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Introduction

1.1 Reproductive and developmental toxicity

Society has become increasingly concerned about the effects of several types of ex-
posure on reproduction and development of humans. In addition to the therapeutic
effects of a medicine, a patient can also experience adverse effects due to that drug.
Food additives and materials such as phthalic acid esters which are used extensively
as plasticizers for packing food and drinks, can also be considered as exposures and
hence, concern has been raised about their possible toxic effects. In chemical fac-
tories, people are exposed to solvents and other chemicals. Furthermore, due to
the environment, man is exposed to radiation and chemicals. This is illustrated
by recent discussions about combustion of waste in incinerators. One of the key
questions deals with the existence of a link between the concentration of certain
chemicals in the exhaust-gases of an incinerator and the occurrence of birth defects
in the neighbourhood of these plants.

Questions are raised about the relationship between environmental and other
exposures on the one hand and reproductive and developmental toxicity on the other
hand. More specifically, interest is in the effects of chemicals, radiation,... on
infertility of men and women, on pregnancy, on early pregnancy losses, on stillbirths,
on birth defects (e.g., types of malformation and low birth weight) and on postnatal
developmental complications.

Regulatory agencies, such as the U.S. Environmental Protection Agency (EPA)
and the Food and Drug Administration (FDA) stimulate reproductive and devel-

opmental toxicity research. One of the objectives is to understand the causes of
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these problems. Also, one wants to better protect people from exposures resulting
in increased risks. Besides EPA and FDA, there is also support for this type of
research from other organizations, such as NATO.

There are several strategies to investigate the implications of these exposures on
reproduction and development. For example, epidemiological studies can be used
in this respect. In contrast to animal experiments, there is no extrapolation needed
from animal data to human risk. In case of epidemiological studies focusing on
effects of exposure on developing fetuses, the outcomes of the fetuses in a particular
study can be considered as independent in most cases since a pregnant woman
has in general only one fetus. As a consequence, the analyses are simpler as in
the case of animal experiments, in which dams typically have multiple offspring.
However, reliable epidemiological information is often limited or even unavailable.
As a consequence, other types of studies are performed in order to have a better
understanding of the effects of environmental and other agents on reproduction and

development.

1.2 Animal toxicity experiments

Toxicity experiments on animals are alternatives of epidemiological studies on hu-
mans. Under some conditions, there is ethical justification to administer a dose of
some toxic agent to animals. One might opt for rodents (mice, rats,...) as test-
ing animals because of the large database in control animals regarding reproductive
performance and incidence of malformations (Lindstrom et al., 1990). Such labora-
tory experiments play an important role in testing and regulating substances with
potential danger to humans. The results of the animal studies can be extrapolated
to human beings for whom a safe dose is determined.

While the extrapolation from animal data to humans is always difficult, use
of animal data on reproduction and development raises some very relevant and
interesting questions. Furthermore, animal experiments have the big advantage
that there is a much better control of all kinds of factors which might influence the
outcomes.

Several experimental protocols are used in reproductive and developmental stud-
ies. Three test designs (Segments I, I and III) were established by the U.S. FDA
in 1966 to assess specific types of effects (Food and Drug Administration, 1966).
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Male and female fertility and general reproductive ability are evaluated in Segment
I designs. Segment II designs are suitable when interest lies in the effects of exposure
during the period of major organogenesis and structural development of fetuses. In
Segment III designs, the focus is on later effects and involves exposures from late
gestation through lactation.

This research deals with developmental toxicity studies (Price et al., 1985; George
et al., 1987; Price et al., 1987; Tyl et al., 1988; Lindstrom et al., 1990; Ryan,
1992) in which the emphasis is on assessing potential adverse effects of exposures
on developing fetuses. Hence, Segment II designs are of most importance here and
are used in the experiments considered in this thesis.

Rats, mice and occasionally rabbits are usually chosen as the animal model in
Segment II studies. Administration of the exposure is generally by the clinical or
environmental route(s) most closely mimicking human exposure. Timed-pregnant
animals (dams) are exposed during the critical period of major organogenesis (days
6—15 for mice and rats; 6-19 for rabbits) and sacrificed just prior to normal delivery.
At that time, the uterus is removed and the contents are thoroughly examined for
defects. A standard segment II study includes a control group and three or four
dosed groups, exposed to the test substance. About 20 to 30 pregnant dams are
randomized to the dose groups. Typical litter sizes, i.e., the number of live-born

offspring, for control animals range from 8 for rabbits, 12 for mice and 14 for rats.

1.3 Data structure of a developmental toxicity

study

Several types of data are collected in developmental toxicity studies. For each dam,
the number of implants as well as the dose which was administered to that dam,
is registered. Furthermore, there are a number of outcomes which are observed in
these experiments. Outcomes include the number of fetal deaths and resorptions
(very early deaths that are detectable at the time of maternal sacrifice as a small
mark on the uterine wall), the number of malformed fetuses according to several
types of malformation, weight,. ..

The outcomes of a developmental toxicity experiment as well as some notation,
are represented in Figure 1.1. Consider a developmental toxicity study involving

C pregnant dams, each one resulting in a cluster. The number of implants in the
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1th dam is denoted by m;. This number does not depend on the dose given to the
dam since dams are randomly assigned to a dose group and exposure to the toxic
agent occurs after mating. When sacrificing the dam near the end of the gestation
period, an implant is developed to a viable or a non-viable animal. The number
of viables in dam ¢ is represented by n;, while the remaining m; — n; = r; fetuses
are non-viable. Deaths during gestation can be classified into several subcategories,
including resorptions. However, in analyses of developmental toxicity experiments,
one usually does not make a distinction between a resorbed and a dead fetus. Hence,
in this research, they are collapsed into a “non-viable category”. The viable animals
are investigated according to their weight and malformations. There are a number
of malformation types, but usually, they are classified into three categories: exter-
nal, skeletal and visceral (Williams and Ryan, 1997). External malformations are
those that the teratologist can observe with the naked eye, i.e., missing limbs, cleft
palate,... Skeletal malformations are detected through specialized staining tech-
niques. Finally, visceral malformations are those affecting internal organs, such as
the heart, brain, lung and are detectable only after dissection. Typically, the mal-
formation outcomes are binary, i.e., either present or absent, or equivalently, either
a malformed or a healthy fetus according to that indicator. Here, the number of
malformed fetuses in dam 7 according to a specific malformation type, is represented
by z;. The malformation indicators can be collapsed into a single, binary outcome,
indicating if a fetus has at least one type of malformation. Such a collapsed outcome

is used e.g., when specific malformations are rare.

1.4 National Toxicology Program data

The developmental toxicity studies considered here, are conducted at the Research
Triangle Institute, which is under contract to the National Toxicology Program of
the U.S. (NTP data). These studies investigate the effects in mice of five chemicals:
ethylene glycol (Price et al., 1985), triethylene glycol dimethyl ether (George et al.,
1987), diethylene glycol dimethyl ether (Price et al., 1987), di(2-ethylhexyl)phthalate
(Tyl et al., 1988) and theophylline (Lindstrém et al., 1990). In all studies, one con-
trol and three or four active dose levels are included. These are standardized such
that the control dose level is zero and the highest level is one. When sacrificing the

dam, the fetal weight is recorded, as well as information about each fetus being dead
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dam ¢
implant 7 ce (# :my)

viable non-viable

A A

weight malformations death  resorption

malf. type

malformed not malformed

(# 1 2)

Figure 1.1: Data structure of a developmental toxicity study.
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or viable. Indicators for external, skeletal and visceral malformation are considered.
For each malformation type, one records if a fetus is malformed or healthy. It turns
out that several fetuses exhibit two or three of these kinds of malformation. A col-
lapsed, binary outcome indicating for every fetus if at least one type of malformation

is present, is also investigated here.

1.4.1 Ethylene glycol

Ethylene glycol (EG) is also called 1,2-ethanediol and can be represented by the
chemical formula HOCH,;CH,OH. 1t is a high-volume industrial chemical with
many applications. EG is used as an antifreeze in cooling and heating systems,
as one of the components of hydraulic brake fluids, as an ingredient of electrolytic
condensers and as a solvent in the paint and plastics industries. Furthermore, EG
is employed in the formulation of several types of inks, as a softening agent for
cellophane and as a stabilizer for soybean foam used to extinguish oil and gasoline
fires. Also, one uses EG in the synthesis of various chemical products, such as
plasticizers, synthetic {ibers and waxes (Windholz, 1983).

EG may represent little hazard to human health in normal industrial handling,
except possibly when used as an aerosol or at elevated temperatures. EG at ambient
temperatures has a low vapour pressure and is not very irritating to the eyes or
skin. However, accidental or intentional ingestion of antifreeze products, of which
approximately 95% is EG, is toxic and may result in death (Rowe, 1963; Price et
al., 1985).

In the EG study, Price et al. (1985) consider the dose levels 0, 750, 1500 and
3000 mg/kg/day. Table 1.1 represents the number of dams containing at least one
implant, as well as the number of dams having at least one viable fetus. These
frequencies are listed for each dose of EG and of the other four NTP toxic agents
under investigation. The distribution of the number of implants is given in Table
1.2 for each of these five chemicals. It is shown that clusters consisting of 10-15
implants occur frequently.

Figure 1.2 represents some of the data of this study. For each dose group, cu-
mulative relative frequencies of the number of clusters are plotted for the number
of implants in a cluster, the number of viable fetuses, the number of dead fetuses,
the number of abnormals (i.e., dead or malformed fetuses), the number of external,

skeletal and visceral malformations and the number of fetuses with at least one type
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Table 1.1: Number of dams with at least one implant and number of dams with at
least one viable fetus, by NTP study and by dose.

Exposure dose # dams with at  # dams with at
(mg/kg/day) least 1 implant least 1 viable fetus
EG 0 25 25
750 24 24
1500 23 22
3000 23 23
overall 95 94
TGDM 0 27 26
250 26 26
500 26 24
1000 28 26
overall 107 102
DYME 0 21 21
62.5 20 20
125 24 24
250 23 23
500 22 22
overall 110 110
DEHP 0 30 30
44 26 26
91 26 26
191 24 17
292 25 9
overall 131 108
THEO 0 26 25
282 26 25
372 33 29
396 23 17

overall 108 96
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Table 1.2: Frequency distribution of the number of implants, by NTP study.

Number of EG TGDM DYME DEHP THEO

implants

1 0 1 0 1 2
2 0 0 0 1 2
3 1 1 1 0 1
4 0 3 1 2 1
5 1 1 0 0 0
6 0 1 0 2 3
7 2 2 2 0 0
8 1 0 2 4 0
9 8 2 2 5 6
10 4 7 7 7 4
11 8 21 10 18 14
12 19 26 15 21 17
13 16 19 27 26 21
14 11 10 19 21 19
15 16 8 9 10 12
16 6 4 10 8

17 1 5 2 2
18 0 0 2

19 1 0 0 1 0

95 107 110 131 108
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of malformation.

1.4.2 Triethylene glycol dimethyl ether

Triethylene glycol dimethyl ether (TGDM) is also referred to as triglyme or tetraox-
adodecane. Its chemical formula is CH30(CH3),0(CH,),0(CHy),OCHs (Wind-
holz, 1983). TGDM is a member of the glycol ether class of industrial solvents.
These solvents are widely used in the manufacture of protective coatings (NIOSH,
1983).

Although field studies have not adequately evaluated the potential of glycol
ethers to produce human reproductive toxicity, some glycol ethers have been iden-
tified as reproductive toxicants in several mammalian species (Clapp, Zaebst and
Herrick, 1984; George et al., 1987).

The pregnant dams of the TGDM study are exposed to 0, 250, 500 or 1000
mg/kg/day (George et al., 1987). In Figure 1.3, some of the data of the TGDM

study are shown.

1.4.3 Diethylene glycol dimethyl ether

Other names for diethylene glycol dimethyl ether (DYME) are diglyme and bis(2-
methoxyethyl) ether. DYME has as chemical formula C H30(C H;),O(C Hy),OC Hy
(Windholz, 1983). Like TGDM, this chemical also belongs to the glycol ether class of
industrial solvents and is involved in the production of protective coatings (NIOSH,
1983).

Motivation for this developmental toxicity experiment is the same as for the
TGDM study.

Price et al. (1987) use the doses 0, 62.5, 125, 250 and 500 mg DYME /kg/day.
A representation of the data in the DYME study, is given in Figure 1.4.

1.4.4 Di(2-ethylhexyl)phthalate

Di(2-ethylhexyl)phthalate (DEHP) is also called octoil, dioctyl phthalate or 1,2-
benzenedicarboxylic acid bis(2-ethylhexyl) ester. It can be represented by Cyy H330,.
DEHP is used in vacuum pumps (Windholz, 1983). Furthermore, this ester as well as

other phthalic acid esters, are used extensively as plasticizers for numerous plastic
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Figure 1.4: Cumulative relative frequencies of the number of clusters representing
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devices made of polyvinyl chloride. DEHP provides the finished plastic products
with desirable flexibility and clarity (Shiota, Chou and Nishimura, 1980).

It has been well documented that small quantities of phthalic acid esters may
leak out of polyvinyl chloride plastic containers in the presence of food, milk, blood
or various solvents. Due to their ubiquitous distribution and presence in human and
animal tissues, considerable concern has developed as to the possible toxic effects of
the phthalic acid esters (e.g., Autian, 1973).

In the DEHP study, Tyl et al. (1988) consider the concentrations 0, 0.025, 0.05,
0.1 and 0.15%, corresponding to a DEHP consumption of 0, 44, 91, 191 and 292
mg/kg/day respectively. Some of the data of this study are shown in Figure 1.5.

1.4.5 Theophylline

Theophylline (THEO) has many other names, among others 1,3-dimethylxanthine,
theocin and 3,7-dihydro-1,3-dimethyl-1H-purine-2,6-dione. One can represent THEO
by C7; HgN,Oy (Windholz, 1983). THEO plays an important role in the management
of asthma, both as a prophylactic drug and in the treatment of prolonged attacks.
It is one of the drugs of choice in the treatment of asthma during pregnancy (e.g.,
Kayser and Cupit, 1978).

Evaluation of the potential for THEO to cause developmental toxicity is under-
taken in consideration of the widespread use of this chemical for the treatment of
asthma in pregnant women and also its presence in beverages such as coffee, tea and
chocolate (Lindstrom et al., 1990).

In the THEO experiment, Lindstrém et al. (1990) expose the dams to the
concentrations 0, 0.075, 0.15 and 0.2%, which correspond to a consumption of 0,
282, 372 and 396 mg THEO /kg/day respectively. Figure 1.6 represents some of the

data of this experiment.

1.5 Risk assessment

Risk assessment deals with safety issues and regulation of environmental and other
exposures with a potential for adverse human health effects. It investigates among
others the implications of possibly toxic agents on reproduction and development
via animal experiments. A number of topics can be considered in the area of risk

assessment.
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Figure 1.5: Cumulative relative frequencies of the number of clusters representing
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First, one can characterize the dose-response relationship, i.e., the dependence
of a particular outcome (the number of deaths, the risk of a malformed fetus,...)
on the dose which is administered to the dam. In Chapter 3 and 4, the focus is on
dose-response modelling.

Secondly, a critically important topic is quantitative risk assessment. One of its
objectives is to determine a safe dose of a toxic agent for humans. Quantitative risk
assessment can be based on the dose-response curve. A number of different routes
can be followed, thus leading to different approaches. This subject is discussed in
Chapter 5 and 6. Furthermore, quantitative risk assessment can be performed via

the NOAEL-safety factor approach, which is the topic of the following section.

1.6 The NOAEL-safety factor approach

Recently, regulatory agencies such as the Environmental Protection Agency (EPA)
and the Food and Drug Administration (FDA) were basing the determination of a
safe dose of an exposure on the No Observed Adverse Effect Level (NOAEL). The
assumption made here is that if the dose administered to a dam is below some value
(the threshold), then there will be no adverse effects on the fetuses of that dam
(Williams and Ryan, 1997). The NOAEL is defined as the experimental dose level
immediately below the lowest dose that produces a statistically or biologically sig-
nificant increase in an adverse effect in comparison with the control. An “acceptably
safe” daily dose for humans is then calculated by dividing the NOAEL by a safety
factor (commonly 100 or 1000). In this way, sensitive subgroups of the population
and extrapolation from animal experiments to human risk are taken into account.
This safe daily dose is called reference dose by the EPA and allowable daily intake
by the FDA.

Basing the determination of a safe dose on the NOAEL-safety factor approach,
suffers from a number of serious statistical drawbacks (e.g., Leisenring and Ryan,
1992). First, the NOAEL of a specific toxic agent for a specified adverse event,
depends very much on the experimental design. More specifically, results are highly
sensitive to the number of doses, their spacing and the sample size. In larger experi-
ments, the power to detect small differences is higher and as a consequence, this safe
dose procedure leads to lower NOAELs than in the case of smaller studies. Secondly,

this approach does not allow to calculate a measure of statistical variability. Also,
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the actual risks at the NOAEL or reference dose may vary considerably from one
developmental toxicity experiment to another. As a consequence, it is difficult to
classify environmental and other agents based on the NOAELs. Another disadvan-
tage of this approach is that the procedure is typically based on individual outcomes,
instead of taking the complete process of fetal development into account. As a con-
sequence, a NOAEL is calculated for every adverse event under investigation and
the minimum NOAEL is taken for regulatory purposes.

Due to the disadvantages of using the NOAEL-safety factor approach, there
is an increased interest in developing techniques of dose-response modelling when
assessing safe dose levels. Rather new regulatory guidelines focus on the use of
quantitative methods for risk assessment in analogy with cancer risk assessment
(Environmental Protection Agency, 1991). The approach based on dose-response
models, is more complicated as compared to the NOAEL procedure, but it benefits
from a number of important advantages. This risk assessment procedure allows to
add a measure of variability to the point estimation of a safe dose. Also, dose-
response modelling is flexible to incorporate special features of the structure of
developmental toxicity studies, such as hierarchical structure and multiple outcomes.
Furthermore, fitting dose-response models enables to incorporate not only dose, but

also duration, timing of exposure,. ..

1.7 Issues in risk assessment based on dose-
response modelling

Because of the above mentioned statistical disadvantages of using the NOAEL-safety
factor approach and because of the benefits of basing quantitative risk assessment on
dose-response modelling, the latter approach will be considered in the present work.
Dose-response modelling raises some highly relevant and interesting questions.
First, most species of laboratory animals are multiparous. The fetuses of a
particular pregnant dam are genetically related and are developing under analogous
conditions (e.g., the dose administered to the mother is the same). As a consequence,
fetal outcomes are in general associated. In the literature, this phenomenon is
called litter effect. Models that try to approximate the complex data generating
mechanism of a developmental toxicity study, have to take the litter effect into

account. The resulting data of developmental toxicity studies can be classified as
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repeated measures, more specifically as clustered data. Analysis of clustered data
must account for the extra variation in the responses of fetuses from the same
dam, as compared to binomial and multinomial distributions. In this thesis, the
clustered data are taken from the NTP studies and will illustrate the topics under
investigation.

Secondly, besides the litter effect induced by the clustering of offspring within
dams, dose-response modelling (and the NOAEL-safety factor approach) is com-
plicated by the hierarchical structure of developmental toxicity studies. Outcomes
include among others the number of fetal deaths and the number of malformed fe-
tuses among the viables according to several types of malformation. Continuous
outcomes (e.g., fetal weight) are also considered in developmental toxicity exper-
iments. The ultimate purpose is the modelling of the number of viable fetuses,
various malformation indicators, weight and clustering, as a function of exposure
variables. Some attempts have been made in the literature to model the number
of viable fetuses in a dam (or equivalently, the number of deaths) and the number
of malformations jointly. Prominent are models of the Dirichlet-multinomial type
(Chen and Kodell, 1989; Chen and Li, 1994; Zhu, Krewski and Ross, 1994). Ef-
forts have also been directed towards modelling of multivariate malformation types
(Lefkopoulou, Moore and Ryan, 1989; Geys, Molenberghs and Ryan, 1999) and to
model malformation (categorical) and weight (continuous) simultaneously (Catalano
and Ryan, 1992; Geys et al., 1999D).

In dose-response modelling, a multitude of subproblems can be considered. Em-
phasis can be put on describing the dose-response relationship, on estimating a dose
effect parameter, on testing the null hypothesis of no dose effect, on investigating the
implications of model misspecification on dose effect, on determining a safe dose,. ..
In the next section, an overview of the topics which are studied in this research, is

given.

1.8 Topics discussed in this thesis

A fundamental question is which dose-response model should be used. Different
types of models (marginal, random effects, conditional models) are available. An
overview of existing models is given in Chapter 2. Some simplifications made in this

research, as well as the implemented models, are also discussed in that chapter.
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Related to the choice of the model, one needs to decide which estimation method
should be taken. Estimation methods range from full likelihood to methods based
on quasi-likelihood and generalized estimation equations. In this thesis, parameters
are most often estimated using likelihood based methods. Besides point estimation,
the focus can also be on performing a test of no dose effect, which is a crucial item
in risk assessment. These two main issues are discussed in Chapter 3. In particular,
the effect of misspecifying the parametric response model on the assessment of dose
effect is investigated. When the model chosen to fit the data is inappropriate, several
problems can occur. A few questions that will be addressed in that chapter are:
Can a true dose effect be identified by a misspecified model and with which power?
Do different test procedures, likelihood ratio and Wald tests in particular, behave
similarly? Does this depend on the true values of the parameters of the underlying

model? What is the impact of the magnitude of the correlation parameter?

The focus of Chapter 4 is on the behaviour of the likelihood ratio test statistic
when a Bahadur model is fitted to the data. Bahadur (1961) proposed a now well-
known although not very frequently used model for correlated binary data. In its
general form, it combines marginal logits with pairwise and higher order correlations,
to describe the joint response distribution. In many applications, the third and
higher order correlations are set equal to zero. In that chapter, the implications of

this simplification on the likelihood ratio test statistic are investigated.

A main issue in risk assessment deals with the determination of a safe dose of the
toxic agent under investigation. This topic is addressed in Chapter 5 and 6. In the
literature, different definitions and approaches leading to a safe dose and its lower
bound, a so-called wirtually safe dose (VSD), have been introduced. Moreover, a
range of parametric dose-response models have been developed. The aim of Chapter
5 is to compare a number of VSDs and to study the effect of misspecifying the
probabilistic model.

An important question in safe dose determination is whether risk assessment
should be based on the fetus or the litter level. In Chapter 6, fetus and litter-
based risks that properly account for cluster size are defined and compared for two
models for clustered binary data. It is also studied how the hierarchical structure of
non-viable implants and viable but malformed offspring can be incorporated. Risks
based on a joint model for death and malformation are contrasted with risks based

on an adverse event defined as either death or malformation. Another item is how
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estimation of the cluster size distribution affects variance estimation.

Finally, some aspects of non-linear modelling are considered in Chapter 7. Rather
than modelling the parameter of interest (or a link function of that parameter) as
a linear function of dose, some power predictor is investigated. Under the null
hypothesis of no dose effect, the regression parameters are unidentifiable. It is
studied how Bayesian statistics can provide a procedure to test for no dose effect in
case of power models.

Most of the results in this thesis have been submitted for publication and were
published in statistical journals, as indicated in the reference list. Molenberghs,
Declerck and Aerts (1998), Declerck, Aerts and Molenberghs (1998) and Aerts, De-
clerck and Molenberghs (1997) deal with Chapter 3, 4 and 5 respectively. Declerck,
Molenberghs, Aerts and Ryan (1999) is accepted for publication and focuses on
the contents of Chapter 6. The issue discussed in Chapter 7 is a topic of current
research. Part of the results in this thesis have also been published in proceeding
papers (Molenberghs, Declerck and Aerts, 1995; Declerck, Molenberghs and Aerts,
1997) and in a keynote paper (Molenberghs et al., 1998).
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Models for clustered binary data

2.1 Some simplifications

The structure of developmental toxicity studies results in clustering of offspring
within dams and as a consequence, in clustered data. The simplifications made
in this research are discussed now. Notation of the number of implants, viables,
malformations,... was given in Section 1.3.

Although continuous and discrete outcomes are recorded in developmental toxic-
ity experiments, the analysis of fetal weight and possibly other continuous responses
is not of primary interest in this thesis. Here, the focus is on binary death and
malformation indicators.

In this type of studies, one generally considers multiple malformation indices. For
example, external, skeletal and visceral malformations are examined in the NTP ex-
periments. Here, malformation is analysed univariately in the sense that each type
of malformation is modelled separately. Furthermore, a collapsed malformation out-
come indicating if a fetus has at least one malformation is considered. Suppose Y;;
indicates whether the jth fetus in litter ¢ is affected (Y;; = 1) or not (Y;; = 0) accord-
ing to a particular type of malformation. Then, the number of such malformations

of that dam is

7= s
J=1

Covariates of interest are the dosing d; that was administered to dam i, as well as
the number of implants m; and and the number of viable fetuses n;.

Furthermore, exchangeability is assumed, which is a natural assumption in this

kind of studies. This implies on the one hand that each fetus within a cluster has the

21



22 Chapter 2

same marginal adverse event probability. On the other hand, it implies that within
a cluster, the associations of any particular order are constant, i.e., the association
between any pair of fetuses is equal, as well as between any triplet, any quartet,... of
fetuses of the same dam.

Analysing data of the hierarchical structure expressed in Figure 1.1, one can opt
for collapsing the number of dead fetuses r; and the number of malformed fetuses z;
of a dam. Alternatively, a joint model for the number of deaths and for the number
of malformations can be fitted. The effect of dose d; on cluster ¢ with m; implants

can be assessed by modelling the following joint distribution:

S (i, zilmy, di) = f(rilmg, di) f(zi|ri, me, di) = f(rilmg, di) f(zi|ng, my, ds). (2.1)

Often, it will be reasonable to assume that f(z;|n;,m;,d;) = f(zi|n;,d;). This as-
sumption is made here. In cases where this is not acceptable, m; can be included in
the modelling strategy, such as in Catalano et al. (1993).

When both components of (2.1) are affected by dose, i.e., when the number of
deaths (or equivalently the litter size) and the number of malformations show a
dose effect, then the entire effect can be assessed by modelling both components.
However, under a correctly specified model and assuming that different parameters
describe these components, the likelihood factors into two parts that can be max-
imized separately. Even when the parameters are not disjoint, contemplating only
one component does not result in bias, but merely in efficiency loss. Therefore, it
is warranted, as a final simplification, to study malformation only, ignoring death.
The latter simplification is considered in this thesis, except in Chapter 6.

A concise overview of existing models for clustered binary data is given in the
following section. Some details of the models studied in this thesis, together with

information about their likelihood implementation, are discussed then.

2.2 Overview of models for clustered binary data

There are several ways to handle clustering. While dose-response modelling is rela-
tively straightforward in uncorrelated settings, it is less so in the clustered context.
Of course, one can ignore the clustering altogether by treating the littermates as if
they were independent. However, this will in general be a very strong assumption.
Also, the litter effect issue can be avoided by modelling the probability of an affected

cluster via e.g., a logistic regression model. Such models are generally too simplistic
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but there is a multitude of models which do consider clustering. Several likelihood
models for clustered binary data can be formulated, e.g., the beta-binomial model
(Skellam, 1948; Kleinman, 1973), the Bahadur model (Bahadur, 1961), the corre-
lated binomial models of Altham (1978), the double binomial model of Efron (1986),
the multivariate Dale model (Molenberghs and Lesaffre, 1994), the folded logistic
model of George and Bowman (1995) and the conditional exponential family model
of Molenberghs and Ryan (1999).

