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Chapter 1

Introduction

1.1 Statistical Models and Correlated Data

In many areas of statistics the main goal or objective is to model the data in order

to explain a response variable. However, sometimes the interest goes behind this

objective and the aim is to study dependencies or correlation between them. This

last situation corresponds to studies where the particular type of designs implies to

gather the data in groups or clusters.

In the very last years there has been a growing interest in modelling different sort

of correlated data. Models for correlated data are appearing as one of the most vital

and exciting fields of statistical methodology. Random effects models and estimating

equations are the two major schemes used for dealing with the impressive mass of

potential relevant applications. These are ranging from spatial analysis up to designs

using repeated measures on the same subject, with application in classical medical

fields, genetic studies, clinical trials, public health and economics, up to political

sciences and sociology.

Sometimes the complexity in the modelling process rises due to the fact that the

responses are of different types, for example binary, continuous, survival times, etc.

Therefore the methodology needs to be adapted to each of these particular cases.

Some progress have been made in the area of longitudinal data (Verbeke and

Molenberghs, 2000) and also with clustered data (Aerts et al., 2002). But these

techniques were only developed for classical structures. When the data structures are

more complex some problems can be faced and we intend, with this work to propose

1



2 Chapter 1. Introduction

new techniques to give alternative solutions for some of these specific problems.

In some areas, an extensive amount of work has been done. A clear example is the

analysis of correlated binary data with important contributions made by Liang and

Zeger (1986), Zeger and Liang (1986), Zeger, Liang and Albert (1988), who introduced

the generalized estimating equation approach. The GEE1 approach makes only first

order assumptions and it was extended by Zhao and Prentice (1990); and Liang, Zeger

and Qaquish (1992) by incorporating second order assumptions. This introduced the

GEE2 method.

Generally, interest in marginal models increases rapidly. These methods emphasize

efficient estimation of the effect of covariates on the marginal probabilities.

In the framework of multivariate correlated binary data some work has been done

by using pseudo-likelihood as an alternative estimation method (Geys, 1999). This is a

non-likelihood method where the principal idea is to replace a numerically challenging

joint density by a simpler function that is a suitable product of ratios of likelihoods of

subset of the variables. For example, when a joint density contains a computationally

intractable normalizing constant, one might calculate a suitable product of conditional

densities which does not involve such a complicated function. While the method

achieves important computational economies by changing the method of estimation,

it does not affect model interpretation. Model parameters can be chosen in the same

way as with full likelihood and retain their meaning. Pseudo-likelihood estimation for

clustered binary outcomes and its relative merits assessed by means of some examples

from developmental toxicity studies can be found in Geys (1999).

1.2 Data Structures

Many kinds of data, including observational data collected in the human and biological

sciences, have correlated, clustered or hierarchical structure. For example, animal

and human studies of inheritance deal with a natural hierarchy where offspring are

grouped within families. Offsprings from the same parents tend to be more alike

in their physical and mental characteristics than individuals chosen at random from

a population at large. It is expected that children from the same family may all

tend to be small, perhaps because their parents are small or because of a common

impoverished environment.

Other examples of complex structures correspond to the area of surveys where

the hierarchical structures are introduced by the sampling design itself. Therefore
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in those cases the importance of the appropriate use of the sampling design aspects

in producing valid estimates for survey data is very important and it can be easily

done via software taking stratification and clustering into account, Tibaldi et al.(2003)

provide details.

Many other designed experiments also create data hierarchies. In clinical trials

carried out in several chosen groups of individuals, or centers, this introduces, in the

same way, a kind of hierarchical structure.

In this work, we will deal with some specific settings. Within the surrogate markers

evaluation field, correlation is present due to the fact that the clinical trials are run in

different centers and patients are distributed over these centers. In addition to that,

the type of responses can be of a different nature, depending on the outcome. This

covers a wide spectrum: continuous, binary, categorical, survival data, etc. In this

work we consider, in particular, the case of continuous normally distributed responses

and we explore some potential uses of the multivariate survival situation.

