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Chapter 1

Introduction

Pathogenic microorganisms, such as bacteria, viruses, parasites or fungi are respon-
sible for several infectious diseases that bother human and animal health worldwide
(Haas et al. 1999; FAO/WHO, 2003). Infectious diseases can range from the common
illnesses, such as the cold, to deadly illnesses, such as HIV/AIDS. They are referred
to as infectious due to their potentiality to be transmitted from one person or species
to another. Human to human infectious diseases can be spread through the follow-
ing ways: sexual transmission e.g. hepatitis B, HIV/AIDS; airborne transmission
through inhaling airborne droplets of the organism, which may exist in the air as a
result of a cough or sneeze from an infected person e.g. influenza; blood-borne trans-
mission through contact with infected blood, such as through blood transfusions or
when sharing contaminated needles and syringes e.g. hepatitis B and C, HIV/AIDS;
and through direct skin contact with an infected person e.g. measles. Infectious dis-
eases, such as malaria, can also be transmitted to humans through insects, such as
mosquitoes, which draw blood from an infected person and then bite a healthy person.
Food- and water-borne infectious diseases are transmitted to humans by consump-
tion of contaminated food and water e.g. typhoid fever. Furthermore consumption of
foods of animal origin, particularly eggs, meat and milk products, can lead to zoonotic
diseases (transferred from animals to humans) like Salmonella. Zoonotic diseases can
also be airborne like avian influenza.

Although all these infectious diseases are caused by harmful microorganisms, the
literature on microbiological risk assessment is devoted to food- and waterborne in-
fectious pathogens (Haas et al. 1999; FAO/WHO, 2003). However, it can be seen in
general that the steps of microbiological risk assessment apply for infectious diseases
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2 Chapter 1. Introduction

of humans. The first step in microbial risk assessment deals with identifying the in-
fectious agent and the associated adverse effect based on various data sources such as
clinical literature, clinical microbiologists, case studies, hospitalization studies, labo-
ratory animal studies and other epidemiological data. This step can be generalized
to all infectious diseases as the source of the disease must be identified before control
and prevention interventions can be established.

In the second step of microbial risk assessment, which is exposure assessment,
scientists seek to determine the size and population exposed to a pathogenic microor-
ganism, the routes of exposure, the quantities exposed to, duration of exposure and
whether the exposure was continuous or intermittent. While the quantities of ex-
posure are often termed as dose for food-borne diseases, they are equivalent to the
frequency of injecting among injecting drug users for human to human infectious dis-
eases such as hepatitis C (HCV). Increased doses can occur due to exposure to a single
large dose of the pathogen, repeated doses of the pathogen or prolonged duration of
exposure or a cumulative dose that survives in the body. For HCV and sexually trans-
mitted diseases, the duration of exposure is the exposure time to the contaminated
objects or infected persons while for diseases like measles the duration is the age.

The key concept in the third step of microbial risk assessment, which is dose-
response assessment, is to evaluate the relationship between the microbial dose and
the adverse effect. Figure 1.1 shows the scatter plots of food-borne disease data (panel
a) and human to human infectious diseases data (panels b to d). Strong relationships
can be seen between Salmonella Typhi and log(dose); between HCV seroprevalence
and the frequency of injection among injecting drug users in Czech Republic – per
month or per week or per day; between HCV seroprevalence and the exposure time
in Belgium; and between rubella seroprevalence in the UK versus the age of the
individual.

The final step of microbial risk assessment is risk characterization. This step in-
tegrates the information from the previous steps in order to estimate the magnitude
of the public health problem in an exposed population taking into account variability
and uncertainty at each step. For food- and water-borne diseases the quantification
of risk is a function of the hazard and exposure dose. For human to human infectious
diseases the risk can be expressed in terms of age or number of contacts or exposure
time. The curves for the predicted probabilities added to the scatter plots in Fig-
ure 1.1 give an easy-to-comprehend view on the relationship of the exposure variable
(horizontal-axis) on the occurrence of the diseases (vertical-axis). An important issue
in the risk characterization of human to human infectious diseases considers the ratio
of the first derivative of the estimated probability function and the complement of the
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Figure 1.1: Scatter plot of the observed and estimated probability of (a) Salmonella
Typhi as a function of dose, (b) hepatitis C against the frequency of injecting (c)
rubella as a function of age and (d) hepatitis C as a function of exposure time.

probability to give the rate at which people become infected. The rest of the thesis
focuses on specific risk characterizations as will be discussed further on.

1.1 Research Problem

The main area of work of this thesis was using data and mathematical and/or statis-
tical models to estimate risks and trends as well as to identify risk factors associated
with some bacterial and viral microbial agents in order to enable epidemiologists to
improve the understanding of the epidemiology of these infectious diseases and eval-
uate the impact of intervention programmes against the diseases. It weaves together
different research problems and depending on the data at hand different aspects re-
garding the statistical methods are emphasized. The thesis is divided into three
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parts which deal, respectively, with modeling data on infectious diseases of humans,
dose response models for foodborne infectious diseases and identifying risk factors for
Salmonella infection in Belgian chicken flocks. How the various modeling techniques
have been integrated into these parts is explained in the following sections.

1.2 Modeling Human to Human Infectious Diseases

Data

In the first part we analyze cross-sectional current-status data from serological diag-
nostics for less to more severe viral infections like rubella, varicella, mumps, parvovirus
B19, hepatitis C virus, hepatitis B virus and HIV. For an example, Figure 1.2 depicts
the data sets, for the occurrences of rubella and mumps in the UK and varicella in Bel-
gium, with age. There is relevant information represented by the points in the plots
but it is very difficult to draw any conclusion from this alone. With mathematical or
statistical modeling the data sets can be reduced to summaries that can give insights
in the epidemiology of the disease and that can be used for prediction and can be
integrated in the mathematical modeling of the disease. For a typical childhood infec-
tious disease, the flow diagram in Figure 1.3 shows how the individuals move from the
susceptible class (X) at birth, become infected (Y), recover and acquire life-long im-
munity (Z). Figure 1.3 represents a basic SIR (Susceptible-Infected-Removed) model
but more complex models, assuming maternal antibody and a latent period can be
used to describe the flow of individuals between the disease stata. One very important
parameter of interest in infectious disease epidemiology is the force of infection `(a),
which is the rate at which the susceptible individuals become infected. It is assumed
to vary across age groups (discussed further in Part I). The modeling of the force of
infection can take on parametric models, nonparametric models or semi-parametric
models. Muench (1934) modeled the force of infection using a constant model while
Griffiths (1974) used the linear model and Grenfell and Anderson (1985) employed a
more flexible polynomial model. Shkedy et al. (2006) used fractional polynomials to
model age dependent force of infection. Hens et al. (2007) illustrates joint modeling
of the force of infection for varicella-zoster virus and the parvo B19-virus in Belgium
using flexible marginal and conditional models. Shkedy et al (2003) proposed to use
local polynomials as a nonparametric approach. Keiding (1991) proposed modeling
the force of infection using isotonic regression models. Keiding et al (1996) used an
alternative modeling approach based on natural cubic splines. Nagelkerke et al (1999)
estimated the force of infection using a semi-parametric approach via smoothing cu-
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Figure 1.2: Serological dataset: (a) rubella and (b) mumps in the UK and (c) varicella
in Belgium.
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Figure 1.3: Illustration of the SIR model. The individuals are entered into the sus-
ceptible class, then move to the infected class and after recovering they move into the
immune class. The force of infection, `(a), will be discussed further in Part I.

bic splines and the proportional hazards model. In Chapter 2 we estimate the force
of infection using nonparametric regression based on penalized regression splines and
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generalized linear mixed models, with the nonparametric component involving a sin-
gle continuous predictor (e.g. age). Chapter 3 extends the nonparametric approach
in Chapter 2 with a discrete predictor in various ways and shows the flexibility of
penalized splines as they relate to proportional odds, proportional hazard models,
and constant piecewise force of infection. In Chapter 4, in addition to parametric and
nonparametric modeling of the prevalence and force of infection, we investigate risk
factor behaviors associated with hepatitis C virus among injecting drug users in five
European countries.

1.3 Dose-Response Modeling of Food-Borne Infec-

tious Diseases

Food-borne illness is among the most widespread public health problems and creates
social and economic burdens in addition to human suffering. Figure 1.4 (Haas et
al. 1999) shows some of the ways microbes can be transferred from stool to food or
water, which can result in diseases like salmonellosis. Once exposure via ingestion has
taken place the major steps involved in the food-borne disease process are shown in
Figure 1.5 (FAO/WHO, 2003). Each ingested organism has a probability of surviving
all barriers to reach a target site for growth or multiplication. While infections may be
asymptomatic, where a host does not develop any adverse reactions to the infection
and eliminates the pathogens within a limited period of time (i.e. recovers), infections
may also lead to symptomatic illness. In a small fraction of ill cases, chronic infection
or sequelae may occur and there may be risk to mortality related to sequelae or acute
disease.

The key concept in developing dose response models is the relation between the
actual surviving organisms (the effective dose) and the probability of occurrence of
an adverse event to the host when considering dichotomous responses. This relation
has been described using mathematical and statistical functions based on biological
and empirical rationales (Haas et al. 1999). The exponential and the Beta-Poisson
models have received much attention in dose response modeling owing to their bi-
ological derivation (Haas et al. 1999). These models fall in the class of hit-theory
models, which assume that a single infectious microorganism surviving within the
host may result in infection (Teunis et al. 1996). Alternative models, though not
widely used in microbial risk assessment, which assume the existence of a threshold
level of pathogens that must be ingested in order for the microorganism to produce
infection or disease are discussed by (Haas et al. 1999). In addition, empirical mod-
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Figure 1.4: Routes of transmission in the home for fecal-oral microorganisms
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Figure 1.5: The major steps in the foodborne infectious disease process
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els (primarily for chemical agents), which assume that the population exposed has a
tolerance distribution for an adverse effect have been used in microbial dose response
assessment (Haas et al. 1999). If the population is exposed to the pathogen at a cer-
tain level, all individuals of the population who have a tolerance less or equal to the
dosed level will exhibit the adverse effect. Essentially any probability density function
with support over the positive line can be a tolerance distribution. Despite the use
of empirical models they were not regarded as biological plausible (Haas et al. 1999).
However, starting from the general mechanistic framework to derive the exponential
and Beta-Poisson models, Kodell et al. (2002) derive the empirical models such as
the log logistic, log probit, the extreme value and other models thus rendering them
biologically plausible. This shows that in essence many functions can be derived that
are flexible enough for dose-response relations. Chapter 5 of part II extends the above
mentioned dose response models with modified fractional polynomial models (starting
with the fractional polynomials by Royston and Altman, 1994) that are formulated
to satisfy biological plausibility. However, when extrapolating outside the region of
observed data, all possible models may predict widely differing results (Coleman and
Marks, 1998; Holcomb et al. 1999). This necessitates a selection of the best model or
a set of models to use.

The traditional approach was based on one best model selected according to some
statistical criterion for goodness of fit such as the Akaike Information Criterion (AIC),
Kullback Information Criterion (KIC) or Deviance Information Criterion (DIC) in the
case of full Bayesian models. This approach, however, ignores the other possible mod-
els and one makes statistical inference based on the single selected model. In addition,
many different models (as shown in Chapter 5) will usually fit a given data set equally
well and therefore goodness of fit is not a sufficient criterion for model selection. Over
the past decade research in risk assessment has been directed to study and incor-
porate uncertainty arising from the alternative dose response models. Buckland et
al. (1997) proposed a way to incorporate model uncertainty by averaging across a
plausible set of candidate models using Akaike weights and this has been employed
by other researchers (Burnham and Anderson, 2002). In Chapter 5 we present this
model averaging approach to estimate the risks of Salmonella Typhi and Campylobac-
ter jejuni at low doses using the proposed modified set of fractional polynomials in
addition to the Beta-Poisson model and the classical empirical models.
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1.4 Modeling Data on Salmonella Infection in Bel-

gian Chicken Flocks

Salmonella, named after the American veterinary pathologist Daniel Elmer Salmon,
was first isolated in 1885 from pigs (Microsoft R© Encarta R©, 2008). The bacterium
is a genus of rod-shaped infectious bacteria that is transmitted to humans through
consumption of contaminated poultry, eggs, pork and certain other foods and can
cause diseases of the intestines. Salmonella Enteritidis is one of the species that
infects chicken flocks without causing visible disease, and can spread from hen to
hen rapidly. The left panel of Figure 1.6 (Microsoft R© Encarta R©, 2008) shows a
Salmonella bacterium which can move by means of fine threadlike projections called
flagella. The arrangement of flagella across the surface of the bacterium differs from
species to species; they can be present at the ends of the bacterium or all across the
body surface. The right panel of Figure 1.6 shows the Salmonella Enteritidis species
(Kunkel, 2007).

Figure 1.6: Left Panel: Salmonella bacterium showing flagella. Right panel:
Salmonella Enteritidis - rod prokaryote (bacterium). This zoonotic microorganism
causes salmonellosis (food poisoning) in humans when infected poultry contaminate
eggs, poultry meat (which humans ingest).
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In Belgium, the identification of the flock’s or farm’s Salmonella status is often
times based on testing a number of different samples from the same flock or farm,
giving rise to correlated data. Such clustered binary responses, disease status in this
case, also frequently arise in other epidemiologic applications. The scientific objectives
involve: (i) modeling the marginal mean responses, such as the probability of disease,
and the within-cluster association of the multivariate responses and (ii) modeling the
cluster-specific responses and the heterogeneity of clusters. In this regard, statistical
models which incorporate and study the clustered type of data are a useful procedure.
They are extensions of the well-known logistic regression that is a particular case
of the generalized linear models with binary response data and a logit link function
(McCullagh and Nelder, 1989). They are usually classified into marginal (a population
averaged) and random-effects models. We will briefly describe two marginal models,
generalized estimating equations (GEE) and the alternating logistic regression (ALR)
models and the general form of random effects models. For details about these models
the reader is referred to Liang and Zeger (1986), Carey et al. (1993), Agresti (2002),
Molenberghs and Verbeke (2005) and Aerts et al. (2002).

The generalized estimating equations method, originally proposed by Liang and
Zeger (1986) also outlined by Bobashev and Anthony (1998) is a commonly used
marginal model for clustered data which accounts for the correlation of a disease
within clusters. Let Yij denote the jth response at time point tij(j = 1, . . . , ni) for
cluster i(i = 1, . . . , N) with expectation πi and a working covariance matrix Vi. This
covariance matrix Vi is an ni × ni matrix where the jth diagonal elements denote
the variance for the jth observation in the ith cluster and the off diagonal elements
specify the covariance between two different units (j, k) in the ith cluster. Formally,
this amounts to

Vi = cov(Yij , Yik) =





πij(1− πij) if j = k

corr(Yij , Yik)× [πij(1− πij)πik(1− πik)]1/2 if j 6= k

where πij = E(Yij = 1). The term corr(Yij , Yij) must be given a working corre-
lation pattern in the analysis. Several choices are possible for the working form of
the covariance matrix, ranging from the most simple assumption of independence
(corr(Yij , Yij) = 0 if j 6= k) within clusters to the most complex unstructured form,
where all parameters vary. It must be emphasized that estimation of the mean struc-
ture is consistent whatever the true correlation structure is, but efficiency is optimal
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when using an appropriate working covariance structure (Liang and Zeger, 1986). The
intra-cluster correlation, however, is treated as a nuisance with the GEE approach.

The alternating logistic regression (ALR) proposed by Carey et al. (1993) is an-
other marginal model that explicitly models the clustering of a disease within clusters.
The model yields a readily interpretable statistical index of a disease clustering in the
form of a “pairwise odds ratio” (PWOR). In the literal sense, the PWOR reflects how
strongly a disease occurs in clusters. In more technical terms, the PWOR reflects
odds of a disease for a unit in a cluster given that another randomly chosen unit from
that cluster has a disease, relative to the odds if that randomly chosen unit does not
have a disease. The logarithm of the PWOR can be expressed as a function of an
indicator variable coded to show whether units j and k in a pair belong to the same
or different clusters:

log(PWORjk) = αFjk,

where Fjk, takes values 1 or 0, depending on whether the pair (j, k) belongs to the
same cluster. The ALR model, therefore, alternates between estimating the mean
structure using the logistic regression and estimating the disease clustering using the
pairwise odds ratio. It should be noted that when the association is of interest, the
ALR model is preferred to the GEE approach.

The third method incorporates clustering of a disease in clusters through shared
random effects. This involves the random components inside the linear predictor of
ordinary logistic regression model, i.e random effects logistic regression model

logit(E(Yij |Xij , Zij , ui)) = X ′
ijβ + Z ′ijui

where the random effects ui are assumed to vary independently from one cluster to
another according to a common distribution, usually the normal distribution with
mean 0 and an unknown variance, σ2. Zij is often a subvector of Xij , which means
that random effects apply only to a part of the covariates and/or the intercept. The
random effect variance is interpreted as the variation in logit(πi) between clusters
after having accounted for fixed effects. With an approximate variance for the binary
outcome the intra-class correlation (ICC) (correlation between two units in the same
cluster) can be computed as the sum of variance components of common random
effects divided by the total variation (fixed effects variation plus random variation).

Part III of this thesis investigates the risk factors for Salmonella in broiler and
egg laying chicken flocks in Belgium and since these data are clustered the above
statistical models have been employed.





Part I

Human to Human Infectious

Diseases Data Modeling

13





Chapter 2

Estimation of the Force of

Infection from Current Status

Data Using Generalized

Linear Mixed Models

The occurrence of infectious diseases, both in industrialized and economically devel-
oping countries, cause substantial health and economic impacts. This has provoked
the emergence of various techniques to estimate the disease burden and the impact
of interventions aiming to prevent and control the spread of infectious diseases in
populations.

The use of quantitative methods based on mathematical models to study the trans-
mission dynamics of infectious diseases has increased in importance for scientists,
policy makers, and health professionals. Many of these models are deterministic and
based on a set of differential equations which describe the course of individuals from
one phase to another. In this chapter, we presume lifelong immunity and negligible
mortality caused by the infection, two commonly made assumptions (Keiding et al.
1996; Shkedy et al. 2003). Let q(a, t) denote the fraction of individuals at risk for the
infection at age a and time t. Under the assumptions specified above, the change in

15
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this fraction can be described by the partial differential equation

∂

∂a
q(a, t) +

∂

∂t
q(a, t) = −`(a, t)q(a, t), (2.1)

where `(a, t) represents the rate at which susceptible individuals become infected,
the force of infection. The natural death rate is assumed to be zero up to the life
expectancy and infinity thereafter. In a steady state, that is the time homogeneous
form, ∂q(a, t)/∂t = 0, (2.1) reduces to the differential equation

∂

∂a
q(a) = −`(a)q(a), (2.2)

which describes the change in the fraction of susceptible individuals with age of the
individual.

The force of infection can be estimated from an age-specific cross-sectional prevalence
sample, which is a sample taken at a certain time point and for each of the individuals
in the sample the observed information consists of whether the individual has been
infected or not before his or her age at the test. Assuming that the disease is in a
steady state, then the age-dependent force of infection can be modelled according to
equation (2.2).

Viewing a cross-sectional serological sample as a special case of current status data
allows using terminology from modeling survival data. This type of data consists of
information about the individual’s age and whether or not a specific event occurred
before the individual’s age at the time of the test. In our setting an event is infection
by a disease. Individuals who experienced the event before age at test are left cen-
sored while those who experienced it not before their age at test are right censored.
Non-parametric approaches for the estimation of the prevalence and of the force of
infection, discussed by Keiding (1991) and Keiding et al. (1996) used isotonic re-
gression. This method estimates the prevalence, π(a) = 1 − q(a) by a step function
π̂(a). For the force of infection, Keiding (1991) suggested a kernel smoothed estimate∫

K{(a− u)/h}/h{1− π̂(u)}dπ̂(u) where K is a kernel and h a bandwidth. In order
to avoid the two-step procedure based on isotonic regression, Keiding et al. (1996),
used an alternative modeling approach based on natural cubic splines. Nagelkerke
et al. (1999) estimated the force of infection using a semiparametric approach via
smoothing cubic splines and the proportional hazards model. Shkedy et al. (2003)
proposed to use local polynomials which simultaneously estimate prevalence and force
of infection. For a given link function, Shkedy et al. (2003) estimated the local force
of infection by `(a) = η′(a)δ{η(a)} where the form of δ is determined by the link
function and η(a) is the functional form of the predictor, age, locally approximated
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by a polynomial of order p. By using the local polynomial method, both π(a) and
`(a) are estimated simultaneously as a smooth function of age.

In this chapter, we extend the alternative modeling approach of Keiding et al. (1996)
by using penalized splines with truncated polynomial basis and generalized linear
mixed models (Ruppert et al., 2003) which can be estimated using the SAS GLIM-
MIX procedure and macro. Eilers and Marx (1996) introduced penalized splines as a
regression with B-splines penalizing the (q+1)-th order difference in the B-spline coef-
ficients, for a B-spline of degree q. The underlying idea of penalized spline smoothing
is to fit a smooth curve by using a high dimensional basis but, instead of simple para-
metric fitting, a penalized version is pursued to provide a smooth fit. This approach
resembles smoothing splines, the major difference being that for smoothing splines
the dimension of the corresponding spline basis grows with sample size while with
penalized spline smoothing a finite dimensional basis is used. A connection between
smoothing splines and mixed models is discussed in Verbyla et al. (1999). Not only
does penalized spline smoothing permit flexible choices of the spline model, it also
has strong links to linear mixed models and to penalized quasi-likelihood (PQL) esti-
mation in generalized linear mixed models (Ruppert et al., 2003). The smoothing pa-
rameter is selected based on the generalized linear mixed model (GLMM) framework
which is equipped with an automatic smoothing parameter choice which corresponds
to PQL and restricted maximum likelihood (REML) estimation of the variance com-
ponents. A practical advantage for this methodology is that software to implement
it is now accessible through statistical packages such as SAS.

The proposed method was applied to serological datasets of rubella and mumps
in the UK and varicella in Belgium (October 1999 to April 2001) shown again in
Figure 2.1. The first two datasets were discussed in Whitaker and Farrington (2004)
and Shkedy et al. (2003). They consist of 4230 and 8179 individuals for rubella and
mumps, respectively, aged 1.5 to 44.5 years old (Figures 2.1(a) and 2.1(b)). The
varicella dataset contains the serological results of 2027 Belgian individuals together
with their age in years, ranging from 1.5 to 49.5 years (Figure 2.1(c)). These diseases
are common airborne childhood infectious diseases spread by droplet and airborne
transmission. This chapter is organized as follows. Section 2.1 sets out on the esti-
mation of the prevalence from current status data. We discuss how binary data can
be smoothed using GLMM in Section 2.2. Section 2.3 presents data analyses based
on the proposed approach. The results of simulation studies follow in Section 2.4 and
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Figure 2.1: Serological dataset: (a) rubella and (b) mumps in the UK and (c) varicella
in Belgium.

finally a discussion of the results is presented in Section 2.5. The work of this chapter
has been published in Namata et al. (2007).

2.1 Estimation of Prevalence from Current Status

Data

We consider an age-specific cross-sectional prevalence sample of size N and let ai (i =
1, 2, . . . , N) be the age of the ith individual. A cross-sectional prevalence sample is
a current status sample in which all individuals are censored. The individuals who
experienced an infection before their age ai at test are left censored while those who
did not experience an infection before their age at test are right censored. Instead of
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observing the age at infection, we observe a binary response indicator

Yi =





1 if individual i experienced an infection before age ai (left-censored),

0 otherwise (right-censored).

This gives rise to an independent and identically distributed sample (a1, Y1), . . . ,

(aN , YN ). Keiding et al. (1996) estimated the distribution function π(a) = 1 −
exp

{∫ a0

0
`0(a)da

}
, the cumulative probability of being infected by age a as a non-

parametric maximum likelihood estimator which is a step function and the force of
infection, `0(a) was estimated by natural cubic splines with the smoothing parame-
ter chosen by inspection. We propose to semi-parametrically estimate the prevalence
by a smooth curve using penalized splines and generalized linear mixed models, an
approach which automatically selects a smoothing parameter. The force of infection
easily derives from the calculated derivative of the fitted curve. When there are de-
creases in the prevalence the derived force of infection is negative, which would be
nonsensical from an epidemiological perspective. To ensure positivity of the force of
infection, we monotonize the prevalence using a pool-adjacent-violators (PAV) algo-
rithm proposed by Robertson et al. (1988).

2.2 Smoothing Binary Data Using GLMM

2.2.1 Generalized Linear Mixed Models

Generalized linear mixed models are commonly used as an extension of the generalized
linear models, formulated for univariate data, since they allow for correlated responses
through the inclusion of random-effect terms in the linear component (McCulloch and
Searle 2001). The framework can also be used to smooth data (Ruppert et al., 2003;
Verbyla et al. 1999). Let us first review the generalized linear mixed model and
associated parameter estimation. Consider the cross-sectional sample (ai, Yi) from
Section 2.1. Let us assume a canonical link function (McCullagh and Nelder, 1989)
and no overdispersion, then the GLMM can be written in one-parameter exponential
family notation as

f(y|u) = exp
[
yT (Xβ + Zu)− 1T b(Xβ + Zu) + 1T c(y)

]
, (2.3)

where X and Z are p-dimensional and q-dimensional vectors of age values ai and in
general possibly other variables, 1 is the vector of ones, β is the fixed effects vector
and u is the random effects vector which has the normal density,

f(u) = (2π)−q/2|σ2
uI|−1/2 exp

[
−1

2
uT (σ2

uI)
−1u

]
.
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The marginal likelihood as a function of (β, σ2
u) is given by,

l(β, σ2
u) =

∫

<q

f(y|u)f(u)du

= (2π)−q/2|σ2
uI|−1/2 exp{1T c(y)}J(β, σ2

u)

with J(β, σ2
u) =

∫
<q exp{yT (Xβ + Zu)− 1T b(Xβ + Zu)− 1

2u
T (σ2

uI)−1u)}du.

Based on a Laplace approximation of J(β, σ2
u), the likelihood is approximated by a

quasi-likelihood function which is penalized, to achieve smoothness and numerical
stability, by introducing a penalty term, −1/2uT (σ2

uI)−1u, from which the term pe-
nalized quasi-likelihood derives. Next, we show how penalized splines can be cast into
the GLMM framework.

2.2.2 Penalized Spline Formulation as GLMM

Suppose that observations yi at values of age ai satisfy the relationship

logit[P (Yi = 1|ai)] = logit[π(ai)] = η(ai), i = 1, 2, · · · , N. (2.4)

The linear predictor η(ai) can be estimated non-parametrically using penalized splines
in the following way. Consider a pth degree spline model with K knots given by

η(ai) = β0 + β1ai + · · ·+ βpa
p
i +

K∑

k=1

uk(ai − tk)p
+, (2.5)

with the truncated power basis function defined as

(ai − tk)p
+ =





0, ai ≤ tk

(ai − tk)p, ai > tk,
(2.6)

where a1 ≤ a2 ≤ · · · ≤ aN and tk denotes the kth knot. In vector form, the mean
structure model for η(ai) becomes

η = Xβ + Zu. (2.7)

Here, η = [ η(a1) · · · η(aN ) ]T , β = [ β0 β1 · · · βp ]T is the vector of fixed

effects and u = [ u1 u2 · · · uk ]T is the vector of random effects and the design
matrices are given by

X =




1 a1 a2
1 · · · ap

1

1 a2 a2
2 · · · ap

2

...
...

...
...

...

1 aN a2
N · · · ap

N




, Z =




(a1 − t1)
p
+ · · · · · · (a1 − tK)p

+

(a2 − t1)
p
+ · · · · · · (a2 − tK)p

+

...
...

...
...

(aN − t1)
p
+ · · · · · · (aN − tK)p

+




.
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Because a large number of knots tk leads to too rough a fit, the nonlinear part Z is
penalized by assuming that the coefficients, u, are random effects and are constrained
to reduce the influence of the knots and hence ensure stable estimation. It is further
assumed that u ∼ N(0, σ2

uI). These two assumptions provide a strong connection
between penalized splines and mixed models. The choice of the knots tk is made in
a way that mimics the distribution of the predictor space. Since we only have one
predictor, age, a simple solution proposed by Ruppert et al. (2003) is to select equally
spaced knots based on the quantiles

tk =
(

k + 1
K + 2

)
th,

which is the sample quantile of the unique age values ai, where 1 ≤ k ≤ K. Throughout
this chapter we employ second degree up to fourth degree penalized splines models
because any linear combination of these spline basis functions will have a continuous
first derivative and hence smooth estimates for both prevalence and force of infection
will be obtained. However, for comparison purposes, we include results for linear
splines in Section 2.4 where simulation studies about the sensitivity of the estimated
prevalence and force of infection on the degree of the spline model and the number of
knots taken are performed.

2.2.3 Parameter Estimation

Now, substituting the penalized spline model (2.5) for the linear predictor into (2.3),
fully specifies the GLMM. The parameters of (2.3) are estimated by penalized quasi-
likelihood (Ruppert et al., 2003) based upon writing it in linear mixed model form:

y∗ = Xβ + Zu + σ−2
ε (y − µ) = Xβ + Zu + ε∗, ε∗ ∼ N(0, σ2

ε ) (2.8)

using pseudo-data y∗ as response. Briefly, for given values of (β, σ2
u, σ2

ε ), empirical
Bayes estimates of u are obtained and substituted into (2.8) and this results into
a pseudo-variable y∗. The linear mixed model is then fit to the pseudo-data to
obtain updated values of (β, σ2

u, σ2
ε ) which, when re-substituted into the model, yield

updated pseudo-data. This fitting process continues and upon convergence produces
PQL estimates of these parameters. We refer to Molenberghs and Verbeke (2005) for
a review of this formulation.
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Estimating the Smoothing Parameter

Smoothing the data using penalized splines requires choosing the value for the smooth-
ing parameter, which controls the trade-off between the smoothness and goodness of
fit of the fitted model. Ruppert et al. (2003) suggest a smoothing parameter within
the framework of generalized linear mixed models via PQL and REML estimation
techniques. Maximum likelihood can also be used but REML is advantageous as it
produces less biased estimates of the variance components. Thus, smoothing param-
eter selection trims down to variance component estimation with a small variance of
random effects corresponding to more smoothness of the curve. Therefore the penal-
ized spline fitting criterion in (2.8), when divided by the pseudo-error variance, σ2

ε ,

can be written as
1
σ2

ε

||y∗ −Xβ̂ − Zû||2 +
λ2p

σ2
ε

uT Iu,

where the ratio σ2
u = σ2

ε /λ2p (for a pth degree P-spline) underscores the connection
between the smoothing parameter, λ, and variance components. The power of 2p is
based on scale arguments that if the covariate undergoes a transformation, the same
transformation is applied to the smoothing parameter (Ruppert et al. (2003)).

2.2.4 Estimation of the Force of Infection

In this section we discuss the estimation of the force of infection for model with logit
link function. Using the general form for the hazard function in the current status
data framework, the estimate for the force of infection is given by

ˆ̀(a) =
π̂′(a)

1− π̂(a)
= η̂′(a)π̂(a). (2.9)

For quadratic penalized spline model we have

η̂(a) = β̂0 + β̂1a + β̂2a
2 +

K∑

k=1

ûk(a− tk)2+,

and the force of infection is obtained as

ˆ̀(a) =

[
β̂1 + 2β̂2a +

K∑

k=1

2ûk(a− tk)+

]
π̂(a).

For models with other link functions, one can estimate the force of infection by ˆ̀(a) =
η̂′(a)δ(η̂), where δ() is determined by the link function used in the model as discussed
by Shkedy et al. (2003).
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2.3 Data Analysis

The proposed approach is applied to three serological data sets: rubella, varicella and
mumps. Second degree up to fourth degree spline models are fitted to these data
sets with 10 and 20 knots. To the rubella dataset, cubic and fourth-degree spline
models were fitted but they produced zero estimates for the random effects hence
zero random effects variance. The same case applied to the varicella dataset when the
fourth degree spline model was fitted. As a result these models were not considered
further for rubella and varicella respectively. In this section we are mainly interested
in smooth fit of the force of infection, so we do not consider linear penalized splines
since they produce piecewise constant estimate for the force of infection compared to
high-degree penalized spline fits. A summary of the models considered together with
their measure of smoothness are shown in Table 2.1. Models 1(a) and 1(b) represent
the 10-knot and 20-knot quadratic penalized spline models for rubella, respectively.
To the varicella dataset, quadratic and cubic penalized spline models were fitted and
these are shown by Models 2(a) to 2(d). Finally, to the mumps dataset results are
given up to fourth-degree penalized splines designated by Models 3(a) to 3(f).

Clearly, from Table 2.1, we see that the random-effects variance gets smaller and
smaller with high-degree penalized spline models which consequently results in larger
values of the smoothing parameter. However, the difference in the smoothness is not
excessive for the different knot locations. Akaike Information Criterion (AIC) in the
last column, for all the data sets, is observed to be smallest for quadratic penalized
spline models with 10 knots which makes them better models relative to the other
models. Figure 2.2 shows the curve fits to these datasets. It can be observed from the
plots that there is not much effect of the number of knots on the estimated prevalence
and force of infection. However, the degree of the penalized spline has some effect.
Although the effect cannot be seen on the logit scale, it is present on the scale of inter-
est, the force of infection. Figures 2.2(a) and 2.2(b) depict the results on rubella. For
this dataset, quadratic penalized spline fits were sufficient to obtain smooth estimates.
The highest force of infection is estimated at the age of 7.5 afterwhich the force of
infection declines, then gradually rise again at older ages. Figures 2.2(c) and 2.2(d)
pertain to the varicella dataset. Here, two peaks in the estimated force of infection
are exhibited but these slightly differ according to the degree of the penalized splines.
With quadratic penalized spline models, the estimated force of infection peaks at the
age of 6.5 and 32.5 while for the cubic penalized spline models the peaks occur at the
age of 5.5 and 33.5. From age 43.5 onwards the force of infection is constrained to
zero to avoid negative forces of infection. The fits to the mumps dataset are shown
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Figure 2.2: Prevalence data and estimates for (a) rubella, (c) varicella and (e) mumps
and the estimated force of infection for (b) rubella, (d) varicella and (f) mumps; using
quadratic spline, cubic and/or 4th-degree Penalized splines with 10 and 20 knots.

in Figures 2.2(e) and 2.2(f). The maximum estimated force of infection is estimated
at the age of 5.5 for all models. However, beyond this age, an effect of the degree of
the penalized splines on the estimated force of infection is seen between the ages of
15 and 24 and among adults over 32 years old.

2.3.1 Bootstrap Confidence Intervals

To quantify the variability of the estimated prevalences and forces of infection, we
applied the percentile method of bootstrap confidence intervals, which take α and
1 − α percentiles of the bootstrap distribution to define the interval. We sampled,
with replacement, B bootstrap samples from the original data, each sample con-
taining N pairs (a∗i , Y

∗
i ) and obtained 100(1 − 2α)% percentile confidence intervals
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(ˆ̀∗(a)[(B+1)α], ˆ̀∗(a)[(B+1)(1−α)]) , where ˆ̀∗(a)[(B+1)α] is the (B + 1)αth−order statis-
tic of the bootstrap replicated forces of infection ˆ̀∗

1(a), . . . , ˆ̀∗
B(a). Since the bootstrap

procedure was not constrained, we defined the lower and upper confidence limits to
be max{0, ˆ̀∗(a)[(B+1)α]} and max{0, ˆ̀∗(a)[(B+1)(1−α)]}, respectively, as a counterpart
to the PAV algorithm in order to avoid negative estimates of forces of infection at
higher ages. Because of the presence of small sample sizes at higher age values, the
confidence bounds are very wide. Therefore, to have meaningful graphical results, we
restrict the age up to 40.5 years old.

Figure 2.3 shows the estimated probability curves and forces of infection together
with their 95% percentile bootstrap confidence intervals for the 10-knot quadratic pe-
nalized spline models. Though it appears as if the bootstrap confidence intervals do
not differ on the probability scale, this is not so when we consider the derivative scale,
the force of infection. We note an increase in the variability around the estimated
forces of infection at older age groups which can be explained by smaller sample sizes
at these age levels as mentioned earlier.