In random effects models, the intracluster correlation is assumed to arise from
natural heterogeneity in the parameters across litters. There are two routes to
introduce randomness into the model parameters. Stiratelli, Laird and Ware (1984)
assume the parameter vector to be normally distributed. Alternatively, Skellam
(1948) introduced the beta-binomial model, in which the adverse event probability
of any fetus of a particular cluster comes from a beta distribution. Hence, this model
can also be viewed as a random effects model.

Marginal, random effects and conditional models for multivariate correlated bi-
nary data are discussed in Diggle, Liang and Zeger (1994). A thorough review of
methods for the analysis of clustered binary data is given in Pendergast et al. (1996).

Due to the clustering that remains in the model, it is not obvious which model
would be preferable. In the present work, attention is restricted to a selection
of models for univariate clustered binary outcomes: the Bahadur model and the
George-Bowman model (marginal models), the beta-binomial model (a random ef-
fects model) and the conditional model of Molenberghs and Ryan (1999). Details
of these models are given in the following sections. As mentioned before, the es-
timation methods presented are likelihood based. Connections with second order

generalized estimating equations (Liang, Zeger and Qaqish, 1992) are mentioned in

Chapter 3.

2.3 The Bahadur model

The binary response Y;; indicates if fetus j of cluster 7 has the adverse event under
investigation. In order to be more specific, some type of malformation is considered
here. The marginal distribution of Y}; is Bernoulli with E(Y;;) = P(Y;; = 1) = 7y,
i.e., the probability that the fetus is affected according to the specified malformation

type.
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In order to describe the association between binary outcomes, the pairwise prob-
ability P(Y;; = 1,Y, = 1) = E(Y};Yix) = 7, has to be characterized. This “success
probability” of two fetuses of the same dam can be modelled in terms of the two
marginal probabilities 7;; and m;,, as well as an association parameter.

Dealing with binary responses, common choices for the association parameter are
the marginal odds ratio, the marginal correlation and the kappa coeflicient (Agresti,
1990).

The marginal odds ratio is given by

Tige(1 — o5 — T + Tijn)

(7Tij - Wijk)(ﬂik - Wijk) '

Vije =

Using the odds ratio, the joint malformation probability m;;, can be expressed in
terms of two marginal malformation probabilities and an odds ratio association

parameter, obtaining the expression of the bivariate Dale model (Dale, 1986):

Gijrp — [aizjk — A5 (Vg — 1)7Tij7Tik]1/2 i A1
ijk
Tijk — 2(¢z]k - 1) ’ )
T T ik if Y =1
Where aijk — 1 — (1 — ¢z]k)(ﬂz] + ﬂ—ik)~
The marginal correlation coefficient assumes the form

Tije — TijTik
Tig (1 — Tig)man (1 — 7 )|/

COH(YU,YM) = Pijk — [

In terms of this association parameter, the joint probability 7;;; can then be written
as
Tijk = TijTik + Pijr [7@‘]‘(1 - ﬂ—ij)ﬂ—ik(l - Wik)]l/Q-

Hence, given the marginal correlation coefficient p; . and the univariate probabilities
7;; and T, the pairwise probability 7;;, can easily be calculated. Other expressions
for the associations and the pairwise probabilities can be found in Cox (1972). Ba-
hadur (1961) and Cox (1972) consider the marginal correlation p;;; to measure the
association.

The first and second moments of the distribution have been specified. How-
ever, a likelihood-based approach requires the complete representation of the joint
probabilities of the vector of binary responses in each litter. The full joint distri-

bution f(y) of Y; = (Y,...,Y;,, )t is multinomial with a 2" probability vector.
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In this chapter, it is shown how the Bahadur, George-Bowman, beta-binomial and
conditional models put restrictions on the 2™ joint probabilities of Y;.

A model first suggested by Bahadur (1961) and later by Cox (1972), henceforth
called the Bahadur model, is described now. This model has been used by a few
authors in the context of toxicological experiments (Altham, 1978; Kupper and
Haseman, 1978). As a consequence, it is treated in this thesis as a representative
of the marginal family. The Bahadur model gives a closed form expression for the
joint distribution f(y). The association between binary responses is expressed in
terms of marginal malformation probabilities and correlation coeflicients of second,
third,... order.

Let

Y,

1 1 1 1
= =9 T and e — i Mg

J ¥i 9
(1 — ) (1 — i)

where y;; is an actual value of the binary response variable Y;;. Further, let p;;;, —
E(Q‘j&'k% Pijkl — E(gijgikgil)v ey Pil2.mg — E(6i16i2 .- 6zm)
Then, the general Bahadur model can be represented by f(y,) = fi(y,)c(y,),

where

H 7Ty” 1— 77” 1 Yi

and

c(y;) = 1+ Zpijkeijeik + Z Pijkl€ijCik€il + - -« T+ Pi12..;m; €162 - - - Cin,-
i<k j<k<l
Thus, the probability mass function is the product of the independence model f;(y;)
and the correction factor ¢(y,). The factor c(y,;) can be viewed as a model for
overdispersion.

As indicated in Section 2.1, the focus is on the special case of exchangeable
littermates. This implies on the one hand that each fetus within a litter has the same
malformation probability, ie., m; = m for j =1,...,n; and for i =1,...,C.
On the other hand, it implies that within a litter, the associations of a particular
order are constant, i.e., pix = pie) for 7 <k, piyu = pusy for j <k <I,...,
Pi12.m; = Pitny), With 2 = 1,...,C. Under exchangeability, the Bahadur model

reduces to

fl(yl) = 7'(':7'(1 _ 7-(—i)mfzi
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and

" % ng — 2

c(y) =10 pigy D

r=2 5=0 S r—S

(=LA, (2.2)

with A; = y/m; /(1 — ;). The probability mass function of Z;, the number of mal-

formations in cluster i, is given by

In addition setting all three- and higher-way correlations equal to zero, the prob-

ability mass function of Z; simplifies further to:

f(Zz) = f(Zz|7Tsz(2),nl) — <Zl)ﬂ_f¢(1 o ﬂ_i)mfzi

(2.3)
n; — % e zi V1 —m;

S ikt R P R

X |1+ pig)

This very tractable expression of the Bahadur probability mass function is ad-
vantageous over other representations, such as an odds ratio representation for which
no closed form solution for the joint distribution is possible. However, a drawback
is the fact that the correlation between two responses is highly constrained when
the higher order correlations are removed. Even when higher order parameters are
included, the parameter space of marginal parameters and correlations is known to
be of a very peculiar shape. Bahadur (1961) discusses restrictions on the correlation
parameters. The second order approximation in (2.3) is only useful if it is a probabil-
ity mass function. Bahadur indicates that the sum of the probabilities of all possible
outcomes is one. However, depending on the values of m; and p;), expression (2.3)
may fail to be nonnegative for some outcomes. The latter results in restrictions on
the parameter space which, in case of the second order approximation, are described
by Bahadur (1961). From these, it can be deduced that the lower bound for p;eo,
approaches zero as the cluster size increases. However, it is important to notice that
also the upper bound for this correlation parameter is constrained. Indeed, even
though it is one for clusters of size two, the upper bound varies between 1/(n; — 1)
and 2/(n; — 1) for larger clusters. Taking a (realistic) litter of size 12, the upper
bound is in the range (0.09;0.18). Kupper and Haseman (1978) present numerical
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values for the constraints on p;) for choices of 7; and n;. Restrictions for a specific
version where a third order association parameter is included as well, are studied
by Prentice (1988), while a more general situation is discussed in Chapter 4 of this
thesis.

The marginal parameters m; and p;) can be modelled using a composite link
function. Since Yj; is binary, the logistic link function for m; is a natural choice. In
principle, any link function, such as the probit link, the log-log link or the comple-
mentary log-log link, could be chosen. A convenient transformation of p;(,) is Fisher’s
z-transform. This leads to the following generalized linear regression relations

In({Z)

1—m;

1+pi2)
Il( 1=pi2) )

=n, = X3, (2.4)

where X; is a design matrix and 3 is a vector of unknown parameters. For example,

a linear marginal logit model and a constant association p;o) = p(a) implies:

Bo
1 d, 0
X; = and B=1| 8, |- (2.5)
0 0 1
Ba

Obviously, this model can be extended by changing the design matrix and the vec-
tor of regression parameters, such that the logit of 7; depends on dose via e.g., a
quadratic or a higher order polynomial function. Also, the association parameter
pi(2y can be modelled as some function of dose.

Denote the log-likelihood contribution of the ith cluster by £; = In f(2;|m;, peay, ;).
The maximum likelihood estimator ,B for B is defined as the solution to the score

equations U (B) = 0. The score function U (B) can be written as

U(8) = XU s (2.6)

where C' is the number of clusters in the dataset,

oni1 Oni2 1
T — 8771 _ om; om; _ wi(1—ms) 0
' 00, Oni1  Omia 0 2 ’
dpy 9 (1—p2))A+pr2)
o4,
P
;= = and
00, 9

3p(2)
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©, = (7, p2))', the set of natural parameters.

A Newton-Raphson algorithm is used to obtain the maximum likelihood estimates
,B. An estimate of the asymptotic covariance matrix of ,B is obtained from the

observed information matrix at maximum.

When including higher order correlations, implementing the score equations and
the observed information matrices becomes increasingly cumbersome. While the
functional form (2.6) does not change, the components T; and L; become fairly
complicated. Therefore, analytical expressions are only used up to the three-way
Bahadur model. For higher orders, the numerical optimizer OPTMUM of GAUSS
is employed. Fisher’s z transform is applied to all correlation parameters p;,y. The
design matrix X, is extended in a straightforward fashion. Unfortunately, fitting a
higher order Bahadur model, whether through numerical or analytical maximization,
is not straightforward, due to increasingly complex restrictions on the parameter

space.

Observing that in the studies considered, interest is restricted to the marginal
mean function and the pairwise association parameter, one can replace a full likeli-
hood approach by estimating equations where only the first two moments are mod-
elled and working assumptions are adopted about third and fourth order moments.
A thorough treatment is found in Liang, Zeger and Qaqish (1992). Obviously, an
important special form for these working assumptions is given by setting the higher
order parameters equal to zero, thereby avoiding the need for moment-based esti-
mation of nuisance parameters. Consistent point estimates are supplemented with
robust standard errors (following from the sandwich estimator), rather than with
purely model-based (or naive) standard errors. Often, point estimates differ only
slightly from their likelihood counterparts, while test statistics may change consid-

erably. This point will be illustrated in Chapter 3.

2.4 The George-Bowman model

Besides the Bahadur model, another marginal model is introduced here. George and
Bowman (1995) propose a model for the analysis of exchangeable binary data. The

probability mass function for the number of malformations Z; in litter ¢ consisting
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of n; viable fetuses, is presented as:

n;\ el n; — Z
f(Zi|)‘i,z7;7 )‘i,zﬁrlv ) )‘i,mvni) - <Z) Z (_1)l / Ai,zﬁrlv (2~7)
i/ =0

in which
P(}/ﬂ:l,}/lg:l,,}/lkil) 1f/<::1,,n“
Aig =
1 if £ =0.
As a consequence, the parameter \;;, can be interpreted as the probability that in
litter 7, all fetuses in a set of k exhibit the adverse event under consideration. The
mean of the number of malformed fetuses and the second order correlation between

two responses of the same litter can be expressed in terms of ); ;, parameters:

J

E(Zz) = ZE(YU) - ”iP(Yi' — 1) — ni)\i,l
=1

and
E(Y,;Yi) — BE(Yy) E(Yi)
E(YE) — (B(Y))?

Corr(Y;;,Yi) =

P(Yiy = 1,Yy = 1) = P(Vy; = DP(Yie = 1)
PV = 1)~ POV — 1P

)\i,2 - )\1‘2,1
Aia(1=Ain)
George and Bowman (1995) also give expressions for higher order moments of Z;
and for higher order correlations.

Under independence of the n; responses of litter 7,
)\i,k:P(}/il :1)"'P(}/ik:1):)‘f,1

and (2.7) can be written as:

s Ni—2¢ Ny — 2 ‘
f(Zip‘i,ZH )‘i,Z¢+17 R )‘i,mvni) - < l) Z (_1)£ l l )‘f,ll)‘f,l
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Hence, under independence, the George-Bowman model with parameters A; .., A; ..+1,
.., Ain; and n;, reduces to a binomial model with parameters n; and A, ;.
George and Bowman focus attention on the so-called folded logistic parameteri-

zation:

2
Nz, =
iit2(B) 1+ exp|[—X;Bln(z; + £+ 1))
where X; = (1,d;) and B = (0o, 54)". Hence, (2.8) can be rewritten as:

(2.8)

2

)\i,zHrZ(IB) - 1+ (Zz +/+ 1)*50*@1057;'

When the responses of a litter are independent, it has been shown that the “gen-
eral” George-Bowman model (2.7) reduces to the binomial model. However, it turns
out that the “specific” George-Bowman model with the folded logistic parameteri-
zation does not simplify to the binomial model in this case.

The maximum likelihood estimates of the George-Bowman model with this spe-
cific parameterization are found by the Newton-Raphson algorithm. George and
Bowman prove that X;8 < 0 is necessary and sufficient in order to have a valid

probability mass function. In this thesis, limited attention is payed to this model.

2.5 The beta-binomial model

Rather than modelling marginal functions directly, a popular approach is to as-
sume a random effects model in which each litter has a random parameter (vector).
Skellam (1948), Kleinman (1973) and Williams (1988) assume the malformation
probability P; of any fetus in litter ¢ to come from a beta distribution with mean
m; and conditional on P, the number of malformations Z; in the ¢th cluster follows
a binomial distribution. This leads to the well-known beta-binomial model. In a

litter of size n;, the probability mass function of Z; is expressed by

nz) B(mi(p, ' = 1) + 2z, (1 = m)(p; " = 1) +ny — )
Z; B(mi(p; ' = 1), A =m)(p; ' = 1)) 7

where B(.,.) denotes the beta function. The only association parameter of this model

(2.9)

Sz | 7, pis i) = <

is p;, which is the correlation between two binary responses of litter . The higher
order correlations of the beta-binomial model can be expressed as a function of the
mean malformation probability 7; and p;. The association in both the beta-binomial

and the Bahadur model is expressed by means of the intraclass correlation. It turns



Models for clustered binary data 31

out that both models have the same first and second moments. As a consequence,
the parameter p; of the beta-binomial model equals p;9) of the Bahadur model. The
parameters m; and p; of the beta-binomial model have a marginal interpretation
and therefore, they are the parameters in the derived marginal model as well. This
results in similarities between the beta-binomial and marginal models, such as the
Bahadur model.

It can be shown (Williams, 1975) that the contribution of the ith cluster to the

log-likelihood, 1n f(z;|m;, pi, ni) = 4;, can be written as

zi—1 ny—2z;—1 n;—1
TPi TP Py
éi: hl 7Ti+ + ln<1—7rl+ )— ln<1+ ),
ZE) < 1_Pi) ZE) L —p; 7;) 1_PE‘2 0)
1

with i = 1,...,C. It follows from (2.10) that if the association parameter p; equals

zero, then the beta-binomial model reduces to the logistic regression model.
Assuming the same generalized linear regression relations (2.4) and (2.5) for m;
and p;, the maximum likelihood estimator ,B is the solution to U(3) = 0 with the
score function for B defined as in (2.6).
Kupper and Haseman (1978) compare the Bahadur model to the beta-binomial
model. They conclude that the models perform similarly in three clustered data

experiments, whereas they both outperform the (naive) binomial model.

2.6 A conditional model

Molenberghs and Ryan (1999) propose a likelihood-based conditional model for mul-
tiple clustered binary outcome variables. This model is based on the multivariate
exponential family model as proposed by Cox (1972). Related work is done by
Fitzmaurice, Laird and Tosteson (1999). The conditional model of Molenberghs
and Ryan is described here for the special case of a univariate clustered outcome
and restricting the association to pairwise effects (analogous to the second order
approximation of the Bahadur model). The focus is again on exchangeability.

This conditional model is used in this thesis to describe several adverse events,
e.g., the number of fetal deaths I; of dam i. Molenberghs and Ryan consider Y;
to be equal to 1 if the jth fetus in cluster i exhibits the adverse event and -1
otherwise. This coding is preferred above the 1 and 0 coding, since it provides a

parameterization that more naturally leads to desirable properties when the roles of
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success and failure are reversed (Molenberghs and Ryan, 1999). They propose the

following joint density function of the vector of responses Y; = (Y1, ..., Yin )%
S lbi, o7 mi) = exp {%ﬁ Uit 95D YiYig — Af} ; (2.11)
Jj=1 J<j’

where A¥ is a constant such that (2.11) is a density. Representing the number of

dead fetuses in cluster i by R;, expression (2.11) can be rewritten as

f(yiwi*a fami) — exXp {%-*(27%' - mi) + Qf K?Zl) — 2r;m; + 27“1-2] - Af} . (2~12)

After absorbing the constant terms into the normalizing constant and after a simple

reparameterization (¢; = 21 and ¢; = 2¢}), one obtains from (2.12):

T (ysli, s,my) = exp {Wiry — giri(my; — 1) — Ay} (2.13)

From formula (2.13), the probability mass function of the number of fetal deaths

follows:

)

ot = (") exp tn = ounom =) = A} (219

Hence, the normalizing constant A; can be written as:

r;=0 'L

Ai=1In { Z <T1) exp {Wr; — @iri(m; — Tz)}} = A(s, i, m).

Based on (2.14), the conditional logit for a dead fetus given the number of deaths

in the group of remaining fetuses can be written as a linear function of v; and ¢;:
logit[P(fetus j dead | r; of the other fetuses also dead)| = ¥ — ¢;(m; — 2r; — 1),

where 5 = 1,...,m;. This implies that if the number of implants is odd, then the
parameter 1; equals the logit for a dead fetus given that one half of the remaining

fetuses are dead as well. Also, (2.14) results in
1 P(R; = my)
= —In[ —— 2. 2.15
v min<P(Ri0)) (2.15)

From (2.14) and (2.15), it follows that the parameter ¢; = 0 if and only if the
distribution of R; is symmetric around m; /2. Furthermore, it can be shown that the

parameter ¢; is one half of the log odds ratio for a pair of fetuses given the number
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of deaths in the remaining group of fetuses. Thus clearly, the parameters in the
model of Molenberghs and Ryan have a conditional interpretation.
A special case of the conditional model (2.14) is obtained when the association

parameter ¢; = 0:

)

%ln{lfiwi}.

Then, formula (2.16) can be reexpressed as

oy — (T2 eplo)

f(rilbs, my) = <T1) exp (i1 — Ay). (2.16)
Let

T 1—0111

my;
— i Ti(] — ; mi—ri
(n)%< ws)

Hence, if in the conditional model with parameters v;, ¢; and m;, the parameter ¢;
is set equal to zero, then this model reduces to the logistic regression model with

parameters m; and

1
Wy = —————————.
" Ltexp(—vy)
Furthermore, one notices from (2.14) that positive and negative values of ¢; corre-
spond to overdispersion and underdispersion respectively. Also, there are no restric-

tions on the parameter space of the conditional model, even in case of underdisper-
sion (Molenberghs and Ryan, 1999).

The parameters 9; and ¢; can be modelled as
U,
b;

with X; and 8 as in (2.5). Estimation of these model parameters can easily be

- legv

carried out using maximum likelihood techniques. Grouping the summary statistics
in
R;
—R;i(m; — R;)
the contribution of the ith cluster to the log-likelihood is given by ¢; = w!X;3 — A;,

W’i:

whence the score function becomes

UB) = Z:Xf(wz — BE(W3)).
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The expectation of R; /m;, the marginal death probability in a cluster of m; implants,

is clearly a (non-linear) function of m;:

Do T " exp { (0o + Byd;)r; — Bori(m; — 1) }

Ri - Ty
Dol my exp {(Bo + Bad;)r; — Bori(my — 1) }
L}

Methods similar to those of Cox and Wermuth (1994) could be invoked to develop
approximate expressions for the marginal means and odds ratios. Because the model
is conditional in nature, the marginal parameter (2.17) does not simplify in general.
As a consequence, the conditional model implies a natural dependence of 7; on the
number of implants, in contrast to marginal models. Furthermore, only when the
clustering parameters are equal to zero, the conditional model, the Bahadur model
and the beta-binomial model reduce to logistic regression. In Section 2.4, it has
been shown that the general expression of the George-Bowman model reduces to
the logistic regression model too if the fetuses of a cluster are independent. The
previous discussion implies that the parameters of the conditional model are not
directly comparable to their counterparts in the Bahadur, George-Bowman and
beta-binomial models. Molenberghs and Ryan (1999) consider simple linear models
of the form v, = 0y + B4d; and show that a score test provides a flexible way of
testing a broad class of hypotheses. This linear model will generally be too simple
in the context of dose-response modelling. So, one could consider instead quadratic
or power models (of which some issues are discussed in Chapter 7), which can still be
fitted using the methods described in Molenberghs and Ryan (1999). They devote
most attention to constant association models, i.e., ¢; = ¢. However, it is possible
to let the association depend on dose as well (Claeskens and Aerts, 1999; Geys,
Molenberghs and Ryan, 1999; Ryan and Molenberghs, 1999). More details about
model properties and inference of the conditional model can be found in Molenberghs

and Ryan (1999) and Ryan and Molenberghs (1999).

2.7 The logistic regression model

As indicated in the previous section, treating the littermates as being independent

is in general a very strong assumption. Nevertheless, the logistic regression model is
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considered in this thesis, enabling the comparison of the results obtained from the

binomial model and from models taking the clustering into account.



Chapter 3

Implications of misspecifying the
likelihood on dose effect
assessment

In this chapter, the effect of misspecifying the parametric response model on dose
effect estimation and hypothesis testing is investigated. When the model chosen
to fit the data is incorrect, several problems can occur. It is plausible that the
parameter in the incorrect model included to capture the effect of dose will fail to
do so or will do it only partly, resulting in an apparent reduced effect. On the other
hand, the dose parameter in the incorrect alternative model might capture not only
part of the true dose effect, but also other effects that were misspecified or omitted.
This implies that no clear prediction of the overall effect of misspecification can be
done and quantitative assessment is needed.

Assessment of dose effect is done on the one hand by estimating the effect of dose,
mainly via maximum likelihood techniques. On the other hand, the null hypothesis
of no dose effect is tested via likelihood ratio and Wald statistics. Other tests, such
as score tests, are not considered here.

Classical theoretical tools like bias computation and asymptotic efficiency calcu-
lations are less attractive since the models are not nested. As an alternative strategy,
the models described in Chapter 2 are compared by asymptotic calculations as sug-
gested by Rotnitzky and Wypij (1994). This technique is adapted here to compute
and compare the large sample (asymptotic) values of test statistics. The true model
is in turn chosen to be Bahadur, beta-binomial and conditional. In each case, the test
statistics are computed from the three models, thus including one correct and two

incorrect models. The results are reported in Section 3.1. To investigate whether the

37
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conclusions carry over to samples encountered in real applications, a small sample
simulation study is performed (Section 3.2). Emphasis is on rejection probabilities
of the null hypothesis of no dose effect for a range of dose parameters. Finally, in
Section 3.3, the results of real data analyses of the NTP data are examined for their
agreement with the findings of the simulated data. To supplement insight in the
restrictions of the parameter space of the Bahadur model, the GEE2 version of the
Bahadur model is added to the discussion. In order to investigate the characteristics

of the George-Bowman model, this marginal model is also fitted to the NTP data.

3.1 Asymptotic study

If the correct model is fitted to a dataset of finite sample size, it is well known
that both Wald and likelihood ratio test statistics have the same asymptotic x?
distribution under the null model and under contiguous alternatives (Serfling, 1980).
For fixed alternatives, the picture is less clear and when fitting the incorrect model,
asymptotic theory is not always available. In order to get asymptotic information
on the effect of model misspecification on the assessment of dose effect, the ideas
of Rotnitzky and Wypij (1994) are followed here. Indeed, in order to compute the
asymptotic bias or the asymptotic covariance matrix of the maximum likelihood
estimator, an artificial sample can be constructed, where each possible realization
is weighted according to its true probability. In this case, one needs to consider
all realizations of the form (d;,n;,z;), i.e., each combination of dose d;, number
of viable fetuses n; and number of malformations z;, is considered and is assigned
a weight equal to the probability f(d;,n;, z;) that this combination occurs in the
underlying model. Thus, one has to specify: (1) f(d;), the relative frequencies
of the dose groups, as prescribed by the design; (2) f(n;|d;), the probability with
which a litter size can occur, possibly dependent on the dosing (here, it is assumed
that f(n;|d;) = f(n;)) and (3) f(z]|n;,d;), the actual model probabilities. In this
research, the technique introduced by Rotnitzky and Wypij is adapted to compute
“asymptotic” values of test statistics. Under each model, Bahadur (Bah), beta-
binomial (BB) or conditional (Cond), the value of the Wald (W) and likelihood ratio
(LR) test statistic is computed for this artificial sample. These so-called population
test statistics can be interpreted as follows. Suppose a very large sample of size NV is

obtained, in which a given cluster occurs exactly with the multiplicity predicted by
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the model, then the corresponding test statistics are /N times the population values.
Therefore, this method is useful to investigate the large sample effect of choosing an

incorrect model.

Throughout this and the next section, it is assumed that there are four dose
groups, with one control group (d; = 0) and three active groups (d; = 0.25,0.5,1).
The number n; of viable fetuses per cluster is assumed to follow a local linear
smoothed version of the frequency distribution proposed by Kupper et al. (1986),
which is considered representative of that encountered in actual experimental situa-
tions. Least squares cross-validation has been used to choose the bandwidth (Aerts,
Augustyns and Janssen, 1997). The absolute and relative frequency distribution
used by Kupper et al., as well as the smoothed relative frequencies, are presented in

Table 3.1.

The NTP data are analysed in order to obtain realistic ranges for parameters
(Section 3.3). The intercepts for Bahadur and beta-binomial correspond to a low
baseline malformation rate: a value of —5.5 (—4.5) corresponds to 0.4% (1%). For
the conditional model, the baseline malformation rate is a function of both intercept
and association parameter. Only the intercepts closest to zero are used for the
asymptotic study. A range of dose effects is considered. Parameter settings are
summarized in Table 3.2. A transformed correlation of 0.1 (correlation of about 0.05)
in the Bahadur model must be interpreted as considerable, given the restrictions on
the association parameter. Although one usually finds higher correlations with the
beta-binomial and higher associations in the conditional model, it is opted also for
an association parameter of 0.1 in this case since otherwise, the Bahadur model

becomes prohibitively difficult to fit.

Figures 3.1, 3.2 and 3.3 show population values for test statistics (likelihood
ratio and Wald for Bahadur, beta-binomial and conditional model), arising from
(1) choosing the Bahadur, beta-binomial or conditional model as the true one, (2)
choosing the true association parameter to be 0.0 or 0.1. The picture obtained when
the true model is Bahadur is exactly the one obtained for beta-binomial when the
correlation is zero. This is to be expected because here both true models reduce to
ordinary logistic regression. Although the same holds for the conditional model, a
difference is seen because a different intercept is used. Further, the parameters have
a conditional rather than a marginal meaning, which is reflected in the asymptotic

covariance matrix. Although W(Bah) and W(BB) are the same, this is not true for
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Table 3.1: Absolute and relative frequencies of the number of viable fetuses.