Other examples of correlated data can be found in family studies where the corre-

lation structure is introduced due to the fact that all family members share a common

characteristics. We present two instances of this kind of data. An adoption study,

where the association between the survival time of biological and adoptive family are

modeled and a longevity study, with similar characteristics applied to a very large

data set. The new model we develop is not restricted to these studies and to show

this, we analyze data from a clinical trial where the correlation is due to the fact that

the time-to-event responses come from the same patient.

To end, we present a particular case of structure that was motivated by a psycho-

metric study. The particularity of this data poses an interesting challenge because

students and items lead to crossed-random effects, as we will explain later, but only

one response is observed at a cross classified level. The correlation appears then in

two directions, students introduce dependency between the items (or responses) and

times introduce dependency between students’ responses. An extra complexity is

added when the responses are continuous, categorical or binary. In particular, the

binary case is explored at the end of this work and pseudo-likelihood ideas together

with conditional logistic regression give an alternative solution for this problem.



4 Chapter 1. Introduction

1.3 Aim of the Thesis and Organization of Subse-

quent Chapters

The purpose of this thesis is to propose new strategies and techniques for the analysis

of particular cases of complex data. Simplified methodologies, pseudo likelihood, con-

ditional linear mixed models will be alternative approaches to tackle some of these

problems. The application of such techniques has already begun to yield new and

important insight in a number of areas as the examples in the following chapters

illustrate. As software becomes always a point of attention when we want to imple-

ment the proposed methodology, we have developed our own routines with sufficient

flexibility to make easier the fit of these models in a wide number of cases. Some of

the developed SAS programs and macros are included in the corresponding chapters

to illustrate the implementation of our strategies in typical real examples.

The focus of this thesis will be essentially on modeling of correlated survival data

but we also be concerned by outcomes of different type: continuous (normally distrib-

uted data), discrete (mostly binary data) and event times with censoring indicator.

The topics covered will fall in three major areas: the first one will deal with

modeling of data from clinical trials in order to study surrogacy as we will explain

in Chapter 2, the second will deal with modeling of survival or time-to event data to

be more general. Thus, in Chapter 3 and Chapter 4 we present the pseudolikelihood

method and the copula functions, in particular we focus on the Plackett distribution

and the corresponding Plackett copula. These ideas will be combined in order to

construct the new model introduced in Chapter 5. Chapter 6 focuses on inference

about the model parameters, and three tests are proposed.

In Chapter 7, we apply our model strategies to the problem of modelling associa-

tions between time-to-event responses in a pilot clinical trial.

Finally, Chapter 8 shows how a conditional linear mixed model approach can be

used effectively in crossed (or non-nested) random-effects models for continuous and

the extension to the binary case is presented in Chapter 9. Conclusions from this

work and lines of research for the future are given in Chapter 10.



Chapter 2

Simplified Hierarchical Linear

Models for the Evaluation of

Surrogate Endpoints

2.1 Introduction

Repeated measures or data from meta-analyses are typical examples of continuous

hierarchical data where the linear mixed-effects model (Verbeke and Molenberghs

2000) has become a standard tool. However, in certain situations the model does pose

insurmountable computational problems. Precisely this has been the experience of

Buyse et al. (2000a) who proposed an estimation- and prediction-based approach for

evaluating surrogate endpoints. Their approach requires fitting linear mixed models

to data from several clinical trials. In doing so, these authors built on the earlier,

single-trial based, work by Prentice (1989), Freedman et al. (1992), and Buyse and

Molenberghs (1998). While Buyse et al. (2000a) claim their approach has a number of

advantages over the classical single-trial methods, a solution needs to be found for the

computational complexity of the corresponding linear mixed model. In this chapter,

we propose and study a number of possible simplifications. This is done by means of

a simulation study and by applying the various strategies to data from three clinical

5



6 Chapter 2

studies: Pharmacological Therapy for Macular Degeneration Study Group (1977),

Ovarian Cancer Meta-analysis Project (1991) and Corfu-A Study Group (1995).

