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Chapter 1

Introduction

In the developing sub-Saharan countries, sheep and goats are kept mainly by small scale

farmers for meat production. These animals graze on open natural pastures or in commu-

nal pastoral systems. Almost 30% of the animals however do not reach to maturity age

due to high levels of infections from endoparasites. Although control methods that focus

on reducing contamination of pastures through anthelmintic treatment are in place, their

use is limited due to high cost. Due to this there is need for animals that are well adapted

to the environment so as to increase productivity.

The data considered in this thesis come from a breeding program conducted from 1991-

1996 at the International Livestock Research Institute (ILRI). The objective of the pro-

gram was to assess genetic resistance to endoparasites among the Red Masaai, Dorper and

their cross breeds. In each of the years, the lambs were observed for a period of at most

12 months. The genetic resistance of the lambs has been assessed by using linear mixed

models on measurements of packed cell volume (PCV), faecel egg count (FEC) and body

weight (BWT) collected at arbitrarily defined time points in the animal’s life span. It

has now been reported (Baker et al., 1994, 1999, 2003) that the Red Maasai has higher

resilience (higher PCV) and higher resistance (lower FEC) than the Dorper.

From the experimental set-up, information of any lambs that died during the follow-up

time was also available. These time-to-event measurements (time to death) are the main

focus of this thesis. The genetic component was considered at the sire level. Thus the

times of lambs from the same sire were assumed to be correlated. Such survival times,

1



2 Chapter 1

fall in the class of multivariate time-to-event data. These are time-to-event data that

are correlated within some cluster. For example the times to recurrent trypanosomiases

infections for a lamb or the survival times of lambs from the same sire. In the last several

years extensive research on multivariate time-to-event data has been carried out (Klein

and Moeschberger, 1997, Hougaard, 2000, Therneau and Grambsch, 2000). To account for

correlation in the times within a cluster or equivalently heterogeneity between clusters, a

random effect term is used, resulting in what are known as frailty models. Models with one

random effect per cluster are known as shared frailty models. Most shared frailty models

are an extension of the semi-parametric Cox proportional hazard (PH) model (Therneau

and Grambsch, 2000). On the other hand the Weibull baseline hazard has been the most

widely used form for the parametric shared frailty model (Hougaard, 2000).

Many methods of estimation have been described in the literature to fit semi-parametric

shared frailty models. In order to explore the common ground for these methods we car-

ried out an extensive review within the context of a parallel study in a multicenter clinical

trial setting (Duchateau et al., 2002). In this setting, the patients within a centre con-

stitute a cluster. The aim of this latter study was to assess the relationship between the

size of a multicenter trial, in terms of number of centres and patients per centre through

simulations. Also studied was the bias and spread of the estimates of the heterogeneity

parameter around its true value, as affected by the size of the trial. Here we report the

reviewed methods from this study which constitute the main contents of Chapter 2. This

review gives us a solid basis for working with the shared frailty models on the animal

breeding data, in the second part of the thesis.

A pertinent question that may arise while using frailty models is whether indeed there

is heterogeneity (correlation) among the event times of individuals across clusters. This

heterogeneity is measured in terms of the variance of the random effects. Testing for het-

erogeneity is a non-standard testing problem as the variance parameter is on the boundary

of the parameter space under the null hypothesis. Such problems have been studied in the

recent past in the area of linear mixed models (Self and Liang, 1987, Stram and Lee, 1994,

1995, Verbeke and Molenberghs, 2003) but not in the context of frailty models. Based on

the simulations in Duchateau et al. (2002), we conjectured that the likelihood ratio test

for heterogeneity had an asymptotic distribution which was a 50:50 mixture of a point

mass at zero and a chi-square distribution with one degree of freedom. In Chapter 3 we

give a theoretical proof of this conjecture for a parametric shared frailty model. We also



Introduction 3

consider the asymptotic distribution of the score test for this testing problem.

In the second part of the thesis, we give a detailed description of the animal breeding

data set in Chapter 4 and also give an overview of the findings that are available from

this experiment. We also show the need for more advanced techniques for analysing these

data, such as using the shared frailty models. In modelling time-to-event data, the Cox

PH model is often the model of choice. For this hazard model, the shape of the underly-

ing population risk function (baseline hazard) is left unspecified. Non-parametric kernel

estimation methods of the hazard function can however be used to determine the shape

of the hazard function (Tanner and Wong, 1983, Cheng, 1987, Müller and Wang, 1994).

In Chapter 5 we employ the method of Müller and Wang (1994). The variable patterns

obtained for the estimated hazard in each of the six years do not support the use of any

parametric form for the baseline hazard function. Thus semi-parametric shared frailty

models are used to analyse the animal breeding data, and we report the findings also in

Chapter 5.

From the longitudinal nature of the animal experiment, repeated measurements of PCV,

BWT and FEC were also collected for each lamb. These traits were recorded on average

within monthly time intervals as long as the lamb was under observation and before it was

one year old. These traits were considered as time-varying covariates in the shared frailty

model analysis, so as to assess their effect on the risk of mortality as they evolved over

time. PCV, BWT and FEC are however informative of the survival of the animal. For

instance low PCV , high FEC and low BWT may be associated with sick animals. In the

last few years, methodologies that use the information available in both the time-to-event

and such informative repeated measurements, have been proposed in medical research

(De Grutolla and Tu, 1994, Tsiatis et al., 1995, Faucett and Thomas, 1996, Wulfsohn

and Tsiatis, 1997, Henderson et al., 2000, Wang and Taylor, 2001). In Chapter 6 we

describe briefly these models and then adapt the joint methodology to induce association

between the time-to-event and separate repeated measurements of PCV, BWT and FEC.

To this end, the repeated measurements are modelled using linear mixed models while the

time-to-event measurements are in turn modelled using the Cox PH model. Association

between the two models is induced through a Gaussian latent process that depends on the

random effects of the repeated measurements. Thus, the time-to-event component of the

joint model, can indeed be viewed as a random effects survival model with subject specific

effects which are governed by the evolution of the repeated measurement process.
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Chapter 2

Frailty models for multivariate

survival data

2.1 Description of time-to-event data

2.1.1 Introduction

Time-to-event data arise in studies involving the observation of individuals from some

starting point to the principal end point when the event of interest occurs. Some exam-

ples are the time from onset of disease to death, the time from HIV infection to AIDS,

the duration of strikes or periods of unemployment, the time from recovery to the time of

recurrence of disease, the time taken by subjects to complete specified tasks or the lengths

of tracks on a photographic plate. Depending on the field of application we speak about

survival time in biometrics, failure time in engineering or duration time in economics.

To determine the time to an event precisely, there are three requirements that are neces-

sary: the time of origin must be unambiguously defined, a scale for measuring the passage

time must be agreed upon and finally a precise definition of the endpoint is needed. For

example, in survival after heart attack, the time of origin could be the onset of illness, time

of admission to hospital or time of treatment, thus depicting the need for a well defined

time of origin for this study. Here the time in days may be used as the measuring scale

for the time to the event of interest (such as death).

7
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The time of origin is not usually at the same time point for each individual, leading to

what is often referred to as staggered entry. In such a case, each individuals’ time-to-event

is measured from the date of entry to the time of the event. On the other hand, clock

time is the most frequently used measure of the time-to-an-event, although the choice of a

measuring scale depends on the area of application. For example, the number of kilome-

ters covered by a car would be the measuring scale in assessing the reliability of a shock

absorber. The need of a well defined end point is necessary to overcome any ambiguity.

For example in shock absorber assessment, a precise definition of the endpoint is needed

as there can be various modes of failure of the equipment.

A key analytical difficulty that occurs with time-to-event data is the presence of censored

observations. Censored data arise when an individual has been followed up only to a

certain time point before the event has taken place. For example, an individual may not

experience an event within the study period and so the only information available is that

the individual has not experienced the event at the maximum follow-up time. This type

of censoring is known as right censoring. Thus the event of interest is only observed if

it happens prior to some censoring time, otherwise the time is censored in that we know

the event has not occurred up to this time. Censored data can also result when an in-

dividual is lost to follow-up or withdraws from the study before the event occurs. Most

often the censoring process is assumed to be non-informative for time-to-event data. If

we define T to be the time to the event and C to be the time at which censoring of an

individual occurs then an individual is right censored if T > C and uncensored if T ≤ C.

Non-informative censoring implies that the censoring of an observation does not provide

any information regarding the prospects of survival. Informative censoring occurs when

the censoring mechanism is related to the survival time. For example, informative dropout

occurs if an individual withdraws from a study for reasons which are related to survival

time (e.g. illness as may happen in AIDS studies) , or if an individual is lost to follow-up

because they feel sufficiently recovered that they do not present for follow-up appoint-

ments. For the data sets considered in this work, the censoring mechanism is assumed to

be non-informative.
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2.1.2 Basic quantities

Consider a set of n subjects where the ith subject, i = 1, . . . , n, is observed from a time

zero to a failure time Ti or to a potential right censoring time Ci. Let T o
i = min(Ti, Ci),

be the observed time and δi be the censoring indicator which is equal to 1 if T o
i = Ti and

0 otherwise. Hence the observed data available for the ith subject is (T o
i , δi). The basic

analytical quantities for time-to-event data are the survival function

S(t) = Pr(T ≥ t)

which is the probability of surviving beyond time t and the hazard function

λ(t) = lim
∆t→0+

Pr(t ≤ T < t+∆t|T ≥ t)

h
.

This gives the instantaneous failure rate or risk of failure, conditional on having survived

up to time t. Another closely related basic quantity is the cumulative hazard function,

defined as

Λ(t) =

∫ t

0
λ(u)du.

The survival function is often used in determining summary statistics such as the median

time to event. A plot of the estimated survival function is a powerful tool for visualizing

how the occurrence of the events is distributed over time especially in cases where individu-

als are grouped. The hazard function on the other hand is used in assessing how measured

covariates are related to the risk of the event through a hazard model as discussed in the

next section.

2.1.3 Modelling time-to-event data

In most time-to-event studies, interest focuses on how the risk of failure is affected by a

set of p explanatory variables x1, x2, . . . , xp, measured for all individuals over the course

of the study period. The two approaches which have been used are through the effect of

the variables on the hazard function (hazard model) or their effect on time (accelerated

failure time model). In the former model, which is the most common approach, the hazard

is expressed as a product of some baseline hazard and a function that explains how the

risk depends on the covariate values. In the latter model, the explanatory variables are

assumed to act multiplicatively on the time scale, thus affecting the rate at which an
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individual proceeds on the time scale. In this thesis we only focus on hazard models. Let

λ(t|xi), i = 1, . . . , n, be the hazard function at time t for the ith individual with covariates

xTi = (xi1, xi2, ....., xip) . Then a hazard model has the form

λ(t|xi) = λ0(t)φ(xi)

where λ0(t) is the baseline hazard function, common to all individuals, and φ(xi) is a

non-negative function of xi. The shape of the baseline hazard λ0(t) can be left unspecified

(semi-parametric hazard models) or it may be assumed to have some specific parametric

form (parametric hazard models). The most commonly used parametric form for λ0(t) is

the Weibull distribution.

Cox (1972) proposed φ(xi) = exp(xTi β) leading to the following hazard model

λi(t) = λ0(t) exp(x
T
i β) (2.1)

where λi(t) = λ(t|xi) and λ0(t) is the unspecified baseline hazard which corresponds to

the hazard for an individual whose covariate values are all zero. The vector β contains

the unknown regression parameters associated with xi, the vector of the explanatory

variables. The covariates may all be constant over time (e.g. gender, breed, institution),

while some of them may be time-varying (e.g. blood pressure, body-weight), in which case

the notation xi(t) is used. Model (2.1) above is known as the Cox proportional hazards

(Cox PH) model and has been used extensively in the last three decades in the analysis

of time-to-event data. Its name comes from the fact that the ratio of the hazard for any

two individuals (say ith and jth) which is

λ(t|xi)
λ(t|xj)

= exp(β1(xi1 − xj1) + . . .+ βp(xip − xjp))

is constant and independent of time t implying that the hazard ratios are proportional over

time. Thus the parameter estimates for β in Model (2.1) are interpreted as the population

average relative risk only if x is fixed over time as the proportionality assumption is

violated for time-dependent covariates.

The survival function corresponding to (2.1) is

S(t|xi) = (S0(t))
exp(xTi β)

where S0(t) = exp
(
−
∫ t
0 λ0(u)du

)
is the survival function for an individual with all the

covariates equal to zero.
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With no ties among the event times, the estimators of the parameters β in (2.1) are

obtained by maximizing the partial likelihood introduced by Cox,

PL(β) =
n∏

i=1

{
exp(xTi β)∑

j∈Ri exp(x
T
j β)

}δi

(2.2)

where Ri is the set (risk set) of individuals who have not yet experienced the event at

time ti and are still under observation at that time. Although the partial likelihood is not

a full likelihood, the estimators obtained from this maximization have been shown to be

both consistent and have asymptotic normal properties (Cox, 1972).

2.2 Multivariate survival data

In modelling time-to-event data for a group of individuals the underlying assumption is

that the failure times among the individuals are independent. However, this is often not

the case, as the failure times may belong to related individuals from some group (twins

or items from the same production line) resulting in times that are correlated. When this

is the case, then the independence assumption is violated. Time-to-event data that are

correlated are often referred to as multivariate survival data (Hougaard, 2000) otherwise

they are said to be univariate.

There are two main types of multivariate survival data: parallel and longitudinal data.

Parallel data consist of a number of clusters and each cluster (batch, family, centre) in

turn contains several items/individuals. On the other hand, longitudinal data are a result

of a stochastic process of events, e.g., the asthma seizures of an individual over time. The

cluster is now the individual and within that individual the recurrence of asthma seizures

is observed (recurrent data).

In both types of multivariate data, events within a cluster are correlated. The general idea

is that there are some unobserved risk factors (e.g. genetic in twin studies) that explain

the dependence. These unobserved factors are often assumed to be constant over time

for longitudinal data and common between the individuals in a cluster for parallel data.

Using standard hazard models such as the Cox PH in the presence of dependence produces

biased estimates (Wei et al., 1989).

The main focus of this thesis will be on parallel data from an animal breeding program.

In general, the settings of an animal breeding program give a natural source for clustered
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data, if the response of interest is the time to an event (examples are death and time to

first calving). In this setting the time-to-event for animals of the same father (or family)

form a cluster if the aim of the experiment is to assess genetic variability.

2.3 The shared frailty model

2.3.1 Background

In the last several years, multivariate time-to-event data analysis has been studied ex-

tensively (see Klein and Moeschberger, 1997, Hougaard, 2000, Therneau and Grambsch,

2000). To account for the correlation of the failure times within a cluster a random effect

term, commonly known as the ‘frailty’, is included in the hazard model, thus leading to

what are known as frailty models. Frailty models are thus analogous to linear mixed ef-

fects models with the frailty term acting multiplicatively on the hazard function. These

models were introduced by Vaupel (1979). The shared frailty model assumes that all the

individuals within the same cluster ‘share’ the same frailty. Furthermore the frailties are

assumed to be independent from cluster to cluster. Thus the underlying concept in these

models is that the failure times of individuals in a cluster are dependent, while those

across clusters are independent. However, conditional on the frailties, the failure times are

independent. For example in a multicenter clinical trial with time-to-event as the response

of interest, the times of individuals in each centre are dependent. This dependence can for

instance be ascribed to the clinical practice at the centre which has an influence on the

outcome. Finally, in the recurrent event setting, the times from the same individual are

now assumed to be dependent thus having a common (shared) frailty.

Frailty models have also been considered for univariate data (see Aalen, 1994, Hougaard,

1995). When this is the case, the frailty term is assumed for each individual and is deemed

to represent unmeasured covariates. These unmeasured covariates are thought to induce

heterogeneity among the individuals after taking into account any measured covariates.

Shared frailty models are a special case of more general frailty models such as the corre-

lated (Petersen, 1998) and multivariate frailty models (Vaida and Xu, 2000 , Ripatti et

al., 2002). In the correlated frailty models, two random variables are used to characterize

the frailty effect of each cluster. For example, in twin pairs one random variable can be
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assigned for twin 1 and one for twin 2 so that they are no longer constrained to have a

common frailty. These two random variables are associated and jointly distributed and

therefore knowing one of them does not imply the other. Also, these two random variables

can certainly be negatively associated, which would induce negative association between

the survival times of the twins. In the multivariate frailty models, two or more frailty

terms are assumed for each individual in the cluster, so as to induce a more elaborate

association structure between the times for the individuals.

2.3.2 Model formulation

Assume we have a total of n individuals that come from G different groups, such that the

ith group has ni individuals. For each individual the observed data is yij = (T o
ij, δij), with

i = 1, . . . , G, and j = 1, 2, . . .,ni. Here T o
ij is the observed time and δij is the censoring

indicator both defined as in Section 2.1.2. It follows that the number of events from the

ith group is Di =
∑ni

j=1 δij .

The frailty model is given by

λij(t) = λ0(t) exp(x
T
ijβ + wi) (2.3)

where λij(t) is the hazard function for the jth individual from the ith group, λ0(t) is the

baseline hazard at time t, xij is the vector of p covariates recorded for the individual

and wi is the random effect for the ith group. In this model λ0(t) can be left arbitrary or

be assumed to have some specific parametric distribution as before. The wi’s, i =1,. . . ,G

are a sample (independent and identically distributed) from a density fW (·). The frailty
model can be rewritten as follows:

λij(t) = λ0(t) exp(wi) exp(x
T
ijβ) = λ0(t)ui exp(x

T
ijβ) (2.4)

where ui = exp(wi) is known as the frailty. Model (2.4) is a conditional hazard function

given the independent ui’ s, i =1,. . . ,G which are assumed to have a common density

fU (·). Two classical choices for the density of the frailties are:

(a) The zero-mean normal density for W; then the density of U is log-normal, i.e.,

fU (u) =
1

u
√
2πσ2

exp

(
−(log u)

2

2σ2

)
.‘ (2.5)
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with mean eσ
2/2 and variance eσ

2
(eσ

2 − 1).

(b) The one-parameter gamma density for U,

fU (u) =
u
1
γ
−1 exp

(
−u

γ

)

γ
1
γ Γ
(
1
γ

) . (2.6)

Then the corresponding density for W is

fW (w) =
(exp (w))

1
γ exp

(
− exp(w)

γ

)

1
γΓ
(
1
γ

) .

which is the log-gamma density. We note that E[W ] = ψ( 1γ ) and V ar(W ) = ψ(1)( 1γ )

where ψ(·) and ψ(1)(·) are the digamma and trigamma functions respectively.

Since U in (2.4) can be thought of as a mixing term, its density fU (·) is also referred to

as a mixing distribution. Typically Var(W ) = σ2 is used to describe the heterogeneity

among the groups in the log-normal density case whereas Var(U) = γ is used in the gamma

density case. Below we use θ as generic notation for heterogeneity (meaning σ2 for the

log-normal density and γ for the gamma density). If γ is small then the gamma and

log-normal distributions are similar (Kalbfleisch and Prentice, 1980, p. 26).

The gamma distribution has been used extensively, due to its mathematical convenience

that results from the simple form of its Laplace transform. For example the Laplace

transform corresponding to (2.6) is

Lu(s) = E
[
e−sU

]
= (1 + γs)−1/γ . (2.7)

This leads to closed form expressions for the unconditional (marginal) survival and hazard

functions. No closed form expression exists for the Laplace transform for the log-normal

distribution. On the other hand, this latter distribution is more flexible than the gamma

in creating correlated frailties, thus resulting in its use in multivariate frailty models.

Other frailty distributions which have been used in the literature are the stable distri-

bution and the power variance functions (PVF) (Hougaard, 2000). The power variance

function is a larger family of distributions which includes among others, the gamma and

the positive stable and hence is less restrictive. The calculations for this larger family are

however more difficult thus hindering the use of this distribution.

The dependence between the times of individuals in a cluster is often measured using

measures of dependence such as the Spearman’s correlation and the Kendall’s coefficient
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of concordance (Hougaard, 2000, p. 129) . These measures depend only on the frailty

distribution and are independent of the regressor variables as well as the number of in-

dividuals in a cluster. For example corresponding to the gamma frailty model (2.4), the

Kendall’s coefficient is γ/(2 + γ).

In this thesis, only the gamma and the log-normal frailty distributions are considered and

interest mainly focuses on the heterogeneity and regression parameters and not on the

measures of dependence of the survival times.

2.3.3 Heterogeneity parameter

As seen in the previous section, the heterogeneity parameter is θ = Var(U) = γ for the

gamma frailty or θ = Var(W ) = σ2 for the log-normal density. If θ = 0 then there is no

heterogeneity between clusters. In this section we look at the effect of θ values on the

median time to event in relation to a multicenter breast cancer clinical trial setting. Let

T be the time-to-event and assume that T is exponential with parameter λ0) and that

θ = 0. Then it follows that the median time to event is

TM =
log 2

λ0
.

For λ0 = 0.07 and λ0 = 0.22 the median time to events are 9.9 and 3.15 years respectively.

On the other hand if θ > 0, λ(t|u) = uλ0 and U is a gamma frailty, then the median time

to event is

TM =
log 2

Uλ0
.

We have that the density fTM (t) of the median time-to-event is

fTM (t) =

(
log 2

θλ0)

)1/θ (1
t

)1+1/θ 1

Γ(1/θ)
exp

(
− log(2)

tθλ0

)
.

Based on this density function it can be derived that for instance, if θ = 0.1, then 90% of

the centres will have a median time to event between 2 and 5.6 years for λ0 = 0.22 and

between 6.4 and 17.6 for λ0 = 0.07 as can be seen in Figure 2.1. On the other hand, if

θ = 0.2, then the median time to event is now between 2 and 7.3 years for λ0 = 0.22 and

between 4.5 and 18.2 years for λ0 = 0.07 for 90 % of the centres. We thus observe that the

median time to event becomes more spread as the value of the heterogeneity parameter

increases. On the other hand the median time to event is observed to be sensitive to the

event rate, with the spread decreasing with increase in the event rate.
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Figure 2.1: The spread of the median time to event from centre to centre for θ = 0.1 and 0.2 and

h0 = 0.07 and 0.22.

2.4 Estimation in the shared frailty model

Before looking at the estimation methods that have been used for the frailty model, we

briefly discuss identifiability of the model and also give a brief introduction of the various

estimation procedures that have been used in the literature.

2.4.1 Introduction : identifiability and estimation

Prior to exploring estimation procedures of the unknown parameters in the shared frailty

model, we start by briefly commenting on whether for this model, the parameters and

related functions, such as the survival and cumulative hazard functions, are identifiable

from a particular set of data. The aim of this section is to illustrate with examples issues

that are discussed when identifiability of the frailty model is considered. Thus it is not a

complete discussion.

Identifiability issues of the frailty model, especially in econometric applications, have been

discussed by Elbers and Ridder (1982), Heckman and Singer (1984) and Lancaster (1990).



Frailty models for multivariate survival data 17

These issues are discussed in relation to complete non-censored data from the univariate

frailty model whose hazard for the ith individual is given as

λ(t|ui,xi) = uiψ(xi, t) (2.8)

Elbers and Ridder(1982) have shown that the finite mean assumption (say E[U ] = 1) plays

the same role as the mean zero assumption in a linear regression model. They show that

under this assumption and provided that ψ(x, t) = λ0(t)φ(x), i.e., factors into the product

of a function of x and a function of t then (2.8) is identifiable, as long as there are at least

two distinct values of the covariates. However (2.8) is unidentifiable if ψ(x, t) ≡ λ0(t), i.e.,

if φ(x) ≡ 1. For example consider the following two models:

Model 1: λ(t|u) = u β
γ(1+βt) such that fU (u) = 1 when u = 1.

Model 2: λ(t|u) = uβ
γ such that fU (u) has the gamma density (2.6) above.

If Λ(t) =
t∫

0

λ(s)ds denotes the cumulative baseline hazard then for both models the un-

conditional survival function is S(t) =
∫
∞

0 exp(−uΛ(t))f(u)du = (1 + βt)−1/γ.

Thus indeed, starting from S(t) which is observable, it is impossible to uniquely identify

the density fU (·) of the frailty and the hazard function λ0(·).
Heckman and Singer (1984), on the other hand, discuss the identifiability of (2.8), when

the mixing distribution has infinite mean but with restrictions on φ(x). Lancaster (1990)

further shows that if λ0(t) has a Weibull or exponential distribution and the mixing dis-

tribution has finite mean, then model (2.8) is identifiable even in its simplest form when

φ(x) ≡ 1. Lenstra et al. (1995) provide a constructive identification proof for (2.8) for

the case that φ(x) has two distinct values, both for complete and censored data.

In relation to frailty models for multivariate event data, Honoré (1993) shows that for

complete data (no censoring), Model (2.4) is identifiable under much weaker assumptions

than the univariate model. He shows that this model is identifiable even when there are

no observable covariates. For example the two models in the example above are easily

seen to be identifiable, when adapted to multivariate event data with clusters of size two,

for example in twin studies. This leads to the following unconditional survival functions:

Model 1: S(t1, t2) =
2∏

j=1
(1 + βti)

−1/γ

Model 2: S(t1, t2) = (1 + β(t1 + t2))
−1/γ

which are uniquely determined for each of the two models. For completeness, given these

two unconditional survival functions we show that the baseline hazard λ0(·) and frailty

density fU (·) can be uniquely determined.
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Consider S(t1, t2) for Model 1. We observe that

S(t1, t2) = S(t1, 0)S(0, t2) = S1(t1)S2(t2) (2.9)

where Sj(tj) is the survival function for jth failure time in the cluster, j = 1, 2. From (2.9)

it is easily seen that f(t1, t2) = f1(t1)f2(t2) where

fj(tj) = −
dSj(tj)

dtj
=

β

γ
(1 + βtj)

−1

γ
−1

is the density function for Tj, j = 1, 2. Thus T1 and T2 are independent which implies that

U ≡ 1. It also follows that

λj(tj) =
β

γ
(1 + βtj)

−1
γ

for j = 1, 2, implying that both failure times in the cluster have a common baseline hazard

function.

Now consider a general frailty model as in (2.4) but without covariates. Further assume

that there is no censoring. Then the unconditional multivariate survival function for

individuals in the ith group is

S(ti1, . . . , tini) = Lu(Λ0(ti1) + . . .+ Λ0(tini))

where Lu(s) is the Laplace transform of the distribution of U and Λ0(·) is the cumulative
baseline hazard function (Hougaard, 2000, p. 222). Now consider the unconditional

survival function for Model 2. Then we have that

S(t1, t2) = Lu(Λ0(t1) + Λ0(t2))

= (1 + β(t1 + t2))
−1/γ

=

(
1 + γ

(
β

γ
(t1 + t2)

))−1/γ
.

By the uniqueness property of the Laplace transform, this is the Laplace transform of a

gamma random variable with parameter 1γ (see (2.7)). Hence Λ0(tj) =
β
γ tj , j = 1, 2 which

in turn implies that the common baseline hazard function for each of the failure times in

the cluster is λ0(t) =
β
γ .

Thus we are able to uniquely identify from the unconditional survival function the baseline

hazard function and distribution of the frailty for the two models.

In the second part of this section we briefly discuss some of the methods of estimation
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for the shared frailty model, that have been discussed in recent literature. As noted

above, the baseline hazard λ0(t) in the frailty model (2.4) can be specified explicitly or

left unspecified. Under the parametric assumption, the parameters in the resulting model

can be estimated using maximum likelihood estimation procedures. For example, suppose

that λ0(t) = ρλt ρ−1 which is the Weibull distribution with λ and ρ as the scale and shape

parameters respectively. Then the unconditional (observable) likelihood to be maximized

is

L (ζ) =

G∏

i=1

∫



ni∏

j=1

(
ρλtρ−1ij exp(xTijβ + wi)

)δij
exp
(
−λtρij exp(x

T
ijβ + wi)

)
fW (wi)dwi





where ζ = (β, θ, ρ, λ).

If however λ0(t) is left unspecified, then the unknown parameters in the shared frailty

model have been estimated using various approaches such as the EM algorithm (Klein,

1992), penalized partial likelihood approach (Therneau and Grambsch, 2000), Monte

Carlo Markov Chain (MCMC) methods (Vaida and Xu, 2000), Monte Carlo EM ap-

proach (MCEM) (Ripatti et al., 2002) and different methods using Laplace approximation

(Ripatti and Palmgren, 2000, Cortinas Abrahantes and Burzykowski, 2003). The choice

of the estimation method in most cases is basically determined by the frailty distribution.

We saw in Section 2.3.2 that closed forms of the unconditional survival and hazard func-

tions are easily determined under the gamma frailty. This allows the use of maximum

likelihood estimation procedures such as the EM algorithm as the unconditional likeli-

hood is easily determined. This estimation procedure for the gamma frailty is discussed in

Section 2.4.2. Unfortunately under the log-normal frailty distribution, explicit expressions

of the unconditional survival and hazard functions do not exist. Consequently, estimation

strategies for this frailty distribution are often based on numerical integration methods

such as the Laplace approximation methods. We briefly comment on these procedures

in Section 2.4.3. The penalized partial likelihood method of estimation is discussed in

Section 2.4.4, while in Section 2.4.5 we show that the estimates obtained from the EM

and penalized partial likehood estimation procedures are the same for the shared gamma

frailty model.
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2.4.2 The EM algorithm for the shared gamma frailty model

Typical for the frailty model is that we have observed information y = (y11, . . . yGnG)
T and

unobserved (latent) information w = (w1, . . . wG)
T . Here yij = (T o

ij , δij), (i = 1, . . . , G,

and j = 1, 2, . . . , ni) as defined before in Section 2.3.2. The conditional likelihood for the

ith group is

Li(yi1 . . . yini | wi) =

ni∏

j=1

(
λ0(tij) exp(x

T
ijβ +wi)

)δij
exp
(
−Λ0(tij) exp(xTijβ + wi)

)

If we let ζ = (θ,β) it follows that the observable likelihood Lobs,i(ζ) for the ith group is

Lobs,i(ζ) =

∫ ∞

0

ni∏

j=1

(
λ0(tij) exp(x

T
ijβ + wi)

)δij
exp
(
−Λ0(tij) exp(xTijβ +wi)

)

×(exp(wi))
1
θ

θ
1
θΓ(1/θ)

exp

(
−exp(wi)

θ

)
dwi

=
Γ(1/θ +Di)

θ
1
θΓ(1/θ)

[
1
θ +

ni∑

j=1
Λ0(tij) exp(xTijβ)

] 1
θ
+Di

ni∏

j=1

(
λ0(tij) exp(x

T
ijβ)
)δij

where Di =
ni∑

j=1
δij . To estimate ζ we would like to base the likelihood maximization and

statistical inference on the observed data log-likelihood lobs(ζ) (Klein, 1992) given by

lobs(ζ) =

G∑

i=1

logLobs,i(ζ)

=

G∑

i=1

(Di log θ − log Γ (1/θ) + log Γ (1/θ +Di))

−
G∑

i=1

(1/θ +Di) log



1 + θ

ni∑

j=1

Λ0(tij) exp(x
T
ijβ)





−
G∑

i=1

ni∑

j=1

δij [log(λ0(tij) + x
T
ijβ)]. (2.10)

This log-likelihood is however difficult to maximize as it contains, apart from ζ, also the

unspecified baseline hazard. We therefore rely on the EM algorithm (Dempster et al.,

1977) to estimate ζ.
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Define ℓfull(ζ) = log f(y,w; ζ) as the complete data log-likelihood and

ℓpred(ζ) = log f(w|y; ζ) as the predictive log-likelihood. Then the algorithm works by

alternating between two steps : an expectation step (E-step) in which the expected value

of the unobserved part (w) given the observed data and current parameter estimates is

determined and a maximization step (M-step) which involves maximizing the complete

data likelihood using the expected values of the unobserved part from the previous E-

step.

In the EM algorithm framework we write

ℓobs(ζ) = ℓfull(ζ)− ℓpred(ζ)

We here note that ℓfull(ζ) = log

[
G∏

i=1
Li(yi1 . . . yini | wi)f(wi)

]
.