Number of  absolute relative  smoothed relative
viables frequency frequency frequency
1 2 0.0038 0.0046
2 3 0.0057 0.0057
3 4 0.0076 0.0099
4 9 0.0172 0.0139
5 8 0.0153 0.0147
6 6 0.0115 0.0148
7 10 0.0191 0.0225
8 20 0.0382 0.0321
9 19 0.0364 0.0475
10 38 0.0727 0.0766
11 64 0.1224 0.1179
12 82 0.1568 0.1529
13 93 0.1778 0.1605
14 73 0.1396 0.1424
15 58 0.1109 0.0975
16 19 0.0364 0.0542
17 12 0.0229 0.0207
18 1 0.0019 0.0086
19 2 0.0038 0.0030
523 1 1

Table 3.2: Parameter settings.

Parameter Bahadur model cond. model
beta-bin. model

intercept (3, —5.5;—4.5 —3.5;—-2.5

dose effect §;  0.0(0.5)8.0 0.0(0.5)5.5

association B, 0.0;0.1 0.0;0.1
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the corresponding likelihood ratio test statistic. When the true model is correlated,
the three pictures separate, but the true beta-binomial and true Bahadur plots
cannot be distinguished by visual inspection only.

All population test statistics are very close when the true dose effect is small, i.e.,
until about 2 when the true model is Bahadur (or beta-binomial) and until about 1

when the true model is conditional. For higher dose effects, one observes that
LR(Bah) > LR(Cond) > LR(BB)

and
W(Bah) > W(BB) > W(Cond).

Curves clearly standing apart for large dose effects, are LR(Bah) and W(Cond).
This holds regardless of the model used to generate the data. The LR(Bah) tends
to be higher because the higher order correlations in the Bahadur model are set
equal to zero. Indeed, this implies the likelihood of the null model to be much lower
than when higher order correlations are allowed. The precise quantification of this
statement is the subject of Chapter 4.

For the conditional model, one should bear in mind that all parameters, including
the dose effect parameter, are conditional in nature. A marginal dose effect is likely
to depend in a complex way on the model parameters. Since the Wald test is
known to depend on the particular parameterization (in contrast to likelihood ratio
and score tests), it might be a less relevant measure, in particular for conditional
models. It will be illustrated in Section 3.3 that the correlation between Bd and 5’2
is much larger in the conditional model than in the other models.

For By = 0, LR(Bah)>W(Bah) except for small to moderate dose effects, while
W(BB)>LR(BB) for all dose effects in the range considered (but a cross-over seems
to appear for higher dose effects) and clearly LR(Cond)>>W(Cond). For f; =
0.1, the dominance of the LR(Bah) to the corresponding Wald(Bah) statistic is
more pronounced. The cross-over for the beta-binomial model already occurs for
moderately high dose effects.

Finally, all Wald tests show a non-monotone trend, an aberrant behaviour in
agreement with Hauck and Donner (1977). These authors show that, in the context
of testing for a single parameter in a logistic model, Wald’s test statistic decreases to
zero as the distance between the parameter estimate and the null value increases (for
any fixed sample size). Likelihood ratio test statistics all increase with increasing

dose.
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Figure 3.1: Population values for likelihood ratio and Wald test statistics when the

underlying model is Bahadur.
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underlying model is beta-binomaal.
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3.2 Small sample simulations

A small sample simulation study is performed to supplement the information ob-
tained from the asymptotic study. While in both cases a known data generating
mechanism is used, a small sample simulation enables the assessment of whether
realistic levels of random noise in the data either moderate or reinforce the effects
of model misspecification on the operational characteristics of dose effect tests.
The parameter settings of the asymptotic study are used again (Table 3.2). For
each parameter setting, 500 datasets were generated as follows. For a given dose
level d, using the asymptotic method, the probability for each possible realization
fi=f(ng, z|d) (i =1,...,1) is computed. Then, the cumulative probabilities

gi = ij
j=1

are calculated. Since in an ordinary segment II design, between 20 and 30 pregnant
dams are randomized to each dose level, a series of 30 random uniform numbers
uy, are generated for each dose group, using the built-in GAUSS routine RNDU
(multiplicative-congruential method). Hence, an equal number of 30 clusters is
assigned to the control group and to the three dosed groups (d = 0.25,0.5,1).
Observation k in dose group d is then (n;,z) if g1 < up < g; (with go = 0).
Repeating this procedure for each of the four dose groups yields datasets of 120
observations. At the start of each simulation run, the seed is stored in order to
enable repetition of the experiment.

To each dataset, the Bahadur, beta-binomial and conditional models were fitted.
A Wald and LR test for the null hypothesis of no dose effect Hy : f; = 0 was
calculated. Based on the frequency of rejecting Hy, rejection probabilities were
estimated. Results are reported in Tables 3.3 (true model is Bahadur), 3.4 (beta-
binomial), and 3.5 (conditional). Apart from rejection probabilities, the mean of the
estimated dose effect Bd is given. Since from f; = 4 (Bahadur and beta-binomial)
or f; = 2 (conditional) onwards, rejection probabilities are 100%, these results are
not reported.

First, the focus is on the type I error (size) of the test. When the true model is
Bahadur, beta-binomial or conditional, the estimated size (expressed as percentages)
varies in the range (0.73;11.80), (2.11;11.94) and (3.80; 7.10) respectively. In partic-

ular, under a correctly specified model, the size is close to the nominal level for the
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Table 3.3: Simulation study. Data generated under a Bahadur model. Each dataset
consists of 4 dose groups with 30 litters in each. Each simulation result is based on
500 replications. Estimated rejection percentages of Hy : 3 = 0 are shown. The
significance level is 0.05. Div. indicates the number of divergences.

Bahadur beta-binomial conditional
By Wald LR mean div. Wald LR mean div. Wald LR mean div.
By = —4.5; 8, = 0.0
0.0 825 893 -0.093 209 7.17 819 -0.097 207 6.40 7.60 -0.087
0.5 13.80 13.40 0.505 0 13.70 13.50 0.532 137 11.40 11.80 0.474
1.0 54.21 53.78 1.064 37 51.47 50.79 1.043 59 47.20 47.20 0.983
2.0 99.80 99.80 2.048 9 99.79 99.79 2.036 33 99.60 99.60 2.031
Bo = —5.5;, 3, = 0.0
0.0 4.55 10.61 -0.174 434 2.43 5.99 -0.255 216 2.25 5.53 -0.235 12
0.5 6.58 998 -0.157 59 6.72 989 0424 136 6.26 9.70 0419 5
1.0 27.56 29.49 1.264 344 19.09 23.17 1.062 90 18.67 22.49 1.037 2
2.0 88.50 88.63 2.252 78 88.47 88.27 2.234 108 85.80 86.00 2.048
By = —4.5; F5 = 0.1
0.0 3.04 4.66 -0.051 6 4.23 5.44 -0.062
0.5 11.44 1295 0.462 29 12.63 14.06 0.499
1.0 35.07 36.27 1.007 1 33.87 34.07 1.008
2.0 98.00 98.00 2.007 0 97.80 97.80 2.033
By = —5.5; 85 = 0.1
0.0 082 441 -0276 137 0.73 4.16 -0.357 91 3.94 9.85 -0.367 43
0.5 375 843 0437 49 434 591 0422 43 954 12.66 0.440 18
1.0 10.69 14.47 0.990 23 11.95 1538 0.924 32 23.42 25.66 0.905 9
2.0 77.42 7843 2163 4 7575 77.56 2.197 1 83.97 84.77 2.127

o o o O

9.40 11.80 -0.082
20.80 21.40 0.461
45.60 46.00 0.952
98.00 98.00 1.877

o= N
o O o O
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Table 3.4: Simulation study. Data generated under a beta-binomial model. Each
dataset consists of 4 dose groups with 30 litters in each. Each simulation result is
based on 500 replications. Estimated rejection percentages of Hy : ; = 0 are shown.
The significance level is 0.05. Div. indicates the number of divergences.

Ba

Bahadur

beta-binomial

conditional

Wald LR mean

div. Wald LR mean div. Wald LR mean div.

0.0 5.11 6.39 -0.053 187 4.73 6.31 -0.057 183 280 4.20 -0.058 0
0.5 19.70 18.97 0.600 94 18.14 17.73 0.595 94 16.60 16.80 0.574 0
1.0 54.00 54.22 1.088 50 51.64 51.17 1.065 72 47.60 47.60 1.004 O
2.0 99.80 99.80 2.012 7 99.79 99.57 1.998 32 99.80 99.80 2.005 0
Bo = —5.5;, 3, = 0.0
0.0 4.41 11.94 -0.267 433 2.11 7.25 -0.124 169 265 6.94 -0.182 10
0.5 6.82 10.23 0395 412 294 7.96 0429 299 548 852 0470 7
1.0 31.21 31.85 1.143 343 30.95 32.93 1.171 336 19.72 21.93 0979 3
2.0 90.36 90.73 2225 90 88.10 89.01 2.177 118 86.80 88.00 2.077
By = —4.5; F5 = 0.1
0.0 583 6.67 -0.017 20 3.29 4.40 -0.023 45 9.60 10.60 -0.009 0
0.5 12.68 14.11 0.488 11 12.39 13.04 0.504 40 18.60 19.20 0.477 0
1.0 43.78 43.78 1.037 2 40.17 40.83 1.045 20 51.40 51.60 1.024 O
2.0 98.00 97.80 1.998 0 98.40 98.40 2.052 0 98.60 9860 1.921 O
Bo = —5.5; 3 = 0.1
0.0 485 844 -0.167 192 273 6.97 -0.139 170 6.09 10.92 -0.168 24
0.5 831 13.02 0395 139 590 10.14 0.369 135 10.81 14.76 0.408 19
1.0 16.54 18.80 0.945 101 12.78 17.55 0.952 124 20.08 23.53 0.905 7
2.0 75.98 76.39 2047 13 74.84 76.73 2.052 53 80.00 80.52 2.018 2
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Table 3.5: Simulation study.
dataset consists of 4 dose groups with 30 litters in each. Each simulation result is
based on 500 replications. Estimated rejection percentages of Hy : ; = 0 are shown.
The significance level is 0.05. Div. indicates the number of divergences.

Data generated under a conditional model.

Each

Ba

Bahadur

beta-binomial

conditional

Wald LR mean div. Wald LR mean div. Wald LR mean div.

0.0 620 6.20 -0.010 0 6.00 580 -0.009 0 540 540 -0.007 O
0.5 59.20 57.80 0.512 0 58.80 57.40 0.510 0 56.20 56.20 0.512 0
1.0 99.80 99.60 1.015 0 99.60 99.60 1.014 0 99.60 99.80 1.029 0
1.5 100 100 1508 0 100 100 1.506 O 100 100 1.540 O
Bo = —3.5; 3 = 0.0
0.0 563 584 -0065 3 545 545 -0064 5 440 520 -0.052 0
0.5 2840 27.60 0486 0 27.22 26.87 0482 5 2760 2740 0488 0
1.0 87.40 86.80 1.001 0 86.52 86.52 0.999 3 87.40 87.40 1.008 O
1.5 99.80 99.80 1.523 0 99.80 99.80 1.520 0 99.80 99.80 1.532 O
By = —2.5, 35, = 0.1
0.0 6.61 7.10 0000 35 6.71 6.78 0.006 13 520 580 0.004 0
0.5 27.23 26.48 0539 43 28.34 26.18 0.545 11 2740 2720 0501 0
1.0 87.89 87.47 1.114 21 88.69 88.03 1.111 7 87.40 87.20 0994 0
1.5 99.80 99.80 1.769 12 99.80 99.80 1.758 2 99.80 99.80 1.513 O
G = —3.5; 33 = 0.1
0.0 4.32 4.68 -0.026 222 424 552 -0.038 29 380 580 -0.037 0
0.5 16.38 16.38 0.573 146 12.73 12.81 0.503 16 12.00 12.80 0.467 0
1.0 46.75 46.32 1.075 38 44.86 44.74 1.061 44 44.40 45.00 0978 O
1.5 87.30 87.10 1.615 4 86.57 87.24 1.609 22 89.20 89.20 1.506 O
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conditional model and acceptable for the beta-binomial model, whereas considerable
departures are seen for the Bahadur model. The size of Wald is always smaller than
the one of LR when data are generated from the Bahadur and beta-binomial models.
For the conditionally generated data, the sizes are comparable. Generating samples
from Bahadur or beta-binomial, LR can result in sizes that are too high, especially
when the Bahadur model is fitted (smallest intercept and no association) and when
the conditional model is fitted in case of association. Very small sizes are found
for the Wald test when the true model is Bahadur and the fitted model is either
Bahadur or beta-binomial (smallest intercept and correlated outcomes). Generating
data from the conditional model, the estimated sizes are very reasonable. Several
possible explanations for the discrepancies between the size and the nominal level
can be suggested. At first sight, random variability is able to explain only part of
the effect. Indeed, samples of 120 dams are fairly large and simulation runs of length
500 should yield a fairly accurate picture. However, even moderate sample sizes,
in combination with low background rates and small dose effects might still lead to
very small numbers of malformations. Apart from introducing small sample effects,
this phenomenon can lead to divergence of the numerical maximization process. Ta-
bles 3.3-3.5 report on the number of divergences. The divergence is considerable
when fitting a Bahadur model, while it is almost not an issue with the conditional
model, a clear advantage of the latter one. For instance, a pathological case is seen
in Table 3.4 (6, = —5.5, B3 = 0.0). The large number of divergences is probably due
to sparseness in conjunction with the numerical complexity of the Bahadur model.
The number of affected littermates in an entire dataset is on average 6 (3; = 0.0),
7 (Bq = 0.5), 10 (B; = 1.0), 18 (B; = 2.0) and 90 (5; = 4.0). In other words,
divergence is most likely to occur for 5; = 0. In fact, convergence problems suggest
great care with both Bahadur and beta-binomial models. It seems that, especially
with low background rates and hence with a very small response probability, us-
ing these models is not advisable. Finally, fitting a misspecified model distorts the
distribution of the test statistic and hence, referring to a x? distribution might be

misleading. However, also discrepancies under the correct model are noticed.

Next, the attention is turned to the parameter settings with a non-zero dose
effect, i.e., to the estimated power of the tests. It was decided not to adjust the
power for size. While this option could be debatable, it is argued that it reflects

common data analysis practice. Of course, powers can then vary by the size of the
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test alone. In all three tables, one observes that the power is lower for the correlated
true model than for the uncorrelated version. This is because in a correlated model,
the information contributed by a littermate is reduced. Further, since (3, affects the
background rate, the power increases with ;. When the true model is conditional
(Table 3.5), the power is fairly stable across test statistics and models fitted. When
the true model is Bahadur or beta-binomial, the picture is less clear. The LR test
seems to be somewhat more powerful, especially for dose effects 5; = 0.5 and 1.0.
The number of divergences in Table 3.3 (5, = —5.5, 3, = 0.0) exhibits an anoma-
lous behaviour. Several strategies were tried to reduce the divergence, overall and
especially for §; = 1.0, including a grid search and logistic regression to determine
initial estimates for fFy and (y, step halving, ... However, the results could not
be improved. One of the main problems is that the parameter spaces of the Ba-
hadur and beta-binomial models are not rectangular, in contrast to the parameter
space of the conditional model. Especially for the Bahadur model, there are severe
restrictions (Bahadur 1961; Prentice, 1988), as will be discussed in Chapter 4.

A striking feature is that the dramatic differences seen between the test statistics
in the asymptotic study, seem to disappear here. It is claimed that there are two
main reasons for this apparent discrepancy. First, when the true model is Bahadur
or beta-binomial, all population test statistics are very close when the true dose
effect is smaller than about 2. Secondly, for larger dose effects, although the curves
start to separate, a very modest sample size is likely sufficient to obtain reasonable
power. A sample size of 4 x 30 will inevitably lead to very high powers for all test
statistics and will flatten out the observed asymptotic differences. The combination
of both effects implies that for the design under consideration, the power is almost

independent of the fitted model.

For each simulation study, the mean of Bd is also reported. They are usually in
good agreement with the true effect. Medians are also calculated. However, since
the agreement between means and medians is very good to excellent, the latter are

not reported.

Finally, there is good agreement between the observed variability of ,3 (the co-
variance of all estimates in a simulation study) and the average of the asymptotic
covariance matrices, estimated from each dataset. For Bd, the ratio between both

precision estimates varied within (0.95;1.3) with an average that was very close to

1.0.



Likelihood misspecification and dose effect assessment 51

Table 3.6: Parameter estimates (standard errors) for the DEHP study.

Outcome  Parameter Bah Bah(GEE2) BB Cond
External G 493(0.30)  4.98(0.37) -4.91(0.42) -2.81(0.58)
3, 5.15(0.56)  5.29(0.55) 5.20(0.59)  3.07(0.65)
B, 0.11(0.03)  0.15(0.05) 0.21(0.09)  0.18(0.04)
Skeletal G 467(0.30)  5.23(0.40) -4.88(0.44) -2.79(0.58)
3, 468(0.56)  5.35(0.60) 4.92(0.63) 2.91(0.63)
B, 0.13(0.03)  0.18(0.02) 0.27(0.11)  0.17(0.04)
Visceral o 442(033)  4.49(0.36) -4.38(0.36) -2.39(0.50)
3, 438(0.49)  452(0.59) 442(0.54)  2.45(0.55)
By 0.11(0.02)  0.15(0.06) 0.22(0.09)  0.18(0.04)
Collapsed G 3.83(027)  -5.23(0.40) -3.83(0.31) -2.04(0.35)
3, 5.38(0.47)  5.35(0.60) 5.59(0.56)  2.98(0.51)
B, 0.12(0.03)  0.18(0.02) 0.32(0.10)  0.16(0.03)

3.3 Analysis of NTP data

To amplify the findings from the analyses of simulated data, the models described
in Chapter 2 are applied to the NTP data. Apart from the external, skeletal and
visceral malformation outcomes, a collapsed malformation outcome was considered,
which is one if a fetus exhibits at least one type of malformation and zero otherwise.
Tables 3.6 and 3.7 contain maximum likelihood estimates (MLE) and standard errors
for the Bahadur, beta-binomial and conditional models. Estimates of the Bahadur

model parameters obtained by a GEE2 method, are also shown.

Bahadur (MLE and GEE2) and beta-binomial parameters have the same inter-
pretation, but they are not directly comparable with the parameters of the con-
ditional model. The intercepts f; and dose effect parameters 3; have similar nu-
merical values but the situation is slightly different for 3. In 6 out of 8 cases,
B2(Bah) < Bo(GEE2) < G2(BB). The only exceptions are EG (visceral), where the
association is not statistically significant and EG (collapsed), where the three esti-
mates are very close. In the other cases, the beta-binomial MLE for £, is typically
about double the corresponding Bahadur MLE. This is due to range restrictions on

05 in the Bahadur model. For instance, the allowable range of 35 for the external
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Table 3.7: Parameter estimates (standard errors) for the EG study.

Outcome  Parameter Bah Bah(GEE2) BB Cond
External G 5.25(0.66) -5.63(0.67) -5.32(0.71) -3.01(0.79)
3, 2.63(0.76)  3.10(0.81) 2.78(0.81)  2.25(0.68)
B, 0.12(0.03)  0.15(0.05) 0.28(0.14)  0.25(0.05)
Skeletal G 249(0.11)  4.05(0.33) -2.89(0.27) -0.84(0.17)
3, 2.06(0.18)  4.77(0.43)  3.42(0.40)  0.98(0.20)
B, 0.27(0.02)  0.30(0.03) 0.54(0.09)  0.20(0.02)
Visceral o 738(1.30)  7.50(1.05) -7.45(1.17) -5.09(1.55)
3, 425(139)  437(1.14)  433(1.26)  3.76(1.34)
By 0.05(0.08)  0.02(0.02) 0.04(0.09)  0.23(0.09)
Collapsed G 251(0.09)  4.07(0.71) -2.51(0.09) -0.81(0.16)
3, 3.05(0.17)  4.89(0.90) 3.05(0.17)  0.97(0.20)
B, 0.28(0.02)  0.26(0.14) 0.28(0.02)  0.20(0.02)

outcome in the DEHP data is (—0.0164;0.1610) when fy and f; are fixed at their
MLE. This range excludes the MLE under a beta-binomial model. It translates to
(—0.0082; 0.0803) on the correlation scale. A GEE2 estimate is valid as soon as the
second, third and fourth order joint probabilities are nonnegative, whereas the like-
lihood analysis requires all joint probabilities to be nonnegative. Thus, a correlation
valid for GEE2 estimation is allowed to violate the full likelihood range restrictions.
The standard errors, obtained by Bahadur and GEE2 are very similar, except for
EG (skeletal) and EG(collapsed). It is no coincidence that exactly in these cases,
(s attains very high values, probably very close to the boundary of the admissible
range, implying that boundary effects might distort large sample approximations
to the null distribution. The beta-binomial model features all positive correlations.
Hence, the dominant ordering of the estimated (5 parameters reflects the severity
of the parameter restrictions.

Since the conditional model has no restrictions on the parameters, it is easier to
fit than the others. In all 8 examples, standard starting values (all parameters equal
to zero) led to convergence.

Besides the Bahadur model, the beta-binomial model and the conditional model,

also the George-Bowman model with the folded logistic parameterization, is fitted to
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the NTP data. Maximum likelihood estimates and corresponding standard errors of
the regression parameters of this model are listed in Table 3.8. The marginal George-
Bowman model differs in several respects from the previous models. First, a fun-
damental drawback is that reversing the coding for malformed and non-malformed
subjects has a non-trivial effect on the estimation. For example, the parameters for
the external outcome in the DEHP study change from the ones reported in Table
3.8 to fy = 0.27(0.05) and f; = —1.86(0.26). Also the log-likelihood at maximum
changes from —172.40 to —166.41. The LR and Wald statistics change from 101.35
to 79.86 and from 101.43 to 55.59 respectively. Secondly, there is no explicit asso-
ciation parameter included. Rather, the folded logistic parameter vector describes
the moments of all orders. While parsimony is no doubt desirable, the model fails to
render direct quantitative evidence for the within cluster association. Thirdly, even
though the folded logistic parameterization guarantees the joint probabilities to be
nonnegative, one has to ensure that the vector 3 itself is valid. When dose d satisfies
0 < d <1, this implies the constraint 5y + 6; < 0. For example, the dose effect
in the external outcome for the DEHP study is restricted to the range | — co; 8.05].
Of course, there are also restrictions on the parameter space of the Bahadur model.
Fourthly, in contrast with the Bahadur model, the beta-binomial model and the
conditional model, it turns out that when the littermates are independent, then the
George-Bowman model using the folded logistic parameterization, does not reduce
to the binomial model. These features make that the model should be applied with

caution.

After having discussed the parameter estimates of the fitted models, the focus
is now on the problem of testing the null hypothesis of no dose effect. Results are

summarized in Table 3.9. They are in agreement with previous findings.

For the LR tests, one observes that LR(Bah) dominates the others. LR(BB) is
considerably smaller and the smallest values are found with LR(Cond). This picture
is seen in 7 out of 8 cases. A slightly different picture is seen for EG (visceral
and external outcomes), where all three statistics are in fact very close to each
other. However, although there are discrepancies between the magnitudes of the LR

statistics, they all clearly reject the null hypothesis.

Comparing LR to Wald tests, the former ones are seen to dominate the lat-
ter in most cases: LR(Cond)>W(Cond) in all 8 cases and LR(Bah)>W (Bah) in 6
cases. However, LR(BB)>W(BB) in only two cases and, more importantly, agree-
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Table 3.8: Maximum likelihood estimates (standard errors) for the George-Bowman

model.

Outcome  Parameter DEHP EG DYME

External [y -8.05(0.52)  -9.25(0.97) -11.18(0.92)
0y 6.77(0.67) 4.42(1.15)  10.18(0.96)

Skeletal B -8.05(0.53)  -5.49(0.32)  -8.22(0.48)
0y 6.56(0.70) 4.42(0.39) 7.79(0.51)

Visceral B -7.41(0.46)  -11.88(1.89) -11.23(1.16)
0y 6.01(0.65) 6.46(2.04) 8.04(1.26)

Collapsed -6.27(0.32)  -5.36(0.31)  -7.55(0.41)
0y 6.07(0.37) 4.38(0.38) 7.34(0.43)

ment between both test statistics is very close, providing evidence for approximate
equivalence of both tests under a range of alternatives. This feature is in agree-
ment with the asymptotic findings. Recall that both Bahadur test statistics might
differ due to a misspecified higher order correlation structure, whereas for the con-
ditional model, the Wald statistic could be low due to sensitivity of the test to the
particular parameterization adopted. For example, the correlations between Bd and
the other parameter estimates for the external outcome in the DEHP study are
corr(ﬁo,ﬁd) = —0.96 and corr(ﬁa,ﬁd) = —0.79, as opposed to —0.91 and 0.27 for
Bahadur and —0.90 and 0.23 for beta-binomial.

Among the Wald tests, W(Bah) and W(BB) are reasonably close to each other,
apart from two aberrant cases (EG skeletal and EG collapsed). Misspecification
might be one of the sources for the observed discrepancies. When GEE2 based
tests are believed to correct for (at least part) of aforementioned misspecification,
then their values should be smaller than W(Bah) and much closer to W(BB). This
effect is indeed seen, but it is not clear whether the naive or robust test is the best
statistic to achieve this correction, although only W (robust) is compatible with the
philosophy of generalized estimating equations. The most striking phenomenon is
that the two aberrant W(Bah) values in the EG data are indeed largely corrected
downward by the GEE2 versions.

Liang and Hanfelt (1994) have shown that assuming a constant intraclass cor-

relation in the beta-binomial model might substantially bias mean parameter esti-
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Table 3.9: Wald and likelihood ratio test statistics.

Outcome  Model Statistic DEHP EG
External ~ Bahadur LR 96.48  15.05
Wald 8594  11.89
BB LR 71.58  13.18
Wald 76.78  11.61
Cond LR 4320 1443
Wald 22.30  10.78
GEE2 Wald(naive) 79.40  12.50
GEE2 Wald(robust) 92.41  14.70
Skeletal Bahadur LR 76.40 182.45
Wald 71.02  261.22
BB LR 58.51  63.88
Wald 61.39  74.89
Cond LR 38.95  49.95
Wald 21.46  23.15
GEE2 Wald(naive) 70.72  120.99
GEE2 Wald(robust) 78.87  58.53
Visceral Bahadur LR 81.28  16.00
Wald 78.82 9.40
BB LR 59.78  17.37
Wald 66.80  11.82
Cond LR 33.72  13.98
Wald 19.91 7.81
GEE2 Wald(naive) 71.45  10.32
GEE2 Wald(robust) 58.23  14.64
Collapsed Bahadur LR 164.75  189.99
Wald 130.31 314.40
BB LR 91.66  65.36
Wald 98.46  T71.58
Cond LR 74.48  50.74
Wald 33.71  23.39
GEE2 Wald(naive)  113.75 121.87
GEE2 Wald(robust) 9227  29.69
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mation and testing. Therefore, it is useful to study at least one possible departure
from the constant association model. In the Bahadur, beta-binomial and condi-
tional models, the association parameter (, was allowed to vary linearly with dose
level, By = B + Pagd;, extending the three parameter families (5, Gy, B2) to four
parameter versions (g, B4, B0, foq). Reconsider now the problem of testing the null
hypothesis of no dose effect, neither on the malformation rate nor on the associa-
tion. The corresponding test statistics are shown in Table 3.10. First, values in bold
correspond to those cases where the null hypothesis of a constant association pa-
rameter Hy : foy = 0, was rejected on the basis of a one degree of freedom likelihood
ratio test. Clearly, a non-constant association in one model (e.g., the conditional
model) does not necessarily imply the same for the other models (e.g., the Bahadur
and beta-binomial models). Next, the test statistics for dose effect are considered,
which in the four parameter model becomes Hy : 3 = f2; = 0. In most cases, the
statistics vary only mildly, although W(Bah) tends to increase somewhat more. The
discrepancy is larger when the null hypothesis of a constant association is rejected.
Of course, one has to bear in mind that these test statistics should be compared to
a null x? distribution with two degrees of freedom, diluting power when there is no
evidence for non-constant association. Finally, failure to detect a linear trend on
the association does not imply that the association is constant, since the associa-
tion function might have an entirely different shape (e.g., quadratic). In a real data
analysis, it is advisable to explore these functions in a bit more detail (Molenberghs

and Ryan, 1999).