2.4 Simulation

The smoothness of the estimated force of infection is oftentimes sensitive to the num-
ber of knots and the degree of the penalized spline. To determine whether the number
of knots and the degree of the spline are set to appropriate sizes, different number of
knots and different degrees of penalized splines are used and the results compared to
determine the sensitivity of both the estimated prevalence and force of infection with
respect to these tuning constants. Two simulation studies were conducted, the first
used the sample size at each age value, as the one in the mumps dataset, while the
second used sample size 200 per age value. The age values used are according to the
mumps dataset. The true prevalence was taken according to the log-logistic fit to the
mumps dataset as

π(a) =
α1a

α2

1 + α1aα2

and the true force of infection as

`(a) =
α2α1a

α2−1

1 + α1aα2
,

where α1 is the exponent of the intercept and α2 is the slope obtained from the
fitted log-logistic model. The true age at which the maximum force of infection
occurs is 4.5. There were M = 500 simulated datasets for each simulation study.
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Figure 2.3: Bootstrap confidence intervals for rubella, varicella and mumps using
quadratic penalized splines with 10 knots: Left hand panels denote prevalence π̂(a)
and right hand panels denote force of infection ˆ̀(a).

On each data set, generalized linear mixed models were fitted with penalized splines
from the second to the fourth-degree and a set of 5, 10 and 20 knots. Using the
estimate of prevalence πjK(a), the force of infection `jK(a) at age a for the jth sim-
ulation and K knots was estimated according to (2.9). For prevalence and force of
infection, respectively, the local squared bias is estimated as b̂2(a) = {¯̂π(a) − π(a)}2
and b̂2(a) = { ¯̀̂(a) − `(a)}2 with ¯̂π(a) =

∑M
j=1 π̂j(a)/M and ¯̀̂(a) =

∑M
j=1

ˆ̀
j(a)/M,

while the local variances are estimated as v̂(a) =
∑M

j=1{π̂j(a) − ¯̂π(a)}2/M and

v̂(a) =
∑M

j=1{ˆ̀j(a)− ¯̀̂(a)}2/M. Hence, the estimate of the local mean-squared error
(MSE) is given by M̂SE(a) = b̂2(a) + v̂(a).
Figures 2.4 and 2.5 show the results from the first simulation study. Figure 2.4 shows
the true and estimated average prevalences over all simulations for the second to the
fourth degree penalized splines with 5, 10, and 20 knots. The first row shows the
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Figure 2.4: Simulation results for Prevalence. Upper panels: prevalence, lower panels:
mean square error. Sample size at each age equals that of the mumps dataset.

averaged estimate of the prevalences over all simulated data sets versus age. As seen
before, no clear distinction among the models can be observed on the logit scale.
However, when we turn to the mean squared error plots in the second row, the MSE
is high for the 5-knot quadratic penalized spline model at ages below 10 years as
compared to other models.

On the other hand, in Figure 2.5, we observe the average estimates of forces of
infection and their MSEs. Here, slight differences among the models can be seen.
In the first row, all models estimated the maximum force of infection at the age 4.5
except for the 5-knot quadratic penalized spline model which estimates the maximum
at the age of 5.5 years. All models estimate an increase in the force of infection after
the age of 37.5 but the increase is smaller for quadratic models. Looking at the mean
squared error plots in the second row, we see smaller MSEs for quadratic penalized
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Figure 2.5: Simulation results for Force of infection. Upper panels: force of infection,
lower panels: mean square error. Sample size at each age equals that of the mumps
dataset.

spline models relative to the other models. The results from the second simulation
study are presented in Figures 2.6 and 2.7. Figure 2.6 shows the averaged estimates
of prevalence and their MSEs. As seen previously, on the logit scale, models cannot be
distinguished. Compared to the results from the previous simulation study, the mean
squared errors have slightly increased. Nevertheless, the 5-knot quadratic penalized
spline model still gives high MSE at young ages relative to other models.

Figure 2.7 shows the averaged estimates of force of infection in the first row and
their mean squared errors in the second row. The 10-knot quadratic and the cubic
penalized spline models estimate the maximum force of infection at the age of 4.5
while the rest estimate it at the age of 5.5 years. Although the estimate of the force
of infection still increases at higher ages for all models, quadratic penalized spline
models give smaller estimates. The MSEs dramatically decrease relative to the results
of the first simulation study with quadratic penalized spline models still giving the



30 Chapter 2. Force of Infection from Current Status Data

a: 5 knots

age

p(
a)

0 10 20 30 40

0.
2

0.
4

0.
6

0.
8

1.
0

b: 10 knots

age

p(
a)

0 10 20 30 40

0.
2

0.
4

0.
6

0.
8

1.
0

c: 20 knots

age

p(
a)

0 10 20 30 40

0.
2

0.
4

0.
6

0.
8

1.
0

true
quadratic
cubic
4th degree

d: 5 knots

age

m
se

0 10 20 30 40

0.
0

0.
00

05
0.

00
10

0.
00

15

e: 10 knots

age

m
se

0 10 20 30 40

0.
0

0.
00

05
0.

00
10

0.
00

15

f: 20 knots

age

m
se

0 10 20 30 40

0.
0

0.
00

05
0.

00
10

0.
00

15

quadratic
cubic
4th degree

Figure 2.6: Simulation results for Prevalence. Upper panels: prevalence, lower panels:
mean square error. Sample size at each age equals 200.

smallest MSEs. Tables 2.2 and 2.3 show global squared bias, variance and MSEs for
all models including linear penalized spline models for comparison purposes. These
global estimates are presented at two age scales: the truncated scale 1.5 to 30.5 and
the full scale 1.5 to 44.5. Table 2.2 shows the results for prevalence. On both age
scales, the global MSE is highest for linear models and smallest for fourth degree
penalized spline models. Table 2.3 shows the results of force of infection. On the
truncated age scale the cubic penalized spline models give the smallest global MSE
while on the full scale global MSE is smallest for the 10-knot linear penalized spline
model. Nevertheless, results on the full scale also account for small sample sizes at
higher age values.
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Figure 2.7: Simulation results for Force of infection. Upper panels: force of infection,
lower panels: mean square error. Sample size at each age equals 200.

We now examine results from the second simulation study which uses a reasonably
large sample at each age. Tables 2.4 and 2.5 present the results for prevalence and
force of infection, respectively. The results for prevalence in Table 2.4 still follow
the same trend as before, highest global estimates for linear penalized splines and
lowest estimates for the fourth-degree spline models. Table 2.5 shows results for force
of infection. On the truncated age scale the fourth-degreee penalized spline model
still has the lowest global MSE. However, on the full age scale, the quadratic spline
models, regardless of the number of knots, produce the lowest MSEs relative to other
models. This agrees with what we see in Figures 2.5 and 2.7. So our observation
in Table 2.3, on the full age scale, can be attributed to small sample size. Thus,
from the simulation studies conducted, we observe considerable improvements from
linear to quadratic spline models and from 5 to 10-knots models, but beyond this the
improvements are minor.
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Table 2.2: Simulation results for prevalence: global simulated squared bias, variance
and mean squared error for linear, quadratic, cubic and 4-th degree penalized spline
fits with 5, 10 and 20 knots at two age scales. Sample size at each age equals that of
mumps dataset.

age scale: 1.5 to 30.5 years age scale: 1.5 to 44.5 years

linear quadratic cubic 4th-deg linear quadratic cubic 4th-deg

×10−5 ×10−5 ×10−5 ×10−5 ×10−5 ×10−5 ×10−5 ×10−5

5 knots b̄2 59.71 9.20 3.75 3.58 40.71 6.28 2.56 2.45

v̄ 5.32 5.77 6.46 6.35 4.00 4.33 4.84 4.79

MSE 65.04 14.97 10.21 9.93 44.71 10.61 7.40 7.24

10 knots b̄2 15.46 4.16 4.37 3.45 10.54 2.84 2.99 2.36

v̄ 6.99 6.71 6.32 6.41 5.15 5.00 4.74 4.83

MSE 22.45 10.87 10.69 9.86 15.69 7.84 7.73 7.19

20 knots b̄2 3.90 4.66 4.33 3.45 2.66 3.18 2.96 2.36

v̄ 7.95 6.65 6.34 6.41 5.82 4.95 4.75 4.83

MSE 11.85 11.31 10.67 9.86 8.48 8.13 7.71 7.19

2.5 Discussion

In this chapter we focussed on estimating the force of infection semi-parametrically
by modeling the functional form of the predictor by penalized splines which were
then fitted with generalized linear mixed models. The data were modelled on the
logit scale and the final model was selected based on AIC. However, estimates on this
scale should be interpreted with caution as it might be tempting to conclude that
estimates were close yet on the actual scale of interest, the derivative scale, they were
less. Indeed, turning to the derivative scale we observed altered estimates for the
forces of infection for the different models.

The estimated forces of infection were sensitive to the degree of the spline used and
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Table 2.3: Simulation results for force of infection: global simulated squared bias,
variance and mean squared error for linear, quadratic, cubic and 4-th degree penalized
spline fits with 5, 10 and 20 knots at two age scales. Sample size at each age equals
that of mumps dataset.

age scale: 1.5 to 30.5 years age scale: 1.5 to 44.5 years

linear quadratic cubic 4th-deg linear quadratic cubic 4th-deg

×10−4 ×10−4 ×10−4 ×10−4 ×10−4 ×10−4 ×10−4 ×10−4

5 knots b̄2 38.19 3.87 1.77 1.95 27.49 7.46 19.41 40.93

v̄ 8.66 6.04 5.81 6.20 18.78 27.84 62.76 110.32

MSE 46.85 9.91 7.58 8.15 46.27 35.30 82.17 151.25

10 knots b̄2 7.76 1.76 2.00 1.84 7.25 8.99 19.52 40.80

v̄ 13.75 7.31 5.87 6.28 23.24 37.46 63.65 109.12

MSE 21.51 9.07 7.87 8.12 30.49 46.44 83.17 149.92

20 knots b̄2 5.41 1.81 1.99 1.84 6.67 8.96 19.54 40.81

v̄ 16.56 7.15 5.86 6.28 28.70 36.78 63.71 109.11

MSE 21.97 8.96 7.85 8.12 35.37 45.73 83.24 149.92

the number of knots therein. However, as long as the choice of the knots covers the
range of the predictor well, not much difference is seen in the estimates. To this end,
we visualized only a marginal impact of the number of knots used on the estimated
forces of infection but some effect on the estimates with respect to the degree of
the spline. Cubic and fourth degree spline models yielded smoother estimates than
quadratic splines but not only do they estimate higher forces of infection at higher
ages, they also produce very small random effects variances that tend to zero which
apparently suggests that these higher-degree penalized splines might not be necessary.
However, the estimates from quadratic penalized spline models were relatively lower
and their smoothness was reasonably sufficient.

Further, although the primary aim of this chapter was not to contrast with paramet-



34 Chapter 2. Force of Infection from Current Status Data

Table 2.4: Simulation results for prevalence: global simulated squared bias, variance
and mean squared error for linear, quadratic, cubic and 4-th degree penalized spline
fits with 5,10 and 20 knots at two age scales. Sample size at each age equals 200.

age scale: 1.5 to 30.5 years age scale: 1.5 to 44.5 years

linear quadratic cubic 4th-deg linear quadratic cubic 4th-deg

×10−5 ×10−5 ×10−5 ×10−5 ×10−5 ×10−5 ×10−5 ×10−5

5 knots b̄2 64.56 10.45 6.22 4.88 44.02 7.13 4.24 3.33

v̄ 14.98 7.76 8.34 8.05 10.54 5.46 5.87 5.68

MSE 79.54 18.21 14.56 12.93 54.56 12.59 10.11 9.01

10 knots b̄2 19.18 7.81 6.98 4.94 13.08 5.32 4.76 3.37

v̄ 18.57 8.26 8.12 7.94 13.00 5.81 5.72 5.60

MSE 37.75 16.07 15.10 12.88 26.08 11.13 10.48 8.97

20 knots b̄2 12.78 8.19 6.97 4.87 8.72 5.59 4.75 3.33

v̄ 19.28 8.19 8.12 8.05 13.49 5.76 5.71 5.69

MSE 32.06 16.38 15.09 12.92 22.21 11.35 10.47 9.02

ric modeling, it is comforting to note that the patterns in our estimates identify with
those of Whitaker and Farrington (2004) for rubella and mumps. The only difference
was seen in the peaks, our semi-parametric approach yielded slightly higher estimates
than the parametric counterparts, which may be ascribed to the flexibility of the
semi-parametric method.

The variability around the estimated probability curves and forces of infection was
studied using the percentile bootstrap confidence intervals. Considering computa-
tional time constraints, 500 bootstrap samples were considered reasonable. The in-
tervals were wider at older age groups for reasons of small sample sizes at these age
groups. Particularly for varicella, the sample sizes were less than 15 from the age of
30.5 onwards and indeed this dataset exhibited wider intervals at high ages as com-
pared to the rubella and mumps datasets. This variation might also be a consequence
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Table 2.5: Simulation results for force of infection: global simulated squared bias,
variance and mean squared error for linear, quadratic, cubic and 4-th degree penalized
spline fits with 5,10 and 20 knots at two age scales. Sample size at each age equals
200.

age scale: 1.5 to 30.5 years age scale: 1.5 to 44.5 years

linear quadratic cubic 4th-deg linear quadratic cubic 4th-deg

×10−4 ×10−4 ×10−4 ×10−4 ×10−4 ×10−4 ×10−4 ×10−4

5 knots b̄2 30.02 3.15 2.03 1.88 21.00 3.18 4.17 7.52

v̄ 7.55 4.81 4.70 4.72 13.10 14.02 22.50 33.52

MSE 37.72 7.96 6.73 6.60 34.10 17.20 26.67 41.04

10 knots b̄2 6.82 2.24 2.23 1.80 5.38 2.89 4.15 7.51

v̄ 11.51 5.27 4.51 4.77 16.92 16.71 21.55 33.53

MSE 18.33 7.51 6.74 6.58 22.30 19.60 25.70 41.04

20 knots b̄2 4.87 2.27 2.23 1.81 4.31 2.87 4.15 7.50

v̄ 13.56 5.19 4.50 4.78 20.75 16.18 21.58 33.52

MSE 18.43 7.46 6.73 6.59 25.06 19.05 25.73 41.02

of primary varicella infection being a relatively rarer event in adults versus children,
than primary rubella or mumps infection.

The non linear mixed procedure NLMIXED also fits generalized linear mixed models
but the class of models it can accommodate is more limited. It attempts to max-
imize the log likelihood directly by adaptive Gaussian quadrature. If the number
of quadrature points is large enough it gives exact maximum likelihood estimates of
the parameters but this is only theoretical. Although these are very accurate, the
number of random effects that can be handled is limited. Also, residual association
cannot be accommodated with the NLMIXED procedure. The GLIMMIX procedure
and macro allow for multiple random effects and residual association. A disadvantage
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is the inaccessibility of the actual likelihood and severe biases that can result for a
number of applications. Nevertheless, we considered PQL approach as implemented
in the GLIMMIX macro as our preferred choice.

Alternative approaches to PQL such as the use of standard likelihood to obtain max-
imum likelihood estimates and a Bayesian Markov Chain Monte Carlo analysis could
be employed. However, these methods are substantially more challenging to imple-
ment than the GLIMMIX procedure and macro.

The simulation study highlights that the proposed penalized spline-based GLMM
method exhibits good performance. Therefore, considering the examples of the data
sets employed and simulation results, for estimating a smooth curve estimate of force
of infection, we recommend using a quadratic penalized spline with 10 knots which
can be fitted as suggested using generalized linear mixed models.

Appendix

We fitted our GLMMs using the SAS macro GLIMMIX. However, compared with the
GLIMMIX procedure (SAS Institute Inc. 2004), the results obtained were found to
be exactly the same. In this section we show how the GLIMMIX procedure can be
used to fit our models. Given the scatterplot vectors x and y and a set of knots tk

the GLMMs were fitted using the SAS code below. The dataset constits of the binary
response y, the polynomial components are contained in xlist that forms the design
matrix X and the zlist comprises of the truncated power basis functions (xi − tk)p

+

forming the design matrix Z. As a result the kth column of matrix Z comprises the
truncated power function corresponding to the kth knot. The Toeplitz (1) covariance
structure is used to group together the constructed columns of Z with continuous
variables to have a common variance component.

proc glimmix data=dataset;

model y(event=1)=&xlist / dist=binomial link=logit solution ;

random &zlist/ type=toep(1) solution;

random _residual_/solution;

output out=yhat /allstats;

nloptions tech=nmsimp;

run;

For the model of rubella with quadratic splines with 10 knots we have
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Standard

Cov Parm Estimate Error

Variance 0.000025 0.000026

Residual (VC) 1.0017 0.02179

Now, the cube of the smoothing parameter is 1.0017/0.000025.





Chapter 3

Modeling the Force of

Infection for Parvovirus B19

in Europe Using Penalized

Spline Models

The previous chapter introduced how to model the prevalence and force of infection
of a disease as a smooth function of a continuous predictor such as age based on pe-
nalized splines, which are fitted using the generalized linear mixed model framework.
However, apart from age it is possible to include other variables whether discrete
or continuous, in the spline model. In this chapter we focus on inclusion of a dis-
crete variable and also show the flexibility associated with the spline model based on
parvovirus B19 data.

Parvovirus B19 is a virus that commonly (and only) infects humans. It was dis-
covered in the 1970’s, while healthy blood donors were being screened for hepatitis
B (Cossart et al. 1975). The virus is spread by contact with infected respiratory
secretions (for example, saliva, sputum, or nasal mucus), and from mother to unborn
baby also known as perinatal transmission. Parvovirus B19 infection is common and
occurs worldwide and affects both sex groups. Seroepidemiologic studies from several
countries show that infection is most common in children aged 6-10 years, but can
occur at any age. The incubation period of the virus varies from 4-20 days from
infection to the development of a characteristic rash or other symptoms. The most

39
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common illness caused by parvovirus B19 infection is called the ‘fifth disease’, a mild
rash that occurs most often in children. The ill child typically has a ‘slapped-cheek’
rash on the face and a lacy red rash on the trunk and limbs. Once a child recovers from
the parvovirus infection he or she develops lasting immunity, and is protected against
future infection (Anderson et al. 1985). An adult who is infected with parvovirus B19
may have no symptoms at all or, may develop a rash, joint pain or swelling or both.
Patients who have a compromised immune system, sickle cell anemia and women who
are pregnant are at a greater risk for developing fifth disease (Anderson, 1987; Koch
and Adler, 1989). While the disease is generally mild, most studies have focused on
risk factors in pregnant women because of the risk to the fetus (Valeur-Jensen et al.
1999).
A key epidemiological parameter governing the transmission of infection within a
given population is the force of infection. It is defined as the rate at which a suscepti-
ble individual is transferred from the susceptible class to the infection class. A major
effort has been devoted in the past to model force of infection assuming a constant
force of infection. Empirical evidence of age-related changes in the force of infection
have been documented for childhood infections (Griffiths, 1974; Anderson and May,
1982; Farrington, 1990; Keiding 1991; Shkedy et al. 2003; Shkedy et al. 2006).
Serological surveys are a useful source of information about epidemiological parame-
ters for infectious diseases. In particular they may be used to estimate contact rates,
forces of infection, the reproduction number and the critical vaccination threshold
(Farrington et al. 2001; Van Effelterre et al. 2008). These methods require the as-
sumption of life-long immunity following initial infection and that the disease is in
a steady state (Grenfell and Anderson, 1985). Several approaches were proposed to
model the prevalence and force of infection for different infectious diseases such as
measles, mumps, rubella, hepatitis A and varicella. Muench (1934; 1959) considered
models in which the force of infection is constant and hence independent of age. Gren-
fell and Anderson (1985) used polynomial functions to model age dependent force of
infection. Farrington (1990), Farrington et al. (2001) and Edmunds et al. (2000)
proposed a non-linear model for the prevalence. However, the approach requires prior
knowledge about the dependence of the force of infection on age. Shkedy et al. (2006)
proposed to model age dependent force of infection from seroprevalence data using
fractional polynomials, a method which provides a variety of different types of rela-
tionships between the force of infection and age. Faes et al. (2006a) and Hens et al.
(2007) estimated the force of infection using monotone fractional polynomials from
clustered seroprevalence data. Hens et al. (2008) estimated the force of infection
using fractional polynomials and cubic regression splines for multi-sera data. Shkedy
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et al. (2003) proposed to use local polynomials which simultaneously estimate preva-
lence and force of infection.
In the previous chapter we estimated the force of infection by using penalized spline
basis model fitted by GLMM approach. In the current chapter we extend the basic
model of the previous chapter and discuss a modeling approach which allows us to
include other covariates in the model in addition to the host age. In particular the
covariate of primary interest is country. Serological data from five European coun-
tries: Belgium, England and Wales, Finland, Italy and Poland will be used. Recently,
Mossong et al. (2008) investigated country effect on the force of infection using local
polynomials and piecewise constant models. However, Mossong et al. (2008) esti-
mate the force of infection for each country separately. In contrast with Mossong et
al. (2008), in this chapter we model both the prevalence and force of infection using
data from all countries. The GLMMs discussed in this chapter allow us to estimate
the effect of the country by either including a country specific fixed effect or a country
specific smoother. Section 3.1 presents the data to which apply the proposed method
discussed in Section 3.2, is applied. The GLMM with logit and cloglog link functions
are used in order to take possible proportionality into account (i.e., proportional odds
model or proportional force of infection model). Section 3.3 describes the model fit-
ting procedures and the criteria to select among the models and their application to
the data in Section 3.4. In Section 3.5 we show how the piecewise constant force
of infection can be estimated using penalized splines and finally a discussion of the
results and conclusion are given in Section 3.6. The work of this chapter can be found
in Namata et al. (2008d).

3.1 Data

The data (see Table 3.1) consists of 14070 individuals from five EU countries: Belgium
(BE), England and Wales (EW), Finland (FI), Italy (IT) and Poland (PL) collected,
respectively, in the years 2001-2003, 1996, 1997-1998, 2003-2004, and 1995-2004. The
data set contains the individuals’ status of parvovirus B19 infection (outcome=1,
if infected and outcome=0, otherwise), their gender and age. Table 3.1 shows the
summary of these data. 4.4% of the data were missing while 0.3% individuals had
non equitable outcomes. There were 497 individuals older than 65 years. The overall
prevalence is 52.1% and it ranges from 41.76% in Finland to 66.02% in Belgium.
For Belgium, in particular, there were only 5 individuals above 65 years and they
were seropositive. The presence of only one type of outcome causes the problem of
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Table 3.1: Summary of the Parvovirus B19 data set.

Variable No. No. Equivocal missing No. Effective seropositive

subjects missing results gender >65yrs N % out of N

Response 14070 621 39 2 497 12911 52.10

Gender

female 7232 278 20 281 6675 52.58

male 6836 343 19 255 6236 51.59

Age 14070 621 39 2 497 12911 52.10

Country

BE 3374 276 18 0 5 3075 66.02

EW 3179 343 14 1 106 2715 50.90

FI 2500 0 1 0 107 2392 41.76

IT 2517 2 1 1 139 2374 47.22

PL 2500 0 5 0 140 2355 50.74

inestimable parameters. So in order to avoid this problem, we considered the data set
up to age 65 years and also excluded all the missing and non equitable observations.
This results in an effective sample size of 12911 individuals. Figure 3.1 shows the five
seroprevalence samples. Note that the age is grouped in one year intervals and the
maximum age is 65 years.
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Figure 3.1: Country-specific raw data for the proportions of parvovirus B19 infection
versus age.

3.2 Estimating the Force of Infection Using Penal-

ized Splines

3.2.1 Simple GLMM Spline Model

In the previous chapter we implemented a spline analysis of rubella, mumps and
varicella considering linear, quadratic and cubic spline models with various knots
(5, 10 to 20). In the simulation study the penalized quadratic splines emerged as
the best performing regardless of the number of knots. Following this simulation
finding in the previous chapter, we apply 20-knots penalized quadratic spline models
throughout this chapter. For a single continuous predictor (age) and a binary response
Yi i = 1, . . . , N, which takes the value 1 if the ith individual was infected with B19
before age ai, the disease prevalence, π(ai) = P (Yi = 1) can be modeled using the
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GLMM for which the linear predictor is given by

g(π(ai)) = η(a) = β0 + β1ai + β2a
2
i +

K∑

k=1

uk(ai − tk)2+ (3.1)

with the truncated power basis function defined as

(ai − tk)2+ =





0, ai ≤ tk

(ai − tk)2, ai > tk.

Here, g is the logit link function, uk are random effects for which we assume uk ∼
N(0, σ2

u), i.e a common variance component and zero covariances. The parameter
vector β = (β0, β1, β2) are fixed regression coefficients, and t1 < t2 < · · · < tK

are fixed knots. We considered K = 20 and tk is the sample quantile of age values
corresponding to probability (k + 1)/(K + 2) but other choices of knots can be used
(Namata et al. 2007; Ruppert et al. 2003). In matrix notation the GLMM (3.1) can
be written as

g(π(a)) = Xβ + Zu, u ∼ N [0,G] ,

where X = [1 ai a2
i ]1≤i≤N , β = [β0, β1, β2]T , u = [u1, u2, . . . , uK ]T , G = diag(σ2

u1K)
and Z =

[
(ai − t1)2+ (ai − t2)2+ . . . (ai − tK)2+

]
1≤i≤N

for an effective sample size N .
Therefore Xβ is the pure polynomial component of the spline and Zu is the component
with truncated power basis functions. The only covariate included in the GLMM
(3.1) is age. In the current study five cross-sectional samples are available and it is
of primary interest to include the country, from which the cross-sectional sample was
taken, as a covariate in the model.

3.2.2 Extension of the Basic Model

An advantage of spline modeling is its flexibility. In particular model (3.1) can be
extended in several ways to include other predictors from binary to discrete to con-
tinuous variables. The predictors can be added additively but also interactive terms
can be included. In what follows we discuss some of these extensions. Let wij ,
i = 1, · · · , N, j = 1, 2, 3, 4, 5 be an indicator variable given by

wij =





1 if country=j,

0 otherwise.

Here, j = 1 to 5 respectively for Belgium, England and Wales, Finland, Italy and
Poland respectively.
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3.2.3 Model (3.2)

The second model we consider is a semi-parametric model that allows to add the
country as a fixed effect into the model. This model assumes that country and age
act additively on the prevalence of B19 on the scale of the linear predictor. For a link
function g, the model can be expressed as

g(π(a)) = Xβ + Zu + Wγ, u ∼ N [0,G] , (3.2)

with γ = [γ1, γ2, γ3, γ4, γ5]T , and W = [wi1 wi2 . . . wi5]T while the rest of the com-
ponents are given as in (3.1). Note that the country is added to the fixed parametric
part of the model while the dependency on age is modeled nonparametrically by the
random part of the model. The additional term Wγ represents the vertical shift
between the five country curves on the scale of the linear predictor.

3.2.4 Model (3.3)

In contrast with model (3.2) which includes country as a fixed effect in the linear
predictor the next model allows for the possibility of country and age interacting
with one another. The effect of age on prevalence in the smooth term is thus allowed
to depend upon country. This nonparametric interaction model is denoted as

g(π(ai)) = β0 + β1ai + β2a
2
i +

5∑

j=1

wij

(
K∑

k=1

uj
k(ai − tk)2+

)
, (3.3)

where uj
k ∼ N(0, σ2

u). The model can be written as

g(π(a)) = Xβ + Z∗u∗ u∗ ∼ N [0,G∗] ,

with u∗ = [u1
1, . . . , u

1
K , u2

1, . . . , u
2
K , . . . , u5

1, . . . , u
5
K ]T , G∗ = diag(σ2

u1K, σ2
u1K, . . . ,

σ2
u1K) and Z∗ = diag(Z1,Z2, . . . ,Z5). Note that Z∗ is a block diagonal matrix in

which each block consists of the design matrix for the random effects of the j′th
country. Hence, the model specifies a different smooth function for each subset of
observations defined by the levels of country by having the random effects indepen-
dent from function to function and so there is no implied similarity between the
effects. However, the model assumes the same amount of smoothness for the different
functions and as such a constant variance component, σ2

u across the countries.

3.2.5 Model (3.4)

Model (3.4) combines between models (3.2) and (3.3); that is the country effect is
entered in the linear predictor and the smooth term depends upon country. This
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gives rise to the semiparametric model

g(π(ai)) = Wγ + β1ai + β2a
2
i +

5∑

j=1

wij

(
K∑

k=1

uj
k(ai − tk)2+

)
, (3.4)

which in matrix notation becomes

g(π(a)) = Wγ + Xβ + Z∗u∗ u∗ ∼ N [0,G∗] .

The design matrices and the coefficients are as defined above for models (3.2) and
(3.3). A constant variance component, σ2

u across the countries is assumed.
Table 3.2 summarises the different models discussed above. The number of pa-

rameters in model (3.1) is equal to 5: the fixed effects β0, β1 and β2 and the variance
components σ2

u and σ2
ε . Note that models (3.3a) and (3.4a) have the same mean struc-

tures as models (3.3) and (3.4), respectively. However, these models assume country
specific smoothing parameter, i.e., G∗ = diag(σ2

u11K, σ2
u21K, · · · , σ2

u51K).

Table 3.2: Terms considered for inclusion in the model

Model Terms Smoothing # of model

parameters parameters

(3.1) age1, age2, (age - tk)2+ 1 5

(3.2) age1, age2, country(5 levels), (age - tk)2+ 1 9

(3.3) age1, age2, country(5 levels)*(age - tk)2+ 1 5

(3.3a) age1, age2, country(5 levels)*(age - tk)2+ 5 9

(3.4) age1, age2, country(5 levels), country*(age - tk)2+ 1 9

(3.4a) age1, age2, country(5 levels), country*(age - tk)2+ 5 13

3.2.6 Proportional Odds and Proportional Hazard Models

In the previous section we have described different models to estimate the prevalence
of B19. In this section we derive the force of infection from the estimated prevalences
and investigate the properties of the ratios of the estimated prevalences and forces of
infection between the country levels. Let us denote the linear predictor as η(a). For
the logit link function the prevalence can be obtained as

π(a) =
eη(a)

1 + eη(a)
,
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and force of infection as (Shkedy et al. 2003)

`(a) = η′(a)π(a).

For the cloglog link function, the prevalence and the force of infection, respectively,
are obtained as

π(a) = 1− e−eη(a)
and `(a) = η′(a)eη(a).

Using the above equations, the expressions for prevalence and force of infection can
easily be written down for all the models considered. In Table 3.3 we summarise the
expressions for the odds ratio and the ratio of the forces of infection between the j′th
country and the baseline country for the three models (3.2) to (3.4). These expressions

Table 3.3: Expressions for the ratio of the odds of the prevalences and the ratio of the
forces of infection for country j in comparison to Poland, the baseline category for
models (3.2) to (3.4) using logit and cloglog link functions. The expressions consider
the spline models at K knots.

Model link odds(πj)

odds(π5)

`j

`5

(3.2)

logit eγj π2j

π25

cloglog π2j

π25
eeXβ+

∑K
k=1 ukZk (eγj−1) eγj

(3.3)

logit e
∑K

k=1(ukj−uk5)Zk
η′3j(a)

η′35(a)
π3j

π35

cloglog π3j

π35
eeXβ(e

∑K
k=1 ukjZk−e

∑K
k=1 uk5Zk ) η′3j(a)

η′35(a)e
∑K

k=1(ukj−uk5)Zk

(3.4)

logit eγj e
∑K

k=1(ukj−uk5)Zk
η′4j(a)

η′45(a)
π4j

π45

cloglog π4j

π45
eeXβ(eγj e

∑K
k=1 ukjZk−e

∑K
k=1 uk5Zk ) η′4j(a)

η′45(a)e
γj e

∑K
k=1(ukj−uk5)Zk

display meaningful interpretations of the prevalence and the force of infection between
any two countries. Let us consider model (3.2). When the logit link function is
used, the odds ratio between the j′th country and the baseline country depends
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upon the country effect and it is not dependent on age. The ratio of the forces
of infection (π2j/π25) is age-dependent. For a model with cloglog link the force of
infection ratio is proportional (exp(γj)) while the odds ratio is age-dependent. Hence,
model (3.2) with logit link function implies a proportional odds model while a model
with cloglog link implies a proportional force of infection model (proportional hazard
model). The properties of proportional odds or proportional force of infection do not
remain when model (3.3) and (3.4) are used. For example the odds ratio for model
(3.4) which includes country as a fixed and random effect is eγj e

∑K
k=1(ukj−uk5)Zk

and it depends on age. For the cloglog model, the ratio of the force of infection
is η′4j(a)

η′45(a)e
γj e

∑K
k=1(ukj−uk5)Zk . Thus, different model formulations lead to different

interpretations of the odds ratio and the force of infection ratios. This implies that
a model selection procedure is needed in order to select the best model among the
fitted models. A selection of the best model will allow us to draw conclusions not only
about the dependency of the force of infection on age but also on the proportionality.

3.3 Estimation and Model Selection

3.3.1 Quasi-Likelihood Estimation

All the models discussed above were fitted using the SAS procedure GLIMMIX. Un-
fortunately a model selection procedure based on the information criteria reported
in GLIMMIX output is not possible. SAS procedure GLIMMIX does not provide a
likelihood value for the estimated models, instead a pseudo-likelihood is calculated
and therefore one cannot use the information criteria in GLIMMIX output nor the
likelihood ratio tests. Following Ruppert et al. (2003) we constructed the deviance
conditional on the pseudo-likelihood parameter estimates for both β and u,

D(y; π̂(β̂, û)) = 2
n∑

i=1

{
yi log

(
yi

π̂i

)
+ (1− yi) log

(
1− yi

1− π̂i

)}
. (3.5)

According to Ruppert et al. (2003) the effective number of parameters associated
with the fit were computed as the trace of the hat matrix as

pD = trace

{(
CT WC +

1
2
Λ

)−1

CT WC

}
, (3.6)

where C = [X,Z], W = var(y|X, Z,u) and

Λ =


 0 0

0 σ2
ε cov(u)−1


 .
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The selection between the models based upon the adjusted AIC (Ruppert et al., 2003)
is given by

AIC = n−1[D(y; π̂ : Λ) + 2pD] (3.7)

Note that for a given model, significant test for the fixed effects is still valid when
GLIMMIX is used.

3.3.2 Hierarchical Bayesian Modeling

Each of the above mentioned models can be formulated as a hierarchical Bayesian
model. For example, the prevalence of B19 infection can be estimated for model (3.1)
using a hierarchical Bayesian model

yi ∼ Bernoulli(πi) (3.8)

g(πi) = Xβ + Zu (3.9)

β ∼ N(0, 106) and uk ∼ N(0, σ2
u) (3.10)

σ−2
u ∼ Gamma(10−3, 10−3). (3.11)

In Equation 3.8 we specify the likelihood for the response with πi estimated according
to 3.9. The equations (3.10) and (3.11) represent the prior and hyperprior distribution
for the parameters in the model, respectively. Following Crainiceanu et al. (2004), a
normal prior distribution centered at zero with a standard error of 1000 is considered
to be sufficiently noninformative for the β parameter vector. The parametrization
of the Gamma(a, b) is chosen so that its mean a/b = 1 and its variance is a/b2 =
1000. Given data yi and parameters θ = (β,u), where u in turn depends on the
hyperparameter σ2

u that is not mentioned in the likelihood, a Bayesian analysis starts
with prior probabilities P(β) and P(u|σ2

u) and the likelihood L(y|θ) to compute a
posterior probability

P (β,u, σ2
u|y) =

L(y|β, u)P (β)P (u|σ2
u)P (σ2

u)∑
L(y|β, u)P (β)P (u|σ2

u)P (σ2
u)

(3.12)

using Markov chain Monte Carlo (MCMC) simulation (Gilks et al., 1996). The value
θ̄ which is the average of the samples of θ is the Bayesian analogue of the maximum
likelihood estimator. For model selection, we use the deviance information criterion
proposed by Spiegelhalter et al., (1998, 2002) and also employed by Erkanali et al.,
(1999), Rahmann et al. (1999) and Gelfand et al. (2000). Define the deviance as
D(θ) = −2log(L(y|θ)). The average of D(θ) over the samples of θ ( i.e. D̄ =
Eθ|y[D(θ)]) is a measure of how well the model fits the data; the larger this is,



50 Chapter 3. Force of Infection for Parvovirus B19

the worse the fit. The effective number of parameters of the model is computed as
pD = D̄−D(θ̄). The larger this is, the easier it is for the model to fit the data. The
Deviance Information Criterion (DIC) is given by

DIC = D̄ + pD = D(θ̄) + 2pD. (3.13)

The models with smaller DIC indicate better fits than those with larger DIC.