Taking the conditional expectation with respect to y and with ζ(k−1) as a provisional

value of ζ at iteration step k − 1 in the EM algorithm, we obtain

log f(y; ζ) = E
ζ(k−1)

[log f(y,w; ζ)|y]−E
ζ(k−1)

[log f(w|y; ζ)|y]

or

ℓobs(ζ) = Q
(
ζ|ζ(k−1)

)
−H

(
ζ|ζ(k−1)

)
(2.11)

where

Q
(
ζ|ζ(k−1)

)
= E

ζ(k−1)
[log f(y,w; ζ)|y]

and

H
(
ζ|ζ(k−1)

)
= E

ζ(k−1)
[log f(w|y; ζ)|y] .

Instead of maximizing ℓobs(ζ) for ζ rather Q
(
ζ|ζ(k−1)

)
is maximized. It is a general

result from EM methodology that if ζ(k) maximizes Q
(
ζ | ζ(k−1)

)
then ℓobs

(
ζ(k)
)
≥

ℓobs

(
ζ(k−1)

)
, i.e., ζ(k) is ‘better’ than ζ(k−1). This property is central in Dempster et al.

(1977). As starting values for the algorithm, we use an initial guess ζ(0) =
(
θ(0),β(0)

)
.

The details of the kth step of the algorithm are as follows.

Expectation step:

The expected value Q
(
ζ|ζ(k−1)

)
can be obtained by plugging in the conditional expecta-

tions for wi and exp(wi) given y in log f(y,w; ζ). The conditional density of wi given y
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is

f(wi|y) =
Li(yi1 . . . yini | wi)f(wi)

Lobs,i(ζ)

=

[
1
θ +

ni∑

j=1
Λ0(tij) exp(x

T
ijβ)

] 1
θ
+Di

Γ (1/θ +Di)
(exp(wi))

1
θ
+Di

× exp



− exp(wi)



1
θ
+

ni∑

j=1

Λ0(tij) exp(x
T
ijβ)







 .

which is a log-gamma distribution with parameters 1θ +Di and
1
θ +

ni∑

j=1
Λ0(tij) exp(x

T
ijβ).

With ψ(.) as the digamma function, it then follows that

Ek(wi) = E
ζ(k−1)

[wi|y] = ψ
(
Di + 1/θ(k−1)

)
− log

(
1/θ(k−1) + Λ

(k−1)
i

)

and

Ek(exp(wi)) = E
ζ(k−1)

[exp(wi)|y] =
1/θ(k−1) +Di

1/θ(k−1) + Λ
(k−1)
i

(2.12)

where

Λ
(k−1)
i =

ni∑

j=1

Λ
(k−1)
0 (tij) exp

(
xTijβ

(k−1)
)

(2.13)

with Λ
(k−1)
0 (·) as defined in (2.17). These expected values need to be inserted in

log f(y,w; ζ) =

G∑

i=1

log fW (wi) +

G∑

i=1

ni∑

j=1

δij
[
log λ0(tij) + x

T
ijβ +wi

]

−
G∑

i=1

ni∑

j=1

[
Λ0(tij) exp(x

T
ijβ + wi)

]
. (2.14)

Plugging in the density for fW (·), corresponding to the gamma frailty and replacing wi

and exp(wi) in (2.14) by their conditional expectations and adding and subtracting the

term
∑ni

j=1 δij logEk(exp(wi)), we obtain after rearranging some of the terms

Q
(
ζ | ζ(k−1)

)
= Q1

(
θ | ζ(k−1)

)
+Q2

(
β | ζ(k−1)

)
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with

Q1

(
θ | ζ(k−1)

)
=

G∑

i=1

[(1/θ +Di)Ek(wi)− Ek(exp(wi))/θ −Di logEk(exp(wi))]

−G [log θ/θ + log Γ(1/θ)] (2.15)

which is a function of θ only and

Q2

(
β | ζ(k−1)

)
=

G∑

i=1

ni∑

j=1

δij
[
log λ0(tij) + x

T
ijβ + logEk(exp(wi))

]

−
G∑

i=1

ni∑

j=1

Λ0(tij) exp(x
T
ijβ)Ek(exp(wi)) (2.16)

which is a function of β and λ0(·).

Maximization step:

The reason why we artificially include the term
∑ni

j=1 δij logEk(exp(wi)) in the definitions

of Q1

(
θ | ζ(k−1)

)
and Q2

(
β | ζ(k−1)

)
, with respectively a minus-sign and a plus-sign,

is that we now can interpret Q2

(
β | ζ(k−1)

)
as a log-likelihood for censored data with

(βT , 1)T as regression coefficients and (xij1, . . . , xijp, logEk(exp(wi))) as risk variables.

To maximize Q2

(
β | ζ(k−1)

)
with respect to β and Λ0(·) a profile likelihood idea is used.

The estimate for β is first obtained from the profile likelihood and then the full censored

data log-likelihood is maximized as a function of the baseline hazard only, as detailed

below.

For t(1) < ...... < t(r) as the ordered event times (r denotes the number of distinct event

times), N(l) as the number of events at time t(l), l = 1, . . . , r and using Breslow’s method

for handling ties (see Sections 8.2 and 8.3 in Klein and Moeschberger, 1997), the partial

likelihood corresponding to Q2

(
β | ζ(k−1)

)
is

ℓpart

(
β | ζ(k−1)

)
=

r∑

l=1




∑

tij=t(l)

η
(k−1)
ij −N(ℓ) log




∑

tqs≥t(ℓ)
exp
(
η(k−1)qs

)








where

η
(k−1)
ij = xTijβ + logEk(exp(wi)).
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This is maximized to get an estimate for β. Corresponding to the censored data log-

likelihood (Q2

(
β | ζ(k−1)

)
) the estimate for Λ

(k−1)
0 in this step is given by

Λ
(k−1)
0 (t) =

∑

t(l)≤t
λ
(k−1)
l0 (2.17)

where

λ
(k−1)
l0 =

N(l)
∑

tqs≥t(l) exp(x
T
qsβ

(k−1))Ek−1(exp(ws))
.

We note that (2.17) is the Breslow estimator for the cumulative hazard in presence of ties

which depends on β(k−1) and θ(k−1) through Ek−1(exp(ws).

Hence in general in the M-step, we maximize,

Q1

(
θ | ζ(k−1)

)
+ ℓpart

(
β | ζ(k−1)

)
. (2.18)

with respect to ζ = (θ,β) and Λ0(·). The new estimate for ζ(k) in the kth itera-

tion is then used to obtain Q(ζ | ζ(k)), the update of the conditional expectation, and

so on. This process continues until the difference between the two consecutive values

E
ζ(k−1)

[log f(y,w; ζ) | y] and E
ζ(k)

[log f(y,w; ζ) | y] becomes smaller than some prespec-

ified value ǫ (see Flow Chart 1 in the Section 2.6 ).

Remark 1. Nielsen et al. (1992) propose a modified profile likelihood EM algorithm that

leads to the same results but with much faster convergence.

Remark 2. Klein (1992) determines the standard errors of the estimates of β, θ and λl0(·)
from the inverse of the observed information matrix of the observable log-likelihood ℓobs(ζ)

given in (2.10). This information matrix is a square matrix of size r+ p+1 where r is the

number of distinct failure times. For large data sets this procedure is quite numerically

intensive.

2.4.3 The EM algorithm for the shared log-normal frailty

Under the log-normal frailty model, the observed likelihood Lobs,i(ζ) for the ith group is

Lobs,i(ζ) =

∫ ∞

−∞

ni∏

j=1

[
λ0(tij) exp(x

T
ijβ + wi)

]δij
exp
[
−Λ0(tij) exp(xTijβ + wi)

]

× (2πθ)−
1
2 exp

(
−w2i
2θ

)
dwi
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=




∫ ∞

−∞
(exp(wi))

Di exp



−exp(wi)

ni∑

j=1

Λ0(tij) exp(x
T
ijβ)




(

1

2πθ

)− 1
2

exp

(
−w2i
2θ

)
dwi





×
ni∏

j=1

(
λ0(tij) exp(x

T
ijβ)
)δij

. (2.19)

The integrand above has no explicit solution and apart from containing ζ also depends

on the baseline hazard λ0(·). The EM methodology is thus adapted and the details are as

follows.

Expectation step:

As in (2.11), ℓobs(ζ) can be written in terms of Q
(
ζ|ζ(k−1)

)
and H

(
ζ|ζ(k−1)

)
where now

Q
(
ζ|ζ(k−1)

)
= E

ζ(k−1)
[log f(y,w; ζ)|y]

=

G∑

i=1

ni∑

j=1

δij
[
logλ0(tij) + x

T
ijβ + Ek−1[wi|y, ζ]

]

−
G∑

i=1

ni∑

j=1

Λ0(tij) exp(x
T
ijβ)Ek−1 [exp(wi)|y, ζ] (2.20)

and

H
(
ζ|ζ(k−1)

)
= E

ζ(k−1)
[log f (w|y; ζ)|y]

= −1
2

G∑

i=1

(
log(2π) + log θ +

1

θ
Ek−1

[
w2i |y, ζ

])
. (2.21)

The computations of the expectation in (2.20) and (2.21) are of the type E [h(w|y, ζ)] =
∫
h(w|y, ζ)f(w|y, ζ)dw and are not available in closed form. These integrals can however

be approximated by numerical methods (e.g. Gaussian quadratures) or Monte Carlo sim-

ulation methods. Both Vaida and Xu (2000) and Ripatti et al. (2002) have looked at the

multivariate log-normal frailty model of which the shared frailty is a special case. In the

approaches used by these authors, wT = (w1, ...., wG) is assumed to have a multivariate

normal distribution with mean 0 and covariance matrix D, which is not necessarily di-

agonal. Vaida and Xu (2000) use a Gibbs sampler to draw samples from the posterior

distribution of the frailties (f(w|y)) . These are used to approximate the conditional ex-

pectation given the data and the current values of the parameters in the model. Following
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the same ideas, Ripatti et al. (2002) on the other hand use rejection sampling to draw the

samples from f(w|y).
Maximization step:

The estimates from the E-step, are used to replace the expected values in (2.20) and

(2.21). In this step, the estimation of β and λ0(·) is conveniently separated from the

variance term θ. Expression (2.20) has the same form as the log-likelihood for censored

data, containing Ek−1 [exp(wi)|y, ζ] as fixed offset terms. A profile likelihood approach is

hence adopted to maximize Q
(
ζ|ζ(k−1)

)
by first fixing β in a similar manner as discussed

in the maximization step of Section 2.4.2 to obtain the estimates for β and Λ(·).
Remark 3. Ripatti and Palmgren (2000) use Laplace approximation to obtain an approxi-

mation to the observed log-likelihood corresponding to (2.19) for a multivariate log-normal

frailty distribution. They then use maximum likelihood estimation methods to maximize

the approximated likelihood. For the shared frailty model (independent frailties), this

approximation approach has been shown to result in an estimation procedure equivalent

to the penalized partial likelihood method (Therneau et al., 2003).

Remark 4. Cortinas Abrahantes and Burzykowski (2003) also use a modified EM ap-

proach for a multivariate normal frailty model. Using similar approach to Vaida and Xu

(2000) they use the Laplace approximation in the E-step.

Remark 5. Vaida and Xu (2000), Ripatti et al. (2002) and Cortinas Abrahantes and

Burzykowski (2003) use the formula derived by Louis (1982) to obtain the observed infor-

mation matrix

I(ζλ) = E

[−∂2ℓfull(ζ)

∂ζλ∂ζ
T
λ

| y, ζ̂λ
]
−Var

[−∂ℓfull(ζ)

∂ζλ
| y, ζ̂λ

]

where ζλ = (ζ, λ10, . . . , λr0). This information matrix can easily be estimated as a by-

product of the EM-algorithm. The dimension of this matrix is equal to the sum of the

number of parameters and distinct event times in the data. Cortinas Abrahantes and

Burzykowski (2003) show through simulations that the bias from estimating the standard

errors of the random effects using only the sub-matrix of I(ζλ) corresponding to these

effects, is greatly reduced with increase in the sample size.

Parner (1998) showed the consistency of such an estimator for gamma distributed frailties,

while Andersen et al. (1997) studied its performance in several applications.
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2.4.4 The penalized partial likelihood for the shared frailty model

Penalized partial likelihood estimation originates from cubic splines regression in the Cox

PH model. In a general Cox PH model (2.1) a linear relationship is assumed between the

covariates and the log of the hazard. In spline smoothing this linear relationship is relaxed

and a flexible function of the covariates g(·) is used to establish the appropriate functional

form of the relationship. Thus we have

λi(t) = λ0(t) exp {g(xi)} .

Sleeper and Harrington (1990) studied regression splines while Gray (1992) used cubic

splines, to approximate the covariate transformation. Gray (1992) substracts a penalty

term
(
ξ
∫
[g′′(z)]2 dz

)
where g′′(z) = d2

dz2 g(z) from the log partial likelihood and considers

ℓppℓ(β) = log

n∏

i=1

{
exp(xTi β)∑

j∈Ri exp(x
T
j β)

}δi

− ξ

∫ [
g′′(z)

]2
dz

which is a penalized partial log-likelihood. The term ξ is known as the tuning parameter

which controls the amount of smoothing.

In relation to the frailty model (2.4) and following ideas from generalized mixed models,

McGilchrist (1993) maximizes the log-likelihood ℓ1 + ℓ2 where

ℓ1= the log of the partial likelihood for (2.4) treating the w’s as fixed

and

ℓ2 =
G∑

i=1
log(fW (wi)).

Thus ℓ1 + ℓ2 is a penalized partial likelihood, with −ℓ2 as the penalty function. From

(2.14) and (2.18) it is thus clear that for the problem at hand, a logical proposal for the

penalized partial likelihood to use for the estimation of ζ = (θ,β) is

ℓppℓ(ζ,w) = ℓpart(ζ,w)− ℓpen(θ,w) (2.22)

where,

ℓpart(ζ,w) =

r∑

ℓ=1




∑

tij=t(ℓ)

ηij −N(ℓ) log




∑

tqs≥t(ℓ)
exp(ηqs)









with ηij = x
T
ijβ +wi, and

ℓpen(θ,w) = −
G∑

i=1

log fW (wi).
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In (2.22), the parameter θ plays the role of the tuning parameter in smoothing splines.

But, unlike in the latter where the parameter is set by the user, θ has to be estimated

from the data.

The details of this estimation approach under the log-normal and gamma frailty distrib-

utions are discussed next .

Zero-mean normal density

For the random effects wi, i = 1, . . . , G, we have (now think and write θ for the hetero-

geneity, i.e., Var(U)=σ2=θ ):

ℓpen(θ,w) =
1

2

G∑

i=1

[
w2i
θ

+ log (2πθ)

]

and (2.22) becomes the penalized partial likelihood studied in McGilchrist (1993).

The random effects are thus in both parts of the penalized partial likelihood. The second

term penalizes random effects that are far away from the mean value zero by reducing the

penalized partial likelihood. This corresponds to shrinking the random effects towards the

zero-mean.

The maximization of the penalized partial log-likelihood consists of an inner and an outer

loop. In the inner loop, for a provisional value of θ, the Newton-Raphson procedure is

used to maximize ℓppℓ(ζ,w) for β and w (best linear unbiased predictors, BLUP’s). In

the outer loop, the restricted maximum likelihood estimator for θ is obtained using the

BLUP’s. The process is iterated until convergence.

The details are as follows. Let ℓ denote the outer loop index and k the inner loop index.

Further let θ(ℓ) be the estimate for θ at the ℓth iteration in the outer loop. Given θ(ℓ),

β(ℓ,k) and w(ℓ,k) are the estimates and predictions for β and w at the kth iterative step in

the inner loop.

Starting from initial values β(1,0), w(1,0) and θ(1) the kth iterative step for Newton-

Raphson, given θ(ℓ), is given by





β(ℓ,k)

w(ℓ,k)




 =





β(ℓ,k−1)

w(ℓ,k−1)




− V −1






0

[
θ(ℓ)
]−1

w(ℓ,k−1)




+ V −1[X Z

]dℓpart(ζ)
dη
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where

V =





V 11 V 12

V 21 V 22




 =





XT

ZT





(−d2ℓpart(ζ)

dη dηT

)[
X Z

]
+





0 0

0
[
θ(ℓ)
]−1

IG




 ,

X = [x11, . . . ,xGnG ]
T is an n× p covariate matrix with n =

G∑

i=1
ni,

Z = diag (1n1 , . . . , 1nG) with 1ni as a column vector of size ni with all entries one,

and η =Xβ +Zw, such that ηT = (η11, . . . , ηGnG).

Once the Newton Rahpson procedure has converged for the current value of θ(ℓ), a REML

estimate for θ is given by

θ(ℓ+1) =

G∑

i=1

(
w
(ℓ,k)
i

)2

G− q

where q = trace
[(
V −1)

22

]
/θ(ℓ).

This outer loop is iterated until convergence based on the difference between the sequential

values θ is obtained.

Gamma density

For random effects wi, i = 1, . . . , G, with corresponding gamma density (2.6) for the

frailties, we have (now γ = θ):

ℓpen(θ,w) = −
G∑

i=1

(
wi − exp(wi)

θ

)
−G

(
log θ

θ
− log Γ

(
1

θ

))
. (2.23)

To maximize the penalized partial (log)likelihood we still can use an inner and outer

loop. The inner loop is identical to the one described in the normal density case. There-

fore, in the outer loop, a log-likelihood similar to ℓobs(·) is maximized for θ as in the

case of the EM-algorithm. This likelihood, for fixed value of θ(ℓ), also corresponds to

Q(ζ|ζ(k−1)) − H(ζ|ζ(k−1)) evaluated at (θ(l), β̂θ(l) , ŵθ(l)), where β̂θ(l) and ŵθ(l) are the

estimates obtained by maximizing the penalized partial likelihood for fixed value of θ(l).

This expression is in terms of the partial likelihood containing the expectation of the frail-

ties as fixed offset terms.

We therefore apply, in the outer loop, the golden section method (Brent, 1973) on the

following modified version of the log-likelihood:
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ℓpartobs (ζ,w) = ℓpart(ζ,w)

+

G∑

i=1

[
log

Γ(Di + 1/θ)

Γ(1/θ)
+
1

θ
log

(
1/θ

Λi + 1/θ

)
−Di log(Di + 1/θ) +Di

]
. (2.24)

That ℓpartobs (ζ,w) is a modified version of ℓobs(ζ) can be seen as follows: With Λi =
∑ni

j=1 Λ0(tij) exp(x
T
ijβ) then the observable log-likelihood ℓobs(ζ) given by (2.10) can be

written as

ℓobs(ζ) =
G∑

i=1

nij∑

j=1

[
δij
[
log λ0(tij) + x

T
ijβ + logE(exp(wi))

]

−
[
Λ0(tij) exp(x

T
ijβ)E(exp(wi))

]]

+

G∑

i=1

[
Di log θ + log

Γ(Di + 1/θ)

Γ(1/θ)
− (Di + 1/θ) log[θ(Λi + 1/θ)]

−Di logE(exp(wi)) + ΛiE(exp(wi))
]
. (2.25)

Now modify ℓobs(ζ) by replacing the first (double) sum on the r.h.s of (2.25) by ℓpart(ζ,w).

Using the relations E(exp(wi)) = (Di+1/θ)/(Λi+1/θ) and
∑G

i=1Di =
∑G

i=1 ΛiE(exp(wi))

(martingale residuals sum to zero) it easily follows that the second sum in the r.h.s of (2.25)

equals the second sum in the r.h.s of (2.24). This second relationship comes from the fact

that corresponding to the frailty model (2.4) the quantityMij = δij−Λ0(tij) exp(xTijβ+wi)

is a martingale residual and
G∑

i=1

ni∑

j=1
Mij = 0 (Fleming and Harrington, 1991). The details

for the penalized partial likelihood approach for the gamma are given in Flow Chart 2 in

Section 2.6.

Remark 6. For the variance-covariance matrix of the estimates of β and w, Therneau

and Grambsch (2000) propose two estimates; V1 = H−1IH−1 and V2 = H−1 where

H =






∂2ℓppl(ζ,w)

∂β∂β
T

∂2ℓppl(ζ,w)

∂β∂wT

∂2ℓppl(ζ,w)

∂β
T
∂w

∂2ℓppl(ζ,w)

∂w∂wT




 ,

and I is the usual Cox PH model information matrix. Under the log-normal frailty dis-

tribution McGilchrist (1993) proposes the estimate 2θ̂2
[
G− 2q + θ̂−2trace

[(
V −1)

22

]2]−1

for the variance of the REML estimator for θ . No estimate is available under the gamma

frailty distribution.
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2.4.5 Equivalence of the EM and the penalized partial likelihood ap-

proach for the shared gamma frailty model

In this section we show that for the shared gamma frailty model, the estimates for

(β, θ,Λ0(t)) and predictions for w from the EM and penalized partial likelihood esti-

mation procedures are the same. This equivalence is discussed in Therneau and Gramb-

sch (2000, p.254) and Therneau et al. (2003). To achieve our objective, we shall refor-

mulate ℓpart(ζ,w) in (2.22) in the counting process notation. Under this formulation, the

pair (T o
i , δi) is replaced by (Ni(t), Ri(t)), where

Ni(t) = the number of observed events in [0,t] for the ith individual

Ri(t) =






1 if ith unit is under observation and at risk at time t

0 otherwise.

For right censored data Ni(t) = I{T o
i ≤ t, δi = 1} and Ri(t) = I{T o

i ≥ t}, such that Ni(t)

makes a jump of size 1 in case of an event at time t while Ri(t) changes from one to zero.

In case of a censored event at time t, Ni(t) ≡ 0 while Ri(t) still changes from one to zero.

The pair (Ni(t), Ri(t)) is used in defining a martingale process for right censored data

(Gill, 1984, Fleming and Harrington, 1991).

Let n =
G∑

j=1
nj be the total number of individuals and define Zij to be unity if the ith

individual comes from the jth group and zero otherwise. Further let dNi(t) be the change in

Ni(t) over the infinitesimal time interval [t, t+dt), such that for non-tied data, dNi(t) = 1

if an event occurs at time t and dNi(t) = 0 otherwise. It then follows that, for untied

data, the partial likelihood is

PL(β,w) =
n∏

i=1

∏

t≥0

{
Ri(t) exp(x

T
i β +ZT

i w)∑n
k=1Rk(t) exp(x

T
k β +ZT

kw)

}dNi(t)

where ZT
i = (Zi1, . . . , ZiG) is a vector with a single entry one and all other entries zero and

wT = (w1, . . . wG) and the denominator
∑

k Rk(t) exp(x
T
kβ+Z

T
kw) is the sum over all the

individuals who are at risk at time t. Note that i = 1, . . . , n is a single index associated

with all the individuals, unlike in the previous sections. The partial log-likelihood now

becomes

ℓpart(β,w) =

n∑

i=1

∫ ∞

0
Ri(t)(x

T
i β +ZT

i w)dNi(t)
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−
n∑

i=1

∫ ∞

0
log

{
n∑

k=1

Rk(t) exp(x
T
kβ +ZT

kw)

}

dNi(t). (2.26)

For the penalized partial likelihood approach as seen above, one needs to maximize in the

inner loop

ℓppℓ(ζ,w) = ℓpart(β,w)− ℓpen(θ,w)

with respect to ζ where ℓpart(β,w) is as in (2.26) and ℓpen(θ,w) is the penalty function

given in (2.23). To obtain the estimate for wj we need to solve

∂ℓppℓ(ζ,w)

∂wj
≡ ∂ℓpart(β,w)

∂wj
− ∂ℓpen(θ,w)

∂wj
= 0.

Now

∂ℓpart(β,w)

∂wj
=

n∑

i=1

∫ ∞

0

[
Zij − Z̄j(t)

]
dNi(t) (2.27)

where

Z̄j(t) =

n∑

l=1

ZljRl(t) exp(x
T
l β +ZT

l w)

∑n
k=1Rk(t) exp(x

T
kβ +ZT

kw)

is the weighted mean of the Zlj ’s for all individuals in the jthgroup who are at risk at time

t, with
Rl(t) exp(xTl β+Z

T

l w)
∑n
k=1 Rk(t) exp(x

T
k
β+Z

T

kw)
as the weights. On substituting this in (2.27), the sec-

ond term
∑n

i=1

∫∞
0 Z̄j(t)dNi(t) simplifies to

n∑

l=1

∫∞
0 Rl(t)Zlj exp(x

T
l β+Z

T
l w)dΛ0(t;β,w)

where

dΛ0(t;β,w) =

n∑

i=1
dNi(t)

n∑

k=1

Rk(t) exp(x
T
kβ +ZT

kw)

(2.28)

is the Breslow estimator for the cumulative intensity function for given values of β and

w. It then follows on simplification that

∂ℓpart(β,w)

∂wj
=

n∑

i=1

[
Zijδi − ZijΛ0(ti;β,w) exp(x

T
i β +ZT

i w)
]

On taking into account that Zij is a binary covariate we obtain

∂ℓpart(β,w)

∂wj
= [Dj −Aj exp(wj)]
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where Aj =
nj∑

k=1

Λ0(tkj;β,w) exp(x
T
kβ) and Dj =

∑n
i=1 Zijδi is the number of events in

the jth family. We note here that Aj is equivalent to Λ defined in (2.13) without the

iteration step notation.

On the other hand

∂ℓpen(θ,w)

∂wk
= −1− exp(wk)

θ
.

Thus the score equation to be solved is

S(ζ,wj) =
∂ℓppℓ(ζ,w)

∂wj
= [Dj −Aj exp(wj)] +

1− exp(wj)

θ
.

On solving we get that

exp(wj) =
Dj +

1
θ∗

Aj +
1
θ∗

(2.29)

which depends on θ∗, a fixed value of θ (solution from outer loop) .

To get the estimator for β we only need to maximize ℓpart(ζ,w) given in (2.26) . This is a

profile log-likelihood for β with ZTw as fixed offsets and standard methods for maximizing

the Cox partial likelihood can be used.

Next we consider the estimates obtained from the EM approach which is discussed in

Section 2.4.2. In the kth iteration of the E-step of the algorithm we saw that we needed to

determine Ek(exp(wi)) which is given in (2.12). At convergence we have that the estimates

for β, θ and Λ0(·) (say β̂, θ̂, Λ̂0(·)) will satisfy

exp(ŵi) ∼=
1/θ̂ +Di

1/θ̂ + Λ̂i

(2.30)

where Λ̂i is given in (2.13). We note that this is equivalent to (2.29), the solution from

the penalized partial likelihood for fixed values of β and θ and with Λ̂i replaced with Âi.

In the M-step of the algorithm, the estimator for β was obtained by maximizing the

profile likelihood Q2 (β | ζ) as given in (2.16). At the convergence of the algorithm, this

will contain log(exp(ŵi)) = ZT
i ŵ as a fixed offset. Thus indeed the solution for β from

the EM-algorithm will also be equivalent to that from the penalized partial likelihood

approach. Finally, the estimate for Λ0(·) is obtained by substituting the estimates for β

and E[exp(ws)] in (2.17). We thus get that

Λ0(t) =
∑

t(l)≤t

N(l)
∑

tqs≥t(l)
exp(xTqsβ̂ + ŵs)

.

which is the Breslow estimator and is equivalent to (2.28).
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2.5 Discussion

In this chapter we have looked at the various methods of estimation that have been de-

scribed in the literature to fit semi-parametric shared frailty models. We have focused on

the EM-algorithm and penalized partial likelihood estimation methods. Above we only

present the methodological aspects of the estimation procedures. We do not however com-

pare the performance of the various approaches. Indeed for a specific frailty distribution, it

would be interesting to assess the performance of each of the various approaches, through

simulations. This would give a guideline on what bias and variability to expect when using

a specific approach.

Currently only few standard softwares can be used to fit frailty models. The penalized

partial likelihood is the method of estimation implemented in S-plus . Recently an ad-

ditional subroutine that runs on a UNIX port has been implemented in S-plus for the

semi-parametric frailty model. This routine fits correlated frailties for both log-normal

and gamma frailties (Therneau, 2003). Parametric frailty models on the other hand can

be fitted also in S-plus as well as in Stata.

Above we have only considered the gamma and log-normal frailty distributions. The

choice of the frailty distribution is often governed by the problem at hand in terms of

the model implications. Each distribution has its own desirable properties. The gamma

distribution is more often than not used due to its mathematical convinience while the

log-normal distribution is frequently used in situations with correlated frailties. The lat-

ter is a popular choice in animal-breeding studies where clusters may not necessarily be

independent. The stable distribution on the other hand (though not considered here) has

the desireable property that the marginal hazard model (frailties integrated out) retains

the proportionality assumption. This is not the case with the gamma and the form of the

deviation from propotionality is unknown under the log-normal frailty model (Hougaard,

2000, p. 245).

We have also highlighted the identifiability issues that are considered for the frailty model

especially for univariate data. In the specific examples presented, a gamma frailty distri-

bution is used. For identifiability to hold, the mean of the frailty is restricted to be unity.

Under the log-normal frailty model, this restriction (i.e. E[U ] = 1) would mean that

E[W ] = −σ2/2 for the model to be identifiable (see Hougaard, 2000, p. 244, Colosimo

and Oliveira, 2002).
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Lastly, we remark that full Bayesian estimation approaches for the frailty models exist

although we do not consider them in this text. The various approaches in the litera-

ture within this context, differ mostly in the modelling aspect of the baseline hazard or

as above, in the frailty distribution. A detailed review of Bayesian estimation of frailty

models is given by Ibrahim et al. (2001).
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2.6 Appendix

Λ
(0) = Λ̂

θ(0) = 1

β(0) = β̂

?
k = 1

?
Given θ(k−1),β(k−1),Λ(k−1)

obtain Ek(w) and Ek(exp(w))

?
Maximize lpart(β|θ(k−1),β

(k−1)) +Q1(θ|θ(k−1),β
(k−1))

wrt θ,β to obtain θ(k),β(k) then update Λ(k)

?
k ≥ 2

? YES

¾ NO

|Q(θ(k−1),β(k−1)|θ(k−2),β(k−2)) -

Q(θ(k),β(k)|θ(k−1),β(k−1))| < ǫ

?
STOP

6

YES

NO

k = k + 1

-

Flow Chart 1. β̂ are the estimates for the regression coefficients in the classical Cox

regression model (without frailties); and Λ̂ = (Λ̂1, . . . , Λ̂G) where Λ̂i is obtained from

(2.17) with β(0) and E0(exp(wi))=1. Ek(w) = (Ek(w1), . . . , Ek(wG)), etc .
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w(1,0) = 0

θ(1) = 1

β(1,0) = β̂

?
l = 1; k = 1

?
Find new values β(l,k)

w(l,k) by Newton Raphson

?YES

|lppl(θ
(l),β(l,k),w(l,k)) -

lppl(θ
(l),β(l,k−1),w(l,k−1))| < ǫ

?

6
NO

Set β̂
θ(l)

= β(l,k),ω
θ(l)

= ω(l,k)

¾ YES

YES

k = k + 1

¾

|lpart
obs

(θ(l), β̂
θ(l)

, ŵ
θ(l)
)−

lpart
obs

(θ(l−1), β̂
θ(l−1)

, ŵ
θ(l−1)

)| < ǫ

?YES

STOP

6
l = l + 1

NO

6

New value θ(l) by

golden section search

based on lpart
obs

(θ(.), β̂
θ(.)
)

6

k = 1,ω(l,0) = ω
θ(l−1)

,

β(l,0) = β̂
θ(l−1)

-

Flow Chart 2. The penalized likelihood approach for the semi-parametric gamma

frailty model. For details, see Section 2.4.4.
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Chapter 3

Likelihood ratio and score tests for

a shared frailty model: a

non-standard problem

3.1 Introduction

In spite of the fact that shared frailty models are very useful to describe and to model

multivariate survival data, the inferential properties are not yet well examined. The main

reason is that, due to the complexity of the modelling, it is very hard to derive statistical

properties (e.g. asymptotic properties) for frailty models in general, see e.g. Murphy

(1994, 1995). As seen in Chapter 2 the complexity lies in the fact that the likelihood

expressions needed for the inference are implicit and difficult, so that in many situations

numerical algorithms are needed to obtain estimates and standard errors.