3.4 Concluding remarks

Marginal, random effects and conditional models were studied to describe dose-
response curves based on a binary outcome in clustered experiments. Bahadur
(1961) provided a general description of the joint distribution of correlated binary
data which can be simplified to exchangeability. This model suffers from severe
range restrictions, which complicates the numerical performance of maximization.
It was observed at several occasions that setting higher order associations equal to
zero might introduce discrepancies. Most likely, this issue accounts at least partly
for the differences observed between Bahadur and beta-binomial models, who have

the same first and second moments. The effect of including these parameters on
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Table 3.10: Wald and likelihood ratio test statistics with linear dose effect on the
association parameter. Bold figures refer to cases where the dose effect on the
association was significant at the 5% nominal level.

Outcome  Model Statistic DEHP EG
External ~ Bahadur LR 99.09 19.99
Wald 93.04  18.07
BB LR 71.90 13.57
Wald 73.70 11.20
Cond LR 44.99 16.19
Wald 25.98 12.39
Skeletal Bahadur LR 76.59 192.77
Wald 69.60 207.93
BB LR 58.65 65.74
Wald 63.07 63.50
Cond LR 40.70  58.90
Wald 2498  30.72
Visceral Bahadur LR 86.13
Wald 90.00
BB LR 61.56 17.55
Wald 67.17 9.48
Cond LR 33.72 14.89
Wald 19.99 7.44
Collapsed Bahadur LR 173.07 196.06
Wald 157.37 211.28
BB LR 97.98 67.45
Wald 107.17 63.88
Cond LR 75.61  60.01
Wald 33.00  30.35




58 Chapter 3

the operational characteristics of the models is studied in the next chapter, where
it is established that at least fourth order interactions are needed to relieve the
restrictions on the Bahadur model. The beta-binomial model combines simplicity
with interpretational ease (first and second order moment parameters have intuitive
meaning) and with mild restrictions on the parameter space. The numerical perfor-
mance (speed and stability) is much better than with the Bahadur model, although
still a nonnegligible number of divergences was observed. As a consequence, the
beta-binomial model is preferred among the marginal and random effects models.
Even though GEE2 estimation yields less severely constrained parameters than the
likelihood version of the Bahadur model, it suffers from other problems (e.g., like-
lihood ratio tests and joint probabilities are unavailable). These conclusions are in
agreement with the prominent role played by the beta-binomial model (or its gener-

alizations such as the Dirichlet-multinomial model) in quantitative risk assessment.

The conditional model is very different from the others and hence, the main effect
and association parameters cannot be compared directly and the parameters have
to be interpreted in conditional rather than in marginal terms. Since there are no
parameter space constraints, interpretation is not further complicated and the model
is the easiest one to fit. This was seen in both finite sample simulations as well as
in the NTP data. In both cases, little problems with divergence were encountered.
With the other models, moderate (beta-binomial) to extreme (Bahadur) care had
to be taken with the numerical maximization process (choosing starting values and

monitoring convergence).

When rejecting the null hypothesis of no dose effect is of primary importance, one
could still suggest the use of the beta-binomial model, where both LR and Wald tests
might be used, although LR tests have better theoretical properties. In addition,
the LR test of the conditional model also seems very appropriate. Indeed, since
reasonably strong effects, such as the ones encountered in the NTP datasets, were
found with all methods, one might opt for the model which is easiest to fit. From
this point of view, the best model in this respect is undoubtedly the conditional
model. Because the Wald test in the conditional model performed very poorly, the
likelihood ratio test should be recommended. The disadvantage of the GEE2 based
model is that it does not entail the same range of inferential tools (such as likelihood

ratio tests) as the likelihood-based conditional model.

The model proposed by George and Bowman (1995) using the folded logistic
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parameterization, has been considered in the analysis of the NTP data. This model
suffers from a number of drawbacks. In contrast with the Bahadur model, the beta-
binomial model and the conditional model, it turns out that in case of independence
of the littermates, the specific George-Bowman model with the folded logistic pa-
rameterization does not simplify to the binomial model. Another disadvantage of
the George-Bowman model is the dependence of coding of success and failure. This
implies that not only the maximum likelihood estimates change when the coding is
reversed, but also the values of the maximized log-likelihood and the derived test
statistics. Further, as is the case with the Bahadur model, there are non-trivial
restrictions on the parameter space of the George-Bowman model. Finally, there is
no explicit association parameter included and therefore, the model fails to render
direct quantitative evidence for the within cluster association.

Other models than the ones presented here deserve consideration, e.g., the odds
ratio model. Also, other test statistics such as a score test, could have been consid-
ered.

In conclusion, procedures that incorporate the effect of dose on both death and
malformation are worthwhile to consider. The latter extension enables the study of
the relation between dosing and observed cluster size. However, in the simplified
setting considered in this chapter, some of the problems, advantages and drawbacks

of different estimation and testing procedures have been identified.
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Behaviour of the likelihood ratio
test statistic under a Bahadur
model

In the previous chapter, the Bahadur, George-Bowman, beta-binomial and condi-
tional models are compared with respect to their performance in estimating dose
effect and testing the null hypothesis of no dose effect using likelihood ratio (LR) and
Wald statistics. A simplified Bahadur model is used in which the association struc-
ture is confined to pairwise correlations and higher order correlations are set equal
to zero. One of the findings is that for strong dose effects, the LR statistic under
the Bahadur model is much larger than any other statistic considered. This feature
turns out to be more pronounced with larger true dose effects. While desirable at
first sight, it is claimed that this property is primarily due to misspecifying the cor-
relation structure. Generating data from a two-way Bahadur model, the alternative
model is by construction correctly specified, whence the effect of misspecification is
necessarily confined to the associated null model. This is in line with the finding

that the Wald statistic does not inflate as the dose effect becomes stronger.

In Section 4.1, an asymptotic study is performed, while the NTP data are anal-
ysed in Section 4.2. Both studies support this claim. In addition, it is shown that
adding three-way correlations to the Bahadur model induces little change, while
including fourth order correlation helps closing the gap between the Bahadur and

beta-binomial likelihood ratios. The restrictions are further investigated in Section

4.3.

61
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4.1 Asymptotic study

In the previous chapter, the behaviour of the two-way Bahadur, beta-binomial and
conditional models was studied based on, among others, asymptotic calculations.
Artificial samples were generated based on some underlying model, following a sug-
gestion of Rotnitzky and Wypij (1994). Details about this procedure and about
the selected values of the intercept parameter (3, the dose effect parameter §; and
the association parameter 35, can be found in Section 3.1. The key feature of the
method of Rotnitzky and Wypij is that each combination of dose (d;), number of
viable fetuses (n;) and number of malformations (z;) is weighted according to the
probability of occurrence in the underlying model. For each parameter combina-
tion, such an artificial sample is generated. Then, the Bahadur, beta-binomial and
conditional models are fitted to these samples, based on the maximum likelihood
procedure. Finally, testing the null hypothesis of no dose effect is based on the Wald
and the likelihood ratio (LR) statistics.

When a Bahadur model is fitted to a sample with a non-zero dose effect, the LR
statistic is inflated in comparison to its counterparts from the beta-binomial and
conditional models (Section 3.1). This is better seen for larger dose effects and holds
irrespective of the underlying model and irrespective of the presence of association
(Figures 3.1 — 3.3). In particular, the differences between the LR-trajectories of the
Bahadur model and the beta-binomial model (which can also be considered as a
marginal model) will turn out to be a useful guide to investigate this anomalous
behaviour.

When the underlying model shows no clustering, both Bahadur and beta-binomial
models reduce to a logistic regression model and hence yield the same likelihood.
Since a difference in LR is observed, the null models (of no dose effect) must be
responsible for the difference. This is illustrated in Figure 4.1. Artificial samples
are generated from a Bahadur model with intercept fy = —4.5 and no association
(B2 = 0). The dose effect f; ranges from 0 to 8 (step size 0.5).

One observes that the negative log-likelihood of the beta-binomial null model
increases until a dose effect of about 5. For the Bahadur null model the increase
does not stop. As a consequence, both curves start separating.

In addition to the likelihood, also the parameter estimates of the fitted models
are investigated. In particular, the ML estimate of pairwise association 5’2 when

fitting a null model, is explored. The settings are the same as in Figure 4.1. The
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Figure 4.1: Negative log-likelihood of the two-way Bahadur and beta-binomzial alter-
native and null models fitted to artificial samples.

relationship between 5’2 and dose effect ; in the underlying model, is illustrated in
Figure 4.2 for the beta-binomial and Bahadur null models.

Fitting the null model, an apparent association, clearly stemming from the omit-
ted dose effect, is captured by the association parameter. As dose effect becomes
stronger, this quantity clearly increases for the beta-binomial model, while it levels
off for the Bahadur model. This bound occurs at §; ~ 4, i.e., where the LR statistics
of both models start to separate.

Based on Figures 4.1 and 4.2, it will be shown in Section 4.3 that the striking
behaviour of the LR statistic under Bahadur, is linked with the presence of parameter
restrictions. In the beta-binomial model, all non-negative correlations are allowable.
However, in the Bahadur model, the parameter space is constrained, as is discussed
in Section 4.3. Support for this statement will be sought by extending the Bahadur
model with higher order correlation parameters. In turn, the third and fourth order
correlations will be added to the Bahadur model.

First, the model is extended with a three-way association parameter, although

it sacrifices the computational ease of this model, even in the case of exchangeable
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Figure 4.2: Association of the two-way Bahadur and beta-binomial null models fitted
to artificial samples.

data. A Newton-Raphson algorithm based on analytically calculated derivatives,
is used to obtain ML estimates of the four model parameters, i.e., intercept [,
dose effect f;, two-way association (5 and three-way association 5. This extended
model is fitted to the same artificial samples as in Figures 4.1 and 4.2. Adding this
parameter does not substantially change the relationship between the LR statistic
and true dose effect. Also Figure 4.2 remains virtually identical when Bah(3) is fitted
rather than Bah(2). The suffix p in Bah(p) denotes the highest order correlation
that is still in the model.

Next, the four-way correlation is added to the model. It is extremely hard
to fit this model to the artificial samples of Figures 4.1 and 4.2. Therefore, it
was decided to generate artificial samples based only on clusters of size 12, which
are very frequently encountered in rodent experiments. The other settings remain
the same as in the previous figures. Figure 4.3 depicts the trajectory of the LR
statistic versus true dose effect for Bah(2), Bah(3) and Bah(4), as well as for the
beta-binomial model. In contrast to the addition of a third order correlation, the LR

statistic corresponding to a strong dose effect decreases considerably when including
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Figure 4.3: Trajectories of the likelihood ratio statistic of Bahadur and beta-binomial
models fitted to artificial samples consisting of clusters of size 12.

all association parameters up to the fourth order. Analogous to Figure 4.2, the
relationship between the ML estimate of the pairwise association 5’2 of the null
model and the true dose effect was also investigated for the settings of Figure 4.3.
In Figure 4.4, it is shown that the results for the Bah(2) and beta-binomial models
are similar to Figure 4.2. The trajectory of Bah(3) is again virtually the same as
the one of Bah(2). However, the trajectory of Bah(4) is more comparable to the one
of the beta-binomial model.

In conclusion, it appears that adding a three-way correlation does not help in
changing the behaviour of the LR statistic, while the four-way correlation seems
crucial. It is claimed that the net effect of including the fourth order association is

a relaxation of the restrictions on the pairwise correlation.

4.2 Analysis of NTP data

To further illustrate the findings of the asymptotic study, the Bahadur and beta-
binomial models are fitted to the NTP data. The effects in mice of the exposures
DEHP, DYME and EG are investigated and malformations are classified as being

external, skeletal and visceral. Also a collapsed outcome is considered, which is one
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Figure 4.4: Association of the Bahadur and beta-binomial null models fitted to arti-
ficial samples consisting of clusters of size 12.

if a fetus has at least one malformation and zero otherwise.

The LR statistics to test the null hypothesis of no dose effect are computed. To
this end, the Bah(2), Bah(3), Bah(4) and beta-binomial models are fitted (Table
4.1). Missing values in this table (and the following tables) are due to the lack
of convergence. In general, the actual values of the LR test statistic of Bah(2) and
Bah(3) are strikingly larger than for the beta-binomial model. The LR under Bah(4)
is still larger than, but better comparable to the LR under beta-binomial.

Analogous to Figure 4.1, the likelihood of the Bahadur and beta-binomial al-
ternative and null models is examined (Table 4.2). The likelihood of the Bahadur
alternative model increases only slightly when including higher order associations in
Bah(2). The beta-binomial alternative model is most often more likely than Bah(4).
However, the differences in LR when fitting Bahadur and beta-binomial models, are
primarily due to differences in the likelihood of the null models (i.e., without dose ef-
fect). The likelihood of the Bah(2) and Bah(3) null models are in general markedly
smaller than the likelihood of the Bah(4) null model, which is in turn strikingly

smaller than the likelihood of the beta-binomial null model. This is in agreement
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Table 4.1: Likelihood ratio test statistic for Hy : 8; = 0, after fitting Bahadur and
beta-binomial models to DEHP, DYME and EG data.

Exposure Malformation Bah(2) Bah(3) Bah(4) BB

DEHP External 96.5 96.2 76.2 716
Skeletal 76.4 78.8 68.1 585
Visceral 81.3 80.5 61.0 59.8
Collapsed 164.7 166.1 123.7  91.7
DYME External 241.5 243.6 . 1120
Skeletal 310.8 315.3 . 1174
Visceral 63.9 48.2 . 433
Collapsed 420.7 421.7 . 151.7
EG External 15.1 6.0 . 132
Skeletal 182.4 184.6 116.2  63.9
Visceral 16.0 19.2 . 17.4
Collapsed 190.0 191.2 116.8 654

with the results of the asymptotic study.

In analogy with Figure 4.2, the focus is now on the MLE of the second order
association parameter 5’2 when fitting Bahadur and beta-binomial null models to the
NTP data (Table 4.3). In general, (3, of Bah(2) is comparable to the one of Bah(3),
but both are strikingly smaller than 5’2 of Bah(4), which is in turn markedly smaller
than 5’2 of the beta-binomial model. Again, this is similar to the asymptotic study.

In agreement with the asymptotic study, the results obtained here suggest that
the behaviour of the LR statistic under Bahadur is related to restrictions on the
association parameters. Adding a fourth order correlation to a three-way Bahadur
model seems to result in a relaxation of these bounds and leads to values of the LR
statistic being more comparable to the ones of the beta-binomial model. In order to

get evidence for this claim, the parameter space of the Bahadur model is explored.
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Table 4.2: Negative log-likelihood evaluated at the maximum for Bahadur and beta-
binomial alternative and null models fitted to DEHP, DYME and EG data.

H  Exposure Malformation Bah(2) Bah(3) Bah(4) BB

H, DEHP External 171.60  171.57 169.94 170.35
Skeletal 17124  169.12  168.37 166.57

Visceral 196.96  196.93 194.66 194.99

Collapsed 281.39  280.25 278.44 274.27

DYME External 135.84 13480 134.43 135.52
Skeletal 207.59  205.08 197.68 187.33

Visceral 95.18 95.10 . 91.58

Collapsed 206.02  204.85 201.49 196.63

EG External 90.29 89.80 . 88.82
Skeletal 375.89  374.52  367.92 360.40

Visceral 50.04 46.10 . 50.10

Collapsed 384.63  383.70 376.91 368.04

H, DEHP External 219.84  219.68 208.04 206.14
Skeletal 209.44  208.52 202.44 195.82

Visceral 237.60 237.16 22517 22488

Collapsed 363.76  363.29 340.30 320.10

DYME External 256.58  256.58 . 191.52
Skeletal 362.97  362.72 . 246.03

Visceral 12714 119.21 . 113.21

Collapsed 416.39  415.71 . 27249

EG External 97.82 92.81 . 9541
Skeletal 467.11  466.81 426.02 392.34

Visceral 58.04 55.70 58.78

Collapsed 479.63  479.32  435.31 400.72
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Table 4.3: Maximum likelihood estimate of association 5’2 of the Bahadur and beta-
binomial null models fitted to DEHP, DYME and EG data.

Exposure Malformation Bah(2) Bah(3) Bah(4) BB

DEHP External 0.25 0.26 0.51 0.78
Skeletal 0.28 0.29 0.41 0.73
Visceral 0.22 0.22 0.48 0.64
Collapsed 0.30 0.30 0.57 1.09
DYME External 0.33 0.33 . 1.65
Skeletal 0.35 0.35 . 1.80
Visceral 0.19 0.43 . 0.92
Collapsed 0.32 0.32 . 1.82
EG External 0.15 0.33 . 0.38
Skeletal 0.32 0.32 0.54 0.96
Visceral 0.11 -0.82 . 0.13
Collapsed 0.31 0.32 0.53 0.98

4.3 Restrictions on the Bahadur model parame-
ters

In Sections 4.1 and 4.2, it was suggested that the difference between the LR under
a Bahadur model and under a beta-binomial model is related to restrictions on the
model parameters. The beta-binomial model features all non-negative correlations,
implying that there are only very mild constraints on the parameter space of this
model. The restrictions on the Bahadur model parameters are much more compli-
cated and stringent. Bahadur (1961) indicates that the sum of the probabilities of
all possible outcomes is one, even when higher order correlations are set equal to
zero. However, the requirement of having non-negative probabilities for all possible
outcomes results in restrictions on the parameters. This holds even in the case of a
Bahadur model with all higher order associations involved.

In this section, the subscript referring to the cluster is omitted in order to simplify
notation.

Bahadur (1961) discusses the restrictions on the second order correlation when all

higher order associations are left out. He shows that the second order approximation
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is a probability distribution if and only if

2 . T l1—m7 2r(1 —7)
_ - < < 4.1
. ( ’ > =P = (n—1)r(1—m)+025—’ (4.1)

where
n

"o = min {[2 —(n—1)m— 0.5]2} :

Bounds of the second order correlation p(y) are graphically represented in Figure
4.5 for smaller litter sizes (n = 2,3,4,5) and in Figure 4.6 for larger litters (n =
7,10,12,15). The lower bound for pp) in a two-way Bahadur model, attains its
smallest value —2/(n(n — 1)) at the malformation probability 7 = 0.5. This bound
quickly approaches zero as the litter size n increases. When n = 2, the upper bound
for p(g) is one, independent of w. For larger values of n, the upper bound depends on
7 and varies between 1/(n—1) and 2/(n—1). As a consequence, the upper bound is
in the range (0.09; 0.18) for litters of size 12. As litter size increases, the restrictions
on peg of Bah(2) become more severe.

Kupper and Haseman (1978) also consider the two-way Bahadur model and
present numerical values for the constraints on p(y for choices of m and n. Prentice
(1988) studies the constraints in Bah(2) for any n. Furthermore, when the size of the
clusters equals three, he argues that including the third order correlation removes
the upper bound on py. However, it will be shown here that the requirements he
verifies are necessary but not sufficient.

The parameter space of the general Bahadur model seems to be only partially
known. The upper and lower bound of the second order correlation in Bah(3)
and Bah(4) will be studied here. This leads to a clearer insight in the properties
and usefulness of this model in general and in the behaviour of the LR statistic in
particular.

First, the focus is on the three-way Bahadur model. An analytical procedure that
can handle any cluster size is developed. In Appendix A of this chapter, explicit
expressions for the bounds of p(y) are derived. These bounds are constructed such
that for any value of p(y) between the lower and upper bound (both depending on
the specified values of n and ), there exists at least one value of p(s) leading to a
valid probability mass function.

The constraints on p(y) in Bah(3) for n = 3 are depicted in Figure 4.5. Although

this model is saturated in the sense that only clusters of size three are considered
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and two- and three-way correlations are included, still not all positive pairwise cor-

relations are allowed. This is due to the condition that pg), € [—1,1].

Constraints on pg) for n = 4 are also shown in Figure 4.5. The small values
of the upper bound for extreme malformation probabilities are again due to the
constraint —1 < p(3) < 1.

For larger cluster sizes, boundaries for p) in a three-way Bahadur model, are
represented in Figures 4.5 and 4.6. For these clusters, the upper bound is very
similar to the one of Bah(2), except for extreme values of m. Furthermore, it seems
that the effect of adding a third order correlation to a two-way Bahadur model,
results in an upper bound for pr) being almost independent on 7. Compared to

Bah(2), the range of negative py is enlarged for small and large 7.

Next, the focus is on the four-way Bahadur model. The analytical method de-
scribed in Appendix A for Bah(3), is extended to Bah(4) in Appendix B. Developing
first an expression for the constraints on p, the restrictions on p(3y are then de-
rived, which finally result in the bounds for p). For any specified values of n and
7, the lower and upper bound for the pairwise correlation is such that for any p
between these bounds, there exists at least one pair (p(s), p)) leading to a valid
probability mass function. Dealing with large clusters, Figure 4.6 shows that com-
pared to Bah(3), the range of allowable positive pairwise correlations of Bah(4)
increases markedly, except for extreme values of w. The range of negative second

order correlations remains very narrow.

In principle, constraints on p(y) for five- and higher-way Bahadur models, can be

calculated by generalizing the analytical procedure given for Bah(4).

Besides this analytical method, also a numerical procedure was developed to
compute the bounds for the pairwise correlation in Bah(3) and Bah(4). This second
procedure is used to check the calculations of the constraints on pry. The numerical
method is described here for Bah(3). First, the upper bound is calculated corre-
sponding to some specified malformation probability. The starting value for the
upper bound for pe is based on expression (4.1). Then, an increment is given to
the starting value and by screening the interval [-1,1], a value of p) leading to a
valid probability mass function is searched for. If such a value is found, an incre-
ment is given to the improved pr and the procedure is repeated. Otherwise, step
halving is used and it is investigated whether a value of p(3) can be found resulting

in non-negative probabilities for all outcomes. When improvements of the upper
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bound become smaller than some cut-off value, computations corresponding to the
specified malformation probability are stopped. Next, an increment is given to m
and the values of p(y) and p(s) corresponding to the previous 7, are used as starting
values for the current malformation probability. The upper bound for p) is found
for a grid of values of m. An analogous procedure is used to get lower bounds. It
turns out that the results of the analytical and numerical procedures are essentially

identical.

The findings here are consistent with the results from both the asymptotic study
and the analysis of the NTP data. Fitting a Bah(2) null model, the association
parameter 5’2 captures part of the omitted dose effect. However, due to the (in
general severe) restrictions on the second order association, this parameter is tied
to a small range. This has some implications when dealing with strong dose effects
in the underlying model. On the one hand, this results in values of 5’2 being smaller
than for the beta-binomial model. On the other hand, the likelihood of the two-way
Bahadur null model is smaller than the one of beta-binomial for which the constraints
on the association parameter are very mild. In the case of the asymptotic study,
the likelihood of the Bah(2) and beta-binomial alternative models are equal when
there is no association in the underlying model (as in the settings of Figures 4.1 and
4.2). In the case of the NTP data, the difference between the likelihood of these two
alternative models is minor relative to the null models. In conclusion, the likelihood
of alternative and null models results in inflated values of the LR statistic when

testing the null hypothesis of no dose effect.

In the previous discussion, artificial samples are generated without correlation
in the underlying Bahadur model. Now, the focus is on the correlated case. With
increasing dose effect, the association parameter of the two-way Bahadur null model
will reach more quickly the boundary since there is already an association in the
absence of dose effect. Here, an analogous explanation as for the case without

association can be given for the behaviour of the LR statistic.

Finally, the inclusion of a third order correlation into a two-way Bahadur model
hardly changes the upper bound for p). This leads to values of the LR statistic
being comparable to the ones under Bah(2). When adding a fourth order correlation,
the constraints on pg are relaxed strikingly. As a consequence, the Bah(4) null
model is much more likely than the Bah(2) and Bah(3) null models. Hence, the

LR statistic results in values closer to the ones under beta-binomial. This finding
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clearly needs to be addressed carefully. In order to gain some additional insight,
some binomial, beta-binomial and Bahadur distributions are displayed in Figure
4.7. All distributions assume m = 0.5 and the cluster size is chosen to be n = 20.
One striking observation is that the probability mass for the Bahadur model with
only two-way association is bimodal for p(y) sufficiently large. It can be shown that
when p(y) increases, the trough between the two modi reaches zero when the second
order correlation reaches its upper bound, i.e., ppy = 0.1. When p() is added, the
mass function is skewed as is obvious from definition (2.2). Considering the curve
for py = 0.05, p3y = 0 and pyy = 0.01 is very insightful. Indeed, relative to the
curve with only two-way association, the bimodal shape has disappeared, the curve
is much closer to the binomial model, but the tails are thicker, which is in line with
the concept of kurtosis. Thus, it seems that a plausible form of overdispersion is
captured, not by merely adding p(s), but by adding p;y and p). Observe however,
that the form of this distribution is still fairly different from the beta-binomial one.
Since in the analysis of the NTP data, overdispersion seems to be more of an issue
than skewness, p(3) adds little to the picture in this case. In general, since p(3) merely
skews the distribution, rather than pulling up the trough, it is not surprising that ps,
only marginally relieves the bounds on p(2), whereas pu) has a considerably stronger
effect. This effect of p(4) is seen not only by the disappearance of the bimodal shape;

in addition, this unimodal distribution is much closer to the binomial distribution.

4.4 Concluding remarks

Fitting a two-way Bahadur model, an anomalous behaviour of the LR test statis-
tic for the null hypothesis of no dose effect is observed when analysing data from
artificial samples and from developmental toxicity studies. Dealing with artificial
samples, the LR statistic inflates as the dose effect becomes stronger. Analysing the
NTP data, the values of this test statistic are in general strikingly larger than when
fitting a beta-binomial model. Adding a third order correlation to the Bahadur
model most often results in the same phenomena. However, considering Bah(4), the
values of LR are more comparable to the ones under a beta-binomial model.

The behaviour of the LR statistic when fitting a Bahadur model is explained
by investigating the parameter space. Requiring a valid probability mass function,

the parameters of the Bahadur model are subject to constraints. By means of
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analytical, numerical and graphical methods, it is shown that the inclusion of a
third order association (playing the role of a skewness parameter) does not relax the
upper bound of the second order correlation. In Bah(4), the range of positive second
order associations is enlarged markedly. The combination of the second and fourth
order correlations captures a more standard form of overdispersion (by means of a
unimodal distribution) than a model with the second order association parameter
only. This form shows a better resemblance with the overdispersion captured by a
beta-binomial distribution, although there are still differences. Hence, in comparison
with the LR statistic under Bah(2), the LR under Bah(4) is more comparable to
the beta-binomial version.