3.4 Application to the Data

3.4.1 Quasi-Likelihood Estimation

The results for selecting between the models fitted with the GLIMMIX procedure are
presented in Table 3.4. The table also shows the deviance, the effective number of
parameters (pD) and the adjusted AIC according to formulas (3.5), (3.6) and (3.7).
model (3.1), which corresponds to fitting one smooth function of age to all data for
the five countries simultaneously, compared to all other models, does not appear to
fit the data well, yielding a deviance of 15481.88 on 9.99 degrees of freedom (pD) for
the logit model and a deviance of 15486.98 on 8.25 degrees of freedom for the cloglog
models. Considering the semiparametric model, model (3.2), which specifies linear
effects for country, the penalized quasilikelihood fit of the quadratic spline model yields
a deviance of 15242.94 on 13.85 df for the logit model and a deviance of 15261.17 on
12.18 degrees of freedom for the cloglog model, or a decrease of about 1.5% relative
to the deviances from model (3.1) with both link functions. Among all the fitted
models, model (3.4a), which (i) allows countries to differ by their intercepts and (ii)
specifies a country-by-smooth term interaction with separate smoothing parameters,
had the lowest AIC value for both link functions; 1.18199 and 1.18134 for logit and
cloglog link functions respectively. Therefore having identified the best fitting model,
significance tests can be used to guide what individual estimates remain in the model.

Tables 3.5 and 3.6, respectively, show the estimated pseudo-likelihood coefficients
and corresponding standard errors, for all the fitted models. model (3.4a) shows that
the intercepts for England & Wales and Italy are not significantly different from that of
Poland (the baseline category) suggesting a common homogeneous effect for England
& Wales and Italy and Poland. Since Poland is the baseline category, this is equivalent
to testing whether the coefficients γ2 (for England & Wales) and γ4 (for Italy) are
significantly different from zero i.e., H0 : γ2 = γ4 = 0. For both link functions, a
reduced model, model (3.5), yielded lower AICs than model (3.4a) implying that we
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Table 3.4: Adjusted AIC and equivalent number of parameters.

logit link cloglog link # of

Model Deviance pD AIC Deviance pD AIC parameters

(3.1) 15481.88 9.98958 1.20067 15486.98 8.24893 1.20080 5

(3.2) 15242.94 13.8530 1.18276 15261.17 12.1835 1.18392 9

(3.3) 15270.76 30.2643 1.18746 15273.70 26.7318 1.18714 5

(3.3a) 15235.20 33.7608 1.18525 15236.55 30.2063 1.18480 9

(3.4) 15203.41 31.1436 1.18238 15202.53 28.6969 1.18193 9

(3.4a) 15196.22 32.2396 1.18199 15192.16 30.0286 1.18134 13

(3.5) 15197.73 30.3544 1.18182 15193.04 28.1962 1.18112 11

cannot reject the null hypothesis that the intercepts for England & Wales, Italy and
Poland are equal.
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Figure 3.2: Model (3.1). Fitted curves for prevalence and force of infection for the
data to all five countries simultaneously

Figure 3.2 shows the estimated prevalence and force of infection across all countries
according to model (3.1). The force of infection increases until the age of 9 years and
then decreases until 18 years. Between 18 and 28 years the force of infection goes to
negative, due to a corresponding decrease in the prevalence, but it is set to zero in
order to conform with the pool adjacent violaters algorithm (Robertson et al. 1988)
because a negative force of infection has no meaning in epidemiology. A second peak
is observed at the age of 37 whereafter the force of infection decreases but rises again
from the mid 50s. Note however that the logit model estimates higher force of infection
compared to that of the cloglog model. The fitted curves from model (3.2) are shown
in Figure 3.3. Belgium has the highest estimate for prevalence and force of infection
while Finland showed the lowest estimates for prevalence and force of infection. The
curves for England & Wales, Italy and Poland are estimated to be close to each other.
For all countries the force of infection increases until the peak at the age of around
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(c) B19 Prevalence: cloglog
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(d) B19 Force of infection: cloglog
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Figure 3.3: Model (3.2). Estimated prevalence and force of infection for Belgium,
England & Wales, Finland, Italy and Poland

9 years then decreases steadily to the ages between 18 and 28 from where it rises to
another peak at age 37 and finally decrease at older age values.

Figure 3.4 shows plots for the estimated curves for prevalence and force of in-
fection for the model which assumes a common intercept and equivalent smoothness
for the different smoothing functions for countries. The first peak of the force of
infection ranges from age 7 for Finland to age 10 for Belgium. Unlike model (3.2),
the second peak from model (3.3) is more clearly pronounced for Poland, England
& Wales and Italy than that for Belgium which appears to flatten out. The force
of infection for Finland, however, increases from about the age of 45 years onwards.
Figure 3.5, which allows separate intercepts for country and separate smoothness for
the different smoothing functions for countries suggests that a common intercept for
Poland, England & Wales and Italy might be reasonable as their curves barely differ
at young age groups. The first peak of the forces of infection now appears from the
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(d) B19 Force of infection: cloglog
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Figure 3.4: Model (3.3). Estimated prevalence and force of infection for Belgium,
England & Wales, Finland, Italy and Poland.

age of 8 for England & Wales and Poland to the age of 10 for Finland while the second
peak appears at the ages of 44, 43 and 40 for Poland, England & Wales and Italy
respectively. Figure 3.6 is the fit when a common intercept for Poland, England &
Wales and Italy is allowed for in model (3.5).

In summary we have seen that the force of infection for parvovirus-B19 infection
increases at young ages until about 10 years. This finding confirms other findings
(Gilbert, 2000) that the disease is common in preschool and primary school-aged
children. Relating to the current countries, the enrolment age in primary school is:
6 years in Belgium, 5 years in England and Wales, 7 years in Finland, 6 years in
Italy and 7 years in Poland. For secondary school enrolment the ages in years are 12,
11, 13, 11 and 13 for the five countries respectively. There is also some suggestion
in the data that the force of infection increases among adults in their 30s, meaning
that these adults may have acquired the infection from an infected child at home
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(d) B19 Force of infection: cloglog
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Figure 3.5: Model (3.4a). Estimated prevalence and force of infection for Belgium,
England & Wales, Finland, Italy and Poland

or at occupational exposure such as, primary school teachers and child-care workers
(Gilbert, 2000).

3.4.2 Full Bayesian Approach

The models discussed in Section 3.2 were fitted using WinBUGS software based on
one chain of several samples, in order to reduce on the computing time. The conver-
gence of the Markov chain monte Carlo simulations to the posterior distribution were
investigated using Geweke diagnostic. The Geweke diagnostic tests the null hypoth-
esis that the Markov chain is in the stationary distribution and produces z-statistics
for each estimated parameter. Convergence was checked based on various samples
before deciding on the final number of samples needed and how many to remove for
burn-in. It was found that the β parameters reached their stationary distribution
but the variance component was far from stationarity. We further investigated this
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(d) B19 Force of infection: cloglog
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Figure 3.6: Model (3.5). Estimated prevalence and force of infection for Belgium,
Finland, and for England & Wales, Italy and Poland combined.

using two other prior distributions for the variance components (Crainiceanu et al.
2004); the uniform prior on (0,M ], and the uniform prior on [−M, M ] for the log of
σ2

u, where M is very large. However, convergence for all parameters at one time could
not be achieved. The Bayesian fits were based on a chain of 100000 samples, of which
the first 10000 were removed as a burn-in period.

Table 3.7 summarizes the DIC differences between the fitted models. Among all the
models, model (3.4a) emerged as the best model as it has the lowest DIC. Note that
the model is only slightly better than model (3.5) (adjusted AIC equal to 15246.00
and 15246.20 respectively). Comparing the results with those of the frequentist ap-
proach, we see that the effective number of parameters in the Bayesian framework is
always larger than that of the frequentist (see Figure 3.7). However, this is expected
since Bayesian inference takes into account the uncertainty of all parameters. This
inherent additional variability results in larger estimated variance components than
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those obtained with GLIMMIX.

Table 3.7: Measures for the goodness-of-fit and complexity of logit and cloglog Bayesian
models over 100000 runs with 10000 left out as burn-in.

logit link cloglog link

Model D̄ D(π̄) pD DIC D̄ D(π̄) pD DIC

(3.1) 15492.60 15481.90 10.65 15503.20 15576.00 15562.50 13.45 15589.40

(3.2) 15255.20 15241.10 14.11 15269.30 15441.50 15424.90 16.59 15458.10

(3.3) 15273.80 15237.20 36.60 15310.40 15455.80 15424.20 31.57 15487.30

(3.3a) 15270.40 15230.80 39.61 15310.00 15447.70 15410.00 37.68 15485.40

(3.4) 15209.80 15172.20 37.55 15247.30 15354.60 15320.50 34.14 15388.80

(3.4a) 15204.50 15163.00 41.49 15246.00 15219.90 15179.00 40.92 15260.80

(3.5) 15205.30 15164.30 40.94 15246.20 15222.30 15183.50 38.72 15261.00

Figure 3.8 and 3.9 compares the estimated force of infection for the five countries
using pseudo-likelihood and Bayesian estimation techniques for logit and cloglog link
functions respectively for model (3.5), the best model. Also presented in the figures are
the 95% credible intervals for the Bayesian fit. It can be seen that the force of infection
peaks higher for the Bayesian analysis than the pseudo-likelihood estimate. The
Bayesian estimate reveals three peaks of the force of infection for Belgium, Finland
and Italy while the pseudo-likelihood fit reveals two peaks. The credible intervals
widen at higher age values, revealing limited information available at these age points.
In general the two methods show, for all the countries, that the forces of infection are
in the same direction. A difference in the fits is observed for England & Wales: while,
from the age of 55 onwards, the force of infection increases with the Bayesian fit, the
pseudo-likelihood fit becomes negative and thus is constrained to zero.
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Figure 3.7: Information criteria and pD for the logit link models:Left panel gives the
effective number of parameters obtained for the pseudo-likelihood and full Bayesian
approach. Right panel gives the adjusted AIC and DIC

3.5 Piecewise Constant Force of Infection

In the previous sections the force of infection was assumed to be a smooth function
of age with flexible shape. Interestingly, models with constant, linear and piecewise
constant force of infection can be easily formulated as GLMM as well. Our starting
point is a model which assumes a piecewise constant force of infection. In such a
model the force of infection is assumed to be constant within an age group. Consider
a finite age-classes population (Anderson and May, 1991) in which the population is
sub divided into K age classes. Let `1, `2, . . . , `K be the force of infection in the age
classes. The piecewise constant force of infection model is of primary interest since
it is required for the estimation of the WAIFW (who acquires infection from whom)
matrix (Anderson and May, 1991). Becker (1989) considered a model with piecewise



3.5. Piecewise Constant Force of Infection 61

Age

l(a
)

0 10 20 30 40 50 60

0.
0

0.
05

0.
10

0.
15

Belgium

Age

l(a
)

0 10 20 30 40 50 60

0.
0

0.
05

0.
10

0.
15

England & Wales

Age

l(a
)

0 10 20 30 40 50 60

0.
0

0.
05

0.
10

0.
15

Finland

Age

l(a
)

0 10 20 30 40 50 60

0.
0

0.
05

0.
10

0.
15

Italy

Age

l(a
)

0 10 20 30 40 50 60

0.
0

0.
05

0.
10

0.
15

Poland

Pseudolikelihood fit
Bayesian fit
95% Credible intervals

Figure 3.8: model (3.5) pseudo-likelihood estimate of force of infection (full line),
Bayesian estimate of force of infection (broken line) and 95% credible intervals (dot-
ted) using logit link function

constant force of infection of the form

π(a) = exp
(− [

ΣK−1
k=1 `k(ak − ak−1) + `K(a− aK−1)

])
, for aK−1 ≤ a < aK .

(3.14)
Note that the piecewise constant model (3.14) was discussed by Becker (1989) as a
fixed effects model with the number of parameters equal to the number of age classes
which can be fitted to the data as GLM with log link function. In such a model the
prevalence is given by

π(a) = 1− eη(a).

Figure 3.10 shows the linear predictor for the piecewise constant model for a case in
which the population is divided into three age classes with force of infection equal to
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Figure 3.9: model (3.5) pseudo-likelihood estimate of force of infection (full line),
Bayesian estimate of force of infection (broken line) and 95% credible intervals (dot-
ted) using cloglog link function

`1, `2 and `3, respectively. The linear predictor for this case is given by

η1 = `1a → dη1
da = `1, for a < a1,

η2 = `1a1 + `2(a− a1) → dη2
da = `2, for a1 ≤ a < a2,

η3 = `1a1 + `2(a2 − a1) + `3(a− a2) → dη3
da = `3, for a2 ≤ a < a3.

As illustrated in Figure 3.10 the force of infection is the slope of the linear predictor
at each age class. We turn now to formulate the piecewise constant model as a special
case of a GLMM with a linear penalized spline and a log link. For this model, the
linear predictor is given according to (3.1), for a polynomial of degree one, as

η(a) = β0 + β1a +
K∑

k=1

uk(a− tk)+, (3.15)
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Figure 3.10: The linear predictor for a model with three age groups.

where the truncated power basis function can be adapted from (3.1). Hence, for a
population with K age classes, tk = ak. Note the GLMM in (3.15), regardless of
the number of age classes, consists of 4 parameters: the two fixed effects and the
two variance components. However, the effective number of parameters is not fixed.
Using log link function implies π(a) = 1 − exp(−η(a)). Taking the first derivative of
the linear predictor with respect to age, the force of infection is obtained as

η1 = β0 + β1a → dη1
da

= β1, for a < a1,

η2 = β0 + β1a + u1(a− a1)+ → dη2
da

= β1 + u1, for a1 ≤ a < a2,

η3 = β0 + β1a + u1(a− a1)+ + u2(a− a2)+ → dη3
da

= β1 + u1 + u2, for a2 ≤ a < a3.

Figure 3.11 shows the linear predictor for the GLMM (3.15). The force of infection
for the GLMM is the sum of the slopes at each age group. Hence, at the k’th age
group, the force of infection is given by

`k =
π
′
k(a)

1− πk(a)
= η

′
(a) = β1 +

i∑

k=1

uk.
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Figure 3.11: GLMM. The linear predictor for a model with three age groups.

The parametrization of the constant piecewise model as GLMM is not unique
for this specific model but models with constant or linear force of infection can be
expressed as GLMM as well. For all models the linear predictor is given by η(a) =
Xβ + Zu.

Table 3.8: Models for the force of infection using GLMM.

Model for Linear Predictor Basis function σ2
u link function

the force of infection

Constant β0 + β1a linear σ2
u = 0 log

Linear β0 + β1a + β2a
2 quadratic σ2

u = 0 log

Piecewise constant Xβ + Zu linear σ2
u > 0 log

Flexible Xβ + Zu any σ2
u > 0 any
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Figure 3.12: Estimated prevalence and force of infection for the piecewise constant
model (full line) and the quadratic spline model (dotted line)

Table 3.8 presents different models for the force of infection and their GLMM
representation. The model formulation for a model with constant force of infection
is identical to the constant piecewise model (3.15). The main difference between the
model is the variance of the random effects. The case with σ2

u = 0 implies that
η = β0 + β1a and therefore a constant force of infection. A model with linear force
of infection can be fitted using quadratic penalized spline and a log link function.
Similar to the model with constant force of infection, one needs to test if σ2

u = 0 (i.e.
η(a) = β0 + β1a + β2a

2).

Figure 3.12 shows the constant piecewise model for B19 in Belgium. Seven age
classes, [0,3), [3,6), [6,12), [12,18), [18,25), [25,45), and [45,65], according to the school
structure of Belgium, were considered with the knots t1 = 3, t2 = 6, t3 = 12, t4 =
18, t5 = 25 and t6 = 45. The dotted line in the Figure corresponds to a quadratic
spline model using the logit link function and 20 knots. The constant piecewise
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model yielded a deviance of 3428.72 on 5.93 effective number of parameters giving
an adjusted AIC of 1.1189. The deviance of the quadratic spline model is 3431.42
with 7.56 effective number of parameters yielding a slightly increased adjusted AIC
of 1.12083.

3.6 Discussion and Conclusion

In this chapter we have discussed the model extension of the simple penalized spline
model to accommodate a discrete covariate, country in this case. Among the various
models considered, the model which allows country-specific intercepts provides useful
interpretations. Using the logit link function the odds ratios between each country
and the baseline country are proportional, where the exponent of the estimated coun-
try effect is the proportionality constant. Applying the complementary log-log link
to the model yields proportional force of infection ratios between each country and
the baseline country and a proportionality constant is the same as that mentioned
for the logit link. An advantage of these additive models is that the effects are sim-
ple to summarize and interpret, requiring only a single parameter. In general this
enables comparisons of the prevalences and forces of infection between country cate-
gories without having to look at the smooth function of age. However, when different
smoothing functions are allowed for each country the proportionality feature does not
hold and the odds ratio and the force of infection ratios become age-dependent.

The procedure for fitting the models had to be chosen. The method of likelihood
estimation using the NLMIXED SAS procedure required excessive computation and
demanded large amounts of storage for the estimation of the 20 × 20 diagonal co-
variance matrix corresponding to the 20 knots. A possible solution was to use the
likelihood approach based on the full Bayesian analysis. The drawback encountered
with the Bayesian approach was that convergence for all model parameters to their
posterior distributions could not be achieved. However, convergence was considered
satisfactory since the fixed effects parameters of the spline models attained conver-
gence. An alternative strategy to fit the models was the pseudo-likelihood approach
implemented with the GLIMMIX SAS procedure.

Another important point concerned model selection. The model fit statistics re-
ported by the GLIMMIX SAS procedure are not recommended to compare between
different models since the pseudo data change each time the mean structure changes.
However, we used the pseudo-likelihood estimates to plug them into the hat matrix
obtaining the effective number of parameters as the trace of the hat matrix. With the
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trace and deviance given the pseudo-likelihood estimates, a model selection procedure
based on an adjusted AIC discussed by Ruppert et al. (2003) was employed. The
adjusted AIC model selection criterion was compared with the DIC criterion of the
Bayesian approach. The two approaches to model selection yielded similar conclu-
sions regarding the best model. Moreover, we have shown that the effective number
of parameters are higher for the Bayesian technique than with pseudo-likelihood esti-
mation, a finding that can be explained by the added variability into Bayesian models
through prior distribution assignment for each parameter.

We have also shown that the piecewise constant force of infection can be formu-
lated as GLMM using linear penalized splines with the log link function. Furthermore
by imposing various constraints other models with constant and linear force of infec-
tion can be formulated as penalized spline models, leading to an appreciation of the
flexibility of the penalized splines.





Chapter 4

Estimation of the Prevalence

and Force of Infection of

Hepatitis C Among Injecting

Drug Users in Five European

Countries

Unlike the previous chapters which use non- or semi-parametric modeling of the preva-
lence and force of infection, this chapter focuses primarily on modeling the prevalence
and the force of infection using parametric models. In addition the estimated preva-
lence using the parametric model is compared with another nonparametric approach
based on isotonic regression. The problem of interest in this chapter concerns hepati-
tis C virus (HCV) infection among injecting drug users. The hepatitis C virus is the
leading cause of known liver diseases in most industrialized countries. It is a common
cause of cirrhosis and hepatocellular carcinoma (HCC) as well as the most common
reason for liver transplantation. At least 170 million people worldwide are believed
to be infected with this virus. Following the identification of hepatitis A and hepati-
tis B, this disorder was categorized in 1974 as “non-A, non-B hepatitis.” In 1989, the
hepatitis C virus was discovered and was found to account for the majority of those
patients with non-A, non-B hepatitis (Baker 2002). hepatitis C virus (HCV) is an

69
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RNA virus of the Flaviridae family. There are 6 HCV genotypes and more than 50
subtypes. These genotypes differ by as much as 30 to 50 percent in their nucleotide
sequences. The virus also has a high mutation rate. The extensive genetic hetero-
geneity of HCV has important diagnostic and clinical implications, causing difficulties
in vaccine development and the lack of response to therapy (Baker 2002).

HCV transmission occurs primarily through exposure to infected blood. This ex-
posure exists in the context of injection drug use (IDU), blood transfusion, solid organ
transplantation from infected donors, use of unsafe medical practices, occupational
exposure to infected blood, through birth to an infected mother, multiple heterosexual
partners, and high-risk sexual practices (Baker 2002). Historically, in industrialized
countries, blood transfusions and administration clotting factor concentrates were the
most important mode of transmission. However, following the introduction of current
blood screening strategies in the early 1990s, HCV infection via these routes has be-
come a rare event in industrialized countries (Mathëı et al. 2002). hepatitis C seems to
be acquired rapidly after initiation of drug injection and many people may have been
infected as a result of occassional experimentation with the drug (Mathëı et al. 2002).
Once infection has occurred, the virus replicates in the liver and can be detected in
the serum using polymerase chain reaction (PCR) within 1-2 weeks. Detectable anti-
body to HCV is present in majority of cases by 12 weeks, though in small proportion
this is delayed or does not occur. The majority of acute infections are asymptomatic
or with minor symptoms. Mathëı et al. (2002) reported that between 60% and 90%
of people acutely infected develop chronic infection, of which an unknown but small
proportion will clear the infection over a period of time.

In context of childhood infectious diseases, the epidemiological quantity of interest
is the force of infection, which is the rate at which the susceptible become infected.
Under the assumptions of life long immunity and that the disease is in a steady state
the prevalence and the force of infection can be estimated from seroprevalence data
(Grenfell and Anderson 1985). Parametric models for the prevalence and the force
of infection of childhood infections estimated from seroprevalence data are discussed
by Grenfell and Anderson (1985) who model the force of infection with a polynomial
function of the host age. Other parametric models fitted within the framework of
generalized linear models (GLM) with binomial error (McCullagh and Nelder 1989)
were discussed by Becker (1989), Diamond and McDonald (1992) and Keiding et al.
(1996) who model with complementary log-log link function in order to parameterize
the prevalence and the force of infection as a Weibull model. Becker (1989) suggested
to model a piecewise constant force of infection by fitting a model with a log link. In
the case that other covariates, in addition to exposure time, are included in the model,
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Jewel and Van Der Laan (1995) proposed, for current status data, a proportional
hazards model with constant force of infection which can be fitted as a GLM with
a complementary log-log link. Grummer-Strawn (1993) discussed two parametric
models for current status data, the first one being a Weibull proportional hazards
model with complementary log-log link and the second being the log logistic model
with logit link function. For the latter, the proportionality in the model is interpreted
as proportional odds. Farrington (1990) and Farrington et al. (2001) proposed a non
linear model for which the force of infection is restricted to be non negative and
applied the model for measles, mumps and rubella. For childhood infectious diseases,
the exposure time is the host age and the prevalence and force of infection are assumed
to be age dependent. In the context of hepatitis C, the exposure time is the length of
the injecting career, i.e., it is the time interval from the age of entering into the risk
group (the age at first injection) to the age at test, assuming uninterrupted exposure.
In addition to the length of the injecting career other behavioral risk factors such
as sharing syringes, sharing injecting paraphernalia and frequency of injecting can
influence the transmission of HCV and therefore the impact of these risk factors on
the transmission parameters is of primary interest. The aim of the analysis presented
in this chapter is to investigate how the above risk factors, as measured by self report
at the time of interview, are associated with the prevalence and force of infection of
HCV across the six studies. In Section 4.1 we describe the study design, the main risk
factors under investigation and discuss the statistical methodology used in order to
investigate the associations of the risk factors on both the prevalence and the force of
infection. Descriptive analysis and statistical models which were used to estimate both
the prevalence and the force of infection are discussed in Section 4.2. The analyses of
this chapter are available in Namata et al. (2008e).

4.1 Data and Methods

4.1.1 Study Design

Sample Size and Demographics

The data used for the analyses presented in this chapter consists of six seroprevalence
samples of injecting drug users from five European countries: Belgium (N=335), two
studies from the Czech Republic (N=237,754), Italy (N=947), Spain (N=511) and
Sweden (N=310). Two IDUs sub populations were considered for the analysis: (1)
ever injectors, i.e., IDUs who gave an affirmative answer to the question “did you ever
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Table 4.1: Data per study in the given study periods: Sample sizes and prevalence of
HCV.

Ever Recent

Study Injectors Injectors

Study Period N(%HCV+) N(%HCV+)

Belgium 2006 335 (78.2) 97 (85.6)

Czech Republic I 1998-2001 237 (20.7) 185 (18.9)

Czech Republic II 2002-2003 754 (29.8) 661 (30.9)

Italy 2005 947 (76.6)

Spain 2001-2003 511 (73.6) 427 (75.9)

Sweden 2004-2006 310 (86.5)
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Figure 4.1: Sample size and number of HCV seropositives per study for ever injectors.
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inject drugs” and (2) recent injectors, i.e, IDUs who injected drugs in the last month
before the interview. All participants recruited in the studies were ever injectors
which means that recent injectors are a subset of the ever injectors. It is worth
noting that the Italian and the Swedish studies provided no information for recent
injectors. For more details about these cross-sectional surveys we refer to Sutton et
al. (2008). Table 4.1 presents the size of the data for analysis for each study, the
periods in which they were collected and proportions of HCV seropositives for recent
and ever injectors. The prevalence of HCV for ever injectors, presented in Table 4.1
and Figure 4.1, ranges between 20.7% in the first Czech Republic study to 86.5% in
the Swedish study. In addition to the serological test, all IDUs who participated in
the study were interviewed and information about demographic characteristics and
injecting behavior was collected. Table 4.2 presents the demographic characteristics
of the participants. The average age at interview ranges between 20.1 (SD=4.1) in the
first study of Czech Republic to 39.2 (SD=7.9) in the Belgian study. The proportion
of males among the participants ranges between 22.4% (first study of Czech Republic)
to 85.8% in Sweden. Pearson chi square tests for independence (see second row of
Table 4.3) reveal that the proportion of HCV positive across all studies (except the
second study from the Czech Republic) is equal for males and females. The age
at which the IDUs started their injecting career (the age at first injection) ranges
between 17.9 (SD=3.2) for the first study of the Czech Republic to 22.7 (SD=7.5)
in Belgium. Two analyses were considered. The first analysis includes ever injectors
from all studies and in the second only IDUs who were classified as “recent” IDUs were
included in the analysis (i.e., from the studies in Belgium, the Czech Republic and
Spain). Finally, Figure 4.2 shows the proportion of HCV seropositive as a function
of the length of the injecting career of the ever IDUs and reveals, as expected, an
increasing trend of seropositive proportion with respect to the length of the injecting
career. In the next section we will investigate this pattern in more detail.

Behavioral risk Factors

• Sharing Syringes

In addition to the length of the injecting career, HCV transmission is associ-
ated with behavioral risk factors of the IDUs. It is well documented (Mathëı et
al. 2006) that IDUs who share syringes, other paraphernalia and have high fre-
quency of injecting per day are exposed to a higher risk of infection. Information
about ever syringe sharing is available in all studies except for Italy. Figure 4.3
and Table 4.3 (third row) show the distribution of HCV seropositive for ever
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Figure 4.2: Proportion of HCV seropositive by the length of the injecting career for
ever injectors.

injectors who share or do not share syringes. For all studies, the prevalence of
HCV among IDUs who report ever sharing syringes is higher than the preva-
lence of IDUs who never shared syringes. Pearson chi-square tests indicate that
self reported syringe sharing is a significant risk factor in Belgium, the second
study from the Czech Republic and Spain. However, syringe sharing in the past
month before the interview is borderline significant for Belgium.

• Sharing Other Paraphernalia

Table 4.3 (fourth row) and Figure 4.3 show the distribution of HCV seropreva-
lence among IDUs who ever or never shared other paraphernalia than nee-
dles/syringes (for the second study in the Czech Republic, Spain and for Swe-
den). The prevalence of HCV for the IDUs who share other paraphernalia is
equal to 30.6%, 77.2%, and 92.1% respectively in the three studies. Pearson chi-
square tests reveal that self reported sharing of other paraphernalia is significant
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Figure 4.3: Proportion of HCV seropositive by sharing status (No=IDUs who never
shared syringes or other paraphernalia, Yes=IDUs who ever shared).

in the Swedish study.

• Frequency of Injections

Information about the self reported frequency of injections in the last month
before the interview is available in the second study for the Czech Republic
and in the Spanish study. In both studies the prevalence of HCV reveals an
increasing trend when the number of injections per day increases (see Figure 4.4)
and it was found to be a significant risk factor in both studies for ever injectors
(last row, Table 4.3).
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Figure 4.4: Proportion of HCV seropositive by frequency of injecting in past month.

4.1.2 The Exposure Time - The Length of the Injection Career

The time of exposure is the length of the injecting career and it is considered to be
the length of time (in years) in which the IDUs are in the risk group. The exposure
time is defined as the difference between the age at test and the age at first injection,
i.e. we assume a continuous injecting career. For the second study from the Czech
Republic the information about the age at first injection is not available. Therefore
the length of the injecting career is taken as the midpoints of the grouped duration
of injection, i.e, midpoints of 1-6 months, 6-12 months, 1-2 years, 2-5 years, 5-10
years and more than 10 years. For the last group the length of the injecting career is
considered to be 10 years. Figure 4.5 presents the proportion of HCV seropositive (left
panels) when, except for Czech Republic study two, the length of the injecting career
is grouped in time intervals of 1 year. The right panels in Figure 4.5 show the sample
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Table 4.4: Mean Exposure time per study and analysis.

Exposure time

Study Ever Recent

Mean (SD) Mean (SD)

Belgium 16.48 (8.78) 16.86 (8.81)

Czech Republic I 2.20 (2.45) 2.31 (2.37)

Czech Republic II 3.60 (3.05) 3.74 (3.08)

Italy 13.87 (7.92)

Spain 6.49 (4.54) 6.47 (4.47)

Sweden 13.89 (12.00)

size at each exposure time. The mean length of the injecting career is presented in
Table 4.4. For ever injectors, the mean injecting time ranges from 2.2 years (SD=2.5)
in the first Czech Republic study to 16.5 years (SD=8.8) in Belgium. For the recent
injectors information is available for Belgium, the Czech Republic studies and for
Spain with mean injecting time ranging from 2.3 (SD=2.4) in the first Czech study
to 16.9 (SD=8.8) in Belgium.

4.1.3 Statistical Methodology

In the analysis discussed below, attention is placed on modeling the prevalence of
seropositive HCV (π(t)) among the IDUs population and the force of infection `(t),
which is the rate at which susceptible individuals become infected, both as a function
of the exposure time. The force of infection is defined as `(t)dt=P(infected between
t and t + dt| susceptible at t). Let Λ(t) =

∫ t

0
`(t)dt and π(t) the probability to be

infected before exposure time t, then π(t) = 1−exp(−Λ(t)). Consider a cross-sectional
prevalence sample of size N and let ti be the exposure time of the i’th subject. Instead
of observing the exposure time at infection we observe a binary variable Yi such that

Yi =





1 if subject i had experienced infection before exposure time ti,

0 otherwise.
(4.1)
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Figure 4.5: Left panels: Proportion of HCV sero positive by exposure time among ever
injectors, Right Panels: sample size by exposure time.

the binomial log likelihood is given by

L(β) =
N∑

i=1

Yi log {π(ti)}+ (1− Yi) log {1− π(ti)} . (4.2)
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Note that all observations in the sample are either left censored (if the IDU was
infected before the test) or right censored (if the IDU was infected after the test).
In this chapter we follow the parametric approach of Diamond and McDonald (1992)
and Keiding et al. (1996) who proposed generalized linear model (McCullagh and
Nelder, 1989) for the binary data with a linear predictor given by

η(t) = µ + β log(t). (4.3)

A model with complementary log-log link function implies that the prevalence is

π(t) = 1− exp(−αtβ), (4.4)

where α = exp(µ). Note that model (4.4) implies an underlying Weibull distribution
in the susceptible class. The force of infection in this model is given by

`(t) = αβtβ−1. (4.5)

In case that other covariates are included in the model the linear predictor becomes

η(t) = log(α) + β log(t) + Zγ, (4.6)

where Z is a design matrix of the risk factors and γ is the parameter vector to
be estimated. The probability to become infected before exposure time t is π(t) =
1− exp(−αtβ exp(Zγ)) and the Weibull force of infection in this case is

`(t|Z) = α exp(Zγ)βtβ−1. (4.7)

4.2 Data Analysis

The analysis presented in this section was carried out in three parts. In the first
part of Section 4.2.1 the association between HCV, HIV and HBV was investigated
using Pearson chi-square tests for independence. In the second part of the analysis of
Section 4.2.1 multiple logistic regression models were used in order to investigate the
influence of the behavioral risk factors on the prevalence of HCV. In Section 4.2.2,
the Weibull model discussed in Section 4.1.3 is used in order to model the prevalence
and the force of infection for HCV and to assess the impact of the risk factors on both
the prevalence and the force of infection.

4.2.1 Descriptive Analysis

The Prevalence of HCV, HBV and HIV

Typically three diseases: infection with hepatitis C virus, hepatitis B virus and Hu-
man Immunodeficiency virus were investigated among injecting drug users for the
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Table 4.5: Testing independence between HCV, HBV and HIV using Pearson chi
square test. Chi square value (P value) are shown.

Study HCV vs HBV HCV vs HIV HBV vs HIV

Belgium 3.23 (0.0724)

Czech Republic I 14.12 (0.0002)

Italy 68.94 (<.0001) 17.35 (<.0001) 23.61 (<.0001)

Spain 16.86 (<.0001) 26.60 (<.0001) 6.88 (0.0087)

Sweden 39.63 (<.0001)

six studies presented in this chapter. However, for the second study from the Czech
Republic there was information only on HCV while for the first study from the Czech
Republic and the Swedish study, information on HIV was not available. Figure 4.6
shows the proportions of seropositive IDUs for each of the viruses per study. Among
the three viruses, HCV had higher prevalence in all studies than HBV and HIV. The
seropositive percentages of both HCV and HBV were lowest for Czech Republic study
one and highest for Sweden.
Using the Pearson chi-square tests of independence, the presence of association be-
tween the three diseases was examined. Test statistics and p-values are shown in
Table 4.5. At a 5% significance level, we notice a highly significant association be-
tween all possible pairs of the three diseases (except in the Belgian study). This
indicates that IDUs who are infected by one of the diseases are more likely to be
infected with the other diseases as well. The measure of the magnitude of this associ-
ation was studied using odds ratios. Table 4.6 presents the odds ratios and their 95%
confidence intervals. Except in Belgium, the odds ratios are all highly significant (the
lower confidence limits are all above one). For interpretation of results, let us consider
the Swedish study and the relation between HCV and HBV. For an injecting drug
user, the odds to be infected by both HBV and HCV are 19 times the odds of being
not infected at all. Similar interpretations apply to the rest of the studies except
Belgium. The association patterns will not be investigated further in this chapter.
For an elaborate discussion about the association patterns and co-infection we refer
to Shkedy et al. (2008).
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Figure 4.6: Proportion of HCV, HBV and HIV seropositive by study for ever injectors.

Descriptive Analysis of the behavioral risk Factors

The influence of the behavioral risk factors on the prevalence among both “recent”
and “ever” injectors was explored using multiple logistic regression models in which
the dependent variable is the seroprevalence status and the behavioral risk factors
were included as covariates in the models. The odds ratios, their confidence intervals
and p-values are shown in Table 4.7 and 4.8, respectively.
We first discuss the results obtained for the first analysis in which the six studies
were included. For the second Czech study, gender, ever sharing of syringes and the
frequency of injecting in the last month were found to be significant risk factors. The
odds of males to be infected with HCV were 1.4 times the odds for women. The
IDUs who ever shared syringes had 1.9 higher odds of infection relative to those who
did not share syringes. IDUs who injected more than once per day had 1.9 odds of
infection compared to those who injected less than once in a month. For the Italian
study only age at first injection was significant with the odds of infection lower for
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Table 4.6: Odds Ratios and their confidence intervals between HCV, HBV and HIV .

Study HCV vs HBV HCV vs HIV HBV vs HIV

Belgium 5.31 (0.70 , 40.47)

Czech Republic I 5.15 (2.04 , 13.00)

Italy 5.74 (3.68 , 8.97) 5.68 (2.27 , 14.20) 3.80 (2.15 , 6.73)

Spain 3.70 (1.92 , 7.16) 4.51 (2.45 , 8.31) 1.84 (1.16 , 2.91)

Sweden 18.96 (5.72 , 62.92)

a unit increase in age at first injection. The age at first injection, sharing syringes
and the frequency of injecting were significant risk factors for the Spanish study. The
IDUs who shared syringes were about 3 times more at risk for HCV than those who
did not share syringes while those who injected drugs daily were about twice more
at risk than those who injected less weekly. Similar patterns were observed in the
Belgian study. IDUs who shared syringes were about 4.2 times higher at risk than
IDUs who did not share syringes. For the Swedish study, sharing other paraphernalia
was the significant risk factor with a risk 3.5 times higher for the IDUs who shared
other paraphernalia than those who did not share other paraphernalia.
In the second analysis, only studies for which information about recent injectors is
available were considered. The analysis shows that frequency of injecting in the last
month prior to the interview and age at first injection, respectively, for the second
Czech Republic study and for Spain, are significant risk factors.

