem in
a time which scales with a polynomial of the system size
 In other words�
the problem of �nding the Ising direction which satis�es the hard constraints
can be extremely di�cult for some data distributions� taking an exponential
time to be solved with known algorithms �for instance� just by checking state
by state�
 This kind of worst case analysis is very di�erent from� and hard to
compare with� the results to be shown in the following� since the methods of
Statistical Physics render results for the typical case instead
 The connection
between the two approaches is therefore far from obvious� but nonetheless
very interesting �if it exists at all#�
 The di�erence between typical case and
worst case could be of great importance� since practical problems usually
deal with the typical cases �the reader is referred to  Hay��! for an inter�
esting discussion�
 But one should not be misled� the present work is not
intended to directly address the di�cult NP issue �which belongs rather to
computational complexity theory�� neither to focus on practical problems
 It
stands in between� addressing theoretical questions which may help under�
stand either� neither or both of them
 The theoretical study of unsupervised
learning of binary vectors is a su�ciently di�cult subject to be studied on
its own


Among the topics to be discussed� the following ones will be the most
prominent�

�
 Given the data and the knowledge of the discreteness of the preferential

�
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direction� what is the best approximation one can provide�

�
 How is this result a�ected in case the approximation is required to be
discrete as well�

�
 Is it possible to �nd this optimal approximation�s� by making use of
some carefully devised cost function�

The �rst and second items can be cast in the framework of Bayesian
inference
 Addressing the problem of supervised perceptron learning� Opper
and Haussler showed in  OH��! what the Bayes�optimal generalization is

Watkin  Wat��! then showed that the Bayes�optimal performance can be
achieved by a properly constructed perceptron �i
e
 a machine with the same
architecture�
 These results were extended to an unsupervised scenario by
Watkin and Nadal  WN��!
 Watkin�s reasoning is reproduced and extended
here� in order to account for the extra constraints of a binary vector �a
problem which is also brie$y examined in  WRB��!�


The third item is inspired by Kinouchi and Caticha�s scheme  KC���
KC��! to obtain variationally optimal potentials
 Generalized to an un�
supervised scenario by Van den Broeck and Reimann  VdBR��!� this class
of potentials has also been investigated by Buhot� Torres Moreno and Gor�
don  BTMG��� BG��� GB��!
 Speci�cally related to the binary case� only
the reference  dM��! could be found


This work will rely on the so�called inferential formalism to be described
in section �
�
�� where the model is introduced
 More speci�cally� Statistical
Mechanics �SM� techniques borrowed from the study of disordered systems
will be employed in that framework
 These are described in section �
�

The connection between unsupervised and supervised learning is explained
in section �
�� while section �
� contains an overview of the organization of
the remaining chapters


����� The model

The inferential formalism basically consists of building up a model of the
data under study via an assignment of probabilities
 In real world problems�
the pathway leading to this assignment may require intuition� pre�processing
of data� estimations and countless other possible techniques
 However� these
issues shall not be addressed here
 The interested reader is referred to  Bis�	!
�for a more practical approach� and  Rei��! �for a more theoretical one�

Here all probability functions are assumed to be known from the beginning

They are parametrized by other quantities which are unknown� and these
are the goal of the search in the learning procedure� as will be seen below


�
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B

B

Figure �
�� Pictorial representation of the N �dimensional hypersphere and
the problem of unsupervised learning
 The patterns can have either contin�
uous �bottom �gure� or discontinuous �top �gure� distributions� as long as
the only symmetry breaking direction of the problem is B


Note however that the functional form of the probabilities is assumed to be
known


The model under study in this work is as follows� the data D is a set of
N �dimensional vectors �also called patterns� or examples� f��g��������p�

D � f��g� � � �� � � � � p � ��
��

which are generated by independently drawing from a known distribution
P ���jB��

P �f��gjB� �

pY
���

P ���jB� � ��
��

B is an N �dimensional parameter vector 
 It represents the only symmetry

�
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breaking direction in the N �dimensional space where the data D is drawn
from�
 That means that the distribution of the projections of � along all
N � � directions orthogonal to B is the same
 Only the projections on the
B direction have a di�erent distribution �see �g
 �
��� and this fact will be
used to extract information from the data
 A distribution P ���jB� that has
these properties can always be written  RVdB��! in the form below�

P ���jB� �
� ��� � �� �N� exp

h
�U

�
B���p

N

�i
R
d�� � ��� � �� �N� exp

h
�U

�
B���p
N

�i � ��
��

where U is an arbitrary known function whose only requirement is that the
denominator in eq
 �
� is non�zero and non�divergent �i
e
 the distribution
must be properly normalized�
 The ��distribution constrains the patterns to
the hypersphere �� � �� � N � which is a matter of choice
 It is a reason�
able choice though� just like the choice to deal with a normalized projection
B � ���pN � both of which will prove to be very convenient for the calcula�
tions in section �
�


In this model� the goal of unsupervised learning is to �nd the best possible
approximation for the vector B
 The available information is the set D of p
patterns� the knowledge of U and the knowledge of the prior distribution of
B


����� The prior distribution

The prior distribution of B �hereafter also referred to simply as �prior�� is
denoted by P �B�
 It characterizes previous� a priori knowledge �or igno�
rance� one has about vector B
 Once more� a warning is recommended at
this point� in a problem with real data� choosing the most appropriate prior
is not a simple task
 This choice can be studied on its own as a separate
subject� which will however not be the case in this work �the reader is again
referred to  Bis�	!�
 The interest here is understanding unsupervised learning
from a theoretical point of view
 Therefore priors are assumed to be known
just as the other probability distributions


A special subclass of priors will receive special attention� namely priors
that represent constraints
 In this scenario� all vectors B satisfying a given
constraint are equiprobable� as shall be seen in the two cases addressed below


Since the aim of learning is �nding a direction� the size of B can be
kept constant without loss of generality
 A distribution that imposes this

�One could of course think of more di�cult cases� with more than one symmetry
breaking direction� Here only the simplest case will be studied�

�
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condition is the spherical prior �probably the most studied prior in the lit�
erature  BM��� WN��� RVdB��� RVdBB��� VdBR��� BG��!�� which only
constrains B to a constant size without privileging any particular direction
on the hypersphere�

P �B�
Spherical� Ps�B� � ��B �B �N� � ��
��

where the proportionality constant guarantees the proper normalizationR
dB Ps�B� � �
 By using such a distribution�� the underlying assumption

is that one does not have any extra a priori information about the vector B�
apart from its size
 All directions in the hypersphere are equally probable


The main topic of this work� however� is the binary �or Ising�
prior  WN��!�

P �B�
Ising� Pb�B� �

NY
j��

�
�

�
��Bj � �� %

�

�
��Bj % ��

�
� ��
	�

Some basic properties can immediately be read from eq
 �
	
 First� the set
of all vectors satisfying the Ising constraint is a subset of the set containing
the vectors that satisfy the spherical constraint� since eq
 �
	 also implies
B � B � N 
 Second� the Ising constraint is �componentwise�� in the sense
that it enforces a constraint on each of the components of B �as opposed
to eq
 �
��
 Third� and perhaps the most important observation� this con�
straint is discrete
 An Ising vector has components which can only take the
values ��
 Note that this is in strong contrast with the spherical constraint
because it does imply preferential directions in the N �dimensional hyper�
sphere
 Binary vectors B � f���%�gN are said to lie on the corners of the
N �dimensional hypercube


��� Statistical Mechanics

How can one �nd a good approximation to vector B� having as available
information the data D and the knowledge of both U and P �B�� There are
several possible procedures �or algorithms�� depending on U and P �B�
 They
give as a result a candidate vector which approximates B to some extent�
given the algorithm e�ciency
 Such a vector will be denoted by J 


Equilibrium Statistical Mechanics �SM� is a very useful tool for analyzing
the e�ciency of a class of algorithms when the dimension of the problem

�In the limit of large N this is equivalent to choosing P �Bj� � e�B
�

j ���
p
��� j �

	� � � � � N �
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grows very large
 The thermodynamic limit �TL� N 	 
 leads to major
simpli�cations� allowing the calculation of averages and the invocation of
thermodynamic postulates� the latter being expected to hold even though
the system under study is not a physical object per se


����� The thermodynamic limit

One of the simpli�cations obtained in the TL is the possibility of switching
to the continuum limit during the calculations
 Instead of tackling the multi�
dimensional integrals over P ��jB�� eq
 �
� has� by construction� a symmetry
which allows one to deal only with the probability density of the projection

Prob. Dens.

Orthogonal Projection

Prob. Dens.

Projection

Figure �
�� Two dimensional projections of ���� patterns� for N � ���
 The
arrow is a unit vector in the direction of B� and curves represent the theo�
retical prediction
 In this picture P�b� was chosen to be a sum of Gaussians�
the �rst with mean �� and standard deviation ���� the second with mean �
and standard deviation �
 Independently of this choice� the projection on
the orthogonal direction is always normally distributed �eq
 �
��


b � B � �p
N

� ��
��

�
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When N 	
 the Central Limit Theorem �CLT� holds and one obtains the
distribution

P�b� �
Np
��

exp

�
�b�

�
� U�b�

�
� ��
��

where N � �������
�R

dt expf�t��� � U�t�g	�� is a normalization constant

Likewise� and due to the chosen normalization of the patterns� the scaled
projections of � on any direction B� orthogonal to B will have a Gaussian
distribution with zero mean and unit variance


t� � B� � �p
N

� B� �B � � � P �t�� �
e�t

�
���p
��

��
��

These properties are illustrated on �g
 �
�� where some computer gener�
ated patterns are projected onto the �B�B�� plane


����� The free energy

Standard SM techniques of disordered systems can be applied to this prob�
lem if the candidate vector J is obtained by evolving in an energy landscape
de�ned by a cost function H�J �D�
 With the system kept at inverse temper�
ature 	 � ��T � one can think of the evolution of J as being governed by a
Langevin�like stochastic process� or equivalently some Monte�Carlo�like spin
$ip dynamics� for Ising vectors
 After a su�ciently long time� the system
is supposed to reach equilibrium� which is characterized by the Boltzmann
distribution

P �J jD� �
P �J�

Z
exp�	H�J �D� � ��
��

where Z is the partition function

Z �D� �

Z
dJ P �J� exp�	H �J �D� ��
���

and P �J� incorporates the constraints on J � see below
 This general proce�
dure is called o�	line or batch learning
 It should be stressed that� from the
Statistical Mechanics point of view� the equilibrium distribution �
� is the
main assumption upon which all the calculations are based
 Therefore the
details of the microscopic dynamics which leads to this distribution are not
discussed here
 In this respect� the word �algorithm� used on page � should
be understood in a loose sense �since no actual procedure is prescribed�� its
meaning being attached to a given cost function H and inverse temperature

�
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 One can thus regard the Statistical Mechanics approach from both sides�
on one hand� it is limited because it does not necessarily provide a practical
implementation of an algorithm" on the other hand� it is very powerful be�
cause its results are valid for whichever algorithm leads to a given Boltzmann
distribution
 Put in another way� learning is de�ned as sampling from the
Bolztmann distribution� eq
 �
�


P �J� is a measure in J space
 If one chooses P �J� such that it enforces
a constraint� then eq
 �
� expresses the equilibrium probability density for a
J that belongs to the subspace of vectors satisfying that constraint
 Since
J is to approximate B� it would be wise to choose P �J� such that this sub�
space contains B �for example� if B is known to be a binary vector� one
could choose J to lie on the hypersphere & but not the other way round�

Even though the consequences of not following this prescription are quite
interesting �see for instance  VdBB��!�� this shall not be pursued here
 As a
matter of fact� mostly the case P �J� � P �B� will be studied� for method�
ological reasons
 The idea in this case is to understand the di�erence between
searching on the �continuous di�erentiable� hypersphere and the �discrete ex�
ponentially many� corners of the hypercube� knowing in both cases that all
J �s are acceptable candidates for B� in principle


The space of possible cost functions H �J �D� is clearly enormous� so one
should restrict oneself to the study of a subclass thereof
 Since eqs
 �
�
and �
	 are invariant under permutation of the axes� the choice made here
is to consider cost functions which respect the same symmetry
 Therefore H
should be a function of


� � J � ��p
N

� � � �� � � � � p� ��
���

Moreover� the dependence of H on 
� should not depend on � �since the
order in which the data set is built up should be irrelevant in equilibrium�

One chooses then cost functions of the form

H �

pX
�

V �
�� � ��
���

where V will be referred to as the potential 

It should be intuitively clear that the larger the dimension N of the

problem� the harder it is to �nd a good approximation for B
 Therefore the
number of examples p should scale with N if any learning is to occur� i
e

p	
 in the thermodynamic limit with

� � p

N
��
���

�
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constant �for a justi�cation of this speci�c scaling� see appendix B� page ��	�

Expression �
�� is in general very hard to calculate due to the dependence

on the randomness of the data
 However� this can be averaged upon by noting
that� in the TL� the free energy per component is a self�averaging quantity�

f � � lim
N��

�

	N
lnZ � � lim

N��
�

	N
hlnZ�D�iDjB � ��
���

where h�� � ��iDjB denotes an integration over P �DjB� �see eq
 �
��
 That
means that even though one can only calculate an averaged free energy� its
corresponding thermodynamic properties are identical to those of the non�
averaged system


This so�called �quenched� average can be performed by means of the
replica trick� which makes use of the identity lnZ � limn���Zn � ���n

Writing Zn as the product of n replicated systems� Zn �

Qn
a Za� one is left

with the problem of calculating hQn
a ZaiDjB
 The average over the disorder of

the examples couples the di�erent replicas and the limit n	 � is thereafter
taken� assuming an analytic continuation
 While the full calculation can be
found in appendix B� here it su�ces to say that f � which conveys all the
thermodynamic information about the system� is written as a function of a
set of self�averaging order parameters
 Among all the con�gurations in J
space� only a subset of them give a contribution to the free energy in the
TL
 This subset is characterized by the order parameters� which reduce the
dimensionality of the problem
 In the replica symmetric �RS� ansatz �see
section B
��� they are

qab � Ja � J b

N

RS
� q � ��
�	�

the typical overlap between two di�erent replicas and

Ra � Ja �B
N

RS
� R � ��
���

which measures the proximity between J and B
 All samples of the dis�
tribution �
� must obey eqs
 �
�	 and �
�� in the TL
 The role played by
the function U � the inverse temperature 	 and the potential V is to deter�
mine the value of R and q �see below�
 This point will be discussed again in
section �
	


It is also interesting to note that the emergence of these order parameters
de�nes a �natural� measure for the e�ciency of a given cost function� in
the following
 the absolute value of R will be the main quantity of interest

accounting for the success of J in approximating B


�
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B

Ja
Jb

Figure �
�� Pictorial representation of the constraints given by eqs
 �
�	
and �
��
 In the thermodynamic limit all vectors J sampled from eq
 �
� lie
on a hypercone� de�ned by the two upper angles in the picture �which are
both equal to arccos�R��
 The angle between the samples is also constrained
�lower angle in the picture� to arccos�q�


For the binary constraint P �J� � Pb�J� and under a replica symmetric
ansatz� the free energy is written as the extremum of a function �f � as can be
seen in appendix B�

f � Extr
q�R��q� �R

�f�q�R� �q� �R"	�  U� V !�

�
�

	
Extr
R�q� �R��q

�
�

�
��� q��q % �RR �

Z
Dz ln cosh

�
z
p

�q % �R
�

��
Z
D�b

Z
Dt� ln

Z
d
p

����� q�
exp

�
� 	V �
�

��
 � t�
p
q �R� � bR��

��� � q�

��
� ��
���

where D�b � dbP�b� � DbN exp�U�b� and Dt� � dt� �������� exp��t�����


��
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The extremum operation renders saddle point equations which determine
the values of fR� q� �R� �qg
 Given 	� U and V � the physically relevant re�
sults �in a replica symmetric ansatz � are the functions R��� and q��� which
extremize �f 
 No special notation will be systematically used in order to
distinguish between the variables fR� q� �R� �qg as such and their equilibrium
values� but this should be clear from the context


The free energy corresponding to a spherical constraint can be found in
section B
�
�


����� The entropy and the mutual information

In the case of a binary constraint� the J �space is discrete and it is possible
to de�ne an entropy per component

s � � �

�T

�
f � ln �

	

�
� 	� �

�	

�
f � ln �

	

�
��
���

which coincides with the physical entropy
 The addition of an extra term
��ln ���	 is justi�ed because of the de�nition of the binary measure� recall
eq
 �
	
 Because of the factors ��� in eq
 �
	� an integral

R
dJ Pb�J��� � ��

di�ers from a sum
P

fJj���g�� � �� by a factor �N 
 While the integral formula�
tion allows one to discuss the present problem in the framework of Bayesian
Statistics and Information Theory �thus requiring a normalized distribution
Pb�J�� see below�� the use of the summation is the standard in Statistical Me�
chanics calculation
 The resulting di�erence is an additive constant �ln ���	
in f � which is irrelevant as far as the equilibrium values of the order param�
eters are concerned
 This� however� translates into an additive constant ln �
in s� which is relevant
 As de�ned in eq
 �
��� s corresponds to the physical
entropy per degree of freedom and should be positive� since it is a measure
of the number �as opposed to the density� of vectors J which satisfy the
equilibrium constraints
 It is expected to decrease with increasing � and if
it ever reaches zero� this means that there is a sub�exponential number of
vectors compatible with the constraints


The entropy is an interesting quantity to be studied because it can be
used as a check of the stability of the RS ansatz
 One could of course check
the �local� stability of the RS solution by performing the AT calculation
based on  dAT��!
 In previous works� however� the positivity of the entropy
has shown to be a stronger criterion than the AT condition �see  Gyo��!
for an example of the supervised case and  GS��! for several variants of
the capacity problem�
 As a matter of fact� in the capacity problem the
condition of zero entropy was �rst used to bound the region where the RS
solution is locally stable
 This bound was then shown to exactly match the

��
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RSB� solution  KM��� ISB�	!
 This justi�es the use of the positivity of the
entropy as a criterion to check the stability of the RS solution� a procedure
which will be adopted here and can be regarded as an educated guess
 A
general expression for s as a function of the order parameters can be found
in section B
�


Concepts from Information Theory  Sha��� CT��! are another possible
tool to shed light on the problem of unsupervised learning
 De�ning the
pattern entropy as

ID � �
Z

dD P �D� lnP �D� � ��
���

where dD �
Qp

� d�
�� and the so�called equivocation

IDjB � �
Z

dB P �B�

Z
dD P �DjB� ln P �DjB� � ��
���

the mutual information between the patterns and the symmetry breaking
direction B is given by

I�D"B� � ID � IDjB � ��
���

The intensive quantity i � I�D"B��N measures the mean amount of infor�
mation �per component� about B which is conveyed by the data D
 It is an
absolute quantity in the sense that it is independent of the particular esti�
mator J one might construct� having rather a functional dependence on the
probability distributions which de�ne the problem
 In chapter � it will be
shown how i is related to physical concepts such as the entropy and the free
energy for Gibbs learning
 Among the several exact bounds for i recently
obtained  HN��!� one of them will be applied here as another check of the
stability of the RS ansatz


��� Supervised learning

In  RVdB��!� Reimann and Van den Broeck established an interesting con�
nection between unsupervised learning and two neural network problems�
namely supervised learning and the capacity problem in the perceptron
 In
the following� the connection with supervised learning will be explored


In the above scenarios� the data is not only characterized by N �
dimensional vectors f��g� � � �� � � � � p� but also by the dichotomic classi	
�cation of those vectors� here denoted by the labels �� � � ���� � f���%�g

This input�output relation is determined by a �teacher� vector in the super�
vised scenario and randomly in the capacity case
 The equivalence between

��
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Prob. Dens.

Projection

Prob. Dens.

Aligned Projection

Figure �
�� Arrow and projections like in Figure �
�
 In the upper left plot�
patterns with a positive projection are classi�ed with � � � �crosses� while
those with a negative projection have � � �� �white circles�
 The lower left
plot shows the aligned patterns de�ned by eq
 �
�� �the di�erent symbols
were used only to clarify the alignment�


these problems and that of unsupervised learning can be established if the
following conditions are satis�ed�

P ���jB� � �P ���jB� � �P



B � ��p

N

�

P ���j��� � �P ���j��� � �P



��fodd



B � ��p

N

��
� ��
���

where fodd is an odd function and �P ���jB� should be of the form of eq
 �
�

The �rst equation means that the input vectors can have at most one symme�
try breaking direction�� which on its turn must coincide with the �teacher�

�Note that this condition is satis
ed by the vast majority of perceptron models studied
in the literature� since input vectors are usually taken from a uniform distribution on the
hypersphere� Of course� models where a di�erent symmetry breaking direction structures

��
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that determines �eventually under noisy conditions� the output �second equa�
tion�


If conditions �
�� are met� then one can immediately calculate the prob�
ability distribution for the aligned patterns f���g

��� � ���� � ��
���

which is given by

P ����jB� �
h

�P ����jB� % �P �����jB�
i

�P



fodd



B � ���p

N

��
� ��
���

Note that eq
 �
�� can always be written under the form of eq
 �
�� so that the
problem of supervised learning with patterns f��g is mapped into a problem
of unsupervised learning with aligned patterns f���g


In order to give a more intuitive illustration of this equivalence� �g
 �
�
shows projections of patterns in the simplest case� the patterns are uniformly
drawn from the hypersphere and the �teacher� vector B provides a noiseless

classi�cation � � sign
�
B � ��pN

�

 Or� equivalently� �P ���jB� � ���� � ���

N�� fodd�x� � x and �P �x� � '�x�� where '�x� is the usual Heaviside function
�eq
 A
��
 In this case the probability distribution of the aligned patterns
has

U�b�

�
� �� b � �

	
� b  � �

� P�b� � �'�b�
e�b

���

p
��

� ��
�	�

This kind of discontinuity will prove to have interesting consequences �see
chapter ��


��� Overview

The organization of the next chapters is the following� in chapter � a partic�
ular �but very important� case of unsupervised learning is described� Gibbs
learning
 General asymptotic results are presented� as well as non�asymptotic

the input space� cannot be mapped to this unsupervised scenario� This is the case� for
instance� of refs� �MBS�� and �MSBR���

��
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results for speci�c models
 The technical details of the calculations regarding
Gibbs learning are found in appendix C


Chapter � describes what is called in the literature Optimal Learn�
ing  Wat��� WN��!
 The theory is used to obtain an upper bound on the
performance of any estimate J and shows how the center of mass of the
Gibbs ensemble is optimal in the Bayesian sense
 The problem of bounding
the performance under the restriction that J is an Ising vector� is also ad�
dressed by a simple extension of the theory
 The best binary vector is shown
to be the clipped center of mass of the Gibbs ensemble� and its properties
are studied in the following chapters


Chapter � presents a study on the geometry of the center of mass of Ising
vectors
 Using the Maximum�Entropy formalism� it is shown that the center
of mass of Ising vectors which obey some simple constraints� is again an Ising
vector
 The same result is derived in appendix D without making use of the
Maximum�Entropy formalism


In chapter 	 the properties of the center of mass of Ising vectors are
again studied� but now taking into account the e�ects of the disorder of the
examples �the calculations are in appendix E�
 The center of mass of the
Gibbs ensemble is shown to be a continuous vector and the properties of its
clipped counterpart �the best binary� are derived


Results concerning the limit of zero temperature are shown in chapter �

In particular� variational techniques are used as an attempt to construct a
cost function which leads to the upper bound described in chapter 	
 Alter�
natively� approximations to the bounds are also obtained by the technique
of transforming the components of a continuous vector


Chapter � contains the conclusions and perspectives for future work

Appendix A contains a summary of the notation� formulas and expansions

used in this thesis
 It can be used as a quick reference in case of doubts


�	



Chapter �

Gibbs learning

��� Introduction

The Bayes inversion formula can be applied to eqs
 �
� and �
� in order to
obtain the probability distribution of B given the data D�

P �BjD� �
P �DjB�P �B�

P �D�
� ��
��

This so�called posterior distribution of B can be regarded as the knowledge
about B which comes from the data D and the knowledge of all the prob�
ability distributions
 Note that the initial ignorance about B� expressed by
the prior distribution P �B�� plays an important role in eq
 �
�
 Replacing
B with J in this formula gives the probability distribution that the guess
J is the �true� direction B� given the data
 Gibbs learning is de�ned as
sampling the vectors J from this distribution  WN��!
 Explicitly inserting
eqs
 �
� and �
�� one obtains the expression

P �J jD� �
P �DjJ�P �J�

P �D�

�
P �J�

Qp
� exp�U

�
J � ���pN

�
R
P �J �� dJ �

Qp
� exp�U

�
J � � ���pN

� � ��
��

A comparison with eqs
 �
� and �
�� reveals that the thermodynamic prop�
erties of such a process can be described by the free energy �
�� with

	 � �

V �
� � U�
� � ��
��

��
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Gibbs learning can therefore be interpreted as sampling the vectors J
according to their probability of being the �true� directionB� given the data

This is why the prior information about B becomes clearly an important
quantity� if B is known to be binary� then so must �and will� be all the
Gibbsian candidates� hereafter referred to as JG


��� General results

As explained in section �
�
�� one should obtain the order parameters
as functions of �� given U � V and 	 � �
 The equilibrium values
of the order parameters are obtained by calculating the saddle point of
�fG � �f�q�R� �q� �R"	 � �"V � U�
 The explicit derivation of the saddle
point equations is left to appendix C due to some lengthy technical ques�
tions which must be addressed
 The main point concerning Gibbs learning
is that it can be proven that