We saw in Section 2.3 that the underlying concept in the frailty models is that the failure

times of individuals in a cluster are dependent, while those across clusters are indepen-

dent. One of the important methodological questions is to provide information on the

asymptotic distributional behavior of the likelihood ratio test for heterogeneity (between

cluster variability). To test for heterogeneity we consider the following hypotheses testing

problem. Assume that the random effect, present in the shared frailty model, has variance

39



40 Chapter 3

θ. The relevant hypotheses are:

H0 : θ = 0 versus Ha : θ > 0. (3.1)

which is a one-sided hypotheses testing problem. The theory of testing such hypotheses

has a long history, going back to Chernoff (1954) and has been extensively studied in

linear mixed models. By now it is well known that for linear mixed models, the asymp-

totic distribution theory for the likelihood ratio (see Self and Liang, 1987, Stram and Lee,

1994, 1995) and score statistic (Verbeke and Molenberghs, 2003) for this testing problem

does not follow the classical chi-square limit theory. The reason is that, under the null

hypothesis, the parameter of interest is at the boundary of the parameter space (in the

alternative hypothesis the heterogeneity parameter is subject to an inequality constraint).

As a consequence the classical conditions needed for the likelihood ratio theory are not

satisfied. We therefore need to develop “likelihood ratio theory under non-standard con-

ditions”.

This phenomenon has been recognized in the literature on frailty models. Vaida and Xu

(2000, p. 3322) write “for the likelihood ratio test a correction for the null distribution,

which is no longer a chi-square distribution, is needed as discussed in similar set-ups by

Stram and Lee (1994) and Self and Liang (1987) in the context of mixed effects models”.

Duchateau et al. (2002) simulate the limit distribution of the likelihood ratio test and

conjecture that the simulated distribution is a 50:50 mixture of a χ20 and a χ21 distribu-

tion.

In most of the estimation procedures considered in the last chapter we have seen that

we need to estimate the cumulative baseline hazard in addition to the other parameters

of the semi-parametric shared frailty model. As our main interest in this chapter is the

heterogeneity parameter we shall derive the asymptotic null distribution for the likelihood

ratio test and the score test for heterogeneity for the shared gamma frailty model with

a Weibull baseline hazard. In Section 3.2, a precise description of the model is given.

In Section 3.3 we give, for complete data (no censoring), the asymptotic distribution of

the likelihood ratio statistic for this testing problem. We first consider, for transparency

of the proof, bivariate complete data without covariates (Section 3.3.1). Bjarnason and

Hougaard (2000) use this model to study the Fisher information matrix. The idea behind

the simplification is to fully understand the statistical properties for a simple, though rel-

evant, model. In Section 3.3.2 we consider the more general case that includes covariates.
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The definition and distribution of the score statistic is dealt with in Section 3.4. The

proofs are given in Section 3.5; key references are Vu and Zhou (1997) and Silvapulle and

Silvapulle (1995). A short introductory discussion on possible extensions to censored data

is given in Section 3.6. We finish the chapter with a discussion section (Section 3.8).

3.2 Complete data model

We observe a set of n independent random vectors T i = (Ti1, Ti2), i = 1, . . . , n. Each

vector is considered as a cluster of size two, as in twin studies where Ti1 and Ti2 are the

observed times for the first and second twin in the ith cluster. We assume that, conditional

on the frailty variables Ui = u, the lifetimes Ti1 and Ti2 are independent with a Weibull

distribution, i.e., the conditional hazard is

λ(t | u, x) = uλρtρ−1 exp(xTβ)

with λ > 0 and ρ > 0. Further Ui is taken to have the gamma density

fUi(u) =
u
1
θ
−1 exp

(
−u

θ

)

θ
1
θΓ
(
1
θ

) .

as in (2.6) but with Var(Ui) = θ.

The key idea is that within cluster dependence is caused by the frailty variables U1, . . . , Un

representing unobserved common risk factors. For example, unobserved genetic and en-

vironmental effects in twin studies or subject effects when the eyes of an individual are

considered. Given Ui = u, the conditional survival function of (Ti1, Ti2) is

S(t1, t2 | u,x1,x2) = P (Ti1 > t1, Ti2 > t2 | u,x1,x2)

= exp
[
−u
{
λ1t

ρ
1 exp(x

T
1 β) + λ2t

ρ
2 exp(x

T
2 β)
}]

.

The (unconditional) survival function is

S(t1, t2 | x1,x2) = E
[
exp{−u

(
λ1t

ρ
1 exp(x

T
1 β) + λ2t

ρ
2 exp(x

T
2 β)
)
}
]

= {1 + θ(λ1t
ρ
1 exp(x

T
1 β) + λ2t

ρ
2 exp(x

T
2 β)}−

1
θ .

The corresponding joint density is

f(t1, t2 | x1,x2) =
(1 + θ)λ1λ2ρ

2tρ−11 exp(xT1 β)t
ρ−1
2 exp(xT2 β)

{1 + θ
[
λ1t

ρ
1 exp(x

T
1 β) + λ2t

ρ
2 exp(x

T
1 β)
]
} 1θ+2

.
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For θ > 0 (heterogeneity between clusters) the components of the vector (Ti1, Ti2) are

correlated (within cluster correlation). To quantify the within cluster dependence we can

use Kendall’s coefficient of concordance as mentioned in Section 2.3.2. For our model

Kendall’s coefficient of concordance is θ/(2 + θ) which is zero for θ = 0. Moreover we

easily obtain that

lim
θ→
>
0
f(t1, t2 | x1,x2) =

2∏

j=1

λjρt
ρ−1
j exp(xTj β) exp

(
−λjt

ρ
j exp(x

T
j β)
)
,

i.e., Ti1 and Ti2 are independent Weibull distributed random variables with scale and shape

parameters λj exp(x
T
ijβ) and ρ, respectively.

The marginal likelihood for the data is given by

n∏

i=1

(1 + θ)λ1λ2ρ
2T ρ−1

i1 exp(xTi1β)T
ρ−1
i2 exp(xTi2β)

{
1 + θ

[
λ1T

ρ
i1 exp(x

T
i1β) + λ2T

ρ
i2 exp(x

T
i2β)

]} 1
θ
+2

.

with corresponding log-likelihood

Ln =
n∑

i=1

{log(1 + θ) + log λ1 + logλ2 + 2 log ρ+ βT (xi1 + xi2) + (ρ− 1)(log Ti1 + log Ti2)

−
(
1

θ
+ 2

)
log
(
1 + θ

[
λ1T

ρ
i1 exp(x

T
i1β) + λ2T

ρ
i2 exp(x

T
i2β)

])
}.

(3.2)

To test the within cluster dependence we consider the hypothesis testing problem stated

in (3.1). To focus attention on the main ideas we assume λ1 = λ2 = λ and take x as

univariate, i.e., x = x. Moreover, for further discussion it is convenient to work with the

following transformed Weibull parameters: η = − log λ and α = − log ρ. With this trans-

formation then each of the nuisance parameters (η, α, β) is in R. We use τ as shorthand

notation for the set of model parameters (θ, η, α, β) and ν for (η, α, β). In terms of τ the

parameter space is Θ = [0,∞)×R3 and the testing problem can be written as

H0 : τ ∈ Θ0 = {0} × R3 against Ha : τ ∈ Θ1 = (0,∞)× R3. (3.3)

3.3 The likelihood ratio statistic

The likelihood ratio statistic for testing (3.3), i.e., for testing cluster dependence is

dn = 2

{
sup
τ∈Θ

Ln(τ)− sup
τ∈Θ0

Ln(τ)

}
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Under the null hypothesis the parameter vector of interest is at the boundary of the

parameter space. Therefore the standard asymptotic distribution theory for likelihood

ratio tests does not work. In Section 3.3.1 we obtain the asymptotic distribution for dn

for the special case when there are no covariates. In Section 3.3.2 we consider complete

data with covariates. Different settings of the observed covariates will be considered.

3.3.1 Complete survival data, no covariates

For complete bivariate data with no covariates the testing problem (3.3) reduces to the

more simple form

H0 : (θ, η, α) ∈ Θ0 = {0} × R2 against Ha : (θ, η, α) ∈ Θ1 = (0,∞)×R2 (3.4)

The corresponding log-likelihood is

Ln(θ, η, α) =

n∑

i=1

[
−2(η + α) + log(1 + θ) + (e−α − 1)(log Ti1 + log Ti2)

]

−
(
1

θ
+ 2

) n∑

i=1

log
{
1 + θe−η(T e−α

i1 + T e−α
i2 )

}
.

Theorem 1. The likelihood ratio statistic dn for testing the one-sided heterogeneity

hypothesis (3.4) in the shared gamma frailty model with Weibull baseline hazard has an

asymptotic null distribution which is an equal mixture of a point mass at zero and a

chi-square distribution with one degree of freedom, that is, dn →d
1
2χ
2
0 +

1
2χ
2
1 as n→∞.

We give the proof of this theorem in Section 3.5. The first and second derivatives of Ln(τ)

needed for the proof are given in Section 3.9, where τ = (θ, η, α, β) and ν = (η, α, β). The

structure of the proof makes clear how to deal with boundary parameters, as well as with

the one-sided aspect of the testing problem.

Vu and Zhou (1997) give a set of conditions under which a general result holds on the

asymptotic behaviour of likelihood ratio tests where, under the null hypothesis, the true

values are allowed to lie on the boundary of the parameter space. These conditions are

outlined with the proof in Section 3.5.

This result has an immediate impact on how to determine (asymptotic) critical values

and P -values for likelihood ratio tests for heterogeneity. Erroneously relying on chi-square
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distribution theory as for two-sided tests, leads to a conservative strategy in rejecting the

null hypothesis of no heterogeneity.

3.3.2 Complete survival data, including covariates

It is possible to generalize Theorem 1 to the situation of non-identically distributed obser-

vations. This allows the distribution of the lifetimes Tij , j = 1, 2 to depend on covariate

information. The log-likelihood now is

Ln(τ) =

n∑

i=1

{log(1 + θ)− 2(η + α) + β(xi1 + xi2) + (e−α − 1)(log Ti1 + log Ti2)

−
(
1

θ
+ 2

)
log
(
1 + θe−η

[
T e−α

i1 exp(βxi1) + T e−α

i2 exp(βxi2)
])
},

with τ = (θ, η, α, β).

Let F n(τ) be the matrix of the negative of the second derivatives of Ln(τ) with respect

to τand define Gn(ν) = E[F n(0, ν)] (ν = (η, α, β)). In the covariate-free case (ν = (η, α))

the Fisher information matrixGn(ν) only depends on the parameter η and its determinant

is independent of the parameters (see proof of Theorem 1 in Section 3.5). However in the

presence of covariates the matrix Gn(ν) depends on the coefficient β. Restrictions on the

allowable range of values for β are needed for the asymptotic theory to go through. These

restrictions depend on the type of covariates considered.

To explain the issue we take the same modelling situation as in the previous section, yet

with a covariate added. Denote Mk,l =
∑n

i=1

∑2
j=1 x

k
ij exp(lβxij) and

Nk,l =
∑n

i=1 exp{β(kxi1 + lxi2)}. Further let ψ be the digamma function and ζ(2, q) =
∫∞
0

te−qt

1−e−t dt. With these notations the entries of the symmetric matrix Gn(ν) on suppress-

ing the dependence on subscript n are:

G1,1 = n+ 4(M0,3 −M0,2 +N2,1 +N1,2 −N1,1)

G2,2 = M0,1

G3,3 = −2n(ψ(1) + η) + (ψ(2) + η)M0,1 + {(ψ(2) + η)2 + ζ(2, 2)}M0,1

G4,4 = M2,1

G1,2 = 2N1,1 + 2M0,2 − 2M0,1

G1,3 = −2(ψ(2) + η)M0,1 + 2M0,2(ψ(3) + η) + 2(ψ(2) + η)N1,1

G1,4 = 2M1,1 − 2M1,2 −
∑n

i=1(xi1 + xi2) exp{β(xi1 + xi2)}
G2,3 = (ψ(2) + η)M0,1
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G2,4 = −M1,1

G3,4 = −(ψ(2) + η)M1,1

A direct calculation shows that the determinant of this matrix is independent of the value

of η, but does depend on β. We now consider two applications.

Example 1. Suppose n is even, xi1 is a binary covariate, half of the observations xi1 = 1

with corresponding xi2 = 0. This situation occurs for example for a treatment of the eyes

when only one eye, either left or right, is treated and the other serves as a control. A

specification of the matrix Gn(ν) gives that the entries of G̃ ≡ G̃(ν) = Gn(ν)/n are given

by

G̃1,1 = 1 + 4 exp(3β)

G̃2,2 = 1 + exp(β)

G̃3,3 = −2(ψ(1) + η) + {ψ(2) + η + (ψ(2) + η)2 + ζ(2, 2)}{1 + exp(β)}
G̃4,4 = exp(β)

G̃1,2 = 2 exp(2β)

G̃1,3 = −2(ψ(2) + η){1 + exp(β)}+ 2(ψ(3) + η){1 + exp(2β)}+ 2(ψ(2) + η) exp(β)

G̃1,4 = exp(β)− 2 exp(2β)

G̃2,3 = (ψ(2) + η){1 + exp(β)}
G̃2,4 = − exp(β)

G̃3,4 = −(ψ(2) + η) exp(β).

Direct calculation shows that the determinant of G̃(ν) depends on both β and η and can

take on both positive and negative values. It is a linear function of η but depends on β in

a more complex manner. In particular we have

det(G̃) = −e5β + e4β(3η + 3.203)− e3β(4η − 3.599) + e2β(2η − 1.154)− eβ(η − 1.222)

The allowable range of β values for the matrix Gn(ν) to be positive definite increases

with increasing values of η (decreasing λ = exp(−η)). See Figure 3.1. In particular, when

η = 2, then we require that β < 2.1674 which corresponds to a risk difference between

treatment and non-treatment of size 8.736.

Example 2. Fixed covariate design. For vi =
(i−1)
(n−1) , i = 1, . . . , n, generate the covariate

values (xi1, xi2) as follows: xi1 = F−11 (vi) and xi2 = F−12 (vi) where F1 and F2 are given

distribution functions. It is now easy to compute limiting expressions for the entries of

the matrix Gn. For example, n−1Mk,l →
∑2

j=1E[X
k
j exp(lβXj)] where Xj ∼ Fj. Also

in this case, restrictions on the regression coefficient are needed for the matrix Gn to be
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positive definite.
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Figure 3.1: Determinant of G̃ as a function of the regression coefficient β and η for a gamma frailty
model with a binary covariate as in Example 1.

Theorem 2. Assume that the Fisher information matrix Gn is positive definite and

that ‖βx‖ is finite uniformly over the coefficient β and the covariate space of x. Then

the likelihood ratio statistic dn for testing the one-sided heterogeneity hypothesis (3.3)

in the shared gamma frailty model with Weibull baseline hazard has an asymptotic null

distribution which is an equal mixture of a point mass at zero and a chi-square distribution

with one degree of freedom, that is, dn →d
1
2χ
2
0 +

1
2χ
2
1 as n→∞.

3.4 The score tests

In this section we formulate the asymptotic distribution of the score test statistic for com-

plete survival data with no covariates. If parameters constrained under the null hypothesis
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belong to the interior of the parameter space, it is well known that likelihood ratio, Wald

and score statistics have asymptotically the same distribution under the null hypothesis.

Under inequality constraints in the alternative hypothesis, a score statistic is no longer

uniquely defined, see Silvapulle and Silvapulle (1995). These authors propose a different

score-type statistic which only requires estimation under the null hypothesis. Under mild

regularity conditions, they obtain that under the null hypothesis asymptotically the score

statistic follows the same mixture distribution as the likelihood ratio statistic.

In general the score test statistic for a two-sided testing problem is

Sn(τ0)G
−1
n (τ0)S

T
n (τ0)

where τ0 is the true value of τ and Sn(τ0) is the score vector evaluated at τ = τ0.

The explicit expressions for the components of the score vector Sn(τ) = (Sn,θ(τ), Sn,ν(τ))

with Sn,θ(τ) = ∂Ln(τ)/∂θ and Sn,ν(τ) = (∂Ln(τ)/∂η, ∂Ln(τ)/∂α, ∂Ln(τ)/∂β)
T are given

in Section 3.9.

Via a Taylor series expansion Silvapulle and Silvapulle (1995) rewrite the score statistic

as the difference of the minimum of two quadratic forms, of which the minimisation of the

first one is under the null hypothesis which can be performed exactly. We state the result-

ing score statistic in the following theorem. Let ν̂ be the maximum likelihood estimator

of the nuisance parameters under the null hypothesis and let Sn,θ(0, ν̂) denote the score

vector evaluated at (0, ν̂).

Theorem 3

(i) For a shared gamma frailty model with exponential baseline hazard the score statistic

for testing the heterogeneity hypothesis (3.4) is given by

Sn =
1

3n2
{Sn,θ(0, η̂)}2 − 3n inf

b≥0

{(
1

3n3/2
Sn,θ(0, η̂)− b

)2}

.

(ii) For a shared gamma frailty model with Weibull baseline hazard function a score

statistic for testing the heterogeneity hypothesis (3.4) is given by

Sn =
1

3n2
π2

π2 − 4
{Sn,θ(0, ν̂)}2 − 3n

(
1− 4

π2

)
inf
b≥0

{(
1

3n3/2
π2

π2 − 4
Sn,θ(0, ν̂)− b

)2}

.

For both models the corresponding score statistic has, under the null hypothesis, asymp-

totic distribution 1
2χ
2
0 +

1
2χ
2
1.
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The proof is also given in the next section. Note that in the exponential baseline hazard

model when Sn,θ(0, η̂) ≥ 0, the expression of the score statistic simplifies to

Sn =
1

3n2
{Sn,θ(0, η̂)}2.

A similar simplification holds for the Weibull baseline hazard model.

3.5 Proofs

Vu and Zhou (1997) in their Theorem 2.2 give a set of conditions under which a general

result holds on the asymptotic behaviour of likelihood ratio tests where, under the null

hypothesis, the true values are allowed to be on the boundary of the parameter space. For

the model specified in Section 3.3.1 , we will show that their set of conditions is satisfied.

First defineDn(ν) = E[ST
n (0, ν)Sn(0, ν)] and letGn(ν) and F n(τ) be as defined in Section

3.3.2. but with τ = (θ, η, α) and ν = (η, α). As derived in Section 3.9 we have for the

shared frailty model with Weibull baseline hazard that

Gn(ν) = nG(η) = n






5 2 2(2− ρe + η)

2 2 2(1− ρe + η)

2(2− ρe + η) 2(1− ρe + η) π2/3 + 2(1− ρe + η)2






(3.5)

with γe the Euler constant. From Property 2 in Section 3.9 we know thatDn(ν) = Gn(ν),

a property that we expect since our likelihood is based on a sample of independent and

identically distributed vectors.

The following are the necessary conditions of Vu and Zhou (1997). To avoid ambiguity in

notation, they are presented in terms of an unknown parameter ϑ ∈ Θ ⊂ Rk, with Θ as

the parameter space. Further ϑ0 is the true unknown parameter value.

(A1) For a neighborhood N of ϑ0 the log-likelihood function Ln(ϑ) is continuous

on ϑ∩ℵ and the first and second derivatives of Ln(ϑ) exist, are finite and continuous

(A2) For a subset Ω of Θ there exists a closed cone CΩ with vertex at ϑ0 such that

inf
x∈CΩ

∣∣∣GT/2
n (x− y)

∣∣∣ ≤ µ(y)
∣∣∣GT/2

n (y − ϑ0)
∣∣∣ for µ(y) ∈ Ω

and

inf
y∈Ω

∣∣∣GT/2
n (x− y)

∣∣∣ ≤ ν(x)
∣∣∣GT/2

n (x− ϑ0)
∣∣∣ for ν(x) ∈ CΩ
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with µ(y)→ 0 as y → ϑ0 and ν(x)→ 0 as x→ ϑ0.

(A3) For a subset Ω of Θ there exists a closed cone C̃Ω with vertex at 0, not depending

on n such that the sets of transformed cones

C̃Ωn =
{
ϑ̃ : ϑ̃ = GT/2

n (ϑ− ϑ0),ϑ ∈ CΩ

}

asymptotically coincide with C̃Ω in the sense that as n→∞

sup
|b|=1

∣∣∣∣∣ inf
ϑ∈C̃Ωn

|b− ϑ|2 − inf
ϑ∈C̃Ω

|b− ϑ|2

∣∣∣∣∣→ 0.

(B1) E[Sn(ϑ0)] = 0, and Dn(ϑ0) and Gn(ϑ0) are finite.

(B2) κmin(Gn(ϑ0))→∞, where κmin(A) denotes the smallest eigenvalue of a

symmetric positive definite matrix A

(B3) sup
ϑ∈Nn(A)

‖G
−1/2
n (ϑ0)F n(ϑ)G

−T/2
n (ϑ0)− Ik‖1 = oP (1)

where Nn(A) =
{
ϑ : (ϑ− ϑ0)TGn(ϑ− ϑ0) ≤ A2,ϑ ∈ Θ, forA > 0

}

and ‖W ‖1 is the sum of the absolute values of the elements of a matrix W .

(B4) For some positive definite matrix V , ‖G
−1/2
n (ϑ0)Dn(ϑ0)G

−T/2
n (ϑ0)− V k‖1 → 0.

(B5) (Dn(ϑ0))
−1/2 Sn(ϑ0)→d N(0, Ik).

Note 1. If

liminf
n→∞

κmin(Gn(ϑ0)

κmax(Gn(ϑ0)
> 0.

where κmax(A) denotes the largest eigenvalue of a symmetric positive definite matrix A,

then (A2) is equivalent to the Chernoff regularity (Chernoff, 1954). Geyer (1994) shows

that each convex set is Clarke regular (Clarke, 1983) and that Clarke regularity is stronger

than Chernoff regularity.

Note 2. When (B2) holds, Gn(ϑ0) is positive definite for n large enough.

Note 3. When (B2) and (B4) hold, Dn(ϑ0) is positive definite for n large enough.

3.5.1 Proof of Theorem 1

The main issue is to check the conditions (A1)-(A3) and (B1)-(B5) needed for the validity

of Theorem 2.2 of Vu and Zhou (1997). For the problem at hand, the parameter of interest

is τ and the subsets under the null and alternative hypothesis of the parameter space Θ

are Θ0 and Θ1 respectively.



50 Chapter 3

(A1) The log-likelihood function, score vector and components of the matrix of second

derivatives of the log-likelihood (see Section 3.9 for explicit expressions) are continuous

and finite on a neighborhood of the true parameter value τ0 = (0, ν0). For the score com-

ponent and second derivatives of the log-likelihood with respect to θ the boundedness is

shown by an expansion of the logarithmic function in the second term of equation (3.17)

in Section 3.9. For the other derivatives the result is straightforward to obtain.

(A2) The closed cones with vertex at τ0 for Θ0 and Θ1 are CΘ0 ≡ Θ0 and CΘ1 ≡ Θ.

From Property 1 in Section 3.9 we have that

liminf
n→∞

κmin(Gn(ν))

κmax(Gn(ν))
=

κmin(G(η))

κmax(G(η))
> 0.

It therefore suffices to show the Chernoff regularity, which is satisfied since the parameter

space Θ1 = (0,∞)× R3 is convex (Geyer, 1994).

(A3) The transformed cones, used to obtain the asymptotic distribution of the likelihood

ratio test, are for j = 0, 1

C̃n,Θj =




(θ̃, η̃, α̃) = GT/2

n (ν)




θ

η

α




with




θ

η

α



∈ CΘj





with G
1/2
n (ν) and G

T/2
n (ν) the left and the corresponding right Cholesky square root of

Gn(ν). A direct calculation shows that G
T/2
n (ν) = n1/2GT/2(η) with

GT/2(η) =




√
5 2/

√
5 2(2− γe + η)/

√
5

0
√
6/5

√
2(1− 3γe + 3η)/

√
15

0 0
√
(π2 − 4)/3




We therefore have

C̃n,Θ0 =

{
(θ̃, η̃, α̃) : θ̃ −

√
2

3
η̃ − 2

√
5√

3(π2 − 4)
α̃ = 0

}
≡ C̃Θ0

C̃n,Θ1 =

{
(θ̃, η̃, α̃) : θ̃ −

√
2

3
η̃ − 2

√
5√

3(π2 − 4)
α̃ ≥ 0

}
≡ C̃Θ1.

Since C̃n,Θj ≡ C̃Θj , condition (A3) holds.
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(B1) Based on the expressions in Section 3.9 we can easily show that E[Sn(0, ν)] = 0

and we know that Dn(ν) = Gn(ν) are finite matrices.

(B2) κmin(Gn(ν)) = nκmin(G(η))→∞, n→∞. This follows from Property 1 in Section

3.9.

(B3) For (0, ν0), the true parameter value, define

Nn(A) =




τ = (θ, η, α) : (θ, η − η0, α− α0)Gn(ν0)




θ

η − η0

α− α0



≤ A2, τ ∈ Θ





.

To prove (B3) we need to show that

sup
τ∈Nn(A)

‖G−1/2
n (ν0)F n(τ)G

−T/2
n (ν0)− I3‖1 = oP (1). (3.6)

with P a shorthand notation for Pτ0 (τ0 = (0, ν0) ∈ Θ0, the true value of the parameter

under the null hypothesis). Note that (recall equation (3.5))

G−1/2
n (ν0)F n(τ)G

−T/2
n (ν0)− I3

= G−1/2(η0)
(
F n(0, ν0)−Gn(ν0)

n

)
G−T/2(η0) (3.7)

+G−1/2(η0)
(
F n(τ)− F n(0, ν0)

n

)
G−T/2(η0).

Note that, for matricesW 1 andW 2, ‖W 1W 2‖1 ≤ ‖W 1‖1‖W 2‖1. Since ‖G−1/2(η0)‖1 =
‖G−T/2(η0)‖1 ≤ C(η0), with 0 < C(η0) <∞, (3.6) follows by showing that

∥∥∥∥
F n(0, ν0)

n
−G(η0)

∥∥∥∥
1

= oP (1) (3.8)

and

sup
τ∈Nn(A)

∥∥∥∥
F n(τ)− F n(0, ν0)

n

∥∥∥∥
1

= oP (1). (3.9)

To establish the validity of (3.8) we need the entries of F n(0, ν0) given in Section 3.9. For

each entry we apply the law of large numbers to obtain

∣∣∣∣∣

(
F n(0, ν0)

n

)

[i,j]

− (G(η0))[i,j]

∣∣∣∣∣ = oP (1).
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Hence (3.8) is valid.

To establish (3.9) we need the entries of F n(τ), the negative of the second derivatives of

Ln, which are also given in Section 3.9. For each entry we need to show that

sup
τ∈Nn(A)

∣∣∣∣∣

(
F n(τ)− F n(0, ν0)

n

)

[i,j]

∣∣∣∣∣ = oP (1). (3.10)

We show how to prove (3.10) for the [2, 2]-entry.

(
F n(τ)− F n(0, ν0)

n

)

[2,2]

=
1

n

n∑

i=1

H22(Ti, τ)

where, with Ui = T e−α
i1 + T e−α

i2 (as defined in Section 3.9 but with β = 0),

H22(Ti, τ) = −θe−2η(1 + 2θ)
U2i

(1 + θe−ηUi)2
+ e−η(1 + 2θ)

Ui

1 + θe−ηUi
− e−η0Ui.

Note that H22(Ti, τ0) ≡ 0. There exists a fixed positive integer n0 such that for all n ≥ n0

sup
τ∈Nn(A)

e−α ≤ K ≡ 2(e−α0 + 1)

and, for some constant D > 0,

|H22(Ti, τ)| < D(T 2Ki1 + T 2Ki2 ).

With µ(τ) = Eτ0H(Ti, τ) we have by the dominated convergence theorem that

lim
τ→τ0

µ(τ) = µ(τ0) ≡ 0. Now the proof of (3.9) follows since

sup
τ∈Nn(A)

∣∣∣∣∣
1

n

n∑

i=1

H22(Ti, τ)

∣∣∣∣∣

≤ sup
τ∈Nn(A)

∣∣∣∣∣
1

n

n∑

i=1

H22(Ti, τ)− µ(τ)

∣∣∣∣∣+ sup
τ∈Nn(A)

|µ(τ)| = oP (1). (3.11)

An application of Theorem 16(a) in Ferguson (1996), p. 108 implies indeed that the first

term in the right-hand side of (3.11) is oP (1) (uniform law of large numbers); elementary

analysis implies that the second term in the right-hand side of (3.11) is o(1).

Similar proofs hold for all the other entries of (F n(τ)− F n(0, ν0))/n.

(B4) The matrix V = I3 and (B4) holds since Gn(ν) =Dn(ν).

(B5) Since (Ti1, Ti2), i = 1, . . . , n, are independent and identically distributed vectors, an
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application of classical multivariate central limit theorem theory gives thatG
−1/2
n (ν0)Sn(0, ν0)→d

N = (N1, N2, N3) which has a multivariate normal with mean vector zero and covariance

matrix I3.

Since the Vu and Zhou (1997) conditions (A1)-(A3) and (B1)-(B5) are valid, an application

of their Theorem 2.2 gives that the asymptotic null distribution of dn , the likelihood ratio

statistic, is the same as the distribution of

inf
τ̃∈C̃Θ0

|N − τ̃ |2 − inf
τ̃∈C̃Θ1

|N − τ̃ |2 (3.12)

where τ̃ = (θ̃, η̃, α̃).

From the definitions C̃Θ0 and C̃Θ1 we have

inf
τ̃∈C̃Θ0

|N − τ̃ |2 =
(
N1 + aN2 + bN3√

1 + a2 + b2

)2
(3.13)

with a = −
√
2
3 and b = − 2

√
5√

3(π2−4)
(see the proof of condition (A3)), i.e., the random

variable in (3.13) has a chi-square distribution with one degree of freedom. We further

have

inf
τ̃∈C̃Θ1

|N − τ̃ |2 =





0 N ∈ C̃Θ1(
N1 + aN2 + bN3√

1 + a2 + b2

)2
N /∈ C̃Θ1

(3.14)

Moreover we have P (N ∈ C̃Θ1) = 0.5. This, together with (3.12) - (3.14) implies that the

asymptotic distribution of the likelihood ratio test is 0.5χ20 + 0.5χ21.

3.5.2 Proof of Theorem 2

This follows along the lines of the proof of Theorem 1. The main differences arises only

from the fact that Gn depends on both η and β. Write Gn(η, β) = n
(
n−1Gn(η, β)

)
.

Then the conditions on x and β assure that G(η, β) = limn→∞n−1Gn(η, β) exists and

that G(η, β) is a symmetric positive definite matrix. Its Cholesky decomposition leads to

cones C̃n,Θj (j = 0, 1) of which the limiting cones are defined using the matrix G(η, β).

The remaining part of the proof holds under the boundedness assumption on β and on

the covariate x.
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3.5.3 Proof of Theorem 3

We first state the general form of the score statistic to test the heterogeneity hypothesis.

Partition the Fisher information matrix Gn(ν) such that the upper left block corresponds

to the parameter θ constrained to zero under the null hypothesis and the lower right block

is defined by the nuisance parameters ν. Specifically,

Gn(ν) =




Gn,00(ν) Gn,01(ν)

GT
n,01(ν) Gn,11(ν)


 .

Further, define G00n (ν) = (G−1
n (ν))00 = (Gn,00(ν) −Gn,01(ν)G

−1
n,11(ν)G

T
n,01(ν))

−1, let ν̂ be

the maximum likelihood estimator of the nuisance parameters under the null hypothesis

and let Sn,θ(0, ν̂) denote the score vector evaluated at (0, ν̂).

