
DOCTORAATSPROEFSCHRIFT 
2007 !School voor Informatietechnologie 

Kennistechnologie, Informatica, Wiskunde, ICT 

Mining Tree-Query Associations in Graphs 

Proefschrift voorgelegd tot het behalen van de graad van 
Doctor in de Wetenschappen: Informatica, te verdedigen door: 

Eveline HOEKX 

Promoter: prof. dr. Jan Van den Bussche 

~ -
~ Universiteit Maastricht 



071185 

2 7 r~ov 2007 

• 

681. 37 
HOEK 
2007 

uhasselt 



. 
I I u 



DOCTORAATSPROEFSCHRIFT 
2007 I School voor Informatietechnologie 

Kennistechnologie, Informatica, Wiskunde, ICT 

071185 

Mining Tree-Query Associations in Graphs 

Proefschrift voorgelegd tot het behalen van de graad van 
Doctor in de Wetenschappen : Informatica, te verdedigen door: 

e,e\c. Eveline HOEKX 

~a"'~ ... ··~ 
-() .· ·- ~ 

_.,~~ etor: prof. dr. Jan Van den Busse he 

2 7 ~JOV 2007 

~ ~ Universiteit Maastricht 

D/2007/ 2451/ 59 





Acknowledgements 

A PhD thesis is not possible without the contributions of many people. 
First and foremost, I am grateful to my advisor Jan Van den Bussche for his 

guidance, patience, and never ending enthusiasm the past four years. As a result 
of all the effort he put in proofreading my texts, I am now able to write a decent 
scientific text. I enjoyed his enthusiasm and knowledge about birds, which resulted 
in naming our tree-query browser after a bird that crawls trees, Certhia. 

I thank Bart Goethals for his contribution in the initial conception of the ideas 
presented in this thesis, and I also thank Jan Bidders and Dries Van Dyck for their 
help with our results on graph isomorphism. 

Special thanks to my office-mate Dieter Van de Craen for his interest in my re
search, encouragement and support, and for all the pleasant moments we shared in 
D6. 

Also many thanks go out to the other members of our research group, the depart
ment and the administrative staff for creating a stimulating environment. 

Although I did not manage to beat him before the end of my PhD, I am grateful 
to Kurt for all the pleasant squash games, which were a well-needed distraction. 

I am much in debt with my parents, Jeroen and Sarah, other family members, 
and friends for their support and encouragement during my career as a student. 

Finally, I am very grateful to Alpha, for his patience, understanding, listening to 
my complaints and never ending support. 

Diepenbeek, November 2007 





Contents 

Acknowledgements 

1 Introduction 
1.1 Related Work 

1.2 Outline ... 

2 Thee Queries and Thee-Query Associations 
2.1 Tree Pattern ....... .. .. . . 

2.2 Tree Query ........ .. ... . 

2.2.1 Containment of Tree Queries 

2.3 Tree-Query Association .. 
2.4 Mining Problems . . . . . . . .. 

2.4.1 Mining Tree Queries ... 

2.4.2 Association Rule Mining . 

3 Mining Thee Queries 
3.1 Problem Reduction . 

3.2 Overall Approach . 
3.3 Outer Loop . . . . . 

3.4 

3.5 

3.6 

Inner Loop ..... 

3.4.1 Candidate Generation 

3.4.2 Frequency Counting using SQL 

3.4.3 The Algorithm ... . .. . 
3.4.4 Example Run . . . . . . . . 

Equivalence among Tree Patterns . 
3.5.1 Equivalency .... . .. . . 

3.5.2 Case A: Redundancy Checking 

3.5.3 Case B: Canonical Forms 
3.5.4 The Algorithm . . . . . . . . . 

3.5.5 Example Run . . . . . . . . . . 

Result Management: Pattern Database . 

iii 

1 

5 
9 

11 

11 

14 

14 

17 

18 

18 

18 

19 

19 
20 
21 
21 

23 
24 

25 
25 

30 

31 

34 

37 
42 
42 

46 



iv 

4 Mining Tree-Query Associations 
4.1 Problem Reduction ....... . 
4.2 Overall Approach . . . . . . . . . 
4.3 Generation of Containment Mappings 
4.4 Generation of Parameter Assignments 
4.5 Example Run . . . . . . . . . . 
4.6 Equivalent Association Rules . 

4.6.1 Testing for Equivalence 
4.6.2 Hardness Argument 
4.6.3 Polynomial Case 
4.6.4 The Algorithm 

5 Experimental Results 
5.1 Certhia: Pattern and Association Browsing 
5.2 Smaller Experiments ... 

5.2.1 Real-Life Datasets 
5.2.2 Performance .. . 

5.3 Ecology Experiment .. . 
5.3.1 Natal-Dispersal Dataset 
5.3.2 Graph Construction . 
5.3.3 Tree-Query Browsing. 
5.3.4 Conclusion ..... . 

6 Conclusions and Future Work 

Bibliography 

Notations 

Samenvatting (Dutch Summary) 

CONTENTS 

47 
47 
51 
52 
55 
56 
59 
61 
63 
66 
66 

67 
67 
68 
71 
73 
75 
76 
77 
80 
88 

89 

95 

99 

101 



1 
Introduction 

Data mining is a new research area that attracted a lot of attention the past decade. A 
well-known textbook [21] on data mining motivates this new research area as follows: 

Progress in digital data acquisition and storage technology has resulted in 
the growth of huge databases. This has occurred in all areas of human en
deavour, from the mundane (such as supermarket transaction data, credit 
card usage records, telephone call details, and government statistics) to the 
more exotic (such as images of astronomical bodies, molecular databases, 
and medical records) . Little wonder, then, that interest has grown in the 
possibility of tapping these data, of extracting from them information that 
might be of value to the owner of the database. 

Data mining is concerned with the task of automatically extracting information from 
huge datasets that might be interesting for the owners of the datasets. 

In the beginning, data mining was usually only applied to rather simple datasets 
such as transaction databases. However, recently interest grew to apply data mining 
to more complex datasets such as data streams, graphs, trees and xml-files. 

In this thesis we focus on the case where the dataset is a graph. Graphs become 
more and more important in modeling complicated structures, such as circuits, images, 
chemical compounds, protein structures, biological networks, social networks, t he 
Web, workflows, and XML documents. Graph mining has become an active and 
important theme in data mining since there is an increasing demand for analyzing 
large amounts of graph-structured data. 

Among the various kinds of graph patterns, frequent substructures are the very 
basic patterns that can be discovered in a (collection of) data graph(s). They are 
useful for characterizing graph sets, classifying and clustering graphs, and facilitating 
similarity search in graph databases. Although, graph mining may include mining 

1 



2 Introduction 

frequent subgraph patterns, graph classification, clustering, and other analysis tasks, 
we focus in this thesis on mining frequent tree-shaped patterns and rules over these 
patterns. 

We refer the interested reader for more information on graph mining in general, 
to a chapter of a book that was recently published on this topic [20]. 

The problem of mining patterns in graph-structured data has received considerable 
attention in recent years, as it has many interesting applications in such diverse areas 
as biology, the life sciences, the World Wide Web, or social sciences. In the present 
work we introduce a novel class of patterns, called tree queries, and we present algo
rithms for mining these tree queries and tree-query associations in a large unlabeled 
directed data graph. 

Most parts of this text are based on two earlier conference papers [16, 22]. 
Tree queries are powerful tree-shaped patterns, inspired by conjunctive database 

queries [17]. In comparison to the kinds of patterns used in most other graph mining 
approaches, tree queries have some extra features: 

• Patterns may have "existential" nodes: any occurrence of the pattern must have 
a copy of such a node, but existential nodes are not counted when determining 
the number of occurrences. 

• Moreover, patterns may have "parameterized" nodes, labeled by constants (node 
identifiers), which must map to fixed designated nodes of the data graph. 

• An "occurrence" of the pattern in a data graph G is defined as any homomor
phism from the pattern in G. When counting the number of occurrences, two 
occurrences that differ only on existential nodes are identified. 

Past work in graph mining has dealt with node labels, but only with non-unique 
ones: as we will show in Section 1.1 such labels are easily simulated by constants, but 
the converse is not obvious. It is also possible to simulate edge labels using constants. 

A simple example of a tree query is shown in Figure 1.l(a); when applied to a 
food web: a data graph of organisms, where there is an edge x -> y if y feeds on x, 
it describes all organisms x that compete with organism #8 for some organism as 
food, that itself feeds on organism #0. This pattern has one existential node, two 
parameters, and one distinguished node x. Figure 1.l(b) shows another example of a 
tree query; when applied to a food web, it describes all organisms x that have a path 
of length four beneath them that ends in organism #8. 

Effectively, tree queries are what is known in database research as conjunctive 
queries [8, 44, 1]; these are the queries we could pose to the data graph (stored as 
a two-column table) in t he core fragment of SQL where we do not use aggregates or 
subqueries, and use only conjunctions of equality comparisons as where-conditions. 
For example, the pattern of Figure 1.l(a) amounts to the following SQL query on a 
table G(from,to): 

select distinct G3.to as x 
from G G1, G G2, G G3 
where G1.from=O and G1.to=G2.from 

and G2.to=8 and G3.from=G2.from 
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Figure 1.1: Simple examples of tree-query patterns 
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In the present work we also introduce association rules over tree queries. By 
mining for tree-query associations we can discover quite subtle properties of the data 
graph. Figure l.2(a) shows a very simple example of an association that our algorithm 
might find in a social network: a data graph of persons where there is an edge x - y 
if x considers y to be a close friend. The tree query on the left matches all pairs 
(x1 , x2) of "co-friends": persons that are friends of a common person (represented by 
an existential variable). The query on the right matches all co-friends X1 of person #5 
(represented by a parameterized node), and pairs all those co-friends to person #5. 
Now were the association from the left to the right to be discovered with a confidence 
of c, with O ::; c :::; 1, then this would mean that the pairs retrieved by the right 
query actually constitute a fraction of c of all pairs retrieved by the left query, which 
indicates ( for non-negligible c) that 5 plays a special role in the network. 1 

Figure l.2(b) shows quite a different, but again simple, example of a tree-query 
association that our algorithm might discover in a food web. With confidence c, this 
association means that of all organisms that are not on top of the food chain (i.e. , 
they are fed upon by some other organism), a fraction of c is actually at least two 
down in the food chain. 

The examples of tree queries and associations we just saw are didactical exam
ples, but in Chapter 5 we will see more complicated examples of tree queries and 
associations mined in real-life datasets. 

In this thesis we present algorithms for mining tree queries and associations rules 
over tree queries in a large data graph. Some important features of these algorithms 
are the following: 

l. Our algorithms belong to the group of graph mining algorithms where the input 
is a single large graph, and the task is to discover patterns that occur sufficiently 

1 Note that this does not just mean that 5 has many co-friends; if we on ly wanted to express that, 
just a frequent pattern in the form of the right query would suffice. For instance, imagine a data 
graph consisting of n disjoint 2-cliques (pairs of persons who have each other as a friend) , where 
additionally all these persons also consider 5 to be an extra friend (but not vice versa). In such a 
data graph, 5 is a co-friend of everybody, and the association has a rather high confidence of more 
t han 2/7. If, however, we would now add to the data graph a separate n-clique, then still 2/ 3rds of 
all persons are a co-friend of 5, which is still a lot, but the confidence drops to below 2/n. 
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Figure 1.2: Simple examples of association rules over t ree queries. 

often in the single data graph. We will refer to this group of algorithms as 
the single graph category. There is also a second category of graph mining 
algorithms, called the transactional category, which is explained in Section 1.1. 

2. We restrict to patterns that are trees, such as the examples in Figure 1.1. Tree 
patterns have formed an important special case in the transactional category 
(Section 1.1), but have not yet received special attention in the single-graph 
literature. Note that the data graph that is being mined is not restricted in any 
way. 

3. The tree-query-mining algorithm is incremental in the number of nodes of the 
pattern. So, our algorithm systematically considers ever larger t rees, and can be 
stopped any time it has run long enough or has produced enough results. Our 
algorithm does not need any space beyond what is needed to store the mining 
results. Thanks to the restriction to tree shapes the duplicate-free generation 
of trees can be done efficiently. 

4. For each tree, all conjunctive queries based on that tree are generated in the 
tree-query-mining algorithm. Here, we work in a levelwise fashion in t he sense 
of Mannila and Toivonen [33]. 

5. As in classical association rules over itemsets [2], our association rule generation 
phase comes after the generation of frequent patterns and does not require access 
to the original dataset. 

6. We apply the theory of conjunctive database queries [8, 44, 1 J to formally define 
and to correctly generate association rules over tree queries. The conjunctive
query approach to pattern matching allows for an efficiently checkable not ion 
of frequency, whereas in t he subgraph-based approach, determining whether a 
pat tern is frequent is NP-complete (in that approach the frequency of a pattern 
is the maximal number of disjoint subgraphs isomorphic to the pattern [18, 31]). 

7. There is a notion of equivalence among tree queries and association rules over 
tree queries. We carefully and efficiently avoid the generation of equivalent 
tree queries and associations, by using and adapting what is known from t he 
theory of conjunctive database queries. Due to the restr iction to tree shapes, 
equivalence and redundancy (which are normally NP-complete) are efficiently 
checkable. 
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8. Last but not least, our algorithms naturally suggest a database-oriented im
plementation in SQL. This is useful for several reasons. First, the number of 
discovered patterns can be quite large, and it is important to keep them avail
able in a persistent and structured manner, so that they can be browsed easily, 
and so that association rules can be derived efficiently. Moreover, we will show 
how the use of SQL allows us to generate and check large numbers of simi
lar patterns in parallel, taking advantage of the query processing optimizations 
provided by modern relational database systems. Third, a database-oriented 
implementation does not require us to move the dataset out of the database 
before it can be mined. In classical itemset mining, database-oriented imple
mentations have received serious attention [43, 40] , but less so in graph mining, 
a recent exception being an implementation in SQL of the seminal SUBDUE 
algorithm [7]. 

Note that if we would define an occurrence of a tree query in the data graph 
G, as an isomorphism from the tree query in G, instead of a homomorphism from 
the tree query in G, we could still use the theory of conjunctive queries to check for 
equivalence, and we could also use SQL to compute the frequency. However, both 
tasks would not be that straightforward as they are for homomorphisms, since for 
isomorphisms our tree queries are actually conjunctive queries with inequalities. For 
that kind of conjunctive queries the notion of equivalence is more complicated, and 
computing their frequency with SQL is also harder. 

1.1 Related Work 

Past work in graph mining has dealt with graphs where the nodes and the edges 
are labeled. In our work, we mine patterns and rules from the most simple kind of 
directed graphs, where nodes and edges are not labeled2 . But labeled graphs are 
easily simulated by unlabeled graphs: To simulate a node label a, add a special node 
a, and express that node x has label a by drawing an edge from x to a. For an edge 
x --+ y labeled b, introduce an intermediate node x.y with x --+ x .y --+ y, and give 
node x .y label b. As an illustration consider the labeled graph in Figure 1.3(a) and 
its unlabeled version in Figure 1.3(b). 

Approaches to graph mining, especially mining for frequent patterns or association 
rules, can be divided in two major categories which are not to be confused. 

1. In transactional graph mining, e.g., [11, 23, 24, 25, 30, 45, 46], the dataset 
consists of many small data graphs which we call transactions, and the task is to 
discover patterns that occur at least once in a sufficient number of transactions. 
(Approaches from machine learning or inductive logic programming usually call 
the small data graphs "examples" instead of transactions.) 

2. In single-graph mining t he dataset is a single large data graph, and the task is 
to discover patterns that occur sufficiently often in the dataset. 

2Note that unlabeled graphs a.re in fa.ct a special case of labeled graphs where all edges and all 
nodes have the same label. 
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Figure 1.3: The labeled graph in (a) is simulated by the unlabeled graph in (b) . 
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gl g2 g3 

(a) Transactional (b) Single-graph 

Figure 1.4: The graph transaction database in (a) is simulated by the single-graph 
database in (b). 

Note that single-graph mining is more difficult than transactional mining, in the 
sense that transactional graph mining can be simulated by single-graph mining, but 
the converse is not obvious. To simulate transactional mining by single-graph mining, 
create a single large graph G from a set of many small graphs {g1, 92, ... , 9n} by simply 
taking the union of the smaller graphs, so G = 91 U 92 U ... U 9n· To distinguish between 
the different smaller graphs, add to each graph 9i a node ti t hat is labeled with the 
transaction id of g;. Furthermore, add edges from each node of 9i to ti. Now we 
can apply algorithms from the single-graph category to this larger graph G, but when 
determining the frequency of a pattern, we must now count the transaction ids instead 
of simply the number of matchings. As an illustration consider the graph transaction 
database in Figure 1.4(a), and its single graph simulation in Figure 1.4(b). Note that 
it is even possible to simulat e a labeled graph transaction database with an unlabeled 
single graph, if we combine this simulation with the previous simulation to go from a 
labeled graph to an unlabeled graph. As an illustration, the labeled graph transaction 
database in Figure 1.4(a) is simulated by the unlabeled single graph in Figure 1.5. 

Since our approach falls squarely within the single-graph category, we will focus on 
that category in this Section. Most work in this category has been done on frequent 
pattern mining, and less attention has been spent on association rules. We briefly 
review the work in this category next: 

• Cook and Holder [10] apply in their SUBDUE system the minimum description 
length (MDL) principle to discover substructures in a labeled data graph. The 
MDL principle states that the best pattern, is that pattern that minimizes the 
description length of the complete data graph . Hence, in SUBDUE a pattern 
is evaluated on how well it can compress the entire dataset. The input for t he 
SUBDUE system is a labeled data graph; nodes and edges are labeled with 
non-unique labels. This is in contrast with t he unique labels ('constants') in 
our system. But as we already noted, non-unique node labels and edge-labels 
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Figure 1.5: The labeled graph transaction database from Figure 1.4(a) simulated by 
a single unlabeled graph. 

can easily be simulated by constants, but the converse is not obvious. The 
SUBDUE system only mines patterns, no association rules. 

• Ghazizadeh and Chawathe [15] mine in their SEuS system for connected sub-
graphs in a labeled, directed data graph, as in the SUBDUE system. Instead 
of generating candidate patterns using the input data graph, SEuS uses a sum
mary of the data graph. This summary gives an upper bound for the support 
of the patterns, and the user can then select those patterns of which he wants 
to know the exact support. SEuS also only mines for frequent patterns and not 
for associations. 

• Vanetik, Gudes, and Shimony [18] propose an Apriori-like [2] algorithm for 
mining subgraphs from a labeled data graph. The support of a graph pattern 
is defined as the maximal number of edge-disjoint instances of the pattern in 
the data graph. By reducing the support counting problem to the maximal 
independent set problem on graphs, they show that in worst case, computing the 
support of a graph pattern is NP-hard. They propose an Apriori-like algorithm 
to minimize the number of patterns for which the support needs to be computed. 
The major idea of their approach is using edge-disjoint paths as building blocks 
instead of items in classical itemset mining. Vanetik, Gudes, and Shimony also 
only mine for frequent patterns in t he data graph. 

• Kuramochi en Karypis [31] use the same support measure for graph patterns as 
Vanetik, Gudes and Shimony [18]. They also note that computing the support of 
a graph pattern is NP- hard in worst case, since it can be reduced to finding the 



Introduction 9 

maximum independent set (MIS) in a graph. Kuramochi and Karypis quickly 
compute the support of a graph pattern using approximate MIS-algorithms. 
The number of candidate patterns is restricted using canonical labeling. As the 
majority of algorithms, Kuramochi and Karypis only mine for frequent patterns. 

• Jeh and Widom [26] consider patterns that are, like our tree queries, inspired 
by conjunctive database queries, and they also emphasize the tree-shaped case. 
A severe restriction, however, is that their patterns can be matched by single 
nodes only, rather than by tuples of nodes. Still their work is interesting in that 
it presents a rather non-standard approach to graph mining, quite different from 
the standard incremental, levelwise approach, and in that it incorporates rank
ing. Jeh and Widom mention association rules as an example of an application 
of their mining framework. 

The related work that was most influential for us is Warmr [11, 12], although it 
belongs to the transactional category. Based on inductive logic programming, patterns 
in Warmr also feature existential variables and parameters. While not restricted 
to tree shapes, the queries in Warmr are restricted in another sense so that only 
transactional mining can be supported. Association rules in Warmr are defined in a 
naive manner through pattern extension, rather than being founded upon the theory 
of conjunctive query containment. The Warmr system is also Prolog-oriented, rather 
than database-oriented, which we believe is fundamental to mining of single large 
data graphs, and which allows a more uniform and parallel treatment of parameter 
instantiations, as we will show in this paper. Finally, Warmr does not seriously 
attempt to avoid the generation of duplicates. Yet, Warmr remains a pathbreaking 
work, which did not receive sufficient follow-up in the data mining community at 
large. We hope our present work represents an improvement in this respect. Many of 
the improvements we make to Warmr were already envisaged (but without concrete 
algorithms) in 2002 by Goethals and Van den Bussche [17). 

Finally, we note that parameterized conjunctive database queries have been used 
in data mining quite early, e.g., [43, 42], but then in the setting of "data mining query 
languages" , where a single such query serves to specify a family of patterns to be 
mined or queried for, rather than the mining for such queries themselves, let alone 
associations among them. 

1.2 Outline 

This thesis is further organized as follows: 

• In Chapter 2 we formally define a novel class of patterns, called tree queries. 
We introduce the notion of containment among tree queries, and define it for
mally. Furthermore, association rules over tree queries are defined, and we 
conclude the chapter by defining the mining problems that we solve in this 
thesis. 

• In Chapter 3 we present an algorithm for mining tree queries in a large data 
graph. We start by showing that we do not need to tackle the problem in its 
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full generality. Then, we give an overall approach, basically two loops, of the 
presented a lgorithm, and discuss it in more detail. Furthermore, we discuss 
equivalent tree queries, and show how the algorithm must be tuned to avoid 
the generation of them. We conclude the chapter with some notes on how the 
results of this algorithm are stored and why that is useful. 

• In Chapter 4 we present an algorithm for mining tree-query associations. 
Again, we show that we do need to tackle the problem in its full generality. 
We give an overview of the presented algorithm and show that the tree-query 
mining algorithm, discussed in Chapter 3, is an ideal preprocessing step. Fur
thermore, we discuss the remaining steps of the algorithm in more detail. We 
conclude t he chapter by defining equivalent association rules, and by showing 
how we must tune the presented algorithm to avoid the generation of them. 