RG � Ja
G �B
N

� qG � Ja
G � J b

G

N
�RG � �qG ��
��

is always a consistent ansatz� where the subscript G will be used to denote
results concerning Gibbs learning
 The equalities �
� had already been noted
for both supervised and unsupervised learning in binary  Gyo��� WN��! and
spherical  GT��� VdBR��! vectors� re$ecting the symmetric role played by
JG and B in the calculation� note that� since the thermodynamic properties
depend only on the order parameters� any vector JG sampled from eq
 �
� is
as good a candidate as B itself� given �N examples


����� The saddle point equations

The symmetry presented in eqs
 �
� allows the reduction of the four original
saddle point equations to only one �see appendix C for details��

RG � F �
B

�
F
�p

RG

��
� ��
	�

where�

�The apparently unnecessary squares and square roots in eqs� ������� will be justi
ed
in chapter � �eq� ������ where they become convenient�

��
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FB�x� �

sZ
Dz tanh�zx % x�� ��
��

is a potential�independent function coming from the entropic term of the free
energy� while

F�R� �

s
�

Z
Dt Y

��t"R�

X�t"R�
��
��

is a function completely determined by U and ��

X�t"R� � N
Z
Dt� e�U�Rt�

p
��R�t�	

Y �t"R� �
�p

��R�
N
Z
Dt� t�e�U�Rt�

p
��R�t�	 � ��
��

The function X�t"R� will be particularly important in the study of phase
transitions� since the free energy at its minima is given by the expression �see
appendix C for details�

fG�RG� �RG� �
�� % RG� �RG

�
�
Z
Dz ln cosh



z

q
�RG % �RG

�

��
Z
DtX

�
t"
p
RG

�
ln

�
X�t"

p
RG�

N
�
� ��
��

whereRG is the solution of eq
 �
	 while the equilibrium value of the conjugate
parameter is given by

�RG � F�
�p

RG

�
� ��
���

It is then interesting to give a meaningful interpretation to X�t"R�
 This can
be done by �rst generalizing the result �
�� which gives the distribution of
an orthogonal projection B� � ��pN 
 For any vector J satisfying J � J � N
and J �B � NR� the joint distribution of b � B � ��pN and t � J � ��pN
is given by

P �t� b� �

P �b� � P�b�z � �
Np
��

exp



�b�

�
� U�b�

�
�

� P �tjb�z � �
�p

�����R��
exp

���t�Rb��

��� �R��

�
�

��
���

��
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Integrating over b� one obtains P �t� �
R D�b P �tjb�
 Note that by setting

R � � �J orthogonal to B�� one recovers eq
 �
�
 By applying the change of
variables b � Rt %

p
� �R�t� in eqs
 �
�� one obtains

X�t"R� �
P �t�

Pn�t�
� ��
���

where Pn�t� � exp �t���!�
p

�� is the normal distribution
 Therefore X
measures the deviation of P �t� from a normal distribution
 The term with
X in eq
 �
� �nally becomesZ

DtX�t"R� lnX�t"R� �

Z
dt P �t� ln



P �t�

Pn�t�

�
� ��
���

which is the so�called� Kullback�Leibler distance  CT��! of P �t� relative to
the Gaussian Pn�t�
 Since it is always a non�negative quantity� reaching zero
only at R � �� the above term gives a negative contribution to the free
energy �
�


The problem is thus solved in principle for any distribution P�b�
 Given
U � one has to calculate F �eq
 �
�� and then solve eq
 �
	
 In case there is
more than one solution� the one which minimizes the free energy �
� should be
chosen as the thermodynamically stable one
 In general one expects RG���
to be an increasing function� but in order to gain more insight about its
behavior one can carry out asymptotic expansions


����� Asymptotics

The limit �	

In the limit of a large number of examples one can expand eqs
 �
	 and �
��
as follows�

RG

�RG�� � �
r

�

� �RG

exp

�
�

�RG

�

�h
� %O

�
�R��
G

�i
�RG

��� �
D

�U ���
E
�
� ��
���

where U � � dU�b	
db

� h�� � ��i� �
R D�b�� � �� and H�x� �

R�
x
Dt
 One then arrives

at

�It is not really a distance� since it is not symmetric with respect to its two arguments�
neither does it respect the triangular relation�

�
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��RG���
���

r
�

�� h�U ���i�
exp


�� h�U ���i�
�

�
� ��
�	�

This expression should be compared with the result for a spherical
prior  VdBR��!� where the overlap approaches unity with a power law
 Gibbs
sampling in the binary space leads to an exponentially fast learning� a general
result which is reminiscent of those of clipped Hebb learning in the supervised
scenario  VdBB��� BS�	! and generalizes the results obtained in  WN��!


The limit RG 	 �

For RG close to �� one can expand

RG  �RG � �R�
G %O

�
�R

G

�
��
���

Z
DtY

��t"
p
RG�

X�t"
p
RG�


��
�
hbi�� %O �RG� � if hbi� �� �

��� hb�i���RG %O �R�
G� � if

� hbi� � �
hb�i� �� � �

��
���

The two expansions in eq
 �
�� depend on the di�culty of learning direction
B
 Two qualitatively di�erent behaviors appear depending on whether the
mean of the �eld b is zero or not
 Assuming a smooth behavior� for RG����
one can solve eqs
 �
�� and �
�� to obtain

hbi� �� � � RG  � hbi�� ��
���

hbi� � � � RG

�
� �� � � �G
 C��� �G�� � � �G

��
���

where �G � ��� hb�i���� has the same value that has been obtained for
spherical vectors  VdBR��! and C may depend on higher moments of b
 If
the distribution has a non�zero mean� then learning starts o� as soon as � is
non�zero
 If it has a zero mean� then what has been called retarded learning
occurs
 The task is much harder in this case� and a non�zero overlap shows
up only after a critical number of patterns which scales with the deviation
from unity of the variance
 One can in principle think of more and more
di�cult situations
 For instance� if the mean is zero and the variance is one�
then one needs to keep track of the next terms in expansions �
�� and �
���
and so on


�First order transitions can appear and then the solution ��	 is no longer valid� See
section ��� for an example�

��
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Discussion

The asymptotic results �
�	� �
�� and �
�� are valid in general� upon the
following conditions� eq
 �
�	 relies on the assumption that h�U ���i� is �nite�
while �
�� and �
�� depend on the validity of the expansion around RG  �

It is interesting to note� however� that these results also suggest what the
consequences of the violation of these hypotheses would be
 On mapping
the problem of perceptron supervised learning onto the current framework
of unsupervised learning  RVdB��!� for instance� one is left with a function
U which is discontinuous at the origin �at least in the cases of noiseless
labels or output multiplicative noise & see section �
�� particularly eq
 �
�	�

Eq
 �
�	 then suggests that a �rst order phase transition to RG � � should
occur for some �nite �� which is con�rmed by Gyorgyi�s results  Gyo��! �see
section �
��
 For small �� on the other hand� nothing prevents di�erent
solutions from those of eqs
 �
�� and �
�� to occur
 For example� there can
be �rst order phase transitions in which the overlap jumps from R � � to a
�nite value� at a value of � not necessarily equal to �G �as has been observed
for the spherical constraint  BG��!�
 In this case� a divergence of C can be
used to bound the region where these phase transitions occur


����� The entropy and the mutual information

While the explicit expression for the entropy in case of general 	 and V can be
found on section B
�� Gibbs learning introduces some further simpli�cations

The expression for s can be rewritten �see section C
�� as

sG��� � ln �� f�RG� �RG� % � hU�b�i�
� ��� % RG� �RG

�
%

Z
Dz ln � cosh



z

q
�RG % �RG

�

%�

Z
DtX

�
t"
p
RG

�
ln

�
X�t"

p
RG�

N
�

% � hU�b�i� � ��
���

where the order parameters should always be taken at their equilibriumvalue

On physical grounds this quantity should remain positive� and the results of
section �
�
� can be useful to shed some light on its asymptotic behavior
 In
the limit � 	
� for instance� the dominant term behaves like

sG���
���

r
�� h�U ���i�

�
exp


�� h�U ���i�
�

�
	 � � ��
���

��
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whereas corrections are O� �R
����
G exp�� �RG����
 This reasonable result re�

$ects the shrinking of the solution space� until the perfect match J � B is
asymptotically reached


In the poor performance regime� one can expand eq
 �
�� for RG 	 �
and� assuming the expansion is valid� one gets

sG���
RG�� ln � % �  hU�b�i� � lnN ! %O�R�

G� � ��
���

It should be noted that� in the �di�cult� cases �namely when hU�b�i� � ��
see eq
 �
���� the above expression is exact before retarded learning takes o��
since then RG � � identically


The mutual information

The mutual information per degree of freedom i �eq
 �
��� for the family of
models de�ned by eqs
 �
�� �
� and �
�� is easily shown to be

i � �� hUi� �
�

ln

Z
dB P �B� exp�

pX
�

U



B � ��p

N

��
DjB

� ��
���

a result which is valid for any value of N 
 A comparison with eqs
 �
��
and �
�� shows that in the TL it can be simply rewritten in terms of the
entropy �or the free energy� of Gibbs learning�

i � �� hU�b�i� % fG

� ln �� sG � ��
���

Relying on the idea that the information of p examples cannot be larger than
p times the information of one example� Herschkowitz and Nadal provide
in  HN��! a proof of the upper bound IDjB � �p  hUi� � lnN !
 Making use
of eq
 �
��� this translates into the equivalent bounds

fG � � lnN � �

sG � ln � % �  hU�b�i� � lnN ! � ��
�	�

As a general remark� one should note that the link between i and fG pro�
vides an upper bound which gives meaning to the absolute value of the free
energy
 The entropy� on the other hand� is bounded from below and can�
not decrease faster than linearly with �
 A comparison between eqs
 �
�	
and �
�� shows that this information�theoretical bound is saturated exactly
before the retarded learning phase transition occurs �RG � ��


��
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��� A test case� supervised learning

Turning to speci�c models� this section recovers the results of perceptron
noiseless supervised learning studied by Gyorgyi in ref
  Gyo��!
 This model
was chosen as a test case since it clari�es the �non��validity of the asymptotic
results obtained in section �
�
�� apart of course from yielding very interesting
results
 The set of vectors fJGjP �JGjD� �� �g has been called the version
space� since any �student� JG therein is a candidate to be the �teacher� B


Perceptron supervised learning from examples without noise corresponds
to the example given in section �
�� �g
 �
�
 The pattern distribution of
the mapped unsupervised problem is determined by the function U given by
eq
 �
�	
 Noting that X�t"R� � �H��tR�p��R��� where H�x� �

R�
x
Dt�

the equations for RG and �RG are given by �
	 and �
�� with

F�
�p

RG

�
�

�

�
p

� �RG

Z
Dt e�t

�RG��

H�t
p
RG�

� ��
���

while the entropy reads

sG � ��� % RG� �RG

�
%

Z
Dz ln � cosh



z

q
�RG % �RG

�
%��

Z
DtH

�
t
p
R��� �R�

�
lnH

�
t
p
R��� �R�

�
� ��
���

What can one expect from the asymptotics of such a model� In the small
� regime� eqs
 �
�� and �
�� predict a linear behavior for both RG and sG�
since hbi� �

p
���
 But the large � behavior certainly cannot be read from

eqs
 �
�	 and �
��� since in this case h�U ���i� 	
 and the equations are not
valid


The answer comes from the numerical solution or eqs
 �
��� shown in
�g
 �
�
 First� one can immediately see from the saddle point eqs
 �
	 and �
��
that RG � � is always a solution for any � �de�nitely an idiosyncrasy of this
model�
 But� for �  �AT � ������ there are two other solutions
 The crite�
rion to determine which of the three solutions is thermodynamically stable�
is straightforward� the free energy should be at its minimum
 In this case�
the free energy and the entropy are the same
� apart from a change in sign
and an additive constant �ln ��
 That means that among the three solutions�

�This is again an idiosyncrasy of this model �see eq� ������ due to the diverging potential
which yields hU �b�i

�
� �� In a way� this is what allows supervised Gibbs learning to be

mapped to a zero temperature process� since � �� and V ��� � ����� together lead to
the same de
nition of U � eq� 	����

��
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Figure �
�� Numerical solution of eqs
 �
	 and �
�� �solid lines� left axis� and
the corresponding entropy �dashed lines� right axis�
 The thermodynamically
stable solution is indicated with a thick line in both cases �see text for details�

The linear bound of eq
 �
�	 is depicted with the dotted line �right axis�


the one with maximal entropy �minimal free energy� is exponentially more
probable
 As can be seen on �g
 �
�� however� not all branches are physically
acceptable
 For �  �GD � ����	� the branch with positive entropy is the
global minimum of the free energy� while RG � � with sG � � is metastable

For � � �GD� RG � � is the only acceptable solution and therefore the glob�
ally stable one� since the other branches have negative entropy
 The system
thus jumps discontinuously from an overlap R  ���� to the perfect match
R � � at � � �GD
 One should note on �g
 �
� that the bound �
�	 for the
linear decrease of the entropy is always satis�ed


��� A case study� the Gaussian scenario

The Gaussian scenario for unsupervised learning was introduced by Reimann
et� al�  RVdBB��! as a model which allows easier calculations while preserv�
ing the richness of behavior presented by previous� more complicated pro�

��
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posals  BM��� WN��!
 It consists in studying a Gaussian distribution P�b��
which amounts to a quadratic form in U�b� �see eq
 �
���

U�b� �
�a

�
b� � �bb

�a � ��
�b � � � ��
���

The restriction on the parameter �a assures the concavity of P�b�� while the
positivity of �b is just a matter of choice� since it determines the sign of the
bias of the patterns along the true direction B
 The original model still pro�
poses a quadratic form for the potential V �
�� but this will not be addressed
here
 According to eq
 �
�� Gibbs learning �xes V � U and 	 � � �thus
rendering indeed a quadratic V � but not with an extra set of parameters�

Even though the calculations are more di�cult in the case of binary vectors�
the Gaussian scenario is nonetheless worth studying due to the wealth of
behavior it generates


Before proceeding� a short remark about notation should be made
 It is
very useful to express the results in terms of the mean hbi� � �b��� % �a� and
the variance hb�i� � hbi�� � ���� % �a�� therefore one de�nes

A � �a
���a

� �� �hb�i� � hbi���

B � �b
���a � hbi�

��
��

��
�

�a � A
��A

�b � B
��A �

��
���

The use of the parameters �a� �b� A and B will be interchanged according to
convenience


����� The saddle point equations

The functions X�t"R� and Y �t"R� �see section �
�
�� can be immediately
calculated in the Gaussian scenario� yielding

X�t"R� �
�p

��AR�
exp

� �B�R�

��� �AR��

�
exp

��AR�t� % �BRt

��� �AR��

�

Y �t"R� �



B �ARt

��AR�

�
X�t"R� � ��
���

The saddle point equations �
	 and �
�� are governed by

�	
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F�
�p

RG

�
� �

�
B� % ARG�A�B��

��ARG

�
� ��
���

while the free energy at its minima �see eq
 �
�� reads

fG �
�� % RG� �RG

�
�
Z
Dz ln cosh



z

q
�RG % �RG

�

%
�

�

�
ln



� �ARG

��A

�
% RG�A�B��� B�

��A

�
� ��
���

since lnN � ��ln�� �A� % B���� �A����


����� The entropy

According to eq
 �
��� and taking into account the result �
��� one needs to
calculate hU�b�i� in order to write down an expression for the entropy
 In
the Gaussian scenario� this can be done exactly and the result is

hU�b�i�
����	
�

A

�
� B�

�



��A

��A

�
� ��
���

so that

sG � ��� % RG� �RG

�
%

Z
Dz ln � cosh



z

q
�RG % �RG

�

��

�

�
ln



��ARG

� �A

�
% �B� �A����RG�

�
��
���

����� Asymptotics

It is again useful to begin the analysis of the saddle point equations with the
asymptotic behavior of the system


When � 	 
� the overlap RG tends to one exponentially� according to
eq
 �
�	
 In the Gaussian scenario� this reads

��RG
���

s
����A�

���B��� �A� % A��
exp

�
��

�



B� %

A�

� �A

��
� ��
�	�

Note that unless the limit A 	 �� A 	 �
 or B 	 
 is taken� no
phase transition to R � � ��perfect learning�� is possible in this class of
distributions


��
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In the vicinity of RG � �� the predictions for the Gaussian scenario are�

B �� � � RG  �B� ��
���

B � � � RG

�
� �� � � �G
 CG��� �G�� � � �G �

��
���

where now

�G � �

A�

CG � A�

��A
� ��
���

One can see that in the so called biased case B �� �� it is much easier to
learn
 The unbiased case B � � presents much more di�culties for informa�
tion about vector B to be extracted
 In this case� retarded learning occurs�
meaning that a non�zero macroscopic overlap RG will be obtained only after
a critical number of examples �GN is presented
 Since the average value
of b is zero� information about its distribution comes via higher moments

While the projections� of � on the directions orthogonal to B have all zero
mean and unit variance� eq
 �
�� assumes that hb�i� � hbi�� �� �
 Note that
�G depends precisely on the di�erence between the variance of b and �� in
agreement with the discussions of page ��
 These two qualitatively di�er�
ent situations will be studied away from the asymptotic regime in the next
sections


����� The biased case

The �rst case to be studied is A � � with B �� �
 The non�zero bias
makes sure learning starts o� as soon as � � �� while A � � eliminates the
dependence of �RG on RG �see eqs
 �
�� and �
���� simplifying immensely the
solution of the saddle point equations
 The behavior of RG is seen to be
completely determined by the rescaled variable

�� � �B� � ��
���

namelyRG � F �
B

�p
��
�

 In order to plot RG as a function of �� one just has to

perform the numerical integration on the r
h
s
 of eq
 �
�
 This function can
be seen in �g
 �
�
 It shows a linear increase for small �� and an exponential

�That is� the normalized projections B� � ��
p
N � where B� �B � ��

��
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behavior for �� 	

 The entropy saturates the linear bound �
�	 only in the
limit �� 	 �� approaching zero exponentially when �� 	 
 but remaining
otherwise strictly positive


Note that A � � means that b has unit variance
 The patterns can thus
be pictured as being distributed in an N �dimensional spherically symmetric
cloud� whose displacement B from the origin conveys the information about
B
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Figure �
�� Overlap RG �left axis� as a function of �� for A � � �see eq
 �
����
theory �solid line� and simulations with N � ��� �symbols" error bars repre�
sent one standard deviation� see text for details�
 The dashed line represents
the entropy �right axis� while the dotted line shows the linear bound �eq
 �
�	�
right axis�


Simulations

Binary disordered systems are known to be very hard to simulate due to the
existence of very many local minima
 A noisy dynamics with unity temper�
ature and general cost function U will typically get stuck in one of these
minima� preventing a proper sampling of the posterior distribution �
� in an
acceptable time
 The Gaussian scenario with A � � provides an exception to

��
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this rule� allowing Gibbs learning to be very easily implemented with a sim�
ple Metropolis algorithm� a component Jj is selected at random and $ipped

The $ip is accepted if it decreases the energy H" otherwise it is accepted
with a probability exp�	(H
 After repeating this procedure N times� one
counts � Monte Carlo step per site �MCS�site�
 Since A � � implies a linear
function U�
�� the changes in energy can be very quickly calculated because
it depends only on J �P� �

�

Fig
 �
� shows the results for simulations with N � ��� �the smallest

system size simulated� and two values of B� checking the relevance of the
variable ��
 For each pattern set D� �� samples of RG and qG were measured�
after a random initialization of the system and a warming up of the dynamics
�see further details below�
 The whole procedure was repeated for ����
pattern sets and the standard deviation was calculated over these �����
samples


The measurement of qG during simulations is an interesting tool which
allows one to check both the property qG � RG and the correctness of the RS
ansatz 
 Fig
 �
� focuses on the second simulated point of �g
 �
� ��� � ��

It shows histograms for both RG and qG �measured only between pairs of
consecutive samples� which are virtually indistinguishable on the scale of the
�gure� with a mean value in excellent agreement with the theoretical predic�
tion
 The upper inset gives a glimpse of the Metropolis dynamics� the system
is initialized randomly at t � � and evolves up to t � 	� MCS�site� where a
di�erent pattern set is drawn
 The system reaches thermal equilibrium after
O���� MCS�site� which motivated the choice of safely waiting ��� MCS�site
during the simulations before any measurement was made
 The system was
reinitialized after every measurement of the overlaps
 Note that some pattern
sets yield time�averaged values of RG which deviate from theory �notably the
�rst one for N � ��� and the second one for N � ����� and only a second
average over the pattern sets gives the right results
 This re$ects the prop�
erty of self�averaging� which only holds in the thermodynamic limit �note
that deviations from theory are smaller for larger N�
 The lower inset shows
the typical scaling with ��

p
N of the width of the distribution of overlaps


����� The unbiased case

When B � � retarded learning is expected to occur� according to eq
 �
��

Fig
 �
� shows the solution of the RG saddle point equation for two values
of A� namely �
� and ����
 In both cases� a second order phase transition
occurs at the critical value �G predicted by eq
 �
�� and the entropy saturates
exactly the linear bound of eq
 �
�	 before the phase transition
 Based on
the relation between sG and i �see section �
�
��� the retarded learning phase

�
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Figure �
�� Gaussian scenario with A � �� B � � and � � �
 Histograms
of qG �thick lines� and RG �thin lines� for N � ��� �dashed� and N � ����
�solid�" the vertical line is the theoretical prediction
 The upper inset shows
the Metropolis RG�dynamics for two pattern sets �same legend� see text for
details�
 The lower inset presents the variance of the distribution for RG

�symbols� as a function of ��N for N � ���� 	��� �	� and ����" the dotted
line is a linear �t of the three leftmost points


transition can be interpreted as follows� for � � �G� the system extracts
maximal information from each pattern but is nonetheless unable to obtain
a non�zero alignment RG with the preferential direction B
 Only at � � �G
does RG depart from zero� which on its turn immediately gives an increasing
degree of redundancy �measured by the deviation of sG from its linear bound�
to the patterns coming thereafter
 Fig
 �
� also shows the e�ect of a small
bias B � ��� in an otherwise symmetric distribution� for su�ciently large �
�say� � � �G�� the curve comes very close to that of B � � �as would be
expected from continuity of eq
 �
�	� for instance�" but for small � the bias
qualitatively changes the behavior of RG���� since the second order phase
transition disappears due to the broken symmetry


It is interesting to note in �g
 �
� that even though the phase transition
for A � ���� and A � ��� occurs at the same critical value� the overlap

��
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�� RG �thick lines� left axis� and sG �thin lines� right axis� as func�
tions of � for A � ���� and B � �
 The thin dotted lines correspond to the
linear bound �
�	 which is saturated up to the second order phase transition

A small bias B � ��� �with A � ���� breaks the symmetry and destroys
the second order phase transition �thick dotted line� left axis� entropy not
shown�


increases much slower in the former case than in the latter
 Recalling the
de�nition of A �eq
 �
���� this means that prolate Gaussian distributions �N �
dimensional �cigars�  BM��!� convey less information about the preferential
direction than oblate distributions �N �dimensional �pancakes�  BM��!� for
the same absolute value of A


However� the second order phase transition at �G � A�� is not the only
interesting phenomenon for this model
 First order phase transitions are
also possible� depending on the value of A
 They can occur in two situations�
either for � � �G� in which case two consecutive phase transitions take place
during learning �a second�order one followed by a �rst�order one�� or �  �G�
in which case the asymptotic result �
�� is overridden
 The �rst order phase
transition appears when there is more than one solution to the saddle point
equation
 In such cases the solution with minimal free energy has maximal
probability of occurrence� being thus the thermodynamically stable state


��



���� A case study� the Gaussian scenario

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

R
G

α

A = 0.6

A = 0.78

A = 0.85

0

1

1.65 1.7

0.066

0.069
1.7 1.71

s G

0

1

1.2 1.3 1.4

0.1

0

s G

Figure �
	� Solutions RG of the saddle point equations �
	 and �
�� as a
function of � for B � � and three values of A
 sG is plotted with dashed
lines and the thermodynamically stable solutions are plotted with thick lines

A � ���� �upper inset�� RG �left axis� vs
 � �bottom axis� and sG �right
axis� vs
 � �top axis ) note the di�erent � scale� which zooms in the �rst
order phase transition�" A � ���	 �lower inset�� RG �left axis� and sG �right
axis� vs
 �


An overview of this phenomenology is presented in �g
 �
	
 It shows
the three typical behaviors that occur for B � �
 For comparison� the case
A � ��� previously plotted in �g
 �
� is shown again� as an example of a
parameter region where there is only a second order phase transition �at
�G � ������
 For A � ���� the second order phase transition at �G � �����

is followed by a �rst order phase transition at �
�f	
G � ����� �upper inset�

lower axis�� while for A � ���	 only a �rst order phase transition takes place
at � � ������ overriding the second order phase transition at � � �����
�lower inset� which was predicted on asymptotics and smoothness grounds

Note that none of these �rst order phase transitions can be predicted by the
general results of section �
� nor the asymptotic expansions of section �
�
�
or �
�
�
 It is also interesting to observe that some solutions of the saddle
point equation may violate the linear bound �
�	 and�or the positivity of

��
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the entropy �notably A � ���	 in �g
 �
	�
 However� it turns out that these
branches are always thermodynamically unstable� while the stable solutions
satisfy all the requirements


The whole phase diagram for B � � is shown in �g
 �
�
 For A � A� 
������ a �rst order phase transition takes place at the line ��f	

G �A�� after the

second order one has already occurred
 For increasing A� ��f	
G �A� gets closer

and closer to �G�A�� until there is �nally a collapse at A � A�  �����
 For
larger values of A� only the �rst order phase transition occurs
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Chapter �

