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1
Introduction

In longitudinal studies the response of interest is designed to be measured repeatedly

over time for each subject. The so-obtained longitudinal data features correlation

in two directions, that is, besides the correlation between the subjects enrolled in

the study, there is correlation within each subject due to the collection of repeated

measurements over time.

A key characteristic of correlated data is the type of outcome. For the analysis of

Gaussian longitudinal data, the linear mixed model is widely accepted as the unifying

framework for a variety of correlated settings, including longitudinal data (Verbeke

and Molenberghs, 2000). The model contains both subject-specific and autoregressive

effects at the same time. Further, this general hierarchical model marginalizes in a

straightforward way to a multivariate normal model with directly interpretable mean

and covariance parameters, owing to the unique property of the normal distribution

that both the marginal, and in fact also the conditional, distribution of a multivariate

normal is again normal. This does not hold for the non-Gaussian case, since no nat-

ural analog to the multivariate normal distribution is available. Therefore, depending

on which of the three model families is chosen, that is, the marginal, random-effects,

or conditional model family, different models are conceivable. Two important repre-

sentatives are generalized estimating equations (GEE, Liang and Zeger, 1986) within

the marginal model family and the generalized linear mixed-effects model (GLMM,

Molenberghs and Verbeke, 2005) within the random-effects model family. Whereas

1



2 Chapter 1. Introduction

the latter is likelihood-based, the former is established upon frequentist statistics.

Data arising from longitudinal studies are often prone to incompleteness. This

induces imbalance in the sense that not all planned observations are actually made.

In the context of longitudinal studies, missingness predominantly occurs in the form

of dropouts, in which subjects fail to complete the study for one reason or another.

Since incompleteness usually occurs for reasons outside the control of the investigators

and may be related to the outcome measurement of interest, it is generally necessary

to address the process that governs incompleteness. Only in special but important

cases it is possible to ignore the missingness process. Since one can never be certain

about the precise form of the non-response process, certain assumptions have to be

made.

In his 1976 paper, Rubin provided a formal framework for the field of incomplete

data by introducing the important taxonomy of missing data mechanisms, consisting

of missing completely at random (MCAR), missing at random (MAR), and missing

not at random (MNAR). A non-response process is said to be MCAR if the miss-

ingness is independent of both unobserved and observed outcomes, but potentially

depends on covariates. An MAR mechanism depends on the observed outcomes and

perhaps also on the covariates, but not further on unobserved measurements. Finally,

when an MNAR mechanism is operating, missingness does depend on unobserved

measurements, maybe in addition to dependencies on covariates and/or on observed

outcomes.

At the same time, the selection model, pattern-mixture model, and shared-parameter

model frameworks have been established. In a selection model, the joint distribution

of each subjects outcomes and the vector of missingness indicators is factored as the

marginal outcome distribution and the conditional distribution of the missingness

indicators given the outcomes. A pattern-mixture approach starts from the reverse

factorization. In a shared-parameter model, a set of latent variables, latent classes,

and/or random effects is assumed to drive both the measurement and non-response

processes. An important version of such a model further asserts that, conditional

on the latent variables, those two processes exhibit no further dependence. Rubin

(1976) contributed the concept of ignorability, stating that under precise conditions,

the missing data mechanism can be ignored when interest lies in inferences about the

measurement process. Combined with regularity conditions, ignorability applies to

MCAR and MAR combined, when likelihood or Bayesian inference routes are chosen,

but the stricter MCAR condition is required for frequentist inferences to be generally

valid.
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First, the key examples that will be used throughout this thesis are introduced

in Chapter 2. Next, in Chapter 3 a detailed description of the main concepts

regarding modeling incompleteness as well as longitudinal data is provided. Both the

Gaussian and non-Gaussian case are considered.

Early work regarding missingness focused on the consequences of the induced

lack of balance or deviations from the study design (Afifi and Elashoff, 1966; Hart-

ley and Hocking, 1971). Later, algorithmic developments took place, such as the

expectation-maximization algorithm (EM, Dempster, Laird and Rubin, 1977) and

multiple imputation (Rubin, 1987).

Two simple approaches that are still commonly used are (1) a complete case analy-

sis (CC), which restricts the analysis to those subjects for which all information has

been measured according to the design of the study (2) simple imputation, such as

last observation carried forward (LOCF), for which the last observed measurement

is substituted for values at later points in time that are not observed. Claimed ad-

vantages include computational simplicity, no need for a full longitudinal model (for

instance when the scientific question is in terms of the last planned measurement oc-

casion only) and, for LOCF, compatibility with the intention-to-treat (ITT) principle.

As explained in Chapter 4, it is unfortunate that so much emphasis has been given

to these ad hoc methods. Besides the danger for bias and inefficiency, CC, LOCF

and simple imputation methods require, at least, the missingness mechanism to be

MCAR, a often too strong restriction. Further, we will argue that likelihood-based

analyses, which are valid under the MAR missingness mechanism, not only enjoy

much wider validity than the simple methods but moreover are simple to conduct,

without additional data manipulation. Therefore, analysis of incomplete longitudi-

nal data should shift away from the ad hoc methods and focus on likelihood-based

ignorable primary analyses instead, that is, using the linear mixed model and the

generalized linear mixed model for Gaussian and non-Gaussian data respectively.

As mentioned before, GEE is an attractive semi-parametric approach for non-

Gaussian data within the marginal model family. However, it is based on frequentist

methods and thus requires the missingness to be MCAR. Weighted GEE (WGEE)

has been proposed by Robins, Rotnitzky and Zhao (1995) as a way to ensure validity

under MAR. Alternatively, multiple imputation can be used to pre-process incomplete

data, after which GEE is applied, resulting in so-called MI-GEE. In Chapter 5,

both WGEE and MI-GEE are compared using asymptotic as well as small-sample

simulations, in a variety of correctly and incorrectly specified models. In spite of the

asymptotic unbiasedness of WGEE, results provide striking evidence that MI-GEE

is both less biased and more accurate in the small to moderate sample sizes which
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typically arise in real life settings.

So far, it is clear that not only it is advisable to avoid simple ad hoc methods, such

as CC and LOCF, but there exist more appropriate flexible methods, which are valid

under the weaker MAR assumption and easy to implement in statistical software,

such as direct-likelihood, multiple imputation, WGEE and MI-GEE. However, one

should consider possible departures from MAR and the consequences this might have

on the inference and conclusions. In general, as mentioned before, reasons for non-

response or dropout in particular are varied and therefore it is usually impossible to

fully justify on a priori ground the assumption of MAR. At first sight, this suggests a

need for MNAR models. However, some careful considerations have to be made, the

most important one of which is that no modelling approach, whether either MAR or

MNAR, can recover the lack of information that occurs due to incompleteness of the

data. In the first part of Chapter 6, an overview is given of full selection models,

such as the models proposed by Diggle and Kenward (1994) for continuous outcomes

and by Baker, Rosenberger and DerSimonian (1992) for binary outcomes, as well as

pattern-mixture models. The second part is devoted to the proof that the empirical

distinction between MAR and MNAR is not possible, in the sense that each MNAR

model fit to a set of observed data can be reproduced exactly by an MAR counterpart,

a so-called MAR bodyguard.

Together with the fact that an MNAR model is not verifiable from the observed

data, since it relies on modeling assumptions about the unobserved data which in

general will never be known, rather then forgetting or blindly shifting to the MNAR

framework, the optimal place for MNAR modeling is within a sensitivity analysis con-

text. In Chapter 7 different tools to perform such sensitivity analyses are discussed

and proposed, such as methods to assess the influence of subjects based on global and

local influence, or for instance using the MAR bodyguard as discussed in the previous

chapter.

A modeling framework combining features from selection, pattern-mixture and

shared-parameter models is proposed in Chapter 8. A flexible model is developed

based on a common latent structure governing both the response and missingness

process. This latent mechanism subdivides the subjects into different latent groups,

which allows for classification of subjects. The resulting model is called a latent-class

mixture model. Besides the fact that it allows for flexible MNAR modeling, it is also

a useful tool for sensitivity analysis.
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To conclude this thesis, a case study is reported in Chapter 9 using several

methods to perform a thorough sensitivity analysis, and concluding remarks are reca-

pitulated in Chapter 10. In the final chapter (Chapter 11) it is shown how several

methods to analyse incomplete longitudinal data can be implemented using the SAS

and GAUSS software.





2
Key Examples

In this chapter, four key examples are introduced. Except for the Slovenian public

opinion survey (Section 2.3), all are clinical studies. The orthodontic growth data,

introduced in Section 2.1, while conducted in human subjects, is of more an epidemio-

logical nature, as opposed to the two depression trials (Section 2.2) and the age-related

macular degeneration trial (Section 2.4), which are clinical studies. Whereas the or-

thodontic growth data, the two depression trials, and the Slovenian public opinion

survey are considered for illustrative purposes throughout the various chapters, a de-

tailed analysis is performed of the age-related macular degeneration trial in Chapter 9.

2.1 Orthodontic Growth Data

The orthodontic growth data are introduced by Potthoff and Roy (1964) and con-

tain growth measurements for 11 girls and 16 boys. For each subject, the distance

in millimeters from the center of the pituitary to the pterygomaxillary fissure was

recorded at ages 8, 10, 12, and 14. The research question is to determine whether

dental growth is related to gender. The data were used by Jennrich and Schluchter

(1986) to illustrate estimation methods for unbalanced data, where unbalancedness

is now to be interpreted in the sense of an unequal number of boys and girls. The

data are presented in Table 2.1. Individual profiles and sex group by age means are

plotted in Figure 2.1.

7



8 Chapter 2. Key Examples

Table 2.1: Orthodontic growth data. Data for 11 girls and 16 boys. Measurements

marked with ∗ were deleted by Little and Rubin (1987).

Age (in years) Age (in years)

Girl 8 10 12 14 Boy 8 10 12 14

1 21.0 20.0 21.5 23.0 1 26.0 25.0 29.0 31.0

2 21.0 21.5 24.0 25.5 2 21.5 22.5∗ 23.0 26.5

3 20.5 24.0∗ 24.5 26.0 3 23.0 22.5 24.0 27.5

4 23.5 24.5 25.0 26.5 4 25.5 27.5 26.5 27.0

5 21.5 23.0 22.5 23.5 5 20.0 23.5∗ 22.5 26.0

6 20.0 21.0∗ 21.0 22.5 6 24.5 25.5 27.0 28.5

7 21.5 22.5 23.0 25.0 7 22.0 22.0 24.5 26.5

8 23.0 23.0 23.5 24.0 8 24.0 21.5 24.5 25.5

9 20.0 21.0∗ 22.0 21.5 9 23.0 20.5 31.0 26.0

10 16.5 19.0∗ 19.0 19.5 10 27.5 28.0 31.0 31.5

11 24.5 25.0 28.0 28.0 11 23.0 23.0 23.5 25.0

12 21.5 23.5∗ 24.0 28.0

13 17.0 24.5∗ 26.0 29.5

14 22.5 25.5 25.5 26.0

15 23.0 24.5 26.0 30.0

16 22.0 21.5∗ 23.5 25.0

Sources: Potthoff and Roy (1964) and Jennrich and Schluchter (1986).

Little and Rubin (1987) deleted 9 of the [(11+16)×4] = 108 measurements, thereby

producing 9 incomplete subjects. Deletion is confined to the age 10 measurements.

They describe the mechanism to be such that subjects with a low value at age 8 are

more likely to have a missing value at age 10. In Table 2.1, the measurements that

were deleted are marked with an asterisk. The advantage of this example is that we

have the complete data set, that is, the original data, as well as the incomplete data

available.
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Figure 2.1: Orthodontic growth data. Observed profiles and group by age means. Solid

lines and diamonds are for girls, dashed lines and bullets are for boys.

2.2 Two Depression Trials

Two depression trials are considered, arising from two randomized, double-blind psy-

chiatric clinical trials, conducted in the United States, and enrolling 342 and 357

patients, respectively. We refer to these clinical trials as respectively First and Sec-

ond Depression Trial. Hamilton (1960) introduced the Hamilton Depression Rating

Scale (HAMD), a 21-question multiple choice questionnaire which is used to measure

the depression status of a patient. Presently, it is one of the most commonly used

scales for rating depression in medical research. The questionnaire rates the severity

of symptoms observed in depression such as low mood, insomnia, agitation, anxiety

and weight-loss. The doctor must choose the possible responses to each question by

interviewing the patient and observing their symptoms. Each question has between

3-5 possible responses which increase in severity. The first 17 questions contribute to

the total score and questions 18-21 are recorded to give further information about the

depression such as the presence of paranoid symptoms. Both depression trials con-

sider this total HAMD score, which is denoted by HAMD17. Besides this continuous

HAMD17 score, we will also consider the dichotomized version, which distinguishes

between patients diagnosed to be depressed (HAMD17 > 7), or not. For each patient,

a baseline assessment is available.

Individual profiles are shown in Figure 2.2. Figure 2.3 pictures the mean profiles

with standard errors for each treatment arm separately. Further, the dropout pat-

tern is plotted in Figure 2.4, which shows the percentage of patients remaining on

study at each time point. There are few dissimilarities between the First and Second

Depression Trial.
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Figure 2.2: Two depression trials. Individual profiles.
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(b) Second Depression Trial

Figure 2.3: Two depression trials. Mean profiles with standard errors by treatment

arm.

First Depression Trial In the first depression trial, patients have received either

the primary dose of the experimental drug (treatment arm 1), or the secondary

dose (treatment arm 2), or one of two non-experimental drugs (treatment arm 3

and 4). The primary objective of this study is the difference in treatment effect

between treatment arm 1 and 4. Therefore, only observations corresponding to

these treatment arms are included in the analyses, resulting in measurements

of 170 patients. Further, the First Depression Trial contains measurements for

5 post-baseline visits going from visit 4 to 8. The exact time interval between

visits is not recorded.

Figure 2.3(a) shows a similar mean profile for both treatment arms up to visit
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Figure 2.4: Two depression trials. Percentage of patients in the study at each time

point by treatment arm.

6, whereafter the standard drug mean profile flattens and the one of the ex-

perimental drug decreases, rendering an observed difference at the last visit.

For both treatment arms, the dropout patterns are resembling (Figure 2.4(a)),

resulting in a completion rate of about 64%.

Second Depression Trial The primary objective of the second depression trial is to

compare the efficacy of an experimental anti-depressant with placebo to support

a New Drug Application. Visits were scheduled once a week for the first 3 weeks

after randomization and every 2 weeks thereafter, resulting in 6 post-baseline

measurements taken at week 1, 2, 3, 5, 7, and 9.

The mean evolution over time appears to be quadratic (Figure 2.3(b)), and the

difference between placebo and the new drug increases over time. Figure 2.4(b)

shows a similar dropout pattern for both treatment arms with a completion

rate around 66%. In contrast to the first depression trial, the second one has

additional information about the reason of dropout. Adverse event and lack of

efficacy are the main reasons for dropout in respectively the experimental and

placebo treatment arm.

Results of this clinical trial are originally reported by Detke et al. (2002). The

experimental drug was found to be significantly superior to placebo on the a

priori declared primary efficacy analysis of mean change to endpoint on the

HAMD17 total score.
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Table 2.2: Slovenian public opinion survey. The Don’t Know category is indicated

by ∗.

Independence

Secession Attendance Yes No ∗
Yes Yes 1191 8 21

No 8 0 4

∗ 107 3 9

No Yes 158 68 29

No 7 14 3

∗ 18 43 31

∗ Yes 90 2 109

No 1 2 25

∗ 19 8 96

2.3 The Slovenian Public Opinion Survey

In 1991 Slovenians voted for independence from former Yugoslavia in a plebiscite.

To prepare for this result, the Slovenian government collected data in the Slovenian

public opinion survey, a month prior to the plebiscite. Rubin, Stern and Vehovar

(1995) studied the three fundamental questions added to the survey and, in comparing

it to the plebiscite’s outcome, drew conclusions about the missing data process.

The three questions added were: (1) Are you in favour of Slovenian independence?

(2) Are you in favour of Slovenia’s secession from Yugoslavia? (3) Will you attend the

plebiscite? In spite of their apparent equivalence, questions (1) and (2) are different

since independence would have been possible in confederal form as well and therefore

the secession question is added. Question (3) is highly relevant since the political

decision was taken that not attending was treated as an effective NO to question (1).

Thus, the primary estimand is the proportion θ of people that will be considered as

voting YES, which is the fraction of people answering yes to both the attendance and

independence question. The raw data are presented in Table 2.2.
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Table 2.3: Age-related macular degeneration trial. Mean (standard error) of visual

acuity at baseline, at 4, 12, 24, and 52 weeks according to randomized treatment group

(placebo versus interferon-α).

Time point Placebo Interferon-α Total

Baseline 55.3 (1.4) 54.6 (1.4) 55.0 (1.0)

4 weeks 54.0 (1.5) 50.9 (1.5) 52.5 (1.1)

12 weeks 52.9 (1.6) 48.7 (1.7) 50.8 (1.2)

24 weeks 49.3 (1.8) 45.5 (1.8) 47.5 (1.3)

1 year (52 weeks) 44.4 (1.8) 39.1 (1.9) 42.0 (1.3)

The data were introduced into the statistical literature by Rubin, Stern and Veho-

var (1995) and used by Molenberghs, Kenward and Goetghebeur (2001a) to illustrate

their sensitivity analysis tool, the interval of ignorance.

2.4 The Age Related Macular Degeneration Trial

These data arise from a randomized multi-centric clinical trial comparing an exper-

imental treatment (interferon-α) with a corresponding placebo in the treatment of

patients with age-related macular degeneration. In this thesis, we focus on the com-

parison between placebo and the highest dose (6 million units daily) of interferon-α,

but the full results of this trial have been reported elsewhere (Pharmacological Ther-

apy for Macular Degeneration Study Group, 1997). Patients with macular degenera-

tion progressively lose vision. In the trial, the patients’ visual acuity was assessed at

different time points (4 weeks, 12 weeks, 24 weeks, and 52 weeks) through patients’

ability to read lines of letters on standardized vision charts. These charts display lines

of 5 letters of decreasing size, which the patient must read from top (largest letters)

to bottom (smallest letters). The patient’s visual acuity is the total number of letters

correctly read. In addition, one often refers to each line with at least four letters

correctly read as a ‘line of vision.’ An endpoint of interest in this trial was the visual

acuity at 1 year (treated as a continuous endpoint). Table 2.3 shows the visual acuity

recorded as the numbers of letters read (mean and standard error) by treatment group

at baseline, and at the four measurement occasions after baseline. An alternative way

to measure visual acuity is by dichotomizing the continuous version. We will consider
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Table 2.4: Age-related macular degeneration trial. Overview of missingness patterns

and the frequencies with which they occur. ‘O’ indicates observed and ‘M’ indicates

missing.

Measurement occasion

4 wks 12 wks 24 wks 52 wks Number %

Completers

O O O O 188 78.33

Dropouts

O O O M 24 10.00

O O M M 8 3.33

O M M M 6 2.50

M M M M 6 2.50

Non-monotone missingness

O O M O 4 1.67

O M M O 1 0.42

M O O O 2 0.83

M O M M 1 0.42

the increase or decrease in numbers of letters read compared with baseline, however,

another dichotomized version could be used as well, for instance, at least 3 lines of

vision lost versus less than 3 lines of vision lost.

Regarding missingness in the ARMD data set, an overview of the different dropout

patterns is given in Table 2.4. Clearly, both intermittent missingness as well as

dropout occurs. It is observed that 188 of the 240 profiles are complete, which is

a percentage of 78.33%, while 18.33% (44 subjects) exhibit monotone missingness.

Out of the latter group, 2.50% or 6 subjects have no follow-up measurements. The

remaining 3.34%, representing 8 subjects, have intermittent missing values. Although

the group of dropouts is of considerable magnitude, the ones with intermittent miss-

ingness is much smaller. Nevertheless, it is cautious to include all into the analyses.

Both the original quasi-continuous outcome, visual acuity, as well as the binary

indicator for increase or decrease in number of letters read compared to baseline, will

be analysed in Chapter 9.



3
Fundamental Concepts of

Incomplete Longitudinal Data

Longitudinal data are common in biomedical research and beyond. A typical longitu-

dinal study would consist of observing a particular characteristic at several planned

occasions, taken in relation to covariates of interest. Data arising from such investi-

gations, however, are often prone to incompleteness, or missingness. In the context

of longitudinal studies, missingness predominantly occurs in the form of dropout, in

which subjects fail to complete the study for one reason or another. Since missingness

usually occurs for reasons outside of the control of the investigators, and may be re-

lated to the outcome of interest, it is generally necessary to address the process that

governs incompleteness. Only in special but important cases it is possible to ignore

the missingness process.

In this chapter, we first introduce some general concepts of modelling incomplete

data (Section 3.1). In Section 3.2 we discuss methods to model longitudinal data both

in the Gaussian and non-Gaussian setting. For continuous repeated measurements,

the linear mixed model is considered. Next, we focus on the situation of non-Gaussian

outcomes, for which we distinguish between three model families: marginal, random-

15
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effects, and conditional models. We highlight two important representatives, that is,

generalized estimating equations (GEE, Liang and Zeger, 1986) within the marginal

family, and the generalized linear mixed model (GLMM, Stiratelli, Laird and Ware,

1984; Breslow and Clayton, 1993; Wolfinger and O’Connell, 1993) within the random-

effects family. Further, we also display the weighted version of GEE, termed weighted

generalized estimating equations (WGEE), introduced by Robins, Rotnitzky and Zhao

(1995).

3.1 General Concepts of Modelling Incompleteness

The nature of the missingness mechanism can affect the analysis of incomplete data

and its resulting statistical inference. Therefore we will introduce the terminology and

notation necessary when modelling incomplete data, as well as the different missing

data mechanisms. The important case where the missing data mechanism can be

ignored, or excluded from the statistical analysis, will also be considered.

3.1.1 The Name of the Game

Let the random variable Yij denote the response of interest, for the ith study sub-

ject (i = 1, . . . , N), designed to be to be measured at occasions tij (j = 1, . . . , n).

Independence across subjects is assumed. The outcomes are grouped into a vector

Yi = (Yi1, . . . , Yin)′. In addition, for each occasion j, define Rij as being equal to

1 if Yij is observed and 0 otherwise. The missing data indicators Rij are grouped

into a vector Ri, which is of the same length as Yi. If the missingness is due to

dropout, measurements for each subject are recorded up to a certain time point, after

which all data are missing. In this case, a dropout indicator Di for the occasion at

which dropout occurs can be defined in terms of the missing data indicators, that is,

Di = 1+
∑n

j=1Rij . We make the convention that Di = n+1 for a complete sequence.

Note that dropout is a particular case of monotone missingness. In order to have a

monotone pattern of missingness, there has to exist a permutation of the measurement

components such that a measurement earlier in the permuted sequence is observed for

at least those subjects that are observed at later measurements. For this definition

to be meaningful, we need to have a balanced design in the sense of a common set

of measurement occasions for all subjects. Other patterns are called nonmonotone or

intermittent missingness. When intermittent missingness occurs, one should use the

vector of binary indicators Ri = (Ri1, . . . , Rin)′ rather than the dropout indicator

Di.
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In principle, n could vary by design across subjects, in which case it would be

replaced by ni. All methodology presented will be valid in such cases too, making

the framework suitable for general longitudinal data and designed experiments with

a fixed (and common) set of time points applying to all subjects. In many studies,

including our examples, n will be constant and therefore our notation will be for this

case.

It is often necessary to split the vector Yi into observed (Y o
i ) and missing (Y m

i )

components, respectively. The following terminology is adopted:

Complete data Yi: the scheduled measurements. This is the outcome vector that

would have been recorded if there had been no missing data.

Full data (Yi,Ri): the complete data, together with the missing data indicators.

Note that one observes the measurements Y o
i together with the missingness

indicators Ri.

Apart from the outcomes, additional information can be measured, which is col-

lected before or during the study. This information is gathered in the covariate matrix

Xi and is allowed to change for different measurement occasions. It can include both

continuous and discrete outcomes. We assume the covariate vector Xi is fully ob-

served for all subjects. Methods for the case of missing covariates have been explored

by several authors (Little, 1992; Robins, Rotnitzky and Zhao, 1994; Zhao, Lipsitz and

Lew, 1996).

3.1.2 Missing Data Mechanisms

In principle, one would like to consider the density of the full data f(yi, ri|θ,ψ), where

the parameter vectors θ and ψ describe the measurement and missingness processes,

respectively. Covariates are assumed to be measured but, for notational simplicity,

suppressed from notation. This full density function can be factorized in different

ways, each leading to a different framework. The selection model framework (SeM)

is based on the following factorization (Rubin, 1976; Little and Rubin, 1987):

f(yi, ri|θ,ψ) = f(yi|θ)f(ri|yi,ψ). (3.1)

The first factor is the marginal density of the measurement process and the second

one is the density of the missingness process, conditional on the outcomes. The second

factor corresponds to the (self-)selection of individuals into “observed” and “‘missing”

groups. Alternatively, one can consider so-called pattern-mixture models (Little, 1993,
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1994a, PMM), using the reversed factorization:

f(yi, ri|θ,ψ) = f(yi|ri,θ)f(ri|ψ). (3.2)

This density can be seen as a mixture of different populations, each of which charac-

terized by the observed pattern of missingness.

Instead of using the selection or pattern-mixture model frameworks, the measure-

ment and the dropout process can be jointly modelled using a shared-parameter model

(Wu and Carroll, 1988; Wu and Bailey, 1988, 1989; TenHave et al., 1998; Follmann and

Wu, 1995; Little, 1995, SPM). In such a model the measurement and dropout process

are assumed to be independent, conditional upon a certain set of shared parameters.

This shared-parameter model is formulated by way of the following factorization:

f(yi, ri|bi,θ,ψ) = f(yi|bi,θ)f(ri|bi,ψ). (3.3)

Here, bi are shared parameters, often considered to be random effects and following

a specific parametric distribution.

Within the selection model framework, Rubin (1976) developed a missing data

taxonomy distinguishing between three missingness assumptions, which can be for-

mulated using the second factor on the right hand side of selection model factorization

(3.1), that is,

f(ri|yi,ψ) = f(ri|yo
i ,y

m
i ,ψ). (3.4)

The missingness process is said to be missing completely at random (MCAR) if

the data are missing for reasons unrelated to the response or to characteristics of

individuals. In this case the measurement and missingness process are independent,

perhaps conditional on covariates, yielding f(ri|yi,ψ) = f(ri|ψ).

Data are missing at random (MAR) if the cause of missingness is allowed to depend

on the subject’s observed data, but not on their unobserved responses, resulting in

f(ri|yi,ψ) = f(ri|yo
i ,ψ).

If the cause of missing data is neither MCAR nor MAR, the data is missing not

at random (MNAR). In the most general setting, the cause of a subject’s missingness

depends on their unobserved responses, even after allowing for the information of the

observed data. In this case, (3.4) depends on the missing observations, implying the

reason for dropout should be modelled simultaneously with the response.

Note that MCAR is equally trivial in the pattern-mixture model framework, where

ri does not influence the mixture components, and in the shared-parameter model

framework, where no random-effects are shared between the two factors in (3.3).
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Most strategies used to analyze such data are, implicitly or explicitly, based on

two choices.

Model for Measurements. A choice has to be made regarding the modeling ap-

proach to the measurement sequence. Several views are possible.

View 1. One can choose to analyze the entire longitudinal profile, irrespective of

whether interest focuses on the entire profile (e.g., difference in slope be-

tween groups) or on a specific time point (e.g., the last planned occasion).

In the latter case, the motivation to model the entire profile is because, for

example, earlier responses do provide statistical information on later ones.

This is especially true when dropout is present. One would then make in-

ferences about such an occasion within the posited full longitudinal model.

View 2. One states the scientific question in terms of the outcome at a well-defined

point in time and restricts the corresponding analysis to this particular

occasion. Several choices are possible:

View 2a. The scientific question is defined in terms of the last planned occasion.

Of course, as soon as dropout occurs, such a measurement may not

be available. In this case, one can either accept the dropout as it is

or use one or other strategy (e.g., imputation, direct likelihood) to

incorporate the missing outcomes.

View 2b. One can choose to define the question and the corresponding analysis

in terms of the last observed measurement.

While Views 1 and 2a necessitate reflection on the missing data mechanism,

View 2b avoids the missing data problem because the question is couched

completely in terms of observed measurements. While View 2b is sometimes

used as an alternative motivation for so-called last observation carried forward

(LOCF) analysis (Siddiqui and Ali, 1998; Mallinckrodt et al., 2003a,b), a com-

mon criticism is that the last observed measurement merges measurements at

real stopping times (for dropouts) and at a purely design-based time (for com-

pleters). Thus, under View 2b, an LOCF analysis might be acceptable, provided

it matched the scientific goals, but is then better described as a Last Observation

analysis because nothing is carried forward. Such an analysis should properly

be combined with an analysis of time to dropout, perhaps in a survival analysis

framework. Of course, an investigator should reflect very carefully on whether

View 2b represents a relevant and meaningful scientific question (Shih and Quan,

1997).
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Method for Handling Missingness. A choice has to be made regarding the mod-

eling approach for the missingness process. Luckily, under certain assumptions

this process can be ignored (e.g., a likelihood-based ignorable analysis, for which

MAR is a sufficient condition). Some simple methods, such as a complete case

analysis and LOCF, do not explicitly address the missingness process either,

but are nevertheless not ignorable. We will return to this issue in Chapter 4.

Let us now describe the measurement and missingness models in turn. The mea-

surement model will depend on whether or not a full longitudinal analysis is done.

In case View 2 is adopted, that is, when the focus is on the last observed measure-

ment or on the last measurement occasion only, one typically opts for classical two-

or multi-group comparisons (t test, Wilcoxon, etc.). When a longitudinal analysis

is deemed necessary, the choice depends on the nature of the outcome. A variety of

methods both for Gaussian and non-Gaussian longitudinal data will be discussed in

Section 3.2.

Assume that incompleteness is due to dropout only, and that the first measure-

ment Yi1 is obtained for everyone. Under the selection model framework, a possible

model for the dropout process is a logistic regression for the probability of dropout

at occasion j, given that the subject is still in the study. We denote this probability

by g(hij , yij) in which hij is a vector containing all responses observed up to but not

including occasion j, as well as relevant covariates. We then assume that g(hij , yij)

satisfies

logit[g(hij , yij)] = logit [pr(Di = j|Di ≥ j,yi)] = hijψ + ωyij , i = 1, . . . , N,

(3.5)

(Diggle and Kenward, 1994). When ω equals zero, the dropout model is MAR, and all

parameters can be estimated using standard software since the measurement model

and the dropout model can then be fitted separately, as will be shown in the next

section. If ω 6= 0, the posited dropout process is MNAR. Model (3.5) provides the

building blocks for the dropout process f(di|yi,ψ). While it has been used, in par-

ticular, by Diggle and Kenward (1994), it is, at this stage, quite general and allows

for a wide variety of modeling approaches. A review of the Diggle-Kenward model is

provided in Section 6.1.1.

3.1.3 Ignorability

Rubin (1976) has shown that, under MAR and when the condition holds that parame-

ters defining the measurement and dropout process, denoted by θ and ψ respectively,
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are functionally independent, likelihood-based inference remains valid when the miss-

ing data mechanism is ignored. Practically speaking, the likelihood of interest is then

based upon the factor f(yo
i |θ). This is called ignorability. Indeed, let us assume the

statistical analysis and corresponding inference are likelihood-based. The contribution

to the likelihood of a particular subject i, based on (3.1) is of the form

L∗
i (θ,ψ|yi, ri) ∝ f(yi, ri|θ,ψ).

Since inference has to be based on what is observed, the full data likelihood L∗
i has

to be replaced by the observed data likelihood Li:

Li(θ,ψ|yo
i , ri) ∝ f(yo

i , ri|θ,ψ) (3.6)

with

f(yo
i , ri|θ,ψ) =

∫
f(yi, ri|θ,ψ)dym

i

=

∫
f(yo

i ,y
m
i |θ)f(ri|yo

i ,y
m
i ,ψ)dym

i .

Under an MAR process, we obtain

f(yo
i , ri|θ,ψ) =

∫
f(yo

i ,y
m
i |θ)f(ri|yo

i ,ψ)dym
i

= f(yo
i |θ)f(ri|yo

i ,ψ), (3.7)

that is, the likelihood factorizes into two components of the same functional form as

the general factorization (3.1) of the complete data. If further θ and ψ are distinct in

the sense that the parameter space of the full vector (θ′,ψ′)′ is the Cartesian product

of the two component parameter spaces (separability condition), then inference of the

measurement model parameters θ can be made without explicitly formulating the

missing data mechanism, that is, only based on the marginal observed data density

f(yo
i |θ). For Bayesian inferences, the same holds if besides the separability condition,

the priors are independent (Little and Rubin, 1987).

In conclusion, when the separability condition is satisfied, within the likelihood

framework, ignorability is equivalent to the union of MAR and MCAR. Hence, non-

ignorability and MNAR are synonyms in this context. A formal derivation is given

in Rubin (1976) and Little and Rubin (1987), where it is also shown that the same

requirements hold for Bayesian inference, but that frequentist inference is ignorable

only under MCAR.

The practical implication of ignorability is that a software module with likelihood

estimation facilities and with the ability to handle incompletely observed subjects,
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manipulates the correct likelihood and thus provides valid parameter estimates, stan-

dard errors if based on the observed information matrix, and likelihood ratio val-

ues (Kenward and Molenberghs, 1998). This result makes so-called direct-likelihood

analyses, valid under MAR, viable candidates for the status of primary analysis in

clinical trials and a variety of other setting (Molenberghs et al., 2004). This will be

further discussed in Chapter 4.

A few cautionary remarks are warranted. First, when at least part of the sci-

entific interest is directed towards the missingness process, for instance when one is

interested in studying the reason for missingness, obviously both processes need to be

considered. Under MAR, both processes can be modeled and parameters estimated

separately. Second, likelihood inference is often surrounded with references to the

sampling distribution (e.g., to construct measures of precision for estimators and for

statistical hypothesis tests; Kenward and Molenberghs (1998)). However, the practi-

cal implication is that standard errors and associated tests are valid, when based on

the observed rather than the expected information matrix and given that the para-

metric assumptions are correct. Third, it may be hard to rule out the operation of

an MNAR mechanism. The reasons for missingness are varied and it is therefore

difficult to fully justify on a priori grounds the assumption of MAR. Further, since

it is not possible to test for MNAR against MAR (Jansen et al., 2006b), one should

always be open to the possibility that the data are MNAR. To explore the impact

of deviations from the MAR assumption on the conclusions, one should ideally con-

duct a sensitivity analysis, within which models for the MNAR process can play a

major role (Verbeke and Molenberghs, 2000). This point will be discussed further

in Chapters 6 to 8. Fourth, such an analysis can proceed only under View 1, that

is, a full longitudinal analysis is necessary, even when interest lies, for example, in

a comparison between the two treatment groups at the last occasion. In the latter

case, the fitted model can be used as the basis for inference at the last occasion.

A common criticism is that a model needs to be considered, with the risk of model

misspecification. However, it should be noted that in many clinical trial settings the

repeated measures are balanced in the sense that a common (and often limited) set

of measurement times is considered for all subjects, allowing the a priori specification

of a saturated model (e.g., full group by time interaction model for the fixed effects

and unstructured variance-covariance matrix).
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3.2 Methodology for Longitudinal Data

Let us now turn attention to standard model frameworks for longitudinal data. First,

the continuous case will be treated where the linear mixed model undoubtedly occu-

pies the most prominent role. Then, we switch to the discrete setting, where impor-

tant distinctions exist between three model families: the marginal, random-effects,

and conditional model family. The mixed model parameters, both in the continuous

and discrete cases, are usually estimated using maximum likelihood based methods

which implies that the results are valid under MAR. A commonly encountered mar-

ginal approach to non-Gaussian data is generalized estimating equations (GEE, Liang

and Zeger, 1986) which has a frequentist foundation. It is valid only under MCAR

(Liang and Zeger, 1986), necessitating the need for extensions, such as weighted GEE

(Robins, Rotnitzky and Zhao, 1995), and multiple-imputation based GEE (Schafer,

2003), which will be discussed as well.

3.2.1 Longitudinal Data

Laird and Ware (1982) proposed, for continuous outcomes, likelihood-based mixed-

effects models. A broad discussion of such models is provided in Verbeke and Molen-

berghs (2000). The general linear mixed-effects model is the following:

Yi = Xiβ + Zibi + εi, (3.8)

where Yi is the n-dimensional response vector for subject i, containing the outcomes

at n various measurement occasions, 1 ≤ i ≤ N , N is the number of subjects, Xi

and Zi are (n× p) and (n× q) known design matrices, β is the p-dimensional vector

containing the fixed effects, bi ∼ N(0,D) is the q-dimensional vector containing the

random effects, and εi ∼ N(0,Σ) is a N -dimensional vector of residual components,

combining measurement error and serial correlation. Further, b1, . . . , bN , ε1, . . . , εN

are assumed to be independent. Finally, D and Σ are general covariance matrices of

size (q × q) and (n × n) respectively. In case of no serial correlation, Σ reduces to

σ2In. Inference is based on the marginal distribution of the response Yi which, after

integrating over random effects, can be expressed as

Yi ∼ N(Xiβ, ZiDZ
′
i + Σ). (3.9)

Whereas the linear mixed model is seen as a unifying parametric framework for

Gaussian repeated measures (Verbeke and Molenberghs, 2000), there are a variety

of methods in common use in the non-Gaussian setting. In line with Fahrmeir and
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Tutz (2001), Diggle, Heagerty, Liang and Zeger (2002) and Molenberghs and Verbeke

(2005), we distinguish between three model families. In a population-averaged or

marginal model, marginal distributions are used to describe the outcome vector, given

a set of predictor variables. The correlation among the components of the outcome

vector can then be captured either by adopting a fully parametric approach or by

means of working assumptions, such as in GEE (Liang and Zeger, 1986).

Alternatively, in a subject-specific or random-effects model, the responses are as-

sumed to be independent, given a collection of subject-specific parameters.

Finally, a conditional model describes the distribution of the components of the

outcome vector, conditional on the predictor variables but also conditional on (a

subset of) the other components of the response vector. Well-known members of this

class of models are log-linear models (Agresti, 2002). Let us give an example of each

for the case of Gaussian outcomes, or more generally for models with a linear mean

structure.

A marginal model is characterized by a marginal mean function of the form

E(Yij |xij) = x′
ijβ, (3.10)

where xij is a vector of covariates for subject i at occasion j and β is a vector

of regression parameters. In a random-effects model we focus on the expectation,

additionally conditioning upon a random-effects vector bi:

E(Yij |bi,xij) = x′
ijβ + z′ijbi. (3.11)

Finally, a simple first-order stationary transition model, which is a particular case of

a conditional model, focuses on expectations of the form

E(Yij |Yi,j−1, . . . , Yi1,xij) = x′
ijβ + αYi,j−1. (3.12)

Alternatively, one might condition upon all outcomes except the one being modeled.

As shown by Verbeke and Molenberghs (2000) random-effects models imply a

simple marginal model in the linear mixed model case. This is due to the elegant

properties of the multivariate normal distribution. In particular, expectation (3.10)

follows from (3.11) by either (a) marginalizing over the random effects or by (b) by

conditioning upon the random-effects vector bi = 0. Hence, the fixed-effects para-

meters β have a marginal and a hierarchical model interpretation at the same time.

Finally, certain auto-regressive models, in which later-time residuals are expressed in

terms of earlier ones, lead to particular instances of the general linear mixed effects

model as well, and hence have a marginal function of the form (3.10).
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Since the linear mixed model has marginal, hierarchical, and conditional aspects,

it is clear why it provides a unified framework in the Gaussian setting. However, there

does not exist such a close connection when outcomes are of a non-Gaussian type,

such as binary, categorical, or discrete.

We will consider the marginal and random-effects model families in turn and then

point to some particular issues arising within them or when comparisons are made

between them. Further, transition models, a particular type of conditional models,

are useful within the longitudinal setting, and will therefore be discussed.

3.2.2 Marginal Models

Thorough discussions on marginal modeling can be found in Diggle, Heagerty, Liang

and Zeger (2002) and in Molenberghs and Verbeke (2005). We introduce the marginal

models, which will be considered in the subsequent chapters.

The Bahadur Model

Bahadur (1961) proposed a marginal model for binary outcomes, accounting for the

association via marginal correlations. Define the marginal probability πij = E(Yij) =

P (Yij = 1), and define standardized deviations

εij =
Yij − πij√
πij(1 − πij)

and eij =
yij − πij√
πij(1 − πij)

, (3.13)

where yij is an actual value of the binary response variable Yij . Further, let ρij1j2 =

E(εij1εij2), ρij1j2j3 = E(εij1εij2εij3),. . ., and ρi12...n = E(εi1εi2 . . . εin). Then, the

general Bahadur model can be represented by the expression

f(yi) = f1(yi) c(yi), (3.14)

where

f1(yi) =

n∏

j=1

π
yij

ij (1 − πij)
1−yij ,

and

c(yi) = 1 +
∑

j1<j2

ρij1j2eij1eij2 +
∑

j1<j2<j3

ρij1j2j3eij1eij2eij3 + . . .+ ρi12...Jei1ei2 . . . eiJ .

Thus, the probability mass function is the product of the independence model f1(yi)

and the correction factor c(yi). One view-point is to consider the factor c(yi) as a

model for overdispersion.
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Besides the Bahadur model, a broad set of marginal models have been proposed by

Dale (1986), Plackett (1965), Lang and Agresti (1994), and Molenberghs and Lesaffre

(1994, 1999). Even though a variety of flexible full-likelihood models exist, maximum

likelihood can be unattractive due to excessive computational requirements, especially

when high-dimensional vectors of correlated data arise, as alluded to in the context

of the Bahadur model. As a consequence, alternative methods have been in demand.

Generalized Estimating Equations

Liang and Zeger (1986) proposed so-called generalized estimating equations (GEE),

useful to circumvent the computational complexity of full likelihood, and which can

be considered whenever interest is restricted to the mean parameters. This approach

requires only the correct specification of the univariate marginal distributions, pro-

vided one is willing to adopt so-called working assumptions about the association

structure of the vector of repeated measurements.

Let us introduce more formally the classical form of GEE (Liang and Zeger, 1986;

Molenberghs and Verbeke, 2005). The score equations for a non-Gaussian outcome

are

S(β) =

N∑

i=1

∂µi

∂β′ V
−1
i (yi − µi) = 0, (3.15)

where µi = E(yi) and Vi is the so-called working covariance matrix, that is, Vi

approximates Var(Yi), the true underlying covariance matrix for Yi. This working

covariance matrix can be decomposed as Vi = A
1/2
i CiA

1/2
i , in which A

1/2
i is a diagonal

matrix with standard deviations of Yi along the diagonal, and Ci = Corr(Yi) is the

correlation matrix. The variance of each Yij is Var(Yij) = φ v(µij), where v(µij) is a

known variance function, that is, a known function of µij , and φ is a scale parameter

that may be known or should be estimated. Consequently, Ai = Ai(β) depends

upon the means, hence upon β through this variance function v(µij), and follows

therefore directly from the marginal mean model. On the other hand, β commonly

contains no information about Ci. Therefore, the correlation matrix Ci typically is

written in terms of a vector α of unknown parameters, Ci = Ci(α), and will need

to be estimated. Liang and Zeger (1986) dealt with this set of nuisance parameters

α by allowing for specification of an incorrect structure for Ci or so-called working

correlation matrix.

Assuming that the marginal mean µi has been correctly specified as h(µi) = Xiβ,

they showed that, under mild regularity conditions, the estimator β̂ obtained from

solving (3.15) is asymptotically normally distributed with mean β and with covariance
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matrix

Var(β̂) = I−1
0 I1I

−1
0 , (3.16)

where

I0 =

(
N∑

i=1

∂µ′
i

∂β
V −1

i

∂µi

∂β′

)
(3.17)

I1 =

(
N∑

i=1

∂µ′
i

∂β
V −1

i Var(Yi) V
−1
i

∂µi

∂β′

)
. (3.18)

Consistent estimates can be obtained by replacing all unknown quantities in (3.16)

by consistent estimates. Observe that, when Ci is correctly specified, Var(Yi) = Vi in

(3.18), and thus I1 = I0. As a result, the expression for the covariance matrix (3.16)

reduces to I−1
0 , corresponding to full likelihood, that is, when the first and second

moment assumptions are correct. Thus, when the working correlation structure is

correctly specified, it reduces to full likelihood, although generally it differs from it.

On the other hand, when the working correlation structure differs strongly from the

true underlying structure, there is no price to pay in terms of the consistency of the

asymptotic normality of β̂, but such a poor choice may result in loss of efficiency.

With incomplete data that are MAR or MNAR, an erroneously specified working

correlation matrix may additionally lead to bias (Molenberghs and Kenward, 2007).

Two further specifications are necessary before GEE is operational: Var(Yi) on

the one hand and Ci(α), with in particular estimation of α, on the other hand. Full

modeling will not be an option, since we would then be forced to do what we want

to avoid. In practice, Var(Yi) in (3.18) is replaced by (yi − µi)(yi − µi)
′, which

is unbiased on the sole condition of correct mean specification. Secondly, one also

needs estimates of the nuisance parameters α. Liang and Zeger (1986) proposed

moment-based estimates for the working correlation. To this end, deviations of the

form

eij =
yij − µij√
v(µij)

=
yij − πij√
πij(1 − πij)

,

are used. Note that eij = eij(β) through µij = µij(β) and therefore also through

v(µij), the variance at time j, and hence the jth diagonal element of Ai.

Some of the more popular choices for the working correlations are independence

(Corr(Yij , Yik) = 0, j 6= k), exchangeability (Corr(Yij , Yik) = α, j 6= k), AR(1)

(Corr(Yij , Yi,j+t) = αt, t = 0, 1, . . . , ni − j), and unstructured (Corr(Yij , Yik) =

αjk, j 6= k).



28 Chapter 3. Fundamental Concepts of Incomplete Longitudinal Data

An overdispersion parameter could be included as well, but we have suppressed

it for ease of exposition. The standard iterative procedure to fit GEE, based on

Liang and Zeger (1986), is then as follows: (1) compute initial estimates for β, us-

ing a univariate GLM, that is, assuming independence; (2) compute Pearson resid-

uals eij ; (3) compute estimates for α; (4) compute Ci(α); (5) compute Vi(β,α) =

A
1/2
i (β) Ci(α)A

1/2
i (β); (6) update the estimate for β:

β(t+1) = β(t) −
[

N∑

i=1

∂µ′
i

∂β
V −1

i

∂µi

∂β

]−1 [ N∑

i=1

∂µ′
i

∂β
V −1

i (yi − µi)

]
.

Steps (2)–(6) are iterated until convergence. To illustrate step (3), consider compound

symmetry, in which case the correlation is estimated by

α̂ =
1

N

N∑

i=1

1

n(n− 1)

∑

j 6=k

eijeik.

Note that, the GEE moments, that are specified, coincide with those of the Ba-

hadur model, so that the former can be seen as a non-likelihood alternative of the

latter, since no distributional assumptions regarding the full joint multivariate distrib-

ution of Yi. In summary, GEE for binary data can be seen as a moment-based version

of the Bahadur model. Alternatively, it may be helpful to view it as a “correlation-

corrected version of logistic regression.”

Weighted Generalized Estimating Equations

As Liang and Zeger (1986) pointed out, GEE-based inferences are valid only under

MCAR, due to the fact that they are based on frequentist considerations. An im-

portant exception, mentioned by these authors, is the situation where the working

correlation structure happens to be correct, since then the estimates and model-based

standard errors are valid under the weaker MAR assumption. This is because then,

the estimating equations can be interpreted as likelihood equations. In general, the

working correlation structure will not be correctly specified and hence Robins, Rot-

nitzky and Zhao (1995) proposed a class of weighted estimating equations to allow

for MAR in case missingness is due to dropout.

The idea of weighted generalized estimating equations (WGEE) is to weigh each

subject’s contribution in the GEEs by the inverse probability that a subject drops out

at the time he or she dropped out. Thus, anyone staying in the study is considered

representative of himself as well as of a number of similar subjects that did drop

out from the study. The incorporation of these weights, reduces possible bias in the
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regression parameter estimates, β̂. Such a weight can be expressed as

νij ≡ P [Di = j] =

j−1∏

k=2

(1 − P [Rik = 0|Ri2 = . . . = Ri,k−1 = 1]) ×

P [Rij = 0|Ri2 = . . . = Ri,j−1 = 1]I{j≤n},

where j = 2, 3, . . . , n+ 1.

Recall that we partitioned Yi into the unobserved components Y m
i and the ob-

served components Y o
i . Similarly, we can make the exact same partition of µi into

µm
i and µo

i . In the weighted GEE approach, the score equations to be solved are:

S(β) =

N∑

i=1

n+1∑

d=2

I(Di = d)

νid

∂µi

∂β′
(d)(A

1/2
i RiA

1/2
i )−1(d)(y(d) − µi(d)) = 0,

where yi(d) and µi(d) are the first d−1 elements of yi and µi respectively. We define
∂µ

i

∂β′
(d) and (A

1/2
i RiA

1/2
i )−1(d) analogously, in line with the definitions of Robins,

Rotnitzky and Zhao (1995).

3.2.3 Random-effects Models

While several nonequivalent random-effects models exist, one of the most popular

ones is the generalized linear mixed model (GLMM, Breslow and Clayton, 1993). The

focus will be on this one.

First, a general formulation of mixed-effects models is as follows. Assume that Yi

(possibly appropriately transformed) satisfies

Yi|bi ∼ Fi(θ, bi), (3.19)

that is, conditional on bi, Yi follows a pre-specified distribution Fi, possibly depending

on covariates, and parameterized through a vector θ of unknown parameters, common

to all subjects. Further, bi is a q-dimensional vector of subject-specific parameters,

called random effects, assumed to follow a so-called mixing distribution G which may

depend on a vector ξ of unknown parameters, that is, bi ∼ G(ξ). The bi reflect the

between-unit heterogeneity in the population with respect to the distribution of Yi.

In the presence of random effects, conditional independence is often assumed, under

which the components Yij in Yi are independent, conditional on bi. The distribution

function Fi in (3.19) then becomes a product over the n independent elements in Yi.

In general, unless a fully Bayesian approach is followed, inference is based on the

marginal model for Yi which is obtained from integrating out the random effects,
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over their distribution G(ξ). If fi(yi|bi) and g(bi) denote the density functions cor-

responding to the distributions Fi and G, respectively, we have that the marginal

density function of Yi equals

fi(yi) =

∫
fi(yi|bi)g(bi)dbi, (3.20)

which depends on the unknown parameters θ and ξ. Assuming independence of the

units, estimates of θ̂ and ξ̂ can be obtained from maximizing the likelihood func-

tion built from (3.20), and inferences immediately follow from classical maximum

likelihood theory.

It is important to realize that the random-effects distribution G is crucial in the

calculation of the marginal model (3.20). One often assumes G to be of a specific

parametric form, such as a (multivariate) normal. Depending on Fi and G, the

integration in (3.20) may or may not be possible analytically. Proposed solutions are

based on Taylor series expansions of fi(yi|bi), or on numerical approximations of the

integral, such as (adaptive) Gaussian quadrature.

A general formulation of GLMM is as follows. Conditionally on random effects bi,

it assumes that the elements Yij of Yi are independent, with density function usually

based on a classical exponential family formulation, that is, with mean E(Yij |bi) =

a′(ηij) = µij(bi) and variance Var(Yij |bi) = φ a′′(ηij), and where, apart from a link

function h (e.g., the logit link for binary data or the log link for counts), a linear

regression model with parameters β and bi is used for the mean, that is, h(µi(bi)) =

Xiβ + Zibi. Note that the linear mixed model is a special case, with identity link

function. The random effects bi are again assumed to be sampled from a (multivariate)

normal distribution with mean 0 and covariance matrix D. Usually, the canonical link

function is used, i.e., h = a′
−1

, such that ηi = Xiβ + Zibi. When the link function

is chosen to be of the logit form and the random effects are assumed to be normally

distributed, the familiar logistic-linear GLMM follows.

3.2.4 Marginal versus Random-Effects Models

Unlike for correlated Gaussian outcomes, the parameters of the random-effects and

marginal models for correlated binary data describe different types of effects of the co-

variates on the response probabilities (Neuhaus, 1992). Therefore, the choice between

population-averaged and subject-specific strategies should heavily depend on the sci-

entific goals. Population-averaged or marginal models evaluate the success probability

as a function of covariates only. With a random-effects or subject-specific approach,

the response is modeled as a function of covariates and parameters, specific to the
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subject. In such models, interpretation of fixed-effects parameters is conditional on a

constant level of the random-effects parameter. Population-averaged comparisons, on

the other hand, make no use of within cluster comparisons for cluster varying covari-

ates and are therefore not useful to assess within-subject effects (Neuhaus, Kalbfleisch

and Hauck, 1991).