4.2.2 Modeling the Prevalence and Force of Infection

Exposure Time

In the first step we consider the Weibull model (4.4) in which the only predictor is
the exposure time. Parameter estimates are shown in Table 4.9 and the predicted
models for the prevalence are shown in Figure 4.7. Note that the Weibull models
reveal the same patterns as the non parametric isotonic regression models (Barlow
et al. 1972 and Robertson et al. 1988). The force of infection curves are shown
in Figure 4.8. The forces of infection for all studies are shown for the whole range
of exposure time in the left panel. The right panel shows forces of infection up to
20 years in order to enable a closer look at earlier exposure times. For the second
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Table 4.7: Ever injectors. Estimated odds ratios, confidence intervals and significance
pvalues for risk factors using Logistic regression model.

Belgium Czech Rep I Czech Rep II Italy Spain Sweden

Gender

males vs females 1.95 1.42 1.45 0.92 1.26 0.93

(1.00,3.81) (0.69,2.92) (1.02,2.06) (0.60,1.41) (0.80,2.05) (0.41,2.09)

0.049 0.341 0.041 0.709 0.347 0.857

Age 1st Injection 0.95 1.03 0.97 0.89 1.00

(0.92,0.99) (0.94,1.14) (0.94,0.99) (0.85,0.95) 0.97,1.04)

0.012 0.526 0.032 0.0002 0.906

Sharing Syringes

ever vs never 4.26 1.57 1.92 2.72 0.78

(2.24,8.11) (0.43,5.79) (1.19,3.09) (1.64,4.52) 0.35,1.71)

< .0001 0.498 0.007 0.0001 0.529

Sharing other paraph

ever vs never 0.86 0.97 3.53

(0.55,1.35) (0.60,1.56) (1.56,8.01)

0.508 0.885 0.003

Frequency of Injection

more×/day vs <1/month 1.997

(1.12,3.56)

0.019

daily vs <1/month 1.94

(1.07,3.5)

0.028

4-6×/week vs <1/month 0.900

(0.45,1.78)

0.763

2-3×/month vs <1/month 1.591

(0.94,2.69)

0.084

1-4×/month vs <1/month 0.732

(0.42,1.28)

0.277

Frequency of Injection

daily vs less/week 1.81

(1.01,3.23)

0.047

1-6days vs less/week 1.25

(0.74,2.11)

0.401
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Table 4.8: Recent injectors. Estimated odds ratios, confidence intervals and signifi-
cance pvalues for risk factors using Logistic regression model.

Belgium Czech Rep I Czech Rep II Spain

Gender

males vs females 1.06 1.30 1.29 1.23

(0.20 , 5.66) (0.56 , 3.04) (0.89 , 1.85) (0.73 , 2.09)

0.945 0.544 0.170 0.439

Age 1st Injection 0.94 1.03 0.89

(0.86 , 1.01) (0.92 , 1.15) (0.83 , 0.94)

0.103 0.615 0.0001

Syringe Sharing

in past month

yes vs no 4.19 1.05 1.01

(0.48 , 36.80) (0.42 , 2.68) (0.48 , 2.14)

0.196 0.912 0.978

Frequency of Injection

more×/day vs <1/month 2.15

(1.06 , 4.36)

0.034

daily vs <1/month 2.14

(1.05 , 4.38)

0.036

4-6×/week vs <1/month 1.01

(0.46 , 2.23)

0.972

2-3×/month vs <1/month 1.65

(0.85 , 3.21)

0.138

1-4×/month vs <1/month 0.82

(0.41 , 1.63)

0.565

Frequency of Injection

daily vs less/week 1.93

(0.99 , 3.73)

0.053

1-6days vs less/week 1.10

(0.61 , 2.00)

0.748
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Czech study, Belgium, Italy, Spain and Sweden, the force of infection is high in the
beginning of the injecting career and decreases for IDUs with relatively long career.
The opposite pattern is revealed for the first Czech study. However, for the first Czech
Republic study, the parameter estimate for the exposure time (β in (4.3)) is equal to
1.1272 with 95% confidence interval of (0.75,1.50) which implies that the hypothesis
that β = 1 can not be rejected. Note that a model for which β = 1 implies a constant
force of infection. In this case the Weibull model (4.4) can be rewritten as a model
with complementary log-log link function implying that the prevalence is

π(t) = 1− exp(−αt) and `(t) = α. (4.8)

The constant force of infection for the first Czech Republic study is shown in Fig-
ure 4.8. Likelihood ratio tests, presented in the last row of Table 4.9, between the
model with constant force of infection and the Weibull model indicate that in all other
studies the Weibull model is to be preferred.
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Figure 4.7: Estimated prevalence of HCV by exposure time obtained from the Weibull
model and isotonic regression (step function).

Including the Risk Factors in the Model

As mentioned in Section 4.1.3 the proportional hazard model (4.6) allows us to include
risk factors and to estimate the impact of a specific risk factor on the transmission
of HCV among the IDUs population. In the second step of the analysis the basic
model, discussed in the previous section, was adjusted for the risk factors introduced
in Section 4.1.1, i.e., age at first injection and gender (all studies, except the second
Czech study), ever sharing syringes (Belgium, Czech Republic, Spain, and Sweden),
ever sharing other paraphernalia (Czech Republic second study, Spain and Sweden)
and frequency of injecting in the past month before interview (Czech second study
and Spain). The final model for each study is presented in Table 4.9. For all studies,
no significant association was found between gender and the prevalence of HCV.

• Age at First Injection

The age at first injection was found to be a non statistically significant risk
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Figure 4.8: Force of infection by exposure time for all studies. W– Weibull model, C–
constant force of infection model. The left panel shows the force of infection against
exposure time 0–45 years, the right panel gives the force of infection for 0–20 years
of exposure.

factor in the Belgian and the first Czech study. Parameter estimates for the
age at first injection are equal to 0.019 (SE=0.0093), 0.047 (0.023) and 0.0375
(0.0145) for Italy, Spain and Sweden, respectively. This indicates that the force
of infection for IDUs who started to inject at relatively older age is higher than
the force of infection for IDUs who started to inject at relatively young age.

• Sharing Syringes

Sharing syringes is found to be significant in Spain, Belgium and the second
Czech study. For Spain, the parameter estimate is equal to 0.3 (SE=0.1276)
which implies that the force of infection for IDUs who ever shared syringes
is 1.34 (exp(0.3)) higher than the force of infection of IDUs who never share
syringes. In Sweden the force of infection of IDUs who ever shared syringes is
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1.16 times higher than the force of infection of IDUs who never shared syringes,
although the parameter estimate is found to be non significant. In Belgium, the
force of infection of IDUs who ever shared syringes is 1.87 (exp(0.6282)) times
higher than the force of infection of IDUs who never shared syringes. In the
second Czech study, the force of infection for IDUs who ever shared syringes is
1.45 (exp(0.3752)) times higher than the force of infection for IDUs who never
share syringes.

• Sharing other Paraphernalia

Sharing other paraphernalia is found to be a significant risk factor in Sweden.
The force of infection for IDUs who share other injecting materials is 2.22 higher
than the force of infection of IDUs who do not share other paraphernalia.

• The Frequency of Injection

The frequency of injecting is available for Spain and the second Czech study.
It was found to be a significant behavioral risk factor in Spain. No significant
difference was found between IDUs who inject 1-6 days per week and those who
inject less days per week. However, the force of infection for IDUs who inject
on a daily basis is 1.4 times higher (exp(0.3473)) than the force of infection of
IDUs who inject less days per week.

4.2.3 Second Analysis: IDUs With Recent Injecting Career

Information about recent drug injection (i.e, injecting drugs in the last month before
the interview) is available in the studies from Belgium, the Czech Republic and Spain
and allow us to compare the transmission parameters between the recent and the
ever injectors (including recent injectors). The number of ever injectors who were
recent injectors can be seen in Table 4.1, 97 out of 335 for Belgium for instance.
The model parameter estimates for the four studies of recent injectors are given in
Table 4.10. The final model, for the four studies, contains the intercept and the
duration of injecting, which is a highly significant as similarly observed in the ever
injectors. Since information on recent syringe sharing was not available for the second
Czech study, its effect cannot be compared with that of the ever injectors. The full
model for Spain shows marginal significance of the effects for age at first injection
and IDUs who injected drugs on a daily basis relative to those who injected less
days per week. The parameter estimate for recent syringe sharing changes sign in
the recent analysis although this was non significant. Considering the length of the
injecting career, Figure 4.9 shows the estimated models for both prevalence and force
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of infection, revealing only minor differences between recent and ever injectors. For
Belgium and Spain, we see slight increments of the force of infection for recent relative
to the ever injectors at the beginning of the injecting career but hardly any difference
between the two as the injecting career gets longer. While the force of infection in the
second Czech study shows higher force of infection for recent than for ever injectors at
short injecting times, the force of infection is higher for ever than the recent injectors
at longer injecting times. The opposite trend is observed for the first czech study.

4.3 Discussion

Injecting drug users are divided into subgroups according to whether they were ever
injectors or recent injectors. In this paper we investigated how the transmission of
HCV is influenced by the risk behavior in the different subpopulations. We have
shown that IDUs who share syringes experience a higher force of infection than IDUs
who do not share syringes. Similar patterns were observed for all studies in which
information about sharing syringes was available. It is important to mention that
even when sharing syringes was found to be not significant (Czech Republic study
one and Sweden) the same general pattern was observed. Sharing other paraphernalia
(available in Sweden) increase significantly the force of infection as well. As expected,
the frequency of injection has an impact of the transmission of HCV among IDUs.
As the frequency of injection increases, the risk to be infected increases. The results
obtained from the Spanish study indicate that the force of infection for IDUs with
high frequency of injection indeed increases.
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Figure 4.9: Estimated models for the recent and ever injectors in Belgium (upper
panels), the Czech Republic (middle panels) and Spain (lower panels). Left panels:
Prevalence of HCV by exposure time, Right Panels: Force of infection by exposure
time.
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Chapter 5

Model Averaging in Microbial

Risk Assessment Using

Modified Fractional

Polynomials and Generalized

Linear Mixed Models

The data that we have dealt with in the previous part have the common feature that
they are transmitted from human to human. However, human exposure to microor-
ganisms such as yeasts, molds, bacteria, protozoa, helminths (worms) through food
and/or water consumption dictates potential risk of food-borne infection or illness if
such microbes survive in the human system. The dose exposed to is a measurement
of microorganisms in relation to their ability to cause infection or illness. The unit
of measurement of the dose is the colony forming unit (cfu). Ensuring food safety
is directly proportional to a reduction of infectious or toxic food-borne pathogens.
This process involves the identification of the microorganisms, how much of the or-
ganism an individual is exposed to and the risk associated with a given dosage. Such
relations have been studied using various dose-response models to estimate risks in
diverse range of problems. It is indeed very important to provide unbiased risk esti-
mates including uncertainty as much as possible, in order to allow stakeholders (policy
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98 Chapter 5. Model Averaging in Microbial Risk Assessment

makers, producers, consumers) to assess risks as fairly as possible (given the current
state of knowledge).
With regard to dichotomous responses, a dose-response model is a function describ-
ing the relationship between the dose administered and the probability of infection
or disease. In general, any monotonic function which is bounded by zero and one
is a possible function for such dose-response relationship. In the literature, several
dose-response models have been proposed and they can be categorized into mechanis-
tically and empirically oriented models. For example, Haas et al. (1999) developed a
Beta-Poisson (BP) model from a mechanistic viewpoint where the biological process
is readily taken into account. This model, owing to its biological plausibility, has re-
ceived much attention in many pathogen dose-response studies (Teunis et al. 1996). It
should be noted however that several assumptions are made in the biological process
which can be questioned. Alternatively, so-called empirical models such as the log-
logistic (LL), the log-normal (LN) and the extreme value (EV) models have also been
used (Haas et al. 1999). Whichever origin the models may have, the conventional way
to making inferences has largely been dependent on a single chosen model based on
some model selection criterion. Then, one typically proceeds as though that was the
only model and thus discards the other possible models and model uncertainty. Using
a single selected model ignores variation that arises from other competing models and
as a result leads to too small standard errors and narrow confidence intervals which
are unrealistically optimistic (Burnham and Anderson, 2002).
Instead of proceeding with one single model, one could argue that each model is a
possible candidate dose-response model. Buckland et al. (1997) proposed a way of
incorporating the uncertainity that arises from other competitive models by model
averaging using Akaike Information Criterion (AIC) weights. The better a model,
according to a certain selection criterion, the larger the weight given to this model.
This approach is further discussed by Burnham and Anderson (2002). In the disci-
pline of microbial risk assessment, model averaging has been employed. Bailer et al.
(2005) accounted for model uncertainty for experimental studies of quantal responses
using a Bayesian approach and weighted the models using the Bayesian Information
Criterion (BIC). In the frequentist approach model averaging has been used by Kang
et al. (2000) to estimate microbial risk using AIC and by Moon et al. (2005) to
estimate effective microbial doses for infection and illness using Kullback Information
Criterion (KIC). In both papers, a mix of the four aforementioned mechanistically
and empirically oriented models is considered. In this chapter, a further extension of
dose-response modeling is investigated.
It is clear that a flexible dose-response model should be used to describe the data
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well. Typically, in the empirically oriented models, a linear dose trend is assumed,
which might be too restrictive in the setting of microbial risk assessment. Therefore,
we propose to extend the dose-response models by considering fractional polynomials
within the family of empirical models. While Royston and Altman (1994) proposed
the fractional polynomials as a pre-defined set of (generalized) linear models, we
propose a modified set according to a biological rationale. To account for the model-
uncertainty in the extended set of possible dose-response models, we estimate the risk
to Salmonella typhi and to Campylobacter jejuni data sets by model averaging.

The rest of this chapter proceeds with a set of plausible models considered in Section
5.1, a review of the model averaging approach in Section 5.2 followed by an application
of the method to human volunteer data sets on Salmonella typhi and Campylobacter
jejuni in Section 5.3 and simulation studies in Section 5.4. In Section 5.5 and 5.6 the
model averaging approach is applied to several strains data on Campylobacter jejuni
infection in chicken. A discussion and concluding remarks in Section 5.7 wind up the
chapter. The contribution of this chapter to the application of model averaging on
single-strain data can be found in Namata et al. (2008b).

5.1 Microbial Dose-Response Models

The data for microbial risk assessment can be obtained experimentally where dose
groups are known or as a result of outbreaks in which the exact ingested dose is not
known but can be approximated. The extracted information to study, for instance,
dichotomous dose-response relations involves a total number ni of individuals or ani-
mals to which a particular dose di of microbes was administered and out of these it
is observed that Xi become infected or ill. To translate this process statistically, Xi

is assumed to follow a binomial distribution with parameters ni and π(di), the latter
being the probability that a subject becomes infected (or ill). Dose-response models
refer to models for π(d) as a function of d.

Different dose-response models with one, two, and three parameters have been pro-
posed and studied in microbial risk assessment literature (Kodell et al. 2002; Moon
et al. 2005). The inclusion of biological processes gave rise to so-called mechanistic
models of which the Beta-Poisson (BP) model is the most popular and extensively
used one (e.g., Haas et al. 1999). However, the adequacy of the BP model as auto-
matic “default” model has been questioned (Marks et al. 1998). Alternative models
such as the so-called log-normal (LN), log-logistic (LL), and the extreme value (EV)
model have been suggested (see e.g. Pinsky, 2000). These latter models are standard
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generalized linear models (GLM), used in statistics to analyse binary response data.
At first sight, they however seem to lack any biological interpretation.

The purpose of this section is to indicate that many models, such as GLM’s, could
have a biological interpretation, similar to that of the BP model. A basic concept in
applied statistics states that the true or correct model is never known (or does even not
exist) and that all dose-response models are wrong; they are merely approximations
(e.g., Burnham and Anderson, 2002). So, the best one can do is to use a good
approximating model. Now, depending on the setting and the willingness to rely on
assumptions or on data or on both, there are three options: i) to select the model in
advance, possibly prior to data collection, only based on biological assumptions (e.g.,
the BP model); ii) to select a final model from a set of candidate models; and iii) to
use as a final model a weighted average over all or some candidate models. For option
ii) and iii) this set of candidate models may be (partly) inspired or based on biological
knowledge and assumptions. In this chapter we opt for the model averaging approach,
since it incorporates explicitly the process of model selection and thus reflects model
uncertainty. A crucial aspect of both options ii) and iii) is the use of a well-defined
and rich enough set of candidate models. For that purpose, we consider the family
of fractional polynomials (FP) (Royston and Altman, 1994) and propose a modified
version of FP’s, such that they obey some basic biological constraints. These models
together with the BP, LN, LL, and EV model will define our set of candidate models.

5.1.1 A Generic Mechanistic Dose-Response Model

So-called mechanistic dose-response models reflect underlying biological processes in-
volved in the kinetics of microorganisms in the body of a human or animal host, in
order to determine the proportion that develop an adverse event, owing to exposure
to a source containing infectious microorganisms (Haas et al. 1999). The formulation
of such models involves different subprocesses.

First of all, let f1 be the probability of ingesting j organisms by an individual, from
an exposure source of mean dose d. The second subprocess generates the event that
k out of j organisms survive to initiate infection. Let f2 be the probability of such
an event, where r is the probability of survival of a single pathogenic organism in a
human host. The total probability that k organisms survive to initiate infectious foci
is then given by

f(k|r, d) =
∞∑

j=k

f1(j|d)f2(k|j, r). (5.1)

There is uncertainty about the minimal number of surviving organisms, kmin, that
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are needed to initiate infection. For k ≥ 1, denote by f4,k the probability that k

surviving organisms initiate infection. The probability of infection, for a given mean
dose d, can then be written as

πI(d) =
∞∑

k=1




∞∑

j=k

f1(j|d)f2(k|j, r)

 f4,k

which, when f4,k equals 1 for k ≥ kmin and f4,k is 0 for k < kmin, simplifies to

πI(d) =
∞∑

k=kmin

∞∑

j=k

f1(j|d)f2(k|j, r). (5.2)

One can expect different sources of heterogeneity in this approach. The variation in
r between hosts and/or between pathogenic organisms can be described by a density
f3(r) over the interval [0,1], leading to the marginal distribution

πI(d) =
∫ 1

0




∞∑

k=kmin

∞∑

j=k

f1(j|d)f2(k|j, r)

 f3(r)dr. (5.3)

Model (5.3) can be considered as a generic mechanistic dose-response model. Different
choices for f1, f2, f3 and numerical values of kmin, and further assumptions, lead to
different specific dose-response models. For example, taking f1 to follow a Poisson
distribution with mean d, a binomial distribution for f2, a degenerate distribution for
f3 (so taking r as fixed), and assuming all parameters in each of these components
are different (no shared parameters), we get the dose-response model

πI(d) = Γkmin(rd) (5.4)

where Γkmin(rd) is the cumulative distribution of an incomplete gamma distribution
with parameter kmin, evaluated at rd. Taking kmin = 1 leads to the exponential
model

πI(d) = 1− exp(−rd). (5.5)

In some situations, choices and assumptions can be verified separately, such as the
Poisson assumption in dose verification studies (see e.g. DuPont et al. 1995).

Choosing f1 and f2 and kmin = 1 as above, but now with f3 a beta density, the
dose-response relation expressed as a complement of the confluent hypergeometric
function becomes

πI(d) = 1−1F1(α, α + β,−d) (5.6)
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which Furumoto and Mickey (1967) approximated to the popular BP model

πI(d) = 1−
(

1 +
d

β

)−α

(5.7)

provided β À α. Teunis and Havelaar (2000) demonstrate that the BP model can
produce results similar to the hypergeometric relation, as long as the conditions given
by Furumoto and Mickey (1967) are fulfilled. But it is also shown that the BP model
might lead to completely different results, which can even be misleading in case very
little information is available. See also Teunis et al. (2004).

From the general mechanistic model (5.3) many other models can be derived. Choos-
ing f1 as a Poisson random variable with mean µ(d), kmin = 1, f3 as the point
mass distribution I[r=1], and f2 as the point mass distribution I[k=j], we can recover
the classical models and the fractional polynomials. Taking, respectively, µ(d) =
exp(α+β log d), µ(d) = ln(1+exp(α+β log d)) and µ(d) = ln(1/(1−Φ(α+β log d)))
leads to the EV, LL and LN models with Φ denoting the standard normal cumulative
distribution function. In a similar way, by replacing the linear predictor in µ(d) the
fractional polynomial models introduced in Section 5.1.2 can be reconstructed. Haas
et al. (1999) and Kodell et al. (2002) motivated the biological plausibility of the LL,
LN and EV model from a completely different angle, namely from their respective
latent tolerance distribution.

We would like to emphasize that many other models can be derived from equa-
tion (5.3) and they can equally be useful in microbial risk assessment. The Poisson
model and the binomial model for components f1 and f2 are based on an intrinsic
assumption of independence and homogeneity. One could as well work with a zero-
inflated Poisson, an overdispersed Poisson or even Poisson mixtures for f1, and a
similar story holds for f2. Obviously many other distributions on [0,1] can replace f3.
Likewise, kmin can be a probability distribution as long as they are monotone increas-
ing (since biologically that probability can not decrease as a function of k). In fact any
cumulative distribution function on the integers, having value 0 at k = 0, can play the
role. Many choices would however not lead to analytically tractable formula’s. But
any possible model, whatever choice of different distributions in (5.3), has some funda-
mental properties in common: no infection in the case when no pathogenic organisms
are ingested; the more organisms ingested, the higher the probability of infection; and
an extremely high dose exposure always results in infection; or equivalently, assuming
the model is a differentiable function of dose d with derivative π′I(d),

lim
d→0

πI(d) = 0, (5.8)
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π′I(d) ≥ 0, (5.9)

lim
d→∞

πI(d) = 1. (5.10)

Properties (5.8) to (5.10) are exactly the properties of a cumulative distribution func-
tion on [0,∞), and therefore they can always be written as a GLM (such as the
exponential) or a generalized nonlinear model (such as the approximate BP model,

with identity link and predictor
(
1 + d

β

)−α

. Other examples include again the LL,
LN, EV and the fractional polynomial models (Section 5.1.2). In Section 5.3 we il-
lustrate that, depending on the application, additional constraints can or should be
added to the minimal set of properties (5.8) to (5.10).

A crucial concept in the theory of multimodel inference is the fact that a “correct
model” does not exist. Any model is incorrect and merely tries to approximate the
true process. It is rather a matter of selecting a good approximating model or,
in the approach of multimodel inference, to average over a certain subset of good
approximating models, assigning higher weights to better approximating models. In
this philosophy it is obviously important to define a rich enough family of candidate
models. Here, as indicated in Section 5.1.2, the family of fractional polynomials have
shown to be a well-defined and rich family of models. All models considered in this
chapter as candidate models are listed in Table 5.1. They are the typical models used
in the literature, the aforementioned BP, LL, LN, EV, extended with a new family of
fractional polynomial models, as introduced in Section 5.1.2.

Infection versus Illness

Often the data refer to illness rather than to the infection status of the individual.
This is the case for the Salmonella typhi data (Hornick et al. 1970) in Table 5.2.
These are experimental data on healthy adult volunteers, not exposed previously.
Infection was not reported separately, only illness, which was described as developing
fever (higher than 103 oF) followed by headaches and abdominal pain. Nevertheless
the BP model is typically used for analyzing such illness data. But since

P (illness|d) = P (illness|infection, d)πI(d),

the BP model loses its direct biological interpretability for estimating the illness proba-
bility P (illness|d). Moreover in most cases no data are available on P (illness|infection, d)
and little is known in order to build a biologically meaningful parametric model. In
most cases however, one can assume the probability P (illness|d) to share the same
fundamental properties or constraints (5.8), (5.9) and (5.10), namely being monotone
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increasing from 0 to 1, when dose d varies from 0 to ∞ (see e.g. Teunis et al. 1999).
This again, even more strongly, motivates the point of view that many statistical
models are biologically plausible.

5.1.2 Fractional Polynomials

Other more flexible models like the fractional polynomials can be competitors of the
BP, LN, LL and EV commonly used models in microbial risk assessment. Unlike
conventional polynomials that take on positive integer powers (up to the degree being
considered), FP’s use powers from a predefined set, P = {−2,−1,−0.5, 0, 0.5, 1, 2, ...,

max(3,m)}, with m the degree of the FP (see below). In principle, other fractional
(negative and positive) powers can be considered, but Royston and Altman (1994)
illustrated that the above restricted set is sufficient for most practical purposes. The
family of fractional polynomials has been shown to be useful in several other, some-
what related fields of application, see e.g. Faes et al. (2003, 2006ab), Shkedy et al.
(2006), Hens et al. (2007).
Fractional polynomials of degree m with powers p1 ≤ p2 ≤ · · · ≤ pm, and in the GLM
framework for binary response data, are defined as

g(π(d)) = β0 +
m∑

j=1

βjHj(d), (5.11)

where for j = 1, . . . ,m,

Hj(d) =





dpj if pj 6= pj−1,

Hj−1(d) log(d) if pj = pj−1

with p0 = 0 and H0(d) ≡ 1. In (5.11), π denotes the probability on the adverse effect
of interest (infection, illness) and g some link function (such as the logit or probit
link). As shown by Royston and Altman (1994), FP’s of degree m higher than 2 are
rarely needed in practice.
The FP model (5.11) does not automatically satisfy properties (5.8) to (5.10). First
of all, first order FP’s seem to be less appropriate as a family of candidate models.
For example, the model g(π(d)) = β0 + β1d

p1 with p1 > 0, or with p1 < 0 and
β1 > 0, does not obey property (5.8). Property (5.10) does not hold for p1 > 0 and
β1 < 0, or for p1 < 0. Similar issues for the model g(π(d)) = β0 + β1 log(d)p1 . Since
no unambiguous or clear and consistent constraints on parameters βk and powers p1

guarantee properties (5.8) to (5.10), we do not further consider modifications of first
degree FP’s. Second degree FP’s however can be modified to satisfy the fundamental
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Table 5.1: Set of candidate dose-response models: BP (approximate Beta-Poisson),
LL (log-logistic), LN (log-normal), EV (extreme-value), FPL (FP with logit link),
FPN (FP with probit link), FPEV (FP with complementary log-log link). Φ denotes
the standard normal cumulative distribution function. π(d) refers to the illness or
infection probability. The column Subset P shows the admissible values for the powers
p1 and p2 from the set P, defining the FP candidate models.

π(d) Parameters Subset P Model

1− (1 + d/β)−α α > 0, β > 0 BP

1/(1 + exp[−(α + β log(d))]) α < 0, β > 0 LL

Φ(α + β log(d)) α < 0, β > 0 LN

1− exp[(− exp(α + β log(d)))] α < 0, β > 0 EV

1/(1 + exp[−(β1(log(d + 1))p1 + β2(log(d + 1))p2 )]) β1 < 0, β2 > 0 p1 < 0, p2 > 0 FPL

Φ(β1(log(d + 1))p1 + β2(log(d + 1))p2 ) β1 < 0, β2 > 0 p1 < 0, p2 > 0 FPN

1− exp[(− exp(β1(log(d + 1))p1 + β2(log(d + 1))p2 ))] β1 < 0, β2 > 0 p1 < 0, p2 > 0 FPEV

properties as follows

g(π(d)) = β1(log(d+1))p1 +β2(log(d+1))p2 with β1, p1 < 0 and β2, p2 > 0 (5.12)

for a given link function g. So, as compared to the original definition of FP’s, there
is no intercept, d is replaced by log(d + 1) and coefficients and powers of both terms
have to be opposite in sign. The first term on the rhs of (5.12) guarantees property
(5.8), while the second one guarantees property (5.10), and both terms are automat-
ically monotone. We will use the typical GLM links: the logit, the probit and the
complementary log-log link. In the applications and the simulations in the next sec-
tions, model (5.12) will be fitted by constrained maximum likelihood, to ensure that
β1, p1 < 0 and β2, p2 > 0.

An overview of all candidate models considered in this chapter and the functions to
derive them are displayed in Table 5.1.2 (for all admissible powers in the set P). We
include the “classical” models (Beta-Poisson, log-logistic, log-normal, and extreme-
value) and the family (5.12) of modified fractional polynomials of degree 2 with logit,
probit and complementary log-log link. Note that all models have the same degree
of complexity (two parameters). This set of candidate models contains a total of
M = 40 models: 4 classical models (BP, LL, LN, EV) and three times 12 FP models
(for three different link functions: 3 negative powers, each combined with 4 positive
powers).
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The SAS procedure NLMIXED has been used to fit all models. To improve compu-
tational stability, the BP model is reparameterized in terms of mean and variance
related parameters, using

eu

1 + eu
=

α

α + β
and ev = α + β. (5.13)

The approach used to calculate confidence intervals for the predicted probabilities
was to calculate the confidence intervals on the scale of the underlying continuous
variable (i.e., on the log-odds scale or the probit scale or the cloglog scale) and the
resulting upper and lower confidence bounds are then converted into probabilities
using the logistic distribution, the cumulative distribution function of the standard
normal distribution or a Gompertz distribution. For the BP model, which does not use
any of the three link functions, the confidence intervals for the estimated parameters
are obtained using a logit-based transformation (shown in the next section).

5.2 Model Averaging Approach

This section recapitulates the necessary formulae for model averaging according to
Burnham and Anderson (2002). The set of M plausible candidate models presented
in Section 5.1 is fit to the data and the probability of infection (or illness) π(d) at
some low dose d is estimated for each of the models. Let us denote the estimate for,
or better conditional on, model m as π̂m(d). The ‘unconditional’ estimate for the
probability of infection is defined as (suppressing the specification of the dose level d)

π̂a =
M∑

m=1

wmπ̂m,

with weights

wm =
exp(− 1

24m)
∑M

h=1 exp(− 1
24h)

.

So π̂a is a weighted average of the conditional estimates with weights quantifying the
relative importance of the different conditional models. These weights are based on
the AIC differences 4m, defined as the difference between the AIC value of model m

and the AIC value of the ‘best’ model with the lowest AIC value.
From Buckland et al. (1997) the estimated variance around the averaged risk estimate
is taken as:

v̂ar(π̂a) =

[
M∑

m=1

wm

√
v̂ar(π̂m) + (π̂m − π̂a)2

]2

.
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This variance estimator is clearly the sum of two components: the conditional sam-
pling variance v̂ar(π̂m) of π̂m given model m and a term for the variation in the
estimates across the M models (π̂m − π̂a)2. The square root of this sum is then
weighted by the weights wm. This formulation is useful since it accounts for both the
within and between model variability in estimating the variance of the averaged risk
estimate.
In order to guarantee that the confidence interval for π(d) is part of the eligible (0,1)
range, we first construct a confidence interval [l, u] for the logit transformed param-
eter logit(π(d)) = log(π(d)/(1− π(d))) and next transform it back to the probability
scale using the expit transformation, leading to [el/(1 + el), eu/(1 + eu)]. Since both
transformations forth and back are monotone one-to-one, the coverage probability
remains exactly the same (see also Burnham et al. 1987). Using the delta-method to
calculate the standard error of logit(π̂a) for the construction of the interval [l, u], the
final large sample confidence interval for π(d) can be written as

[
π̂a

π̂a + (1− π̂a)C
,

π̂a

π̂a + (1− π̂a)/C

]
with C = exp

[
zα/2ŜE(π̂a)
π̂a(1− π̂a)

]
.

5.3 Application to Single Strain Data

In this section, we illustrate the use of the 36 modified fractional polynomials (5.12)
along with the four classical models and their model average in order to estimate the
risk of illness or infection. In a first study, we use data from Hornick et al. (1970)
where the volunteers ingested wild-type Salmonella typhi in 45 mL of milk. The data
are presented in Table 5.2. It includes the dose of pathogenic Salmonella typhi, the
total number of individuals exposed and the individuals who eventually became ill.
Thus, in the first study we investigate the probability of illness due to Salmonella typhi
in relation to the ingested dose. A second study, investigates the risk for infection due
to Campylobacter jejuni (Black et al. 1988), with the data presented in Table 5.3. It
includes the dose of Campylobacter jejuni, the total number of individuals exposed,
the individuals infected and the individuals who eventually became ill. Both data
sets are also discussed in Teunis et al. (1996).



108 Chapter 5. Model Averaging in Microbial Risk Assessment

Table 5.2: Results of the dose-response experiment (Hornick et al. 1970) for
Salmonella typhi Quailes in healthy human subjects. Dose: number of organisms
ingested. Total: number of subjects at a given dose. Ill: number of subjects with
symptoms of typhoid fever.

Dose (cfu) Total Ill

103 14 0

105 116 32

107 32 16

108 9 8

109 42 40

Table 5.3: Results of the dose-response experiment (Black et al. 1988) for Campy-
lobacter jejuni in healthy volunteers. Dose: ingested number of C. jejuni A3249.
Total: number of subjects exposed to a given dose. Infected: number of subjects in-
fected (excretion of C. jejuni). Ill: number of subjects with gastro-enteric symptoms
(fever, vomiting, diarrhea).

Dose (cfu) Total Infected Ill

8 ×102 10 5 1

8 ×103 10 6 1

9 ×104 13 11 6

8 ×105 11 8 1

1 ×106 19 15 2

1 ×108 5 5 0

1 ×108 4 4 2
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5.3.1 Salmonella Typhi

Table 5.4 shows, for Salmonella typhi, the estimated risks at a dose of 100cfu, their
standard errors and 95% confidence intervals for the 40 fitted models, ordered from
best to least fitting according to AIC goodness-of-fit criterion. The estimated prob-
ability of illness due to Salmonella typhi ranges from 7.96×10−22 to 0.07407. The
question is, on which model should inference be based. Using the Akaike information
criterion, the relative importance of each model is calculated. One way is to use the
estimates from a model that has AIC-weight greater or equal to 0.9 (Haas et al. 1999).
However, none of our models meets that criterion and it is unlikely in reality that such
a model would be found. For this data example, the 5 best fitting FPs have somewhat
higher weights but still far below 0.9. Instead of selecting one final model, model av-
eraging based on all available models (or a selection) can be used. The averaged risk
estimate is shown on the last line of Table 5.4 together with its standard errors and
95% Wald confidence intervals. The confidence intervals are wider than for individual
models but this is expected because model averaging incorporates variability between
competing models. This uncertainty indicates the importance of model averaging,
especially at low doses where we do not have data. This uncertainty is also clearly
visualised in Figure 5.1. The curves are shown for the BP, LL, LN and EV models as
well as the five best fitting FPs for reasons of clarity of the figure.
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Table 5.4: Salmonella typhi. Estimated probability of illness at dose 100cfu. For the
Beta-Poisson and the model averaged(MA) estimates logit-back transformed CIs are
used while the other model estimates use CIs back transformed according to their
corresponding link function. Fractional polynomials are denoted as FPlink(powers).