The price to pay for including higher order associations is computational ease.
While fitting Bah(2) is already more complex than fitting the beta-binomial model,
the conditional model or GEE versions of the Bahadur model (as explained in the
previous chapter), even more difficulties are encountered with the Bah(3) and Bah(4)
versions. This difficulty is not due to increased computation time, but to the compli-
cated restrictions on the parameter space, which easily leads to divergence. It seems

that even careful convergence monitoring is not able to fully relieve this problem.

Appendix A:
Restrictions on pp in a three-way Bahadur model

An analytical method for the bounds of the second order correlation in a three-way
Bahadur model is described. Let the coefficient of p;(,y in expression (2.2) be denoted
by g,(A, n,z). Hence, the three-way Bahadur model under exchangeability can be
written as

3
f(y) - ﬂ—z(l - ﬂ—)niz I+ Zp(r)gr()‘vnv Z) :

r=2
Let the values for n and A (or equivalently 7) be arbitrary but fixed and drop
them from notation. Hence, g,(\, n, z) is abbreviated as g,(z). Restrictions on the
Bahadur model parameters are resulting from the condition that the probability

mass function has to be non-negative for all possible outcomes (Bahadur, 1961),

which for Bah(3) implies that

L+ p2yg2(2) + paygs(z) > 0, (4.2)
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for z=0,1,...,n. Let zp, 2z and zy be the vectors containing the values of z for
which g3(z) is positive, zero and negative respectively. Denote a general element of
zZp, 2z and zy by zp, z; and zy respectively. For each of the elements of zp, (4.2)

can be expressed as
1+ pyga(zp)

>
e = g3(zp)

Analogously for zy, one obtains

Taking into account that pg) € [—1,1], the constraints for pgs are:

[ < 1+P(2)92(2’P))
max |max | ——————— |, —1

1
< py) < min [mm <_M) ,1] |

zZp 93(ZP) N g3(ZN)
(4.3)
In particular, in the case of clusters of size n = 3, expression (4.3) reduces to
max(=A"" 4+ (227" = N)pra), =A% = 3Aprz), —1) < pg) <
min()\*?’ + 3)\71p(2), A+ ()\71 — 2)\)p(2), 1) (44)

For clusters of size n = 4, the expression analogous to (4.4) depends on 7 lying
in the first, second, third or fourth quarter of the [0,1]-interval. The derivation is
straightforward but lengthy and is omitted here.

Given pegy in expression (4.3), there exists at least one value of p(z) leading to
a valid probability mass function if and only if the lower bound is not larger than
the upper bound. Equivalently, both terms on the left hand side have to be smaller
than or equal to both terms on the right hand side. First, this implies for any pair
(zp, zy) that

1 p2)92(2p) < _ 1+ py92(2n)

g5(zp) B g3(2n) (45)

Let
A(zp,2n) = g3(zn) — gs(zp)
and

7(zp, 2v) = 92(2n)g3(2p) — 92(2p)g3(2N).
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Expression (4.5) can then be rewritten as

piyT(zp, 2n) 2> Alzp, 2n).

On the one hand, for any (zp, zy) for which 7 > 0, it implies that
A(zp, z
pay > 2LpEN)
T(2p, 2N)
On the other hand, for any (zp, zy) for which 7 < 0, it results in

A(zp, zn)

<
Pe) = T(zp, 2N)

Based on these inequalities, boundaries for p(y) are derived:

A A
max Alzp,2v) <po < min Alzp,2v) : (4.6)
(ZP,ZN):T>0 T(ZP,ZN) (ZP,ZN):T<0 T(ZP,ZN)

Expression (4.3) also implies for any element of zp that

14 peyga(zp)

< 1.
93(ZP)

On the one hand, for any zp for which g, > 0, it leads to

Based on these inequalities, boundaries for p) are derived:
1 1
max <_+9_<P>) <oy < min <_+9_<P>) | (4.7)
2pig2>0 92(2p) g92(2p)

Analogously, the condition that

1+ peyg2(2n)

-1 <
93(ZN)

for any element of zy, implies that

1 — ga(zn) :
— V< < —— . 4.8
S < g2(zn) ) T e = ko 92(2n) (45)
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Also the effects of the elements of z; on the constraints on ps) need to be studied.

Expression (4.2) then reduces to

1+ peyg2(27) = 0

for any z,. For z; for which g, > 0, it leads to

1
> __ -
P = 92(27)’

while for z; for which g, < 0, it results in

1
gz(zz)'

P2y < —

Based on these inequalities, boundaries for p(y) are derived:

1 1
_ < gy < min | — : 4.9
s () <o < i (5) =

From (4.6)-(4.9) and the constraint —1 < ppy < 1, it follows that the upper and

lower bound for p(y) in a three-way Bahadur model can be written as

ot (7) s (") e () s (5)
max max — ), max | — , max | — , max [—— ), —
(zp,2N):T>0 \ T zpig2>0 g2 zZN:g2>0 g2 zz:92>0 go

S Pe) S

: [ : <A> : < 1+g3) : < 1—93) : < 1)
min min — ), min | — , min | — , min [——],1].
(zp.zN):T<O\ T zp:g2<0 go zn:92<0 go z27:92<0 go

—_

Appendix B:
Restrictions on py in a four-way Bahadur model

In contrast with Appendix A, this appendix deals with an analytical procedure for
the derivation of the constraints on the second order correlation in a four-way Ba-
hadur model. Again, represent the coeflicient of p;,y in formula (2.2) by g,.(), n, 2).

One can then express the four-way Bahadur model under exchangeability as

4
Jy) =m(L=m)"7 |14 3 pryge(Ain, 2) |

r=2
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Here, the values for n and A are arbitrary but fixed and hence, the coefficient
g-(A\,m, z) is represented by g.(z). Constraints on the parameters of the Bahadur
model are due to the condition that the density function needs to be non-negative

for all outcomes (Bahadur, 1961), which for the four-way Bahadur model results in

L+ pe2y92(2) + pygs(2) + payga(z) > 0, (4.10)

for z=10,1,...,n. The vectors containing the values of z for which g,(z) is positive,
zero and negative are denoted by zp, 25 and zy respectively. Let a general element
of zp, z, and zy be represented by zp, 2z, and zy respectively. Then, expression
(4.10) can be written as

14 peyg2(2p) + p3y9a(zp)
ga(zp)

P4y =

for each of the elements of zp. For zy, it follows from (4.10) that

1+ pygalan) + paygs(en)

<
P = g4(2n)

Adding the constraint puy € [—1,1], the restrictions on the four-way correlation

coeflicient are:

[ < L+ pr2yga(zp) + P(3)93(ZP))
max |max | — ,—1

Zp ga(2p)
< py < (4.11)
, [ . < L+ peyg2(2zn) + P(3)93(ZN))
min |min/| — 71 .
N 94(ZN)

For a particular value of pg) and pgs) in expression (4.11), there exists at least
one value of pg) resulting in a valid density function if and only if the lower bound
in (4.11) is not larger than the upper bound. Hence, each of the terms on the left
hand side needs to be smaller than or equal to each of the terms on the right hand

side. This implies among others, that for any pair (zp, 2y ),

B 1+ peyg2(zp) + p3)93(2p) < _ 1+ p2yg2(2n) + pe3)g3(2n)
g4(2p) N ga(zn)

(4.12)
Let

A(zp, 2n, p2y) = 9alzn) {1 + P(z)gz(zP)} — ga(zp) [1 + P(z)gz(ZN)} (4.13)
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and
7(2p, 2n) = g3(2n)ga(2p) — g3(2p)ga(2n). (4.14)
Omne can then reexpress formula (4.12) as
pyT(zp, 2v) = A(zp, 25, p(2))-
For any (zp, zy) for which 7 > 0, it results in

A(va ZN, P(z))
T(zp,2x)

p3) =

Also, for any (zp, zy) for which 7 < 0, it implies that

A(va 2N P(2))
T(zp,2x)

pe3) <

From these inequalities, constraints on the third order correlation coefficient are

obtained:

A A
- < (ZPazNap(2)))§p(3)< - < (ZPazNap(2)))‘ (4.15)

(2p,2n)iT>0 T(2p, 2N) T (2p.n)iT<0 T(2p, 2n)

Formula (4.11) also results in

_ 1+ pg2(zp) + pe3ygs(zp)
94(213)

<1

for any element of zp. On the one hand, for any zp for which g5 > 0, it implies that

1+ ga(zp) + pe2yg2(2p)

> _
e = gs(zp)

On the other hand, for any zp for which g3 < 0, it leads to

1+ ga(zp) + pe2yg2(2p)
93(ZP)

pE) < —

Based on these inequalities, restrictions on p(3y are found:

1+ ga(zp) + p2yg2(zp) ) 1+ ga(zp) + p2yg2(zp)
max | — < P(3) < min | — .
93(213) 93(213)

zp:g3>0 zp:g3<0

(4.16)

In an analogous way, the condition that

14 peyg2(2n) + pi3ygs(zn)

—1<
- ga(zn)
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for any element of zp, results in

1 —ga(zn) + p2)92(2n) < . 1 — ga(zn) + p2)92(2n)
max | — < p3) < min |— .
ZNigs>0 93(2n) ZNig3<0 93(2n)

(4.17)

Also the effects of the elements of z, on the boundaries for the third order correlation

have to be considered. Formula (4.10) then simplifies to

1+ peyg2(27) + p3ygs(zz) > 0
for any z;. For z; for which gs > 0, it implies that

1+ pg2(22)

> _
P = 9s5(2z)

while for z, for which g3 < 0, it results in

L+ P2)92(27)
93(22)

pE) <

From these inequalities, restrictions on p(3y are derived:

1 1
e | — + p2)92(22) <P < min (- + p2)92(22) ‘ (4.18)
#2:93>0 93(27) 22:93<0 93(27)

Based on (4.15)-(4.18) and the restriction —1 < py < 1, the lower and upper
bound for the third order correlation coefficient in a four-way Bahadur model can

be expressed as
(A) ( 1+g4+p(2)92) ( 1fg4+p(2)gz) ( 1+p(2)gz)
max max — ], max - |, max - |, max - ,-1
(zp,zn)iT>0 \ T zpig3>0 g3 znigs>0 93 27:93>0 g3

< p) <

. . (A) . ( 1+g4+p(2)92) . ( 1fg4+p(2)gz) . ( 1+p(2)gz)
min min — ], min —— ], min -], min —_— 1,1
(zp,zN)T<O\ T zpigg<0 g3 zni193<0 g3 z7:93<0 g3

Based on the previous formula, restrictions on the second order correlation coef-
ficient can be derived. For a particular value of p(y), there exists at least one value of
pe3) resulting in a valid distribution if and only if the lower bound for p(s is smaller

than or equal to the upper bound. Hence, each of the five terms in the lower bound
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of p3) needs to be smaller than or equal to each of the five terms in the upper bound.
More specifically, this implies among others, that
A A
max < (vaszp@))) < min < (vaszp@))) ‘ (419)

(zp,2N):T>0 T(ZP,ZN) T (2p,aN)iT<0 T(ZP,ZN)

Represent a pair (2p, 2y ) for which 7 > 0 by (zp;, 2x1) and a pair (zp, zy) for which

7 < 0 by (zp2, 2n2). Inequality (4.19) can be reexpressed as

A(zp1, 2n1, P(z)) < A(zpg, 2n2, P(z))
T(zp1,2n1) T T(2p2, Zn2)

for any combination of (zpy, 2x1) and (zpg, 2n2). Let

(4.20)

v(zp1, 2N, 2p2, 2n2) = T(2p1, 2n1) [92(2n2)94(2p2) — g2(2p2)ga(2n2)]
- T(ZP27 ZNz) [92(2N1)94(ZP1) - 92(2P1)g4(ZN1)]

and

]
]

Using also expression (4.13) for A(zp, zx, p(2)), it follows from (4.20) that

W(ZPla ZN1s ZP2, ZNz) = T(ZPlale) [94(ZN2) - 94(2’132

— T(2p2, 2n2) [94(2n1) — ga(2p1

p(2)V(ZP17 ZN1y ZP2; ZNz) > W(ZPla ZN1, %P2, ZNz)-
For any (2p1, zn1, 2p2, Z2n2) for which v > 0, it implies that

W(ZPla ZN15 %P2, ZNz)

P = :
®) V(ZP172N172P272N2)

Furthermore, for any (zp1, 2y1, 2p2, 2n2) for which v < 0, it follows that

W(ZPla ZN15 %P2, ZNz)

pPe) < .
V(ZPlv ZN1, ZP2, ZNz)

Based on these inequalities, constraints for p) are derived:

max

(zP1,2N1,2P2,2N2):v>0 V(ZPla ZN1yZP2, ZNz)

<W(ZP17 ZN15 %P2, ZNz))
S Pe) S

<W(ZP17 ZN152P2, ZN2))

V(ZPlv ZN1,2P2, ZNz)

min
(2P1,2N1,2P2,2N2):w<0

In an analogous way, the other constraints for the second order correlation coefficient
in a four-way Bahadur model are obtained. The derivation is straightforward but

tedious and hence, that part is omitted here.
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Implications of misspecifying the
likelihood on safe dose
determination

In Chapters 3 and 4, the focus was on dose-response modelling of data from devel-
opmental toxicity experiments. Characteristics of the Bahadur, beta-binomial and
conditional models and the behaviour of the Wald and likelihood ratio test statis-
tics were studied for the NTP data, as for simulated small samples and in the large
sample context.

Besides investigating suitable dose-response models, another issue is quantitative
risk assessment. This critically important area of risk assessment is based on the
relationship between dose and response to derive a safe dose. In quantitative risk
assessment, there are a number of choices which have to be made, resulting in a
variety of approaches.

First, safe exposure levels can be derived from the NOAEL-safety factor ap-
proach, as discussed in Section 1.6. Alternatively, dose-response modelling can be
used to determine safe doses. Due to the disadvantages of the NOAEL and the
benefits of dose-response models, this chapter and the following one are concerned
with statistical procedures to predict safe exposure levels based on the modelling
approach.

Secondly, there are several ways to handle clustering. While dose-response mod-
elling is relatively straightforward in uncorrelated settings, it is less so in the clus-
tered context. Of course, one can ignore the clustering altogether by treating the
littermates as if they were independent. Also, the litter effect issue can be avoided

by modelling the probability of an affected litter. Such models are generally too
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simplistic but there is a multitude of models which do consider clustering. As dis-
cussed in Chapter 2, different types of models (marginal, random effects, conditional)
for clustered binary data can be formulated. In this chapter, the Bahadur, beta-
binomial and conditional probability models are considered. The discussion is briefly
extended with another marginal model introduced by George and Bowman (1995).
Besides the choice of an appropriate dose-response model, model parameters can be
estimated via several inferential procedures. Estimation methods range from full
likelihood to quasi-likelihood and generalized estimating equations. Dealing with
quantitative risk assessment in this thesis, parameters are estimated using maxi-
mum likelihood methodology. Furthermore, the implications of fitting some model
(rather than basing on the unknown data generating mechanism) on the assessment
of safe doses can be investigated. While in Chapter 3, the effect of misspecifying the
parametric response model on the assessment of dose effect was investigated, this
chapter focuses on the implications of likelihood misspecification on the estimation

of a safe dose.

Thirdly, quantitative risk assessment can be based on either fetus or litter-based
risks. In order to perform dose-response modelling and assessment of safe doses,
most authors take a fetus-based perspective, where the excess risk over background
for an affected fetus is determined as a function of dose. In this chapter, safe doses
and lower confidence limits are computed for several types of malformation, using a
fetus-based approach. For models formulated in terms of a fetus-specific marginal
probability, this is particularly straightforward. However, a disadvantage of this
approach is that it may raise biological questions. From a biological perspective,
modelling litter-based excess risks is a very appealing alternative. Arguably, the
entire litter is more representative of a human pregnancy than a single fetus. The

following chapter will contrast fetus and litter-based perspectives.

Fourthly, one needs to acknowledge the stochastic nature of the number of im-
plants and the number of viable fetuses (i.e., the litter size) in a dam. Some methods
(Ryan, 1992) condition on the observed litter size when modelling the number of
malformations. Others (e.g., Catalano et al., 1993) allow response rates to depend
on litter size and then calculate a safe dose at an “average” litter size, thereby avoid-
ing the need for direct adjustment. Krewski and Zhu (1995) use a model formulation
that causes litter size to drop from the expression for excess risk. Rai and Van Ryzin

(1985) compute risks by integrating over the litter size distribution. This approach
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will be used in this chapter and the following one.

The relatively complex data structure forces several other decisions: (1) Are
linear or non-linear predictors used ? (2) Are the malformation indices studied sep-
arately, collapsed into a single indicator or treated as a multivariate outcome vector
per fetus within a litter 7 (3) Is death ignored, studied separately without taking
into account malformations among the viable fetuses, combined with a collapsed
malformation indicator into a new indicator for abnormality (i.e., death or malfor-
mation) or studied jointly with the malformation outcomes 7 (4) Are continuous
responses, such as birth weight, excluded from the model or not 7 Chen et al.
(1991), Ryan (1992), Catalano et al. (1993), Krewski and Zhu (1994) discuss statis-
tical models that allow for exposure effects on death and malformation, formulating
the problem as a trinomial model with overdispersion. Catalano and Ryan (1992)
and Catalano et al. (1993) propose models that incorporate fetal weight in addition
to death and malformation. In this chapter and in Chapter 6, linear predictors are
used for the parameters of the implemented models. Here, the malformation indica-
tors external, skeletal and visceral are analysed, as well as a collapsed malformation
indicator. The developmental toxicity endpoints “death” and “fetal birth weight”
are not highlighted here.

In Section 5.1, two approaches to calculate a safe dose are followed. First, as
suggested by many authors (e.g., Crump and Howe, 1985), a likelihood ratio based
version is discussed. Secondly, an alternative method based on profile likelihood
is explored. For both methods, two versions are contrasted: entirely model based
and linearly extrapolated. In Section 5.2, the different methods are compared by
asymptotic calculations based on a method of Rotnitzky and Wypij (1994). Their
technique is adapted to compute “asymptotic values” of several safe dose estimators.

These results are then contrasted with analyses of the NTP data in Section 5.3.

5.1 Determination of a safe dose

Suppose one wishes to estimate a safe level of exposure, based on the models dis-
cussed in Chapter 2. The standard approach to quantitative risk assessment requires
the specification of an adverse event, along with the risk of this event expressed as a
function of dose. In this chapter, events of interest are malformed fetuses according

to a specific type and malformation according to any type. The risk r(d) represents
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the probability that the event of malformation occurs at dose level d. In this chap-
ter, the focus is on the fetus-based risk, which is the probability that a fetus has the
considered adverse event of malformation. In the Bahadur model, this risk equals
the model parameter 7, being the marginal probability of a malformed fetus. Basing
on the modelling of the Bahadur parameters as expressed in (2.5),

1

r(d) = . 5.1
(@) 1+ exp(—/f — Bud) (5:1)
As a consequence, the background risk
1
r(0) = ——. 5.2
0= exp(—/fo) 52

The same formulas are derived in case of the beta-binomial model. When dealing
with the George-Bowman model and its folded logistic parameterization as intro-

duced in Section 2.4, the risk is

2
The background risk then equals
2

For the conditional model, the expression for the risk is more complicated. Using

(2.17), the probability of malformation at dose d for this model can be written as

sz " exp {(Bo 1+ Bud)z — Boz(n — 2))
(5.5)

sronl | exp {(B 1 Bud)z — Poz(n — 2)}

z

where {P(n)}, is the probability distribution of the litter sizes. This unknown
distribution is estimated here using the local linear smoothed frequencies of the
number of viables, as presented in Table 3.1 (Aerts, Augustyns and Janssen, 1997).

The background rate in the conditional model can be written as:

PRIy " exp {foz — Boz(n — 2)}

r(0) = Z S P () - ) (5.6)
Yl on exp {foz — faz(n — 2)}
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Instead of the risk r(d) itself, one might prefer to use the additive excess risk,
which is the excess risk above the background rate, i.e., 7(d) — r(0). Assuming that
at any non-zero value of dose, the chemical under investigation has more toxic effects
than at dose level 0, the additive excess risk function ranges from 0 to 1 —7(0). This
type of risk does not relate the difference in risk at dose d and at dose 0 to the
background rate. This is in contrast with the relative excess risk function r*(d).

It is a “multiplicative” risk function, measuring the relative increase in risk above

background and is defined as (Crump, 1984)
(5.7)

In this thesis, r*(d) is called the ezcess risk. Assuming again that the chemical
results in more adverse effects at non-zero dose d compared to dose level 0, the
excess risk ranges from 0 to 1. An expression for the excess risk in the Bahadur and

the beta-binomial models can be derived from formulas (5.1) and (5.2):

r* (d) _ 1 - exp(—ﬂdd)

1+ exp(—fy — fBad)’ 5:8)

In the George-Bowman model, the excess risk can be computed using (5.3) and
(5.4):
2(2 Pad — 1)

r*(d) = @A 212 (5.9)

From the relationship r*(d), a safe level of exposure can be determined. The
terminology used to describe a “virtually safe dose” or a “benchmark dose” is not
standardized and depends on the area of application (carcinogenicity, developmental
toxicity) and the regulatory authorities involved (Environmental Protection Agency,
Food and Drug Administration,...). A useful overview is given in Williams and
Ryan (1997). A benchmark dose is defined as the statistical lower confidence limit
on a dose corresponding to a risk in the range of 1 to 10% (Crump, 1984). The
virtually safe dose (VSD) can be defined in several ways (Crump and Howe, 1985;
Gart et al., 1986; Chen and Kodell, 1989). For instance, it can be defined as the
lower confidence limit on a dose corresponding to an excess risk of 107*. The dose
itsell is referred to here as the effective dose (ED). Hence, the ED is the dose at
which the excess risk over the background rate is small, say 10~* and the VSD is

the lower confidence limit of the effective dose.
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Using r(d) = r(d; 8), i.e., the marginal probability of a malformed fetus at dose
level d corresponding to the parameter vector 8 in the model considered, the ED
can be defined as the value d that solves r*(d;3) = 107*. Equating (5.8) to 1074,
the ED in case of a Bahadur or a beta-binomial model can be calculated:

14+10~* exp(—fBo) )

In =
EDpanpp — ( 1;0 -
d

(5.10)

Analogously, the ED in case of the George-Bowman model is derived from (5.9):
2410~ *(2"P0—1)
log, ( 2+10*4(23071):>

EDqp = B
d

(5.11)

From (5.5) and (5.6), it is clear that there is no simple expression for the effective
dose when dealing with the conditional model.

The ML estimate of the effective dose is the solution to #*(d) = r*(d; 3) = 1074
where ,B is the ML estimate of 8. As a consequence, for the Bahadur and the beta-
binomial models, the ML estimate of the ED is found by replacing 3y and f§; in
expression (5.10) by their ML estimates. Analogously, the ML estimate of the ED
in case of the George-Bowman model is obtained from (5.11).

For setting confidence limits in low dose extrapolation, i.e., to determine the
VSD, two approaches are considered. Crump and Howe (1985) recommend to use
the asymptotic distribution of the likelihood ratio. According to this method, an
approximate 100(1 — «)% lower confidence limit for the ED (denoted by VSD(1)),

corresponding to an excess risk of 1074, is defined as

min{d(3) : r*(d; ) = 10~* over all 8 such that 2(¢(8) — #(8)) < o(1 = 2a)},
(5.12)

with p the number of regression parameters. This might imply that a dose-response
model with more regression parameters (and thus more uncertainty) leads to a larger
confidence region and thus to a smaller VSD. For the Bahadur and beta-binomial

models, the 97.5% lower limit can be written explicitly as

In M PO
Hlln{ ( 1&:0 ) over all ﬁOvﬁd s.t. 2(€(ﬁ07ﬂd7ﬁ2) - é(ﬁOvﬂd7ﬁ2)) S X§(095)} 9

(5.13)
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with £ = >N /; determined by (2.3) or (2.10) and with x2(0.95) = 7.81. An
analogous expression for the George-Bowman model is
log % ..
min 2 ( 2“; CIAESY ) over all By, By s.t. 2(£(Bo, Ba) — £(Bo, Ba)) < x5(0.95) 3 ,
d

(5.14)
where ¢ = SN /; is based on (2.7) and where x2(0.95) = 5.99. The procedure
is somewhat more involved for the conditional model. The expressions (5.5) and
(5.6) for the risk in the conditional model at dose levels d and zero respectively, are
plugged into (5.7), whence (5.12) is solved numerically. Of course, it is crucial that
a likelihood ratio test be available, making the method less straightforward to use in
non-likelihood settings. For pseudo-likelihood, the proposal of Geys, Molenberghs
and Ryan (1999) for pseudo-likelihood ratio tests could be followed.

A second approach, denoted by VSD(2), is based on the profile likelihood method
(Morgan, 1992). This procedure is explained first for the Bahadur, beta-binomial
and conditional models. For a specified excess risk, three parameters fully specify the
set of four (B, By, P2, d) parameters, i.e., given the parameters 3, the corresponding
dose d is uniquely determined. Similarly, &y, G2 and d determine ;. In other words,
given By and f,, either member of the pair (£, d) contains the same information,
provided a monotonic relationship exists between ; and d. For the Bahadur and
beta-binomial models, expression (5.10) shows that the relationship between §; and
d is indeed monotone. For the conditional model however, this transformation is
most often not monotone. Therefore, VSD(2) will not be applied to this model.
In case the relationship between ; and d is monotonic, the following procedure is
suggested. First, transform the likelihood depending on 0y, §; and 55 to a likelihood
expressed in terms of (), d and ;. Next, calculate the logarithm of the profile
likelihood, Ip(d), by maximizing the logarithm of the transformed likelihood over 3,
and [y:

Ip(d) = max (S, d, f2).
Bo,B2
The final step in the construction of a profile likelihood based confidence interval

for the effective dose is the computation of its 100(1 — )% lower limit. The lower
bound VSD(2) satisfies the conditions

VSD(2) < ED and 2(Ip(ED) —Ip(VSD(2))) = x3(1 — 2a).

Hence, constructing the lower limit of a 97.5% confidence interval for the effective
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dose is based on the percentile x#(0.95) = 3.84. In case of the George-Bowman
model, the profile likelihood procedure is analogous to the method described above,
except that B consists only of f; and §;. Formula (5.11) expresses the relationship
between f; and d for this model.

A variation on this theme, suggested by many authors (Chen and Kodell, 1989;
Gaylor, 1989; Ryan, 1992), first determines a lower confidence limit, e.g., corre-
sponding to an excess risk of 1% and then linearly extrapolates it to a VSD. The
main advantage quoted for this procedure is that the determination of a VSD is less
model dependent. This assertion will be explored in the next sections.

Several other methods have been proposed. Using the delta method, a Wald
based version can be obtained. Several authors have indicated that this method
suffers from drawbacks, especially with low dose extrapolation (Krewski and Van
Ryzin, 1981; Crump, 1984; Crump and Howe, 1985). One of the disadvantages of a
Wald based confidence interval for the effective dose is that its lower limit may fail to
be positive. The NOAEL provides another alternative. This method is discouraged
by several authors (Kimmel and Gaylor, 1988). It is very ad hoc and often leads
to a VSD which is considerably larger than with the dose-response based methods
(Gaylor, 1989).

In the next section, the ED will be applied in an asymptotic study, while both
procedures VSD(1) and VSD(2) will be applied to the NTP data in Section 5.3.