It is useful to underscore the difference between the marginal and the random-

effects model family, as well as the nature of this difference. To see the nature of the

difference, consider a binary outcome variable and assume a random-intercept logistic

model with linear predictor logit[P (Yij = 1|tij , bi)] = β0 + bi + β1tij , where tij is the

time covariate. The conditional means E(Yij |bi), as functions of tij , are given by

E(Yij |bi) =
exp(β0 + bi + β1tij)

1 + exp(β0 + bi + β1tij)
, (3.21)

whereas the marginal average evolution is obtained from averaging over the random

effects:

E(Yij) = E[E(Yij |bi)] = E

[
exp(β0 + bi + β1tij)

1 + exp(β0 + bi + β1tij)

]
6= exp(β0 + β1tij)

1 + exp(β0 + β1tij)
.

(3.22)

This implies that the interpretation of the parameters in both types of model is

completely different. Moreover, under the classical linear mixed model (Verbeke and

Molenberghs, 2000), we have that E(Yi) equals Xiβ, such that the fixed effects have

a subject-specific as well as a population-averaged interpretation, whereas under non-

linear mixed models this does no longer hold in general. The fixed effects now only

reflect the conditional effect of covariates, and the marginal effect is not easily obtained

anymore as E(Yi) is given by

E(Yi) =

∫
yi

{∫
fi(yi|bi)g(bi)dbi

}
dyi.

In the non-linear case, the interpretation of the parameters in both types of model

(marginal or random-effects) is completely different. Depending on the model family

(marginal or random-effects), one is led to either marginal or hierarchical inference.

It is important to realize that in the general case the parameter resulting from a

marginal model and from a random-effects model, say βM and βRE respectively, are

different, even when the latter one is estimated using marginal inference. Some of the

confusion surrounding this issue may result from the equality of these parameters in

the very special linear mixed model case. When a random-effects model is considered,

the marginal mean profile can be derived, but it will generally not produce a simple

parametric form.
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As an important example, consider our GLMM with logit link function, and where

the only random effects are intercepts bi. It can then be shown that the marginal

mean µi = E(Yij) satisfies h(µi) ≈Xiβ
M with

βRE

βM
=
√
c2σ2 + 1 > 1, (3.23)

in which c equals 16
√

3/15π. Hence, although the parameters βRE in the generalized

linear mixed model have no marginal interpretation, they do show a strong relation

to their marginal counterparts. Note that, as a consequence of this relation, larger

covariate effects are obtained under the random-effects model in comparison to the

marginal model.

3.2.5 Conditional Models

Section 3.2.1 introduced the concept of conditional models as one where outcomes

are modeled, conditional upon the value of other outcomes on the same unit. These

other outcomes could encompass the entire set of measurements, like in a classical

log-linear model (Agresti 2002), or a subset. A very specific class of conditional

models are so-called transition models. In a transition model, a measurement Yij in

a longitudinal sequence is described as a function of previous outcomes, or history

hij = (Yi1, . . . , Yi,j−1) (Diggle, Heagerty, Liang and Zeger, 2002, p. 190). One can

write a regression model for the outcome Yij in terms of hij , or alternatively, the

error term εij can be written in terms of previous error terms. In the case of linear

models for Gaussian outcomes, one formulation can be translated easily into another

and specific choices give rise to well-known marginal covariance structures such as,

for example, AR(1). The order of a transition model is the number of previous

measurements that is still considered to influence the current one. A model is called

stationary if the functional form of the dependence does not vary over time.

A particular version of a transition model is a stationary first-order autoregressive

model for binary longitudinal outcomes, which follows a logistic-regression type model:

logit[P (Yij = 1|xij , Yi,j−1 = yi,j−1,β, α)] = x′
ijβ + αyi,j−1. (3.24)

Evaluating (3.24) to yi,j−1 = 0 and yi,j−1 = 1, respectively, produces the so-called

transition probabilities between occasions j − 1 and j. In this model, if there were

no covariates, these would be constant across the population. When there are time-

independent covariates only, the transition probabilities change in a relatively straight-

forward way with level of covariate. For example, a different transition structure may
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apply to the standard and experimental arms in a two-armed clinical study. Extension

to the second or higher orders is obvious.





4
Direct-Likelihood: Time to

Leave Simplistic Methods

Behind

In Chapter 3, the different missingness mechanisms have been discussed. An example

of MCAR missingness is that a subject may move, their data may be lost due to

an administrative mix-up, or they may simply tire of participating in the study.

However, the reasons for missingness are not always easy to ascertain. For example, if

a subject withdrew because they experienced a car accident, their outcome data might

be considered MCAR, but perhaps should not be if the subject’s treatment could have

affected their ability to drive. As will be discussed in this chapter, methods like LOCF

and CC are based on extremely strong assumptions about missingness and even the

strong MCAR assumption does not suffice to guarantee that an LOCF analysis is

valid.

Next, an example of MAR is a trial in which subjects are removed if their response

has exceeded a pre-specified limit. Alternatively, subjects may quit the trial if they

are either doing much better or significantly worse. Such scenarios are more common

than MCAR. The MAR assumption implies that future behaviour for those who share

the same past measurements and covariate values is on average identical whether or

35
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not they drop out. This enables treatment effect to be estimated in longitudinal

models without simultaneously modelling the cause of dropout.

As already pointed in Section 3.1.3, valid inference can be obtained under MAR

through a likelihood-based analysis, without the need for modeling the dropout process.

As a consequence, one can simply use, for example, linear or generalized linear mixed

models as introduced in Section 3.2.1 (Verbeke and Molenberghs, 2000), without ad-

ditional complication or effort. In this chapter, we will show that such an analysis

not only enjoys much wider validity than the simplistic methods but in addition is

easy to conduct, without additional data manipulation using such tools as the SAS

procedures MIXED or NLMIXED, HLM4.0, the SPSS procedure MIXED, the SPlus

functions lme and nlme and MLwiN, to name a few. Indeed, there is no reason to

use ad hoc methods when direct-likelihood analyses can be implemented with stan-

dard software. A contribution of this chapter has also been published in Beunckens,

Molenberghs and Kenward (2005).

The outline of this chapter is as follows. In Section 4.1, the commonly used simplis-

tic methods are discussed, whereas Section 4.2 focusses on the use of direct-likelihood

and its advantages compared to these ad hoc methods. The case of two measure-

ments of a Gaussian outcome is considered in Section 4.3, in which the estimates

of the mean at both time points are compared for both the simplistic methods and

direct-likelihood approach. Further, we apply and compare these methods to both

the orthodontic growth data and the first depression trial in Section 4.4.

4.1 Methods in Common Use

We will briefly review a few relatively simplistic methods, such as complete case analy-

sis (CC), which restricts the analysis to those subjects for which all information has

been measured according to protocol, and last observation carried forward (LOCF),

for which the last observed measurement is substituted for values at later points in

time that are not observed. So far, clinical trial practice has put a strong empha-

sis on such methods. Claimed advantages include computational simplicity, no need

for a full longitudinal model (e.g., when the scientific question is in terms of the last

observed measurement occasion only, that is, View 2b is adopted as introduced in Sec-

tion 3.1.2) and, for LOCF, compatibility with the Intention-to-Treat (ITT) principle,

(Schwartz and Lellouch, 1967; Pocock, 1983) since data on all patients randomized

can be used.
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4.1.1 Complete Case Analysis

A complete case analysis includes only those cases for analysis, for which all measure-

ments - covariates and outcomes - were recorded (Verbeke and Molenberghs, 2000;

Little and Rubin, 2002; Molenberghs and Verbeke, 2005). This method has obvious

advantages. It is very simple to describe and since the data structure looks like if it

resulted from a complete experiment, standard statistical software can be used with-

out additional work. Further, since the entire estimation is done on the same subset of

completers, there is a common basis for inference. Unfortunately, the method suffers

from severe drawbacks. First, there can be a substantial loss of information, with

adverse effects on precision and power, even if the frequency of missing data for single

variables low. Further, such an analysis will only be representative for patients who

remain on study and have complete data. A complete case analysis can have a role

as an auxiliary analysis, especially if it relates to a scientific question. A final impor-

tant issue about a complete case analysis is that it is only valid when the missingness

mechanism is MCAR. Severe bias can result when the missingness mechanism is MAR

but not MCAR. This bias can be positive or negative, as illustrated by Molenberghs

et al. (2004).

4.1.2 Last Observation Carried Forward

A method that has received a lot of attention (Siddiqui and Ali, 1998; Verbeke and

Molenberghs, 2000; Little and Rubin, 2002; Mallinckrodt et al., 2003a,b; Molenberghs

and Verbeke, 2005; Molenberghs and Kenward, 2007) is last observation carried for-

ward. In the LOCF method, whenever a value is missing, the last observed value is

substituted. For the LOCF approach, the MCAR assumption is necessary but not

sufficient. This approach further assumes that subjects’ responses would have been

unchanged from the last observed value to the endpoint of the trial. This constant

profile assumption seldom holds (Verbeke and Molenberghs, 2000; Molenberghs and

Verbeke, 2005; Molenberghs and Kenward, 2007). In a clinical trial setting, one might

believe that the response profile changes as soon as a patient goes off treatment and

plateaus thereafter. Therefore, carrying observations forward may bias estimates of

treatment effects in either direction and will underestimate the associated standard

errors (Heyting et al., 1992; Gibbons et al., 1993; Lavori et al., 1995; Siddiqui and

Ali, 1998; Verbeke and Molenberghs, 2000; Mallinckrodt et al., 2001a,b; Molenberghs

et al., 2004; Beunckens et al., 2005; Jansen et al., 2006a). This method artificially

increases the amount of information in the data by treating imputed and actually

observed values on equal footing.
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Despite its shortcomings, LOCF has been the longstanding method of choice for

the primary analysis in clinical trials because of its simplicity, ease of implementation

with standard software, and the belief that the potential bias from carrying observa-

tions forward leads to a “conservative” analysis. An analysis is deemed conservative

when the treatment effect estimated is smaller in absolute value than the true one.

However, examples of anti-conservative effect of LOCF are common (Little and Yau,

1996; Liu and Gould, 2002; Mallinckrodt et al., 2004; Molenberghs et al., 2004; Jansen

et al., 2006a), meaning an LOCF analysis can create the appearance of a treatment

effect when none exists.

4.1.3 Available Case Analysis

In a traditional available case analysis (AC) (Little and Rubin, 2002), estimators are

based on the subjects who have complete information available for a specific analysis,

a subset that can change when different covariates or time points are considered. For

example, a collection of such analyses could be the treatment-specific means at a

series of designated measurement times. With increasing dropout over time, means

later in the study would be calculated using fewer subjects than earlier means. If

dropout is not MCAR, means at later measurement times would become increasingly

biased.

4.2 Direct-likelihood Approaches When Data Are

Incomplete

An alternative approach for handling missing data in a clinical trial setting is to

use methods that are valid under the weaker MAR assumption (Verbeke and Molen-

berghs, 2000; Little and Rubin, 2002; Molenberghs and Verbeke, 2005; Molenberghs

and Kenward, 2007), instead of the methods discussed in previous section for which

the MCAR assumption, and more, is needed. Note that methods valid under MAR

are also valid if data are MCAR, while the reverse does not hold. First, a comparison

of MAR methods with the commonly used methods is provided using an artificial but

insightful example. Next, these simplistic methods are contrasted with broadly valid

and easy to implement direct-likelihood methods. We will also comment on alterna-

tives such as multiple imputation and the expectation-maximization algorithm.
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Figure 4.1: Artificial example of a study where subjects drop out at time point 5 (x

axis) after reaching a certain level of response (y axis). The dataset is composed of

those with complete observations (bottom thin line) and those who have incomplete

observations (top thin line). The estimated trajectories of this cohort using different

analytic approaches to handle the incomplete data are shown. (MAR - middle bold

line, LOCF - middle bold dashed line, AC - Bold dash-dot line, CC bottom bold line).

The MAR line represents the correct result. The upper two lines show what would have

happened to the subjects who dropped out; their actual unobserved average (dotted line)

and the average assumed by the LOCF approach (long dash line).

4.2.1 MAR Versus Commonly Used Methods

Let us take a look at an artificial but revealing example contrasting an MAR approach

with the ones discussed earlier. Figure 4.1, displays the results of the traditional

MCAR methods – complete case, available case and LOCF – with the result of an

MAR method. In this example, the mean response is supposed to be a linear function

of the variable on the abscissa. The slope is the same for patients with incomplete data

and those with complete observations, but intercepts differ. We assume that patients

with incomplete observations drop out half way through the study (time point 5) upon

reaching a certain level of the response - an MAR missingness mechanism. Using a

method valid under the MAR assumption, the analysis would yield the correct mean

profile, that is, a straight line centered between the mean profiles of the completers

and noncompleters. If one performed a complete case analysis, the fitted profile will
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coincide with the mean profile of the complete cases (bold line). In Figure 4.1, the

data that arise after carrying the last observed measurement forward is represented

by a dashed line and clearly, under LOCF, a progressively increasing underestimate

of the true mean is observed (bold dashed line). Finally, this figure shows how the

AC approach (bold dash-dot line) can produce anomalous results in this situation;

the trajectory becomes discontinuous at time point 5, with a mean identical to those

who continue beyond that point. All of the MCAR methods produce incorrect results

under this simple but plausible scenario.

4.2.2 Direct-likelihood Versus Commonly Used Methods

For longitudinal studies with missing data, a likelihood-based mixed-effects model

only requires that missing data are MAR. These mixed-effects models permit the

inclusion of subjects with missing values at some time points (both dropout and in-

termittent missingness). For the continuous-outcome setting, this amounts to the

general linear mixed model, introduced in Section 3.2.1 (see also Verbeke and Molen-

berghs, 2000), which can be viewed both in the marginal and hierarchical framework.

However, for the non-Gaussian case, such mixed-effect models are restricted to the

random-effects model family. Here, we focus on the generalized linear mixed model as

discussed in Section 3.2.3. On the other hand, as shown in Section 3.2.2, the weighted

version of the frequentist GEE approach, WGEE, is a viable alternative within the

marginal model framework, which is valid under MAR but does require to model the

dropout process.

Such a likelihood-based MAR analysis is also termed likelihood-based ignorable

analysis, or a direct-likelihood analysis. In the literature, names for these methods

vary, and include hierarchical models, random-effects models, and random-coefficient

models. In a direct-likelihood analysis, the observed data are used without deletion

nor imputation. In doing so, appropriate adjustments valid under MAR are made to

parameters at times when data are incomplete, due to the within-patient correlation.

Even when interest lies in a comparison between the two treatment groups at the last

measurement occasion, such a full longitudinal analysis is a good approach, since the

fitted model can be used as the basis for inference.

In many clinical settings the repeated measures are balanced, in the sense that a

common (and often limited) set of measurement times is considered for all subjects,

which allows the a priori specification of a “saturated” model, such as, for example,

a full group-by-time interaction for the fixed effects combined with an unstructured

covariance matrix. For continuous outcomes, such a model specification is termed
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Mixed-effects Model Repeated-Measures analysis (MMRM) by Mallinckrodt, Clark

and Stacy (2001a,b). MMRM is a particular form of a linear mixed model, relevant

for confirmatory clinical trials, fitting within the direct-likelihood paradigm. It has

to be noted that this approach, for the special case where no dropout occurs, is fully

equivalent to a one-way multivariate analysis of variance (MANOVA) analysis for

repeated outcomes, with a class variable treatment effect. This observation provides

a strong basis for such an approach, which is a very promising alternative for the

simplistic ad hoc methods such as CC analysis or LOCF, described in Section 4.1.

These arguments, supplemented with the availability of software tools within

which such multivariate models can be fitted to incomplete data, cast doubts re-

garding the usefulness of such simplistic methods as CC and LOCF. This issue has

been discussed in detail, in the context of Gaussian outcomes on the one hand, by

Molenberghs et al. (2004), and in the context of non-Gaussian outcomes on the other

hand, by Jansen et al. (2006a). Apart from biases, as soon as the missing data mech-

anism is not MCAR, CC can suffer from severe efficiency losses. Especially since tools

have become available to include incomplete sequences along with complete ones into

the analysis, one should do everything possible to avoid wasting patient data. Next,

LOCF, as other imputation strategies (Dempster and Rubin, 1983; Little and Rubin,

2002) can lead to artificially inflated precision. Further, as Molenberghs et al. (2004)

have shown, the method can produce severely biased treatment comparisons and,

perhaps contrary to some common belief, such biases can be conservative but also

liberal. The method rests on the strong assumption that a patient’s outcome profile

remains flat, at the level of the last observed measurement, throughout the remainder

of follow up. As a justification for the use of LOCF, proponents sometimes stated

that it is a preferred approach when the ITT-principle is adhered to since data on all

patients randomized can be used. However, direct-likelihood methods also use infor-

mation on all subjects, including information from early dropouts, while avoiding the

much stronger assumptions required to make LOCF valid. Thus, the direct-likelihood

method is a sensible approach under ITT.

4.2.3 Alternatives to Direct-likelihood

There are a number of alternatives to direct-likelihood. One of these is multiple im-

putation (MI) (Rubin, 1987; Schafer, 1999; Little and Rubin, 2002). The MI method

involves constructing a number of complete data sets from an incomplete one by

drawing from the conditional distribution of the unobserved outcomes, given the ob-

served ones. These data sets are then analysed and the results combined to produce
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inferences. Verbeke and Molenberghs (2000) discuss the method in the context of

continuous longitudinal data. Molenberghs and Verbeke (2005) illustrate how the

SAS procedures MI and MIANALYZE can be used in this context. Multiple impu-

tation is valid under the same conditions as direct-likelihood, and therefore does not

suffer from the problems encountered in most single imputation methods. However,

there are a number of situations where multiple imputation is particularly useful. For

example, when outcomes as well as covariates are missing then multiple imputation is

a sensible route. The method is also useful when several analyses, perhaps conducted

by different analysts, have to be done on the same set of incomplete data. In such

a case, all analyses could start from the same set of multiply-imputed sets of data

and enhance comparability. Multiple imputation will be discussed in more detail in

Chapter 5.

Another method that has seen a number of applications is the Expectation-

Maximization (EM) algorithm (Dempster, Laird and Rubin, 1977; Little and Ru-

bin, 2002). Broadly speaking, the algorithm is a general method to fit a likelihood

to incomplete data. When used as an alternative to the direct-likelihood method,

it should give the exact same estimates, but computations are more difficult. Ver-

beke and Molenberghs (2000) and Molenberghs and Verbeke (2005) show how the

method can be used in SAS. For most standard longitudinal clinical trial settings, we

recommend that direct-likelihood be the first choice.

4.3 Estimates in Case of Two Measurements

Using the simple setting of two repeated follow-up measures, the first of which is

always observed while the second can be missing, we establish some properties of the

LOCF and CC estimation procedures, both assuming MCAR, as well as the estimation

procedure when the missingness mechanism is assumed to be MAR.

Let us assume each subject i = 1, . . . , N in the study is to be measured on two

occasions. The responses are grouped in a 2-component vector (Yi1, Yi2). Assume a

linear mixed model, with constant mean for both time points, and an unstructured

variance-covariance matrix:
(
Yi1

Yi2

)
∼ N

((
µ1

µ2

)
,

(
σ2

1 ρσ1σ2

σ2
2

))
.

Further, assume the first r of these subjects complete the study, while for the remain-

ing ones only the first measurement is observed. To obtain an explicit expression for

the likelihood-based estimators, along the lines of Little and Rubin (2002), observe
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Table 4.1: Estimates of µ̂1 and µ̂2: MAR (all incomplete data under MAR), CC

(complete cases only), versus LOCF (LOCF imputed data). Note that y
(N)
1 represents

1
N

∑N
i=1 yi1, and analogous for y

(r)
1 , y

(N−r)
1 , y

(N)
2 , and y

(r)
2 .

Estimate MAR CC LOCF

µ̂1 y
(N)
1 y

(r)
1 y

(N)
1

µ̂2 y
(r)
2 + N−r

N β̂1

(
y

(N−r)
1 − y

(r)
1

)
y

(r)
2 y

(N)
1 + r

N

(
y

(r)
2 − y

(r)
1

)

that conditional on the first observation, the second measurement will also be nor-

mally distributed with mean linearly related to the value of the first observation yi1

and with variance σ2
2|1:

Yi2|Yi1 = yi1 ∼ N(β0 + β1yi1, σ
2
2|1),

where 



β1 = ρσ2

σ1
,

β0 = µ2 − β1µ1 = µ2 − ρσ2

σ1
µ1,

σ2
2|1 = σ2

2(1 − ρ2).

The estimates of the mean parameters, µ̂1 and µ̂2, using either the CC or LOCF

method, or a method valid under the MAR assumption, are listed in Table 4.1.

Note that, under LOCF, a correction is taking place without any adjustment for

the correlation between the two measurements, whereas it is only correct in the un-

likely case of correlation exactly equal to one and means constant across measurement

occasions. Thus, LOCF would be inappropriate, and dramatically so in the zero cor-

relation situation. Indeed, when there is no correlation between the first and second

measurements, the regression coefficient β1 = 0, and hence there is no correction

under MAR. Unless the missingness mechanism is assumed to be MCAR, the means

obtained under CC at both measurement times are incorrect, even though there is

no need for a correction at the first one. The direct-likelihood method uses the dif-

ference between the means for complete and incomplete observations at time one,

modified by the correlation between the two measurement occasions, to correct the

mean at the second occasion. Note that, in practice, the estimators do not have to
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be derived explicitly. While they are insightful, standard likelihood-based analyses

using standard software will automatically ensure corrections of this type are used.

Thus, for example, it would be sufficient to estimate the parameters in using the SAS

procedure MIXED, as long as complete and incomplete sequences are passed on to the

procedure. Further, note that the coefficient β1 depends on the variance components

implying that a misspecified variance structure may lead to bias in µ̂2,MAR. Thus,

the well-known independence between the distributions of the estimators for µ and Σ

in multivariate normal population holds, once again, only when the data are balanced

and complete.

4.4 Examples

Let us apply the commonly used but simplistic methods, CC and LOCF, as well as

MAR methods to both the orthodontic growth data and the first depression trial,

introduced in Section 2.1 and 2.2 respectively. Since the orthodontic growth data is a

study with longitudinal continuous measurements, we use the dichotomized outcome

for the first depression trial. In this way, a comparison of MAR and simplistic methods

is provided within the Gaussian and the non-Gaussian setting.

4.4.1 Orthodontic Growth Data

Let us first compare the simplistic methods and direct-likelihood method from Sec-

tions 4.1 and 4.2 using the orthodontic growth data. We analysed the original data,

next to the CC data, the LOCF data, and the incomplete data as such. For this

purpose, a linear mixed model is used, assuming unstructured mean, that is, assum-

ing a separate mean for each of the eight age×sex combinations, together with an

unstructured covariance structure, and using maximum likelihood (ML) as well as

restricted maximum likelihood (REML). The mean profiles of the linear mixed model

using maximum likelihood for all four data sets are given in Figure 4.2 for boys and

girls separately. Next to this longitudinal approach, we will consider a MANOVA

analysis and an ANOVA analysis per time point. For all these analyses, Table 4.2

shows the estimates and standard errors for boys at age 8 and 10, for the original

data and all available incomplete data, as well as for the CC and the LOCF data.

First, we consider the group means for both sex groups for the original data set

in Figure 4.2 (solid lines). Since we observe relatively straight lines both in left and

right panel, there clearly seems to be a linear trend in both profiles.

In a complete case analysis of the growth data, the 9 subjects which lack one
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Figure 4.2: Orthodontic growth data. Profiles for the Growth data using the original

data, CC, LOCF and direct-likelihood method.

measurement are deleted, resulting in a working data set with 18 subjects. This

implies that 27 available measurements will not be used for analysis, a severe penalty

on a relatively small data set. Observing the profiles for the CC data set in Figure 4.2,

all group means increase relative to the original data set but mostly so at age 8. The

net effect is that the profiles overestimate the average length. For the LOCF data set,

the 9 subjects that lack a measurement at age 10 are completed by imputing the age

8 value. It is clear that this procedure will affect the linear but non-constant trend

found for the original data set. Indeed, the imputation procedure forces the means at

ages 8 and 10 to be very similar, thereby destroying the linear relationship. Hence, a

simple, intuitively appealing interpretation of the trends is made impossible.

In case of direct-likelihood, we now see two profiles. One for the observed means

(based on the available sample at each point in time) and one for the fitted means.

These two coincide at all ages except age 10. At first sight, this is confusing because

our model is a seemingly saturated one. However, the well-known fact that a saturated

time-by-treatment group model reproduces the observed means is true only when the

data are balanced, in the sense that all subjects have measurements at exactly the

same times. Missingness disturbs this designed balance. This is a strength of the

likelihood method, since it takes a correction into account, based on the observed

data of a subject with incomplete data (see Table 4.1). As mentioned earlier, the

complete observations at age 10 are those with a higher measurement at age 8. Due

to the within-subject correlation, they are the ones with a higher measurement at

age 10 as well, and therefore the fitted likelihood model corrects in the appropriate

direction.
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Table 4.2: Orthodontic growth data. Estimates and standard errors for boys at age 8

and 10 for direct-likelihood analysis, MANOVA and ANOVA per time point, consider-

ing the original complete data, all available incomplete data, the complete cases only

(Complete Case Analysis), and the imputed LOCF data (Last Observation Carried

Forward Analysis).

Method Boys at Age 8 Boys at Age 10

Original Data

Direct likelihood, ML 22.88 (0.56) 23.81 (0.49)

Direct likelihood, REML 22.88 (0.58) 23.81 (0.51)

MANOVA 22.88 (0.58) 23.81 (0.51)

ANOVA per time point 22.88 (0.61) 23.81 (0.53)

All Available Incomplete Data

Direct likelihood, ML 22.88 (0.56) 23.17 (0.68)

Direct likelihood, REML 22.88 (0.58) 23.17 (0.71)

MANOVA 24.00 (0.48) 24.14 (0.66)

ANOVA per time point 22.88 (0.61) 24.14 (0.74)

Complete Case Analysis

Direct likelihood, ML 24.00 (0.45) 24.14 (0.62)

Direct likelihood, REML 24.00 (0.48) 24.14 (0.66)

MANOVA 24.00 (0.48) 24.14 (0.66)

ANOVA per time point 24.00 (0.51) 24.14 (0.74)

Last Observation Carried Forward Analysis

Direct likelihood, ML 22.88 (0.56) 22.97 (0.65)

Direct likelihood, REML 22.88 (0.58) 22.97 (0.68)

MANOVA 22.88 (0.58) 22.97 (0.68)

ANOVA per time point 22.88 (0.61) 22.97 (0.72)



4.4. Examples 47

As an aside, note that in the case of direct-likelihood, the observed average at

age 10 coincides with the CC average, while the fitted average does not coincide with

anything else. Indeed, if the model specification is correct, then a direct-likelihood

analysis produces a consistent estimator for the average profile, as if nobody had

dropped out. This effect might be obscured in small data sets due to large variability.

In spite of the small-sample behavior encountered here, the validity under MAR

and the ease of implementation are good arguments that favor this direct-likelihood

analysis over other techniques.

Let us now compare the different methods by looking at Table 4.2, which shows

the estimates and standard errors for boys at age 8 and 10, for the original data and

all available incomplete data, as well as for the CC data and the LOCF data.

Table 4.2 shows some interesting features. Whenever the data are balanced, the

means are the same regardless of which estimation method is used. Standard errors

are asymptotically the same and even in a small sample like the one considered here,

differences are negligible. In all four cases, a CC analysis gives an upward biased

estimate, for both age groups. This is obvious, since the complete observations at age

10 are those with a higher measurement at age 8, as we have seen before. The LOCF

analysis gives a correct estimate for the average outcome for boys at age 8. This is

not surprising since there were no missing observations at this age. As noted before,

the estimate for boys of age 10 is biased downwards.

When the observed, incomplete data are analysed, we see from Table 4.2 that

direct-likelihood, which is valid under MAR, produces good estimates, which diverge

from the (M)ANOVA analyses, which are valid only under MCAR and give an over-

estimation of the average of age 10 in this case. MANOVA effectively reduces to a

complete case analysis and therefore also yields an overestimation of the average at

age 8. ANOVA produces a frequentist available case analysis, with correct inferences

only at measurement occasions with complete data. Once again, we observe that

direct-likelihood overcorrects, leading to mean estimates that are slightly too small.

This is not due to bias, but rather to small-sample variability. It underscores the

necessity to correctly specify the variance-covariance structure, and to ensure that its

parameters are estimated sufficiently accurate (Molenberghs and Kenward, 2007).

In conclusion, it is clear that for balanced, complete data, the multivariate normal

model has similar to identical behaviour to the frequentist (M)ANOVA analyses.

However, when fitted to incomplete data, the likelihood-based methods are more

broadly valid since they only require the missing data mechanism to be MAR, rather

than MCAR. This provides a strong justification for the direct-likelihood method.
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4.4.2 First Depression Trial

A second example will be situated in the non-Gaussian setting. To this end, we

analyse the dichotomized response from the first depression trial.

The primary null hypothesis is zero difference between the experimental and the

standard treatment in terms of proportion of the HAMD17 total score above the level

of 7, that is, in terms of depression status (yes/no). This will be tested using both

marginal models (GEE and WGEE) and random-effects models (GLMM). According

to the study protocol, the models include the fixed effects of treatment, visit, and

treatment-by-visit interaction, all three considered as categorical covariates for which

the standard drug and the last visit are considered as references, as well as the fixed

effects of baseline score, a continuous covariate, and its interaction by visit. A ran-

dom intercept is included when considering the random-effects models. Analyses are

implemented using the SAS procedures GENMOD and NLMIXED.

Missing data are be handled in three different ways: (1) imputation using LOCF,

(2) deletion of incomplete profiles, leading to a CC, and (3) analysing the data as they

are, consistent with ignorability (for GLMM and WGEE). First we focus on a fully

longitudinal approach (View 1), comparing the results regarding overall treatment

effect obtained from the marginal and random-effects models, whereafter we also

consider analyses of the treatment effect at the last visit, that is, the planned occasion

(View 2a).

View 1: Longitudinal Analysis

Marginal Models. First, let us consider the GEE approach. Within the SAS proce-

dure GENMOD the exchangeable working correlation matrix is used. In many

cases, we observe the empirically-corrected standard errors to be larger than

the model-based ones. This is because model-based standard errors are the

ones that would be obtained if the estimating equations would be true likeli-

hood equations, that is, when the working correlation structure is correct. In

such cases, likelihood inference enjoys optimality. However, since the working

correlation structure is allowed to be misspecified, model-based standard errors

will be biased and it is advisable to base conclusions on empirically-corrected

standard errors.

An inspection of parameter estimates and standard errors as shown in Table 4.3

reveals that the interaction between treatment and time is non-significant. At

first sight, this suggests model simplification. However, there are a few reasons

to prefer a different route.
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Table 4.3: First depression trial. GEE and WGEE : parameter estimates, standard errors and p-values.

CC (GEE) LOCF (GEE) MAR (GEE) MAR (WGEE)

Effect Est. (S.E.) p-value Est. (S.E.) p-value Est. (S.E.) p-value Est. (S.E.) p-value

Intercept -2.00 (0.85) 0.019 -1.78 (0.63) 0.005 -1.92 (0.84) 0.021 -2.09 (0.89) 0.019

Treatment 0.69 (0.40) 0.088 0.64 (0.32) 0.043 0.71 (0.38) 0.063 0.69 (0.39) 0.079

Visit 4 1.51 (1.17) 0.197 0.94 (1.14) 0.406 0.89 (1.23) 0.467 -0.67 (2.00) 0.737

Visit 5 -0.09 (1.37) 0.946 0.15 (0.93) 0.873 0.14 (1.21) 0.909 0.62 (1.41) 0.663

Visit 6 0.79 (1.07) 0.462 0.82 (0.74) 0.266 0.93 (1.04) 0.368 1.13 (1.29) 0.382

Visit 7 0.28 (1.03) 0.785 0.17 (0.66) 0.791 0.03 (1.01) 0.975 -1.34 (1.42) 0.344

Treatment × Visit 4 -0.62 (0.65) 0.337 -0.45 (0.59) 0.453 -0.47 (0.64) 0.467 -0.34 (1.09) 0.775

Treatment × Visit 5 -0.65 (0.54) 0.227 -0.50 (0.40) 0.213 -0.62 (0.50) 0.214 -0.54 (0.63) 0.394

Treatment × Visit 6 -0.67 (0.41) 0.104 -0.71 (0.31) 0.023 -0.88 (0.41) 0.032 -1.55 (0.62) 0.012

Treatment × Visit 7 -0.45 (0.37) 0.219 -0.29 (0.24) 0.243 -0.28 (0.37) 0.453 0.49 (0.70) 0.483

Baseline 0.08 (0.04) 0.070 0.10 (0.03) 0.003 0.08 (0.04) 0.068 0.10 (0.05) 0.042

Baseline × Visit 4 0.07 (0.06) 0.267 0.09 (0.06) 0.164 0.12 (0.07) 0.087 0.24 (0.11) 0.032

Baseline × Visit 5 0.11 (0.08) 0.140 0.07 (0.05) 0.183 0.09 (0.07) 0.167 0.05 (0.08) 0.542

Baseline × Visit 6 0.01 (0.06) 0.899 -0.01 (0.04) 0.858 0.01 (0.05) 0.882 0.03 (0.07) 0.698

Baseline × Visit 7 0.01 (0.05) 0.845 0.01 (0.03) 0.845 0.02 (0.05) 0.643 0.10 (0.08) 0.172
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First, as stated before, a longitudinal model used in a regulatory, controlled

environment is ideally sufficiently generally specified to avoid driving conclusions

through models that are too simple. Sticking to a single, pre-specified model

also avoids dangers associated to model selection (e.g., inflated type I errors),

recently reported in the literature (Hjort and Claeskens, 2003).

Second, a general model allows for, as a by-product, assessment of treatment

effect at the last planned occasion. Third, one can still assess the important

null hypothesis of (1) no average treatment effect, and (2) no treatment effect

at any of the measurement occasions. These tests have been conducted and are

reported in Table 4.4.

Unless one has strong believe that the MCAR assumption holds, it is care-

ful to consider WGEE to perform an analysis that is correct under MAR. In

terms of fitting the model to the data, it implies that weights have to be con-

structed, based on the probability to drop out at a given time, given the patient

is still in the study, given his or her past measurements, and given covariates.

We restrict attention the the previous outcome and treatment indicator. The

code is exemplified in Section 11.3. The result of fitting this logistic regression

did not reveal strong evidence for a dependence on the previous outcome (es-

timate 0.0974, s.e. 0.3513), nor on the treatment allocation (estimate -0.0652,

s.e. 0.3137).

Let us now turn to the results. Apart from the effect of treatment, visit

and treatment-by-visit interaction, results of the CC, LOCF, and standard

GEE analyses are similar (Table 4.3). However, there are differences with the

weighted GEE version, in parameter estimates and standard errors. The dif-

ferences in standard errors, which are often larger under WGEE, are explained

by the fact that additional sources of uncertainty, due to missingness, are taken

into account. From Table 4.4, the marginal models reveal non-significant treat-

ment effect in all cases, for either the hypothesis of no treatment effect or the

hypotheses of no average effect. Corresponding to the one degree-of-freedom

tests, parameter estimates and standard errors can be estimated as well for the

mean treatment effect. For conciseness, only empirically corrected standard er-

rors are shown. A strong difference is observed between the WGEE and other

cases. Since this is the only one valid under MAR, it is clear that there are

dangers associated to too simplistic methods. Furthermore, in the LOCF case,

the p-value of the joint treatment effect is larger compared to WGEE, whereas

the one for the mean treatment effect is smaller. This contradicts a common
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Table 4.4: First depression trial. View 1. GEE, WGEE and GLMM.

Tests for (1) the joint null hypothesis of no treatment effect at any of

the time points and (2) the hypothesis of no average treatment effect.

Analysis (1) Joint effect (2) Mean effect

p-value Est. (S.E.) p-value

CC (GEE) 0.6010 0.21 (0.32) 0.5216

LOCF (GEE) 0.2684 0.25 (0.28) 0.3570

MAR (GEE) 0.3047 0.26 (0.27) 0.3355

MAR (WGEE) 0.1694 0.30 (0.39) 0.4413

CC (GLMM) 0.6660 0.31 (0.61) 0.6125

LOCF (GLMM) 0.3111 0.56 (0.58) 0.3323

MAR (GLMM) 0.3564 0.44 (0.48) 0.3569

belief that LOCF is conservative. Molenberghs et al. (2004) and Jansen et al.

(2006a) have shown that both conservative and liberal behavior is possible.

Random-effect Models. To fit generalized linear mixed models, we use the SAS

procedure NLMIXED, which allows fitting a wide class of linear, generalized

linear, and non-linear mixed models. It relies on numerical integration. Not

only different integral approximations are available, the principal ones being

(adaptive) Gaussian quadrature, but it also includes a number of optimiza-

tion algorithms. The difference between non-adaptive and adaptive Gaussian

quadrature is that for the first procedure the quadrature points are centered at

zero for each of the random-effects and the current random-effects covariance

matrix is used as the scale matrix, while for the latter the quadrature points

will be appropriately centered and scaled, such that more quadrature points lie

in the region of interest (Molenberghs and Verbeke, 2005). We will use both

adaptive and non-adaptive quadrature, with several choices for the number of

quadrature points, to check the stability of the results over a variety of choices

for these numerical choices.

Precisely, we initiate the model fitting using non-adaptive Gaussian quadrature,

together with the quasi-Newton optimization algorithm (step 1). The number

of quadrature points is left to be determined by the procedure, and all starting
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Figure 4.3: First depression trial. The effect of adaptive versus non-adaptive quadra-

ture, quasi-Newton versus Newton-Raphson, and the number of quadrature points on

the treatment effect parameter.

values are set equal to 0.5. Using the resulting parameter estimates, we keep

these choices but hold the number of quadrature points fixed (2, 3, 5, 10, 20 and

50). Subsequently, we switch to adaptive Gaussian quadrature (step 2). Finally,

the quasi-Newton optimization is replaced by the Newton-Raphson optimization

(step 3). The effect of the method and the number of quadrature points is

graphically represented in Figure 4.3 for a selected parameter (treatment effect).

While the differences between these choices are purely numerical, we do notice

differences between the results, illustrating that a numerical sensitivity analysis

matters. The parameter estimates tend to stabilize with increasing number of

quadrature points. However, non-adaptive Gaussian quadrature needs obviously

more quadrature points than adaptive Gaussian quadrature.

Focusing on the results for 50 quadrature points, we have observed that the

parameter estimates for step 1 and step 2 are only slightly different (order of

10−3), whereas parameter estimates for step 3 differ in order of 10−1 compared

to the previous steps (not shown). In spite of the differences in parameter

estimates, is the noteworthy fact that the likelihood is the same in all steps, due

to a flat likelihood.

This was confirmed by running all steps again, but now using the parameter

estimates of step 3 as starting values, at which point the parameter estimates all

coincide. Thus, it may happen that the optimization routine has only seemingly

converged.
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Table 4.5: First depression trial. GLMM using adaptive Gaussian quadrature, Newton-Raphson optimization

and 50 quadrature points : parameter estimates, standard errors and p-values.

CC LOCF MAR

Effect Est. (S.E.) p-value Est. (S.E.) p-value Est. (S.E.) p-value

Intercept -3.78 (1.60) 0.020 -3.68 (1.43) 0.011 -3.51 (1.42) 0.014

Treatment 1.18 (0.80) 0.142 1.32 (0.72) 0.068 1.20 (0.72) 0.095

Visit 4 2.40 (2.21) 0.281 0.99 (1.82) 0.586 1.30 (1.88) 0.490

Visit 5 -0.37 (1.85) 0.842 -0.17 (1.53) 0.913 0.22 (1.61) 0.890

Visit 6 1.54 (1.61) 0.340 1.55 (1.36) 0.257 1.80 (1.49) 0.228

Visit 7 0.61 (1.57) 0.701 0.33 (1.36) 0.811 0.26 (1.51) 0.865

Treatment × Visit 4 -0.99 (1.08) 0.359 -0.64 (0.95) 0.504 -0.66 (0.95) 0.488

Treatment × Visit 5 -1.10 (0.92) 0.234 -0.94 (0.77) 0.229 -1.00 (0.81) 0.220

Treatment × Visit 6 -1.33 (0.82) 0.108 -1.56 (0.71) 0.029 -1.61 (0.77) 0.037

Treatment × Visit 7 -0.91 (0.81) 0.263 -0.64 (0.70) 0.357 -0.52 (0.76) 0.494

Baseline 0.15 (0.08) 0.072 0.21 (0.08) 0.006 0.15 (0.07) 0.051

Baseline × Visit 4 0.16 (0.13) 0.217 0.22 (0.11) 0.044 0.21 (0.11) 0.055

Baseline × Visit 5 0.23 (0.10) 0.032 0.18 (0.09) 0.045 0.17 (0.09) 0.061

Baseline × Visit 6 0.02 (0.08) 0.843 0.00 (0.07) 0.998 0.01 (0.08) 0.894

Baseline × Visit 7 0.02 (0.08) 0.824 0.02 (0.07) 0.792 0.03 (0.08) 0.664

σ 2.70 (0.39) < .0001 3.11 (0.38) < .0001 2.39 (0.32) < .0001

−2` 504.3 706.4 629.4
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Table 4.5 displays the results for the CC, LOCF and MAR analyses based on

the GLMM using adaptive Gaussian quadrature with 50 quadrature points and

Newton-Raphson optimization. Again similar results among CC, LOCF and the

MAR analysis is observed, except for treatment, visit and the treatment-by-visit

interaction.

Further, exactly as in the marginal model case, we assessed average treatment

effect as well as treatment effect at any of the times. The results are reported

in Table 4.4 as well. Again, the parameter p-values are different across methods

as in the marginal model case, but all showing no significance.

Marginal versus Random-effects Models. In all cases, the variability of the ran-

dom effect (standard deviation parameter σ) is highly significant. This implies

that the GEE parameters and the random-effects parameters cannot be com-

pared directly. If the conversion factor (3.23) is computed, then one roughly

finds a factor of about 1.7 under MAR, 1.9 and 2.1 for the CC and LOCF

analysis respectively. We note that this factor is not reproduced when directly

comparing the two sets of estimates (Table 4.3 and 4.5). This is due to the fact

that (3.23) operates at the true population parameter level, while we only have

parameter estimates at our disposition. Since many of the estimates are not or

only marginally significant, it is not unexpected to observe deviations from this

relationship, even though the general tendency is preserved in most cases.

View 2: Single Time Point Analysis

When emphasis is on the last measurement occasion, LOCF and CC are straightfor-

ward to use. When the last observed measurement is of interest, while a different

scientific question, the analysis is not different from the one obtained under LOCF

but, of course, in this case CC is not an option.

Since the outcome is a dichotomous response, the data can be summarized in a 2×k
table, where k represents the number of treatments. The analysis essentially consists

of comparing the proportions of success or failure in all groups. For this purpose,

both Pearson’s chi-squared test (Agresti, 1990) and Fisher’s Exact test (Freeman and

Halton, 1951) will be used. Nevertheless, it is still possible to obtain inferences from

a full longitudinal model in this context. When an ignorable analysis is considered,

one has to explicitly consider all incomplete profiles, in order to correctly incorporate

all information available. Thus, one has to consider a longitudinal model. Both the

marginal standard or weighted GEE analysis and the random-effects GLMM approach

are considered. Table 4.6 shows a summary of the results in terms of p-values.
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Table 4.6: First depression trial. Views 2a : p-values for treatment effect

at the last visit based on two longitudinal analyses (GLMM, (W)GEE),

and two single time point analyses (Pearson’s Chi-squared test, Fisher’s

Exact test).

Method Model p-value

CC GEE 0.0876

GLMM 0.1424

Pearson’s Chi-squared Test 0.1506

Fisher’s Exact Test 0.1781

LOCF GEE 0.0428

GLMM 0.0676

Pearson’s Chi-squared Test 0.0851

Fisher’s Exact Test 0.0914

MAR GEE 0.0633

WGEE 0.0785

GLMM 0.0949

Both endpoint analyses (that is, using the last available measurement) show in-

significant treatment effect under the CC and LOCF method. The same holds for the

GLMMs considering the three methods. However, notice a smaller p-value for LOCF

compared with MAR on the one hand, and a larger p-value for CC compared with

MAR on the other hand. The results from GEE under the CC analysis and from

the WGEE analysis yield again a non-significant treatment effect, whereas now GEE

under the LOCF analysis does show a significant borderline effect.

4.5 Conclusion

In this chapter, we compared the simplistic methods commonly used (CC, LOCF, AC)

to analyse incomplete longitudinal data, against a direct-likelihood analysis. Such a

direct-likelihood analysis uses all available information, without the need either to

delete nor to impute measurements or entire subjects. It is theoretically justified
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whenever the missing data mechanism is MAR, a less restrictive and more realistic

assumption than MCAR, which is necessary (but not always sufficient) for simplistic

analyses (AC, CC, LOCF). There is no distortion in the statistical information, since

observations are neither removed (such as in CC analysis) nor added (such as in

LOCF analysis). Indeed, an ignorable direct-likelihood analysis takes all information

into account, not only from complete observations, but also from incomplete ones,

through the conditional expectation of the missing measurements given the observed

ones. In this chapter, this has been documented in the case of two measurements of

a Gaussian outcome, by considering the estimates of the mean at both time points.

Further, we have exemplified the ad hoc methods and the direct-likelihood ap-

proach in both the Gaussian and the non-Gaussian setting. For continuous longitudi-

nal data, the main mode of analysis is the likelihood-based linear mixed model (LMM).

In the non-Gaussian case, the choice has to be made between marginal models and

random-effects models. Generalized linear mixed models (GLMM) are a well-known

set of random-effects model, which are likelihood-based. On the other hand, gener-

alized estimating equations (GEE) is a non-likelihood marginal model, for which the

stronger MCAR assumption is required. However, GEE can be extended to weighted

GEE, making it also valid under MAR. To perform these direct-likelihood analyses

(LMM or GLMM), standard software can be applied, and no additional program-

ming is involved. For WGEE, a small amount of programming is necessary, which is

easily done in standard software. These arguments justify a shift from the simplistic

methods towards a direct-likelihood paradigm as primary analysis when analysing

incomplete data from longitudinal clinical trials. In Sections 11.1–11.3 we illustrate

how to perform simple analyses, direct-likelihood and WGEE using the SAS software.



5
Multiple Imputation and

Weighting

In Chapter 3, three model families to analyse incomplete longitudinal data in a non-

Gaussian setting were introduced. The random-effects family is represented by the

commonly used generalized linear mixed effects model (GLMM), for which estimation

is performed through maximum likelihood, implying that ignorability under MAR can

be invoked. However, this is not the case for non-likelihood marginal models, such

as the semi-parametric method of generalized estimating equations (GEE), which

is a second prevalent modelling approach besides GLMMs. As pointed in previous

chapters, such models are only valid under the restrictive assumption of MCAR. To

ensure validity under MAR, Robins, Rotnitzky and Zhao (1995) proposed weighted

generalized estimating equations (WGEE) as discussed in Section 3.2.2.

An alternative approach to handle MAR missingness when using GEE, as sug-

gested by Schafer (2003), would be based on multiple imputation, a technique devel-

oped by (Rubin, 1987) and introduced in Section 4.2.3 as an alternative to direct-

likelihood. This approach consists of multiply imputing the missing outcomes using

a parametric model, followed by analysing the resulting complete datasets using a

standard method. In case GEE is considered as the standard method, we refer to

this combination of MI and GEE as ‘MI-GEE’. Afterwards, the obtained inferences

57
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are combined into a single one. Regarding the missingness process, standard multiple

imputation requires MAR to hold, even though extensions exist.

In this chapter, the focus will be on the comparison between both GEE versions

for incomplete data: WGEE and MI-GEE. Comparisons will be made by means

of a simulation study, including both small-sample simulations, as well as so-called

asymptotic simulations (Rotnitzky and Wypij, 1994). The behaviour of both methods

in terms of mean squared error (MSE), variance and bias of the estimators will be

studied, under correctly specified and misspecified models. In this way, robustness

of both methods under misspecification of either the dropout model, the imputation

model, or the measurement model, can be explored.

The outline of this chapter is as follows. In Section 5.1, we discuss methods for

analysing incomplete longitudinal non-Gaussian data, which are valid under the MAR

assumption, with main attention on WGEE and multiple imputation together with

GEE as analysis method. A description of the asymptotic and small-sample simula-

tion design, as well as the results of the simulation study, is provided in Section 5.2.

Finally, we apply both approaches to the first depression trial data in Section 5.3. The

contribution of this chapter is joint work with Cristina Sotto and has been published

in Beunckens, Sotto and Molenberghs (2007b).

5.1 Non-Gaussian Incomplete Longitudinal Data and

MAR

While full likelihood methods are appealing because of their flexible ignorability prop-

erties, their use for non-Gaussian outcomes can be problematic due to prohibitive

computational requirements. Therefore, GEE is an attractive alternative within the

marginal model family. Since GEE is based on frequentist considerations, the missing

data mechanism needs to be MCAR for it to be ignorable. This motivates the use of

weighted generalized estimating equations (Robins, Rotnitzky and Zhao, 1995), which

is valid under the weaker MAR missingness mechanism. An alternative mode of analy-

sis, proposed by Schafer (2003), consists of multiply imputing the missing outcomes

using a full-parametric model, e.g., of a random-effects or conditional type, followed

by analysis of the resulting completed data sets using a conventional marginal (e.g.,

GEE) or conditional model (e.g., a transition model), and finally performing multiple-

imputation inference. This results in so-called multiple imputation based generalized

estimating equations (MI-GEE) or multiple imputation based transition model (MI-
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Transition), when respectively GEE or a transition model is used for the analysis of

the completed data sets.

Since the marginal model GEE and its extension to WGEE have been outlined

in Section 3.2.2, the focus in this section lies on the clarification of MI-GEE and MI-

Transition. The main idea of multiple imputation has been described in Section 4.2.3,

and a more detailed discussion is given below.

Multiple imputation (MI) was formally introduced by Rubin (1978). The key idea

of the procedure is to first replace each missing value with a set of M plausible values

drawn from the conditional distribution of the unobserved values, given the observed

ones. This conditional distribution represents the uncertainty about the right value

to impute. In this way, M imputed data sets are generated (imputation stage), which

are then analysed using standard complete data methods (analysis stage). Finally,

the results from the M analyses have to be combined into a single inference (pooling

stage) by means of the method laid out in Rubin (1978). In its basic form, multiple

imputation requires the missingness mechanism to be MAR, even though versions

under MNAR have been proposed (Rubin, 1987; Molenberghs, Kenward and Lesaffre,

1997).

In line with the notation in Section 3.1, suppose the parameter vector of the

distribution of the response Yi = (Y o
i ,Y

m
i ) is denoted by θ = (β,α)′, in which β

denotes the vector of fixed-effects parameters and α the vector of covariance para-

meters. Multiple imputation uses the observed data Y o to estimate the conditional

distribution of Y m given Y o. The missing data are sampled several times from this

conditional distribution and augmented to the observed data. The resulting com-

pleted data are then used to estimate θ. If the distribution of Yi = (Y o
i ,Y

m
i ) were

known, with parameter vector θ, then Y m
i could be imputed by drawing a value of

Y m
i from the conditional distribution f(ym

i |yo
i ,θ). The objective of the imputation

phase is to sample from this true predictive distribution. However, θ in the impu-

tation model is unknown, and therefore needs to be estimated from the data first,

say θ̂, after which f(ym
i |yo

i , θ̂) is used to impute the missing data. Precisely, this

implies one first generates draws from the distribution of θ̂, thereby taking sampling

uncertainty into account. Generally, the parameter vector in the imputation model

differs from the parameter vector that governs the analysis model. Alternatively, a

Bayesian approach, in which uncertainty about θ is incorporated by means of some

prior distribution for θ, can also be taken.

In the last phase of multiple imputation, the results of the analyses for the M

imputed data sets are pooled into a single inference. The combined point estimate

for the parameter of interest from the multiple imputation is simply the average of
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the M complete-data point estimates (Schafer, 1999). Let θ denote the parameter of

interest, then the estimate and its estimated variance are given by:

θ̂ ≡ 1

M

M∑

m=1

θ̂
m

and V̂ar(θ̂) ≡ V = W +

(
M + 1

M

)
B,

where

W =

∑M
m=1U

m

M
and B =

∑M
m=1(θ̂

m − θ̂)(θ̂ m − θ̂)′
M − 1

,

with W denoting the average within imputation variance and B the between impu-

tation variance (Rubin, 1987).