Optimal learning� an upper

bound

��� Introduction

At �rst sight� Gibbs learning studied in chapter � seems to be no more than
just one particular choice of learning parameters
 This section is intended
to show that this is not so� by addressing the next question one could ask
in the present framework of inferential learning� given the �N data vectors
and the prior information about B� what is the best performance R one
could possibly attain with a vector J� The answer to this question will be
given in terms of what has been called optimal learning� where the �Bayesian�
meaning of �optimality� will be further explained in section �
�
 As it will
turn out� optimal learning is closely related to Gibbs learning� which justi�es
a posteriori the interest in studying the latter
 The reasoning was originally
conceived by Watkin  Wat��� WN��!� see also  OH��!
 He showed that the
center of mass of the Gibbs ensemble is a vector with optimal performance

In section �
� the reasoning is extended in order to account for the properties
of the best binary vector


��� Watkin�s reasoning

Given a set of data D � f��g� � � �� � � � � �N � an algorithm is any learning
strategy which gives as result a vector J�D� which satis�es the constraint
J �J � N �therefore not necessarily an Ising vector�
 There are several ways
to account for the performance of such an algorithm
 Watkin  Wat��� WN��!
addressed this problem by de�ning an arbitrary quality measure Q�J �B�
which attains its maximum if J � B
 This is formally a function of both

��
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vectors� being thus an inaccessible quantity �since B is unknown�
 However�
if one knows �or models� the form of the pattern distribution P �DjB� and
the prior distribution P �B�� it is possible to calculate the expected value of
Q with respect to B given the data� namely

�Q�J �D� � hQ�J �B�i
BjD �

Z
dB P �BjD�Q�J �B� � ��
��

This way the dependence on the unknown B is averaged out� leaving �Q as
a bona �de� formally accessible measure of the algorithm performance
 For
a given data set� optimal learning is then de�ned as �nding the vector JB
which maximizes �Q�

JB � Argmax
J

�Q�J �D� � ��
��

Because JB maximizes Q averaged over the posterior distribution of B� its
performance is also referred to as �Bayes�optimal�� or simply �Bayesian�


In general� optimal learning as posed above is not expected to be easy

Both the average over the posterior distribution which leads to �Q and the
high�dimensional maximization procedure which comes thereafter may be
hard to compute
 There are� however� favorable cases which allow some
simpli�cations
 Suppose� for instance� that one decides to measure the quality
of learning with the overlap

r�J �B� � N��J �B � ��
��

that is� Q�J �B� � r�J �B�
 In this case the dependence on J can be factor�
ized out of the average over the posterior�

�Q�J �D� � N��J �
Z

dBB P �BjD� � ��
��

The second argument of the dot product in eq
 �
� is just the average of the
Gibbsian vectors� that is� vectors sampled from the posterior distribution

Due to historical reasons in the development of the theory of supervised
learning� this vector was called the �center of mass of the version space� �cf

page ���
 Here and in the following it will be referred to as the center of
mass of the Gibbs ensemble �or Gibbs space�
 Note that optimal learning is
now trivial� at least formally� the vector JB which maximizes �Q�J �D� is the
center of mass of the Gibbs space itself�

JB � C

Z
dB P �BjD�B � ��
	�

�	
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where the constant C assures the required normalization�
 Therefore

�Q�JB�� �Q�J� � �� �J � ��
��

What still remains non�trivial is how to calculate the properties of such an
optimal vector� since it depends on the data set
 Again� an enormous sim�
pli�cation occurs when the system size becomes very large
 In the thermo�
dynamic limit� quantities like r�J �B� are expected to be self�averaging with
respect to the disorder of the data
 That means that any realization of the
data D will yield the same value of r�J�D��B�� for a given B
 Therefore�
the equilibrium value of the order parameter R � hr�J �B�iDjB� which one
obtains from the Statistical Mechanics calculations� can be safely used as a
substitute for r�J �B�
 Departing from eq
 �
�� one integrates over the data
distribution to obtain  RVdB��!�

Z
dD P �D�

h
�Q�JB�� �Q�J�

i
�

�

Z
dB P �B�

Z
dD P �DjB�

�
JB �B
N

� J �B
N

�
N��

�

Z
dB P �B�  RB �R! � � � ��
��

where RB � JB �B�N and the integration over the patterns was bypassed
because of the mentioned self�averaging
 The Bayesian meaning of optimality
becomes now clear� the overlap RB cannot be beaten on average� where the
average is with respect to the prior distribution of B
 It often turns out�
however� that the dependence of R and RB onB disappears
 This is the case�
for instance� of vectors uniformly distributed on the sphere or the corners of
the hypercube in the thermodynamic limit
 In these cases the integration left
in eq
 �
� can be performed immediately and the optimality is even stronger�
RB cannot be beaten at all� representing an upper bound on the performance
of any vector


�An intriguing issue arises if the symmetryB ��B is present� The integral in eq� ���
should vanish identically� In the thermodynamic limit� however� only part of the con
g�
uration space is available for a given realization of the disorder due to the spontaneous
symmetry breaking �section ����� and the whole argument is saved� Formally� the result
JB � � is similar to saying that the average magnetization of the Ising model in the
ferromagnetic phase is zero� since it can take the values �m ��� �� with equal probability�
In the following it will be assumed that the symmetry �if it exists� is always broken� either
spontaneously or by an in
nitesimal 
eld �b in U �b� which can be taken to zero after the
thermodynamic limit is taken�

��
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The performance of JB can be calculated via the �sample construction��
as follows
 Let Ja

G denote the a�th sample of Gibbs space� that is� a typical
vector taken from the set of outcomes of Gibbs learning
 Then a possible way
to construct the optimal vector is by summing an in�nitely large number of
such samples� namely

JB � lim
n��

cn

nX
a

Ja
G ��
��

cn �
�p

n % n�n� ��qG
� ��
��

where eq
 �
� accounts for normalization
 This construction allows one to
easily verify that RB � N��JB � B is related to RG � N��Ja

G � B ��a� in
a very simple manner �remember that the mutual overlap qG � N��Ja

G � J b
G

between di�erent samples satis�es qG � RG��

RB �
p
RG � ��
���

This is the promised link between optimal and Gibbs learning
 That means
that all the results obtained in chapter � immediately translate into perfor�
mance upper bounds


����� The best binary

However� one should not forget that the focus here is on binary preferential
directions
 While Gibbs learning yields by de�nition binary candidate vec�
tors� one expects JB in eqs
 �
	 or �
� to have real components� in general

One would like to properly de�ne an optimal binary vector whose perfor�
mance could then be compared to that of e
g
 a Gibbsian vector on fairer
grounds
 In other words� one is searching for a binary vector J which maxi�
mizes the r
h
s
 of eq
 �
�
 Fortunately� the answer to this question is simple
�see for instance pages 	�� and 	�� of  WRB��!�� the binary vector Jbb which
maximizes �Q is obtained by clipping JB� that is�

Jbb � clip�JB� � ��
���

where clip�V � �
n

�V j�Vj � sign �Vj� � j � �� � � � � N
o


 In order to see this� no�

tice that the quantity to be maximized �r
h
s
 of eq
 �
�� is proportional toPN
j  Jbb!j JB!j
 Since Jbb is binary by de�nition� the sum will be maximized

if all its terms are positive� which is accomplished by the clipping prescrip�
tion �
��
 Note that the whole argument �eqs
 �
� and �
�� leading from

��
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maximal quality to maximal overlap is unchanged� provided one restricts the
space of allowed J �s to the corners of the hypercube
 Thus

�Q�Jbb�� �Q�J� � � � �J � f���%�gN
N���

Z
dB P �B�  Rbb �R! � � � ��
���

where R is the normalized overlap betweenB and any binary vector J 
 Once
more� if the values of the overlaps do not depend on the particular choice of
B� the bound is stronger and one obtains Rbb � R


In the following� Jbb will be referred to as the best binary vector
 Next sec�
tion contains a general procedure for calculating the performance of clipped
vectors� which will then be applied for this speci�c problem


��� Clipping

����� The original formulation

The properties of clipped perceptrons have been studied before in some pub�
lications  VdBB��� GM��� BS�	� SBVdB�	!
 The reasoning here will follow
closely the approach by Schietse et al�  SBVdB�	!
 In that work� only a few
hypotheses must be satis�ed for some very general results to hold
 Since
some of these hypotheses are not satis�ed in the problem under study here�
the formalism will be extended accordingly


Assuming that the preferential direction B has binary components �Bj �
f���%�g��j� and a vector J with continuous components has been generated
by evolving at temperature T in an energy landscape de�ned by some cost
function E�J� �

P�N
��� V �N����J � ���� Schietse et al� propose the following

transformation J 	 �J �

�Jj �

p
N��Jj�pP
i �

��Ji�
� ��
���

The only requirement on � is that it must be an odd function
 From this it
immediately follows that the transformed overlap �R � N�� �J �B is given by

�R �

PN
i�� ��JiBi�q

N
PN

i�� �
��JiBi�

� ��
���

The next step is to assume that �R is a self�averaging quantity
 With this
assumption they rewrite eq
 �
�� as

��
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�R �

R
P �x���x� dx�R

P �x����x� dx
	��� � ��
�	�

where x � JjBj is supposed to have the same probability distribution re�
gardless of the index j
 This is a very reasonable assumption due to the
permutation symmetry among the axes


The last assumption concerns the geometric properties of vector J 
 Schi�
etse et al� assume that the algorithm which generated J does not make use
of any extra prior information besides the spherical constraint J � J � N 

That is� despite the fact that one knows that B is a binary vector� this prior
information is not taken into account for rendering J 
 In this case one ex�
pects the outcomes of the algorithm to be uniformly distributed on the cone
de�ned by J �B � NR
 P �x� can then be calculated via the formula

P �x� �

R
dJ ��J�B� � x� ��J � J �N� ��J �B �NR�R

dJ ��J � J �N� ��J �B �NR�
��
���

�
�p

�����R��
exp

���x�R��

��� �R��

�
� ��
���

a result which is valid only if Bj � f���%�g

Given eqs
 �
�	 and �
��� one can in principle calculate the function �R�R�

for any odd function �
 Clipping corresponds to the particular case ��x� �
sign�x�� which leads to

Rclip�R�
�����	
� erf

�
Rp

��� �R��

�
� � � �H



Rp

� �R�

�
� ��
���

Schietse et al� even proceed to �nd an optimal function �� which maxi�
mizes �R for given R
 This nice result is obtained by developing eq
 �
�	 using
the fact that ��x� is odd�

�R� �

�R�
� dx��x� P �x�� P ��x�!

��R�
�

dx���x� P �x� % P ��x�!

� h�� �i��
�
��
P �x�� P ��x�

P �x� % P ��x�

��

� ��
���

where the internal product was conveniently de�ned as ha�x�� b�x�i �R�
� dx  P �x� % P ��x�!a�x�b�x�
 Now it is just a question of employing the

�
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Schwarz inequality j ha� bi j� � ha� ai hb� bi to obtain the function �� which
maximizes �R�

���x� �
P �x�� P ��x�

P �x� % P ��x�
��
���

R� � �R � � ��! �

�Z �

�

dx
 P �x�� P ��x�!�

P �x� % P ��x�

����

� ��
���

From eqs
 �
��� �
��� or �
�	� it is clear that �R does not change if � is
multiplied by a positive constant
 Accordingly� �� is given by eq
 �
�� except
for an irrelevant multiplicative constant
 This result will be referred to in
section 	
�


Under the assumptions of Schietse et al�� eqs
 �
�� and �
�� become

���x�
�����	
� tanh



Rx

��R�

�
��
���

R� �����	
�

sZ
Dt tanh

�
Rp

��R�



t %

Rp
� �R�

��
� ��
���

a result which generalizes those obtained in  BS�	! for the speci�c case of
supervised Hebbian learning
 Note that the transformed vector �J which best
incorporates information� about the binary nature of B
 is itself not a binary
vector 


Fig
 �
� shows the functions Rclip�R� and R��R� according to eqs
 �
��
and �
��
 For R su�ciently small� the di�erence between R� and R is neg�
ligible� indicating that little can be done to improve the performance by
transforming the components
 For R	 �� R� approaches unity with an ex�
ponential behavior� � �R� � exp �R������ �R���!
 Clipping� on the other
hand� is a very drastic procedure� degrading the performance for R  ����

Above this value� clipping starts improving� and for R	 � Rclip also shows an
exponential behavior
 Note� however� that only at R � � does clipping equal
the optimal transformation
 Asymptotically� �� �R����� �Rclip� 	 ���


����� Extension to the best binary problem

In order to obtain the properties of Jbb � clip�JB�� one would like simply to
apply the result �
��
 That is� given the overlap RB � N��JB �B� one would

�This statement should be carefully framed� the whole procedure of applying a function
	 to the components of a spherical vector is not claimed to be optimal� but rather 	� is
supposed the best one of this class of transformations�

��
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�� Transformed overlap according to ref
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 The diagonal
is plotted �dotted line� for comparison


expect Rclip�RB� to be the desired Rbb � N��Jbb �B
 But this would be a
mistake� because one of the hypotheses taken for granted in  SBVdB�	! is not
satis�ed in this case
 The problem is in their last assumption of uniformity on
the cone �page ���� which is reasonable in their context but not here
 In this
problem� the samples fJa

Gg are Ising vectors and JB �which is the vector to
be clipped� is a sum of these samples
 Therefore one cannot expect di�erent
realizations of JB to be uniformly distributed on the cone JB � B � NRB

There should be a non�trivial structure in this distribution instead� due to
the discrete nature of Gibbs space
 Naively speaking� one would expect the
vectors JB to be more concentrated near the corners of the hypercube


Therefore it is worthwhile going back to the equations of section �
�
�
to make a clear distinction between the results which depend on that last
assumption and those which do not
 Eqs
 �
�� to �
�	 are clearly general�
as long as the permutation symmetry among the axes holds �and there is no
reason to believe it would not� in this case�
 Eqs
 �
�� and �
�� do depend
on the uniformity assumption� and so do all the equations which explicitly
depend on them� these are eqs
 �
��� �
�� and �
��
 The remaining ones�
eqs
 �
��� �
�� and �
��� are again general


��
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One notices that the assumption of uniformity on the cone allows one
to calculate P �x� on geometric grounds only �see eq
 �
���
 Without this
assumption� P �x� is the missing quantity which should be calculated in order
for the properties of Jbb to be obtained
 Note that this is not a simple
problem� in  SBVdB�	!� the geometric properties of one vector J su�ce to
calculate the properties of the transformation �
��
 Here� n	
 correlated
vectors have to be taken into account


Chapters � and 	 deal with the problem of calculating P �x� in two dif�
ferent ways
 The calculation in chapter � is inspired on the simplicity of
eq
 �
��� based solely on geometry� while chapter 	 relies on a full replica
calculation


��
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��



Chapter �

The best binary� a geometric

approach

��� Introduction

As mentioned in section �
�
�� this chapter focuses on a purely geometric
approach to obtain the properties of the clipped center of mass of the Gibbs
ensemble
 In fact� the calculations can be easily extended to treat the more
general case of a vector

JCM � �p
n % n�n� ��q

nX
a��

Ja � ��
��

which is the �properly normalized� center of mass of n Ising vectors Ja sat�
isfying the RS constraints� eqs
 �
�	 and �
��


As discussed in section �
�� the important quantity to be obtained is the
probability distribution for x �  JCM !jBj � which in light of eq
 �
� reads

x �
B�p

n % n�n� ��q

nX
a��

 Ja!� � ��
��

Note that the choice of the �rst component is arbitrary due to the men�
tioned permutation symmetry among the axes
 For convenience� however�
calculations will be performed on the variable

y � B�

n

nX
a��

 Ja!� � ��
��

which relates to eq
 �
� by a simple multiplicative factor� y �
xn��

p
n % n�n� ��q
 One should remember that the sample construction

��
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�eq
 �
�� is supposed to recover the results of an integral formulation of the
center of mass �according to eq
 �
	� for instance�� so ultimately the limit of
interest is n	
 �in which case y 	 x

p
q�


The idea underlying the calculation that follows is to extend the argument
behind eq
 �
�� given in  SBVdB�	!
 Namely� to calculate P �y� by taking
into account only the geometric constraints that the vectors are known to
obey
 In the case of  SBVdB�	!� the vector J was known to be spherically
normalized and to have an overlap R with B �see eq
 �
���
 The extension
to the present problem is twofold� �rstly� JCM is composed of n vectors Ja

�where n 	 
 at the end�" secondly� those vectors are Ising and obey the
RS constraints given by eqs
 �
�	 and �
��
 According to these extensions� a
properly modi�ed version of eq
 �
�� for the present case reads

P �y� �
�

Cn

Z � nY
a

dJaPb�J
a���Ja �B �NR�

�

�
�Y
a�b

��Ja � J b �Nq�

�
�

�
y �B�n

��
nX
a

Ja
�

�
� ��
��

where Cn �
R

 
Qn

a dJ
aPb�Ja���Ja �B �NR�!

�Q
a�b ��J

a � J b �Nq�
	

is just
a y�independent normalization constant and Pb�Ja� stands for the binary
measure

Pb�J� �

NY
j��

�
�

�
��Jj � �� %

�

�
��Jj % ��

�
� ��
	�

The r
h
s
 of eq
 �
� resembles an ordinary replica calculation� except that
the number of replicas tends to in�nity rather than zero
 This expression is
calculated in appendix D
 However� there is an equivalent but much more
elegant way to calculate P �y� on geometric grounds
 It makes use of the
Maximum�Entropy formalism �ME�� which is dealt with in the next section


��� The Maximum	Entropy formalism

This section is based upon the work of E
 T
 Jaynes  GMe��!� who has
developed a connection between information theory and statistical mechanics
which proved very useful
 The question addressed by Jaynes in his �Brandeis
lectures�  Re��! is how to assign probabilities to a set of events given only
a few physical or observable constraints
 His prescription� the Maximum�
Entropy formalism� acquired historical importance� among other reasons�

�	
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because it allows to postulate the usual probability distributions of Statistical
Mechanics without the need to rely on ergodicity
 Here it will be used as a
powerful tool to simplify the calculations proposed in section �
�
 In the
following� a brief overview of the Maximum�Entropy principle is given


����� Theory

Given a quantity x� which can take on the values �x�� x�� � � � � xn�� and the
average values of several functions f��x�� f��x�� � � � � fm�x� �with m  n�� how
can one assign values to the probabilities pi � p�xi�� The Maximum�Entropy
formalism postulates that the set fpig should maximize the Shannon  Sha��!
information theory entropy SI � �Pi pi log pi� subject to the constraints

pi � � i � �� � � � � n
nX
i��

pi � �

nX
i��

pifk�xi� � hfk�x�i k � �� � � � �m � ��
��

The solution to this variational problem can be found with Lagrange multi�
pliers� which shall in the following be denoted by f
kg� k � �� � � � �m
 The
set fp�i g which solves� the problem is given by

p�i �
�

Z�
�� � � � � 
n�
exp

�
�

mX
k��


kfk�xi�

�
��
��

where

Z�
�� � � � � 
n� �
nX
i��

exp

�
�

mX
k��


kfk�xi�

�
� ��
��

The last step then is to write the yet unspeci�ed multipliers as functions of
known quantities
 One can readily verify that the following formula consis�
tently satis�es the constraints �
��

hfki � � �

�
k
lnZ�
�� � � � � 
n� k � �� � � � �m � ��
��

The solutions f
�kg to the above equations can then be used in the probabil�
ities �
� and the problem is solved


�For a formal proof that the set fp�i g indeed yields the maximum of SI � see �Re����

��
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����� Application to the best binary problem

This elegant approach is very convenient to deal with the problem of �nd�
ing P �y� according to the hypotheses of section �
�
 Instead of perform�
ing the calculations on the r
h
s
 of eq
 �
�� one can make use in this case
of the Maximum�Entropy formalism� which avoids the introduction of ��
distributions and the saddle point method
 Both procedures give the same
result� of course �see appendix D�


Noticing that the variables

xa � Ja
jBj a � �� � � � � n ��
���

can only take the values �� or %� and should not depend on j� the problem
of �nding P �y� is almost solved if one can �nd the probabilities of the �n

states of the vector x � �x�� � � � � xn�
 The constraints to be satis�ed are

hxai �
�

N

NX
j��

Ja
jBj � R a � �� � � � � n

hxaxbi �
�

N

NX
j��

Ja
j J

b
j � q �a  b ��
���

and the corresponding �partition function� is simply given by

ZME

�
f �Ra� �qabg

�
�

Z
dxPb�x� exp

�
�

nX
a

�Raxa �
X
a�b

�qabxaxb

�
� ��
���

The joint probability P �fxag� prescribed by the Maximum�Entropy formal�
ism follows from �
��

P �fxag� �
�

ZME
exp

�
�

nX
a

�Raxa �
X
a�b

�qabxaxb

�
� ��
���

where� according to �
�� the values of the Lagrange multipliers f �Rag and
f�qabg are to be determined by the relations hxai � �� logZME�� �Ra and
hxaxbi � �� logZME���qab
 However� the dependence of ZME on �Ra and �qab
must be independent of a and b due to the ��replica�� symmetry present
in the constraints �
��
 Therefore one concludes that the multipliers must
satisfy

��
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�Ra � � �R

�qab � ��q ��
���

for some �R and �q
 Eqs
 �
�� can then be inserted back into eq
 �
��� rendering
the evaluation of ZME very simple�

ZME� �R� �q� � e�n�q��
Z

Dz
h
cosh

�
�R % z

p
�q
�in

� ��
�	�

The last step is to obtain �R and �q as functions of R and q
 The equations to
be solved are

R �
�

n

�

� �R
lnZME

q �
�

n�n� ��

�

��q
lnZME � ��
���

where the n�dependent factors on the r
h
s
 of the equations above come
from the symmetry present in �
��
 One then immediately obtains

R �

R
du exp

h
��u� �R�����q

i
�coshu�n tanh uR

du exp
h
��u� �R�����q

i
�coshu�n

q �

R
du exp

h
��u� �R�����q

i
�coshu�n tanh� uR

du exp
h
��u� �R�����q

i
�coshu�n

� ��
���

Please note that these are equations for �R and �q� where R and q are just
parameters
 Their solution � �Rn�R� q�� �qn�R� q�� can be inserted back into
eq
 �
�� and the problem of �nding P �fxag� is solved
 Still� it remains to
�nd the probability of y � n��

Pn
a xa
 But a quick glimpse at eqs
 �
��

and �
�� reveals that P �fxag� is already a function of y� since it only depends
on the sum of the n variables�
 Therefore one only needs to introduce a
combinatorial factor�

P �y� �

exp
h
n �Rny % n��qny���

i
 n
n���y	

�

�
P

y� exp
h
n �Rny� % n��qny����

i
 n
n���y�	

�

� � ��
���

�This should not be surprising� due to the symmetries present in the constraints ��		�

��
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where the sum on y� runs over its possible values �����%��n� � � � � ����n� �

The problem is thus solved� in principle
 Unfortunately� an algebraic

solution to eqs
 �
�� for general n could not be found� but they can always
be solved numerically
 This is done for �nite n in section �
�
 The main
interest here� however� is on reproducing the properties of the center of mass
of in�nite sample vectors


��� The limit of in
nite number of samples

In the limit n	
 eqs
 �
�� can be solved exactly
 The only requirement is
that the Lagrange multipliers �or conjugate variables� �R and �q be properly
rescaled with n�

�n � n �Rn

�n � n �qn � ��
���

As will become clear soon� this scaling will turn out to be the correct one for
the current purposes�
 In terms of the new variables� eqs
 �
�� read

R �

R
du e�n�n sinh�u�n��n� tanh uR

du e�n�n cosh�u�n��n�

q �

R
du e�n�n cosh�u�n��n� tanh� uR

du e�n�n cosh�u�n��n�
� ��
���

where

�n�u� � u�

��n
� ln cosh u � ��
���

Note that the only dependence of �n on n is through its dependence on �n

�n� on its turn� depends implicitly on n since its value is determined by the
solution of eqs
 �
��
 Let one assume �and check later� that �n reaches a �nite
value in the limit n 	 

 Then the evaluation of the integrals on �
�� via
the saddle point method is straightforward
 Note that� in each expression�
the dominating exponential contributions in the numerator and denominator
cancel� leaving just

�Eqs� ��	 could also be justi
ed as an ansatz since they arise naturally in a similar
calculation for the spherical constraint�

�
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R
n��
� tanh�u������� tanh u�

q
n��
� tanh� u� � ��
���

where u� � Argminu �n satis�es


u� � �� tanhu� � ��
���

Eqs
 �
�� and �
�� together �nally yield

�� �
u�

tanhu�
�

arctanh
p
qp

q

�� �
arctanh�R�

p
q�p

q
� ��
���

As previously announced� �� and �� are �nite�� which gives consistency to
the scaling ansatz �
��
 The solution �
�� can now be inserted into eq
 �
���
the asymptotically dominant contribution from the combinatorial factor com�
ing from Stirling�s formula
 Transforming the sum in the denominator of �
��
into an integral� one arrives at the result

P �y� 
exp���y� expn

h
��y��� � ln

p
� � y� � y arctanh y

i
R
dy exp���y� expn

h
��y��� � ln

p
�� y� � y arctanh y

i
n��	 �

�



� %

Rp
q

�
��y �pq� %

�

�



�� Rp

q

�
��y %

p
q� � ��
�	�

Eq
 �
�	 is the main result of this chapter
 If one recalls the relation x �

 JCM !�B�
n�� y�

p
q given on page ��� the conclusion is surprising� in the

limit of in�nite number of samples
 the center of mass of Ising vectors satis	
fying the constraints ���� is itself an Ising vector