Silvapulle and Silvapulle (1995) define the score statistic

Sn = n−1ST
n,θ(0, ν̂)G

00
n (0, ν̂)Sn,θ(0, ν̂)

− inf
b≥0

{(
n−1/2G00n (0, ν̂)Sn,θ(0, ν̂)− b

)T
{G00n (0, ν̂)}−1

(
n−1/2G00n (0, ν̂)Sn,θ(0, ν̂)− b

)}
.

They show that assuming the existence of a matrix H =H(τ) such that for n→∞
(C1) n−1/2Sn(τ)→d N(0,H(τ)),

and for any a > 0

(C2)

sup
‖h‖≤a

[
n−1/2{Sn(τ + n−1/2h)− Sn(τ)}+H(τ)h

]
= op(1),

the likelihood ratio and score statistic for testing (3.4) have asymptotically the same

distribution. Condition (C2) ensures the existence of the score statistic within a small

neighbourhood of τ0. It is also clear from (C1) and (C2) that H(τ) is essentially Gn(τ).

For the case of a shared gamma frailty model with an exponential baseline hazard there

is only the nuisance parameter η (or λ = exp(−η)). For this special case, with Fisher

information matrix

Gn = n




5 2

2 2


 ,

we have that G00n = (3n)−1, not dependent on any nuisance parameters, and hence we

obtain the following score statistic

Sn =
1

3n2
{Sn,θ(0, η̂)}2 − 3n inf

b≥0

{(
1

3n3/2
Sn,θ(0, η̂)− b

)2}
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For the Weibull baseline hazard the nuisance parameter is ν = (η, α) and the Fisher

information matrix is Gn(ν) as given in (3.5), from which it is deduced that G00n =

π2/(3n(π2− 4)). Hence the resulting score statistic is obtained as given in Theorem 3(ii).

3.6 Extension to censored data

In this section we set an initial step to the study of the likelihood ratio test for heterogeneity

in the case of censored data. Like in the preceeding sections we assume that we have

bivariate data. For each of the n individuals we observe T o
i = (T o

i1, T
o
i2), i = 1, . . . , n,

where T o
ij = min(Tij , Cij), j = 1, 2, and Tij and Cij are the time to failure and censoring

time respectively. Also observed are the censoring indicators δij = 1 if T o
ij = Tij and

zero otherwise. For simplicity we assume that λ1 = λ2 = ρ = 1, (η = α = 0) and no

covariates. Since the heterogeneity parameter is the only remaining unknown parameter,

the likelihood ratio test for H0 : θ = 0 versus Ha : θ > 0 is

dn = 2{sup
θ≥0

Ln(θ)− Ln(0)}. (3.15)

The log-likelihood Ln(τ) reduces to

Ln(θ) = −1
θ

∑

{i:Di=0}
log{1 + θ(T o

i1 + T o
i2)} −

1

θ + 1

∑

{i:Di=1}
log{1 + θ(T o

i1 + T o
i2)}

− 1

θ + 2

∑

{i:Di=2}
log{1 + θ(T o

i1 + T o
i2)}+N2 log(1 + θ) (3.16)

where Di =
2∑

j=1
δij and N2 = ♯ {i : Di = 2}.

This log-likelihood is, a particular example of the likelihood and the log-likelihood expres-

sion given on pages 1476 and 1490 of Murphy and van der Vaart (1997) with λ(t) ≡ 1

and τ =∞. Indeed an equivalent way to describe the information contained in (T o
ij, δij),

i = 1, . . . , n, j = 1, 2, is through the counting process formulation introduced in Section

2.4.5. We now have

Ni(t) =

2∑

j=1

Nij(t) =

2∑

j=1

1{T o
ij ≤ t, δij = 1}

and the risk process

Ri(t) =

2∑

j=1

Rij(t) =

2∑

j=1

1{T o
ij ≥ t}.
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It then easily follows that

[{1 + θNi(t−)}Ri(t)]
∆Ni(t)

(1 + θ
∫∞
0 Ri(t)dt)1/θ+N(∞)

=




{1 + θ(T o

i1 + T o
i2)}−1/θ−Di for Di = 0 or 1

(1 + θ){1 + θ(T o
i1 + T o

i2)}−1/θ−Di for Di = 2

and hence Ln(θ) is a special case of the log-likelihood expression in Murphy and van der

Vaart (1997).

Theorem 4. The likelihood ratio statistic dn for testing the one-sided heterogeneity

hypothesis (3.15) in the shared gamma frailty model with constant baseline hazard, has

an asymptotic null distribution which is an equal mixture of a point mass at zero and a

chi-square distribution with one degree of freedom, that is, dn →d
1
2χ
2
0 +

1
2χ
2
1 as n→∞.

Proof.

It can easily be shown from (3.16) that

d2

dθ2
Ln(θ) = − 2

θ3

∑
log(1 + θUi) +

2

θ2

n∑

i=1

Ui

1 + θUi
+
1

θ

n∑

i=1

U2i
(1 + θUi)2

+
∑

{i:Di=1}

U2i
(1 + θUi)2

+ 2
∑

{i:Di=2}

U2i
(1 + θUi)2

− N2
(1 + θ)2

where Ui = T o
i1 + T o

i2.

On expanding the logarithmic term and simplifying we have

d2

dθ2
Ln(0) = −2

3

∑
U3i +

∑

{i:Di=1}
U2i + 2

∑

{i:Di=2}
U2i −N2.

It then follows that since G = limn→∞E
[
− 1

n
d2

dθ2
Ln(0)

]
is positive, the log-likelihood func-

tion Ln(θ) is concave in a closed neighbourhood N of zero. Let θ̂n = arg maxθ∈NLn(θ).

For θ̂n the following properties are immediate from the more general Theorem 2 in Murphy

(1994) and Theorem 1 in Murphy (1995): under the null hypothesis the likelihood estima-

tor θ̂ converges strongly to zero and the distribution of
√
nθ̂n tends to a normal limit with

zero mean and bounded limit variance G−1. As a result we have limn→∞P (θ̂n ≤ 0) = 0.5.

We wish to determine P (dn ≤ c) under the null hypothesis. If c < 0 then P (dn ≤ c) = 0 .
Next we consider the case when c ≥ 0. Write

P (dn ≤ c) = P(dn ≤ c | θ̂n > 0 )P(θ̂n > 0 ) + P(dn ≤ c | θ̂n ≤ 0 )P(θ̂n ≤ 0 ).
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If θ̂n ≤ 0 then dn = 0 and therefore under the null hypothesis we have P (dn ≤ c | θ̂n ≤
0 ) = 1 . For θ̂n > 0 we consider the Taylor expansion of dn which yields

dn = 2 (Ln(θ̂n)− Ln(0 ) = −θ̂2n
d2

dθ2
Ln(θ̃),

with θ̃n as an intermediate point in (0, θ̂n). Since θ̂n →P 0 then also θ̃n →P 0. By the weak

law of large numbers with estimated parameters (Iverson and Randles, 1989), it suffices

that

− 1

n

d2

dθ2
Ln(θ̃)→P G

as n → ∞. It then follows that Zn =
√
nθ̂n

(
− 1

n
d2

dθ2
Ln(θ̃)

)
→d Z, where Z ∼ N(0, 1).

Thus

P (dn ≤ c | θ̂n > 0 )P(θ̂n > 0 ) = P(0 < Zn ≤
√
c)→ 1

2
P(Z 2 ≤ c).

Hence under the null hypothesis

P (dn ≤ c)→
1

2
P(Z 2 ≤ c) + 1

2
.

3.7 Data example

We consider a data set from the Diabetic Retinopathy Study (Huster et al. 1989) to test

for heterogeneity by considering time to blindness in each eye of 197 patients with diabetic

retinopathy. One eye of each patient was randomly selected for treatment and the other

was observed without treatment. Of the 197 patients, 80 patients the times to event were

censored for both eyes. For these patients, both eyes were censored at the same time,

but the times varied from patient to patient. Further, blindness was observed only in the

untreated eye for 63 patients, and only in the treated eye for 16 patients. The remaining

44 patients went blind and out of this simultaneous blindness in both eyes was observed

in 6 patients.

We fitted a Weibull baseline hazard model with a gamma frailty distribution. A binary

covariate indicating a treated/non-treated eye was included in the model. This model

is more general than that considered in Section 3.6 as we use a Weibull baseline hazard

(λ0(t) = λρtρ−1) and also include covariates. Explorative analysis (Figure 3.2) shows that

the Weibull baseline hazard is an acceptable parametric model for these data. The results

are given in Table 3.1 below.
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Figure 3.2: Non-parametric hazard estimate for the Diabetic Retinopathy data.

Table 3.1: Parameter estimates (s.e.) and likelihood values for a Weibull gamma frailty model for the
Diabetic Retinopathy data.

Parameter Log LRT

θ λ ρ β likelihood p-value

Full model 0.712±0.145 0.011±0.190 0.888±0.006 0.382±0.046 -841.272 0.0006

Reduced model 0.015±0.126 0.799±0.005 0.280±0.027 -846.499

Based on the above results we reject the null hypothesis H0 : θ = 0 for no heterogeneity.

We thus conclude that the time to blindness was affected by some unobserved additional

patient characteristics after taking into account the treatment. The presence of hetero-

geneity is confirmed by the construction of a profile likelihood based confidence interval

for θ. For a given value of θ (say θf ) we maximize Ln(θ
f , λ, ρ, β) with respect to λ, ρ

and β. Denote these maximizers as λ(θf ), ρ(θf ) and β(θf ). We then obtain the profile

likelihood Ln(θ
f , λ(θf ), ρ(θf ), β(θf )) and follow the method explained in Morgan (1992)

to determine the profile likelihood based 95 % confidence interval (c.i) for θ. From Figure

3.3 the estimated approximate 95% c.i is (0.245,1.323). Hence, heterogeneity is present in

these data.
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Figure 3.3: Profile likelihood Ln(θ, λ(θ), ρ(θ), β(θ)) for the Diabetic Retinopathy data.

3.8 Discussion

In Section 3.6 we discussed one-sided heterogeneity tests in the frailty model for censored

data. For clarity we have restricted attention to the simple situation where the hetero-

geneity parameter is the single unknown parameter. The likelihood expressions given in

Murphy (1995) and Murphy and van der Vaart (1997) will be useful to extend Theorem

4 to more complex parametric and semi-parametric frailty models. The related study of

score tests for censored data is a further interesting topic. The discussion will be slightly

more complicated than the one given in Section 3.5 since the censored data score vector

does not have mean zero (see for example Theorem 2 in Murphy, 1995). One way to define

the score statistic then would be to start with a centered score vector by subtracting its

mean and then proceed in a similar manner as in Section 3.5.

Wald-type test statistics for testing hypothesis (3.1) may be employed as well. Robert-

son, Wright and Dykstra (1988) construct a Wald statistic for the situation where the

alternative hypothesis is described by inequalities. Their test statistic requires estimation

of model parameters under both the null and alternative hypothesis. Sen and Silvapulle
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(2002) state a Wald test statistic as a difference of the minimum of two quadratic forms

which has under the null hypothesis the same asymptotic distribution as the score and

likelihood ratio statistic. For more details, see the recent review paper by Sen and Silva-

pulle (2002).

An interesting topic of further research is to study the distributional behaviour of the test

for heterogeneity under local alternatives converging to the null hypothesis at rate n−
1
2 .

As in the two-sided testing problems, it is expected that the test statistics will have the

same power characteristics under the local circumstances.

A further relevant issue for further study is to provide information on good finite sample

approximation of the mixing properties, i.e., can we improve the asymptotic 50:50 mixture

of the χ20 and χ21 by finding mixing proportions that depend on the information of the sam-

ple size? In a setting of regression spline mixed models, Claeskens (2002) calculates finite

sample approximations to the mixing probabilities. In the frailty models currently under

consideration the situation is more complex by the presence of nuisance parameters under

the null hypothesis and censoring. Bootstrapping the distribution of the test statistic can

provide another alternative to the asymptotic distribution.
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3.9 Appendix

Define the following random variables:

Ui = Ui1 + Ui2=T e−α
i1 exp(βxi1) + T e−α

i2 exp(βxi2)

Vi = log Ti1 + log Ti2

Wi = Wi1 +Wi2 = T e−α
i1 log Ti1 exp(βxi1) + T e−α

i2 log Ti2 exp(βxi2).

and Mi = xi1Ui1 + xi2Ui2

Calculation of the score vector Sn(θ, η, α, β):

∂

∂θ
Ln(τ) =

n

(1 + θ)
+

1

θ2

n∑

i=1

log(1 + θe−ηUi)− (
1

θ
+ 2)e−η

n∑

i=1

Ui

1 + θe−ηUi
(3.17)

∂

∂η
Ln(τ) = −2n+ (1 + 2θ)e−η

n∑

i=1

Ui

(1 + θe−ηUi)

∂

∂α
Ln(τ) = −2n− e−α

n∑

i=1

Vi + (1 + 2θ)e−(η+α)
n∑

i=1

Wi

1 + θe−ηUi
.

∂

∂β
Ln(τ) =

n∑

i=1

(xi1 + xi2)− (1 + 2θ)e−η
n∑

i=1

Mi

1 + θe−ηUi
.

Under the null hypothesis, using an expansion of the logarithm in the second term of

(3.17), it follows that:

∂

∂θ
Ln(0, ν) = n− 2e−η

n∑

i=1

Ui +
1

2
e−2η

n∑

i=1

U2i

∂

∂η
Ln(0, ν) = −2n+ e−η

n∑

i=1

Ui

∂

∂α
Ln(0, ν) = −2n− e−α

n∑

i=1

Vi + e−(η+α)
n∑

i=1

Wi.

∂

∂β
Ln(0, ν) =

n∑

i=1

(xi1 + xi2)− e−η
n∑

i=1

Mi.
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The components needed in the calculation of the Fisher information matrix F n(τ) are :

[1, 1] :
∂2

∂θ2
Ln(τ) = − n

(1 + θ)2
− 2

θ3

n∑

i=1

log(1 + θe−ηUi)

+
2e−η

θ2

n∑

i=1

Ui

1 + θe−ηUi
+ (

1

θ
+ 2)e−2η

n∑

i=1

U2i
(1 + θe−ηUi)2

[2, 2] :
∂2

∂η2
Ln(τ) = θe−2η(1 + 2θ)

n∑

i=1

U2i
(1 + θe−ηUi)2

− e−η(1 + 2θ)
n∑

i=1

Ui

1 + θe−ηUi

[3, 3] :
∂2

∂α2
Ln(τ) = e−α

∑n
i=1 Vi − (1 + 2θ)e−(η+α)

n∑

i=1

Wi

1 + θe−ηUi

−(1 + 2θ)e−(η+2α)
n∑

i=1

Wi1 log Ti1 +Wi2 log Ti2
1 + θe−ηUi

+θ(1 + 2θ)e−2(η+α)
n∑

i=1

W 2
i

(1 + θe−ηUi)2

[4, 4] :
∂2

∂β2
Ln(τ) = −(1 + 2θ)e−η

n∑

i=1

x2i1Ui1 + x2i2Ui2

1 + θe−ηUi
+ θ(1 + 2θ)e−2η

n∑

i=1

M2
i

(1 + θe−ηUi)2

[1, 2] :
∂2

∂θ∂η
Ln(τ) = −e−2η(1 + 2θ)

n∑

i=1

U2i
(1 + θe−ηUi)2

+ 2e−η
n∑

i=1

Ui

1 + θe−ηUi

[1, 3] :
∂2

∂θ∂α
Ln(τ) = 2e−(η+α)

n∑

i=1

Wi

1 + θe−ηUi
− (1 + 2θ)e−(2η+α)

n∑

i=1

UiWi

(1 + θe−ηUi)2

[1, 4] :
∂2

∂θ∂β
Ln(τ) = −2e−η

n∑

i=1

Mi

1 + θe−ηUi
+ (1 + 2θ)e−2η

n∑

i=1

UiMi

(1 + θe−ηUi)2

[2, 3] :
∂2

∂η∂α
Ln(τ) = −(1 + 2θ)e−(η+α)

n∑

i=1

Wi

(1 + θe−ηUi)2
+ (1 + 2θ)θe−(2η+α)

n∑

i=1

UiWi

(1 + θe−ηUi)2

[2, 4] :
∂2

∂η∂β
Ln(τ) = (1 + 2θ)e−η

n∑

i=1

Mi

1 + θe−ηUi
− (1 + 2θ)θe−2η

n∑

i=1

UiMi

(1 + θe−ηUi)2

[3, 4] :
∂2

∂α∂β
Ln(τ) = (1 + 2θ)e−(η+α)

n∑

i=1

xi1Wi1 + xi2Wi2

1 + θe−ηUi
− (1 + 2θ)θe−(2η+α)

n∑

i=1

WiMi

(1 + θe−ηUi)2
.
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Under the null hypothesis, and using an expansion of the logarithm in the second term of

the second derivative with respect to θ, it follows that:

[1, 1] :
∂2

∂θ2
Ln(0, ν) = −n+ 2e−2η

n∑

i=1

U2i −
2

3
e−3η

n∑

i=1

U3i

[2, 2] :
∂2

∂η2
Ln(0, ν) = −e−η

n∑

i=1

Ui

[3, 3] :
∂2

∂α2
Ln(0, ν) = e−α

n∑

i=1

Vi − e−(η+α)
n∑

i=1

Wi

−e−(η+2α)
n∑

i=1

{Wi1 log Ti1 +Wi2 log Ti2}

[4, 4] :
∂2

∂β2
Ln(0, ν) = −e−η

n∑

i=1

x2i1Ui1 + x2i2Ui2

[1, 2] :
∂2

∂θ∂η
Ln(0, ν) = −e−2η

n∑

i=1

U2i + 2e−η
n∑

i=1

Ui

[1, 3] :
∂2

∂θ∂α
Ln(0, ν) = 2e−(η+α)

n∑

i=1

Wi − e−(2η+α)
n∑

i=1

UiWi

[1, 4] :
∂2

∂θ∂β
Ln(0, ν) = −2e−η

n∑

i=1

Mi + e−2η
n∑

i=1

UiMi

[2, 3] :
∂2

∂η∂α
Ln(0, ν) = −e−(η+α)

n∑

i=1

Wi

[2, 4] :
∂2

∂η∂β
Ln(0, ν) = e−η

n∑

i=1

xi1Ui1 + xi2Ui2

[3, 4] :
∂2

∂α∂β
Ln(0, ν) = e−(η+α)

n∑

i=1

xi1Wi1 + xi2Wi2.
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When β = 0 (no covariates) the expected values are

E[− ∂2

∂θ2
Ln(τ)] =

(5 + 9θ + 6θ2)

(1 + θ)2(1 + 2θ)(1 + 3θ)

E[− ∂2

∂η2
Ln(τ)] =

2

(1 + 3θ)

E[− ∂2

∂α2
Ln(τ)] = 2n+ 2nζ(2, 2) +

2n

(1 + 3θ)
[(ψ(2) + h(θ))2 + ζ(2,

1

θ
)

−2θ[ψ(3)2 − ψ(2)2 + 2(ψ(3)− ψ(2))h(θ) + ζ(2, 3)]]

E[− ∂2

∂θ∂η
Ln(τ)] =

2

(1 + 3θ)(1 + 2θ)

E[− ∂2

∂θ∂α
Ln(τ)] =

4nψ(3)

(1 + 3θ)
+

2nh(θ)

(1 + 2θ)(1 + 3θ)
− n(2 + 8θ)ψ(2)

(1 + 2θ)(1 + 3θ)

E[− ∂2

∂η∂α
Ln(τ)] =

2n

(1 + 3θ)
[ψ(2) + η − ψ(

1

θ
+ 1)− log(θ)]

To obtain the matrix Gn(ν) we need these expected values under H0 which yields the

matrix Gn(ν) given in Section 3.5. Note that det{G(η)} = 2π2−8. Since the submatrices

(5) and




5 2

2 2


 have positive determinants it follows that G(η) is positive definite (see

e.g. Artin (1991), p. 242). Moreover since G(η) is symmetric its eigenvalues are real. For

κ an eigenvalue of G(η) and xκ the corresponding eigenvector we have

xTκG(η)xκ = κxTκxκ > 0

which implies that the eigenvalues of G(η) are strictly positive.

Property 1. The symmetric matrix G(η) is positive definite and therefore has for every

fixed value of η, three positive eigenvalues.
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Now

E[
∂

∂θ
Ln(0, ν)

∂

∂θ
Ln(0, ν)] = 5n

E[
∂

∂η
Ln(0, ν)

∂

∂η
Ln(0, ν)] = 2n

E[
∂

∂α
Ln(0, ν)

∂

∂α
Ln(0, ν)] = n(4(ψ(3) + η)2 − 6(ψ(2) + η)2

+4(ψ(2) + η)(ψ(1) + η) + 2ζ(2, 1) + 4ζ(2, 3)− 4ζ(2, 2))

E[
∂

∂θ
Ln(0, ν)

∂

∂η
Ln(0, ν)] = 2n

E[
∂

∂θ
Ln(0, ν)

∂

∂α
Ln(0, ν)] = n(6ψ(4)− 6ψ(3) + 2ψ(2) + 2η)

E[
∂

∂η
Ln(0, ν)

∂

∂α
Ln(0, ν)] = n(4ψ(3)− 4ψ(2) + 2ψ(1) + 2η)

Property 2. Gn(ν) =Dn(ν) = nG(η).

Proof. Using the recursive property of the digamma function, ψ(ν + 1) = ψ(ν) + 1
ν ,

we have ψ(3) = ψ(2) + 1
2 and ψ(1) = ψ(2)− 1. From this we obtain that

4(ψ(3) + η)2 − 6(ψ(2) + η)2 + 4(ψ(2) + η)(ψ(1) + η) = 2(ψ(2) + η)2 + 1 (3.18)

A direct calculation also shows that

2ζ(2, 1) + 4ζ(2, 3)− 4ζ(2, 2) = 2ζ(2, 2) + 1 (3.19)

From (3.18) and (3.19) we obtain (Gn(η))33 = (Dn(η))33 whereDn(η) =Dn(η, α). Equal-

ity of the other entries can be showed in a similar (more easy) way. Direct calculation of

the matrix elements yields the simplified expression for Gn in (3.5).
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Chapter 4

Diani lamb data

In this chapter we give a detailed description of the dataset that is used in this second

part of the thesis. The dataset comes from an animal breeding program that was carried

out by the International Livestock Research Institute (ILRI) from 1991 to 1996. The

objective of the experiment was to study genetic resistance to naturally acquired gastro-

intestinal nematodes in different breeds of sheep, namely the Red Maasai, Dorper and

their crossbreeds. In Section 4.1 we highlight some of the factors that motivated the

need for the breeding program. The experimental setup of the study is briefly outlined

in Section 4.2 while we report the measurements that were collected in Section 4.3. In

total there were 1785 lambs from this breeding experiment. Of these, 696(38%) lambs

died while 94 (5%) were lost or stolen before they were one year old. The main causes of

death experienced over the six years are reported in Section 4.4. Finally in Section 4.5

we give the motivation for the developments of the new techniques to analyse these data.

These new methodologies are discussed in Chapters 5 and 6.

4.1 Background

In the tropics small ruminants (sheep and goats) are an important source of income for

many smallholder farmers. They are primarily kept for meat production. However, the

productivity of sheep in the tropics is often low compared with animals in temperate

regions. An important factor contributing to this low productivity is high mortality rate;
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in tropical environments between 20% and 50% of the lambs born can die before weaning

(Gatenby, 1986, Mukasa-Mugerwe et al., 2000, Wilson et al., 1993). Sheep in these regions

primarily graze natural pastures or utilise crop residues. It is then not surprising that

infections with gastrointestinal (GI) nematode parasites (endoparasites) are commonly

one of the major causes of mortality (Over et al., 1992).

Current control methods for GI nematode parasites focus on reducing contamination of

pastures through anthelmintic treatment and/or controlled grazing (Barger, 1999). In

Africa, the use of these control methods is limited by the high cost of anthelmintics,

their uncertain availability and increasing frequency of drug resistance (Waller, 1997).

There is also limited scope in many communal pastoral systems for controlled grazing. It

appears unlikely that new broad-spectrum anthelmintics will be available in the near future

because of the major costs associated with the development of new products. To date, no

commercial vaccines are available to control GI nematode parasites (Smith, 1999). The

characterization and utilization of host genetic variation for resistance to endoparasites is

thus an alternative approach to control endoparasites.

Variation among sheep breeds in resistance to GI nematode parasites has been extensively

studied over the past half century (Gray et al., 1995). The reported findings of the

above mentioned experiment (Baker et al., 1999, 2003) now show strong evidence that the

Red Maasai (R) are both more resistant and resilient to naturally acquired and artificial

infections with GI nematode parasites than other breeds notably the Dorper (D). Resilience

(or tolerance) is defined as the ability of the host to survive and be productive in the face of

parasite challenge while resistance is defined as the initiation and maintenance of responses

provoked in the host to suppress the establishment of parasites and/or eliminate parasite

burdens (Baker et al, 2003).

The Red Maasai is an East African fat-tailed sheep breed, which is associated with the

Maasai tribe found in northern Tanzania and south-central Kenya (Wilson, 1991). The

Dorper breed was developed in South Africa in the 1940s by interbreeding the Dorset and

the Blackhead Persian breeds (Milne, 2000). The Dorper has a reputation for being well

adapted to harsh, arid conditions (Cloete et al., 2000) and was first imported into Kenya

from South Africa in the 1960s. It is also a popular breed for meat production.
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4.2 Experimental design

In the first year of the study (1991) Dorper and RxD ewes were mated to 12 Dorper and

12 Red Maasai rams in single sire mating groups of about 18 animals in a partial diallel

design. In a diallel design purebred and half-crossbred dams are mated with purebred sires

from each of the breeds. In the subsequent years all three ewe genotypes (Dorper, Red

Maasai, RxD) were mated to 12 Dorper and 12 Red Maasai rams to generate six lamb

breeds or crosses (Table 4.1). A total of 264 Dorper, 312 RxD and 138 Red Maasai ewes

were used in the six years. About 7-8 new rams of each breed were used at each mating

so that 35 different Red Maasai rams and 41 different Dorper rams were used over the

entire study. All Dorper and Red Maasai rams purchased were as unrelated as possible to

ensure a representative genetic sample.

Table 4.1: Numbers of lambs born by year of birth and genotype (D=Dorper, R=Red Maasai), numbers

treated for GI nematode parasites at one and two months of age prior to weaning, and numbers weaned at

about three months of age and the deaths after weaning.

Genotype Year of Birth

(Sire breed x Dam Breed) 1991 1992 1993 1994 1995 1996 Total

D x D 93 65 54 30 39 30 311

D x (R x D) 92 77 93 70 65 35 432

D x R 0 7 38 24 27 27 123

R x D 83 58 57 13 14 9 234

R x (R x D) 99 81 96 61 69 67 473

R x R 0 8 34 45 64 61 212

Total 367 296 372 243 278 229 1785

Number treated pre weaning 221 213 283 60 40 25 842

Number weaned 310 242 347 170 202 171 1442

Deaths or stolen

Pre-weaning 58 54 25 73 75 58 343

Post-weaning 61 38 175 71 75 27 447
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4.3 Data collected

Measurements of packed red cell volume (PCV), faecel egg count (FEC) and body weight

(BWT) were taken from lambs up to about one year of age in batches of lambs born in

each of the years 1991 to 1996. All lambs were weighed at birth and their BWT, PCV

and FEC were subsequently recorded at one and two months of age. On either of these

latter occasions, when individual lambs had a FEC greater than or equal to 2,000 eggs

per gram (epg) and/or a PCV less than or equal to 20%, they were treated (drenched)

with an anthelmintic drug. Packed cell volume and FEC were measured according to

methods reported by Baker et al. (1999). PCV is the percentage of red blood cells to the

total volume of a blood sample and in general gives a good indication of how anemic an

animal is. Thus it is a good indicator of how well the animal is managing to cope with

the pathogenic effects of the blood-sucking parasite Haemonchus contortus1 which was the

main parasite species that was found in this study. Faecel egg counts on the other hand

are known to be highly correlated with worm counts (Woolaston and Baker, 1996). Packed

cell volume is often used to measure resilience while FEC is used to measure resistance

(Baker et al., 2003).

At about three months of age, the time of weaning, the lambs were again weighed, and

blood and faecal samples collected for PCV and FEC, respectively. All lambs were then

drenched. The lambs were then left to graze on pasture, separately from the ewes and

rams. Every week a monitor group of about 50 lambs, made up of approximately equal

numbers of lambs of each genotype and gender, was sampled and their mean FEC recorded.

If the mean FEC was over 2,000 epg then, during two consecutive days, all lambs were

weighed, faeces and blood samples taken for FEC and PCV respectively and the lambs

were then drenched. This procedure was followed until the lambs reached on average one

year of age resulting in five drenchings in each year except 1994 and 1996. In 1994 the

lambs were drenched eight times post-weaning, while in 1996 six drenchings occurred. A

sample of a few data lines is given in the appendix of this chapter while Figures 4.1 to

1Adult worms live in the stomach of ruminant animals, females depositing upto 10,000 eggs per day

which pass out of the host in the faeces. After a day or two, first stage larvae (L1) hatch. The larvae

feed on microorganisms in faeces and developing into the L2 larvae and then L3 larvae stages. L3 larvae

are ingested with grass while grazing. Within the stomach the larvae molts two or three more times. In

favorable conditions, adult worms develop and feed on the host’s blood.
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4.3 show scatter plots of the measurements recorded from weaning to 12 months for PCV

and FEC and those from birth to 12 months for BWT, across the six years. In each plot

individual profiles for a randomly selected sample of 15 lambs are highlighted. In these

plots we see that although the lambs were all measured on the same day, the individual

measurements are clustered around a particular age. This is due to the fact that in each

year, lambs were born within a period ranging from 20-40 days. For example in Figure

4.1 the measurements are clustered around the age of 90 days in 1991 but around the age

of 100 days in 1992.
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Figure 4.1: PCV measurements for the years 1991 to 1996. Bold vertical line indicates when the lambs
were weaned.
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Figure 4.2: Body weight measurements for the years 1991 to 1996. Bold vertical line indicates when the
lambs were weaned.

4.4 Causes of mortality

As noted in Section 4.1, mortality is the main contributing factor for low productivity of

sheep in the tropics. Various causes of mortality were observed in the study. These were

grouped into nine categories:

1) still births

2) mis-mothering, e.g. death from suffocation, starvation and weakness at birth

3) endoparasites

4) pneumonia

5) digestive disorders such as bloat and enteritis

6) accidents which included those killed by predators or from plant poisoning

7) lost or stolen

8) miscellaneous diseases such as coccidiosis, dystocia or foot rot
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9) unknown causes.

Overall, the deaths resulting from accidents were included in the lost or stolen category

since they were few, whilst deaths associated with digestive disorders were included in the

miscellaneous category. Further, only two lambs in the pre-weaning period died from an

unknown cause. These were also included in the miscellaneous category within this period.

This resulted in six and five categories defining the cause of death in the pre-weaning and

post-weaning periods, respectively. The break down of the these causes in the pre-weaning

and post-weaning periods by genotype is given in Tables 4.2 and 4.3, respectively.

Overall, there were 1785 lamb from this experiment. Of these, 696 (39%) died while

94 (5%) were lost or stolen before they were one year old. Among the deaths, 343 (44%)

occurred before weaning, of which about a third were associated with mis-mothering (Table

4.2). Pre-weaning endoparasite infections accounted for about a fifth of the deaths. The

major cause of mortality in the post-weaning period was associated with endoparasite
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Figure 4.3: Transformed log(FEC+25) measurements for the years 1991 to 1996. Bold vertical line

indicates when the lambs were weaned.
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Table 4.2: Numbers of deaths (proportions) in the pre-weaning (from birth to approximately 90 days)

period by cause of death for lambs of different genotypes (D=Dorper, R=Red Maasai) and corresponding

overall average mortality rates.