Since in WGEE all subjects are given weights, calculated using the hypothesized

dropout model, any misspecification of this dropout model will affect all subjects,

and thus the results. On the other hand, one can consider MI together with GEE

or with a transition model, resulting in MI-GEE and MI-Transition, respectively.

In essence, this method comes down to first using the predictive distribution of the

unobserved outcomes given the observed ones and perhaps covariates. After this step,

the missingness mechanism can be further ignored, provided it is MAR. In these MI

cases, a misspecification made in the imputation step will only effect the unobserved

(that is, imputed) but not the observed part of the data. Meng’s (1994) results show

that, as long as the imputation model is not grossly misspecified, this approach will

perform well. Considering all this, one might be inclined to expect the MI-GEE or

MI-Transition to be more robust against model misspecification than WGEE. In the

next section, we will use a simulation study to investigate this idea.

5.2 A Simulation Study

In the previous section, we pointed to various methods to overcome the bias occurring

in GEE under MAR. WGEE is unbiased for a correctly specified dropout and mean

structure of the measurement model. MI-GEE requires compatibility between the

imputation and estimation model to be correctly specified. Therefore, it is of interest

to quantify the bias and precision under various types of misspecification. To this end,

an asymptotic simulation study, as well as small-sample simulations, are conducted

on various underlying data-generating models. Whereas asymptotic simulations give

a nice paradigm to explore the situation of “large” samples, small-sample simulations

give insight into the behaviour of the methods in real-life settings.

In the simulation study, we distinguish between two stages: (1) the data-generating

stage and (2) the analysis stage. In the first stage, a data-generating model is defined.
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Under the selection model framework, this generating model consists of a measure-

ment model on the one hand, and a dropout model, given the measurement model

on the other. In the analysis stage, a distinction should be made among three types

of models: a measurement model, a dropout model and an imputation model. For

the WGEE approach, only a marginal measurement model and a dropout model need

to be specified. In contrast, the analysis stage for MI-GEE would entail the specifi-

cation of an imputation model, rather than a dropout model, as well as a marginal

measurement model. Finally, for MI-Transition, a conditional rather than marginal

measurement model is needed, as well as an imputation model.

To assess the distinctive and relative merits of the methods of interest, we consider

their performance, first in the case without any misspecification, then under various

misspecifications. Since interest lies in comparing WGEE and MI-GEE as methods

for dealing with missing data in a binary longitudinal setting, the misspecification can

be made either in the dropout model, in the imputation model, or in the measurement

model. Misspecification in the missingness mechanism, however, e.g., using MCAR

for an underlying MAR mechanism, is not further explored, as this is not the main

focus here and has already been investigated extensively (Jansen et al., 2006a).

First, the various generating models employed for the simulations are defined in

Section 5.2.1. Section 5.2.2 is devoted to the description of the design of the simulation

study, after which the results of the simulation, under each of the various scenarios,

are presented in Section 5.2.3.

5.2.1 Data-generating Models

For the simulation study, we generated an outcome at 3 time points using three

different measurement models: first, three-dimensional binary outcomes were gen-

erated from a Bahadur model, second from a second-order autoregressive, AR(2),

transition model, and finally, a three-dimensional continuous outcome (that was later

dichotomized) was generated from a trivariate Gaussian distribution. Whereas the

choice of the first two is obvious, since our focus lies on binary repeated measures, the

third case depicts real-life settings for which a continuous outcome is available, but

the scientific question is based on a dichotomized version of it. For all three cases, the

measurement model incorporated a binary treatment indicator, such as a treatment

versus placebo classification. In addition, for the dropout model, an MAR mecha-

nism was considered. Assuming that dropout can occur only after the first time point,

there are three possible dropout patterns: (1) dropout at the second time point, (2)

dropout at the third time point, or (3) no dropout. The combination of the various



62 Chapter 5. Multiple Imputation and Weighting

measurement models and the dropout model gives rise to three data-generating mod-

els, which will hereinafter be denoted as GM I (Bahadur measurement model and

MAR dropout model), GM II (AR(2) measurement model and MAR dropout model)

and GM III (Gaussian measurement model and MAR dropout model).

Note that we restrict the simulation setting to short sequences, since the higher-

order Bahadur models would become prohibitive to generate from. Nevertheless,

both the WGEE, as well as the MI-GEE methods, and then especially also the MI-

Transition models, can be used, and in fact are very appealing, for longer sequences

of repeated measures. When sequences become very long, the transition model is

preferable owing to its computational convenience.

Let us now define these three data-generating mechanisms in turn. Denote by tj

the time point at which measurement j is taken and by xi the treatment indicator.

GM I is based on a Bahadur model, which follows general formulation (3.14), with

logit(πij) = logit[P (Yij = 1|xi, tj)] = β0 + βx xi + βt tj + βxt xi tj , (5.1)

where we choose β0 = −0.25, βx = 0.5, βt = 0.2 and βxt = −0.8, with two- and

three-way correlation coefficients equal to ρij1j2 = 0.2 and ρij1j2j3 = 0, respectively.

The latter define an exchangeable correlation structure. The missingness process for

GM I is assumed to be MAR, and the probability of dropout at time point j given xi

and the measurement at the previous time point, is modelled by a logistic regression

of the form

logit[P (Di = j|xi, yi,j−1,Di ≥ j)] = ψ0 + ψx xi + ψprev yi,j−1,

where j = 2, 3, ψ0 = −0.5, ψx = −0.6 and ψprev = −3.5. Combining this dropout

model with the measurement model yields, for GM I, 68% completers, 15% with the

last outcome missing (7% for x = 0 and 8% for x = 1), and 18% with only the first

outcome observed (10% for x = 0 and 8% for x = 1).

The same dropout model is used to generate the missingness for GM II, but now

combined with the AR(2) transition model. Such a model can be described as follows:

P (xi) = µx,

logit[P (Yi1 = 1|xi)] = α0 + αx xi,

logit[P (Yi2 = 1|xi, yi1)] = φ0 + φx xi + φ1yi1,

logit[P (Yi3 = 1|xi, yi1, yi2)] = γ0 + γx xi + γ1 yi1 + γ2 yi2,

where µx = 0.5, α0 = −0.2, αx = 0.3, φ0 = −0.1, φx = 0.5, φ1 = 0.7, γ0 = −0.25,

γx = 0.35, γ1 = 0.4 and γ2 = 0.6. For this generation model, the missingness
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proportions are 73% for completers, 11% with the last outcome missing (7% for x = 0

and 4% for x = 1), and 17% with only the first outcome observed (11% for x = 0 and

6% for x = 1).

Since the methods of interest, WGEE and MI-GEE, involve marginal models, so

as to allow comparison, the above conditional model needs to be further marginal-

ized to obtain so-called marginalized “true” parameters, which then approximately

describe a marginal logistic function. This marginalization assumes that the corre-

sponding underlying marginal model is of the form given in (5.1). Inasmuch as the

underlying measurement model is in fact conditional, rather than marginal, there is

no way to verify whether this assumed underlying marginal model is “true”. This

marginalization was done by computing the marginal probabilities from the under-

lying conditional AR(2) transition model probabilities, that is, for a given outcome

vector and treatment level, (yi1, yi2, yi3, xi),

P (yi1, yi2, yi3, xi) = P (yi3|xi, yi1, yi2)P (yi2|xi, yi1)P (yi1|xi)P (xi). (5.2)

On a hypothetical dataset consisting of all 16 possible combinations of the form

(yi1, yi2, yi3, xi), with corresponding probability weights P (yi1, yi2, yi3, xi), we fitted a

GEE model of the form (5.1). The resulting marginalized “true” parameters of GM II

are β0 = −0.3658, βx = 0.2673, βt = 0.2265 and βxt = 0.0790.

Finally, for GM III, we assume a Gaussian outcome, Wij , at three time points,

where:

µij = E(Wij |xi, tj) = η0 + ηx xi + ηt tj + ηxt xi tj ,

for i = 0, 1 and j = 1, 2, 3, with η0 = 3.5, ηx = 0, ηt = 1.75 and ηxt = 0.5, yielding

µ =

(
µ0

µ1

)
=

(
(µ01, µ02, µ03)

′

(µ11, µ12, µ13)
′

)
=

(
(5.75, 8.00, 10.25)′

(5.25, 7.00, 8.75)′

)
.

Moreover, we assume the following unstructured covariance structure:

Σ =




1 0.80 0.35

0.80 1 0.50

0.35 0.50 1


 .

The missingness process for this GM is given by:

logit[P (Di = j|xi, wi,j−1,Di ≥ j)] = δ0 + δx xi + δprev wi,j−1,

where j = 2, 3, 4, δ0 = −0.15, δx = 0.8 and δprev = −0.35. Combining this dropout

model with the measurement model yields, on average, over all the 500 samples gen-

erated from GM III, 76% completers, 7% with the last outcome missing (3% for x = 0
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and 4% for x = 1), and 17% with only the first outcome observed (7% for x = 0 and

10% for x = 1).

The binary outcome Yij was then obtained from the continuous outcome Wij by

defining a cut-off value of 6.5, that is, Yij = 1, ifWij ≥ 6.5, and 0, otherwise. Although

the generated outcomes are continuous in nature, the focus here is on the analysis

of the binary version Yij . For this reason, we need to obtain “true” parameters

corresponding to this dichotomized response by fitting a GEE model of the form

(5.1) to the 500 complete samples. Note however that this model is not necessarily

the unknown underlying marginal model for the binary outcomes. The resulting

parameters are β0 = −3.0373, βx = 0.0095, βt = 1.7812 and βxt = 0.4828.

The choice for linear time evolutions, at the scale of the linear predictor and

within each of the treatment arms, allows us to distinguish between misspecification

effects on cross-sectional parameters (β0 and βx), longitudinal parameters (βt), and

parameters combining aspects of both (βxt). In practice, for example in a clinical

trial, it might be advisable to allow for an unstructured, saturated treatment-by-time

model, reducing the risk of model misspecification and in line with recommendations

made by Molenberghs et al. (2004) and several references listed therein.

5.2.2 Design of the Simulation Study

We now proceed to describe the details of the simulation study. Given that the

sequence of outcomes and the missing data process for GM I and GM II are discrete,

quantification of this bias under specific assumptions about the nonresponse process

can be done via an algorithm first proposed by Rotnitzky and Wypij (1994). This

so-called asymptotic simulation method entails first creating a hypothetical data set

consisting of all possible outcome sequences for each level of the covariate(s). In

addition, for each of these, there are J possible missingness patterns. The probability

mass with which each of these outcome sequences occurs can be computed based on

the assumed data-generating model (measurement and dropout models).

For our case, we consider a binary outcome at 3 time points, denoted by yi =

(yi1, yi2, yi3)
′, and a binary treatment indicator, xi, that is, a single covariate with

2 levels. This gives rise to 23 = 8 possible sequences at each level of the covari-

ate, yielding a total of 16 possibilities. From the assumed measurement model, the

probability masses for each of these 16 sequences can be computed, P (yi, xi) say.

Now, for each such case, there are 3 possible dropout patterns – dropout at sec-

ond time point, dropout at the third time point, and no dropout – yielding a total

of 48 possibilities. The probabilities P (yi, xi) are thus further split among the 3
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missingness patterns according to the dropout probabilities. Specifically, denoting by

P (Di = j|Di ≥ j,yi, xi), j = 2, 3, 4, the probability of dropout at time point j, given

the subject is still in the study, we obtain:

P (yi, xi,Di = 4|Di ≥ 4) = P (yi, xi)
∏4

j=2[1 − P (Di = j|Di ≥ j,yi, xi)],

P (yi, xi,Di = 3|Di ≥ 3) = P (yi, xi)
∏3

j=2[1 − P (Di = j|Di ≥ j,yi, xi)]

× P (Di = 4|Di ≥ 4,yi, xi),

P (yi, xi,Di = 2|Di ≥ 2) = P (yi, xi)
∏4

j=3 P (Di = j|Di ≥ j,yi, xi)

× [1 − P (Di = 2|Di ≥ 2,yi, xi)].

The estimating equations are then applied to this hypothetical data set with the

application of the resulting probability weighting. The solutions obtained are the

limiting (that is, asymptotic) solutions, which can then be compared with the known

parameters of the simulation model, so as to conveniently derive the asymptotic bias

of the estimators.

For the small-sample simulations, we assume a sample of size N = 100 subjects,

equally divided between the two treatment groups. Based on the underlying prob-

abilities from GM I or GM II, 50 observations were generated randomly for each

treatment group. S = 500 such samples were then generated. Similarly, for GM III,

we generated S = 500 samples with n0 = 50 observations from N(µ0,Σ) and n1 = 50

observations from N(µ1,Σ). While asymptotic simulations were conducted only for

GM I and GM II, small-sample simulations were done for all three generation models.

When using a GEE approach for analysis, the same working correlation structure as

assumed during data generation is employed.

5.2.3 Results of the Simulation Study

For the ensuing discussion, in assessing and comparing WGEE and imputation-based

GEE, various properties are quantified. First, we define bias as the difference be-

tween the estimate and the true value of the parameter, that is, Bias(β̂) = β̂ − β.

For the asymptotic version, probability weights, computed from the underlying GM,

are applied in solving the estimating equations (Rotnitzky and Wypij, 1994). The

resulting estimates are the limiting solutions, which can then be used to compute the

asymptotic bias (Bias∞), while the resulting variances are the asymptotic variances

(Var∞) of the parameter estimators.
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For the small-sample simulations, the average (Est) of the estimators over all

S = 500 samples, its true variance for a sample of size N (VarN ), its estimated

variance for a sample of size N (V̂arN ) and MSE are computed as:

Est ≡
S∑

i=1

β̂i

S

VarN ≡ VarN (Est) =
Var∞
N

V̂arN ≡ V̂arN (Est) =
S∑

i=1

(β̂i − Est)2

S − 1

MSE ≡ MSE(Est) = Bias2N (Est) + V̂arN (Est)

Everything Correctly Specified

We first investigate the individual merits of each method when every one of its as-

pects is correctly specified. Recall that GM I is based on a Bahadur measurement

model and a logistic model for dropout that is reflective of an MAR mechanism, that

is, depending on the previous measurement as well as the treatment indicator. An

appropriate analysis model would consist of a measurement model and a dropout

model that match those of this GM. Since GEE methods are moment-based versions

of the Bahadur model (Section 3.2.2), a GEE-based version, with the same structure

as that of the underlying measurement model would be suitable. To address the

MAR nature of the missingness, the GEE-based approach is supplemented with a

weighting scheme, obtained from a model of the same form as that of the underlying

dropout model, resulting now in WGEE. Thus, WGEE was fitted for GM I, using

weights taken from fitting a logistic dropout model with the treatment indicator and

the previous measurement as predictors. It should be noted that under WGEE the

imputation model is not relevant since the missingness is addressed, not by imputa-

tion, but rather, by means of the dropout model. The results for both the asymptotic

and small-sample simulations are shown in Table 5.1.

Clearly, the asymptotic unbiasedness of the WGEE estimators under a correctly

specified mean structure is demonstrated by our asymptotic simulation. The same

cannot be said, however, for the small-sample simulation, under which a substantial

amount of bias is observed. Moreover, the estimated variances of the parameter esti-

mators are considerably larger than the true variances, demonstrating the inefficiency

of WGEE for small samples. These observations indicate that, for a sample of size

N = 100, the consistency of the WGEE estimators does not seem to be achieved, at
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Table 5.1: Asymptotic and small-sample simulation results for WGEE, with every-

thing correctly specified, under GM I. Asymptotic results include asymptotic bias

(Bias∞) and asymptotic variance (Var∞), while small-sample simulation results (for

500 simulations) include the average (Est), bias (BiasN ), estimated variance (V̂arN ),

true variance (VarN ) and mean squared error (MSE), of the parameter estimators,

for N = 100.

Asymptotic Small-Sample

Parameter Bias∞ Var∞ Est BiasN V̂arN VarN MSE

β0 = -0.25 -1.87E-06 0.44095 -0.6457 -0.3956 1.0779 0.0044 1.2345

βx = 0.5 1.99E-07 1.10959 0.6225 0.1225 2.1108 0.0111 2.1258

βt = 0.2 2.02E-07 0.11942 0.3018 0.1018 0.2388 0.0012 0.2491

βxt = 0.8 -1.66E-07 0.27815 -0.9355 -0.1356 0.4441 0.0028 0.4625

least not for this particular generating model.

For GM II, which uses an AR(2) transition model for the mean structure and

a conditional logistic model for dropout, we considered fitting an AR(2) transition

model, which is consistent with the underlying measurement model, after multiple

imputation (MI-Transition). The multiple imputations are carried out with the SAS

procedure MI, which employs a conditional logistic imputation model for binary out-

comes, a model in line with the underlying measurement model of GM II and fully

parametric, admitting valid inferences under MAR (Schafer, 2003). Thus, the analy-

sis model, the imputation model, and the measurement model, are correctly specified.

Note also that a dropout model need not to be defined for this mode of analysis, since

imputations, rather than dropout weights, are used to cope with the missingness.

For the asymptotic simulation, M = 500 datasets were imputed, while for the small-

sample simulations, since efficient results can be obtained even under a small number

of imputations (Rubin, 1987), we chose a more practically relevant value of M = 5.

Table 5.2 gives the results for both types of simulations.

The first panel shows asymptotically unbiased parameter estimates, since, for this

outcome, data for all subjects are assumed available and are thus not imputed. The

estimates of the small-sample simulations for this outcome, on the other hand, show

some bias as can be expected whenever taking finite samples. For the second and

third panels, some bias is observed, asymptotically and for small samples, but the
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Table 5.2: Asymptotic and small-sample simulation results for MI-Transition, with

everything correctly specified, under GM II. Asymptotic results include asymptotic bias

(Bias∞) and asymptotic variance (Var∞), while small-sample simulation results (for

500 simulations) include the average (Est), bias (BiasN ), estimated variance (V̂arN ),

true variance (VarN ) and mean squared error (MSE), of the parameter estimators,

for N = 100.

Asymptotic Small-Sample

Parameter Bias∞ Var∞ Est BiasN V̂arN VarN MSE

α0 = -0.2 -0.0000 8.0803 -0.2313 -0.0313 0.0925 0.0808 0.0935

αx = 0.3 -0.0000 16.1003 0.3369 0.0369 0.1791 0.1610 0.1805

φ0 = -0.1 -0.0096 12.0926 -0.0683 0.0317 0.2046 0.1209 0.2056

φx = 0.5 -0.0666 18.0194 0.5041 0.0041 0.2635 0.1802 0.2635

φ1 = 0.7 0.0343 18.1493 0.7241 0.0241 0.2692 0.1815 0.2698

γ0 = -0.25 0.0236 17.4438 -0.1702 0.0798 0.3472 0.1744 0.3535

γx = 0.35 -0.0568 18.5632 0.3590 0.0090 0.3023 0.1856 0.3024

γ1 = 0.4 -0.0594 19.7766 0.5029 -0.0971 0.2354 0.1978 0.2448

γ2 = 0.6 0.0072 18.9333 0.4382 0.0382 0.3249 0.1893 0.3264

amounts are generally of small magnitudes. Some degree of difference can also be

observed between the estimated and true variances, pointing to certain inefficiency

of the estimators. This might be attributed to the fact that, when applying multiple

imputation, small-sample behaviour stems from both the actual sample size, N , as

well as from the number of imputations, M . Thus, in cases where the former is large

while the latter is relatively small, it should not come as a surprise that the estimated

variance is relatively large.

Finally, we consider GM III, which is based on a Gaussian measurement model and

a logistic dropout model. The analysis model used for this GM was MI-GEE, which

requires an imputation model and a measurement model, but not a dropout model.

Multiple imputations of the missing Gaussian outcomes were first obtained using a
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Table 5.3: Small-sample simulation results for MI-GEE, with everything correctly

specified, under GM III. Results include the average (Est), bias (BiasN ), estimated

variance (V̂arN ) and mean squared error (MSE), of the parameter estimators, for

N = 100.

Small-Sample

Parameter Est BiasN V̂arN MSE

β0 = -3.0373 -3.0358 0.0015 0.1978 0.1978

βx = 0.0095 0.0151 0.0056 0.3968 0.3968

βt = 1.7812 1.7808 -0.0004 0.0601 0.0601

βxt = 0.4828 0.4767 -0.0061 0.1480 0.1481

Gaussian imputation model, thereby ensuring a correctly specified imputation model,

that is, one that uses the underlying measurement process to generate the imputations

for the missing observations. The Gaussian outcome was then dichotomized based on

the previously defined cutoff value, after which standard GEE, using a probit link,

was applied to the dichotomized outcome of the imputed datasets. Since the under-

lying distribution for the outcomes is not discrete, only small-sample simulations are

possible. Although initially S = 500 samples were generated, after dichotomization of

the Gaussian outcome, there were 51 samples for which convergence was not attained.

Inspection of these samples showed that the treatment-by-time interaction could not

be estimated because, at one time point, all dichotomized outcomes belonged to only

one treatment group.

Table 5.3 gives the results of the simulation only for the S′ = 449 convergent

samples. The “true” parameter values used to compute the bias were obtained by

fitting the same measurement model using the complete (binary) data from the S′ =

449 samples. Consistent with the theory on MI, we obtained only very small bias for

the estimates, which might be expected to decrease even further under larger samples.

Dropout and Measurement Models Correct, Imputation Model Incorrect

We now consider a comparison between WGEE and MI-GEE, both having a correctly

specified measurement model, but the latter using an incorrectly specified imputation

model and the former specifying the dropout model correctly. For the two methods,
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Table 5.4: Small-sample simulation results for WGEE, with correctly specified dropout,

and MI-GEE, with incorrectly specified imputation model, under GM I. Results include

the bias (BiasN ), estimated variance (V̂arN ), true variance (VarN ) and mean squared

error (MSE), of the parameter estimators (Parm), for N = 100.

WGEE MI-GEE

Parm BiasN V̂arN VarN MSE BiasN V̂arN VarN MSE

β0 = -0.25 -0.3956 1.0779 0.0044 1.2345 -0.0169 0.2332 0.1896 0.2335

βx = 0.5 0.1225 2.1108 0.0111 2.1258 0.0195 0.4835 0.3938 0.4839

βt = 0.2 0.1018 0.2388 0.0012 0.2491 0.0088 0.0548 0.0414 0.0548

βxt = -0.8 -0.1356 0.4441 0.0028 0.4625 -0.0058 0.1172 0.0885 0.1172

the measurement model used is consistent with the underlying Bahadur measurement

model of GM I. Fitting WGEE for GM I, using the same mean structure as that of

the underlying measurement model and with weights obtained from a logistic dropout

model with the treatment indicator and the previous measurement as predictors,

ensures every aspect is correctly specified. For MI-GEE, imputations are done using

a conditional logistic imputation model for binary outcomes – a model that is not

consistent with the marginal nature of the underlying Bahadur measurement model

and is, therefore, incorrectly specified. Thus, the said comparison, of WGEE with

correctly specified dropout and measurement models against MI-GEE with correctly

specified measurement model but incorrectly specified imputation model, is possible

under GM I. The results are given in Table 5.4.

As was already noted above, WGEE does not yield unbiased and consistent esti-

mators for the particular sample size used, whereas the bias is considerably smaller

for MI-GEE. The latter also leads to more precise estimators than those obtained

for WGEE, as evidenced by smaller differences between the estimated and true vari-

ances for MI-GEE, despite the fact that the WGEE analysis model used was entirely

correctly specified. Moreover, comparison of the MSEs indicate more efficient estima-

tors for MI-GEE. All of these observations suggest a certain amount of robustness of

MI-GEE when misspecifying the imputation model.
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Table 5.5: Small-sample simulation results for WGEE, with incorrectly specified

dropout, and MI-GEE, with correctly specified imputation model, under GM III. Re-

sults include the bias (BiasN ), estimated variance (V̂arN ) and mean squared error

(MSE), of the parameter estimators (Parm), for N = 100.

WGEE MI-GEE

Parm BiasN V̂arN MSE BiasN V̂arN MSE

β0 = -3.0373 -0.1855 0.3113 0.3457 0.0015 0.1978 0.1978

βx = 0.0095 -0.1380 0.5644 0.5834 0.0056 0.3968 0.3968

βt = 1.7812 0.3100 0.1376 0.2336 -0.0004 0.0601 0.0601

βxt = 0.4828 0.0367 0.2312 0.2325 -0.0061 0.1480 0.1481

Imputation and Measurement Models Correct, Dropout Model Incorrect

Whereas above the relative performances of WGEE with correctly specified dropout

and MI-GEE with incorrectly specified imputation model were compared, we now

proceed to look at the reverse. That is, we consider a comparison of WGEE with in-

correctly specified dropout model against MI-GEE with correctly specified imputation

model. In both cases, the measurement model corresponds to the assumed underlying

measurement model for the dichotomized version of the continuous response. For this

assessment, we apply the methods under GM III. For GM III, imputing the missing

observations using a Gaussian imputation model and subsequently fitting standard

GEE to dichotomized outcomes of the completed sets of data, results in MI-GEE with

everything correctly specified. To enable comparison with WGEE using an incorrectly

specified dropout model, we obtain weights from a logistic dropout model with the

treatment indicator and the binary version of the previous measurement as predic-

tors. The latter is a clear misspecification in the dropout model, since the underlying

dropout model uses the continuous form of the previous measurement as predictor.

The results of this comparison are given in Table 5.5. Only small-sample simulations

are possible since the underlying GM does not consist of a discrete set of outcomes.

Bias is much smaller for MI-GEE, which can be expected as this is a correctly

specified analysis model. With respect to the estimated precision (V̂arN ) for a sample

of size N = 100, the estimates obtained from MI-GEE are superior to those from

WGEE. Overall, the MI-GEE estimates are more efficient, with MSEs for the WGEE



72 Chapter 5. Multiple Imputation and Weighting

Table 5.6: Asymptotic and small-sample simulation results for marginalized MI-

Transition, with everything correctly specified, under marginalized GM II. Asymp-

totic results include asymptotic bias (Bias∞) and asymptotic variance (Var∞), while

small-sample simulation results (for 500 simulations) include the average (Est), bias

(BiasN ), estimated variance (V̂arN ), true variance (VarN ) and mean squared error

(MSE), of the parameter estimators, for N = 100.

Asymptotic Small-Sample

Parameter Bias∞ Var∞ Est BiasN V̂arN VarN MSE

β0 = -0.3658 -0.0045 1.11659 -0.4253 -0.0595 1.1230 0.0112 1.1265

βx = 0.2673 0.0285 2.39565 0.3134 0.0461 2.4702 0.0240 2.4723

βt = 0.2265 -0.0022 0.20405 0.2644 0.0379 0.2060 0.0020 0.2074

βxt = 0.0790 -0.0363 0.43727 0.0648 -0.0142 0.4524 0.0044 0.4526

estimates about 1.5 times those of MI-GEE. These results seem to highlight the

sensitivity of WGEE to misspecifications in the dropout model, in contrast to MI-

GEE, which was noted to be somewhat robust to misspecifications in the imputation

model.

Imputation and Dropout Models Correct, Measurement Model Incorrect

We finally proceed to looking at a comparison between WGEE and MI-GEE when the

measurement model is specified incorrectly. For this setting, we consider GM II. We

first present the results of the asymptotic and small-sample simulations for the mar-

ginalized version of MI-Transition, with which WGEE and MI-GEE are subsequently

compared. Recall that the resulting parameter estimates, from the correctly specified

MI-Transition model (Table 5.2), define three sets of conditional probabilities, from

which marginal probabilities can be derived as in (5.2). These estimated probabilities

were then used as weights in fitting a GEE model of the form (5.1) on a data set con-

sisting of all possible combinations of outcome sequences and treatment level, yielding

the marginalized version of MI-Transition. The resulting parameter estimates were

subsequently compared with these “marginal” parameters; the results are shown in

Table 5.6. Asymptotic bias for the parameter estimates is generally small, while its

small-sample counterpart is larger. Estimated and true variances for a sample of size
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Table 5.7: Small-sample simulation results for WGEE, with correctly specified dropout,

and MI-GEE, with correctly specified imputation model, under marginalized GM II.

Results include the bias (BiasN ), estimated variance (V̂arN ), true variance (VarN )

and mean squared error (MSE), of the parameter estimators (Parm), for N = 100.

WGEE MI-GEE

Parm BiasN V̂arN VarN MSE BiasN V̂arN VarN MSE

β0 = -0.3658 -0.4223 1.1310 0.0047 1.3098 -0.0562 0.2508 0.1901 0.2539

βx = 0.2673 -0.1451 2.9804 0.0104 3.0014 0.0530 0.4927 0.3841 0.4955

βt = 0.2265 0.1241 0.2149 0.0014 0.2303 0.0343 0.0608 0.0414 0.0620

βxt = 0.0790 0.0792 0.5877 0.0030 0.5940 -0.0233 0.1184 0.0847 0.1190

N = 100 differ substantially, indicating some degree of inefficiency under this sample

size.

Assuming now that these “marginal” parameters define some underlying marginal

model for GM II, we fit both WGEE and MI-GEE, with a correctly specified dropout

model and a correctly specified imputation model, respectively. For WGEE, weights

are obtained from a dropout model consistent with the underlying dropout model of

GM II, while for MI-GEE, imputations are generated from a conditional AR(2) tran-

sition model, which is in line with the underlying measurement model of GM II. In

this way, both the dropout and imputation models are correctly specified. However,

the fitted measurement models for both WGEE and MI-GEE are clearly misspecified,

in the sense that the outcomes are modelled marginally (that is, GEE), rather than

conditionally (that is, AR(2)). Let us compare the results of both of these misspeci-

fied models (Table 5.7) as well as the correctly specified marginalized MI-Transition

(Table 5.6). Clearly, MI-GEE produces less biased estimates compared to WGEE and

even to marginalized MI-Transition. In addition, MI-GEE outperforms both WGEE

and marginalized MI-Transition in terms of precision and efficiency.
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Table 5.8: First depression trial. GEE, WGEE and MI-GEE. View 1: tests for (1)

the joint null hypothesis of no treatment effect at none of the time points and (2) the

hypothesis of no average treatment effect, and View 2a: test for (3) treatment effect

at the last visit.

View 1 View 2a

Analysis Joint effect Mean effect Effect at last visit

p-value Est. (S.E.) p-value Est. (S.E.) p-value

GEE 0.3047 0.26 (0.27) 0.3355 0.71 (0.38) 0.0633

WGEE 0.1694 0.30 (0.39) 0.4413 0.69 (0.39) 0.0785

MI-GEE (binary) 0.3661 0.24 (0.19) 0.2134 0.74 (0.44) 0.1109

MI-GEE (continuous) 0.5142 0.17 (0.18) 0.3288 0.53 (0.33) 0.1048

5.3 First Depression Trial

In Section 4.4.2, we already applied weighted GEE to analyse the dichotomized re-

sponse from the first depression trial data. Additionally, in this section, we consider

multiple imputation based GEE, in which the imputation is performed both on the

continuous HAMD17 score itself and on its dichotomized version. The SAS code

used for this purpose is illustrated in Section 11.4. First, when imputing the missing

observation of the continuous HAMD17 response variable, a multivariate Gaussian

imputation model is considered. Afterwards, the obtained Gaussian outcome is di-

chotomized according to depression status, that is, the patient is diagnosed as being

depressed in case his/her score is larger than 7. In the second case, in which multiple

imputation is implemented on the dichotomized version of the HAMD17 score, im-

putations are obtained through a transition model thereby adopting all observations

of previous visits.

In line with Sections 3.1.2 and 4.4.2, two routes will be taken regarding the choice

of the measurement model. First, we follow a fully longitudinal approach (View 1), fo-

cussing on the hypothesis of (1) no average treatment effect as well as (2) no treatment

effect at any of the measurement occasions. Further, we also consider the analysis of

the treatment effect at the last visit, that is, the planned occasion (View 2a).
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Results are shown in Table 5.8. We observe a lower estimate and standard error

for the mean treatment effect for both MI-GEE approaches compared to WGEE,

yielding a lower p-value. On the other hand, for the joint treatment effect MI-GEE

provides higher p-values. When considering the treatment effect at the last visit,

the estimate of the binary MI-GEE method is similar to the one base on WGEE,

whereas the estimate of MI-GEE after imputing the continuous HAMD17 score is

slightly different. However, the corresponding p-values of both MI-GEE approaches

are comparable, and result in a less significant effect compared to both GEE and

WGEE.

5.4 Concluding Remarks

When the analysis of incomplete binary longitudinal data is envisaged, several routes

are available. Apart from likelihood-based methods, such as the generalized linear

mixed-effects model, which were discussed in Chapters 3 and 4, non-likelihood meth-

ods are attractive, especially when a so-called marginal model is of interest. Because

standard generalized estimating equations (Liang and Zeger, 1986) are unbiased only

under MCAR, a variety of modifications and alternatives to GEE are available. Un-

doubtedly the most popular route is through weighted estimating equations, as pro-

posed by Robins, Rotnitzky and Zhao (1995). A combination of GEE and multiple

imputation methods methods (MI-GEE) provides an alternative route (Schafer, 2003).

Once multiple imputation is considered an option, it has the merit of allowing for a

variety of imputation techniques, whereafter several analysis methods can be consid-

ered. Two such routes considered in this chapter are MI-GEE and MI-Transition.

In this chapter we have provided quantitative evidence, based on asymptotic, as

well as small-sample, simulations, that can be usefully applied in the decision making

process. We have considered WGEE, MI-GEE, and MI-Transition under a variety of

scenarios. While simulations are necessarily limited, we believe both methods have

been put to the test in a fair fashion. Although asymptotically WGEE exhibits the

desirable properties that it theoretically is known to possess, these are barely repro-

duced for small samples, even when every aspect of the analysis is correctly specified.

Moreover, the observed sensitivity of WGEE to misspecification in either the dropout

or measurement model renders these asymptotic properties meaningless. On the other

hand, MI-GEE and MI-Transition demonstrate a certain degree of robustness to mis-

specification in either the imputation or measurement model, this, despite a further

marginalization for the MI-Transition case. Furthermore, WGEE’s applicability to
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the case where also covariates are missing is less straightforward, while application

of MI is relatively easy. Moreover, one can do MI under MAR with intermittent

missingness. Although the results of this study provide insight about the methods

under consideration, it is always wise to try a couple of different methods, by way of

sensitivity analysis.

WGEE is merely the incorporation of inverse probability weighting (IPW) into the

conventional GEE setup. In general, IPW is a method for correcting for missingness

mechanisms that are not strictly MCAR by using information about the missingness

probabilities. In its basic form the method has the advantage of robustness, since it

does not depend on the knowledge of the distribution of the unobserved data. How-

ever, the price that is paid for this is inefficiency (Clayton et al., 1998), which was

also shown in this chapter. Specifically, Clayton et al. (1998) investigated the use of

inverse probability weighting (IPW) and multiple imputation, among others, in the

context of longitudinal binary data in a multi-phase sampling setting. They found

that, while IPW was inefficient for such a 2 × 2-phase design, MI showed remark-

able efficiency. Moreover, this, along with possible extension to data arising from

other designs, indicates the substantial strengths of MI. To overcome this problem of

inefficiency, Carpenter, Kenward and Vansteelandt (2006) developed so-called dou-

bly robust IPW, a modified version of IPW, introduced in the discussion rejoinder

in Scharfstein, Rotnizky and Robins (1999). Carpenter, Kenward and Vansteelandt

(2006) used simulations to study these doubly robust IPW estimators in comparison

with standard IPW, maximum likelihood, and MI. IPW estimators were again found

to be inefficient and sensitive to the choice of the weight model, but the doubly robust

version proved to be as efficient as MI and robust to misspecification. However, its

applicability to the case where also covariates are missing is less straightforward, for

which application of MI is still possible. Although applied to continuous Gaussian

data, Carpenter, Kenward and Vansteelandt (2006) expect the results to generalize

to the discrete case. Whereas Clayton et al. (1998) used actual data and Carpen-

ter, Kenward and Vansteelandt (2006) used simulations of a small-sample nature, we

complement a small-sample simulation study with asymptotic simulations. Through

our simulations, we reinforce the strength of MI over IPW, specifically in application

to GEE. Indeed, WGEE can be viewed as a type of IPW scheme that uses as weights

the inverse of the probability of dropout (taken from some dropout model), while MI-

GEE uses imputations for the missing data. WGEE was found to be inefficient for

small-samples, in line with the findings of these two papers regarding the inefficiency

of such IPW schemes. However, this (lack of) efficiency might well be addressed by

adopting the doubly robust IPW version in obtaining the WGEE solutions.



5.4. Concluding Remarks 77

Misspecifications are common in practice and it is seldom the case that one would

have an entirely correctly specified analysis model. This, along with the fact that

the nice properties of WGEE are not attained for modest sample sizes, which is

common in typical clinical trials, discourages its recommendation. On the other

hand, although theoretically MI-GEE does not provide consistent results when there

is a misspecification, overall, it still yields more precise estimates than WGEE.

Thus, we provided evidence for the important fact that MI-GEE is less biased and

more precise in small and moderate samples, in spite of the asymptotic unbiasedness

of WGEE. As a consequence, in practice, MI-GEE would be the preferred method for

analysis over WGEE. Moreover, although the focus of this thesis is on missingness in

the response, in real-life settings, missingness in covariates is often encountered. In

such cases, the choice for MI-GEE is even more convincing, since the use of WGEE

would be ruled out. Finally, with MI, the imputation model is not restricted to

the use of covariates that are available, without necessarily being of interest in the

measurement model, can be incorporated in the imputation model, thereby yielding

presumably better imputations as well as wider applicability.

As a final remark, recall that asymptotic simulations were done to obtain the

asymptotic bias and asymptotic variance. These have theoretical use only, and may

provide guidance as to what happens in large to very large samples. Supplementing

them with small-sample simulations is therefore an attractive route. Needless to say

the method is of no use with conventional data analysis.





6
MNAR and Its Relation with

MAR

In Chapters 4 and 5 it has been shown that, if the MAR assumption is guaranteed

to hold, a standard analysis will follow. This is certainly true for likelihood methods

(Chapter 4), while for the marginal GEE methods it needs to be adjusted to the MAR

case (Chapter 5).

However, in realistic settings, the reasons for missingness are varied and it is

therefore hard to fully justify on priori grounds the assumption of MAR. Moreover,

since it is not possible to test for MNAR against MAR (Jansen et al., 2006b), one can

never exclude the possibility that MNAR models may be operating. Nevertheless,

ignorable analyses may provide reasonably stable results, even when the assumption

of MAR is violated, in the sense that such analyses constrain the behavior of the

unseen data to be similar to that of the observed data (Mallinckrodt, Clark and

Stacy, 2001a,b). Further, such an MAR analysis can be specified beforehand without

additional work relative to a situation with complete data.

In the most general MNAR setting, the cause of a subject’s missingness depends

on their unobserved responses, even after allowing for the information of the observed

data. In this case, the missingness process should be modelled simultaneously with

the response. An example of MNAR data would be a subject who had been doing

79
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well until midway in a trial but relapsed after the last observed visit and was lost

to follow-up. While MNAR models are more general and explicitly incorporate the

dropout mechanism, the inferences they produce are typically highly dependent on

untestable and often implicit assumptions regarding the distribution of the unobserved

measurements given the observed ones. The quality of the fit to the observed data

does not reflect at all the appropriateness of the implied structure governing the

unobserved data. This point is irrespective of the MNAR route taken implying a

definitive MNAR analysis does not exist. To explore the impact of deviations from

the MAR assumption on the conclusions, one should ideally conduct a sensitivity

analysis, within which models for the MNAR process can play a major role (Verbeke

and Molenberghs, 2000; Molenberghs and Verbeke, 2005; Molenberghs and Kenward,

2007). Such analyses will be discussed in Chapters 8 and 7.

In the first section of this chapter, we describe the full selection model for con-

tinuous outcomes in the MNAR situation proposed by Diggle and Kenward (1994)

and give a concise review of selection models for the non-Gaussian setting, thereby

focussing on the model family proposed by Baker, Rosenberger and DerSimonian

(1992). Further, a brief overview is given of pattern-mixture models in Section 6.2.

However, since such MNAR models ar not fully verifiable from the data, the empirical

distinction between MNAR and MAR is not possible unless one is prepared to accept

the posited MNAR model in an unquestioning way. Regarding this issue, Section 6.3

is devoted to the proof that an empirical distinction between MNAR and MAR is

not possible, in the sense that each MNAR model fit to a set of observed data can

be reproduced exactly by an MAR counterpart. Of course, such a pair of models will

produce different predictions of the unobserved outcomes given the observed ones.

The latter can be found in Beunckens et al. (2007c) and is achieved in collaboration

with Cristina Sotto.

6.1 Full Selection MNAR Modeling

For continuous outcomes, Diggle and Kenward (1994) proposed a full selection model

which is valid under MNAR. In the discrete case, Molenberghs, Kenward and Lesaffre

(1997) considered a global odds ratio (Dale) model. Within the selection model

framework, models have been proposed for non-monotone missingness as well (Baker,

Rosenberger and DerSimonian, 1992; Jansen and Molenberghs, 2006), and further a

number of proposals have been made for non-Gaussian outcomes (Molenberghs and

Verbeke, 2005).
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In this section, we first describe the Diggle and Kenward model for continuous

longitudinal data. Next, we provide a brief perspective on counterparts for discrete

data and picture the family of MNAR selection models for non-monotone missingness

proposed by Baker, Rosenberger and DerSimonian (1992).

6.1.1 Diggle and Kenward Model for Continuous Longitudinal

Data

Diggle and Kenward (1994) proposed a model for longitudinal Gaussian data with

non-random dropout, that is, the missingness mechanism was assumed to be MNAR,

which combines the multivariate normal model for longitudinal Gaussian data with a

logistic regression for dropout. To maximize the resulting likelihood, integration over

the missing data is needed.

The likelihood contribution of the ith subject, based on the observed data (yo
i , di),

is proportional to the marginal density function

f(yo
i , di|θ,ψ) =

∫
f(yi, di|θ,ψ) dym

i =

∫
f(yi|θ)f(di|yi,ψ) dym

i , (6.1)

in which a marginal model for Yi is combined with a model for the dropout process,

conditional on the response - since we are considering the selection model framework

- and where θ and ψ are vectors of unknown parameters in the measurement model

and dropout model, respectively.

Let hij = (yi1, . . . , yi;j−1) denote the observed history of subject i up to time

ti,j−1. The Diggle-Kenward model for the dropout process allows the conditional

probability for dropout at occasion j, given that the subject was still observed at the

previous occasion, to depend on the history hij and the possibly unobserved current

outcome yij , but not on future outcomes yik, k > j. These conditional probabilities

P (Di = j|Di ≥ j,hij , yij ,ψ) can now be used to calculate the probability of dropout

at each occasion:

f(di|yi,ψ) = P (Di = di|yi,ψ) = P (Di = di|hidi
, yidi

,ψ) (6.2)

=





P (Di = di|Di ≥ di,hidi
, yidi

,ψ), di = 2,

P (Di = di|Di ≥ di,hidi
, yidi

,ψ)

×
di−1∏

j=2

[1 − P (Di = j|Di ≥ j,hij , yij ,ψ)] , di = 3, . . . , n,

n∏

j=2

[1 − P (Di = j|Di ≥ j,hij , yij ,ψ)] , di = n+ 1.
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Diggle and Kenward (1994) combine a multivariate normal model for the measurement

process with a logistic regression model for the dropout process. More specifically,

the measurement model assumes that the vector Yi of repeated measurements for the

ith subject satisfies the linear regression model

Yi ∼ N(Xiβ, Vi), i = 1, . . . , N, (6.3)

in which β is a vector of population-averaged regression coefficients. The matrix Vi

can be left unstructured or assumed to be of a specific form, such as resulting from a

linear mixed model.

The logistic dropout model can, for example, take the form

logit [P (Di = j | Di ≥ j,hij , yij ,ψ)] = ψ0 + ψ1yi,j−1 + ψ2yij . (6.4)

More general models can easily be constructed by including the complete history

hij = (yi1, . . . , yi;j−1), as well as external covariates, in the above conditional dropout

model. Note also that, strictly speaking, one could allow dropout at a specific occasion

to be related to all future responses as well. However, this is rather counter-intuitive

in many cases. Moreover, including future outcomes seriously complicates the calcu-

lations since computation of the likelihood (6.1) then requires evaluation of a possibly

high-dimensional integral. Note also that special cases of model (6.4) are obtained

from setting ψ2 = 0 or ψ1 = ψ2 = 0, respectively. In the first case, dropout is no

longer allowed to depend on the current measurement, implying MAR. In the second

case, dropout is independent of the outcome, which corresponds to MCAR. In both

cases, all parameters can be estimated using standard software since the multivariate

normal measurement model and the dropout model can then be fitted separately.

Diggle and Kenward (1994) obtained parameter and precision estimates by max-

imum likelihood. The likelihood involves marginalization over the unobserved out-

comes Y m
i , for which subject-by-subject integration is required. Practically, this

involves relatively tedious and computationally demanding forms of numerical inte-

gration. Diggle and Kenward (1994) used the Nelder and Mead simplex algorithm

(Nelder and Mead, 1965). We use the Newton-Raphson Ridge optimization method

instead.
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6.1.2 Analysis of the Second Depression Trial Data

As an illustration, we apply the Diggle-Kenward selection modelling approach to the

second depression trial data, introduced in Section 2.2. The data are analysed under

MCAR, MAR, and MNAR, respectively. The six post-baseline visits correspond to

the measurements taken at weeks 1, 2, 3, 5, 7, and 9. In the measurement model, we

include an intercept, and assume as fixed effects the following covariates: treatment,

time, time2, and the interactions of treatment with time and time2. Random effects

are modeled as part of the within-subject error correlations, with the covariance

structure to be of the heterogeneous first-order autoregressive type. Further, dropout

model (6.4) is considered. Apart from the explicit MCAR, MAR, and MNAR versions

of this model, we will also conduct an ignorable analysis (that is, an analysis based

on the measurement model only, ignoring the dropout model). The results for the

measurement model parameters have to coincide, on theoretical grounds, with these

of the MCAR and MAR analyses. Analyses are implemented using SAS IML, and

will be exemplified in Section 11.5.

In Table 6.1, parameter estimates and standard errors are listed for the four analy-

ses, as well as the estimate of the difference in treatment effect at the endpoint, that

is, week 9, which was the primary objective of the study, together with its p-value.

The coincidence of MCAR, MAR, and ignorable measurement parameter estimates

is observed, except for very small numerical instability. The p-value of the difference

at the endpoint does not change much, it being significant in all four cases.

Note that for the MNAR analysis, the estimates of the ψ1 and ψ2 parameter

are approximately equally large, but with different sign. This is in line with the

argument of Molenberghs et al. (2001b), saying that the dropout oftentimes depends

on the increment yij − yi,j−1. This is because two subsequent measurements are

usually positively correlated. By rewriting the fitted dropout model in terms of the

increment, we obtain

logit [pr(Di = j|Di ≥ j,yi)] = −2.46 + 0.03yi,j−1 − 0.08(yij − yi,j−1),

This suggests that the probability of dropout increases with larger negative incre-

ments; that is, those patients who showed or would have shown a greater decrease in

HAMD17 score from the previous visit are more likely to drop out, given the decrease

from baseline at the previous visit is not large. In other words, patients with a large

improvement compared with the previous visit, a sudden shift on profile, are more

likely to drop out.
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Table 6.1: Second Depression Trial. Estimates and standard errors of model para-

meters and the difference of treatment effect at the last visit, assuming ignorability,

as well as explicitly modeling the missing data mechanism under MCAR, MAR, and

MNAR assumptions.

Ignorable MCAR MAR MNAR

Parameters Est. (s.e.) Est. (s.e.) Est. (s.e.) Est. (s.e.)

Mean Parameters

β0 : intercept 6.93 (1.49) 6.93 (1.48) 6.93 (1.48) 6.99 (1.48)

β1 : baseline -0.37 (0.07) -0.37 (0.07) -0.37 (0.07) -0.37 (0.07)

β2 : treatment -0.34 (0.66) -0.34 (0.65) -0.34 (0.65) -0.35 (0.67)

β3 : time -2.40 (0.29) -2.40 (0.29) -2.40 (0.29) -2.49 (0.31)

β4 : time2 0.14 (0.03) 0.14 (0.03) 0.14 (0.03) 0.15 (0.03)

β5 : time× treatment 0.59 (0.40) 0.59 (0.40) 0.59 (0.40) 0.60 (0.41)

β6 : time2 × treatment -0.03 (0.04) -0.03 (0.04) -0.03 (0.04) -0.04 (0.04)

Variance Parameters

σ1 : std at time 1 4.05 4.02 (0.17) 4.02 (0.17) 4.01 (0.17)

σ2 : std at time 2 5.29 5.27 (0.24) 5.27 (0.24) 5.25 (0.24)

σ3 : std at time 3 5.96 5.94 (0.27) 5.94 (0.27) 5.92 (0.27)

σ4 : std at time 4 6.52 6.49 (0.29) 6.49 (0.29) 6.55 (0.30)

σ5 : std at time 5 6.24 6.21 (0.28) 6.21 (0.28) 6.18 (0.27)

σ6 : std at time 6 6.33 6.29 (0.30) 6.29 (0.30) 6.26 (0.29)

ρ : common correlation 0.73 0.72 (0.02) 0.72 (0.02) 0.72 (0.02)

Missing Data Parameters

ψ0 -2.46 (0.11) -2.21 (0.14) -2.46 (0.27)

ψ1 -0.05 (0.02) 0.11 (0.05)

ψ2 -0.08 (0.06)

−2 log-likelihood 7949.4 7943.1 7941.6

diff. at endpoint (p-val.) 2.20 (.0179) 2.19 (.0176) 2.19 (.0176) 2.18 (.0177)
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6.1.3 Models for Discrete Longitudinal Data

First and foremost, let us observe that the generalized linear mixed model discussed

in Section 3.2.3 and the weighted and multiple imputation based estimating equations

of Sections 3.2.2 and 5.1 can be embedded in MNAR models. In addition, a thor-

ough review of full likelihood-based methods for non-Gaussian data can be found in

Molenberghs and Verbeke (2005), many of which can be used when the missing data

mechanism is MNAR. Let us briefly discuss a few of these.

Molenberghs, Kenward and Lesaffre (1997) proposed a model for longitudinal ordi-

nal data with non-random dropout, that is, the missingness mechanism was assumed

to be MNAR, which combines the multivariate Dale model for longitudinal ordinal

data with a logistic regression model for dropout. The resulting likelihood can be

maximized relatively simply, using the fact that all stochastic outcomes are of a cate-

gorical type, using the EM algorithm. It means that the integration over the missing

data, needed to maximize the likelihood of Diggle and Kenward (1994), is replaced

by finite summation. This is certainly not the only model available. The work on

incomplete categorical data is vast. Baker and Laird (1988) develop the original

work of Fay (1986) and give a thorough account of the modeling of contingency ta-

bles in which there is one response dimension and an additional dimension indicating

whether the response is absent. Baker and Laird use loglinear models and the EM

algorithm for the analysis. They pay particular attention to the circumstances in

which no solution exists for the non-random dropout models. Such non-estimability

is also a feature of the models we use below, but the more complicated setting makes

a systematic account more difficult. Stasny (1986) and Conaway (1992, 1993) con-

sider non-random missingness models for categorical longitudinal data. Baker (1995)

allows for intermittent missingness in repeated categorical outcomes. Baker, Rosen-

berger and DerSimonian (1992) present a method for incomplete bivariate binary

outcomes with general patterns of missingness, and we will provide more details on

these so-called BRD models in turn. The model was adapted for the use of covariates

by Jansen et al. (2003).

6.1.4 BRD Selection Models

Baker, Rosenberger and DerSimonian (1992) proposed a log-linear based family of

models for two binary outcomes, possibly subject to non-monotone missingness. They

use a four-way classification of both outcomes, together with their respective missingness

indicators.
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Table 6.2: Theoretical distribution of the probability mass over complete and observed

cells, respectively, for a bivariate binary outcome with non-monotone missingness.

Tables correspond to completely observed subjects and subjects with the second, the

first and both measurements missing, respectively.

(a) Complete cells

π11,11 π11,12

π11,21 π11,22

π10,11 π10,12

π10,21 π10,22

π01,11 π01,12

π01,21 π01,22

π00,11 π00,12

π00,21 π00,22

(b) Observed cells

π11,11 π11,12

π11,21 π11,22

π10,1+

π10,2+

π01,+1 π01,+2 π00,++

The generic expressions for the counts and corresponding probabilities are Zr1r2j1j2

and πr1r2j1j2 respectively, where r` = 0(1) if the measurement at occasion ` is missing

(observed) and j` = 1(2) if the value for the binary variable ` is 1 (2).

The complete data and observed data cell probabilities are presented in Table 6.2.