One should contrast the delta�peaked distribution of eq
 �
�	 with the
Gaussian of eq
 �
��
 Note that� according to eq
 �
�	� the overlap RCM �
JCM �B�N is shown to satisfy RCM � hxi � hyi �pq � R�

p
q in the limit

n	
� which is reminiscent of eq
 �
��
 A more extended discussion of the
signi�cance of these results will be left to section �
	


�Note that 	n is even in u� if u� is a solution of ����� so is �u��
�Except for borderline cases such as q � 	 or q � R�� which are always singular�

��
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��� Finite number of samples

Eq
 �
�� clearly shows that JCM is a continuous vector if the limit n 	 

is not taken
 This allows one to study the dependence of P �y� on n to check
how the delta�peaked shape is approached
 For each triple �R� q� n�� one has
to solve eqs
 �
�� �or �
��� to obtain the conjugate variables �Rn and �qn �or
�n and �n� in order to plot eq
 �
��
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Figure �
�� Numerical solution of the saddle point eqs
 �
�� for q � R and
n � �� ��� ���
 The inset shows that ���n��u� �as a function of q� remains
always positive at u � u� for n	
� which is a necessary condition for the
validity of the saddle point method


A few special cases can be solved exactly� for R � � one obtains �Rn � ��
while �qn�q� must still be solved for each value of n and q
 For q � R�� the
Gaussians in eqs
 �
�� must become delta peaks for a solution to exist
 This
is attained by setting �qn � �� which implies �Rn � arctanhR� �n� and can be
understood intuitively� if one �xes the overlap R only� the mutual overlap
will automatically take the value q � R� with probability � in the TL
 So
there is no need for a second conjugate variable to enforce the q constraint

Precisely the same situation arises for n � �� when it does not make sense

��
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imposing the mutual overlap q
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Figure �
�� Probability density P �y� for q � R and n � ��� ��� ���� ����
according to eq
 �
��
 Please note the di�erent scales on the two plots


The case q � R was chosen to illustrate a scenario in which the solution
of eqs
 �
�� had to be found numerically
 In this situation the conjugate
parameters can be immediately seen to satisfy �n � �n� leaving just one
equation to be solved
 The behavior of �n as a function of q is similar to that
of �� in the sense that it also has a logarithmic divergence when q	 � �see
eqs
 �
���
 For better visualization� �g
 �
� plots exp���n� vs
 q for some
values of n
 Note that nonuniform convergence seems to occur in the value
of �n for q	 �� limq�� �n � � for any �nite n� while limq�� �� � �


At this stage� it is possible to visualize the convergence of P �y� to the
delta�peaked distribution predicted by eq
 �
�	
 Figure �
� shows that the
value of n for which the peaks become distinct depends rather strongly on
q
 For instance� note that n � ��� is already large enough for the peaks to
be clearly distinguished �around ����� for q � ����� but not for q � ���	

From eq
 �
�	� the width of the peaks should be approximately equal to
 ���q���n��������q���!��� for su�ciently large n� which means that small

�In this case on obtains the trivial result P �y� �
�
��R
�

�

�y � 	� �

�
��R
�

�

�y � 	��

��
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values of q require an extremely large number of samples for the peaked
regime to be achieved
 For q 	 � and n	
� the width of the peaks scales
like � �nq�����


����� Simulations

One would like to run simulations to check the theoretical result �
��

One physical model which naturally �ts in this framework is the ferro�
magnetic Ising model
 In its mean �eld version �which is chosen for its
simplicity�� the probability of �nding �in equilibrium� a spin con�gura�
tion S � fS�� � � � � SNg � f���%�gN is given by the Boltzmann factor�
P �S� � exp��HIsing�kT �� where

HIsing

kT
�

�

�

��
�� �

�N

�
NX
i

Si

��

� �h

NX
i

Si

��
� � ��
���

k is the Boltzmann constant and T is the temperature� while � � kT�J and
�h � h�J are the dimensionless temperature and magnetic �eld� J � � being
the coupling constant


In the TL� the distribution of the magnetization m � N��P
i Si becomes

peaked at the solution�s� of the equation

m � tanh

�
m % �h

�

�
� ��
���

Therefore one notices that� in the language of the current chapter� the re�
alizations of S play the role of the samples Ja� the preferential direction
is B � ��� �� � � � � �� and the magnetization m plays the role of R
 Since
the magnetization is the only constraint �xed by the spontaneous symme�
try breaking� the mutual overlap between two di�erent con�gurations obeys
S � S��N � m�� mapping the problem into the q � R� scenario which was
mentioned on page 	�
 In this case� the center of mass �in the limit n	
�
is clearly the vector B


The simulations were performed as follows
 Using the Metropolis algo�
rithm �basically as described in section �
�
��� the con�gurations were sam�
pled every 	 MCS�site to allow su�cient decorrelation between consecutive
samples
 After n vectors were kept� their center of mass was constructed
and the relevant variable x was measured for all the N components of the
vector� the whole procedure being repeated until a good histogram could be
achieved


��
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�� Probability density P �x� for q � R� and n � ��� 	� and ���
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lines represent the theoretical curve �obtained by a trivial change of variables
x � y�

p
q in eq
 �
���� while points represent simulations with N � ����

� � ���� and �h � ��� �amounting to a magnetization m � R  ��	�
 Inset�
variance ���� of the distribution as a function of ��n
 Simulations �points�
and the theoretical asymptotics �dashed line� �� � �� �R����nR��


Results are shown in �gure �
� for a system size N � ��� and model
parameters � � ���� and �h � ���
 The agreement with theory is excellent�
and deviations are due to �nite size e�ects �for N � ����� the results are
nearly indistinguishable from the theoretical results on the scale of the �gure�

Note the ��

p
n behavior of the width of the peaks� for large n
 It should

be stressed that� for �nite N � the required constraints are satis�ed only on
average� the magnetization R being distributed with a width typically scaling
with ��

p
N �see� for instance� �g
 �
��
 Nonetheless the behavior of P �y�

seems not to be signi�cantly a�ected by these $uctuations


��
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��� On the validity of the geometric approach

At this point� an important discussion is in order
 It concerns the validity of
results �
�� and �
�	 and the hypotheses involved in their derivation
 Notice
that both in the case of a single sample and several samples �eqs
 �
�� and �
�
respectively & the starting points of the calculations�� no mention whatsoever
is made about the algorithm which gave rise to the student vector�s�
 Indeed�
the proposed calculations do not involve the data f��g� nor the cost function
H� nor the temperature T the system is immersed in
 Actually� the r
h
s
 of
those equations can be interpreted as if the probability density of the samples
was determined exclusively by the geometrical constraints� that is P �fJag� �
c�Qa Pb�J

a���Ja �B �NR�
Q

a�b ��J
a � J b �Nq�
 But how could this be

compatible with the hypotheses underlying the replica calculation� namely
that the equilibrium distribution of a candidate vector for a given data set
is P �J jD� � Z�D��� exp��	H�J��� Do the calculations of section �
�
�
account for the properties of the solutions of a given learning algorithm or do
they just re$ect a geometrical property of in�nite�dimensional Ising vectors�

This problem can be better understood if one goes back to the general
structure of the replica calculation
 In order to calculate hlnZ�D�iDjB� one
introduces n replicas Ja� a � �� � � � � n of the original system� replacing the
average of the logarithm by limn�� n

�� hZniDjB � limn�� n
�� hQn

a ZaiDjB


This trick �of avoiding the average of the logarithm� has the price of coupling
di�erent replicas� which can be seen in terms like Ja �J b which show up in the
�entropic term� G� �see appendix B and eq
 �
�� below�
 In order to be able
to proceed with the calculation� one introduces ��distributions for the order
parameters qab and Ra which� together with an appropriate ansatz �e
g
 with
replica symmetry or m�step broken symmetry� completely �xes the geometric
structure of the replicas fJag
 The values of these order parameters are then
determined by minimizing the free energy�

�	f � lim
n��

�

n
Extr

f �Ra��qab�Ra�qabg

n nX
a

�RaRa %
X
a�b

�qabqab % G�

�
f �Ra� �qabg

�
% �G� �fRa� qabg"	�  V !�

o
� ��
���

where it is important to remind that the so�called �energy term� G� involves
no integrals on the fJag space
 Therefore the geometric structure of the
vectors is completely determined by the constraints comprised in the entropic
term
 Please note also that G� depends only on the conjugate variables
f �Ra� �qabg� while G� depends on the order parameters fRa� qabg and contains
the information about the learning process through its dependence on 	 and

�	
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V 
 Moreover� G� corresponds exactly to the logarithm of the previously de�
�ned ZME� for general n
 Taking this remark into account� one rewrites �
��
to obtain

�	f � lim
n��

�

n
Extr
fRa�qabg

�

Extr
f �Ra��qabg

n nX
a

�RaRa %
X
a�b

�qabqab % lnZME

�
f �Ra� �qabg

�o

% �G� �fRa� qabg"	�  V !�

�
� ��
���

The innermost extremum operator yields equations for f �Ra� �qabg as functions
of fRa� qabg which precisely obey the prescriptions of the Maximum�Entropy
formalism�� eq
 �
� �or �
�� in the speci�c case of replica symmetry�
 In other
words� the conjugate parameters at their �equilibrium� values are such that
the entropic term is indeed maximized
 Only after the outermost extremum
operator is evaluated does the free energy attain its minimum value
 This
last step �xes the order parameters fRa� qabg as functions of �� 	� V etc


Therefore there seems to be several arguments supporting the presented
calculations
 If one assumed that no physical meaning is attached to the
conjugate parameters f �Ra� �qabg� the conclusion that would follow is that in
the replica calculation they are just auxiliary variables which connect the
order parameters fRa� qabg with �� 	� V etc
� being otherwise irrelevant

With this reasoning� one could claim that the results of section �
�
� do
reproduce the properties of vectors obtained via a learning process
 One
would just have to replace �R� q� by �R��"	�  V !�� q��"	�  V !��


However� an apparently technical subtlety could be a sign of di�culties
in the reasoning� in the replica calculation� the limit n 	 � is taken at the
end� while the formulation in terms of the sample construction presented
in this chapter requires the limit n 	 
 to be taken
 The value of n
clearly changes the equilibrium value of the conjugate parameters in both
formulations� while the values of the order parameters R and q are assumed
given in the ME formalism
 If �R and �q had indeed no physical meaning�
this should not matter
 But does it or does it not� After all� the trick of
taking the limit n 	 � was introduced precisely to allow the calculation of
the average of lnZ over the disorder
 The answer will be given in the next
chapter


	The ME�like character of the replica calculation is not a novelty on itself� having
already been noticed by Gardner and Derrida �see page ��� of �GD�����

��
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��



Chapter �

The center of mass of the

Gibbs ensemble

��� Introduction

In chapter � a calculation based solely on the geometric properties of the
samples led to the conjecture that the center of mass of the Gibbs ensem�
ble would be a binary vector
 Even though section �
	 provided plausible
arguments supporting the underlying assumptions� the present chapter is in�
tended to show that the conclusions drawn from those results do not hold
for disordered systems�


If one would start by summarizing the new results that are about to be
shown� the basic statement could be the following� in a disordered system�
the geometric properties of the samples do not convey enough information to
describe the statistics of the problem� as it was assumed
 The simplest way
to verify this is by performing an alternative calculation of P �y�
 Instead of
using a �sample construction� like in eq
 �
� and relying only on geometry�
one can rather depart from an integral formulation like in eq
 �
	
 In other
words� one describes the center of mass JCM of the samples� for a given
learning process� as the thermal average

JCM
N��

� q����
Z

dJ J P �J jD� � q����
Z

dJ J exp�	H�J �D� � �	
��

where the factor q���� accounting for the normalization can be obtained with
the same reasoning employed in eqs
 �
� and �
�
 One should note that the

�This explains the good agreement between theory and simulations for the Ising model
� a system without disorder�

��
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above calculation automatically gives the results for an in�nite number of
samples
 A more extended discussion about the validity of the geometric
calculation is presented in section 	
�


��� P �y� calculated via thermal averages

Once more� the probability distribution for x � B� JCM !� or y � B� hJ�iJ �
x
p
q is the relevant quantity
 The idea in this chapter is to reconstruct P �y�

from its quenched moments� which are averages over the examples of powers
of y
 This should be the correct way to account for the e�ect of the disorder

The expression hereby obtained will be referred to as PCM �y�
 Apart from
normalization constants� the m�th moment of the �rst component of the
center of mass� is

hhJ�imJ iDjB �

�
Z�m


Z
dJ P �J� e�	H�J�D	J�

�m�
DjB

� �	
��

where m is an integer
 The replica trick can once more be applied to this
calculation� the details of which can be found in appendix E
 Here it su�ces
to present the �nal result� which for a RS ansatz is

hhJ�imJ iDjB �

Z
Dz

h
tanh

�
z
p

�q��� % �R���B�

�im
� �	
��

or� equivalently�

hymiDjB � hhB�J�imJ iDjB �

Z
Dz

h
tanh

�
z
p

�q��� % �R���
�im

� �	
��

which holds only if B � f���%�gN � as usual
 In both equations� �q��� and
�R��� denote the conjugate parameters taken at their equilibrium values �see
appendix E for details�


With an explicit expression for all the moments� one can reconstruct the
probability distribution PCM �y�
 The easiest and most elegant way is by a
close inspection of eq
 	
�� on the l
h
s
 the m�th power of y is averaged over

the disorder� whereas on the r
h
s
 the m�th power of tanh
�
z
p

�q��� % �R���
�

is averaged over a Gaussian distribution for z
 Therefore one can immediately
identify a transformation of �stochastic� variables

�Like in chapter �� the calculation is done for a general learning process� Gibbs learning
can then be obtained by setting � � 	� V � U � R � q� and then JCM � JB �
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�� Probability distribution of y � B� hJ�iJ for di�erent values of

R � q�� �R � �q�� according to eq
 	
�


y � tanh
�
z
p

�q��� % �R���
�
� �	
	�

where z is Gaussian distributed
 By applying the identity dy PCM �y� �
dz Pn�z� and noting that dy�dz �

p
�q������ y��� one can write

PCM �y� �
�p

���q��� y��
exp

��

��q

�
�

�
ln



� % y

�� y

�
� �R

��
�	
��

PCM �x� �

p
qp

���q��� qx��
exp

��

��q

�
�

�
ln



� %

p
qx

� �pqx
�
� �R

��
� �	
��

where the � dependence of q� �q and �R was omitted for clarity
 From eq
 	
	 it
becomes clear that the absolute value of y is bounded by one �as it should��
and eq
 	
� re$ects this fact� since PCM �y� vanishes when y 	���


In what follows� the special case of Gibbs learning will be emphasized

Not only it is the case of most interest here due to its connection with optimal
learning� but it also presents the symmetry �qG��� � �RG���� which simpli�es

	�
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the calculations
 If eqs
 �
	 and �
�� �which specify RG as a function of
�RG� can be formally inverted� then one can obtain the relation �RG�RG�

The distributions 	
� or 	
� can thus be plotted with RG as a parameter�
regardless of U and �


The fact that � can be eliminated� leaving all the dependence of the results
on the order parameter RG� is analogous to the result obtained in  OK��!
by Opper and Kinzel �see also  OH��!�
 De�ning the volume of the �version
space� for p patterns as Vp� they show that the probability density of the
ratio Vp���Vp is completely parametrized by the order parameter q� the result
holding for both spherical and binary problems


PCM �y� is plotted in �g
 	
�
 It is clearly not a sharply peaked distribution
as those obtained in chapter �� from which one can conclude that the center
of mass of the Gibbs ensemble is not a binary vector � as opposed to what
had been previously conjectured


����� Simulations

In order to check the result 	
�� Gibbs learning was simulated for the Gaussian
scenario in the biased region �see section �
�
��� with parameters set to A � �
and B � �
 The simulations were performed as described in section �
�
��
with a system size N � 	��
 By tuning �� one determines the average value
of RG
 For each training set of �N patterns� the following procedure was
done�

�
 After a random initialization of the J vector� �� MCS�site were run in
order for the system to reach equilibrium


�
 The current J sample was kept and the vector was reinitialized there�
after


�
 Items � and � were repeated until n � 	� samples had been collected


�
 After summing the 	� samples and normalizing� each of the N compo�
nents provided one measure of x


	
 The procedure from � to � was repeated ��� times for each set of
patterns


�
 The procedure from � to 	 was repeated for ��� di�erent sets of pat�
terns


�
 P �x� was reconstructed from the histogram of 	�� � ��� � ��� mea�
surements of x


	�
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 Solid line� eq
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The results of the simulations are presented in �gs
 	
� to 	
�
 The agree�
ment between theoretical results and simulations is very good� showing that
indeed eq
 	
� is the right expression for P �x� in a quenched system� while
eq
 �
�	 properly describes a system without disorder


��� The best binary vector

Since the center of mass JB of the Gibbs ensemble is not binary� the best
binary vector Jbb is obtained by clipping JB �see section �
��
 In order to
study the properties of this vector� the techniques described in section �
�
can be employed


First it is interesting to check the consistency of the results
 If eq
 	
�
represents indeed the correct expression of P �x�� then any transformation

J �i �
p
N��Ji��

qP
j �

��Jj� necessarily leads to a decrease in the overlap�

for 	V � U 
 Particularly� the optimal transformation �� should be such that
the transformed overlap is unchanged
 As can be seen from eq
 �
��� any
linear transformation satis�es this requirement� implying that the following

	�
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condition should be obeyed�

���x� �
P �x�� P ��x�

P �x� % P ��x�
� cx � �c � �

� P �x�

P ��x�
�

� % cx

� � cx
� �	
��

It is straightforward to verify that eq
 	
� yields

PCM �x�

PCM ��x�

����	
� exp

�
�R

�q
ln



� %

p
qx

� �pqx
��

�	
��

�R��q
�

� %
p
qx

��pqx � �	
���

Note that in order to get from eq
 	
� to eq
 	
��� the condition �R � �q must
be imposed
 Two important conclusions can be drawn from these equations�
�rst� PCM �x� satis�es eq
 	
�� thus passing the consistency check" second�

	�
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this is true only for �R � �q� which means that the center of mass of the
Gibbs ensemble is probably the only vector� which cannot be improved by a
transformation �except� of course� for the cases where q � �� when there is
a single binary vector in the ensemble & binary vectors cannot be improved
with a transformation like in eq
 �
���


Now one should be able to calculate the performance of the vector
resulting from clipping JCM � that is� for ��x� � sign�x�
 Applying
the change of variables 	
	 to eq
 �
�	� one obtains the overlap Rclip

CM �

N��PN
j sign� JCM !j�Bj�

Rclip
CM �

Z
PCM �x� sign�x� dx

�

Z
Dz sign

�
z
p

�q��� % �R���
�

�Unless one could be able to tune �U �� V such that �R��� � �q���� Even though
this seems to be possible in principle for a �xed value of �� the discussion in appendix C
suggests that only Gibbs learning would give rise to this symmetry in general�

	�
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Figure 	
	� Rbb � Rclip
B as a function of RG� according to eq
 	
��
 The

diagonal is plotted for comparison


� �� �H

�
�R���p
�q���

�
� �	
���

Since �qG��� � �RG��� for Gibbs learning� and taking into account eqs
 �
	�
�
�� and �
�� which connect �RG to RB �

p
RG� one concludes that the

performance of the best binary vector Jbb � clip�JB� is given by

Rbb � Rclip
B � �� �H

�
F��
B �RB�

�
� � � �H

�
F��
B

�p
RG

��
�	
���

� �� �H �F �RB�� � � � �H


q
�RG

�
� �	
���

where F��
B is the inverse function of FB and the arguments of the functions

above should be taken at their equilibrium values

Eq
 	
�� is the main result of this chapter
 It expresses Rbb as a function

of RB �or RG� regardless of the dependence of RG on U and �
 The result
is based purely on the binary nature of the samples and the RS solution for
Gibbs learning
 A plot of eq
 	
�� is shown in �g
 	
	


		



���� The best binary vector

����� Asymptotics

The performance of Jbb obviously depends on the performance of JG
�eq
 	
���� so it is as hard to describe the general behavior of the former
as it is to describe the general behavior of the latter
 For general �� little
can be said when the function U is not speci�ed
 But for large and small
�� the asymptotics of Gibbs learning �section �
�
�� allows one to learn what
the asymptotics of Rbb will be


The limit �	

Putting together eqs
 �
�� and 	
��� one concludes that the large � behavior
of Rbb is given by

� �Rbb
���

s
�

�� h�U ���i�
exp


�� h�U ���i�
�

�
� �	
���

This should be compared with the asymptotics of both Gibbs and Bayes
learning �eq
 �
�	�
 The dominant exponential term is the same in all three
cases� with only a multiplicative factor di�ering among them
 In order to
have an idea of how good the performance of the best binary is� the following
ratios seem appropriate�

��Rbb

��RG

���	 �

�
 ���� �	
�	�

��RB

��Rbb

���	 �

�
 ���� � �	
���

So even asymptotically� Rbb is larger than RG and smaller than RB �as it
should�


The limit RG 	 �

The series expansion of the H function in eq
 	
�� and the inclusion of eq
 �
��
immediately lead to

Rbb
RG��

r
�RG

�
� �	
���

This means that the phase transitions �if any� occur at exactly the same
place as the ones for Gibbs learning
 Moreover� in this poor performance
regime the relation between Rbb and RB is simply given by

	�
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Rbb

RB

RG��	
r

�

�
� �	
���

The above ratio had been previously observed between the performances of
supervised Hebbian
 learning and its clipped counterpart  VdBB��� BS�	!


��� The overlap between JB and Jbb

An interesting quantity to look at is the overlap between JB and its clipped
counterpart Jbb
 This new quantity will be called

* � JB � Jbb
N

� �	
���

If one takes randomly a vector Jsph from the hypersphere� the overlap be�
tween this vector and its clipped version will have a distribution peaked atp

��� in the thermodynamic limit
 JB� however� is not taken from such an
isotropic distribution� and one can calculate from eqs
 	
	 and 	
� what the
value of * is�

* �
�

N

NX
i��

 JB!i Jbb!i

�
�

N

NX
i��

j JB!ij

� hj JB!�ji
�

�p
q

Z
Dz

����tanh



z

q
�RG��� % �RG���

�����
�

Rbbp
q

�
Rbb

RB

� �	
���

The result of eq
 	
�� is plotted in �g
 	
� as a function of RG
 Note that
RB is also plotted for comparison� lying always below *
 As a matter of
fact� the bound * � RB could have been imposed from the very beginning
on geometric grounds� since by de�nition Jbb is the binary vector which is
closest to JB �thereforeB could not be closer�
 It is not surprising either that

�It can be shown �KC�� VdBR�� that� for a spherical prior� Hebbian learning is Bayes�
optimal in the limit � � �� Eq� ��	� states that� in the same regime� clipped Hebbian
learning gives the best binary vector� for a binary prior�

	�
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Figure 	
�� * as de�ned in eq
 	
�� as a function of RG �RB is also plotted
for comparison�
 The horizontal line is

p
���


* �p���� since JB should indeed lie closer to the corners of the hypercube
than a vector taken at random from the hypersphere


Finally� a comment about eqs
 	
�� is in order
 The attentive reader may
have felt uncomfortable with the last passage� since it implies the somewhat
counterintuitive equalityZ

Dz ��tanh
�
za % a�

��� �

Z
Dz sign

�
za% a�

�
� �	
���

Indeed� the equality above holds true for any a and a proof is given in ap�
pendix E
 Apart from that� the result Rbb � *RB has a simple geometric
implication� which is derived below


Denoting by V � or V �� a properly normalized vector orthogonal to V
�for any N �dimensional vector V �� one can write down the following three
decompositions�

Jbb � RbbB %
q

� �R�
bbB

� �	
���

Jbb � *JB %
p

� � *�J �B �	
���

	�
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JB � RBB %
q

��R�
BB

�� � �	
���

Inserting eq
 	
�� into eq
 	
��� one obtains

Jbb � *

�
RBB %

q
��R�

BB
��
�

%
p

� � *�J �B � �	
�	�

Comparing now eq
 	
�	 with eq
 	
��� one concludes that

 Rbb � *RB!B � *
q

� �R�
BB

�� %
p

� � *�J �B �
q

� �R�
bbB

� � �	
���

Up to now the above equation is of course valid for any three vectors
 Ac�
cording to the result 	
��� however� the l
h
s
 of eq
 	
�� is zero� which leads
to a vector equation relating the components of Jbb and JB which are or�
thogonal to JB and B
 Squaring the B� term and using again eq
 	
��� one
obtains B�� � J �B � �� or� in terms of the original vectors�

�Jbb � *JB� �z �
orthogonal to JB

� �JB �RBB� �z �
orthogonal to B

� � � �	
���

A deeper interpretation of this result� if there is any� is still lacking


��� Simulations

In this section some simulations are shown to con�rm the theoretical predic�
tions about the values of RG� RB� Rbb and *
 The simulations are precisely
the same as those described on page ��
 The only di�erence is that for each
center of mass which was built� the overlaps RB� Rbb and * were measured�
as well as RG �whose statistics are therefore more re�ned� with n times more
samples�


The replica calculation predicts that each of those overlaps will have a
well de�ned value in the thermodynamic limit N 	 

 For �nite systems�
one expects them to be more or less peaked� with a variance which will scale
with N��
 In order to give an idea of the behavior for a system size with
N � 	��� Fig
 	
� shows the histograms obtained at � � ����
 One can
see that the histograms are relatively broad� but still well centered around
the theoretical values
 Also to be noticed is the much smaller variance of
*� which can be explained by the same reasoning employed in page ��� JB
is typically much closer to the corners of the hypercube than the average
spherical vector� so not only * is large� but also it cannot take that many
di�erent values