Prentice (1989) and Freedman et al. (1992) laid the foundations for the evaluation

of surrogate endpoints in randomized clinical studies. Precisely, Prentice proposed

a definition as well as a set of operational criteria. Freedman et al. (1992) supple-

mented these criteria with a quantity called proportion explained (PE). Buyse and

Molenberghs (1998) proposed to use the relative effect (RE), linking the effect of

treatment on both endpoints and an individual-level measure of agreement between

both endpoints, after adjusting for the effect of treatment (adjusted association), in-

stead of the PE. The adjusted association carries over when data are available on

several randomized trials, while the RE can be extended to a trial-level measure of

agreement between the effects of treatment of both endpoints. As observed by Molen-

berghs et al. (2002) and Alonso et al. (2002) there are serious issues surrounding the

Prentice-Freedman framework. Let us briefly expand on this. It has been asserted

that the criteria set out by Prentice are too stringent (Fleming et al. 1996) and

neither necessary nor sufficient for his definition to be fulfilled, except in the spe-

cial case of binary outcomes (Buyse and Molenberghs 1998). In addition, Freedman,

Graubard and Schatzkin (1992) showed that these criteria were not straightforward

to verify through statistical hypothesis tests. Therefore the PE was suggested but it

is surrounded with difficulties, the most dramatic one being that it is not confined

to the unit interval (Buyse et al. 2000a). Buyse et al. (2000a) argued that some

fundamental criticisms towards the process of statistical validation can be overcome

by combining evidence from several clinical trials, such as in a meta-analysis, rather

than from a single study. To this end, they needed to formulate a bivariate hierarchi-

cal model, accommodating the surrogate and true endpoints in a multi-trial setting.

In doing so, they carry over the relative effect and adjusted association to a trial-level

R2 and an individual-level R2, respectively. Similar routes of meta-analytic thinking

have been followed by Daniels and Hughes (1997) and Gail et al. (2000).

Of course, the switch to a meta-analytic framework does not solve all problems,

surrounding surrogate marker validation, in a definitive way. First, one has to care-

fully reflect upon the question as to how broad the class of units, to be included

in a validation study, can be. Clearly, the issue disappears when the same or simi-

lar treatments are considered across units (e.g., in multi-center or multi-investigator

studies, or when data are used from a family of related study such as in a single drug

development line). In a more loosely connected, meta-analytic setting it is important
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to ensure that treatment assignments are logically consistent. This is possible, for

example, when the same standard treatment is compared to members of a class of

experimental therapies.

While the previous issue is relevant, this chapter is devoted to a different, very

important, computationally-oriented issue. A result of the change to meta-analysis

is that computationally rather involved statistical models have to be used. For the

case of surrogates and true endpoints that are both normally distributed, Buyse et al.

(2000a) employed linear mixed-effects models (Verbeke and Molenberghs 2000). Even

in this case, which from a statistical modeling point of view can be considered a basic

one, fitting such linear mixed models turns out to be surprisingly difficult. The thrust

of their findings is that, when the between-trial variability is sufficiently large, little

or no convergence problems occur except when the number of trials is very small.

Given the general importance of linear mixed models, going well beyond the sur-

rogate marker validation case, it is necessary to study convergence properties in more

detail, and to contrast the general linear mixed model, such as the one proposed by

Buyse et al. (2000a), with alternative and/or simplified strategies. A number of such

alternative strategies are proposed here and studied in terms of their statistical and

numerical properties. To this end, a simulation study is considered, and the various

methods are applied to the data studied in Buyse et al. (2000a).