• In Chapter 5 we first introduce an interactive tool, called Certhia, for brows
ing the mined patterns and generating association rules. Next, we give results 
of some smaller experiments we performed using a prototype implementation. 
Furthermore, we explain how are algorithms can be used to find interesting pat
terns and rules in data from ecology, and give examples of interesting patterns 
and rules we mined. 

• In Chapter 6 we give conclusions on the presented work and give some points 
that need to be improved in the future. 



2 
Tree Queries and 
Tree-Query Associations 

Tree queries are powerful tree-shaped patterns, inspired by conjunctive database 
queries [17], that have some extra features in comparison to the kinds of patterns 
used in most other graph mining approaches: 

• Patterns may have "existential" nodes: any occurrence of the pattern must have 
a copy of such a node, but existential nodes are not counted when determining 
the number of occurrences. 

• Moreover, patterns may have "parameterized" nodes, labeled by constants, 
which must map to fixed designated nodes of the data graph. 

• An "occurrence" of the pattern in a data graph G is defined as any homomor
phism from the pattern in G. When counting the number of occurrences, two 
occurrences that differ only on existential nodes are identified. 

In this Chapter we define tree queries formally and introduce the notion of equiv
alence among tree queries. We also introduce tree-query associations. Tree-query 
associations can be used to discover quite subtle properties of the data graph. This 
Chapter is concluded by the definitions of the mining problems we solve in this thesis. 

An overview of all notations used in t his Chapter and the rest of this thesis is 
given on page 99. 

2 .1 Tree Pattern 

Graph-theoretic concepts We basically assume a set U of data constants from 
which the nodes of the data graph to be mined will be taken. 

11 
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Figure 2.1: (a) is a parameterized tree pattern, and (b) is an instantiation of (a). 

Let N ~ U be any finite set of nodes; nodes can be any data objects such as 
numbers or strings. For our purposes, we define a (directed) graph on N as a subset 
of N 2 , i.e., as a finite set of ordered pairs of nodes. These pairs are called edges. 
We assume familiarity with the notion of a tree as a special kind of graph, and with 
standard graph-theoretic concepts such as root of a tree; children, descendants, parent, 
and ancestors of a node; and path in a graph. Any good algorithms textbook will 
supply the necessary background. 

In this thesis all trees we consider are rooted and ordered, unless stated otherwise. 

Tree Patterns A parameterized tree pattern P is a tree whose nodes are called 
variables, and where additionally: 

• Some variables may be marked as being existential; 

• Some other variables may be marked as parameters; 

• The variables of P that are neither existential nor parameters are called distin-
guished. 

We will denote the set of existential variables by TI, the set of parameters by E, and 
the set of distinguished variables by ~- To make clear that these sets belong to some 
parameterized tree pattern P we will use a subscript as in Ilp, Ep, or ~P-

A parameter assignment a, for a parameterized tree pattern P, is a mapping 
E -. U which assigns data constants to the parameters. 

An instantiated tree pattern is a pair (P, a) , with Pa parameterized tree pattern 
and a a parameter assignment for P. We will also denote this by P 0

• 

When depicting parameterized tree patterns, existential nodes are indicated by 
labeling them with the symbol ':l' and parameters are indicated by labeling them with 
the symbol 'u' . When depicting instantiated tree patterns, parameters are indicated 
by directly writing down their parameter assignment. 

Figure 2.1 gives an illustration. 

Matching Recall that a homomorphism from a graph G 1 to a graph G2 is a mapping 
µ from the nodes of G 1 to the nodes of G2 that preserves edges, i.e., if (i,j) E G1 
then (µ(i), µ(j)) E G2 . We now define a matching of an instantiated tree pattern P 0 



Tree Queries and Tree-Query Associations 13 

(a) (b) 

Figure 2.2: Two data graphs. 

in a data graph G as a homomorphism µ from the underlying tree of P to G, with 
the constraint that for any parameter CJ, if a(CJ) = a, then µ(CJ) must be the node a. 
We denote the set {µLe,. : µ is a matching of pa in G} by pa(G). 

Frequency of a tree pattern The frequency of an instantiated tree pattern P°' 
in a data graph G, is formally defined as the cardinality of pa(G). So, we count 
the number of matchings of P°' in G, with the important provision that we identify 
any two matchings that agree on the distinguished variables. Indeed, two matchings 
that differ only on the existential nodes need not be distinguished, as this is precisely 
the intended semantics of existential nodes. Note that we do not need to worry 
about selected nodes, as all matchings will agree on those by definition. For a given 
threshold k (a natural number) we say that P°' is k-frequent if its frequency is at 
least k. Often the threshold is understood implicitly, and then we talk simply about 
"frequent" patterns and denote the threshold by minsup. 

Example. Take again the instantiated tree pattern pa shown in Figure 2.l(b). Let 
us name the existential node by y; let us name the parameter labeled O by z1 ; the 
parameter labeled 8 by z2; and the parameter labeled 6 by Z3. The distinguished 
node already has the name x. Now let us apply P°' to the simple example data graph 
G shown in Figure 2.2(a). The following table lists all matchings of P°' in G: 

1 4 8 6 
2 4 8 6 
2 5 8 6 

As required by the definition, all matchings match z1 to 0, z2 to 8, and Z3 to 6. 
Although there are three matchings, when determining the frequency of P°' in G, 
we only look at their value on x to distinguish them, as y is existential. So, h2 and 
h3 are identified as identical matchings when counting the number of matchings. In 
conclusion, the frequency of p o: in G is two, as x can be matched to the two different 
nodes 1 and 2. D 
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(x1,x2,x3) (x, x, 0-3) (x1,x2,x3) (x, x, 6) 

0"1 0"1 0 0 

I \ t I\ t 
X1 X2 X X1 X2 X 

• • t • • t 
:h =b :3 :31 :32 :3 

t t I\ t t I\ 
0"2 X3 0"2 0"3 8 X3 8 6 

(a) (b) (c) (d) 

Figure 2.3: (a) and (b) are parameterized tree queries; (c) is an instantiation of (a); 
(d) is an instantiation of (b); and query (b) is p-contained in query (a) 

2.2 Tree Query 

Tree Queries A parameterized tree query Q is a pair (H, P) where: 

1. P is a parameterized tree pattern, called the body of Q; 

2. H is a tuple of distinguished variables and parameters coming from P. All 
distinguished variables of P must appear at least once in H. We call H the 
head of Q. 

A parameter assignment for Q is simply a parameter assignment for its body, and 
an instantiated tree query is then again a pair ( Q, a) with Q a parameterized tree 
query and a a parameter assignment for Q. We will again denote this by Qa. 

When depicting tree queries, the head is given above a horizontal line, and the 
body below it. Illustrations are given in Figure 2.3. 

Frequency of a tree query The frequency of an instantiated tree query Qa 
( ( H, P), a) in a data graph G, is defined as the frequency of the body pa in G. When 
G is understood, we denote the frequency by Freq(Pa ). For a given threshold k (a 
natural number) we say that Qa is k-frequent if its frequency is at least k. Again, t his 
threshold is often understood implicitly, and then we talk simply about "frequent" 
queries and denote the threshold by minsup. 

2.2.1 Containment of Tree Queries 

An important step towards our formal definition of tree-query association is the notion 
of containment among queries. Since queries are parameterized, a variation of the 
classical notion of containment [8, 44, 1] is needed in t hat we now need to specify a 
parameter correspondence. 

First, we define the answer set of an instantiated tree query Qa, with Q = (H, P), 
in a data graph G as follows: 

Qa(G) := {µ(H) Iµ is a matching of pa in G} 
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Consider two parameterized tree queries Q1 and Q2, with Qi= (Hi, Pi) for i = 1, 2. 
A parameter correspondence from Q1 to Q2 is any mapping p : E1 ---t E2. We then 
say that a parameterized tree query Q2 is p-contained in a parameterized t ree query 
Q1, if for every a2, a parameter assignment for Q2, Q~2 (G) ~ Qf20P(G) for all data 
graphs G. In shorthand notation we write this as Q2 ~" Qi. 

Containment as just defined is a semantical property, referring to all possible data 
graphs, and it is not immediately clear how one could decide this property syntac
tically. The required syntactical notion for this, is that of p-containment mapping, 
which we next define in two steps. For the tree queries Q1 and Q2 as above, and pa 
parameter correspondence from Q1 to Q2: 

1. A p-containment mapping from Pi to P2 is a homomorphism f from the under
lying tree of Pi to the underlying tree of P2, with the properties: 

(a) f maps the distinguished nodes of Pi to distinguished nodes or parameters 
of P2; and 

(b) f/E 1 = p, i.e., for each z E E1 we have f(z) = p(z). 

2. Finally, a p-containment mapping from Q1 to Q2 is a p-containment mapping 
f from Pi to P2 such that f (H1) = H2. 

For later use, we note: 

Lemma 1. Consider three parameterized tree patterns Pi, P2, and Pa, a parameter 
correspondence p1 : E1 ---t E2, a parameter correspondence p2 : E2 --+ Ea, a p1 -
containment mapping Ji from Pi to P2, and a p2-containment mapping h from P2 
to Pa. Then ho Ji is a (p2 o p1)-containment mapping from P1 to P3. 

Proof We will show that: 

1. h o Ji is homomorphism; 

2. ho Ji maps distinguished nodes of Pi to distinguished nodes or parameters of 
Pa; and 

3. (/2 o fi)/E1 = P2 o Pl· 

(1) Clearly ho Ji is a homomorphism since both Ji and h are homomorphisms, 
and it is already known that a composition of homomorphisms is a homomorphism. 

(2) Consider x1 E 6.1, then there are two possibilities for fi(x1): 

1. fi(x1) = x2, with x2 E 6.2. Then we know, since h is a p2-containment 
mapping, that h(x2) is either a distinguished node X3 E 6.3, or a parameter 
Z3 E E3. 

2. fi(x1) = z2, with z2 E E2. Then we know, since /2/E2 = p2, that h(z2) = z3, 
with Z3 E Ea. 

Hence, we can conclude that h o h maps distinguished nodes of Pi to distinguished 
nodes or parameters of Pa. 

(3) For each z1 E E1, we have h(fi(z1)) = P2(P1(z1)). Hence, (hofi)/E1 = p2op1 . 
D 
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From the theory of conjunctive database queries [8, 44, 1] we can derive the fol
lowing: 

Lemma 2. Consider two parameterized tree queries Q1 and Q2, with Q1 = (H1, Pi) 
and Q2 = (H2,P2), and a parameter correspondence p: E1 _, Ez. Then Q2 is p
contained in Q1 (Q2 ~P Q1}, if and only if there exists a p-containment mapping 
from Q1 to Qz. 

Proof. Let us start with the 'only if' direction. We first introduce t he concept of 
a freezing of a parameterized tree query Q = (H, P). Recall that U is the set of 
data constants from which the nodes of the data graph to be mined will be taken. A 
freezing /3 of Pis then a one-to-one mapping from the nodes of P to U. We denote 
by freeze13(P) the data graph constructed from P by replacing each node n of P by 
/3(n), and we denote by freeze13(H) the tuple constructed from H by replacing each 
node n in H by the data constant f3(n) . 

For example, consider the parameterized tree query Q = (H, P) in Figure 2.4(a). 
Then Figure 2.4(b) shows freeze13(P) and freeze13(H) for the freezing /3 given as fol
lows: X1 _, c1; x2 _, c2; =h _, c3; x4 _, c4; xs _, cs; a6 _, C6· 

We can now continue with the proof of the 'only if' direction. Consider a freez
ing /3 from the nodes of P2 to U. Note that /3IE2 is a parameter assignment for 

Q2, and freeze13(H2) E Q~IEz (freeze13(P2)). Since Q2 <;.p Q1, also freeze13(H2) E 

Qf1E2 0 P(freeze13(P2)). Hence, there must be a matchingµ from Pf1
E

2 0
P in freeze13(P2) 

such that µ(H1 ) = freeze13(H2). Now consider the function g : 13-1 o µ. We show that 
g is p-containment mapping from Q1 to Q2: 

1. Clearly, g is a homomorphism from Pi to P2 since µ is a homomorphism and 
(J- 1 is an isomorphism. Also the following properties hold for g: 

(a) g maps distinguished nodes of Pi to distinguished nodes or parameters of 
P2 since g(H1 ) = H2 (as shown in (2)); and 

(b) for each z E E1: g(z) = 13-1 (µ(z)) = 13-1(/3(p(z))) = p(z), hence 9IE1 = p 

2. g(H1) = 13- 1(µ(H 1)) = 13- 1(freeze13(H2)) = Hz. 

Hence, we conclude that g is a p-containment mapping from Q1 to Qz. 
Let us then look at the 'if' direction. Let h be the p-containment mapping from 

Q1 to Q2. Consider an arbitrary parameter assignment a2 for Q2. We must prove 
that for every data graph G, if a E Q~2 (G), then also a E Qf10P(G). Consider such 
an arbitrary data graph G. Since, a E Q~2 (G), we know that t here exists a matching 
µ of P;f2 in G such that a = µ(H2 ). Now consider the function g =µoh. We show 
that g is a matching from P~20

P in G and a = g(H1 ): 

l. g is a homomorphism since both µ and g are homomorphisms; and 

2. for each z E E1 we have g(z) = µ(h(z)) = µ(p(z)) = a2(p(z)). 

So, g is indeed a matching of P~20
P in G. Finally, we observe t hat g(H1) = µ(h(H1)) = 

µ(H2 ) = a, as desired. D 
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(a) (b) 

Figure 2.4: (b) is a freezing of the parameterized tree query in (a) 

Checking for a containment mapping is evidently computable, and although the 
problem for general database conjunctive queries is NP-complete, our restriction to 
tree shapes allows for efficient checking, as we will see later. 

Example. Consider the parameterized and instantiated tree queries shown in Fig
ure 2.3. In the example data graph in Figure 2.2(a) the frequency of query (c) is 
10 and that of query (d) is 2. Let Ea be the set of parameters of query (a), and 
let Eb be the set of parameters of query (b); then let the parameter correspondence 
p: Ea -, Eb be as follows: 0"1 _, u1; 0"2 _, u2 . A moment's reflection should convince 
the reader that (b) is p-contained in (a), and indeed a p-containment mapping J from 
(a) to (b) can be found as follows: 

f 
0"1 0"1 

X1 X 

X2 X 

:li :l 
3 2 :l 
0"2 CT2 

X3 CT3 

2.3 Tree-Query Association 

Association Rules A parameterized association rule (pAR) is of the form Q 1 =*P 
Q2, with Q1 and Q2 parameterized tree queries and p a parameter correspondence 
from E 1 to E 2 . We call a pAR legal if Q2 ~ P Qi. We call Q1 the left-hand side 
(lhs), and Q2 the right-hand side (rhs). A parameter assignment o:, for a pAR, is a 
mapping E 2 _, U which assigns data constants to the parameters. An instantiated 
association rule (iAR) is a pair (Q1 =*P Q2, o:) , with Q1 =*P Q2 a pAR and o: a 
parameter assignment for Q 1 =*P Q2. Note that while o: is only defined on the rhs, 
we can also apply it to the lhs by using p first. 

Confidence The confidence of an iAR in a data graph G is defined as the frequency 
of Q~2 divided by the frequency of Qf2 0

P . If the AR is legal, we know that the answer 
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set of Qg2 is a subset of the answer set of Qf20
P, and hence the confidence equals 

precisely the proportion that the Qg2 answer set takes up in the Qf20
P answer set. 

Thus, our notions of a legal pAR and confidence are very intuitive and natural. 
For a given threshold c (a rational number, 0 ::; c ::; 1) we say that the iAR is 

c-confident in G if its confidence in G is at least c. Often the threshold is understood 
implicitly, and then we talk simply about "confident" iARs and denote the threshold 
by minconf 

Furthermore, the iAR is called frequent in G if Qg2 is frequent in G. Note that if 
the iAR is legal and frequent, then also Qf20

P is frequent, since the rhs is p-contained 
in the lhs. 

Example. Continuing the previous example, we can see that we can form a legal pAR 
from the queries of Figure 2.3, with (a) the lhs and (b) the rhs and pas follows: 
u1 --. u 1; u2 --. u2. We can also form an iAR with the tree queries in Figure 2.3(c) 
and Figure 2.3(d); the confidence of this iAR in the data graph of Figure 2.2(a) is 
2/10. Many more examples of ARs are given in Chapter 4 and Chapter 5. 

2.4 Mining Problems 

We are now finally ready to define the graph mining problems we want to solve. 

2.4.1 Mining Tree Queries 

Input: A data graph G; a threshold minsup. 

Output: All frequent instantiated tree queries Q = ((H, P), o:) . 

In theory, however, there are infinitely many k-frequent tree queries, and even if 
we set an upper bound on the size of the patterns, there may be exponentially many. 
As an extreme example, if G is the complete graph on the set of nodes {1, ... , n }, 
and k ::; n, then any instantiated pattern with all parameters assigned to values in 
{1, ... , n }, and with at least one distinguished variable, is frequent. 

Hence, in practice, we want an algorithm that runs incrementally, and that can 
be stopped any time it has run long enough or has produced enough results. We 
introduce such an algorithm in Chapter 3. 

2.4.2 Association Rule Mining 

Input: A data graph G; a threshold minsup; a parameterized tree query Q1en; and 
a threshold minconf 

Output: All iARs (Q1eft cc'}P Qright, o:) that are legal, frequent and confident in G. 

In theory, however, there are infinitely many legal, frequent and confident asso
ciation rules for a fixed lhs, and even if we set an upper bound on the size of the 
rhs, there may be exponentially many. Hence, in practice, we want an algorithm that 
runs incrementally, and that can be stopped any time it has run long enough or has 
produced enough results. We introduce such an algorithm in Chapter 4. 



3 
Mining Tree Queries 

In this Chapter we present an algorithm for mining frequent instantiated tree queries 
in a large data graph. We start by showing that we do not need to tackle the problem 
in its full generality in Section 3.1. Next, we give an overall approach of the presented 
algorithm in Section 3.2. The outer loop of the algorithm is explained in Section 3.3, 
and the inner loop in Section 3.4. We discuss equivalent tree queries, and show how 
to avoid generating them in Section 3.5. F inally, we explain how the results of the 
presented algorithm are managed in Section 3.6. 

3.1 Problem Reduction 

In this Section we show that, without loss of generality, we can focus on parameterized 
tree queries that are 'pure'. 

Pure Tree Queries To define this formally, assume that all possible variables 
( nodes of tree patterns) have been arranged in some fixed but arbitrary order. We then 
call a parameterized tree query Q = (H, P) pure when H consists of the enumeration, 
in order and without repetitions, of all the distinguished variables of P. In particular 
H cannot contain parameters. We call H the pure head for P. As an illustration, the 
parameterized tree query in Figure 2.3(a) is pure, while the parameterized tree query 
in Figure 2.3(b) is not pure. 

A parameterized tree query that is not pure can always be rewritten to a param
eterized tree query that is pure, in such a way that all instantiations of the impure 
query correspond to instantiations of the pure query, with the same frequency. In
deed, take a parameterized tree query Q = (H, P). We can purify Q by removing all 
parameters and repetitions of distinguished variables from H, and sorting H by the 
order on the variables. An illustration of this is given in Figure 3.1. 

19 
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Mining Tree Queries 

I\ 

(b) 

Figure 3.1: The parameterized tree query in (a) is an impure parameterized tree query, 
and the parameterized tree query in (b) is the purification of the parameterized tree 
query in (a), that expresses precisely the same information. 
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Figure 3.2: (b) is the pure instantiated tree query constructed from the instantiated 
t ree pattern in (a) 

We can conclude that it is sufficient to only consider pure instantiated tree queries. 
As a consequence, rather than mining tree queries, it suffices to mine for tree patterns, 
because the frequency of a query is nothing else then the frequency of his body, i.e., 
a pattern. An illustration is given in Figure 3.2. 

3.2 Overall Approach 

An overall outline of our tree-query mining algorithm is the following: 

Outer loop: Generate, incrementally, all possible trees T of increasing sizes. Avoid 
trees that are isomorphic to previously generated ones. 

Inner loop: For each T , generate all instantiated tree patterns P°' based on T , and 
test their frequency. 

The algorithm is incremental in the number of nodes of the pattern. We generate 
canonically ordered rooted trees of increasing sizes, avoiding the generation of iso
morphic duplicates. It is well known how to do this efficiently [41, 32, 46, 9]. Note 



Mining Tree Queries 21 

that this generation of trees is in no way "levelwise" [33]. Indeed, under the way we 
count pattern occurrences, a subgraph of a pattern might be less frequent than the 
pattern itself (this was already pointed out by Kuramochi and Karypis [31]). So, our 
algorithm systematically considers ever larger trees, and can be stopped any time it 
has run long enough or has produced enough results. Our algorithm does not need 
any space beyond what is needed to store the mining results. The outer loop of our 
algorithm will be explained in more detail in Section 3.3. 

For each tree, all conjunctive queries based on that tree are generated. Here, we 
do work in a levelwise fashion. This aspect of our algorithm has clear similarities with 
"query flocks" [43]. A query flock is a user-specified conjunctive query, in which some 
constants are left unspecified and viewed as parameters. A levelwise algorithm was 
proposed for mining all instantiations of the parameters under which the resulting 
query returns enough answers. We push that approach further by also mining the 
query flocks themselves. Consequently, the specialization relation on queries used to 
guide the levelwise search is quite different in our approach. The inner loop of our 
algorithm will be explained in more detail in Section 3.4. 

A query based on some tree may be equivalent to a query based on a previously 
seen tree. Furthermore, two queries based on the same tree may be equivalent. We 
carefully and efficiently avoid the counting of equivalent queries, by using and adapting 
what is known from the theory of conjunctive database queries. This will be discussed 
in Section 3.5. 