5.2 Asymptotic study

Asymptotic information on the implications of model misspecification on the assess-
ment of safe doses, is based on the ideas of Rotnitzky and Wypij (1994), as explained
in Section 3.1. An artificial sample is constructed, in which each possible realization
of dose d;, number of viables n; and number of malformed fetuses z;, is weighted
according to its probability under a given underlying model. The joint probabil-
ity f(d;,n,2;) is factorized in the same way as in Section 3.1. This technique is
adapted here to compute “asymptotic” dose values. Notice that this will not be a
lower limit and hence not a VSD, since asymptotically it can be determined without
error. Therefore, in this section, the focus is on the effective dose (ED). Data are
generated from Bahadur (Bah), beta-binomial (BB) and conditional (Cond) models

in turn. For each sample, the ED is determined under all three models, based on an
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entirely model based estimator, as well as on an extrapolated version of the 1% ED.

Again, four dose groups are considered, with one control group (d; = 0) and
three active groups (d; = 0.25,0.5,1). Here, the distribution of the number of
viable fetuses in a dam, is a local linear smoothed version of the relative frequency
distribution given in Table 1 of Kupper et al. (1986). The smoothed frequencies are
presented in Table 3.1.

For the Bahadur and beta-binomial models, the selected intercept 3, equals
-4.5 and corresponds to a low baseline adverse event rate of 1%. The baseline
malformation rate of the conditional model depends on both intercept (here, G, =
—2.5) and association parameter. A grid of values for dose effect is considered. Table
3.2 represents the parameter settings used in this simulation study. More details

about the choice of the values for the transformed correlations were given in Section

3.1.

Results are graphically summarized in Figures 5.1 (Bahadur), 5.2 (beta-binomial)
and 5.3 (conditional). The “true” ED is found by fitting the correct model (i.e., the
model under which the data were generated) and by calculating the purely model
based ED. This is the Bahadur model in Figure 5.1, the beta-binomial model in
Figure 5.2 and the conditional model in Figure 5.3.

First, the results from the three underlying models under investigation are com-
pared to each other. When the underlying model is Bahadur or beta-binomial, the
effective doses are the same in case of no association in the true model. This is
expected because both models then reduce to logistic regression and since the same
intercept parameter is considered (y = —4.5). When there is association between
the littermates in the underlying Bahadur model (#; = 0.1), the results are very
close to the ones of the beta-binomial model. One also notices that in case of the
underlying conditional model, the effective doses are larger than for the other two

models.

Secondly, the curves for a particular underlying model are investigated for both
values of the association parameter. When the true model is Bahadur or beta-
binomial and there is no association between littermates, there are only two curves:
the model based and the extrapolated version. The latter one yields the lowest ED.
When association between littermates is introduced, the curves separate slightly.
When the true model is conditional and no association is assumed, all procedures

yield virtually the same results. A somewhat different conclusion is obtained for as-
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sociated outcomes: essentially the model-based and extrapolated curves are grouped.

Thus, typically the extrapolated version is lower than the model based one.
While this may seem cautious, one should not forget that in this study the true
ED is known (the model-based version under the correct model) and hence, the
extrapolated version is found to be too low here. In this respect, Morgan (1992)
(p. 175) and the Scientific Committee of the Food Safety Council (1980) point out
that blind adherence to a conservative procedure is to be regarded as scientifically

indefensible.

5.3 Analysis of NTP data

The knowledge gathered from the asymptotic study is supplemented with analyses
of the NTP data. The studies investigate the effects in mice of the toxic agents
DEHP, DYME and EG. Details were provided in Section 1.4.

Two estimates of the effective dose corresponding to an excess risk of 10~* are
provided. Besides an entirely model based (MB) effective dose, a linear extrapolation
(EP) version is computed. Furthermore, four quantities for the lower confidence
limit of the ED are determined. In addition to the determination of the confidence
region based VSD(1), the profile likelihood version VSD(2) is calculated. For both
methods, a model-based and an extrapolated version is implemented. The VSD(2) is
not calculated for the conditional model, since a confidence interval for dose effect 3,
does not necessarily transform monotonically into an interval for dose d. In addition
to the three models used in the previous section, the model proposed by George and
Bowman (1995), which was introduced in Section 2.4, is included.

Table 5.1 shows model-based VSD’s, whereas Table 5.2 gives the extrapolated
versions. For the quantities “ED - MB”, “ED - EP”, “VSD(1) - MB” and “VSD(1)
- EP” | the conditional model results in the largest value in 8, 11, 9 and 10 cases (out
of 12) respectively. As a consequence, the conditional model in general yields the
highest values for both ED and VSD(1), in both the extrapolation and the model-
based methods, but the effect is somewhat clearer in the extrapolation procedure.
To some extent, this result differs for the three chemicals under consideration. In
the DEHP, DYME and EG experiments, the conditional model results in the largest
values of ED and VSD(1) in 16, 8 and 14 cases (out of 16) respectively. As a
consequence, this picture is slightly amended in the DYME study where the largest
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Figure 5.1: Population values of the effective dose when the underlying model is

Bahadur: model-based and extrapolated estimators.
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beta-binomial: model-based and extrapolated estimators.
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results are most often obtained under the conditional model (in 8 out of 16 cases as
indicated above) or under the George-Bowman model (in 6 out of 16 cases).

Turning attention to the marginal models, the highest values of ED, VSD(1) and
VSD(2) are found with the George-Bowman model. The number of cases in which
the Bahadur model results in higher values relative to the beta-binomial model, is
comparable to the number of cases with lower values for the Bahadur model.

One also notices that the extrapolation method yields much smaller values in all
cases. This is in line with the asymptotic study, which has shown that effective doses
computed by means of the extrapolation procedure results in lower values compared
to the model-based estimates.

Now, the focus is on the various procedures to calculate VSD’s. First, one
observes that VSD(2) is virtually always higher than VSD(1). This is to be expected,
since it is based on a one degree of freedom procedure, whereas for VSD(1), three
degrees of freedom are spent in case of the Bahadur and beta-binomial models and
two degrees of freedom are used in the George-Bowman model. Of course, as pointed
out in the previous section, a lower VSD is “safer”, but one should be careful not
to be overly cautious (Morgan, 1992). Secondly, the linear extrapolated versions
of Table 5.2 are smaller than their purely model based counterparts of Table 5.1.

These two observations yield the following ordering:
VSD(1,EP) < VSD(2,EP) < VSD(1,MB) < VSD(2,MB).

This ordering is found in 30 out of 36 cases. In addition, the discrepancies between
the VSD’s from different models and between VSD(1) and VSD(2), are smaller with
the linear extrapolation method.

Visceral malformation in the EG study is an interesting exception as it is the
only one for which no clustering is found. The conclusion here agrees with the left
hand panel of Figures 5.1 and 5.2. Indeed, when there is no association, there are

essentially only two curves: model based and extrapolated.

5.4 Concluding remarks

In this chapter, a few models describing dose-response curves based on a binary
outcome in clustered experiments, have been studied . From a modelling perspective,
both marginal and conditional models can be defended. Model properties w.r.t.

estimation of a safe dose were investigated. A likelihood confidence region based
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Table 5.1: Estimates of effective doses and lower confidence limits. Entirely model
based computation. All quantities shown should be divided by 10%.

Outcome  Model Statistic DEHP EG DYME
External  Bahadur ED 27 72 165
VSD(1) 15 47 48

VSD(2) 18 55 63

GB ED 28 08 156

VSD(1) 16 50 60

VSD(2) 20 68 71

BB ED 26 73 168

VSD(1) 14 45 47

VSD(2) 17 56 62

Cond ED 36 124 141

VSD(1) 22 66 55

Skeletal Bahadur ED 23 4 13
VSD(1) 14 4 9

VSD(2) 16 4 7

GB ED 29 7 27

VSD(1) 17 6 16

VSD(2) 21 6 18

BB ED 27 6 25

VSD(1) 14 4 11

VSD(2) 18 5 14

Cond ED 34 11 25

VSD(1) 20 9 17

Visceral Bahadur ED 19 350 171
VSD(1) 13 189 48

VSD(2) 15 126 72

GB ED 20 385 203

VSD(1) 13 83 100

VSD(2) 16 135 &7

BB ED 18 367 08

VSD(1) 11 199 63

VSD(2) 14 131 40

Cond ED 28 504 202

VSD(1) 18 134 95

Collapsed Bahadur ED 9 4 25
VSD(1) 6 4 13

VSD(2) 7 4 15

GB ED 9 7 18

VSD(1) 6 5 12

VSD(2) 7 6 13

BB ED 8 5 27

VSD(1) 6 4 13

VSD(2) 6 4 15

Cond ED 14 11 27

VSD(1) 9 8 18
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Table 5.2: Estimates of effective doses and lower confidence limits. Linear extrapo-
lation method. All quantities shown should be divided by 10%.

Outcome  Model Statistic  DEHP EG DYME

External  Bahadur ED 17 41 34
VSD(1) 12 38 23

VSD(2) 14 39 25

GB ED 18 46 36
VSD(1) 13 37 26

VSD(2) 15 44 28

BB ED 17 41 34
VSD(1) 12 37 22

VSD(2) 13 39 25

Cond ED 24 b7 36
VSD(1) 17 42 25

Skeletal Bahadur ED 16 4 10
VSD(1) 11 4 8

VSD(2) 13 4 6

GB ED 19 7 17
VSD(1) 13 5 12

VSD(2) 16 6 13

BB ED 17 5 14
VSD(1) 12 4 9

VSD(2) 14 5 10

Cond ED 23 10 18
VSD(1) 16 8 14

Visceral Bahadur ED 14 67 44
VSD(1) 11 62 28

VSD(2) 12 62 34

GB ED 15 67 46
VSD(1) 11 46 38

VSD(2) 13 62 37

BB ED 14 67 36
VSD(1) 10 62 31

VSD(2) 11 62 26

Cond ED 21 78 64
VSD(1) 15 55 47
Collapsed Bahadur ED 7 4 14
VSD(1) 5 4 9

VSD(2) 6 4 10

GB ED 8 6 13
VSD(1) 5 5 9

VSD(2) 6 5 10

BB ED 7 5 14
VSD(1) 5 4 9

VSD(2) 6 4 11

Cond ED 11 10 17
VSD(1) 8 8 13
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and a profile likelihood based procedure were implemented. In both cases, a purely
model based and a partly linearly extrapolated version were considered.

Based on this study, extrapolation to compute a VSD is recommendable over an
entirely model based determination, since in the former procedure, there is a closer
agreement between the results calculated from different models. In the settings
considered here, the conditional model often, but not always, yields the highest
VSD.

Estimating a VSD was built on the strategy developed for a marginal model:
the probability of a malformation occurring in an individual animal is used as a
tool to define excess risk from which a VSD is derived. However, the probability
of malformation occurring in the litter as a whole could be used instead, with a
human being represented by a litter, rather than by an individual fetus. Whether
this procedure is advantageous, is discussed in the following chapter.

Other models than the ones presented here deserve consideration, e.g., the odds
ratio model (Molenberghs and Lesaffre, 1994). Other methods of estimation, e.g.,
estimating equations (Liang and Zeger, 1986) can be investigated in the context
of misspecifying the model and the implications for safe dose assessment. Further,
procedures that incorporate the effect of dose on both death and malformation
are worthwhile to consider. The latter extension enables the study of the relation
between dosing and observed litter size and is incorporated into Chapter 6. However,
in the simplified setting considered here, some of the advantages, problems and

drawbacks have been identified.



Chapter 6

Litter-based methods in safe dose
determination

In the previous chapter, quantitative risk assessment was performed using dose-
response models. Risks were based on the probability that a fetus exhibits the
adverse event under investigation. This approach is straightforward for marginal
models, which are expressed in terms of this marginal adverse event probability
(Diggle, Liang and Zeger, 1994; Pendergast et al., 1996). However, one might base
risk assessment also on the cluster of fetuses of a dam. Then, the probability that at
least one fetus of a dam has the adverse event under consideration, is crucial. In this
chapter, fetus and so-called litter-based risks are contrasted in the determination of
safe doses basing on dose-response modelling. In analogy with the previous chapter,
the stochastic behaviour of the number of implants and the number of viables is taken

into account when calculating risks, via integration over the cluster size distribution

(Rai and Van Ryzin, 1985).

Here, the emphasis is on the beta-binomial model (Skellam, 1948; Kleinman,
1973), as well as on the conditional model of Molenberghs and Ryan (1999). Both
models were introduced in Chapter 2. The Bahadur model (1961) is not consid-
ered here because of the previously observed drawbacks of this model, which are
primarily due to restrictions on its parameters. The parameters of the selected
models in this chapter are modelled by means of linear predictors. It is shown how
the beta-binomial and the conditional models can easily handle litter-based rates.
Furthermore, it is demonstrated how the conditional model leads to a natural for-
mulation of the fetus-based excess risk on the number of implants in a dam, unlike

marginal models such as the beta-binomial model.

In this chapter, four approaches are focused: (1) an indicator for death, (2) a col-
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lapsed malformation indicator ignoring dead fetuses, (3) an indicator for abnormality
(i.e., death or malformation) and (4) a joint model for death and malformation. A
multivariate approach for malformation and the incorporation of weight into the
model, are subjects of future research.

In Section 6.1, fetus and litter-based risks are derived for the beta-binomial and
conditional models. The collapsed outcome “abnormality” is discussed, as well as the
hierarchically structured outcomes death and malformation. Section 6.2 compares
the fetus and litter-based approach and contrasts a model for abnormality with
a joint model for death and malformation, based on the NTP data. Section 6.3
illustrates these items based on asymptotic samples. In Section 6.4, the focus is on

the variability of the excess risk estimator.

6.1 Expressing risks

As indicated in Section 5.1, the specification of an adverse event is required in quan-
titative risk assessment, together with its risk as a function of administered dose. A
safe dose level can then be derived based on this relation. In the literature, several
definitions are used to express the concept of a safe dose. For instance, a virtu-
ally safe dose can be defined as the lower confidence limit on a dose corresponding
to a very small excess risk, e.g. 1074 Here, the dose itself is referred to as the
effective dose (ED). In this section, different risks and corresponding excess risks
are presented for the beta-binomial and conditional models. They can be fetus
or litter based and they can be defined for a single adverse event like “death” or
“malformation” as well as for both events jointly. In the next sections, these differ-
ent approaches to risk and ED estimation are compared for the NTP data and for

so-called asymptotic samples.

6.1.1 Fetus and litter-based risks

The main issue deals with the choice between fetus and litter-based risks. Here,
for simplicity, the presentation is restricted to the adverse event “abnormality” in
a litter with m implants. A fetus-based approach focuses on the risk of a fetus
as a function of the level of exposure d given to the dam. Let gp(m;d) be the
probability that a fetus is abnormal, given that the fetus is selected from a litter
with m implants. Consider all values of the number of implants m with non-zero

probability P(m). Administering some specified dose d to M dams, the fetus-based
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risk is:
X MPm)mgp(m;d) 3, P(m)mage(m; d)
re(d) = S M P(m)m B S Pm)ym 7 (6.1)

Hence, the fetus-based risk at some specified dose is an average of conditional prob-

abilities gr(m;d) with weights M P(m)m, i.e., the expected number of fetuses in
litters with m implants resulting from the M dams.

In marginal models such as the beta-binomial model, the probability g (m;d)
does not depend on the number of implants m (except when it is explicitly incor-
porated in the model as a covariate) and hence, rp(d) = ¢z(d). It will be shown
that this is in contrast with the conditional model of Molenberghs and Ryan (1999),
where ¢y is related to the number of implants m in a natural way.

In a litter-based approach, the event of interest is whether at least one fetus in a
litter is abnormal. Let g, (m;d) be the probability that at least one fetus in a litter

of size m has the adverse event. The litter-based risk is
rp(d) =" P(m)q.(m;d), (6.2)

which is an average of conditional probabilities ¢, (m;d) with weights P(m).

Since a particular adverse effect in one or more fetuses of a litter is at least as
probable as the occurrence of this adverse event in a specific fetus, it follows that
gr(m;d) < q,(m;d). Considering this inequality for any number of implants m with
non-zero probability P(m), it follows that

> P(m)ge(m;d) < rp(d) =3 P(m)g;(m;d).

For a single adverse event in a marginal model, the conditional probability ¢r(m;d) =
gr(d) and hence, the first sum equals 7,(d). In this case, the fetus-based risk is
smaller than or equal to the litter-based risk. Notice however that in general, the
first sum is different from 7.(d). One can easily find examples in which r(d) is
smaller than, equal to or greater than r,(d). Indeed, consider the case of two litters,
litter 1 with one fetus being abnormal and litter 2 with two fetuses being healthy.
Then, rr(d) for the adverse event “abnormality” is 1/3, while r(d) = 1/2. If litter
1 would have had two abnormal fetuses, then r,(d) = r,(d) = 1/2. Finally, if litter
1 consisted of three abnormal fetuses, then r.(d) = 3/5 > r, (d) = 1/2.

The excess risk 7*(d) has been introduced in Section 5.1. Again, there are cases
where the fetus-based excess risk 7% (d) is smaller than, equal to or greater than the
litter-based excess risk 7% (d). This is illustrated in Table 6.1.
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Table 6.1: Cases in which the fetus-based excess risk is smaller than, equal to or
larger than the litter-based excess risk. A and H indicate an abnormal and a healthy
fetus respectively.

Case 1 Case?2 Case 3
Litter 1, dose=0 AA AA AH
Litter 2, dose=0 H,H H,H H.H
Litter 3, dose=d>0 A A AA AA
Litter 4, dose=d>0 A H AA HH

r#(0) 1/2 1/2 1/4
r1(0) 1/2 1/2 1/2
rr(d) 3/4 1 1/2
ri(d) 1 1 1/2
r4.(d) 1/2 1 1/3
3 (d) 1 1 0

For a specific model, these risks can be estimated by replacing all parameters by
their maximum likelihood estimates. Also the values P(m), i.e., the distribution of
the number of implants in a litter, have to be estimated. This is discussed in more
detail in Section 6.4.

In what follows, fetus and litter-based risks will be discussed for the beta-
binomial model and the conditional model of Molenberghs and Ryan. For both
models, the approach of a single adverse event (focusing on “abnormality”) will be
given, as well as the approach where the adverse events “death” and “malformation”

are studied jointly.

6.1.2 Risks for a beta-binomial model for abnormality

The probability ¢ that a fetus is abnormal, given that the fetus is selected from a
litter with m implants, is 7. Based on (2.4) and (2.5),

1
1+ exp(—f — Bad)’

4r
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As mentioned before, the probability ¢ does not depend on the number of implants
m and hence, the fetus-based excess risk equals
o qr(d) — qr(0) _ 1 — exp(—0,d)
" 1 —g-(0) 1+ exp(—f — Bad)

Since 7} does not depend on the correlation parameter p, the above expression is

also valid for the ordinary logistic regression model.
The probability that at least one fetus of a litter is abnormal is
Blr(p ' = 1),(1=m)(p ' = 1) + m)
Br(pt=1),A=m)(pt=1))

This expression can be rewritten as

q/::1_

m—1

kmp
qLil— H <1—W+m).

k=0
Notice that, in cases of overdispersion, the litter-based probability of an adverse
event ¢, is smaller than the probability 1 — (1 — 7)™, corresponding to p = 0 (no
clustering). From (5.7) and (6.2), the litter-based excess risk can be computed as

> P(m) ) TL(L — () + hr(dyo/(1 4 (k — 1)p))
rr=1- L L

5= POm) T (1 = w(0) + kx(0)o/ (1 + (k= 1)p))

k=0
In case of no clustering, this expression reduces to
G —(@)
t G(1—m(0))
where G/(-) is the probability generating function of the number of implants. For
m =1, G(z) = z such that r¥ = r&.

6.1.3 Risks for a beta-binomial model for death and malfor-
mation jointly

Here, it is proposed to model both components of (2.1) with a model similar to (2.9):

clmd) — (™ B(man (pgin, — 1) + 7, (L= Taun) (o, — 1) +m — 1)
fir m,d) <) Blran o — .00 — tan) k=)
(6.3)

fz | nd) — <n) B(Tpmar(prt; — 1) 4+ 2, (1 = Tpa) (o — 1) + 10— 2)

< B(Wmal(p;n}zl —1),(1 - 7Trmzl)(p;rjzl —1))
(6.4)
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Again, one can distinguish between risk assessment at fetus level and at litter level.
The probability that fetus j is dead or malformed, given that the number of

implants equals m, is
gr = P(fetus jis dead | m implants) + P(fetus j is malformed | m implants)

m—1
= Tan + Y (P(fetus j is alive and R = | m implants)
o (6.5)
x P(fetus j is malformed | fetus j alive & r deaths out of m implants))
where R denotes the number of deaths in a litter. This can be reexpressed as

Tmal
B(Wdth(p;t% —1),(1— ﬂdth)(p;t}z —1))

9r = Tan +
(6.6)
m—1 m—1 . .
X Z , B(man(pger, — 1) + 7, (L — Tan) (e, — 1) +m —17).
r=0

Expressions (5.7), (6.1) and (6.6) enable the calculation of the fetus-based excess
risk.
The probability that at least one fetus is dead or malformed, given m, is based

upon (2.1) and reduces to
¢ —=1—P(R=0,7=0|md) —1—P(R=0]|mdP(Z=0]|n,d).

Explicitly, in terms of (6.3) and (6.4),

m—1

KT genpatn U T mal Prmal
=1- 1 — 7wy + 1 — T + . (6.7
o k,ll_Io < Tt (k = 1)pasn T (¢ = 1)pma (6.7)

Formulas (5.7), (6.2) and (6.7) allows one to compute the litter-based excess risk.

6.1.4 Risks for a conditional model for abnormality

For the conditional model, the probability ¢, that fetus j is abnormal, given implant
size m, can be expressed in several ways. The probability ¢, can be written as in
(2.17) in terms of S, the number of abnormals. It can also be computed based on

(2.14), by summing over the distribution of the outcomes of the other littermates:

m

= 3 (7o fws = stm =) = Alwr )

s=1
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with s the number of abnormal fetuses in a litter. Finally, one can derive an expres-

sion for g, by calculating the probability that fetus j is healthy, given m implants:

i = 1= 3 (" e (s stm =) - Al
e (A g m) AR~ 6,6,m - ). (69

Using the expression for a healthy fetus is slightly more convenient. These formulas
show how, for the conditional model, the probabilities ¢, depend on the number of
implants. Based on (5.7), (6.1) and (6.8), the fetus-based excess risk follows.

Now, the probability that at least one fetus is abnormal, given m, is ¢, = 1 —

P(S = 0), which, based on (2.14), is given by

q, = 1 —exp{—A{,p,m)}. (6.9)

This result is an appealing counterpart to (6.8). It differs from (6.8) by the deletion of
one normalizing constant. FExpression (5.7), (6.2) and (6.9) can be used to calculate

the litter-based excess risk.

6.1.5 Risks for a conditional model for death and malfor-
mation jointly

The conditional model for death and malformation jointly is the product of

flr[m,d)

<T) exp {¢dthr — q5dth7“(m — 7”) - A(%um Datn m)} ) (6~10)

e ) = (%) s Witz = Gl = 2) = At ot} (611

Using (6.5), the conditional probability that fetus j exhibits an adverse event,

given that a litter contains m implants, can be rewritten as:

m—1 _
qr = Tan + Z <m - 1) exp {Yanr — Qarnr(m — 1) — A(Qarn, Garn, m) }
r=0
X {1 — €XpP {_A(¢mala ¢mala m — T) + A(¢mal - ¢malv ¢malv m-—=r-—- 1)}} .

Based on (6.8), this expression can be simplified to

4 — 1 — exp {— A, danm)} S (m - 1) sp(Br)  (612)

r
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with
B(T) - ¢dth7ﬁ - ¢dthr(m B T) B A(¢mala ¢mfll7 nm— T) + A(¢mal - ¢malv ¢malv m—=r— 1)

Again, by means of (5.7), (6.1) and (6.12), the fetus-based excess risk can be com-
puted.
Considering the conditional model for death and malformation jointly, the prob-

ability that a litter has at least one adverse event, given m, can be based on (2.1),

(6.10) and (6.11):

qr — 11— e€Xp {_A(¢dth7 ¢dth7 m) - A(¢mal7 ¢malv m)} . (613)

The rather complicated sum in (6.12) is replaced by a normalizing constant. Ex-
pressions (5.7), (6.2) and (6.13) enable the calculation of the litter-based excess

risk.

6.2 Analysis of NTP data

The different risk and corresponding ED estimators of Section 6.1 are compared for
the NTP data, introduced in Section 1.4. Excess risk functions are estimated by
maximum likelihood for a grid of dose values, based on the beta-binomial model
(BB) and the conditional model (Cond). These results are also compared to those
of the logistic model for which all information of a litter is collapsed into a single,
binary variable indicating whether there is at least one abnormal fetus. For the toxic
agents DEHP, DYME, EG, TGDM and THEO, the resulting curves for the adverse
events “abnormality” and “death and malformation jointly”, are shown in Figures
6.1 — 6.5. In these figures, two groups of curves can be distinguished: fetus-based
versus litter-based excess risk curves. As expected intuitively, litter-based excess
risks are clearly larger than fetus-based risks at the same dose level. Within the set

of litter-based curves, the ordering
Cond, joint < Cond, abnormal < BB, joint < BB, abnormal

is frequently observed. This is also true for the fetus-based risks except for large
dose values. For small dose levels, the risk for the logistic regression model is most
often somewhat higher than the other litter-based risks.

Besides the adverse effects considered in Figures 6.1 — 6.5, also “death” and

“malformation among the viable fetuses” are investigated for the five toxic agents
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under consideration. Effective doses are calculated for several adverse events. These
are shown in Table 6.2. The ED of a fetus-based risk curve is in general about 5 to 10
times larger than the corresponding litter-based ED. This is in line with the excess
risk curves of Figures 6.1 — 6.5. The effective doses of “abnormal” and of “joint” are
well comparable, except for the chemical TGDM. Comparing the three models under
investigation, the ED of the conditional model is most often larger than the ED of
the beta-binomial model. The logistic model results in the smallest ED. Since the
models considered come from fundamentally different modelling families (conditional
and marginal), a somewhat different behaviour in key aspects is not unexpected.
Indeed, in Chapter 5 which addressed ED determination in the fetus-based setting,
it was concluded that EDs tend to be somewhat higher in the conditional model, as

opposed to the beta-binomial, the Bahadur and the George-Bowman models.

The next section examines whether these findings are confirmed by a large sample

simulation study.

6.3 Asymptotic study

In order to compare the asymptotic effect of a fetus-based versus a litter-based
approach on the effective dose, the ideas of Rotnitzky and Wypij (1994) are followed
here. An artificial (asymptotic or “large”) sample is constructed where each possible
realization of dose d, number of implants m, number of deaths r and number of
malformations z is weighted according to the probability in the underlying model.
Precisely, all realizations of the form (d, m,r,z) are included and are assigned the
weight f(d,m,r,z) where f denotes a probability mass function. Hence, one has
to specify: (1) f(d), the relative frequency of the dose group as prescribed by the
design; (2) f(ml|d), which equals f(m) since a dam is randomly assigned to a dose
group and exposure occurs after mating; (3) f(r|m,d), the actual model probability
for the occurrence of r deaths and (4) f(z|r,m,d) = f(z|n,m,d), which is assumed
here to be f(z|n,d), the actual model probability for z malformations. Again, the
doses 0, 0.25, 0.5 and 1 are considered when generating asymptotic samples and
each dose is assigned a relative frequency of 1/4. The distribution of the number
of implants, f(m), is based on the NTP data. The relative frequencies of m for
all NTP datasets under investigation are smoothed via a local linear smoothing

technique. Least squares cross-validation has been used to choose the bandwidth.
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Table 6.2: Effective doses of DEHP, DYME, EG, TGDM and THEO corresponding
to an excess risk of 107*. All quantities shown should be divided by 10%.