D x D D x (R x D) D x R R x D R x (R x D) R x R Total

Number born 311 432 123 234 473 212 1785

Cause of death

Still births 7(0.08) 13(0.14) 2(0.09) 3(0.09) 7(0.09) 8(0.25) 40(0.12)

Mis-mothering 29(0.33) 29(0.31) 7(0.32) 10(0.29) 22(0.29) 10(0.31) 107(0.31)

Endoparasites 21(0.24) 22(0.24) 6(0.27) 7(0.21) 12(0.16) 3(0.09) 71(0.21)

Pneumonia 6(0.07) 10(0.11) 1(0.04) 5(0.15) 14(0.18) 1(0.03) 37(0.11)

Lost/Stolen 6(0.07) 10(0.11) 0(0.00) 6(0.18) 8(0.11) 2(0.06) 32(0.09)

Miscellaneous 19(0.22) 8(0.09) 6(0.26) 3(0.09) 12(0.16) 8(0.25) 56(0.16)

Total 88(0.28) 92(0.21) 22(0.18) 34(0.15) 75(0.16) 32(0.15) 343(0.19)

infections, accounting for 212 (47%) of the deaths (Table 4.3), while 62 (14%) were lost or

stolen. Pre-weaning, average mortality was between 15 and 28% with the Dorper lambs

having the highest mortality. The average mortality post weaning was between 17 and

47% which showed a decreasing trend with increasing proportion of Red Maasai in the

genotype.

Table 4.3: Numbers of deaths (proportions) post-weaning (from 90 to 365 days) period by cause of death

for lambs of different genotypes (D=Dorper, R=Red Maasai) and corresponding overall average mortality

rates.

D x D D x (R x D) D x R R x D R x (R x D) R x R Total

Number weaned 224 340 100 200 398 180 1442

Cause of death

Endoparasites 49(0.46) 71(0.52) 21(0.48) 21(0.45) 28(0.42) 22(0.48) 212(0.47)

Pneumonia 16(0.15) 19(0.14) 4(0.09) 6(0.13) 13(0.20) 3(0.07) 61(0.14)

Lost/Stolen 14(0.13) 20(0.15) 2(0.05) 8(0.17) 13(0.20) 5(0.11) 62(0.14)

Miscellaneous 19(0.18) 23(0.17) 6(0.14) 8(0.17) 11(0.17) 9(0.20) 76(0.18)

Cause unknown 8(0.08) 5(0.04) 11(0.25) 4(0.08) 1(0.01) 7(0.15) 36(0.07)

Total 106(0.47) 138(0.41) 44(0.44) 47(0.24) 66(0.17) 46(0.26) 447(0.31)
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4.5 Motivation

To assess the genetic resistance of the sheep, which was the objective of the experiment,

BWT, PCV and FEC measurements collected at the individual time points (e.g. at wean-

ing and 8 months) have been analysed using the classical linear mixed model (Baker et al.,

1994, 1998, 2003, Baker, 1998). The estimated variance components from these analyses

have been used to determine heritability estimates.

Heritability helps to explain the degree to which genes control expression of a trait such

as BWT, PCV or FEC. In our case, it would be a measure of the degree (0 to 100%)

to which the lambs resemble their father(or mother) for the specific trait of interest. For

instance, let Yij denote the observed measurement of the trait of interest for the jth lamb

from the ith sire, i = 1, . . . , G and j = 1, . . . , ni at some time point (say 3 months). Then

the simple linear mixed model used in this analysis is

Yij = x
T
ijβ + si + ǫij (4.1)

where xij is the incidence vector for the fixed effects, β is the vector of associated pa-

rameters, si is the random effect of the ith sire and ǫij is the random error term. The

assumptions on the random terms are that the si are identically and independent distrib-

uted (i.i.d) N(0, σ2s) terms and the ǫij’s are i.i.d N(0, σ2e). Further si and ǫij are assumed

to be independent. Model (4.2) is referred to as a sire model. The sire genetic contribution

is then estimated using the heritability measure defined as

h2s =
4σ2s

σ2s + σ2e
. (4.2)

where the numerator is an estimate of the genetic variance while the denominator es-

timates phenotypic variance. The phenotype of an animal corresponds to the observed

measurements e.g., PCV, and is the combined effect of all genetic and environmental in-

fluences.

Baker et al. (2003) reports the heritability estimates for the traits BWT, PCV and

log(FEC +25) (LFEC) at each measurement time (i.e., birth, 1 month, 2 months, wean-

ing and all post-weaning time points). These analyses were carried out with the linear

mixed model (4.2) using the restricted maximum likelihood (REML) estimation method.

The ASREML programme of Gilmour et al. (1999) was used to estimate simultaneously

both fixed effects and variance components. Their results show that the Red Massai have
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higher resistance (lower FEC) and higher resilience (higher PCV) than Dorpers. Baker et

al. (1994, 1998) report preliminary results of this study using similar methods of analysis

as described above. The performance of the ewes that were dams of the lambs whose

data are used in the current study was evaluated by Baker et al. (1999), also using linear

mixed models. In that analysis, it was clearly shown that the Red Maasai ewes were more

resistant and resilient to GI nematode parasites than the Dorper ewes in a sub-humid

tropical environment.

In carrying out the linear mixed model analysis as that described above, only the animals

that survived to the time points of interest were utilised. Methodologies such as survival

analysis that use the information available for all animals up to the time they die or are

lost to follow up can alternatively be used in this assessment. In Chapter 5, survival

analysis using shared frailty models is used to assess variations in time to death of the

genotypes. In this analysis BWT, PCV and LFEC are considered as time-varying co-

variates. Kalbfleisch and Prentice(1980) distinguish between two types of time-dependent

covariates; external and internal covariates. External covariates are those whose values

do not depend on the survival status of the individual, for example, the monthly rainfall

amount. Internal covariates on the other hand are only measured as long as the individ-

ual is under observation, like BWT, PCV and FEC. Unlike the external covariates, the

internal covariates carry information about the survival pattern of the individuals. For

example, high PCV and low FEC values may be associated with higher chances of survival

as these are indicators of the health status of the animal.

In the recent past, methodologies, which simultaneously use the information available in

survival and such time-varying covariates, have been proposed in medical research. In

Chapter 6 we describe and adapt this joint modelling methodology to the animal breeding

data, where the time to death of the lamb is modelled jointly with either PCV, BWT or

FEC.
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VARIABLE Description

NUMB Animal number
DAM ID Dam identification number
DAM BRD Dam breed; 1-DxD, 2-RxD, 5-RxR
SIRE ID Sire identification number
SIRE BRD Sire breed
YEARB Year of birth
BREED Breed of lamb; 1-DxD, 2-RxD, 3-Dx(DxR), 4-Rx(RxD), 5-RxR, 6-DxR
SEX Gender: 1:-Female, 2:-Male
BIRTHWT Weight at birth
BIRTH DT Date of birth
DISP DT Date of death
DACTION Action at disposal
DREASON Death reason
DATE30 Date of one month
AGE30 Age at one month
WT30 Weight at one month
PCV30 PCV at one month
FEC30 FEC at one month :-99999 indicates that FEC was not recorded
DATE60 Date of two months
AGE60 Age at two months
WT60 Weight at two months
PCV60 PCV at two months
FEC60 FEC at two months
WEAN DT Date of weaning
AGEWEAN Age at weaning
BIRTH TY Type of birth: 1:-single birth, 2:-twin
BIRTHDAY Day of birthday in the calendar year from 1st January
DAMAGE Age of the dam
WWT1 Day 1 BWT measurement at weaning
WWT2 Day 2 BWT measurement at weaning
WEANWT Average of two weaning BWT measurements
WPCV1 Day 1 PCV measurement at weaning
WPCV2 Day 2 PCV measurement at weaning
WEANPCV Average of two weaning PCV measurements
WFEC1 Day 1 FEC measurement at weaning
WFEC2 Day 2 FEC measurement at weaning
WEANFEC Average of two weaning FEC measurements
DATE1 Date of 1st post-weaning measurements
AGE1 Age at the 1st post-weaning measurements
WT1A Day 1 measurement of BWT at 1st post-weaning time point
WT1B Day 2 measurement of BWT at 1st post-weaning time point
AVWT1 Average of the two BWT measurements at 1st post-weaning time-point
PCV1A Day 1 measurement of PCV at 1st post-weaning time point
PCV1B Day 2 measurement of PCV at 1st post-weaning time point
AVPCV1 Average of the two PCV measurements at 1st post-weaning time-point
FEC1A Day 1 measurement of FEC at 1st post-weaning time point
FEC1B Day 2 measurement of FEC at 1st post-weaning time point
AVFEC1 Average of the two FEC measurements at Day 1 post-weaning time-point
DATE2 Date of 2nd post-weaning measurements
AGE2 Age at the 2nd post-weaning measurements
WT2A Day 1 measurement of BWT at 2nd post-weaning time point
WT2B Day 2 measurement of BWT at 2nd post-weaning time point
AVWT2 Average of the two BWT measurements at 2nd post-weaning time-point
·
·
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Obs NUMB DAM ID DAM BRD SIRE ID SIRE BRD YEARB BREED SEX

1 3225 5189 2 1974 1 91 3 1

2 3226 1682 1 1980 1 91 1 2

3 3227 5162 2 1972 1 91 3 2

Obs BIRTHWT BIRTH DT DISP DT DACTION DREASON DATE30 AGE30 WT30

1 2 06/13/91 11/05/92 5 12 07/13/91 30 6

2 3 05/28/91 10/26/92 2 25 06/27/91 30 8

3 . 05/31/91 05/31/91 6 31 . . .

Obs PCV30 FEC30 DATE60 AGE60 WT60 PCV60 FEC60 WEAN DT

1 39 0 08/12/91 60 8 14 7900 09/30/91

2 45 0 07/27/91 60 11 32 8150 09/30/91

3 . 99999 . . . 99999 .

Obs AGEWEAN BIRTH TY BIRTHDAY DAMAGE WWT1 WWT2 WEANWT WPCV1

1 109 1 164 3 10 . 10 32

2 125 1 148 2 16 . 16 28

3 . 1 151 3 . . . .

Obs WPCV2 WEANPCV WFEC1 WFEC2 WEANFEC DATE1 AGE1 WT1A

1 . 32 350 99999 350 11/19/91 159 12

2 . 28 99999 99999 99999 11/19/91 175 19

3 . . 99999 99999 99999 .

Obs WT1B AVWT1 PCV1A PCV1B AVPCV1 FEC1A FEC1B AVFEC1

1 12 12 26 27 27 2300 1500 1900

2 18 19 30 25 28 1800 700 1250

3 . . . . . 99999 99999 99999

Obs DATE2 AGE2 WT2A WT2B AVWT2 PCV2A PCV2B AVPCV2

1 02/17/92 249 15 15 15 20 26 23

2 02/17/92 265 22 21 22 34 37 36

3 . . . . . . . .

Obs FEC2A FEC2B AVFEC2 DATE3 AGE3 WT3A WT3B AVWT3

1 2600 1700 2150 05/29/92 351 14 14 14

2 2950 1600 2275 05/29/92 367 20 20 20

3 99999 99999 99999 . . . . .

Obs PCV3A PCV3B AVPCV3 FEC3A FEC3B AVFEC3 DATE4 AGE4

1 22 24 23 3000 3600 3300 07/21/92 404

2 19 29 24 4700 4300 4500 07/21/92 420

3 . . . 99999 99999 99999 . .

Obs WT4A WT4B AVWT4 PCV4A PCV4B AVPCV4 FEC4A FEC4B

1 17 17 17 28 28 28 950 1600

2 23 22 22 31 29 30 750 1150

3 . . . . . . 99999 99999

Obs AVFEC4 DATE5 AGE5 WT5A WT5B AVWT5 PCV5A PCV5B

1 1275 09/21/92 466 18 18 18 22 23

2 950 09/21/92 482 25 25 25 33 32

3 99999 . . . . . . .

Obs AVPCV5 FEC5A FEC5B AVFEC5 DATE6 AGE6 WT6A WT6B

1 22 99999 450 450 . . .

2 33 350 400 375 . . .

3 . 99999 99999 99999 . . .
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Application of shared frailty

models

5.1 Introduction

In the previous chapter, we mentioned that alternative methods exist that can be used to

model more adequately the information available for all animals up to the time they die or

are lost to follow up. One such approach is using survival analysis. The main objectives

under this approach are (1) to investigate the variation in lamb mortality among breeds

and their crosses (genotypes); and (2) to investigate genetic variation for lamb mortality

within genotypes.

Frailty models have been used for other species of livestock, for example in assessing the

length of productive life in dairy cattle (Ducrocq et al., 1988), to assess viability of laying

hens (Ducrocq, 2000), to obtain estimates of longevity of Swedish horses (Wallin et al.,

2000) and sows (Yazdi et al., 2000) and to assessing genetic variation for disease resistance

in growing pigs (Henryon et al., 2001). Both Cox and Weibull hazard models have been

used in these studies although the parametric model has been used more extensively as it

is less computer intensive than the Cox model.

Prior to carrying out any survival analysis using hazard models, we first investigated

the shape of the hazard function. To this end non-parametric kernel density estimation

methods were utilised. We used the estimator derived in Müller and Wang (1994) which

81
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is described briefly in Section 5.2. From this assessment no parametric distribution was

found to be appropriate for the hazard model and further analyses were carried out using

the Cox PH and its extension, the shared frailty model. In Section 5.3 we discuss the

analyses that we carried out and report the results in Section 5.4.

In most previous studies that use frailty models in animal research, heritability estimates

for survival have been reported (Ducrocq et al., 1988, Ducrocq, 2000). In Section 5.5 we

discuss briefly heritability estimation in survival analysis. The concluding remarks are

given in Section 5.6.

5.2 Hazard function estimation

Consider the general hazard model of Section 2.1.3 given as

λ(t|xi) = λ0(t)φ(xi)

where the baseline hazard function λ0(t) may be left unspecified or it may be assumed

to have some specific parametric form, thus determining the shape of the hazard function

λ(·). We used non-parametric kernel based methods to determine this shape.

Non-parametric kernel estimation methods of the hazard function for right-censored data

have received considerable attention in the statistical literature (Watson and Leadbetter,

1964, Ramlau-Hansen, 1983, Cheng, 1987, Müller and Wang, 1994). The main assumption

made in these estimators about the unknown survival distributions is that the hazard

functions vary smoothly over time.

In general a kernel estimator of a function f at a given point t is essentially a locally

weighted average of the data from the interval [t− b, t + b], where b is the bandwidth or

window size. A critical factor in the performance of the kernel estimator is the choice of

the bandwidth which determines the degree of smoothness. The larger the bandwidth,

the greater the smoothness. More smoothness leads to lower variability but also generally

leads to increased bias. Watson and Leadbetter (1964) introduced the kernel estimator

for the hazard function for uncensored data and Ramlau-Hansen (1983) extended the

kernel hazard function to right censored data. The most widely used estimator for the

hazard function from right-censored data has been the fixed-bandwidth kernel-smoothed

estimator.
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Let T o
i , i = 1, . . . , n, be the observed time-to-event and let δi be the censoring indicator

as defined in Section 2.1.2. Let (T o
(i), δ(i)) be the ordered observations where the ordering

is according to T o
i . The fixed bandwidth estimator is then defined as

λ̂(t) =
1

b

n∑

i=1

K

(
t− T o

(i)

b

)
δ(i)

n− i+ 1
(5.1)

where K(·) is a kernel function and b is the global bandwidth. Kernel functions are gener-

ally chosen to be symmetric probability density functions such as the normal density. The

so-called Epanechnikov kernel
(
K(x) = 0.75(1− x2)for− 1 ≤ x ≤ 1

)
is a popular choice.

The fixed-bandwidth kernel estimator however cannot adapt to unevenness in the distrib-

ution of the data. It tends to over-smooth in regions with many observations and under-

smooth in regions with few observations. In the recent past, more flexible bandwidths

such as the nearest neighbour (Tanner and Wong, 1984) and varying (local) bandwidths

(Müller and Wang, 1990) have been suggested as alternatives to (5.1) in order to overcome

this drawback associated with the fixed bandwidth. In addition bias problems have been

found for fixed kernel estimators when estimating near the endpoints of the data. These

problems arise when the support of the kernel exceeds the available data range. Owing to

these boundary effects, varying kernel estimators that are more robust at the endpoints

have been proposed (Hougaard et al., 1989, Müller and Wang, 1994). These type of kernels

are often said to be boundary corrected or varying kernels.

We used the varying kernel and varying bandwidth estimator of Müller and Wang (1994)

given as

λ̂(t) =
1

b(t)

n∑

i=1

Kt

(
t− T o

(i)

b(t)

)
δ(i)

n− i+ 1
. (5.2)

For this estimator both the bandwidth and the kernel function depend on the time point.

Müller and Wang (1994) proposed the following polynomial boundary kernel that gener-

alizes the Epanechnikov kernel

Kt(z) =





K+(
t

b(t) , z) if {t : 0 ≤ t < b(t)}

3
4(1− z2) if {t : b(t) ≤ t ≤ R− b(t)}

K−(R−tb(t) , z) if {t : R− b(t) ≤ t ≤ R}

where R is the right endpoint of the data, q = t/b(t) and on [−1, q]

K+(q, z) =
12(1 + z)

(1 + q)4

[
(1− 2q)z +

(3q2 − 2q + 1)

2

]
,
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while on [−q, 1], K−(q, z) = K+(q,−z). This correction allows the shape of the kernel to

change on the boundary. This estimator has been implemented as an executable function in

S-Plus (Mathsoft, 1999) and can be downloaded from http://www.stats.ox.ac.uk/pub/SWin/.

We estimated the hazard function separately for each of the six years (Figure 5.1). Within

each year we also obtained the hazard function estimate for the Red Maasai and Dorper

genotypes. As there were no Red Maasai lambs in 1991, the estimated hazard function

for the Red Maasai was obtained only for the years 1992-1996.

This plot shows that the risk of mortality at any point in time is much lower for the Red

Maasai than that of the Dorper. Although not shown, the risks of death for the other

groups lay in between those for the pure breeds. The figure demonstrates the variable

pattern in the hazard estimate across years with risk of mortality generally lower in 1991

and 1992 than in the other years. Due to this variability, further analysis was carried out

using the Cox proportional hazards model where the baseline hazard is not restricted to

be of a particular shape. In trying to understand the variable patterns of the estimated

hazard function we also looked at the rainfall patterns across the six years (Figure 5.1).

Peak rainfall was higher in 1993-1996 compared with 1991 and 1992. Except for 1996,

when lambs were born earlier than in other years, peak rainfall patterns in the years ap-

peared to be followed by a rise in risk of mortality as estimated by the hazard function.

The month of birth of the lambs varied across the years as matings took place at intervals

of 10 to 12 months. Further, 1994 had the highest average rainfall post-weaning. This

could explain the higher number of post-weaning measurements collected in this year, as

mentioned in Section 4.3.

5.3 Statistical analysis

Statistical analysis was done separately in the pre-weaning and post-weaning periods as

the critical period for assessing genetic resistance to endoparasites in lambs is between

weaning and 12 months of age, during which the immune system of the young animal is

developing.

We saw in Section 4.4 that there were various causes of mortality. As an initial step,

we investigated in both the pre-weaning and post-weaning periods whether the ranking

of causes of death varied across breeds and also across the years. This assessment is
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Figure 5.1: Non-parametric estimate of the hazard function: dark line:-population average; dashed line:-
Dorpers; dotted line:-Red Maasai and the associated rainfall patterns for a period of 12 months from the

time of lambing. Bold vertical line indicates when the lambs were weaned.

described in Section 5.3.1 while in Section 5.3.2 we give details of the survival analysis

that was carried out.
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5.3.1 Preliminary analysis

To assess whether the ranking of the various causes of mortality varied across genotype,

a Poisson regression model (log-linear model, see Agresti, 1990) with genotype and cause

of mortality as fixed effects was used. If Yij is the number of lambs experiencing the jth

cause of mortality from the ith genotype, then Yij is a Poisson random variable with mean

µij. The observed values yij are the cell counts in Tables 4.2 and 4.3 for the pre- and

post-weaning periods. The model used in this analysis is

log(µij) = µ+ ϑAi + ϑBj (5.3)

where

µ= the overall mean

ϑAi =the breed main effects (6 levels)

ϑBj =the cause of death main effects (6 levels pre-weaning and 5-levels post-weaning).

Model (5.3) is a log-linear model and its goodness of fit can be assessed using the deviance

statistic

G2 = 2
∑∑

yij log

(
yij
µ̂ij

)

where µ̂ij are the estimated cell counts. The deviance statistic has an approximate chi-

square distribution with (i− 1)(j − 1) degree of freedom. If a breed by cause interaction

term is included in (5.3) then the deviance is zero as the number of parameters to be

estimated is equal to the number of cells in the table. The ratio of the estimated deviance

for Model (5.3) to its degrees of freedom can also be used to check for overdispersion in

the model. For a Poisson model as that postulated here the ratio should be close to unity.

In this analysis the calculated deviance was 32.14 with 24 degrees of freedom (df) for the

pre-weaning period, whilst that of the post-weaning period was 33.87 with 20 df. In both

periods the ratio of the deviance to the degree of freedom was close to unity, indicating

only a small over-dispersion. This implies that the interactions between genotype and

cause of mortality in both periods were not significant (at 5%) when averaged over year.

In total, the number of lambs that died or were lost in the six years were as follows (from

Table 4.1): 118 (15%) in 1991, 92 (12%) in 1992, 200 (25%) in 1993, 144 (18%) in 1994,

151 (19%) in 1995 and 85 (11%) in 1996. Using a Poisson regression model (Model (5.3))
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we also assessed the distribution of the various causes of these deaths across the years. The

resulting deviances were 64.6 on 23 df and 137.1 on 19 df for the pre- and post-weaning

periods respectively. This shows that the ranking of causes of mortality varied across

years, particularly in the post-weaning period indicating a significant interaction between

year and cause of mortality. For example, there was a large incidence of ‘lost/stolen’ lambs

(22%) in 1993, and only one lamb in 1996 was diagnosed as dying due to endoparasites.

The majority of deaths in this year had an unknown cause. Prior to weaning there was

a higher proportion of deaths due to endoparasites in 1991 (43%) than the other years.

There was a higher proportion of still births (26%) than average in 1995.

Based on these preliminary findings, further analysis was carried out with age of lamb

at time of death (regardless of cause) as the response variable. The time of birth and

time of weaning were taken as the time of origin in the pre-weaning and post-weaning

periods respectively. Thus in the post-weaning period the time-to-event of the lamb was

the residual life from weaning. The relevant event to the biologist was disposal of an

animal, which included animals that either died or were stolen/lost. Thus all causes

of mortality as described above were regarded as ‘events’. For the pre-weaning period

analysis, lambs that were weaned were censored, while those that were weaned and lived

beyond 365 days (from birth) were censored in the post-weaning analysis. Still born lambs

were however excluded. Analysis was carried out in S-Plus (Mathsoft, 1999) where the

penalized likelihood approach (Section 2.4.4) is the implemented method of estimation for

the Cox proportional hazards model.

5.3.2 Survival analysis

In all the analysis carried out terms for the fixed effects for genotype (6 levels), year of

birth (6 levels), gender (2 levels) and age of the dam (5 levels) were always included. For

ease of reference we will refer to these as the baseline covariates.

Subsequently the weight at birth was included as a curvilinear term (with linear and

quadratic terms) in the pre-weaning period while the weight at weaning was included for

the post-weaning period. The effect of time-varying body weight as an alternative to

either birth weight or weaning weight was also assessed. PCV and FEC (post weaning)

and anthelmintic treatment (pre weaning) were then additionally considered also as time-

varying covariates. These analyses with time-varying BWT, PCV and FEC were carried
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out in order to utilize more adequately all the measurements of these traits which were

repeatedly recorded as described in Section 4.3. Packed cell volume and FEC could not be

used for the pre-weaning analysis as they were not measured until one month of age. The

effect of treatment in the pre-weaning period was assessed using a binary covariate whose

values changed at the time of treatment. Thus the associated parameter estimate is the

relative change in risk due to treatment. No first order interaction terms were found to be

significant in the two periods and hence these were not considered further. The analysis

carried out can be summarised as follows:

Baseline covariates

Genotype

Year of birth

Gender

Age of dam

Pre-weaning covariates

Birth weight or time-varying body weight

Treatment

Post-weaning covariates

Weight at weaning or time-varying body weight

Time dependent PCV

Time dependent FEC

For each of the settings above two analyses were undertaken in each period. The first

analysis used the Cox proportional hazards model

λi(t) = λ0(t) exp(x
T
i (t)β) (5.4)

where λi(t) is the hazard function for the ith lamb, i = 1, . . . , n, λ0(t) is the unspecified

baseline hazard, xi(t) is the incidence vector of the fixed effects for this lamb at time t

and β the vector of associated parameters.

In the second analysis, a shared frailty model with sire included as the random effect term

was used. Suppose that the ith sire i = 1, . . . , G has ni lambs then

λij(t) = λ0(t) exp(x
T
ij(t)β + wi) (5.5)

where λij(t) is the hazard function for the jth lamb, j = 1, . . . , ni from the ith sire,

xij(t) is the incidence vector of the fixed effects at time t and wi, i = 1, . . . , G is the
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random sire effect. For models (5.4) and (5.5), the covariate vectors xi(t) and xij(t) are

only time-dependent if time-varying covariates such as FEC and PCV are considered.

These time-varying covariates change values only at the measurement times as described

in Section 4.3 and in between these time points the last observed value (LVCF) is used,

resulting in a piecewise constant profile. In such cases the hazards are then proportional

only between intervals in which the covariates remain constant (e.g. between 2 months

and weaning). Thus the β parameter estimates associated with a factor variable for any

model containing a time-varying covariate cannot be interpreted as overall relative risks

across the pre- or post-weaning period. In such a model, these estimates can be thought

as the relative risks only within intervals in which the covariate is constant (see Klein and

Moeschberger, 1997, p. 275).

For the frailty term ui = exp(wi), we used both the log-normal and gamma frailty distri-

butions given by (2.5) and (2.6) respectively.

5.4 Results

5.4.1 Effect of baseline covariates

The estimated survival curves for the different genotypes in the pre-weaning and post-

weaning periods are shown in Figures 5.2 and 5.3 respectively. These curves are adjusted

for the other factors (covariates), namely gender, age of dam and year of birth. To get

these curves in each of the periods, a stratified Cox PH model (5.4) was first fitted to

the data with breed as the stratification variable while the other baseline covariates were

included in the model. Thus the hazard function for the jth lamb from the kth breed is

λj(k)(t) = λ0(k)(t) exp(x
T
j β)

where λ0(k) is the common baseline hazard for the lambs from this breed and β is the

vector of unknown parameters corresponding to year, gender and age of the dam effects.

If we let β̂ be the vector of estimated parameters, then the estimated survival function at

time t for lambs from the kth breed is Ŝk(t) = exp(−Λ̂0(t)) where

Λ̂0(t) =
∑

t(l)≤t

N(l)∑
j∈R(t(l))

exp(xTj β̂)
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is the Breslow estimator of the cumulative baseline (see Section 2.4.2). This is evaluated

with year of birth, age of dam and gender equal to the mean values for the data within

each strata.

From Figure 5.2 it is observed that the Dorpers had the highest mortality at any point in
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Figure 5.2: Estimated survival curves for lambs of different genotypes in the pre-weaning period.

time during the pre-weaning period, while Red Maasai had the lowest mortality. Through-

out the post-weaning period (Figure 5.3) the Dorper had the highest average mortality

while the R x (R x D) and the Red Maasai had the lowest mortality.

The log(− log(Ŝk(t)) versus time plots for the different genotypes adjusted for the other

factors show approximately parallel curves in the pre-weaning period (Figure 5.4). Some

curves in the plots for the post-weaning period (Figure 5.5) show a tendency to cross

between day 1 and day 40 after weaning, but are approximately parallel thereafter, thus

the proportionality assumption holds during most of the study time.

The results of the fitted Cox PH and shared frailty hazard models are shown in Tables 5.1

and 5.2 for the pre-weaning and post-weaning periods, respectively. In both periods the

shared frailty models gave parameter and standard error estimates for fixed effects which

were essentially the same as those of the simpler Cox PH model. Further the parameter

estimates from the gamma and log-normal frailty models were similar, with difference only
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Figure 5.3: Estimated survival curves for lambs of different genotypes in the post-weaning period.

arising in the value of the estimated variance of the random term. Due to this and the

fact that under the penalized partial likelihood approach there exists an explicit analytical

formula for estimating the standard error of Var(W ) = σ2 for the log-normal distribution

(Remark 6 in Section 2.4.4) only the results for this frailty distribution are tabulated.

A detailed interpretation of the parameter estimates for both periods from the shared

frailty model are given below.

Genotype

The Dorper lambs were observed to have a higher relative risk of mortality than all the

other genotypes. The relative risk of mortality for the D x (R x D) genotype relative to

the Dorper lambs was 0.61 (P< 0.01) and this declined to 0.27 for the Red Maasai in the

pre-weaning period (P< 0.001). A decreasing trend in the risk of mortality was observed

with increasing proportion of Red Maasai in the genotype. In the post-weaning period the

risk of mortality for the D x (R x D) genotype relative to the Dorper was 0.61 (P<0.001)

and that for the Red Maasai 0.25 (P<0.001). The overall trends in the pre-weaning and

the post-weaning periods were similar, with the exception that R x (R x D) lambs had

the lowest risk of mortality post weaning. These trends are also observed in the estimated

survival curves (Figs 5.2 and 5.3).
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Figure 5.4: Log of negative log of survival versus time in the pre-weaning period.
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Figure 5.5: Log of negative log of survival versus time in the post-weaning period.

Year

Survival rates were different among years and appeared to be associated to some degree
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Table 5.1: Parameter estimates and hazard ratios (95% c.i.) from the Cox proportional hazards and the
shared frailty models applied to survival time (regardless of cause) in the pre-weaning period.

Effect No. of Cox Proportional Shared frailty

lambs hazards model hazards model

N est±s.e. HR(c.i.) est± s.e. HR(c.i.)

Genotype

DxD 304 ref 1.00 ref 1.00

Dx(DxR) 419 -0.48±0.16 0.62(0.43,0.81) -0.49±0.16 0.61(0.42,0.81)

DxR 121 -0.72±0.26 0.49(0.24,0.73) -0.74±0.26 0.48(0.23,0.72)

RxD 231 -0.62±0.21 0.54(0.31,0.77) -0.63±0.22 0.53(0.30,0.77)

Rx(RxD) 466 -0.83±0.17 0.44(0.29,0.58) -0.85±0.18 0.43(0.2,0.58)

RxR 204 -1.29±0.25 0.28(0.14,0.41) -1.32±0.26 0.27(0.13,0.40)

Year of birth

1991 363 ref 1.00 ref 1.00

1992 293 0.26±0.20 1.29(0.78,1.81) 0.23±0.21 1.26(0.74,1.78)

1993 365 -1.05±0.28 0.35(0.16,0.54) -1.07±0.29 0.34(0.15,0.53)

1994 236 0.99±0.20 2.70(1.62,3.78) 0.99±0.21 2.70(1.57,3.83)

1995 262 0.75±0.21 2.13(1.26,2.99) 0.74±0.22 2.10(1.19,3.01)

1996 226 0.64±0.22 1.90(1.07,2.73) 0.65±0.24 1.91(1.03,2.79)

Gender

Females 837 ref 1.00 ref 1.00

Males 908 0.08±0.12 1.08(0.84,1.33) 0.07±0.12 1.07(0.83,1.32)

Age of dam

<=2yrs 183 ref 1.00 ref 1.00

=3 yrs 403 0.08±0.24 1.09(0.58,1.60) 0.10±0.24 1.10(0.58,1.63)

=4 yrs 386 -0.08±0.25 0.92(0.47,1.37) -0.07±0.25 0.93(0.48,1.39)

=5 yrs 383 0.09±0.24 1.09(0.58,1.61) 0.10±0.24 1.10(0.58,1.62)

>=6yrs 390 0.11±0.25 1.12(0.58,1.66) 0.11±0.25 1.12(0.58,1.66)

Sire

variance (s.e.) 0.00 0.052(0.049)

with variation in rainfall (Figure 5.1). In the pre-weaning period the risk of mortality was

least in 1993, which was on average 34(%) that observed in 1991 (P<0.001) and highest

in 1994, approaching three times that in 1991 (P<0.001). In the post-weaning period the

risk of mortality was about 5 fold higher in 1993, 1994 and 1995 compared with 1991 and

1992. On the other hand the risk of mortality in 1996 was reduced by 8% (P<0.001) in the

pre-weaning period when compared to 1991 but was similar in the post-weaning period.