3.3 Outer Loop 

In the outer loop we generate all possible trees of increasing sizes and we avoid trees 
that are isomorphic to previously generated ones. In fact, it is well known how to do 
this [41 , 32, 46, 9]. What these procedures typically do is generating trees that are 
canonically ordered in the following sense. Given an (unordered) tree T, we can order 
the children of every node in some way, and call this an ordering of T. For example, 
Figure 3.3 shows two orderings of the same tree. From the different orderings of a 
tree T, we want to uniquely select one, to be the canonical ordering of T. For each 
such possible ordering of T, we can write down the level sequence of the resulting 
tree. This is actually a string representation of the resulting tree. This level sequence 
is as follows: if the tree has n nodes then this is a sequence of n numbers, where 
the ith number is the depth of the ith node in preorder. Here, the depth of the root 
is 0, the depth of its children is 1, and so on. The canonical ordering of T is t hen 
the ordering of T that yields the lexicographically maximal level sequence among all 
possible orderings of T. 

As an example, in Figure 3.3, the left one is the canonical one. 

3.4 Inner Loop 

Let G be the data graph being mined, and let U be its set of nodes. In this Section, 
we fix a tree T , and we want to find all instantiated tree patterns P°' based on T 
whose frequency in G is at least minsup. 
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Figure 3.3: Two orderings of the same tree. The left one is canonical. 

This tasks lends itself naturally to a levelwise approach [33]. A natural choice for 
the specialization relation is suggested by an alternative notation for t he patterns un
der consideration. Concretely, since the underlying tree T is fixed, any parameterized 
tree pattern P based on T is characterized by two parameters: 

1. The set II of existential nodes; 

2. The set E of parameters. 

Note that TI and E are disjoint. 
Thus, a parameterized tree pattern P is completely characterized by the pair 

(TI, E). An instantiation POI of P is then represented by the triple (TI, E, a). For 
two parameterized tree patterns Pi = (TI1, E 1) and P2 = (TI2 , E2) we now say that 
Pi specializes P2 if TI1 2 TI2 and E1 2 E2; and 0-2 = 0-1 l:!::2 • We also say that P2 
generalizes Pi. 

Parent An immediate generalization of a tree pattern is called a parent. Formally, 
let P = (TI, E) and P' = (TI', E') be parameterized tree patterns based on T. We say 
that P' is a parent of P if: 

(i) E = E' and TI = TI' U {y} for some node y ¢ TI' ; or 

(ii) TI = TI' and E = E' U {z} for some node z ¢ E'. 

From the following lemma, it follows that specialized patterns have a lower fre
quency, as expected for a specialization relation: 

Lemma 3. Let P and P' be parameterized tree patterns such that P ' is a parent of 
P. Let POI be an instantiation of P, and let a'= a l:!::'. Then Freq(POI) :::; Preq(P'OI' ). 

Proof. We will show that #POl(G) :::; # P'OI' (G) by defining an injection I: POl(G) -
P'OI' (G). 
Since P' is a parent of P, we know that ti' = ti U { u} where u is either an existential 
node or a parameter of P . Note that eachµ E POl(G) is of the form µle,. for some 
matchingµ of P OI E G. For each µ in POl(G), we fix arbitrarilyµ. Now we define 
!(µ) := µl e,.,. To see that I is an injection, let µ1 ,µ2 E POl(G) and suppose that 
!(µ1) = !(µ2). In other words, µ 1lc,., = µ2 lc,.,. In particular, µ1 = µ1lc,. = µ2lc,. = µ2, 
as desired. 
Hence, we can conclude that #POl(G):::; #P'OI' (G) and that Freq(POI) :::; Preq(P'OI\ 

D 
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The above lemma suggests the following definition of specialization among in
stantiated tree patterns: we say that (II1 , E 1, a:1) is a specialization of (II2, E2, a:2) if 
the parameterized tree pattern (II1 , E1 ) is a specialization of the parameterized tree 
pattern (II2 ,E2) , and a:2 = a:1 IE2 • 

Intuitively, the previous lemma then expresses that the frequency of an instanti
ated tree pattern is always at most the frequency of any of its instantiated parents. 

3.4.1 Candidate Generation 

Candidate pattern A candidate pattern is an instantiated tree pattern whose fre
quency is not yet determined, but all whose generalizations are known to be frequent . 

Using the specialization relation and the definition for a candidate pattern we 
explain how the levelwise search for frequent instantiated tree patterns will go. 

Levelwise search We start with the most general instantiated tree pattern P = 
(0, 0, 0) , and we progressively consider more specific patterns. The search has the 
typical property that, in each new iteration, new candidate patterns are generated; the 
frequency of all newly discovered candidate patterns is determined; and the process 
repeats. 

There are many different instantiations to consider for each parameterized tree 
pattern. Hence, to generate candidate patterns in an efficient manner, we propose 
the use of candidacy tables and f requency tables. These candidacy and frequency 
tables allow us to generate all frequent instantiations for a particular parameterized 
tree pattern in parallel. A frequency table contains all frequent instant iations for a 
particular parameterized tree pattern. 

Formally, for any parameterized pattern P = (II, E), we define: 

CanTabn,E = {a IP°' is a candidate instantiated tree pattern} 

FreqTabn,E = { a: I P°' is a frequent instantiated tree pattern} 

Technically, the table has columns for the different parameters, plus a column 
freq. Note t hat when E = 0, i.e., P has no parameters, t his is a single-column, 
single-row t able containing just the frequency of P. This still makes sense and can be 
interpreted as boolean values; for example, if FreqTabn,f/J contains the empty tuple, 
then the pattern (II, 0, 0) is frequent; if the table is empty, the pattern is not frequent. 
Of course in practice, all frequency tables for parameterless patterns can be combined 
into a single table. All frequency tables are kept in a relational database. 

The following crucial lemma shows that these tables can be populated efficiently. 

Join Lemma. A parameter assignment a is in Can Tabrr ,E if and only if the following 
conditions are satisfied for every parent (II' , E') of (II, E): 

{i) If II = II' , then a:IE' E FreqTabn, ,E'; 

(ii) If E = E', then a E FreqTabrr, ,E'. 

Proof For the 'only-if' direction: By definition of a candidacy table, if a: E CanTabrr,E, 
t hen all generalizations of (II, E, a:) are frequent. In particular, for all parents (II', E') 
of (II , E ) , we know that (II' , E', a:IE') is frequent, since parents are generalizations. 
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For the 'if' direction, we must show that all generalizations of (II, E, a) are fre
quent. Consider such a generalization (II9 1 , E91 , al En). Let us denote the parent rela
tion by ~p· Then there is a sequence of parent patterns: (II91 , E91 ) ~P (II92 , E9J ~P 

... ~P (II',E'). And we have: Freq(II9,,E9,,alE
9
J ~ Freq(II92 ,E92 ,alE

92
) ~ ... ~ 

Freq(II', E', a IE') ~ minsup. The last inequality is given by (i) or (ii), the other 
inequalities are given by Lemma 3. D 

The Join Lemma has its name because, viewing the tables as relational database 
tables, it can be phrased as follows: 

Each candidacy table can be computed by taking the natural join of its 
parent frequency tables. 

The only exception is when II = 0 and E = { z} is a singleton; this is the initial 
iteration of the search process, when there are no constants in the parent tables to 
start from. In that case, we define CanTab0,{z} as the table with a single column z, 
holding all nodes of the data graph G being mined. 

3.4.2 Frequency Counting using SQL 

The search process starts by determining the frequency of the underlying tree T = 
(0, 0); indeed, formally this amounts to computing FreqTab0,0. Similarly, for each 
parameterized tree pattern P = (II, 0) with II -/= 0, all we can do is determine its 
frequency, except that here, we do this only on condition that its parent patterns are 
frequent. 

We have seen above that, if the frequency tables are viewed as relat ional database 
tables, we can compute each candidacy table by a single database query, using the 
Join Lemma. Now suppose the data graph G that is being mined is stored in the 
relational database system as well, in the form of a table G(from, to) . Then also each 
frequency table can be computed by a single SQL query. 

Indeed, in the cases where E = 0 this simply amounts to formulating the pattern 
in SQL, and determining its count (eliminating duplicates). Since our patterns are in 
fact conjunctive queries (or datalog rules) known from database research [8, 44, 1] . 
They can easily be translated in SQL: 

• The FROM-clause consists of all table references of the form G as Gij, for all 
edges Xi -+ Xj in T. 

• The WHERE-clause consists of all equalities of the form Gij .from = 
Gik. from as well of equalities of the form Gij. to = Gjh. from. 

• The SELECT-clause is of the from SELECT DISTINCT and consists of all column 
references of the form Gij. to when Xij is a distinguished node in P, plus one 
reference of the form G 1k. from if the root node is distinguished. 

The SQL query for the tree in Figure 3.4 with II = {x2} and E = 0 is as follows: 

E = SELECT G12.from, G23.to, G24.to 
FROM Gas G12, Gas G23, Gas G24 
WHERE G12.to = G23.from AND G12.to = G24.from 
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Figure 3.4: Illustration on translating a tree pattern without parameters in SQL. 

But also when :E -I 0, we can compute FreqTabn r; by a single SQL query. Note 
that we thus compute the frequency of a large number of instantiated tree patterns 
in parallel! We proceed as follows: 

1. We formulate the pattern (II, 0) in SQL, and call the resulting expression E; 

2. We then take the natural join of E and CanTabn,E, group by :E, and count each 
group. 

The join with the candidacy table ensures that only candidate patterns are counted. 
For instance, the SQL query to compute the frequency table for the tree in Fig

ure 3.4, with II= {x2} and :E = {x1,x3}, with E as above, is as follows: 

SELECT E.x1, E.x3, COUNT(*) 
FROM E, CanTab{x2},{x 1 ,x3 } CT 
WHERE E.x1 = CT.xi AND E.x3 = CT.x3 
GROUP BY E.x1, E.x3 HAVING COUNT(*)>= minsup 

It goes without saying that, whenever the frequency table of a tree pattern is 
found to be empty, the search for more specialized patterns is pruned at that point. 

3.4.3 The Algorithm 

Putting everything together so far, t he algorithm is given in Algorithm 1. In outline 
it is a double Apriori algorithm [2] , where the sets II form one dimension of itemsets, 
and the sets :E another. A graphical illustration of t he algorithm is given in F igure 3.5. 
In this illustration we use tries (or prefix-trees) to store the itemsets. A trie [4, 6, 28] 
is commonly used in implementations of the Apriori algorithm. 

3.4.4 Example Run 

In this Section we give an example run of the proposed algorithm. Consider the 
example data graph G in Figure 3.6(a); t he tree T in Figure 3.6(b); and let the 
minimum support threshold be 3. 

The example run is then given in Table 3.1. 
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Algorithm 1 Levelwise search for frequent tree patterns. 
1: for each unordered , rooted tree T do 
2: X := set of nodes of T 
3: p := O; Po := {0} 
4: repeat 
5: for each II E Pp do 
6: Compute FreqTabn,0 in SQL 
7: if FreqTabn,0 -=f. 0 then 
8: s := 1 
9: S1:={{z} lzE X-TI} 

10: repeat 
11: for each E E S8 do 
12: if p = 0 and s = 1 then 
13: CanTabn,E := set of nodes of G 
14: else 
15: CanTabn,E := t><J { FreqTabn, ,E' I (TI', E') parent of (II, E)} 
16: end if 
17: Compute FreqTabn E in SQL 
18: if FreqTabn E = 0 then 
19: remove E ' from S8 { E is pruned away} 
20: end if 
21: end for 
22: Ss+l := {E i;;; X - II I #E = S + 1 
23: and each s-subset of E is in S8 } 

24: s := s + 1 
25: until S8 = 0 
26: else 
27: remove II from Pp {II is pruned away} 
28: e nd if 
29: end for 
30: Pp+I := {II i;;; X I # II = p + 1 and each p-subset of TI is in Pp } 
31: p := p + 1 
32: until Pp= 0 
33: end for 
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II 
t=: 

"' r---=:::::::::::~ ~ 
~ .... ~ ---..: 

II .-.-, 
t=: II 

t=: 

Figure 3.5: Illustration of t he algorithm in Algorithm 1 

27 
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0 

/!~ 
1 2 3 

!/! i 
4 5 6 

(a ) 

(b) 

Figure 3.6: Data graph G and tree T for the example run in Section 3.4.4. 

Table 3.1: Example run of t he inner loop for the tree and dat a graph in Fig-
ure 3.6 

rr ~ p CanTab F'reqTab 

X I m 0 0 I \ 
x2 X 3 

O"l LLUJ 0 {x i} I \ nodes of G 
x 2 X3 

0"2 Freq 

x1 1 3 
0 {x2} I \ nodes of G 

2 3 
3 3 

0"2 X3 
4 3 

0"3 F'req 

X I 1 3 
0 {x3 } I \ 2 3 

nodes of G 3 3 
x 2 0"3 

4 3 

0"1 0"2 F'req 
0"1 0 1 3 

0 {x1, x 2} I \ F'req Tab0,{x1 } 
0 2 3 

0"2 X3 t><I F'reqTab0, {x2} 0 3 3 

0"1 0"3 F'req 
0"1 0 1 3 

0 {x1, x3} I \ F'req T ab0,{x1 } 
0 2 3 

x2 0"3 t><I F'reqT ab0,{ x3 } 0 3 3 

x1 
0 {x2,x3} I \ F'reqT ab0,{x2} 0 

0"2 0"3 t><I F'reqTab0,{xa} 
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<Tl 
0 {x1,x2,x3} I\ Pruned 

0-2 <T3 

3 m {xi} 0 I\ 4 
x2 X3 

3 
<T2 Freq 

{x1} {x2} I\ PreqTab0,{x2} 
1 3 
2 3 

0-2 X3 I><! PreqTab{xi},0 3 3 

3 
0"3 Freq 

{x1} {x3} I\ PreqTab0,{x3} 
1 3 
2 3 

x2 <T3 1><1 FreqTab{xi},0 3 3 

3 
{x1 } {x2 ,x3} I\ Pruned 

0-2 <T3 

X1 
I ~eq I {x2} 0 I\ 

3 X3 

<Tl 
{x2} {xi} I\ FreqTab0,{xi} I 

a1 

I 
Freq 

I 0 3 
3 X3 I><! FreqTab{x2},0 

X1 
{x2} {x3} I\ FreqTab0,{x3 } 0 

3 <T3 1><1 FreqTab{xz}, 0 

a1 
{x2} {x1, X3} I\ Pruned 

3 <T3 

Xl 
I ~eq I {x3} 0 I\ 

X2 3 

a1 
{x3} {x1} I\ PreqTab0,{xi} 

I 
<Tl 

I 
Freq 

I 0 3 
xz 3 1><1 FreqTab{xs},0 

x1 
{xa} {x2} I\ FreqTab0,{xz } 0 

<T2 3 I><! FreqTab{x
3

},0 
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cri 
{x3} {xi,x2} I\ Pruned 

C12 3 

3 17 1 {xi,x2} 0 I\ 
3 X3 

3 
{xi, x2 } {x3} I\ Pruned 

3 C13 

3 171 {xi , x3} 0 I\ 
x 2 3 

3 
{xi , x3} {x2} I\ Pruned 

cr2 3 

x i 17 1 {x2, x3} 0 I \ 
3 3 

cri freqTab {x2,xa},0 
{x2,x3} {xi} I \ l><l PreqTab {x2 } ,{ xi} 

0 
3 3 

l><l PreqT ab{xa },{x i} 

3.5 Equivalence among Tree P atterns 

In this Section we make a number of modifications to the algorithm described so far , 
so as to avoid duplicate work. 

As an example of duplicate work, consider the paramet erized tree pattern Pi from 
the example run in Section 3.4.4 (II = {x2} and ~ = 0) : 

X 1 

ti \ 
3 X3 

and the parameterized tree pattern P2: 

X 1 

t 
X2 

Clearly, Pi and P2 have the same answer set for all dat a graphs G, up to renaming 
of the distinguished variables (x2 by x3) . However, these patterns have different 
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underlying trees, and hence Algorithm 1 will compute the answer set for both patterns 
(line 6). The answer set of P2 is computed before the answer set of Pi, since our 
algorithm is incremental in the number of nodes of T. Hence, we can conclude that 
our algorithm performs some duplicate work which we want to avoid. 

Another example of duplicate work our algorithm performs: Consider t he pa
rameterized tree pattern P3 from the example run in Section 3.4.4 (IT = {x1} and 
E = {x2}): 

and the parameterized tree pattern P4 also from the example run in Section 3.4.4 
(IT= {xi} and E = {x3} ): 

As one can see in Section 3.4.4, these two parameterized patterns have the same 
instantiations for all data graphs G, up to renaming of the parameters (0'2 by 0'3 ), 

and for each instantiation, the same answer set for all data graphs G, up to renaming 
of the distinguished variables (x3 by x2). However, when we look at the outline ofour 
algorithm in Algorithm 1, we see that for both patterns the candidacy and frequency 
tables are computed between line 11 and line 17. Hence, we can conclude again that 
our algorithm performs duplicate work that we want to avoid. 

In the rest of this Section we formalize the duplicate work our algorithm performs, 
and we make a number of modifications to the algorithm described so far, so as to 
avoid the duplicate work. 

3.5.1 Equivalency 

Intuitively we call two parameterized tree patterns equivalent if they have the same 
instantiations, and for each instantiation the same answer set for all data graphs G, 
up to renaming of the parameters and the distinguished variables. For instance, the 
parameterized tree patterns Pi and P2 from above we call equivalent, as t he tree 
patterns P3 and P4 from above. 

To define equivalent parameterized tree patterns formally we introduce the notion 
of ( o, p )-equivalence. 

( o, p )-Equivalence Let Pi and P 2 be two parameterized tree patterns and p a pa
rameter correspondence from Pi to P2 (recall Section 2.2). We define an answer set 
correspondence from Pi to P2 as any mapping 5 : ~ 1 -+ ~2- Furthermore, assume 
that o and pare bijections. We then say that Pi and P2 are (o,p)-equivalent, denoted 
by Pi =t P2 , if for all data graphs G, and all parameter assignments a2 : E2-+ U, we 
have P!f2 

( G) o o = Pf2 0
P ( G), where Pf-2 

( G) o o denotes the set {f o o : f E Pf-2 
( G)}. 

For example, consider the two parameterized tree patterns in Figure 3. 7, and let 
p : Ea -+ Eb be as follows: 
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(a) (b) 

Figure 3. 7: Two equivalent parameterized tree patterns. 

X1 X1 X1 

I " l l 
X2 :31 X2 X2 

l t II \ l 
X3 :32 :31 X3 X3 

(a) (b) (c) 

Figure 3.8: Three equivalent parameterized tree patterns. 

p 
a1 a1 

a2 a3 

a3 a2 

and let 8 : D.a ____, D.b be as follows: 

8 
X1 X3 

X2 X1 

X3 X2 

The two parameterized tree patterns are clearly ( 8, p )-equivalent, as are the three 
parameterized tree patterns shown in Figure 3.8 with an empty parameter correspon
dence p and 8 the identity. 

The parameter correspondence p is a bijection in the definition of p-equivalence, 
since intuitively we want equivalent parameterized tree patterns to have essentially 
the same set of instantiations. Hence it is necessary that the tree patterns have t he 
same number of parameters. Intuitively we also want equivalent tree patterns to have 
the same answer sets up to renaming of the distinguished variables. That is the reason 
why an answer set correspondence is introduced that is a biject ion. 

We then define equivalent parameterized tree patterns as follows: 

Equivalent parameterized tree patterns We call two parameterized tree pat
terns Pi and P 2 equivalent if P1 is ( 8, p )-equivalent with P2 for some bijective param
eter correspondence p and some bijective answer set correspondence 8. 
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Figure 3.9: Two equivalent parameterized tree patterns with more than one possibility 
for a parameter and answer set correspondence. 

Note that there can exist more than one parameter correspondence p and more 
than one answer set correspondence J for which the two parameterized tree patterns 
are (J, p)-equivalent. An illustration of this is given in Figure 3.9. Let P1 : Ea -t Eb, 
J1 : ~a -t ~b, P2 : ~a -t Eb and J2 : ~ a -t ~b be as follows: Pl is the identity; J1 is 
the identity and 

J2 

P2 
X1 X1 
X2 X4 

X3 X5 
X4 X2 
X5 X3 

Then the two tree patterns in Figure 3.9 are clearly (J1, P1)-equivalent and (J2, p2)
equivalent. 

Equivalence as just defined is a semantical property, referring to all possible data 
graphs, and it is not immediately clear how one could decide this property syntacti
cally. The required syntactical notion is given by the following Lemma and Corollary. 

Lemma 4. Consider two parameterized tree patterns Pi and P2, J : ~ 1 -t ~2 a 
bijective answer set correspondence, and p : E 1 -t E2 a bijective parameter corre
spondence. Then Pi =~ A if and only if we have the following containment relations 
among the tree queries ( H 1, A) and ( J ( H 1), P2), with H 1 the pure head of Pi ( cfr. 
Section 3.1): 

1. (J(H1), P2) ~P (Hi , A); and 

2. (H1, A) ~ p - 1 (J(H1), P2) 

Proof. Let us start with the if direction. We need to prove that for every parameter 
assignment 0:2 for P2, and every data graph G that P!f2(G) o J = Pf20P(G). We 
know that (J(H1), P2)02 (G) ~ (H1, P1)020P(G) since (J(H1) , P2) ~P (Hi, A). We 
may rewrite this as: P!f2(G) o J ~ Pf20P(G) since H1 is an enumeration of ~1-

We also know that (H1,A)01 (G) ~ (J(H1),P2)010P- '(G) for every parameter 
assignment 0:1 for A since (H1, A) ~P-1 (J(H1), A). Now take 0:1 = 0:2 op. We 
then have (H1, A)020P(G) ~ (J(H1), P2)02 (G). Again since H 1 is an enumeration of 
~ 1 we may rewrite this as: Pf20P(G) ~ P!f2(G) o J. Hence we can conclude that 
P!f2(G) o J = Pf2op(G). 
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Let us then look at the only-if direction. To prove that (o(H1), P2) ~P (H1, Pi), 
we will show that for every a:2 parameter assignment for P2, and every data graph 
G, we have (8(H1),P2)02 (G) ~ (H1,Pi)020P(G). Since P!f2(G) o o = Pf20P(G), 
we have (8(H1), P 2 ) 02 (G) = (H1, Pi)020 P(G), and hence clearly (8(H1), P2 ) 02 (G) ~ 
(Hi, P1)0.20P(G). 