Model Unit  Adverse event DEHP DYME EG TGDM THEO
Logistic regression Litter Abnormal 0.3 04 0.3 1.7 1.4
Beta-binomial Fetus Dead 2.5 7.8 12.3 40.4 8.1
Malformed 7.7 156 5.1 81.3 150.6

Abnormal 1.9 46 2.5 10.0 7.5

Joint 1.9 52 3.6 27.1 7.7

Litter Dead 0.5 0.9 15 7.7 1.9

Malformed 1.4 26 1.1 12.1 17.6

Abnormal 0.3 06 04 1.7 1.7

Joint 0.4 0.6 0.6 4.7 1.7

Conditional Fetus Dead 5.2 10.7 159 31.7 14.9
Malformed 9.8 154 8.2 93.6 1824

Abnormal 3.4 6.6 4.0 15.2 13.7

Joint 3.5 6.7 5.3 23.7 13.8

Litter Dead 0.8 1.0 1.8 5.9 2.3

Malformed 1.1 1.5 1.2 8.6 16.8

Abnormal 0.5 0.6 0.6 2.0 2.0

Joint 0.5 0.6 0.8 3.6 2.0




118 Chapter 6

The absolute and relative frequency distribution resulting from the NTP data, as
well as the smoothed relative frequencies, are presented in Table 6.3. The conditional
model is used for generating the number of deaths and the number of malformations

as in (6.10) and (6.11). The parameters are modelled as

¢dth — ﬂo,dth + ﬂd,dthd7 ¢dth — ﬁQ,dth?
77Dmal — ﬁO,mal + ﬂd,maldv ¢mal — ﬂ2,mal-

Based on the parameter estimates from the conditional model for each NTP dataset,
60 parameter combinations are selected (Table 6.4). Next, for each parameter vector,
an asymptotic sample is generated based on a conditional model for death and
malformation jointly. Fetus and litter-based excess risk curves are computed for
death and malformation jointly as well as for abnormality.

Figure 6.6 shows a selection of curves for six parameter combinations. Again,
fetus-based excess risks are markedly smaller than litter-based excess risks. For
Bo.ath = Pomar = 0, the difference is less pronounced. In general, fetus and litter-
based curves are relatively close to each other for large background rates for death
and malformation. The plots of Figure 6.6 also show that the curve for “abnormal-
ity” and the corresponding curve for “death and malformation jointly”, are relatively
close to each other. This is true for the fetus-based as well as for the litter-based
approach. The 54 other parameter combinations considered here, result in excess
risk functions for “abnormal” and for “joint” which are often comparable. However,
there are a number of parameter combinations for which the curve for “abnormal”
is strikingly larger than for “joint”, i.e., the overly simplistic model leads to higher
excess risks than the correctly specified joint model.

In general, for an increasing value of the ratio f = £y 4in/B0,mai, the risk curves
seem to get closer to each other. The same holds for increasing values of 3, and
of Bamar = Baan. Furthermore, in case of association (B2mar = Boan = 0.2), the

excess risk at a particular dose is in general smaller than in the case of independence.

6.4 Variability of the excess risk estimator

Previous sections have shown how the different risk approaches and their correspond-
ing estimators compare. A further question is how large the sample variability is of

these risk estimators and how to properly estimate their variances. A small simu-
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Table 6.3: Absolute and relative frequencies of the number of implants.

Number of  absolute relative  smoothed relative
implants  frequency frequency frequency
1 4 0.0073 0.0073
2 3 0.0054 0.0063
3 4 0.0073 0.0081
4 7 0.0127 0.0094
5 2 0.0036 0.0074
6 6 0.0109 0.0092
7 6 0.0109 0.0113
8 7 0.0127 0.0189
9 23 0.0417 0.0376
10 29 0.0526 0.0676
11 71 0.1289 0.1226
12 98 0.1779 0.1712
13 109 0.1978 0.1812
14 80 0.1452 0.1469
15 55 0.0998 0.1002
16 31 0.0563 0.0579
17 11 0.0200 0.0249
18 3 0.0054 0.0084
19 2 0.0036 0.0036
551 1 1

Table 6.4: Parameter settings.

Parameter values
Bo,mat -6;-4;-2;0
Bo,ath = fBomar With

f 0.25;0.5:1
Ba,mar = Ba,atn 2:4;6

Bo,mat = Bo,ath 0.0;0.2
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lation study showed that there are no substantial differences in variability between
the different strategies to determine risk. Therefore, attention is focused on the es-
timation of the standard error se(7*(d)) for one particular setting. Using simulated
data, a conditional model is fitted to the number of abnormal fetuses in a dam, after
which the litter-based excess risk estimator 7*(d) is computed.

The standard error of 7*(d) is estimated based on the delta method. In general,
the excess risk does not only depend on the dose administered to a dam, but also
on unknown parameters (0,...,0,) = 6. As a consequence, the excess risk is

represented here by 7*(d; 8). Under some regularity conditions,
CY2(7*(d; 0) — 1*(d; 8)) -2 N(0: AL A),

where C' is the number of clusters in the dataset, 7*(d; 0) = r*(d; 0), A = %@ =
A(0) and 3] is the asymptotic variance-covariance matrix of /29, Here, the param-
eter 0 is estimated via maximum likelihood methodology. Hence, for large samples,
the variance of 7*(d; @) can be approximated by A(6)I(8) 'A(8)', where 1(0) is
the information matrix of 6.

A key issue when studying excess risks is the estimation of the distribution P(m).
In addition to the estimators for the regression parameters, also the estimator for
the distribution of the number of implants, P(m), contributes to the variability of
7*(d). Clearly, in simulated data, the distribution P(m) is known. Assuming that
the distribution of P(m) is known, is referred to as approach 1. Approach 2 stands
for replacing P(m) by an estimator P(m) but ignoring the variability associated
with this estimation. Of course, when analysing real data, approach 1 is impossible
and approach 2 is incorrect. They are included to assess the difference with approach
3: the delta method which correctly accounts for all sources of variability.

A small sample simulation study is performed with the conditional model for
death and malformation jointly as the underlying generating probability model,
with parameters ﬂo,dth = ﬁo,maz = ﬂz,dth = ﬁz,maz = 0 and ﬂd,dth = ﬂd,mal = 2. The
distribution P(m) of the number of implants is taken as in Table 6.3 (referred to
as NTP), uniform on {1,...,19} or a truncated Poisson model. A total number of
120 and 1920 clusters is considered, equally distributed over dose levels 0, 0.25, 0.5
and 1. Excess risks are calculated at doses 0.1 and 0.9, based on 500 simulation
runs. For each approach, the standard error of the excess risk estimates is compared
with the mean of the standard errors obtained by applying the delta method on

the data for each run. Three estimators for the distribution P(m) are chosen:
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the multinomial model on {1,...,19}, a truncated Poisson model and a smoothed

multinomial model.

The simulation results are shown in Table 6.5. For each setting, both measures
of variability, i.e., the simulated error se(r*) and the mean estimated error 3, are
very comparable for approach 1. This is to be expected since P(m) is known and
not estimated. In the first setting with P(m) as NTP and P(m) multinomial,
both measures are quite different for approach 2. For the smaller sample size, the
extra variability induced by estimating P(m) is not taken into account correctly by
approach 3. Since several probabilities P(m) in Table 6.3 are small (P(m) < 0.01 for
8 values of m), observed relative frequencies (the ML estimators for the multinomial
probabilities) for these sizes can be zero, which result in zero rows and zero columns
in the estimated large sample variance-covariance matrix used in the delta method.
Indeed, in the simulation study with 120 clusters, only in 1% of runs are all observed
frequencies non-zero. In the other runs, the number of zero elements varies between
1 and 7. In the simulation study with 1920 clusters in each experiment, all 500
runs result in non-zero observed frequencies. Thus, the discrepancy observed with
approach 3 for experiments of size 120 is clearly related to the occurrence of zero
frequencies. In order to get further evidence, the previous simulations are repeated
with the distribution of the number of implants uniform on {1,...,19}. The results
are shown in the second part of Table 6.5. Now, both error measures for approach
3 result in similar values. It turns out that for the smaller sample size, all observed

frequencies are non-zero in 492 out of 500 runs, which supports the stated claim.

Returning to P(m) based on the NTP data, the use of a Poisson model for P(m)
is investigated as an alternative for the multinomial model. Assuming that there is
at least one implant in a litter (as in Table 6.3), a modified Poisson distribution is
considered: P(m) = exp 7 4™ 1 /(m — 1)l if m = 1,2,... and 0 if otherwise. The
ML estimator 4 is M@ — 1. In order to deal with the infinite number of terms in
the expression of the excess risk, the Poisson distribution is truncated at m = 19
and rescaled to unit sum. The third part of Table 6.5 shows that the results of
approaches 2 and 3 are close to each other, but markedly different from the results
of approach 1. This is probably caused by the rather poor fit of the modified
Poisson model to the cluster sizes of Table 6.3. Omitting the variability induced by
4 in the truncated Poisson distribution, turns out to have no considerable effect on

the variability of the excess risk estimator. Rather than using a smoothed version
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Table 6.5: Standard errors for the excess risk estimator based on three approaches

(appr.) and two error measures, for some combinations of P(m), P(m), dose and
number of dams.

P(m) | P(m) dose | # dams | measure | appr. 1 appr. 2 appr. 3
NTP multinomial 0.1 120 se(r*) 0.030471 0.149240 0.149240
Se 0.030005 0.037478 0.047863

1920 se(r*) 0.007241 0.015885 0.015885

Se 0.007364 0.007425 0.015201

0.9 120 se(r*) 0.024368 0.040869 0.040869

Se 0.024324 0.017122 0.019023

1920 se(r*) 0.005957 0.007926 0.007926

Se 0.006068 0.005958 0.007942

uniform | multinomial  [0.1 [120 se(r*) [0.031070 0.038265 0.038265
S€ 0.030853 0.031213 0.037202

1920 se(r*) 0.007543 0.008616 0.008616

S€ 0.007586 0.007588 0.008875

0.9 120 se(r*) 0.023693 0.025229 0.025229

S€ 0.024345 0.023902 0.025443

1920 se(r*) 0.006104 0.006309 0.006309

S€ 0.006119 0.006120 0.006405

NTP Poisson 0.1 120 se(r*) 0.030471 0.049841 0.049841
S€ 0.030005 0.048727 0.049203

1920 se(r*) 0.007241 0.012224 0.012224

S€ 0.007364 0.012223 0.012347

0.9 120 se(r*) 0.024368 0.004211 0.004211

S€ 0.024324 0.003924 0.003953

1920 se(r*) 0.005957 0.000849 0.000849

S€ 0.006068 0.000844 0.000852

Poisson | Poisson 0.1 [120 se(r*) [0.049558 0.050028 0.050028
Se 0.048639 0.048352 0.048853

1920 se(r*) 0.011853 0.011738 0.011738

Se 0.012238 0.012169 0.012294

0.9 120 se(r*) 0.004142 0.004367 0.004367

Se 0.003554 0.003677 0.003706

1920 se(r*) 0.000845 0.000871 0.000871

Se 0.000846 0.000875 0.000882

NTP multinomial + | 0.1 | 120 se(r*) 0.030471 0.044408 0.044408
smoothing S€ 0.030005 0.031062 0.056985

1920 se(r*) 0.007241 0.015306 0.015306

S€ 0.007364 0.007424 0.014920

0.9 120 se(r*) 0.024368 0.026427 0.026427

S€ 0.024324 0.023111 0.030569

1920 se(r*) 0.005957 0.007766 0.007766

S€ 0.006068 0.005963 0.007863
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of the relative frequencies of the NTP data for the distribution P(m), a truncated
Poisson distribution as described above, is considered now. This allows one to get
an idea of the effect of the type of distribution P(m) on the simulation results when
a truncated Poisson model is chosen for P(m) A value of v is computed based
on the NTP data. Results are given in the fourth part of Table 6.5. All measures
of variability of 7* are similar now, which was expected since the three strategies
consider a truncated Poisson distribution for the computation of the excess risk
estimate and its standard error. Again, the influence of including the variability
related to the estimation of 7 in the calculation of the standard error is negligible.

In order to propose an appropriate distribution P(m) in the case P(m) is a
local linear smoothed cluster frequency based on the NTP data, a multinomial
model combined with a smoothing technique is studied. Rather than considering

the observed relative frequencies, a simple form of smoothing is applied (Santner

and Dulffy, 1989, p. 53)

1 19
<observed number of clusters of size m + §> / (total number of clusters + 7) .

The last part of Table 6.5 indicates that for small experiments (size=120), approach
3 now seems to overestimate the variance of 7* to some extent. This is still preferable
to approach 2 which use would result in inappropriate confidence limits. Comparing
these last results with a multinomial model without smoothed relative frequencies,
it turns out that this simple smoothing technique leads to satisfying results for

approach 3.

6.5 Concluding remarks

Developmental toxicity studies are complicated by the hierarchical (death, malfor-
mation, healthy fetus), clustered (fetuses within litters) and multivariate (several
malformation indicators and low birth weight) nature of the data. As a conse-
quence, a multitude of modelling strategies, with varying degrees of simplification,
have been proposed in the literature. Such choices are often subjective and can
affect the quantitative risk assessment based on the fitted models.

While ignoring others for conciseness, the emphasis was on the choice between
(1) the beta-binomial model versus the conditional model proposed by Molenberghs
and Ryan (1999), (2) modelling death only, modelling malformation only, modelling

a collapsed outcome indicating death or malformation (termed “abnormal”) or a



Litter-based methods in safe dose determination 125

joint model for death and malformation. The main emphasis has been put on (3)
the distinction between fetus-based and litter-based risk assessment.

It has been argued that effective doses calculated from the litter-based approach
are between 5 and 10 times smaller than those obtained from the fetus-based ap-
proach. Thus, while the latter seems to be the standard in practice, it is deduced
that a litter-based approach should be considered far more often. Furthermore, from
a biological perspective, one could argue that litter-based inference makes sense since
a litter represents the typical pregnancy outcome in a rodent, compared with a sin-
gle birth in humans. However, in general, litter-based risk assessment has not been
widely studied, nor compared with fetus-based risk assessment in a systematic way.
While this chapter does not resolve the issue of whether to use fetus or litter-based
risk assessment procedures, it raises the question in a new way and provides a con-
vincing argument that further work, statistical and biological, is needed on this
topic.

In most cases, the beta-binomial model yields somewhat smaller ED’s than the
conditional approach, but the differences are less pronounced. A joint model for
death and malformation yields in some cases approximately the same risk as a
collapsed indicator for abnormality, but there are regions in the parameter space
where the former yields considerably larger ED’s. As a result, a joint modelling
strategy is recommended.

Whenever risk assessment is based on the conditional model, as well as for litter-
based risks under the beta-binomial model, the distribution P(m) of the number of
implants needs to be estimated and sampling variability needs to be incorporated
in the estimator. Whenever some frequencies are near zero, a careful reflection
on the estimator for P(m) is necessary. A multinomial model may be inadequate
due to sampling zeros, whereas more parsimonious models such as a Poisson model
can provide an inadequate fit. As a compromise, it was found that a smoothed

multinomial model performs relatively accurately.
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Frequentist versus Bayesian
inference in power models

In the previous chapters, simple forms for the linear predictors describing main
effects and associations have been considered. The predictors chosen were linear
functions of the dose administered to a pregnant dam. Due to the simplicity of
these predictors, there are no specific inferential issues related to this type of pre-
dictors. However, these models can be too restrictive to adequately describe the
dose-response relationship in real applications. Also, simple expressions of linear
predictors may fail to estimate effective doses and virtually safe doses accurately.
Since quantitative risk assessment is based on extrapolation to very low excess risks
(e.g., 107%), appropriate models for the parameters should be aimed at.

Rather than modelling the parameters by means of a linear function of dose,

quadratic effects could be added to the predictor:

9(&) = Po + Prd; + Pad?,

where ¢ is some link function, §; is a model parameter and d; is the dose administered

to dam 7. Clearly, quadratic models can be generalized to polynomial models:

9(&) = Bo + Brd; + Bod? + ... + B,dY,

in which the order of the polynomial p is a positive integer. Alternatives of polyno-
mial predictors are fractional polynomials (Royston and Altman, 1994), which are
used e.g., in Geys et al. (1999a).

In contrast with the previous predictor functions, which are linear in the param-
eters, the class of predictors can be enlarged by including non-linear predictors. In

this chapter, the focus is on a subgroup of non-linear models, called power models.
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More specifically, power predictors of the following type will be studied:

9(&) = o+ pd]. (7.1)

Omne notices that by setting v = 1, expression (7.1) simplifies to a linear model.
Furthermore, if the covariate is positive, model (7.1) can be expressed by means of

an exponential function of dose:

9(6) = a+ g,

with df = In(d;). This alternative way of expressing a power model is used e.g., by
Cox and Hinkley (1978, p. 92). It is worthwhile to investigate whether these power
models can allow a better dose-response modelling and improve the quantitative risk
assessment procedure.

Throughout this chapter, attention is confined to independent binary responses.
In the context of developmental toxicity experiments, the adverse event of having
a litter with at least one malformed fetus, can be taken as an illustration. Other
examples are the adverse event of a cluster with at least one dead fetus or a cluster
with at least one abnormal fetus. Focusing on the logit link function, the power

model can be represented by:
logit(m;) = a + Ad;. (7.2)

The implementation of power predictors in models which take the litter effect into
account, such as the beta-binomial model and the conditional model, is a topic of
future research.

In dose-response modelling, power models are used as alternatives of linear mod-
els, since 7 in (7.1) is a shape parameter and allows more flexibility of the dose-
response curve. It seems that power models are commonly implemented primarily
in order to get a better fit to the data, rather than for testing purposes. However,
in this chapter, the emphasis will be on the latter aspect.

The use of power models invokes some interesting statistical issues. The key
item is linked with the effect of the covariate (e.g., dose given to a dam) on the
non-linear predictor. The case of no effect of dose d; on the model parameter 7; can
be rephrased as = 0 ory = 0. One notices that this case corresponds to the union
of two planes in the parameter space of a, § and =, i.e., the planes with equation

# = 0 and v = 0. Furthermore, the condition that 7 = 0 or v = 0 is equivalent
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with fy = 0. As a consequence, the restriction put on the model by implying no
dose effect, is no longer linear in the parameters. One notices that the parameter
is not identifiable if § = 0, since the model then reduces to logit(m;) = a. If v = 0,
the model simplifies to logit(m;) = a + f. In that case, one cannot identify « and
0 separately, although their sum is identifiable. Hence, when the covariate has no
influence on the power predictor, the parameters «,  and v are not identifiable
anymore.

The non-identifiability of regression parameters results in some interesting sta-
tistical problems. First, fitting models with power predictors might be complicated
if the dose effect is weak, since convergence problems can be expected in that case.
If the dose effect is absent, then the regression parameters of the power model under
consideration are non-identifiable. Secondly, the effect of dose d; on 7; can be in-
vestigated via testing the null hypothesis Hy : #y = 0. Performing a test of no dose
effect can be approached e.g., from a frequentist point of view. Section 7.1 shows
that this approach leads to complications which are also due to non-identifiable
parameters. In Section 7.2, it is shown how Bayes factors can provide a way out

here.

7.1 A frequentist approach

In this section, the effect of dose d; on the non-linear predictor logit(m;) is inves-
tigated via testing the null hypothesis Hy : fy = 0, from a frequentist point of
view.

Using the likelihood ratio (LR) methodology, the following generalized LR test

statistic can be considered:

SUPg. g, L(OJ Yi,... 7Yn)
SUpg._o L(0;Y1,...,Y5) ’

A=Y, .Y, =

where Y}, ...,Y, are the binary response variables and where 8 = («,3,7)". The
parameter space © consists of all parameter vectors 8 € IR?, while the parameter
subspace Og contains all 8 for which f~ = 0. The likelihood in the numerator of A,
reaches its maximum for some value of 7, say 7*, or equivalently, some value of the
logit of 7 equal to logit(7*) = §. The denominator of A,, equals L(é;Yl, LY,
with @ the ML estimator of . For regular cases, A, has an asymptotic x? null

distribution. However, in the settings considered here, there is a problem. Indeed,
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transforming the value 7* to the regression parameters, the maximum of the likeli-

hood under the null model is obtained for
all @ for which a = logit(7*),3 =0

and

all @ for which o + 8 = logit(n*),y = 0.

As a consequence, under the hypothesis of no dose effect, the likelihood is maximized
at any parameter combination on these two intersecting lines. Even if the generalized
likelihood ratio test statistic is asymptotically y? distributed, a remaining question

would be the number of degrees of freedom (one, two,...).

7.2 A Bayesian approach

This section considers a Bayesian framework for testing the null hypothesis of no
dose effect on the predictor logit(m;). Several Bayesian testing procedures have been
proposed in the literature (Kass and Raftery, 1995). Bayesian hypothesis testing
can be performed by means of Bayes factors, which are introduced now.
In this context, the null model corresponds to the hypothesis Hy of no effect of
dose d; on the predictor:
Hy : logit(m;) =6,

with 6 some constant. Under the alternative model, the dose administered to a dam

has an effect on the predictor via a power function:
Hl . IOglt(ﬂ'l) =« + ﬁd;y

In this chapter, the data considered are assumed to be independent binary responses
and are represented by (yi,...,¥,) = ¥y. The Bayes factor can be defined as

7P(y|H1)

0 Py [ Hy) (7.3)

From (7.3), it follows that the Bayes factor can be viewed as measuring the relative
success of Hy and H; at predicting the data (KKass and Raftery, 1995). Representing
the a priori probabilities of the null and alternative hypotheses by P(Hy) and P(H;)

respectively, one notices that

B PUL)  P(y) P y)
"“P(Hy) P(Ho,y) P(Holy)
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i.e., the Bayes factor multiplied by the prior odds of H; results in the posterior odds
of Hy. If both hypotheses are equally probable a priori, then P(Hy) = P(H;) = 0.5
and the Bayes factor By equals the posterior odds in favour of H;.

The two components of the Bayes factor, i.e., Py | Hy) and P(y | H;), are
computed by integrating the joint density of the data and the regression parameters
of the corresponding model, over its parameters. Hence, the probability P(y | Hp)
is calculated by means of the expression

Ply| Ho) = [ Ply| 6. How(s | Ho)de, (7.4

0
where O is the parameter space of § and where w(é | Hy) is the prior density of 6
in the null model. The probability P(y | H;) is found in an analogous way:

Ply | H) = [ Ply |6 Hi)o(0: | H)d,, (75)
with 8, the parameter vector under the alternative model, i.e., 8; = («, 3,7)!, with
©, the parameter space of 6; and with w(0, | H;) the prior density of €, in the
alternative model. The two components of the Bayes factor are also called marginal
likelihoods or integrated likelihoods (Kass and Raftery, 1995). From (7.4) and (7.5),
it follows that the marginal likelihood is a weighted average of the likelihood, using
the prior distribution as a weight function.

Kass and Raftery (1995) provide categories for the Bayes factor, expressing the
evidence against the null hypothesis. Table 7.1 lists classes for Bjg, as well as for
21n Byg, which is on the same scale as e.g., the likelihood ratio test statistic. These
categories are a rough descriptive statement about standards of evidence in scientific
investigation (Kass and Raftery, 1995). By comparing the computed Bayes factor
of a data analysis with the classes of Table 7.1, one can make a conclusion about
the effect of dose d; on the predictor logit(m;).

A remaining issue is the computation of the marginal likelihoods P(y | Hy) and
P(y | Hy). In the literature, an extended number of methods have been proposed
(Kass and Raftery, 1995). Some of these procedures are briefly introduced here.

In a limited number of cases, the marginal likelihood can be evaluated analyt-
ically. Due to the type of method, it results in an exact value of P(y | H}) with
k = 0,1. However, in most cases, this procedure is intractable and thus, numerical
methods are needed to approximate the marginal likelihood.

A conceptually simple numerical method is the partitioning of the parameter

space Oy, into small rectangular parallelepipeds. One then evaluates the likelihood



132 Chapter 7

Table 7.1: Categories for the Bayes factor expressing evidence against the null hy-
pothesis.

B 21n Big Evidence against Hy

1to3 0 to2 not worth more than a bare mention
3 to 20 2to6  positive

20 to 150 6 to 10 strong

>150 >10 very strong

function P(y | 8y, H,) and the prior density function w(0;, | H;) in a central point
of that object. The parameter 8, equals ¢ if k=0 and as indicated before, 8, =
(a, B3,7) if k=1. Next, one multiplies this likelihood value and the value of the prior
density with the volume of the parallelepiped. Finally, by summing all contributions
over O, an approximation of the marginal likelihood is obtained. On the one hand,
this method requires neither an ML estimate of the parameters 8, nor an estimate
of the posterior mode, i.e., the mode of posterior density function P (8 | y, Hy).
On the other hand, this procedure can be very inefficient in the sense that a lot of
computer time might be needed for calculating an approximation of the marginal
likelihood with a specified level of precision.

Rather than considering all parallelepipeds in the constructed grid of the pa-
rameter space Oy, one can opt to select a smaller number of points in ©, by means
of some random mechanism and to evaluate the likelihood function in these points.

This idea is used in the simple Monte Carlo estimate of the marginal likelihood:
e 0
m i=1

where 0,(61), . 70](gm) is a sample from the prior density w(0; | Hy,). Hence, P(y | Hy)
is an unweighted average of the likelihoods of the sampled parameter values (Ham-
mersley and Handscomb, 1964). Again, this method does not need an ML estimate
of the parameters or an estimate of the posterior mode. However, a disadvantage
of this procedure is that the simulation process can be quite inefficient (McCulloch
and Rossi, 1991).

The precision of simple Monte Carlo integration can be increased by the tech-

nique of importance sampling. Rather than generating a sample of parameter values
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from the prior distribution, one generates parameter values 0,(61), e 70](gm) from an-
other distribution, say w*(8, | Hy). Then, a weighted average of the likelihood

evaluated at these sampled parameter values is computed:

> wi Py | 0 Hy)
o w; ’

Ply | Hy) = (7.6)

with w; = w(@,(j) | Hk)/w*(eg) | H). The density w*(6; | Hy) is called the im-
portance sampling function (Geweke, 1989). If this function is chosen to be the
posterior distribution P(@, | y, H,) = P(y | 0, H,)w(0, | H,)/P(y | H), then
expression (7.6) yields

Ply| Hy) = {ZPy|9“ )}-

Hence, when generating parameter values from the posterior distribution, the es-
timator of the marginal likelihood is the harmonic mean of the likelihood values
(Newton and Raftery, 1994). No ML estimate or posterior mode of @} are required
here. Furthermore, it is easy to calculate and experience suggests that it often gives
results that are accurate enough for interpretation on the logarithmic scale of Table
7.1. However, this approximation is unstable (Rosenkranz, 1992).