The meta-analytic setting, to be used throughout the chapter, is introduced in

Section 2.2. The simplified approaches, organized along three “dimensions”, are pre-

sented in Section 2.3. Sections 2.4–2.6 are devoted to each of the three dimensions in

turn. Case studies are introduced and analyzed in Section 2.7 and a simulation study

is reported in Section 2.8.

2.2 Setting

As stated earlier, we will focus on normally distributed endpoints. Let us introduce a

set of notation that will be used throughout the chapter. Let Tij and Sij be random

variables denoting the true and the surrogate endpoints for subject j = 1, . . . ni in

trial i = 1, . . .N . Further, let Zij denote a binary treatment indicator.

The full random-effects model, as introduced by Buyse et al. (2000a) is

Sij = µS + mSi
+ αZij + aiZij + εSij

, (2.1)

Tij = µT + mT i
+ βZij + biZij + εTij

, (2.2)
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where µS and µT are fixed intercepts, mSi
and mT i

are random intercepts for trial i,

α and β are fixed treatment effects and ai and bi are random treatment effects. The

individual-specific error terms are εSij
and εTij

.

The vector of random effects, (mSi
, mTi

, ai, bi)
′, is assumed to be zero-mean nor-

mally distributed with covariance matrix

D =




dSS dST dSa dSb

dST dT T dTa dTb

dSa dTa daa dab

dSb dSa dab dbb




.

The individual-level error terms (εSij
, εTij

)′ are also zero-mean normally distributed

with covariance matrix

Σ =

(
σSS σST

σST σT T

)
.

Parameter estimation can be based on, for example, maximum likelihood or re-

stricted maximum likelihood (Verbeke and Molenberghs, 2000). Next, suppose we

consider a new trial, i = 0 say, for which data are available on the surrogate endpoint

but not on the true endpoint. We are interested in the estimated effect of Z on T ,

given the effect of Z on S for this particular trial. Subscript all quantities pertaining

to the particular trial under study with 0. It is easy to show (Buyse et al. 2000a)

that (β + b0|mS0, a0) follows a normal distribution with mean and variance:

E(β + b0|mS0, a0) = β +

(
dSb

dab

)′(
dSS dSa

dSa daa

)−1(
µS0 − µS

α0 − α

)
, (2.3)

Var(β + b0|mS0, a0) = dbb −
(

dSb

dab

)′(
dSS dSa

dSa daa

)−1(
dSb

dab

)
. (2.4)

Related to prediction equations (2.3)–(2.4), a measure to assess the quality of the

surrogate at the trial level is the coefficient of determination

R2
trial

= R2
bi|mSi,ai

=

(
dSb

dab

)′(
dSS dSa

dSa daa

)−1(
dSb

dab

)

dbb
. (2.5)

A good surrogate, at the trial level , would have (2.5) close to 1. Intuition can be gained

by considering the simplified case where the prediction of b0 is done independently of
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the random intercept mS0. The coefficient (2.5) then reduces to

R2
trial(r)

= R2
bi|ai

=
d2

ab

daadbb
. (2.6)

This formula is useful when the full random-effects model is hard to fit but a reduced

version, excluding random intercepts, is easier to reach convergence. It is simply the

square of the correlation between αi and βi. Note that R2
trial(r) = 1 if the trial level

treatment effects are simply multiples of each other.

2.3 Simplified Modelling Strategies

Buyse et al. (2000a) showed that fitting random-effects model (2.1)–(2.2) can be a

surprisingly difficult task in a number of situations. This is particularly true when

the number of trials or the number of patients per trial is small. Also, situations with

extreme correlations pose problems. It is therefore imperative to explore approximate

strategies with better computational properties. These authors studied one alterna-

tive approach in the sense that they replaced the random effects by their fixed-effect

counterparts. Such a two-stage approach is very similar in spirit to the original pro-

posal of Laird and Ware (1982). We will now embed this ad-hoc strategy in a more

formally developed system of model simplifications.

Precisely, we consider three dimensions along which simplifications can be made:

Trial dimension: whether the trial-specific effects are treated as either random or

fixed. A full random-effects is then distinguished from a two-stage approach.