To prove that (Hi, Pi) ~p-1 (o(H1 ), P2), we will show that for every 0:1 parameter 
assignment for Pi, and every data graph G, we have 

We know that for every a:2 parameter assignment for P2 , we have P!f2 
( G) o o 

Pf20P(G). Now take 0:2 = a:1 o p- 1 . We then have P:f10
P-

1 

(G) o o = Pf1 (G), hence 
(o(H1), P2)010P-

1 
(G) = (Hi, Pi) 01 (G), hence clearly 

D 

Corollary 1. Consider two parameterized tree patterns Pi and P2. Then Pi is equiv
alent with P2 if and only if there exist: 

1. a bijective answer set correspondence o: ~1 ---t ~2; 

2. a bijective parameter correspondence p: ~1 ---t ~2; 

3. a p-containment mapping Ji : ( H 1, P1) ---t ( 8 (Hi), P2); and 

with H1 the pure head for Pi. 

Of course, we want to avoid that our algorithm considers some parameterized tree 
pattern P2 if it is equivalent to an earlier considered parameterized tree pat tern Pi. 
Since our algorithm generates trees in increasing sizes, there are two cases to consider: 

Case A: Pi has fewer nodes than P2. 

Case B: Pi and P2 have the same number of nodes. 

Armed with the above Lemma and Corollary, we can now analyze the above two 
cases. 

3.5.2 Case A: Redundancy Checking 

Let us start by defining the notion of a redundancy. 
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Redundant subtree A redundant subtree R , is a subtree of a parameterized tree 
pattern P, such that removing R from P yields a parameterized tree pattern P' that 
is equivalent with P. 

For example, the first two parameterized tree patterns in Figure 3.8 indeed contain 
a redundant subtree. 

The following lemma shows that two parameterized tree patterns with different 
numbers of nodes can only be equivalent if the largest one contains redundant subtrees: 

Lemma 5. Consider two parameterized tree patterns P and P', and the number of 
nodes of P' is smaller than the number of nodes of P. Then P can only be equivalent 
with P' if P contains redundant subtrees. 

Proof. Since P and P' are equivalent we know from Corollary 1 that the following 
exist: 

1. an answer set correspondence 15 : ~ -, ~' that is a bijection; 

2. a parameter correspondence p : E _, E' that is a bijection; 

3. a p-containment mapping Ji : (H, P) -, (15(H), P'); and 

4. a p- 1-containment mapping h: (15(H) , P') -, (H, P), 

with H the pure head for P. Since t he number of nodes of P' is smaller than the 
number of nodes of P, we know that some subtrees R of Pare not in the range of h
We will prove that these subtrees R are redundant subtrees, by showing that P and 
P - R are equivalent. 

Since the containment mappings Ji and h exist, we know that in particular the 
following containment mappings will exist: 

1. 91 = !i lP-R, a p-containment mapping from (H, P - R) to (15(H), P' ), and 

2. g2 = h, a p- 1-containment mapping from (15(H), P') to (H, P - R). 

wit h 15 and p as above. 
Let us now look at the following mappings: h1 = 92 o Ji and h 2 = h o 91· By 

Lemma 1, h1 = 92 o Ji and h2 = ho 91 are identity-containment mappings. 
Using Corollary 1 we can now conclude that P and P - Rare (identity, identity)

equivalent and thus R is a redundant subtree. 
D 

Ftom this lemma follows that Case A can only happen if P2 contains redundant 
subtrees. Hence, if we can avoid redundancies, Case A will never occur. 

The following lemma provides us with an efficient check for redundancies. 

Redundancy Lemma. Let P be a parameterized tree pattern. Then P has a redun
dancy if and only it contains a subtree C in the form of a linear chain of existential 
nodes (possibly just a single node), such that the parent of C has another subtree that 
is at least as deep as C . 



36 Mining Tree Queries 

X1 

/ ~ 
X2 :31 

'f JI \ 
X3 :32 :33 

Figure 3.10: A tree pattern that contains a linear chain of existential nodes that is 
redundant. 

Before we prove this Lemma, let us see some examples. For instance the param
eterized tree patterns in Figure 3.8(a) and Figure 3.8(b) contain a linear chain of 
existential nodes that is redundant. In both tree patterns this linear chain is rooted 
in :31. Another example of such a redundancy is given in Figure 3.10. Here the linear 
chain is rooted in :33 . Note that when we remove the linear chain rooted in :33, we 
have a new linear chain rooted in :31 that is redundant. 

Proof. Let us refer to a subtree C as described in the lemma as an "eliminable path" . 
An eliminable path is clearly redundant, so we only need to prove the only-if direction. 
Let T be a redundant subtree of P that is maximal, in the sense that it is not a subtree 
of another redundant subtree. Then by Corollary 1, there must be a p-containment 
mapping h from (H, P) to (8(H), P - T) with p and 8 bijections and H the pure head 
for P. All distinguished variables of P must be in P - T, since <l is a bijection. Also 
all parameters of P must be in P - T, since p is also a bijection. So T consists entirely 
of existential nodes. 

Furthermore, note that h must fix the root of P, since the height of P is at least 
that of P - T. 

Any iteration hn of his a pn-containment mapping from (H, P) to (8n(H), P - T ) 
by Lemma 1. Moreover, each hnlAuE induces a permutation on the set .6. U E of 
distinguished variables and parameters. Since .6. U E is finite, there are only a finite 
number of possible permutations of .6. U E, namely l.6. U El!. Hence, there will be an 
iteration hklAuE and an iteration h(k+l)IAuE such that hk!AuE = h(k+l)IAuE· Thus, 
h11AuE is the identity on .6. U E, because 

idlAuE = (h- 1 l lAuE O hk lAuE 

= (h- 1 )k lAuE o h(k+l) IAuE 

= h1!AuE 

There are now two possible cases. 

l. T itself is a linear chain. Let us then look at the parent p of T in P. Again 
there are two possibilities: 

(a) h1(p) = p: Since h1 is a /-containment mapping from (H, P) to (81(H), P 
T) and T is redundant, we know that T must be mapped to another subtree 
of p, T', that is at least as deep as T. Hence, Tis an eliminable path. An 
illustration is given in Figure 3. ll(a). 
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(b) h1(p) =/ p: Then p can only be an existential node. We now have two 
possibilities: 

i. Tis the only subtree of p. We will show that the subtree T', rooted 
in p is redundant as well. Clearly we have the following containment 
relations: 

• h1 = h1
, a /-containment mapping from (H, P) to (81(H) , P - T'); 

and 

• h2 = h-1, a p- 1-containment mapping from (81(H),P - T') to 
(H,P). 

with[) and pas above. By Corollary 1, T' is then a redundant subtree. 
This is in contraction with the assumption that T is maximal. Hence, 
it is impossible that p has only one subtree and p is existential. An 
illustration of this is in given in Figure 3.11 (b). 

ii. p has more than one subtree. Consider such another subtree T'. We 
will show that all subtrees T' of p consist entirely of existential nodes. 
Suppose a node n E T' is not an existential node. We then know that 
h1(n) = n. However, since h1 is a homomorphism and pis an ancestor 
of n, h1(p) must be p. But this is in contradiction with the assumption 
that h1(p) =/ p. So T' must consist entirely of existential nodes. Hence 
this brings us to the second case where T is not a linear chain. An 
illustration is given in Figure 3.11 ( c). 

2. Tis not a linear chain. An easy induction on the height of T, shows that any 
non-linear tree consisting entirely of existential nodes must contain an eliminable 
path. If the height of T is 1, there is an eliminable path of a single node: just 
choose one of the children of the root. If the height of T is n > l, consider the 
subtree S of the root of T with the smallest height, at most n - l. Then we have 
two possibilities: If S is a linear chain, we found our eliminable path. And if 
S is a non-linear chain we know by induction that Swill contain an eliminable 
path. Hence, T, and thus also P, contains an eliminable path as desired. 

D 

As we have seen in Section 3.4, our algorithm introduces existential nodes lev
elwise, one by one. This makes the redundancy test provided by the redundancy 
lemma particularly easy to perform. Indeed, if (II, I;) is a parameterized tree pat
terns of which we already know it has no redundancies, and we make one additional 
node n existential, then it suffices to test whether n thus becomes part of a subtree 
C as in the Redundancy Lemma. If so, we will prune the entire search at II U {n}. 

3.5.3 Case B: Canonical Forms 

We may now assume that P1 and P2 do not contain redundancies, for if they would, 
they would have been dismissed already. 

Let us start by defining isomorphic parameterized tree patterns. 
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(a) (b) 

(c) 

Figure 3.11: Figures to illustrate the proof of the Redundancy Lemma. 
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Isomorphic Parametrized Tree Patterns We call two parameterized tree pat
terns A and P2 isomorphic if there exists a homomorphism l : Pi ---+ P2 that is a 
bijection and that maps distinguished nodes to distinguished nodes, parameters to 
parameters and existential nodes to existential nodes. We call l an isomorphism. 
Since we are working with trees, 1-1 is also a homomorphism. 

For example, the two parameterized tree patterns in Figure 3. 7 are indeed isomor
phic with l as follows: 

l 
a1 a1 

3 3 
a2 a3 

X1 X3 

X2 X1 

a3 a2 

X3 X2 

Clearly, we have the following: 

Property 1. Any two isomorphic parameterized tree patterns P1 and P2 are equiva
lent. 

Proof. Using Corollary 1 we have to show that the following exists: 

1. a bijective answer set correspondence 8 : D.1 ---+ D.2 ; 

2. a bijective parameter correspondence p: E1 ---+ E2; 

3. a p-containment mapping 11 : (H1, Pi)---+ (8(H1) , P2); and 

4. a p- 1-containment mapping h: (8(H1), P2) ---+ (Hi , A), 

with H1 the pure head for A. 
Since A and P2 are isomorphic, t here exists a homomorphism l : Pi ---+ A that 

is a bijection and that maps distinguished nodes to distinguished nodes, parameters 
to parameters and existential nodes to existential nodes. 

We now take 8 = llLi.1 and p = 111::1 . Then 8 and p are bijections since l is a 
bijection. 

For ( 3) we will show that l is p-containment mapping from ( H 1, P1) to ( 8 ( H 1) , P2), 
with H1 the pure head for Pi: 

• l is a homomorphism; 

• l maps distinguished nodes to distinguished nodes and l !Li.1 = 8; 

• l maps parameters to parameters and 111::1 = p; and 

For (4) we will show that 1-1 is p- 1-containment mapping from (8(H1) , P2) to 
(H1 , P1), with H1 the pure head for Pi: 
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• 1- 1 is a homomorphism since f is a bijection and we are working with trees; 

• 1-1 maps distinguished nodes to distinguished nodes and 1- 11~2 = i5-1; 

• 1- 1 maps parameters to parameters and 1- 11:E2 = p- 1; and 

D 

The following lemma shows that two parameterized tree patterns without redun
dancies and with the same number of nodes can only be equivalent if they are iso
morphic. 

Isomorphism Lemma. Consider two parameterized tree patterns Pi and P2 without 
redundancies, and with the same number of nodes. Then Pi and P2 are equivalent if 
and only if Pi and P2 are isomorphic. 

Proof. We only need to show the only-if direction. 
Since A and P2 are equivalent we know that the following exists by Corollary 1: 

1. a bijective answer set correspondence 8 : ~1 ---+ ~2; 

2. a bijective parameter correspondence p: E1 ---+ E2; 

3. a p--containment mapping Ji : (Hi, A)---+ (8(H1), P2); and 

4. a p- 1-containment mapping h : (<5(H1), P2) ---+ (H1, A), 

with H 1 a pure head for A. 
We also know that A and P2 have the same number of existential nodes since A 

and P2 have the same number of nodes and p and 8 are bijections. 
Hence to prove that P1 and P2 are isomorphic, we only need to show that: 

1. Ji maps existential nodes to existential nodes; and 

2. Ji 111 1 is a bijection. 

Thereto, it suffices to prove that Ji is surjective on the existential nodes of P2, 
because Ji is already a bijection from ~1 U E1 to ~ 2 U E2 . 

Assume that Ji 1111 is not surjective. Hence, there will be some existential nodes p E 
Il2 that are not in t he range of Ji. Note that these existential nodes p can never have 
descendants that are parameters or distinguished nodes since Ji is a homomorphism 
and b and p bijections. Now fix some p as high as possible in the tree. Then the 
entire subtree R rooted in p consists entirely of existential nodes, that are not in t he 
range of Ji. We will now show that this subtree Risa redundant subtree in P2. We 
then have a contradiction since we assume that P2 is redundancy free. 

Since the containment mappings f 1 and h exist, we know that in particular the 
following containment mappings will exist: 

1. g1 = fi, a p--containment mapping from (H1, A) to (<5(H1), P2 - R ); and 

2. g2 = hlP2 -R, a p-1-containment mapping from (8(H1), P2 - R) to (Hi , A), 
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with o and p as above. 
Let us now look at the following mappings h1 = Ji o g2 and h2 = g1 oh- By 

Lemma 1, h1 and h2 are identity-containment mappings. Using Corollary 1, we can 
now conclude that P2 and P2 - R are equivalent, and thus R is a redundant subtree. 

D 

From the above lemma it follows that Case B can only happen if Pi and P2 are 
actually isomorphic. In particular, Pi and P2 have the same underlying tree. 

So, in our algorithm, we need an efficient way to avoid isomorphic parameterized 
tree patterns based on the same tree T. 

Fortunately, there is a standard way to do this, by working with canonical forms 
of parameterized tree patterns. Consider a pair (II, E), as in Section 3.4. We can 
view this pair as a labeling of T: all nodes in II get the same generic label ':3 ' ; all 
nodes in E get 'a'; and all distinguished nodes get 'x'. We then observe that the 
patterns (II1 , E1) and (II2, E2) are isomorphic iff there is a tree isomorphism between 
the corresponding labeled versions of T that respects the labels. 

In order to represent each pair (II, E) uniquely up to isomorphism, we can rather 
straightforwardly refine the canonical ordering of the underlying unlabeled tree T, 
which we already have (Section 3.3), to take into account the node labels. Further
more, the classical linear-time algorithm to canonize a tree [3] generalizes straightfor
wardly to labeled trees. A nice review of these generalizations has been given by Chi, 
Yang and Muntz [9]. 

We will omit the details of the canonical form; in fact, there are several ways 
to realize it. All that is important is that we can check in linear time whether a 
pair is canonical; that a pair can be canonized in linear time; and that two pairs are 
isomorphic if and only if their canonical forms are identical. 

Example. We can refine the level sequence introduced in Section 3.3 to a refined level 
sequence for parameterized tree patterns P as follows: if the tree pattern P consists 
of n nodes, then the refined level sequence is now a sequence of n elements, where the 
ith element is the depth of the ith node in preorder in the pattern, followed by a 'd' 
if the node is distinguished; followed by a 'e' is the node is existential and followed 
by a 'p' if the node is a parameter. The canonical ordering of a parameterized tree 
pattern P, is then the ordering of P that yields the lexicographically maximal refined 
level sequence, among all orderings of P. Then the refined level sequences for the 
parameterized tree patterns in Figure 3. 7 are: 

(a) Ople2p2dld2p2d 

(b) Opld2d2ple2d2p 

and (a) is the canonical one. 

Armed by the canonical form, we are now in a position to describe how the algo
rithm of Section 3.4 must be modified to avoid equivalent parameterized tree patterns. 
First of all, we only work with patterns (II, E) in canonical form; the others are dis
missed. However, the problem then arises that a parent pattern (II' , E'), where we 
omit a variable from either II or E as described in Section 3.4, might be non-canonical. 
In that case the frequency table for (II', E') will not exist. We can solve this by can
onizing (II', E') to its canonical version (II", E"), and remembering the renaming of 
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X1 X1 X 1 

I \ I \ I \ 
0"1 X2 x2 X3 X2 X3 .. t .. t t .. 
:3 0"2 :3 0"1 0"1 :3 

(a) (b) (c) 

Figure 3.12: The tree pattern in (b) is a parent of a tree pattern in (a), and (c) is the 
canonical version of (b). 

variables this entails. The table PreqTabn" E" can then serve in place of PreqTabn, E', 

after we have applied the inverse renaming to its column headings. ' 
This does not completely solve the problem, however. Indeed the frequency table of 

(TI", E") might not yet have been computed. For example, consider t he parameterized 
tree pattern in Figure 3.12(a), and one of its parents in Figure 3.12(b). The canonical 
version of this parent, using the canonical ordering from the previous example, is 
shown in Figure 3.12(c). Using the current order for computing t he frequency tables 
as in Algorithm 1, the frequency table for the pattern in Figure 3.12(c) is not yet 
computed, when we want to compute the frequency for the pattern in Figure 3.12(a) . 

We can solve this by changing the order in which we compute the frequency 
tables. We work with increasing levels: in level i we compute the frequency tables 
for all pairs (TI, E), where # TI + #E = i. If we use this order, we are sure that when 
we compute the frequency table of a pair (TI, E), all frequency tables of pairs (TI', E') 
with (#II' + # E') <(#II + #E), have been computed. 

3.5.4 The Algorithm 

The final algorithm is now given in Algorithm 2. The outline for canonizing a param
eterized tree pattern in given in Function 3. 

3.5.5 Example Run 

In this Section we give an example run of the final algorithm in Algorithm 2. We use 
the same data graph G; tree T; and minimum support threshold, 3, as in the example 
run in Section 3.4.4. 

Note that there are two important differences between this run and the run in 
Section 3.4.4: 

1. duplicate work is avoided: equivalent t ree patterns are not generated; and 

2. the order for computing t he tree patterns is different in the sense that here, t he 
tree patterns are generated in levels, as explained in Section 3.5.3. 

The example run is then given in Table 3.2. 
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Algorithm 2 Levelwise search for frequent tree patterns with equivalence checking. 
1: for each unordered, rooted tree T do 
2: level := number of nodes of T 
3: i := 0 
4: Co:= {(0, 0)}; F := 0 
5: while i ::; level AND Ci =/- 0 do 
6: { Candidate evaluation} 
7: for each pattern (II, E) in Ci do 
8: if E = 0 then 
9: Compute FreqTabn,0 in SQL 

10: else 
11: if(#~ = 1 AND # II = 0) then 
12: CanTabn,"E := set of nodes of G 
13: else 
14: CanTabn,"E := ~ u-1(FreqTabn,, ,"E" ) I (II' , E') parent of (II, E) 
15: and (f, (II", E")) = Canonize(II' , E')} 
16: end if 
17: end if 
18: Compute FreqTabn 'E in SQL 
19: if (FreqTabn,"E =/- 0) then 
20: F = FU { (II, E)} 
21: end if 
22: end for 
23: { Candidate generation} 
24: Ci+1 = { (II, E) I all parents (II', E') of (II, E) are in F} 
25: {Equivalence Check} 
26: for each pattern (II, E) in Ci+1 do 
27: if ((II, E) contains a redundancy) then 
28: remove (II, E) from Ci+t 

29: else if ((II, E) is not canonical) then 
30: remove (II, E) from Ci+1 

31: end if 
32: end for 
33: i := i + 1 

34: end while 
35: end for 

Function 3 Canonize (II', E') based on T 

1: (Ile, Ee) := canonization of (II', E') based on T 
2: f := isomorphism from (Ile, Ee) to (II' , E') 
3: return (f, (Ile, Ee)) 
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Table 3.2: Example run of the inner loop with equivalence checking for the 
tree and data graph in F igure 3.6 

II E p CanTab FreqTab 
Level 0 

XI !~I 0 0 I \ 
Xz X3 

Leve l 1 

aI illJ 0 {xi} I \ nodes of G 
x2 X3 

a2 Freq 

X I 1 3 
0 {x2} I \ 2 3 

nodes of G 3 3 a2 X3 
4 3 

X I 
0 {x3} I \ Equivalent with (0, {x2}) 

x2 a3 

3 !~I {xI} 0 I\ 
x2 X3 

X I 
{x2} 0 I\ Redundancy 

3 X3 

XI 
{x3} 0 I\ Equivalent wit h ( { x2}, 0) 

X2 3 

Le ve l 2 

aI a2 Freq 
aI 0 1 3 

0 { xI, x2} I \ FreqTab0,{x1} 
0 2 3 

a2 X3 l><l FreqTab0,{x2} 0 3 3 

aI 
0 {xI,X3} I \ Eq uivalent with (0, {XI, x2}) 

X2 a a 

XI 
0 {x2, x3} I \ FreqTab0,{x2} 0 

a2 a3 l><l FreqTab0,{x3} 

3 
a2 Freq 

{xi} {x2} I\ FreqTab0, {x2} 1 3 
2 3 

a2 X3 l><l FreqTab{xi} ,0 3 3 
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3 
{x1} {xa} I\ Equivalent with ( {xi}, { x2}) 

X2 a3 

a1 
{x2} {xi} I\ Redundancy 

3 X3 

XI 
{x2} {x3} I \ Redundancy 

3 a3 

a1 
{xa} {xi} I\ Equivalent with ({x2},{x1}) 

x2 3 

X1 
{xa} {x2} I\ Equivalent with ( { x2}, { x3}) 

a2 3 

3 
{ x1, x2} 0 I\ Redundancy 

3 X3 

3 
{x1, xa} 0 I\. Equivalent with ({x1,x2},0) 

x2 3 

Xl 
{x2,x3} 0 I \ Redundancy 

3 3 

Level 3 

a1 
0 {x1,x2,x3} I \ Pruned 

a2 a3 

3 
{x i} {x2,x3} I\ Pruned 

a2 0"3 

cr1 
{x2} {x1 , x3} I \ P runed 

3 0"3 

0"1 
{x3} {x 1, x2} I\ Equivalent wit h ({x 2}, {x1,x3}) 

0"2 3 

3 
{x1, x2} {x3} I\ Pruned 

3 0"3 
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3 
{xi, x3} {x2} /\ Equivalent with ({x1,x2}, {x3}) 

a2 3 

a1 
{x2,X3} {x1} I \ Redundancy 

3 3 

3.6 Result Management: Pattern Database 

When the algorithm is terminated, its final output consists of a set of frequency tables 
for each tree T that was investigated. All frequency tables are kept in a relational 
database that we call the pattern database. The pattern database is an ideal platform 
for an interactive tool for browsing the frequent queries. We developed such a browser 
called Certhia and discuss it in Section 5.1. 

The pattern database is also an ideal platform for tree-query-association mining 
as will be described in Chapter 4. 