�
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Figure 	
�� Histograms of the overlaps �from left to right� RG� Rbb� RB and
* for � � ����
 The vertical lines show the theoretical predictions


Finally� putting together �gs
 	
	 and 	
� and simulations for several
values of �� one concludes from �g
 	
� that the agreement is excellent
 Note
in particular that the * curve falls within one standard deviation of the
simulated points� even though its distribution is very sharp


��� Discussion

A comparison between eqs
 �
�� and 	
� shows that the e�ect of the disorder
is drastic
 In the �rst case �a geometric calculation�� the center of mass of
Ising vectors is predicted to be an Ising vector as well� while in the second
�disordered� case the same quantity is shown to have continuous components

The present section is intended to point out that the discrepancy between
the two results is far from obvious


In order to do so� results for the same calculations are presented in the fol�
lowing case� one assumes that B is binary� but the vectors J are nonetheless
allowed to have continuous components� being sampled from a spherically
symmetric distribution� P �J� � Ps�J� � ��J � J �N�
 In this case� the ex�

��
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Figure 	
�� Comparison between simulations and theory� for di�erent values
of �
 Error bars represent one standard deviation


pression for P �y� based solely on a geometric viewpoint is obtained by substi�
tuting Ps�Ja� for Pb�Ja� in eq
 �
�
 By performing this calculation  Bou��!�
one obtains

P �x� �
�p

�����R�
CM �

exp

���x�RCM ��

��� �R�
CM �

�
� �	
���

RCM �
nRp

n % n�n� ��q
�	
���

a result which holds �n
 It should also be stressed that eq
 	
�� is valid only
if Bj � f���%�g
 Note in particular that in the limit n 	 
 one obtains
RCM 	 R�

p
q


If one performs the replica calculation of the quenched moments instead�
replacing now P �J� by Ps�J� in eq
 	
�� the result is �see section E
��

P �x� �
�p

���� �R��q�
exp

���x�R�
p
q��

��� �R��q�

�
� �	
���

��



��	� Discussion

where once more B must be Ising
 Comparing eqs
 	
�� and 	
��� it turns
out that the results are identical when the limit n	
 is taken in eq� ����


One therefore veri�es that the e�ect of the disorder is completely dif�
ferent in the two scenarios
 For spherically distributed J vectors� a purely
geometric calculation gives the correct result in the limit� n 	 
� a fact
which in hindsight could have been used to justify the geometric calculation
of chapter � for J � f���%�gN 


�Note however that spherical symmetry alone cannot account for this coincidence� since
B must be Ising for both eq� ���� and ���� to hold�

��



�� The center of mass of the Gibbs ensemble

��



Chapter �

Attempts to construct an

optimal cost function

��� Introduction

While chapter � describes how Jbb is formally de�ned �see eqs
 �
�� and �
	��
chapter 	 presents the results concerning its performance
 The present chap�
ter aims at tentatively answering the question that naturally follows the
previous ones� is it possible to obtain Jbb by making use of some optimized
potential�

Optimal potentials have been broadly explored in neural network prob�
lems with continuous vectors
 In both the on�line  KC��� KC��� CC�	�
BRS�	� KC�	� CKC��� SC��� CEK���� Cop��� VC��� SR��� VKC��� CC��!
and o��line  KC��� VdBR��� BTMG��� BG��! scenarios� it has proven use�
ful in providing upper bounds ) when they did not exist ) and saturating
upper bounds ) when they did
 They have also given rise to insights on the
implementation of e�cient algorithms by automatically providing the rele�
vant variables and features which enhance their performance
 And last but
not least they have theoretical signi�cance per se� helping to understand the
connections between the di�erent approaches from Statistical Mechanics and
Statistics to learning theory


However� much less has been studied about optimal potentials in a dis�
crete space  dM��!
 The upper bound obtained in chapter 	 provides a con�
venient background to which the results of attempted optimizations can be
compared
 Two main paths arise� the �rst one� discussed in section �
��
consists in trying to construct an optimal potential Vopt in the discrete space
itself" the second one� discussed in section �
�� consists in initially obtaining
a potential V sphere

opt which acts on the vectors lying on the hypersphere� and

��



	� Attempts to construct an optimal cost function

�nally clipping them


��� The ansatz of a unique minimum

Following the discussion of section �
�� one would like to obtain a potential
Vopt such that the resulting overlap Ropt would saturate the upper bound Rbb

given by eq
 	
��
 In what follows� this search will be carried out in the limit
of zero temperature� assuming that the potential has a unique minimum
 The
zero temperature limit ensures that the resulting vector is the ground state
of the potential


This rather strong �and dramatic� as shall be seen� assumption can be
justi�ed on two di�erent basis
 First� it is technically much simpler to obtain
optimal potentials when the limits 	 	 
 and q 	 � are simultaneously
taken
 Second� the results of chapter � can be used as a motivation� the
Bayesian vector is the center of mass of the Gibbs ensemble� being therefore
unique for a given set of examples
 Its clipped counterpart Jbb is thus also a
unique vector� motivating the q 	 � ansatz 


The analysis of potentials with a unique minimum can be made by prop�
erly rescaling the order parameters and respective conjugate variables
 In
appendix F this is done in detail� only the results are shown here
 In order
to keep the free energy �eq
 �
��� �nite �i
e
 O�	��� in the limit 	 	
� the
following variables should remain �nite��

� � 	��� q�

�� � �q

	�

�y �
�R

	
� ��
��

It is particularly important to check that the variable � remains �nite and
positive in equilibrium� otherwise the hypothesis that q 	 � is violated
 In
terms of the new variables� the free energy reads� to leading order�

f � Extr
R�
��
��y

�
���

�
% �yR � �

p
��Pn

�
�y�
p

��
�
� �y

h
� � �H

�
�y�
p

��
�i

%�

Z
D�b

Z
Dt� min

�

�
V �
� %

�
� t��

��

��
� ��
��

�Except for borderline cases� as already noted in footnote � on page �	�

�	



	��� The ansatz of a unique minimum

where Pn�x� � �������� exp��x���� is a Gaussian and

t � t�b� t�"R� � bR % t�
p

��R� � ��
��

The extremum operation of eq
 �
� yields the following saddle point equations
for the order parameters �see appendix F��

R � � � �H



�yp
��

�

� �
�p
��
Pn



�yp
��

�
�� �

�

��

Z
DtX�t"R�  
��t� ��� t!�

�y �
�

�

Z
Dt Y �t"R�  
��t� ��� t! � ��
��

where X and Y are as de�ned in eqs
 �
��


��t� �� � Argmin
�

�
V �
� %

�
� t��

��

�
��
	�

and one is implicitly assuming

V �� �
��t� ��� %
�

�
� � � �t � ��
��

Given a potential V �
�� one just has to calculate 
��t� �� and insert the result
back into eqs
 �
�
 This procedure is exactly the same as the one which was
introduced by Bouten et al  BSVdB�	! for the supervised problem with a
spherical prior� except that in the present case the conjugate variables cannot
be eliminated algebraically


The fact that the whole calculation was performed without any previous
assumption about the form of the potential V � should not be underempha�
sized
 After the function 
� is calculated� one should carefully check that
the side condition �
� is satis�ed and that � has a �nite solution
 Failure to
meet these conditions could be the result of a major di�culty� the potential
could have a degenerate minimum� implying that the RS ansatz is unstable

The necessity of these a posteriori checks seems to be the price paid for the
simplicity of eqs
 �
� and �
	� through which the �nal performance R��� of
a given potential can be obtained with little algebra


Interestingly� the extremum in eq
 �
� can be applied to the variables �� ��
and �y �rst
 If the remaining minimization with respect to R is left to the last

��
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stage� one can readily verify that the thermodynamically stable free energy
can be simply written as

f � min
R

�

Z
DtX�t"R�V �
��t� ��� � ��
��

an expression which has been shown to be formally identical in the case of
spherical vectors  BG��!


����� Clipped Hebbian supervised learning

Clipped supervised learning is a problem which has been studied before in
the literature  VdBB��� GM��� BS�	! and the particular case of the Hebb
rule can be used here as an example to check the general approach described
in section �
�


The problem of supervised learning can be once again mapped to the
present framework of unsupervised learning by using the aligned patterns
described in section �
�
 The noiseless case to be studied has therefore P �b� �
�'�b�Pn�b�� according to eq
 �
�	� where '�x� is the Heaviside function


Hebbian learning is de�ned as constructing the vector JH � P�N
��� �

��
where f��g are the aligned patterns� and its clipped version JcH is obtained
by taking the sign of each component of JH �see page ����

JcH � clip�JH� � ��
��

Because of the very de�nition of JcH � it obviously maximizes the dot product
J � JH � J �

P�N
��� �

� �P�N
��� 
� in the binary space
 Correspondingly� JcH

should be obtained ) using the zero temperature calculation streamlined in
section �
� ) as the ground state of the potential

V �
� � �d 
 � ��
��

where d � � is a constant
 Inserting eq
 �
� into eq
 �
	� one obtains


��t� �� � d� % t � ��
���

Remembering that X�t"R� for supervised learning is as in section �
� �see
page ��� and Y �t"R� � R���X�t"R���t� one inserts eq
 �
�� into the saddle
point equations �
� to obtain

����� � d�� �

�y��� � d�

r
�

�
�

��
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���� �
�

d

r
�

��
exp


��
�

�

R��� � �� �H

�r
��

�

�
� ��
���

Asymptotics

The result R��� in eq
 �
�� is identical to the one obtained in  VdBB��!� as
it should
 The asymptotics for small and large � are� respectively�

R
��� �

�

p
� ��
���

R
��� �� �p

�
exp


��
�

�
� ��
���

Using the asymptotic results of Gibbs learning �section �
�� together with the
results for the best binary �see eq
 	
���� a comparison with eq
 �
�� shows
that clipped Hebbian learning is able to asymptotically saturate the Rbb bound
for �	 �
 For � 	
� the exponential behavior of eq
 �
�� shows a major
improvement when compared with simple Hebbian learning� which behaves
asymptotically as  Val��! R  � � ������
 However� it obviously fails to
saturate the Rbb bound for �	
� since it misses the �rst order transition
at � � ����	
 These comparisons can be seen in �g
 �
�


Discussion

The performance R��� for clipped Hebbian learning can also be obtained
in a di�erent way
 Using the result R��� � �� % ����������� for Hebbian
learning  Val��!� one just has to note that the resulting vector is a continuous
one� and uniformly distributed on the cone R � J � B�N 
 Making use of
the general formalism for clipping  SBVdB�	! described in section �
�
�� one
inserts Vallet�s result into eq
 �
�� and the result is identical to eq
 �
��

Another possible approach� based on a signal�to�noise analysis� is developed
in  BS�	!� leading to the same results


Despite the redundancy of the results� however� eqs
 �
�� remain interest�
ing as a check of the validity of the general results of section �
�
 First� one
notices that the rescaled variables do remain �nite� as originally requested
 In
particular � � 	��� q� is �nite� giving consistency to the ansatz of a unique
minimum�
 Second� the side condition �
� reads� in this case� ��� � �� which

�On page ��� of �VdBB��� a statement is made about an order parameter whose

��
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Figure �
�� Overlaps as functions of �� RB� Rbb� RG �only the thermody�
namically stable solutions are shown�� clipped Hebb according to eq
 �
��
and Hebbian learning according to  Val��!


is also clearly satis�ed
 Therefore clipped Hebbian learning seems to be a
case where eqs
 �
���
� properly describe the system


����� Minimal	Maximal Variance

The next test case to be studied is the Minimal�Maximal Variance
�Min�Max� cost functions in the unbiased Gaussian scenario described in
section �
�
 These cost functions are of the form

V �
� �
c

�

� � ��
���

where c can be either positive �Minimal Variance� or negative �Maximal
Variance�
 The cases of interest are those which have sign�c� � sign�A��

meaning is �less clear�� By comparing the equation obeyed by that order parameter
with eqs� ��		� one concludes that the mysterious quantity is proportional to �� This is
consistent with the 
ndings of �BS��� where � is shown to account for the signal�to�noise
ratio in the 
eld ��

�




	��� The ansatz of a unique minimum

that is� one minimizes �maximizes�
P�N

� 
�� in J space when hb�i� is indeed
minimal �maximal� as compared to the variance of the projection of the
examples � along the directions perpendicular to B


Following the streamlined procedure of section �
�� one inserts the poten�
tial �
�� into eq
 �
	 to obtain


��t� �� �
t

� % c�
� ��
�	�

Recalling the expressions �
�� for the Gaussian scenario and combining
eq
 �
�	 with the saddle point equations �
�� one obtains� for B � ��

R � �� �H


 p
�jAjRp

� �AR�
sign�� % c��

�
��
���

�

j� % c�j �
�p

����AR��
Pn


 p
�jAjRp

� �AR�
sign�� % c��

�
� ��
���

The �rst equation accounts for the performance of the cost function� while
the second allows to check whether � remains �nite
 Note that the argument
� % c� � ��V �� % ���� in the above equations should be positive as a conse�
quence of the side condition eq
 �
�
 Therefore it can be handled like this�
one assumes that � % c� is positive and then checks the consistency of the
assumption


Asymptotics

An asymptotic expansion of eq
 �
�� yields the following behavior� in the
large � regime the performance is better than that of Gibbs learning �compare
with eq
 �
�	�� saturating the Rbb bound �compare with eq
 	
�	��

��R
���

r
��� �A�

��A�
exp

�
��

�



A�

��A

��
� ��
���

Things are rather di�erent� however� when the learning process has just
started
 The asymptotics for small R� assuming a smooth behavior for R����
gives

R

 
� �� � � �m
R�� p

C��� �m�� � � �m
��
���

where C is a constant and the value of the critical load �m is now

�m � �

�A�
��
���

��
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One should note that the � ��� �m���� increase in eq
 �
�� is much steeper
than the linear one obtained for Gibbs learning �compare with eq
 �
��
or �
���
 However� this square root behavior ) comparable in shape to
both RB and Rbb ) occurs only after the presentation of a critical number
of examples N�m which is larger than that of Gibbs learning �see eq
 �
���

Eqs
 �
�� and �
�� would imply that the same potential V �quadratic in 
�
can lead to a better performance at �nite temperature �Gibbs learning� than
at zero temperature �at least for �G � � � �m�


The intermediate non�asymptotic behavior can be seen in �g
 �
�� where
a solution of eq
 �
�� can be compared to the performance of the best binary
vector


0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

R

α

Best binary

Min/Max Variance

A = (π/20)1/2

A = - (π/20)1/2

Figure �
�� Solution of eq
 �
�� for two values of A �thick lines� and the Rbb

bound �thin lines� based on the solution of eqs
 �
	� �
�� and 	
��


Consistency checks

One should check whether � has a �nite solution for both Minimal and Max�
imal Variance cost functions
 Starting with Maximal Variance �c � �jcj
and A � �jAj�� one would like to verify an even more restrictive condi�
tion� namely �  ��jcj � sign�� % c�� � �
 Rewriting the saddle point

��
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equation �
�� for � in this special case� one gets

�

�� jcj� �
�p

��� % jAjR��
Pn

� p
�jAjRp

� % jAjR�

�
� ��
���

Since the function 

��jcj
 maps the interval  �� ��jcj into  ��
 and the r
h
s


of eq
 �
�� is �nite for all A� R and � �� �� there is always a �nite solution
satisfying �  ��jcj


For Minimal Variance �c � %jcj and A � %jAj�� the analogous of eq
 �
��
is

�

� % jcj� �
�p

��� � jAjR��
Pn

� p
�jAjRp

� � jAjR�

�
� ��
���

Now one needs to check that a solution exists in the interval �  �  
�
which automatically satis�es the side condition � � ���jcj
 This is not so
simple as in the previous case� since the function 


��jcj
 now maps the interval

 ��
 into  �� ��jcj 
 Using this fact� one can always �nd a value jc�j� for any
A� R and � �which �x the r
h
s
 of eq
 �
���� such that no satisfactory solution
for � exists for jcj � jc�j


While Maximal Variance seems to pass the consistency checks� Minimal
Variance does not
 Even though one could argue that a su�ciently well�
tuned value of c might lead to a satisfactory solution� the sheer fact that the
solutions depend on the absolute value of c at all should rise suspicions in
the �rst place�
 After all� if a potential V is minimized for a given vector�
so is a potential �V � constant � V 
 This kind of contradiction is a sign of
problems with the equations developed in section �
� and a more thorough
discussion will be carried out in section �
�
�


����� Variationally optimal potentials

Despite the problems found in section �
�
� while testing the general eqs
 �
��
an attempt to construct an optimal cost function in this framework will be
made in this section
 Optimality is de�ned here as maximizing the overlap
R for a given value of �
 By doing so from the equations of section �
�� one
is trying to �nd the best possible binary vector which� as shown in chapter 	�
leads to the Rbb overlap described by eq
 	
��
 One is thereby implicitly
assuming that this can be done with a potential which has a single minimum

Whether this is possible or not is by no means obvious� in principle
 But one

�Note that this is not the case of clipped Hebbian learning� Eqs� ��		 show that �  �
for whatever value of d  ��

��
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can always construct a variationally optimal potential Vopt and then check
whether the corresponding Ropt��� saturates the bound Rbb���


The optimization procedure to be described is inspired by Kinouchi and
Caticha�s work  KC��! on optimal supervised learning in the spherical percep�
tron �see also  BTMG��!�� which was soon after extended to an unsupervised
scenario  VdBR��� BG��!
 One assumes that V is unknown and then varia�
tionally determines Vopt such that R is maximized for given �
 From eqs
 �
�
it is clear that the equilibrium value of R is a monotonically increasing func�
tion of �y����� which on its turn is determined by the up to now unknown
potential V 
 De�ning

F �t� �� � 
��t� ��� t � �� �V

�


����
�����t�
	

� ��
���

one has

�y�

��
� �

�R Dt Y �t"R�F �t� ��
	�R DtX�t"R�F ��t� ��

� �

hR Dt �Y �

X

�
FX
Y

i�
R Dt �Y �

X

� �
FX
Y

�� � ��
���

The variational optimization takes place at this point� where the Schwarz
inequality can be invoked to show
 that the r
h
s
 of the above equation
is maximized if F �t� ��X�t"R��Y �t"R� � k� where k is any t�independent
function
 This determines the optimal function Fopt� namely�

Fopt�t� �"R� � k�R� ��
Y �t"R�

X�t"R�
� ��
�	�

The constant k has yet to be determined� but it is interesting to note that
its value is irrelevant for the determination of R�

�y�

��

����
F�Fopt

� �

Z
Dt Y

��t"R�

X�t"R�
� ��
���

This equation can be inserted back into �
� and yields the �nal equation for
the overlap�

Ropt � �� �H

�s
�

Z
Dt Y

��t"Ropt�

X�t"Ropt�

�
� ��
���

�De
ning the internal product between two functions x��t� and x��t� as hx�� x�i 	R Dt Y �
t�R�
X
t�R� x��t�x��t�� one just has to recall the Schwarz inequality j hx�� x�i j� 


hx�� x�i hx�� x�i� The function X is strictly positive� according to its de
nition in eq� ����

��



	��� The ansatz of a unique minimum

Eq
 �
�� is the main result of this section� representing the best performance
that can be achieved by a potential with a unique minimum


There are however remaining questions� in order to explicitly construct
the optimal potential Vopt
 These are brie$y addressed here in order to sup�
port the discussion of section �
�
�


One should start by determining the constant k�R� ��� which is easily
obtained by inserting eq
 �
�	 into the saddle point equations for � and ��

This yields a self�consistent equation for k�R� �� � k�Ropt� �� while leaving �
itself undetermined �a fact which occurs whenever 
��t� �� does not depend
on ���

k�Ropt� �
�q

�
R Dt Y ��t�Ropt	

X�t�Ropt	

Pn

�s
�

Z
Dt Y

��t"Ropt�

X�t"Ropt�

�
� ��
���

where Ropt � Ropt��� is the solution of eq
 �
��
 Note that k does not depend
on �


The second step to obtain Vopt is the integration of eq
 �
�� for F � Fopt

The procedure in this case is identical to the one presented in  KC��! and
the details will be omitted
 The result is

Vopt�
"Ropt� �
�

�

�
Eopt

�


���	
opt �
"Ropt�"Ropt

�
��

�
F �
opt

�


���	
opt �
"Ropt�"Ropt

��
� ��
���

where

Eopt�t"Ropt� � �k�Ropt�

Ropt
lnX�t"Ropt�

Fopt�t"Ropt� � � �

�t
Eopt�t"Ropt�


opt�t"Ropt� � Fopt�t"Ropt� % t ��
���

and 

���	
opt is the inverse function of 
opt �assuming the inverse exists�


Performance of the variationally optimal potential

The main issue at hand is whether Ropt���� which is the solution of eq
 �
���
saturates or not the best binary bound Rbb���
 One should start by noting

��
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the very similar form of the respective equations
 From the de�nition �
� of
F � and recalling eqs
 	
��� �
�� and �
	� one rewrites

Ropt � � � �H �F�Ropt�� ��
���

Rbb � � � �H �F�RB�� ��
���

RB � FB �F�RB�� � ��
���

where the potential�independent FB is de�ned in eq
 �
�
 However� one should
not be misled by the similarity of eqs
 �
�� and �
��� eq
 �
�� should be solved �
while eq
 �
�� just maps the solution of eq
 �
��� which should be solved as
well
 Keeping this picture in mind� one can try to compare Ropt��� with
Rbb���


FB�x� and �� �H�x� are both monotonically increasing functions which
do not depend on the potential� distribution of patterns� etc
 They are
determined only by the binary nature of the J space
 One can check on
�g
 �
� that FB�x� � � � �H�x�� �x
 Also� FB�x� � Fs�x� � x�

p
� % x�� a

relation that will be useful in section �
� for comparison with potentials on
the hypersphere


F�R� is the quantity that carries the information about the distribution
of patterns
 After a long but straightforward calculation �see section F
���
one can show that F is a monotonically increasing function of R as well�
�F��R � �
 If one does not take into account the possibility of multiple
solutions to eqs
 �
�� and �
�� ��rst order phase transitions�� the conclusion
is that RB��� � Ropt���
 Of course� the absence of multiple solutions cannot
be guaranteed �much on the contrary� they can occur both for the binary case�
as seen in chapter �� as for continuous problems  BG��!�
 But as long as the
solution is unique� for given �� one has� RB��� � Ropt���
 Inserting this
inequality on the r
h
s
 of eqs
 �
�� and �
��� one concludes that Rbb � Ropt

Therefore Ropt does not saturate the bound Rbb
 in general �

A simple counterexample

There is a simple exception to the general failure of Ropt in saturating Rbb

If one studies the biased case �with A � �� of the Gaussian scenario� eq
 �
��
yields

F�R� � jBjp� � ��
���

�RB��� � Ropt��� is a reasonable result� since the l�h�s� is attained by a continuous
vector� while the r�h�s� corresponds to the performance of a binary vector�

�	
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Therefore F�R� does not depend on R and the arguments given above to
justify the failure do not hold
 Inserting eq
 �
�� into eqs
 �
�� and �
��� one
can easily verify that Ropt��� � Rbb��� � ���H �jBjp��
 This was the only
case which could be found where the optimization procedure was successful

A justi�cation will be given in section �
�
�


Asymptotics

Going back to the general case� the asymptotics of Ropt is interesting
 For
large �� one obtains

� �Ropt���
���

s
�

�� h�U ���i�
exp


�� h�U ���i�
�

�
� ��
�	�

that is� Ropt manages to saturate Rbb only asymptotically �see eqs
 �
�	
and 	
�	�


For small values of R� one assumes a smooth behavior for Ropt��� and
the result is

��
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hbi� �� � � Ropt  jhbi�j
r

��

�
��
���

hbi� � � � R

�
� �� � � �c
pC��� �c�� � � �c

� ��
���

where C is again a constant and the critical value � � �c is given by �compare
with the results of page ���

�c � �

�

�

��� hbi����
�

�

�
�G � ��
���

The two regimes which have been obtained for Gibbs learning occur again
here� if hbi� �� �� Ropt starts increasing as soon as � is non�zero� eq
 �
��

In this case Ropt is again able to asymptotically saturate the bound Rbb�
according to eqs
 �
�� and 	
��
 But if hbi� � �� then the performance of Vopt
is disastrous� and the second order transition occurs at a critical value �c
which is larger than that of Gibbs learning
 This second picture generalizes
the results which were obtained in section �
�
� for Min�Max cost functions

This is no coincidence� for the Gaussian scenario with B � �� the general
result eq
 �
�� becomes exactly the saddle point eq
 �
�� for Min�Max
 In
other words� Min�Max cost functions coincide with the optimal potentials
for the Gaussian scenario with B � �


����� Discussion

The following questions arise� why does the variationally�obtained potential
Vopt generally fail to saturate the best binary bound� And which are the
characteristics the exceptional cases have that allow Vopt to succeed�

In order to answer these questions� one should keep track of the hypothe�
ses assumed in all the derivations of section �
�
 First� replica symmetry is
assumed
 Second� the limits 	 	 
 and q 	 � are simultaneously taken�
with � � 	��� q� �nite


These hypotheses were imposed to ensure the uniqueness of the ground
state of the potential
 This is a desirable property� because of the argument
given on page ��� the center of mass JB of the Gibbs ensemble is a unique
vector for a given set of examples� and so should be its clipped counterpart
Jbb
 Even though the discussion on page ��� will argue that q 	 � is not
necessarily the only acceptable result� it is certainly the simplest one


��



	��� The ansatz of a unique minimum

The explanation for the failure of Vopt to be sustained here is that the limit
q 	 � � corresponding to the minimum of the potential being attained by
a single vector � can hardly be self	consistently imposed for binary vectors