Model wald CIs

Model AIC Weights π̂(100) SE(π̂(100)) lower upper

FPEV(−2,3) 20.4273 0.07474 0.00010 0.00012 1.04E-05 0.00103

FPN(−2,3) 20.9307 0.05811 2.13E-09 1.09E-08 2.41E-14 1.27E-05

FPEV(−1,3) 21.1171 0.05294 0.01986 0.00935 0.00787 0.04969

FPN(−1,3) 21.1683 0.05160 0.00489 0.00492 0.00055 0.02851

FPEV(−1,2) 21.2208 0.05026 0.00964 0.00532 0.00326 0.02829

FPEV(−2,2) 21.6446 0.04067 2.87E-05 3.77E-05 2.18E-06 0.00038

FPL(−2,3) 21.7401 0.03877 5.96E-05 8.70E-05 3.41E-06 0.00104

FPEV(−0.5,2) 21.7845 0.03792 0.04254 0.01531 0.02091 0.08553

FPEV(−0.5,1) 21.8671 0.03638 0.01506 0.00735 0.00577 0.03901

FPL(−1,3) 21.9483 0.03494 0.01373 0.00825 0.00420 0.04394

FPN(−1,2) 21.9491 0.03492 0.00058 0.00086 2.34E-05 0.00766

FPN(−0.5,3) 22.0374 0.03341 0.04247 0.02072 0.01494 0.10136

FPEV(−1,1) 22.0668 0.03293 0.00262 0.00187 0.00065 0.01055

EV 22.0954 0.03246 0.04779 0.01626 0.02442 0.09242

FPN(−0.5,2) 22.1012 0.03237 0.01304 0.00948 0.00273 0.04729

FPEV(−0.5,0.5) 22.2591 0.02991 0.00648 0.00386 0.00201 0.02079

FPEV(−0.5,3) 22.4418 0.02730 0.07407 0.02189 0.04127 0.13108

FPL(−0.5,3) 22.6063 0.02514 0.05436 0.02073 0.02541 0.11247

LN 22.7896 0.02294 0.01159 0.00852 0.00239 0.04275

FPEV(−1,0.5) 22.8050 0.02276 0.00094 0.00079 0.00018 0.00492

FPN(−2,2) 22.8445 0.02232 2.94E-13 2.16E-12 2.61E-20 7.74E-08

FPL(−1,2) 22.9265 0.02142 0.00469 0.00344 0.00111 0.01956

FPL(−0.5,2) 23.0040 0.02061 0.02479 0.01204 0.00948 0.06322

FPN(−0.5,1) 23.0333 0.02031 0.00083 0.00112 0.00004 0.00890

Continued on next page
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Table 5.4 – continued from previous page

Model wald CIs

Model AIC Weights π̂(100) SE(π̂(100)) lower upper

FPEV(−2,1) 23.5374 0.01578 3.25E-06 5.16E-06 1.44E-07 7.31E-05

FPN(−1,1) 23.6367 0.01502 4.17E-06 1.12E-05 1.16E-08 0.00044

FPL(−2,2) 23.6483 0.01493 7.17E-06 1.22E-05 2.55E-07 0.00020

LL 23.7942 0.01388 0.02329 0.01128 0.00894 0.05930

FPN(−0.5,0.5) 23.8865 0.01326 5.01E-05 0.00010 5.77E-07 0.00177

FPL(−0.5,1) 24.0609 0.01215 0.00564 0.00389 0.00146 0.02160

FPL(−1,1) 24.5806 0.00937 0.00066 0.00066 0.00009 0.00465

FPEV(−2,0.5) 24.7196 0.00874 6.30E-07 1.15E-06 1.78E-08 2.23E-05

FPN(−1,0.5) 24.8096 0.00836 2.87E-08 1.14E-07 4.49E-12 2.77E-05

FPL(−0.5,0.5) 24.8644 0.00813 0.00168 0.00145 0.00031 0.00905

FPN(−2,1) 25.4658 0.00602 7.96E-22 9.85E-21 9.87E-34 1.20E-12

FPL(−1,0.5) 25.6564 0.00547 0.00014 0.00017 0.00001 0.00151

BP 26.0011 0.00461 0.00070 0.00030 0.00030 0.00162

FPL(−2,1) 26.1635 0.00425 1.81E-07 3.95E-07 2.49E-09 1.31E-05

FPN(−2,0.5) 26.9687 0.00284 6.38E-30 1.11E-28 1.33E-46 4.46E-17

FPL(−2,0.5) 27.5996 0.00207 1.08E-08 2.79E-08 6.71E-11 1.72E-06

MA estimate 0.01285 0.01603 0.00109 0.13404

5.3.2 Campylobacter Jejuni

Applying model averaging over all 40 models on the Campylobacter jejuni data ex-
ample, we obtained an averaged risk estimate, at the dose=10cfu, of 0.21281 with
a standard error equal to 0.29038 and confidence intervals from 0.00896 to 0.88986.
The five best fitting models extended with the “classical” models BP, LL, LN and
EV (if not included in the top 5) are shown in Figure 5.2(a). This figure shows some
curves with a peculiar pattern left from the data range. They can be characterised by
a steep increase at low dose levels. Based on biological knowledge or expertise such
models might be considered as not plausible. Extending the minimal set of criteria
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Figure 5.1: Estimated probabilities of illness for the Salmonella typhi data of Table
5.2.
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(5.8), (5.9) and (5.10), such models might be excluded from the initial set of candidate
models as follows.
In addition to (5.8), (5.9) and (5.10), the constraint

π′I(d) ≤ C, for d in some low dose range, (5.14)

controls the increase of the models in the low dose range by excluding all models whose
derivatives exceed a certain threshold C in the range. The choice of C depends on
the particular application and should be governed by additional biological expertise.
Here we illustrate this idea by applying the threshold C = 0.2 on the dose range from
1e-20 to 5 cfu (transformed to log base 10 scale). As a result 14 models are excluded
and averaging is restricted to 26 models. Figure 5.2(b) shows the fitted curves of the
five best fitting models, extended with the BP, LN, LL and EV model. Since now
the EV model is ranked on the fourth position, there is one curve less as compared
to Figure 5.2(a).
Table 5.5 shows the estimated risks at a dose of 10cfu, their standard errors and
95% confidence intervals for Campylobacter jejuni for the 26 fitted models after the
rule-out, arranged from best to least fitting according to AIC. In this example, only
small differences in AIC are seen, and all models get about the same weight. The
probability of infection due to Campylobacter jejuni at a dose of 10cfu ranges from
4.52×10−11 to 0.3236. By model averaging we obtain an averaged risk estimate of
0.089 (last row of Table 5.5), which is about two times less than the averaged risk
estimate over all 40 models. The confidence interval based on the model average is
still very wide [0.00248,0.79301] (averaging over all 40 models led to [0.00896, 0.88986]
), but it has to account for the (inevitable) high degree of model uncertainty when
extrapolating at low dose levels.
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Figure 5.2: Estimated probabilities of infection for the Campylobacter jejuni data of
Table 5.3. Left panel: the fitted curves of the classical models (BP, LL, LN, EV)
together with the five best fitting FP’s for the full set of 40 candidate models. Right
panel: the fitted curves of the five best models together with the classical models (BP,
LL, LN) for the reduced set of 26 candidate models. The reduced set is based on
the exclusion criterion: derivatives in the low dose region from dose=5cfu and below
should not exceed 0.2.
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Table 5.5: Campylobacter jejuni. Estimated probability of infection at dose 10cfu.
For the Beta-Poisson and the model averaged(MA) estimates logit-back transformed
CIs are used while the other model estimates use CIs back transformed accord-
ing to their corresponding link function. Fractional polynomials are denoted as
FPlink(powers).

Wald CIs

Model AIC Weights π̂(10) SE(π̂(10)) lower upper

FPEV(−2,3) 19.8482 0.05985 0.04804 0.13982 0.00014 1.00000

FPEV(−2,2) 20.1956 0.05031 0.01373 0.04392 2.5E-05 0.99951

FPN(−2,2) 20.2796 0.04824 0.04627 0.28467 5.1E-14 0.99998

EV 20.3201 0.04727 0.32355 0.14222 0.12735 0.67428

FPEV(−0.5,1) 20.4400 0.04452 0.20325 0.15167 0.04303 0.69081

FPL(−2,2) 20.4464 0.04438 0.05259 0.23678 5.0E-06 0.99838

LN 20.5414 0.04232 0.26749 0.17085 0.05072 0.65434

FPEV(−1,1) 20.5778 0.04156 0.08722 0.11266 0.00642 0.72542

FPN(−0.5,1) 20.6301 0.04049 0.15863 0.19185 0.00532 0.71023

LL 20.6902 0.03929 0.26161 0.16551 0.06198 0.65514

FPEV(−0.5,0.5) 20.6943 0.03921 0.12564 0.12056 0.01778 0.63389

FPN(−1,1) 20.7200 0.03871 0.05069 0.13091 2.1E-05 0.79464

FPL(−0.5,1) 20.7747 0.03766 0.15911 0.17442 0.01448 0.70895

FPL(−1,1) 20.8612 0.03607 0.06192 0.11950 0.00117 0.78824

FPEV(−2,1) 20.8765 0.03579 0.00173 0.00636 1.3E-06 0.90770

BP 20.8785 0.03576 0.08640 0.16325 0.00164 0.84489

FPN(−2,1) 20.8927 0.03550 5.99E-6 9.10E-5 8.3E-28 0.98264

FPEV(−1,0.5) 20.8967 0.03543 0.04249 0.06614 0.00192 0.62518

FPN(−0.5,0.5) 20.8970 0.03543 0.05852 0.11247 0.00028 0.62542

FPL(−0.5,0.5) 21.0254 0.03323 0.06983 0.10306 0.00334 0.62726

FPL(−2,1) 21.0299 0.03315 0.00072 0.00390 1.9E-08 0.96585

FPN(−1,0.5) 21.0638 0.03259 0.00602 0.02502 3.6E-08 0.64223

FPL(−1,0.5) 21.1848 0.03068 0.01571 0.03731 0.00014 0.64367

Continued on next page
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Table 5.5 – continued from previous page

Wald CIs

Model AIC Weights π̂(10) SE(π̂(10)) lower upper

FPEV(−2,0.5) 21.3155 0.02874 0.00036 0.00146 1.2E-07 0.66425

FPN(−2,0.5) 21.3927 0.02765 4.52E-11 1.10E-9 7.9E-43 0.75888

FPL(−2,0.5) 21.5031 0.02617 2.39E-5 0.00014 1.9E-10 0.75422

MA estimate 0.08900 0.15178 0.00248 0.79301

5.4 Simulation Study for Single Strain Data

In a small simulation study we explore and compare the performance of the estimated
risk based on three model approaches: each of the 40 candidate models individually,
the best fitting model according to AIC (varying from run to run), and by model
averaging. The model chosen most often by AIC across the simulations was also
monitored.
A total of S = 1000 datasets were generated. For each run, we assume the same
dose levels (d) and total number of individuals exposed (n) as those in the Salmonella
typhi data set, and generate the number of ill individuals based on the BP model
or based on a fractional polynomial EV model, with parameters based on the esti-
mates from these models fitted on the Salmonella typhi data. In the first setting,
the data sets were generated using a BP model taking parameters u = −11.8739
and v = 10.2810 in formulas (5.13). In the second setting, the data sets were gen-
erated using the cloglog fractional polynomial with powers (p1, p2) = (−1, 3), as one
of the best models in the Salmonella typhi example, with parameters β1 = −18.1425
and β2 = 22.5300 × 10−5. The dose response curves corresponding to both settings
are shown in Figure 5.1. To the 1000 generated samples, we fit the set of 40 can-
didate models described earlier, and estimate the risk to Salmonella typhi illness π

at dose=100cfu, for each of the candidate models but also keeping track of the best
fitting model according to AIC. Finally, an averaged risk over the candidate models
is calculated. We summarize the performance of the different methods by reporting,
across the simulations, the average variance of the estimated probability of Salmonella
typhi illness (SE(π̂∗(100)))2 using model approach ∗, the average length of the 95%
confidence intervals and the coverage probability of these intervals. The variability of
the risk estimate π̂∗ about its average risk ¯̂π∗ =

∑S
s=1 π̂∗s/S over the S simulations
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was calculated as σ̂2(π̂∗(100)) =
∑S

s=1{π̂∗s− ¯̂π∗}2/(S−1), while bias = {¯̂π∗−π} gives
the difference between the average risk estimate and the true risk based on the data
generating model. The mean-squared error is given by MSE = bias2 + σ̂2(π̂∗(100)).

5.4.1 First Setting

Table 5.6 shows the results of the first setting, which uses the BP model as the true
model. Not all 40 models are shown but the BP, LL, LN and EV, and the most
frequently selected best fitting model. For this latter model it was observed which
model was selected most often by AIC after all runs were finished. The results from
the best fitting models (BFM) and by model averaging (MA) are shown as well. Note
that the BFM changes from run to run. Estimates based on the BP model have very
small bias and variance characteristics, as compared with the other models, and a
coverage close to 95%, also illustrated by Figure 5.3. Since this model is the true
simulation model, this is not unexpected. But the extremely poor behaviour of most
other models is surprisingly low. Further note that the performances of the LL, LN
and EV model are quite similar, indicating that the choice of link function has only
minor influence on the estimated risk. Figure 5.3 helps to understand these results.
The order of the simulation runs on the horizontal scale corresponds to the order
of the corresponding point estimates. So runs leading to smaller estimates are more
to the left side of the horizontal scale (as shown by the solid curve of estimates).
The right upper panel of Figure 5.3 shows that the LN tends to overestimate the
true value. The BFM (lower right panel of Figure 5.3) estimates show smaller bias
and smaller variances, showing in some way its adaptive nature, but it also tends to
underestimate the true value for most of the runs. At the right end of the horizontal
scale, it exhibits an extremely high variable pattern. This all combines to a very
low coverage of 6.6%. The model which was chosen most often as the best model is
the fractional polynomial logit-model with powers (-2,0.5). Also this model performs
surprisingly poorly in terms of coverage. The averaged risk estimate, based on all
considered models, shows small bias but relatively high variance properties. But
this model accounts for the variability introduced by the model selection procedure,
resulting in wider confidence intervals and a coverage probability of 87% (see Figure
5.3). Actually this is also a somewhat disappointing result, but compared to all other
misspecified models it is outstanding.
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Table 5.6: Simulation I results for estimated risk at dose 100cfu. For each model,
columns (2) and (3) show the simulation-average of the variance-estimates of the
estimated risk and the average confidence interval length respectively. The simulated
coverage probability of the intervals is shown in column(4). Columns (5), (6) and
(7) present the simulated squared bias, variance and mean squared error respectively.
The direction of the bias shown by the sign beside the squared bias in column (4).
† denotes the data generation model while ‡ shows the most frequently selected best
AIC model. BFM denotes the best fitting models and MA denotes model averaging.

(1) (2) (3) (4) (5) (6) (7)

Model (SE(π̂∗))2 CIlength ̂coverage (sign)b̂ias2 σ̂2(π̂∗) M̂SE
†BP 2.2E-07 0.00172 95.60 (+)7.2E-09 1.5E-07 1.6E-07

LL 0.00020 0.05833 0.00 (+)0.00079 0.00017 0.00097

LN 0.00017 0.05206 5.50 (+)0.00031 0.00013 0.00045

EV 0.00042 0.08205 0.00 (+)0.00399 0.00037 0.00437
‡FPL(−2,0.5) 1.5E-12 1.3E-05 0.00 (-)4.8E-07 2.8E-13 4.8E-07

FPL(−2,1) 5.5E-11 6.1E-05 1.20 (-)4.8E-07 1.4E-11 4.8E-07

FPL(−2,2) 9.3E-09 0.00061 25.20 (-)4.4E-07 3.5E-09 4.5E-07

FPL(−2,3) 7.1E-07 0.00329 0.00 (+)0.25271 4.9E-07 0.25271

FPL(−1,0.5) 2.1E-07 0.00245 78.40 (-)1.9E-07 1.1E-07 3.0E-07

FPL(−1,1) 2.0E-06 0.00677 95.00 (+)1.7E-07 1.2E-06 1.4E-06

FPL(−1,2) 3.3E-05 0.02515 20.10 (+)4.1E-05 2.4E-05 6.5E-05

FPL(−1,3) 0.00015 0.05211 0.60 (+)0.00037 0.00012 0.00049

FPL(−0.5,0.5) 6.3E-06 0.01165 76.60 (+)3.2E-06 4.3E-06 7.5E-06

FPL(−0.5,1) 3.4E-05 0.02541 14.70 (+)4.9E-05 2.6E-05 7.5E-05

FPL(−0.5,2) 0.00024 0.06421 0.00 (+)0.00098 0.00021 0.00119

FPL(−0.5,3) 0.00064 0.10095 0.00 (+)0.00460 0.00057 0.00517

FPN(−2,0.5) 1.1E-21 6.6E-08 0.00 (-)4.8E-07 2.0E-23 4.8E-07

FPN(−2,1) 1.1E-17 5.7E-07 0.00 (-)4.8E-07 3.3E-19 4.8E-07

FPN(−2,2) 4.0E-12 3.1E-05 0.80 (-)4.8E-07 3.5E-13 4.8E-07

FPN(−2,3) 6.6E-07 0.00318 0.00 (+)0.25072 0.00101 0.25173

FPN(−1,0.5) 1.0E-09 0.00030 11.10 (-)4.8E-07 1.8E-10 4.8E-07

Continued on next page
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Table 5.6 – continued from previous page

(1) (2) (3) (4) (5) (6) (7)

Model (SE(π̂∗))2 CIlength ̂coverage (sign)b̂ias2 σ̂2(π̂∗) M̂SE

FPN(−1,1) 8.0E-08 0.00177 51.40 (-)4.0E-07 2.4E-08 4.3E-07

FPN(−1,2) 1.1E-05 0.01511 94.50 (+)1.5E-06 6.0E-06 7.6E-06

FPN(−1,3) 0.00011 0.04364 37.00 (+)9.3E-05 7.6E-05 1.7E-04

FPN(−0.5,0.5) 6.7E-07 0.00436 80.60 (-)1.7E-07 2.7E-07 4.4E-07

FPN(−0.5,1) 1.2E-05 0.01534 91.50 (+)2.4E-06 6.8E-06 9.2E-06

FPN(−0.5,2) 0.00022 0.05914 3.30 (+)0.00042 0.00017 0.00060

FPN(−0.5,3) 0.00070 0.10403 0.00 (+)0.00340 0.00061 0.00402

FPEV(−2,0.5) 2.3E-10 9.7E-05 2.00 (-)4.8E-07 8.0E-11 4.8E-07

FPEV(−2,1) 2.0E-09 0.00026 8.70 (-)4.6E-07 8.5E-10 4.6E-07

FPEV(−2,2) 3.8E-08 0.00103 48.30 (-)3.5E-07 2.1E-08 3.7E-07

FPEV(−2,3) 2.3E-07 0.00241 83.00 (-)1.5E-07 1.3E-07 2.8E-07

FPEV(−1,0.5) 3.2E-06 0.00812 82.90 (+)1.5E-06 2.3E-06 3.7E-06

FPEV(−1,1) 1.3E-05 0.01559 28.70 (+)1.7E-05 9.7E-06 2.6E-05

FPEV(−1,2) 7.1E-05 0.03545 0.20 (+)0.00021 5.8E-05 0.00027

FPEV(−1,3) 0.00018 0.05543 0.00 (+)0.00080 0.00015 0.00094

FPEV(−0.5,0.5) 4.0E-05 0.02689 1.60 (+)9.8E-05 3.3E-05 0.00013

FPEV(−0.5,1) 0.00012 0.04453 0.10 (+)0.00048 9.8E-05 0.00058

FPEV(−0.5,2) 0.00039 0.07950 0.00 (+)0.00323 0.00034 0.00357

FPEV(−0.5,3) 0.00069 0.10514 0.00 (+)0.00870 0.00060 0.00930

BFM 9.2E-06 0.00398 6.60 (+)8.5E-07 3.8E-05 3.9E-05

MA 7.8E-05 0.08390 87.10 (+)1.9E-05 2.2E-05 4.1E-05

5.4.2 Second Setting

In a second setting, we study the performance of the different models and of the
model selected and averaged risk estimates again, now with the FPEV(−1,3) model
being the true underlying simulation model. Results are summarized in Table 5.7.
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In this setting, the MSE of the BP model is no longer the smallest, and also the
coverage probability is very small as it underestimates the true value most of the
times (see left upper panel of Figure 5.4). Again, as expected, the data generating
model FPEV(−1,3) has the smallest MSE and its coverage probability nicely reaches
the nominal as expected (see right upper panel of Figure 5.4). The best fitting model
has an average bias similar to that of the BP model, but again, an additional source
of variability enters the estimation process. The fractional polynomial EV model with
powers (-0.5,3) is chosen most often as the best model but as in the previous setting
it exhibits a very low coverage, partly also reflecting a similarly low coverage for the
BFM. The averaged risk estimate has a small bias combined with a larger variance
leading to a coverage probability of 97.90.
Both simulation settings show that model averaging has a beneficial effect in reducing
bias, in accounting for the variability induced by the model selection process, and
consequently in better coverage characteristics.
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Table 5.7: Simulation II results for estimated risk at dose 100cfu. For each model,
columns (2) and (3) show the simulation-average of the variance-estimates of the
estimated risk and the average confidence interval length respectively. The simulated
coverage probability of the intervals is shown in column(4). Columns (5), (6) and
(7) present the simulated squared bias, variance and mean squared error respectively.
The direction of the bias shown by the sign beside the squared bias in column (3).
† denotes the data generation model while ‡ shows the most frequently selected best
AIC model. BFM denotes the best fitting models and MA denotes model averaging.

(1) (2) (3) (4) (5) (6) (7)

Model (SE(π̂∗))2 CIlength ̂coverage (sign)b̂ias2 σ̂2(π̂∗) M̂SE

BP 1.5E-06 0.00309 2.40 (-)0.00036 1.1E-06 0.00036

LL 0.00015 0.05118 95.00 (+)2.0E-05 0.00013 0.00015

LN 0.00011 0.04357 89.70 (-)3.2E-05 9.4E-05 0.00013

EV 0.00028 0.06764 34.50 (+)0.00077 0.00026 0.00104

FPL(−2,0.5) 6.9E-10 0.00012 0.00 (-)0.00039 1.8E-10 0.00039

FPL(−2,1) 2.7E-09 0.00022 0.00 (-)0.00039 9.2E-10 0.00039

FPL(−2,2) 4.3E-08 0.00088 0.20 (-)0.00039 2.1E-08 0.00039

FPL(−2,3) 7.3E-07 0.00334 0.00 (+)0.23402 3.6E-07 0.23402

FPL(−1,0.5) 4.1E-07 0.00296 0.80 (-)0.00038 2.7E-07 0.00038

FPL(−1,1) 2.2E-06 0.00672 4.30 (-)0.00035 1.6E-06 0.00035

FPL(−1,2) 2.4E-05 0.02135 49.50 (-)0.00020 1.9E-05 0.00022

FPL(−1,3) 0.00010 0.04246 91.20 (-)2.1E-05 8.6E-05 0.00011

FPL(−0.5,0.5) 6.3E-06 0.01130 14.30 (-)0.00030 4.8E-06 0.00031

FPL(−0.5,1) 2.7E-05 0.02271 56.40 (-)0.00017 2.2E-05 0.00019

FPL(−0.5,2) 0.00017 0.05459 94.10 (+)3.6E-05 0.00015 0.00019

FPL(−0.5,3) 0.00046 0.08608 33.80 (+)0.00119 0.00042 0.00161

FPN(−2,0.5) 7.0E-12 3.9E-05 0.00 (-)0.00039 5.0E-13 0.00039

FPN(−2,1) 3.4E-11 5.1E-05 0.00 (-)0.00039 3.1E-12 0.00039

FPN(−2,2) 1.2E-08 0.00020 0.10 (-)0.00037 0.00026 0.00063

FPN(−2,3) 7.0E-07 0.00328 0.00 (+)0.23410 3.7E-07 0.23410

FPN(−1,0.5) 3.5E-08 0.00081 0.20 (-)0.00039 1.1E-08 0.00039

Continued on next page
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Table 5.7 – continued from previous page

(1) (2) (3) (4) (5) (6) (7)

Model (SE(π̂∗))2 CIlength ̂coverage (sign)b̂ias2 σ̂2(π̂∗) M̂SE

FPN(−1,1) 2.9E-07 0.00232 1.00 (-)0.00039 1.3E-07 0.00039

FPN(−1,2) 8.4E-06 0.01242 19.80 (-)0.00033 5.6E-06 0.00034

FPN(−1,3) 6.6E-05 0.03346 69.30 (-)0.00016 5.1E-05 0.00021

FPN(−0.5,0.5) 1.3E-06 0.00491 3.80 (-)0.00038 7.1E-07 0.00038

FPN(−0.5,1) 9.9E-06 0.01357 21.60 (-)0.00032 6.9E-06 0.00033

FPN(−0.5,2) 0.00014 0.04760 91.40 (-)1.8E-05 0.00012 0.00013

FPN(−0.5,3) 0.00047 0.08590 70.70 (+)0.00058 0.00043 0.00101

FPEV(−2,0.5) 1.0E-09 0.00014 0.00 (-)0.00039 4.4E-10 0.00039

FPEV(−2,1) 3.5E-09 0.00025 0.00 (-)0.00039 1.9E-09 0.00039

FPEV(−2,2) 3.2E-08 0.00079 0.00 (-)0.00039 2.1E-08 0.00039

FPEV(−2,3) 1.6E-07 0.00178 0.10 (-)0.00039 1.1E-07 0.00039

FPEV(−1,0.5) 2.0E-06 0.00619 2.00 (-)0.00034 1.5E-06 0.00034

FPEV(−1,1) 7.1E-06 0.01155 15.30 (-)0.00028 6.0E-06 0.00028

FPEV(−1,2) 4.0E-05 0.02651 73.50 (-)8.6E-05 3.6E-05 0.00012
†FPEV(−1,3) 0.00011 0.04284 95.60 (+)8.7E-07 9.9E-05 9.9E-05

FPEV(−0.5,0.5) 2.3E-05 0.02050 52.90 (-)0.00016 2.0E-05 0.00018

FPEV(−0.5,1) 6.8E-05 0.03442 91.50 (-)1.5E-05 6.2E-05 7.7E-05

FPEV(−0.5,2) 0.00025 0.06440 50.60 (+)0.00052 0.00024 0.00076
‡FPEV(−0.5,3) 0.00049 0.08874 4.50 (+)0.00281 0.00047 0.00328

BFM 0.00023 0.05146 35.20 (+)0.00022 0.00101 0.00123

MA 0.00048 0.12179 97.90 (+)0.00002 0.00025 0.00028

In the philosophy that a true and correct model does not exist, or that you will
never know it exactly (which seems the only realistic situation), this simulation also
shows that not just one single model is appropriate to describe the dose-response rela-
tionship of microbial risks, but there exists a whole set of possible models. Fractional
polynomials are very flexible to estimate the low-dose risk. However, the model selec-
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tion procedure induces extra variability that should be accounted for. The averaged
risk estimate gives larger weights to better-fitting models, resulting in a smaller bias.
The model selection uncertainty is accounted for in this approach, and a better cover-
age probability obtained as illustrated in Figure 5.4. However, from both simulation
settings it was evident that for this particular risk assessment application the coverage
percentages for most of the model fall far below the chosen level of confidence (0.95).
The magnitude of inflation of the coverage was certainly surprising to us and is in
itself a clear warning to be very careful and thoughtful when restricting the analysis
to one single model. It certainly motivates the use of different plausible models, at
least as a type of sensitivity analysis, but even better in a multimodel approach such
as model averaging.

5.4.3 To Include Fractional Polynomials or Not

As pointed out before, and clear from the nature of the model averaging approach,
the set of candidate models should be rich enough. This section tries to illustrate
this point by comparing the results from the data analyses in Section 5.3 and the
simulation results in the previous sections to the corresponding results of model av-
eraging over the four classical models only. Let us denote by set one the restricted
set of classical models BP, LL, LN and EV and by set two the modified flexible frac-
tional polynomials added to set one. For salmonella typhi example, the averaged risk
estimates are 0.029 (SE 0.021 and confidence interval [0.007,0.114]) and 0.01285 (SE
0.016 and confidence interval [0.001,0.134]) respectively for set one and two. The risk
estimate from set two is reduced to about half that of set one. For campylobacter
jejuni example, the averaged risk estimates are 0.2429 (SE 0.180 and confidence in-
terval [0.045,0.686]) and 0.089 (SE 0.152 and confidence interval [0.002,0.793]) for set
one and two respectively. Including fractional polynomials reduces the estimate to
about 2.5 times from not including them.

For the first simulation setting, with the restricted set one, the true risk estimate
was captured in 38.5% of the runs by the confidence intervals of the averaged risk
compared to 87.1% for set two. Also, the square bias and the variance were higher for
set one models than for set two models. In the second simulation setting, averaging
over the four models attained a coverage probability of 87.3% versus 97.9% for set two.
To this end, we see that using the richer set two, which includes the flexible fractional
polynomial models, yielded coverage probabilities closer to the nominal 95% level,
less biased and more precise risk estimates than set one.
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Figure 5.3: Simulation I: True probability of S. Typhi based on the Beta Poisson gen-
erating model and the estimated probabilities for the Beta Poisson (data generation
model), the log-normal model, the best fitting models across simulations and the av-
eraged risk. The corresponding confidence limits of the estimated risks are shown to
illustrate how best they capture the true value.

5.5 Application to Multi-Strain Data

The model averaging approach extends to settings with additional sources of het-
eregeneity, within the framework of Generalized Linear Mixed Models (GLMM, see
e.g. Molenberghs and Verbeke, 2005). Table 5.8 shows data on Campylobacter je-
juni dose exposure for different strains, the total number of chicken exposed and the
infected chicken (Chen et al. 2006). Additionally there is information about the sam-
ple, (F)resh or (L)aboratory, whether it originates from (C)hicken or (H)uman and
whether its host is (W)ickman or (L)ohmann.
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Figure 5.4: Simulation II: True probability of S. Typhi based on FPEV(-1,3) the gen-
erating model and the estimated probabilities for the Beta Poisson (taken as standard
model), the FPEV(-1,3) model, the best fitting models across simulations and the av-
eraged risk. The corresponding confidence limits of the estimated risks are shown to
illustrate how best they capture the true value.
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Table 5.8: Campylobacter jejuni data in chicken. Isolates. Sample:
F(resh)/L(aboratory). Origin: H(uman)/C(hicken). Host: W(ickham)/L(ohmann)

Group Isolate Sample Origin Host Dose Exposed Infected
1 480 F H W 10 10 0

480 F H W 1000 10 0
480 F H W 100,000 10 10

2 466 F H L 840 8 8
466 F H L 8400 7 7

3 P5444 F H L 10,000 10 10
4 P5623 F H L 5000 10 9
5 119a F C L 17,000 4 4
6 121a F C L 11,000 4 4
7 123a F C L 3500 4 2
8 UA585 F H W 95 10 10

UA585 F H W 950 10 10
UA585 F H W 9500 10 10
UA585 F H W 95,000 10 10

9* 93/146 F C W 100 10 0
93/146 F C W 1000 9 9
93/146 F C W 100,000 10 10

10* 94/146 F H W 120 10 0
94/146 F H W 1200 10 10
94/146 F H W 12,000 10 10

11* 93175 F C W 28 10 0
93175 F C W 280 10 10
93175 F C W 2800 10 10

12* 0087 F H L 30 10 3
0087 F H L 300 10 10
0087 F H L 480 10 10
0087 F H L 2000 6 6
0087 F H L 4500 8 8
0087 F H L 4800 10 10
0087 F H L 200,000 10 10

13* 81116P F C W 4 10 0
81116P F C W 40 10 10
81116P F C W 40 9 9
81116P F C W 400 10 10
81116P F C W 4000 9 9
81116P F C W 40,000 10 10

14 R3P F C W 10 10 10
R3P F C W 100 10 10

15 81-176 L C W 2000 10 8
81-176 L C W 2,000,000 10 10

16 81-176 L C L 800 9 8
81-176 L C L 80,000 10 10

Continued on next page
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Table 5.8 – continued from previous page
Group Isolate Sample Origin Host Dose Exposed Infected

17 11168 L C W 200,000 10 10
18 11168 L C L 2000 10 4

11168 L C L 20,000 10 5
11168 L C L 200,000 10 7
11168 L C L 2,000,000 10 9

19 R3 L C W 300 9 6
R3 L C W 3000 10 10

20* 81116 L C W 54 8 3
81116 L C W 540 6 3
81116 L C W 5400 5 5
81116 L C W 54,000 6 6
81116 L C W 250,000 14 14

21* 81116 L C L 35 10 0
81116 L C L 350 10 6
81116 L C L 3500 10 8
81116 L C L 100 10 4
81116 L C L 1000 10 9
81116 L C L 10,000 10 10
81116 L C L 10,000 10 10
81116 L C L 1,000,000 10 10

22 81117 L C L 35,000 10 10

The challenge here is to consider sensible candidate models which correctly account for
the different sources of variability or heterogeneity (different types of isolate, sample,
origin, and host) and to extend the model averaging approach over such a family of
candidate models. In general one can extend models as discussed in the previous
section, with fixed effects and/or random effects. It seems natural to incorporate
sample, origin and host (all binary) in the model by fixed effects and isolate by using
a random effect. But for the latter one could also consider a fixed effect. Models with
all of the covariates (sample, origin, and host) included as fixed effects and with isolate
as fixed or random effect are overparameterized. Indeed, the type of isolate covers
most of the (sample, origin, host)-combinations (except for isolate 81-176, 11168,
81116). Moreover for several isolates, there are only observations for one single dose
level, making dose response models with two or more parameters unestimable.

Therefore, to account appropriately for the heterogeneity resulting from different
types of isolates, samples, origins and hosts, we considered two approaches: (i) a
random effect for all different combinations of (isolate, sample, origin, host), leading
to a total of 22 different “groups” (as indicated in the first column of Table 5.8); in this
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approach it is possible to fit models with and without type of sample as an additional
(fixed) effect in the model (ii) a selection of 7 groups (out of the 22 groups, those
with group number marked by an asterisk ∗ in the first column), which allows a fully
fixed effects approach (one parameter for each group), again with and without type
of sample as an additional (fixed) effect in the model. Strains with only one or two
dose levels together with those that exhibited outlying observations were eliminated.
These four families of candidate models corresponds to the four parts of Table 5.9, as
discussed further on. Because of computational problems and overparameterization,
we did not consider fractional polynomial dose response models. Only predictors
linear in dose were considered in what follows.
Table 5.9 shows, without and with type of sample (upper and lower part of the table
respectively), the AIC and the weights of the models fitted to 7 strains (3rd and
4th columns) and also the AIC and weights of the models fitted to 22 groups (5th
and 6th columns). Using the likelihood ratio test, the type of sample variable was
significant in the models with an asterisk (*) fit on 7 strains while type of sample
was only significant in the model with † sign fit on 22 groups. This data example
shows that random effects (RE) models are more flexible than fixed effects models
and can handle over-parametrization problems. As is clear from the empty cells in
the right upper part of Table 5.9, fixed effects (FE) models could not be fit to the
22 groups. The random effects models with type type of sample show no substantial
improvement compared to those without type regardless of the type of grouping used.
Most importantly, they all point to the same or similar models.
As an illustration, consider the estimation of the probability to be infected at dose
level d = 1, by the models listed in the left upper part of Table 5.9 (7 groups and
without the type of sample variable). As the weights in the table reveal, some of the
models have very little contribution and so we exclude them for the model averaging
exercise. Table 5.10 shows the results for the best five individual models and the model
averaged estimate for the probability of infection, together with Wald type confidence
intervals. The table mainly shows that the best five models can lead to substantially
different point estimates as well as confidence intervals. In general the model averaged
estimates is situated somewhere between the individual model estimates, and the
model averaged confidence intervals tend to be much wider, reflecting the model
uncertainty.
For graphical illustration of the different models Figure 5.5 shows fitted dose response
curves for the best fixed-effects model (FE log-logistic) and the best random-effects
model (log-normal random α&β) together with all data of the 7 groups in the two
upper panels, and fitted curves for the five best models, separately for the data of two
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Table 5.9: Multi-strain Campylobacter jejuni data: model fits and AIC-weights using
data of only 7 groups, and of all 22 groups.

without the type of sample variable

Model random AIC7 weight7 AIC22 weights22

FE LL - 77.32 0.43351

BP FE on u - 79.39 0.15434

LN α & β 79.72 0.13094 154.87 0.47784

FE LN - 79.93 0.11796

LL α & β 80.37 0.09466 154.84 0.48299

EV α & β 81.40 0.05650 159.88 0.03889

FE EV - 84.58 0.01152

LL α 91.40 0.00038 188.65 2.2E-08

BP u 94.14 9.7E-05 169.84 0.00027

LN α 94.47 8.2E-05 194.15 1.4E-09

EV α 100.00 5.2E-06 197.55 2.6E-10

BP v 135.99 7.9E-14 253.30 2.0E-22

BP FE on v - 141.92 4.1E-15

BP u & v 518.83 5.8E-97 177.26 6.5E-06

with the type of sample variable as fixed effect

Model random AIC7 weight7 AIC22 weights22

∗LN α & β 76.85 0.60000 154.68 0.53379
∗LL α & β 77.67 0.39953 154.97 0.46359

LL α 92.44 0.00025 188.80 2.1E-08

BP u 94.04 0.00011 169.27 0.00036

LN α 95.41 5.6E-05 194.32 1.3E-09

EV α & β 95.72 4.8E-05 165.62 0.00225

EV α 99.52 7.2E-06 196.97 3.5E-10
∗†BP v 129.66 2.1E-12 296.80 7.4E-32

BP u & v 578.32 7.7E-110 182.52 4.8E-07

∗ models fit on 7 groups where the type of sample variable is significant using likelihood ratio test.