The models can be written as:

E(Z11,j1j2) = ν11,j1j2 , E(Z10,j1j2) = ν11,j1j2 β̃j1j2 ,

E(Z01,j1j2) = ν11,j1j2 α̃j1j2 , E(Z00,j1j2) = ν11,j1j2 α̃j1j2 β̃j1j2 γ̃,

with ν11,j1j2 = Z++++π11,j1j2 = Nπ11,j1j2 and

α̃j1j2 =
P (r1 = 0, r2 = 1|j1j2)
P (r1 = 1, r2 = 1|j1j2)

, β̃j1j2 =
P (r1 = 1, r2 = 0|j1j2)
P (r1 = 1, r2 = 1|j1j2)

,

γ̃ =
P (r1 = 1, r2 = 1|j1j2) P (r1 = 0, r2 = 0|j1j2)
P (r1 = 1, r2 = 0|j1j2) P (r1 = 0, r2 = 1|j1j2)

,

such that the α̃ (β̃) parameters describe missingness in the first (second) variable,

and γ̃ captures the interaction between both non-response indicators. The subscripts

are missing from γ̃ since Baker, Rosenberger and DerSimonian (1992) have shown

that this quantity is independent of j1 and j2 in every identifiable model. From the

expressions for α̃j1j2 , β̃j1j2 , and γ̃, we see that selection model quantities are employed.

Baker, Rosenberger and DerSimonian (1992) considered nine models, based on setting

α̃j1j2 and β̃j1j2 constant in one or more indices, and enumerated using the ‘BRD’
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BRD6 BRD9 BRD7 BRD9 BRD7 BRD8 BRD6 BRD8
(αj1., βj1.) (α.j2 , βj1.) (α.j2 , β.j2) (α.j2 , βj1.) (α.j2 , β.j2) (αj1., β.j2) (αj1., βj1.) (αj1., β.j2)
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Figure 6.1: Graphical representation of the BRD model nesting structure.

abbreviation:

BRD1 : (α̃.., β̃..) BRD4 : (α̃.., β̃.j2) BRD7 : (α̃.j2 , β̃.j2)

BRD2 : (α̃.., β̃j1.) BRD5 : (α̃j1., β̃..) BRD8 : (α̃j1., β̃.j2)

BRD3 : (α̃.j2 , β̃..) BRD6 : (α̃j1., β̃j1.) BRD9 : (α̃.j2 , β̃j1.).

The nesting structure of these models is schematically represented in Figure 6.1.

Interpretation is straightforward, for example, BRD1 is MCAR, and in BRD4 missingness

in the first variable is constant, while missingness in the second variable depends on

its – possibly unobserved – value. BRD6–BRD9 saturate the observed data degrees

of freedom, while the lower numbered ones leave room for a non-trivial model fit to

the observed data.

Jansen et al. (2003) extended the original BRD models to accommodate (possibly

continuous) covariates. The index distinguishing between different covariate levels will

be suppressed from notation. A selection model parameterization is used, differing

from and extending the original one:

πr1r2,j1j2 = pjkqr1r2|j1j2 , (6.5)

where pj1j2 parameterizes the measurement process and qr1r2|j1j2 describes the missingness

mechanism, conditional on the measurements.
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In particular, these authors assume

pj1j2 =
exp(ηj1j2)∑2

j1,j2=1 exp(ηj1j2)
, (6.6)

qr1r2|j1j2 =
exp[αj1j2(1 − r1) + βj1j2(1 − r2) + γ(1 − r1)(1 − r2)]

1 + exp(αj1j2) + exp(βj1j2) + exp(αj1j2 + βj1j2 + γ)
, (6.7)

where αj1j2 , βj1j2 and γ have the same interpretation as α̃j1j2 , β̃j1j2 and γ̃.

No a priori ordering is imposed on the outcomes. The advantage is that genuine

multivariate settings (e.g., several questions in a survey) can be handled as well. To

identify the model, we set η22 = 0 and further ηj1j2 = Xj1j2θ. This allows inclusion

of covariate effects which, together with (6.6), is related to the multigroup logistic

model (Albert and Lesaffre, 1986). In case no covariates are included in the model,

the measurement model is modeled through pj1j2 as such, with p22 = 1−p11−p12−p21

to identify the model.

6.1.5 Analysis of the Slovenian Public Opinion Survey Data

In this section, we present an overview of the analyses of the Slovenian public opin-

ion survey data, conducted by Rubin, Stern and Vehovar (1995) and Molenberghs,

Kenward and Goetghebeur (2001a). Their main emphasis was on determining the

proportion θ of the population that would attend the plebiscite and vote for inde-

pendence. Therefore, we collapse Table 2.2 over the secession question, producing

Table 6.3.

Let us first revise the estimates obtained by Rubin, Stern and Vehovar (1995),

which are reproduced in Table 6.4. The complete case estimate for θ, θ̂ = 0.928, is

based on the subjects answering all three questions and the available case estimate,

θ̂ = 0.929, is based on the subjects answering the two questions of interest here.

Apart from these simple models, Rubin, Stern and Vehovar (1995) considered two

Table 6.3: Slovenian public opinion survey. Observed cells collapsed over the secession

question. A simplified cell indexing system has been used.

m1 : 1439 m2 : 78

m3 : 16 m4 : 16

m5 : 159

m6 : 32
m7 : 144 m8 : 54 m9 : 136
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Table 6.4: Slovenian public opinion survey. Some estimates of the proportion θ at-

tending the plebiscite and voting for independence, as presented in Rubin, Stern and

Vehovar (1995) and Molenberghs, Kenward and Goetghebeur (2001a).

Voting in favour

Estimation method of independence: θ̂

Non-parametric bounds [0.694;0.905]

Complete cases 0.928

Available cases 0.929

MAR (2 questions) 0.892

MAR (3 questions) 0.883

MNAR 0.782

Plebiscite 0.885

MAR models, the first one solely based on the two questions of direct interest, the

second one using the secession question as an auxiliary variable, producing θ̂ = 0.883

and θ̂ = 0.782, respectively. Finally, they considered a single MNAR model, based

on the assumption that missingness on a question depends on the answer to that

question but not on the other questions. Rubin, Stern and Vehovar (1995) concluded,

owing to the proximity of the MAR analysis to the plebiscite value (θPleb = 0.885),

that MAR in this and similar cases may be considered a plausible assumption.

Molenberghs, Kenward and Goetghebeur (2001a) supplemented these analysis

with a so-called pessimistic-optimistic interval, also reported in Table 6.4. These

pessimistic (optimistic) bounds, or non-parametric bounds, are obtained by setting

all incomplete data that can be considered a yes (no), as yes (no). It is noteworthy

that both estimates of the simple complete case and available case analyses are out

of these bounds, underscoring the growing conviction that they should routinely be

disregarded and a move towards, at least, MAR should be in place (Molenberghs and

Kenward, 2007). Further, Molenberghs, Kenward and Goetghebeur (2001a) consid-

ered all nine BRD models, producing a range for θ from 0.741 to 0.892. Let us reflect

on the results obtained from fitting each of these nine BRD models. Molenberghs,

Kenward and Goetghebeur (2001a) presented a summary table but unfortunately
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Table 6.5: Slovenian public opinion survey. Summaries on each of the Models BRD1–

BRD9 are presented, with obvious column labels.

Model Structure d.f. loglik θ̂ C.I.

BRD1 (α, β) 6 -2495.29 0.892 [0.878;0.906]

BRD2 (α, βj1) 7 -2467.43 0.884 [0.869;0.900]

BRD3 (αj2 , β) 7 -2463.10 0.881 [0.866;0.897]

BRD4 (α, βj2) 7 -2467.43 0.765 [0.674;0.856]

BRD5 (αj1 , β) 7 -2463.10 0.844 [0.806;0.882]

BRD6 (αj1 , βj1) 8 -2431.06 0.819 [0.788;0.849]

BRD7 (αj2 , βj2) 8 -2431.06 0.764 [0.697;0.832]

BRD8 (αj1 , βj2) 8 -2431.06 0.741 [0.657;0.826]

BRD9 (αj2 , βj1) 8 -2431.06 0.867 [0.851;0.884]

there was a small computational error that had to be corrected, for which reason the

corrected results are reproduced in Table 6.5 (Molenberghs et al., 2007).

A graphical representation of the original analyses and the BRD models combined

is given in Figure 6.2. BRD1 produces θ̂ = 0.892, exactly the same as the first MAR

estimate obtained by Rubin, Stern and Vehovar (1995). This does not come as a

surprise, since both models assume MAR and use information from the two main

questions. However, before continuing with the models’ interpretation, it is necessary

to assess their fit. Conducting likelihood ratio tests for BRD1 versus the ones with

7 parameters, that is, BRD2–BRD5, and then in turn for BRD2–BRD5 versus the

saturated models BRD6–BRD9, suggests the lower numbered models do not fit well,

leaving us with BRD6–BRD9. The impression might be generated that the poor

model fit of BRD1 might be seen as evidence for discarding the MAR-based value

0.892. We will come back to this issue in Section 6.3.3.
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Figure 6.2: Slovenian public opinion survey. Relative position for the estimates of

“proportion of YES votes”, based on the models considered in Rubin, Stern and Ve-

hovar (1995) and on the BRD models. The vertical lines indicate the non-parametric

pessimistic–optimistic bounds. (Pess: pessimistic boundary; Opt: optimistic bound-

ary; MAR: Rubin et al’s MAR model; NI: Rubin et al’s MNAR model; AC: available

cases; CC: complete cases; Pleb: plebiscite outcome. Numbers refer to the BRD mod-

els.)

6.2 Pattern-Mixture Modeling

Pattern-mixture models were introduced in Section 3.1.2 as one of the three major

frameworks within which missing data models can be developed. In this section we

provide a brief overview of pattern-mixture models. More details can be found in

Verbeke and Molenberghs (2000) and Molenberghs and Kenward (2007).

Early references include Rubin (1977), who mentioned the concept of a sensitivity

analysis within a fully Bayesian framework, Glynn, Laird and Rubin (1986), and

Little and Rubin (1987). Important early development was provided by Little (1993,

1994a, 1995).

Pattern-mixture models can be considered for their own sake to answer a particular

scientific question. Further, several authors have contrasted selection models and

pattern-mixture models. This is done either (1) to answer the same scientific question,

such as marginal treatment effect or time evolution, based on these two rather different

modeling strategies, or (2) to gain additional insight by supplementing the selection

model results with those from a pattern-mixture approach.

Examples of pattern-mixture applications can be found in Verbeke, Lesaffre and

Spiessens (2001a) or Michiels et al. (2002) for continuous outcomes, and Molenberghs,

Michiels and Lipsitz (1999), or Michiels, Molenberghs and Lipsitz (1999) for categor-

ical outcomes.

An important issue is that pattern-mixture models are by construction under-

identified, that is, overspecified. Little (1993, 1994a) solves this problem through

the use of identifying restrictions: inestimable parameters of the incomplete patterns
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are set equal to (functions of) the parameters describing the distribution of the com-

pleters. Identifying restrictions are not the only way to overcome under-identification,

and we will discuss alternative approaches. Although some authors perceive this

under-identification as a drawback, we believe it is an asset because it forces one to

reflect on the assumptions made. Pattern-mixture models can serve important roles

in sensitivity analysis.

Fitting pattern-mixture models can be approached in several ways. It is important

to decide whether pattern-mixture and selection models are to be contrasted with one

another or rather the pattern-mixture modeling is the central focus. In the latter case,

it is natural to conduct an analysis, and preferably a sensitivity analysis, within the

pattern-mixture family. Basically we will consider three strategies to deal with under-

identification.

• Strategy 1. As mentioned before, Little (1993, 1994a) advocated the use of

identifying restrictions and presented a number of examples. A general frame-

work for identifying restrictions is discussed in more detail in Thijs et al. (2002),

with three special but important cases: complete case missing values (CCMV)

(proposed by Little (1993)), neighboring case missing values (NCMV), and

available case missing values (ACMV). Note that ACMV is the natural coun-

terpart of MAR in the pattern-mixture model framework (Molenberghs et al.,

1998b). This provides a way to compare ignorable selection models with their

counterpart in the pattern-mixture setting. Kenward, Molenberghs and Thijs

(2003) focus on restrictions avoiding dependence of dropout on measurements

made at future occasions.

The procedure to apply identifying restrictions is discussed in full detail in Thijs

et al. (2002). The key steps are as follows:

1. Fit a model to the pattern-specific identifiable densities: ft(y1, . . . , yt).

This results in a set parameter estimates, βp say, for each pattern p.

2. Select an identification method of choice (ACMV, CCMV, NCMV).

3. Using this identification method, determine the conditional distributions of

the unobserved outcomes, given the observed ones: ft(yt+1, . . . , yt|y1, . . . , yt).

4. Using standard multiple imputation methodology (Rubin, 1987; Schafer,

1997; Verbeke and Molenberghs, 2000; Molenberghs and Kenward, 2007),

draw multiple imputations for the unobserved components, given the ob-

served outcomes and the correct pattern-specific density.
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5. Analyse the multiply-imputed data sets using the method of choice. This

can be another pattern-mixture model, but also a selection model or any

other desired model.

6. Inferences can be conducted in the standard multiple imputation way.

• Strategy 2. As opposed to identifying restrictions, model simplification can

be done in order to identify the parameters. The advantage is that the number

of parameters decreases, which is desirable since the length of the parameter

vector is a general issue with pattern-mixture models. Indeed, Hogan and Laird

(1997) noted that in order to estimate the large number of parameters in general

pattern-mixture models, one has to make the awkward requirement that each

dropout pattern occurs sufficiently often. Broadly, we distinguish between two

types of simplifications.

. Strategy 2a. Trends can be restricted to functional forms supported

by the information available within a pattern. For example, a linear or

quadratic time trend is easily extrapolated beyond the last obtained mea-

surement. One only needs to provide an ad hoc solution for the first or the

first few patterns. In order to fit such models, one simply has to carry out

a model building exercise within each of the patterns separately.

. Strategy 2b. Next, one can let the parameters vary across patterns in a

controlled parametric way. Thus, rather than estimating a separate time

trend within each pattern, one could for example assume that the time

evolution within a pattern is unstructured, but parallel across patterns.

This is effectuated by treating pattern as a covariate. The available data

can be used to assess whether such simplifications are supported within

the time ranges for which there is information.

Although the second strategy is computationally simple, it is important to note

that there is a price to pay. Indeed, simplified models, qualified as assumption rich

by Sheiner, Beal and Dunne (1997), also make untestable assumptions, just as in the

selection model case. From a technical point of view, Strategy 2 only requires to either

consider ‘pattern’ as an extra covariate in the model, or to conduct an analysis ‘by

pattern,’ such that a separate analysis is obtained for each of the dropout patterns.

In the identifying restrictions setting on the other hand (Strategy 1), the assumptions

are clear from the start. Precisely for these reasons it is stated in Thijs et al. (2002)

that the use of simplified models is not the best strategy and can be rather dangerous

as well.
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Pattern-mixture models do not always automatically provide estimates and stan-

dard errors of marginal quantities of interest, such as overall treatment effect or overall

time trend. Hogan and Laird (1997) provided a way to derive selection model quan-

tities from the pattern-mixture model. Several authors have followed this idea to

formally compare the conclusions from a selection model with the selection model

parameters in a pattern-mixture model (Michiels, Molenberghs and Lipsitz, 1999;

Verbeke, Lesaffre and Spiessens, 2001a).

6.3 Every MNAR Model Has Got an MAR Body-

guard

As mentioned before, one can never exclude the possibility that MNAR models may

be operating. Even though a variety of statistical models have been proposed for

the MNAR situation, a few of which has been discussed in Sections 6.1 and 6.2,

such models are prone to considerable sensitivity due to the unverifiable modeling

assumptions.

In this section, we will show that, strictly speaking, the correctness of the alterna-

tive model can only be verified in as far as it fits the observed data. Thus, evidence

for or against MNAR can only be provided within a particular, predefined parametric

family, the plausibility of which cannot be verified in empirical terms alone. We show

that the formal data-based distinction between MAR and MNAR is not possible, in

the sense that each MNAR model fit to a set of observed data can be reproduced ex-

actly by an MAR counterpart. Of course, such a pair of models will produce different

predictions of the unobserved outcomes, given the observed ones. We show that, while

this so-called MAR bodyguard generally does not belong to a conventional parametric

family, its existence has important ramifications.

Such a position is in contrast to the view that one can test for an MNAR mecha-

nism using the data under analysis. Such tests, comparing MAR and MNAR mech-

anisms, can of course be constructed using conventional statistical methodology as

done, for example, by Diggle and Kenward (1994). It is very important to realize

that such tests are conditional upon the alternative model holding, which can only

be assessed as far as it fits the observed data, not the unobserved.

First, we show formally that every MNAR model can be doubled up with a

uniquely defined MAR counterpart, producing exactly the same fit to the observed

data as the original MNAR model, in the sense that it produces exactly the same pre-
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dictions to the observed data (e.g., fitted counts in an incomplete contingency table)

as the original MNAR model, and depending on exactly the same parameter vector.

Next, the specific case of incomplete contingency tables is studied, after which we

apply the ideas developed to data from the Slovenian public opinion survey.

6.3.1 General Result

In this section, we will show that for every MNAR model fitted to a set of data, there

is an MAR counterpart providing exactly the same fit to the data. Here, the concept

of model fit should be understood as measured using such conventional methods as

deviance measures and, of course, in as far as the observed data are concerned. The

following steps are involved: (1) fitting an MNAR model to the data; (2) reformulating

the fitted model in PMM form; (3) replacing the density or distribution of the unob-

served measurements given the observed ones and given a particular response pattern

by its MAR counterpart; (4) establishing that such an MAR counterpart uniquely

exists. Throughout this section, we will suppress covariates xi from notation, but

assume them to be present.

In the first step, we fit an MNAR model to the observed set of data. In line with

the notation introduced in Section 3.1.2, the observed data likelihood is:

L =
∏

i

∫
f(yo

i ,y
m
i , ri|θ,ψ)dym

i . (6.8)

Upon denoting the obtained parameter estimates, e.g., obtained by likelihood-based

or Bayesian methods, by θ̂ and ψ̂ respectively, the fit to the hypothetical full data is

f(yo
i ,y

m
i , ri|θ̂, ψ̂) = f(yo

i ,y
m
i |θ̂)f(ri|yo

i ,y
m
i , ψ̂). (6.9)

To undertake the second step, full density (6.9) can be re-expressed in PMM form as:

f(yo
i ,y

m
i |ri, θ̂, ψ̂)f(ri|θ̂, ψ̂) = f(yo

i |ri, θ̂, ψ̂)f(ri|θ̂, ψ̂)f(ym
i |yo

i , ri, θ̂, ψ̂). (6.10)

A similar reformulation can be considered for an SPM. In a PMM, the model will

have been expressed in this form to begin with.

Note that, in line with PMM theory, the final term on the right hand side of

(6.10), f(ym
i |yo

i , di, θ̂, ψ̂), is not identified from the observed data. In this case,

it is determined solely from modeling assumptions. Within the PMM framework,

identifying restrictions can be considered as mentioned in previous section.

The third step requires replacing this factor by the appropriate MAR counterpart.

To this end, we need the following lemma, formulating MAR equivalently within the

PMM framework.
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Lemma 1 In the PMM framework, the missing data mechanism is MAR if and only

if

f(ym
i |yo

i , ri,θ) = f(ym
i |yo

i ,θ).

This means that, in a given pattern, the conditional distribution of the unobserved

components given the observed ones equals the corresponding distribution marginal-

ized over the patterns.

The proof, which is rather straightforward and similar to what can be found in

Molenberghs et al. (1998b), is shown below. Note that, owing to this result, MAR

can be formulated in terms of R given Y , but also in terms of Y given R.

Proof of Lemma 1 Suppressing parameters and covariates from notation, the de-

composition of the full data density, in both SeM and PMM fashion, whereby

MAR is applied to the SeM version, produces:

f(yo
i ,y

m
i )f(ri|yo

i ) = f(yo
i ,y

m
i |ri)f(ri). (6.11)

Further factoring the right hand side and moving the second factor on the left

to the right as well gives:

f(yo
i ,y

m
i ) = f(ym

i |yo
i , ri)

f(yo
i |ri)f(ri)

f(ri|yo
i )

f(yo
i ,y

m
i ) = f(ym

i |yo
i , ri)

f(yo
i , ri)

f(ri|yo
i )

f(ym
i |yo

i )f(yo
i ) = f(ym

i |yo
i , ri)f(yo

i ),

and hence

f(ym
i |yo

i ) = f(ym
i |yo

i , ri).

�

Using Lemma 1, it is clear that f(ym
i |yo

i , ri, θ̂, ψ̂) needs to be replaced with

h(ym
i |yo

i , ri) = h(ym
i |yo

i ) = f(ym
i |yo

i , θ̂, ψ̂), (6.12)

where the h(·) notation is used for shorthand purposes. Note that the density in (6.12)

follows from the SeM-type marginal density of the complete data vector. Sometimes,

therefore, it may be more convenient to replace the notation yo
i and ym

i by one that

explicitly indicates which components are observed and missing in pattern ri under

consideration:

h(ym
i |yo

i , ri) = h(ym
i |yo

i ) = f [(yij)rj=0|(yij)rj=1, θ̂, ψ̂]. (6.13)
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Thus, (6.13) provides a unique way of extending the model fit to the observed data,

belonging to the MAR family. As stated before, the above construction does not lead

to a member of a conventional parametric family. Also, it helps to understand that

an overall, definitive conclusion about the nature of the missing data mechanism is

not possible, even though one can make progress if attention is confined to a given

parametric family, in which one puts sufficiently strong prior belief.

To show formally that the fit remains the same, we consider the observed-data

likelihood based on (6.8) and (6.10):

L̂ =
∏

i

∫
f(yo

i ,y
m
i |θ̂)f(ri|yo

i ,y
m
i , ψ̂)dym

i

=
∏

i

∫
f(yo

i |ri, θ̂, ψ̂)f(ri|θ̂, ψ̂)f(ym
i |yo

i , ri, θ̂, ψ̂)dym
i

=
∏

i

f(yo
i |ri, θ̂, ψ̂)f(ri|θ̂, ψ̂)

=
∏

i

∫
f(yo

i |ri, θ̂, ψ̂)f(ri|θ̂, ψ̂)h(ym
i |yo

i )dy
m
i .

The above results justify the following theorem:

Theorem 1 Every fit to the observed data, obtained from fitting an MNAR model to

a set of incomplete data, is exactly reproducible from an MAR decomposition.

The key computational consequence is the need to compute h(ym
i |yo

i ) in (6.12)

or (6.13). This means, for each pattern, the conditional density of the unobserved

measurements given the observed ones needs to be extracted from the marginal distri-

bution of the complete set of measurements. Molenberghs et al. (1998b) have shown

that, for the case of dropout, the so-called available case missing value restrictions

(ACMV) provide a practical computational scheme. Precisely, ACMV states that

∀t ≥ 2,∀s < t : f(yit|yi1, · · · , yi,t−1, di = s) = f(yit|yi1, · · · , yi,t−1, di ≥ t). (6.14)

In other words, the density of a missing measurement, conditional on the measure-

ment history, is determined from the corresponding density over all patterns for which

all of these measurements are observed. For example, the density of the third mea-

surement in a sequence, given the first and second ones, in patterns with only 1 or 2

measurements taken, is determined from the corresponding density over all patterns

with 3 or more measurements. Thijs et al. (2002) and Verbeke and Molenberghs
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(2000, p. 347) derived a practical computational method for the factors in (6.14):

f(yit|yi1, · · · , yi,t−1, di = s) (6.15)

=

∑n
d=s αdfd(yi1, . . . , yis)∑n

d=s αdfd(yi1, . . . , yi,s−1)
(6.16)

=

n∑

d=s

(
αdfd(yi1, . . . , yi,s−1)∑ni

d=s αdfd(yi1, . . . , yi,s−1)

)
fd(ys|yi1, . . . , yi,s−1). (6.17)

Here, αd is the probability to belong to pattern d.

The above identifications for the monotone case are useful when an MNAR pattern-

mixture model has been fitted to begin with, since then the identifications under MAR

can be calculated from the pattern-specific marginal distributions. In case a selection

model has been fitted in the initial step, f(yi1, . . . , yini
|θ̂) has been estimated, from

which all conditional distributions, needed in (6.13), can be derived. When the initial

model is an MNAR PMM model and the missing data patterns are non-monotone,

then it is necessary to first rewrite the PMM in SeM form, and derive the required con-

ditional distributions from the so-obtained SeM measurement model. This essentially

comes down to calculating a weighted average of the pattern-specific measurement

models. In some cases, such as for contingency tables, this step can be done in an

alternative way by fitting a saturated MAR selection model to the fit obtained from

the PMM model.

We will illustrate and contrast the monotone and non-monotone cases using a

bivariate and trivariate outcome with dropout on the one hand and a bivariate

non-monotone outcome on the other hand. While the theorem applies to both the

monotone and non-monotone settings, it is insightful to see that only for the former

relatively simple and intuitively appealing expressions arise, while the latter setting

involves the need for iterative computation. In the next section, the aforementioned

general contingency table setting to which a PMM has been fitted, will be studied.

A Bivariate Outcome With Dropout

Here and in the following examples, we will present and equate the SeM and PMM

decompositions, enabling us to derive expressions for the MAR bodyguards. It is

interesting and straightforward to derive results for the MCAR case, and hence these

will be presented, too.

Dropping covariates, parameters, and the subject index i from notation, the SeM-

PMM equivalence for the case of two outcomes, the first of which is always observed
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but the second one partially missing, is given by:

f(y1, y2)g̃(d = 2|y1, y2) = f2(y1, y2)α̃(d = 2),

f(y1, y2)g̃(d = 1|y1, y2) = f1(y1, y2)α̃(d = 1).

Note that this is the setting considering by Glynn, Laird and Rubin (1986). Here,

g̃(·) is used for the SeM dropout model, with α̃(·) denoting the PMM probabilities to

belong to one of the patterns. Since α̃(d = 1) + α̃(d = 2) = 1 and a similar result

holds for the g̃(·) functions, it is convenient to write:

f(y1, y2)g(y1, y2) = f2(y1, y2)α (6.18)

f(y1, y2)[1 − g(y1, y2)] = f1(y1, y2)[1 − α]. (6.19)

Assuming MCAR, it is clear that α = g(y1, y2), producing, without any difficulty:

f(y1, y2) = f2(y1, y2) = f1(y1, y2). (6.20)

Under MAR, y2 has to be removed from g(·) for incomplete observations, but since

we assume a single parametric function for the missingness model, it follows that

g(y1, y2) = g(y1) and hence (6.18) produces

f(y1)f(y2|y1)g(y1) = f2(y1)f2(y2|y1)α.

Upon reordering, we find:
f(y1)g(y1)

f2(y1)α
=
f2(y2|y1)
f(y2|y1)

, (6.21)

yielding f(y2|y1) = f2(y2|y1). The same arguments can be applied to (6.19), and

combined with the previous finding we obtain:

f(y2|y1) = f2(y2|y1) = f1(y2|y1). (6.22)

Note that (6.22) is strictly weaker than (6.20). The last term in (6.22) is not identified

by itself, and hence, we see it needs to be set equal to its counterpart from the

completers which, in turn, is equal to the marginal distribution. This is in agreement

with (6.13) as well as with the specific identifications applicable in the monotone and

hence ACMV setting.

A Trivariate Outcome With Dropout

Note that identification (6.22) does not involve mixtures. This changes as soon as

there are three or more outcomes. The equations corresponding to (6.18)–(6.19),
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specialized to the MAR case, are:

f(y1, y2, y3)g0 = f0(y1, y2, y3)α0, (6.23)

f(y1, y2, y3)g1(y1) = f1(y1, y2, y3)α1, (6.24)

f(y1, y2, y3)g2(y1, y2) = f2(y1, y2, y3)α2, (6.25)

f(y1, y2, y3)g3(y1, y2) = f3(y1, y2, y3)α3. (6.26)

We have chosen to include pattern 0, the one without follow-up measurements, as

well, and will return to this one. We could write g3(·) as a function of y3 as well, but

because the sum of the gd(·) equals one, it is clear that g3(·) ought to be independent

of y3. With arguments similar to the ones developed in the case of two measurements,

we can rewrite (6.26) as:

f(y1, y2)

f3(y1, y2)
· g3(y1, y2)

α3
=
f3(y3|y1, y2)
f(y3|y1, y2)

.

Exactly the same consideration can be made based on (6.25), and hence

f3(y3|y1, y2) = f(y3|y1, y2) = f2(y3|y1, y2). (6.27)

The first factor identifies the second one, and hence also the third one. Starting from

(6.24), we obtain:

f1(y2, y3|y1) = f(y2, y3|y1),

which produces, in fact, two separate identities:

f1(y2|y1) = f(y2|y1), (6.28)

f1(y3|y1, y2) = f(y3|y1, y2) = f3(y3|y1, y2) = f2(y3|y1, y2). (6.29)

For the latter one, identity (6.27) has been used as well. The density f(y2|y1), needed

in (6.28), is determined from the general ACMV result (6.17):

f(y2|y1) =
α2f2(y2|y1) + α3f3(y2|y1)

α2 + α3
.

Finally, turning attention to (6.23), it is clear that g0 = α0 and hence also f0(y1, y2, y3) =

f(y1, y2, y3). From the latter density, only f(y1) has not been determined yet, but

this one follows again very easily from the general ACMV result:

f(y1) =
α1f1(y1) + α2f2(y1) + α3f3(y1)

α1 + α2 + α3
.

In summary, the necessary MAR identifications easily follow from both the PMM and

the SeM formulations of the model.
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A Bivariate Outcome With Non-Monotone Missingness

The counterparts to (6.18)–(6.19) and (6.23)–(6.26) for a bivariate outcome with non-

monotone missingness are

f(y1, y2)g00(y1, y2) = f00(y1, y2)α00, (6.30)

f(y1, y2)g10(y1, y2) = f10(y1, y2)α10, (6.31)

f(y1, y2)g01(y1, y2) = f01(y1, y2)α01, (6.32)

f(y1, y2)g11(y1, y2) = f11(y1, y2)α11. (6.33)

Clearly, under MCAR, the gr1r2
(·) functions do not depend on the outcomes and

hence fr1r2
(y1, y2) = f(y1, y2) for all four patterns. For the MAR case, (6.30)–(6.33)

simplify to

f(y1, y2)g00 = f00(y1, y2)α00, (6.34)

f(y1, y2)g10(y1) = f10(y1, y2)α10, (6.35)

f(y1, y2)g01(y2) = f01(y1, y2)α01, (6.36)

f(y1, y2)g11(y1, y2) = f11(y1, y2)α11. (6.37)

Observe there are four identifications across the gr1r2
(y1, y2) functions:

g00 + g10(y1) + g01(y2) + g11(y1, y2) = 1,

for each (y1, y2). Also
∑

r1,r2
αr1,r2

= 1. Applying the usual algebra to (6.34)–(6.37),

we obtain three identifications for the unobservable densities:

f00(y1, y2) = f(y1, y2), (6.38)

f10(y1|y2) = f(y1|y2), (6.39)

f01(y2|y1) = f(y2|y1). (6.40)

Using these in conjunction with the identifiable parts of the distributions yields the

MAR bodyguard.

6.3.2 The General Case of Incomplete Contingency Tables

In Section 6.3.1, we have derived general identification schemes for an MAR exten-

sion of a fitted model to a binary or trivariate outcome with dropout, as well as to

a bivariate outcome with non-monotone missingness. Whereas the monotone cases

provide explicit expressions in terms of the pattern-specific densities, the three iden-

tifications (6.38)–(6.40) obtained in the case of non-monotone missingness provide an
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identification only in terms of the marginal probability. This in itself is not a problem,

since the marginal density is always available, either directly when a SeM is fitted, or

through marginalization when a PMM or an SPM is fitted.

In the specific case of contingency tables, further progress can be made. Indeed, we

can show a saturated MAR model is always available, for any incomplete contingency

table setting. This implies one can start from the fit of an MNAR model to the

observed data, and then extend it, using this result, towards MAR. We will present

the general result and then discuss its precise implications for practice.

Assume we have a
∏n

k=1 ck contingency table with supplemental margins, where

k indexes the n dimensions in the table and ck is the number of alternatives the kth

categorical variable can take. The table of completers is indexed by r = 1 = (1, . . . , 1).

A particular incomplete table is indexed by a r 6= 1. The full set of tables can but

does not have to be present. The number of cells is:

#cells =
∑

r

n∏

k=1

crk

k . (6.41)

Denote the measurement model probabilities by pj = pj1...jn
for jk = 1, . . . ck and

k = 1, . . . , n. Clearly, these probabilities sum to one. The missingness probabilities,

assuming MAR, are:

p(r|j) =





p(r|jk with rk = 1) if r 6= 1,

1 −∑r 6=1 p(r|j) if r = 1.
(6.42)

Summing over r implies summing over those patterns for which actual observations

are available. The number of parameters in the saturated model is

#parameters =

(
n∏

k=1

ck − 1

)
+
∑

r 6=1

n∏

k=1

crk

k . (6.43)

The first term in (6.43) is for the measurement model, the second one is for the

missingness model. Clearly, the number of parameters equals one less than the number

of cells, establishing the claim. The situation where covariates are present is covered

automatically, merely by considering one extra dimension in the contigency table,

j = 0 say, with c0 referring to the total number of covariate levels in the set of data.

We will now study the implications for the simple but important setting of a

bivariate contingency table with dropout, as well as a bivariate contingency table

with non-monotone missingness.
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A Bivariate Contingency Table With Dropout

For bivariate contingency tables with dropout, identifications can be derived by fitting

the saturated MAR model, described in the previous section, to the fit obtained from

the original MNAR model. Denote the counts obtained from the fit of the original

model by z2,jk and z1,j , for the completers and dropouts, respectively. Denote the

measurement model probabilities by pjk and the dropout probabilities by qj . Then,

due to ignorability, the likelihood factors into two components:

`1 =
∑

j,k

z2,jk ln pjk +
∑

j

z1,j ln pj+ − λ


∑

j,k

pjk − 1


 , (6.44)

`2 =
∑

j,k

z2,jk ln qj +
∑

j

z1,j ln(1 − qj). (6.45)

We have used an undetermined Lagrange multiplier λ to incorporate the sum con-

straint on the marginal probabilities. Solving the score equations for (6.44) and (6.45)

produces, with simple and well-known algebra:

p̂jk =
1

n
z2,jk

(
z2,j+ + z1,j

z2,j+

)
, (6.46)

q̂j =
z2,j+

z2,j+ + z1,j
, (6.47)

where n is the total sample size. Combining parameter estimates leads to the new,

MAR-based, fitted counts:

ẑ2,jk = np̂jk q̂j = z2,jk, (6.48)

ẑ1,jk = np̂jk(1 − q̂j) = z1,j
z2,jk

z2,j+
, (6.49)

ẑ1,j+ = z1,j+. (6.50)

From (6.48) and (6.50) it is clear that the fit in terms of the observed data has not

changed. The expansion of the incomplete data into a complete one is described by

(6.49). Equations (6.48) and (6.49) can be used to produce the MAR counterpart to

the original model, without any additional calculations. This is not so simple for the

non-monotone case, as we will show next.
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A Bivariate Contingency Table With Non-Monotone Missingness

The counterparts to (6.44)–(6.45) for the case of a bivariate contingency table with

non-monotone missingness are:

`1 =
∑

j,k

z11,jk ln pjk +
∑

j

z10,j ln pj+ +
∑

k

z01,k ln p+k (6.51)

+z00 ln p++ − λ


∑

j,k

pjk − 1


 ,

`2 =
∑

j,k

z11,jk ln(1 − q10,j − q01,k − q00) +
∑

j

z10,j ln q10,j (6.52)

+
∑

k

z01,k ln q01,k + z00 ln g00.

Notation has been modified in accordance with the design. The q quantities corre-

spond to the g(·) model in Section 6.3.1.

While p++ = 1 and hence z00 does not contribute information to the measurement

probabilities, it does add to the estimation of the missingness model.

Deriving the score equations from (6.52) and (6.53) is straightforward but, unlike

in the monotone case, no closed form exists. Chen and Fienberg (1974) derived an

iterative scheme for the probabilities pjk, based on setting the expected sufficient

statistics equal to their complete-data counterparts:

npjk = z11,jk + z10,j
pjk

pj+
+ z01,k

pjk

p+k
+ z00

pjk

p++
,

(with p++ = 1) and hence

(n− z00)pjk = z11,jk + z10,j
pjk

pj+
+ z01,k

pjk

p+k
. (6.53)

The same equation is obtained from the first derivative of (6.52). Chen and Fienberg’s

iterative scheme results from initiating the process with a set of starting values for

the pjk, e.g., from the completers, and then evaluating the right hand side of (6.53).

Equating it to the left hand side provides an update for the parameters. The process

is repeated until convergence.
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While there are no closed-form counterparts to (6.46) and (6.47), the expressions

equivalent to (6.48)–(6.50) are

ẑ11,jk = z11,jk, (6.54)

ẑ10,jk = z10,j
pjk

pj+
, (6.55)

ẑ01,jk = z01,k
pjk

p+k
, (6.56)

ẑ00,jk = z00pjk. (6.57)

However, there is an important difference between (6.48)–(6.50) on the one hand and

(6.54)–(6.57) on the other hand. In the monotone case, the expressions on the right

hand side are in terms of the counts z only, whereas here the marginal probabilities

pjk intervene, which have to be determined from a numerical fit.

The practical use of the results in this section are illustrated next on data from

the Slovenian public opinion survey.

6.3.3 Analysis of the Slovenian Public Opinion Survey Data

Let us illustrate the ideas developed in the second part of this chapter by means of

4 models from the BRD family, fitted to the independence and attendance outcomes

from the Slovenian public opinion survey data. We select models BRD1, BRD2,

BRD7, and BRD9. As already noted before, model BRD1 assumes missingness to be

MCAR, whereas all others are of the MNAR type. Model BRD2 has 7 free parameters,

and hence does not saturate the observed data degrees of freedom, while models BRD7

and BRD9 saturate the 8 data degrees of freedom. Each of the four models is doubled

up with its MAR counterpart.

Apart from the raw data, Table 6.6 presents the fit to the observed and the

hypothetical complete data for each of the models and its MAR counterpart. The fits

of models BRD7, BRD9, and their MAR counterparts to the observed data, coincide

with the observed data. As the theory states, every MNAR model and its MAR

counterpart produce exactly the same fit to the observed data, which is therefore also

seen for BRD1 and BRD2. However, while models BRD1 and BRD1(MAR) coincide

in their fit to the hypothetical complete data, this is not the case for the other three

models. The reason is clear: since model BRD1 belongs to the MAR family from

the start, its counterpart BRD1(MAR) will not produce any difference, but merely

copies the fit of BRD1 to the unobserved data, given the observed ones. Finally,

while BRD7 and BRD9 produce a different fit to the complete data, BRD7(MAR)

and BRD9(MAR) coincide.
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Table 6.6: Slovenian public opinion survey. Analysis is restricted to the independence

and attendance questions. The observed data are shown, as well as the fit of mod-

els BRD1, BRD2, BRD7, and BRD9, and their MAR counterparts, to the observed

data and to the hypothetical complete data. The contingency tables’ rows (columns)

correspond to ‘yes’ vs. ‘no’ on the independence (attendance) question.

Observed data &

Fit of BRD7, BRD7(MAR), BRD9, and BRD9(MAR) to incomplete data

1439 78

16 16

159

32
144 54 136

Fit of BRD1 and BRD1(MAR) to incomplete data

1381.6 101.7

24.2 41.4

182.9

8.1
179.7 18.3 136.0

Fit of BRD2 and BRD2(MAR) to incomplete data

1402.2 108.9

15.6 22.3

159.0

32.0
181.2 16.8 136.0

Fit of BRD1 and BRD1(MAR) to complete data

1381.6 101.7

24.2 41.4

170.4 12.5

3.0 5.1

176.6 13.0

3.1 5.3

121.3 9.0

2.1 3.6

Fit of BRD2 to complete data

1402.2 108.9

15.6 22.3

147.5 11.5

13.2 18.8

179.2 13.9

2.0 2.9

105.0 8.2

9.4 13.4

Fit of BRD2(MAR) to complete data

1402.2 108.9

15.6 22.3

147.7 11.3

13.3 18.7

177.9 12.5

3.3 4.3

121.2 9.3

2.3 3.2

Fit of BRD7 to complete data

1439 78

16 16

3.2 155.8

0.0 32.0

142.4 44.8

1.6 9.2

0.4 112.5

0.0 23.1

Fit of BRD9 to complete data

1439 78

16 16

150.8 8.2

16.0 16.0

142.4 44.8

1.6 9.2

66.8 21.0

7.1 41.1

Fit of BRD7(MAR) and BRD9(MAR) to complete data

1439 78

16 18

148.1 10.9

11.8 20.2

141.5 38.4

2.5 15.6

121.3 9.0

2.1 3.6
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Table 6.7: Slovenian public opinion survey. Summaries on each of the Models BRD1–

BRD9 are presented as in Table 6.5, added with a column labelled ‘θ̂MAR’, which dis-

plays the estimate of the MAR bodyguard, that is, the model corresponding to the given

one, with the same fit to the observed data, but with missing data mechanism of the

MAR type.

Model Structure d.f. loglik θ̂ C.I. θ̂MAR

BRD1 (α, β) 6 -2495.29 0.892 [0.878;0.906] 0.8920

BRD2 (α, βj) 7 -2467.43 0.884 [0.869;0.900] 0.8915

BRD3 (αk, β) 7 -2463.10 0.881 [0.866;0.897] 0.8915

BRD4 (α, βk) 7 -2467.43 0.765 [0.674;0.856] 0.8915

BRD5 (αj , β) 7 -2463.10 0.844 [0.806;0.882] 0.8915

BRD6 (αj , βj) 8 -2431.06 0.819 [0.788;0.849] 0.8919

BRD7 (αk, βk) 8 -2431.06 0.764 [0.697;0.832] 0.8919

BRD8 (αj , βk) 8 -2431.06 0.741 [0.657;0.826] 0.8919

BRD9 (αk, βj) 8 -2431.06 0.867 [0.851;0.884] 0.8919

This is because the fits of BRD7 and BRD9 coincide with respect to their fit to the

observed data, and indeed, due to their saturation, coincide with the observed data

as such. This fit is the sole basis for the models’ MAR extensions. It is noteworthy

that, while BRD7, BRD9, and BRD7(MAR)≡BRD9(MAR) all saturate the observed

data degrees of freedom, their complete-data fits are dramatically different.

Let us return to the implications of our results for the primary estimand θ, the

proportion of people voting YES by simultaneously being in favor of independence

and deciding to take part in the vote.

As mentioned in Section 6.1.5, the likelihood ratio tests to assess the model fit

are in favour of the saturated BRD6–BRD9 models, which might give the impression

that the MAR-based BRD1 estimate is not preferable. However, studying the θ̂MAR

values from each of the models BRD1(MAR)–BRD9(MAR), as displayed in the last

column of Table 6.7, it is clear that this value is remarkably stable and hence a value

of θ̂ = 0.892, based on the four bodyguards BRD6(MAR)–BRD9(MAR), is a sensible

choice after all. Thus, a main contribution resulting from considering the bodyguards
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in this particular example, is the provision of a solid basis for the MAR-based es-

timate. Obviously, since models BRD6(MAR)–BRD9(MAR) are exactly the same

and exhibit a perfect fit, the corresponding probabilities θ̂MAR are exactly equal too.

In this particular case, even though BRD2(MAR)–BRD5(MAR) differ among each

other, the probability of being in favor of independence and attending the plebiscite

is constant across these four models. This is a mere coincidence, since all three other

cell probabilities are different, but only slightly so. For example, the probability of be-

ing in favour of independence combined with not attending ranges over 0.066–0.0685

across these four models.

We have made the following two-stage use of models BRD6(MAR)–BRD9(MAR).

At the first stage, in a conventional way, the fully saturated model is selected as the

only adequate description of the observed data. At the second stage, these models are

transformed into their MAR counterpart, from which inferences are drawn. As such,

the MAR counterpart usefully supplements the original models BRD6–BRD9 and

provide one further, important scenario to model the incomplete data. In principle,

the same exercise can be conducted when the additional secession variable would be

used.

6.4 Conclusion

In the first part of this chapter, we have given an outline of several existing MNAR

models within the selection model framework. In particular, a more detailed overview

is provided of the Diggle-Kenward model for continuous incomplete longitudinal data

on the one hand Diggle and Kenward (1994), and of the BRD model family for two

binary outcomes prone to non-monotone missingness on the other hand Baker, Rosen-

berger and DerSimonian (1992). Both models are illustrated through application to

data from the second depression trial and the Slovenian public opinion survey, respec-

tively. Next, a brief overview of pattern-mixture models has been given.

Further, in this chapter, we have shown that every MNAR model, fitted to a set

of incomplete data, can be replaced by an MAR version which produces exactly the

same fit to the observed data. There are in particular two important implications

of this. First, unless one puts a priori belief in the posited MNAR model, it is not

possible to use the fit of an MNAR model for or against MAR. Second, one can fit a

versatile MNAR model, to ensure a good fit to the observed data, and then use the

MAR version for data analysis or for sensitivity analysis.
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A re-analysis of the Slovenian public opinion survey data has shown that, while

a set of MNAR models produces a widely varying range of conclusions about the

proportion of people who are jointly in favor of independence and plan to attend the

plebiscite, the corresponding MAR models produce a very narrow range of estimates,

which in addition all lie close to the outcome of the plebiscite. This provides evidence

for the claim, also made in Rubin, Stern and Vehovar (1995), that choosing an MAR

model as one’s main route of analysis is a sensible one.

The determination of the MAR version of an MNAR model is straightforward in

the case of dropout, since the ACMV restrictions, established by Molenberghs et al.

(1998b) and translated in a computational scheme by Thijs et al. (2002), provides a

convenient algorithm. In the case of non-monotone missingness, the marginal density

of the outcomes is needed. This is straightforward when the model fitted is of the

SeM type. When a PMM is fitted, the marginal density follows from a weighted sum

over the pattern-specific measurement models.

While the result of Theorem 1 is general, we have focused in this chapter on SeM

and PMM formulations. It is worth re-emphasizing that also the SPM is covered

without any problem. In this case, the likelihood is expressed as

L =
∏

i

∫
f(yo

i ,y
m
i |θ, bi)f(ri|ψ, bi)dy

m
i , (6.58)

with bi the shared parameter, often taking the form of random effects. To apply our

result, f(yo
i ,y

m
i |θ̂, bi) needs to be integrated over the shared parameter. The model

as a whole needs to be used to produce the fit to the observed data, and then (6.13)

is used to extend the observed-data fit to complete-data MAR version.





7
Sensitivity Analysis

In Section 3.1.3, we already indicated that the possibility of an underlying MNAR

missingness mechanism cannot be ruled out as such. Consequently, in Chapter 6,

we have given an overview of existing selection models valid under MNAR. However,

while such models seem to be the proper answer to the need for more flexible models,

criticisms have been formulated first and foremost by a variety of discussants to Diggle

and Kenward (1994), such as Laird (1994), Little (1994b), and Rubin (1994). They

claim the conclusions from such models are sensitive to model-based assumptions

which cannot be checked from the data under analysis. The sensitivity of MNAR

selection models was illustrated by Verbeke and Molenberghs (2000, Ch. 17), who

showed that, in the context of a clinical trial in onychomycosis, excluding a small

amount of measurement error, drastically changes the likelihood ratio test statistics

for the MAR null hypothesis. The growing amount of modelling tools for selection

models (Heckman, 1976; Diggle and Kenward, 1994) requires the understanding of

such sensitivities (Glynn, Laird and Rubin, 1986), as well as tools to deal with it

(Draper, 1995; Vach and Blettner, 1995; Copas and Li, 1997).

The nature of sensitivity of MNAR models originates from the fact that such an

MNAR model is not fully verifiable from the data, rendering the formal distinction

between MNAR and MAR missingness hard or even impossible, unless one is prepared

to accept the posited MNAR model in an unquestionable way. In the previous chapter

111
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we have shown that each MNAR model has got a corresponding MAR bodyguard,

reproducing the same fit to the observed data. Additionally, this proves that one can

never test the MNAR versus MAR hypothesis. This underscores the great sensitivity

of inferences based on MNAR models to posited and unverifiable model assumptions.

As a consequence, a primary (definite) analysis should not be based on a single MNAR

model. A further consequence is that rather than either forgetting about or blindly

shifting to an MNAR framework, the optimal place for MNAR analyses is within a

sensitivity analysis context. Such analyses can be used to assess the sensitivity of

inferences resulting from posited models.

In this chapter, we formulate a definition of sensitivity analyses and sketch its main

strands in Section 7.1. After a short review of sensitivity analysis using the global

influence approach in Section 7.2, Section 7.3 is devoted to a popular sensitivity

tool based on local influence (Cook, 1986), which is applied both to the Diggle-

Kenward model (Section 7.3.2) and the BRD model family (Section 7.3.3). In the

latter, the local influence approach of Jansen et al. (2003) is extended by basing its

terminology on cell counts rather than parameters, as well as by perturbing the cell

probabilities rather than the model parameters. Finally, Section 7.4 is devoted to

the sensitivity analyses of the second depression trial data which is based on the

local influence approach (Section 7.4.1), and of the Slovenian public opinion survey

data, for which several sensitivity assessments are considered (Section 7.4.2). The

contribution of both analyses can be found in Shen et al. (2006) and Beunckens et al.

(2007c), respectively, the latter being joint work with Cristina Sotto.

7.1 Concepts of Sensitivity Analysis

We will use the working definition that a sensitivity analysis is one in which several

statistical models are considered simultaneously and/or where a statistical model is

further scrutinized using specialized tools, such as diagnostic measures. This informal

definition encompasses a wide variety of useful approaches. The simplest procedure is

to fit a selected number of (non-random) models, which are all deemed plausible, or

in which a preferred (primary) analysis is supplemented with a number of variations.

The extent to which conclusions (inferences) are stable across such ranges provides

an indication about the belief that can be put into them. Variations to a basic model

can be constructed in different ways.

The most obvious strategy is to consider various dependencies of the missing data

process on the outcomes and/or on covariates, as was done in Section 6.1.2 and 6.1.5
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for the second depression trial and the Slovenian public opinion survey, respectively.

Alternatively, the distributional assumptions of the models can be changed, a route

followed by, e.g., Kenward (1998) and Molenberghs, Kenward and Goetghebeur (2001a).

A review of the interval-of-ignorance based sensitivity analysis of the Slovenian public

opinion survey proposed by Molenberghs, Kenward and Goetghebeur (2001a) is given

in Section 7.4.2. Related to this, we can assess how an MNAR model, or a collection

of MNAR models, differs from the set of models with equal fit to the observed data

but that are of an MAR nature, as we proposed in the previous chapter.

Additionally, a sensitivity analysis can also be performed on the level of individual

observations instead of on the level of the models. In that case, interest is directed to-

wards finding those individuals who drive the conclusions towards one or more MNAR

models. Therefore, the influence of every individual separately will be explored. Two

techniques exist, that is, global influence and local influence. The global influence

methodology, also known as the case-deletion method (Cook and Weisberg, 1982), is

introduced by Cook (1979, 1986) in linear regression, and by Thijs, Molenberghs and

Verbeke (2000) and Molenberghs et al. (2003) in linear mixed models. We will give a

review of the global influence technique in Section 7.2.

Further, several authors have advocated using local influence tools, in which one

considers the impact that one or a few influential subjects might have on the model

parameters, based on the specific influence assessment methodology that has been

developed over the years (Cook, 1986). Applications of local influence analysis to the

Diggle-Kenward model Diggle and Kenward (1994) can be found in Thijs et al. (2000),

Verbeke et al. (2001b), and Molenberghs et al. (2001b). Similar ideas for the context

of categorical longitudinal data have been developed in Van Steen et al. (2001) and

Jansen et al. (2003). In particular, Van Steen et al. (2001) adapted the local influ-

ence ideas to the model of Molenberghs, Kenward and Lesaffre (1997) for monotone

repeated ordinal data, whereas Jansen et al. (2003) applied the local influence tool

to the family of BRD models (Baker, Rosenberger and DerSimonian, 1992) for two

binary outcomes prone to non-monotone missingness. Hens et al. (2005) proposed

kernel weighted influence measures. Local influence is the topic of Section 7.3.