Or� in other words� the ansatz 	 	 
� q 	 � with � �nite is generally not
correct� except for some special cases


These statements are supported by preliminary calculations of the entropy
for the Gaussian scenario
 Without reproducing them here� the general idea
is as follows� if one assumes that q	 �
 the only physically acceptable value
of s is zero� since there is only one state available to the system
 Therefore�
one should calculate the value of the entropy for 	 	
 and check whether
it vanishes identically� ��
 If it does not� then the ansatz q 	 � is clearly
wrong
 Note that the discussion of this zero�entropy problem is more general
than the problem of �nding an optimal potential
 The question is whether
potentials with a unique minimum can be constructed at all 


Therefore the reason for the failure of Vopt in saturating the Rbb bound
seems not to lie in the optimization procedure
 but rather on the sheer di�	
culty of constructing potentials which have a unique minimum in the binary
space


Indeed� a quadratic potential V �
� � c
��� � d
 �where c and d are
constants� for the Gaussian scenario seems to have an entropy di�erent from
zero at zero temperature� a result which would be clearly incompatible with
the ansatz q 	 �
 There is an exception� however� if c � �
 Then the entropy
is exactly zero� showing that the linear potential satis�es the requirement of
a unique minimum


This discussion helps to clarify the apparently contradictory results of
section �
�
�
 In the case of Minimal�Maximal Variance� the problem of
non�zero entropy is clearly present
 This invalidates most of the results �but
not all of them� as discussed below� of that section� which were nonetheless
presented for didactic reasons


If one goes back to the results of clipped Hebbian supervised learning� on
the other hand� the explanation for the success of the zero temperature ap�
proach is now clear� the potential is linear � which guarantees the existence of
a unique minimum
 In fact� the linear potential was chosen� in section �
�
��
exactly because it leads to the desired unique binary vector� as can be seen
in the discussion of page ��
 Therefore q 	 � is a consistent ansatz for all
values of �� as opposed to the previously discussed example


The counterexample of page �� is another case where the results are con�
sistent with the zero entropy criterion
 The biased Gaussian scenario has�
however� an important di�erence with respect to clipped Hebbian supervised
learning� the results are not only consistent� but also optimal� saturating the
Rbb bound for all �
 The explanation is again very simple� in the Gaussian

��
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scenario with A � �� the pattern distribution is governed by U�b� � �Bb�
i
e
 a linear function
 This� in turn� translates into a linear optimal po�
tential Vopt�
� � ��koptB���
� according to eqs
 �
��� �
�	 and �
��
 And
linear potentials pass the test of zero entropy� as discussed in the previous
paragraphs


The last apparent paradox to be cleared is the successful asymptotic result
eq
 �
��� valid for Vopt in the limitRopt 	 � for hbi� �� �
 In this case� one can
show that� if hbi� �� �� then Vopt�
�  ��kopt hbi� ���
 for Ropt 	 �
 In other
words� the optimal potential is asymptotically linear for � 	 �� consistently
satisfying the required condition s 	 � in that limit
 A similar reasoning
might be employed at the other end of the asymptotics� namely for �	


Even though a more rigorous result could not be obtained� eq
 �
�	 shows
that the Rbb bound is asymptotically saturated in that regime
 The argument
in this case is that R 	 � necessarily implies the shrinking of the solution
space� asymptotically leading to s	 � and giving consistency to the ansatz
q	 �


In light of these discussions� one can conclude that the optimal potential
Vopt is able to saturate the Rbb bound whenever the condition s � � is met

either exactly or asymptotically


��� Optimal potentials in the hypersphere

The second major approach to the problem of �nding Jbb consists in �nd�
ing JB instead� and then clipping it �see eq
 �
���
 An advantage one can
immediately foresee for such a strategy is the fact that the search could be
performed in a continuous space� thereby avoiding the di�culties of con�
structing potentials in a discrete space


This kind of approach has been very successful in providing good approx�
imations of the maximally stable binary perceptron in the capacity problem
�see  VR��! and references therein�
 The so�called �precursor strategy� aims
at obtaining a good �precursor� vector which� on clipping� renders a binary
vector whose stability is as close as possible to the bound obtained previously
by Gardner and Derrida  GD��! �see also  KM��!�
 The similarity with the
present problem is clear� but one signi�cant di�erence remains� in the prob�
lem of unsupervised learning� one knows that a single well�de�ned vector JB
exists� such that clipping it leads to the best binary vector
 In this sense� an
�optimal precursor� exists which leads to the desired solution with probabil�
ity � �in the TL�
 The question remains� of course� how to �nd it
 This is not
an easy task� despite the advantage of JB being a continuous vector
 In order
to put the problem into perspective� it is natural to stablish a comparison

�




	��� Optimal potentials in the hypersphere

with a similar problem already studied in the literature� the Bayes�optimal
vector for a spherical prior


Suppose that� instead of a binary prior Pb�B� for the preferential direction
B� one has P �B� � Ps�B� � ��B �B�N� �see eq
 �
��� where the subscript s
stands for spherical 
 Similar replica calculations can be performed for a given
pattern distribution and cost function  BM��� BM��� WN��� BG��� Buh��!�
but here only the general results will be presented
 For Gibbs learning )
de�ned once more as sampling from the posterior distribution ) the equation
to be solved is  VdBR��!�

Rs
G

��Rs
G

� F�
�p

Rs
G

�
� ��
���

where F is as in eq
 �
� and Rs
G � B � J s

G�N is the order parameter mea�
suring the alignment of the real valued Gibbsian vector J s

G with B
 One
can now repeat the arguments presented in chapter �� the center of mass
J s
B of the �spherical� Gibbs ensemble is Bayes�optimal� and its performance

Rs
B �

p
Rs
G satis�es� in light of eq
 �
���

Rs
B � Fs �F�Rs

B�� � ��
���

where Fs�x� � x�
p

� % x� was de�ned on page �� and plotted in �g
 �
�

The thermodynamically stable solution of eq
 �
�� is thus an upper bound

to the performance of any properly normalized vector J in approximating
B� given the data and the prior distribution Ps�B�
 A comparison with
eq
 �
�� shows that the spherical prior renders a slower asymptotic decay
than its binary counterpart� yielding a power law ��Rs

B  ��� h�U ���i����
for large �
 The asymptotics for small R� on the other hand� are identical to
those obtained in chapter �� a result that can be explained by the fact that
FB�x�  Fs�x� for small x


If one now tries to construct an optimal potential V s
opt whose minimum

J s
opt has an overlap Rs

opt � Rs
B with B� the results are very di�erent from the

ones obtained in section �
�
�
 It turns out  VdBR��! that Rs
opt satis�es

Rs
opt � Fs

�F�Rs
opt�
�
� ��
���

which is identical in form to eq
 �
��
 If the solution of eqs
 �
�� or �
�� is
unique �as it is� for instance� in the problem of supervised learning� see  KC���
BTMG��!�� then the bound is clearly saturated for all �
 There are cases�
however� where �rst order phase transitions appear due to the occurrence

�The result is valid for smooth distributions only� If U is discontinuous� then an ���

behavior appears� see �VdBR���

��
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of multiple solutions
 In these cases� the solution which minimizes the free
energy must be chosen
 Note that the analysis of eqs
 �
�� and �
�� then
splits� since the �rst is governed by the free energy of Gibbs learning� while
the free energy of the second is obtained by the zero temperature formalism�
cf
 eq
 �
�
 This is a di�cult problem which is not addressed here
 The
reader is referred to  BG��� GB��!� where a particular distribution leads to
�rst order transitions for Ropt which are numerically shown to violate the
Bayesian bound� an issue which seems to be up to now unsettled


With these results in mind� one can go back to the original problem�
namely� how to obtain JB �as opposed to J s

B� using an optimal potential�
In the calculations performed for the spherical prior� the only restriction
imposed on the vector J is the spherical constraint J � J � N 
 This is very
convenient� since JB must satisfy the same constraint
 But the approach
su�ers from a major drawback� if the only constraint imposed on J is the
spherical one
 the information about the binary nature of B is lost 
 This can
be more clearly seen on the discussion of page ���� where the free energy
for a spherical J is shown to depend only on B � B
 In other words� the
results for a spherical J are the same� regardless of the preferential direction
B being spherical or binary
 Therefore� by relaxing the binary constraint
on J in order to facilitate the search of JB� one ends up �throwing away
the baby with the bathwater�
 Recalling eqs
 �
�� and �
��� the fact that
FB�x� � Fs�x�� �x� implies that such a strategy fails in rendering a vector
with an overlap RB with B
 In particular� the resulting Rs

opt��� approaches
� with a power law� while � �RB � exp����


����� Transforming J
s
opt

Despite the fact that in general Rs
opt � RB� one can nonetheless make use of

the resulting J s
opt to produce a binary vector J s

clip by clipping
 This would
be an approximation to Jbb
 It is ironic that the possibility of directly apply�
ing the general clipping results of  SBVdB�	! is granted in this case exactly
because the information about the binary nature of B has been lost 
 This is
because those results depend on the uniformity of J on the cone J � B�N �
according with the discussion of section �
�


More speci�cally� one can directly apply eq
 �
�� to the solution of eq
 �
���
the result being

Rs
clip � � � �H

�
Rs
optp

�� �Rs
opt�

�

�

��
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��
�	
� �� �H

�F�Rs
opt�
�
� ��
���

The above equation should be compared to eq
 �
��
 One concludes that�
since F is monotonically increasing with R �and apart from �rst order phase
transitions�� then Rs

clip � Rbb

The above inequality is not exactly surprising� since it is just a conse�

quence of Rs
opt � RB
 Maybe of greater importance is the fact that� despite

the qualitatively di�erent behavior of Rs
opt and RB� Rs

clip and Rbb do share
some common features
 This is more clearly depicted in the asymptotics of
Rs
clip
 For large �� one has

� �Rs
clip 

r
�

�

p
� � �Rs

opt��

Rs
opt

exp

�
� Rs

opt

��� � �Rs
opt�

��

�


s

�

�� h�U ���i�
exp

��� h�U ���i�
�

�
� ��
���

assuming h�U ���i� is �nite
 Recalling eq
 	
��� one notices that Rs
clip asymp�

totically saturates the Rbb bound in the �	
 limit� showing an exponential
behavior which was not originally present in Rs

opt
 At the other end of the
spectrum� expanding eq
 �
�� around Rs

opt � � yields

Rs
clip 

r
�

�
Rs
opt


r

�

�
RB � ��
���

A comparison with eq
 	
�� shows that in the poor performance regime the
Rbb bound is also asymptotically saturated
 For intermediate values of ��
however� Rs

clip does not saturate Rbb� in general
 This can be seen in the
dashed curves of �g
 �
�� where results for the Gaussian scenario are shown
in the two relevant cases� zero and non�zero hbi�


The next question one could ask� using the techniques reproduced in
section �
�� is the following � when one makes use of the optimal function
���x� � tanh�Rx��� � R��� �see eqs
 �
�� and �
��� to transform the com�
ponents of the vector J s

opt� how close is the resulting Rs
� � R��R � Rs

opt� to
RB� By rewriting eq
 �
��� one is once more left with a deceivingly familiar
formula�

Rs
� � FB

�F�Rs
opt�
�
� ��
�	�
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Figure �
�� Overlaps as functions of � for two choices of parameters in the
Gaussian scenario� A � ��� with B � ��� �upper curves� and A � ����
with B � � �lower curves�
 The upper bounds RB �solid� and Rbb �dashed�
are depicted with thick lines� while the approximations Rs

� �solid� and Rs
clip

�dashed� are plotted with thin lines


which should be compared with eq
 �
��
 The monotonicity of F�R� plays
again a central role� now forbidding Rs

���� to saturate the bound RB����
since in general Rs

opt � RB
 Saturation occurs only asymptotically� both for
large � and for small R�

� �Rs
�

���
r

�

�� h�U ���i�
exp

��� h�U ���i�
�

�


��
�

�
�� �Rs

clip� ��
���

Rs
�

Rsopt��
r
�

�
Rs
clip  RB � ��
���

Eqs
 �
�� and �
�� should be compared to eqs
 	
�� and 	
��� respectively

The comparison between Rs

� and RB is graphically very similar to that of
Rs
clip and Rbb� as can be seen in the solid lines of �g
 �
�


��
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Another available measure of the success of the optimal transformation
�� in rendering a good approximation for JB� is the probability distribution
P �x��� where x� � ���x��R� �see eqs
 �
��� �
�� and �
���
 x� re$ects thus
the structure of J s

� � fJ s
� j J s

� !i � ��� J s
opt!i��R

s
�g
 In order to obtain its

probability distribution� one just has to recall eq
 �
��
 It states that� for
vectors uniformly distributed on the cone J �B�N � x is Gaussian distributed�
in this case with mean Rs

opt and variance �� �Rs
opt�

�
 This is one of the signs
that a spherical constraint imposed on the vectors J is not able to incorporate
the information that B is binary� the Gaussian is much less structured than
the distribution PCM �x� obtained in chapter 	 for JB� eq
 	
�� which �pushes�
JB closer to the corners of the hypercube �see �gs
 	
��	
��
 The optimal
transformation x� � ���x��R� � tanh�Rx��� � R����R� can be regarded as
an attempt to �x this problem� attaching some structure to the transformed
x�
 With a simple change of variables� P �x�� is readily seen to be

P �x��
�����	
�

R�p� �R�

p
��R�� � �R�x����

�

exp

 
����R��

�R�

�
�

�
ln



� % R�x�
��R�x�

�
� R�

� �R�

��!
���
���

with R � Rs
opt and R� � Rs

� as the present case of interest
 A comparison
with eq
 	
� shows that the two equations are very similar� but not identical

Some similarity in shape should indeed be expected� mainly because P �x���
just like PCM �x�� must be such that P �x���P ��x�� � �� % cx����� � cx���
for some constant c� in order to prevent the construction of a second optimal
function after the �rst transformation�


The distributions PCM �x� �eq
 	
�� and P �x�� �eq
 �
��� can be compared
in �g
 �
	
 The curves correspond to the Gaussian scenario with A � ��� and
B � ��� for two values of �
 One can thus refer to the upper solid curves of
�g
 �
�
 Note that for � � �� the di�erence between RB and Rs

� is very small
in �g
 �
�� which is re$ected in the solid curves of �g
 �
	 being very close to
each other
 Accordingly� the dashed curves in �g
 �
	 get further apart for
� � �� as the mismatch between the overlaps increase in �g
 �
�


The similar shape of eqs
 	
� and �
�� raises an immediate question� does
a function ��x� exist such that the transformation x� � ��x� leads to a
distribution P �x�� identical to eq
 	
�� The answer is yes� but one should
not be misled by the result
 One can readily verify that� if x is Gaussian
distributed with mean R and variance ��R�� then the transformation

	As can be easily checked� P �x���P ��x�� � �	 � x����	� x���

��
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Figure �
	� Distributions PCM �x� �thick line� and P �x�� �thin line� according
to eqs
 	
� and eq
 �
��� respectively
 The values � � � �solid� and � � ��
�dashed� refer to the Gaussian scenario with A � ��� and B � ���


x� � ��x� �
�p
qbin

tanh

�s
�qbin

�� �R��
�x�R� % �Rbin

�
��
���

formally leads to P �x�� � PCM �x��
 The momentary change of notation is
intended to stress that the variables with index bin are the equilibrium values
obtained for Gibbs learning in the binary space� as discussed in chapter 	

But more importantly� one should focus on the word �formally� above
 The
problem is that� even though eq
 �
�� leads to the desired distribution� it
does not arise from any known transformation ��Ji� on the components of
the vector J s

opt
 The reason is that the whole technique of transforming
the components is based on the hypothesis that the transformation function
is odd �see page ���� which is not the case of eq
 �
��
 If a transformation
J �i � ��Ji� could be found which would lead to eq
 �
��� the problem of �nding
both JB and Jbb would have been solved
 This would be quite remarkable�
since eq
 �
�� would be applicable regardless of the value of R ) and the
desired Bayes�optimal solutions would be attainable with no more e�ort than

�	
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a simple transformation in the components� which seems unlikely
 Note that
��x� in eq
 �
�� becomes an odd function only if the equation R�

p
� �R� �

�Rbin�
p

�qbin is satis�ed
 On the other hand� the saddle point equations B
��
for the spherical case show that R�

p
��R� � �Rs�

p
�qs� in the limit qs 	 �


Once more the index s was introduced to stress that the parameters are the
solution for the spherical case
 Since the equilibrium value of the conjugate
parameters are in general di�erent for the spherical and binary cases� ��x�
can hardly be made an odd function


A simple counterexample

As the discussions of section �
� attest� the case of a linear function U�b� �
�Bb is a special one
 This is not di�erent here
 For a linear U � the mono�
tonicity of F�R� attains its lowest with dF�R��dR � �� identically
 Therefore
eqs
 �
�� and �
�	 immediately reveal that� for this very special case�

Rs
clip��� � Rbb��� � �� ��
	��

Rs
���� � RB��� � �� � ��
	��

which can be deduced by a comparison with eqs
 �
�� and �
��� respectively

Note that the �rst result� eq
 �
	�� could already have been expected from
the previously obtained success of Vopt in �nding Jbb in the binary space

This is because the resulting optimal potential is linear � which means that
its minimization in the binary space is equivalent to its minimization in the
continuous space followed by clipping
 The second result� eq
 �
	�� is more
impressive� because it stablishes a result which could not be found elsewhere
in the literature� the optimal transformation manages to completely incor	
porate the information about the binary nature of the prefential direction

leading to JB without the need of explicitly constructing the center of mass
of the Gibbs ensemble
 In other words� the technique of non�linear trans�
forming the components of the vectors� introduced by  BS�	! and extended
by  SBVdB�	!� is able to give a de�nitive answer to the problem it aims to
solve


��
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Chapter 	

Conclusions and perspectives

In this thesis� techniques of Statistical Mechanics were used to derive theo�
retical results on unsupervised learning of a single N �dimensional direction
B� with emphasis on the case where B � f���%�gN 
 Chapters �� � and 	
focus on the calculation of an upper bound which is ultimately related to
the general results of chapter �
 Chapter �� on the other hand� contains
a non�exhaustive discussion of some possibilities on how to saturate those
bounds


In chapter �� Gibbs learning �which is sampling from the posterior dis�
tribution� is shown to have the same asymptotic behavior as for the smooth
case in the limit RG 	 �� for biased distribution of patterns� RG � �� while
for non�biased distributions one obtains in general a second order phase tran�
sition �retarded learning� RG � �� � �G�'�� � �G�
 In the limit � 	 
�
the results are in sharp contrast with those of the smooth case� since the
asymptotical approach to the perfect match J � B occurs exponentially�
��RG 

p
����� h�U ���i�� exp ��� h�U ���i� ���
 Non�asymptotic results for

the Gaussian scenario also show that the discrete nature of the search space
can lead to �rst order phase transitions as well


Chapter � reproduces a well known reasoning which leads to the Bayes�
optimal performance being formally attained by the center of mass JB of
the ensemble of Gibbsian vectors
 This Bayes optimal performance obeys
RB �

p
RG
 The clipped version Jbb of JB is shown to lead to the Bayes�

optimal performance within the binary vectors
 Using previous results on the
theory of clipping� it is shown that in order to obtain its performance Rbb� one
needs to calculate the probability distribution of the variable x � B� JB!�


In chapter � a reasoning is proposed� according to which the geometric
constraints of the Gibbs ensemble would be enough to account for the sta�
tistical properties of its center of mass
 This assumption is used to simplify
the calculation of P �x�
 Making use of the Maximum�Entropy formalism� it

��
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is shown that the center of mass of binary vectors which obey some simple
��replica symmetric�� constraints� is again a binary vector
 Despite several
arguments in favor of the reasoning� however� the assumption is not valid for
a disordered system� which motivates an alternative calculation


Chapter 	 presents the results of a replica calculation of P �x� which
properly accounts for the disorder of the examples� accurately reproducing
the results of the simulations for a special data distribution
 From the the�
oretical expression� the results of chapter � are used in order to obtain the
upper bound Rbb� which obeys RG � Rbb � RB� equality being attained only
in the limits RG 	 � and RG 	 �
 Asymptotically� Rbb 

p
�RG�� for

RG 	 �� and � � Rbb 
p

����� h�U ���i�� exp ��� h�U ���i� ��� for � 	 


As a spin�o� of the calculation� the overlap * � JB � Jbb�N is obtained and
shown to be always �p���


Two approaches� to explicitly obtain vectors that could saturate the Rbb

bound� are discussed in chapter �
 The �rst� which consists in minimizing )
among the binary vectors ) a variationally optimal potential Vopt�
� under
the assumption that the order parameter q 	 �� is shown to generally fail

The conjecture is that this is due to the di�culty of constructing potentials
with a unique minimum in the binary space
 The second approach consists
in obtaining a continuous vector J s

opt by minimization of a di�erent optimal
potential V s

opt
 The components of J s
opt are then either optimally transformed

in order to approximate JB� or clipped to approximate Jbb
 In general� the
approximations are successful only asymptotically


In order to compare the results obtained in this thesis with results already
known in the literature� it is convenient to group them together in tables

In table �
�� results for upper bounds are grouped together and followed by
results related to optimized cost functions
 One should keep in mind that
several results mentioned in this table were derived speci�cally in the context
of supervised learning
 In this respect� some of the questions posed on the
leftmost column may not make much sense in the framework of unsupervised
learning
 They are nonetheless important issues which help to frame the
results which have been obtained in the last chapters
 The focus of the
present work is clearly on the rightmost column


From top to bottom� Opper and Haussler  OH��! calculated the general	
ization error �de�ned as ��� arccos�RB�� of the so�called Bayes algorithm�

for the perceptron problem
 Watkin  Wat��!� using the reasoning repro�
duced in chapter �� then showed that this Bayes�optimal performance could
be achieved by a machine with the same architecture �another perceptron��
namely the center of mass J s

B of the version space
 The reasoning was ex�

�This rule consists in giving as binary output the �majority vote� of the version space�

�





tended to an unsupervised scenario in  WN��!� where the optimality of the
center of mass JB of binary vectors was also mentioned
 The fact that op�
timality within the class of binary vectors is obtained by Jbb � clip�JB�
was mentioned in  WRB��!
 But its performance Rbb could not be found in
the literature
 After attempting to solve this problem with the geometrical
approach of chapter �� the result is �nally presented in chapter 	


Spherical B Binary B

How does the
Bayes�optimal
performance RB

relate to RG�

Rs
B �

p
Rs
G

 OH��!
RB �

p
RG

 OH��!

Spherical B Binary B
Spherical J Binary J Spherical J Binary J

Can RB be
attained by an
N �dimensional
vector�

Yes� J � J s
B

 Wat��!
No

Yes� J � JB
 WN��!

No

What is the best
binary vector� clip�J s

B�
Jbb �

clip�JB�
 WRB��!

And its perfor�
mance� Bad� Rbb

�chapter 	�

�V �
� such that
minimization
with q	 � leads
to the bound�

Yes�
V � V s

opt

 KC��!�
 VdBR��!