† models fit on 22 groups where the type of sample variable was significant.
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groups (group 13 and 21) in the two lower panels.
The curves are extrapolated to a dose of 1cfu. The upper panels of Figure 5.5 show
some considerable variability in the fits to the different groups for the log-normal
model with random intercept and slope compared to the fixed effects model. This
conclusion was also observed for the other logit random effects model and the log-
normal and BP fixed effects models not shown here. In the lower panels of Figure
5.5, we observe that the response curves for the five models fit the data quite well,
a conclusion also confirmed by the closeness of the model AIC’s. However, despite
the closeness of the AIC’s there is a lot of variability at the lower dose of 1cfu (which
is out of the observed range of dose levels). So, especially for extrapolation, model
averaging stabilizes the highly variable point estimate, but variability in terms of
model uncertainty is still reflected by the wide confidence intervals (see Table 5.10).

Table 5.10: Multi-strain Campylobacter jejuni data. Model specific and model aver-
aged estimated probability of Campylobacter jejuni: averaging over five models, the
three best fixed effects models and the two best random effects models without type of
sample. The last two letters added at the end of the strain indicate whether the strain
originated from (h)uman or (c)hicken and its host is (l)ohmann or (w)ickham.

wald CIs
Strain Model AIC Weight π̂(1) SE(π̂(1)) lower upper

0087hl FE LL 77.32 0.46543 0.00109 0.00113 0.00014 0.00823
BP FE on u 79.39 0.16571 0.01539 0.00594 0.00720 0.03261
LN random α & β 79.72 0.14058 7.8E-11 1.9E-09 3.1E-42 0.77942
FE LN 79.93 0.12665 9.7E-05 0.00021 7.3E-07 0.00418
LL random α & β 80.37 0.10163 9.8E-06 6.0E-05 5.6E-11 0.63004
Model Averaged 0.00307 0.00445 0.00018 0.05043

81116Pcw FE LL 77.32 0.46543 0.01429 0.01178 0.00281 0.06946
BP FE on u 79.39 0.16571 0.07314 0.02284 0.03917 0.13250
LN random α & β 79.72 0.14058 1.0E-07 1.3E-06 1.5E-23 0.32164
FE LN 79.93 0.12665 0.01153 0.01325 0.00087 0.07897
LL random α & β 80.37 0.10163 9.5E-05 0.00047 6.0E-09 0.60125
Model Averaged 0.02024 0.02259 0.00221 0.16152

81116cl FE LL 77.32 0.46543 4.1E-05 5.4E-05 3.0E-06 0.00054
BP FE on u 79.39 0.16571 0.00223 0.00073 0.00117 0.00425
LN random α & β 79.72 0.14058 0.00028 0.00081 3.4E-07 0.02669
FE LN 79.93 0.12665 9.0E-09 3.5E-08 1.9E-12 7.9E-06

Continued on next page
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Table 5.10 – continued from previous page
wald CIs

Strain Model AIC Weight π̂(1) SE(π̂(1)) lower upper

LL random α & β 80.37 0.10163 0.00244 0.00358 0.00014 0.04194
Model Averaged 0.00068 0.00120 2.1E-05 0.02147

81116cw FE LL 77.32 0.46543 7.7E-05 0.00011 4.8E-06 0.00124
BP FE on u 79.39 0.16571 0.00284 0.00120 0.00124 0.00650
LN random α & β 79.72 0.14058 0.00662 0.01964 2.7E-06 0.34367
FE LN 79.93 0.12665 1.4E-07 4.8E-07 6.9E-11 5.7E-05
LN random α & β 80.37 0.10163 0.01459 0.02560 0.00045 0.32680
Model Averaged 0.00292 0.00756 1.8E-05 0.32243

93/146cw FE LL 77.32 0.46543 2.8E-05 4.0E-05 1.6E-06 0.00049
BP FE on u 79.39 0.16571 0.00290 0.00121 0.00129 0.00655
LN random α & β 79.72 0.14058 1.3E-32 7.0E-31 1.0E-98 0.00229
FE LN 79.93 0.12665 5.3E-09 2.3E-08 4.1E-13 9.0E-06
LL random α & β 80.37 0.10163 5.7E-10 5.4E-09 5.6E-18 0.05498
Model Averaged 0.00049 0.00085 1.7E-05 0.01405

93175cw FE LL 77.32 0.46543 0.00030 0.00036 2.7E-05 0.00325
BP FE on u 79.39 0.16571 0.00925 0.00363 0.00428 0.01990
LN random α & β 79.72 0.14058 2.7E-25 1.1E-23 3.3E-77 0.01836
FE LN 79.93 0.12665 4.8E-06 1.3E-05 8.6E-09 0.00065
LL random α & β 80.37 0.10163 7.0E-09 5.8E-08 5.6E-16 0.07878
Model Averaged 0.00167 0.00267 7.2E-05 0.03710

94/146hw FE LL 77.32 0.46543 2.1E-05 3.2E-05 1.1E-06 0.00040
BP FE on u 79.39 0.16571 0.00265 0.00106 0.00120 0.00582
LN random α & β 79.72 0.14058 3.9E-33 2.0E-31 2.8E-96 0.00102
FE LN 79.93 0.12665 2.3E-09 1.0E-08 1.2E-13 5.4E-06
LL random α & β 80.37 0.10163 5.0E-10 4.6E-09 5.6E-18 0.04208
Model Averaged 0.00045 0.00077 1.6E-05 0.01282

5.6 Simulation Study for Multi-Strain Data

This section summarizes the results of a limited simulation study for a multi-strain
(or more general a multi-group) setting. We fix the dose levels and the total number
of exposed chicken (n) to that of the Campylobacter jejuni data example and generate
the number of infected chicken from a binomial distribution with parameters n and
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Figure 5.5: Estimated Campylobacter jejuni dose-response curves: row 1 shows 7
strains using the FE log-logistic model and 2 REs log-normal model and row 2 for five
models shown for the‘fresh’ isolate 81116Pcw and ‘Laboratory’ isolate 81116cl
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p. As probabilities p we take the predicted probabilities from the fixed effects log-
logistic model, fitted to the Campylobacter jejuni data. To the simulated data we fit
four models, the fixed and random effects, log-normal and log-logistic models. The
BP model was excluded, due to computational problems. The probability of infection
at dose 1 is estimated from each model, from the AIC selected model and also by
model averaging. With the generation and fitting process repeated 1000 times, the
average length and the coverage percentage of confidence intervals, are examined for
each strain.

Figure 5.6 summarizes the simulation results on the confidence intervals. The
performance characteristics for all models (4 single models, the AIC selected model,
and the averaged model) are plotted against the strain numbers (on the horizontal
axes), which are arranged in ascending order of the true probabilities. The graph
with the coverage percentages in the right panel differentiates the different models
markedly: the averaged model shows coverage percentages larger than but close to
those of the true model, the latter as expected being close to 95%. The coverage
probabilities of the other models, the fixed effects log-normal model and the AIC
selected model are much lower, being low to extremely low on the left end of the
scale and increasing to acceptable values at the right end of the scale (corresponding
to higher values of the true probabilities). The left panel shows that, compared to
the other models, the length of the confidence intervals produced by the two random
effects models is much larger than those of the other models. Although this simulation
study is very limited and many other settings could be considered, it shows that model
selection and model averaging is a crucial issue, also in more complicated settings of
multi-strain data and random effects models.
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Figure 5.6: Multi-strain simulation, assuming the fixed effects log-logistic model as
the true model. From left to right: length of 95% confidence intervals and coverage
percentage. The horizontal axes represent the 7 different strains in ascending order
of the true probabilities.

5.7 Discussion

In quantitative risk assessment for microbial pathogens, dose-response assessment is
a critical issue. It must be included, health effects are the end-point in any risk
assessment. Data are scarce, however. Only few pathogens have been used in clinical
studies, and even these have been done on a small scale with few volunteers exposed
per dose, due to the high costs involved. As a consequence, microbial dose-response
data often do not contain a great deal of information on the shape of the dose-response
relation, and model choice based entirely on experimental data is not feasible (Teunis
and Havelaar 2000). This problem has raised may discussions and several solutions
have been proposed. One could use animals, as these allow, at least in principle,
collection of more extensive data sets. However, this chapter also has demonstrated
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that this may merely give a better insight into the variability involved, not necessarily
decreasing the uncertainty about the shape of the relation. Model averaging has
been used before, weighting over an arbitrary collection of mathematical relations
considered useful. Reasons for inclusion may range from biological plausibility to
flexibility or mere tradition (like threshold models). Here it has been shown that
the modified fractional polynomials can be derived from the general equation (5.3)
thereby potentially extending the family of eligible models a great deal, and providing
a natural choice for the collection of models to include in model averaging.
As observed in the simulation study, the coverage probabilities of the confidence
intervals of the individual models, the best fitting models and the model average
highly depend on the generating (true) model. When bias values are high relative to
the variance, the coverage of these intervals considerably fall below the nominal level
of confidence. The bias values for the averaged risk were 10 times higher when only
averaging over the four commonly used dose-response models than when fractional
polynomials were included and as a result the coverage probabilities in the former case
were always below nominal. To this end we recommend model averaging including
the proposed set (or biological more plausible subset) of fractional polynomials in the
set of candidate models.
An essential improvement in dose-response assessment is its extension to a hierar-
chical framework: like most biological problems, data can frequently be organized
hierarchically. For example several isolates (pure strains of microorganisms separated
from a mixed bacterial culture) of a single pathogen species in the same host species,
different but related pathogen species in the same host, or a single pathogen isolate in
hosts with different levels of immunity. As the purpose of risk assessment usually is to
predict risks for an exposed population, dose-response relations should be translated
from the special, experimental setting to a more general, unspecified situation. For
instance, given the different responses to a limited collection of isolates of a pathogen,
what would be the response to a newly isolated specimen, of the same type? Fixed
effects models are easy to implement and represent a first solution, but the random
models, although more complex, use all available data and are more suitable for ex-
plicative studies. The generalized linear mixed models (Agresti, 2002; Molenberghs
and Verbeke, 2005) allow prediction by using the (joint) distribution of the random
parameters to make exactly this generalization. Our future interest is to extend these
proposed fractional polynomials to investigate dose-response relationships between
isolates of a single pathogen using generalized linear mixed models and full Bayesian
models.
Further research is needed to go into some issues, like the estimation at very low
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dose levels, especially in case of limited information. Since low dose extrapolation
is crucial in risk assessment and the AIC method selects a model regardless of its
intended use, we intend to further investigate selecting a model looking at the (lower
dose) region of interest, by using e.g. the focused information criterion (Claeskens
and Hjort, 2003). Another interesting avenue for further research is to investigate
bootstrap based alternatives as proposed by Faes et al. (2006b) and Wheeler and
Bailer (2007).
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Chapter 6

Risk Factor Identification for

Salmonella in Belgian Laying

Hens

The consumption of foods of animal origin, particularly poultry eggs, can lead to
transmission of zoonotic diseases (Salmonella, in this case) from the animals to hu-
mans. Salmonellosis constitutes a major public health burden and represents a signif-
icant cost in many countries. In Belgium, the disease ranks high among the reported
food borne illnesses (Collard et al. 2004). Even if the incidence of human salmonellosis
has diminished since 1999, in 2004, 9545 cases were reported in the country (EFSA,
2006a). As in most of the countries around the world, Belgian Salmonella outbreaks
in humans are very often linked to the consumption of contaminated eggs (Davies
and Breslin, 2001; Van Immerseel et al. 2005; Collard et al. 2007). The most fre-
quently isolated serotype in layer flocks in the EU as well as in Belgium is Salmonella
Enteritidis which is a non-typhoid non-host adapted serotype with a very wide host
range (Baird-Parker, 1990; Gast et al. 2005; Quinet, 2005; VAR, 2005; EFSA, 2004).
The bacterium infects the eggs by two processes: first by vertical transmission dur-
ing the development of the egg within the ovary or its passage through the oviduct
and secondly by horizontal transmission through trans-shell contamination (Kinde et
al. 2000; WHO FAO, 2002; Davies and Breslin, 2003a; Van Immerseel et al. 2005).
Vertical transmission is considered to be the major route of egg contamination and
should be controlled by applying sanitary measures at the breeders level (that is, hy-
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giene practices and eventually vaccination) while horizontal transmission should be
reduced by preventing contacts between the layer hens and by cleaning and disinfect-
ing the flock’s environment. Salmonella is known for its ability to asymptomatically
infect the hen’s oviduct (De Buck et al. 2004a; 2004b). Therefore detection of infected
flocks depends entirely on laboratory analysis. An infected hen may contaminate one
egg out of 200 (Quinet, 2005). Reducing Salmonella flock prevalence results in a
directly proportional reduction in human health risk (Altekruse et al. 1993). This
suggests that sanitary measures at the flock level contribute to a significant reduction
of the risk for salmonellosis due to egg consumption. In Belgium, the layer breeders
are not significantly infected, probably due to the many years’ efforts of control at
this level and therefore, it is reasonable to assume that most day-old chicks are free
from Salmonella when placed on farms (Davies and Breslin, 2001; AFSCA, 2004).
The majority of the infections in layer hens seem to be attributed to the persistent
contamination of the farm. Indeed, the presence of Salmonella in the laying house
environment has been strongly correlated with the probability that hens will lay con-
taminated eggs. Chicken are infected after oral ingestion of the bacteria from the
environmental sources (for example, contaminated fluff, dust, feed etc) invasion of
the mucosal epithelial cells, which leads to systemic dissemination and colonization of
the ovary and oviduct (Henzler et al. 1998; Davies and Breslin, 2003b). The primary
control should focus at farm level. Control measures include preventing contacts with
contaminated feed and visitors, wearing house-specific clothing, thorough cleaning and
disinfection of the layer houses, vaccination, rodent control programs. In Belgium,
every holding housing more than 5000 hens is required to be sampled for Salmonella
diagnosis 3 weeks before slaughter time. This measure probably has contributed to a
reduction of the risk for food-borne salmonellosis. However, in 2004, still 27% of the
layer flocks analysed remained positive for Salmonella (AFSCA, 2004). Several risk
factors have been described, but in order to advise the Belgian competent authority
(Federal Agency for the safety of the Food Chain) with detailed, practical guidance,
an understanding of possible causal factors is essential. The objective of the study
reported here was to investigate the risk factors which are associated with the occur-
rence of Salmonella in laying hens in Belgium using data collected for the Baseline
Study on the Prevalence of Salmonella in laying flocks of Gallus gallus f. domestica
in the European Union (SANCO/34/2004 and Commission decision 2004/665/EG).
Although it would be worthwhile to utilize data from earlier years, the 2005 data set
contained flock information, particularly on some demographic factors and Salmonella
vaccination status, which were unavailable for earlier databases. Section 6.1 describes
how the data were obtained and gives the methods used to analyse the data. In Sec-
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tion 6.2, the exploratory results and model fitting results are presented. Section 6.3
concludes the chapter with a discussion. A part of the analyses of this chapter are
published in Namata et al. (2008a).

6.1 Material and Methods

6.1.1 Data Collection

The Belgian part of the Baseline Study on the Prevalence of Salmonella in egg laying
flocks of Gallus gallus in the European Union consisted of a cross-sectional study
that covered the year 2005 from February to September in Belgium. The primary
sample size providing the number of holdings which had to be tested was calculated
on the basis of a target prevalence of 20%, a confidence level of 95% and an accuracy of
3% (Commission decision 2004/665/EG). The population of laying hens was stratified
according to holding size (below 1000, 1000-2999, 3000-4999, 5000-9999, 10000-29999,
30000 and more). The number of holdings to be sampled was subsequently distributed
proportionally to the number of holdings in each class. In all cases, only one flock
per holding was sampled. Seven different samples, two dust samples and five faecal
samples were collected from each selected flock. The dust samples were any of these
types: 1) dust from different places in case of barn or free range flocks, 2) dust from egg
belts, 3) dusty material from beneath cages. Faecal samples were any of these types:
1) boot swabs which are socks placed over the boots and are sufficiently absorptive
to collect faecal or moist litter samples from the floor surfaces (SANCO/34/2004
and Commission decision 2004/665/EG), 2) pooled faecal samples from dip pits, 3)
pooled faecal samples from dropping belts, 4) pooled faecal samples from scrapers.
The collection of these samples was as follows: There had to be five pooled faecal
samples taken per selected flock. For the pooled faecal samples in cages, there are
normally several stacks of cages within a henhouse. The material from each stack
picked up using a new pair of plastic gloves for each individual sample was included
in each of the five pooled faecal samples of 200-300 grams. For the boot swabs in barns
and free range flocks, each henhouse was divided in sectors of at least 100m that were
walked on with new boot swabs, five pairs of boot swabs per henhouse. Each of the
five pooled samples comprised of faecal material fixed to a pair of boot swabs. The
dust material from beneath cages was obtained from 20 separate locations within a
henhouse using a new pair of plastic gloves for each sample. Finally for the dust from
different places from barns and free range, each dust sample was collected in a 250ml
plastic jar or bag ensuring that all parts of the henhouse like from exhaust fan, ledges,
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beams etcetera were covered. In order to maximise sensitivity both faecal material
(5 out of 7) and dust material from the environment (2 out of 7) were sampled,
depending on whether the birds were reared in cages or barns or free-range, in such
a way that the complete farm was represented. The hens were sampled at the end of
their laying period, within a maximum of 9 weeks before depopulation. Samples were
sent within 24 hours to the laboratory. The detection method was as recommended by
the Community Reference Laboratory for Salmonella in Bilthoven, The Netherlands,
that is, a modification of ISO 6579:2002. Salmonella isolates were serotyped following
the Kaufmann-White scheme (Popoff, 2001; VAR, 2005).

The explanatory variables recorded include: region (1= Walloon or 0= Flanders),
sampling time (month the flock was sampled: February to September), production
type (cage or barn/ free range), age (in weeks), flock size (number of hens in the
flock considered) and vaccination status against Salmonella (yes, unknown, or no).
The flocks were vaccinated against Salmonella enterica, serovar Enteritidis during the
rearing period (one day to 18-20 weeks) with either a live or inactivated vaccine type
although for some flocks the vaccine type was not known. The last dose was adminis-
tered a few weeks before the onset of laying eggs. The pullets were kept in separated
installations on the laying farm considering special conditions like temperature and
light among others.

6.1.2 Single-Level Analysis

In the initial analysis of these Salmonella data we ignore the repeated design of the
data and assume that all observations act independently. With this assumption a
logistic regression model

logit(P (Yj = 1) = XTβ (6.1)

can be fitted and risk factors investigated. The probability P (Yj = 1) that the
jth sample was positive for Salmonella was predicted as a function of the explanatory
variables contained in the X design matrix using the logit link function. The estimates
of the model parameters, β were obtained using maximum likelihood estimation.

6.1.3 Two-Level Analysis

This analysis adjusts for the flock level by collapsing observations over samples in each
sample type. The dust response was defined to be Salmonella positive (outcome=1) if
at least one the dust samples was positive otherwise when all of the dust samples were
negative the dust response was negative (outcome=0). Likewise the faeces response
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was taken to be positive (outcome=1) if at least one of the faecal samples was positive
and negative (outcome=0) otherwise. This thus reduces the seven responses recorded
per flock to two responses: the ‘dust response’ and the ‘faeces response’.

To explore the data, the frequencies of infected flocks were obtained using the
two responses separately. Also, since the two outcomes occurred on each flock, it
was important to examine the association between them. This was done using the
Pearson Chi-square test of independence (FREQUENCY procedure in SAS). The
measure of this association was examined using the Pearson correlation coefficient
using the SAS CORRELATION procedure. The existence of an association signals
the necessity for the two outcomes to be modeled jointly. The associations between
each of the outcomes and each of the categorical variables were investigated using the
Pearson chi-Square test of independence (FREQUENCY procedure in SAS). For the
continuous explanatory variables, the mean values were estimated and compared for
the positive and negative outcome categories.

The data can be analysed by performing separate analyses for the two outcomes,
for example, by fitting a logistic model for the dust outcome and another logistic model
for the faecal outcome. These separate analyses, however, would ignore the correla-
tion between the two outcomes. Therefore it is appropriate to use the approaches
which account for the correlation between the outcomes. We use the two general
approaches, introduced in chapter one: generalized linear mixed models (GLMM)
and marginal models such as the generalized estimating equations (GEE) and the
alternating logistic regression model (ALR).

The two-level GLMM to model the probability πis = E(Yis|ui) that the sth sample
type for the ith flock is Salmonella positive conditional on the random effect, ui, for
the ith flock is

logit(πis) = XTβ + ui (6.2)

where ui ∼ N(0, σ2
u). Based on the underlying continuous variable coming from a

logistic distribution, with a variance of π2/3, which we substitute for the level 1
variance leads to a formulation of the intra-class correlation (ICC) (Browne et al.
2005) across flocks as

σ2
u

σ2
u + π2/3

.

The marginal or population-averaged logistic model is expressed by

logit(πis) = XTβ (6.3)

where πis = E(Yis) is the marginal probability that the sth sample type for the ith
flock is a positive case for Salmonella.
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The parameters in (6.3) can be estimated using generalized estimating equations,
introduced by Liang and Zeger (1986), by quasi-likelihood fitting. Instead of assuming
a bivariate binomial distribution for (Yi1, Yi2), the quasi-likelihood method specifies a
model for the means of the marginal distributions of Yi1 and Yi2; a variance function
describing how the variance of Yi1 and Yi2 depend on their means; and a pairwise
correlation, corr(Yi1, Yi2) = ρ between the outcomes. We assume an exchangeable
working correlation structure. Essentially the correlation between the outcomes was
estimated and then used to re-estimate the regression parameters and adjust the
standard errors. An advantage of the GEE model is that the estimates are valid even
if one misspecifies the variance-covariance structure (Agresti, 2002; Molenberghs and
Verbeke, 2005).

Alternatively, instead of using the correlation to model the association between
the repeated responses, odds ratios can be used and this is accomplished by the ALR
model.

The GLMM model was fitted using the SAS GLIMMIX procedure while the the
marginal models were fitted by the SAS GENMOD procedure. A parsimonious model
was built based on the single-level logistic model by including one explanatory vari-
able (two continuous and four categorical) at a time and the variables that had a
p-value less than 0.25 were introduced in the multiple logistic regression models. A
stepwise automatic selection procedure was also used to supplement the model selec-
tion. The two criteria led to the same model. Along with the selected main factors,
their two-way interactions were added to the model. Higher interactions were not
considered in order to keep a reasonable number of parameters in regard to esti-
mation. However, two-way interactions between categorical variables, for instance,
production type by vaccination status resulted into observations with only one type
of the outcomes causing difficulties in estimation. The interactions between the cate-
gorical and continuous variables posed no estimation problems but were found to be
non-significant. Therefore the final model considered eliminated the ‘region’ variable
and the interactions.

6.1.4 Three-Level Analysis

The final analysis considers the seven responses by taking into account the samples
(level 1) for each sample type (level 2) from each flock (level 3) that were tested for
Salmonella. Thus we model the probability, πjis = E(Yjis|ui, uis) that the jth sample
of sample type s for flock i was positive for Salmonella, as

logit(πjis) = XTβ + ui + uis (6.4)
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where ui ∼ N(0, σ2
u), and uis ∼ N(0, σ2

s). We assume the sample type and flock
random effects are statistically independent. The formulation of the intra-class cor-
relation (ICC) across flocks and sample type, respectively, are estimated as

σ2
u

σ2
u + σ2

s + π2/3
and

σ2
u + σ2

s

σ2
u + σ2

s + π2/3
.

The model was fitted using the SAS GLIMMIX procedure.

6.2 Results

6.2.1 Data Exploration

In total, data were recorded for 148 flocks. In Figure 6.1, we show the number
of flocks that were positive or negative for Salmonella for dust and faecal samples.
The numbers at the top of the bars indicate the number of flocks in each category
on the horizontal axis. Specific to the dust sample type, panels (a) show that in
102 flocks none of the dust samples were Salmonella positive whereas 22 flocks had
one positive dust sample and 24 flocks had both dust samples positive. A similar
interpretation follows for the faecal sample type. Grouping the results from panels
(a) into Salmonella positive flocks (if at least one sample was Salmonella positive)
and Salmonella negative flocks (if all samples were Salmonella negative) produced
panels (b). Considering the dust sample type, for instance, 102 out of 148 flocks were
Salmonella negative while the 46 were positive for Salmonella. The frequencies for
the faecal sample type are interpreted in a similar manner. The Pearson chi-square
statistic for the association between the two outcome variables was estimated as 66.60
(p < 0.001) which rejects the null hypothesis of no association between the dust and
faecal outcomes. The Pearson correlation coefficient between the two outcomes was
obtained as 0.6708 giving an indication of moderate to strong positive association.
Table 6.1 shows the distribution of the number of Salmonella positive and negative
flocks for each categorical explanatory variable. Also shown in the table are: the
percentages of all flocks that were positive or negative and the association of each
categorical variable with the presence of Salmonella using Pearson chi-Square test of
independence. For both sample types there seems to be significant (p-values < 0.05)
associations of production type and Salmonella vaccination status on the occurrence
of Salmonella.

The boxplots in Figure 6.2 show the distributions of the continuous variables with
the responses. The diamond in the box indicates the mean of the variables, the lower
and upper hinges of the box show the 25% and 75% percentiles of the variables, while
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Figure 6.1: Summary of data: Upper panels show Salmonella positive samples out of
the 2 dust samples and out of the 5 faeces samples. Lower panels define a positive
flock if at least one of the samples in the upper panel was positive.

the line in the box is the median value, the ends of the vertical lines indicate the
minimum and maximum variable values. From the figure we observe that for both
age and flock size, the 25% percentile, the median (50% percentile), and the 75%
percentile as well as the mean values are higher where Salmonella is present with the
difference more evident for the flock size variable. For the Salmonella positive group,
the flocks’ mean age (in weeks) was 74.87 and 76.15 while the mean flock size was
21929.22 and 22156.6 for dust and faecal materials respectively. Similarly, for the
Salmonella negative group, the mean age was 70.75 and 70.11 while the mean flock
size was 13912.28 and 13727.1 for dust and faecal materials respectively. The mean
age and mean flock size were higher for the Salmonella infected flocks than for the
uninfected ones, suggesting an increase in risk for Salmonella as the hens get older
and as the flock size increases. The points outside the ends of the vertical lines show
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Table 6.1: Frequency of Salmonella positive/negative (+ve/-ve) flocks (percentage of
all 148 flocks) by categorical independent variables and sample type. Association P-
values between each categorical variable and the presence/absence of Salmonella using
Pearson Chi-Square test are shown.

Dust sample type Faecal sample type

Variable +ve (%) -ve (%) χ2 +ve (%) -ve (%) χ2

P-value P-value

Region 0.9698 0.5598

Flanders 38 (25.68) 84 (56.76) 40 (27.03) 82 (55.41)

Walloon 8 (5.41) 18 (12.16) 7 (4.73) 19 (12.84)

Sampling Month 0.6570 0.4347

February 2 (1.35) 4 (2.70) 3 (2.03) 3 (2.03)

March 4 (2.70) 14 (9.46) 7 (4.73) 11 (7.43)

April 5 (3.38) 16 (10.81) 4 (2.70) 17 (11.49)

May 7 (4.73) 15 (10.14) 9 (6.08) 13 (8.78)

June 12 (8.11) 16 (10.81) 7 (4.73) 21 (14.19)

July 7 (4.73) 10 (6.76) 8 (5.41) 9 (6.08)

August 4 (2.70) 8 (5.41) 3 (2.03) 9 (6.08)

September 5 (3.38) 19 (12.84) 6 (4.05) 18 (12.16)

Production Type <0.0001 0.0002

Cage 45 (30.41) 69 (46.62) 45 (30.41) 69 (46.62)

barn & free range 1 (0.67) 33 (22.30) 2 (1.35) 32 (21.62)

Vaccination Status 0.0260 0.0573

vaccinated 22 (14.86) 68 (45.95) 22 (14.86) 68 (45.95)

unvaccinated 22 (14.86) 26 (17.57) 21 (14.19) 27 (18.24)

status unknown 2 (1.35) 8 (5.41) 4 (2.70) 6 (4.05)

some extreme age and flock size values.
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Figure 6.2: Boxplots showing the presence (1) and absence (0) of Salmonella as related
to the continuous independent variables, age and flock size for the dust samples (row
1) and faeces samples (row 2).

6.2.2 Data Analysis

Results from single-level logistic regression model are compared with the GEE and
ALR models (Table 6.2) and the two-level and three-level GLMM models (Table 6.3).
Relative to the multilevel models, the standard errors from the single-level logistic re-
gression are much smaller and lead all the predictors to be statistically significant risk
factors for Salmonella. In contrast, neither the GEE nor the ALR nor the GLMM
models identified a statistically significant vaccination status effect while from the
GEE and ALR models there was no significant effect of the sampling month. Re-
sults from the GLMM models reveal borderline significant effect for the month of
July relative to September. From the two-level models the the effect of age becomes
borderline significant but nonsignificant with the three-level GLMM. Except for the
two-level GLMM, which shows a significant effect of flock size, the other two-level and
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three-level model results show borderline significant effects for flock size. Generally,
from the three approaches accounting for correlated nature of data, a statistically sig-
nificant effect for rearing hens in cages versus barns and free-range systems was found.
The estimated population-averaged odds ratio of Salmonella to cage systems relative
to barns and free-range was e2.3434 = 10.41 for GEE and 11.79 for ALR models.

The estimated flock-specific odds ratio of Salmonella to cage systems versus barns
and free range was 14.69 and 14.30 for the two-level and three-level GLMMs respec-
tively. The estimated variance of the flock-specific random effects was σ̂u = 2.56 for
the two-level GLMM giving an estimated ICC of 0.437. In contrast the estimated ex-
changeable correlation (ICC) was ρ̂ = 0.618 for the model based on GEE. Compared
to the exploratory measure of the Pearson correlation coefficient of 0.6708 that did not
account for other factors, ρ̂ was slightly lower. Parameters from mixed models and
those from GEE can be compared via the relationship βGLMM ≈ βGEE

√
1 + 0.346σ̂2

u

(Schukken et al. 2003; Kim et al. 2006). This is reflected in the estimates with the
two-level GLMM estimates being greater in absolute value than the GEE estimates.
The three-level analysis shows that the variation in the probability of Salmonella in-
fection attributable to flocks is ten times greater than the variation attributable to
sample type. This finding raises further issues for studying more explanatory variables
to attempt to explain the variation.



150 Chapter 6. Risk Factors in Belgian Laying Hens

Table 6.2: Comparison of a naive (incorrect) single-level logistic regression model and
two level logistic regression models fitted with GEE and ALR adjusting for the flock
level, predicting probability of response.

Logistic GEE ALR

Level(s) Single Two Two

Adjustment None Flock Flock

β̂ (SE) P-value β̂ (SE) P-value β̂ (SE) P-value

Intercept -3.59 (0.51) <.0001 -5.39 (1.55) 0.0005 -5.52 (1.56) 0.0004

Sampling month

February -0.21 (0.34) 0.540 0.23 (1.03) 0.825 0.24 (1.02) 0.814

March -0.56 (0.24) 0.019 -0.04 (0.74) 0.957 -0.02 (0.74) 0.979

April -0.89 (0.25) 0.001 -0.68 (0.80) 0.400 -0.66 (0.80) 0.411

May 0.30 (0.21) 0.162 0.57 (0.78) 0.469 0.57 (0.78) 0.461

June 0.06 (0.18) 0.755 0.39 (0.69) 0.572 0.41 (0.69) 0.557

July 1.03 (0.21) <.0001 1.21 (0.83) 0.144 1.25 (0.84) 0.134

August 0.31 (0.26) 0.228 0.12 (0.93) 0.899 0.14 (0.92) 0.883
bSeptember

Production type

Cages 0.96 (0.19) <.0001 2.34 (0.71) 0.001 2.47 (0.71) 0.001
bbarns&free range

Vaccination status

vaccinated -0.45 (0.14) 0.001 -0.52 (0.45) 0.247 -0.52 (0.45) 0.244

status unknown 0.31 (0.21) 0.147 -0.17 (0.61) 0.773 -0.20 (0.61) 0.745
bunvaccinated

Age

Age 0.02 (0.01) 0.010 0.03 (0.02) 0.090 0.03 (0.02) 0.097

Flock Size

Flock Size 2.1E-5 0.001 3.2E-5 0.076 3.0E-5 0.079

(6.1E-6) (1.7E-5) (1.7E-5)

ρ̂ 0.6176

pairwise log odds 2.88 (0.50) <.0001
b denotes the baseline category. The corresponding effects are interpreted relative to

the baseline.
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Table 6.3: Two-level GLMM and Three-level GLMM models predicting probability of
response.

Levels Two Three

Adjustment Flock Flock and Sample type

β̂ (SE) P-value β̂ (SE) P-value

Intercept -6.14 (1.72) 0.001 -6.27 (1.77) 0.001

Sampling month

February 0.23 (1.17) 0.841 -0.18 (1.24) 0.887

March 0.01 (0.84) 0.991 -0.46 (0.92) 0.618

April -0.77 (0.85) 0.369 -1.06 (0.92) 0.252

May 0.71 (0.87) 0.420 0.54 (0.92) 0.552

June 0.49 (0.78) 0.531 0.30 (0.82) 0.714

July 1.52 (0.88) 0.087 1.71 (0.911) 0.061

August 0.19 (0.98) 0.849 0.54 (1.038) 0.605
bSeptember

Production type

Cages 2.69 (0.92) 0.004 2.66 (0.92) 0.004
bbarns&free range

Vaccination status

vaccinated -0.63 (0.51) 0.215 -0.89 (0.55) 0.103

status unknown -0.28 (0.94) 0.768 -0.065 (0.99) 0.947
bunvaccinated

Age

Age 0.03 (0.02) 0.079 0.02 (0.02) 0.234

Flock Size

Flock Size 3.6E-5 (1.7E-5) 0.034 3.5E-5 (1.8E-5) 0.0530

σ̂2
u(Flock) 2.56 (0.72) 4.21 (0.85)

σ̂2
u(Sample type) 0.41 (0.34)

b denotes the baseline category. The corresponding effects are interpreted relative to
the baseline.
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6.3 Discussion

The prevalence of Salmonella in commercial holdings of laying hens in Belgium is rel-
atively high, especially when compared to the northern European countries (EFSA,
2006b). However, it should be mentioned that Belgium has many laying hens com-
pared to neighbouring countries (Quinet, 2005). The European survey was based on
environmental sampling which is considered to be an accurate and representative in-
dicator for the presence of Salmonella in layer flocks and for the probability that hens
would lay contaminated eggs (Henzler et al. 1994; Kinde et al. 2005). The persis-
tence of the pathogen in the intestinal tract is more important when infection occurs
in young chicks, since bacterial clearance occurs more efficiently in adults. Geneti-
cally distinct lines of hens and various breeds can also be responsible for differences
in the presence of Salmonella in the faeces of a contaminated animal. It is important
to take these factors into account as the duration of this shedding can influence the
detection of Salmonella in the threatening flocks (Kinde et al. 2000; Gast et al. 2005).
Environmental sampling is not entirely reliable as it can miss flocks which passed the
peak of infection but which are still producing contaminated eggs (Kinde et al. 1996;
Davies and Breslin, 2004; Van Immerseel et al. 2005). The fact that one specific
type of sample would be more contaminated than others helped identify risk factors,
for example, a high level of the bacteria in dust (two dust samples positive instead
of one) could point out a problem due to the ventilation system in the hen house or
may be associated with cleaning and disinfection of the house, or with insufficient
rodent control. A study from Gast et al. 1998 suggested that infection could, among
other things, occur by oral ingestion of external surfaces contaminated by airborne
movement of Salmonella during the feeding or pecking. From our findings, we saw
differences in the statistical relations between the response variable and the predictors.

The major risk factor identified from the analyses was rearing flocks in cages com-
pared to rearing in barns and free-range systems. The risk of contamination with
Salmonella is thought to be higher when eggs are produced in non-cage systems, be-
cause of the greater exposure of layers to environmental contamination (Kinde et al.
1996; EFSA, 2004). However, in practice, control is not easier in cage layer houses;
due to the difficulty to efficiently disinfect the cages and the higher densities of birds
which produce a larger volume of contaminated faeces and dust (Davies and Breslin,
2004). The result of the current study clearly corroborates this finding. In addition,
a clear difference was noticed in the proportions of vaccinated hens in the two types
of production systems: 88% of the barn and free-range birds were vaccinated, while
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only 53% for the cage system poultry. The vaccination variable can act here as a con-
founding factor on the apparent association between production type and Salmonella
status. However, in the description of the sampled population of this present study,
we noticed that the proportion of the “barn and free-range” category is relatively
small (23%). Moreover, the very wide confidence intervals suggest that there might
be a problem due to sample size.