These findings concur with the hazard estimates shown in Figure 5.1 with 1993 having the

lowest average risk in the pre-weaning period and the highest in the post-weaning period.

Further the estimated hazard function was higher in the pre-weaning period in 1996 than
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in 1991 but post weaning, the estimates are of the same magnitude.

Table 5.2: Parameter estimates and hazard ratios (95% c.i.) from the Cox proportional hazards and the
shared frailty models applied to survival time (regardless of cause) in the post-weaning period.

Effect No. of Cox Proportional Shared frailty

lambs hazards model hazards model

N est±s.e. HR(c.i.) est± s.e. HR(c.i.)

Genotype

DxD 223 ref 1.00 ref 1.00

Dx(DxR) 340 -0.48±0.13 0.62(0.46,0.78) -0.51±0.13 0.60(0.44,0.76)

DxR 101 -0.78±0.19 0.46(0.28,0.63) -0.79±0.19 0.45(0.28,0.62)

RxD 200 -1.00±0.18 0.37(0.24,0.50) -1.02±0.19 0.36(0.23,0.49)

Rx(RxD) 398 -1.58±0.16 0.21(0.14,0.27) -1.62±0.17 0.20(0.13,0.27)

RxR 180 -1.34±0.19 0.26(0.16,0.36) -1.39±0.20 0.25(0.15,0.35)

Year of birth

1991 309 ref 1.00 ref 1.00

1992 242 0.01±0.21 1.01(0.59,1.42) -0.04±0.22 0.96(0.55,1.38)

1993 347 1.58±0.16 4.87(3.36,6.39) 1.60±0.17 4.95(3.29,6.60)

1994 170 1.45±0.19 4.27(2.66,5.87) 1.48±0.21 4.40(2.64,6.16)

1995 203 1.44±0.19 4.21(2.62,5.79) 1.45±0.21 4.25(2.52,5.98)

1996 171 0.50±0.25 1.64(0.84,2.45) 0.54±0.26 1.72(0.83,2.61)

Gender

Females 695 ref 1.00 ref 1.00

Males 747 0.31±0.10 1.36(1.11,1.62) 0.32±0.10 1.38(1.12,1.65)

Age of dam

<=2yrs 158 ref 1.00 ref 1.00

=3 yrs 340 -0.36±0.17 0.70(0.47,0.92) -0.36±0.17 0.70(0.47,0.93)

=4 yrs 330 -0.63±0.17 0.53(0.35,0.71) -0.64±0.18 0.53(0.35,0.71)

=5 yrs 314 -0.49±0.17 0.62(0.41,0.82) -0.49±0.17 0.61(0.41,0.81)

>=6yrs 300 -0.79±0.18 0.46(0.29,0.62) -0.79±0.19 0.46(0.29,0.62)

Sire

variance (s.e.) 0.00 0.054(0.037)

Gender

The risk of mortality for male lambs was about a third higher than that for female lambs

during the post-weaning period (P<0.01), but there was no significant gender effect in the

pre-weaning period.

Age of dam.

There was no significant effect of age of the dam on the risk of mortality in the pre-weaning

period implying that mothering capability was independent of age. In the post-weaning

period, however, the risk of mortality of lambs born to mothers that were two years of
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age or younger was higher that of lambs born to older ewes. Compared with lambs born

to 2-year old mothers the relative risk was 0.69 for lambs born to 3-year old mothers and

0.43 for lambs born to mothers aged six years or more (P<0.001).

Sire variance

The estimated sire frailty variance and its standard error under the log-normal frailty for

the pre- and post-weaning periods are also shown in Tables 5.1 and 5.2. We also obtained

the estimated frailties (ui’s) for the 76 sires for both the pre-weaning and post-weaning pe-

riods. To get a better visualisation of the frailty effect, we plotted the estimated survival
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Figure 5.6: Estimated survival curves for lambs from four sires with largest and four sires with lowest
frailty estimates in the pre-weaning period.

curves of lambs from the four sires with the highest and the four sires with the lowest

frailty values (namely top and bottom 5% of the 76 sires). These curves are shown in

Figs 5.6 and 5.7 for the two periods. In the pre-weaning period, of the four sires with

the highest estimates of ui, two were Dorpers and two were Red Maasai while those with

the lowest estimates were all Dorpers. Post weaning, there were three Dorpers and one

Red Maasai sire for both the high and the low estimates of the frailties (ui’s). None of

these sires were the same in the two periods. It is observed in these plots that the lambs

from the sires with high values experienced events earlier than the lambs from sires with
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Figure 5.7: Estimated survival curves for lambs from four sires with largest and four sires with lowest
frailty estimates in the post-weaning period.

low values. This not-withstanding, the estimated sire variance in the two periods was

non-significant (at 5%). Figure 5.8 shows the profile log-likelihood for θ (sire variance)

for the pre- and post-weaning periods. In each of this, the approximate 95% confidence

interval (c.i.) for θ includes zero. This confidence interval is obtained by taking two values

of θ for which the profile log-likelihood lies 1.92 units (dotted line in Figure 5.8) below the

maximum profile log-likelihood value within each period. The respective log-likelihood

values for the model with the baseline covariates with and without frailty were -2139.97

and -2140.34 for the pre-weaning period and -3007.35 and -3008.50 for the post-weaning

period. If we conjecture that the theoretical results derived in Chapter 3 also hold for the

current model (semi-parametric log-normal frailty model), then the likelihood ratio test

statistics for the two periods are 0.74 and 2.3 with P-values 0.20 (= Pr(χ21 > 0.74)/2) and

0.07 (= Pr(χ21 > 2.3)/2) respectively. Thus, using either the approximate 95% c.i. or the

likelihood ratio test, the null hypothesis (H0 : θ = 0) of no heterogeneity is not rejected in

the two periods. This implies that the time-to-event of the lambs from the different sires

are homogeneous.
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Figure 5.8: Profile log-likelihood for θ (sire variance) for the (a) pre- weaning and (b) post-weaning
periods.

5.4.2 Effect of time-independent body weight

In this analysis the weight at birth or the weight at weaning was used additionally with

the baseline covariates in the pre- and post-weaning periods respectively. In both periods

there was a curvilinear relationship between body weight and risk of mortality. This

relationship had significant linear and quadratic terms for birth weight in the pre-weaning

period and weaning weight in the post-weaning period (P<0.001) (see first part of Tables

5.3 and 5.4). In the two periods the relative risk of mortality decreased quadratically with

increased birth weight and weaning weight (Figure 5.9). This implies that lambs that were

heavy in body weight at birth or weaning had lower risk of mortality when compared to

lighter lambs. The detailed results for the baseline covariates are given in the first column

of Tables 5.7 (pre weaning) and 5.8 (post weaning) at the end of this chapter.

Notably, in the pre-weaning period there was now no difference in the risk of mortality

for lambs born in 1994 and 1995, when compared to those born in 1991. The higher risk

observed earlier in the unadjusted model (Table 5.1) could be due to the fact that the



98 Chapter 5

Table 5.3: Parameter estimates from a shared frailty hazard model applied to survival time (regardless of
cause), in the pre-weaning period for birth weight and time-varying body weight alternatively, and treatment,
adjusted for baseline covariates.

Covariate Parameter Covariate Parameter

estimate±s.e. estimate ±s.e
Birth weight (kg) Time varying body weight (kg)

- Linear -2.38 ± 0.52 - Linear -1.06 ± 0.11
- Square 0.323 ± 0.102 - Square 0.038 ± 0.008
Sire variance (s.e.) 0.066 (0.053) Sire variance 0.067 (0.053)

Birth weight (kg) Time varying body weight (kg)

- Linear -2.36 ± 0.52 - Linear -1.04 ± 0.12
- Square 0.318 ± 0.102 - Square 0.035 ± 0.008
Treatment Treatment

- Not treated reference - Not treated reference

- Treated -0.51 ± 0.19 - Treated -0.92 ± 0.20
Sire variance (s.e.) 0.067 (0.053) Sire variance 0.063 (0.052)

lambs born in these two years were much lighter than those born in 1991 (see Figure

4.2). Further, when the weight at weaning was taken into account, the Rx(RxD) and RxR

genotypes now had similar relative risk of mortality when compared to the Dorpers. In

addition there was a non-significant effect of the age of dam after taking into account the

weight of the lamb. This could be due to the biological fact that lambs born to young

dams are lighter in body weight, possibly due to lower milk production of the dam in her

first parity. This difference in body weight could have lead to the significant age of dam

effect in the unadjusted model (Table 5.2).

5.4.3 Effect of time-dependent covariates

In Section 4.3, we reported that BWT, PCV and FEC were periodically recorded until

the lambs were almost one year old. In this section we assess the effect of these traits

on the risk of mortality as they evolve over time. The effect of anthelmintic treatment in

the pre-weaning period was also assessed in the presence of both birth weight and time-

varying body weight (Table 5.3). These time-varying covariates were additionally included

in models with the baseline covariates. The detailed results for the baseline covariates for

the pre- and post-weaning periods are given in Tables 5.7 and 5.9 in the appendix of this

chapter.
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Figure 5.9: The decrease in risk of mortality with increasing body weight at (a) birth in the pre-weaning
period and (b) weaning in the post-weaning period, with other factors of genotype, gender, year and age of

dam held constant in lambs raised.

Body weight

In both the pre- and post-weaning periods, the risk of mortality associated with body

weight decreased as lambs gained weight. Additionally, at each time point heavier lambs

had a lower risk of mortality than lighter lambs (Figure 5.10). Pre weaning, the relative

hazards of the other genotypes relative to Dorper were slightly decreased when adjusted

for time-varying body weight and now ranged from 0.55 to 0.17 (Table 5.7).

In the post-weaning, the hazard ratios for other genotypes were also decreased after adjust-

ing for body weight. As in the analysis with time-invariant body weight (Section 5.4.2),

the Rx(RxD) and RxR genotype had the lowest but similar relative mortality when com-

pared to the Dorper. There was also no difference in the risk of mortality for lambs born

in 1994 and 1995 in both the pre- and post-weaning periods and the age of dam was not

significant (Table 5.9).

Treatment

The effect of treatment was only considered in the pre-weaning period since all lambs

were treated together during the post-weaning period. The risk of mortality during the

subsequent month for two lambs of the same weight was reduced by 0.40(P<0.001) during
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the next month when treated (1− exp(−0.51)) (Table 5.3).
Packed cell volume and faecal egg count

The means (standard deviations) of time-varying PCV and time-varying natural loga-

rithm of FEC post-weaning were 25 (5.4) percent and 7.36 (1.27) log(epg+25), respec-

tively. Both these time-dependent covariates had significant relationship with the risk

of mortality when introduced in the model for the post-weaning period (Table 5.4). As

noted in Section 5.3.2, these covariates are assumed to be piecewise constant. Between

any two post-weaning sampling times for any two similar lambs from the same sire, and

with PCV differing by one standard deviation, the risk of mortality of the lamb with the

higher PCV relative to that of the lamb with the lower PCV ranged from 0.96 to 0.31

when the PCV ranged from 35 to 20 percent. On the other hand, if the natural logarithm

of FEC for a lamb increased by one standard deviation, the relative risk of mortality of

the lamb with the lower FEC relative to that of the lamb with the higher FEC ranged

from 0.37 to 0.98 when the natural logarithm of FEC ranged from 10 (corresponding to

22,000 epg) to 7 (1,100 epg). When both variables were included simultaneously in the
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Figure 5.10: Changes in risk of mortality with time-varying body weight in the (a) pre-weaning and (b)
post-weaning periods for three lambs selected at random each month with body weights corresponding to the

2.5% (dashed line ), 50% (thin line ) and 97.5% (thick line ) percentiles in the distribution of body weight.

Ranges of body weight were: at birth (1.5 to 3.8 kg), 30 days (4.2 to 9.9 kg), 60 days (5.5 to 13.3 kg),

weaning (6.3 to 16.7 kg), 150 days(7.5 to 17.8 kg), 240 days (9.1 to 21.3 kg) and 330 days (16.0 to 24.5

kg).
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Table 5.4: Parameter estimates from a shared frailty hazard model applied to survival time (regardless
of cause), in the post-weaning period for birth weight and time-varying body weight alternatively, and with
time-varying PCV (%) and LFEC(loge.p.g) adjusted for baseline covariates.

Covariate Parameter Covariate Parameter

estimate±s.e. estimate ±s.e
Weaning weight Time varying body weight

- Linear -1.36 ± 0.10 - Linear -1.10 ± 0.07
- Square 0.050± 0.004 - Square 0.032 ± 0.003
Sire variance (s.e) 0.121 (0.051) Sire variance (s.e.) 0.183 (0.064)

Weaning weight Time varying body weight

- Linear -0.93 ± 0.11 - Linear -0.79 ± 0.07
- Square 0.034± 0.005 - Square 0.024 ± 0.003
PCV PCV

- Linear -0.45 ± 0.04 - Linear -0.44 ±0.04
- Square 0.007 ± 0.001 - Square 0.007 ±0.001
Sire variance (s.e.) 0.102 (0.047) Sire variance (s.e.) 0.108 (0.049)

Weaning weight Time varying body weight

- Linear -1.27 ±0.11 - Linear -1.04 ± 0.08
- Square 0.047± 0.005 - Square 0.030± 0.003
log(FEC + 25) log(FEC + 25)

- Linear -0.07 ± 0.01 - Linear -0.07 ± 0.01
- Square 0.001 ±0.0001 - Square 0.102 ± 0.050
Sire variance (s.e.) 0.093 (0.048) Sire variance (s.e.) 0.105 (0.051)

Weaning weight Time varying body weight

- Linear -0.90 ± 0.11 - Linear -0.75 ± 0.08
- Square 0.033 ± 0.005 - Square 0.023 ± 0.003
PCV PCV

- Linear -0.46 ± 0.04 - Linear -0.45 ± 0.04
- Square 0.007 ± 0.001 - Square 0.007 ± 0.001
log(FEC + 25) log(FEC + 25)

- Linear -0.07 ± 0.01 - Linear -0.06 ± 0.01
- Square 0.001± 0.0001 - Square 0.001± 0.0001
Sire variance (s.e.) 0.077 (0.045) Sire variance (s.e.) 0.087 (0.047)

model the significance of both effects was maintained, i.e., PCV and FEC tended to have

additive effects on survival (Table 5.4).

The difference in the relative risk of mortality was slightly decreased for lambs with more

than 50% Red Maasai in the genotype when adjusted for PCV. Including FEC had minimal

effect.

Sire variance after adjusting for varying covariates.

Inclusion of body weight in the model, increased the value of the sire variance post weaning
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Table 5.5: Parameter estimates and hazard ratios (95% c.i.) for genotype from a shared frailty hazard
model applied to survival time with cause of death only restricted to mis-mothering in the pre-weaning
period and to endoparasite in the post-weaning period, adjusted for the baseline covariates.

Mis-mothering only Endoparasites only

Effect No. of Parameter Hazard No. of Parameter Hazard

lambs estimate±s.e. ratio (c.i.) lambs estimate±s.e. ratio (c.i.)

Genotype

DxD 304 ref 1.00 210 ref 1.00

Dx(DxR) 419 -0.50±0.27 0.61(0.29,0.92) 314 -0.38±0.19 0.68(0.43,0.94)

DxR 121 -0.82±0.44 0.44(0.06,0.82) 77 -0.78±0.28 0.46(0.21,0.71)

RxD 231 -0.57±0.38 0.57(0.14,0.99) 194 -1.01±0.28 0.36(0.17,0.56)

Rx(RxD) 466 -0.92±0.30 0.40(0.16,0.64) 346 -1.70±0.25 0.18(0.09,0.27)

RxR 204 -1.14±0.40 0.32(0.07,0.57) 130 -1.31±0.29 0.27(0.12,0.42)

Year 1996 is excluded from the analysis for endoparasites because there was only one
case of death due to endoparasites in this year. For comparative purposes hazard ratios
for all causes corresponding to those in Table 5.2 but excluding 1996 were 1.00, 0.59, 0.35,
0.32, 0.20 and 0.25, respectively.

(Table 5.4), but the variance decreased again when PCV and FEC were added. Alterations

to the model pre weaning (Table 5.3), however, had no significant influence on the sire

variance.

5.4.4 Effect of baseline covariates for mis-mothering and endoparasite

deaths

Since 31% of the deaths pre weaning were due to mis-mothering and 47% were associated

with endoparasites in the post-weaning period, analysis with the baseline covariates was

repeated for these causes of death only within each of the respective periods. Lambs

that died from other causes were censored. The endoparasite analysis excluded the year

1996 since only one death in this year was diagnosed post weaning as associated with

endoparasites. The parameter estimates for genotypes in these model are given in Table

5.5. The relative hazard for the genotypes for mis-mothering deaths had same trend as

that observed for all causes in the pre-weaning period (cf Table 5.1). Similar relative

hazards for the genotypes were obtained for deaths due to endoparasites alone compared

with deaths due to all causes (shared frailty column Table 5.2).
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5.4.5 Effect of baseline covariates with lambs stolen/lost as censored

records

In all the analyses that have been carried out above, the lambs that were stolen or lost

were treated as events as mentioned in Section 5.3.1. The analysis with the baseline

covariates for both pre and post weaning periods, was now repeated with records for lamb

that were stolen/lost now censored. The results for genotype and year of birth estimates

from the shared frailty model are given in Table 5.6. Similar relative hazard estimates were

obtained for genotype in both the pre- and post-weaning periods (see shared frailty column

Tables 5.1 and 5.2). The estimates for the years 1993-1996 were each slightly increased

by about 38% in the pre-weaning period. Post weaning there was a slight decrease in the

relative risk for 1993. A slight increase was observed for the years 1994-1996. This can be

attributed to the fact that pre weaning, the years 1991-1992 accounted for 23(72%) of the

lambs that were stolen/lost. In the post-weaning period lambs lost/stolen were: 9(15%)

in 1991, 5(8%) in 1992, 39(63%) in 1993 and a total of 9(15%) for the years 1994-1996.

Table 5.6: Parameter estimates and hazard ratios (95% c.i.) for genotype and year of birth adjusted
for gender and age of dam from a shared frailty hazard model applied to survival time in the pre- and
post-weaning periods, with stolen lambs censored.

Pre-weaning Post-weaning

Effect No. of Parameter Hazard No. of Parameter Hazard

lambs estimate±s.e. ratio (c.i.) lambs estimate±s.e. ratio (c.i.)

Genotype

DxD 304 223

Dx(DxR) 419 -0.57±0.17 0.56(0.38,0.75) 340 -0.52±0.14 0.59(0.43,0.76)

DxR 121 -0.72±0.26 0.49(0.24,0.74) 101 -0.71±0.20 0.49(0.29,0.68)

RxD 231 -0.73±0.24 0.48(0.25,0.71) 200 -1.00±0.21 0.37(0.22,0.52)

Rx(RxD) 466 -0.90±0.19 0.41(0.25,0.56) 398 -1.68±0.19 0.19(0.12,0.25)

RxR 204 -1.40±0.27 0.25(0.12,0.38) 180 -1.38±0.22 0.25(0.15,0.36)

Year of birth

1991 363 309

1992 293 0.08±0.24 1.09(0.58,1.59) 242 -0.01±0.24 0.99(0.53,1.45)

1993 365 -0.90±0.29 0.41(0.17,0.64) 347 1.49±0.19 4.45(2.81,6.09)

1994 236 1.13±0.23 3.08(1.70,4.46) 170 1.60±0.22 4.97(2.86,7.08)

1995 262 0.91±0.24 2.48(1.34,3.62) 203 1.54±0.22 4.66(2.63,6.68)

1996 226 0.75±0.25 2.13(1.07,3.18) 171 0.60±0.28 1.82(0.81,2.82)
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5.4.6 Heterosis

An additional analysis to assess for evidence of heterosis was also carried out in the pre-

and post-weaning periods. This was achieved by substituting the genotype term in the

model with baseline covariates with appropriate linear contrasts as given in Baker et al.

(2003). In general heterosis is defined as the superior performance of crossbred animals

relative to the average performance of the purebreds involved in the cross. This could be

due to combining genes from different breeds thus concealing the effects of inferior genes.

Two types of heterosis are the individual and maternal heterosis. Individual heterosis is

the better performance of a crossbred animal over the average of the pure breeds. For

example, a RxD lamb may perform better than the average of (DxD) and (RxR) lambs.

Maternal heterosis is the better performance of a crossbred mother (such as increased

litter size) relative to the average of the pure bred mothers.

In both periods there was no evidence of heterosis, either as a direct individual or maternal

effect.

5.5 Heritability estimates

Often, when frailty proportional hazard models are fitted in animal studies, the frailty vari-

ance is utilised in the calculation of heritability estimates (Ducrocq et al., 1988, Ducrocq,

2000, Henryon et al., 2001, Southey et al., 2001, Yazdi et al., 2000). From the linear mixed

models perspective in Chapter 4.5, we saw that the heritability estimate is the ratio of

genetic variation to phenotypic variation given by (4.2). In the frailty model approach,

Ducrocq and Casella (1996) derived the heritability estimate defined as

h2s =
4σ2s

σ2s +
π2

6

(5.6)

where σ2s is the estimated variance of the frailty term (sire variance in this case) and

which provides an estimate of the genetic variation. The denominator as before is an

estimate of the phenotypic variance, where π2

6 is the variance of the standard extreme

value distribution (Lawless, 1982). This latter variance comes from the relationship of

the extreme value distribution with the Weibull distribution, when the response variable
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(time-to-event) is transformed on to a log scale as shown below.

Consider the following frailty model

λij(t) = λ0(t) exp(x
T
ijβ + wi) (5.7)

where wi is the random effect of the ith sire and λ0(t) is assumed to follow a Weibull

distribution. This implies that

λ0(t) = λρtρ−1

where λ and ρ are the scale and shape parameters, respectively. Thus the time-to-event

has density

fT (t) = λρtρ−1 exp(xTijβ + wi) exp
(
−λtρ exp(xTijβ + wi)

)
.

Let Y be the log transformation of T (i.e., Y = log T ). Then the density of Y is

fY (y) = λρeyρ exp(xTijβ + wi) exp
(
−λeyρ exp(xTijβ +wi)

)

= ρ exp
[(
log λ+ yρ+ xTijβ + wi

)
− exp

(
log λ+ yρ+ xTijβ +wi

)]

If we let ε = log λ+ Y ρ+ xTijβ + wi then ε has the density

fε(ε) = exp(ε− exp(ε))

which is the extreme value density, with variance as π2

6 (Lawless, 1982). Hence

Var(Y)=σ2s+
π2

6 is taken as an estimate of the phenotypic variance. Thus heritabilility can

be estimated as in (5.6). We note that this estimate is on a log-scale (log T ) and needs to

be transformed back to the original scale. Using Taylor series expansion Ducrocq (1999a)

derived the approximation

h2sT = (exp(νρ))2
4σ2s

σ2s +
π2

6

(5.8)

for original time scale, where ν = E[ε].

Korsgaard et al. (1999) proposes a modified expression of the heritability estimate given

as

h2s =
4σ2s

σ2s + σ2e +
π2

6

(5.9)

where σ2e is the residual variability. For this model, the random effect term used in the

frailty model is wij = si + eij where si is the sire effect and eij is a residual effect of
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the jth animal from the ith sire. We saw in Section 2.3 that conditional on the frailty,

there is independence of the individuals in a cluster. Thus, the underlying assumption

in Model (5.7) is that conditional on the sire effect, the lambs from the same sire are

independent. This has the implication that either all the lambs from the same sire come

from different mothers or that the maternal genetic effect is insignificant. In the random

effect formulation proposed by Korsgaard et al. (1999), this independence assumption is

relaxed. Nevertheless, this latter model is not within the class of shared frailty models as

more than one random effect is used per cluster.

In a more recent paper Yazdi et al. (2002) use σ2s + 1 as an estimate for the phenotypic

variance, based on a model similar to (5.7) but without covariates (i.e., xij ≡ 0). This

is motivated by the fact that (5.8) had been observed to be sensitive to the choice of the

Weibull shape parameter ρ.

All the above heritability estimate expressions have been derived from parametric frailty

models with a Weibull baseline hazard. The use of π
2

6 or 1 in a Cox proportional hazards

model is an open question under discussion. For this reason heritability estimates were

not calculated in this study.

5.6 Discussion

Previous analyses of the lamb data used in this study has shown Red Maasai sheep to be

more resistant and resilient to gastro-intestinal parasites and more productive than Dorper

sheep (Baker, 1998, Baker et al., 1999, 2003). In the current analysis the overall lamb

mortality averaged 19% in the pre-weaning period which is within the 12% to 50% range

reported for lamb mortality for tropical sheep (Traore et al., 1985, Wilson et al., 1993).

In the post-weaning period it was 31%. As in the previous analysis, the Red Maasai are

shown to perform better than the Dorper in terms of survival. The Red Maasai had about

a three quarter lower risk of mortality than the Dorper in both the pre- and post-weaning

periods.

Although there were year-to-year variations in the proportions of deaths caused by en-

doparasites, the ranking of the frequency of this disease across genotypes was remarkably

constant. Furthermore, when differences in survival post-weaning across breeds due to

endoparasites were compared with corresponding differences for all causes of mortality,
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similar results were obtained. This implies that the differences in survival manifested be-

tween Dorper and Red Maasai breeds were associated with a variety of causes of death, not

only endoparasites. Indeed, prior to weaning endoparasites accounted for only one fifth

of all deaths. This suggests that Red Maasai sheep are manifesting a degree of general

adaptability to tropical conditions, which includes enhanced resistance to or torelance to

specific diseases such as haemonchosis.

Survival of animals has often been analysed as binary traits (0/1 for alive or dead) at

arbitrarily defined time points in the animal’s life span. Only the overall mortality to

specific time points is of interest in such an analysis. However, in survival analysis all the

information available in the lifespan of an animal can be used efficiently, since censored

observations and uncensored observations are combined in a single analysis. The loss in

information when failure time is analyzed through a logistic rather than a survival analysis

approach was assessed by Yazdi et al. (2002). One major advantage of this approach over

that of logistic regression is the ability to incorporate covariates that vary with time such

as treatment, body weight, PCV and FEC. Lambs with low PCV or high FEC on a given

sampling occasion were more susceptible than others to high mortality during the next

month, despite treatment. This association with mortality appears to be independent

of body weight. This is an important result because it demonstrates that animals that

have already been infected, resulting in a high FEC and low PCV, have a greater risk of

mortality than those with more normal values. This is despite treatment that occurred

on average every 5-6 weeks post-weaning. The risk of mortality was substantially lowered

in the pre-weaning period by treatment, demonstrating the impact of treatment generally

on mortality to weaning.

Time-varying body weight was also strongly associated with mortality. When introduced

into the model post-weaning a large increase occurred in the value of the sire variance

component. This implies that disease and body weight affected the chances of survival

independently and that by adding body weight to the model the direct genetic influence

of sire on survival associated with disease could be seen more clearly. By introducing PCV

and FEC, variables associated with disease, into the model the sire variance was again

reduced, confirming the indication of genetic differences in PCV and FEC among sires

(Baker, 2003).

Frailty models have been used for other species of livestock, for example in assessing the

length of productive life in dairy cattle (Ducrocq et al., 1988), to assess viability of lay-



108 Chapter 5

ing hens (Ducrocq, 2000), in obtaining estimates of longevity of Swedish horses (Wallin

et al., 2000) and sows (Yazdi et al., 2000) and for assessing genetic variation for disease

resistance in growing pigs (Henryon et al., 2001). The frailty variance in this studies has

been utilised in the calculation of heritability estimates (Ducrocq et al., 1988, Ducrocq

(2000), Henryon et al., 2001, Southey et al., 2001, Yazdi et al., 2000). The definitions of

heritability for survival proposed in the literature have been derived based on a parametric

hazard model, with a Weibull baseline hazard. The use of these heritability definitions in

a semi-parametric frailty model is an open question that has not been resolved. Due to

this fact no heritability estimates were calculated in this study.

Finally, above we have only presented the results from the log-normal frailty model. As

noted earlier, the results from the gamma frailty model were similar to those tabulated

above. Corresponding to the shared frailty models fitted in Tables 5.1 and 5.2, the sire

variance estimates from the gamma frailty model were 0.005 and 0.0326 respectively. These

estimates translate to estimates for the parameter γ in the frailty model (2.6). Thus, the

similarity of the results from this model to those from the log-normal frailty model may be

due to the fact that the gamma tends to the log-normal when γ is small (see Section 2.3.2).

No explicit expression exists for calculating standard errors for these variance estimates

from the gamma model.
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5.7 Appendix

Table 5.7: Parameter estimates for baseline covariates in the pre-weaning period from a shared frailty
hazard model with birth weight and time-varying body weight alternatively, and treatment.

Birth weight Time-varying body weight

only with Treatment only with Treatment

est±s.e. est±s.e. est±s.e. est±s.e.
Genotype

DxD ref ref ref ref

Dx(DxR) -0.55±0.16 -0.56±0.16 -0.59±0.16 -0.60±0.16
DxR -0.78±0.27 -0.77±0.27 -0.83±0.26 -0.83±0.26
RxD -0.71±0.23 -0.71±0.23 -0.75±0.23 -0.76±0.23
Rx(RxD) -1.00±0.19 -0.99±0.19 -1.12±0.18 -1.11±0.18
RxR -1.49±0.26 -1.49±0.26 -1.77±0.26 -1.76±0.26
Year of birth

1991 ref ref ref ref

1992 -0.02±0.22 -0.01±0.22 -0.26±0.22 -0.23±0.22
1993 -1.21±0.29 -1.19±0.29 -1.23±0.29 -1.18±0.29
1994 0.47±0.24 0.50±0.24 0.01±0.23 0.08±0.23
1995 0.34±0.24 0.39±0.24 0.06±0.23 0.13±0.23
1996 0.67±0.24 0.73±0.25 -0.04±0.24 0.07±0.25
Gender ref ref ref ref

Females

Males -0.17±0.12 -0.17±0.12 -0.26±0.12 -0.27±0.12
Age of dam

<=2yrs ref ref ref ref

=3 yrs 0.19±0.24 0.20±0.24 0.36±0.24 0.39±0.24
=4 yrs 0.14±0.25 0.15±0.25 0.42±0.25 0.46±0.25
=5 yrs 0.33±0.25 0.34±0.25 0.55±0.24 0.59±0.25
>=6yrs 0.34±0.25 0.35±0.25 0.46±0.25 0.50±0.25

see Table 5.3
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Table 5.8: Parameter estimates for the baseline covariates in the post-weaning period from a shared frailty
model with weight at weaning and also time-varying PCV and LFEC.