The last estimator of the marginal likelihood described here, is based on the
Schwarz criterion

Py | élaHl) Lo ;
m — §(d1m(1) — dim(0)) In(n),

where 6}, is an ML estimate of @), under H, (with & = 0,1), where dim(k) is the

dimension of 8, and where n is the sample size. The Schwarz criterion can be viewed

S=1In

as a rough approximation to the natural logarithm of the Bayes factor By (Kass
and Raftery, 1995). Hence, the Bayes factor Bjy can be estimated by exp(5). In

the settings considered here,

P(y|6,,H
RN CALITEC I Y (7.7)
P(y | 67H0)

~

with 8, = (&, 3,4)". From (7.7), it follows that

Py | élaHl)

~
~
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Table 7.2: Some of the data of DEHP, as well as the estimated probabilities of
observing a dam with at least one abnormal fetus, based on a power model.

Transformed # dams # dams with  relative  estimated frequency

dose at least one frequency based on a
abnormal fetus power model

1.000 30 21 0.700 0.719

1.151 26 22 0.846 0.804

1.312 26 23 0.885 0.907

1.654 24 24 1.000 0.998

2.000 25 25 1.000 1.000

and that twice the Schwarz criterion equals the usual likelihood ratio test statistic
minus twice the natural logarithm of the sample size. Keeping in mind the rough
interpretation of the Bayes factor on the logarithmic scale of Table 7.1, it can be
shown that in large samples, the Schwarz criterion should provide a reasonable
indication of the evidence (Kass and Raftery, 1995). Also, this procedure requires
only the value of the likelihood ratio statistic and the number of parameters in both

models. Furthermore, no prior distributions are needed.

7.2.1 Analysis of NTP data

In this section, data of the toxic agents DEHP, DYME, EG, TGDM and THEO
are analysed by computing an approximation of the Bayes factor in order to test
for no dose effect in the power model specified in expression (7.2). Here, the focus
is on the adverse event “dam with at least one abnormal (i.e., dead or malformed)
fetus”. Doses are rescaled first to the [0,1] interval and then shifted to [1,2]. The
latter recoding is done in order to avoid numerical problems when fitting the power
model, arising from the evaluation of the non-linear predictor when the control group
is considered and v < 0. As an illustration, the data of the chemical DEHP which
are relevant in this context, are given in Table 7.2.

Three methods are selected for the estimation of the Bayes factor. Besides the
Schwarz criterion, the Bayes factor is approximated by computing the integrals (7.4)
and (7.5) numerically. This is performed by partitioning the parameter space into

small parallelepipeds. Two types of prior distributions are considered here: a uni-
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form and a normal prior. The selected uniform prior distribution for the parameter 6
of the null model has probability mass between -1 and 5. For the alternative model,
the uniform prior is non-zero for —2.5 < o, < 3.5 and 2 < v < 8 The mean of
the normal prior for é in the model of no dose effect is 2, while the variance of 6
equals 3. Finally, the mean vector and the variance-covariance matrix of («, 3, v) in
the power model with normal prior, is (0.5,0.5,5) and 3 times the identity matrix
respectively. Hence, the first and second moments of the selected priors are equal.

Table 7.3 shows among others, the parameter estimates of the power model un-
der investigation (and the corresponding standard errors), as well as the parameter
estimate of the null model for each of the five NTP studies. Based on the param-
eter estimates of the alternative model, the probability that a dam has at least
one abnormal fetus can be estimated for each dose level. In case of DEHP, these
probabilities are represented in the last column of Table 7.2. The components of
the Schwarz criterion, i.e., the log-likelihood of the power and null models and the
number of dams, are also listed in Table 7.3. Furthermore, the Schwarz criterion and
the resulting estimate of the Bayes factor are given. Finally, the approximations of
the Bayes factors obtained by computing the integrals (7.4) and (7.5) numerically
using a uniform or a normal prior distribution, are added to this table. The values
of the Bayes factor in case of a uniform prior are comparable to the ones in case of a
normal prior, but they are larger than when basing on the Schwarz criterion. These
results are interpreted using Table 7.1. For TGDM and THEO, there is no evidence
against the null hypothesis of no dose effect in each of these three methods. How-
ever, depending on the method, there is positive to strong, strong to very strong and
very strong evidence against this null hypothesis in case of EG, DEHP and DYME
respectively. The descriptive statistics expressed by means of the distribution of
the number of abnormal fetuses in Figures 1.2 — 1.6, are in agreement with these
conclusions. Also, the findings of this section are similar to the ones of Section 3.3
in which the likelihood ratio and the Wald statistics are used to test for no dose
effect.

7.2.2 Small sample simulations

Besides the NTP data analysis of the previous section, a limited small sample sim-
ulation study is performed. Analogous to the small sample simulations of Chapter

3, the doses 0, 0.25, 0.5 and 1 are selected, but due to numerical problems in the
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Table 7.3: Analysis results of DEHP, DYME, EG, TGDM and THEO in which three
methods are used to approximate the Bayes factor (BF).

DEHP  DYME EG TGDM THEO

a 0.484(1.47) -0.168(0.96) 0.632(1.34) -0.0761(1.12)  0.575(0.40)

38 0.457(1.21) 0.270(0.64) 0.314(1.06)  0.172(0.82) 0.00716(0.03)

4 5.04(6.22) 6.14(5.40) 5.08(7.40)  2.99(5.85)  7.65(6.83)

5 1.97 1.17 1.93 0.516 1.25
log-likel.(H;) -39.1 -46.6 -29.8 -68.3 54.5
log-likel.( Hy) -48.6 -60.2 -36.0 -70.7 -57.2
# dams 131 110 95 107 108
Schwarz 4.66 8.86 1.73 2.4 -1.96
BF (Schwarz) 106 7038 5.64 0.106 0.141
BF (uniform) 1647 60385 49.8 0.187 0.199
BF (normal) 1754 63359 54.2 0.269 0.209

computation of the power predictor, these doses are shifted to 1, 1.25, 1.5 and 2.
The adverse event under study is again a dam with at least one abnormal fetus. For
each dose level, 30 binary data are generated, representing the health status of this
group of dams. A value of zero indicates a dam without abnormal fetuses, while
a value of one refers to the presence of at least one dead or malformed fetus. The
number of simulation runs is 100. Several values of the parameter vector (a, 3,7)
of the underlying power model are considered. In this study, a chosen combination
of these parameters is « = 0.5, § = 0.5 and v = 5, which is comparable to the
estimates of the DEHP study. Other selected values of (o, 3,7) are obtained by
changing § from 0.5 to 0 using a step size of 0.1 (Table 7.4), by changing ~ from
5 to 0 using a step size of 1 (Table 7.5) or by changing  and ~ simultaneously
(Table 7.6). Hence, starting from the parameter vector (o, 5,v) = (0.5,0.5,5), one
approaches the null hypothesis of no dose effect via three paths.

The methods used to approximate the Bayes factor, are the same as in the
previous section. Tables 7.4 — 7.6 indicate the number of simulation runs which
are taken into account. For the approximation of the Bayes factor based on the
uniform and the normal priors, all runs are considered in these tables. However,

for the estimation of the Bayes factor using the Schwarz criterion, the procedure
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for the estimation of the parameters in the power model did not always lead to
convergence of the results. For each of the classes of the Bayes factor as indicated
in Table 7.1, the percentages of the number of simulation runs taken into account
here, are listed in Tables 7.4 — 7.6. When generating data from the null hypothesis,
e, (o, 8,7) = (0.5,0,5), (0.5,0.5,0) or (0.5,0,0), the distribution of the number of
simulation runs is comparable for the three methods under investigation. Virtually
all runs lead to values of the Bayes factor smaller than one, implying that there
is no evidence against the null hypothesis. When the underlying model is a power
model, the distribution of the number of runs over these classes is similar for the
uniform and the normal prior density. For the Schwarz criterion, the percentages of
the number of runs in the classes with smaller values of the Bayes factor are larger

than in case of the methods using prior distributions.

7.3 Concluding remarks

In this chapter, the focus is on testing the effect of dose on a power predictor.
The null hypothesis of no dose effect is equivalent with setting the product of two
regression parameters equal to zero. This non-linear restriction of the parameters
in the null model, results in parameter unidentifiability in case the effect of dose is
absent. In order to avoid the computation of the distribution of the likelihood ratio
test statistic in this setting, a Bayesian approach using Bayes factors is considered
here.

One of the methods which are applied to approximate the Bayes factor in this
chapter, is based on the Schwarz criterion. In the other two methods applied here,
the Bayes factor is estimated by integrating the marginal likelihoods numerically
making use of a uniform and a normal prior distribution. It would be interesting
to investigate the influence of the parameters of these prior densities on the Bayes
factor. Also, one could consider other types of priors for the parameters of the null
and alternative models and hence, assess the sensitivity of conclusions to the type of
prior distributions used. Obviously, many other techniques for the calculation of the
Bayes factor can be applied. As indicated in Section 7.2, one can also approximate
the marginal likelihood by the simple Monte Carlo estimate or apply the technique of
importance sampling. Furthermore, Kass and Raftery (1995) propose other methods
for the calculation of the Bayes factor, e.g., Laplace’s method.



138 Chapter 7

Table 7.4: Distribution of the Bayes factor obtained from small sample simulations
in which the Schwarz criterion is used to approximate the Bayes factor, in addition to
integrations over a grid using a uniform or a normal prior density function. Several
values of the parameter § of the underlying power model are considered.

a [ v method #runs <1 1<.<3 3<.<20 20<.<150 >150

0.5 0.5 5 Schwarz 62 8.1 3.2 14.5 17.7 56.5
uniform 100 0 2 6 11 81
normal 100 0 2 5 7 86
0.5 04 5 Schwarz 59 20.3 6.8 20.3 16.9 35.6
uniform 100 0 2 10 21 67
normal 100 0 2 10 18 70
0.5 0.3 5 Schwarz 84 15.5 6.0 15.5 25.0 38.1
uniform 100 0 0 9 20 71
normal 100 0 0 9 18 73
0.5 0.2 5 Schwarz 83 18.1 2.4 15.7 22.9 41.0
uniform 100 0 1 7 25 67
normal 100 0 1 7 24 68
0.5 0.1 5 Schwarz 94 31.9 8.5 18.1 16.0 25.5
uniform 100 8 18 29 40
normal 100 5 7 20 28 40
05 0 5 Schwarz 84 100 0 0 0 0
uniform 100 100 0
normal 100 100 0
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Table 7.5: Distribution of the Bayes factor obtained from small sample simulations
in which the Schwarz criterion is used to approximate the Bayes factor, in addition to
integrations over a grid using a uniform or a normal prior density function. Several
values of the parameter ~y of the underlying power model are considered.

a [ v method #runs <1 1<.<3 3<.<20 20<.<150 >150

0.5 0.5 5 Schwarz 62 8.1 3.2 14.5 17.7 56.5
uniform 100 0 2 6 11 81
normal 100 0 2 5 7 86
0.5 0.5 4 Schwarz 81 23.5 9.9 30.9 21.0 14.8
uniform 100 1 2 20 29 48
normal 100 1 2 18 30 49
0.5 0.5 3 Schwarz 85 424 14.1 15.3 16.5 11.8
uniform 100 16 7 33 20 24
normal 100 16 8 32 19 25
0.5 0.5 2 Schwarz 79 89.9 6.3 3.8 0 0
uniform 100 75 12 11 2 0
normal 100 73 14 11 2 0
0.5 0.5 1 Schwarz 86 100 0 0 0 0
uniform 100 96 3 0 1 0
normal 100 96 3 1 0 0
0.5 0.5 0 Schwarz 89 100 0 0 0 0
uniform 100 99 1 0 0 0
normal 100 99 1 0 0 0
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Table 7.6: Distribution of the Bayes factor obtained from small sample simulations
in which the Schwarz criterion is used to approximate the Bayes factor, in addition to
integrations over a grid using a uniform or a normal prior density function. Several
values of the parameters § and v of the underlying power model are considered.

a [ v method #runs <1 1<.<3 3<.<20 20<.<150 >150
0.5 0.5 5 Schwarz 62 8.1 3.2 14.5 17.7 56.5
uniform 100 0 2 6 11 81
normal 100 0 2 5 7 86
0.5 04 4 Schwarz 86 29.1 5.8 25.6 20.9 18.6
uniform 100 2 7 16 26 49
normal 100 2 7 15 25 51
0.5 0.3 3 Schwarz 84 65.5  14.3 13.1 4.8 2.4
uniform 100 37 20 26 13 4
normal 100 38 19 27 12 4
0.5 0.2 2 Schwarz 86 96.5 1.2 1.2 0 1.2
uniform 100 97 0 2 0 1
normal 100 97 0 2 0 1
0.5 0.1 1 Schwarz 82 98.8 1.2 0 0 0
uniform 100 99 1 0 0 0
normal 100 99 1 0 0 0
05 0 0 Schwarz 83 100 0 0 0 0
uniform 100 100 0 0 0 0
normal 100 100 0 0 0 0
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In this chapter, attention is restricted to independent binary data. Considering
binary data of developmental toxicity studies at the fetus level by fitting models
for clustered data such as the beta-binomial and the conditional models, is a topic
of future research. In this respect, a comparison with the results of Aerts and
Claeskens (1999) will then be possible. In that paper, these authors analyse the
several malformation types of the THEO study, by means of the conditional model.
The P-value of the likelihood ratio statistic for the null hypothesis of no dose effect,
is computed by means of a parametric bootstrap procedure. A question of interest
is about the similarity between their results and the ones obtained by means of the

Bayes factor.
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Samenvatting

Er is in de maatschappij een grote bezorgdheid ontstaan over de effecten van ver-
schillende soorten toxische blootstellingen op de voortplanting en ontwikkeling van
de mens. Geneesmiddelen kunnen naast hun therapeutisch effect ook bijwerkingen
vertonen. Additieven gebruikt in de voedingssector kunnen ook beschouwd worden
als blootstellingen, net als materialen zoals ftalaten die gebruikt worden voor het
verpakken van drank- en voedingswaren. In de scheikundige industrieén worden ar-
beiders blootgesteld aan oplosmiddelen en andere chemicalién. Door de vervuiling
van het leefmilieu kan de mens eveneens gevolgen ondervinden van scheikundige
stoffen en stralingen.

Men stelt zich vragen over de relatie tussen deze blootstellingen enerzijds en
reproductie- en ontwikkelingstoxicologie anderzijds. Meer in het bijzonder wenst
men de effecten van chemicalién en stralingen op de vruchtbaarheid van man en
vrouw, de zwangerschap, het voorkomen van miskramen en geboortes van dode
kinderen, de aanwezigheid van afwijkingen bij pasgeborenen en mogelijke, postnatale
complicaties in de ontwikkeling te onderzoeken.

Er zijn verschillende strategieén om de implicaties van zo'n blootstellingen op
reproductie en ontwikkeling van de mens te bestuderen. Epidemiologische gegevens
kunnen in principe aangewend worden. Gezien deze data worden verzameld bij de
mens, is er geen extrapolatie van de resultaten nodig. Echter, in deze context zijn
betrouwbare epidemiologische gegevens nauwelijks of niet beschikbaar. Bijgevolg
wordt er vaak geopteerd voor toxicologische experimenten op knaagdieren. KEén
van de belangrijkste doelstellingen van deze dierenproeven is het bepalen van een
“veilige dosis” van de onderzochte toxische verbindingen voor de mens. Alhoewel de
extrapolatie van het proefdier naar de mens niet eenvoudig is, leiden deze studies
tot vele interessante onderzoeksonderwerpen. Bovendien hebben experimenten op
knaagdieren het voordeel dat er een goede controle mogelijk is over allerlei factoren

die de resultaten kunnen belnvloeden.
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In dit proefschrift worden statistische technieken toegepast op gegevens die be-
trekking hebben op de gevolgen van de aanwezigheid van scheikundige stoffen op de
ontwikkeling van foetussen. Het Amerikaanse “Research Triangle Institute” heeft
dergelijke toxicologische studies uitgevoerd bij muizen en ratten. Zo'n toxicologisch
experiment bevat over het algemeen een controle-groep en drie of vier groepen waar-
bij de zwangere dieren van een gegeven groep worden blootgesteld aan een bepaalde
dosis van een chemische verbinding. Meestal worden 20 tot 30 moederdieren bij
toeval toegewezen aan een dosis-groep. Deze dieren worden blootgesteld aan die
toxische stof gedurende de kritische periode van de dracht. Net voor het baren wor-
den de dieren gedissecteerd en wordt de baarmoeder grondig onderzocht. Er wordt
nagegaan of de foetussen levensvatbaar zijn. De levensvatbare foetussen worden
gewogen en de aanwezigheid van verschillende types van afwijkingen wordt gere-
gistreerd. Meer specifiek beschouwt de toxicoloog mogelijke afwijkingen betreffende

het geraamte en betreffende de ingewanden, naast uitwendige afwijkingen.

Verschillende soorten van gegevens worden dus verzameld in deze toxicologische
studies. Van ieder moederdier wordt het aantal inplantingen en de toegediende
dosis geregistreerd. Verder wordt de levensvatbaarheid van de foetus genoteerd,
net als het gewicht en het al dan niet voorkomen van meerdere types van afwij-
kingen. Meestal zijn de metingen over deze afwijkingen binair. Behalve de drie
reeds vermelde types afwijkingen wordt in dit proefschrift ook een binaire variabele

geanalyseerd die aangeeft of een foetus geen enkele soort afwijking vertoont.

De proefdieren in de hier beschouwde toxicologische experimenten zijn muizen.
De gegevens van de volgende toxische verbindingen worden geanalyseerd: ethyleen
glycol, triethyleen glycol dimethyl ether, diethyleen glycol dimethyl ether, di(2-
ethylhexyl)ftalaat en theophylline. De eerste drie chemicalién worden o.a. gebruikt
als oplosmiddel. Di(2-ethylhexyl)ftalaat wordt toegepast bij de productie van voor-
werpen bestaande uit polyvinylchloride, waarbij deze toxische verbinding bijdraagt
tot de gewenste flexibiliteit van deze voorwerpen. Theophylline ten slotte is een

geneesmiddel voor de behandeling van astma tijdens de zwangerschap.

In dit proefschrift staan statistische procedures in het gebied van risico-analyse
centraal. Enerzijds wordt de relatie tussen dosis en respons (het aantal dode foe-
tussen in de baarmoeder, het risico op een afwijkende foetus,...) bestudeerd. An-
derzijds wordt in het gedeelte over kwantitatieve risico-analyse onderzocht hoe men

een veilig niveau van blootstelling aan een bepaalde toxische stof kan schatten. Deze
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analyse kan men baseren op de “No Observed Adverse Effect Level” (NOAEL) be-
nadering. Gezien de vele nadelen van deze aanpak, wordt hier verkozen om de kwan-
titatieve risico-analyse te baseren op de dosis-respons-modellering. In tegenstelling
tot de NOAEL benadering laat deze aanpak toe om een maat voor de variabiliteit
van de geschatte veilige dosis te bepalen, alsook om de hiérarchische structuur van

een toxicologisch experiment in de analyse op te nemen.

Kwantitatieve risico-analyse gesteund op dosis-respons-modellering leidt tot een
aantal algemene, relevante onderzoeksonderwerpen. Vooreerst dient men bij de
statistische analyse van gegevens uit toxicologische studies, rekening te houden met
de genetische verwantschap van foetussen uit eenzelfde nest en de gelijkaardige om-
standigheden voor die foetussen in de baarmoeder. Daardoor zijn de data van foe-
tussen uit eenzelfde nest over het algemeen gecorreleerd. Modellen die het complexe
mechanisme waaruit de data worden gegenereerd, trachten te benaderen, dienen
rekening te houden met dit zogenaamde nest-effect. Verder dient men na te gaan
hoe de hiérarchische structuur met dode foetussen enerzijds en levensvatbare maar

afwijkende foetussen anderzijds, kan geanalyseerd worden.

In dit onderzoeksdomein kunnen er meerdere, specificke deelaspecten worden
onderscheiden: het beschrijven van de dosis-respons-relatie, het schatten van de
dosis-effect-parameter(s), het toetsen van de nulhypothese dat er geen dosis-effect
is, het bestuderen van de gevolgen van het foutief specificeren van het model op het

dosis-effect en op de veilige dosis,. . .

Drie types van gegevens worden in dit proefschrift beschouwd. Vooreerst wor-
den de data geanalyseerd van experimenten uitgevoerd door het Research Triangle
Institute. Verder wordt een simulatiestudie opgezet met steekproeven van dezelfde
grootte als in typische, toxicologische studies. Ten slotte wordt een asymptotische
studie uitgevoerd om de effecten van het foutief specificeren van het model te on-
derzoeken in geval van zeer grote steekproeven. In beide types van simulatiestudies
worden data gegenereerd uit een bepaald model, waarna hetzelfde model en an-
dere (foutief gespecificeerde) modellen aangepast worden aan deze gegevens. Op die
manier kan men de implicaties van het verkeerd specificeren van het model op de

resultaten nagaan.

In Hoofdstuk 2 wordt o.a. vermeld welke vereenvoudigingen in dit proefschrift
worden doorgevoerd. Niettegenstaande ook continue responsen zoals het gewicht van

een foetus meestal worden beschouwd in dit soort van experimenten, ligt het accent
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hier op statistische technieken voor de analyse van binaire metingen. Meer specifiek
legt dit proefschrift de klemtoon op het verwerken van binaire data aan de hand van
likelihood procedures. Verder wordt verondersteld dat de gegevens van foetussen
uit eenzelfde nest uitwisselbaar zijn, d.w.z. dat de marginale kans op een afwijkende
foetus dezelfde is voor ieder diertje uit dat nest en dat de associatie tussen elke twee
foetussen van eenzelfde moeder gelijk is. Uitwisselbaarheid is in deze context een
natuurlijke veronderstelling. Een fundamentele vraag in dosis-respons-modellering
is welk model er dient gebruikt te worden bij de analyse van deze gecorreleerde
gegevens. Verschillende klassen van modellen komen in aanmerking: marginale en
conditionele modellen, naast modellen met toevallige effecten. Een overzicht van
deze categorieén van modellen wordt gegeven. Ten slotte worden het Bahadur model
(marginaal), het George-Bowman model (eveneens marginaal), het beta-binomiaal
model (een model met toevallige effecten) en een conditioneel model geintroduceerd.

Deze modellen worden gebruikt bij de studie van de verschillende deelaspecten.

In Hoofdstuk 3 worden de vermelde modellen vergeleken betreffende de gevolgen
van het foutief specificeren van het model op het dosis-effect en op de toets van de
nulhypothese dat er geen dosis-effect is. Het gedrag van de likelihood ratio en de
Wald toetsstatistieken wordt hier bestudeerd. Fén van de conclusies is dat zowel het
beta-binomiale model als het conditionele model een aanvaardbaar gedrag vertonen
betreffende het toetsen van de beschouwde nulhypothese. Het conditionele model
heeft duidelijke, numerieke voordelen, terwijl de parameters van het beta-binomiale

model een eenvoudige, marginale interpretatie hebben.

In Hoofdstuk 4 wordt bijzondere aandacht gegeven aan het gedrag van de likeli-
hood ratio toetsstatistiek wanneer een Bahadur model wordt aangepast aan de data
van deze experimenten. In het algemene Bahadur model worden in de gezamen-
lijke verdeling naast marginale kansen en tweede orde correlaties, ook hogere orde
associatie-parameters opgenomen. Meestal worden de derde en hogere orde corre-
laties weggelaten. Men merkt op dat bij sterke dosis-effecten, deze vereenvoudiging
leidt tot opvallend toegenomen waarden van de likelihood ratio toetsstatistiek in
vergelijking met dezelfde statistiek bij het beta-binomiale model. Het opnemen van
een derde orde associatie-parameter in het Bahadur model verandert het gedrag
van deze statistiek nauwelijks. Echter, in het vier-weg Bahadur model (met tweede,
derde en vierde orde correlaties), observeert men aanzienlijk lagere waarden van

de likelihood ratio toetsstatistiek die beter vergelijkbaar zijn met de waarden van
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diezelfde statistiek bij het beta-binomiale model. Dit fenomeen is gerelateerd met de
beperkingen op de parameters van dit model. Terwijl het toevoegen van een derde
orde correlatie-coéfliciént deze restricties nauwelijks opheft, wordt getoond hoe een

vier-weg Bahadur model leidt tot een duidelijke toename van de parameterruimte.

In kwantitatieve risico-analyse ligt het accent op het schatten van een veilige
dosis, welke kan worden gedefinieerd als de dosis waarbij het extra risico op een bij-
werking bovenop het achtergrond-risico, gelijk is aan een bepaalde kans, b.v. 10~%.
Behalve de puntschatting van deze dosis worden twee methoden toegepast voor de
bepaling van een benedengrens voor de veilige dosis. De ene methode is gebaseerd op
de limiet-verdeling van de likelihood ratio toetsstatistiek, terwijl de andere verband
houdt met de “profile likelihood”. Verder worden zowel voor de punt- als de inter-
valschatting van de veilige dosis, twee procedures beschouwd. Een eerste procedure
is volledig gebaseerd op het model. In de tweede procedure wordt eerst gedeeltelijk
gebruik gemaakt van de dosis-respons-curve van het model en worden de bekomen
resultaten lineair geéxtrapoleerd. In Hoofdstuk 5 wordt de risico-analyse beschouwd
op het niveau van een foetus. De vermelde modellen worden vergeleken betreffende
de gevolgen van het foutief specificeren van het model op de bepaling van de punt-

en intervalschattingen van het veilig niveau van blootstelling.

Een belangrijke vraag in kwantitatieve risico-analyse is of de veilige doses moeten
bepaald worden op het niveau van een foetus of op het niveau van een nest. In
tegenstelling met Hoofdstuk 5 wordt in Hoofdstuk 6 een vergelijking gemaakt van
kwantitatieve risico-analyse op beide niveaus. Er wordt getoond hoe de hiérarchische
structuur van dode foetussen en levensvatbare maar afwijkende foetussen kan wor-
den opgenomen in de risico-analyse. In dit hoofdstuk worden uitdrukkingen voor
foetus- en nest-gebaseerde risico’s opgesteld, zowel voor het beta-binomiale als voor
het conditionele model. Telkens wordt een onderscheid gemaakt tussen het samen-
voegen van de responsen “levensvatbaarheid van een foetus” en “aanwezigheid van
afwijkingen bij een foetus” enerzijds en het analyseren van deze responsen via een
hiérarchische structuur anderzijds. Veilige niveaus van blootstelling worden geschat
voor elk soort risico. Er wordt ten slotte ook getoond hoe de schatting van de

verdeling van nestgroottes een invloed heeft op de variantie van de risico-schatter.

In de vorige hoofdstukken werden lineaire predictoren voor de natuurlijke para-
meters (of een link-functie van die parameters) van het model gekozen. Men kan zich

de vraag stellen of meer complexe predictoren in deze context dienen beschouwd te
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worden. Het laatste hoofdstuk bestudeert een specifiek type van niet-lineaire pre-
dictoren. In plaats van een lineaire functie van de toegediende dosis, wordt hier een
machtsfunctie van die dosis beschouwd. De nulhypothese dat er geen dosis-effect is,
is equivalent met het nul stellen van het product van twee regressie-parameters. On-
der die nulhypothese zijn de regressie-parameters dus niet identificeerbaar. Dit resul-
teert in problemen indien voor een frequentistische aanpak wordt gekozen. Echter,
in dit hoofdstuk wordt geillustreerd hoe een Bayesiaanse benadering toelaat om aan

de hand van Bayes-factoren deze nulhypothese te toetsen.