4 
Mining Tree-Query 
Associations 

In this Chapter we present an algorithm for mining confident tree-query associations 
in a large data graph. 

Recall from Section 2.3 that a parameterized association rule (pAR) is something 
of the form Q1 =}P Q2, with Q1 and Q2 parameterized tree queries, p : E1 - E2 a 
parameter correspondence, and Q2 ~P Q1. An instantiated association rule (iAR) is a 
pair (Q1 =}P Q2, a), with Q1 =}P Q2 a pAR and a: E2 - U a parameter assignment 
for Q1 =}P Q2. Also recall that the confidence of an iAR in a data graph G is defined 
as Freq(Q~2 )/Freq(Qf20P). 

The algorithm presented in this Chapter finds all iARs of the form ( Qieft =} P 

Qright, a) that are confident and frequent in a given data graph G for a given lhs 
Qieft· 

We start by showing that we do not need to tackle the problem in its full generality 
in Section 4.1. Next, we present our algorithm in Section 4.2, and discuss it in more 
detail in Section 4.3 and Section 4.4. We give an example run of our algorithm in 
Section 4.5. And finally, we discuss equivalent association rules in Section 4.6, and 
show how we can avoid generating them 

4.1 Problem Reduction 

In this Section we show that, without loss of generality, we can focus on the case where 
the given lhs tree query Q1eft is pure in the sense that was defined in Section 3.1. We 
will also show that this restriction can not be imposed on the rhs tree queries to be 
output. We also make a remark regarding "free constants" in the head of a tree query. 

47 
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Pure lhs's Assume that all possible variables (nodes of tree patterns) have been 
arranged in some fixed but arbitrary order. Recall then from Section 3.1 that we call 
a parameterized tree query Q = (H, P) pure when H consists of the enumeration in 
order and without repetitions of all distinguished variables of P. In particular H can 
not contain parameters. We call H the pure head for P. As an illustration, the lhs 
of rule (a) of Figure 4.1 is impure, while the lhs of rule (b) is pure. 

Consider the pARs in Figure 4.l(a) and Figure 4.l(b), and their instantiations in 
Figure 4.l(c) and Figure 4.l(d). The rules in Figure 4.l(a) and Figure 4.l(c) have an 
impure lhs. Ifwe apply the iARs in Figure 4.l(c) and Figure 4.l(d) to the data graph 
Gin Figure 2.2(a), both have the same frequency, namely 2, and the same confidence, 
namely 33%. Indeed, since the frequency of a tree query is in fact the frequency of 
its body, repetitions of distinguished variables in the head and the occurrence of 
parameters in the head do not change the frequency of a tree query. In fact the pAR 
in Figure 4.l(b) is the purification of the pAR in Figure 4.l(a): the repetition of the 
distinguished variable x2 is removed from the head, and the parameter cri is removed 
from the head. 

Hence, a pAR with an impure lhs can always be rewritten to an equivalent pAR 
with a pure lhs, in such a way that all instantiations of the pAR with the impure lhs 
correspond to instantiations of the pAR with pure lhs, with the same confidence and 
frequency. Indeed, take a legal pAR Qi =;,P Q2 with Qi not pure. We know that 
Qi 's head is mapped to Q2 's head by some p-containment mapping. Hence, we can 
purify Qi by removing all parameters and repetitions of distinguished variables from 
Qi 's head, sort the head by the order on the variables, and perform the corresponding 
actions on Q2 's head as prescribed by the p-containment mapping. 

We can conclude that it is sufficient to only consider pARs with pure lhs 's. The rhs, 
however, need not be pure; impure rhs's are in fact interesting, as we will demonstrate 
next. 

Impure rhs's Consider the pAR in F igure 4.2(a). The rhs is impure since X2 

appears twice in the head. The pAR expresses that a sufficient proportion of t he 
matchings of the lhs pattern, are also matchings of the rhs pattern, which is the same 
as the lhs pattern except t hat x2 is equal to x 3 . Since the pAR has no parameters, 
we can identify it with its instantiation by the empty parameter assignment. The 
confidence is then: 

m 

Lxdeg
2 

X 

where m is the number of edges, x ranges over the nodes in the graph, and deg x is 
the outdegree of (number of edges leaving) x. Since m = Lx deg x, we show by an 
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(x2,X2,X4,0"1 ) (x2 , X2, 0"4, o-i) (x2, X4) (x2, 0-4) 

0"1 0"1 0"1 0"1 

t => t t => t 
X2 X2 X2 X2 

I \ I \ I \ I \ 
0"2 X4 0"3 0"4 0"3 X4 0"3 0"4 

(a) (b) 

(x2, x2 , x4, 0) (x2 , x2, 4, 0) (x2, x4) (x2,4) 

0 0 0 0 
t => t t => t 

X2 X2 X2 X2 

JI \ JI \ JI \ ; \ 
8 X4 8 4 8 X4 8 4 

( c) {d) 

Figure 4.1: Rule (a) has a non-pure lhs. Rule (b) is the purification of rule (a), 
and expresses precisely the same information. Rules (c) and (d) are two example 
instantiations. 

(x1, x2, x3) (xi, x2, x2) 

X1 => X1 
I \ t 

X2 X3 X2 

(a) (b) 

~ ~ 
X1 => X1 .. t 
3 0"2 

(c) 

Figure 4.2: (a) and (b) are pARs with impure rhs. (c) is an ill-advised attempt to 
purify (b) on the rhs. 

(x1, x2) 
(x1,x2) 

X1 

X1 => t 
t X2 

x2 .. 
3 

Figure 4.3: A pAR with a pure rhs. 
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easy calculation that this confidence is much larger than 1/m: 

m _ Lxdegx 

Lx deg2 
X - Lx deg2 x 

> L x degx 
- (Lx degx)2 

1 

Lxdegx 
1 

m 

Hence, the sparser the graph (with the number of nodes remaining the same), the 
higher the confidence, and thus the pAR is interesting in that it tells us something 
about the sparsity of the graph. As an illustration, on the graph of Figure 2.2( a) the 
confidence is 0.4, but on the graph of Figure 2.2(b), it is 0.6. 

Also consider the pAR in Figure 4.2(b). Again the rhs is impure since its head 
contains a parameter. Create an iAR for this pAR with a= CT2 ,.... 8. With confidence 
c, this iAR then expresses that a fraction of c of all edges point to node 8, which again 
would be an interesting property of the graph. 

The knowledge expressed by the above two example pARs cannot be expressed 
using pARs with pure rhs's. To illustrate, the pAR of Figure 4.2(c) may at first 
seem equivalent (and has a pure rhs) to that of Figure 4.2(b). On second thought, 
however, it says nothing about the proportion of edges pointing to a2, but only about 
the proportion of nodes with an edge to a2. 

Of course, we are not implying that pARs with pure rhs's are uninteresting. But 
all they can express are statements about the proportion of matchings of t he lhs 
that can be specialized or extended to a matching of the rhs (another example is in 
Figure 4.3, which says something about the proportion of edges that can be extended); 
they cannot say anything about the proportion of matchings of t he lhs that satisfy 
certain equalities in the distinguished variables. 

Free Constants Most treatments of conjunctive database queries [8, 44, 1] allow 
arbitrary constants in the head. In our treatment, a constant can only appear in 
the head as the value of a parameter. Fortunately this is enough. We do not need 
to consider "free" constants, i.e., constants not corresponding to a parameter value. 
To see this, first consider the possibility of free constants in the lbs. The same 
argument we already gave to assume that the lhs is pure can be used to dismiss this 
possibility. Next consider a free constant in the rhs of an iAR (Q1 =>p Q2, a), with 
Q1 = (Hi, Pi) and Q2 = (H2, P2) and Q1 already pure. Then there must be a p
containment mapping f: Q1 ---t Q2, with f(H1) = H2, for the iAR to be legal. Hence, 
a constant a can only appear in H2 by one of the following two possibilities: 

l. a = a(f(a)) = a(p(a)), with c, E H1; or 

2. a = a(f(x)), with x a distinguished variable in H1. 

However, in both cases a is not actually free, being equal to a parameter value. 
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4.2 Overall Approach 

Given the inputs G, Q1eft = (H1eft, .Piert), minconf, and minsup, an outline of our 
algorithm for the association rule mining problem is that of four nested loops: 

1. Generate, incrementally, all possible trees of increasing sizes. A void trees that 
are isomorphic to previously generated ones. The height of the generated trees 
must be at least the height of the tree underlying .Pieft· (When enough trees 
have been generated, this loop can be terminated.) 

2. For each new generated tree T, generate all frequent instantiated tree patterns 
po. based on that tree. 

These first two loops are nothing but our algorithm for mining frequent tree queries 
as presented in Chapter 3. 

3. For each parameterized tree pattern P, generate all containment mappings f 
from .Piert to P. Here, a plain "containment mapping" is a p-containment map
ping, as defined in Section 2.2.1, for some p. Note that p then equals fl~ror,. 

4. For each f, generate the parameterized tree query Qright = (f(H1ert) , P), and 
all parameter assignments a such that (Qieft ==;,P Qright, a) is frequent, and the 
confidence exceeds minconf The generation of all these a's happens in a parallel 
fashion. 

This approach is complete, i.e., it will output everything that must be output. 
In proof, consider a legal, frequent and confident iAR (Q1eft =;, Po Qright , ao), with 
Qright = (Hright , Fright)- The tree T is the underlying tree of Prighti Fright is a tree 
pattern P in loop 2; the containment mapping f in loop 3 is the po-containment 
mapping that exists since the iAR is legal; Hright is f (H1ert) ; and a in loop 4 is ao. 

The reader may wonder whether loop 3 cannot be organized in a levelwise fashion. 
This is not obvious, however, since any two queries of the form ((!1(H1ert), P), a) and 
((h(H1ect), P), a) have exactly the same frequency, namely that of po. _ Loop 4, 
however, is levelwise because it is based on loop 2 which is levelwise. 

As already mentioned, these first two loops are nothing but our algorithm for 
mining frequent tree queries as presented in Chapter 3. As already explained in 
Section 3.6, in loop 2 we build up a structured database containing all frequency 
tables for all trees in loop 1. We call this database the pattern database. In fact these 
two loops should be regarded as a preprocessing step; once built up, this pattern 
database can be used to generate association rules. 

Hence, in practice an outline for our rule-mining algorithm is the following: 

1. Preprocessing step: Generate a pattern database D using the algorithm dis
cussed in Chapter 3. Halt this algorithm when enough patterns are generated. 

2. Consider, in a levelwise order, each parameterized tree pattern P that has fre
quent instantiations in D , and such that the height of the underlying tree of P 
is at least t he height of the underlying tree of .Pieft· 
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3. For each parameterized tree pattern P, generate all containment mappings f 
from .F\ert to P and let p be JI 1:1• 1 •• 

4. For each f , generate the parameterized tree query Q = (J(Hteft), P), and all 
parameter assignments a such that (Q1eft °*P Q, a) is frequent; and the confi
dence exceeds minconf The generation of all these a's happens in a parallel 
fashion. 

We present loops 3 and 4 in detail in Sections 4.3 and 4.4. In Section 4.6, we will 
show how our overall approach must be refined so t hat the generation of equivalent 
association rules is avoided. 

4.3 Generation of Containment Mappings 

In this Section, we discuss loop 3, the generation of all containment mappings f from 
P1eft to P. So, we need to solve the following problem: Given two parameterized tree 
patterns Pi and P2, find all containment mappings f from Pi to P2. 

Since the patterns are typically small, a naive algorithm suffices. For a node x1 
of Pi and a node x2 of P2, we say that x1 "matches" x2 if there is a containment 
mapping f from the subpattern of Pi rooted at x1 to the subpattern of P2 rooted 
at x2 such that f(x 1 ) = x2 . In a first phase, we determine for every node y of A 
separately whether the root r1 of Pi matches y. While doing so, we also determine 
for every other node x1 of Pi, and every node x2 below y at the same distance as 
x1 is from r 1, whether x1 matches x 2 . We store all these boolean values in a two
dimensional matrix Map. The function for filling in Map is given in Function 4. In 
line 2 of this function we mean by "x1 f-> x 2 is legal", that if x1 is a distinguished 
variable, then x 2 is a distinguished variable or a parameter; and if x1 is a parameter 
then x 2 is a parameter, as prescribed by t he definition of a p-containment mapping 
in Section 2.2.1. 

This first phase compares every possible pair (x1 , x2), with X1 a node in Pi and 
X2 a node in P2, at most once. Indeed, if x1 is at distance d from r1, then x1 will be 
compared to x 2 only during the matching of r 1 with the node y that is d steps above 
x2 in P2 (if existing). We thus have an O(n1 x n2) algorithm, where n1 (n2) is the 
number of nodes in Pi (A). 

In a second phase, we output all containment mappings. Initially, by a synchronous 
preorder traversal of P 1 and P2, we map each node of P1 to t he first matching node 
of P2 . We store this first mapping in a one-dimensional matrix Cm. In Function 5 an 
outline for finding the initial containment mapping is given. 

In each subsequent step, we look for the last node x1 (in preorder) of Pi, currently 
matched to some node x 2 , with the property that x 1 can also be matched to a right 
sibling x3 of x 2 , and now map x1 to the first such X3. The mappings of all nodes of 
Pi coming after x1 are reinitialized. Every such step takes time that is linear in n1 
and n2 . Of course, the total number of different containment mappings may well be 
exponential in n 1. An outline of this step is given in Function 6. 

The complete outline for the generation of all containment mappings is given in 
Function 7. 



Mining Tree-Query Associations 

Function 4 Function for filling in Map 
1: bool Filllnn(x1 E Pi, x2 E P2) 
2: if X1 f-t x2 is legal then 
3: Match := true; 
4: for each child c1 of x1 from left to right do 
5: MatchChild := false; 
6: for each child c2 of x2 from left to right do 
7: MatchChild := Match Child OR Fil1In(c1 , c2) 
8: end for 
9: Match := Match AND MatchChild; 

10: end for 
11: Map[x1,x2] := Match; 
12: return Match; 
13: else 
14: Map[x1, x2] := false; 
15: return false 
16: end if 

Function 5 Function for finding the initial containment mapping 
1: lnit(x1 E P1 ,x2 E P2) 
2: Cm[xi] := x2; 

3: for each child c1 of xi from left to right do 
4: for each child c2 of x2 from left to right do 
5: if Map[c1,c2] then 
6: Init(c1, c2) ; 
7: Break; 
8: end if 
fl: end for 

10: end for 
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Function 6 Function for finding the other containment mappings 

1: bool Step(x E P1) 
2: Found := false; 
3: for each child c from x from right to left do 
4: if Step(c) then 
5: Found:= true; 
6: Break; 
7: end if 
8: end for 
9: if Found then 

10: for each right-sibling z of c from left to right do 
11: P2 := Cm[x]; 
12: for each child c2 of p2 from left to right do 
13: if Map[z, c2] then 
14: lnit(z , c2) 
15: end if 
16: end for 
17: end for 
18: return true; 
19: else 
20: if x is the root of Pi then 
21: return false; 
22: else 
23: P2 := Cm[x]; 
24: for each right-sibling s of P2 from left to right do 
25: if Map[x, s] then 
26: lnit(x, s) 
27: Break; 
28: end if 
29: end for 
30: return true; 
31: e nd if 
32: end if 
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Function 7 Function for generating all containment mappings from P1 to P2 
1: GenerateCm(P1 , P 2 ) 

2: Initialize Map; 
3: r1 := root of P1; 
4: for each x2 E P2 in preorder do 
5: Fil1In(r1,x2); 
6: end for 
7: for each node x2 E P2 in preorder do 
8: if Map[r1 , x2] then 
9: Initialize Cm; 

10: Init(r1 , x2) 
11: repeat 
12: Output Cm; 
13: until not Step(r1) 
14: end if 
15: end for 
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We can thus easily generate all containment mappings f from Rert to P as required 
for loop 3 of our overall algorithm. Note, however, that in loop 4 these mappings are 
used to produce the head f (H1ert) of query Qright· For Qright to be a legal query, this 
head must contain all distinguished variables of P. Hence, we only pass to loop 4 
those f whose image contains all distinguished variables of P. 

4.4 Generation of Parameter Assignments 

In loop 4, our task is the following. Given a containment mapping f : .Rert _., 
P, let p = / l:E1• 1., and generate all parameter assignments a such that (Q1eft =?-p 

(f(H1ert), P), a) is frequent and confident in G. We show how this can be done in a 
parallel database-oriented fashion. 

Recall from Section 3.6 that the frequency tables for -Rert and P are available in 
a relational database. Our crucial observation is that we can compute precisely the 
required set of parameter assignments a, together with the frequency and confidence 
of the corresponding association rules, by a single relational algebra expression. This 
expression has the following form: 

1rplist U Freq7hbp ,froq > . f(FreqTabPi f t><le FreqTabp) 
FreqT(lb Ptoft. freq - mincon e t 

Here, 1r denotes projection, u denotes selection, and t><l denotes join. The join condi
tion B and the projection list plist are defined as follows. For B, we take the conjunc
tion: 

I\ FreqTabp
10

r, .a = FreqTabp.p(a) 
11E :E1eft 

Furthermore, plist consists of all attributes -Reft.aleft, with O"left E I:1efti all attributes 
P.a, with a E I:; together with the attributes FreqTabp.freq and FreqTabp.freq/ 

FreqTab P1oft .freq. 
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Referring back to our overall algorithm (Section 4.2), we thus generate, for each 
pattern P from loop 2 and each containment mapping f in loop 3, all association 
rules with the given Q1eft as lhs in parallel, by one relational database query (which 
can be implemented by a simple SQL select-statement). 

Example. Consider Q 1eft and P = (IT, E) as shown in Figures 4.4(a) and 4.4(b). We 
have E1eft = {x1, x4} and IT1eft = {x3, X6 }, and E = {xi, x4, xs} and IT = {x3}. Take 
the following containment mapping f from F\ert to P: 

f 

a1 0-1 

x2 X2 

:33 :3 
a4 a4 
X5 X2 

:36 :3 
X7 a4 

Then the rhs query Qright equals ((x2, x2, a4), P), and the relational algebra ex
pression for computing all parameter assignments and their corresponding frequencies 
and confidences looks as follows: 

1rplist Cf PreqTabp.frcq > . f(FreqTabp f ~(;I FreqTabp ) 
FrcqTab Plott . freq - mi.neon le t 

with plist equal to 

FreqTabPi.r •. ai , FreqTabPier•·a4, FreqTabp.a1, FreqTabp.a4 , FreqTabp .a5 , 

Freq Tab p.freq, Freq Tab p.freq/ FreqTab Piert .freq 

and 8 equal to 

FreqTabp.a1 = FreqTabPi.r,.a1 I\ FreqTabp.a4 = FreqTabp
10

r, .a4 

In SQL, we get: 

SELECT freqQleft.x1, freqQleft .x4, freqP.x1, freqP.x4, 
freqP.x5, freqP.freq, freqP.freq/freqQleft.freq 

FROM freqP, freqQleft 
WHERE freqQleft.x1= freqP.x1 AND freqQleft.x4=freqP.x4 

AND freqP.freq/freqQleft.freq >= minconf 

4.5 Example Run 

In this Section we give an example run of the algorithm discussed in Section 4. We 
use the same data graph G, tree T, and minimum support threshold, 3, as in the 
example run in Section 3.4.4 and Section 3.5.5. The fixed lhs t ree query is given in 
Figure 4.5(a), its corresponding frequency table in Figure 4.5(b), and the minimum 
confidence threshold is 30%. All frequent tree patterns based on T were already 
generated in t he example run of Section 3.5.5. 

The example run is t hen given in Table 4.1. 



Table 4.1: Example run of the association-rule-mining algorithm 

p Containment Mapping Qright 
Level 0 

(0,0) No Containment Mappings 
Leve l 1 

(0,{x1}) No Containment Mappings 
..... - -········ · · ··· ··· ·.i.. 

(x1,X3,X3) 
.F\eft.0"2 

X1 X1 1 
(0, {x2}) /r\~ ··· ···· ···/ ~ X1 2 

• • • • · : • • ••••• . .. ~:· :·:·~' ~: :~· • ••• ,I; ••••• ·..lrri,,. 

I \ 3 0"2 X3 X4 0"2 X3 
0"2 X3 4 

. . . · · ·· ·· ···· ·· · ····- • . .lo. 

(xi, cr2, x3) 
.F\eft -0"2 X1 . X1 

1 
(0,{x2}) /J.~---.·. ··:·:·:-,,,,::~·--/ .. ~ X1 2 

0"2 X3 X4 0"2 X3 I \ 3 
0"2 X3 4 

. .. -···· · ···· · ·· · · · · ···.i.. 
(x1, x3, cr2) 

.F\eft -0"2 X1 . X1 
1 

(0, {x2}) /l-~- -.·. ----:: :··· ·· ····/ .. ~ X1 2 
• ' . .. · . · · ···='··.lii.. · ·· ·.lri,. I \ 3 0"2 X3 X4 0"2 X3 

0"2 X3 4 

({x1},0) No containment mappings 
Level 2 

ConjTab 

P.cr2 Freq 
1 3 
2 3 
3 3 
4 3 

P.cr2 Freq 
1 3 
2 3 
3 3 
4 3 

P.cr2 Freq 
1 3 
2 3 
3 3 
4 3 

Conj 
33% 
33% 
33% 
60% 

Conj 
33% 
33% 
33% 
60% 

Conj 
33% 
33% 
33% 
60% 

~ s· s· 
oq 

~ 
(1) 

<p 
D 
i:: 

~ 
> 
~ 
0 
(') 

[ ... 
0 
:::s 
[/J 

C/l 
~ 



---- · -····· ·- -----------.l,,.. 
X1 0"1 (0-1, X3, X3) .F\eft .0-2 

(0, {xi, x2}) 0"1 1 /!~ ---- -- --··/ ~ -- - --_. __ -----·-::·:":,.,::~-·· - '·· · ···-.l,,.. 
I \ 2 0"2 X3 X4 0"2 X3 

3 0-2 X3 

_.- -- ---- - ···· · ·· ·· ··· - ,.i,. 
X1 0"1 (0-1, 0-2, x3) .F\ert-0"2 

(0, {xi, x2}) /J.~---.·-·-:-:·:;•,,::~···/. ... ~ 0"1 1 

I \ 2 0"2 X3 X4 0"2 X3 
3 0"2 X3 

_ .. -- ---·-··· ·· · · · ·· ···.i... 
x1 - 0-1 (0-1, X3, 0-2) .F\ert-0"2 

(0,{x1,x2}) 0-1 1 /!~ ............ / ~ .. · ·· .. ·.·. -..... :· : : ::1,,..lrrri.. ········..lrrri.. 
I \ 2 0"2 . X3 . X4 . 0"2 X3 

3 0-2 X3 

({x1},{x2}) No containment mappings 
Level 3 

({xi}, {x2,x3}) No containment mappings 

P.0-1 P.0-2 

0 1 
0 2 
0 3 

P.0-1 P.0-2 

0 1 
0 2 
0 3 

P.0-1 P.0-2 

0 1 
0 2 
0 3 

Freq 
3 
3 
3 

Freq 
3 
3 
3 

Freq 
3 
3 
3 

Conj 
33% 
33% 
33% 

Conj 
33% 
33% 
33% 

Conj 
33% 
33% 
33% 

Cl1 
00 

a= s· 
l 
1 
D 
~ 
"1 
'< 

> f/l 
f/l 
0 
(') 

[ 
s· 
= f/l 
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0"1 

I \ 
X2 X5 

t t 
:h :36 
t t 

0"4 X7 

(a) 
(b) 

Figure 4.4: Example Q1eft and P. 