Most of the studies have proven vaccination to be an important aid to reduce
or possibly eliminate Salmonella Enteritidis from laying flocks (Davies and Breslin,
2001; 2003b; 2004). In the United Kingdom for instance, most of the laying flocks
which have been implicated in the recent outbreaks of Salmonella Enteritidis in human
beings were unvaccinated (Davies and Breslin, 2001). In the present analysis vaccina-
tion seemed not to have a significant protective effect. In the cases when Salmonella
serovars other than Salmonella enteritidis are present concurrently in flocks vacci-
nated for Salmonella enteritidis, then considerably more contamination with these
other Salmonella serovars may occur (Davies and Breslin, 2004). Another explana-
tion why vaccination was less effective than expected, is that hens might have been
infected before the vaccination was completed. Therefore it would have been inter-
esting to exploit the period when the flock had been vaccinated as an explanatory
variable. Such a variable was indeed available in the initial database but we chose
to leave it aside for two main reasons. First, since the variables “vaccination status”
and “vaccination period” were related to each other, we used only one of them to
avoid multicollinearity problems. Second, from the description of the “vaccination
period” variable, we had 88 holdings where vaccination was performed at rearing out
of the 90 holdings where hens were vaccinated, leaving us with nothing to properly
compare these findings with. Furthermore, effective protection owed to vaccination
might occur only when the challenge dose is low. It is crucial to keep in mind that
for vaccination to work effectively, an efficient cleaning and disinfection of laying
houses between successive flocks is compulsory (Davies and Breslin, 2003b; Van den
Bosch 2003). In this study, other factors like hygiene practices or pest control and
their potentially confounding effects on the association between vaccination and the
probability of being infected by Salmonella, were not taken into account.

The influence of temperature on the growth of Salmonella in food has been well
documented. It is known that in all countries the incidence of human salmonellosis is
highest during the summer (Baird-Parker, 1990; CNRSS, 2004; Kovats et al. 2004).
Even though a statistically significant effect of the “month” variable is reported from
our study, it is difficult to show the direction of the influence as only the month of
July had borderline significance. Mollenhorst et al. 2005 came to the same conclusion.
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During the summer season of the year 2003, a large increase of Salmonella infections
was observed in Belgium and in The Netherlands. This increase could probably be
attributed to the extremely hot weather during the summer of 2003. The Dutch study
(Van Pelt et al. 2004) showed that a concomitant outbreak of Salmonella and avian
influenza led to a shortage of eggs on the Dutch market, which was to be compen-
sated for with imports, providing a reasonable explanation for this apparent seasonal
trend. This present study showed no evidence of significant differences in the distri-
bution of Salmonella among laying flocks according to regional repartition. Again we
should note that the sample repartition is not really equitable, the Walloon holdings
representing only 18%. On the other hand, the number of human salmonellosis cases
across the country is clearly much higher in Flanders. Although the eggs produced
in Belgium do not necessarily tend to be consumed locally, the food practices vary
between both regions (CNRSS, 2004; AFSCA, 2006).
The impact of the age factor on the occurrence of Salmonella among egg laying flocks
cannot really be established here, as it ranged from borderline to nonsignificant for
the two and three level analysis.

Finally, other risk factors which were not considered in the present study are
important to mention. For example, it could be useful to build a model taking into
account flock characteristics (type of breed, number of flocks on the farm, multi-age
farm or not), farm management (control of pest access, visitors allowed or not, feed
composition and feeding practices, drinking water), cleaning and disinfecting practices
related with the contamination status of the previous flock in the same hen house
(Henzler & Opitz, 1992; Kinde et al. 1996; Shirota et al. 2000; Garber et al. 2003;
Liebana et al. 2003; Kinde et al. 2005). Knowing that non-typhoid Salmonellae have
very wide host ranges, it is important to take into consideration all various potential
vectors surrounding the flock.



Chapter 7

Prevalence and Persistence of

Salmonella in Belgian Broiler

Chicken Flocks: An

Identification of Risk Factors.

Broilers are an important source of salmonellosis after eggs, and pork. Salmonellosis
is still one of the main causes of infectious food-borne gastroenteritis in humans world-
wide (Bouwknegt et al. 2004; Collard et al. 2007; EFSA (European Food Safety Au-
thority), 2007). In addition to the health consequences, Salmonella infection also has
a severe economical impact (Collard et al. 2007; World health organisation (WHO),
2005). Salmonella spp with about 2600 existing serovars (Coburn et al. 2007), is re-
sponsible for human illness and thus causes a real public health issue (Altekruse et al.
2006; Collard et al. 2007; Van Immerseel et al. 2005). The symptoms in humans are
most often characterised by the “non typhoid syndrome” which consists of an acute
onset of fever, abdominal pain, nausea, and sometimes vomiting. These symptoms
are self limiting in time. Humans become most often infected after consumption of
contaminated eggs, poultry meat, or pork, or, less frequently bovine meat. In order
to manage the risk to human health it is essential to tackle the problem at the farm
level to reduce the cross contamination which can occur throughout the food chain
process (Collard et al. 2007; Van Immerseel et al. 2005). Because animals most often
are sub-clinically infected the disease tends to spread easily within a herd or flock,
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and because animals can become intermittent or persistent carriers, it is not easy to
detect the prevalence of Salmonella other than by routine sampling for bacteriology
testing (EFSA (European Food Safety Authority), 2007).

Belgium has implemented a Salmonella eradication programme in poultry in ac-
cordance with the European legislation 2160/2003 (EU, 2003) in which a vaccination
programme has been implemented in breeders and in layers but not in broilers be-
cause of the short life expectancy of broilers (42 days) (Anonymous, 2007; EFSA
(European Food Safety Authority), 2004a). In broilers, a compulsory sampling, at
least 3 weeks before slaughter, is requested from all farms with more than 5000 birds,
as well as from farms who wish to trade their meat. A sanitary certificate is provided
to the farm based on the results for Salmonella isolation (Anonymous, 1998; EFSA
(European Food Safety Authority), 2004b). These results are requested by the slaugh-
terhouses in order to programme their slaughter process, i.e., positive flocks must be
slaughtered at the end of the day after slaughtering all negative flocks in order to
avoid cross contamination within the slaughterhouse. Afterwards, the slaughterhouse
is then thoroughly cleaned and disinfected. All positive farms are recorded in a noti-
fication system which exists since the 1st of January 2004 (Anonymous, 2007; EFSA
(European Food Safety Authority), 2004b). One day-old chicks are sampled in the
breeding house before being brought to the broiler farm. In Belgium, after a peak
of infection in 1999, cases of salmonellosis in humans has been decreasing constantly,
probably following vaccination and other sanitary measures implemented in poultry
breeders and layers. In 2005 a total of 4872 human cases caused by Salmonella spp
were registered (AFSCA (Agence Fédérale pour la sécurité de la châine alimentaire),
2007; Collard et al. 2007; EFSA (European Food Safety Authority), 2004b; Van Pelt
et al. 2004).

Both vertical and horizontal transmissions play an important role in the con-
tamination of flocks with Salmonella. Introducing only Salmonella-free chicks, e.g.
by vaccinating the parental flocks against Salmonella, is an effective way to control
the vertical transmission but will not prevent contamination of the birds with the
environment if in addition no hygienic measures are taken simultaneously (Van Im-
merseel et al. 2005). Measures to reduce the horizontal transmission include: ensuring
Salmonella-free feed and water, effective cleaning and disinfection of the farm, the use
of food additives, applying all in all out procedures, appropriate biosecurity measures
against animated or unanimated vectors, etcetera. (Anonymous, 2006; Davies and
Breslin, 2001, 2004; Garber et al. 2003; Gradel and Rattenborg, 2003; Hald et al.
1998; Renwick et al. 1992; Skov et al. 1999; Skov et al. 2004; Van Immerseel et
al. 2005; Wales et al. 2007; Wales et al. 2006). A detailed description of the hy-
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gienic requirements for the farms in Belgium are described in the Belgian legislation
(Anonymous, 1998). Even though these sanitary measures have been implemented
as mentioned above, the burden of Salmonella infections on farms (mainly broilers)
still exist, probably through contamination of the environment. For this purpose, fur-
ther investigation of Salmonella on the broiler farms with different flocks in time was
essential. The first objective of the study was to examine the potential risk factors
contributing to Salmonella infection of the current broiler flock on the farm given the
Salmonella status of the previous flock. The other objective was to investigate the
risk factors associated with the persistence (positive test result for the previous and
current flocks) of Salmonella infection on the farm.

Section 7.1 gives the data origins and the methods used to analyse these data. In
Section 7.2, the exploratory results and the results from model fitting are presented
and finally follows the discussion in Section 7.3. This work is submitted in Namata
et al. (2008c).

7.1 Materials and Methods

7.1.1 Data Collection

The database of the 2005-2006 Belgium Salmonella control programme carried out
by the Federal Agency for the Safety of the Food Chain was used to investigate the
Salmonella status at the entrance of one-day old broiler chicks and the Salmonella
status three weeks before slaughter (exit status). All the farms with more than
5000 birds and those willing to trade their meat must follow compulsory Salmonella
sampling. Samples were taken by the farm owner. The epidemiological unit was a
broiler flock. A flock is defined as a group of chicken belonging to the same herd, with
the same sanitary and immune status, reared in the same room or barn, and having
the following common characteristics: species, category (breeders, production), type
(laying, broiler), stage of production (age), sanitary status (Anonymous, 1998, 2007;
EFSA (European Food Safety Authority), 2004b). Each flock was sampled on the
entrance day and three weeks before slaughter. To obtain the Salmonella status at
entrance, day old chicks arriving from the reproduction holding were sampled by
collecting specimens (20 pieces/flock, 5cm/5cm) of the inner lining of their transport
boxes. The specimens were taken to the regional laboratory and tested for Salmonella.
To obtain the Salmonella status at exit at about three to two weeks before slaughter,
faeces samples were sampled by one of the three following sampling methods: 1) a
pooled sample (60 x 1g) taken with swabs, 2) 60 pooled faecal samples (300 to 600
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grams), 3) a pooled sample collected with 2 pairs of overshoes by walking in the
barn. The samples were taken from different places of the barn where the flocks
are kept and they were sent to an accredited laboratory within 48 hours according
to standard norm ISO6579:2002 (Anonymous, 2007; ISO (Commité international de
normalisation AW/9), 2002). A flock was considered positive when Salmonella was
isolated from at least one sample and a farm was considered to be persistently positive
if two consecutive flocks were positive on exit occasions. The information on the
potential risk factors was obtained from a checklist questionnaire that was submitted
to the different farmers during the 2003 Avian Influenza epidemic and answered on a
voluntary basis. The risk factors which were investigated in our study are summarized
in the data description part (Table 7.1). The information in the data set of the 2005-
2006 Belgian Salmonella national control program in broilers and that of the data
set identifying the risk factors were linked together using the farms identification
numbers. The risk factors as well as the entrance Salmonella status for day-old chicks
comprise the explanatory variables while the response variable refers to Salmonella
status at exit. A more elaborate definition of the response variable follows in later
sections.

7.1.2 Data Description

The design of the study was longitudinal with multiple observations collected on
the same farms giving rise to correlated data. Table 7.1 shows the description of the
variables that were recorded for the study. The response variables are binary outcomes
of presence (outcome=1) or absence (outcome=0) of Salmonella. To get started, the
data were re-structured to have the entrance outcome at a current occasion, the
entrance outcome at the previous occasion, the exit outcome at a current occasion
and the exit outcome at the previous occasion as separate variables. This implies
that at least two flocks had to come on a farm thus eliminating farms that had
one flock because they had no previous outcome. The interval in days between the
consecutive flocks was calculated, thus creating a new variable (“duration”), split
into three categories: less or equal to 6 weeks, between 6 and 12 weeks and over 12
weeks. The first objective of this chapter used the exit outcome at a current occasion
as the response variable. The previous exit outcome along with the current entrance
outcome and other explanatory variables were used as predictor variables. The current
entrance outcome was considered as baseline. For the second objective a new binary
variable was created and denoted 1 if the current and previous exit outcomes were
both positive and 0 otherwise. The explanatory variables included continuous and
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categorical variables.

Table 7.1: Variable descriptions. The binary variables take the value of 1 for a ‘yes’
reply to the question and 0 for a ‘no’ reply.

Variable Description Variable
Name Type

FarmID Identifier for a farm. as given
Broiler houseID Identifier for broiler house. as given
Samplingdate Date the sample was taken. as given
Analysedate Date the sample was analysed. as given
ReferenceID Identifier for a sample. as given
Sampletype Type of sample. categorical
Entrance Result positive Salmonella status for one-day binary

old chicks?
Exit Result positive Salmonella status for adult broilers binary

before going for slaughter?
Province Province the data was obtained. categorical
Numberbroiler- Number of broiler houses on a farm. continuous
houses
Numberbroilers Number of broilers at the time of sampling. continuous
(Nbroilers)
Distance The distance to the nearest poultry holding continuous
Production Type Place where the broilers are reared. categorical
Shared materials Are there shared materials in broiler houses? binary
Species separation Is there separation between birds of different binary

species on a holding?
Protection Net Is there a net protecting broilers from wild binary

birds when there is an open air production type?
Pre-broilerhouse Is there one bucket to put in feet before binary
Disinfection entering the broiler house?
Pre-broilerhouse- Is there a place for changing clothes before binary
hygiene place (HP) entering the broiler house?
Broilerhouse HP Is there one place for hygiene per broiler house? binary
Hand-wash place Is a place available to wash hands per HP? binary
Undress place Is a place available to undress per HP? binary

Continued on next page
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Table 7.1 – continued from previous page

Variable Description Variable
Name Type

HP Disinfection Is a bucket for disinfection per HP available? binary
Visitors dress Are clean clothes for visitors available? binary
Ventilation Is the ventilation mechanic? binary
All-in All-out Is the flock taken out and the place cleaned for binary
principle about 3 days before the next flock is brought in?
Cleaning Firm Does an external firm clean the farm? binary
Feed producer Is the feed from an accredited producer? binary
Town water Is the water for drinking and cleaning from town?binary
Outside feeding Do the broilers feed outside? binary
Temporary Workmen Are temporary workmen present on the farm? binary
International contactsDo poultry or farmers have contact with foreign binary

poultry or persons?
External contacts Do poultry or farmers have contact with external binary

poultry or persons?

The frequencies of the data variables were explored as a check for sparseness. More-
over, the associations between each of the categorical predictor variables with the
responses were examined using the Pearson chi square test of independence. A prob-
ability value of less than 0.05 leads to rejection of the null hypothesis of independence.
Because of the availability of many independent variables per place of hygiene in a
broiler house, a study of multicollinearity was imperative. Multicollinearity refers to
the fact that independent variables are correlated with one another (Agresti, 2002;
Neter et al., 1996). To check this, Pearson chi square test was used to investigate the
presence of association between any two classification variables while Pearson corre-
lation coefficient was used to give an indication of the magnitude of this association.
The variables were considered highly associated if their Pearson correlation coefficient
was greater than 0.7. Multicollinearity can have some serious effects on the values of
the model coefficients. When there is a high degree of multicollinearity, small changes
in the data can cause large changes in the values of the coefficients and some variables
may appear to be completely redundant and may be excluded from the model. The
relation of the continuous variables with the responses was investigated by estimating
the difference in means between positive and negative Salmonella outcomes at exit.
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7.1.3 Data Analysis

Like in the previous chapter we considered three statistical methods (also discussed
in Chapter one), the random intercept generalized linear mixed model with a logistic
link function and the marginal models: generalized estimating equations (GEE) and
alternating logistic regression (ALR), to incorporate and study the clustered type
of data on Salmonella in Belgian broiler chicken flocks’ farms. The analyzes were
twofold: the first analysis uses the current exit outcome conditional on the previous
exit outcome as the response variable while the second uses the joint outcome that the
current and previous exit outcomes were both positive for Salmonella, as response
variable.

Conditional Analysis

For each farm i, we distinguished the previous entrance response Y e
it as the entrance

response at time t, the current entrance response Y e
it+1 as the entrance response at

time t + 1, the previous exit response Y o
it as the exit response at time t, and the

current exit response Y o
it+1 as the exit response at time t+1. The statistical methods

simultaneously account for clustering and the influence of covariates. For particular
values of the explanatory variable, Xi = (xi1 . . . xip), we modeled the current exit
probability of Salmonella adjusting for the previous exit outcome and the current
entrance response for one-day old chicks as baseline, using the logistic model

logit[P (Y o
i t+1 = 1|yo

it, y
e
i t+1)] = β0 + β1y

o
it + β2y

e
i t+1 +

∑
p

βpXip (7.1)

where βp are effects of the p explanatory variables. Here, the GEE method solves
score equations of a marginal formulation of the likelihood function and uses a work-
ing correlation matrix (for our case, the exchangeable structure) to adjust for the
correlation within clusters. The estimation using ALR is via iterative recalculation of
Salmonella clustering in the form of a pairwise odds ratio (assuming an exchangeable
log odds structure) and logistic regression on the outcomes (Agresti, 2002; Carey et
al. 1993).
In the GLMM we allowed the intercepts to vary for each farm and modeled the current
exit probability of Salmonella adjusting for the previous exit outcome and the current
entrance response Y e

it+1 using the extended logistic model

logit[P (Y o
i t+1 = 1|ui)] = β0+β1y

o
i t+β2y

e
i t+1+

∑
p

βpXip+ui, ui ∼ N(0, σ2
u). (7.2)

The model describes farm-specific intercepts instead of farm-averaged intercepts. Like
in the previous chapter, the intra-class correlation across farms can be calculated as
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σ2
u/(σ2

u + π2/3). Note that these models are formulated as two-state discrete time
Markov chains. We refer the reader to Agresti (2002) and Lindsey (1997) for more
details.

Joint Analysis

The same models as in the conditional analysis are adapted to model the persistence of
Salmonella infection on a farm. We modelled the probability that at two consecutive
occasions a farm was infected using the marginal models

logit[P (Y o
i t = 1, Y o

i t+1 = 1)] = β0 +
∑

p

βpXip (7.3)

and the farm-specific model

logit[(P (Y o
i t = 1, Y o

i t+1 = 1)|ui] = β0 +
∑

p

βpXip + ui, ui ∼ N(0, σ2
u). (7.4)

Model Selection

The data constituted more than 20 potential predictor variables (Table 7.1). Selecting
a model from all main effects and their two-way or higher interactions often leads to
a selection from a very large number of effects and produces a model that overfits the
data. Moreover, when these effects include classification variables with several levels,
the number of parameters available for selection is even larger. To determine what
main effects and interactions to allow, we considered the dependence of each of the
variables on the response and the presence and magnitude of associations between
predictor variables in order to avoid multicollinearity problems (see data description
in Section 7.1.2). If multicollinearity existed, the choice of the variable to be included
in the model was based on how strong it was related to the responses.

The model was constructed in a way that the response variable depends on the
continuous variables and classification variables as well as on some two-way inter-
actions of these effects. The pre-selected variables from above and their two way
interactions were entered in the multiple logistic regression model which selected the
parsimonious model using the automatic backward selection procedure implemented
with the SAS LOGISTIC procedure. The selected variables using the automatic
procedure were then entered in the multiple logistic GEE model, in the alternating
Logistic model and in the random intercept GLMM model and the models fitted using
the GENMOD and NLMIXED SAS procedures. The significance of each variable in
the models was examined and if a variable appeared non-significant it was removed
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from the model and the model was refitted. The reduced model was compared with
the previous model using Akaike Information Criterion (AIC) for the GLMM model
and using the Quasi under Independence model Criterion (QIC) for the marginal
models. The smaller the criteria value the better a particular model fits. The QIC
criterion proposed by Pan (2001) and further discussed by Hardin and Hilbe (2003)
is an analogue to the AIC extending its applicability to quasi-likelihood models. Like
the AIC, the QIC adds a penalty term of twice the number of parameters in the model
to the quasi-likelihood. The final GLMM model was fitted with the GLIMMIX SAS
procedure. In the next Section we present the estimated effects of the fitted models.

7.2 Results

This section presents the descriptive results and the results from model fitting. How-
ever, it is worth mentioning that when interpreting model fitting results caution must
be taken with those risk factors involved in higher order interactions since the inter-
pretation of effects related to interaction terms involves the description of the effects
of one variable depending on the value of the other variable.

7.2.1 Data Description

A description of all variables used in this chapter is presented in Table 7.1. The
frequencies, response rates and chi-square association probability values corresponding
to the predictor variable categories in regard to both the conditional response (Table
7.2) and joint response (Table 7.3) are presented. Because of sparseness of data in
some categories of province, we combined the provinces of Brabant Wallon, Hainaut,
Liége, Luxembourg and Namur into the Walloon region (denoted 1) and the provinces
of Antwerpen, Limburg, Oost-Vlaanderen, Vlaams Brabant and West-Vlaanderen to
form the Flanders region (denoted 0). The upper part of the table includes binary
predictor variables. During the period considered (2005-2006) 6824 broilers flocks
on 723 farms were sampled. Of the 41 one-day old chicks which were positive for
salmonella at the current entry, 19.51% (Table 7.2) resulted positive at the current
exit occasion. Given the 404 flocks that were infected at the previous exit occasion,
27.97% were also infected at the current exit occasion (Table 7.2). None of the one-
day old chicks were infected at two consecutive entrance occasions. The proportion
of broiler flocks that were infected at two consecutive exit occasions was 1.66%.

For the conditional response (Table 7.2), the following variables with chi-square p-
values less than 0.05 were observed to be associated with the probability of salmonella
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infectivity of a current exit flock: a previous positive Salmonella status at exit, a pos-
itive Salmonella status of one-day old chicks of the current flock during entrance,
availability of shared materials in broiler houses, having a separation between the
different bird species, presence of a hand-wash place, use of an external cleaning firm,
having temporary workmen, having poultry or farmers in contacts with foreign poul-
try or persons and rearing birds in the Walloon versus Flanders region. For the joint
response (Table 7.3), we observed the following variables to influence the probability
that farms were infected at two consecutive exit occasions: availability of shared ma-
terials in broiler houses, separation between different bird species, applying the all-in
all-out principle, using an external cleaning firm, having temporary workmen, hav-
ing poultry or farmers in contact with foreign poultry or persons, having poultry or
farmers in contact with external poultry or persons, rearing birds in Walloon versus
Flanders region and the duration in between consecutive flocks. For the distributions
of conditional and joint responses with the continuous variables (lower panels of Table
7.2 and Table 7.3), number of broilers and number of broilerhouses, we see that the
mean predictor values were higher for the infected flocks relative to the non-infected
ones suggesting these variables to be possible risk factors. Also the mean distance
to the nearest poultry holding was smaller for the infected groups than for the non-
infected indicating that reduced distance to the nearest poultry holding might be a
potential risk factor.

The findings on multicollinearity using Pearson chi square test for independence
showed highly significant (pvalue < .0001) associations between the pairs of the follow-
ing variables: having a hand-wash place per hygiene place (HP), having an undressing
place per HP, availability of a disinfection bucket per HP, presence of visitors special
clothing and feed from accredited producers. Table 7.4 presents their Pearson corre-
lation coefficients and they range from 0.72 to 0.84. Feed from accredited producers
and use of town water for drinking and cleaning were also highly associated with a
correlation of 0.75. The presence of a hygiene place per broiler house was found to
be associated with presence of the visitors’ special clothing with a correlation of 0.70.
Because the presence of a hand wash place per HP was more related to the responses
(see χ2 p-values, Table 7.2 and Table 7.3), it was used in substitute of the others
to avoid multicollinearity. Some variables like production type and the number of
broiler houses were not considered further for the analyzes due to a large portion of
missingness. Observations for feed from accredited producers and use of town water
for drinking and cleaning and outside feeding existed for one category of the joint
response and thus could not be considered for analysis as they would be inestimable.
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Table 7.2: Distribution of the conditional response with the study variables based
on 6824 flocks from 723 farms. Percentages (%) of positive flocks out of the flock
observations for the designated categorical variables are shown along with their chi–
square association p-values with the response. p-values < 0.05 show significant
association. The mean values of the continuous predictors are estimated for positive
and negative salmonella status.

Binary category 0 category 1
Variable flock Positive flock Positive χ2

observationsflocks(%)observations flock(%) p-value

Previous exit response 6420 3.99 404 27.97 <.0001
Current entry response 6783 5.32 41 19.51 <.0001
Shared materials 3702 4.38 3122 6.63 <.0001
Species separation 6501 5.26 323 8.36 0.0163
Protection Net 567 5.64 6257 5.39 0.7950
Pre-broilerhouse disinfection 354 4.80 6470 5.44 0.6052
Pre-broilerhouse hygieneplace 1096 4.84 5728 5.52 0.3611
Broilerhouse HP 447 7.16 6377 5.28 0.0903
Handwash place/HP 354 8.47 6470 5.24 0.0088
Undressplace/HP 343 7.58 6481 5.29 0.0679
HP disinfection 324 4.94 6500 5.43 0.7021
Visitors clothing 261 6.13 6563 5.38 0.5985
Mechanic ventilation 737 5.56 6087 5.39 0.8431
All-in All-out principe 1117 6.09 5707 5.27 0.2716
Cleaning firm 5137 5.88 1687 3.97 0.0027
Feed producer 232 3.02 6592 5.49 0.1015
Town water 326 3.99 6498 5.48 0.2455
Outside feeding 6803 5.41 21 4.76 0.8958
Temporary workmen 6287 5.22 537 7.64 0.0174
International contacts 6652 5.31 172 9.30 0.0222
External contacts 5926 5.30 898 6.12 0.3078
Region

Walloon(1) vs Flanders(0) 5878 5.78 910 3.08 0.0008

Continued on next page
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Table 7.2 – continued from previous page

Categorical flock positive χ2

Variable observationsflocks(%) p-value

Duration (in weeks) 0.2924
up to 6 1181 6.18
6 to 12 4537 5.11
more than 12 1106 5.79
Production type 0.9096
Bio 1 0.00
Cage 50 6.00
Free range 45 4.44
Barn 1789 4.02

Overall Salmonella negative Salmonella positive
Continuous Mean(SD) Flock Mean(SD) Flock Mean(SD)
Variable observations observations

Number of broilers 35657.27 6388 35160.57 367 44302.76
(23404) (22498.27) (34572.74)

Number broilerhouses 1.8671 4941 1.8438 297 2.2559
(1.2630) (1.2463) (1.4618)

Distance to poultryFarm 2.1289 5764 2.1657 317 1.4606
(3.2293) (3.2718) (2.2238)

Note: 36, 4939, 69, 1586, 743 respectively, were missing data for region, production type, number of

broilers, number of broilerhouses and distance to nearest holding.
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Table 7.3: Distribution of the joint response with the study variables based on
6824 flocks from 723 farms. Percentages (%) of positive flocks out of the flock
observations for the designated categorical variables are shown along with their chi–
square association p-values with the response. p-values < 0.05 show significant
association. The mean values of the continuous predictors are estimated for positive
and negative salmonella status.

Binary category 0 category 1
Variable flock Positive flock Positive χ2

observationsflocks(%)observations flock(%) p-value

Shared materials 3702 1.19 3122 2.21 0.001
Species separation 6501 1.46 323 5.57 <.0001
Protection Net 567 0.88 6257 1.73 0.1314
pre-broilerhouse disinfection 354 0.85 6470 1.7 0.2209
pre-broilerhouse hygieneplace 1096 1.19 5728 1.75 0.1834
Broilerhouse HP 447 2.68 6377 1.58 0.0779
Handwash place/HP 354 3.95 6470 1.53 0.0005
Undressplace/HP 343 3.21 6481 1.57 0.0209
HP disinfection 324 1.54 6500 1.66 0.8706
Visitors clothing 261 1.92 6563 1.65 0.7374
Mechanic ventilation 737 0.81 6087 1.76 0.0579
All-in All-out principle 1117 2.78 5707 1.44 0.0013
Cleaning firm 5137 1.95 1687 0.77 0.001
Feed producer 232 0.00 6592 1.71 0.0443
Town water 326 0.00 6498 1.74 0.0164
Outside feeding 6803 1.66 21 0.00 0.5515
Temporary workmen 6287 1.48 537 3.72 <.0001
International contacts 6652 1.56 172 5.23 0.0002
External contacts 5926 1.50 898 2.67 0.0104
Region

Walloon(1) vs Flanders(0) 5878 1.80 910 0.77 0.0233

Categorical Flock positive χ2

Variable observationsflocks(%) p-value

Duration (in weeks) <.0001
up to 6 1181 3.81
6 to 12 4537 1.28

Continued on next page
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Table 7.3 – continued from previous page

more than 12 1106 0.90
Production type 0.0609
Bio 1 0.00
Cage 50 6.00
Free range 45 0.00
Barn 1789 1.45

Overall Salmonella negative Salmonella positive
Continuous Mean(SD) Flock Mean(SD) Flock Mean(SD)
Variable observations observations

Number of broilers 35657.27 6642 35370.45 113 52516.27
(23404) (22821.77) (43082.64)

Number broilerhouses 1.8671 5137 1.8491 101 2.7822
(1.2630) (1.2405) (1.9058)

Distance to poultryFarm 2.1289 5985 2.1445 96 1.1563
(3.2293) (3.2467) (1.5783)

Note: 36, 4939, 69, 1586, 743 respectively, were missing data for region, production type, number of

broilers, number of broilerhouses and distance to nearest holding.

It should be noted that all these results should be considered as indicative though
not as formal inferential results, as they did not account for the clustered nature of
the data. In the next section, models and methods for clustered data as introduced
earlier on, will be used to identify risk factors for Salmonella.

7.2.2 Conditional Analysis

The results from the conditional analysis, which investigated the risk factors associ-
ated with the probability of Salmonella infection of a current flock at exit from the
farm given the Salmonella status of the previous flock using generalized estimating
equations, alternating logistic regression models and logistic-normal random intercept
model (GLMM) are presented in Table 7.5. From the three approaches, 15 predictors
were shown to be associated with Salmonella infection of the current broiler flock.
One-day old chicks at entrance infected with Salmonella was a highly significant risk
factor for Salmonella to the current flock on the farm. The estimated farm-averaged
odds ratios of Salmonella to one-day old chicks were e1.658 = 5.24 and e1.503 = 4.50,
respectively for GEE and ALR models while the estimated farm-specific odds ratio
was e1.481 = 4.4 using the GLMM model. Generally, the three approaches produced
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Table 7.4: Pearson correlation coefficients for testing independence between any two
of the designated covariates. the pvalue was <.0001 for all combinations rejecting the
null hypothesis of independence. Covariates with a correlation greater than 0.70 were
considered to be highly correlated pointing to multicollinearity.

Variable var1 var2 var3 var4 var5 var6 var7

var1: Broilerhouse HP 1.00 0.65 0.68 0.62 0.70 0.63 0.52

var2: Handwash place 1.00 0.78 0.78 0.80 0.80 0.59

var3: Undress place 1.00 0.72 0.81 0.73 0.60

var4: HP disinfection 1.00 0.84 0.84 0.62

var5: Visitors cloth 1.00 0.84 0.70

var6: Feed producer 1.00 0.75

var7: Town water 1.00

similar results in terms of statistical significance. Except for the one-day old chicks’
predictor variable, the other predictors were found to interact with each other as they
influenced Salmonella infection of the current broiler flock on the farm.

The impact of the Salmonella status of the previous flock on the probability of
Salmonella for the current flock was found to depend, pair wise, on five other factors.
From GEE and ALR models, while having a hygiene place for changing clothes before
entering the broiler house increased the odds for Salmonella for the current flock when
the previous flock was infected with Salmonella, the existence of the hygiene place
decreased the risk when a previous flock was uninfected. With the GLMM model, the
presence of a hygiene place decreased the odds for Salmonella when the previous flock
was infected, but decreased further when the previous flock was uninfected. Also from
the GLMM model, the use of mechanic ventilation decreased the odds for Salmonella
when the previous flock was infected, but the risk decreased further when the previous
flock was uninfected. Still, applying the all-in all-out principle or using an external
cleaning firm or introducing a new flock on a farm at least six weeks after the previous
flock, decreased the odds for Salmonella when the previous flock was infected, with
further decrease when the previous flock was not infected.

The effect of the number of broilers on the occurrence of Salmonella to the current
flock given the Salmonella status of the previous flock interacted with five other
predictors. Separating between birds of different species or having a hygiene place for
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changing clothes before entering the broiler house or region of location or employing
an external cleaning firm to clean or using temporary workmen, decreased the odds
for Salmonella when the number of broilers was less or equal to 2SDs from the mean
number of broilers (Nbroilers ≤ 82465) (see Tables 7.2 or 7.3). With this number
of broilers, the odds for Salmonella decreased further when in the Walloon region
than with the Flanders region. Using the GLMM model, a larger number of broilers
(Nbroilers = mean + 3SDs) increased the odds for Salmonella when an external firm
cleaned, while from the ALR model this larger number of broilers increased the risk
when there were temporary workmen. For illustration purposes, the interaction effect
of the number of broilers and the external cleaning firm using the GEE model was
derived as
Log(odds) = -3.985 + 3.1E-5*Nbroilers - 3.289*(0) + 3.4E-5*Nbroilers*(0) for Firm = 0

Log(odds) = -3.985 + 3.1E-5*Nbroilers - 3.289*(1) + 3.4E-5*Nbroilers*(1) for Firm = 1

The three models also revealed that separating between birds of different species
or having a hand wash place in the hygiene place; decreased the odds for Salmonella
with a unit increase in the distance to the nearest poultry holding. The GEE and ALR
models showed that using mechanic ventilation reduced the odds for Salmonella when
the distance to the nearest poultry holding was increased. While using temporary
workmen increased the risk for Salmonella when there was a separation between birds
of different species, the odds decreased when birds of different species were separated
and there were no temporary workmen. Similarly, farms located in the Walloon
region had increased odds for Salmonella when there was a separation between birds
of different species, but the odds decreased when there was a separation between birds
of different species for farms located in the Flanders region.

Using an external cleaning firm decreased the odds for Salmonella when there
was a protection net sheltering the broilers from wild birds, but the odds went down
further when the external firm was employed and the protection net was not available.
The presence of a hand wash place decreased the odds for Salmonella when there
were poultry or farmers in contact with external poultry or persons, but absence
of a hand wash place and presence of external contacts led to an increase in the
odds for Salmonella. Finally, using an external cleaning firm decreased the odds for
Salmonella regardless of the existence of temporary workmen, but the odds decreased
further when there were temporary workmen than when they did not exist.

The GLMM model estimated the variance of the farm-specific intercepts as σ2
u =

0.6526 giving an estimated intra-class correlation of 0.165. In contrast, the estimated
exchangeable correlation based on GEE was ρ̂ = 0.032. The pairwise exchangeable
odds ratio using the ALR was 0.758 and it is highly significant.
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Table 7.5: Parameter estimates and their standard errors and their significance p-
values from the conditional analysis using GEE and ALR Marginal Models and the
Random intercepts model (GLMM).