7.2 Global Influence as a Sensitivity Tool

Let us give a short review of global influence, one of the tools to perform a sensitivity

analysis with an eye on individual observations, starting from case deletion. The

methodology is based on the difference in log-likelihood between the model fitted to
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the entire data set on the one hand, and the data set minus one subject on the other

hand. One might also consider, as we do here, the reverse operation of adding single

case. Denoting by `i(φ) the contribution of the ith individual to the log-likelihood,

where φ is the s-dimensional vector of unknown parameters of the particular model,

the complete log-likelihood is

`(φ) =

N∑

i=1

`i(φ). (7.1)

Further, denote by

`(±i)(φ) (7.2)

the log-likelihood function, where the contribution of the ith subject has been removed

(−i) or added (+i). Cook’s distances (CD) are based on measuring the discrepancy

between either the maximized log-likelihoods (7.1) and (7.2) or (subsets of) the es-

timated parameter vectors φ̂ and φ̂(±i), with obvious notation. Precisely, we can

consider

CD1i(φ) = 2
[
̂̀(φ) − ̂̀(±i)(φ)

]
, (7.3)

or

CD2i(φ) = 2(φ̂− φ̂(±i))
′ L̈−1 (φ̂− φ̂(±i)), (7.4)

with L̈ the matrix of second-order derivatives of `(φ), with respect to φ, evaluated

at φ̂.

7.3 Local Influence as a Sensitivity Tool

A drawback of global influence is that the specific cause of the influence is hard to

retrieve since, by deleting or adding a subject, all types of influence stemming from

it are lumped together. Local influence, studying the effect of infinitesimally small

model perturbations around a given null model, is more suitable for this purpose.

The original goal of local influence methods for sensitivity analysis was detection of

observations with a high impact on the conclusions due to their aberrant missingness

mechanism. A motivating scenario for this was one where most missing measurements

might be MAR, with a few being MNAR. However, in most successful applications,

where a seemingly MNAR mechanism turned out to be MAR or even MCAR af-

ter removing the influential subjects identified upon the use of local influence, the

situation turned out to be more complex than anticipated. The influential subjects

often are influential for other than missingness related features. For example, in the

mastitis dataset of Molenberghs et al. (2001b), the three influential cows had com-

plete data but were identified by an extreme increase between the measurements at
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two subsequent years. Jansen et al. (2006b) concluded that local influence tools in

the incomplete data context are useful, not to detect individuals that drop out non-

randomly, but rather to identify anomalous subjects that seemingly lead to MNAR. A

careful study of such subjects, combined with appropriate treatment (e.g., correction

of errors, removal, etc.), can lead to an appropriate level of confidence in the orig-

inally proposed, perhaps MAR, primary analysis. Identifying and further studying

the subjects that drive the missing data conclusions may shed light on, for example,

trial conduct, differential effect of therapy in sub-classes of subjects, etc.

The main ideas of local influence are discussed in Section 7.3.1. Afterwards, we

consider the application of the local influence tool to the Diggle-Kenward model for

repeated continuous outcomes in Section 7.3.2, as well as to the family of BRD models

for two binary outcomes in Section 7.3.3.

7.3.1 Concepts of Local Influence

Let us first review the key concepts of local influence (Cook, 1986). As before, `(φ)

represents the log-likelihood function of the posited null model. Further, we denote the

log-likelihood function corresponding to the perturbed model, in which the null model

is nested, by `(φ|ω) =
∑N

i=1 `i(φ|ωi), in which `i(φ|ωi) is the contribution of the ith

individual, and where φ=(θ,ψ) is the s-dimensional vector, grouping, respectively,

the parameters of the measurement and dropout models, but not including the N × 1

vector ω = (ω1, ω2, . . . , ωN )′ of weights defining the perturbation. Assume that ω

belongs to an open subset Ω of RN . For ω equal to ωo = (0, 0, . . . , 0)′, `(φ|ωo) is the

log-likelihood corresponding to the simpler of the two models.

Let φ̂ be the maximum likelihood estimator for φ, obtained by maximizing `(φ|ωo),

and let φ̂ω denote the maximum likelihood estimator for φ under `(φ|ω). The lo-

cal influence approach compares φ̂ω with φ̂. Similar values will indicate that the

parameter estimates are robust with respect to perturbations in the direction of the

extended model. Cook (1986) proposed to measure the distance between φ̂ω and φ̂

by the so-called likelihood displacement, defined as LD(ω) = 2[`(φ̂|ωo)− `(φ̂ω |ωo)].

This takes into account the variability of φ̂. Indeed, LD(ω) will be large if `(φ|ωo) is

strongly curved at φ̂, which means that φ is estimated with high precision, and small

otherwise. Therefore, a graph of LD(ω) versus ω contains essential information on

the influence perturbations. It is useful to view this graph as the geometric surface

formed by values of the N + 1 dimensional vector ζ(ω) = (ω′, LD(ω))′ as ω varies

throughout Ω. Since this so-called influence graph (Lesaffre and Verbeke, 1998) can

only be depicted when N = 2, Cook (1986) proposed to consider local influence, that
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is, at the normal curvatures Ch of ζ(ω) in ωo, in the direction of some N -dimensional

vector h of unit length. Let ∆i be the s-dimensional vector defined by

∆i =
∂2`i(φ|ωi)

∂ωi∂φ

∣∣∣∣
φ=

�

φ,ωi=0

, (7.5)

and define ∆ as the (s × N) matrix with ∆i as its ith column. Let L̈ denote the

(s×s) matrix of second order derivatives of `(φ|ωo) with respect to φ, also evaluated

at φ = φ̂. Cook (1986) has then shown that Ch can easily be calculated by

Ch = 2
∣∣∣h′ ∆′ (L̈)−1 ∆ h

∣∣∣ , (7.6)

for any direction h. One evident choice is the vector hi containing one in the ith

position and zero elsewhere, and corresponding to the perturbation of the ith subject

only, thereby reflecting the influence of allowing the ith subject to drop out in a

more general fashion than the others. The corresponding local influence measure,

denoted by Ci, then becomes Ci = 2
∣∣∣∆′

i (L̈)−1 ∆i

∣∣∣. Another important direction is

the direction hmax of maximal normal curvature Cmax. It shows how to perturb the

model to obtain the largest local changes in the likelihood displacement. It is readily

seen that Cmax is the largest eigenvalue of −2∆′(L̈)−1∆, with hmax the corresponding

eigenvector. Calculation of local influence measures reduces to evaluation of ∆ and L̈

and a convenient computational scheme can be used whenever a program is available

to fit the full alternative model, since it then suffices to compute the second derivative

at (φ̂, ωi = 0), for each observation separately, from which the ∆i = (φ, ωi) subvector

is selected.

It should be noted that Ch is a measure of the local influence on the log-likelihood

function, that is, quantifying the effect of perturbations in terms of the displacement

in the log-likelihood. At times, however, it might be more meaningful to assess the

influence that infinitesimal changes may have on a particular function of the para-

meters, rather than on the log-likelihood itself. In the case of contingency tables, for

instance, one might be more interested in the impact of perturbations on the pre-

dicted cell counts, Zr1r2,j1j2 , which are functions of the parameter vector φ. If we

denote a particular function of the model parameters by Z(φ), we can consider the

local influence of the perturbations around the posited null model in terms of the

difference between this function evaluated in φ̂ω and φ̂, that is Ẑ(φ̂ω) and Ẑ(φ̂).

Analogous to Cook’s reasoning, we propose to measure this discrepancy by

D(ω) = 2[Ẑ(φ̂) − Ẑ(φ̂ω)].

The influence graph of D(ω) versus ω contains again essential information on the

influence perturbations. Therefore, the local influence is depicted by the normal
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curvatures of such influence graphs at ω0, in the direction of some vector of unit

length. In a similar way as Cook, we can show that the expression for Ch is now

generalized to

Ch = 2
∣∣∣h′ ∆′ (L̈)−1 Z̈ (L̈)−1 ∆ h

∣∣∣ , (7.7)

with ‖h‖ = 1, ∆ and L̈ as before, and Z̈ the (s×s) matrix of second order derivatives

of Z(φ) with respect to φ and evaluated at φ = φ̂. It can easily be seen that the ex-

pression (7.7) reduces to (7.6) when the function of interest, Z(φ), is the log-likelihood

`(φ|ω) itself. Whereas (7.6) quantifies influence in terms of the displacement in the

log-likelihood function, (7.7) describes influence through the displacement in the par-

ticular function of interest.

Note that since the resulting influence diagnostics can in many cases be expressed

analytically, they often allow for a decomposition into interpretable components, thus

yielding additional insight. For instance when a subset φ1 of φ = (φ′
1,φ

′
2)

′ is of

special interest, a similar approach can be used, replacing the log-likelihood by the

profile log-likelihood for φ1, and the methods discussed above for the full parameter

vector directly carry over (Lesaffre and Verbeke, 1998).

7.3.2 Applied to the Diggle-Kenward Model

Verbeke et al. (2001b), Thijs, Molenberghs and Verbeke (2000), Molenberghs et al.

(2001b), and Jansen et al. (2006b) investigated sensitivity of estimation of quantities

of interest, such as treatment effect, growth parameters, or the dropout model para-

meters, with respect to the dropout model assumptions considering the full selection

Diggle-Kenward model, discussed in Section 6.1.1. To this end, they considered the

following perturbed version of dropout model (6.4):

logit [P (Di = j | Di ≥ j,hij , yij ,ψ)] = ψ0 + ψ1yi,j−1 + ωiyij . (7.8)

where the ωi are local, individual-specific perturbations around a null model. They

should not be confused with subject-specific parameters. The null model will be the

MAR model, corresponding to setting ψ2 = 0 in (6.4).

Using this proposal, one can study the impact on key model features, induced by

small perturbations in the direction, or seemingly so, of MNAR. This can practically

be done by constructing local influence measures as shown in Section 7.3.1. When

small perturbations in a specific ωi lead to relatively large differences in the model

parameters, this suggests that the subject is likely to drive key conclusions. For

example, if such a subject would drive the model towards MNAR, then the conditional
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expectations of the unobserved measurements, given the observed ones, may deviate

substantially from the ones under an MAR mechanism (Kenward, 1998).

Some caution is needed when interpreting local influence. Even though we may be

tempted to conclude that an influential subject drops out non-randomly, this conclu-

sion is misguided since we are not aiming to detect (groups of) subjects that drop out

non-randomly but rather subjects that have a considerable impact on the dropout and

measurement model parameters. In other words, such subjects drive the sensitivity

of the analysis to missing data assumptions (Jansen et al., 2006b).

Let us now apply the local influence sensitivity tool to the Diggle-Kenward model.

All derivations and calculations here are valid in the general case and can be imple-

mented in statistical software. Details on the implementation of this approach in the

SAS software using IML can be found in Section 11.6. While fully generally valid,

for clarity of exposition, we present our calculations for the specific case of three

measurements.

As described in Section 6.1.1, the Diggle-Kenward model combines a multivariate

normal model for the measurement process and a logistic regression model for the

dropout process. We denote P (Di = j|Di ≥ j,hij , yij), that is, the conditional

probability for dropout at occasion j, given that the subject was still observed at the

previous occasion, which is allowed to depend on the history h
¯ij and the possibly

unobserved current outcome yij , by g(h
¯ij , yij). The parameter dependencies are

suppressed for notational ease. In this case, the marginal probability of dropout at

each occasion, as given in (6.3) can be rewritten as

f(di|yi) = P (Di = di|yi) (7.9)

=





n∏

j=2

[1 − g(hij , yij)] for a completer (di = n+ 1),

g(hidi
, yidi

)

di−1∏

j=2

[1 − g(hij , yij)] for a dropout (di ≤ n),

When denoting `i(φ|ωi) by `iω, the log-likelihood contribution of a complete se-

quence is given by

`iω = ln f(yi) +

n∑

j=2

ln[1 − g(hij , yij)],

in which the density f(yi) is multivariate normal, following from the linear mixed

model. The contribution from an incomplete sequence is more complicated.
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Its log-likelihood term is

`iω = ln f(yi1, . . . , yi,di−1) +

di−1∑

j=2

ln[1 − g(hij , yij)]

+ ln

∫
f(yidi

|yi1, . . . , yi,di−1)g(hidi
, yidi

)dyidi
.

Further details can be found in Verbeke et al. (2001b). We need expressions for

∆ and L̈. Straightforward derivation shows that the columns ∆i of ∆ are given by

∂2`iω
∂θ∂ωi

∣∣∣∣
ωi=0

= 0, (7.10)

∂2`iω
∂ψ∂ωi

∣∣∣∣
ωi=0

= −
n∑

j=2

hijyijg(hij)[1 − g(hij)], (7.11)

for complete sequences (no drop out) and by

∂2`iω
∂θ∂ωi

∣∣∣∣
ωi=0

= [1 − g(hidi
)]
∂λ(yidi

|hidi
)

∂θ
, (7.12)

∂2`iω
∂ψ∂ωi

∣∣∣∣
ωi=0

= −
di−1∑

j=2

hijyijg(hij)[1 − g(hij)]

−hidi
λ(yidi

|hidi
)g(hidi

)[1 − g(hidi
)], (7.13)

for incomplete sequences. All above expressions are evaluated at φ̂, and g(hij) =

g(hij , yij)|ωi=0, is the MAR version of the dropout model. In (7.12), we make use of

the conditional mean

λ(yidi
|hidi

) = λ(yidi
) + Vi,21V

−1
i,11[hidi

− λ(hidi
)]. (7.14)

The variance matrices follow from partitioning the responses as

(yi1, . . . , yi,di−1|yidi
)′.

Let β and α indicate the subvector of the fixed-effect and covariance parame-

ters respectively, within the vector θ of the measurement model parameters. The

derivatives of (7.14) with respect to these measurement model parameters are given

by

∂λ(yidi
|hidi

)

∂β
= xidi

− Vi,21V
−1
i,11Xi,(di−1),

∂λ(yidi
|hidi

)

∂α
=

[
∂Vi,21

∂α
− Vi,21V

−1
i,11

∂Vi,11

∂α

]
V −1

i,11[hidi
− λ(hidi

)]

where x′
idi

is the dith row of Xi, and where Xi,(di−1) indicates the first (di − 1) rows

Xi.
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In practice, the measurement model parameters θ are often of primary interest.

Since L̈ is block-diagonal with blocks L̈(θ) and L̈(ψ), we have that for any unit vector

h, Ch equals Ch(θ) + Ch(ψ), with

Ch(θ) = −2h′

[
∂2`iω
∂θ∂ωi

∣∣∣∣
ωi=0

]′
L̈−1(θ)

[
∂2`iω
∂θ∂ωi

∣∣∣∣
ωi=0

]
h (7.15)

Ch(ψ) = −2h′

[
∂2`iω
∂ψ∂ωi

∣∣∣∣
ωi=0

]′
L̈−1(ψ)

[
∂2`iω
∂ψ∂ωi

∣∣∣∣
ωi=0

]
h, (7.16)

evaluated at φ = φ̂.

A Special Case of Three Measurements

We will now consider the special but insightful case of three measurement occasions,

using the three-dimensional version of (6.3), where Vi follows a heterogeneous first-

order autoregressive structure:

Vi =




σ2
1 ρσ1σ2 ρ2σ1σ3

ρσ1σ2 σ2
2 ρσ2σ3

ρ2σ1σ3 ρσ2σ3 σ2
3


 .

Recall that we assume the dropout model to be of the form (6.4), that is,

logit [pr(Di = j|Di ≥ j,hij , yij ,ψ)] = ψ0 + ψ1yi,j−1 + ψ2yij .

Since there are three measurements (Yi1, Yi2, Yi3), three different situations can

arise: (1) all three measurements are available (a completer), (2) only the first two

measurements are available and the subject drops out after the second time point, or

(3) only the first measurement is available, which means the subject drops out after

the first measurement. In the first case, the components of the columns ∆i of ∆ are

given by (7.10) and (7.11), and using (7.8) we get

g(hij) = g(hij , yij)|ωi=0 =
exp(ψ0 + ψ1yi,j−1)

1 + exp(ψ0 + ψ1yi,j−1)
.

In the case of dropout, the components of the columns ∆i of ∆ are given by (7.12)

and (7.13), which means we need Vi,11, Vi,21, and their derivatives with respect to the

four variance components σ1, σ2, σ3, and ρ.

Now, to get expressions for hidi
, λ(yidi

), λ(hidi
), Vi,11, Vi,21, and their derivatives,

we distinguish between dropout after the first measurement (di = 2) and dropout after

the second one (di = 3).
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When di = 2, we have hidi
= yi1, and since the mean of the measurement model

is Xiβ, λ(yidi
) equals the second value of Xiβ, whereas λ(hidi

) equals the first value

of Xiβ. Further, Vi,11 = σ2
1 , and Vi,21 = ρσ1σ2, and thus the derivatives are

∂Vi,11

∂σ1
= 2σ1,

∂Vi,11

∂σ2
=
∂Vi,11

∂σ3
=
∂Vi,11

∂ρ
= 0,

∂Vi,21

∂σ1
= ρσ1,

∂Vi,21

∂σ2
= ρσ2,

∂Vi,21

∂σ3
= 0,

∂Vi,21

∂ρ
= σ1σ2.

Next, in case di = 3, we have hidi
= (yi1, yi2)

′, λ(yidi
) equals the third value of

Xiβ, whereas λ(hidi
) is the vector of the first and second values of Xiβ. Further,

Vi,11 =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
and Vi,21 =

(
ρ2σ1σ3 ρσ2σ3

)
,

and thus the derivatives are written as

∂Vi,11

∂σ1
=

(
2σ1 ρσ2

ρσ2 0

)
,
∂Vi,11

∂σ2
=

(
0 ρσ1

ρσ1 2σ2

)
,
∂Vi,11

∂σ3
=

(
0 0

0 0

)
,

∂Vi,11

∂ρ
=

(
0 σ1σ2

σ1σ2 0

)
,
∂Vi,21

∂ρ
=
(

2ρσ1σ3 σ2σ3

)
.

∂Vi,21

∂σ1
=
(
ρ2σ3 0

)
,
∂Vi,21

∂σ2
=
(

0 ρσ3

)
,
∂Vi,21

∂σ3
=
(
ρ2σ1 ρσ2

)
,

Using all of this information, we can easily derive expressions (7.12) and (7.13), that

is, the components of the columns ∆i of ∆.

7.3.3 Applied to the BRD Model Family

Jansen et al. (2003) developed a local influence approach for binary data, subject to

non-monotone missingness, based on the BRD model family. These authors focus on

perturbations of a given BRD model in the direction of an alternative model with

one additional parameter. First, we provide a review of this technique, whereafter we

additionally consider perturbations in the observed cell probabilities, rather than the

parameters of the model.

Perturbation in Parameters: One BRD Model vs. Another

In line with Jansen et al. (2003), we consider perturbations of a given BRD model

in the direction of another BRD model with one or more parameters in which the
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first model is nested, implying that perturbations lie along the edges of Figure 6.1.

For such a nested pair, the simpler of the two models equates two parameters from

the more complex one. For example, BRD4 includes the parameter β.j2 , (j2 = 1, 2),

whereas for BRD1, only β.. is included. For the influence analysis, ωi is then included

as a contrast between two such parameters; for the perturbation of BRD1 in the

direction of BRD4, one considers β.. and β.. + ωi. The vector of all ωi’s defines the

direction in which such a perturbation is considered.

To illustrate this approach, we begin by first defining the log-likelihood for the

BRD family of models. We have

`(φ|ω) =
∑

j1,j2

Z11,j1j2 lnπ11,j1j2 +
∑

j1

Z10,j1+ lnπ10,j1+

+
∑

j2

Z01,+j2 lnπ01,+j2 + Z00,++ lnπ00,++, (7.17)

where πr1r2,j1j2 = pj1j2 qr1r2|j1j2 , with pj1j2 and qr1r2|j1j2 as in (6.6) and (6.7).

Distinction among the 9 BRD models occurs in expression (6.7) describing qr1r2|j1j2 .

For instance, for BRD4 with (α.., β.j2), this expression yields:

qr1r2|j11 =
exp {α..(1 − r1) + β..(1 − r2) + γ(1 − r1)(1 − r2)}

1 + exp (α..) + exp (β..) + exp (α.. + β.. + γ)
,

qr1r2|j12 =
exp {α..(1 − r1) + (β.. + ωi) (1 − r2) + γ(1 − r1)(1 − r2)}
1 + exp (α..) + exp (β.. + ωi) + exp (α.. + β.. + ωi + γ)

.

Note that, for ωi = 0, the two previous expressions are equivalent and BRD4 reduces

to the simpler BRD1. For this pair of nested models, BRD4 contains one more pa-

rameter compared to BRD1, this extra parameter being the distinguishing feature

between both models. That is, under the more complicated model BRD4, the extra

parameter ωi defines a difference between the dropout probabilities above, while under

the simpler (null) model BRD1, the two expressions reduce to a single dropout prob-

ability. Similar motivations hold for the other pairs of nested BRD models. Given

now the fully-defined log-likelihood, one can proceed with deriving local influence

measures (7.6) and (7.7).

Note that the influence analysis focuses on the missingness model, rather than

on the measurement model parameters. This may be seen as slightly odd, since

often scientific interest focuses on the measurement model parameters. However,

it has been documented (Rubin, 1994; Kenward, 1998; Verbeke et al., 2001b) that

the missingness model parameters are often the most sensitive ones to take up all

kinds of misspecification and influential features. These may then, in turn, impact
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conclusions coming from the measurement model parameters, such as time evolution,

or combinations thereof, such as covariate effects for certain groups of responders.

Perturbation in Cell Probabilities

Another route to studying local influence is to add an infinitesimally small value to

the cell probabilities. Such an approach leads to the following expression for the

log-likelihood:

`(φ|ω) =
∑

j1,j2

(Z11,j1j2 +Nω11,j1j2) lnπ11,j1j2

+
∑

j1

(Z10,j1+ +Nω10,j1+) lnπ10,j1+

+
∑

j2

(Z01,+j2 +Nω01,+j2) lnπ01,+j2

+ (Z00,++ +Nω00,++) lnπ00,++,

with πr1r2,j1j2 as before. It is important to note that the previously described ap-

proach of local influence differs from the approach proposed here, since now the per-

turbation is done directly in the observed cell probabilities, rather than the parameters

of the model. This implies that we are perturbing the cells one at a time and observ-

ing which one brings about the largest changes, in likelihood or in the predicted cell

counts, within a given BRD model. Consequently, although influence measures are

computed in the same fashion, a difference in interpretation is warranted. A peak in

the influence curve now represents the particular observed cell at which a probabil-

ity perturbation causes substantial displacement in either the log-likelihood or in the

predicted cell counts.

Computation of local influence measures (7.6) and (7.7) is straightforward once

the log-likelihood, `(φ|ω), is clearly defined. Let us now show the calculations of the

necessary derivatives.

Derivatives of the Log-Likelihood Function

In order to compute the local influence measures (7.6) and (7.7), we need to calculate

the second order partial derivatives of `(φ|ω) with respect to the elements of ω and

φ, that is,

∂2`ω
∂φi∂ωr1r2,j1j2

.
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Let us assume no covariates in the measurement model, resulting in three measure-

ment parameters p11, p12, and p21.

First, we take derivatives with respect to ω, after which we differentiate this with

respect to φ, resulting in

∂`ω
∂ωr1r2,j1j2

= N lnπr1r2,j1j2 and
∂2`ω

∂φi∂ωr1r2,j1j2

=
N

πr1r2,j1j2

∂πr1r2,j1j2

∂φi
,

and for the different missingness mechanisms (r1r2) this becomes

(11) :
∂2`ω

∂φ∂ω11,j1j2

=
N

π11,j1j2

∂π11,j1j2

∂φ
,

(10) :
∂2`ω

∂φ∂ω10,j+
=

N

π10,j+

(
∂π10,j11

∂φ
+
∂π10,j12

∂φ

)
,

(01) :
∂2`ω

∂φ∂ω01,+k
=

N

π01,+k

(
∂π01,1j2

∂φ
+
∂π01,2j2

∂φ

)
,

(00) :
∂2`ω

∂φ∂ω00,++
=

N

π00,++

(
∂π00,11

∂φ
+
∂π00,12

∂φ
+
∂π00,21

∂φ
+
∂π00,22

∂φ

)
,

respectively. The next step is to calculate the partial derivatives of πr1r2,j1j2 with

respect to the elements of φ:

(a) :
∂πr1r2,j1j2

∂p11
=





qr1r2|j1j2 if (j1, j2) = (1, 1)

−qr1r2|j1j2 if (j1, j2) = (2, 2)

0 if (j1, j2) = (1, 2) or (2, 1)

(b) :
∂πr1r2,j1j2

∂p12
=





qr1r2|j1j2 if (j1, j2) = (1, 2)

−qr1r2|j1j2 if (j1, j2) = (2, 2)

0 if (j1, j2) = (1, 1) or (2, 1)

(c) :
∂πr1r2,j1j2

∂p21
=





qr1r2|j1j2 if (j1, j2) = (2, 1)

−qr1r2|j1j2 if (j1, j2) = (2, 2)

0 if (j1, j2) = (1, 1) or (1, 2)

(d) :
∂πr1r2,j1j2

∂αj′

1j′

2

= pj1j2 ·
∂qr1r2|j1j2

∂αj′

1j′

2

(e) :
∂πr1r2,j1j2

∂βj′

1j′

2

= pj1j2 ·
∂qr1r2|j1j2

∂βj′

1j′

2

(f) :
∂πr1r2,j1j2

∂γ
= pj1j2 ·

∂qr1r2|j1j2

∂γ
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Finally, in previous derivatives (d) − (f), we need expressions for the derivatives of

qr1r2|j1j2 with respect to αj′

1j′

2
, βj′

1j′

2
and γ. First note that for all missingness patterns,

the derivatives with respect to αj′

1j′

2
and βj′

1j′

2
equal zero if (j′1, j

′
2) 6= (j1, j2). Further,

we will show the computations for the pattern of completers, that is, (r1r2) = (11),

as well as for the incomplete pattern for which the first outcome is observed, and

the second one is not, that is, (r1r2) = (10). Calculations for the remaining two

incomplete patterns are analogous.

(11) :





∂q11|j1j2

∂αj1j2

= −q11|j1j2 q0+|j1j2

∂q11|j1j2

∂βj1j2

= −q11|j1j2 q+0|j1j2

∂q11|j1j2

∂γ
= −q11|j1j2 q00|j1j2

(10) :





∂q10|j1j2

∂αj1j2

= −q10|j1j2 q0+|j1j2

∂q10|j1j2

∂βj1j2

= −q10|j1j2 (1 − q+0|j1j2)

∂q10|j1j2

∂γ
= −q10|j1j2 q00|j1j2

7.4 Examples

In this section, we will apply the local influence tool to two of the example data sets.

First, the continuous HAMD17 depression score from the second depression trial

is considered, and thus the local influence approach applied to the Diggle-Kenward

model in Section 7.3.2 is used. Secondly, we perform a sensitivity analysis of two

(binary) questions raised in the Slovenian public opinion survey. Accordingly, we will

use the local influence approach as discussed in Section 7.3.3.

7.4.1 Sensitivity Analysis of the Second Depression Trial Data

In Section 6.1.2, we analysed the Second Depression Trial data using the Diggle-

Kenward model, for which the missingness assumptions varied from MCAR, to MAR,

and MNAR. By considering such different dependencies of the missingness mechanism

on the outcomes, we took a first step on the route of sensitivity analysis for the second

depression trial.
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Figure 7.1: Second depression trial. Index plots of Ci, Ci(θ), Ci(α), Ci(β), Ci(ψ)

and of the components of the direction hmax,i of maximal curvature.
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In this section, we will perform a sensitivity analysis at the level of the individuals

by switching to local influence approach, as discussed in Section 7.3.2 for the Diggle-

Kenward model. We will calculate the following normal curvatures in the direction of

the unit vector hi containing one in the ith position and zero elsewhere: Ci, Ci(β),

Ci(α), Ci(θ), and Ch(ψ), as well as the normal curvature in the direction of hmax of

maximal normal curvature Cmax.

Figure 7.1 displays overall Ci and influences for subvectors θ, β, α, and ψ. In

addition, the direction hmax, corresponding to maximal local influence, is given. The

main emphasis should be put on the relative magnitudes. It is observed that patients

#6,#30,#50,#154, and #179 have larger Ci values compared to other patients,

which means they can be considered influential. Among these, patient #30 clearly

shows the largest Ci. Virtually the same picture holds for Ci(ψ). Turning attention to

the influence on the measurement model, we see that for Ci(β), there are no relatively

high peaks, whereas Ci(α) again reveals a considerable peak for patient #30, and for

patient #191. Note that patient #191 does not have a high peak for the overall Ci.

This is due to the fact that the scale for Ci(α) is relatively small, comparing to the

overall Ci. Nevertheless, these patients can still be considered influential. Finally,

the direction of maximum curvature does not really highlight any influential patients,

although the four influential completers seem to have the highest values.

In Figure 7.2, the individual profiles of the influential observations are highlighted.

Let us now take a closer look at these cases. Patients #30 and #191 dropped out

of the study, whereas the others completed the 9-week study. Further, patients #30
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Figure 7.2: Second depression trial. Individual profiles for both treatment arms, with

influential subjects highlighted.
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and #154 belong to the new drug group, while patients #6, #50, #179, and #191

were on placebo.

As we can see from Figure 7.2, patient #30 dropped out after the first post-

baseline measurement occasion. This patient achieved the largest change in HAMD17

at week 1, its score went down from 24 at baseline to 6 at week 1. The second incom-

plete influential subject, patient #191, dropped out at the second last measurement

occasion, resulting in five observed measurements. It is clear from Figure 7.2 that

its HAMD17 was decreasing up to the fourth measurement occasion, meaning the

patient was improving. However, at the last observed measurement occasion, its value

became 0 again, so its HAMD17 score was again the same as the one at baseline in-

dicating a marked worsening from the previous visit. Finally, all the other influential

patients had a big improvement within the first three weeks, which remained more or

less constant afterwards.

Let us provide some clarification for these influential patients. First, the large

influence of patient #30 is caused by achieving the biggest reduction in HAMD17

score in the new drug group at week 1. Based on the dropout model under the MAR

assumption, the dropout probability at week 2 for this subject was very small but the

subject dropped out nevertheless. Hence the subject had a large influence on θ from

(7.12). For the same reason, the values of hidi
and λ(yidi

|hidi
) are large in (7.13),

resulting in a large value of Ci(ψ). Next, since patients #6,#50,#154, and #179

are completers, all their influences are placed on ψ. Indeed, it immediately follows

from (7.10) and (7.12) that direct influence on θ only arises from those measurement

occasions at which dropout occurs. Their relatively large influence on ψ is due to two

facts. First, their profiles are relatively higher in magnitude than others, and hence yij

and hij in (7.11) are large. Second, since all of these patients are completers, (7.11)

contains a maximal number of large terms. Finally, the relatively large influence

of Ci(α) for patient #191 is due to the large residual hidi
− λ(hidi

). This can be

explained by the fact that the observed change in HAMD17 score from baseline at

the last observed visit, week 7, was zero, which is distant from the group mean at

that time point.

It is interesting to consider an analysis without these influential observations.

Therefore, we applied the selection model on three subsets of the data. To get the first

subset, patient #30 was removed, since this is overall the most influential one. In the

second subset of the data, patients #30 and #191, which seemed to be influencing the

measurement model the most, were removed. Finally, all the six influential patients

mentioned above were removed, resulting in the third subset. Result of these analyses

are shown in Table 7.1. Let us compare the results of the MAR and MNAR analyses.
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Table 7.1: Second depression trial. Parameter estimates (standard errors) assuming ignorability, as well as explicitly

modeling the missing data mechanism under MCAR, MAR, and MNAR assumptions, after removing subject #30,

subjects #30 and #191, and subjects #6,#30,#50,#154,#179, and #191.

Removed Subjects #30 (#30,#191) (#6,#30,#50,#154,#179,#191)

MAR MNAR MAR MNAR MAR MNAR

Parameters Est. (s.e.) Est. (s.e.) Est. (s.e.) Est. (s.e.) Est. (s.e.) Est. (s.e.)

Mean Parameters

β0 : intercept 6.74 (1.46) 6.79 (1.44) 6.70 (1.46) 6.75 (1.46) 5.41 (1.41) 5.47 (1.41)

β1 : baseline -0.35 (0.07) -0.35 (0.07) -0.35 (0.07) -0.35 (0.07) -0.29 (0.07) -0.29 (0.07)

β2 : treatment -0.47 (0.65) -0.47 (0.64) -0.51 (0.64) -0.51 (0.66) -0.40 (0.63) -0.40 (0.64)

β3 : time -2.41 (0.30) -2.50 (0.30) -2.40 (0.29) -2.49 (0.30) -2.36 (0.29) -2.45 (0.30)

β4 : time2 0.14 (0.03) 0.15 (0.03) 0.14 (0.03) 0.15 (0.03) 0.14 (0.03) 0.14 (0.03)

β5 : time× treatment 0.60 (0.40) 0.61 (0.40) 0.64 (0.40) 0.64 (0.40) 0.65 (0.39) 0.65 (0.40)

β6 : time2 × treatment -0.03 (0.04) -0.04 (0.04) -0.04 (0.04) -0.04 (0.04) -0.04 (0.04) -0.04 (0.04)

Variance Parameters

σ1 : std at time 1 3.93 (0.17) 3.92 (0.17) 3.95 (0.17) 3.94 (0.17) 3.76 (0.16) 3.75 (0.16)

σ2 : std at time 2 5.23 (0.23) 5.19 (0.23) 5.25 (0.24) 5.22 (0.23) 5.05 (0.23) 5.02 (0.23)

σ3 : std at time 3 5.91 (0.26) 5.88 (0.26) 5.93 (0.27) 5.90 (0.26) 5.71 (0.26) 5.69 (0.26)

σ4 : std at time 4 6.46 (0.29) 6.51 (0.30) 6.41 (0.28) 6.46 (0.29) 6.25 (0.28) 6.31 (0.29)

σ5 : std at time 5 6.19 (0.27) 6.15 (0.27) 6.15 (0.27) 6.11 (0.27) 5.95 (0.27) 5.92 (0.26)

σ6 : std at time 6 6.27 (0.29) 6.24 (0.29) 6.26 (0.29) 6.23 (0.29) 6.09 (0.29) 6.07 (0.29)

common correlation ρ 0.72 (0.02) 0.72 (0.02) 0.72 (0.02) 0.72 (0.02) 0.71 (0.02) 0.70 (0.02)

Missing Data Parameters

ψ0 -2.20 (0.14) -2.43 (0.27) -2.22 (0.14) -2.44 (0.27) -2.23 (0.15) -2.47 (0.28)

ψ1 -0.05 (0.02) 0.12 (0.06) 0.05 (0.02) 0.11 (0.05) 0.05 (0.02) 0.11 (0.06)

ψ2 -0.08 (0.06) -0.07 (0.06) -0.08 (0.06)

−2 log-likelihood 7919.8 7918.5 7875.2 7873.9 7701.6 7700.2

difference at endpoint (p-value) 2.15 (.0197) 2.14 (.0198) 2.07 (.0241) 2.07 (.0237) 2.40 (.0082) 2.39 (.0083)
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The largest Ci is observed for patient #30. Its relatively large influence is caused

by this patient’s big improvement, that is, big drop in HAMD17 score, just before

dropout. By removing patient #30, the estimate of ψ1 changed from 0.11 to 0.12.

Formulating the dropout model in terms of the increment yij−yi,j−1 and the previous

measurement yi,j−1, the coefficient for the increments does not change, while the

coefficient for yi,j−1 increased from 0.03 to 0.04. Since the coefficient for the current

measurement yij does not change by removing patient #30, there is not much influence

on the likelihood ratio test for MAR against MNAR: G2 = 1.3 compared to G2 =

1.5. The parameter for the main treatment effect decreases, as well as the difference

between the new drug and placebo at week 9, resulting in a slightly increased p value.

This holds for both MAR and MNAR. This can be explained by the patient’s big

improvement before dropout, and membership to the new drug group.

By removing patients #30 and #191, the parameter for the treatment-by-time

interaction under MAR changed from 0.59 to 0.64. Also the estimate for the interaction

between treatment and time2 changed slightly from −0.03 to −0.04. The change in

these estimates is due to the unusual individual profile for patient #191. As observed

before, the HAMD17 score decreased during the first four post-baseline visits and

suddenly went back to the level at baseline at the penultimate visit. Figure 7.3 shows

the fitted mean profiles of the change in HAMD17, both for placebo and the new drug

group, for all subjects and for the subset with patients #30 and #191 removed. We

used the mean baseline value to calculate the mean values. For the new drug group,

the coefficients for time and time2 remain the same for all subjects and for the subset,

the two mean profiles are parallel and the difference between the fitted mean profile of

all subjects versus the subset of removing patients #30 and #191 is relatively small.

In the placebo group, the mean profile becomes steeper by removing the two patients.

The estimate for treatment effect dropped from −0.35 to −0.51, mainly due to the

big improvement on patient #30. Overall, the difference at endpoint decreased from

2.19 to 2.07, and the p-value for this difference increased from 0.0176 to 0.0241. A

similar pattern is seen for the MNAR analysis.

It is noted that there is a small impact on the likelihood ratio test for MAR against

MNAR by removing patients #30 and #191. The value of G2 changed from 1.5 to

2.07. This is partially due to a weaker incremental component in the dropout model.

The coefficient for the increments yi,j − yi,j−1 changes from −0.08 to −0.07, and the

coefficient of the previous measurement increases from 0.03 to 0.04.

Finally, we perform the same analyses on the third subset with patients #6,

#30,#50,#154,#179 and #191 removed. Again, we observe for the MAR analy-

sis that the parameter for the interaction between time and treatment changed to
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Figure 7.3: Second depression trial. Fitted mean profiles, both for placebo group and

treatment group, for all subjects and for the subset resulting from removing subjects

#30 and #191. Mean baseline value is used to calculate the means.

0.65, mainly due to the unusual profile of patient #191. There is an increase of 0.31

in the difference between the new drug and placebo at the endpoint. Also, the p-value

for this difference decreases from 0.0176 to 0.0082. A similar pattern is found for the

MNAR analysis. This change in difference at the endpoint could be due to the fact

that the profiles for patient #6, #50 and #179 are relatively low in the placebo group.

The estimates of the parameters in the dropout model do not change much, and the

deviance for MAR against MNAR is nearly the same.

To conclude, the following observations can be made. Most of the influential sub-

jects were completers and they have a considerable impact on the dropout and/or

measurement model parameters due to their unusual individual profiles. With re-

spect to the primary analysis, the mean change in HAMD17 is significantly different

between the new drug group and the placebo group under the different specifications

of the missingness mechanism. The result still holds after removing the influential

subjects. Further, if the likelihood ratio test of MAR against MNAR would follow a

standard χ2
1-distribution, we would fail to reject the null hypothesis, which leads us

to the MAR assumption. However, the test of MAR against MNAR is non-standard

and it cannot be used as such (Rotnitzky et al., 2000; Jansen et al., 2006b).

Using the local influence method, the most influential subject was patient #30.

Belonging to the treatment group, this patient had the unusual profile of a very big
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improvement, but still dropped out after the first visit. To better understand the

influence of this patient, the demographic information for this patient was investi-

gated. This patient was in his/her first Major Depressive Disorder (MDD) episode,

when s/he was enrolled. The patient dropped out of the study after week 1, based

on his/her own decision and claimed that the symptoms of depression were caused by

high carbon monoxide levels in his/her house. Given this information, it is unlikely

such a patient provides meaningful information regarding the risks and benefits of the

investigational treatment, and it is probably best to consider the merits of the drug

after excluding this observation.

And while excluding this patient had little effect on interpretations of the treat-

ment effect in this well-powered confirmatory clinical trial, which is very useful infor-

mation in and of itself, it is also useful to consider the benefits of sensitivity analyses

in a proof of concept setting where the sample sizes are much smaller. For example,

if there had been only 40 subjects per arm, excluding this one subject would have

had a much bigger impact. Knowing how strongly results depend on one or a few

subjects, or on specific assumptions, could potentially improve decisions on whether

to continue or discontinue development of an intervention.

7.4.2 Sensitivity Analysis of the Slovenian Public Opinion Sur-

vey Data

Both local influence approaches displayed in Section 7.3.3 are applied to the Slovenian

public opinion survey data, and juxtaposed with the global influence analysis (Sec-

tion 7.2), the interval-of-ignorance based sensitivity analysis of Molenberghs, Kenward

and Goetghebeur (2001a), and the computation of the so-called MNAR bodyguard

to the model considered (Section 6.3).

Interval of Ignorance

It is useful to distinguish between two types of statistical uncertainty. The first,

statistical imprecision, is due to finite sampling. The Slovenian public opinion survey

included not all Slovenians but only 2074 respondents. However, even if all would have

been included, there would have been residual uncertainty because some fail to report

at least one answer. This second source of uncertainty, due to incompleteness, is called

statistical ignorance. The 16 complete-cell probabilities are as in Table 6.2(a), thus

producing 15 complete data degrees of freedom. Similarly, the 9 observed cells can be

represented as in Table 6.2(b), which is directly comparable with the observed data

structure. Molenberghs, Kenward and Goetghebeur (2001a), Kenward, Goetghebeur
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and Molenberghs (2001) and Vansteelandt et al. (2006) combined both concepts into

statistical uncertainty as following.

A sample with underlying theoretical distribution as shown in Table 6.2(b) will

produce empirical proportions representing the π’s with error. This results in im-

precision, which is usually captured by way of such quantities as standard errors

and confidence intervals. This first source of imprecision disappears as the sample

size tends to infinity and the estimators are consistent. What remains is ignorance re-

garding the redistribution of all but the first four π’s over the missing outcomes value.

This leaves ignorance regarding any probability in which at least one of the first or

second indices is equal to 0, and hence regarding any derived parameter of scientific

interest. For such a parameter, θ say, a region of possible values, which is consistent

with Table 6.2(b), is called a region of ignorance. Analogously an observed incom-

plete table leaves ignorance regarding the would-be observed complete table, which

in turn leaves imprecision regarding the true complete probabilities. The region of

estimators for θ consistent with the observed data provides an estimated region of

ignorance. The (1 − α)100% region of uncertainty is a larger region in the spirit of a

confidence region, designed to capture the combined effects of imprecision and igno-

rance. Various ways for constructing regions of ignorance and regions of uncertainty

are conceivable. For a single parameter, the regions obviously become intervals.

In standard statistical practice, ignorance is hidden in the consideration of a sin-

gle identified model. As seen in Section 6.1.5, BRD6–BRD9 saturated the observed

degrees of freedom. These models cannot be distinguished in terms of their fit to

observed data alone. However, they can produce substantially different inferences,

as exemplified in Table 6.5. To obtain a measure of ignorance, Molenberghs, Ken-

ward and Goetghebeur (2001a), Kenward, Goetghebeur and Molenberghs (2001) and

Vansteelandt et al. (2006) consider models that would be identified if the data were

complete, and fit them to the observed, incomplete data, thereby producing a range

of estimates rather than a point estimate. These authors use the non-identifiability to

delineate the range of inferences consistent with the observed data, that is, to capture

ignorance. Maximization of the likelihood function is a natural approach. To manage

overspecification of the likelihood, they consider a minimal set of parameters, called

sensitivity parameters, conditional upon which the others, the estimable parameters

are identified. Each value of the sensitivity parameter will produce an estimate for the

estimable parameter, of which the union produces the estimated region of ignorance.

For a bivariate binary outcome with non-monotone missingness any model within

the BRD family with 9 or more parameters is non-identifiable. For the Slovenian

public opinion survey, Molenberghs, Kenward and Goetghebeur (2001a) consider three
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Table 7.2: The Slovenian public opinion survey. Intervals of ignorance and intervals of

uncertainty for the proportion θ (confidence interval) attending the plebiscite following

from fitting.

θ̂

Model d.f. loglik II IU

Model 10 9 -2431.06 [0.762;0.893] [0.744;0.907]

Model 11 9 -2431.06 [0.766;0.883] [0.715;0.920]

Model 12 10 -2431.06 [0.694;0.905]

such overspecified models, among which two (model 10 and 11) contain one sensitivity

parameter, whereas model 12 includes two. Model 10 is defined as (αj2 , βj1j2) with

βj1j2 = β0 + βj1 + βj2 , (7.18)

thereby considering an additive decomposition for missingness on the independence

question, while Model 11 assumes (αj1j2 , βj1) and uses an additive decomposition of

the missingness parameter on the attendance question, that is,

αj1j2 = α0 + αj1 + αj2 . (7.19)

Finally, Model 12 is defined as (αj1j2 , βj1j2), a combination of both (7.18) and (7.19).

Molenberghs, Kenward and Goetghebeur (2001a) provide a table with the esti-

mated intervals of ignorance and intervals of uncertainty. Recall there appeared to

be a small computational error, and therefore the corrected results are shown in Ta-

ble 7.2. Further, a graphical representation of the YES votes is given in Figure 7.4.

Model 10 shows an interval of ignorance which is very close to [0.741, 0.892], the

range produced by the models BRD1–BRD9, while Model 11 is somewhat sharper

and just fails to cover the plebiscite value. However, it should be noted that the

corresponding intervals of uncertainty contain the true value.

Interestingly, Model 12 virtually coincides with the non-parametric range, that

is, the pessimistic-optimistic interval, even though it does not saturate the complete

data degrees of freedom. To do so, not 2 but in fact 7 sensitivity parameters would

have to be included. Thus, it appears that a relatively simple sensitivity analysis is

sufficient to increase the insight in the information provided by the incomplete data

about the proportion of valid YES votes.
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Figure 7.4: The Slovenian public opinion survey. Relative position for the estimates

of “proportion of YES votes”, based on the models considered in Rubin, Stern and

Vehovar (1995) and on the BRD Models. The vertical lines indicate the nonparametric

pessimistic-optimistic bounds. (Pess: pessimistic boundary; Opt: optimistic boundary;

MAR: Rubin et al’s MAR model; NI: Rubin et al ’s MNAR model; AC: available cases;

CC: complete cases; Pleb: plebiscite outcome. Numbers refer to the BRD models.

Intervals of ignorance (Models 10–12) are represented by horizontal bars.)

An MAR Bodyguard for an MNAR Model

In Section 6.3 and in Molenberghs et al. (2007), we showed that, strictly speaking,

the correctness of the alternative model can only be verified in as far as it fits the

observed data. Thus, evidence for or against MNAR can only be provided within a

particular, predefined parametric family, the plausibility of which cannot be verified

in empirical terms alone. This implies that an overall (omnibus) assessment of MAR

versus MNAR is not possible, since every MNAR model can be doubled up with a

uniquely defined MAR counterpart, producing exactly the same fit as the original

MNAR model, in the sense that it produces exactly the same predictions to the

observed data (e.g., fitted counts in an incomplete contingency table) as the original

MNAR model, and depending on exactly the same parameter vector. While this

so-called MAR bodyguard generally does not belong to a conventional parametric

family, its existence has important ramifications. We have illustrated the use of the

MAR bodyguard by means of Section 6.3.3.

Global Influence

Performing a global influence analysis on data with categorical outcomes is less time

consuming than on data with continuous outcomes, since the data can then be or-

ganized into cells, as in Table 6.3. Thus, instead of removing subjects on a one by
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Figure 7.5: Slovenian public opinion survey. Global influence analysis for BRD4,

BRD7 and BRD8. Cook’s distance measure, CD2i, is evaluated when an observation

is added to a specific cell (first row) and when an observation is deleted from a specific

cell (second row).

one basis, we only need to remove one subject per cell and per covariate level, in case

covariates are considered too.

Figure 7.5 shows a selection of the results for the global influence analysis on

the Slovenian public pinion survey data. Results of the Cook’s distance measure

CD2i for BRD4, 7, and 8 are presented. Observe that, for BRD4, adding a single

observation to cell #3 has a large influence on the parameters, as well as deletion

from either cells #3 or #5. Cell #3 represents subjects with a NO on the attendance

question and a YES on the independence question. An addition or removal of one

such respondent can largely affect the parameters of BRD4. Similarly, exclusion of

a single respondent with a YES on the attendance question but a missing response
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on the independence question (cell #5), also influences BRD4’s model parameters,

though to a lesser extent.

For models BRD7–8, an additional observation in cell #6 or a deletion from cell #4

leads to significant influence on these models’ parameters. Thus, adding a subject with

a NO for attendance and a missing independence response, or excluding a respondent

with NO on both questions, yields changes in the model parameters of BRD7–8.

These findings hint on the influential nature of subjects with a NO on the attendance

question, which is likely related with this group’s sparseness.

For all other models, Cook’s distance measure CD2i was approximately zero for

all cells, indicating no substantial influence when adding or removing a single case

from a particular cell.

Local Influence by Perturbing Parameters: One BRD Model vs. Another

Turning to the local influence tool for the Slovenian public opinion survey data, we will

first consider perturbations of a given BRD model in the direction of another BRD

model in which the null model is nested, implying that we consider perturbations

along the edges of Figure 6.1. We will consider local influence measures on both the

likelihood displacement (7.6) and the predicted cell counts (7.7) for different model

pairs. Although 12 model nestings are possible (Figure 6.1), we focus on the model

pairs BRD1 vs. BRD4, BRD3 vs. BRD7, and BRD4 vs. BRD7. The rationale for

these choices, in addition to conciseness, is that in these 3 model pairs substantial

influence was seen when considering local influence on the likelihood displacement.

In addition, for the local influence on the predicted cell counts, discussed in the next

section, these three model pairs are indicative for the various features that were seen

across all 12 comparisons.

Figure 7.6 shows, for the 3 comparisons considered, the influence measures Ci,

plotted against the ith observed cell, as well as against each subject within that

cell, and hmax against the ith observed cell. A peak in the graph at a particular cell

indicates that the corresponding cell drives the data towards the more complex, rather

than the simpler model. For the comparison of BRD1 vs. BRD4, a peak is observed

at cell #6, for both Ci and hmax, implying that respondents in this cell drive the data

more towards BRD4 (α.., β.j2) rather than BRD1 (α.., β..). That is, subjects with a

NO on the attendance question and a missing value on the independence question

are influential when perturbing the model such that missingness in the independence

question depends on the corresponding unobserved answer (BRD4) rather than being

constant (BRD1).
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Figure 7.6: Slovenian public opinion survey. Local influence analysis on parameters

for model pairs (a) BRD1 vs. BRD4, (b) BRD3 vs. BRD7, and (c) BRD4 vs. BRD7.

First column shows the local influence measure Ci at the ith observed cell; the second

column shows the same measure but plotted for each of the subjects within the ith

observed cell; and, the third column shows hmax for the ith observed cell.

For BRD3 vs. BRD7, a peak is observed at cell #9, subjects with a missing re-

sponse on both questions, implying that such subjects drive the data in the direction

of BRD7 (α.j2 , β.j2) rather than BRD3 (α.j2 , β..). That is, missingness in the inde-

pendence question is driven to depend on the corresponding unobserved answer by

subjects with missing responses on both questions, and, also slightly by those with

a NO on attendance and a missing value on independence (cell #6). Finally, it is

primarily subjects with missing responses on both questions (cell #9) that seem to

push the data towards BRD7 (α.j2 , β.j2) from BRD4 (α.., β.j2). These subjects, along

with those that have a YES on attendance and a missing value on independence (cell
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#5), make the missingness in the attendance question depend on the response of the

independence question.

We now turn to the results of the local influence analysis on the fitted cell counts.

Graphs of the local influence measure (7.7) on the predicted cell counts are pre-

sented in Figure 7.7, with the graphs for the 16 predicted cell counts arranged in

their respective positions as in Table 6.2(a). From the first panel, for model pair

BRD1 vs. BRD4, we observe that the influence graphs show similar shapes, albeit

with differing magnitudes, for a particular cell (j1, j2), across the four missingness

patterns. For instance, the influence curves for Zr1r2,11 (upper left corners) for

(r1, r2) = (1, 1), (1, 0), (0, 1), (0, 0) have more or less identical shapes. Occurrences

of peaks at particular cells are thus common across the missingness patterns, yielding

more or less a clear result for each cell (j1, j2). For (j1, j2) = (1, 1), it is cell #2

that shows influence, and also slightly cell #8. Respondents with either a YES or a

missing value on attendance and a NO on independence therefore drive the predicted

cell count Zr1r2,11 towards a model in which the missingness in the independence

question depends on its value (BRD4). For (j1, j2) = (1, 2), cells #2 and #5, as

well as #6 and #9, stand out. Cells #2 and #5 denote, respectively, respondents

having YES on attendance/NO on independence, and YES on attendance/missing

value on independence, and these respondents make the predicted cell count Zr1r2,11

seem to have come more from BRD4 rather than from BRD1. For (j1, j2) = (2, 1)

and (j1, j2) = (2, 2), similar curves are obtained across the four missingness patterns,

with a clear peak at cell #6, implying that the “NO-on-attendance/missingness-on-

independence” responses perturb predicted cell counts Zr1r2,21 and Zr1r2,22 in the

direction of a model in which the missingness in the independence question is de-

pendent on its value, rather than on one in which missingness in the independence

question is constant.