4.6 Equivalent Association Rules 

In this Section, we make a number of modifications to the algorithm described so far, 
so as to avoid duplicate work on equivalent rules. 

Let us first look at an example of the duplicate work that the algorithm presented 
until now performs. Consider Q1eft, Q1 = (fi(H1ert), P), Q2 = (h(H1ert), P); and 
Q3 = (h(Hiert), P) in Figure 4.6 with Ji, h and h as follows: 

Ji h h 
X 1 U1 X1 U1 X1 U1 
X2 u2 x2 U3 X2 U2 

X3 ·u2 X3 U2 X3 U3 

X4 U3 X4 U2 X4 U3 

Furthermore, consider pARl: Q1eft => Q1; pAR2: Q1eft => Q2 and pAR3: Q1eft => Q3. 
The confidence of the first rule (pARl) equals the proportion of tuples from the 

answer set of Q1eft where the values for variables x2 and x3 are equal (in the rhs those 
equal variables are represented by variable u2, and the lhs variable X4 is represented 
by the rhs variable u3 ). Similarly, the confidence of the second rule (pAR2) equals 
the proportion of tuples from the answer set of Q 1eft where the values for t he vari
ables x3 and x4 are equal (again the equal lhs variables X3 and X4 are represented 
by the rhs variable u2 , and the lhs variable x2 is represented by the rhs variable 
u 3). Since, due to the symmetry in the lhs pattern, the columns for x2, X3 and X4 

are fully interchangeable in the answer set of Q1eft, both rules convey precisely the 
same information: their confidences are equal. The third rule (pAR3) is yet another 
representation of the same association, but now the equal lhs variables X3 and X4 are 
represented by the rhs variable u3. Again, it has the same confidence as pARl and 
pAR2. 

It is important to note that the above pARs only differ in the containment map
pings Ji, h and h that generate the rhs head. The algorithm discussed until now 
generates all these pARs, since we do not perform any check on the containment 
mappings generated in loop 3 of the overall approach (Section 4.2). 
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a2 Freq 
1 9 
2 9 
3 9 
4 5 
5 4 

(a) 

(b) 

Figure 4.5: The fixed lhs and its frequency table for the example run in Section 4.5. 

(a) Q1eft 

(u1, u3, u2, u2) 

U1 

I \ 

(c) Q2 

Figure 4.6: Queries to illustrate the duplicate work in the association-mining algo
rithm 

In this Section, motivated by the above example, we consider the general problem 
of when two pARs Q1eft =?p1 Q1 and Q1eft =?p2 Q2 are equivalent, where Q1 and 
Q2 are of the form (f1(H1eft),P) and (h(H1eft),P) for some common rhs pattern P, 
and containment mappings !1 and h from .Piert to P. (Thus P1 is Ji IEiett and P2 is 
hlE1cr, ·) Since such two pARs differ only in Ji and h we can actually focus on Ji 
andh 

It is important to remember for the rest of this Section that .Piert and P are 
arbitrary but fixed. Furthermore, without loss of generality we assume that the nodes 
of .Pieft and P are disjoint. This assumption greatly simplifies the representation of 
containment mappings by graphs, as we will see shortly. 

Equivalent Containment Mappings Recall from Section 3.5.3 that an isomor
phism from a parameterized tree pattern Pi to a parameterized tree pattern P2 is a 
homomorphism from Pi to P2 that is a bijection and that maps distinguished nodes 
to distinguished nodes, parameters to parameters and existential nodes to existential 
nodes. We now formalize equivalent containment mappings as follows: Two contain
ment mappings Ji and h are equivalent if the structures ( .Piert, P , Ji) and ( .Pieft, P, h) 
are isomorphic. Specifically, there must exist isomorphisms (actually automorphisms) 
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(a) 

(b) 

Figure 4.7: The graph representations of Ji and !J. 

g : E\eft -+ E\ert and h : P -+ P such that h o g = h o Ji. 
Consider for instance Ji and h from the example above, then h swaps u2 and u3, 

and g is the cyclic permutation u2 i--+ u3 i--+ u4 i--+ u2 . 

4.6.1 Testing for Equivalence 

To test for equivalent containment mappings efficient ly, we represent them using 
graphs. 

Graph representation of a containment mapping The graph representation 
of a containment mapping f : E\ert -+ P is a directed, edge- and vertex-colored 
graph, with set of vertices V1 = Vertices(E\ert) U Vertices(?) and set of edges E1 = 
Edges(E\ert) U Edges(P) U {(v, w) I J(v) = w} (with the understanding that the edges 
of E\ert and P go from parent to child). We use different colors for the edges of E\ert, 
the edges of P and the pairs in f, and we also use different colors for the distinguished 
nodes, the existential nodes and t he parameters. 

As an illustration, Figure 4. 7 shows the graph representation of Ji and h from 
our example in the introduction above. 

Graph Isomorphism Two graphs G1 = (Vi,E1) and G2 = (V2,E2) are colored 
isomorphic if there exists a bijection cp: Vi -+ Vi, extended to edges (v, w) E E1 in a 
natural way by cp( v, w) = ( cp( v), cp( w)), such that the colors of vertices and edges are 
preserved by cp, and such t hat (v, w) E E 1 {:} (cp(v), cp(w)) E E2 . 

The following Lemma shows t hen the utility of t he colored graph representation 
of containment mappings. 
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Lemma 6. Two containment mappings are equivalent if and only if their colored 
graph representations are isomo17Jhic. 

Proof Let us start with the only-if direction. Consider two equivalent containment 
mappings fi, h from neft to P. By definition of equivalent containment mappings, 
there exist isomorphisms g : neft -+ nert and h: P-+ P such that hog= ho Ji. Now 
take cp = g u h. Then, cp is clearly a bijection from Vh to Vh, and clearly preserves 
the colors of vertices and edges of G h. Let ( v, w) E E Ji. We show that cp is indeed 
an isomorphism from G h to G h. There are three possibilities: 

l. (v ,w) E Edges(nert). Note that then also g(v,w) E Edges(nert). We have: 

(v , w) E E1i # (v, w) E Edges(neft) 

(g is an automorphism in neft) 

# g(v, w) E Edges(neft) 

(cp(v,w) = g(v,w)) 

# g(v, w) E Eh 

(cp(v,w) E Eh) 

# cp(v, w) E Eh 

2. (v, w) E Edges(P). Note that then also h(v, w) E Edges(P ). We have: 

(v,w) E Eti # (v,w) E Edges(P) 

3. w = fi(v). We have: 

( h is an automorphism in P) 

# g(v, w) E Edges(P) 

(cp(v,w) = h(v,w)) 

# h(v,w) E Eh 

(cp(v,w) E Eh) 

#cp(v,w) EEh 

(v,w) E Eti # v = fi(w) 

# h(v) = h(fi(w)) 

# h(v) = h(g(w)) 

# cp(v) = h(cp(w)) 

# (cp(v), cp(w)) E Eh 

So we can conclude that G h and G h are indeed colored isomorphic. 
Let us now look at the if-direction. Let <p be the given isomorphism from G h to 

Gh· Now take 9 = cplvertices(P1eft) and h = cplvertices(P}· To prove that Ji and hare 
equivalent it suffices to show that: 

l. g is an isomorphism from nert to nert; 
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2. h is an isomorphism from P to P; and 

3. h O g = h O Ji. 

Items 1 and 2 hold because r.p preserves the colors. For 3, let v E Pieft· Since r.p is 
a graph isomorphism h(r.p(v)) = r.p(f1(v)). We then have: 

h(g(v)) = h(r.p(v)) 
= r.p(J1(v)) 

= h(J1(v)) 

D 

So, using graph isomorphism (to be precise, edge and vertex colored directed graph 
isomorphism) , we can test for equivalence. Since our patterns are not very large, fast 
heuristics for graph isomorphism can be used. We use the program Nauty [36, 35], 
which is considered as the fastest heuristic for graph isomorphism. Nauty is very 
efficient for small, dense random graphs [39]. Since our graph representations are 
typically small (no more than 20 vertices) and dense, this works well in our case. 

Theoretically this situation is not entirely satisfying, as graph isomorphism is not 
known to be efficiently (polynomial-time) solvable in general. We can show how
ever that equivalence of our containment mappings is really as hard as the general 
graph isomorphism problem. This hardness argument is presented in the following 
Section. A special case of the equivalence problem that is solvable in polynomial time 
is presented in Section 4.6.3 

4.6.2 Hardness Argument 

First recall from graph theory that a graph B = (V, E) is bipartite if V can be split 
in two disjoint parts, V = va U Vb with van Vb = 0, such that for each (v, w) EE 
then v E va and w E Vb. The vertices in va are called lhs vertices and those in Vi 
rhs vertices (lefthandside, righthandside). 

We first reduce the problem of bipartite graph isomorphism to equivalence of our 
containment mappings. Let B1 = (Vi, E1) and B2 = (Vi , E2) be bipartite graphs. 
We describe an efficient construction that produces from B1 and B2 two association 
rules (.Pieft, P, Ji) and (Pieft, P, h) such that B1 and B2 are isomorphic if and only 
if the association rules are equivalent. This construction reduces the bipartite graph 
isomorphism problem to equivalence of containment mappings. 

Without loss of generality, we assume that B1 and B2 have precisely the same 
multiset of outdegrees (for vertices of v1a and V2a), and precisely the same number of 
vertices in Vl and V}. Indeed, if these condit ions are not satisfied, then B1 and B2 
are never isomorphic and our reduction can output some arbitrary Pieft, P, Ji and h 
as long as (Piert, P, Ji) and (Pieft, P, h) are not equivalent. 

The construction in now as follows. By the premisses on B1 and B2, we may 
assume, without loss of generality, that Vt = v;a and Vl = VJ. This can be accom
plished by sorting the lhs vertices in each graph on their outdegrees an then numbering 
them arbitrarily (the rhs vertices can simply be numbered arbitrarily). 
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1. Construction of A.ert: This is a tree with root called Tteft and as children of t he 
root, all lhs vertices. Moreover, each lhs vertex v has its own children as follows: 
if v has outdegree o, then v has o children denoted by [v, 1], [v, 2], ... , [v, o]. 

2. Construction of P: This is a tree with root called rright, and exactly one child 
of the root, called c. Moreover, c has as children precisely all rhs vertices. 

3. Construction of Ji: We define f(rteft) := rright, and define fi(v) := c for each lhs 
vertex v. Now for each such v, and all outgoing edges (v,wi), (v,w2), ... ,(v,wo) 
in Bi, listed in some arbitrary order, we define Ji ([v, i]) := W i , for i = 1, 2, ... , o. 

4. The construction of h is analogous to that of Ji, but now we look at the 
outgoing edges in B2. 

The construction is illustrated in Figure 4.8 for two bipartite graphs Bi and B2. 
We now show the correctness of our reduction. 

Lemma 7. Bi and B2 are isomorphic if and only if (Pleft, P, Ji) and (Piett, P, h) are 
isomorphic. 

Proof For the only-if direction, let 7/; be an isomorphism from Bi to B2. We define 
an isomorphism 'f) from (A.ert, P, Ji) to (A.ert, P, h) as follows: 

• 'f)(r1ert) = Tteft, 'f)(rright) = rright and cp(c) = c; 

• 'f>(v) = 1/;(v), for any vertex of Bi; 

• for any lhs vertex v of outdegree o, and any i = 1, 2, ... , o, let w be the rhs vertex 
such that fi([v, i]) = w. Then we define 'f>([v, i]) := [7/;(v),j), where j is such 
that h(['l/;(v),j]) = 7/;(w). 

To verify that cp is indeed an isomorphism, we only check that u = Ji ( [ v, i]) {:} 7/;( u) = 
h( 7/;( [v, i])). If u = Ji ([v, i]) then ( v, u) is an edge in Bi and thus ( cp( v ), 'f>( u)) = 
(7/;(v) , 7/;(u)) is an edge in B2. Hence there exists a j such that, 'f>(u) = h([cp(v),j]) , 
or equivalent, 7/;(u) = h(['l/;(v),j]). By definition of 'f) we have cp( [v,i]) = [7/;(v),j] 
and thus cp(u) = h('fJ([v, i])) as desired. Conversely, suppose 'f>(u) = h('f>([v, i])). By 
definition of 'f>, we have cp([v,i]) = [7/;(v),j] for some unique j, and h(['l/;(v),j]) = 
7/J(Ji([v,i])) . Hence, 1/;(u) = cp(u) = 7/;(/i( [v,i])), and thus u = fi ([v, i]) as desired. 

For the if-direction, let 'f) be an isomorphism from (A.eft, P, Ji) to (A.eft , P, h)- We 
define an isomorphism 7/; from B 1 to B2 . Actually, 7/; is simple cp restricted to the 
vertices of Bi. Indeed, 

(v,w) E Ei {:}:Ji : fi([v,i]) = w 

{:} :li: h('f>([v,i])) = 'f)(w) 

{:} :lj: h(['f>(v),j]) = 'f)(w) 

{:} (cp(v), 'f>(w)) E E2 

D 
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X1 ~ Ql 

x,~y, 
P1 

Q2 

Y2 P2 

X3 q3 

------Y3 
p3 

X4 q4 

Tright 

i 
C 

/t"' 
(c) P1eft (d) P 

···· ·· ····· ··· · ···· · ....... 
Tieft r right 

/.i.~~··· .......... ..... i . . . ........... ,• .· .• .. ~ 
, , ' ' , , , • • • ' ' : ." ,': .' .' l I 1, • • 

V 1 . V2 . . . V3 . V4 . . . . ·.lo.. C 

I\ 1.\ ............. ..1. ........ ·.·.········ /I"-. 
'• , ... , . : .. : • . .' -~::. ' .. •: -~ ." ;:.•,•:·::·:·!T~'f:';:;::*:•·~·,•, ·.·.'JI'.. .. ·*. ~ 

[vi, ll'[v1,2r[v2, lr[v2, 2J"lv3, lj"' · W1 ..... w2 · · W3 

(e) h 

(f) h 

Figure 4.8: Illustration of the construction of pARs from bipartite graphs. 
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We can already conclude from this reduction that equivalence of pARs is really 
as hard as isomorphism of bipartite directed graphs. The latter problem, however, 
is well known to be as hard as isomorphism of general directed graphs. Indeed, 
any directed graph G = (V, E) can be transformed into the bipartite directed graph 
B(G) := (VUE, {(v, (v, w)) I (v, w) E E} U {((v, w), w) I (v,w) E E} ), and it is 
easily verified that G1 and G2 are isomorphic if and only if B (G1) and B(G2) are 
isomorphic. 

So, we can now conclude that equivalence of our pARs is really as hard as the 
general graph isomorphism problem. But as we show next, we can still capture an 
important special case in polynomial time, so that the general graph isomorphism 
heuristics only have to be applied on instances not captured by t he special case. 

4.6.3 Polynomial Case 

The special efficient case is to check whether (.Fl.eft, P, Ji) and (.Fl.ert, P, h) are already 
isomorphic with g the identity, i.e., whether the structures (P, Ji) and (P, h) are 
already isomorphic. So, we look for an automorphism h of P such that h = ho Ji. 
This can be solved efficiently by a reduction to node-labeled tree isomorphism. As 
explained in Section 3.4, if we know the tree T underlying P, then Pis characterized 
by the pair (II,~), and thus (P, f) is characterized by (II,~,!). We can view this triple 
as a labelling ofT, as follows: We label every node y of P with a triple (brr, b'E, f- 1(y)), 
where brr is a bit that is 1 iff y E II; b'E is a bit that is defined likewise; and 1- 1 (y) 
is the set of nodes of .Fl.eft that are mapped by f to y. Then (P, Ji) and (P, h) are 
isomorphic if and only if the corresponding node-labeled trees are isomorphic, and 
the latter can be checked in linear time using canonical ordering [3, 9]. 

4.6.4 The Algorithm 

We are now in a position to describe how our general algorithm must be modified to 
avoid equivalent association rules. There is only extra checking to be done in loop 3 
(recall Sections 4.2 and 4.3). For each new containment mapping f from .Fl.eft to P, 
we canonize the corresponding node-labeled tree and we check if the canonical form 
is identical to an earlier generated canonical form; if so, f is dismissed. We can keep 
track of the canonical forms seen so far efficiently using a trie data structure. If the 
canonical form was not yet seen, we can either let f through to loop 4, if the presence 
of duplicates in the output is tolerable for the application at hand, or we can perform 
the colored graph isomorphism check of Section 4.6.1 with the containment mappings 
previously seen, to be absolutely sure that we will not generate a duplicate. 



5 
Experimental Results 

The algorithms presented in the previous chapters suggest a database-oriented imple
mentation in SQL. Hence, we implemented both algorithms in c++ with embedded 
SQL, and we used DB2 UDB v8.2 as the relational database system. In this Chapter, 
we give results of the experiments performed with this prototype implementation. 
In Section 5.2 we give results of some smaller experiments we performed on random 
and real-life datasets, and in Section 5.3 we give results of a larger experiment using 
real-life data from Ecology. In this last Section, we also give some tips on how our 
prototype implementation can be used for real-life applications. 

Before we give the results of the experiments, we first introduce an interactive 
browsing tool called Certhia in Section 5.1. As already mentioned in Section 3.6, 
the pattern database, that is the result of the tree-query-mining algorithm in Chap
ter 3, is an ideal platform for a tool for browsing the mined patterns, and generating 
association rules. 

5.1 Certhia: Pattern and Association Browsing 

In this Section we introduce an interactive tool, called Certhia, for browsing the 
frequent tree patterns, and generating association rules. 

As already noted in Section 3.6, the result of our tree query mining algorithm 
in Chapter 3 is a structured database, called a pattern database, containing all fre
quency tables for each tree T that was investigated. This pattern database is an ideal 
platform for an interactive tool for browsing the frequent queries. However, this pat
tern database is also an ideal platform for generating association rules as explained 
in Section 4.2, since the first two loops of the association-rule-mining algorithm are 
exactly our tree-query-mining algorithm. 

In a typical scenario for Certhia, the user draws a tree shape, marks some nodes 
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as existential, marks some others as parameters, instantiates some parameters by 
constants, but possibly also leaves some parameters open. The browser then returns, 
by consulting the appropriate frequency table in the database, all instantiations of 
the free parameters that make the pattern frequent, together with the frequency. The 
user can then select one of these instantiations, set a minconf value, and ask the 
browser to return all rhs's that form a confident association with the selected pure 
tree query as lhs. 

In another scenario the user lets the browser suggest some frequent tree patterns to 
choose from as an lhs. When the user connects the browser with a particular pattern 
database, the browser builds an index of all parameterized tree patterns present in 
the pattern database. Afterwards, the browser suggests frequent tree patterns to the 
user by letting him "scroll", for each tree, through all its parameterized tree patterns 
that have frequent instantiations. The user can then choose one of the suggested 
parameterized tree patterns, and ask the browser to return all frequent instantiations 
or to generate association rules with this tree pattern as lhs. 

Some screenshots of Certhia are given in Figure 5.1, Figure 5.2 and Figure 5.3. 

• In Figure 5.1, the user draws a tree, marks some nodes as existential, some 
others as parameters, instantiates some parameters with constants, and asks 
the browser to return all possible instantiations of the remaining parameters 
and the corresponding frequencies. 

• In Figure 5.2, the user asks the browser to return all association rules for a fixed 
lhs. The user selects a rhs in the dialogue box and asks the browser to return 
the instantiations and the corresponding confidences. 

• In Figure 5.3, the browser suggests some frequent tree patterns where the user 
can choose from. 

Efficiency The preprocessing step, i.e., the building up of the pattern database 
with frequent tree patterns, is of course a hugely intensive task. First because the 
large data graph must be accessed intensively, and secondly because the number of 
frequent patterns is huge. In Section 5.2.2 we show that this preprocessing step can be 
implemented with satisfactory performance. Also, in scientific discovery applications 
it is no problem, indeed typical, if a preprocessing step takes a few hours, as long as 
after that the interactive exploration of the found results can happen very fast. And 
indeed we found that the actual generation of association rules is very fast. This is 
also shown in Section 5.2.2. 

5.2 Smaller Experiments 

In this Section, we report on some experiments performed using our prototype imple
mentation applied to both real-life and synthetic datasets to show that our approach 
is indeed workable. 
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5.2.1 Real-Life Datasets 

We have worked with a food web, a protein interactions graph, and a citation graph. 
For each dataset we built up a pattern database using the following parameters: 

food web 
proteins 
citations 

#nodes 
154 

2114 
2500 

#edges k 
370 25 

4480 10 
350000 5 

size 
6 
5 
4 

As we set rather generous limits on the maximum size of trees, or on the minimum 
frequency threshold, each run took several hours. 

The food web [37] comprises 154 species that are all directly or indirectly de
pendent on the Scotch Broom (a kind of shrub). One of the patterns that was mined 
with frequency 176 is the following: 

This is really a rather arbitrary example, just to give an idea of the kind of complex 
patterns that can be mined. Note also that, thanks to the constant 20 appearing twice, 
this is really a non-tree shaped pattern: we could equally well draw both arrows to a 
single node labeled 20. 