No Still
unknown

No� in
general

�chapter ��

Table �
�� Upper bounds and variationally optimal potentials


Turning to potentials� the Bayes�optimal bound was shown to be at�

�If B is spherical and J is binary� the perfect match will not occur� on average�
See �VdBB�� for an example�

�
�
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tainable� in the spherical case� through the minimization with q 	 � of a
potential V s

opt�
�� by Kinouchi and Caticha  KC��!� Van den Broeck and
Reimann  VdBR��!� and Buhot� Torres Moreno and Gordon  BTMG���
GB��!
 The equivalent problem in the binary space was addressed in  dM��!�
for the supervised case� and in chapter �� for the unsupervised case
 In sec�
tion �
�� it is shown that the Rbb bound cannot be saturated �except for
special cases� by minimizing a variationally optimal potential Vopt�
� under
the assumption that q	 �


A discussion is in order at this point
 It should be mentioned that the
uniqueness of the center of mass of the Gibbs ensemble given the examples�
does not necessarily enforces the limit q 	 �
 This assumption was made
based on previous results for the spherical case� where it was successful

Note that in the replica calculation the average over the examples is taken�
while the Bayes�optimal vector remains a function of the examples �recall
chapter �� page ���
 The connection between the two approaches is made
thanks to the self�averaging property of the order parameters� brought by
the thermodynamic limit
 But in principle� it is possible to conceive that an
optimized potential �Vopt could lead to R � Rbb and a matrix fqabg structured
according to some step of replica symmetry breaking
 At zero temperature�
this could possibly imply a degenerate minimum� with each of the minima
saturating the Rbb bound� on average
 Once more assuming self�averaging�
the only conditions to be veri�ed would be� �� that the center of mass of
this new ensemble remains with an overlap with B less than RB" �� that the
clipped center of mass remains with an overlap with B less than Rbb
 This
would require a new calculation� similar to the one presented in chapter 	


Another possibility �and perhaps simpler to address� would be another
attempt to construct a potential to saturate the performance of JB which�
despite being a continuous vector� incorporates optimally the information
that B is binary
 In this respect� the techniques of coupled systems  WRS��!
could be useful
 These are systems where the same set of patterns is used
for an ensemble of binary vectors� say fJag� and an ensemble of spherical
vectors� say fW �g
 The average over the patterns couples the two spaces�
giving rise to a new order parameter Ja �W ��N 
 By tuning the potential
in order to control this order parameter� one could perhaps conjugate the
advantages of working in a continuous space with the need of addressing the
discrete nature of B �see  VR��! and references therein�
 This could be a
way of overcoming the possible limitations of working with a cost function of
the formH �

P
� V �
��� which alone might not be able to properly pinpoint

the binary vectors
 Alternatively� di�erent techniques already used for the
supervised problem� like the TAP equations  OW��!� could shed light on the
unsupervised problem as well


�
�



Returning to the review of the results� section �
� describes an alternative
technique which provides approximations to Jbb and JB
 In table �
� below�
a list of vectors is provided in order to facilitate the discussion


Vector Nature De�nition
Overlap with
B � f���%�gN

Gibbsian�
Ja
G

binary

a sample of

P �J jD� �
Pb�J�e�

P�N
� U���	

Z

RG

Bayesian�
JB

spherical

CM of the fJa
Gg�

�

R
dJ Pb�J�J e�

P�N
� U���	

p
RG

�
�p
RG

lim
n��

nX
a

Ja
G

RB �
p
RG

Best Binary
Jbb

binary � clip�JB� Rbb

�Spherical�
Optimal�
J s
opt

spherical � Argmin
J	RN

�NX
�

V s
opt



J � ��p

N

�
Rs
opt � Rs

B

J s
� spherical  J s

� !i �
��
�
 J s

opt!i
�

Rs�
Rs
�

J s
clip binary � clip�J s

opt� Rs
clip

Table �
�� De�nitions of some vectors


The three �rst rows describe vectors that are easily de�ned in formal
terms� but for which there are no obvious prescriptions as to how they can
be constructed in practice
 In particular� JB and Jbb are associated with the
upper bounds of table �
�
 The three last rows� on the other hand� describe
vectors that are transformations of J s

opt� which is obtained by minimizing a

�
�
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properly de�ned potential V s
opt  KC��� BTMG��� VdBR��!
 Such transfor�

mations� as described in chapter �� aim at incorporating information about
the binary nature of B
 The vectors J s

� and J s
clip can thus be regarded as

approximations to JB and Jbb� respectively
 Their success in accomplishing
so is measured by comparing the associated overlaps
 This analysis can be
summarized as follows� the inequalities Rs

� � RB and Rs
clip � Rbb are always

satis�ed� with equality always holding asymptotically for large and small �

The only model that was found where the equalities above hold ��� is

the linear case U�b� � �Bb
 Moreover� for a linear U�b� one obtains a linear
Vopt�
�� which leads to the optimal potential being successful in yielding a
binary vector with overlap Rbb at its ground state
 These apparent coinci�
dences motivate a more thorough discussion of the linear case
 The formal
reason behind the equalities is the fact that �F��R � � in this case
 It im�
mediately raises the need of a more careful functional analysis to determine
whether this is true only for the linear case
 One could argue that this might
be true ) and this is left here as a conjecture ) based on the intuition
gained with the di�culty in constructing potentials with a unique minimum
in the binary space
 The reasoning supporting the conjecture is� the optimal
potential can only be successful if the ground state of the potential is unique�
by de�nition" on the other hand� it generally fails� except when the condition
s	 � is seen to be satis�ed" therefore one could expect that� if a potential
with a unique minimum could be found in general� the optimization would
probably be able to �nd it


Still related to this issue� another fact worth mentioning is that simu�
lations become extremely di�cult as soon as the smallest degree of non�
linearity is introduced in V �
�
 This is true even for �nite temperature�
which is why simulations for Gibbs learning were presented only for A � �

It is hard to tell whether sampling from the posterior distribution could have
anything to do with the NP problem mentioned in the introductory chapter�
in general
 But if it has� one could conjecture that a possible signature of it
might be the fact that Vopt fails in saturating the upper bound Rbb


Conjectures apart� mean �eld techniques could perhaps be used� on the
other hand� to study how the non�linearity induces a slowing down of the
sampling dynamics� as done in refs
  Hor��a� Hor��b� Hor��!
 But regardless
of what these studies might reveal� the fact of the matter remains that� at
least for the models studied here� in general the optimal potential does not
work
 unless when it is trivial 
 The word �trivial� is used here in the fol�
lowing sense� whenever Vopt is known to lead to a value of Ropt saturating
the Rbb bound� the procedure of minimizing it is also extremely simple
 This
is because Vopt seems to accomplish its mission whenever clipping is opti�
mal
 This is always true asymptotically �for small and large �� and� if U is

�
�



linear� ��
 In any of these successful cases� minimizing Vopt boils down to
clipping
 Either clipping �for instance� the �spherical�optimal� J s

opt in the
general asymptotic case� or clipping the Hebbian vector JH �

P
� �

� for any
� in the linear case
 In short� the optimization procedure succeeds in the
easy cases


J spherical J binary

O��line
�di�cult�

��R  C ���� ��R � e��

On�line
�di�cult�

��R  C ���� R � �

O��line
�easy�

��R  C

�
���

First order
phase transition

On�line
�easy�

��R  C��� R � �

Table �
�� Results for the optimal performance in on�line and o��line learn�
ing
 C and C � are constants
 See text for details


It is interesting to compare the above scenario with some previous results�
relating the optimal potential in the hypersphere V s

opt with results from on�
line learning �see table �
��
 On�line learning in the hypersphere consists in
making use of a single di�erent pattern �� at each in�nitesimal modi�cation
in the candidate vector J 
 Thus after �N steps� one has made use of �N
patterns� yielding as result a vector J s

ol with an overlap Rs
ol���
 It is possible

to variationally tune the incremental modi�cations in such a way that� on
average� Rs

ol��� is maximized �the procedure is nearly identical to the one
described in chapter ��
 In this case� Rs

ol��� can be compared to Rs
opt����

which clearly extracts more information from the patterns �since all patterns
are used at all the in�nite steps of the dynamics until equilibrium is reached�

Surprisingly� the general asymptotic result is  VdBR��! Rs

opt��� � Rs
ol���� i
e


on�line learning is able to yield the same performance as o��line learning in
the limit � 	 

 However� the result is valid only if h�U ���i� is �nite�
the �di�cult� cases
 If it diverges �the �easy� cases�� then the result is
Rs
opt��� � Rs

ol����� i
e
� on�line learning takes twice as many examples to

�
�
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yield the same performance
 Or� seen from another standpoint� the o��line
optimization is able to be twice as e�ective in the �easy� cases
 Recently�
Kinzel and Urbanczik showed that on�line learning in a binary space leads
to R � �� for the supervised case  KU��!
 Since supervised learning maps
into the �easy� cases of unsupervised learning� one would expect that on�
line learning also fails in the �di�cult� cases
 O��line learning� on the other
hand� is theoretically able to take advantage of the reduced discrete number
of states to render a better performance


This discussion con�rms thus a tendency of the optimal o��line strategies
to successfully exploit the facilities present in a given problem �be it a di�
verging h�U ���i�� the discreteness of the search space� or both�
 Speci�cally
in the problem of constructing an optimal potential Vopt in the binary space�
this tendency apparently manifests itself in the narrow window where this
construction is possible� namely� clipping


Finally� going back to the technique of transforming the components of
a conveniently constructed spherical vector� one should stress that� from the
practical point of view� its merit is huge
 After all� both clipping and the
optimal transformation �� turn a power law into an exponential decay
 Even
away from the asymptotic regimes �where the bounds can be saturated�� the
procedure yields reasonable results �specially ��� which never decreases the
performance�
 However� from the theoretical point of view� this approach
is still not well understood� since it consists in an ad hoc procedure which
therefore does not answer some deeper theoretical questions
 One of such
questions that immediately comes to mind refers to the possibility of con�
structing optimal cost functions� what is the best way �assuming there is
one� to incorporate information about the binary nature of B� other than by
constraining J to the binary space in the partition function� It is actually
remarkable that �� is able to perfectly do so in the linear case� yielding for
the �rst time an explicit procedure �other than the center of mass recipe� for
constructing a vector with Bayes�optimal performance for the binary prior

But it only does so in the linear case� exactly when constructing the center
of mass is not di�cult
 Therefore a review of these alternatives seems to
be still missing
 The same type of comment can be applied to other ad hoc
procedures which seek to incorporate information about the binary nature
of B� such as constraining J to the interior of the hypercube �jJij � ��� for
instance
 They can be very e�ective from the practical point of view but�
more than that� they could perhaps suggest the path which would lead to a
more systematic approach� based on �rst principles


�
	



Appendix A

Notation

A�� General remarks

� A bold letter like J is a vector whose j�th component may be denoted
either by Jj or  J !j� according to convenience
 The dot product is the

usual one� thus J �B �
PN

j�� JjBj� where N is the dimension of J and
B


� For all integrals�

� the integration interval is ��
�%
� unless otherwise stated


� dX stands for dDX� where D is the dimension of vector X


� A ��function with a single argument denotes a Dirac delta distribution�
like ��J � J �N�� for instance


� Two arguments are used to denote a Kronecker delta� like ��i� j�� for
instance


� The typical abuse of notation for probabilities and probability densities
is employed� if x and y are two variables with di�erent probability
distributions� P �x� and P �y� will eventually be used to describe them�
even though the symbol �P� obviously stands for di�erent functions in
each case
 No special notation will be employed to distinguish between
probabilities and probability densities either
 This should be clear from
the context� the former usually being assigned to discrete variables and
the latter to continuous variables


�
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A� Notation

A�� Functions and associated properties

'�x� is the usual Heaviside function�

'�x� �

�
� � if x � �
� � if x  �

�A
��

'�x� % '��x� � � �for x �� �� �A
��

The Gaussian measure is�

Dx � dxPn�x� �A
��

Pn�x� �
e�x

���

p
��

�A
��Z
Dx � � �A
	�

The H function and the error function are�

H�x� �
Z �

x

Dt �
�

�

h
� � erf�x�

p
��
i

�A
��

H�x� % H��x� � � �A
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erf�x� � �p
�

Z x

�

dt e�t
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� � � �H
�
x
p

�
�

�A
��

More speci�cally related to the problem of unsupervised learning� one has
the following integration measure and averages�

D�b � DbN exp�U�b�

�
db e�b

����U�b	R
db e�b����U�b	

�A
��Z
D�b � � � �A
���

where

N �

p
��R

dk exp  �k��� � U�k�!
�

�R Dk exp�U�k�
� �A
���

�
�



A��� Orthogonal transformation

h�� � ��i� �
Z
D�b �� � �� � �A
���

The binary �Ising� and spherical integration measures are

dm�J�
Ising

� dJ Pb�J� �
NY
j��

dbJj

�
NY
j��

dJj

�
�

�
��Jj � �� %

�
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��Jj % ��

�

dm�J�
Spherical

� dJ Ps�J� � dJ ��J � J �N� � �A
���

The following functions also appear quite frequently�

X�t"R� � N
Z
Dt� e�U�Rt�

p
��R�t�	 �A
���

Y �t"R� �
Np

� �R�

Z
Dt� t� e�U�Rt�

p
��R�t�	

� N
Z
Dt� e�U�Rt�

p
��R�t�	

h
�U ��Rt %

p
��R�t��

i
�

�

R

�

�t
X�t"R� � �A
�	�

where it should also be noted thatZ
DtX�t� R� � � � �A
���

�X�t"R�

�R
� tY �t"R� %

R

�� �R�����

�
X�t"R�

�N
Z
Dt� �t���e�U�Rt�

p
��R�t�	

�
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���

A�� Orthogonal transformation

The following orthogonal transformation is extensively used� particularly in
appendix C�

�
�



A� Notation

b�u� v"R� � Rp
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q
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q
v
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A�� Asymptotics and Series
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Appendix B

The replica calculation

B�� General results� the free energy

In the following� the preferential direction B is an Ising vector� Bj �
f���%�g� unless otherwise stated
 Given a set of patterns �or examples�
D � f��g� � � �� � � � � p� the equilibrium properties of an ensemble of vec�
tors J evolving in an energy landscape H �

Pp
��� V �J � ���pN � at inverse

temperature 	 can be studied via the partition function

Z�f��g� �

Z
dm�J� exp

�
�	

pX
���

V



J � ��p

N

��
� �B
��

where dm�J� stands for the measure in J space
 In this appendix� only two
measures will be considered� namely the binary �Ising� measure

dm�J�
Ising

� dJ Pb�J� �
NY
j��

dbJj

�
NY
j��

dJj

�
�

�
��Jj � �� %

�

�
��Jj % ��

�
�B
��

and the spherical measure

dm�J�
Spherical

� dJ Ps�J� � dJ ��J � J �N� � �B
��

The patterns are random and will be here assumed to be uncorrelated� be�
ing independently drawn from a distribution with a single symmetry breaking
direction�

���



B� The replica calculation

P �f��gjB� �

pY
���

Pu���jB� �

pY
���

���� � �� �N� exp
h
�U

�
���Bp
N

�i
R
d�� ���� � �� �N� exp

h
�U

�
���Bp
N

�i �
�B
��

In order to describe the average properties of the system� the following ex�
pression for the free energy is studied�

f � � lim
N��

�

	N
hlnZ�f��g�if��gjB � �B
	�

where h�� � ��if��gjB �
R
P �f��gjB� �� � ��Qp

��� d�
�
 The average of the loga�

rithm in eq
 B
	 is usually very hard to compute analytically� which mo�
tivates the use of the replica trick
 Making use of the identity ln a �
limn���an � ���n� one rewrites

f � � lim
n��

lim
N��

�

	Nn

�
hZnif��gjB � �

�
� �B
��

The term Zn can be rewritten as a product of the partition functions of n
replicated systems� labeled by a� Zn �

Qn
a Za
 For a given set of examples�

the di�erent replicas do not interact
 But when the average over the disorder
of the examples is performed� they get coupled� as will soon become evident


First it is important to realize that the independence of the examples
simpli�es very much the calculation�

hZnif��gjB �

�Z nY
a

dm�Ja� exp

�
�	

pX
���

nX
a��

V



Ja � ��p

N

���
f��gjB

�

Z nY
a

dm�Ja�

pY
���

Z
d�� Pu���jB�e

�	Pn
a�� V

�
Ja���p

N

�

�

Z nY
a

dm�Ja�

�Z
d� Pu��jB�e

�	Pn
a�� V

�
Ja��p
N

��p
� �B
��

In order to perform the integration on �� one introduces ��distributions for
the �elds 
a � N����Ja � � through its well known Fourier representation�

hZnif��gjB �

Z nY
a

dm�Ja�

�Z
d
a d�
a

��
ei
P

a
��a�a e�	

P
a V ��a	

�
Z

d� Pu��jB� exp�i
X
a

�
a
Ja � �p

N

�p
� �B
��
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B��� General results� the free energy

One can now repeat this procedure to extract � from the argument of U
�see B
��� the function that controls the non�uniformity of the patterns along
the direction B
 Introducing a ��distribution for b � N����B � � one is left
with Gaussian integrals which can be immediately performed
 De�ning the
measure

D�b � db e�b
����U�b	R

db� e�b�����U�b�	 � �B
��

the above described calculations yield�

Z
d� Pu��jB� exp�i

X
a

�
a
Ja � �p

N
� exp

$
%�

�

�X
a

�
a
Ja �B
N

��

� �

�N

X
a�b

�
a�
bJ
a � J b

�
�
Z
D�b exp�ib

X
a

�
a
Ja �B
N

� �B
���

Note that replicas are now coupled
 In order to proceed with the integration
over dm�J� it should be stressed that for both measures under consideration
�eqs
 B
� and B
�� the diagonal term in Ja � J b equals N 
 One only has to
introduce ��distributions for the physically relevant order parameters

qab � Ja � J b

N
� a  b

Ra � Ja �B
N

� a � �� � � � � n � �B
���

which leads to the following expression�

hZnif��gjB �

nY
a��

�Z
dRa

Z i�

�i�

d �Ra

��iN

� Y
a�b

�Z
dqab

Z i�

�i�

d�qab
��iN

�

� expN
nX

a

�RaRa %
X
a�b

�qabqab % G��f �Ra� �qabg�

%
p

N
G��fRa� qabg"	�  V�U !�

o
� �B
���

where the functions

�In fact� the result B�	� is unchanged if the spherical constraint 
�� � � � N � on the
patterns is replaced by a binary one� Pb���� in eq� B���
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B� The replica calculation

G� � �

N
ln

Z Y
a

dm�Ja�e�
P

a
�RaJa�B�

P
a�b �qabJ

a�Jb �B
���

G� � ln

Z Y
a

d
a e
�	Pa V ��a	

Z
D�b

Y
a

d�
a
��

ei
P

a
��a��a�bRa	�

P
a
���a��

� e�
P

a
��aRa�

�
���Pa��b qab��a��b�� �B
���

are both O���
 G� will hereafter be referred to as the entropy term� while G�

is called the energy term

In the limit N 	 
 eq
 B
�� is exponentially dominated by the saddle

point�s� of the expression between braces
 At this point it becomes clear that
the number of examples must scale with the dimensionality of the system�
that is� p � �N � otherwise no interesting trade�o� between G� and G� is
obtained
 Recalling eq
 B
�� one arrives at

f � � lim
n��

�

	n
Extr

f �Ra��qab�Ra�qabg

nX
a

�RaRa %
X
a�b

�qabqab % G��f �Ra� �qabg�

% �G��fRa� qabg"	�  V�U !�
o
� �B
�	�

B�� The replica symmetric ansatz

In order to obtain the equilibrium values of the order parameters fRa� qabg as
functions of �� one needs to assign some kind of structure to those matrices
�as well as to the conjugate parameters f �Ra� �qabg� before proceeding with the
calculation
 This assignment amounts to an ansatz� whose marginal stability
can be checked later
 The simplest structure is that of the replica symmetric
�RS� ansatz� namely

Ra
RS
� R� a � �� � � � � n

qab
RS
� q� a  b

�Ra
RS
� � �R� a � �� � � � � n

�qab
RS
� ��q� a  b � �B
���

The physical meaning of R is the typical �normalized� overlap between J
and B� while q stands for the mutual overlap between di�erent samples J
and J �


���



B��� The replica symmetric ansatz

B���� The energy term

The energy term B
�� can be easily calculated under the RS assumption B
��

Making use of the identity Z

Dk eixk � e�x
��� � �B
���

where Dk � dk �������� exp��k���� is a Gaussian measure� one can rewrite

exp

$
%��

�
�q �R��

�X
a

�
a

��
&
' �

Z
Dt� exp

�
�it�

p
q �R�

X
a

�
a

�
� �B
���

so that the integral on f�
ag becomes

Z
Dt�

Z Y
a

d�
a
��

e�
P

a
���a���q	���i

P
a
��a��a�t�

p
q�R��tR	 �

Z
Dt�

Y
a

�
�p

���� � q�
exp��
a � t�

p
q �R� � bR��

��� � q�

�
� �B
���

At this point it should be noted that the RS ansatz requires q � R� for
consistency
 With the factorization of the replica index in eq
 B
��� one
arrives at

G�
RS
� ln

Z
D�b

Z
Dt�

�Z
d
p

����� q�
exp

�
� 	V �
�

��
� t�
p
q �R� � bR��

��� � q�

��n
� �B
���

for general n
 Expanding hxni n�� h� % n lnxi � �%n hlnxi  exp�n hlnxi�%
O�n��� one �nally gets

G��R� q"	�  V�U !�
RS
� n

Z
D�b

Z
Dt� ln

Z
d
p

����� q�
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�
� 	V �
�
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 � t�
p
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�
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���
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B� The replica calculation

B���� The Ising measure

The entropy termG� is determined solely by the measure used in the J space

In this subsection the calculation is presented for the Ising constraint B
��

eNG� RS
�

NY
j��

�Z Y
a

dbJa
j exp

�
�R
X
a

Ja
j Bj � �q

�
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�Ja
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a
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�
z
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�
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�
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�Z
Dz expn



� �q

�
% ln cosh

�
z
p

�q � �RBj

���

n��
NY
j��

�
expn

�
� �q

�
%

Z
Dz ln cosh

�
z
p

�q � �RBj

���

�

�
expn

�
� �q

�
%

Z
Dz ln cosh

�
z
p

�q % �R
���N

� �B
���

where the last equality is justi�ed by the invariance of the integral on z with
respect to the choice of the jth component of B �as long as it remains binary�
of course�
 The resulting expression for the entropy term is

G� � n

�
� �q

�
%

Z
Dz ln cosh

�
z
p

�q % �R
��

�B
���

which� together with eqs
 B
�	� B
�� and B
��� yields

f � � �

	
Extr
R�q� �R��q

n
� �

�
��� q��q � �RR %

Z
Dz ln cosh

�
z
p

�q % �R
�

%
�

n
G��R� q"	�  V�U !�

o
� �B
���

B���� The spherical measure

In order to calculate G� using eq
 B
�� one needs to introduce Fourier repre�
sentations of the ��distributions for each replica�

��	



B��� The replica symmetric ansatz

eNG�
�B��	

�

Z Y
a

dJa ��Ja � Ja �N� e
�RBj

P
a J

a
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a
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a
j J

b
j

�
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The set of conjugate variables fEag plays an identical role to that of the
variables f �Ra� �qab� Ra� qabg
 The fEag must also be extremized for the �nal
expression of the free energy to be obtained
 They will also be assumed to
obey replica symmetry� that is� Ea � E� a � �� � � � � n� in which case the term
between curly braces in eq
 B
�	 reads

Z
Dz
Z Y

a

dJa
j e���q���iE	

P
a�J

a
j 	

���z
p
�q� �RBj	

P
a J

a
j

�

Z
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Z
Dz ln
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�q � �iE
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�z
p
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���q � �iE�

�
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���

After the evaluation of the last Gaussian integral� one notes that the remain�
ing dependence on the B components is only on

PN
j��B

�
j � which equals N in

every scenario considered in this work
 Changing variables E � ��iE� one
may therefore rewrite the free energy as

f � � �
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�R��q�R�q�E

�
� �RR %

�

�
�qq %
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�
ln��q % E�

%
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���q % E�
%
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n
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�
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The extremization with respect to the conjugate variables �R� �q and E can be
carried out algebraically�

�f

� �R
� � � �R � R��q % E�
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B� The replica calculation

�f

��q
� � � �q

��q % E��
� q �R�
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�E � � � �q % E �
�

�� q
� �B
���

Inserting the results B
�� back into B
�� one arrives at
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with G� given by B
��


B�� The entropy for a binary measure

In order to calculate eq
 �
��� one �rst notes that the free energy is written as
an explicit function of 	 but also as an implicit function thereof� through its
dependence on the order parameters �whose equilibrium values are also deter�

mined by 	�� that is� f � f
�
	�R��"	�� q��"	�� �R��"	�� �q��"	�

�

 However�

the implicit dependence does not contribute to the entropy since the order
parameters �and their conjugate parameters� are located at saddle points of
f �

df
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�
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With this remark taken into account� one can proceed to calculate� according
to eqs
 B
�� and B
���
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B��� The entropy for a binary measure

where u � u�b� t�� � �bR % t�
p
q �R���

p
q
 Putting together eqs
 �
��

and B
��� one obtains�
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Z
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h
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i
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where one should not forget that all terms above must be evaluated at values
R��"	�� q��"	�� �R��"	�� �q��"	� which extremize the free energy f 
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Appendix C

Technical details of Gibbs

learning

C�� Rewriting the free energy

This appendix starts by rewriting the expression of the free energy B
�� �i
e

for the Ising measure� in a form which is more convenient for the study of
Gibbs learning
 An orthogonal transformation

b�u� v"R� � Rp
q
u %

q
q�R�

q
v

t��u� v"R� �
q

q�R�

q
u� Rp

q
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q
b %

q
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q
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q

q�R�

q
b� Rp

q
t�

db dt� � du dv

b� % t�� � u� % v� �C
��

implying

Z
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Z
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s
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q
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q
u� Rp

q
v

�
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allows one to rewrite the general expression for the energy term B
�� as
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C� Technical details of Gibbs learning

n��G��R� q"	�  V�U !� �

Z
DuX
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q

�
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Z
Dz e�	V �z

p
��q�upq	 � �C
��

where

X�t"R� � N
Z
Dt� e�U�Rt�

p
��R�t�	 � �C
��

In the speci�c case of Gibbs learning �V � U and 	 � ��� eq
 C
� becomes

n��G��R� q" ��  U�U !� �

Z
DuX



u"

Rp
q

�
ln

�
X�u"

p
q�

N
�
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	�

Finally� one should note that the term above involving lnN is irrelevant
as far as the saddle point equations are concerned� since

R DuX�u�R� �
�
 However� this additive constant is important for the calculation of the
entropy� so it must be kept
 The free energy for Gibbs learning reads then

f � Extr
R�q� �R��q

�
�

�
��� q��q % �RR �

Z
Dz ln cosh
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p

�q % �R
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p
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N
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C���� The saddle point equations

The extremum operator in eq
 C
� gives rise to saddle point equations for
the variables R� q� �R and �q
 Here it is shown that the ansatz R � q� �R �
�q is consistent
 Starting with the easier saddle point equations� eq
 C
�
immediately leads to

� �f

� �R
� � � R �

Z
Dz tanh

�
z
p

�q % �R
�

� �f

��q
� � � q �

Z
Dz tanh�

�
z
p

�q % �R
�
� �C
��

The derivatives with respect to R and q require some extra steps and the
calculations are much simpli�ed if one makes extensive use of the orthogonal
transformation C
�
 The axes �u� v� and �b� t�� will be interchanged often in
the passages below� and special care has been taken with the notation� note

���



C��� Rewriting the free energy

for instance that while t� is a variable in the system �b� t��� t��u� v"R� is a
function in the system �u� v� �see C
��
 It is also useful to make use of the
function

Y �t"R� �
Np

��R�

Z
Dt� t� e�U�Rt�

p
��R�t�	

� N
Z
Dt� e�U�Rt�

p
��R�t�	

h
�U ��Rt %

p
��R�t��

i
� �C
��

which relates to X�t"R� like

Y �t"R� �
�

R

�

�t
X�t"R� � �C
��

Starting with the derivative of C
	 with respect to R� one has

n��
�G�

�R
�

Np
q �R�

Z
Du lnX�u"

p
q�

Z
Dv e�U�b�u�v�R		

�  �U ��b�u� v"R��! t��u� v"R�

�
Np
q �R�

Z
Db e�U�b	  �U ��b�!