Weight at weaning

only with PCV with LFEC with PCV & LFEC

est±s.e. est±s.e. est±s.e. est±s.e.
Genotype

DxD ref ref ref ref

Dx(DxR) -0.52±0.13 -0.52±0.14 -0.43±0.14 -0.47±0.15
DxR -0.88±0.20 -0.82±0.20 -0.76±0.21 -0.75±0.21
RxD -1.19±0.20 -0.99±0.20 -1.22±0.22 -1.06±0.22
Rx(RxD) -1.69±0.19 -1.35±0.18 -1.58±0.19 -1.32±0.19
RxR -1.68±0.22 -1.20±0.22 -1.44±0.22 -1.05±0.22
Year of birth

1991 ref ref ref ref

1992 -0.34±0.23 -0.59±0.24 -0.30±0.24 -0.46±0.25
1993 1.78±0.19 1.59±0.18 1.75±0.20 1.60±0.20
1994 0.95±0.23 -0.23±0.24 0.74±0.24 -0.17±0.26
1995 0.74±0.23 -0.46±0.25 0.34±0.26 -0.47±0.27
1996 0.75±0.28 0.61±0.28 0.63±0.29 0.55±0.29
Gender

Females ref ref ref ref

Males 0.43±0.10 0.34±0.10 0.37±0.10 0.29±0.11
Age of dam

<=2yrs ref ref ref ref

=3 yrs -0.07±0.17 -0.20±0.17 -0.29±0.18 -0.35±0.19
=4 yrs 0.01±0.18 -0.18±0.19 -0.21±0.19 -0.26±0.20
=5 yrs 0.19±0.18 0.09±0.18 0.04±0.19 0.02±0.19
>=6yrs -0.15±0.19 -0.27±0.20 -0.31±0.20 -0.33±0.21

see Table 5.4 first two columns
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Table 5.9: Parameter estimates for the baseline covariates in the post-weaning period from a shared frailty
model with time-varying body weight, PCV and LFEC.

Time varying body weight

only with PCV with LFEC with PCV & LFEC

est±s.e. est±s.e. est±s.e. est±s.e.
Genotype

DxD ref ref ref Ref

Dx(DxR) -0.54±0.14 -0.55±0.14 -0.45±0.14 -0.50±0.15
DxR -0.91±0.19 -0.85±0.20 -0.78±0.21 -0.78±0.21
RxD -1.22±0.21 -1.05±0.20 -1.22±0.22 -1.11±0.22
Rx(RxD) -1.67±0.19 -1.39±0.18 -1.57±0.19 -1.37±0.19
RxR -1.73±0.22 -1.29±0.22 -1.51±0.22 -1.16±0.22
Year of birth

1991 ref ref ref Ref

1992 -0.40±0.24 -0.60±0.24 -0.38±0.25 -0.51±0.25
1993 1.58±0.19 1.46±0.19 1.58±0.21 1.47±0.20
1994 0.89±0.23 -0.17±0.24 0.68±0.24 -0.16±0.26
1995 0.71±0.23 -0.40±0.25 0.30±0.26 -0.46±0.27
1996 0.42±0.28 0.40±0.28 0.37±0.29 0.34±0.29
Gender

Females ref ref ref ref

Males 0.52±0.10 0.39±0.10 0.46±0.11 0.34±0.11
Age of dam

<=2yrs ref ref ref ref

=3 yrs -0.03±0.17 -0.20±0.17 -0.27±0.19 -0.35±0.19
=4 yrs 0.15±0.18 -0.13±0.19 -0.07±0.20 -0.21±0.20
=5 yrs 0.33±0.18 0.11±0.18 0.20±0.19 0.07±0.19
>=6yrs 0.00±0.19 -0.20±0.20 -0.14±0.20 -0.25±0.21

see Table 5.4 last two columns
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Chapter 6

Joint modelling of repeated

measurements and event time

6.1 Introduction

In the Diani data set introduced in Chapter 4 we saw that the lambs were followed up

until they were approximately one year of age and that the traits BWT, PCV and FEC

were periodically recorded over this period of time. In this study, as in many longitu-

dinal studies where individuals are followed over time, the data for each individual can

be grouped into three categories: (1) the elapsed time to an event (Ti) such as death;

(2) repeated measurements (Y i) of a time-dependent variable e.g. (PCV, FEC, BWT);

(3) additional covariates (Xi) that may affect both the repeated measurement and the

time-to-event processes. This covariate information may be available at the baseline (e.g.

genotype, gender, year of birth, animal sire) or can vary with time (e.g. rainfall amount).

When modelling of the repeated measurements is of interest, one may focus, e.g. on how

the measurements change with time; on how the parameter estimates are influenced by

drop-out of individuals during the course of the study; or on how the measurements may

be affected by the additional covariates. From a time-to-event process point of view, the

interest may focus on how the time to the event is affected by both the repeated measure-

ment process and the additional covariates as in Chapter 5. A vast amount of literature

exists on the methods suitable for either approach. Repeated measurements are com-
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monly analysed using linear mixed effects models (Laird and Ware, 1982). These models

are attractive for several reasons, one of them being the ability to easily accommodate

unbalanced designs, especially regarding the timing and frequency of observations. The

models also allow for an explicit partitioning of variability and estimation of fixed effects.

In particular, at least two sources of variability are readily identified: between- and within-

individual variation. The between-individual variability is often modelled by a vector of

correlated, individual random effects.

To analyse event-time data the Cox PH model is often the method of choice. In particular

if time-dependent covariates are considered, the corresponding partial likelihood function

for the Cox model assuming r distinct ordered failure times t(1) < ...... < t(r) is given by

PL(β) =

r∏

i=1

exp(xT(i)β + ϕY(i)(t(i)))∑
jǫRi

exp(xTj β + ϕYj(t(i)))
(6.1)

where Ri is the risk set of all subjects alive prior to the ith failure and Yj(t(i)) is the

observed value of the time-dependent covariate for the jth individual at the time of the

ith failure. In addition x(i) and Y(i)(t(i)) are respectively the covariate vector and time-

dependent covariate value for the individual whose failure time is t(i). Further β is the

vector of the parameters associated with the fixed effects while ϕ assesses the effect of

the current observed value of the repeated measurement on the risk of the event. From

the above partial likelihood, it is observed that this model requires the knowledge of the

repeated measurements for all subjects in the risk set at the time of each failure, which

does not occur practically. In most longitudinal studies, the subjects fail on a continuous

basis while the repeated measurements are recorded at only discrete time points. In the

Diani data set, measurements were only recorded as described in Section 4.3. Thus, no

measurement of the covariate exists for the members in the risk set when failure occurs

in between these time points (say between two months and time of weaning). There

are a number of approaches to handle this problem. Often, what is done is to use the

nearest preceding value of the covariate and treat it as the observed value at the time of

failure, resulting in a piece-wise constant covariate process ( as in Chapter 5). That is, the

last value is carried forward (LVCF). One other additional problem associated with using

the covariate process in the Cox PH model is the presence of measurement error. This

measurement error can be thought of consisting both of laboratory error and short-term

biological variability. Failure to account for this error and for any missing observation

has been shown to cause the estimated regression parameters in the Cox PH model to be
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biased to the null with a bias magnitude that is proportional to the size of measurement

error (Prentice 1982, Dafni and Tsiatis, 1998).

In the last ten years many methods, which simultaneously use the information available

in both the time-to-event and the repeated measurement processes, have been proposed in

medical research. In particular, several models have been developed in the area of acquired

immunodeficiency syndrome (AIDS) research (De Grutolla and Tu, 1994, Tsiatis et al.,

1995, Faucett and Thomas, 1996, Wulfsohn and Tsiatis, 1997, Wang and Taylor, 2001) and

in schizophrenia studies (Henderson et al., 2000, Xu and Zeger, 2001). A detailed review

of research work in joint modelling of times to an event and repeated measurements is

given in Wood (2002). Several advantages of joint modelling of the repeated measurement

and the time-to-event processes have been highlighted in the literature: (1) the repeated

measurements can be extrapolated from the observed measurement times to the specific

event time in a way that utilises the entire measurement history; (2) the time-to-event is

allowed to depend on the ‘true’ but unknown value of the repeated measurement, thus

making an adjustment for the measurement error, which in turn leads to reduced bias of

the parameter estimates of the Cox model; and (3) the repeated measurement process is

adjusted for any loss of information arising from death or loss of individuals.

In this chapter we use the joint modelling approach to model the time to death of the lambs

and the repeated measurements of PCV, BWT and FEC. To this aim, the methodology

proposed by Henderson et al. (2000) is used. The need for joint models to model survival

and performance traits in animals studies is discussed in Ducrocq (1999b). In Section 6.2

we give a brief background on the methodology of linear mixed effects model as well as on

the joint model of Henderson et al. (2000). In Section 6.3 we adopt the joint model to the

analysis of the Diani data set and the results are presented in Section 6.4. The concluding

remarks are given in Section 6.5.

6.2 Model formulation

Most joint modelling approaches in the literature are formulated using standard methods

that are used in modelling time-to-event data and repeated measurements separately.

In Chapter 2 we looked at some of the methods that are used for time-to-event data.

In this section we first discuss briefly one of the standard methods used in modelling
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repeated measurements. Then we summarise briefly how the time-to-event and repeated

measurements models are linked into a joint model.

6.2.1 Linear mixed effects models for repeated measures

Data sets resulting from follow-up studies are often highly unbalanced, with subjects

having unequal number of measurements. Moreover, the data have complex correlation

structure due to repeated measurements for each individual. As a result such data are

not ideally suited to analysis by classical least squares techniques and linear mixed effects

models (Laird and Ware, 1982) are now standard tools for analysing such complex hierar-

chical data. Let Yij denote the observed jth measurement for the ith individual recorded

at time tij (i = 1, . . . , N , j = 1, . . . , ni) and let Yi
T = (Yi1, Yi2, . . . , Yini). Then a linear

mixed effects model is written as

Yi =X1iβ1 +Zibi + εi (6.2)

where X1i and Zi are ni × p and ni × q design matrices, β1 is a p1 × 1 vector containing

the fixed effects, and bi is a q × 1 vector of the random effects. It is assumed that the

vector of random effects bi is N(0,D), i.e., it is normally distributed with mean zero

and variance-covariance matrix D = (dkl), where dkl = Cov(bik, bil). Furthermore, it is

assumed that bi is independent from the vector of residual random errors εi. The residual

errors are assumed to be N(0,Σi), with variance-covariance matrix Σi depending on i

only via its size (ni × ni). It then follows that, marginally, Yi is normally distributed

with mean X1iβ1 and variance-covariance matrix V i = ZiDZ
T
i + εi. In model (6.2),

εi captures the within-individual variability, while the between-individual variability is

modelled through the random effects bi. In particular if

ZT
i =




1 1 . . . 1

ti1 ti2 . . . tini




then model (6.2) is known as a random intercepts and slopes model (see Verbeke and

Molenberghs, 2000, p. 25). The underlying assumption of this model is that the mea-

surements increase linearly in time, but for each individual the linear trend has its own

intercept (bi1) and slope (bi2). Further, if Var(εij) = σ2e and Cov(εik, εil) = 0, then the
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assumed covariance function of the response for this model is

Cov(Yik, Yil) =





d11 + d22tiktil + d12(tik + til) + σ2e if k = l

d11 + d22tiktil + d12(tik + til) if k �= l,

(6.3)

which is quadratic over time. That is, the covariance function between any two measure-

ments from the same individual is a quadratic function.

Model (6.2) has been used extensively to analyse repeated measurements arising from an-

imal breeding programs (Foulley and Quaas, 1995, Jamrozik and Schaeffer, 1997, Meyer,

1992, 1999). In these applications, more emphasis has been placed on the covariance

structure of the random effects (bi, εi), in order to capture different sources of variability,

such as those due to maternal, paternal and environmental effects. To estimate the para-

meters of model (6.2), various approaches can be applied. The most commonly used is the

classical method of maximum likelihood (ML), which results in generalised least square

(GLS) estimates for β. This method of estimation however leads to underestimation of

the variance parameters involved inD and Σi. As an alternative, the restricted maximum

likelihood estimation (REML) can be used, which remedies this problem.

6.2.2 A joint model for repeated measurements and time-to-event

Let Yi
T = (Yi1, Yi2, ..., Yini) be the vector of the repeated measurements for the ith in-

dividual measured at times tTi = (ti1, . . . , tini). Let T o
i = min(Ti, Ci) and δi denote,

respectively, the time-to-event and the censoring indicator for the ith individual. The

observed data available for the ith individual are thus (T o
i , δi,Yi, ti,X1i,x2i), where X1i

denotes the matrix of the observed values of covariates believed to influence the repeated

measurements Yi, while x2i is the incidence vector of the covariates believed to affect the

time-to-event process.

Further assume that for the time-to-event the model of choice is the Cox PH model

λi(t) = λ0(t) exp(x
T
2iβ2) (6.4)

where λ0(t) is the baseline hazard function common to all individuals and β2 is the vec-

tor of unknown parameters associated with the incidence vector x2i. Henderson et al.

(2000) have proposed a model for the joint analysis of both the time-to-event and re-

peated measurements. They postulate a latent (unobserved) bivariate Gaussian process
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Wi(t) = {W1i(t),W2i(t)} such that the repeated measurements model depends on W1i(t)

and the event time model on W2i(t). In particular for the repeated measurements process,

consider a model of the general form

Yi = µi(ti) +W1i(ti) + εi (6.5)

where εi is a N(0,Σi) error vector such that Σi is a diagonal matrix and Var(ǫij)=σ2e .

Further, µi(ti) is the systematic component, which can be described by a linear model.

As a basic example for the latent process W1i(t), Henderson et al. (2000) consider

W1i(t) = U1i + U2it, where (U1i, U2i) is a bivariate normal random vector with zero mean

and variance-covariance

D1 =




σ21 σ12

σ12 σ22


 .

One can observe that µi(ti) in model (6.5) corresponds to X1iβ in model (6.2) while

W1i(ti) corresponds to Zibi, with bi ≡ (U1i, U2i)
T .

On the other hand, the time-to-event is modelled through a Cox proportional hazards

model

λi(t) = λ0(t) exp
{
xT2iβ2 +W2i(t)

}
. (6.6)

It is assumed that the repeated measurement and time-to-event processes are condition-

ally independent given Wi(t). However, in order to induce association between the two

processes, W2i(t) is related to particular components of W1i(t). This is achieved via the

general equation

W2i(t) = ϕ1U1i + ϕ2U2i + ϕ3W1i(t). (6.7)

For example, a joint model with W2i(t) = ϕ1U1i + ϕ2U2i, would allow both the random

intercept and slope to affect the risk of the event. In general, exponentiating the estimates

of ϕ1, ϕ2 and ϕ3 gives respective hazard ratios of death associated with the random

intercept, random slope and the current predicted value of the repeated measurement,

respectively.

The parameters of the models for the repeated measurement process and the time-to-event

process are then estimated jointly by maximising the observed joint likelihood of the data,

as detailed in Wood (2002) and Wulfsohn and Tsiatis (1997).
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6.3 Application

We now describe the application of the joint model described in the previous section to the

Diani data set introduced in Chapter 4. Separate analyses of the repeated measurements

of PCV, LFEC and BWT were performed. Survival times of lambs that survived beyond

one year, or those of lambs that were stolen, were censored at one year and at the last

recorded observation, respectively.

In Chapter 5 we reported an average lamb mortality of 19% in the pre-weaning period

and 31% in the post-weaning period. The age at death during the post-weaning period

ranged from 3 to 12 months (median 6.4 months). The number of repeated measurements

recorded from weaning ranged from 1 to 8 (median 6) per lamb with 1994 having the most

post-weaning measurements. Figures 4.1 to 4.3 show scatter plots of the measurements

recorded from one to 12 months for PCV and LFEC and those from birth to 12 months

for BWT, across the six years. In each plot individual profiles for a randomly selected

sample of 15 lambs are highlighted. Although all animals were weighed and sampled on

the same day, ages varied as a result of lambs being born within a period of about 20-40

days.

In the joint models with either PCV, BWT or LFEC as repeated measurements, fixed

effects of genotype (6 levels), year of birth (6 levels) and sex (2 levels) were included in the

repeated measurements component of the joint model. Each of the traits was assumed to

be curvilinear over time (see Figures 4.1 to 4.3). In the joint model with PCV, age of dam

(5 levels) was considered as a baseline covariate for the time-to-event component only, but

not for the repeated measurements, where it was found not to be significant.

Consequently in such a case, we can define βT1 = [µ, α1, α2, α3, α4, α5, ξ1, ξ2, ξ3, ξ4, ξ5, ξ1],

where αm (m = 1, . . . , 5) are the binary indicators capturing the breed effects, ξk (k =

1, . . . , 5) are the indicators for year of birth and ̟1 is the binary indicator for males. As

a result, the repeated measurements model can be written as

Yi =X1iβ1 + η1ti + η2t
∗
i +W1i(ti) + εi (6.8)

where X1i is the ni × 12 design matrix corresponding to β1, (η1, η2) are the parameters

associated with the time trend and t∗Ti = (t2i1, . . . , t
2
ini
) is the vector of the quadratic

times. Let βT =
(
βT1 , η1, η2

)
, and X1i(ti) = (X1i | ti | t∗i ) be the ni × 14 design matrix
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corresponding to β. Model (6.8) can then be re-written as

Yi =X1i(ti)β +W1i(ti) + εi. (6.9)

To specify the survival component of the joint model, let

βT2 = [α1, α2, α3, α4, α5, ξ1, ξ2, ξ3, ξ4, ξ5, ̟1, a1, a2, a3, a4], where al (l = 1, . . . , 4) are the

binary indicators coding the dam age groups (with levels ≤ 2 years, 3, 4, 5 and ≥ 6 years).

The model for survival time is then given by

λi(t) = λ0(t) exp
{
xT2iβ2 +W2i(t)

}
, (6.10)

where x2i is the incidence vector of size 15 for the ith individual associated with the pa-

rameter vector β2.

For all the three traits the following settings for W1i and W2i were considered:

(S1) W1i(t) = U1i, W2i = 0;

(S2) W1i(t) = U1i + U2it, W2i = 0;

(S3) W1i(t) = U1i, W2i = ϕW1i;

(S4) W1i(t) = U1i + U2it, W2i = ϕ1U1i + ϕ2U2i + ϕ3W1i(t).

Settings (S1) and (S2) assume independence between the repeated measurement and sur-

vival processes. Settings (S3) and (S4) correspond to (S1) and (S2), respectively, with

respect to the structure of W1i(t), but allow for dependence between the processes (joint

models).

To obtain parameter estimates for the fixed effects, variance components and the asso-

ciation parameters of the joint models (S3) and (S4) specified above, a program in SAS

(Renard et al., 2002) was written. Estimates from either setting (S1) and (S2) were com-

puted using PROC MIXED (for repeated measurements) and PROC PHREG (for survival

time) in SAS.

Estimates of the standard errors for all parameter estimates in the joint models were ob-

tained by using the jackknife method. This was achieved by leaving out the observations

for lambs from the same sire and then re-fitting the model to the remaining observations.

Classically, jackknife estimation method provides reliable estimates of the standard errors

if the observations omitted are independent from those that are left in. When observations

for lambs from the same sire are left out, so is the genetic component of these lambs. This

genetic component is assumed here to be stronger in the contribution to the lamb charac-

teristics (e.g. survival, BWT) than the environmental components, which are shared by
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lambs born in the same year. This is supported by the findings in Baker et al. (2003).

These authors show that for the analysed data set, the differences observed in heritability

estimates of PCV and FEC for Dorper compared to Red Masaai-sired lambs were due to

the differences in genetic variance rather than the environmental variability.

6.4 Results

Below we report the results of the fitted models for PCV, BWT and FEC for the above

settings. The results of the joint model (settings (S2) and (S4)) will be compared to those

of the corresponding independent model ((settings (S1) and (S3)) for both the repeated

measurements and survival estimates. The findings were as follows.

6.4.1 Packed cell volume from one month

Initially, we considered the repeated measurements for PCV collected from one month

to one year of age. The parameter estimates for these measurements for settings (S1)

and (S3) are given in Table 6.1. When fitting the model corresponding to setting (S2),

a non-positive definite estimate of the variance-covariance matrix D1 (see Section 6.2.2)

was obtained. On further investigation, it was discovered that the PCV repeated mea-

surements were negatively correlated, with the correlation increasing in the absolute value

over time. This negative serial correlation cannot be captured by a model with a random

intercept and random slope, as specified under setting (S2). Therefore, for the PCV mea-

surements collected from one month to one year of age, the models for settings (S2) and

(S4) could not be fitted.

Setting (S1): Under this setting, which assumes independence between PCV measure-

ments and survival time, the Dorper (DxD) breed had the lowest mean PCV from one

month to one year of age, which was between 0.1 to 1.9% units lower than for other

genotypes (see the ‘Repeated measurements model - S1 column in Table 6.1). This

difference increased as the Red Maasai genotype in the lambs increased, with the Red

Maasai having the highest mean PCV. The linear and quadratic time effects were both

significant(P<0.001) implying an average non-linear trend in PCV. The trend is as indi-

cated in Figure 4.1, which shows a general sharp decline in PCV after one month in all
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Table 6.1: Estimates from independent (S1) and joint models (S3) for repeated measurements of PCV(%)
from one month to 12 months and survival.

Repeated measurements model Survival model

S1 S3 S1 S3

est s.e. est s.e. est s.e. est s.e.

Fixed effects

Intercept 31.730 0.238 31.457 0.394 - - - -

time(months) -2.856 0.052 -2.866 0.119 - - - -

time*time 0.217 0.005 0.217 0.011 - - - -

Genotype

DxD ref ref ref ref

Dx(DxR) 0.132 0.231 0.237 0.281 -0.476 0.121 -0.514 0.136

DxR 0.355 0.332 0.449 0.392 -0.569 0.172 -0.583 0.209

RxD 1.406 0.260 1.603 0.381 -0.872 0.169 -0.945 0.197

Rx(RxD) 1.668 0.224 1.935 0.313 -1.341 0.141 -1.390 0.184

RxR 1.937 0.279 2.230 0.356 -1.342 0.177 -1.407 0.226

Year of birth

1991 ref ref ref ref

1992 -0.412 0.222 -0.373 0.303 -0.023 0.185 -0.048 0.209

1993 -0.340 0.219 -0.470 0.248 0.921 0.149 0.948 0.157

1994 -2.867 0.252 -3.098 0.270 1.358 0.167 1.361 0.185

1995 -3.178 0.251 -3.384 0.291 1.328 0.165 1.361 0.187

1996 1.097 0.257 1.008 0.306 0.724 0.197 0.769 0.248

Gender

Females ref ref ref ref

Males -0.512 0.138 -0.558 0.156 0.220 0.088 0.232 0.115

Age of dam

<=2yrs - - - - ref ref

=3 yrs - - - - -0.277 0.158 -0.271 0.160

=4 yrs - - - - -0.544 0.167 -0.505 0.181

=5 yrs - - - - -0.368 0.159 -0.278 0.182

>=6yrs - - - - -0.509 0.168 -0.461 0.150

Variances

σ2
e

25.817 0.398 25.905 0.839 - - - -

σ21 3.037 0.283 2.804 0.327 - - - -

Association

ϕ - - - - 0.0 -0.236 0.020

years except 1996 followed by a slight rise. The lambs born in 1992-1995 had on average

a lower PCV (0.3 to 3.2%) than those born in 1991. The mean PCV was the highest in

1996. On average, male lambs had lower PCV than female lambs.

By exponentiating the estimates given in the ‘Survival model - S1 column in Table 6.1,
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one can see that, as compared to the Dorper, the relative mortality hazard of the other

genotypes ranged from exp(−0.476) = 0.62 to exp(−1.34) = 0.26. The Rx(RxD) and RxR

breeds had the lowest, and similar, mortality. The hazard of the lambs born in the years

1993—1996 was statistically significantly higher than that of the lambs born in 1991 and

ranged from 2.2 to 4.0. Male lambs had a higher mortality hazard than females while the

hazard ratio decreased with increasing age of dam.

Setting (S3): This setting corresponds to (S1), but assumes dependence between PCV

measurements and survival time. As compared to (S1), the differences in the mean PCV,

as compared to the Dorper breed, increased slightly for all other genotypes. For instance,

the estimated mean PCV from weaning for the non-Dorper genotypes was 0.6-3.4% units

higher than for the Dorper breed (see the ‘Repeated measurements model - S3 column

in Table 6.1). This might be the result of the adjustment of the analysis of the repeated

measurements for the variation in death rates. The estimated time trend parameters for

the repeated measurements model for (S1) setting were similar to those obtained for (S3).

Relative to the mortality hazard for the Dorper breed, the hazard ratio for the non-Dorper

genotypes now ranged between 0.60 to 0.24, as compared to (S1) setting (see the ‘Survival

model - S3 column in Table 6.1). Significant negative estimates (P<0.001) were obtained

for the association parameters (ϕ in Tables 6.1) for the survival model under (S3). This

indicates that the mortality hazard decreased with increasing PCV.

6.4.2 Packed cell volume from weaning

As the critical period for assessing genetic resistance to endoparasites in lambs is between

weaning and 12 months of age, the analysis of the PCV repeated measurements for the

period from weaning onwards was also considered. In this analysis, the survival time was

re-defined by using weaning as the time of origin. Consequently, in this analysis only the

animals alive at the time of weaning were considered. The results for settings (S1)—(S3)

and (S2)—(S4) are given in Tables 6.2 and 6.3, respectively.

Settings (S1) and (S2): Similar trends in the repeated measurement model, as those re-

ported for the analysis of data from one month of age, were observed when PCV measure-

ments were considered from weaning (see Table 6.2). However unlike from one month of

age, the time trend had a more moderate negative slope estimate. This corresponds to

Figure 4.1, which shows a gradual decline in PCV after weaning.
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Table 6.2: Estimates from independent (S1) and joint models (S3) for repeated measurements of PCV
(%) from weaning to 12 months and survival.

Repeated measurements model Survival model

S1 S3 S1 S3

est s.e. est s.e. est s.e. est s.e.

Fixed effects

Intercept 26.179 0.285 25.603 0.451 - - - -

time(months) -1.406 0.054 -1.419 0.084 - - - -

time*time 0.146 0.006 0.147 0.009 - - - -

Genotype

DxD ref - ref - ref - ref -

Dx(DxR) 0.361 0.287 0.563 0.399 -0.492 0.142 -0.584 0.190

DxR 0.978 0.412 1.140 0.580 -0.678 0.200 -0.707 0.293

RxD 1.756 0.318 2.206 0.465 -0.975 0.195 -1.169 0.242

R(RxD) 2.405 0.276 3.045 0.408 -1.641 0.176 -1.839 0.243

RxR 2.866 0.344 3.430 0.454 -1.332 0.201 -1.527 0.242

Year of birth

1991 ref - ref - ref - ref -

1992 0.884 0.269 0.947 0.388 0.037 0.228 -0.077 0.278

1993 -1.160 0.263 -1.678 0.345 1.468 0.174 1.637 0.209

1994 -5.170 0.313 -5.678 0.466 1.570 0.203 1.640 0.252

1995 -5.666 0.310 -6.082 0.419 1.533 0.203 1.677 0.250

1996 1.974 0.316 1.901 0.359 0.531 0.268 0.458 0.276

Gender

Females ref - ref - ref - ref -

Males -0.477 0.169 -0.616 0.212 0.300 0.104 0.342 0.150

Age of dam

<=2yrs - - - - ref - ref -

=3 yrs - - - - -0.377 0.177 -0.385 0.165

=4 yrs - - - - -0.728 0.187 -0.669 0.183

=5 yrs - - - - -0.549 0.178 -0.437 0.203

>= 6yrs - - - - -0.810 0.196 -0.698 0.209

Variances

σ2
e

15.315 0.293 15.390 0.451

σ21 6.465 0.427 6.318 0.542

Association

ϕ - - - - 0.0 - -0.303 0.023

The relative mortality hazard in the post-weaning period exhibited similar pattern as in

the analysis of data from one month of age, but now the Rx(RxD) had the lowest mortality

(exp(−1.641) = 0.19) when compared to the Dorper breed. The hazard of the lambs born
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in the years 1993—1995 was now five times higher while it was 70% higher for lambs born

in 1996 when compared to that of the lambs born in 1991.

In the repeated measurements model with both random intercepts and slopes, i.e., under

(S2) setting (see the ‘Repeated measurements model - S2 column in Table 6.3), similar

trends for the fixed effects parameter estimates were observed as in the simpler, random-

intercept-only model (see the ‘Repeated measurements model - S1 column in Table 6.2).

However, the ranges of the estimates were reduced. Including a random slope, accounts for

any variability that may be due to the rate of change, thus leading to smaller differences

in the estimates. In this model the random intercept and slope were negatively correlated

(σ12 = −1.82). This implies that lambs with a high PCV at weaning had a more rapid

decline in PCV than those with a low PCV. The estimated variance component for the

random intercept (σ21) was 2 times larger than that in the simpler model (Table 6.2), but

due to negative correlation the total variability in the two models is similar. Thus for any

two time points under setting (S2), the estimated covariance is obtained by substituting

the estimates of the variance components and residual error (from Table 6.3) into equation

(6.3). This result should be almost equivalent to the sum of the estimates of σ21 and σ2e

from the simpler (S1) model.

Settings (S3) and (S4): As compared to (S1) and (S2) settings, the joint models con-

structed under both (S3) (see the ‘Repeated measurements model - S3 column in Table 6.2)

and (S4) (see the ‘Repeated measurements model - S4 column in Table 6.3) settings, the

differences in the mean PCV, increased slightly for all other genotypes relative to the Dor-

per. For instance, for (S3) setting (Table 6.2), the estimated mean PCV from weaning for

the non-Dorper genotypes was 0.6-3.4% units higher than for the Dorper breed. For (S4)

setting (Table 6.3), the difference was between 0.3% and 3.0%. This increase might be a

result of the adjustment of the analysis of the repeated measurements for the variation in

death rates.

Relative to the mortality hazard for the Dorper breed, the hazard ratio for the non-Dorper

genotypes now ranged from 0.56 (= exp(−0.584)) to 0.21 (= exp(−1.569)) for both (S3)

and (S4) settings (see the ‘Survival model - S3 column in Table 6.2 and the ‘Survival model

- S4 column in Table 6.3). These estimates are lower than the estimates obtained for the

corresponding (S1) and (S2) survival models. For (S3) setting, the mortality hazard for

lambs born in 1993—1995 was about five times higher as compared to 1991 (Table 6.2).

For (S4), the ratio was similar to setting (S3) for 1993, while for 1994 and 1995 it was
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Table 6.3: Estimates from independent (S2) and joint models (S4) for repeated measurements of PCV(%)
from weaning to 12 months and survival.

Repeated measurements model Survival model

S2 S4 S2 S4

est s.e. est s.e. est s.e. est s.e.

Fixed effects

Intercept 25.817 0.273 25.844 0.444 - - - -

time(months) -1.465 0.052 -1.562 0.081 - - - -

time*time 0.160 0.006 0.164 0.009 - - - -

Genotype

DxD ref - ref - ref - ref -

Dx(DxR) 0.169 0.267 0.333 0.354 -0.492 0.142 -0.594 0.200

DxR 0.726 0.387 0.842 0.489 -0.678 0.200 -0.634 0.284

RxD 1.585 0.290 1.892 0.451 -0.975 0.195 -1.221 0.277

Rx( RxD) 2.070 0.254 2.521 0.404 -1.641 0.176 -1.843 0.257

RxR 2.586 0.319 2.991 0.440 -1.332 0.201 -1.569 0.304

Year of birth

1991 ref - ref - ref - ref -

1992 1.460 0.237 1.392 0.404 0.037 0.228 -0.260 0.340

1993 -0.779 0.239 -1.208 0.358 1.468 0.174 1.678 0.282

1994 -3.685 0.286 -4.311 0.631 1.570 0.203 1.343 0.403

1995 -3.631 0.290 -4.285 0.661 1.533 0.203 1.396 0.471

1996 2.101 0.286 1.998 0.365 0.531 0.268 0.582 0.308

Gender

Females ref - ref - ref - ref -

Males -0.539 0.154 -0.597 0.188 0.300 0.104 0.357 0.170

Age of dam

<=2yrs - - - - ref - ref -

=3 yrs - - - - -0.377 0.177 -0.425 0.184

=4 yrs - - - - -0.728 0.187 -0.685 0.205

=5 yrs - - - - -0.549 0.178 -0.453 0.227

>=6yrs - - - - -0.810 0.196 -0.676 0.213

Variances

σ2
e

12.901 0.272 12.641 0.401

σ21 15.894 0.990 15.380 1.517

σ12 -1.817 0.145 -1.590 0.236

σ22 0.276 0.024 0.261 0.028

Association

ϕ1 - - - - 0.0 - -0.273 0.097

ϕ2 - - - - 0.0 - -1.986 0.505

ϕ3 - - - - 0.0 - -0.251 0.087



Joint modelling of repeated measurements and event time data 127

about slightly reduced. This is in agreement with Figure 4.1; the lambs born in 1994 and

1995 had much lower PCV measurements at weaning than those born in 1991. The for-

mer however increased over time while the latter decreased. Thus, adjusting for the PCV

evolution over time results in a slight decrease in the mortality hazard for 1994—1995. On

the other hand, the lambs born in 1993 and 1991 had almost similar PCV measurements

at weaning. However the decrease in 1993 over time was much sharper (larger negative

slope) than in 1991. Adjusting for this sharp decrease translates into a higher mortality

hazard for 1993. Finally, as compared to (S4), much higher hazard ratios are observed for

1994 and 1995 in (S3) model, as the latter model adjusts the risk only for level of PCV

over time.