While we were thus browsing through the results, we quickly noticed that the 
constant 20 actually occurs quite predominantly, in many different frequent patterns. 
This constant denotes the species Orthotylus adenocarpi, an omnivorous plant bug. 
To confirm our hypothesis that this species plays a central role in the food web, we 
asked for all association rules with the following left-hand side: 

(x1,x2) (x1,x2) 

X1 X I 

t • :l :l 
t t 
:l 20 
t t 
:l :l 
i i 

x2 X2 

Indeed, the rule shown above turned up with 89% confidence! For 89% of all pairs of 
species that are linked by a path of length four, Orthotylus adenocarpi is involved in 
between. 

Two other rules we discovered are: 
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(xi, X2, X3, X4, X5) (0, X2, X3, X4, X5) 

Xi 0 

f t 
X2 

45% 
X2 

f f 
X3 

=} 
X3 

f f 
X4 X4 

f f 
X5 X5 

(x i , X2, X3, X4, X5) 

(xi, x2, x3, x4, xs) 0 
Xi t 
f xi 

x2 
55% f 

f X2 

X3 
=} f 

f X3 

X4 f 
f X4 

X5 f 
X5 

Since 45% + 55% = 100%, these rules together say that each path of length 5 either 
starts in 0, or one beneath 0. This tells us that the depth of the food web equals 6. 
Constant O turns out to denote the Scotch Broom itself, which is the root of the food 
web. 

Another rule we mined, just to give a rather arbitrary example of t he kind of rules 
we find with our algorithm, is the following: 

(xi, x2, X3, X4, X5) (xi, X2, X4, X2, X5) 

Xi 
11% 

Xi 

I \ f 
X2 X4 

=} 
X2 

f f /~~ 
X3 X5 101 X4 X5 

The protein interaction graph (27] comprises molecular interactions (symmet
ric) among 1870 proteins occurring in the yeast Saccharomyces cerevisiae. In such 
interaction networks, typically a small number of highly connected nodes occurs. In
deed, we discovered the following association rule with 10% confidence, indicating 
that protein #224 is highly connected: 

We also found the following rule: 
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(x1 , X2) (x1, x2) 

X1 90% X1 

t t 
X2 

:::} 
X2 

t JI ~ 
746 746 376 

This rule expresses that almost all interactions that link to protein 7 46 also link to 
protein 376, which unveils a close relationship between these two proteins. 

The citation graph comes from the KDD cup 2003, and contains around 2500 
papers about high-energy physics taken from arXiv.org, with around 350 000 cross
references. One of the discovered patterns is the following, with frequency 1655, 
showing two papers that are frequently cited together (by 6% of all papers). 

X1 

/ ~ 
9711200 9802150 

One of the discovered rules is the following: 

(x1,X2) (x1,X2) 

X 1 
15% 

X1 

JI \ t 
:l x2 

:::} 
x2 

+ t 
:l 9503124 

This rule shows that paper 9503124 is an important paper. In 15% of all "non
trivial" citations (meaning that the citing paper cites at least one paper that also 
cites a paper), the cited paper cites 9503124. 

5.2.2 Performance 

While our prototype implementations are not tuned for performance, we still con
ducted some preliminary performance measurements, with encouraging results. T he 
experiments were performed on a Pentium IV (2.8GHz) architecture with 1GB of 
internal memory, running under Linux 2.6. 

We have used two types of synthetic datasets. 

Random Web graphs Naturally occurring graphs (as found in biology, sociology, 
or the WWW) have a number of typical characteristics, such as sparseness and a 
skewed degree distribution [38] . Various random graph models have been proposed 
in this respect, of which we have used the "copy model" for Web graphs [29, 5]. We 
use degree 5 and probability a= 10% to link to a random node (thus 90% to copy a 
link). 

On these graphs, we have measured the total running time of the tree query 
mining algorithm as a function of the size (number of edges) of the graph, where we 
mine up to tree size 5, with varying minimum frequency thresholds of 4, 10, and 25. 
The results, depicted in Figure 5.4, show that the performance of these runs is quite 
adequate. 
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Figure 5.4: Performance on Web graphs. 

Uniform random graphs We have also experimented with the well-known Erdos
Renyi random graphs, where one specifies a number n of nodes and gives each of the 
possible n2 edges a uniform probability (we used 10%) of actually belonging to the 
graph. In contrast to random Web graphs, these graphs are quite dense and uniform, 
and they serve well as a worst-case scenario to measure the performance of the tree
query-mining algorithm as a function of the number of discovered patterns, which will 
be huge. 

We have run on graphs with 47, 264, and 997 edges, with minimum frequency 
thresholds of 10 and 25. The results, depicted in Figure 5.5, show, first, that huge 
numbers of patterns are mined within a reasonable time, and second, that the over
head per discovered pattern is constant ( all six lines have the same slope) . 

On these uniform random graphs we also conducted some experiments to check the 
performance of the association-rule mining algorithm. We found the actual generation 
of association rules (i.e., loops 3 and 4, assuming that a pattern database is already 
build up) to be very fast. For instance, Figure 5.6 shows the performance of generating 
association rules for two different (absolute) values of minconf, against a pattern 
database built up for a random graph with 33 nodes and 113 edges, an absolute 
minsup of 25, and all trees up to size 7. We see that associations are generated with 
constant overhead, i.e., in linear-output t ime. The coefficient is larger for the larger 
minconf, because in this experiment we have counted instantiated rhs's, and per rhs 
query less instantiations satisfy t he confidence t hreshold for larger such thresholds. 



Experimental Results 

0 
(I) 

-; 1cr 
E 
;:: 

n20e47s10 --+-
n20e47s25 --*-

n5De264s10 ···llf · · 
n5De264s25 -·---0-···· 

n10De997s10 --+--
n10De997s25 ---0-·· 

75 

100 ~..__~~-~~ ........ ~-...._ ........ ~-~..__~~~~..__~ ........ __.-~~~-...___._. 
100 101 102 103 104 105 106 107 108 

#patterns 

Figure 5.5: Performance in terms of number of discovered patterns. 

Had we simply counted rhs's regardless of the number of confident instantiations, the 
two lines would have had the same slope. 

Performance issues One major performance issue that we have not addressed in 
the present study is that some of the SQL queries that are performed due to pattern 
generation take a very long time (in order of hours) to answer by the database system. 
This happens in those cases where the data graph is large (5000 edges or more) with 
many cycles, and the candidate patterns are large ( 6 nodes are more). Certainly, 
some SQL queries can be hand-optimized ( or replaced by a combination of simpler 
queries), to alleviate these performance problems, but we leave this issue to future 
research. 

5.3 Ecology Experiment 

In this Section we explain how our algorithms can be used to find interesting patterns 
and rules in a dataset from Ecology: the branch of Biology that is concerned with 
the relationships between organisms and their environment. The dataset we use here 
comes from the Animal Ecology research group of the University of Antwerp. It 
contains natal-dispersal data of a Great Tit population around Antwerp in Belgium. 
Natal dispersal is the movement an individual makes from its birth site to the place 
where it will reproduce. The dataset is discussed in more detail in Section 5.3.1. 
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Figure 5.6: Performance in terms of number of discovered rules. 

Since our algorithm requires a data graph as input, we need to construct an ap
propriate data graph for t he natal-dispersal data. In Section 5.3.2 we explain how we 
constructed a natal-dispersal data graph. When the data graph is constructed, we can 
run our tree-query-mining algorithm. After the algorit hm has produced a sufficiently 
large pattern database, we can use Certhia to browse for interesting patterns and to 
generate rules. In Section 5.3.3 we explain how to search for interesting patterns and 
we show some interesting patterns and rules we mined from the natal-dispersal data 
graph. 

5.3.1 Natal-Dispersal Dataset 

We use a dataset that contains natal dispersal data for a Great Tit population in a 
(study) area, called Boshoek, near Antwerp in Belgium [34]. Natal dispersal is the 
movement an individual makes from its birth site to the place where it will reproduce 
itself. For a Great Tit this is the movement it makes from the nest-box where it was 
born, to the nest-box where it will breed. Note that individuals only make one such 
dispersion in a life cycle. Natal-dispersal data is used to find correlations between 
environmental properties and dispersal behaviour. It is useful when studying species 
persistence and evolution. 

The considered dataset was collected between 1994 and 1999, by visiting nests, 
counting birds and ringing young birds. It contains 424 natal dispersions, and for 
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each dispersion we have the following information: 

• the year in which the dispersion was made; 

• the birth-nest-box number: number of the nest-box where the Great Tit is born; 

• the birth plot: plot where the birth nest-box is situated; 

• the breed-nest-box number: number of the nest-box where the Great Tit bred; 

• the breed plot: plot where the breed-nest-box is situated; 

• the identifier of the Great Tit who made the dispersion; and 

• the sex of the Great Tit who made the dispersion. 

A plot is a fragment of forest in the study area Boshoek. Boshoek is divided in 13 
different plots. The combination of a nest-box number and its plot form an unique 
identifier for a nest-box. 

We also have some extra information for each nest-box: 

• the plot where the nest-box is situated; 

• the kind of wood in the surroundings of the nest-box; 

• the success rate: number of young ones that left the nest-box divided by the 
years the nest-box was used; 

• the occupancy: number of years the nest-box was used divided by the number 
of years the nest-box was studied; and 

• the parasite rate: number of birds in the nest-box with parasites divided by the 
number of checked birds for this nest-box. 

In F igure 5. 7 an illustration of the input dataset is given. 
In the next Section we describe how we construct a data graph from this dataset. 

5.3.2 Graph Construction 

For the natal-dispersal dataset discussed in the previous Section, we now need to 
construct an appropriate data graph. This construction seems like a straightforward 
t ask, however there are some things we need to consider: 

1. The tree-query mining algorithm presented in Chapter 3 expects as an input 
a directed graph. Recall from the definition on page 12, that a directed graph 
is a finite set of nodes, and a finite set of ordered pairs of nodes, called edges. 
Clearly, t his is the simplest notion of a directed graph, since edges and nodes are 
not labeled. However, this can have as a consequence that we need to encode 
edge and node labels in some cases. But as already mentioned in Section 1.1, 
node labels and edge labels can easily be simulated using constants. 
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year birth box birth plot breed box breed plot bird id sex 
1995 5 HM 4 HN 25V56330 male 
1995 87 KB 43 KB 25V56342 female 
1995 3 HN 6 HM 25V56351 female 
1994 76 KB 6 HN 34V72683 male 
1994 60 KB 8 vs 36Vl4001 female 

... 

nest-box plot wood success occupancy parasite 
5 HM EK 7.58 0.92 0.43 
6 HM EK 7 0.85 0.33 
3 HN EK 6.7 0.77 0.88 
4 HN EK 8.5 0.46 0.75 
6 HN EK 6.88 0.62 0.44 
43 KB EG 7.67 0.69 0.3 
60 KB EG 5.73 0.85 0.4 
76 KB EG 9.1 0.77 0.25 
87 KB EG 8 0.62 0.17 
8 vs EK 7.25 0.62 0 

... 

Figure 5. 7: Illustration of the natal dispersal dataset 

2. The constructed data graph must have the same semantics as the input dataset. 
Note that this does not necessarily mean that all information of the dataset must 
be contained in the data graph. As we will see later on, it is not always feasible 
to put all information of the dataset in the data graph due to efficiency reasons. 

3. While creating a data graph it is useful to think about the kind of patterns the 
owners of the dataset are interested in. Sometimes extra node and/ or edge labels 
can facilitate the browsing afterwards, or some information can be dismissed 
since we are not interested in it afterwards. 

4. A last point we need to consider is efficiency. As already mentioned in Sec
tion 5.2.2, some SQL queries in our implementation may take a very long time 
for large data graphs with many cycles. When creating the data graph it is 
important to avoid putting to much information in the graph. This because 
if we put more information in the graph, the graph will have more nodes and 
edges, hence it will be larger. In Chapter 6, we show how occurrences of cycles 
can affect efficiency, and hence need to be minimized. 

We are now ready to describe how we constructed a data graph for the natal
dispersal dataset. We start by describing the nodes: 

• nesting place: we create a unique node, called nesting place, for each nest
box, by combining its nest-box number with the plot where it is situated in, for 
instance HM_ 6; 
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• nest-box: a special node that is used to 'label' all nesting places; 

• bird: we create a node for each Great Tit that makes a dispersion by using its 
unique identifier provided by the input dataset; 

• plot: we create a node for each of the 13 different plots; 

• wood: we create a node for each of the 3 kinds of wood that occur in Boshoek; 

• sex: we create a node for male and one for female; 

• success: we divide all values for the success rate into 3 classes: low, medium, 
and high, and we create a node for each class; 

• occupancy: we also divide all values for the occupancy rate into 3 classes: low, 
medium, and high, and we create a node for each class; and 

• parasite: as with success and occupancy, we divide all values for the parasite 
rate into 3 classes: low, medium, and high, and we create a node for each class. 

The following edges are drawn in the data graph for the natal-dispersal dataset: 

• nesting place ---+ nest-box, for labeling the nesting places; 

• nesting place ---+ wood, if the surroundings of the nesting place have that kind 
of wood; 

• nesting place ---+ plot, if the nesting place is situated in that plot ; 

• nesting place ---+ success, if t he nesting place belongs to that success class; 

• nesting place ---+ occupancy, if the nesting place belongs to that occupancy 
class; 

• nesting place ---+ parasite, if the nesting place belongs to t hat parasite class; 

• nesting place ---+ bird, if t he bird is born in that nesting place; 

• bird ---+ nesting place, if the bird breeds in that nesting place; and 

• bird ---+ sex, if the bird has that sex. 

The construction of the data graph for the natal-dispersal dataset is rather st raight
forward. Almost all information from the input dataset is contained in the data graph 
except for the year when the dispersion happened. This was feasible since there are 
only 424 dispersions to consider. The owners of the data suggested to dismiss the 
year since they are mainly interested in finding correlations between properties of the 
nesting place where a bird is born and the nesting place where a bird has bred. The 
special node nest-box is used to label all nesting places, which facilitates browsing 
as you will see in Section 5.3.3 

In F igure 5.8 the data graph for the dataset in F igure 5.7 is given . 
The constructed natal-dispersal dat a graph is now ready to be input in t he tree

query-mining algorithm. It contains a total of 714 nodes and 2823 edges. We let 
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our algorithm from Chapter 3 generate a pattern database for tree patterns with a 
maximum of 7 nodes, and with a minimum support of 5. The minimum support is 
rather low, but it is sufficient since the information represented in the data graph is 
rather sparse. 

In the next Section we show how to browse for interesting patterns and rules in 
this data graph and we give some examples. 

5.3.3 Tree-Query Browsing 

In this Section we show how to search for interesting patterns and rules in real-life 
datasets, by giving example patterns and rules we mined from the natal-dispersal 
data graph. 

Let us start with some simple examples. Consider the following tree query we 
mined: 

(x) 
:31 
t 
X 

t 
:32 
't 

nest-box 

This tree query describes all Great Tits that make a natal dispersion. In fact, since 
each Great Tit makes only one such movement, it describes all natal dispersions 
present in our dataset. The frequency of this tree query, 424, is the number of Great 
Tits or natal dispersions present in our dataset. In this tree query we use one special 
"nest-box" node to ensure that :32 is matched with nesting places only. If we had not 
used this node, :32 could also be matched with a "success" -node, an "occupancy"-node, 
a "wood"-node, a "parasite" -node or a "plot"-node. 

Consider the following tree query, that describes for each pair of nesting places, 
the Great Tits that made a dispersion between them: 

{x) 

<71 

t 
X 

t 
<72 

't 
nest-box 

Our algorit hm did not find any pair of nesting places where between 5 or more Great 
Tits made a dispersion. The following tree query shows that almost all of t he 424 
dispersions are made between unique pairs of nesting places: 
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Figure 5.8: Dat a graph for t he example dataset in Figure 5.7. 
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X1 

t 
:::i 

! 
x2 

t 
nest-box 
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The frequency of this tree query is 416, hence 98% of the dispersions are made between 
an unique pair of nesting places. 

The following rules we mined, show us that 56% of the dispersions are made by 
male Great Tits and 44% by female Great Tits: 

(x) (x) 
X X 

t JI \ 
:::i :l male 
t t 

nest-box nest-box 

(x) (x) 
X X 

t / ~ 
:::i :::i female 
t t 

nest-box nest-box 

The patterns and rules mined above are just simple didactical examples to show 
what kind of patterns and rules can be found in the natal-dispersal data graph. In 
fact they only confirm that we constructed the data graph correctly. 

We consulted the owners of the dataset to find out in what kind of patterns and 
correlations (rules) they are interested. They are particularly interested in patterns 
and rules that express possible correlations between properties of the nesting places, 
such as success, occupancy and wood, and dispersal behaviour. They are also inter
ested in dispersal behaviour differences between male and female Great Tits. 

In the next Paragraphs we show how we can combine pattern browsing and rule 
generation with simple SQL queries on frequency and confidence tables to find possible 
correlations between the properties of the nesting places and the dispersal behaviour. 

Properties of nesting places versus dispersal behaviour 

Consider the following rule: 

(x) (x) 
X X 

t 
nest-box 

/ 'x 
nest-box a 
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Clearly, x represents a nesting place and Cl a property of a nesting place, such as 
medium success, low occupancy and high parasite; a bird; or the special nest-box
node. Hence the confidence table for this rule contains for each possible property, 
bird or the nest-box-node, the proportion of nesting places that have that particular 
property, the proportion of nesting places from where that bird leaves t he nest or 
the proportion of nesting places that are labeled as a nest-box ( clearly 100% of the 
nesting places). If Cl is mapped to a bird, this proportion typically will be very small, 
since each bird only leaves one nest. 

In the construction of the data graph we assumed that we know something about 
all properties for each nesting place (nil if a property was not checked for a particular 
nesting place). Now, we will use SQL to limit Cl to a particular property, such as 
success and occupancy. We can then see how the nesting places are distributed over 
the different values for this property. For instance, if we limit Cl to success, we get 
the following restricted version of the confidence table: 

Success Percentage 
nil 2% 
low 22% 

medium 52% 
high 24% 

So, we can conclude that 22% of the nesting places have a low success rate, 52% a 
medium success rate, 24% a high success rate and for 2% of the nesting places the 
success rate was not calculated. 

We did the same for occupancy, wood and parasite: 

Occupancy Percentage 
nil 2% 
low 17% 

medium 45% 
high 36% 

Wood Percentage 
EK 29% 
EG 61% 
BE 10% 

Parasite Percentage 
nil 2% 
low 16% 

medium 50% 
high 32% 

Now also consider the following rule, which says something about the properties 
of the nesting places where birds breed: 

(x) (x) 
X X 

t =} t 
3 3 
t / ~ 

nest-box nest-box (l 

Clearly, xis mapped to birds (equivalent with dispersions), 3 to nesting places and Cl 

to properties of nesting places, birds or the special nest-box-node. So, the confidence 
table of this rule says something about the proportion of dispersions that go to a 
nesting place with a particular property, t he proportion of dispersions that go to a 
nesting place from where a particular bird leaves the nest (typically very small) , or 
t he proportion of dispersions that go to a nesting place ( clearly, 100%). Again, using 
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SQL on the confidence table, we will limit a to a particular property, such as success. 
Hence, then we can say something about the distribution of the dispersions over the 
different properties of the nesting places where dispersions arrive. For instance, for 
the success rate this will be as follows: 

Success Percentage 
nil 2% 
low 18% 

medium 58% 
high 22% 

So, we can conclude that 18% of the dispersions go to a nesting place with a low 
success rate, 58% to a nesting place with a medium success rate, 22% to nesting 
places with a high success rate and for 2% nothing is known about the success rate 
of the breeding-nesting place. 

If there is no correlation between the properties of nesting places and the dispersal 
behaviour, dispersions and nesting places should be distributed equally over the dif
ferent success classes. However, we see that there are some minor differences: there 
are less dispersions to nesting places with a low success rate than expected, more 
dispersions to nesting places with a medium success rate t hen expected, and slightly 
less dispersions to nesting places with a high success rate than expected. In general, 
the differences are not that high to conclude that there is a clear correlation between 
the success rate of a nesting place and dispersions arriving at that nest ing place. 

We did the same for occupancy, wood and parasite. The restricted confidence 
tables then look as follows: 

Occupancy Percentage 
nil 2% 
low 11% 

medium 39% 
high 48% 

Wood Percentage 
EK 28% 
EG 62% 
BE 10% 

Parasite Percentage 
nil 1% 
low 13% 

medium 56% 
high 30% 

From the above restricted confidence tables we can conclude that there is no clear 
correlation between the parasite rate of a nesting place, the kind of wood surrounding 
the nesting place, and the dispersal behaviour. In contrast, there is a clear correlation 
between the occupancy of a nesting place, and the dispersal behaviour. If a nesting 
place has a low occupancy rate, less dispersions than expected will go to this nesting 
place. However, when the nesting place has a high occupancy rate, more dispersions 
than expected will go to this nesting place. 

Now we will check if there is a difference in dispersal behaviour between male and 
female Great Tits. We use the following rules for this: 

(x) (x) 

X X 

;I ~ ;I ~ 
:l male :l male 
t 

nest-box 
/~ 

nest-box a 
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(x) (x) 
X X 

/ ~ / ~ 
:3 female :3 female 
t 

nest-box 
/ ~ 

nest-box er 

The rules are exactly the same as above, only do we restrict ourselves to dispersions 
made by birds of a particular sex, male or female. As above, we use SQL to limit er to 
a particular property. The restricted confidence tables then look as follows for male 
dispersions: 

Success Percentage Occupancy Percentage 
nil 2% nil 2% 
low 17% low 10% 

medium 59% medium 39% 
high 22% high 49% 

Wood Percentage 
EK 27% 
EG 62% 
BE 11% 

Parasite Percentage 
nil 2% 
low 11% 

medium 57% 
high 30% 

and for female dispersions: 

Success Percentage Occupancy Percentage 
nil 1% nil 2% 
low 20% low 12% 

medium 56% medium 40% 
high 23% high 46% 

Wood Percentage 
EK 29% 
EG 61% 
BE 10% 

Parasite Percentage 
nil 0% 
low 16% 

medium 54% 
high 30% 

We can conclude from these restricted confidence tables that especially for male Great 
Tits there is a correlation between some properties of the nesting place where they 
breed, such as occupancy and parasites, and the dispersal behaviour. For female 
Great Tits this correlation is not so clear. 