The resulting patterns for the comparison of BRD3 against BRD7 (Figure 7.7b)

differs from what was observed for BRD1 vs. BRD4. Whereas for the latter, influence

curves for a particular cell (j1, j2) remained the same across the missingness patterns,

for BRD3 vs. BRD7, variations now arise across these missingness patterns, leading

to a less clear-cut overall picture. For (j1, j2) = (1, 1) and (j1, j2) = (1, 2), that

is, top row of the 4 sets of tables, although relative peaks are observed at the same

positions across the 4 sets of tables, the degree of the peak varies across the missingness

patterns, causing some to appear more like a peak and some less so. This is further

complicated by what can be observed for (j1, j2) = (2, 1) and (j1, j2) = (2, 2), that

is, the bottom row of the tables, for which curve shapes vary across the missingness

patterns. We proceed to look at the results for (j1, j2) = (1, 1) and (j1, j2) = (1, 2).
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Figure 7.7: Slovenian public opinion survey. Local influence analysis on the predicted cell counts for model pairs (a) BRD1 vs.

BRD4, (b) BRD3 vs. BRD7, and (c) BRD4 vs. BRD7. Plots show Ci values for each of the 16 predicted cell counts (in their

respective positions as in Table 6.2) against the 9 observed cells (as labelled in Table 6.3).
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Across the 4 missingness patterns, the predicted cell counts Zr1r2,11 and Zr1r2,12

are primarily influenced by subjects with both responses missing, and slightly by

those having a YES on attendance/NO on independence. For cell (j1, j2) = (2, 1),

similar graphs are obtained for (r1, r2) = (1, 1) and (r1, r2) = (0, 0), that is, the

completers and double non-responders, respectively, with a peak at cell #9. It is

therefore subjects with both responses missing that influence cell counts Z11,21 and

Z00,21, in the direction of a model in which missingness in the independence question

depends on its value. For the other two missingness patterns, (r1, r2) = (1, 0) and

(r1, r2) = (0, 1), referring to subjects with a single nonresponse, peaks occur at cells

#6 and #9. Thus, subjects with a NO on attendance/missingness of independence

and those with both responses missing have an influence on predicted cell counts Z10,21

and Z01,21. These same subjects also influence the predicted cell counts Zr1r2,22, since

we observe similarly shaped influence curves across the missingness patterns for cell

position (j1, j2) = (2, 2), with peaks either at cell #9 or cell #6.

Whereas the comparison of BRD3 vs. BRD7 presents the most variable influence

graphs, BRD4 vs. BRD7 shows the most consistent ones. All 16 influence curves ex-

hibit a single shape, although of varying magnitudes, implying that influence on any

predicted cell count is coming from a common source, regardless of the missingness

pattern. Here, we see a clear peak at cells #9 and #5, similar to what was ob-

served for this model pair when considering influence on the likelihood displacement.

Subjects with missing responses on both questions and those with YES on atten-

dance/missingness on independence, have an influence that drives any predicted cell

count towards a model where the missingness in the attendance question depends on

the response of the independence question.

Local Influence by Perturbing Cell Probabilities

Next, we apply the second local influence approach discussed in Section 7.3.3 to the

Slovenian public opinion survey data, studying the effect of infinitesimally small per-

turbations in the cell probabilities. We first derive influence measures on the likelihood

displacement; these are graphed in Figure 7.8. For most BRD models, it seems small

perturbations in the probabilities of cells #3 and/or #4 has a large influence. That

is, if we slightly alter the probabilities with which the “NO-on-attendance/YES-on-

independence” or the NO/NO respondents occur, we can expect substantial likeli-

hood displacement. Also notable is the influence of changes in cell #6 for BRD8,

implying that under this model, changing the probability of the NO/missingness cat-

egory slightly causes displacement in the likelihood. These observations suggest that
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Figure 7.8: Slovenian public opinion survey. Local influence analysis on the log-

likelihood for the 9 BRD models. Plots show Ci values against the 9 observed cells for

each BRD model.

the most influential cells for virtually all BRD models are the completers answering

NO on attendance, likely attributable to the small counts in these cells, while for

BRD8, it is those subjects answering NO on attendance and unobserved response on

independence that are influential.

Table 7.3 provides a summary of the results of the local influence analysis on the

predicted cell counts when perturbing a particular cell probability. No particular

influence can be seen for any BRD model when perturbing probabilities of cells #1

and #2, as might be expected since the observed cell counts in these cells are large,

and thus infinitesimal changes in their respective cell probabilities may not have a

large impact. We can also see that small perturbations in cell probability 3 seem to

affect only the predicted cell counts in the top row (j1 = 1, YES on attendance) under



7.4. Examples 143

Table 7.3: Slovenian Public Opinion Survey. Local influence analysis on cell counts

when perturbing each of the 9 observed cell probabilities. Entries in boxes denote the

BRD model number for which influence is largest when the particular cell probability

is perturbed.

Adding ω to cell Z11,j1j2 Z10,j1j2 Z01,j1j2 Z00,j1j2

1

2 3

3

5,6 5,6

1–3,9

5,6 5,6

2,3,9

5,6 5,6

1,2,3,6

5 5

1,2,3,6 6

4

4,6,7,9 4–7

4–7,9 2–9

4–7,9 4–8

4–7 2–9

4–7 4–8

4–7,9 2–8

4–7,9 3–9

4–7,9 2–5,7,9

5 2 1–3 1,2

6

8 8

8 1,8

8 8

1,8 8

8

8

8

8 8

7
3,9 9 1–3,9 9

8
1–3,9 9 3,9 1–3,9

1,9

9

9
1,2 1–3 1,2

1 1
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BRD5 and/or BRD6, while such changes impact the cell position (j1, j2) = (2, 1) (NO

on attendance/YES on independence) under BRD’s 1,2,3, 6 and/or 9.

Perhaps the most striking result that can be observed from Table 7.3 is that for

perturbations in cell probability 4 (NO/NO respondents), which yields influence on

all 16 predicted cell counts in most of the higher-numbered BRD models 4 to 9. Also

of particular interest are the results for perturbations in cell #6, indicating that it is

primarily under BRD8 where a large influence is observed in the most of the predicted

cell counts. Finally, we note that changes in the probability of the doubly missing

category (cell #9) affects only the predicted cell counts of this missingness pattern

and only under BRD’s 1,2 and/or 3.

Comparison of Sensitivity Analyses

As mentioned before, a first family of sensitivity analyses is based on considering a

variety of models. First, simple analyses have been augmented with a non-parametric

interval in Section 6.1.5, providing absolute bounds for the proportion of people in

favor of independence, which is expressed through at the same time possessing and

expressing an opinion in favor of independence. Further, a nonparametric interval

was supplemented with a finite collection of identifiable models from the BRD fam-

ily in Section 6.1.5. In addition, for each of these models, the corresponding MAR

bodyguards were calculated in Section 6.3.3; these are models with the same fit to

the observed data than their corresponding original models, but with missingness

of the MAR type. Additionally, in this section, infinite collections resulting from

overspecified models are considered, providing intervals of ignorance and intervals of

uncertainty. Whereas the nonparametric range is [0.694,0.905], with the paramet-

ric ranges subsets thereof, the MAR models center around 0.89, close to the actual

plebiscite values.

A second family of sensitivity analyses studies influence of observations on the

model’s conclusions, expressed through either parameters or cell counts. In this sec-

tion, we considered both global influence, that is, case deletion, and local influence,

based on infinitesimal perturbation. It was found that perturbing some, but not all,

small counts can have an extremely large effect on the conclusions, often through

partially observed or unobserved cells. Such influences can strongly affect conclusions

about estimands such as the one considered here. Indeed, the proportion of people

attending the plebiscite and at the same time being in favor of independence is made

up of adding up the (1,1) cell across all missingness patterns, and hence depends on

how a model distributes partially observed counts over the cells.
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7.5 Concluding Remarks

In many longitudinal settings which are prone to missingness, the assumption of an

MAR missingness mechanism is a reasonable starting point. However, MNAR can

never be completely ruled out. Understanding how the results depend on the specifi-

cation of the missingness mechanism will be very helpful in understanding the data.

Since the models for non-random dropout rest on strong and untestable assumptions,

the optimal place for the MNAR analyses is within a sensitivity analysis framework.

In this chapter, we have given a definition of sensitivity analysis and presented a

variety of sensitivity analyses tools. Further, we performed a sensitivity analysis both

on the second depression trial data and on the Slovenian public opinion survey data.

Recall that sensitivity analyses can be based on either considering a variety of

models, or on studying influences of observations on the model’s conclusions. The

latter can be achieved through the local influence tool, which is used to depict anom-

alous subjects that lead to a seemingly MNAR mechanism. Although the original idea

behind the use of local influence methods was to detect subjects that drop out non-

randomly, several authors (Verbeke et al., 2001b; Jansen et al., 2006b) have shown

that the influential subjects often are influential for other than missingness-related

features. Jansen et al. (2006b) assert that “a subject that drives the conclusion to-

wards MNAR may be doing so, not only because its true data generating mechanism

is of an MNAR type, but also for a wide variety of other reasons, such as an un-

usual mean profile or autocorrelation structure”. In this chapter, we have given a

detailed discussion of this approach, adopting it both on the Diggle-Kenward model

(Section 7.3.2) and the BRD model family (Section 7.3.3).

A careful study of influential subjects, combined with knowing how the results

of primary interest change by removing such subjects and by altering assumptions

regarding missing data, can lead to a better understanding of the nature of clinical

trial data. Sensitivity analyses can also help develop an appropriate level of confidence

in the originally proposed primary analysis and help develop alternative analyses in

which more confidence can be placed by the researchers. Thus, when an analysis

with and without influential subjects yields essentially the same conclusion about, for

example, the trial’s treatment effect, one will place more confidence in the conclusions

than when no sensitivity analysis had been conducted. However, when there is a

difference between both, careful scrutiny ought to follow and one may decide to remove

all or some of the influential subjects.

In conclusion, we believe it is important to conduct a sensitivity analysis and in

particular that such an analysis that combines insight from considering families of
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models on the one hand and from studying influence is able to paint a relatively

complete picture. This allows one to put a perspective on the conclusions that can

confidently be reached about an estimand based on an incomplete set of data, some-

thing that considering a single model arguably never can.



8
A Latent-Class Mixture

Model for Incomplete

Longitudinal Gaussian Data

In Section 3.1.2 the three main modeling frameworks - selection, pattern-mixture, and

shared-parameter - were introduced. Note that so far the focus has been on selection

models. However, it is possible to formulate models that combine aspects of the three

families: indeed Molenberghs et al. (1998b) place all three in one overall framework.

In this chapter, we propose a so-called latent-class mixture model, an example of such

a combination, using latent classes.

Besides the fact that this model provides a flexible modeling tool in its own right,

the method’s use lies predominantly within the sensitivity analysis context. Such

a sensitivity analysis is clearly useful when the more elaborate model modifies the

results from the simpler alternative. However, even when it confirms earlier results,

it will typically increase confidence in the conclusions reached.

The latent-class mixture model is introduced in Section 8.1. The corresponding

likelihood function and associated methods of estimation are discussed in Section 8.2.

In Section 8.3 we explore how the method can be used as a device for classifying

subjects into latent groups. Using simulations, some insight into its performance is

147
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provided in Section 8.4. Finally, in Section 8.5, the methodology is illustrated using

the first depression trial data.

8.1 Latent-Class Mixture Models

We propose a latent-class mixture model, bringing together features of the selection,

pattern-mixture, and shared-parameter model frameworks. Precisely, information

from the location and evolution of the response profiles, a selection model concept,

and from the dropout patterns, a pattern-mixture idea, is used simultaneously to

define latent groups and variables, a shared-parameter feature. This approach has

a number of appealing features. First, it allows for using the information in a more

symmetric and therefore more elegant way. Second, apart from providing a more

flexible modeling tool, the new framework is ideally suited to be used as a sensitivity

analysis instrument. Third, a strong added advantage over existing methods is that

we now will be able to classify subjects into latent groups. While this has to be done

with due caution, it can enhance substantive knowledge and generate hypotheses

for further research. Fourth, while computational burden evidently increases, fitting

the proposed method is remarkably stable and falls within acceptable time limits for

applications of the type considered here and for simulations reported.

As before, let the random variable Yij denote the response of interest, for the ith in-

dividual, with measurements planned at times tij , i = 1, . . . , N , and j = 1, . . . , n. We

group the outcomes into the vector Yi = (Yi1, . . . , Yin)′. We also define the dropout

indicator to have its usual meaning (Section 3.1.1). Recall the shared-parameter

model factorization (3.3):

f(yi, di|bi,θ,ψ) = f(yi|bi,θ)f(di|bi,ψ),

in which we suppress explicit reference to the covariates. The above factorization

presumes the existence of a random-effects vector bi, conditional upon which the mea-

surement and dropout processes are independent. This particular shared-parameter

model can be represented as in Figure 8.1(a).

We propose an extension to this model that captures possible heterogeneity be-

tween the subjects, which is not measured through a covariate, but rather through

a latent variable. This extended model is called a latent-class mixture model, and a

representation of it is shown in Figure 8.1(b). Next to one or more so-called shared

parameters, bi, the model contains a latent variable, Qi, dividing the population in

g subgroups. This latent variable is a vector of group indicators Qi = (Qi1, . . . , Qig),
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Figure 8.1: Representation of (a) shared-parameter models and (b) their extension to

latent-class mixture models.

defined as Qik = 1, if subject i belongs to group k, and 0 otherwise. The measure-

ment process as well as the dropout process depend on this latent variable, not only

directly, but also through the subject-specific effects bi. The distribution of Qi is

multinomial and defined by P (Qik = 1) = πk, where k ranges from 1 to g and πk

denotes the group or component probability. Note that the component probabilities

obey
∑g

k=1 πk = 1. In what follows, πk will also be called the prior probability of an

observation belonging to the kth component of the mixture.

The measurement process is specified by means of a so-called heterogeneity linear

mixed model, originally proposed by Verbeke and Lesaffre (1996) and also described

by Verbeke and Molenberghs (2000, Chapter 12). The model is given by

Yi|qik = 1, bi ∼ N(Xiβk +Zibi,Σ
(k)
i ),

where Xi and Zi are design matrices, βk are fixed effects, possibly depending on the

group components, and bi denote the shared parameters, following a mixture of g

normal distributions with mean vectors µk and covariance matrices Dk, that is,

bi|qik = 1 ∼ N(µk,Dk),

and therefore

bi ∼
g∑

k=1

πkN(µk,Dk).

The measurement error terms εi follow a normal distribution with mean zero and

covariance matrix Σ
(k)
i and are independent of the shared parameters.
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The mean and the variance of Yi can be derived as

E(Yi) = Xi

g∑

k=1

πkβk +Zi

g∑

k=1

πkµk,

Var(Yi) = Z ′
i




g∑

k=1

πkµ
2
k −

(
g∑

k=1

πkµk

)2

+

g∑

k=1

πkDk


Zi +

g∑

k=1

πkΣ
(k)
i .

Further, we have to assume that the shared effects are ‘calibrated’, that is,
∑g

k=1 πkµk =

0, then the latter expressions for the mean and variance simplify to:

E(Yi) = Xi

g∑

k=1

πkβk,

Var(Yi) = Z′
i

[
g∑

k=1

πkµ
2
k +

g∑

k=1

πkDk

]
Zi +

g∑

k=1

πkΣ
(k)
i .

The dropout model is specified consistently with (6.3) and (6.4), but now the

shared parameter bi and the latent class membership indicators qik are part of the

model:

gij(wij , bi, qik) = P (Di = j|Di ≥ j,wij , bi, qik = 1),

wherewij is a vector containing all relevant covariates. An obvious choice is to further

assume that

logit[gij(wij , bi, qik)] = wijγk + λbi.

The joint likelihood of the measurement and dropout processes takes the form:

f(yi, di) =

g∑

k=1

P (qik = 1)f(yi, di|qik = 1)

=

g∑

k=1

πk

∫
f(yi, di|qik = 1, bi)fk(bi)dbi

=

g∑

k=1

πk

∫
f(yi|qik = 1, bi,Xi,Zi)f(di|qik = 1, bi,wi)fk(bi)dbi,

(8.1)
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where f(yi|qik = 1, bi,Xi,Zi) is the density function of the normal distribution

N(Xiβk +Zibi,Σ
(k)
i ), fk(bi) is the density function of N(µk,Dk), and

f(di|qik = 1, bi,wi) (8.2)

=





n∏

j=2

[1 − gij(wij , bi, qik)] for a completer (di = n+ 1),

gidi
(widi

, bi, qik)

di−1∏

j=2

[1 − gij(wij , bi, qik)] for a dropout (di ≤ n).

The latter equation is the latent-class mixture analogue of (6.3). Note that the

dropout model can depend, not only on the outcomes, but also on relevant covariates

such as treatment allocation, time, gender, age, etc. Not all models that can be

formulated in this way are identified, so restrictions are needed. We return to this

issue in Section 8.2.

Whereas selection models and pattern-mixture models derive from two different

factorizations of the joint density of the measurement and dropout processes, the

latent-class mixture model is based on assuming an additional latent structure. The

selection model lends itself naturally to formulate such concepts as MAR and ig-

norability, even though they can be considered in the pattern-mixture framework as

well (Molenberghs, Michiels, Kenward and Diggle, 1998b; Kenward, Molenberghs and

Thijs, 2003). In the pattern-mixture model, the observed dropout patterns are taken

into account when modeling the measurement process. The latent-class mixture mod-

els modify this idea by grouping the subjects by means of a latent variable, thereby

accounting for inter-group differences both in terms of their dropout pattern as well

as their measurement profiles.

8.2 Likelihood Function and Estimation

Estimation of the unknown parameters in the latent-class mixture model can be based

on the maximum likelihood principle. The likelihood function of the latent-class mix-

ture model is formulated in Section 8.2.1. Since it would be very cumbersome to

maximize this likelihood function analytically, the EM algorithm (Dempster, Laird

and Rubin, 1977) is proposed as it is a practical tool for maximum likelihood esti-

mation in the case of finite mixtures (Redner and Walker, 1984). In Section 8.2.2 an

outline is provided of how the likelihood can be maximized using the EM algorithm.
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8.2.1 The Likelihood Function

Let π be the vector of component probabilities π′ = (π1, . . . , πg) and group all other

unknown parameters of the measurement process in the vector θ, of the dropout

process in ψ, and of the mixture distribution in α. If σ denotes the vector of covari-

ance parameters of all Σ
(k)
i , δ the covariance parameters of all Dk, µ′ = (µ1, . . . ,µg),

and γ′ = (γ1, . . . ,γg), then θ = (β,σ), ψ = (γ,λ) and α = (µ, δ). Denote by Ω the

vector containing all unknown parameters in the model, that is Ω′ = (π′,θ′,ψ′,α′).

Estimation and inference for the Ω will now be based on the observed data likeli-

hood, L(Ω|yo,d), obtained by integrating out the unobserved data from the joint

distribution of measurement and dropout process and expressed by:

L(Ω|yo,d)

=

N∏

i=1

f(yo
i , di|Ω)

=

N∏

i=1

∫
f(yi, di|Ω) dym

i

=

N∏

i=1

∫ { g∑

k=1

πk

∫
f(yi|θ, bi, qik = 1)f(di|ψ, bi, qik = 1)fk(bi|α)dbi

}
dym

i

=
N∏

i=1

g∑

k=1

πk

∫ {∫
f(yi|θ, bi, qik = 1) dym

i

}
f(di|ψ, bi, qik = 1)fk(bi|α)dbi

=

N∏

i=1

g∑

k=1

πk

∫
f(yo

i |θ, bi, qik = 1)f(di|ψ, bi, qik = 1)fk(bi|α)dbi, (8.3)

where yo′

= (yo
1, . . . ,y

o
N ) is the vector containing all observed response values and

d = (d1, . . . , dN ) is the vector of all values of the dropout indicator.

Note that this likelihood function is invariant under the g! possible permutations

of the parameters corresponding to each of the g mixture components. To overcome

this, the constraint suggested by Aitkin and Rubin (1985), π1 ≥ π2 ≥ . . . ≥ πg, is

imposed.

Identifiability is a delicate issue. Böhning (1999) shows that a mixture of two nor-

mals with simultaneously different means and different variances is not identifiable.

Such problems arise from latency, now occurring through latent classes, random ef-

fects, and missingness. In line with Böhning (1999) and McLachlan and Peel (2000),

one could consider several variations to the target model. The likelihood values,

parameter estimates, and information matrices can then be studied in view of identi-

fiability. All of this cautions against certain uncritical uses of the model.
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For example, one should not place a blind belief in the number of components

resulting when applying the model; this would be a license for mischief. Rather, the

model can play a role as a sensitivity analysis tool. The allocation of subjects to

latent groups can help formulate hypotheses, which then have to be checked against

substantive scientific knowledge and/or in follow up studies. On the other hand,

when focusing on certain inferences, such as testing for treatment effect, the number

of components, for example, may be less essential.

The log-likelihood function corresponding to likelihood function (8.3) is

`(Ω|yo,d)

=
N∑

i=1

ln

{
g∑

k=1

πk

∫
f(yo

i |θ, bi, qik = 1)f(di|ψ, bi, qik = 1)fk(bi|α)dbi

}
.(8.4)

To maximize (8.4) with respect to Ω, the Estimation-Maximization (EM) algo-

rithm (Dempster, Laird and Rubin, 1977) will be employed. The EM algorithm is

a numerical iterative procedure, designed for maximum likelihood estimation in sit-

uations with missing data. Here, the underlying latent variable Qi, representing

component membership, will be considered missing. Thus, the response vector Y o
i

and the dropout indicator Di, together with the (unobserved) population indicators

Qi can be seen as the so-called augmented data, whereas vectors Y o
i and Di constitute

the observed data.

Clearly, the likelihood function L(Ω|yo,d) corresponds to the incomplete data.

Since the joint density of Y o
i , Di and Qi equals

fi(y
o
i , di, Qi1 = qi1, . . . , Qig = qig)

= fi(y
o
i , di|Qi1 = qi1, . . . , Qig = qig) · P (Qi1 = qi1, . . . , Qig = qig)

=

{
g∏

k=1

[fik(yo
i , di|θ,ψ,α)]

qik

}
·
{

g∏

k=1

πqik

k

}

=

g∏

k=1

[πkfik(yo
i , di|θ,ψ,α)]

qik ,

the joint likelihood L(Ω|yo,d, q) of the augmented data, that is, the likelihood func-

tion that would have been obtained if the values qi = (qi1, . . . , qig)
′ of the population

indicators Qi had been observed, would be

L(Ω|yo,d, q) =
N∏

i=1

g∏

k=1

[πkfik(yo
i , di|θ,ψ,α)]

qik , (8.5)
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with q = (q1, . . . , qn)′ the vector of all hypothetically observed population indicators.

The log-likelihood function corresponding to the likelihood function (8.5) takes the

form

`(Ω|yo,d, q) =

N∑

i=1

g∑

k=1

qik {lnπk + ln fik(yo
i , di|θ,ψ,α)} . (8.6)

8.2.2 Estimation Using The EM Algorithm

Maximizing `(Ω|yo,d, q) would be analytically and computationally easier than max-

imizing the log-likelihood `(Ω|yo,d). However, the estimates obtained from maxi-

mizing `(Ω|yo,d, q) with respect to Ω, will depend on the unobserved indicators q.

Therefore, the EM algorithm is advisable, since then we will maximize the expected

value of `(Ω|yo,d, q) with respect to Ω, where the expectation is taken over all unob-

served q, that is, E[`(Ω|yo,d,Q)|y,d]. This conditional expectation of `(Ω|yo,d, q)

given yo and d, is calculated within the expectation (E) step of each iteration of the

EM algorithm. In the maximization (M) step the expected log-likelihood function ob-

tained from the E step is then maximized. Denote by O the expected log-likelihood

function and call this the objective function. The EM algorithm is an iterative proce-

dure, that is, it starts from an initial value Ω(0) for Ω, and then constructs a series of

estimates Ω(t), which converges to the maximum likelihood estimator Ω̂ of Ω. Initial

values can be obtained from considering separate models for the measurement and

dropout processes. Given Ω(t), the current estimate for Ω, the updated estimate

Ω(t+1) is obtained through one iteration of the EM algorithm, that is, through one E

step and one M step. Iteration then continuous until convergence is attained, that is,

until

∣∣∣`(Ω(t+1)|yo,d) − `(Ω(t)|yo,d)
∣∣∣ < ε∗,

for some small, pre-specified ε∗ > 0. More details are provided in the following.

The E Step

Let us describe the iteration step t + 1, in which the estimate is updated to Ω(t+1),

using the obtained estimate from iteration step t, Ω(t). The E step consists of the

calculation of the conditional expectation of `(Ω|yo,d, q), given yo and d, which is
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given by

O(Ω|Ω(t)) = E
[
`(Ω|yo,d,Q)

∣∣∣yo,d,Ω(t)
]

= E

[
N∑

i=1

g∑

k=1

Qik {lnπk + ln fik(yo
i , di|θ,ψ,α)}

∣∣∣∣∣y
o,d,Ω(t)

]

=

N∑

i=1

g∑

k=1

E
[
Qik

∣∣∣yo,d,Ω(t)
]
{lnπk + ln fik(yo

i , di|θ,ψ,α)} .

Therefore, we need to calculate E
[
Qik

∣∣∣yo,d,Ω(t)
]
:

E
[
Qik

∣∣∣yo,d,Ω(t)
]

= P
(
Qik = 1|yo,d,Ω(t)

)

=
fi (yo

i , di|Qik = 1)P (Qik = 1)

fi(yo
i , di)

∣∣∣∣
Ω(t)

=
πkfik(yo

i , di|θ,ψ,α)∑g
k=1 πkfik(yo

i , di|θ,ψ,α)

∣∣∣∣
Ω(t)

= πik(Ω(t)),

where πik(Ω(t)) is the posterior probability for the ith subject belonging to the kth

component of the mixture. This means the E step reduces to the calculation of pos-

terior probabilities πik(Ω(t)), for i = 1, . . . , N and k = 1, . . . , g. This requires calcu-

lation of fik(yo
i , di|θ,ψ,α), and consequently integration over the unknown mixture

component membership, which is done numerically using Gauss-Legendre quadrature.

The M Step

The updated estimate Ω(t+1) is now obtained from maximizing O(Ω|Ω(t)) with re-

spect to Ω. From the E step we know that O equals

O(Ω|Ω(t)) =
N∑

i=1

g∑

k=1

πik(Ω(t)) {lnπk + ln fik(yo
i , di|θ,ψ,α)}

=

N∑

i=1

g∑

k=1

πik(Ω(t)) lnπk

︸ ︷︷ ︸
= O1(π|Ω(t)

)

+

N∑

i=1

g∑

k=1

πik(Ω(t)) ln fik(yo
i , di|θ,ψ,α)

︸ ︷︷ ︸
= O2(θ,ψ,α|Ω(t)

)

= O1(π|Ω(t)) + O2(θ,ψ|Ω(t)). (8.7)
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The first term in (8.7) depends only on π, whereas the second one depends only

on θ, ψ, and α. Hence, to find the maximum of the O function with respect to

Ω′ = (π′,θ′,ψ′,α′), we can maximize both terms separately.

We first maximize the O function with respect to π. This requires the maximiza-

tion of O1, since O2 is independent of π. Under the restriction
∑g

k=1 πk = 1, we can

rewrite O1 as follows

O1(π|Ω(t)) =

N∑

i=1

g−1∑

k=1

πik(Ω(t)) lnπk +

N∑

i=1

πig(Ω
(t)) ln

(
1 −

g−1∑

k=1

πk

)
.

If we now set all first-order derivatives with respect to π1, . . . , πg−1 equal to zero, the

updated estimate satisfies

∂O1

∂πk
= 0 ⇔

N∑

i=1

πik(Ω(t))

π
(t+1)
k

−
N∑

i=1

πig(Ω
(t))

1 −∑g−1
k=1 π

(t+1)
k

= 0

⇔
N∑

i=1

πik(Ω(t))

π
(t+1)
k

=

N∑

i=1

πig(Ω
(t))

π
(t+1)
g

⇔ π
(t+1)
k

π
(t+1)
g

=

∑N
i=1 πik(Ω(t))

∑N
i=1 πig(Ω

(t))
. (8.8)

This, in turn, implies that

1 =

g∑

k=1

π
(t+1)
k =

g∑

k=1

π
(t+1)
g

∑N
i=1 πik(Ω(t))

∑N
i=1 πig(Ω

(t))

=
π

(t+1)
g

∑N
i=1

= 1︷ ︸︸ ︷∑g
k=1 πik(Ω(t))

∑N
i=1 πig(Ω

(t))
=

N π
(t+1)
g∑N

i=1 πig(Ω
(t))

,

and hence

π(t+1)
g =

1

N

N∑

i=1

πig(Ω
(t)). (8.9)

From (8.8) and (8.9) it follows that the updated estimates π
(t+1)
k , k = 1, . . . , g, are

given by

π
(t+1)
k =

1

N

N∑

i=1

πik(Ω(t)),
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that is, the updated mixture component probabilities are equal to the average poste-

rior probabilities.

Next, to maximize of the O function with respect to θ, ψ, and α, it suffices to

maximize

O2(θ,ψ,α|Ω(t)) =
N∑

i=1

g∑

k=1

πik(Ω(t)) ln fik(yo
i , di|θ,ψ,α)

with respect to these parameters. However, in general, this cannot be done ana-

lytically. Therefore, a classical numerical maximization procedure such as Newton-

Raphson is needed. Note that in such cases, the EM algorithm is doubly iterative,

which can have a non-negligible impact on the computation time.

Some Remarks Regarding the EM Algorithm

It has been shown (Rubin, 1987) that an iteration within the EM algorithm always

increases the value of the likelihood function `(Ω|yo,d), under mild regularity condi-

tions, that is,

`(Ω(t+1)|yo,d) > `(Ω(t)|yo,d) for all t.

This is called the monotonicity property of the EM algorithm, which guarantees

convergence of the iterative procedure, provided a finite maximum exists. However,

this convergence can be painfully slow, particularly with poorly selected starting

values. Apart from the local maxima resulting from the non-identifiability problem,

there may be local maxima yielding different likelihood values (Böhning, 1999). This

suggests the use of multiple sets of starting values. If regions exist where the likelihood

is flat, it is said the likelihood has a ridge. The EM algorithm is capable of converging

to some particular point on such a ridge, which is not the case for many other, more

classical, maximization algorithms.

8.3 Classification

Upon fitting the latent-class mixture model to an incomplete set of repeated measure-

ments, one is in a position to classify the study subjects examined into the various

mixture components of the fitted model, that is, into the population’s latent sub-

groups. Through the structure of the latent-class mixture model, the subdivision of

the population in latent groups depends on the number of observed measurements:

on the dropout indicator or pattern, as well as on the values of the observed response

measurements. Hence, the classification of subjects into different latent groups can

be useful to assess the coherence between the dropout process and the measurement
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process. In certain cases such latent groups can have a biological or otherwise substan-

tive meaning. For instance, subjects of one group could have higher response values

and drop out earlier in the study, whereas subjects of another group have lower values

but remain longer in the study.

The decision to which component of the mixture, or, equivalently, to which sub-

group of the population, a specific subject is most likely to belong will be based on

posterior probabilities. Recall that P (Qik = 1) = πk, thus the component proba-

bilities πk, k = 1, . . . , g, express how likely the ith subject is to belong to group k

without using information from the outcomes, yo
i , and dropout pattern, di. For this

reason, the component probabilities are often called prior probabilities.

The posterior probability for subject i to belong to the kth group is given by

πik = P (Qik = 1|yo
i , di) =

fi (yo
i , di|Qik = 1)P (Qik = 1)

fi(yo
i , di)

∣∣∣∣�
Ω

=
πkfik(yo

i , di|θ,ψ,α)∑g
k=1 πkfik(yo

i , di|θ,ψ,α)

∣∣∣∣�
Ω
,

where Ω̂ is the vector of parameter estimates resulting from the EM algorithm. This

expresses how likely it is that the ith subject is to belong to group k, taking into

account the observed response yo
i as well as the dropout indicator di of that subject.

Using these posterior probabilities, we can apply the following classification rule

Classify subject i into component k ⇐⇒ πik = max
j

{πij},

assigning subject i to the component to which it is most likely to belong.

However, we do need to be cautious with the resulting classification into latent

subgroups because, for a particular subject i, the vector of posterior probabilities

is given by πi = (πi1, . . . , πig) with
∑g

k=1 πik = 1. For a good comfort level, one

of these posterior probabilities for subject i would be close to 1, in which case the

classification of this subject is obvious and likely to be correct. However, another

scenario is that two or more posterior probabilities are almost equal, of which one is

the maximum of all posterior probabilities for that particular subject. For example,

suppose we have g = 2 latent subgroups and subject i has posterior probabilities

(πi1, πi2) = (0.55, 0.45). In this case subject i would be allocated into group 1 using

the classification rule, but this should be done with low confidence. This makes clas-

sification nearly random and misclassification is likely to occur. Perhaps it is safer

to assert that this subject lies between both groups, in this sense being an outlier, or

rather an ‘in-lier’. Therefore, rather than merely considering the classification of sub-
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jects into the latent subgroups, it is instructive to inspect the posterior probabilities

in full.

A separate issue is the (prespecified) number of g of latent groups. It is hard to

choose g with great confidence purely on a priori grounds and therefore it is advisable

to explore the stability of the conclusions, by way of additional sensitivity analysis,

by varying g across a range.

8.4 Simulation Study

An advantage of the latent-class mixture model is its flexible structure, which po-

tentially makes the model a helpful analysis tool for incomplete longitudinal data.

However, as already seen in Section 8.2.2, the estimation of the model parameters

is based on a doubly iterative method, which we might expect to be computation-

ally intensive. To assess whether this disadvantage counterbalances the advantage

of model flexibility, and to assess performance, we conduct a simulation study. We

first describe in Section 8.4.1 a simplification of the latent-class mixture model which

is used in the following simulation study as well as later in the application in Sec-

tion 8.5. Following this, the design and results of the simulation study are displayed

in Sections 8.4.2 and 8.4.3, respectively.

8.4.1 A Simplification of the Latent-Class Mixture Model

In what follows, we assume equal covariance matrices for the different mixture com-

ponents, D1 = . . . = Dg = D, as well as equal residual covariance matrices,

Σ
(1)
i = . . . = Σ

(g)
i = Σi = σ2In, which leads to Yi|qik = 1, bi ∼ N(Xiβ+Zibi, σ

2In),

with bi ∼
∑g

k=1 πkN(µk,D).

Furthermore, we simplify the general latent-class mixture model in two steps.

First, it is assumed that there is only one subject-specific effect bi, a shared intercept,

influencing the measurement process, not the dropout process. Second, the measure-

ment process is assumed to depend on the latent variable, not in a direct way, but

only through the shared intercept. The model is depicted in Figure 8.2.

8.4.2 Design of the Simulation Study

The simulation study is structured as follows. Two-hundred and fifty datasets are

simulated, each containing measurements and covariate information of 100 subjects.

The latent variable in the model is assumed to split the subjects into two latent
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qi = (qi1, ..., qig) g values, πk∑g

k=1 πk = 1

Di |qiY i |bi

bi |qi
��

A
A
A
A

Figure 8.2: A simplification of the latent-class mixture model.

subgroups with component probabilities π1 = 0.6 and π2 = 1−π1 = 0.4, respectively.

There are five measurement occasions and the outcome follows a linear trend over time

with intercept β0 = 9.4 and slope β1 = 2.25. The shared intercept follows a mixture

of two normal distributions with different means for both latent groups: µ1 = −4.4

and µ2 = −π1µ1

π2
= 6.6. In line with Section 8.4.1, the variances of these two normal

distributions are set equal and denoted by d2. The measurement error variance is σ2.

Four different settings will be considered, based on varying d2 and σ2. In the

first setting both variance parameters are chosen to be relatively small, d = 2.0 and

σ = 0.25. While only the measurement error variance is increased in the second set-

ting, σ = 0.75, both variance parameters are increased in the third setting, d = 3.5

and σ = 1.00. Up to the third setting, the chosen parameters result in a bimodal,

well-separated mixture distribution. Since this might improve estimation of the pa-

rameters, we consider a fourth, unimodal setting with d = 6 and σ = 2.

Finally, in the dropout model, the logistic regression is based on an intercept only,

which differs for both latent classes, namely, γ1 = −2.5 and γ2 = −1.25, respectively,

with corresponding probabilities 0.73 and 0.45 of completing the study.

The latent-class mixture model can now be formulated as follows. For subject i =

1, . . . , 100, belonging to latent group k = 1, 2, the measurement at time j = 1, . . . , 5

is modelled by

Yij = β0 + β1 timej + bi + ε
(k)
ij , (8.10)

with

bi ∼ π1N
(
µ1, d

2
)

+ π2N
(
µ2, d

2
)

and ε
(k)
i ∼ N

(
0, σ2I5

)
. (8.11)

Furthermore , the dropout model is expressed as

logit[gij(wij , bi, qik)] = γk. (8.12)
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Figure 8.3: Simulation study. Individual profiles for one dataset randomly chosen

out of 250 simulated datasets, for each of the three simulation settings. Solid lines

correspond to subjects from the first latent group, dashed lines to subjects from the

second one.

8.4.3 Results of the Simulation Study

To get a better feel for the four simulation settings, a dataset was selected randomly

from the 250 simulated datasets for each setting. Figure 8.3 shows the individual

profiles of these datasets. Table 8.1 contains the results of the simulation study. As

well as comparing the mean estimates and true values of the parameters through the

bias, we also consider the mean squared error (MSE), simultaneously involving bias

and precision.

We discuss the four simulation settings in turn. For the first, Figure 8.3(a) shows

a clear distinction between both groups, which owes to the small variance, d2, of the

mixture distribution, relative to the systematic difference between the group means,
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Table 8.1: Simulation study. Results of the simulation study: mean and true value, bias, and mean squared error

(MSE) of the parameters, under the three simulations settings.

Setting 1 Setting 2

Effect Mean True Bias MSE Effect Mean True Bias MSE

Measurement Model Measurement Model

β0 9.37 9.40 −2.84 × 10−2 8.07 × 10−4 β0 9.34 9.40 −5.75 × 10−2 3.31 × 10−3

β1 2.25 2.25 1.30 × 10−4 1.68 × 10−8 β1 2.25 2.25 7.56 × 10−4 5.72 × 10−7

σ 0.25 0.25 −2.49 × 10−4 6.18 × 10−8 σ 0.75 0.75 6.27 × 10−4 3.93 × 10−7

µ1 -4.39 -4.40 1.31 × 10−2 1.73 × 10−8 µ1 -4.36 -4.40 4.48 × 10−2 2.00 × 10−3

d 1.98 2.00 −1.70 × 10−2 2.89 × 10−4 d 1.97 2.00 −2.53 × 10−2 6.38 × 10−4

π1 0.60 0.60 4.60 × 10−4 2.12 × 10−7 π1 0.60 0.60 4.22 × 10−3 1.79 × 10−5

Dropout Model Dropout Model

γ1 -2.52 -2.50 −2.28 × 10−2 5.19 × 10−4 γ1 -2.51 -2.50 −1.26 × 10−2 1.58 × 10−4

γ2 -1.26 -1.25 −1.23 × 10−2 1.53 × 10−4 γ2 -1.27 -1.25 −2.30 × 10−2 5.27 × 10−4

Setting 3 Setting 4

Effect Mean True Bias MSE Effect Mean True Bias MSE

Measurement Model Measurement Model

β0 9.44 9.40 3.83 × 10−2 1.46 × 10−3 β0 9.59 9.40 1.92 × 10−1 3.70 × 10−3

β1 2.25 2.25 1.91 × 10−4 3.66 × 10−8 β1 2.24 2.25 −1.44 × 10−2 2.06 × 10−4

σ 0.99 1.00 −5.45 × 10−3 2.06 × 10−5 σ 2.01 2.00 6.07 × 10−3 3.69 × 10−5

µ1 -4.69 -4.40 −2.86 × 10−1 8.18 × 10−2 µ1 -4.84 -4.40 −4.39 × 10−1 1.93 × 10−1

d 3.43 3.50 −7.00 × 10−2 4.90 × 10−3 d 6.02 6.00 2.03 × 10−2 4.10 × 10−4

π1 0.57 0.60 3.36 × 10−2 1.13 × 10−3 π1 0.52 0.60 −8.06 × 10−2 6.50 × 10−3

Dropout Model Dropout Model

γ1 -2.61 -2.50 −1.07 × 10−1 1.14 × 10−2 γ1 -2.97 -2.50 −4.73 × 10−1 2.23 × 10−1

γ2 -1.27 -1.25 −2.04 × 10−2 4.17 × 10−4 γ2 -1.29 -1.25 −3.89 × 10−2 1.51 × 10−3
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µ1 − µ2. Furthermore, the small measurement error variance, σ2, ensures the within-

subject variability to be small, resulting in almost straight individual profiles. From

Table 8.1, the mean estimates of the parameters are close to the true values, with

biases of the order 10−2 or less. Together with small MSE values, the magnitude of

which does not exceed 10−4, this indicates the fit of the latent-class mixture model is

very close to the simulated data. This was expected due to earlier observations.

Increasing the measurement error variance in the second simulation setting leads to

an increased within-subject variability. The discrepancy between both latent groups

is still present (Figure 8.3(b)). The bias increases slightly, but remains of the same

order. For the MSE values, we observe a small increase, but its magnitude does not

exceed 10−3. We can therefore conclude the model fits the data well, even with a

larger within-subject variability.

In the penultimate simulation setting, not only the measurement error variance

is increased, but also the variance in the mixture components. In Figure 8.3(c), we

observe that on top of the larger within-subject variability, the gap between both

latent groups now vanishes. The discrepancy between the groups seems to have van-

ished, and profiles appear to be homogeneous. We consider the results in Table 8.1 to

examine influences on the model fit. For some of the parameters, the mean estimates

deviate little from the true value. However, bias and MSE values remain small, the

order of magnitude not exceeding 10−1 and 10−3, respectively. Thus, here too, the

latent-class mixture model does fit the simulated data well.

Finally, in the last simulation setting, in which even larger values for both variance

parameters result in simulated data following an unimodal mixture distribution, pro-

files again seem to be homogeneous (Figure 8.3(d)). Remarkably, even in this setting,

bias and MSE values remain small, both with order of magnitude below 10−1.

In all four simulation settings, we ascertain small bias and MSE values. This

is true, not only for the model parameters, but also for derived quantities, such

as the treatment effect at the last time and the area under the curve. Thus from

the four simulation settings we conclude that the latent-class mixture model does

fit well. Remark that this applies even when the mixture distribution is unimodal.

The equivalent statement for a real application is that the fit allegedly will be good

in most cases where the researcher has decent insight into the true mean structure.

Computation time increased from about 30 minutes for fitting the latent-class mixture

model to a simulated dataset of the first setting, to a bit over two hours for fitting one

of the later settings. Thus, fitting the latent-class mixture model is not unreasonable

in terms of computation time, perhaps against initial expectation.
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8.5 Analysis of the First Depression Trial

We apply the latent-class mixture model to the first depression trial, introduced in

Section 2.2. In the two subsequent sections, a latent-class mixture model is fitted to

the depression trial and a sensitivity analysis performed. The latter establishes the

latent-class mixture model as a viable sensitivity tool.

8.5.1 Formulating a Latent-Class Mixture Model

A latent-class mixture model is fitted to the data from the first depression trial,

assuming the patients can be split into g latent subgroups.

The mean structure is determined based on an exploratory analysis. As a result,

the heterogeneity linear mixed model for the change in HAMD17 score includes as

fixed effects an intercept, the treatment variable, the baseline HAMD17 score, the

linear and quadratic time variable, and the interaction between treatment and time.

The parameter values for these fixed effects are assumed to be equal across the g

latent subgroups. The measurement error terms are assumed to be independent and

to follow a normal distribution with mean 0 and variance σ2. A shared intercept is

included in the measurement model, which follows a mixture of g normal distributions

with different means, µ1, . . . , µg respectively, but with equal variance d2.

The dropout process is modelled based on a logistic regression, which includes

and intercept and slope that can differ between latent subgroups (γ0,1, . . . , γ0,g corre-

sponding to the intercept, and γ1,1, . . . , γ1,g corresponding to the slope).

At first, the latent-class mixture model has essentially the same structure as the

one used in the simulation study in Section 8.4, based on (8.10)–(8.12), with the

addition of covariates described above. Afterwards, we extend the model by adding

the shared intercept to the dropout model as well, meaning the dropout model changes

from

logit[gij(wij , bi, qik)] = γ0,k + γ1,k tj (8.13)

to

logit[gij(wij , bi, qik)] = γ0,k + γ1,k tj + λ bi, (8.14)

where tj is the jth visit.

An overview of the models considered is given in Table 8.2. The models are

fitted using GAUSS code, which is outlined in Section 11.7. Since assessing the

number of components by a classical likelihood ratio test is not valid in the mixture

model framework (McLachlan and Peel, 2000), we calculated the Akaike’s Information

Criterion (AIC) and Bayesian Information Criterion (BIC) for all models.
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Table 8.2: First depression trial. Information criteria AIC and BIC, for models with

dropout model (11.3) or (11.4), and g = 1, 2, 3.

Model Dropout Model g # Par −2` AIC BIC

1 γ0,k + γ1,k tj 1 10 4676.07 4696.08 4727.44

2 γ0,k + γ1,k tj 2 14 4662.37 4690.37 4734.27

3 γ0,k + γ1,k tj 3 18 4662.03 4698.03 4754.48

4 γ0,k + γ1,k tj + λ bi 1 11 4669.12 4691.12 4725.61

5 γ0,k + γ1,k tj + λ bi 2 15 4662.02 4692.02 4739.06

A model building exercise is performed starting with fitting a one-component

latent-class mixture model, which comes down to a classical shared-parameter model,

as well as a two-component latent-class mixture model. Next, we compare these

models using the AIC and BIC criteria, and depending on the choice made by both

criteria, we decide whether we fit a latent-class mixture model with three latent

subgroups.

Table 8.2 shows that when assuming dropout model (11.3), AIC opts for the

model with two latent subgroups (Model 2), whereas BIC gives preference to the

shared-parameter model (Model 1). Further, in case of dropout model (11.4) however,

both information criteria select the shared-parameter model (Model 4). Note that,

since the dropout model in Model 1 does not depend on the shared intercept, the

dropout model and the measurement model are independent, resulting in the MCAR

assumption, whereas in Model 2, the dropout model is linked to the measurement

model through the latent classes (MNAR).

Overall, the AIC criterion prefers Model 2, the 2-component latent-class mixture

model with no random effect in the dropout model, whereas BIC picks Model 4, the

classical shared-parameter model. Since both criteria select a different model, we first

take a more detailed look at the latent-class mixture model with two components,

indicated by AIC, whereas we consider the classical shared-parameter model in a

sensitivity analysis in the next section.

Parameter estimates with corresponding standard errors and p-values of the two-

component latent-class mixture model are shown in Table 8.3.

Once this latent-class mixture model has been fitted to the depression trial data,

the posterior probabilities can be used to classify the patients into two subgroups as

shown in Section 8.3. In this way, the 170 patients divide into 79 and 91 patients
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Table 8.3: First depression trial. Parameter estimates, standard errors, and p-values

for the latent-class mixture model with two latent subgroups and dropout model (11.3).

Parameter Estimate s.e. p-value

Measurement Model

β0 : intercept 23.17 3.75 < 0.0001

β1 : treatment 2.69 1.49 0.072

β2 : time -6.18 1.18 < 0.0001

β3 : time× treatment -0.52 0.24 0.028

β4 : baseline -0.42 0.07 < 0.0001

β5 : time2 0.41 0.10 < 0.0001

σ : measurement error 4.24 0.13 < 0.0001

Dropout Model

γ0,1 : intercept Group 1 -8.58 3.57 0.009

γ1,1 : time Group 1 0.83 0.44 0.056

γ0,2 : intercept Group 2 -1.35 1.28 0.292

γ1,2 : time Group 1 -0.05 0.20 0.793

Shared Effects

µ1 : mean shared intercept Group 1 -3.64 0.43 < 0.0001

d : variance shared intercept 2.67 0.50 < 0.0001

π1 = π : prior probability Group 1 0.48 0.10 < 0.0001

Loglikelihood -2331.18

classified into the first and second group, respectively. In Figure 8.4, the left panel

represents the individual profiles of patients classified into the first latent group, and

the right one represents the individual profiles of patients classified into the second

group. Clearly, the first group corresponds to patients with lower HAMD17 scores,

which continue to decrease over time. This implies that these patients are the ones

whose condition is improving. On the other hand, the second group contains patients

with a higher change versus baseline compared to the patients from the first group.

Their changes in HAMD17 score fluctuate around 0, more specifically somewhere in
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Figure 8.4: First depression trial. Classification of the subjects of the depression trial

based on a latent-class mixture model. Solid lines correspond to patients classified

into first group (left panel), dashed lines to patients classified into second one (right

panel).

the region between −10 and 10. In addition, without taking into account the within-

subject variability, their profiles appear more or less time-constant. A more formal

comparison of both latent groups regarding their change of HAMD17 score versus

baseline confirms this association between the classification and the profile over time.

Furthermore, a formal test for association of baseline values and group classification

is not significant, indicating similar baseline HAMD17 scores for patients in both

groups.

Based on this difference in location of the profiles between both groups, this clas-

sification of subjects can be interpreted as being a split into acute versus chronic

depression. Patients in both the acute and chronic groups enter the study with a

baseline value indicating depression. However, the profiles of the patients in the

acute group show recovery during the trial, whereas the depression score of patients

in the chronic group remains more or less level.

Further, this difference between both latent groups is not due to treatment, since

the classification of subjects in latent subgroups is independent of their treatment

allocation. Indeed, the estimated odds ratio between the latent classification variable

and the treatment allocation is 0.75, which was expected since the observed treatment

groups are included in the mean structure of the measurement model. Moreover, when

the treatment variable would be included in the dropout model, this independence

would even increase.

Regarding the incompleteness of the patients in both latent groups, we notice a

clear difference, which is confirmed by chi-square tests for independence, implying a
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Table 8.4: First depression trial. Classification of subjects based on the magnitude of

posterior probabilities πi1.

πi1 Classification # Patients

0.80 → 1.00 Clearly Group 1 61

0.60 → 0.80 Group 1 8

0.55 → 0.60 Doubtful, more likely Group 1 5

0.45 → 0.55 Uncertain 8

0.40 → 0.45 Doubtful, more likely Group 2 5

0.20 → 0.40 Group 2 19

0.00 → 0.20 Clearly Group 2 64

significant association between the dropout pattern and the latent classification. The

first latent group mainly contains patients who complete the study, 62 in total. Of

the 17 patients who drop out, merely 2 drop out at visit 6, 3 more at visit 7, and

12 patients missed the last visit only. The dropout percentage in the second latent

group is larger, 48.4% compared to 21.5% in the first group, or 44 out of 91 patients.

Of these incompleters, 17 drop out after the first visit, 10 more at visit 6, 11 at the

penultimate visit, and 6 more at the last visit.

Finally, the latent groups can also be compared by focussing on demographic char-

acteristics such as age, gender, and origin, yielding no association between the latent

classification with either gender or origin, but a significant association with age. Con-

sequently, patients in the acute group are younger than the patients in the chronic

group, with a mean age of 38.5 and 42.4, and corresponding 95% confidence inter-

vals [36.1, 41.0] and [40.0, 44.7],respectively. This is important insight, even though

it may be hard to disentangle the causal relationship between age and chronicity.

Even though age explains a part of the latent-class structure, it is relevant to further

entertain the connection with chronicity, since this may have important implications

for differentiated, more effective therapy.

However, as mentioned in Section 8.3, using this classification rule does not ren-

der insight into how strongly patients are allocated to one group rather than the

other. This depends on the magnitude of the maximal posterior probability. Since

the latent-class mixture model considered here only contains two latent groups, we

merely need to consider one of the posterior probabilities, for example the posterior
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probability that the subject belongs to group 1, πi1. Based on this πi1, the subjects

can be classified following the guidelines of Table 8.4. If the posterior probability πi1

lies between 0.45 and 0.55, it is uncertain to which group the subject can be clas-

sified. Only 8 out of 170 patients in the depression trial are in this situation. For

most patients, 152 or 89.4%, it is clear into which group they can be classified, since

their maximal posterior probability is above 0.60. Furthermore, aforementioned as-

sociation of the latent classification with the location of profiles, the dropout pattern,

and patient’s age as well as independence of baseline values and patient’s origin and

gender, is confirmed by testing the independence of these variables with the posterior

probabilities, which can be viewed as continuous variables ranging from 0 to 1.