Significant negative estimates (P<0.001) were obtained for all the association parameters

(ϕ in Table 6.2, and ϕ1—ϕ3 in Table 6.3) for the survival model under both (S3) and (S4)

setting. This indicates that the mortality hazard decreased with increasing PCV. Thus

after weaning, in (S3) setting, lambs with PCV measurements higher than the average

had a lower mortality hazard than those with lower PCV measurements. The standard

deviation of the distribution of the random intercepts in the repeated measurements part

of the joint model for (S3) setting was estimated as 2.54 (=
√
6.465). Thus, the model

predicts that for every (random) increase by one standard deviation in the PCV, the

risk of death decreases by 0.54 (=1 − exp(−0.303 ∗ 2.54)) (see Table 6.2). For the (S4)

model a large negative estimate was obtained for ϕ2, which corresponds to the random

individual slope. The standard deviation of the distribution of the random slopes was

estimated to equal 0.53 (=
√
0.276). Thus, the model indicates that, for every increase of

one standard deviation in the rate of change of PCV, the mortality hazard decreases by

0.65 (=1− exp(−1.986 ∗ 0.53)).

6.4.3 Body weight

In this analysis, measurements of body weight from birth to one year of age were used.

Models were fitted using all four settings. The parameter estimates of the fixed effects were

almost similar for (S1)—(S3) and (S2)—(S4) settings. We thus report only the estimates of

the models constructed under (S2) and (S4) setting, which are shown in Table 6.4.

Setting (S2): The Dorper (DxD) breed had the highest mean BWT, which was between

0.02 to 0.65 kgs higher than for other genotypes (see the ‘Repeated measurements model
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- S2 column in Table 6.4). There was a non-linear trend in change of the body weight

over time. On average, the lambs born in 1994—1996 were lighter than those born in 1991

and 1992. Male lambs were on average 0.1 kg heavier than the females. Notably, lambs

born to older dams were much heavier in body weight (0.7 to 1.1 kg) than those to young

dams.

As compared to the Dorper, the relative mortality hazard of the other genotypes ranged

from 0.61 (=exp(−0.494)) to 0.27 (=exp(−1.302)), with the Red Maasai (RxR) and

Rx(RxD) having the lowest hazard. An increased mortality hazard was noted for the

years 1993—1996. Lambs born to ewes ≥ 3 years of age had lower hazard than those born

to younger ewes.

Setting (S4): Adjusting the repeated measurement process for the variation in death rates

had a only slight effect on the parameter estimates of the (S4) models when compared to

(S2) setting.

The relative mortality of the genotypes now ranged from 0.61 to 0.24 with the RxR geno-

type having the lowest hazard mortality. This result indicates that despite being lighter in

body weight when compared to the other genotypes the Red Maasai demonstrates better

performance in terms survival. The age of dam effect was non-significant. This could be

due to the fact that in this analysis, we account for the low body weight of lambs born

to young dams, which biologically is due to low milk production of the dam in her first

parity.

Negative estimates of the parameters relating the random components of the repeated

measurements model to the survival model were observed (see the estimates for ϕ1—ϕ3 in

Table 6.4). In particular, there was a significant negative association only between random

growth rate (ϕ2, P<0.001) and risk of death. This shows that animals who had weight

profiles with increasing slope had reduced risk of death. In a reduced model with ϕ1 and

ϕ3 constrained to zero (results not shown), the estimates obtained for the association pa-

rameter ϕ2 was ϕ̂2 = −3.262 (s.e.=0.389). The standard deviation of the random slope in

this reduced model was equal to 0.28. Thus for every increase by one standard deviation,

the change in mortality hazard associated to the rate of change in BWT was reduced by

0.60 (=1-exp(−3.262× 0.28)).
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Table 6.4: Estimates from independent (S2) and joint models (S4) for repeated measurements of BWT
(kg) from birth to 12 months and survival.

Repeated measurements model Survival model

S2 S4 S2 S4

est s.e. est s.e. est s.e. est s.e.

Fixed effects

Intercept 3.980 0.128 4.004 0.146 - - - -

time (months) 2.330 0.016 2.270 0.045 - - - -

time*time -0.101 0.001 -0.101 0.003 - - - -

Gentotype

DxD ref - ref - ref - ref -

Dx(DxR) -0.019 0.101 -0.023 0.109 -0.494 0.108 -0.499 0.130

DxR -0.255 0.150 -0.248 0.159 -0.630 0.157 -0.634 0.165

RxD -0.158 0.114 -0.168 0.131 -0.809 0.149 -0.910 0.194

Rx(RxD) -0.326 0.098 -0.351 0.125 -1.263 0.124 -1.240 0.160

RxR -0.649 0.127 -0.658 0.142 -1.302 0.157 -1.431 0.203

Year of birth

1991 ref - ref - ref - ref -

1992 -0.808 0.102 -0.814 0.160 0.073 0.161 0.239 0.163

1993 0.293 0.100 0.439 0.138 0.763 0.136 0.096 0.219

1994 -2.170 0.120 -2.147 0.140 1.384 0.148 1.448 0.162

1995 -1.499 0.120 -1.423 0.145 1.246 0.149 1.066 0.188

1996 -2.277 0.129 -2.320 0.060 0.763 0.173 1.164 0.325

Gender

Females ref - ref - ref - ref -

Males 0.094 0.062 0.075 0.118 0.202 0.079 0.393 0.097

Age of dam

<=2yrs ref - ref - ref - ref -

=3 yrs 0.670 0.115 0.643 0.115 -0.187 0.144 -0.139 0.147

=4 yrs 1.154 0.118 1.115 0.116 -0.490 0.152 -0.320 0.162

=5 yrs 1.096 0.119 1.068 0.109 -0.333 0.145 -0.101 0.163

>=6yrs 0.956 0.127 0.916 0.129 -0.433 0.152 -0.246 0.148

Variances

σ2
e

2.536 0.038 2.521 0.091 - - - -

σ21 0.710 0.058 0.750 0.052 - - - -

σ12 0.167 0.013 0.208 0.017 - - - -

σ22 0.069 0.004 0.082 0.007 - - - -

Association

ϕ1 - - - - 0 - -0.092 0.389

ϕ2 - - - - 0 - -3.361 1.609

ϕ3 - - - - 0 - 0.027 0.079
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6.4.4 Faecal egg count

The repeated measurements for the log-transformed FEC (LFEC) from one month to one

year of age were initially considered. As was the case with PCV, a negative correlation

that increased over time was observed when (S2) setting was used. This problem was

not resolved by using the simpler (S1) setting. Considering LFEC measurements from

weaning onwards did not resolve the problem either as the negative correlation observed

in (S2) was large among measurements collected towards the end of the one year period.

The random structure (W1i) of the repeated measurements models that are assumed under

(S1) and (S2) settings in general assume a smooth trend for the repeated measurements.

Any serial correlation present in these measurements may be captured using stochastic

processess (e.g., the non-stationary Gaussian process, Diggle, 1988) which are used for

this purpose in linear mixed models.

6.5 Discussion

The repeated measurements of PCV, BWT and FEC were previously analysed by Baker et

al. (2003). In that analysis the survival pattern of the animals was not taken into account,

and these authors chose to analyse the data for each time point separately. They concluded

that the Red Maasai had higher resistance (lower FEC) and higher resilience (higher PCV)

than Dorpers. In Chapter 5, on the other hand, we studied the survival of each genotype

and introduced the effects of BWT, PCV and FEC as time-varying covariates in shared

frailty models, with the frailty defined as a random effect of sire. Introduction of PCV and

FEC as time-varying covariates in that analysis in models with BWT (time-invariant or

time-varying) reduced the magnitude of the sire variance, confirming the moderate levels

of heritability reported by Baker et al. (2003).

In the analysis presented in the current chapter, it has been decided to analyse the indi-

vidual repeated measurements jointly with the survival process. By doing so, parameter

estimates in both components of the joint model generally increased in absolute order of

magnitude, as compared to the models assuming independence between the two processes.

For instance, in the joint model with PCV as the repeated measurement, the relative risks

of death in the different genotypes, compared with the Dorper were altered from 0.61 to
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0.19 for (S1) and (S2) models to 0.56 to 0.21 for both the (S3) and (S4) models. Thus,

adjustment for the evolution of PCV widened the comparative relative risk between the

Dorpers and the Red Maasai. On the other hand, adjustment for the death rates, showed

wider differences in the PCV repeated measurements among the genotypes. For instance,

the Dorpers had on average much lower PCV than the other genotypes in the (S3) and

(S4) models when compared to the corresponding (S1) and (S2) models.

In general, repeated measurements such as PCV, BWT or FEC are only recorded at

specific time points. When such variables are used in a proportional hazards model as

time-varying covariates, the standard method is to impute the missing observations by

using the last observed value, what results in a piece-wise constant profile. This was the

approach undertaken in Chapter 5. Prentice (1982) however shows that this approach

leads to biased model parameters, and the presence of any measurement error in the co-

variate attenuates the estimates towards zero. On the other hand, in the joint analysis,

the repeated measurements are rather imputed by values resulting from modelling the

repeated measurement process over time. Hence, estimated ‘true’ values of the repeated

measurements are used at each time point. This could explain the larger absolute order

of magnitude observed in the parameter estimates obtained from the joint models. In

addition, the effect of other characteristics of the patterns of the repeated measurements

on the risk of death can be considered. The effects of these characteristics is well demon-

strated in this study when repeated measurements of PCV recorded from weaning were

considered. Including a random slope had a dramatic effect on the post-weaning risks of

death for the years 1993 to 1995 when compared to 1991.

The type of joint models that we propose here are not exhaustive. As observed with LFEC,

the random intercepts and random slopes are not able to capture the intrisinc patterns

of this trait when considered from either one month or time of weaning. However the

‘smooth’ BWT profiles from the time of birth are adequately captured with random inter-

cept and slope models. In general random intercepts and slopes provide a representation

of the dominant part of the evolution of the profiles but do not capture the more subtle be-

haviour. This behaviour can be captured using, e.g., autocorrelated stochastic processes.

In fact, Henderson et al. (2000) did propose the use of a non-stationary Gaussian process

in their approach. Unfortunately, due to the lack of appropriate software, this solution is

not yet available in practice.

In the time-to-event component of the joint model clustering nature of any measurements
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can also be incorporated in the model. To this end an additional latent process (sayW3(t))

independent of W2(t) could be used to induce the clustering. Clusters could for instance

consist of the time to death measurements of lambs from the same sire. Henderson et al.

(2000) do indeed propose inclusion of a frailty term in the time-to-event component of the

joint model. Implementation of such an analysis in the current study was also hampered

by software limitations, which still continues to limit the use of joint models.
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Concluding remarks and further

research

7.1 Methodology

The main theme of this thesis is the study of random effects survival models. We mainly

focus on shared frailty models. In the first part of this thesis, consisting of Chapters 2

and 3, we discuss methodological issues for such models.

In Chapter 2 we present a review on likelihood estimation methods of the semi-parametric

frailty model. We consider the gamma and log-normal frailty distributions. This review

gives us a better understanding of the common ground for these estimation methods.

Although frailty models have become the standard approach for analysing multivariate

time-to-event data in the last two decades, the asymptotic theory for these models is still

not well developed. The consistency and asymptotic distribution theory of the estimators

from a semi-parametric gamma-frailty model (with no covariates) are discussed in Murphy

(1994, 1995) while Parner (1998) studies the model with covariates. Murphy and van der

Vaart (1997) obtain the asymptotic distribution of the likelihood ratio statistic for the

two-sided testing problem of no heterogeneity in the semi-parametric frailty model consid-

ered by Murphy (1994, 1995). In Chapter 3 we derive the asymptotic distribution of the

likelihood ratio and score statistic for testing the one-sided problem of no heterogeneity.

Testing for heterogeneity is a non-standard testing problem as the variance (heterogene-

133
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ity) parameter is on the boundary of the parameter space under the null hypothesis. Such

problems have been studied in the recent past in the area of linear mixed models (Self

and Liang, 1987, Stram and Lee, 1994, 1995, Verbeke and Molenberghs, 2003) but not

in the context of frailty models. In this chapter, we prove that the likelihood ratio test

statistic for no heterogeneity has an asymptotic distribution which is a 50:50 mixture of

a point mass at zero and a chi-square distribution with one degree of freedom. To this

end, a shared gamma frailty model with a Weibull baseline hazard was used. Further, the

score statistic for a complete data model (Weibull-gamma frailty) and with no covariates

is shown to have the same asymptotic distribution as the likelihood ratio statistic.

There are diverse ways to extend these issues that we discuss in this part of the thesis.

An interesting follow-up on the review we carry out in Chapter 2 could be a comparison

through simulation of the various approaches for a specific frailty distribution. Such a

simulation study could give, for each specific approach, insight on the bias and spread

of the estimates. The results that we derive in Chapter 3 can however be extended in a

number of ways.

Using the likelihood expressions given in Murphy (1995) and Murphy and van der Vaart

(1997), Theorem 4 on censored data can be extended to more complex parametric and

semi-parametric frailty models. The related study of score tests for censored data is a

further interesting topic as discussed in Section 3.8.

For completeness, Wald-type test statistics for testing hypotheses (3.1) may be employed

as well. Robertson, Wright and Dykstra (1988) construct a Wald statistic for the situa-

tion where the alternative hypothesis is described by inequalities. A useful further research

topic is to study the distributional behaviour of the test for heterogeneity under local al-

ternatives converging to the null hypothesis at rate n−
1
2 . As in the two-sided testing

problems, it is expected that the test statistics will have the same power characteristics

under the local circumstances.

A further relevant issue is to provide information on good finite sample approximation of

the mixing properties which can be used to improve the asymptotic 50:50 mixture a point

mass at zero and a chi-square distribution with one degree of freedom. In semi-parametric

frailty models, the situation is made more complex by the presence of nuisance parameters

and/or functions under the null hypothesis and censoring. Bootstrapping the distribution

of the test statistic can provide an alternative to the asymptotic distribution.

Extending the results to other frailty distributions can also be a topic for further inves-
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tigation. Ferreira and Garcia (2002) show in a simulation study that the heterogeneity

(variance parameter) estimator from a semi-parametric log-normal frailty model with no

covariates has an asymptotic normal distribution. In view of this result and that of Mur-

phy (1995) (gamma frailty model) we can conjecture that the likelihood ratio test statistic

for no heterogeneity for a log-normal frailty model will also have an asymptotic 50:50 mix-

ture of a point mass at zero and a chi-square distribution with one degree of freedom. The

constructive proof of this result will be more complicated as the observable log-likelihood

for the log-normal frailty model has no closed form as noted in Chapter 2.

7.2 Advanced models for analysing animal breeding data

In this second part of the thesis, we have focused on the application of advanced methods

for analysing the animal breeding data. We describe the data in Chapter 4 and we also

discuss the methods that have been used so far in analysing these data. In this chapter

we also highlight the need and the motivation for the advanced techniques that we use in

Chapters 5 and 6.

In Chapter 5 we apply the shared frailty models to assess the effects that are associated

with the risk of mortality among the lambs. Semi-parametric gamma and log-normal

frailty models were used and parameter estimates obtained using the penalized partial

likelihood estimation method. The lambs from the same sire were assumed to constitute

a cluster. Our findings concur with other previous analyses (Baker et al., 1999, 2003). We

have shown that the Red Maasai perform better than the Dorper in terms of survival and

had about a three quarter lower risk of mortality than the Dorper in both the pre- and

post-weaning periods. Based on our findings in Chapter 3 we have assessed whether there

is between cluster variation among the times-to-event of the lambs from different sires.

The null hypothesis is not rejected in both the pre-weaning and post-weaning periods.

As discussed in Section 5.6 we do not calculate heritability estimates in this study. It

would have been a useful addition to the application of the shared frailty model to the

animal breeding data had it been feasible. As noted therein, the heritability expressions

that exist in the literature have been derived from parametric frailty models and may not

be appropriate when a Cox PH frailty model is used. In view of this, there is need for

further research for an appropriate expression for calculating heritability when the latter
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model is used.

The area of diagnostics for assessing the fit of a frailty model is another in need of further re-

search. As seen earlier, we have fitted several models to the data but carried out no formal

assessment of their adequacy. Very little has been done in this area of diagnostics. Glidden

(1999) discusses diagnostics for the gamma frailty model by proposing techniques that are

based on the means (2.12) defined in Chapter 2. A plot of ŴG(t) = G−1/2
∑ {exp ŵi − 1}

against time is then used to assess the adequacy of the model. For the log-normal frailty

distribution little or nothing has been done and certainly this is an area that is still in

need of further research.

In Chapter 6 we have modelled jointly time-to-death of the lambs and repeated mea-

surements of the traits PCV and BWT. These traits together with FEC were used as

time-varying covariates in the shared frailty model analysis of Chapter 5. In the analyses

carried out in these two chapters, the RxR is shown to have the lowest relative hazard

when compared to the Dorper, when the weight of the lambs is taken into account (Tables

5.8, 5.9 and 6.4). This is despite the fact that the RxR is much lighter in body weight

when compared to the other genotypes. This result demonstrates the better performance

in terms survival for this genotype.

In Table 7.1 below we present the results from the survival component of the joint model

under setting (S4) for the repeated measurements of PCV (from weaning) and BWT (from

birth) together with those from a Cox PH model with a time-varying covariate for these

measurements. Under the (S4) setting the individual profiles of the repeated measurements

are assumed to have a linear trend. For, the time-dependent model, a linear term for the

covariate is used. A direct comparison of these numerical results would be erroneous as the

methodological aspect of the two models are different. The survival component of the joint

model can be viewed as a conditional model (conditioned on the random effects) while a

Cox PH model with a time-dependent covariate can be viewed as a population average

model. Previous studies (Prentice, 1982) have shown that presence of measurement error

in time-dependent covariates in a Cox PH model leads to biased parameter estimates. This

drawback is however corrected within the joint model (Faucett and Thomas, 1996, Wang

and Taylor, 2001). In Chapter 6 we have shown that with the joint model, the particular

characteristics of the repeated measurements that are specifically associated with the risk

of mortality are captured. This was well demonstrated when PCV measurements were

considered from weaning.
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Table 7.1: Parameter estimates from a joint model (S4) and Cox PH model with time dependent covariate,
for repeated measurements of PCV(%) from weaning and BWT(kg) from birth.

Packed cell volume Body weight

S4 Time dependent S4 Time dependent

est s.e. est s.e. est s.e. est s.e.

Genotype

DxD ref - ref - ref - ref -

Dx(DxR) -0.594 0.200 -0.406 0.136 -0.499 0.130 -0.512 0.102

DxR -0.634 0.284 -0.621 0.194 -0.634 0.165 -0.782 0.153

RxD -1.221 0.277 -0.690 0.180 -0.910 0.194 -0.948 0.138

Rx(RxD) -1.843 0.257 -1.094 0.163 -1.240 0.160 -1.313 0.116

RxR -1.569 0.304 -0.751 0.193 -1.431 0.203 -1.519 0.150

Year of birth

1991 ref - ref - ref - ref -

1992 -0.260 0.340 -0.184 0.221 0.239 0.163 0.337 0.075

1993 1.678 0.282 1.455 0.164 0.096 0.219 -0.178 0.148

1994 1.343 0.403 0.039 0.211 1.448 0.162 0.618 0.126

1995 1.396 0.471 -0.050 0.216 1.066 0.188 0.707 0.145

1996 0.582 0.308 0.561 0.255 1.164 0.325 0.648 0.144

Gender

Females ref - ref - ref - ref -

Males 0.357 0.170 0.214 0.097 0.393 0.097 0.190 0.165

Age of dam

<=2yrs ref - ref - ref - ref -

=3 yrs -0.425 0.184 -0.392 0.169 -0.139 0.147 0.017 0.136

=4 yrs -0.685 0.205 -0.578 0.177 -0.320 0.162 0.072 0.144

=5 yrs -0.453 0.227 -0.363 0.170 -0.101 0.163 0.156 0.138

>=6yrs -0.676 0.213 -0.703 0.187 -0.246 0.148 0.012 0.146

Association

ϕ1 -0.273 0.097 - - -0.092 0.389 - -

ϕ2 -1.986 0.505 - - -3.361 1.609 - -

ϕ3 -0.251 0.087 - - 0.027 0.079 - -

Time dependent

covariate - - -0.190 0.010 - - -0.307 0.015

As discussed in Section 6.5 the joint models that we propose are not exhaustive. We were

unsuccessful in our attempt to model FEC jointly with survival. The random intercept

and slope models that we use were unable to capture the more elaborate structure that

was observed with the FEC repeated measurements. It is possible that this behaviour

could be captured using, for example, autocorrelated stochastic processes. Extension of

the current software to incorporate such processes that have been proposed for capturing



138 Chapter 7

serial correlation in the framework of joint models (Henderson et al., 2000, Wang and Tay-

lor, 2001) is an open area in need of further research. Within this line the more elaborate

variance structures that are currently used to analyse repeated measurements for animal

breeding data can also be incorporated.

In this thesis our main focus was on random effects models for survival data. Ideally we

would have added a frailty term to the survival component of the joint model. This was

not possible owing to software limitations.
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Samenvatting

In Subsahara Afrika worden op kleine boerderijen schapen en geiten gehouden voor de

vleesproductie. Deze dieren grazen in open natuurlijke weilanden of in weilanden die toe-

behoren aan een lokale gemeenschap. Ongeveer dertig procent van de opgroeiende dieren

bereiken de volwassen leeftijd niet omdat ze gëınfecteerd worden door endoparasieten. Al-

hoewel er technieken bestaan om de wormeitjes op besmette weilanden te vernietigen, is

het gebruik ervan beperkt omwille van de kost. Daarom is het nodig om dieren te kweken

die zich goed aanpassen aan een omgeving waarin deze parasieten veelvuldig voorkomen.

Dit is op lange termijn de meest rendabele manier om de productiviteit te verhogen.

De gegevens, die in dit proefschrift bestudeerd worden, komen van een kweekprogramma

dat in de periode 1991-1996 werd uitgevoerd in het International Livestock Research In-

stitute (ILRI) in Nairobi (Kenya). Het objectief van het programma was om de genetis-

che resistentie van Red Masaai schapen, Dorper schapen en gekruiste rassen tegen en-

doparasieten te onderzoeken. De lammeren werden maximaal over een periode van één

jaar opgevolgd. Gebaseerd op deze gegevens is de genetische resistentie en resilintie van

lammeren bestudeerd door gebruik te maken van gemengde lineaire modellen voor de

variabelen packed cell volume (PCV), fecale wormeitelling (FEC : faecal egg count) en

lichaamsgewicht (BWT : bodyweight). Deze variabelen zijn voor elk lam op een aantal

tijdsmomenten gemeten. Uit analyse van de gegevens (Baker et al., 1994, 1999, 2003) is

gebleken dat Red Masaai schapen een hogere resilintie (hogere PCV waarde) en een hogere

resistentie (lagere FEC) hebben dan Dorper schapen.

Binnen het experiment is ook informatie aanwezig over de schapen die stierven binnen

één jaar. We beschikken met andere woorden over de overlevingstijden van de schapen
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(de tijd van hun geboorte tot hun dood). In deze context is ‘dood’ de gebeurtenis die ons

interesseert. De dood van het lam is het moment waarop het lam ‘faalt’, we gebruiken

daarom ook de term ‘faaltijd’ (time-to-event) naast de term ‘overlevingstijd’.

De studie van deze overlevingstijden is het hoofddoel van dit proefschrift. In het experi-

ment zijn er groepen (clusters) van lammeren met dezelfde ram als vader. Overlevings-

tijden van lammeren in dezelfde cluster, dus met dezelfde vader, zijn derhalve gecorreleerd

met elkaar. We noemen dit soort gegevens multivariate faaltijden of multivariate over-

levingstijden. Dit soort clustering kan ook voorkomen binnen één subject, zoals blijkt

uit het volgende voorbeeld. Noteren we voor een schaap de tijden tussen opeenvolgende

aanvallen van trypanosomose of slaapziekte, dan is het realistisch om te onderstellen dat

de faaltijden gecorreleerd zijn (we spreken in dit geval over recurrente faaltijden).

In de laatste jaren zijn er gepaste statistische modellen beschreven om dit soort gegevens

te modelleren en te analyseren (Klein en Moeschberger, 1997, Therneau en Grambsch,

2000, Hougaard, 2000). Om de correlatie tussen de gegevens van eenzelfde groep (cluster)

of equivalent de heterogeniteit tussen de clusters te beschrijven, wordt een frailty factor

(een stochastische veranderlijke met één als gemiddelde) als extra factor toegevoegd aan

het model met proportionele risicofuncties (het proportional hazards model of het Cox

regressiemodel). Alle lammeren die dezelfde ram als vader hebben, delen hetzelfde frailty

effect en we spreken daarom over shared frailty modellen. In het Cox model wordt het

effect van de regressoren parametrisch en de referentie risicofunctie (de baseline hazard

function) niet-parametrisch gemodelleerd en we spreken daarom van een semi-parametrisch

model. Modelleert men de referentie risicofunctie wel parametrisch, bijvoorbeeld met een

Weibull risicofunctie, dan spreekt men over een parametrisch model.

In de literatuur zijn een aantal methoden beschreven om shared frailty modellen sta-

tistisch te analyseren. Om de onderliggende methodologie goed te begrijpen wordt in

Duchateau et al. (2000) een grondig overzicht gegeven. Meer concreet bekijken we daar

een multicentra klinische studie. In een dergelijke studie zijn de centra of de hospitalen

de clusters waarbinnen de overlevingstijden van patinten gecorreleerd zijn. De bedoeling

van deze publicatie was om het effect te onderzoeken van bepaalde design aspecten van

een multicentra studie op de kwaliteit van de schatters van de parameters in het model.

Via simulaties werd nagegaan hoe de vertekening en de spreiding van de schattingen van

de heterogeniteitsparameter (de variantie van de frailty dichtheid) benvloed wordt door
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de relatie tussen het aantal centra en het aantal patinten per centrum in de studie. In dit

proefschrift is het methodologisch overzicht uit deze publicatie opgenomen, dit is de in-

houd van Hoofdstuk 2. De bedoeling van dit hoofdstuk is het basismateriaal aan te reiken

dat nodig is om de verdere hoofdstukken van dit proefschrift goed te kunnen onderbouwen.

Een belangrijke vraag die opduikt bij het gebruik van frailty modellen is na te gaan of er al

dan niet heterogeniteit bestaat tussen de clusters. Zoals hierboven reeds gezegd, wordt het-

erogeniteit gedefinieerd als de variantie van de frailty dichtheid. We willen daarom toetsen

of die variantie nul is (geen heterogeniteit) dan wel strikt positief (wel heterogeniteit). Dit

eenzijdig toetsingsprobleem is geen standaard probleem omdat, onder de nulhypothese, de

heterogeniteitsparameter op de rand van de parameterruimte ligt. Het construeren van

gepaste toetsen voor dit probleem heeft ruime aandacht gekregen voor gemengde lineaire

modellen (Self en Liang, 1987, Stram en Lee, 1994, 1995, Verbeke en Molenberghs, 2003).

Binnen frailty modellen is de toetsingtheorie niet ontwikkeld. Gebaseerd op simulaties is

in Duchateau et al. (2002) het vermoeden geformuleerd dat de asymptotische verdeling

van de toets die gebaseerd is op de verhouding van de aannemelijkheidsfuncties onder resp.

de nulhypothese en de alternatieve hypothese een 50:50 mengeling is van een puntmassa

in nul en een chi-kwadraat verdeling met één vrijheidsgraad. In Hoofdstuk 3 geven we

een bewijs van dit vermoeden voor parametrische shared frailty modellen. Binnen dat

hoofdstuk bekijken we ook het limietgedrag van de verdeling van een gepaste score toets

voor heterogeniteit.

In het tweede gedeelte van dit proefschrift geven we, in Hoofdstuk 4, een gedetailleerde

beschrijving van de gegevens die binnen het hierboven beschreven kweekprogramma zijn

verzameld. In dit hoofdstuk geven we ook een samenvatting van de statistische analyses

die voor deze data zijn uitgevoerd. Verder tonen we aan dat de data set nog heel wat

ongebruikte informatie bevat. Concreet zullen we bestuderen hoe de overlevingsgegevens

gemodelleerd kunnen worden met behulp van frailty modellen. Door gebruik te maken

van kernschatters (niet-parametrische schatters) van de referentie risicofunctie tonen we

in Hoofdstuk 5 aan dat voor de gegevens uit dit kweekprogramma het niet-parametrisch

specificeren van de risicofunctie inderdaad te verkiezen is boven het parametrisch mod-

elleren. De kernschatters die hier gebruikt worden zijn gedefinieerd in Müller en Wang

(1994) (zie ook Tanner en Wong, 1983).
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Zoals reeds voorheen beschreven, beschikken we voor PCV, BWT en FEC voor ieder lam

over longitudinale gegevens. Deze kenmerken zijn, over het algemeen genomen, ongeveer

maandelijks beschikbaar over de periode waarin het lam geobserveerd werd (in het beste

geval tot de leeftijd van één jaar). Daarom hebben we voor de frailty modellen, die we in

Hoofdstuk 5 gebruiken, deze kenmerken opgenomen als tijdsafhankelijke covariaten. Het

is immers duidelijk dat deze kenmerken informatie bevatten omtrent het risico om te ster-

ven. Zo zullen bijvoorbeeld zieke dieren typisch een lage PCV en een hoge FEC waarde

hebben; en zwakke dieren zullen vaak een laag lichaamsgewicht hebben.

Recent zijn, binnen het toepassingsdomein van de medische statistiek, gezamenlijke mod-

ellen ontwikkeld die toelaten om de associatie te beschrijven tussen de overlevingstijden

en het longitudinale meetproces (De Grutolla en Tu, 1994, Tsiatis et al., 1995, Faucett

en Thomas, 1996, Wulfsohn en Tsiatis, 1997, Henderson et al., 2000, Wang en Taylor,

2001, Renard et al., 2002). In Hoofdstuk 6 tonen we in een korte methodologische beschri-

jving aan hoe de associatie tussen de overlevingstijden en de longitudinale kenmerken

PCV, BWT en FEC kan beschreven worden. Hiertoe worden de longitudinale kenmerken

gemodelleerd als gemengde lineaire modellen en de overlevingstijden als modellen met pro-

portionele risicofuncties. Het verbinden van de twee modellen gebeurt door de associatie

tussen de modellen te beschrijven door een latent Gaussisch proces dat afhangt van de

random effecten die optreden in de modellering van de longitudinale kenmerken. Zodoende

wordt de overlevingstijd in het gezamenlijk model bekeken als een overlevingsmodel met

subject specifieke random effecten.