The above rules are good examples of how we can combine pattern and rule mining 
with SQL to find interesting correlations. In the next Paragraph we will use SQL again 
to study if there is a correlation between properties of the nesting place where t he 
bird is born and properties of the nesting place where the bird breeds, and we want 
to know if it differs for both sexes. 
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Properties of the nesting place where the bird is born versus properties of 
the nesting place where the bird breeds. 

Consider the following rules: 

(x) 

(x) 

(x) 
:li 

I \ 
X 0-1 

JI \i.. 
=b male 
t 
a2 

(x) 
:11 

I \ 
X 0-1 

JI' \i.. 
:b female 
t 
a2 

If we limit a 1 to properties of nesting places using SQL, then the lhs of the above 
rules represents all dispersions made by a male or female Great Tit t hat start from 
a nesting place with property a 1. If we also limit a2 to properties of nesting places 
using SQL, then the rhs of the above rules represents a ll dispersions made by a male 
or female Great Tit that go from a nesting place with property a1 to a nesting place 
with property a 2 . The complete rules then tell us something about the proportion of 
dispersions, made by a male or a female Great Tit, that go from a nesting place with 
property a 1 , to a nesting place with property a2. 

Note that we do not need to use the special nest- box-node in these rules since we 
make sure, by adding a constant, namely the sex of the Great T it, t hat x can only 
be mapped to a Great Tit. Hence, :11 can only be a nesting place. In the rhs of the 
rules, :12 can only be a nesting place and not the sex of the Great Tit, since it has an 
outgoing edge. 

We limit in the confidence tables, of the above rules, a 1 and a2 to the properties 
occupancy, success, wood and parasite. As a result we get a restricted confidence 
table for the male rule and one for the female rule. A fragment of the restricted 
confidence table for the male-rule looks as follows: 



Experimental Results 87 

0-1 0-2 confidence 
low occupancy low success 30% 
low occupancy medium success 48% 
low occupancy high success 22% 

wood EG low occupancy 7% 
wood EG medium occupancy 44% 
wood EG high occupancy 47% 

low parasite medium occupancy 44% 
low parasite high occupancy 49% 

... 

For instance the tuple (low occupancy, low success, 30%), expresses that 30% 
of the male Great Tits that leave a nesting place with a low occupancy rate, make a 
dispersion to a nesting place with a low success-rate. 

Since the owners of the dataset are interested in significant differences in dispersal 
behaviour between male and female Great Tits, we combined the restricted confidence 
tables of the male rule and the female rule to create a new table that only gives those 
combinations of properties wherefore the difference in confidence between male and 
female Great Tits is larger than 10%. This table looks as follows: 

0-1 0-2 conf. male conf. female 
low occupancy medium occupancy 35% 45% 
low occupancy high occupancy 61% 27% 
low occupancy wood EG 52% 68% 
low occupancy low parasite 70% 45% 
low occupancy medium success 48% 59% 

medium occupancy medium parasite 60% 47% 
medium occupancy high success 17% 29% 

high occupancy low success 10% 22% 
low parasite medium success 63% 50% 
low parasite high success 19% 41% 
high parasite medium occupancy 37% 49% 
high parasite high occupancy 48% 36% 
low success wood EG 53% 66% 
low success medium parasite 58% 37% 
low success high parasite 30% 43% 
low success medium success 67% 54% 
high success medium parasite 64% 53% 

The most significant difference between male and female Great Tits is for dispersions 
leaving a nesting place with a low occupancy rate. We see that 61 % of the male Great 
Tits leaving a nesting place with a low occupancy rate make a dispersion to a nesting 
place with a high occupancy rate, while this is only 27% for the female Great Tits. 
Another significant difference exists for dispersions leaving a nesting place with a low 
parasite rate. We then see that 19% of the male Tits that leave a nesting place with 
a low parasite rate go to a nesting place with a high success rate, while this is 41 % 
for the female Tits. This could mean that male Tits are affected more by para.sites 
than female Tits. 
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This table can be useful for the Animal Ecology research group to find new hy
potheses about differences in dispersal behaviour between male and female Great 
Tits. 

5.3.4 Conclusion 

In this Section we showed how we can use our algorithms to find interesting rules and 
patterns in real-life data. An important first step is to analyze the dataset thoroughly 
with the owners and to create a data graph that represents the semantics of the 
dataset as good as possible. After the tree-query mining algorithm has generated 
enough results, our browser Certhia is used to search for interesting patterns and to 
generate interesting rules. We showed that SQL is a very useful tool to query the 
frequency tables and confidence tables for filtering the results. The found patterns 
and rules in Section 5.3.3 can be useful for the Animal Ecology research group to 
analyze their dataset, and to find new hypotheses about dispersal behaviour. 



6 
Conclusions and Future Work 

New applications of data mining, such as in biology, bioinformatics or sociology, are 
faced with large datasets structured as graphs. In this dissertation we introduced a 
novel class of tree-shaped patterns called tree queries, and we presented algorithms 
for mining tree queries and tree-query associations in a large data graph. 

Tree Queries In Chapter 2 we introduced tree queries, powerful tree-shaped pat
t erns, inspired by conjunctive database queries [17] . In comparison to the kind of 
patterns used by most other graph-mining approaches, our patterns can contain con
stants, and can contain existential nodes which are not counted when determining the 
frequency. Another important difference with other graph-mining approaches is, t hat 
in our setting an occurrence of a pattern in a data graph G, is any homomorphism 
from the pattern in G. In most other approaches, an occurrence of a pattern in G, 
is a subgraph isomorphism from the pattern in G. Since the subgraph isomorphism 
problem is known to be NP-complete [14], other graph-mining approaches try to min
imize the number of patterns wherefore the frequency must be computed, by using 
heuristics to estimate the frequency. Since our patterns are inspired by conjunctive 
database queries, we benefit fully from results from database t heory to compute the 
frequency of all our patterns exactly and efficiently. 

Tree-query-Mining Algorithm In Chapter 3 we presented an algorithm for min
ing tree queries in a large data graph. Basically the algorithm consists of two loops: 
an outer loop where we generate trees of increasing sizes, avoiding the generation 
of isomorphic ones; and an inner loop where we generate for each considered tree, 
all tree queries based on that tree. The presented algorithm is incremental in the 
number of nodes of the tree patterns, and we can stop the algorithm when it has 
run long enough, or when it has produced a sufficiently large pattern database. Note 
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however, that the algorithm is not levelwise in general. As we already mentioned in 
Section 3.2, due to the way we count the occurrences of a tree pattern, the frequency 
of a subgraph can be smaller than the frequency of the pattern itself. However we do 
work in a levelwise fashion for generating all tree queries based on a particular tree. 

In Chapter 3 we also defined the important notion of equivalent tree patterns, and 
we introduced (and proved the correctness of) useful techniques to carefully avoid 
the generation of equivalent tree patterns. Detecting equivalent tree patterns is very 
important since it prevents us from performing duplicate work, by avoiding that we 
compute frequencies that we already know. By using what is known from the theory 
of conjunctive queries and with our restriction to trees, we can efficiently check if 
tree patterns are equivalent. This is an improvement in comparison with the Warmr 
system [11], where equivalence can not be checked efficiently. 

A very important feature of the presented tree-query-mining algorithm is, that 
it suggests a database-oriented implementation. This turned out to be very useful 
for several reasons: (1) we do not need to move our data graph out of the database 
before we can start mining; (2) we use the database system to store the huge amount 
of discovered patterns in a structured manner, in a pattern databases; (3) we use SQL 
to compute the frequency of a large number of patterns in parallel. 

The pattern database is a very useful platform for browsing the found patterns 
and for generating association rules. Hence, in Chapter 5 we introduced an interactive 
tool, called Certhia, for browsing the patterns and generating association rules. 

While, using a database system has a lot of advantages, experiments showed that 
some of the SQL queries performed due to pattern generation take a very long time (in 
order of hours) to answer by the database system. This happens in those cases where 
the data graph is large (5000 edges or more) with many cycles, and the candidate 
patterns are large ( 6 nodes are more). Consider for instance the following tree pattern: 

X1 

~t~ 
X2 X3 X4 X5 X6 

The frequency of this tree pattern equals LxEG deg x 6 , where the sum is over all 
nodes x in the data graph G. Hence, even for rather small data graphs the frequency 
of this pattern will be huge. As an illustration, for the data graph in Figure 2.2(a) 
the frequency is 5020. 

The SQL query to compute the frequency of this tree pattern is a heavy join of 5 
times the graph table with itself. Clearly, if the graph has a lot of edges, this query 
will take a long time to compute. If the average degree of the nodes in the graph is 
high (a dense graph), the situation is even worse. 

Consider the same tree pattern where we replaced some distinguished variables by 
parameters: 

X 1 

~t~ 
U2 U3 U4 X5 X6 

To compute the candidacy table of this tree pattern, we have to join its parents fre
quency tables: FreqTab0,{x

2
,x

3
}, FreqTab0,{x2 ,x4 }, and FreqTabl/J,{x3 ,x4 }, as explained 
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Notations 

Notation Interpretation 
u set of data constants 
T ordered rooted tree 
G data graph 
p parameterized tree pattern 
TI set of existential nodes 
~ set of distinguished nodes 
:E set of parameters 
:3 existential node 
a parameter 
X distinguished node 
a parameter assignment 

po:, (P,a) instantiated tree pattern 
po:(G) {µJ6. : µ is a matching of po: in G} 
minsup the frequency threshold 

Q = (H,P) parameterized tree query with H the head and P the body 
Qo:, (Q,a) instantiated tree query 

Qo:(G) answer set of the instantiated tree query Qo: in G 
p parameter correspondence 

Q2 Cp Qi Q2 is p-contained in Qi 
freeze13(P) the freezing of a tree pattern P 

pAR parameterized association rule 
iAR instantiated association rule 

Qi =i>p Q2 pAR from Qi to Q2 
(Qi =i>p Q2,a) iAR from Qi to Q2 

minconf the confidence threshold 
Freq(Po:) the frequency of po: in G if G is understood 

(TI, :E) a parameterized tree pattern P based on a fixed tree T 
(IT, :E, a) an instantiated tree pattern P based on a fixed tree T 

CanTabn,E { a I p o: is a candidate instantiated tree pattern} 
FreqTabn r; { a I po: is a frequent instantiated tree pattern} 

0 answer set correspondence 
Pi =~ P2 Pi is ( o, p )-equivalent with A 
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{f o 8: f E P:f2 (G)} 
A and P2 are isomorphic 



Samenvatting 

Data mining is een nieuw onderzoeksgebied <lat de voorbije jaren veel aandacht heeft 
gekregen. Een gekend handboek [21] over data mining motiveert het ontstaan van dit 
nieuwe onderzoeksgebied als volgt: 

Grote technologische vooruitgang in het geautomatiseerd verzamelen en 
opslaan van gegevens heeft als gevolg <lat er gigantische verzamelingen ge
gevens ontstaan en blijven groeien. Deze verzamelingen kunnen veel ver
schillende soorten gegevens bevatten: transactiegegevens van supermark
ten; overheidsstatistieken; gedetailleerde gegevens van telefoongesprekken; 
gegevens over het gebruik van kredietkaarten; beelden van hemellichamen; 
moleculaire databases en medische databases. Geen wonder dat de inte
resse groeide om bruikbare en handelbare informatie uit deze gegevens te 
halen zodanig dat deze beter geanalyseerd kunnen worden. 

Data mining houdt zich bezig met het geautomatiseerd verwerken van grote hoeveel
heden gegevens tot bruikbare en handelbare informatie, die gebruikt kan worden door 
de eigenaars van de gegevens om deze beter te analyseren. 

In het begin werd data mining vooral toegepast op eerder eenvoudige verzame
lingen gegevens zoals bijvoorbeeld transactiegegevens van supermarkten. Recent is 
de interesse gegroeid om data mining toe te passen op meer complexe gegevens zoals 
gegevensstromen, grafen, bomen en XML-bestanden. 

In deze thesis concentreren we ons op gegevens die voorgesteld worden als een 
graaf. Grafen worden steeds belangrijker voor het modelleren van ingewikkelde struc
turen zoals elektrische netwerken, beelden, chemische componenten, protei:ne struc
turen, biologische netwerken, sociale netwerken, het World Wide Web, workflows en 
XML-bestanden. Vermits er een groeiende vraag is naar het analyseren van grote hoe
veelheden gegevens voorgesteld als een graaf, is Graph Mining een actief en belangrijk 
thema binnen data mining geworden. 

Van alle verschillende soorten graafpatronen, zijn frequente deelstructuren de meest 
eenvoudige patronen die ontdekt kunnen worden in een graaf of een collectie van gra
fen . Frequente deelstructuren zijn nuttig om verzamelingen grafen te onderscheiden 
van elkaar; grafen in klassen op te delen; grafen te clusteren en om de zoektocht naar 
gelijkaardige grafen in een collectie van grafen te vergemakkelijken. 

Er zijn veel verschillende thema's binnen graph mining zoals het clusteren van 
grafen; het opdelen van grafen in klassen en het zoeken naar vaak voorkomende deel-
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grafen, maar in deze thesis concentreren we ons op het zoeken naar boompatronen en 
associatieregels over deze patronen in een graaf. 

Het probleem van het ontginnen van patronen in gegevens voorgesteld als een 
graaf heeft veel aandacht gekregen de voorbije jaren, omdat het veel interessante 
toepassingen heeft in verschillende gebieden zoals biologie, de levenswetenschappen, 
het World Wide Web of de sociale wetenschappen. In deze t hesis stellen we een 
nieuwe soort van patronen voor, die we boomqueries noemen en associatieregels over 
deze boomqueries. We geven ook algoritmes voor het ontginnen van boomqueries en 
associatieregels over boomqueries in een grote ongelabelde gerichte graaf. 

De meeste resultaten uit deze thesis werden gepresenteerd op twee conferenties 
[16, 22]. 

Boomqueries zijn krachtige boompatronen die gei:nspireerd zijn door conjunctive 
database queries [1 7]. In vergelijking met de patronen die gebruikt worden in andere 
graph mining benaderingen, hebben onze patronen enkele speciale kenmerken: 

• De patronen kunnen "existentiele" knopen bevatten: elk voorkomen van het 
patroon moet een kopie hebben van dergelijke knoop, maar existentiele knopen 
worden niet geteld als we het aantal voorkomens van een patroon bepalen. 

• De patronen kunnen ook "geparameteriseerde" knopen, gelabeld met een con
stante (knoop identifier), bevatten: deze knopen moeten afgebeeld worden op 
specifieke knopen van de gegevensgraaf. 

• Een "voorkomen" van een patroon in een gegevensgraaf G is gedefinieerd als 
een homomorfisme van het patroon in G. Als we het aantal voorkomens van 
een patroon bepalen, zorgen we ervoor dat voorkomens die enkel verschillen in 
de afbeelding van de exist entiele knopen slechts een keer geteld worden. 

In vroeger werk over graph mining werden gelabelde knopen reeds beschouwd, 
maar dan alleen met niet-unieke labels. We tonen aan dat niet-unieke labels gemak
kelijk gesimuleerd kunnen warden door unieke labels (constanten), maar het is niet 
duidelijk hoe const anten gesimuleerd kunnen warden door niet-unieke labels. 

(x) 

0 
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Figure 6.1: Een voorbeeld van een boomquery. 

In Figuur 6.1 wordt een eenvoudig voorbeeld van een boomquery gegeven. Als we 
deze boomquery toepassen op een voedselnetwerk, een gegevensgraaf van organismen, 
waar er een pijl x -; y is, als y zich voedt met x, dan beschrijft deze boomquery alle 
organismen x, die strijden met organisme #8 om zich te voeden met een organisme, 
<lat zich wederom voedt met organisme # 0. Dit patroon bevat een existentiele knoop, 
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Figure 6.2: Voorbeeld van een associatieregel over boomqueries. 
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twee parameters, en een knoop waarvan we het aantal onderscheidbare voorkomens 
gaan tellen. 

In feite zijn boomqueries wat we kennen uit database onderzoek als conjunctive 
queries [8, 44, 1]: <lit zijn queries die we kunnen stellen aan de gegevensgraaf (opge
slaan als een tabel met twee kolommen) door alleen maar gebruik te maken van het 
kernfragment van SQL, waar we geen samengestelde of deelqueries gebruiken, maar 
enkel conjuncties van gelijkheden in de where-voorwaarden. Bijvoorbeeld, voor het 
patroon uit Figuur 6.1 zal de SQL-query op een tabel G (from, to) er als volgt uitzien: 

select distinct G3.to as x 
from G G1, G G2, G G3 
where G1.from=O and G1.to=G2.from 

and G2.to=8 and G3.from=G2.from 

In deze thesis introduceren we ook associatieregels over boomqueries. Door het 
zoeken naar boomquery-associaties kunnen we subtiele kenmerken van de gegevens
graaf ontdekken. Beschouw bijvoorbeeld de eenvoudige associatieregel in Figuur 6.2 
die we in een voedselnetwerk kunnen ontdekken. Als deze associatieregel een betrouw
baarheid c heeft, wil <lit zeggen <lat van alle organismen die niet aan de top van de 
voedselketen staan, er een fractie c minstens op diepte twee in de voedselketen zitten. 

De voorbeelden van een boomquery en een boomquery-associatie waren enkel di
dactische voorbeelden. In deze thesis worden er nog andere, meer ingewikkelde voor
beelden gegeven, onder andere boomqueries en boomquery-associaties die we ontdekt 
hebben in gegevens uit Ecologie. 

In deze thesis geven we algoritmes voor het ontginnen van boomqueries en boom
query-associaties in een grote gegevensgraaf. De algoritmes die we voorstellen, hebben 
de volgende belangrijke eigenschappen: 

1. Onze algoritmes behoren tot de groep van graph-mining algoritmes waar de 
input een enkele grote graaf is, en de opdracht er in bestaat om patronen te 
ontdekken die vaak genoeg voorkomen in deze grote graaf. Deze groep van 
graph-mining algorit mes noemt men de single-graaf categorie. Er is ook een 
tweede categorie van graph-mining algoritmes, waar de input bestaat uit een 
collectie van grafen, en de opdracht er in bestaat om patronen t e ontdekken die 
minstens een keer voorkomen in een voldoende aantal grafen. Deze categorie 
noemt men de transactie categorie. 

2. We beperken ons tot boompatronen. Boompatronen zijn reeds uitvoerig be
studeerd in de transactie cat egorie, maar ze hebben nog geen speciale aandacht 
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gekregen in de single-graaf categorie. Merk wel op dat we op geen enkele manier 
restricties leggen op onze gegevensgraaf. 

3. Het algoritme voor het ontginnen van boomqueries is incrementeel in het aantal 
knopen van de boom. Met andere woorden, ons algoritme beschouwt systema
tisch grotere bomen, en kan gestopt worden op elk tijdstip waarop we vinden dat 
het lang genoeg gelopen heeft, of als het voldoende resultaten opgeleverd heeft. 
Buiten de opslagruimte nodig voor de gevonden patronen, heeft ons algoritme 
geen opslagruimte nodig. Door te beperking tot bomen kunnen we efficient 
bomen genereren zonder duplicaten. 

4. Voor elke boom, genereren we alle conjunctive queries gebaseerd op die boom 
levelwise [33]. 

5. Net zoals in het klassieke data mining probleem waar er gezocht wordt naar asso
ciatieregels over verzamelingen items, worden onze associatieregels gegenereerd 
na het genereren van de vaak voorkomende patronen. Er is er geen toegang 
tot de originele gegevens meer nodig en we maken enkel gebruik van de reeds 
gevonden patronen. 

6. We gebruiken de theorie over conjunctive queries [8, 44, 1] om associat ieregels 
over boomqueries formeel te definieren op een correcte manier, en om ze correct 
te genereren. De conjunctive-query aanpak voor het zoeken van voorkomens 
van een patroon in de graaf, laat ons toe om efficient het aantal voorkomens 
van een patroon in een gegevensgraaf te bepalen. In benaderingen gebaseerd 
op deelgrafen is het bepalen van het aantal voorkomens van een patroon in een 
gegevensgraaf een NP-compleet probleem. 

7. We hebben een notie van equivalentie voor boomqueries en boomquery-associa
tieregels. Door gebruik te maken van resultaten uit de theorie over conjunc
tive queries, kunnen we efficient en nauwkeurig het genereren van equivalente 
boomqueries en boomquery-associatieregels vermijden. Door onze beperking 
tot bomen, kunnen we het bestaan van equivalenties en redundanties efficient 
controleren. 

8. Een laatste, maar zeker niet minder belangrijke eigenschap van onze algoritmes 
is dat ze heel natuurlijk een database-georienteerde implementatie in SQL sugge
reren. Dit is nuttig om verschillende redenen: (1) Het aantal ontdekte patronen 
kan best wel groot zijn. Het is belangrijk om al deze patronen beschikbaar te 
houden op een consistente en gestructureerde manier, zodanig dat ze gemak
kelijk doorzoekbaar zijn, en gebruikt kunnen worden voor het genereren van 
associatieregels. (2) We kunnen SQL gebruiken om het aantal voorkomens te 
t ellen van een groot aantal patronen in parallel. We doen dit door gebruik te 
maken van de query-optimalisaties waarover moderne relationele databasesys
t emen beschikken. (3) Het is niet meer nodig om onze gegevensgraaf uit de 
database te halen alvorens we kunnen beginnen met het ontginnen van patro
nen. In het klassieke data mining probleem, waar er gezocht wordt naar vaak 
voorkomende verzamelingen items, werd er reeds veel aandacht besteed aan 
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database-georienteerde implementaties [43, 40], maar in graph mining werd er 
nog niet veel aandacht aan besteed, buiten een recente uitzondering waar er een 
implementatie van het SUBDUE algoritme in SQL werd voorgesteld [7]. 

Ten slotte geven we in deze thesis ook resultaten van experimenten die we hebben 
uitgevoerd met de implementaties van onze algoritmes. We tonen dat beide algo
ritmes voldoende performant zijn, en we tonen hoe ze toegepast kunnen worden op 
wetenschappelijke gegevens om interessante patronen en associaties te ontdekken. 
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