8.5.2 A Sensitivity Analysis

We now illustrate the use of the latent-class mixture model as a sensitivity analysis

tool. In addition to the two-component latent-class mixture model introduced above,

a classical shared-parameter model will be fitted, as well as a pattern-mixture model,

and two selection models, based on the selection models introduced by Diggle and

Kenward (1994); see also Section 6.1.1. All models contain the same fixed effects as

in the two-component latent-class mixture model, that is, intercept, treatment, time,

baseline, time2, and treatment-by-time interaction.

The classical shared-parameter model, selected by the BIC criterion in Section 8.5.1,

includes a shared intercept bi ∼ N(0, d2), conditional upon which the measurement

model follows a normal distribution Yi|bi ∼ N(Xiβ + bi, σ
2Ini

), and the dropout

process is based on (11.4).

Next, in the Diggle-Kenward models, the covariance structure of the measurement

process is assumed to be unstructured. The dropout model takes the conventional

form (6.4). We consider an MAR version as well as the full MNAR version of the

model.

Finally, a pattern-mixture model is fitted by adding pattern-specific intercepts

and slopes to the same multivariate normal model as used in the Diggle-Kenward

selection models. Notice that the classification function in the latent-class mixture

model is a data driven approach to define groups, whereas pattern-mixture models

use the assumption to define groups in function of dropout patterns.

As the main focus of the depression trial was in the treatment effect at the last

visit, Table 8.5 shows the estimates, standard errors, and p-values for this effect

under the five fitted models. Clearly, the p-values resulting from all five models are

very similar and between around 0.07 and 0.11, yielding the same conclusion for the
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Table 8.5: First depression trial. Estimates, standard errors, and p-values for the

treatment effect at visit 8, as well as the treatment-by-time interaction, for the latent-

class mixture model, the shared-parameter model, the pattern-mixture model and both

selection models, assuming either MAR or MNAR.

Treatment at Endpoint Treatment × Time

Model Estimate s.e. p-value Estimate s.e. p-value

Latent-Class Mixture Model -1.44 0.91 0.114 -0.52 0.23 0.028

Shared-Parameter Model -1.69 0.93 0.069 -0.50 0.24 0.035

Pattern-Mixture Model -2.01 1.20 0.096 -0.55 0.31 0.077

MAR Selection Model -2.17 1.25 0.082 -0.58 0.32 0.068

MNAR Selection Model -2.16 1.24 0.081 -0.57 0.31 0.068

treatment effect at visit 8. Thus, the significance results are not sensitive to the

model used, and hence more trust can be put into the conclusion. However, note that

using both the two-component latent-class mixture model and the classical shared-

parameter model, the standard error is reduced by 0.3 units, compared to either

selection model, or pattern-mixture model, resulting in a more accurate confidence

interval for the treatment effect at the last visit.

We continue by exploring the sensitivity of the treatment-by-time interaction by

comparing the estimates, standard errors and p-values under the five fitted models

in Table 8.5. The p-values are clearly moving around the 0.05 boundary. Whereas

under the latent-class mixture model and the shared-parameter model the p-value is

about 0.03, the p-value under both selection models and the pattern-mixture model

is around 0.07. While one should be cautious with over-interpretation of p-values,

there are contexts, such as regulated clinical trials, where strict decision rules are

implemented. In such a case and when in addition the treatment by time interaction

is the primary effect, the latent-class mixture model and the shared-parameter model

would lead to a claim of significance, whereas this would not be justified with neither

the selection models nor the pattern-mixture model.
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8.6 Concluding Remarks

In this chapter, we have proposed latent-class mixture models for the analysis of longi-

tudinal data subject to dropout. The model extends the shared-parameter model, in

the sense that both the measurement and dropout processes are allowed to share a set

of random effects, conditional upon which both processes are assumed to be indepen-

dent. It can, at the same time, be seen as an extension of the pattern-mixture model,

now with latent rather than explicitly observed groups. It uses ideas from random-

effects and latent-class modeling. Therefore, it captures unobserved heterogeneity

between latent subgroups of the population. The results from the simulation study

underscore the fact that the flexibility of such latent-class mixture models outweighs

the expected modeling complexity.

Apart from a flexible modeling technique, the proposed latent-class mixture model

can be used as a sensitivity analysis instrument, and for further exploration of the

latent class membership. However, when clusters are detected by classifying subjects

into the latent subgroups, care has to be taken when interpreting latent classes, since

in some applications they may merely be artifacts, without any substantive grounds.

In others, there may be more basis for their existence. We believe, together with

mental health scientists, the two-component classification in our example, refers to

the natural split of the patients, regardless of which treatment they were allocated

to, into the more chronic and the more acute ones. An additional word of caution

is needed regarding the number of latent classes to be considered. This is a tricky

but well documented problem (McLachlan and Peel, 2000). A practical way out is

to consider several choices for the number of components, pick the most reasonable

one, and assess whether alternative choices would substantially alter the conclusions.

The latter leads us to the second additional purpose of the model, that is, the latent-

class mixture model can be used as a sensitivity tool. Applying the tool to the first

depression trial increased the confidence level in the conclusions reached.

An initial criticism of the latent-class mixture model would be its computational

complexity. Evidently, the computational burden of the latent-class mixture does

increase over non-latent-class models, but is still reasonable. For example, whereas

the MNAR version of the Diggle-Kenward model takes around one hour and the one-

component mixture needs about the same amount of time, the two-component mixture

increases needs around one order of magnitude more. Furthermore, the performance

of the algorithm is remarkably computationally stable, given sensible starting values

(e.g., built from non-mixture classical models). Details on starting value selection are

embedded in the software Section 11.7.
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The development of this latent-class mixture model was published in Beunckens

et al. (2007a).



9
Analysis of the ARMD Trial

In this chapter we will perform a thorough sensitivity analysis the age-related macular

degeneration trial as introduced in Section 2.4. Recall that there are 240 subjects,

188 of which have a complete follow-up. Note that of the 52 subjects with incomplete

follow-up, 8 exhibit a non-monotone pattern. While this does not hamper direct-

likelihood analyses, it is a challenge for WGEE. One way forward is to monotonize

the missingness patterns by means of multiple imputation and then conduct WGEE,

or to switch to MI-GEE altogether. However, to be consistent throughout the analy-

ses, those subjects with non-monotone profiles will not be taken into account. Further,

neither will the subjects without any follow-up measurement be included in the analy-

ses, since at least one measurement should be taken. This results in a data set of 226

of 240 subjects, or 94.17 %.

The original outcome is the visual acuity, that is the number of letters correctly

read on a vision chard, which can be considered continuous. The dichotomous out-

come is defined as increase or decrease in number of letters read compared with

baseline. Section 9.1 and 9.2 are devoted to the analysis of the continuous and the

binary outcome respectively, using first simple methods as discussed in Chapter 4,

and second a number of viable candidates for a standard analysis including direct-

likelihood (Chapter 4) and versions of generalized estimating equations, that is GEE,

WGEE and MI-GEE (Chapters 3 and 5). Next, in Section 9.3 a sensitivity analysis

based on the continuous outcomes is performed making use of models and sensitivity

173
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tools within the selection, the pattern-mixture and the shared-parameter framework.

9.1 Simple and Direct-Likelihood Analysis of the

Continuous Outcome

We consider a multivariate normal model, with unconstrained time trend under

placebo, an time-specific treatment effect, and an unstructured variance covariance

matrix. Let Yij be the visual acuity of subject i = 1, . . . , 226, at time point j =

1, . . . , 4, and Ti the treatment assignment for subject i, then the mean model takes

the following form

E(Yij) = βj1 + βj2Ti.

Thus, this longitudinal model features a full treatment by time interaction with eight

mean model parameters. The direct-likelihood analysis based on all observed data is

contrasted with the simple CC and LOCF analyses.

Results of these three analyses are displayed in Table 9.1. From the parameter

estimates, it is clear that the treatment effects are underestimated when considering

the completers only. Whereas for all observed data treatment effect at week 12 and

week 52 are borderline significant, both turn insignificant when deleting subjects with

missing values. For the LOCF analysis, going from week 4 to the end of the study,

the underestimation of the treatment effect increases. Therefore, the effect at week

12 is borderline significant, but at week 52 it becomes insignificant. Once again, CC

and LOCF miss important treatment differences, the most important one being that

at week 52, the end of the study.

9.2 Analysis of the Binary Outcome

We now switch to the binary outcome, which indicates whether the number of letters

correctly read at the follow-up occasion is higher or lower than the corresponding

number of letters at baseline. Both marginal models and random-effects models are

considered.

9.2.1 Marginal Models

In this section, a population-averaged (or marginal) model is used. In line with the

previous section, we compare analyses performed on the completers only (CC), on

the LOCF imputed data, as well as on the observed data. In all cases, standard GEE
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Table 9.1: Age-related macular degeneration trial. Parameter estimates (standard

errors) for the linear-mixed models, fitted to the continuous outcome visual acuity on

the CC and LOCF population, and on the observed data (direct-likelihood). p-values

are given for treatment effect at each of the four time points.

Effect Parameter CC LOCF Observed data

Parameter estimates (standard errors)

Intercept 4 β11 54.47 (1.54) 54.00 (1.47) 54.00 (1.47)

Intercept 12 β21 53.08 (1.66) 53.03 (1.59) 53.01 (1.60)

Intercept 24 β31 49.79 (1.80) 49.35 (1.72) 49.20 (1.74)

Intercept 52 β41 44.43 (1.83) 44.59 (1.74) 43.99 (1.79)

Treatment effect 4 β12 -2.87 (2.28) -3.11 (2.10) -3.11 (2.10)

Treatment effect 12 β22 -2.89 (2.46) -4.45 (2.27) -4.54 (2.29)

Treatment effect 24 β32 -3.27 (2.66) -3.41 (2.45) -3.60 (2.49)

Treatment effect 52 β42 -4.71 (2.70) -3.92 (2.48) -5.18 (2.59)

p-values

Treatment effect 4 β12 0.211 0.140 0.140

Treatment effect 12 β22 0.241 0.051 0.048

Treatment effect 24 β32 0.220 0.165 0.150

Treatment effect 52 β42 0.083 0.115 0.046

will be considered. For the observed, partially incomplete data, GEE is supplemented

with WGEE and MI-GEE. Results of the GEE analyses are reported in Table 9.2. In

all cases, we use the logit link, and the model takes the form

logit[P (Yij = 1 | Ti, tj)] = βj1 + βj2Ti, (9.1)

with notational conventions as before, except that Yij is the indicator for whether or

not letters of vision have been lost for subject i at time j, relative to baseline.

A working exchangeable correlation matrix is considered. For the WGEE analysis,
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Table 9.2: Age-related macular degeneration trial. Parameter estimates (empirically corrected standard errors) for

the marginal models: standard GEE on the CC and LOCF population, and on the observed data. In the latter case,

standard GEE, WGEE and MI-GEE with imputation based on the continuous and binary outcome is used.

Observed data

Continuous Binary

Effect Parameter CC LOCF Unweighted WGEE MI-GEE MI-GEE

Parameter estimates (standard errors)

Intercept 4 β11 -1.01 (0.24) -0.95 (0.21) -0.95 (0.21) -0.98 (0.44) -0.95 (0.21) -0.95 (0.21)

Intercept 12 β21 -0.89 (0.24) -0.99 (0.21) -1.01 (0.22) -1.77 (0.37) -1.00 (0.22) -0.98 (0.22)

Intercept 24 β31 -1.13 (0.25) -1.09 (0.22) -1.07 (0.23) -1.11 (0.33) -1.05 (0.22) -1.06 (0.25)

Intercept 52 β41 -1.64 (0.29) -1.46 (0.24) -1.64 (0.29) -1.72 (0.39) -1.52 (0.26) -1.57 (0.29)

Treatment 4 β12 0.40 (0.32) 0.32 (0.29) 0.32 (0.29) 0.78 (0.66) 0.32 (0.29) 0.32 (0.29)

Treatment 12 β22 0.49 (0.31) 0.59 (0.29) 0.62 (0.29) 1.83 (0.60) 0.60 (0.29) 0.58 (0.29)

Treatment 24 β32 0.48 (0.33) 0.46 (0.29) 0.43 (0.30) 0.72 (0.53) 0.40 (0.30) 0.42 (0.32)

Treatment 52 β42 0.40 (0.38) 0.32 (0.33) 0.40 (0.37) 0.72 (0.52) 0.33 (0.35) 0.31 (0.41)

Corr. ρ 0.39 0.44 0.39 0.33 0.39 0.38

p-values

Treatment 4 β12 0.209 0.268 0.268 0.242 0.268 0.268

Treatment 12 β22 0.113 0.040 0.034 0.003 0.037 0.048

Treatment 24 β32 0.141 0.119 0.151 0.176 0.182 0.195

Treatment 52 β42 0.283 0.323 0.277 0.162 0.349 0.456
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Table 9.3: Age-related macular degeneration trial. Parameter estimates (standard

errors) and p-values for a logistic regression model to describe dropout.

Effect Parameter Estimate (s.e.) p-value

Intercept ψ0 0.13 (0.49) 0.7930

Previous outcome ψ1 0.04 (0.38) 0.9062

Treatment ψ2 -0.87 (0.37) 0.0185

Lesion level 1 ψ31 -1.82 (0.49) 0.0002

Lesion level 2 ψ32 -1.89 (0.52) 0.0003

Lesion level 3 ψ33 -2.79 (0.72) 0.0001

Time 2 ψ41 -1.73 (0.49) 0.0004

Time 3 ψ42 -1.36 (0.44) 0.0019

the following weight model is assumed:

logit[P (Di = j | Di ≥ j)] = ψ0 + ψ1yi,j−1 + ψ2Ti

+ψ3,1L1i + +ψ3,2L2i + ψ3,3L3i

+ψ4,1I(tj = 2) + ψ4,2I(tj = 3),

where yi,j−1 is the binary outcome at the previous time ti,j−1 = tj−1, Lki = 1 if the

patient’s eye lesion is of level k = 1, . . . , 4 (since one dummy variable is redundant,

only three are used), and I(·) is the indicator function. Parameter estimates, standard

errors and p-values for the dropout model are given in Table 9.3. Covariates of

importance are treatment assignment, the level of lesions at baseline, and time at

which dropout occurs. For the latter covariates, there are three levels, since dropout

can occur at times 2, 3, or 4. Hence, two indicator variables are included. Finally, the

previous outcome does not have a significant impact, but will be kept in the model

nevertheless.

When comparing parameter estimates across CC, LOCF, and observed data analy-

ses, it is clear that LOCF has the effect of artificially increasing the correlation be-

tween measurements. The effect is mild in this case. The parameter estimates of the

observed-data GEE are close to the LOCF results for earlier time points and close

to CC for later time points. This is to be expected, as at the start of the study

the LOCF and observed populations are virtually the same, with the same holding

between CC and observed populations near the end of the study. Note also that
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the treatment effect under LOCF, especially at 12 weeks and after 1 year, is biased

downward in comparison to the GEE analyses. Next, to properly use the information

in the missingness process, WGEE or MI-GEE can be used. Two versions of MI-

GEE are considered, that is, first the continuous outcome defined by the difference in

numbers of letters correctly read compared with baseline is imputed whereafter the

dichotomized version is analysed, and secondly the binary outcome is imputed and

analysed.

In spite of there being no strong evidence for MAR, the results between GEE

and WGEE differ quite a bit. It is noteworthy that at 12 weeks, a treatment ef-

fect is observed with WGEE which is borderline with the other marginal analyses.

However, as we have shown in Chapter 5, the beneficial property of unbiasedness

for WGEE is merely fulfilled for very large samples. On the other hand, MI-GEE

produces only a small amount of bias in small samples, which is less compared to

the bias of WGEE. Moreover, MI-GEE is robustness against misspecification of the

imputation and measurement model. Therefore, in real life settings such as the age-

related macular degeneration trial, we would opt to use MI-GEE instead of WGEE.

Both versions of MI-GEE considered here show quite similar results. The standard

errors are smaller compared to the ones estimated using WGEE. The treatment effect

at week 12 detected by WGEE becomes borderline again in both MI-GEE analyses.

Further, also the p-values at later time points are larger compared to WGEE.

9.2.2 Random-Effects Models

Let us now turn to a random-intercepts logistic model, in spirit to (9.1):

logit[P (Yij = 1 | Ti, tj)] = βj1 + bi + βj2Ti, (9.2)

with notation as before and bi ∼ N(0, τ2). For the model fitting, numerical integration

is used. Results are shown in Table 9.4.

We observe the usual relationship between the marginal parameters of Table 9.2

and their random-effects counterparts. Note also that the random-intercepts variance

is largest under LOCF, underscoring again that this method artificially increases the

association between measurements on the same subject. In this case, in contrast to

the marginal models, both LOCF and CC, considerably overestimate the treatment

effect at certain times, in particular at 4 and 24 weeks (unlike the continuous case; see

Section 9.1. In conclusion, it is clear that CC and LOCF may differ from the direct-

likelihood and weighted or MI-based GEE analyses. This underscores, once again,

that the latter analyses are to be considered as candidates for primary analysis.
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Table 9.4: Age-related macular degeneration trial. Parameter estimates (standard

errors) for the random-intercept models: numerical-integration based fits on the CC

and LOCF population, and on the observed data (direct-likelihood).

Effect Parameter CC LOCF Direct-lik.

Intercept 4 β11 -1.73 (0.42) -1.76 (0.40) -1.64 (0.37)

Intercept 12 β21 -1.53 (0.41) -1.85 (0.40) -1.75 (0.38)

Intercept 24 β31 -1.93 (0.43) -2.01 (0.41) -1.85 (0.39)

Intercept 52 β41 -2.74 (0.48) -2.66 (0.44) -2.76 (0.47)

Treatment 4 β12 0.64 (0.54) 0.55 (0.53) 0.51 (0.49)

Treatment 12 β22 0.81 (0.53) 1.04 (0.53) 1.02 (0.50)

Treatment 24 β32 0.77 (0.55) 0.80 (0.53) 0.70 (0.51)

Treatment 52 β42 0.60 (0.59) 0.54 (0.56) 0.61 (0.59)

Random-intercept s.d. τ 2.19 (0.27) 2.46 (0.27) 2.21 (0.26)

Random-intercept var. τ2 4.80 (1.17) 6.03 (1.33) 4.90 (1.14)

9.3 Sensitivity Analysis of the Continuous Outcome

In this section, we apply MNAR-based and sensitivity methods to the continuous

outcome of the age-related macular degeneration trial. In Section 9.3.1 the Diggle-

Kenward selection model (Chapter 6) is fitted to the response sequences and by way

of sensitivity analysis this is supplemented with local influence analysis (Chapter 7).

Further, in Section 9.3.2, the focus is on pattern-mixture models, as introduced in

Chapter 6. Finally, latent-class mixture models as proposed in Chapter 8 are consid-

ered in Section 9.3.3.

9.3.1 Selection Models and Local Influence

In this section, the visual acuity is first analysed using the full selection model pro-

posed by Diggle and Kenward (1994), discussed in Section 6.1.1. Apart from modeling

the three missing data mechanisms MCAR, MAR, and MNAR, explicitly, an ignorable

MAR analysis is also conducted in which the model for the response measurements

only was fitted. For the measurement model, the linear mixed model was used, assum-

ing again different intercepts and treatment effects for each of the four time points,
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Table 9.5: Age-related macular degeneration trial. Parameter estimates (standard errors) assuming ignorability, as

well as explicitly modeling the missing data mechanism under MCAR, MAR, and MNAR assumptions, for all data.

All Subjects Ignorable MCAR MAR MNAR

Effect Parameters Est. (s.e.) Est. (s.e.) Est. (s.e.) Est. (s.e.)

Measurement Model

Intercept 4 β11 54.00 (1.47) 54.00 (1.46) 54.00 (1.47) 54.00 (1.47)

Intercept 12 β21 53.01 (1.60) 53.01 (1.59) 53.01 (1.60) 52.98 (1.60)

Intercept 24 β31 49.20 (1.74) 49.20 (1.73) 49.19 (1.74) 49.06 (1.74)

Intercept 52 β41 43.99 (1.79) 43.99 (1.78) 43.99 (1.79) 43.52 (1.82)

Treatment 4 β12 -3.11 (2.10) -3.11 (2.07) -3.11 (2.09) -3.11 (2.10)

Treatment 12 β22 -4.54 (2.29) -4.54 (2.25) -4.54 (2.29) -4.67 (2.29)

Treatment 24 β32 -3.60 (2.49) -3.60 (2.46) -3.60 (2.50) -3.80 (2.50)

Treatment 52 β42 -5.18 (2.59) -5.18 (2.57) -5.18 (2.62) -5.71 (2.63)

Dropout Model

Intercept ψ0 -2.79 (0.17) -1.86 (0.46) -1.81 (0.47)

Previous ψ1 -0.020 (0.009) 0.016 (0.022)

Current ψ2 -0.042 (0.023)

-2 log-likelihood 6488.7 6782.7 6778.4 6775.9

Treatment effect at 1 year p-value 0.046 0.044 0.048 0.030



9.3. Sensitivity Analysis of the Continuous Outcome 181

next to an unstructured variance covariance matrix. In the full selection models, the

dropout is modeled by (6.4). Parameter estimates and corresponding standard errors

of the fixed effects of the measurement model and of the dropout model parameters

are given in Table 9.5. As expected, the parameter estimates and standard errors

coincide for the ignorable direct-likelihood analysis and the selection models under

MCAR and MAR, except for some numerical noise.

Since main interest lies in the treatment effect at 1 year, the corresponding p-

values are displayed in Table 9.5. In all four cases, this treatment effect is (borderline)

significant.

Note that for the MNAR analysis, the estimates of the ψ1 and ψ2 parameter are

more or less of the same magnitude, but with a different sign. This is in line with the

argument of Molenberghs et al. (2001b), stating that the dropout oftentimes depends

on the increment yij − yi,j−1. This is because two subsequent measurements are

usually positively correlated. By rewriting the fitted dropout model in terms of the

increment,

logit [pr(Di = j|Di ≥ j,hij , yij ,ψ)] = −1.81 − 0.026yi,j−1 − 0.042(yij − yi,j−1),

We find that the probability of dropout increases with larger negative increments;

that is, those patients who showed or would have shown a greater decrease in visual

acuity from the previous visit are more likely to drop out.

Let us now switch to local influence. Figure 9.1 displays overall Ci and influences

for subvectors θ, β, α, and ψ. In addition, the direction hmax, corresponding to

maximal local influence, is given. The main emphasis should be put on the relative

magnitudes. We observe that patients #10, #27, #28, #114, #139, and #154 have

larger Ci values compared to other patients, which means they can be considered

influential. Virtually the same picture holds for Ci(ψ).

Turning attention to the influence on the measurement model, we see that for

Ci(β), there are no strikingly high peaks, whereas Ci(α) reveals two considerable peak

for patients #68 and #185. Note that both patients fail to have a high peak for the

overall Ci. This is due to the fact that the scale for Ci(α) is relatively small, comparing

to the overall Ci. Nevertheless, these patients can still be considered influential.

Finally, the direction of maximum curvature reveals the same six influential patients

as the overall Ci.
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Figure 9.1: Age-related macular degeneration trial. Index plots of Ci, Ci(θ), Ci(α),

Ci(β), Ci(ψ) and of the components of the direction hmax,i of maximal curvature.
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Figure 9.2: Age-related macular degeneration trial. Individual profiles for both treat-

ment arms, with influential subjects highlighted.

In Figure 9.2, the individual profiles of the influential observations are highlighted.

Let us take a closer look at these cases. The six patients, which are influencing the

dropout model parameters, are those that drop out after the first measurement is

taken at week 4. All of these patients are in the active treatment arm, except for

#27. On the other hand, the two patients influential for the measurement model

parameters, stay in the study up to week 24 and have no observation for the last

measurement occasion at 1 year. Patient # 68 received the active treatment, and

his/her visual acuity decreases substantially after week 4, thereafter staying more or

less level. Opposite, patient #185 is enrolled in the the placebo treatment arm and

his/her visual acuity increases after week 4, then sloping down a little after week 12.

It is interesting to consider an analysis without these influential observations.

Therefore, we applied the selection model to three subsets of the data. The first

subset was obtained by removing all the eight influential patients mentioned before.

In the second subset of the data, patients #10, #27, #28, #114, #139, and #154 were

removed, since these are overall the most influential ones. Finally, patients #68 and

#185, who seemed to be influencing the measurement model the most, were removed,

resulting in the third subset. Result of these analyses are shown in Table 9.6. We

compare the results of the MAR and MNAR analyses.
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Table 9.6: Age-related macular degeneration trial. Parameter estimates (standard errors) explicitly modeling the missing

data mechanism under MAR and MNAR assumptions, after removing the following subsets of subjects 10, 27, 28, 114, 139,

154, 68, 185 (Set 1); 10, 27, 28, 114, 139, 154 (Set 2); and 68, 185 (Set 3).

Subjects Removed Set 1 Set 2 Set 3

MAR MNAR MAR MNAR MAR MNAR

Effect Parameter Est. (s.e.) Est. (s.e.) Est. (s.e.) Est. (s.e.) Est. (s.e.) Est. (s.e.)

Measurement Model

Intercept 4 β11 54.14 (1.51) 54.15 (1.49) 54.30 (1.47) 54.30 (1.46) 53.84 (1.48) 53.84 (1.47)

Intercept 12 β21 53.09 (1.64) 53.06 (1.62) 53.16 (1.59) 53.13 (1.59) 52.94 (1.60) 52.91 (1.59)

Intercept 24 β31 49.56 (1.77) 49.46 (1.75) 49.31 (1.74) 49.20 (1.72) 49.44 (1.73) 49.31 (1.72)

Intercept 52 β41 44.40 (1.82) 43.97 (1.84) 44.00 (1.79) 43.58 (1.82) 44.38 (1.78) 43.90 (1.82)

Treatment 4 β12 -3.13 (2.17) -3.13 (2.11) -3.28 (2.08) -3.28 (2.06) -2.95 (2.07) -2.95 (2.05)

Treatment 12 β22 -4.48 (2.36) -4.63 (2.29) -4.55 (2.26) -4.69 (2.24) -4.47 (2.26) -4.60 (2.23)

Treatment 24 β32 -3.80 (2.56) -4.04 (2.49) -3.55 (2.48) -3.79 (2.44) -3.85 (2.44) -4.04 (2.42)

Treatment 52 β42 -5.45 (2.66) -6.12 (2.66) -5.06 (2.59) -5.72 (2.61) -5.56 (2.55) -6.09 (2.58)

Dropout Model

Intercept ψ0 -1.90 (0.47) -1.85 (0.49) -1.90 (0.47) -1.85 (0.49) -1.85 (0.46) -1.81 (0.47)

Previous ψ1 -0.019 (0.010) 0.018 (0.022) -0.019 (0.010) 0.017 (0.022) -0.020 (0.009) 0.017 (0.022)

Current ψ2 -0.044 (0.024) -0.043 (0.024) -0.043 (0.024)

-2 log-likelihood 6535.3 6532.7 6606.9 6604.4 6706.4 6703.8

Treatment at 1 year p-value 0.040 0.021 0.051 0.028 0.029 0.018
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After removing all influential patients (Set 1), the estimates of the dropout model

parameters ψ1 and ψ2 are approximately the same, whereas the estimate of ψ0 de-

creases from −1.86 to −1.90 under MAR, and from −1.81 to −1.85 under MNAR.

The same can be seen after removing the patients #10, #27, #28, # 114, #139, and

#154, who have large overall Ci and C(ψ) values (Set 2). Considering the treatment

effect at 1 year, its estimate decreases from -5.18 to -5.45 under the MAR assump-

tion, and from -5.71 to -6.12 under the MNAR assumption, resulting in a decrease

of the p-value from 0.048 to 0.040 and from 0.030 to 0.021 under MAR and MNAR

respectively.

There is no impact on the likelihood ratio test for MAR against MNAR after

removing all influential patients, the deviance G2 only changes slightly from 2.5 to

2.6. If this likelihood ratio test would follow a standard χ2
1-distribution, we would fail

to reject the null hypothesis, which leads us to the MAR assumption. However, the

test of MAR against MNAR is non-standard and it cannot be used as such (Rotnitzky

et al., 2000; Jansen et al., 2006b). Moreover, recall we have shown in Chapter 6 that

one can never test for the assumption of MNAR versus MAR missingness.

Further, after removing the second set of influential patients, that is, patients

#10, #27, #28, # 114, #139, the estimate of the treatment effect at 1 year increases

from −5.18 to −5.06 under the MAR analysis, yielding a slightly increased borderline

p-value, whereas it decreases with 0.01 under the MNAR analysis and together with

a decreased standard error the latter yields a small decrease in the p-value. The

deviance G2 for the likelihood ratio test for MAR against MNAR remains 2.5

Finally, we perform the same analyses on the third set, with patients #68 and

# 185 removed. Both for the MAR and MNAR analysis, again the estimate of the

treatment effect at 1 year decreases quite a lot, from −5.18 to −5.56 and from −5.71

to −6.09 respectively. Consequently, the p-value also drops down from 0.048 to 0.029

under MAR and from 0.030 to 0.018 under the MNAR analysis. The deviance for the

likelihood ratio test for MAR changes again from 2.5 to 2.6.

9.3.2 Pattern-Mixture Models

Pattern-mixture models can be of use in the context of sensitivity analysis. Given

there are several, quite distinct, strategies to formulate such models, one can consider

one strategy as a sensitivity analysis for another one. For example, the sensitivity

of simple, identified models can be checked using identifying restrictions. Also, a

set of identifying restrictions can be considered, rather than a single one, by way of

sensitivity analysis.
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Table 9.7: Age-related macular degeneration trial. Parameter estimates (standard

errors) and p-values resulting from the pattern-mixture model using identifying re-

strictions ACMV, CCMV, and NCMV.

ACMV CCMV NCMV

Effect Parameter

Parameter estimate (standard error)

Intercept 4 β11 54.00 (1.47) 54.00 (1.47) 54.00 (1.47)

Intercept 12 β21 53.22 (1.98) 52.89 (1.61) 52.97 (2.20)

Intercept 24 β31 49.43 (2.14) 49.45 (1.79) 49.05 (2.49)

Intercept 52 β41 44.73 (2.69) 44.67 (2.35) 44.40 (2.73)

Treatment 4 β12 -3.11 (2.10) -3.11 (2.10) -3.11 (2.10)

Treatment 12 β22 -4.94 (2.81) -4.26 (2.36) -4.56 (2.71)

Treatment 24 β32 -4.21 (2.82) -3.77 (2.55) -3.79 (2.92)

Treatment 52 β42 -5.19 (2.81) -4.72 (2.60) -4.76 (2.90)

p-value

Intercept 4 β11 < .0001 < .0001 < .0001

Intercept 12 β21 < .0001 < .0001 < .0001

Intercept 24 β31 < .0001 < .0001 < .0001

Intercept 52 β41 < .0001 < .0001 < .0001

Treatment 4 β12 0.140 0.140 0.140

Treatment 12 β22 0.083 0.071 0.093

Treatment 24 β32 0.139 0.140 0.200

Treatment 52 β42 0.065 0.069 0.101

Obviously, one can formulate selection models for one’s primary analysis, and then

fit pattern-mixture models to assess sensitivity. Michiels et al. (2002) followed this

route. Molenberghs, Michiels and Kenward (1998a) formulated models that com-

bine aspects of both selection models and pattern-mixture models, and used pseudo-

likelihood ideas to fit such models.
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Table 9.8: Age-related macular degeneration trial. p-values resulting from the pattern-

mixture model using identifying restrictions ACMV, after removing the three subsets

as in Table 9.6.

Set 1 Set 2 Set 3

Effect Parameter

Parameter estimate (standard error)

Treatment 4 β12 -3.11 (2.10) -3.11 (2.10) -3.11 (2.10)

Treatment 12 β22 -4.94 (2.81) -4.26 (2.36) -4.56 (2.71)

Treatment 24 β32 -4.21 (2.82) -3.77 (2.55) -3.79 (2.92)

Treatment 52 β42 -5.19 (2.81) -4.72 (2.60) -4.76 (2.90)

p-value

Treatment 4 β12 0.140 0.140 0.140

Treatment 12 β22 0.083 0.071 0.093

Treatment 24 β32 0.139 0.140 0.200

Treatment 52 β42 0.065 0.069 0.101

In this section, we consider the use of pattern-mixture models for the visual acuity

outcome. Based on the discussion in Section 6.2, we will apply the Strategy 1 making

use of CCMV, NCMV, and ACMV identification restrictions. After applying each of

the three restrictions, the same selection model as before is fitted. The results for the

three types of restrictions are shown in Table 9.7. From the estimates and associated

standard errors, it is clear that there is little difference in conclusions between the

strategies. The estimates for treatment effect and corresponding standard errors

obtained under CCMV and NCMV restrictions are underestimated when comparing

to ACMV.

In Table 9.7 we observe that for all three strategies the p-value for the treatment

effect at 1 year is above the significance level of 0.05 significant, yet it is borderline

significant for the ACMV restrictions - which is equivalent to MAR - in line with

the conclusions drawn from the selection models in previous section. The p-value

is closest to significance and thus to the one from the selection models in case the

NCMV restrictions are considered. The Diggle-Kenward MAR and MNAR selection



188 Chapter 9. Analysis of the ARMD Trial

models also showed a borderline significant treatment effect, its p-value being below

0.05.

The local influence approach applied to the selection models in previous section

determined different subsets of influential patients. Fitting pattern-mixture models

based on ACMV restrictions after excluding each of these subsets in turn, changes

the p-value for treatment effect after 1 year from 0.065 to 0.053, 0.069, and 0.049

respectively, all maintaining the borderline significance.

One will feel comfortable about a significant treatment effect if it held across MAR

and a number of MNAR scenarios. Thus, in this case, it is fair to say there is a weak

evidence only for a treatment effect.

9.3.3 Latent-Class Mixture Models

In this section we use the latent-class mixture model framework to analyse the visual

acuity outcome. First a model building exercise is performed to obtain a latent-class

mixture model that is fitted to the data, after which it is used as a classification as

well as a sensitivity analysis tool (Section 9.3.4).

Model Building

The heterogeneity linear mixed model considered for the visual acuity is the following:

Yij |qi,k, bi = β0 + β1,1I(tj = 1) + β1,2I(tj = 2) + β1,3I(tj = 3) + β2,jTi + bi,

which represents the same full treatment by time interaction with eight mean model

parameters as in Section 9.1, yet using a different parametrization for the intercepts,

added with a shared intercept bi. Depending on whether a shared-parameter model

or a latent-class mixture model is fitted, the distribution of the shared intercept is the

univariate normal distribution, that is, bi ∼ N(0, d2), or a mixture of g normal dis-

tributions with different means but equal variances, that is, bi ∼
∑g

k=1 πkN(µk, d
2).

The measurement error terms are assumed to be independent and to follow a normal

distribution with mean 0 and variance σ2. The assumed latent-class mixture model

first takes the same structure as in Section 8.4, that is,

logit[gij(wij , bi, qik)] = γ0,k, (9.3)

after which the shared intercept is added, resulting in

logit[gij(wij , bi, qik)] = γ0,k + λ bi. (9.4)
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Table 9.9: Age-related macular degeneration trial. Information criteria AIC and BIC,

for models with dropout model (9.3) or (9.4), and g = 1, 2, 3.

Model Dropout Model g # Par −2` AIC BIC

1 γ0,k 1 11 7103.66 7125.66 7163.29

2 γ0,k 2 14 7049.27 7077.27 7125.15

3 γ0,k 3 17 6999.89 7033.89 7092.04

4 γ0,k + λ bi 1 12 7102.32 7124.32 7161.95

5 γ0,k + λ bi 2 15 7046.11 7076.11 7127.42

6 γ0,k + λ bi 3 18 6999.92 7035.92 7097.49

An overview of the models considered is given in Table 9.9. The model building

exercise is performed in a forward stepwise selection way as was done in Section 8.5.1

for the first depression trial. Both AIC and BIC criteria opt for the latent-class

mixture model with three latent subgroups and no shared intercept in the dropout

model. Models for which g > 3 could not be fitted, since the variance of the mixture

components, d2, tends to zero as the number of latent subgroups increases.

Parameter estimates with corresponding standard errors and p-values of this latent-

class mixture model are depicted in Table 9.10. Clearly, the treatment effect at 1 year

is significant.

Classification of Subjects

Let us now use posterior probabilities obtained from the fit of the latent-class mixture

model to classify the subjects into three subgroups as shown in Section 8.3. The 226

subjects divide into 88, 72, and 66 subjects classified into the first, second, and third

group respectively.

In Figure 9.3 the individual profiles of subjects classified into the three latent

groups are represented. Clearly, the last group contains subjects with highest visual

acuity measurements which remain more or less level throughout the study, whereas

subjects classified to the second group have the lowest observations which even de-

crease during the first 24 weeks. The profiles of subjects of the second group lie in

between the ones of the second and third group, which clearly diminish over time.

This association between the visual acuity values and the classification in subgroups

can be formally confirmed.
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Table 9.10: Age-related macular degeneration trial. Parameter estimates, standard

errors, and p-values for the latent-class mixture model with three latent subgroups and

dropout model (9.3).

Effect Parameter Estimate s.e. p-value

Measurement Model

Intercept 52 β0 44.81 1.67 < 0.0001

Intercept 4 – 52 β1,1 9.74 1.39 < 0.0001

Intercept 12 – 52 β1,2 8.73 1.39 < 0.0001

Intercept 24 – 52 β1,3 5.05 1.41 0.0003

Treatment 4 β2,1 -4.21 2.37 0.0764

Treatment 12 β2,2 -5.66 2.29 0.0134

Treatment 24 β2,3 -4.81 2.40 0.0452

Treatment 52 β2,4 -6.38 2.40 0.0077

Measurement error σ 10.08 0.28 < 0.0001

Dropout Model

Intercept Group 1 γ0,1 -2.62 0.30 < 0.0001

Intercept Group 2 γ0,2 -2.73 0.33 < 0.0001

Intercept Group 3 γ0,3 -3.17 0.49 < 0.0001

Shared Effects

Mean Group 1 µ1 0.29 1.28 0.8236

Mean Group 2 µ2 -17.28 0.95 < 0.0001

Variance d 0.77 1.05 0.4621

Prior probability Group 1 π1 0.39 0.05 < 0.0001

Prior probability Group 2 π2 0.31 0.03 < 0.0001

Loglikelihood ` -3499.9446
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Figure 9.3: Age-related macular degeneration trial. Classification of the subjects into

the three latent subgroups based on a latent-class mixture model.

Further, this difference between the latent groups is not due to treatment, since

the classification of subjects into latent groups is independent of their treatment

allocation.

Turning attention to missingness in the three latent groups, it is observed that the

dropout percentage decreases from the first to the third subgroup. In the first group

18 out of 88 subjects drop out (20.45%), 12 out of 72 (16.67%) in the second group,

and finally 8 out of 66 in the last group (12.12%).

Table 9.11: Age-related macular degeneration trial. Classification of subjects based on

the magnitude of posterior probabilities πik.

Decision Rule Classification # Patients

0.80 < πi1 ≤ 1.00 Clearly Group 1 65

0.80 < πi2 ≤ 1.00 Clearly Group 2 58

0.80 < πi3 ≤ 1.00 Clearly Group 3 54

0.60 < πi1 ≤ 0.80 Group 1 15

0.60 < πi2 ≤ 0.80 Group 2 11

0.60 < πi3 ≤ 0.80 Group 3 7

0.55 < πi1 ≤ 0.60 Doubtful, more likely Group 1 4

0.55 < πi2 ≤ 0.60 Doubtful, more likely Group 2 2

0.55 < πi3 ≤ 0.60 Doubtful, more likely Group 3 0

0.45 < πik ≤ 0.55 Uncertain 10
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Note again that one should be cautious in over-interpreting this classification in

latent groups. As mentioned in Section 8.3 one can consider the magnitude of the

maximal posterior probability, which shows insight into how strongly the subjects are

allocated to these subgroups. Based on the three posterior probabilities, πi1, πi2, and

πi3, the subjects can be classified following the guidelines of Table 9.11. For only

10 out of 226 subjects, that is 4.4%, it is uncertain whether the classification to the

particular latent subgroup is appropriate. On the other hand, for most subjects, 210

or 92.9%, the maximal posterior probability is above 0.60 meaning it is clear to which

latent group is should be classified.

9.3.4 Sensitivity Analysis

Next to the CC, LOCF and ignorable direct-likelihood analyses as discussed in Sec-

tion 9.1, the age-related macular degeneration trial has now been reanalysed using (1)

MCAR, MAR, and MNAR selection models, (2) the local influence sensitivity tool,

(3) pattern-mixture models, and (4) latent-class mixture models. To assess the sensi-

tivity of the modeling assumptions on the conclusions, let us consider the treatment

effect at 1 year obtained by the different methods. A comparison of the estimates,

standard errors and p-values is provided in Table 9.12. Whereas the pattern-mixture

model shows a borderline (in)significant treatment effect at 1 year, it moves to bor-

derline significant for the ignorable direct-likelihood analysis, which assumes MAR

missingness, and the MAR Diggle-Kenward selection model, and its significance be-

comes more prominent in turning to the MNAR Diggle-Kenward selection model and

the latent-class mixture model. In conclusion, the primary analysis, which ideally

would be based on a model assuming MAR non-response, for instance an ignorable

direct-likelihood analysis as in this case, yields a borderline significant treatment ef-

fect at 1 year. To assess the sensitivity thereof, this primary analysis is extended with

other MAR models under different modeling frameworks which clearly confirms this

borderline significance. Expanding this sensitivity analysis by turning attention to

MNAR and latent-class mixture models shows a decreased p-value thereby concluding

a significant treatment effect at 1 year. Thus, a cautious conclusion is that there is

some evidence for a treatment effect at the end of the study.
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Table 9.12: Age-related macular degeneration trial. Estimates, standard errors, and

p-values for the treatment effect at 1 year for the latent-class mixture model, the

ignorable direct-likelihood analysis, both Diggle-Kenward selection models assuming

either MAR or MNAR, as well as the pattern-mixture model using ACMV restrictions.

Treatment at 1 year

Model Estimate s.e. p-value

Latent-Class Mixture Model -6.38 2.40 0.008

Ignorable Direct-Likelihood -5.18 2.59 0.047

Pattern-Mixture Model (ACMV) -5.19 2.81 0.065

MAR Selection Model -5.18 2.62 0.048

MNAR Selection Model -5.71 2.63 0.030
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Conclusion

After the key paper of Rubin (1976) who established incomplete data as a field of

study within the domain of statistics, a large amount of research output has been

devoted to the problem of missing data. Within the methodological development we

can distinguish between the parametric school, based on the likelihood and Bayesian

frameworks, and a semi-parametric school, including estimating equations ideas. Even

though there is a noticeable divergence between these various lines of thinking, re-

searchers agree that no single modeling approach can overcome the limitation of not

having access to the missing data. All parties, that is, academia, industry, and reg-

ulatory authorities, emphasize the need for sensitivity analysis, whereas there is less

agreement on the kind of sensitivity analysis. An important condition to put for-

ward a particular method as a feasible method within a sensitivity analysis, is the

availability of trustworthy and easy-to-use software.

In this thesis, we have shown it is unfortunate that there has been so much em-

phasis on simple methods, such as complete case analysis or last observation carried

forward, which at least require the missingness mechanism to be MCAR. These sim-

ple methods have been compared to direct-likelihood analysis, which uses all available

information without the need of additional data manipulation and are valid under the

less restrictive and more realistic assumption of MAR missingness. Moreover, in case

inferences are obtained within the likelihood or Bayesian framework, there is no need

to model the missingness process. Consequently, linear mixed models (Verbeke and

195
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Molenberghs, 2000) or generalized linear mixed models (Molenberghs and Verbeke,

2005), within the random-effects model family, can be used for respectively Gaussian

and non-Gaussian incomplete longitudinal outcomes. These methods are as simple to

conduct as it would be in contexts where data are complete.

In the non-Gaussian case one often opts for a semi-parametric approach such

as generalized estimating equations within the marginal model family. Since this

method also requires the missingness to be MCAR, alternatives have been proposed

such as weighted generalized estimating equations (WGEE, Robins, Rotnitzky and

Zhao, 1994) and multiple imputation based generalized estimating equations (MI-

GEE, Schafer, 2003), to obtain valid inferences under the MAR assumption. Both

methods require only a little amount of programming which can be done using stan-

dard statistical software. In this thesis, we have compared both methods using asymp-

totic and small-sample simulation studies. Theoretically, WGEE is unbiased, which

was confirmed by the asymptotic simulation study, yet this cannot be drawn along to

small samples, even when every aspect of the analysis is correctly specified. Further-

more, the asymptotic unbiasedness vanishes in case of misspecification in either the

missingness or measurement model. On the other hand, MI-GEE proves to be robust

under misspecification of either the imputation or measurement model. Moreover,

MI-GEE provides less biased and more precise estimates in small to moderate sam-

ples compared to WGEE. Consequently, we advice to use MI-GEE in practice above

WGEE, despite the asymptotic unbiasedness property of WGEE. Note that, although

the focus of this thesis is on missingness in the response, missingness in covariates is

often encountered, in which cases MI-GEE can be used whereas WGEE cannot.

Up to here, it has been made clear that the simple ad hoc methods, which have

been in common use for a long time, actually belong in the museum of statistics,

and the primary analysis should consist of methods which assume the missing data

to be MAR. On the other hand though, one can hardly ever rule out the possibil-

ity of missing data to be MNAR, which implies that the need may exist to consider

MNAR models. Therefore, we have provided an overview of existing MNAR mod-

els, with the main focus on the models proposed by Diggle and Kenward (1994) for

Gaussian outcomes and by Baker, Rosenberger and DerSimonian (BRD, 1992) for

binary outcomes.

An important feature of statistical modelling in the incomplete data setting is that

the quality of the fit to the observed data does not render the appropriateness of the

implied structure governing the unobserved data. This point is independent of the

MNAR route taken, whether a parametric model or a semi-parametric approach is

chosen. MNAR models are based on assumptions regarding the unobserved outcomes
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which are not verifiable from the available, observed data. Moreover, in this thesis we

have proven that the empirical distinction between MNAR and MAR is not possible,

in the sense that the fit of each MNAR model to a set of observed data can be repro-

duced exactly by an MAR counterpart. This so-called MAR bodyguard produces the

same fit to the observed data, yet the predictions of the unobserved outcomes given

the observed ones will be different. Consequently, unless one is prepared to accept the

posited MNAR model in an unquestionable way, one can never test the assumption

of an MNAR model for or against MAR. This underlines that the conclusions drawn

based on MNAR models are sensitive to the posited and unverifiable model assump-

tions. Based on these considerations and facts, it is clear that in any incomplete-data

setting there cannot be anything that could be called a definitive analysis. A sensible

compromise between blindly shifting to MNAR models or ignoring them altogether,

is to make them a component of a sensitivity analysis. For instance, after perform-

ing a primary analysis based on the MAR assumption, it is advisable to conduct a

sensitivity analysis to explore the impact of deviations from this MAR assumption.

In this thesis, a review of sensitivity analysis tools both at the level of the model by

considering a variety of models, and at the level of the individuals based on global

and local influence is given, which are applied to the Diggle-Kenward model and to

the BRD model family. In the latter, we extended the local influence approach of

Jansen et al. (2003) by basing its terminology on cell counts rather than parameters,

as well as by perturbing the cell probabilities rather than the model parameters. Al-

though the basis of local influence was to detect influential subjects which drop out

non-randomly and thereby seemingly drive the posited MAR selection model in the

direction of MNAR, several authors (Verbeke et al., 2001b; Jansen et al., 2006b) have

shown that the influential subjects often are influential for other than missingness-

related features.

A further route for sensitivity analysis is to consider pattern-mixture models as a

complement to selection models (Molenberghs et al., 1998b; Thijs et al., 2002), or as

shown in this thesis, use so-called latent-class mixture models. These models are an

extension of the shared-parameter model, since both the measurement and dropout

processes are allowed to share a set of random effects, conditional upon which both

processes are assumed to be independent. Moreover, this model shared features of

three different modeling frameworks, by using information from the location and

evolution of the response profiles, a selection model concept, and from the dropout

patterns, a pattern-mixture idea, to define latent groups and variables, a shared-

parameter feature. Through the assumed latent-class structure, the model captures

possible heterogeneity between possible latent subgroups of the population. We have
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shown that this latent-class mixture model not only can be used as a flexible modeling

technique, but that it also serves as a sensitivity analysis tool and it can be applied

for further exploration of the latent class membership.

As a final remark, we note that all proposed models can be implemented in stan-

dard statistical software. As a final chapter, we show how the MAR-based analyses

as well as the analysis based on the Diggle-Kenward model and the local influence

approach applied to it, can be conducted using the SAS software. Further, the imple-

mentation of a simplified version of the latent-class mixture model as used throughout

this thesis is also exemplified in the final chapter. Remark that further investigation

of this model is still necessary, for instance, regarding model selection and modeling

assumptions, as well as its implementation for more general settings.
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Software

In this chapter, software implementations are presented for the direct-likelihood, GEE,

WGEE and MI-GEE methods – as well as their CC and LOCF counterparts – and

for the MNAR Diggle-Kenward selection model, local influence applied to the Diggle-

Kenward model, and finally for the latent-class mixture model. In Section 11.1,

complete case analysis and last observation carried forward analysis are shown. Next,

MAR-based methods are discussed, including direct-likelihood (Section 11.2), WGEE

(Section 11.3) and MI-GEE (Section 11.4). Section 11.5 is devoted to the implemen-

tation of the full selection MNAR Diggle-Kenward model. Next, the local influence

method applied to the Diggle-Kenward model as a sensitivity analysis tool is dealt

with in Section 11.6. Finally, Section 11.7 shows the implementation of the flexible

latent-class mixture model.

11.1 Simple Analyses

To perform a complete case analysis, subjects for which not all designed measurement

have been obtained need to be deleted. When the data are organised ‘horizontally’

– one record per subject – this is particularly easy. With ‘vertically’ organized data,

some data manipulation is needed and this can be done using the SAS macro %cc

given below.

199
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%macro cc(data=,id=,time=,response=);

%if %bquote(&data)= %then %let data=&syslast;

proc freq data=&data noprint;

tables &id /out=freqsub;

tables &time / out=freqtime;

run;

proc iml;

use freqsub;

read all var {&id,count};

nsub = nrow(&id);

use freqtime;

read all var {&time,count};

ntime = nrow(&time);

use &data;

read all var {&id,&time,&response};

n = nrow(&response);

complete = j(n,1,1);

ind = 1;

do while (ind <= nsub);

if (&response[(ind-1)*ntime+ntime]=.) then

complete[(ind-1)*ntime+1:(ind-1)*ntime+ntime]=0;

ind = ind+1;

end;

create comp var {&id &time &response complete};

append;

quit;

data cc;

merge &data comp;

if complete=0 then delete;

drop complete;

run;

%mend;

Clearly, this macro requires four arguments. The data= argument is the data set

to be analysed. If this is not specified, the most recent data set is used. The name

of the variable in the data set which contains the identification variable is specified

by id= whereas time= specifies the variable indicating the time ordering within a

subject. The outcome variable is passed on through the response= argument and the

name of the output data set, created with the macro, is defined through out=. For

example, for the first depression trial, the following statement produces the complete

case CC data set for the continuous HAMD17 depression score:
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%cc(data=depression,id=patient,time=visit,response=hamd17);

After performing this pre-processing, a complete case analysis follows of any type

requested by the user. Note that the macro requires the records, corresponding to

missing values, to be present in the data set.

When LOCF is of interest, similar steps to those for a complete case analysis need

to be performed. For a vertically organized data set, the following SAS macro, %locf

can be used:

%macro locf(data=,id=,time=,response=,out=);

%if %bquote(&data)= %then %let data=&syslast;

proc freq data=&data noprint;

tables &id /out=freqsub;

tables &time / out=freqtime;

run;

proc iml;

use freqsub;

read all var {&id,count};

nsub = nrow(&id);

use freqtime;

read all var {&time,count};

ntime = nrow(&time);

use &data;

read all var {&id,&time,&response};

n = nrow(&response);

locf = &response;

ind = 1;

do while (ind <= nsub);

if (&response[(ind-1)*ntime+ntime]=.) then

do;

i = 1;

do while (&response[(ind-1)*ntime+i]^=.);

i = i+1;

end;

lastobserved = i-1;

locf[(ind-1)*ntime+lastobserved+1:(ind-1)*ntime+ntime]

=locf[(ind-1)*ntime+lastobserved];

end;

ind = ind+1;

end;

create help var {&id &time &response locf};

append;
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quit;

data &out;

merge &data help;

run;

%mend;

For the first depression trial, running the following statement produces the LOCF

data set for the HAMD17 outcome:

%locf(data=depression,id=patient,time=visit,response=hamd17,out=locf);

The arguments are exactly the same and have the same meaning as in the CC macro.