Marginal model GEE Marginal model ALR GLMM

β̂ (SE) pvalue β̂ (SE) pvalue β̂ (SE) pvalue

Intercept -3.99(0.44) <.0001 -3.93(0.47) <.0001 -3.99(0.77) <.0001

Main Effects

Previous exit Y o
t 1.80 (0.78) 0.0210 1.52(0.85) 0.073 0.32(1.00) 0.7469

Current entry Y e
t+1 1.66 (0.52) 0.0015 1.50(0.57) 0.008 1.48(0.46) 0.0014

Number of broilers 3.1×10−5 <.0001 3.1×10−5 <.0001 3.1×10−5 0.0003

(3.7×10−6) (4.5×10−6) (8.5×10−6)

Distance poultryFarm -2.92(0.87) 0.0008 -2.92(0.78) 0.0002 -2.58(1.08) 0.0175

Species separation 2.45 (0.68) 0.0003 2.56(0.65) 0.0001 2.68(0.97) 0.0057

Protection Net -0.77 (0.33) 0.0203 -0.65(0.41) 0.1111 - -

Pre-broilerhouse HP 1.24 (0.32) 0.0001 1.27(0.32) 0.0001 0.97(0.41) 0.0190

Handwash place -0.02 (0.31) 0.9415 -0.04(0.37) 0.9219 -0.70(0.62) 0.2566

Mechanic ventilation -0.03 (0.26) 0.9045 -0.13(0.27) 0.6320 -0.17(0.27) 0.5286

All-in All-out Principle 0.06 (0.24) 0.8101 0.02(0.23) 0.9489 0.01(0.26) 0.983

Cleaning Firm -3.29 (0.91) 0.0003 -2.88(0.97) 0.0029 -0.90(0.37) 0.0143

Temp workmen -0.87 (0.48) 0.0728 -0.83(0.52) 0.1101 -0.48(0.34) 0.1537

External contacts 5.30 (1.73) 0.0021 5.24(1.52) 0.0006 4.38(2.03) 0.0311

Region: Wal vs Fla -0.52 (0.30) 0.0797 -0.49(0.29) 0.0949 0.48(0.50) 0.339

Duration (weeks)

dur1: 6 to 12 0.49 (0.24) 0.0375 0.49(0.24) 0.0406 0.58(0.25) 0.0188

dur2: > 12 0.86 (0.28) 0.0019 0.85(0.28) 0.0022 0.97(0.28) 0.0005

Interaction Effects

PrevY*Pre-broh’seHP 1.90 (0.64) 0.0029 1.47(0.68) 0.0311 1.76(0.69) 0.0103

PrevY*principle -1.36 (0.51) 0.0070 -1.21(0.53) 0.0228 -1.23(0.49) 0.0128

PrevY*Clean’gFirm -1.04 (0.52) 0.0457 - - -1.03(0.47) 0.0268

PrevY*duration

Continued on next page
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Table 7.5 – continued from previous page

Marginal model GEE Marginal model ALR GLMM

β̂ (SE) pvalue β̂ (SE) pvalue β̂ (SE) pvalue

prevY*dur1 -0.74 (0.41) 0.0690 -0.73(0.46) 0.1082 -0.97(0.39) <.0129

prevY*dur2 -1.73 (0.69) 0.0118 -1.66(0.81) 0.0399 -1.91(0.58) <.0010

PrevY*MechanicV - - - - 1.54(0.70) 0.0267

Nbros*Species -8.3×10−5 0.0012 -8.3×10−5 0.0005 -8.0×10−5 0.0051

(2.6×10−5) (2.4×10−5) (3.0×10−5)

Nbros*Pre-broh’seHP -3.1×10−5 <.0001 -3.1×10−5 <.0001 -2.0×10−5 0.0100

(5.5×10−6) (6.1×10−6) (9.4×10−6)

Nbros*Clean’gFirm 3.4×10−5 <.0001 2.8×10−5 0.0008 2.1×10−5 0.0066

(8.0×10−6) (8.4×10−6) (7.7×10−6)

Nbros*region - - - - -3.0×10−5 0.0339

(1.2×10−5)

Nbros*Workmen 1.4×10−5 0.0114 1.5×10−5 0.0140 - -

(5.4×10−6) (5.9×10−6)

Distance*Species -1.43 (0.36) 0.0001 -1.38(0.35) 0.0001 -1.38(0.51) 0.0070

Distance*Handwash 2.41 (0.85) 0.0046 2.43 (0.76) 0.0014 2.52(1.09) 0.0202

Distance*MechanicV 0.47 (0.18) 0.0070 0.46 (0.17) 0.0067 - -

Species*Workmen 7.41 (1.48) <.0001 7.12(1.44) <.0001 6.98(1.84) 0.0002

Species*Region 5.05 (1.36) 0.0002 4.86 (1.31) 0.0002 4.21(1.87) 0.0245

Nets*Clean’gFirm 2.02 (0.68) 0.0030 1.71 (0.79) 0.0296 - -

Handwash*External -5.19 (1.73) 0.0027 -5.19(1.53) 0.0007 -4.31(2.05) 0.0352

Clean’gFirm*Workmen -2.39 (0.68) 0.0004 -2.36(0.70) 0.0008 - -

Association Estimates

pairwise ρ̂ 0.03

pairwise ÔR 0.76(0.17) <.0001

σ̂2
b (Farm) 0.65(0.15)
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7.2.3 Joint Analysis

In the joint analysis, we investigated risk factors impacting the probability that two
consecutive flocks at exit (previous and current) were positive for Salmonella. The
results are shown in Table 7.6. The persistence of Salmonella on a farm by having
two consecutive flocks with positive test results was associated with four variables in
addition to five interaction terms.

Employing an external cleaning firm led to a decrease in the risk for persistent
Salmonella. The estimated farm-averaged odds ratios of Salmonella were e−1.645 =
0.23 and e−1.222 = 0.29, respectively for GEE and ALR models while the estimated
farm-specific odds ratio was e−1.076 = 0.34 using the GLMM model. Also, the dura-
tion between the consecutive flocks of at least six weeks led to a significant decrease of
the risk for Salmonella. Furthermore, applying the all-in all-out principle decreased
the risk for persistent Salmonella infection on a farm. In the GLMM model the effect
of the number of broilers did not interact with other variables and it was found to in-
crease the risk by a small magnitude but statistically significant (odds ratio=1.000014
and confidence interval [1.000001,1.000027]).

The odds for Salmonella decreased with an increase in the number of broilers
(Nbroilers ≤ mean + 2SDs) when there were poultry or farmers in contact with ex-
ternal poultry or persons, but the odds further decreased when there were no external
contacts. Also, the odds for Salmonella decreased with an increase in the number of
broilers for farms located in the Flanders region, but decreased more for farms in the
Walloon region. Although the risk for Salmonella decreased with the presence of a
hand washing place whether or not there were temporary workmen, the risk decreased
further when there were temporary workmen. While having poultry or farmers in
contact with foreign poultry or persons increased the risk for Salmonella when there
were temporary workmen, the risk decreased when there were international contacts
but no temporary workmen. Likewise while external contacts increased the odds for
Salmonella when there were temporary workmen, external contacts decreased the
odds for Salmonella when there were no temporary workmen.

The estimated variance of the farm-specific random effects was σ2
u = 3.178 for the

GLMM model giving an estimated intra-class correlation of 0.491. In contrast, the
estimated exchangeable correlation was ρ̂ = 0.009 for the model based on GEE. The
difference in the magnitudes of the parameter estimates from the GLMM models and
those from GEE depends on the estimated random effects variance as shown by the
relationship in the previous chapter.
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Table 7.6: Parameter estimates and their standard errors and their significance p-
values from the joint analysis using GEE and ALR Marginal Models and the Random
intercepts model (GLMM).

Marginal model GEE Marginal model ALR GLMM

Effect β̂ (SE) pvalue β̂ (SE) pvalue β̂ (SE) pvalue

Intercept -4.84 (0.87) <.0001 -5.18 (0.99) <.0001 -5.42(1.08) <.0001

Main Effects

Number of broilers 1.4×10−5 0.0082 2.2×10−5 <.0001 1.4×10−5 0.0369

(5.4×10−6) (5.5×10−6) (6.8×10−6)

Handwash place 2.51 (0.94) 0.0075 2.13 (0.98) 0.0286 0.99(1.03) 0.3408

All-in All-out Principle -1.65 (0.61) 0.0071 -1.31 (0.46) 0.0048 - -

Cleaning Firm -1.46 (0.43) 0.0007 -1.22 (0.47) 0.0098 -1.08(0.51) 0.0350

Temp Workmen 3.29 (0.87) 0.0002 3.14 (1.29) 0.0151 4.42(1.57) 0.0048

Int’l contacts -0.23 (0.67) 0.7353 -0.02 (0.83) 0.9774 0.11(1.07) 0.9202

External contacts -2.52 (1.37) 0.0650 0.49 (0.50) 0.3294 - -

Region: Wal vs Fla 2.08 (1.44) 0.1502 1.67 (1.35) 0.2138 - -

Duration(weeks)

6 to 12 -1.01 (0.26) 0.0001 -0.84(0.26) 0.0013 -1.04(0.27) 0.0001

> 12 -1.36 (0.34) 0.0001 -1.28(0.36) 0.0003 -1.45(0.43) 0.0008

Interaction Effects

Nbros*ExtContacts 6.4×10−5 0.0011 - - - -

(1.9×10−5)

Nbros*Region -12.0×10−5 0.0001 -12.0×10−5 <.0001 - -

(3.1×10−5) (2.5×10−5)

Handwash*Workmen -11.07 (2.87) 0.0001 -6.81(1.93) 0.0004 -6.31(1.98) 0.0014

Workmen*IntContacts 9.35 (2.44) 0.0001 4.92(1.68) 0.0034 4.670(1.96) 0.0171

Workmen*ExtContacts 4.960 (1.81) 0.0062 3.37(1.32) 0.0107 - -

Association Estimates

pairwise ρ̂ 0.01

pairwise ÔR 3.19(0.41) <.0001

σ̂2
b (Farm) 3.18 (0.43)
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7.3 Discussion

The investigations from this study showed that Salmonella infection in broiler chicken
flocks involves several risk factors and their interactions. Multivariable logistic regres-
sion is a valuable tool to study risk factors in broilers (Chriel et al. 1999; Henken et
al. 1992; Skov et al. 1999). In the analyzes presented here we have used generalized
estimated equations (GEE), alternating logistic regression models (ALR) and ran-
dom intercept GLMM, extensions of the ordinary logistic regression model to model
correlated data, to determine risk factors based on the variables shown in Table 7.1.
Salmonella prevalence for current broiler flocks conditional on the Salmonella status
of the previous flock, according to 2005-2006 data, was estimated as 27.9% which is
rather close to the community observed prevalence of 23.7% in the year 2005 (EU,
2005). Using the three modeling approaches, the conditional analysis revealed one-
day old chicks infected with Salmonella as an important risk factor to a farm, as also
observed in other studies by Kim et al. (2007) and Van Immerseel et al. (2004, 2005).
Positive chicks can spread the infection through their faeces and quickly contaminate
the farm. The boxes in which they arrive may constitute a way for introducing the
infection as well (Kim et al. 2007; Renwick et al. 1992; Van Immerseel et al. 2004).
Thus the first control measure is having Salmonella free breeding flocks (Bailey, 1993;
Bouwknegt et al. 2004; Breytenbach, 2004; Collard et al. 2007; Garber et al. 2003;
Skov et al. 1999; Van Immerseel et al. 2005; Van Immerseel et al. 2004). This can be
easily achieved for instance through vaccination of parental lines. In Belgium since a
few years, hatcheries have managed to obtain a good control of Salmonella infection
even though at the time of this study, vaccination was only performed on a voluntary
basis in breeders and in layers. Vaccination on broiler farms is never considered due
to the short life expectancy of broilers and a diverse range of Salmonella serovars
implicated. Thus vaccination of the broiler breeders is important, and has proven
being effective in reducing the possibility of human infection through contaminated
poultry products consumption (Cogan and Humphrey, 2003; Van Immerseel et al.
2005). Vaccination is now since June 2007 a legal obligation in Belgium in breeders
and in layers (Anonymous, 2007).

The above risk factor is associated with the vertical transmission of Salmonella,
but other factors associated with the horizontal transfer of Salmonella, mainly through
the environment (Breytenbach, 2004; Davies and Breslin, 2003c; Kim et al. 2007;
Renwick et al. 1992; Van Immerseel et al. 2004; Wales et al. 2007), were found in
this study. Salmonella’s capability of resisting desiccation, allows it to survive for long
periods in the environment. It has been found to remain for several months in dust
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of ventilation filters (Davies and Wray, 1994; Kim et al. 2007; Renwick et al. 1992).
A proper cleaning and disinfecting procedure conducted by external firms, especially
trained for that purpose, seemed to be a major decreasing risk factor in our study
and as proven before (Davies and Breslin, 2001, 2003a; Huneau-Salaun et al. 2007).
A sanitary break (i.e. the duration between the previous and current flock of at least
6 weeks), or applying the all-in all-out procedure, or using mechanic ventilation, all
contributed as well to reducing the risk of Salmonella to the current flock when the
previous flock was infected.

An increase in risk was observed, according to the conditional analysis using GEE
and ALR models, with having a hygiene place to change clothes prior to entering the
broiler house when the previous flock was infected. This suggests that having proper
biosecurity measures such as a clean hygiene place before entering a unit is probably
not sufficient enough if a proper maintenance of those rooms is not ensured. Equipping
the barns with individual hygiene places would only be effective if in addition the barns
are equipped with their own individual ventilation systems, and extending biosecurity
measures to all entering objects such as vehicles, litter, feed, water in order to be fully
effective (Anonymous, 2006; De Zutter et al. 2001; Hald et al. 2000; Heyndrickx et
al. 2002; Huneau-Salaun et al. 2007; Renwick et al. 1992; Wales et al. 2007).
Management of those places, such as the cleaning and disinfecting procedure applied
to them must be taken into account as well. Not only is it important to have an
effective cleaning and disinfecting procedure, but also controlling its efficacy (Barker
et al. 2003; Wales et al. 2007; Wales et al. 2006). A crucial element is the choice of the
right products. Bacteria can persist in biofilms, which is organic matter accumulating,
for instance, in water pipes (Garber et al. 2003; Morgan-Jones, 1980; Renwick et al.
1992; Van Immerseel et al. 2004). Chlorine which is often used to disinfect those
systems does not remove organic matter. Therefore a possible cause of Salmonella
presence could be due to these biolfilms (Alchalabi, 2007; Davies and Breslin, 2003c;
Renwick et al. 1992; Ziggity Systems Inc, 2006).

From the joint analysis, studying the persistence of Salmonella on a farm, the main
factors influencing this outcome were as previously seen in the conditional analysis,
i.e., a cleaning and disinfection procedure conducted by an external firm, as well as
applying all-in all-out procedure and at least a period of six weeks of sanitary break
decreased the risk. A possible explanation for the increase in risk due to the interac-
tions of external contacts and international contacts with temporary workmen could
be an introduction of bacteria through contaminated tools or persons, as previously
seen in other studies (Hald et al. 2000; Huneau-Salaun et al. 2007).

In conclusion, although a lot of risk factors have been investigated in this study,
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due to sparseness of data, some of them, had to be omitted such as water, feed,
and litter supply and the storing of these supplies. It would be interesting to also
include in future studies the performance of the different ventilation systems, the
temperature in the houses, as these factors have been recognized to greatly influence
the poultry sector performance (Morrow, 2007). Measures against rodents, flies and
manure disposing are key points in controlling the infection and avoiding persistence
(Anonymous, 2006; Breytenbach, 2004; Davies et al. 1997; Henken et al. 1992;
MacKenzie and Bains, 1976) and therefore should be considered to further enrich
the Belgian database for studying potential risk factors contributing to Salmonella
infection.

It is worth noting that this study was not explicitly designed for the study of risk
factors associated with Salmonella infection but data on risk factors were obtained
from the 2003 Avian Influenza check list, filled in on a voluntary basis by the farm
owner. Nevertheless, risk factors recognized to play a critical role in avian influenza
infection appear to be the same as those triggering Salmonella infection. Also, the
fact that the farm owner was responsible for the filling in of the questionnaire and to
collect samples might highlight a problem of bias in the data. To avoid such bias in
the future it is important to have an independent person filling in the questionnaire
in a standardized way as well as an independent standardized sampling method in
order to have reliable good quality data.

Accounting for interactions leads to an improved determination of the risk fac-
tors that propagate the susceptibility to Salmonella. The epidemiological studies
of Salmonella or other diseases should be designed with interactions in mind. The
consistency in the results with the three modeling approaches is encouraging and
strengthens their usefulness in identifying risk factors for Salmonella when faced with
many variables and repeated data. These techniques can also handle higher order
interactions than two-way interactions but these are seldom investigated due to small
sample sizes.





Chapter 8

Concluding Remarks and

Future Research

In this thesis we have focused on modeling binary response data of infectious diseases
transmitted from human to human, from food/water to humans/animals but also from
animals to humans. The sections below discuss some important issues pertaining to
each part of the thesis.

8.1 Modeling Human to Human Infectious Diseases

Data

In Part I of this research we used an approach to nonparametric modeling based
on penalized splines using truncated power basis (Chapter 2 and 3). The penalized
splines can be formulated as GLMM where the coefficients of the truncated power
basis are allowed to vary randomly with an equal variance for each coefficient. It is
important to realize that although GLMMs are used, the data analysed in Chapter 2
and 3 are cross-sectional, that is we have data at only individual level. However, in
order to allow us to estimate the variance of the coefficients of the truncated power
functions, we declare a second level with one unit which spans the entire data set.
Note that this second level is a non-hierarchical classification.

Future research will be directed to extend the penalized spline model to public
health problems that take place in the context of a hierarchical structure. Individuals
may belong to one grouping at a given level of hierarchy and the grouping can be a
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source of random variation. For example, for the study of Parvovirus B19 in Chapter
3, we can consider these data as clustered by country and instead of having a fixed
effect for country we could treat the country effect as random thus yielding a country-
specific P-spline model of the form

g(π) = Xβ + Zu + bj

where g is the link function and bj is the random intercept for country j.
GLMM models can be computationally intensive regarding direct calculations of

the intractable integral over random effects in order to maximize the likelihood. The
integration process can be more difficult with the GLMM fitting of the P-spline model
because the dimension of the integral is equivalent to the number of knots and these
can be as many as even 40. However, while marginal models like generalized esti-
mating equations can provide a remedy to the maximum likelihood problem, they are
specific to hierarchical data settings rather than the type of mixed models that arise
in smoothing. Therefore, for GLMM fitting of the spline models we used a simple
remedy to the maximum likelihood problem, which uses penalized quasilikelihood,
implemented in the SAS procedure GLIMMIX.

The nonparametric modeling presented in Chapter 2 to 4 are known for their
flexibility to capture hidden features of the data but this does not guarantee non de-
creasing estimates for prevalence. A nonmonotonic estimate of the prevalence leads
to negative force of infection, which is nonsensical in epidemiology. To ensure mono-
tonicity on the probability scale we have used the pool adjacent violater algorithm
(PAVA) (Robertson et al. 1988) in the order of ‘smooth then constrain’. That is,
we applied the PAVA to the estimated prevalences and the force of infection is set to
zero whenever it was negative. However, when model selection is an issue of concern,
caution must be taken since the unconstrained predicted probabilities are used to
compute the model deviance and the model selection criteria and these could influ-
ence the results. The impact can be removed by carrying out a constrained estimation
in the order of ‘constrain then smooth’, which we recommend for future research.

8.2 Dose-Response Modeling for Food-borne Infec-

tious Diseases

8.2.1 Single Strain

In this part we have shown that several models can be derived from the generic
mechanistic model (5.3). The derivation of the Beta-Poisson model given by Haas et
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al. (1999) was recapitulated in Chapter 5. Furthermore we derived the log-logistic,
log-normal, extreme value models and the modified fractional polynomials. We have
compared all these models for their ability to describe human dose-response data for
Salmonella Typhi and Campylobacter jejuni and have found all of them to fit the
data well. That is, none of the models was found to be substantially better than the
others. The risk to Salmonella Typhi for an ingested dose of 100cfu microorganisms
estimated from the set of 40 models ranged from 7.96 ×10−22 to 0.07407 while the
risk to Campylobacter jejuni for a dose of 10cfu microorganisms was estimated from
the set of models ranged from 4.52×10−11 to 0.3236. Clearly, the models vary a lot
at low doses. This extreme variation between models at low doses illustrates the need
for more data and the difficulty to generalize the risk estimate in order to develop
regulations to protect public health. In Chapter 5 we have presented an illustration of
incorporating model uncertainty into the risk estimation process based on the model
averaging approach suggested by Buckland et al. (1997), where the model-specific
risk estimate is weighted using Akaike weights to obtain an average risk estimate.
Furthermore we found that averaging across a set of models that includes the modified
fractional polynomials yields less biased and more precise risk estimates and attains
coverage probabilities closer to the nominal 95% level compared to the set that does
not include these fractional polynomials. Moreover model averaging performed better
than selection of a single model.

Future research will focus on studying the performance of the proposed modified
fractional polynomials in relation to the commonly used dose-response models using
full Bayesian analysis.

8.2.2 Several Strains

In Chapter 5, sections 5.5 and 5.6, we have illustrated extrapolation to low doses
for several strains of Campylobacter jejuni data for chicken using fixed effects and
random effects models. These models are very important because data often fall
into categories such as strains and one normally wants to control for characteristics
of those categories that might affect the response variable. However, fixed effects
models are not without their drawbacks. The fixed effects models may have many
cross-sectional units of observations requiring many dummy variables for their specifi-
cation. Too many dummy variables may sap the model of sufficient number of degrees
of freedom for adequately powerful statistical tests. Moreover, a model with many
such variables may be plagued with multicollinearity, which increases the standard
errors and thereby drains the model of statistical power to test parameters. With
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the Campylobacter jejuni data example, the models adjusting for all variables (host,
origin, type) contained variables that do not vary within the strains and therefore
parameter estimation was precluded. To over come this problem we partitioned the
original strain data into groups according to possible combinations of the variables
(origin and host) and proceeded to make analyses based on the formulated groups as
the subjects. Because fixed effects models rely on within-group variation, we need
repeated observations for each group, and a reasonable amount of variation of the
predictor variables within each group. As a result groups with one or two observa-
tions were eliminated from the analysis. However, with the groups having at least
three observations we were faced with the quasi-separation problem, which means
that some linear combination of the predictor variables can be used to separate the
dependent variable’s 1’s versus 0’s and lead maximum likelihood estimates to go to
infinity. As noted by Heinze (1999), separation primarily occurs in small samples
with several unbalanced and highly predictive covariates, and this can be seen with
our current study data set. Firth (1993) developed a procedure to reduce the bias
of maximum likelihood estimates and this has proven to provide an ideal solution to
monotone likelihood (Heinze and Schemper, 2002). Heinze and Ploner (2004) present
the SAS macro, an S-PLUS library and an R package to apply Firth’s procedure
to logistic regression. We recommend a deeper look into the separation problem for
future research.

One potentially significant limitation of fixed effects models is that we cannot as-
sess the effect of variables that have little within-group variation. To be able learn
about the effect of a variable that does not show much within-group variation, alter-
native models such as random effects models can be used. Random effects models
can handle all the available data per group. Their disadvantage is that they can be
computationally intensive and thus limit sensitivity analyses via simulations. Fitting
these models using GLIMMIX or NLMIXED SAS procedures requires good starting
values, which cannot be guaranteed within simulation runs. Random-effects models
are desirable when there is no a priori knowledge on the strains or when only a few
strains are expected to comprise a partition of interest.

Another alternative is to use fully Bayesian models where a priori information
on strains is accounted for and summarised by the prior distributions assigned to
each parameter in the model. This will be the focus for further research in order to
elaborately compare between fresh isolates and laboratory isolates. A comparison of
these isolates has been done using only the Beta Poisson model by Chen et al. (2006)
but we will extend it to incorporate random effects models and model averaging.

An important aspect worth noting is that we have estimated the probability of
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infection for each strain at a common dose. An alternative, which seems to be more
reasonable regarding this data set, would be to fix the probability of infection and
estimate the infectious dose for each strain or group. The latter estimation appears
to be intriguing because of the widely varying scale of doses for each strain in the
current study.

8.3 Modeling Data on Salmonella Infection in Broiler

and Layer Chicken Flocks

In Part III we have studied risk factors for Salmonella in Belgian laying hens and
broiler chicken flocks using three models: the marginal models, generalized estimating
equations and alternating logistic regression model; and the random intercept model.
This section presents some points to be considered in the analysis of repeated binary
data. First, depending on the objective of the study, one can choose whether to use
marginal models or random-effects models. If the goal is to study risk factors for
Salmonella to a group of farms or at slaughterhouse the marginal models are suitable.
However, when the association between repeated measurements is of interest the
alternating logistic model is more appropriate than generalized estimating equations
which treat the association as a nuisance. In contrast, if the goal is to study the
farm risk factors for Salmonella, the random-effects model is more suitable because it
allows adjustment on non-observed farm characteristics.

The choice of the structure of the covariance between the repeated responses is
important. In the marginal models, the inferences on the parameter estimates are
asymptotically valid under any assumed structure but it is better to choose a structure
corresponding to the data. In contrast, in the random model, the fixed and random
parameters are simultaneously estimated and the choice of the covariance structure
influences the final results.

The estimates for the marginal models and the random models differ. Moreover,
the interpretation of the estimated parameters is different. In the marginal models,
the exponential of an estimated regression parameter is a farm-averaged odds ratio for
Salmonella and concerns the sub-group of farms that shares a characteristic relative
to the sub-group of farms not sharing this characteristic. In the random model, the
exponential of an estimate is an odds ratio for a farm that has a characteristic relative
to this same farm if it were free of this characteristic.

Marginal models are easy to implement and represent a first solution, but the
random models, although more complex, use all available data and are more suitable
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for explicative studies.
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Mathëı, C., Shkedy, Z., Denis, B., Kabali, C., Aerts, M., Molenberghs, G., Van
Damme, and P.Buntix, F. (2006). Evidence for a substantial role of shearing of
injecting paraphernalia other then syringes/needles to the spread of hepatitis C
among injecting drug users. Journal of Viral Hepatitis. 13, 560-570.

McCullagh, P. and Nelder, J.A. (1989). Generalized Linear Models. Chapman and
Hall. New York.

McCulloch, C.E. and Searle, S.R. (2001). Generalized, Linear, and Mixed Models.
New York: Wiley.

Microsoft R© Encarta R© Online Encyclopedia. (2008). Salmonella, Available at
http://encarta.msn.com/salmonella.html

Molenberghs, G., and Verbeke, G. (2005). Models for Discrete Longitudinal Data.
Springer Verlag, New York.

Mollenhorst, H., van Woudenbergh, C.J., Bokkers, E.G., and De Boer, I.J.M. (2005).
Risk factors for Salmonella enteritidis infections in laying hens. Poultry Science
84(8), 1308-1313.

Moon, H., Kim, H., Chen, J. J, and Kodell, R. L. (2005). Model averaging using
Kullback information criterion in estimating effective doses for microbial infec-
tion and illness. Risk Analysis, 25(5), 1147-1159.

Morgan-Jones, S.C. (1980). The occurrence of salmonellae during the rearing of
broiler birds. Poultry Science 21, 463-470.

Morrow C. (2007). Diseases, Poisons and Toxins.

Mossong, J., Hens, N., Friederichs, V., Davidkin, I., Broman, M., Litwinska, B.,
Siennicka, J., Trzcinska, A., Van Damme, P., Beutels, P., Vyse, A., Shkedy, Z.,
Aerts, M., Massari, M. and Gabutti, G. (2008). Parvovirus B19 infection in five
European countries: seroepidemiology, force of infection and maternal risk of
infection. Epidemiology and infection, 00, 000-000

Muench, H. (1959). Catalytic models in epidemiology. Boston: Harvard University
Press.



Bibliography 197

Muench, H. (1934). Derivation of rates from summation data by the catalytic curve,
Journal of the American statistical association, March Edition, 25-38.

Nagelkerke, N., Heisterkamp, S., Borgdorff, M., Broekmans, J., and Houwelingen,
H.V. (1999). Semi-parametric estimation of age-time specific infection incidence
from serial prevalence data. Statistics in Medicine, 18, 307-320.

Namata, H., Aerts, M., Faes, C., and Teunis, P. (2008b). Model Averaging in
Microbial Risk Assessment Using Fractional Polynomials. Risk Analysis, 28(4),

891-905.
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Samenvatting

Gezondheid is een kostbaar goed voor elk levend wezen, in het bijzonder voor mens
en dier. Maar deze gezondheid worden continu blootgesteld aan risico’s. Micro-
organismen kunnen schadelijk zijn voor mens en dier, in infectieziekte-terminologie
de zogenaamde “gastheer” voor deze organismen. Een infectieziekte kan veroorzaakt
worden door verschillende soorten micro-organismen: virussen, bacterin, parasieten en
fungi. Ziekten door infectie kunnen variëren van alledaagse, vrij onschadelijke kwaalt-
jes, zoals verkoudheden, tot dodelijke ziektes zoals AIDS. Afhankelijk van vele ver-
schillende factoren kan een infectieziekte zich verspreiden op verschillende manieren.
Infecties kunnen seksueel overdraagbaar zijn, overdraagbaar via de lucht in elkaars
directe omgeving, via direct huidcontact, via contact met besmet bloed, maar infec-
ties kunnen ook via insecten verspreid worden, alsook via het consumeren van besmet
voedsel en water. In deze thesis worden methoden voor het modeleren van infec-
tieziekten voorgesteld en bestudeerd voor infectieziekten die i) overgedragen worden
door de lucht via bijvoorbeeld druppeltjes vocht, die bij het niezen en hoesten door
een genfecteerd persoon verspreid worden, ii) via genfecteerd bloed dat druggebruik-
ers aan elkaar overdragen, door eenzelfde injectienaald te delen, en iii) het gevolg zijn
van het consumeren van gecontamineerd voedsel.

Deel I van de thesis spitst zich toe op virale infecties zoals rodehond (rubella),
bof (mumps), varicella, parvo B19 en hepatitis C. Centraal hierbij staat de zoge-
naamde infectiedruk als functie van bijvoorbeeld de leeftijd van het individu. De
infectiedruk is de kans dat een nog vatbaar persoon met een bepaalde leeftijd ogen-
blikkelijk gëınfecteerd wordt. Mathematisch kan de infectiedruk afgeleid worden uit
de leeftijdsafhankelijke prevalentie van de ziekte. De prevalentie geeft het percentage
van de populatie dat al genfecteerd en niet langer vatbaar is. Deze prevalentie kan op
verschillende manieren gemodelleerd worden als functie van de leeftijd. Parametrische
modellen veronderstellen een vooropgesteld functioneel verband tussen de prevalentie
en de leeftijd (of een andere maat voor de duur van blootstelling zoals de tijd sinds het

203



204 Samenvatting

begin van het delen van injectienaalden bij drukgebruikers). In Hoofdstuk 4 wordt
een zogenaamd Weibull model toegepast voor het modelleren van de prevalentie en
de afgeleide infectiedruk voor het hepatitis C virus. Dit Weibull model, gecombineerd
met een logistisch regressiemodel, wordt gebruikt om inzicht te krijgen in factoren
die het risico op hepatitis C verhogen (risicofactoren). Bij niet-parametrische mod-
ellen wordt het functioneel verband niet vooraf vastgelegd. Dergelijk model is in
staat zich aan te passen aan onverwachte patronen in de gegevens. In Hoofdstuk 4
wordt het resultaat van een isotoon niet-parametrisch regressiemodel vergeleken met
een parametrisch Weibull model. Beide methoden geven eenzelfde trend aan. In
Hoofdstuk 2 wordt een andere populaire niet-parametrische methode toegepast op
prevalentie-gegevens: de zogenaamde “penalized splines” gerepresenteerd als een ve-
ralgemeend lineair gemengd model. Een simulatiestudie toont aan dat kwadratische
splines gebaseerd op 20 knots een betere performantie biedt dan de lineare en cu-
bische splines of splines van graad vier. Hoofdstuk 4 wordt de methode uitgebreid
tot een semi-parametrische methoden, die parametrische componenten combineert
met niet-parametrische splines. Toegepast op serologische gegevens van vijf Europese
landen, leidt een semiparametrisch model met een logit link tot proportionele odds
ratios voor elk land in combinatie met een referentieland. Als echter de cloglog link
wordt gebruikt krijgt men een proportionele infectiedruk voor een land in vergelijking
met een referentieland. Tenslotte wordt aangetoond dat een constante infectiedruk,
een stuksgewijs constante infectiedruk en een lineaire infectiedruk kan geformuleerd
worden als een penalized spline model.

Het tweede en derde deel van de thesis handelt over modellen voor bacteriële infec-
ties en ziekten. Het is de doelstelling van het tweede deel om te tonen hoe statistische
modellen de response op een nadelig effect van het consumeren van gecontamineerd
voedsel relateren met de hoeveelheid organismen (de dosis). Haas et al. (1999) stellen
terecht dat een experiment om rechtstreeks een aanvaardbare kleine dosis bij een aan-
vaardbaar klein risico te bepalen praktisch niet haalbaar is, omdat het risico op een
enkele blootstelling zo klein is dat de bepaling ervan een heel groot aantal stud-
iesubjecten zou vereisen. Voor dergelijke dosis-respons modellen zijn parametrische
modellen nodig om extrapolatie naar lage dosis met een laag risico mogelijk te maken.
In dit deel van de thesis worden twee belangrijke deelgebieden van risico-beoordeling
behandeld: (1) de klasse van mathematische modellen die gebruikt kunnen worden
voor extrapolatie van hoge naar lage dosis, (2) methoden om de onzekerheid in de
schattingen in rekening te brengen. Hoofdstuk 5 draagt bij tot het eerste deelgebied
in de vorm van nieuwe aangepaste fractionele veeltermmodellen. Fractionele veelter-
men, in hun oorspronkelijk gëıntroduceerd door Royston en Altman (1989) toegepast
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op dosis-respons modellen, zijn niet bruikbaar omdat ze kunnen leiden tot een niet-
geschikt functioneel verband voor een binaire response (gëınfecteerd ja of neen). Meer
bepaald dienen dosis-repons modellen aan biologische basisvoorwaarden te voldoen:
monotoon stijgend als functie van de dosis en begrensd door 0 en 1. Om aan deze voor-
waarden te voldoen, werd een nieuwe klasse van gemodificeerde fractionele veeltermen
gedefinieerd. In Hoofdstuk 5 worden een hele reeks modellen (40 in totaal) voor het
schatten van risico’s bij lage dosissen voorgesteld. De allereerste vraag is welke mod-
ellen echt gebruikt kunnen worden voor deze doeleinden. Traditioneel wordt één beste
eindmodel geselecteerd op basis van zogenaamde “goodness-of-fit” criteria, statistis-
che maten die aangeven hoe goed de modellen aansluiten bij de data, en nadien wordt
inferentie (verklarende statistiek) gebaseerd op dit finaal model; Maar een dergelijke
procedure houdt geen rekening met de voorafgaande modelselectie procedure en bi-
jgevolg ook niet dat andere competitieve modellen quasi dezelfde goodness-of-fit kun-
nen vertonen, wat leidt tot een misleidende onderschatting van de standaardfouten
op de schatters. Buckland et al. (1997) introduceerden een manier om de onzekerheid
van dergelijke selectie uit een familie competitieve modellen in rekening te brengen,
aan de hand van het uitmiddelen van de modellen op basis van Akaike verschillen
en Akaike gewichten. Deze benadering van het uitmiddelen over verschillende mod-
ellen werd ook bestudeerd in Burnham and Anderson (2002). Deze methode brengt
zowel de onzekerheid omtrent het gebruikte model als de variabiliteit van het schat-
ten op basis van gegevens in rekening. Hoofdstuk 5 bestudeert en illustreert hoe de
gemodificeerde fractionele veeltermen als mogelijke geschikte dosis-respons modellen
samen met traditionele dosis-respons modellen zoals het Beta-Poisson model, het log-
logistisch, het log-normaal en het extreme waarde model kan toegepast worden om
het risico op ziekte door Salmonella Typhi en op infectie door Campylobacter je-
juni infectie te modelleren in gebieden van lage dosissen en hoe de techniek van het
uitmiddelen over al deze modellen in deze context kan toegepast worden.

Daar waar Deel II handelt over de consumptie van gecontamineerd voedsel (bv.
gevogelte), richt Deel III zich tot de preventie van de overdracht van bacteriën in
voedsel naar de mens door de betreffende infectie op het niveau van de boerderijen te
controleren. Dit laatste deel van de thesis betreft het statistisch ondersteunen van con-
trole en preventiemaatregelen tegen infectieziekten bij kippen, in dit geval Salmonella.
Het onderzoekt vooral statistische modellen voor de identificatie van potentiële fac-
toren die het risico op Salmonella vergroten bij kippen voordat zij bij de consument
belanden. De gegevens uit dergelijke controle en bewakingssystemen zijn hiërarchisch
gestructureerd. Gegevens binnen een groep kippen zijn gecorreleerd, vervolgens zijn
gegevens binnen dezelfde boerderij gecorreleerd. Statistische risicomodellen moeten
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deze geclusterde structuur in de gegevens correct in rekening brengen. In Hoofd-
stuk 6 en 7 worden drie soorten risiciomodellen gebruikt voor de identificatie van
risicofactoren voor Salmonella bij legkippen en bij braadkippen: marginale modellen,
veralgemeende schattingsvergelijkingen waaronder alternerende logistische regressie,
en veralgemeende lineaire gemengde modellen. De belangrijkste risicofactor die voor
legkippen werd gëındentificeerd is de factor die aangeeft of de groep kippen wordt
gehouden in een kooi, of een schuur of in een open ruimte (met een hoger risico voor
de kooi). Andere significante factoren waren leeftijd van de groep en omvang van
de groep (in beide gevallen een stijgend effect). Een andere analyse in dit laatste
deel betreft factoren die de persistentie van Salmonella bepalen. De aanwezigheid van
werkkrachten op de boerderij, tijdelijk aanwezig en ook in contact me vreemde en
externe dieren en mensen, is de belangrijkste factor die hiervoor werd gëıdentificeerd.
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