Z
Dt�

� �

�t�
lnX�u�b� t�"R�"

p
q�

� N
Z
Du

Z
Dv e�U�b�u�v�R		  �U ��b�u� v"R��!

Y �u"
p
q�

X�u"
p
q�

�

Z
Du Y �u"R�

p
q�Y �u"

p
q�

X�u"
p
q�

� �C
���

The derivative with respect to q has two terms�

n��
�G�

�q
�
�R
�q



n��

�G�

�R

�
%

Z
Du X�u"R�

p
q�

X�u" q�

�

�q
X�u"

p
q� � �C
���

where the second term above equals

Z
Du X�u"R�

p
q�

X�u" q�

�

�q
X�u"

p
q� �Z

Du X�u"R�
p
q�

X�u" q�
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� N
���q����

Z
Dv e�U�b�u�v�

p
q		  �U ��b�u� v"

p
q��!

t��u� v"
p
q�p

�� q

�
N

���q����
p

�� q

Z
Db e�U�b	  �U ��b�!

�
Z
Dt� t�X�u�b� t�"

p
q�"R�

p
q�

X�u�b� t�"
p
q�"
p
q�

� �C
���

At this point it is possible to check the consistency of the ansatz

R � q
�R � �q � �C
���

Notice the last integral on t� in eq
 C
��
 If one sets R � q� the ra�
tio X�u�b� t�"

p
q�"R�

p
q��X�u�b� t�"

p
q�"
p
q� equals one and the integralR Dt� t� vanishes identically
 Therefore one obtains

� �f

�R
� �

R�q� �R � �

Z
Du Y ��u"

p
q�

X�u"
p
q�

� �f

�q
� �

R�q� �q � �

Z
Du Y ��u"

p
q�

X�u"
p
q�

� �C
���

Having thus checked that R � q� �R � �q� it remains to prove the opposite�
namely� that �R � �q � R � q
 For that purpose� one should go back to
eqs
 C
�
 Imposing �R � �q� note that it is su�cient to show that the di�erence
below is null� a proof that I owe to Prof
 M
 Bouten�

Z
Dz tanh�az % a���

Z
Dz tanh��az % a�� �Z

Dz tanh�az % a��
�
�� tanh�az % a��

	
�

Z
Dz tanh�az % a��

e�az�a
�

cosh�az % a��

�

Z
dzp
��

e�z
����az�a� sinh�az % a��

cosh��az % a��

y�z�a
�

e�a
���

p
��

Z
dy e�y

��� sinh�ay�

cosh��ay�

� � � �C
�	�

���



C��� The entropy

With the consistency of the ansatz proven� the free energy C
� can be rewrit�
ten as

f�R� �R� � Extr
R� �R

�
�� % R� �R

�
�
Z
Dz ln cosh

�
z
p

�R % �R
�

��
Z
DtX

�
t"
p
R
�

ln

�
X�u"

p
R�

N

��
� �C
���

C�� The entropy

In order to obtain the entropy for Gibbs learning� one should initially focus
on the last term of the general expression� eq
 B
��
 It can be much simpli�ed
with the orthogonal transformations A
�� if the result C
�� is also taken into
account�

Z
D�b

Z
Dt�

��
�
R
d
V �
� exp

h
�	V �
� � ���u�b�t�	pq	�

����q	

i
R
d
 exp

h
�	V �
�� ���u�b�t�	pq	�

����q	

i
��
�

�

Z
DuX�u"R�

p
q�

 R Dz U �zp�� q % u
p
q
�
e�U�z

p
��q�upq	R Dz e�U�z

p
��q�upq	

!

� N
Z
Du

Z
Dz U

�
z
p

� � q % u
p
q
�

exp�U
�
z
p

�� q % u
p
q
�

�A���	
� N

Z
Db e�U�b	

Z
Dt� U�b�

� hU�b�i� � �C
���

Collecting all the terms in eq
 B
��� one obtains

s��� � ln � � f�RG� �RG� % � hU�b�i�
� ��� % RG� �RG

�
%

Z
Dz ln � cosh



z

q
�RG % �RG

�

%�

Z
DtX

�
t"
p
RG

�
ln

�
X�t"

p
RG�

N
�

% � hU�b�i� � �C
���

where RG��� and �RG��� minimize the free energy C
��
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Appendix D

P �y� without the ME formalism

D�� The natural rise of an extremum princi	

ple

In this appendix the main result of chapter � �eq
 �
�	� is obtained in a dif�
ferent way
 Here� instead of making use of the ME formalism� expression �
�
is calculated explicitly�

CnP �y� �

Z � nY
a

dJaPb�J
a���Ja �B �NR�

�

�
�Y
a�b

��Ja � J b �Nq�

�
�

�
y �B�n

��
nX
a

Ja
�

�
� �D
��

where the normalization constant Cn is determined by imposing
R
P �y� dy �

� and Pb is again the binary measure

After the Fourier representation of the ��distributions are introduced �pre�

cisely the same way as done in appendix B�� eq
 D
� reads �apart from the
normalization constant�

P �y� �
Z

d�y

��
ei�yy

�Z Y
a

d �Ra

��

��Z Y
a�b

d�qab
��

�
e�iNR

P
a
�Ra�iNq

P
a�b �qab

� expN�
�n

�Ra� �qab
o
� �y
�
� �D
��

where

���
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�
�n

�Ra� �qab
o
� �y
�

� �

N
ln

Z �Y
a

dJa Pb�J
a�

�
exp

�
i
X
a

�RaJ
a �B

%i
X
a�b

�qabJ
a � J b � i��y�n�B�

X
a

Ja
�

�
� �D
��

The �rst thing one should note is that � also depends parametrically on the
preferential direction B
 This explicit dependence was omitted for the sake
of clarity� but will become important a few steps ahead
 The second thing to
be noted is that � should be O���� since the vectors in the exponential are
N �dimensional


In the thermodynamic limit N 	 
� eq
 D
� is governed by the saddle
point of the exponentially dominant term� namely

P �y� �
Z

d�y

��
ei�yy�N��f �R�a��q�abg��y� � �D
��

where

�R�
a � Arg Extr

�Ra

�
�iR

X
a

�Ra � iq
X
a�b

�qab % �
�n

�Ra� �qab
o
� �y
��

�q�ab � Arg Extr
�qab

�
�iR

X
a

�Ra � iq
X
a�b

�qab % �
�n

�Ra� �qab
o
� �y
��

� �D
	�

Note that without imposing the principle of Maximum	Entropy
 one is again
left with an extremization procedure
 In this sense� eqs
 D
	 are analogous
to eqs
 �
� or �
��
 Here the extremum is imposed by the thermodynamic
limit� while in the ME formalism it arises from the requirement that a num�
ber of constraints be satis�ed �recall sections �
�
� and �
�
��
 Since the
constraints �
�� are satis�ed only in the thermodynamic limit� there is no
contradiction
 Much on the contrary� this agreement shows how the ME
formalism very elegantly accounts for the relevant features brought by the
thermodynamic limit� giving the same results but in a much simpli�ed way


D�� The RS ansatz

Noticing that the integrals in eN� can be factorized into N components� one
rewrites

���



D��� The RS ansatz

expN� � +n�

�
�Ra � y

n
� �qab
�Y

i
��
+ni

�
�Ra� �qab

�

+ni

�
�Ra� �qab

�
�

Z � nY
a��

dbJa
i

�
eiBi

P
a
�RaJai �i

P
a�b �qabJ

a
i J

b
i � �D
��

At this point it is possible to invoke the same reasoning given in section �
�
�
and impose the replica symmetric �RS� ansatz

�Ra
RS
� �i �R

�qab
RS
� �i�q � �D
��

The evaluation of +ni

�
�Ra� �qab

�
becomes much easier and one �nds

+ni

�
�i �R��i�q

�
� e�n�q��

Z
Dz

h
cosh

�
�RBi % z

p
�q
�in

� �D
��

Notice now that +ni

�
�i �R��i�q

�
is invariant with respect to the transforma�

tion Bi 	 �Bi� which means that the dependence on the preferential direc	
tion B disappears as long as it is a binary vector
 Comparing now eq
 D
�
with �
�	� one further concludes that

+ni

�
�i �R��i�q

�
� ZME

�
�R� �q
�
� �D
��

It should not be surprising then that the extremum operations D
	 render
exactly the same equations for the RS conjugate parameters as the ones
obtained via the ME formalism
 In order to show this� one �rst rewrites ��
taking into account eq
 D
��

�
�
�i �R��i�q� �y

�
� ln +ni

�
�i �R��i�q

�
%

�

N
ln

$
%+ni

�
�i �R� �y

n
��i�q

�
+ni

�
�i �R��i�q

�
&
' �

�D
���
When N 	 
� only the �rst term above contributes to the extremiza�
tion D
	� which now reads

�R� � Arg Extr
�R

�
�nR �R � n�n� ��

�
q�q % ln +ni

�
�i �R��i�q

��

�q� � Arg Extr
�q

�
�nR �R � n�n� ��

�
q�q % ln +ni

�
�i �R��i�q

��
��D
���
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Since +ni

�
�i �R��i�q

�
� ZME

�
�R� �q
�

� it follows immediately that the ex�

tremum equations above are identical to �
��� �
��

Going back to eq
 D
�� the relevant contribution to P �y� comes now from

the second term of eq
 D
��� since the �rst one is just a constant with respect
to �y
 Moreover� the denominator in the argument of the logarithm makes
sure that P �y� is properly normalized� leading to

P �y� �
�

+ni

�
�i �R��i�q

� Z d�y

��
eiy�y +ni



�i �R� �y

n
��i�q

�

�
e�n�q��

ZME

Z
d�y

��
eiy�y

Z
Dz

�
cosh



�R � i�y

n
% z
p

�q

��n
� �D
���

where for simplicity of notation �R� and �q� were replaced by �R and �q �but
should be taken at their equilibrium value� determined by eq
 D
���


For the sake of completeness a proof is given below that eqs
 D
�� and �
��
are actually identical
 Introducing dummy variables fxag � f���%�gn� a �
�� � � � � n� one rewrites

ZMEP �y�

e�n�q��
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Z
d�y

��
eiy�y

Z
Dz

�Z
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�R� i�y
n
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p
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Z
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Dz

Z � nY
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�
e
P
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�q�
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Z
Dz

Z � nY
a��
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�
e
P

a xa� �R�z
p
�q��

�
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n

X
a
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Z � nY
a��

dbxa

�
e
�R
P

a xa�
�q
��
P

a xa�
�
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n

X
a
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��D
���

At this stage one can interpret the term e
�R
P

a xa�
�q
��
P

a xa�
�

as P �fxag� �apart
from the normalization constant e�n�q���ZME�
 Since P �fxag� depends only
on
P

a xa � ny� one just needs to weigh each occurrence of y with the number
n#���n��%y����#��n���y�����#� of possible sums that can amount to it
 This
�nally yields� apart from a normalization constant�

P �y� � en
�Ry�n�y� �q��



n

n���y	
�

�
� �D
���

which is identical to eq
 �
��


��




D��� Recovering the peaked distribution

D�� Recovering the peaked distribution

Starting from eq
 D
�� one can deduce in a slightly di�erent way the delta�
peaked distribution �
�	 which arises in the limit n 	 

 The rescaled
conjugate parameters

�n � n �Rn

�n � n �qn �D
�	�

must be determined by the solution of the saddle point equations D
��� which
read

R �

R
du e�n�n sinh�u�n��n� tanh uR

du e�n�n cosh�u�n��n�

q �

R
du e�n�n cosh�u�n��n� tanh� uR

du e�n�n cosh�u�n��n�
� �D
���

�n�u� � u�

��n
� ln coshu � �D
���

In the limit n 	 
 the integrals above are determined by the minima of
�n
 Since �n is an even function� two solutions �u� � Argminu �n�u� exist
�depending on the value of ���� satisfying u� � �� tanh u�
 Using this result
and applying the Laplace method� eqs
 D
�� become

R
n��
� tanh�u������� tanh u�

q
n��
� tanh� u� � �D
���

which can be explicitly solved�

�� �
u�

tanhu�
�

arctanh
p
qp

q

�� �
arctanh�R�

p
q�p

q
� �D
���

Note that the symmetryu� 	 �u� is associated with the symmetryR	 �R�
so that ����R� q� � ����R� q�


With the problem of determining the equilibrium values of �� and ��
solved� one may return to eq
 D
��� rewrite it in terms of the rescaled pa�
rameters and make a change of variables�

���
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P �y� �
e��n��

ZME

Z
d�y

��
eiy�y

Z
Dz

�
cosh



�n � i�y

n
% z

r
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n

��n

�
e��n��

ZME

Z
d�y
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eiy�y

Z
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�coshu�n exp� n

��n

�
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�n � i�y

n

���
�

e��n��

ZME

Z
d�y

��
eiy�y exp

��n � i�y��

��nn

�
Z

dup
��

e�n�n exp
u

�n
��n � i�y� � �D
���

In the limit n 	 
 the term exp��n � i�y������nn� becomes negligible and
the integral on u is again dominated by the minima of �n
 Note that now it
is important to keep track of both minima �u�� since this will determine the
correct normalization of P �y��

P �y�
n��

R
du e�n�n exp�u�������

�
y � u

��

�
R
du e�n�n exp�u������


exp�u��������

�
y � u�

��

�
% exp��u��������

�
y % u�

��

�
� cosh�u�������

�D���	
�

�

�



� %

Rp
q

�
� �y �pq� %

�

�



� � Rp

q

�
� �y %

p
q� � �D
���

This result is identical to the one obtained via the ME formalism
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Appendix E

Quenched moments

E�� General results

In this appendix the m�th quenched moment of a single component of the
J vector will be calculated in detail
 It is de�ned as the average over the
disorder of the m�th power of the thermal average of J� �the result is expected
to be independent of the index� due to permutation symmetry among the
axes�
 In other words� the quantity to be calculated is

hhJ�imJ iDjB �

�
Z�m


Z
dm�J� e�	H�J�D	J�

�m�
DjB

� �E
��

where Z � Z�D� is given by eq
 B
� and dm�J� � dJ P �J� determines the
measure on J space
 The innermost brackets denote the thermal average�
while the outermost are the average over the disorder
 This expression can
be calculated using the same techniques as those described in section �
�
and employed in appendix B
 In this case� the replica trick is applied the
following way�

hhJ�imJ iDjB � lim
n��

�
Zn�m


Z
dm�J� e�	H�J�D	J�

�m�
DjB

� lim
n��

�Z � nY
a��

dm�Ja�

�
e�	

Pn
a H�Ja�D	

�
mY
���

J�
�

��
DjB
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Z � nY
a��

dm�Ja�

��
mY
���

J�
�

�

�
D
e�	

Pn
a H�Ja�D	

E
DjB

� �E
��
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The above equation is very similar to eq
 B
�� and obviously reduces to it
when m � �
 One can immediately recognize the average over the disorder
in eq
 E
� as the energy term G� �see eq
 B
���
 The only di�erence is that
the order parameters fRa� qabg have not yet been introduced� so the correct
way to write it is

D
e�	

Pn
a H�Ja�D	

E
DjB

� exp

�
�NG�


�
Ja �B
N

�
Ja � J b

N

�
"	�  V�U !

��
�E
��

The di�erence between eq
 E
� and eq
 B
� is that m out of n integrals have an
extra term J�

� � which means that only the entropy term changes
 Introducing
delta functions for the order parameters� one obtains

hhJ�imJ iDjB �

nY
a��

�Z
dRa

Z i�

�i�

d �Ra

��iN

� Y
a�b

�Z
dqab

Z i�

�i�

d�qab
��iN

�

� expN
nX

a

�RaRa %
X
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�qabqab

%�G��fRa� qabg"	�  V�U !�
o
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a
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���

J�
�

�
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�
�
X
a

�RaJ
a �B

�
X
a�b

�qabJ
a � J b

�
� �E
��

Renaming the integrals over fJag as expNG
�m	
� �f �Ra� �qabg�� one concludes

that the previously de�ned entropy term �eq
 B
��� corresponds simply to
the case m � �


E�� The binary measure

Imposing the RS ansatz �eq
 B
��� and employing the factorization of the
binary measure� dm�J� �

QN
j�� dm�Jj�� one writes

eNG
	m

�
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� e�N��	G
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X
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�
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� e�N��	G
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Z
Dz
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X
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%
�
z
p

�q % �RB�

�X
a

Ja
�

�
�E
	�

With the introduction of the z integral� the whole expression factorizes on
the replica index a and one obtains

eNG
	m

�

e�N��	G
	�

�

�

Z
Dz
�R

dm�Jj�Jj exp
h
��qJ�

j �� % �z
p

�q % �RB��Jj
i�m

�R
dm�Jj� exp

h
��qJ�

j �� % �z
p

�q % �RB��Jj
i�m�n �

�E
��
Imposing now the binary measure in eq
 E
�� one obtains

eNG
	m

�

e�N��	G
	�

�

� e�n�q��
Z
Dz

�
sinh

�
z
p

�q % �RB�

��m
�

cosh
�
z
p

�q % �RB�

��m�n � �E
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Therefore� in the limit N 	 
 the expression for the m�th moment of J�
becomes

hhJ�imJ iDjB  lim
n��

lim
N��

Z
dR d �R dq d�q exp

h
nN �f �q�R� �q� �R"	�  U� V !�

i

� e�n�q��
Z
Dz

�
sinh

�
z
p

�q % �RB�

��m
�

cosh
�
z
p

�q % �RB�

��m�n � �E
��

In the thermodynamic limit� the integral is dominated by the extremum of
�f �recall eq
 �
���� which becomes the free energy after the extremization

Therefore� the equilibrium values of q� R� �q� �R are completely determined by
�f and can be inserted in the non�exponential terms
 If one now takes the
limit n	 �� the exponential term vanishes� and one arrives at the result

hhJ�imJ iDjB �

Z
Dz

h
tanh

�
z
p

�q��� % �R���B�

�im
� �E
��

�Note the di�erence between this quantity and the free energy� eq� B��� in the latter
expression� a factor n�� guarantees that the exponential contribution is the dominant
one� Here the exponential only determines the value of the order parameters� vanishing
afterwards�

���
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or� equivalently�

hhB�J�imJ iDjB �

Z
Dz

h
tanh

�
z
p

�q��� % �R���
�im

� �E
���

which holds as long as B � f���%�gN �see the discussion on pages ���
or ����
 In these equations� �q��� and �R��� denote the conjugate parameters
taken at their equilibrium values


E�� The spherical measure

One can introduce the spherical measure P �J� � ��J �J �N� in eq
 E
� via
its Fourier representation� as done in section B
�
�
 Using the same notation
from that section� imposing the RS ansatz Ea � iE�� and taking the limit
n	 �� one arrives at

eNG
	m

�

e�N��	G
	�

�

�

Z
Dz

�
z
p

�q % �RB�

�q % E

�m

� �E
���

where E� �q and �R are now the conjugate parameters for the spherical case

With this result� the same reasoning that led from eq
 E
� to eq
 E
�� applies�
the values of the conjugate parameters are determined by the saddle point
equations� the dependence on B� can be simpli�ed� and one writes

hhB�J�imJ iDjB �

Z
Dz

�
z
p

�q��� % �R���

�q��� % E���

�m

� �E
���

Inserting the solutions E���� �R��� and �q��� from eqs
 B
��� one obtains

hhB�J�imJ iDjB �

Z
Dz

�
z
p
q �R� % R

�m
� �E
���

Going back to the original quantity of interest� P �x� can be obtained by a
simple change of variables in eq
 E
��� yielding �nally

P �x� �
�p

���� �R��q�
exp

�
��x�R�

p
q��

��� �R��q�

�
� �E
���

�It is important to recall that the scenario under consideration here is that of a spherical
J but still with a binary B�

��	
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E�� Proof of eq� ����

In order to show that eq
 	
�� is correct� one just has to show that the
di�erence between the right and left hand sides is zero�

Z
Dz �sign�az % a��� j tanh�az % a��j	

�

Z
Dz sign�az % a��

�
�� tanh�az % a��

	
z�y�a

�

Z
dyp
��

e��y�a	
��� sign�ay�  �� tanh�ay�!

� e�a
���

Z
Dy sign�ay�eay

�
e�ay

cosh�ay�

�
� � � �E
�	�

a proof that is clearly similar to that of eq
 C
�	
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Appendix F

The limit of zero temperature

F�� The free energy

The special limit of interest 	 	 
 can be treated by introducing rescaled
order parameters in order to achieve the proper scaling �O�	��� of the free
energy
 In this regime the solutions of the saddle point equations correspond
to vectors that minimize the cost function V 
 In particular� if this minimum
is non�degenerate� then the order parameter q is expected to tend to one


F���� The energy term

The �rst term to be dealt with is the �replica symmetric� energy term G��
given by eq
 B
��
 One needs to introduce a new variable

� � 	��� q� �F
��

which must remain �nite in the limits q 	 � and 	 	

 With this change
of variables eq
 B
�� reads

G��R� �� � n

Z
D�b

Z
Dt� ln

s
	

�

Z
d
p
��

exp�	
�
V �
� %

�
� t��

��

�
�

�F
��
where t � t�

p
q �R� % bR
 The integral on 
 can be evaluated via the

Laplace method� yielding�

G��R� ��

n

	�� �	
Z
D�b

Z
Dt�

�
V �
��t� ��� %

�
��t� ��� t��

��

�

���
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�A���	
� �	

Z
DtX�t"R�

�
V �
��t� ��� %

�
��t� ��� t��

��

�
�F
��

where


��t� �� � Argmin
�

�
V �
� %

�
 � t��

��

�
�F
��

and assuming

V ���
��t� ��� % ��� � �� �t � �F
	�

F���� The Ising measure

The calculation of the entropic term for the Ising measure in the limit 	 	

requires an extra change of variables for the proper scaling to be achieved

By introducing eq
 F
� in the free energy B
��� one obtains

f � � Extr
R�
� �R��q

n
� ��q

�	�
�

�RR

	
%

�

	

Z
Dz ln cosh

�
z
p

�q % �R
�

%
�

n	
G��R� ��

o
� �F
��

which clearly indicates the rescaling

�� � �q

	�

�y �
�R

	
�F
��

in order for the free energy to be O�	��
 Substituting the change of vari�
ables F
� in eq
 F
�� one is left with an integral on z which can be performed
in the limit 	 	
� rendering

�

	

Z
Dz ln � cosh

h
	
�
z
p

�� % �y
�i

	��

�y

�
� � �H



�yp
��

��
% �
p

��Pn



�yp
��

�
%O�	��� � �F
��

Therefore the free energy is given by� to dominant order�

��
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f � Extr
R�
��
��y

�
���

�
% �yR� �

p
��Pn

�
�y�
p

��
�
� �y

h
�� �H

�
�y�
p

��
�i

%�

Z
DtX�t"R�

�
V �
��t� ��� %

�
��t� ��� t��

��

��
�F
��

where

Pn�t� � e�t
���

p
��

H�x� �
Z �

x

Dt �

Z �

x

dt Pn�t� � �F
���

The saddle point equations

The extremum operator renders the following saddle point equations for the
order parameters�

�f

��y
� � � R � �� �H



�yp
��

�
�f

���
� � � � �

�p
��
Pn



�yp
��

�
�f

��
� � � �� �

�

��

Z
DtX�t"R�  
��t� ��� t!�

�f

�R
� � � �y �

�

�

Z
Dt Y �t"R�  
��t� ��� t! � �F
���

F���� The spherical measure

The limit 	 	
 in equation B
�� can be taken using again the rescaling F
�

Making use of eq
 F
�� the free energy for vectors J constrained to the N �
hypersphere reads� to leading order�

f � Extr
R�


�����R��

��
% �

Z
DtX�t"R�

�
V �
��t� ���

%
�
��t� ��� t��

��

��
�F
���

���
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F�� Proof that �F��R � �

In order to show that F�R� �de�ned in eq
 �
�� is a monotonically increasing
function� one de�nes

g�R� � F��R�

�
�

Z
Dt Y

��t"R�

X�t"R�

� �

��R�

Z
Dt C

�
��t"R�

C��t"R�
� �F
���

where

Cn�t"R� � N
Z
Dt� �t��ne�U�Rt�

p
��R�t�	 �F
���

andN is de�ned on page �
 It su�ces thus to prove that g�R� is monotonic in
R
 This is accomplished by noting that the functions Cn obey the following
recursion relations�

�

�t
Cn �

Rp
��R�

�Cn�� � nCn��� �F
�	�

�

�R
Cn �

t

R

�

�t
Cn � �p

� �R�

�

�t
Cn��

�
�p

��R�

�
t �Cn�� � nCn���� �

�t
Cn��

�
� �F
���

To calculate the derivative �g��R� one applies eqs
 F
�	 and F
�� to the
r
h
s
 of eq
 F
��
 Apart from the integration measure Dt� one obtains
two kinds of terms� �pure terms�� which only depend on fCkg� and �pure
terms� multiplied by t
 The latter can be handled by noticing the equalityR Dt t f�t� �

R Dt f ��t�
 Therefore one applies the recursion relations F
�	
and F
�� once more and rearranges the terms
 The �nal result is

�g

�R
�

�R

���R���

Z
Dt  C�

� � �C�C� � C�
��!�

C�
�

� � � �F
���

since C� � �
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