Note that now there is a new response variable created, named locf, which should

be used in the corresponding analysis programs.

11.2 Direct-Likelihood

As stated in Section 3.1.3, likelihood based inference is valid, whenever the mechanism

is MAR and provided the technical condition holds that the parameters describing

the nonresponse mechanism are distinct from the measurement model parameters.

The log-likelihood then partitions into two functionally independent components, one

describing the measurement model, the other one the missingness model. This implies

that a likelihood-based software module yields valid inferences, provided the software

tool used is able to handle measurement sequences of unequal length. Turning to SAS

software, this is the case for the procedures MIXED, NLMIXED, and GLIMMIX. Note

that no extra data manipulation is required, in contrast to CC and LOCF.

One note of caution is relevant, however. When residual correlation structures are

used for which the order of the measurements within a sequence is important, such

as unstructured and AR(1), but not simple or compound symmetry, and intermittent

missingness occurs, care must be taken to ensure the design order within the sequence,

and not the apparent order, is passed on. In the SAS procedure MIXED, a statement

such as

repeated / subject=subject type=un;

is correct when every subject has for instance four designed measurements. How-

ever, when for a particular subject the second measurement is missing, there is a risk

that the remaining measurement are considered the first, second, and third, rather

than the first, third, and fourth. This means that the MIXED procedure by default

assumes dropout. In that case, the time ordering needs to be specifies explicitly by

replacing the above statement by:
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repeated time / subject=subject type=un;

For the GENMOD procedure, the option withinsubject=time of the REPEATED

statement can be used. Note that this produces GEE and not direct-likelihood.

When the NLMIXED procedure is used, only random effects can be included, and

in such a case all relevant information is contained in the actual effects that define

the random-effects structure. For example, for a random slope in time all information

needed about time is passed on by the RANDOM statement:

random intercept time / subject=subject type=un;

Thus, in conclusion, a direct-likelihood analysis is no more complex than the

corresponding analysis on a data set without missingness.

11.3 Weighted Generalized Estimating Equations

We illustrate WGEE by means of the analysis of the first depression trial discussed

in Section 4.4.2. A GENMOD program for the standard GEE analysis would be:

proc genmod data=depression descending;

class patient trt visit;

model hamd17 = trt visit trt*visit basval basval*visit/ dist=binomial;

repeated subject=patient / withinsubject=visit type=cs modelse;

run;

Let us now discuss the steps to be taken to conduct a WGEE analysis. To com-

pute the weights, one first has to fit the dropout model using, for example, logistic

regression. The outcome ‘dropout’ is binary and indicates whether or not dropout

occurs at a given time from the start of the measurement sequence until the time of

dropout or the end of the sequence. Covariates in the model are the outcomes at

previous occasions (‘prev’), supplemented with genuine covariate information. The

DROPOUT macro is used to construct the variables ‘dropout’ and ‘prev’.

%macro dropout(data=,id=,time=,response=,out=);

%if %bquote(&data)= %then %let data=&syslast;

proc freq data=&data noprint;

tables &id /out=freqid;

tables &time / out=freqtime;

run;

proc iml;

reset noprint;
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use freqid;

read all var {&id};

nsub = nrow(&id);

use freqtime;

read all var {&time};

ntime = nrow(&time);

time = &time;

use &data;

read all var {&id &time &response};

n = nrow(&response);

dropout = j(n,1,0);

ind = 1;

do while (ind <= nsub);

j=1;

if (&response[(ind-1)*ntime+j]=.) then print "First Measurement is Missing";

if (&response[(ind-1)*ntime+j]^=.) then

do;

j = ntime;

do until (j=1);

if (&response[(ind-1)*ntime+j]=.) then

do;

dropout[(ind-1)*ntime+j]=1;

j = j-1;

end;

else j = 1;

end;

end;

ind = ind+1;

end;

prev = j(n,1,1);

prev[2:n] = &response[1:n-1];

i=1;

do while (i<=n);

if &time[i]=time[1] then prev[i]=.;

i = i+1;

end;

create help var {&id &time &response dropout prev};

append;

quit;

data &out;

merge &data help;
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run;

%mend;

Once the logistic regression has been fitted, the predicted probabilities of dropout

are translated into weights. These weights are defined at the individual measurement

level and are equal to the product of the probabilities of not dropping out up to the

measurement occasion. The last factor is either the probability of dropping out at

that time or continuing the study. Let us describe the procedure to construct the

inverse weights. At the first occasion, define the weight equal to 1. At other than the

last occasion, the quantity of interest equals the cumulative weight over the previous

occasions, multiplied by (1−the predicted probability of dropout). At the last occasion

within a sequence where dropout occurs, it is multiplied by the predicted probability

of dropout. At the end of the process, this quantity is inverted to yield the actual

weight. This task can be performed using the DROPWGT macro. The arguments

are the same as in the DROPOUT macro, except that now also the predicted values

from the logistic regression have to be passed on through the prev= argument, and

dropout indicator is passed on through the dropout= argument.

%macro dropwgt(data=,id=,time=,pred=,dropout=,out=);

%if %bquote(&data)= %then %let data=&syslast;

proc freq data=&data noprint;

tables &id /out=freqid;

tables &time / out=freqtime;

run;

proc iml;

reset noprint;

use freqid;

read all var {&id};

nsub = nrow(&id);

use freqtime;

read all var {&time};

ntime = nrow(&time);

time = &time;

use &data;

read all var {&id &time &pred &dropout};

n = nrow(&pred);

wi = j(n,1,1);

ind = 1;

do while (ind <= nsub);

wihlp=1;

stay=1;
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/* first measurement */

if (&dropout[(ind-1)*ntime+2]=1)

then do;

wihlp = pred[(ind-1)*ntime+2];

stay=0;

end;

else if (&dropout[(ind-1)*ntime+2]=0)

then wihlp = 1-pred[(ind-1)*ntime+2];

/* second to penultimate measurement */

j=2;

do while ((j <= ntime-1) & stay);

if (&dropout[(ind-1)*ntime+j+1]=1)

then do;

wihlp = wihlp*pred[(ind-1)*ntime+j+1];

stay=0;

end;

else if (&dropout[(ind-1)*ntime+j+1]=0)

then wihlp = wihlp*(1-pred[(ind-1)*ntime+j+1]);

j = j+1;

end;

j=1;

do while (j <= ntime);

wi[(ind-1)*ntime+j] = wihlp;

j = j+1;

end;

ind = ind+1;

end;

create help var {&id &time &pred &dropout wi};

append;

quit;

data &out;

merge &data help;

data &out;

set &out;

wi = 1/wi;

run;

%mend;

Using the DROPOUT and DROPWGT macros, the following code can be used

to prepare for a WGEE analysis :

%dropout(data=depression, id=patient, time=visit,
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response=hamd17, out=datahulp);

proc genmod data=datahulp descending;

class trt;

model dropout = prev trt / pred dist=binomial;

ods output obstats=pred;

run;

data pred;

set pred;

keep observation pred;

run;

data datahulp;

merge pred datahulp;

run;

%dropwgt(data=datahulp, id=patient, time=visit, pred=pred,

dropout=dropout, out=datawgee);

To sum up, the dropout indicator and previous outcome variable are defined using the

DROPOUT macro, whereafter an ordinary logistic regression is performed. Predicted

values are first saved and then merged with the original data. Finally, the predicted

values are translated into proper weights using the DROPWGT macro.

After this preparatory endeavor, we merely need to include the weights by means of

the WEIGHT (or, equivalently SCWGT) statement within the GENMOD procedure.

This statement identifies a variable in the input data set to be used a s the exponential

family dispersion parameter weight for each observation. The exponential family

dispersion parameter is divided by the WEIGHT variable value for each observation.

Whereas the inclusion of the REPEATED statement turns a univariate exponential

family model into GEE, the addition of WEIGHT further switches to WGEE. In other

words, we just need to add:

weight wi;

11.4 Multiple-Imputation and GEE

In Chapter 5, the use of multiple imputation in a GEE setting is discussed and

exemplified using the first depression trial in Section 5.3. The three tasks of multiple
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imputation, that is, imputation, analysis, and inference, can be conducted within

SAS. Two key procedures for multiple imputation are MI and MIANALYZE.

The MI procedure is used to generate the imputations. It creates M imputed data

sets, physically stored in a single data set with indicator imputation to separate

the various imputed copies from each other.

There are a variety of imputation mechanisms available, distinguishing between

non-monotone and monotone sequences, and between continuous and categorical vari-

ables (Molenberghs and Kenward, 2007).

For imputations from a multivariate Gaussian imputation model the following MI

program can be used for the continuous HAMD17 score:

proc mi data=depressionhoriz out=miout simple nimpute=5 seed=5;

var trt y4 y5 y6 y7 y8;

run;

Note that the data need to be organized ‘horizontal’, that is, one record per

subject, rather than ‘vertically’. We will now describe some options available in the

PROC MI statement, which are used above. The option simple displays simple

descriptive statistics and pairwise correlations based on available cases in the input

data set. The number of imputations is specified by nimpute= and is by default equal

to 5. If more than one number is specified, one should use a VAR statement, and the

specified numbers must correspond to variables in the VAR statement. The seed=

option specifies a positive integer, which is used by PROC MI to start the pseudo-

random number generator. The default is a value generated from the time of day

from the computer’s clock. The imputation task is carried out separately for each

level of the BY variables. Although not essential, it is useful when an analysis needs

to be checked afterwards or when a seed is specified by an external source such as a

regulatory authority.

Incomplete categorical outcomes can be imputed by including them into the CLASS

statement, in addition to their inclusion in the VAR statement. The following MI pro-

gram imputes the dichotomized version of the HAMD17 score using the conditional

logistic regression model:

proc mi data=depressionhoriz out=miout nimpute=5 seed=5;

class ybin4 ybin5 ybin6 ybin7 ybin8;

var trt ybin4 ybin5 ybin6 ybin7 ybin8;

monotone logistic(ybin8=ybin4 ybin5 ybin6 ybin7 trt/descending);

run;

proc mi data=miout out=miout2 nimpute=1 seed=100;

by _imputation_;
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class ybin4 ybin5 ybin6 ybin7;

var trt ybin4 ybin5 ybin6 ybin7;

monotone logistic(ybin7=ybin4 ybin5 ybin6 trt/descending);

run;

proc mi data=miout2 out=miout3 nimpute=1 seed=200;

by _imputation_;

class ybin4 ybin5 ybin6;

var trt ybin4 ybin5 ybin6;

monotone logistic(ybin6=ybin4 ybin5 trt/descending);

run;

proc mi data=miout3 out=miout4 nimpute=1 seed=300;

by _imputation_;

class ybin4 ybin5;

var trt ybin4 ybin5;

monotone logistic(ybin5=ybin4 trt/descending);

run;

After the imputation task, the imputed data sets are analysed using a standard

complete data procedure, such as GEE resulting in MI-GEE. It is important to ensure

that the BY statement is used such that a separate analysis is carried out for each

data set.

Parameter estimates and their estimated covariance matrices need to be stored in

appropriate output data sets, so they can be passed on to the MIANALYZE procedure

which combines the M inferences using Rubin’s formulae as described in Section 5.1.

The MIANALYZE procedure has a generic form, but some care is needed when using

it because estimates and accompanying covariance matrices have different names in

different SAS procedures, and the output data sets corresponding to these may also

be organized somewhat differently. Even though categorical effects and interactions

can be used after including them in the CLASS statement, it is safer to to create

appropriate indicator variables instead, as sometimes the mapping between parameter

estimates and the corresponding precision parameters is not straightforward.

Thus, to prepare for the analysis for the first depression trial, indicator variables

are created and the data are sorted by imputation number.

data mioutvert;

set mioutvert;

visit4=0;

visit5=0;

visit6=0;

visit7=0;
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visit8=0;

trt0=0;

trt0visit4=0;

trt0visit5=0;

trt0visit6=0;

trt0visit7=0;

basvalvisit4=0;

basvalvisit5=0;

basvalvisit6=0;

basvalvisit7=0;

if visit=4 then visit4=1;

if visit=5 then visit5=1;

if visit=6 then visit6=1;

if visit=7 then visit7=1;

if visit=8 then visit8=1;

if trt=0 then trt0=1;

if visit=4 then basvalvisit4=basval;

if visit=5 then basvalvisit5=basval;

if visit=6 then basvalvisit6=basval;

if visit=7 then basvalvisit7=basval;

run;

proc sort data=mioutvert;

by _imputation_ patient visit;

run;

Next, the GENMOD procedure can be called for a GEE analysis, similar to the

one presented in Section 11.3:

proc genmod data=mioutvert descending;

by _imputation_;

class patient trt visit;

model ybin = trt0 visit4 visit5 visit6 visit7

trt0visit4 trt0visit5 trt0visit6 trt0visit7

basval basval*visit4 basval*visit5 basval*visit6 basval*visit7

/ dist=binomial covb;

repeated subject=patient / withinsubject=visit type=cs modelse;

ods output GEEEmpPEst=miparms parminfo=miparminf CovB=micovb;

run;

Apart from the change to user-defined coding indicator variables for the categorical

covariates in the model, the BY statement has been added, as well as the ODS
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statement, to store the parameter estimates and the covariance parameters. For the

latter, the parminfo= option is used next to the CovB= option, to ensure the proper

names of the covariate effects are mapped to abbreviations of type Prm1, etc. Note that

the CovB= option only works because the covb option was included in the MODEL

statement. The parameter estimates are generated by default. The direct output of

the GENMOD procedure will be a GEE analysis for each of the five imputed data

sets.

Finally, the MIANALYZE procedure combines the M inferences into a single one.

To combine the five inferences obtained from the GEE analyses applied to the first

depression trial, the following MIANALYZE program can be used:

proc mianalyze parms=miparms parminfo=miparminf covb=micovb tcov;

modeleffects intercept trt0 visit4 visit5 visit6 visit7

trt0visit4 trt0visit5 trt0visit6 trt0visit7

basval basvalvisit4 basvalvisit5 basvalvisit6 basvalvisit7;

meantrt: test trt0+0.2*trt0visit4+0.2*trt0visit5

+0.2*trt0visit6+0.2*trt0visit7;

trtatvisits: test trt0+trt0visit4,trt0+trt0visit5,

trt0+trt0visit6,trt0+trt0visit7,trt0;

overalltrt: test trt0+trt0visit4,trt0+trt0visit5,

trt0+trt0visit6,trt0+trt0visit7,trt0/mult;

run;

Parameter estimates and variance-covariance matrices are passed on through a

combination of the parms= and covb= (or xpxi=) options. When the covb= matrices

contain generic names (Prm1,. . .), the mapping between generic and actual parameter

names is passed on using parminfo=. When one wishes to pass on either data sets of

types COV, CORR, or EST, or a data set containing parameter estimates and stan-

dard errors, data= can be used instead. Including the wcov, vcov, and tcov options

will print the within-imputation, between-imputation, and total covariance matrices,

respectively. The parameters or effects for which multiple imputation inference is

needed are passed on by means of the MODELEFFECTS statement. Categorical ef-

fects can be handled as well, after including them in the CLASS statement. However,

as stated before, it is safer to create appropriate indicator variables to avoid the use

of the CLASS statement. The TEST statement allows testing for hypotheses about

linear combinations of the parameters. The statement is based on Rubin (1987), and

uses a t distribution, which is the univariate version of the work by Li, Raghunathan

and Rubin (1991).
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11.5 Diggle-Kenward Model

In this section we exemplify the implementation of the Diggle-Kenward model using

the SAS procedure IML by means of the second depression trial data as discussed

in Section 6.1.2. For the measurement process, a specific case of the linear mixed

model was considered with various fixed effects and a covariance matrix, Vi, which

was assumed to be of the heterogeneous first-order autoregressive type:

Vi =




σ2
1 ρ σ1σ2 · · · ρ σ1σn−1

ρ σ2σ1 σ2
2 · · · ρ σ1σn−2

...
...

. . .
...

ρ σn−1σ1 ρ σn−2σ1 · · · σ2
n



. (11.1)

The program can easily be adapted for another form of the linear mixed model

(3.8), by just changing this Vi matrix. Before fitting the Diggle-Kenward model, some

preparatory work is needed which is shown for the second depression trial data in case

of MCAR missingness:

proc iml;

use depression;

read all var {id basval group time time2 y} into data;

id = data[,1];

basval = data[,2];

group1 = data[,3];

group0 = j(nrow(data),1,1)-group1;

time = data[,4];

timegroup0 = time#group0;

timegroup1 = time#group1;

time2 = data[,5];

time2group0 = time2#group0;

time2group1 = time2#group1;

intercept=j(nrow(data),1,1);

create x var {intercept basval group0 time time2 timegroup0 time2group0};

append;

y = data[,6];

create y var {y};

append;

beta=6.84//-.36//-.21//-2.53//.16//.51//-.03;

sigma1=sqrt(16.32);

sigma2=sqrt(36.08);
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sigma3=sqrt(39.88);

sigma4=sqrt(38.99);

sigma5=sqrt(40);

sigma6=sqrt(50);

rho = .665;

psi= -1.9;

initial=beta//sigma1//sigma2//sigma3//sigma4//sigma5//sigma6//rho//psi;

create initial var {initial};

append;

nsub=259;

ntime=6;

create nsub var {nsub};

append;

create ntime var {ntime};

append;

quit;

Using IML the matrices x and z are created, which contain all Xi and Zi de-

sign matrices (i = 1, . . . , N), as well as the vector y of all Yi response vectors

(i = 1, . . . , N). Next, a vector of initial values for the parameters in the model is

specified through initial. Finally, the number of subjects N and the number of

time points n are required and passed on by nsub and ntime respectively.

As initial values for the parameters of the measurement process the parameter

estimates of a ignorable direct-likelihood analysis based on the corresponding linear

mixed model are used. For the parameters of the dropout model, initial values are

shown in Table 11.1 for each of the three missingness mechanisms, MCAR (ψ1 = ψ2 =

0), MAR (ψ2 = 0), and MNAR, respectively.

Table 11.1: Initial values for the parameters of the dropout model.

Dropout Mechanism

Parameter MCAR MAR MNAR MNAR + Covariate

ψ0 1 ψ̂0,MCAR ψ̂0,MAR ψ̂0,MNAR

ψ1 1 ψ̂1,MAR ψ̂1,MNAR

ψ2 1 ψ̂2,MNAR

ψ3 1

Next, the Diggle-Kenward model can be fitted using IML code, which is available
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from the CenStat website1.

In the IML program, the module loglik evaluates the log-likelihood function

L(θ,ψ) for given set of parameters. Since this module requires integration over the

missing data, the integrand is calculated in the module integr. The log-likelihood

depends on the assumed mean and covariance structure and therefore one needs to

adapt the module to the case considered. The following part of the module defines

the mean and covariance structure for the second depression trial:

beta=parameters[1:7];

sigma1=parameters[8];

sigma2=parameters[9];

sigma3=parameters[10];

sigma4=parameters[11];

sigma5=parameters[12];

sigma6=parameters[13];

rho=parameters[14];

sigma11=sigma1**2;

sigma22=sigma2**2;

sigma33=sigma3**2;

sigma44=sigma4**2;

sigma55=sigma5**2;

sigma66=sigma6**2;

sigma12=rho*sigma1*sigma2;

sigma13=(rho**2)*sigma1*sigma3;

sigma14=(rho**3)*sigma1*sigma4;

sigma15=(rho**4)*sigma1*sigma5;

sigma16=(rho**5)*sigma1*sigma6;

sigma23=rho*sigma2*sigma3;

sigma24=(rho**2)*sigma2*sigma4;

sigma25=(rho**3)*sigma2*sigma5;

sigma26=(rho**4)*sigma2*sigma6;

sigma34=rho*sigma3*sigma4;

sigma35=(rho**2)*sigma3*sigma5;

sigma36=(rho**3)*sigma3*sigma6;

sigma45=rho*sigma4*sigma5;

sigma46=(rho**2)*sigma4*sigma6;

sigma56=rho*sigma5*sigma6;

and for a particular subject i the mean and covariance matrix is selected using:

mui = xi*beta;

1http://www.censtat.be/software/
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vi = j(ntime,ntime,1);

vi[1,1] = sigma11;

vi[1,2] = sigma12;

vi[1,3] = sigma13;

...

vi[5,6] = sigma56;

vi[6,6] = sigma66;

Next, the log-likelihood is maximized using the Newton-Raphson ridge optimiza-

tion method (call nlpnrr) thereby combining stability and speed. However, in other

analyses, it may be necessary to try (several) other optimization methods, and a good

number are available in SAS. In the program, we call nlpnrr as follows:

call nlpnrr(rc,est,"loglik",initial,opt,con);

Here, the argument "loglik" is the module of the function which has to be max-

imized, the log-likelihood in this case. The initial values to start the optimization

method are listed in initial. The opt argument indicates an options vector that

specifies details of the optimization process. Maximization instead of minimization

is indicated by opt[1]=1. The output printed is controlled by opt[2], which will

yield summaries for the optimization start and termination, the iteration history, and

initial as well as final parameter estimates. A constraint matrix is specified in con,

defining lower and upper bounds for the parameters in the first two rows. However, in

this case the heterogeneous first-order autoregressive covariance structure is assumed

implying no constraints are needed. Finally, all optimization methods return the

following results: the scalar return code rc and a row vector est. The return code

indicates the reason for the termination of the optimization process. A positive return

code indicates successful termination, whereas a negative one indicates unsuccessful

termination, that is, that the result est is unreliable. The row vector est contains the

optimal point - the maximum likelihood estimate - when the return code is positive.

Further, nlpfdd is called, which is a subroutine that approximates derivatives by

finite differences method,

call nlpfdd(maxlik,grad,hessian,"loglik",est);

Again "loglik" is the module of the log-likelihood function. The vector that defines

the point at which the functions and derivatives should be computed is est. This

subroutine computes the function values maxlik - which is in this case the maximum

likelihood value, since est is the maximum likelihood estimate -, the gradient vector

grad, and the Hessian matrix hessian, which is needed to calculate the information

matrix, and thus the covariance matrix covar and standard errors stde:
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inf = - hessian;

covar = inv(inf);

var = vecdiag(covar);

stde = sqrt(var);

For the second depression trial data, the estimate and standard error for the

treatment effect at week 9 are denoted as diffest and diffse respectively and are

calculated as follows:

cov36=covar[3,6];

cov37=covar[3,7];

cov67=covar[6,7];

diffvar=var[3]+81*var[6]+(81*81)*var[7]+2*9*cov36+2*81*cov37+2*9*81*cov67;

diffse=sqrt(diffvar);

diffest=est[3]+9*est[6]+81*est[7];

Finally, to fit the model under the different missingness mechanisms a few lines in

the program need to be adapted. For the model under MAR, we replace the following

line, which corresponds to MCAR,

psi[1]=parameters[15];

by

psi[1:2]=parameters[15:16];

while in case of the MNAR assumption it is replaced by

psi[1:3]=parameters[15:17];

Further, under the MAR and MNAR assumption, we have to add one, or two columns

of dots respectively, to the constraints matrix con.

Note that the model can be expanded by allowing the dropout process to depend

on a covariate, such as for instance treatment trt. Thus, instead of (6.4), we use the

following

logit [P (Di = j | Di ≥ j,hij , yij ,ψ)] = ψ0 + ψ1yi,j−1 + ψ2yij + ψ3 trti. (11.2)

In this case, the program needs to be adapted as follows. First, in the modules integr

and loglik, we add trt and trti as global variables. Further, in the loglik module,

when specifying the parameters, the parameter ψ3 needs to be specified as well:

trt=parameters[18];
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and where the information on one particular patient is selected, we add:

trti = xi[1,2];

Next, in the integr module, we replace

g=exp(psi[1]+psi[2]*lastobs+psi[3]*yd);

by

g=exp(psi[1]+psi[2]*lastobs+psi[3]*yd+trt*trti);

and in the loglik module,

g = exp(psi[1]+yobs[j-1]*psi[2]+yobs[j]*psi[3]);

is replaced by

g = exp(psi[1]+yobs[j-1]*psi[2]+yobs[j]*psi[3]+trt*trti);

Finally, compared to the MNAR program, we again add a column of dots to the

constraints matrix con.

11.6 Local Influence Applied to Diggle-Kenward Model

In this section the local influence tool applied to the Diggle-Kenward model is exem-

plified using the SAS software. Using PROC IML, the normal curvature Ch of ζ(ω)

in ω0, in the direction the unit vector h is calculated. The IML code for the second

depression trial data can be found on the website.

Before running this program again the matrices x, z, the vectors y and initial,

and the numbers nsub and ntime need to be created using PROC IML, analogous

as in Section 11.5. The initial parameters used are the estimates of the parameters

of the Diggle-Kenward model assuming MAR missingness. In the local influence

implementation, the modules integr and loglik introduced in Section 11.5, are

used to calculate the log-likelihood of the Diggle and Kenward (1994) model under

the MNAR assumption. This is necessary for the evaluation of ∆ and L̈. Next, the

module delta calculates the ∆ vector, whereas L̈ is calculated using call nlpfdd.

Note that again the program needs to be adapted according to the assumed mean

and covariance structure in both the modules loglik and delta. Additionally the

calculation of the derivatives
∂λ(yid|hid)

∂θ

to obtain the columns ∆i of ∆ as shown in Section 7.3.2 needs to be adapted as well

since the latter depends on the covariance structure considered. The implementation
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for the second depression trial data is based on the derivation for the special case of

three measurements, also shown in Section 7.3.2.

Finally, after ∆ is evaluated at the maximum likelihood estimate through

delta=delta(est);

the dataset c matrix is created containing the following normal curvatures in the

direction of the unit vector hi containing one in the ith position and zero elsewhere,

c = Ci, c1 = Ci(β), c2 = Ci(α), c12 = Ci(θ), and c3 = Ci(ψ),

and the normal curvature in the direction of hmax = hmax of maximal normal cur-

vature cmax = Cmax. Note that the program requires the number of fixed effects,

covariance parameters, and the dropout model parameters, which for the second de-

pression trial is given by

nbeta=7;

nsigma=7;

npsi=2;

The c matrix dataset can now be used to picture the local influence measures.

11.7 Latent-Class Mixture Model

The latent-class mixture model has been implemented using the GAUSS Software as

we will show in this section. First, we explain how the software code is built up in

general in Section 11.7.1. Afterwards we demonstrate the pgm files, which contain

necessary functions for the analyses, as well as the main bat files, which include the

actual code for a particular dataset, in Section 11.7.2 and 11.7.3 respectively.

11.7.1 General Code

The software code to fit a latent-class mixture model consists of four steps: (1) cal-

culation of the maximum likelihood estimates, (2) calculation of the log-likelihood,

standard errors and p-values, corresponding to the maximum likelihood estimates, (3)

classification of subjects into the latent groups, and (4) drawing inferences. Let us de-

scribe the general code for these three steps in turn. First, according to Section 8.2.2,

we can implement the estimation of the parameters of the latent-class mixture model

as shown in Table 11.2, to obtain the maximum likelihood estimates Ω̂.

After obtaining the maximum likelihood estimate Ω̂ using the presented algorithm,

the corresponding maximum likelihood value can be calculated as the second step. To
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Table 11.2: Gauss code. General form of estimation procedure to obtain the maximum

likelihood estimates of the latent-class mixture model.

1. Read dataset and create design matrices X, Z, and W

2. Give initial values Ωinitial and initialize necessary global parameters (Ta-

ble 11.3)

3. EM Algorithm: Iteration 1

• iteration = 1;

• E Step: For i = 1, . . . , N and k = 1, . . . , g

. Calculate fik(yo
i , di|Ωinitial)

. Calculate posterior probabilities πik(Ωinitial)

• M Step

. For k = 1, . . . , g, calculate the mean of posterior probabilities

to obtain estimate π(1) = (π
(1)
1 , . . . , π

(1)
g ) (maximum of O1 func-

tion)

. Maximize O2 function πik using Newton-Raphson numerical

technique to obtain estimates (θ(1),ψ(1),α(1))

• iteration = iteration+ 1;

4. EM Algorithm: Iterate until convergence

ε = tol + 1;

Repeat until (|ε| < tol) or (iteration > maxiter)

• E Step at iteration t: For i = 1, . . . , N and k = 1, . . . , g

. Calculate fik(yo
i , di|Ω(t))

. Calculate posterior probabilities πik(Ω(t))

• M Step at iteration t

. For k = 1, . . . , g, calculate the mean of posterior probabilities

to obtain estimate π(t+1) (maximum of O1 function)

. Maximize O2 function πik using Newton-Raphson numerical

technique to obtain estimates (θ(t+1),ψ(t+1),α(t+1))

• ε = O(Ω(t+1)) −O(Ω(t));

• iteration = iteration+ 1;

→ The EM algorithm converges to the maximum likelihood estimate Ω̂
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Table 11.3: Global variables.

Global Explanation

_N number of subjects

_g number of latent groups

_n number of time points

_qpoints number of quadrature points for numerical Gaussian-Quadrature

[_x1,_x2] interval for numerical Gaussian-Quadrature integration

_opgtol tolerance for Newton-Raphson numerical maximization of O2

tol tolerance for EM algorithm to maximize log-likelihood

maxiter maximum number of iteration for the EM algorithm

this end, a function is written in GAUSS. Using this function, the covariance matrix of

the maximum likelihood estimate can be obtained, and consequently we can calculate

standard errors and corresponding p-values for the model parameters. Note that

the p-values are based on Wald tests, which are valid for the measurement model

parameters, but perhaps not for the dropout model parameters or shared effects.

Next, as shown in Section 8.3, subjects can be classified into the latent groups, using

the posterior probabilities. Finally, inferences can be drawn, since we now have the

maximum likelihood estimates of the parameters and the corresponding covariance

matrix.

11.7.2 GAUSS PGM Files shared.pgm and lcmm.pgm

The GAUSS code we developed assumes only one subject-specific effect in the latent-

class mixture model, that is, bi, a shared intercept. Further, this shared intercept

is assumed to have equal covariance across the different mixture components, that

is, d2
1 = . . . = d2

g = d2. Finally, the residual covariance matrices are assumed to be

equal and of a simple structure, that is, Σ
(1)
i = . . . = Σ

(g)
i = Σi = σ2In. These

simplifications of the latent-class mixture model lead to Yi|qik = 1, bi ∼ N(Xiβ +

bi, σ
2In), with bi ∼

∑g
k=1 πkN(µk, d

2).

Note when g = 1, the latent-class mixture model results in a classical shared-

parameter model, which results for the measurement model in Yi|bi ∼ N(Xiβ +

bi, σ
2In), with bi ∼ N(0, d2). Therefore, we created two files in GAUSS, shared.pgm

and lcmm.pgm, containing functions for the shared-parameter model and the latent-

class mixture model with g ≥ 2 respectively. Both files can be found on the website.
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Next, regarding the dropout model, we have split the file into two parts. In the first

part, the dropout model does not depend on the shared intercept, that is,

logit[gij(wij , bi, qik)] = γkwij , (11.3)

whereas in the second part, the shared intercept is added to the dropout model,

resulting in

logit[gij(wij , bi, qik)] = γkwij + λ bi. (11.4)

Let us now give an overview of the functions which are given in the pgm files. First,

shared.pgm includes two functions, integrand and shared. The function integrand

calculates for a given value of the shared intercept bi the value of the integrand

f(yo
i |bi,θ)f(di|bi,ψ)f(bi|α),

with θ, ψ, and α, the unknown parameters of the measurement model, the dropout

model, and of the shared effect distribution, respectively. This function is used in the

function shared, which represents the log-likelihood function

`(Ω|yo,d) =

N∑

i=1

ln

{∫
f(yo

i |bi,θ)f(di|bi,ψ)f(bi|α) dbi

}
.

The integration is computed over a finite interval [x1, x2] using Gauss-Legendre quadra-

ture, a numerical integration technique. Both functions appear twice in the shared.pgm

file, and are distinguished by suffix 1 and 2. Suffix 1 corresponds to assuming dropout

model (11.3), which yields that the integrand

f(yo
i |bi,θ)f(bi|α)

is calculated in integrand1 and the log-likelihood function in shared1 is of the fol-

lowing form

`(Ω|yo,d) =

N∑

i=1

ln

{
f(di|ψ)

∫
f(yo

i |bi,θ)f(bi|α) dbi

}
,

whereas suffix 2 corresponds to assuming (11.4), for which both functions, integrand2

and shared2, are as described above. Note that assuming (11.3) for the classical

shared-parameter model essentially comes down to the MCAR missingness assump-

tion.

Next, in the lcmm.pgm file, there are five function; integrand, fydik, q2negagive,

q1function, and lcmm. Again, a suffix distinguishes between the assumption (11.3) or

(11.4) for the dropout model. In the integrand2 function, the value of the integrand

f(yo
i |bi, qik=1,θ)f(di|bi, qik=1,ψ)f(bi|qik=1,α)
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is given for a certain value of the shared intercept bi. Under (11.3), the integrand1

function results in computing

f(yo
i |bi, qik=1,θ)f(bi|qik=1,α).

Next, this integrand is used in the calculation of fik(yo
i , di|qik = 1,Ω) in the fydik

function. Under the assumption of (11.3), we use fydik1 or

fik(yo
i , di|qik = 1,θ,ψ,α) = f(di|qik=1,ψ)

∫
f(yo

i |bi, qik=1,θ)f(bi|qik=1,α) dbi,

whereas under (11.4) the function fydik2 is computed as follows:

fik(yo
i , di|qik = 1,θ,ψ,α) =

∫
f(yo

i |bi, qik=1,θ)f(di|bi, qik=1,ψ)f(bi|qik=1,α) dbi.

Again, the integration is conducted over a finite interval [x1, x2] using Gauss-Legendre

quadrature numerical integration. Note that with these functions, the E step of the

EM algorithm can be performed, as well as the calculation of the updated estimate for

π. However, to obtain the updated estimates for (θ,ψ,α), we need to maximize the

O2 function, which is calculated in the q2negative. Since the optimization procedure

optmum in GAUSS is only able to minimize functions, q2negative1 and q2negative2

actually are the negative of the O2 function, −O2. After the E and M step are

conducted, we need to calculate ε of the particular iteration. To this end, in addition

to the O2 function, we also need the O1 function, which is given in q1function.

Up to here, we can perform the EM algorithm, and consequently we can obtain the

maximum likelihood estimates. To get the maximum likelihood value however, we

need an extra function, lcmm, which computes the log-likelihood value (8.4), or

`(Ω|yo,d) =

N∑

i=1

ln

{
g∑

k=1

πkfik(yo
i , di|qik = 1,θ,ψ,α)

}
.

11.7.3 GAUSS BAT File for First Depression Trial

Next to the pgm files, presented in the previous section, there is a main Gauss file,

that is, a bat file, which contains the code as shown in general in Section 11.7.1. Let

us demonstrate this through the first depression trial data as discussed in Section 8.5.

The files fdtspm.bat and fdtlcmm.bat are provided on the website to fit re-

spectively a shared-parameter model and a latent-class mixture model to the first

depression trial data. As in the pgm files, both files split into two parts, distinguishing

between either assuming dropout model (11.3) or (11.4).

First of all, the library optmum needs to be loaded as well as the necessary pgm

file, for instance for the latent-class mixture model that is:
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library optmum;

#include \gauss\myproc\lcmm.pgm;

In line with Table 11.2, the code contains 4 steps. The first step consist of reading

the data set into GAUSS and create the design matrices. Note that this part of the

programs needs to be adapted to one’s data set and to the analysis at hand. For the

first depression trial this becomes:

/* read data set */

dataset="c:\\depression";

open handle=^dataset for read;

data=readr(handle,10000);

call close(handle);

naam=getname(dataset);

/* specify necessary variables */

trt=data[.,9];

visit=data[.,2];

trtvisit=trt.*visit;

basval=data[.,10];

visitsq=visit.*visit;

trttime=data[.,6];

_subject=data[.,1]; /* necessary variable: subject indicator _subject */

_y=data[.,3]; /* necessary variable: response _y */

_time=visit; /* necessary variable: time variable _time */

intercept=ones(rows(_y));

/* create design matrices */

_x=intercept~trt~visit~trtvisit~basval~visitsq;

_z=intercept;

_w=intercept~visit;

Next, GAUSS will either compute or request the necessary global parameters

shown in Table 11.3. Also, the initial values for the EM algorithm need to be given.

For the required global parameters and initial values a request appears, such as for

instance for the initial values for the fixed effects parameters:

Give initial values for the fixed effects of the measurement model (beta):

In this case, one needs to enter the initial values for the fixed effects one by one.

In the analysis of the first depression trial, we used 40 quadrature points and

the integration was done over the interval [−20, 20]. Further, the tolerance for the
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Newton-Raphson numerical maximization of O2 was set to 0.00001, and for the EM

algorithm, to maximize the log-likelihood, it was chosen to be 0.0001. Finally, the

maximal number of iteration of the EM algorithm was 1000. To get sensible initial

values, we fitted the linear mixed model with the same fixed and random effects as

used in the heterogeneity model, as well as a logistic regression for the dropout model

to the data. Since this is not taking into account any latent group structure, we can use

the parameter estimates as initial values for the shared-parameter model. Afterwards,

the parameters estimates of the shared-parameter model are used as initial values for

the two-group latent-class mixture model, and so on. Note that this technique does

not provide initial values for the group-specific parameters, and thus we get these by

trial and error. Further, when the dropout model includes the shared intercept, the

initial value for the extra parameter, λ, was also chosen by trial and error to be 0.10.

Obviously, the same goes for the prior probabilities of the latent group components.

Next, the maximum likelihood estimate, denoted by mle, is obtained by means of

the EM algorithm as described in Section 8.2.2. Afterwards this maximum likelihood

estimate is printed as well as the maximized log-likelihood value, that is, the log-

likelihood evaluated at the maximum likelihood estimate. Further, the Hessian of

the log-likelihood function is calculated using the hessp function in GAUSS. Using

this Hessian, evaluated in the maximum likelihood estimates, the covariance matrix,

covmatrix, is obtained and consequently also the variances (variances) and standard

errors (stderrors) corresponding to the maximum likelihood estimates. Finally, p-

values corresponding to Wald tests are calculated.

As mentioned in Section 8.3, subjects can be classified into the different latent

groups based on the posterior probabilities, which is done in the next step of the

program. The matrix postprob contains the posterior probabilities for all subjects

and latent groups, whereas the vector classification contains for each subject the

number of the latent group to which it is classified.

Finally, in the last part, certain hypotheses can be tested. In the first depression

trial, we test the hypothesis of treatment effect at the last visit as follows:

estdiff=mle[2]+5*mle[4];

vardiff=variances[2]+5*5*variances[4]+2*5*covmatrix[2,4];

sediff=sqrt(vardiff);

zvaldiff=estdiff/sqrt(vardiff);

pvaldiff=2*(1-cdfn(abs(zvaldiff)));

"estimate of treatment effect at time=5: " estdiff;

"standard error of treatment effect at time=5: " sediff;

"p-value of treatment effect at time=5: " pvaldiff;
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Samenvatting

In een longitudinale studie wordt een bepaald kenmerk herhaaldelijk gemeten over de

tijd. Op deze manier levert elk indivudu meer dan één waarneming aan, resulterend

in een zogenaamd responsprofiel. Het geldig analyseren van dergelijke longitudinale

studies is niet evident, en hangt onder andere af van het type van de responsvari-

abele. Het linear-mixed model wordt algemeen aanvaard als de basis voor de analyse

van normaal verdeelde longitudinale gegevens. Voor niet-normaal verdeelde gegevens

is er geen algemeen aanvaarde tegenhanger voor dit linear-mixed model. De longitudi-

nale modellen in deze context omvatten (1) marginale modellen , (2) random-effecten

(of individu-specifieke) modellen, en (3) voorwaardelijke modellen. Twee belangrijke

vertegenwoordigers zijn de generalized estimating equations (GEE, Liang and Zeger,

1986) binnen de marginale familie en het generalized linear-mixed model (GLMM,

Molenberghs and Verbeke, 2005) binnen de random-effecten familie.

Het geldig analyseren wordt nog een stap complexer als de gegevens onvolledig

zijn. Een speciaal en veel voorkomend geval van onvolledigheid is wanneer een aantal

individuen de geplande studie niet voleindigen. Men spreekt dan van dropout, of

uitval. In het algemeen komt onvolledigheid voor door redenen die buiten de controle

staan van de onderzoekers. Daarenboven kan deze onvolledigheid in verband staan

met de metingen waarin men gëınteresseerd is. Dit duidt erop dat over het algemeen

het noodzakelijk is ook de aandacht te richten op het onderliggende proces dat deze

onvolledigheid bepaalt. Vermits men nooit zeker kan zijn over de exacte vorm van dit

proces moeten er veronderstellingen gemaakt worden.

Rubin (1976) introduceert een formeel kader binnen het gebied van onvolledigheid,

waarbij hij onderscheid maakt tussen drie mechanismen die onvolledigheid besturen,

zijnde (1) missing completely at random (MCAR), waarbij het ontbreken van gegevens

niet gerelateerd is aan de respons; (2) missing at random (MAR), waarbij onvolledig-

heid kan afhangen van geobserveerde respons; en (3) missing not at random (MNAR),

waarbij het is gerelateerd aan respons, zowel de geobserveerde als de ontbrekende
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gegevens. MCAR is de eenvoudigste onderstelling wegens onafhankelijkheid tussen

onvolledigheid en respons, doch tegelijk zeer restrictief en zelden waar. MNAR is de

meest flexibele veronderstelling, doch de relatie tussen onvolledigheid en niet geob-

serveerde respons maakt het formuleren van modellen en het schatten van parame-

ters complex. Tevens leveren dergelijke modellen slechts identificeerbare parameters

op mits zware en niet te toetsen veronderstellingen. Jammer genoeg zijn dergelijke

veronderstellingen meestal niet zichtbaar en de preciese implicaties ervan ongekend.

Tegelijkertijd zijn er verscheidene modelfamilies vastgesteld om het meetproces en

onvolledigheidsproces gezamenlijk te analyseren. In een selectie model (Little and Ru-

bin, 1987) wordt de gezamenlijke verdeling van de metingen en het onvolledigheidspro-

ces ontbonden wordt in de marginale verdeling van de metingen en de voorwaardelijke

verdeling van het onvolledigheidsproces, gegeven de metingen. De omgekeerde ont-

binding wordt het pattern-mixture model genoemd (Little, 1993, 1994a). Wanneer

verondersteld wordt dat een aantal random effecten zowel de metingen als het on-

volledigheidsproces bëınvloeden, en dat gegeven deze random effecten deze processen

onafhankelijk zijn, dan spreekt men van een shared-parameter model. Een belangrijk

concept in het gebied van onvolledigheid is ignorability (Rubin, 1976), wat stelt dat

onder bepaalde voorwaarden het onvolledigheidsproces genegeerd kan worden, indien

de interesse uitgaat naar conclusies aangaande het meetproces. Wanneer likelihood of

Bayesiaanse methoden gebruikt worden, kan ignorability toegepast worden bij MCAR

en MAR onvolledigheid, maar binnen het frequentistische kader is de strikte MCAR

veronderstelling nodig om geldige analyse te bekomen.

Het is duidelijk dat sinds de publicatie van Rubin (1976), die onvolledigheid vast-

gesteld heeft als een onderzoeksgebied binnen statistiek, er een groot deel van het

onderzoek is gewijd aan het probleem van onvolledigheid. Ondanks dat er een merk-

baar onderscheid is in de verschillende denkwijzen zichtbaar in de methodologische

ontwikkelingen, toch zijn onderzoekers het eens dat geen enkel model de beperking,

van de ontbrekende gegevens nooit te zullen kennen, kan tenietdoen. Aan de ene

hand benadrukken alle partijen, zijnde, de academische wereld, de industrie, en de

regulerende autoriteiten, de nood voor sensitiviteitsanalyse, terwijl er aan de andere

kant minder overeenkomst is over het soort van sensitiviteitsanalyse. Een belangrijke

voorwaarde om een bepaalde methode voor te stellen als een haalbare methode bin-

nen een sensitiviteitsanalyse, is de beschikbaarheid van vertrouwde en makkelijk te

gebruiken software.

In deze thesis is het aangetoond dat het betreurenswaardig is dat er zoveel nadruk

gelegd is op simpele methoden zoals complete case analyse of last observation car-

ried forward, die tenminste eisen dat het onvolledigheids proces MCAR is. Deze
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simpele methoden hebben we vergeleken met direct-likelihood analyse, waarbij alle

beschikbare informatie gebruikt wordt zonder dat er bijkomende datamanipulatie

nodig is. Bovendien is een direct-likelihood analyse geldig onder de minder strikte

en meer realistische MAR onderstelling. In geval de conclusies verkregen zijn binnen

het likelihood of Bayesiaans kader is het niet nodig om het onvolledigheidsproces te

modelleren, en bijgevolg kan het linear-mixed model of het generalized linear-mixed

model binnen de random-effecten familie gebruikt worden voor respectivelijk nor-

maal verdeelde en niet-normaal verdeelde onvolledige longitudinale gegevens. Deze

methoden zijn even gemakkelijk te implementeren dan wanneer er geen ontbrekende

gegevens zouden geweest zijn.

Zoals eerder aangehaald wordt in het geval van niet-normaal verdeelde gegevens

geopteerd voor de semi-parametrische GEE methode binnen de marginale familie.

Aangezien deze methode vereist dat er voldaan is aan de MCAR onderstelling, zijn

er alternatieven voorgesteld zoals weighted generlized estimating equations (WGEE,

Robins et al., 1994) en generlized estimating equations gebaseerd op multiple impu-

tation (MI-GEE, Schafer, 2003), zodat de conclusies geldig zijn onder de MAR aan-

name. Voor beide methoden dient slechts een kleine dosis programmering uitgevoerd

wat mogelijk is met standaard statistische software. In deze thesis hebben we deze

twee methoden vergeleken gebruik makende van asymptotische simulaties en simu-

laties met kleine steekproefgrootte. In theorie is WGEE onvertekend, wat bevestigd

werd door de asymptotische simulaties, maar deze eigenschap kan niet doorgetrokken

worden voor kleinere steekproeven, zelfs niet wanneer elk aspect van de analyse cor-

rect gespecifieerd is. Daarenboven verdwijnt deze asymptotische onvertekening in

geval van misspecificatie in het model dat de metingen of het onvolledigheidsproces

beschrijft. Aan de andere kant heeft MI-GEE zijn robustheid bewezen onder misspec-

ificatie van het het model voor de metingen of de imputatie. Bovendien resulteert

MI-GEE in schattingen die minder vertekening en meer precisie vertonen in kleine

tot middelmatige steekproeven vergeleken met WGEE. Omwille van deze opmerkin-

gen adviseren we in de praktijk het gebruik van MI-GEE boven WGEE, ondanks de

asymptotische onvertekening van WGEE. Ondanks de focus van deze thesis gericht

is op onvolledigheid in de responsvariabele, merken we op dat onvolledigheid in de

covariaten ook vaak voorkomend is, en in dit geval kan MI-GEE toegepast worden

terwijl WGEE niet mogelijk is.

Tot hier toe hebben we duidelijk gesteld dat de simpele ad hoc methoden, die

lange tijd in gebruik waren, eigenlijk een plaats verdienen in het museum voor sta-

tistiek, en dat de primaire analyse zou moeten bestaan uit methoden die het MAR

mechanisme onderstellen voor de onvolledigheid. Aan de andere kant kan men echter
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de mogelijkheid van MNAR onvolledigheid niet als zodanig uitsluiten, wat de nood

impliceert om MNAR modellen te beschouwen. Daarom hebben we in deze thesis een

overzicht gegeven van bestaande MNAR modellen, waarbij de aandacht voornamelijk

gevestigd is op de modellen voorgesteld door Diggle and Kenward (1994) voor normaal

verdeelde gegevens, en door Baker et al. (1992) voor binaire gegevens.

Een belangrijk kenmerk van het statistisch modelleren in geval er onvolledigheid

optreedt, is dat kwaliteit van de fit voor de geobserveerde waarnemingen niets zegt

over de geschiktheid van de structuur voor de ontbrekende gegevens die uit deze

fit volgt. Dit hangt niet af van welke MNAR methode er gebruikt wordt, of nu

een parametrische of niet-parametrische aanpak gekozen wordt. MNAR modellen

zijn gebaseerd op veronderstellingen aangaande de ontbrekende gegevens en zijn der-

halve niet verifieerbaar door middel van de beschikbare, geobserveerde waarnemingen.

Bovendien hebben we in deze thesis aangetoond dat het empirische onderscheid tussen

MNAR en MAR niet mogelijk is, in de zin dat de fit van elk MNAR model voor een

verzameling van geobserveerde gegevens exact kan gereproduceerd worden door een

MAR equivalent. Deze zogenaamde MAR bodyguard levert identiek dezelfde fit voor

de geobserveeerde gegevens, maar de voorspellingen van de ontbrekende waarnemin-

gen gegeven de geobserveerden is mogelijks verschillend. Een gevolg hiervan is dat

men nooit de aanname van een MNAR model ten opzichte van een MAR model kan

testen, tenzij men bereid is om het gestelde MNAR model te aanvaarden zonder meer.

Dit benadrukt de sensitiviteit van de conclusies gebaseerd op MNAR modellen aan-

gaande de vooropgestelde en niet verifieerbare modelonderstellingen. Dankzij deze

bemerkingen en feiten is het duidelijk dat in geen enkel setting met ontbrekende

gegevens er gesproken kan worden over één definitieve analyse. Een logisch compro-

mis tussen blindelings te gaan voor MNAR modellen of ze volledig te negeren, is deze

MNAR modellen te gebruiken als onderdelen voor een sensitiviteitsanalyse. Zo is

het aan te raden om na een primaire analyse gebaseerd op de MAR assumptie een

sensitiviteitsanalyse uit te voeren om de impact van de afwijkingen van deze MAR

assumptie te onderzoeken.

In deze thesis geven we een overzicht van methoden die gebruikt kunnen worden

in een sensitiviteitsanalyse, zowel op het niveau van het model door een waaier van

modellen te beschouwen, als op het niveau van de individuen gebaseerd op global

en local influence, beiden toegepast op het Diggle-Kenward model en de BRD model-

familie. De local influence aanpak voor BRD modellen van Jansen et al. (2003) hebben

we uitgebreid door enerzijds de terminologie te baseren op de aantallen per cel in

plaats van de parameters, en anderzijds de celkansen lichtjes te verstoren in plaats

van de de model parameters. Alhoewel de basis van local influence was om invloedrijke
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individuen op te sporen, zijnde individuen die non-randomly uitvallen en op die manier

het gestelde MAR model schijnbaar leiden in de MNAR richting, verscheidene auteurs

(Verbeke et al., 2001b; Jansen et al., 2006b) hebben aangetoond dat deze invloedrijke

individuen vaak invloedrijk zijn om andere redenen dan aangaande onvolledigheid.

Een verdere stap in sensitiviteitsanalyse is om naast selectiemodellen ook pattern-

mixture modellen te beschouwen (Molenberghs et al., 1998b; Thijs et al., 2002), of

zogenaamde latent-class mixture models, zoals aangetoond in deze thesis. Deze laatste

is een uitbreiding van het shared-parameter model, vermits zowel het model voor de

metingen als het model dat onvolledigheid beschrijft mogelijks één of meerdere random

effecten gemeenschappelijk hebben, en gegeven deze random effecten worden beide

processen onafhankelijk verondersteld. Bovendien deelt dit model eigenschappen met

de drie verschillende modelfamilies, door informatie te gebruiken van de locatie en

de evolutie van de respons profielen, een duidelijk selectie model concept, en van de

dropout patronen, een pattern-mixture idee, om op die manier latente groepen en

variabelen te definiëren, wat dan weer een karakteristiek is van het shared-parameter

model. Door de veronderstelling van een latente structuur vangt het model mo-

gelijke diversiteit op tussen latente groepen in de populatie. We hebben aangetoond

dat dit latent-class mixture model niet alleen gebruikt kan worden als een flexibele

modeltechniek, maar ook binnen sensitiviteitsanalyse, en om latente groepen verder

te bestuderen.

Tenslotte merken we nog op dat alle voorgestelde modellen geimplementeerd kun-

nen worden in standard statistische software. Daarom hebben we in een laatste

hoofdstuk getoond hoe de MAR analyses alsook de analyse gebaseerd op het Diggle-

Kenward model en de local influence hierop toegepast, kan worden uitgevoerd gebruik

makend van de SAS software. Verder bevat dit laatset hoofdstuk ook de implemen-

tatie in GAUSS van een vereenvoudigde versie van het latent-class mixture model

zoals gebruikt doorheen deze thesis. Merk op dat er nog verder onderzoek aangaande

dit model nodig is, zoals bijvoorbeeld in verband met modelselectie en modelonder-

stellingen, alsook de implementatie van een meer algemene versie.