Endpoint dimension: whether the surrogate and true endpoints are modelled as a

bivariate outcome or two univariate ones. In the latter case the correlation be-

tween both endpoints is not incorporated into the modeling strategy, rendering

the study of the individual-level surrogacy more involved. However, as stated

earlier, throughout this chapter the focus is on trial-level surrogacy.

Measurement error dimension: whenever the full random-effects model is aban-

doned, one is confronted with measurement error since the treatment effects in

the various trials are estimated with error. The magnitude of this error is likely

to depend on several characteristics, such as trial size, which will vary across

trials. We consider three ways to account for measurement error: unadjusted
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Figure 2.1: Graphical representation of the three different approaches.

(i.e., no correction at all), adjustment by trial size, and an approach suggested

by T. Stijnen (Van Houwelingen et al. 2002) and explained in Section 2.5.

The combination of these three dimensions are graphically represented in Figure 2.1

and gives rise to twelve strategies. However, some do not have to be considered.

For example, when one chooses for a bivariate (endpoint dimension) random-effects

(trial dimension) approach, measurement error is automatically accounted for, whence

explicit corrections are no longer needed. In the special case when sample size is

constant across trials, further simplifications arise (see Section 2.8).

We will now discuss each of the three simplifying dimensions in turn.

2.4 The Trial Dimension

As stated before, the parameters of the full random-effects model (2.1)–(2.2) can be

estimated by maximum likelihood or restricted maximum likelihood, using standard

linear mixed model software such as the SAS procedure MIXED.
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In case we treat the trial-level parameters as fixed, exactly as Buyse et al. (2000a),

we can rewrite the model as

Sij = µSi
+ αiZij + εSij

, (2.7)

Tij = µTi
+ βiZij + εT ij

, (2.8)

where µSi
, µT i

, αi, and βi are trial-specific intercepts and treatment effects. The

assumption about the error terms depends on the choice made on the endpoint di-

mension (Section 2.6). Indeed, when the univariate approach is opted for, both errors

are assumed independent. Otherwise, a bivariate unstructured covariance matrix is

considered.

At the second stage, a regression model is fitted to the treatment effects, estimated

at the first stage, for example:

β̂i = λ0 + λ1µ̂Si
+ λ2α̂i + εi. (2.9)

This model can then be employed to assess trial-level surrogacy, using the R2
trial

associated with this regression. Precisely, this is not calculated as in (2.5), but is

merely the classical coefficient of determination found by regressing β̂i on µ̂Si
and α̂i.

In case the trial-specific intercept from surrogate model (2.7) is not used, λ1 would

be dropped and an R2
trial(r) is obtained, similar in spirit to (2.6).

2.5 The Measurement Error Dimension

Recall that this dimension is irrelevant when the full random-effects model is assumed,

but is crucial when a fixed-effects approach is selected on the trial dimension and/or

when a univariate model is chosen on the endpoint dimension.

We allow for three possible choices. First, a simple linear model can be assumed

to determine the relationship between βi, αi, and µSi
, whereby the errors in (2.9) are

assumed to be zero-mean normally distributed with constant variance σ2.

Clearly, this approach ignores the fact that the estimated treatment effects αi

and βi will typically come from trials with large variations in size. One way to

address this issue is by weighing the contributions according to trial size, resulting in

a weighted linear regression. Such an approach may account for some but not all of

the heterogeneity in information content between trial-specific contributions. A nice

way to overcome this is T. Stijnen’s approach.
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To this end, we introduce models for the estimated trial-specific treatment effects

(µ̂Si
, α̂i, β̂i)

′, given the true trial-specific treatment effects (µSi
, αi, βi)

′:




µ̂Si

α̂i

β̂i


 ∼ N







µSi

αi

βi


 , Ci


 . (2.10)

Here, Ci is the variance-covariance matrix of the estimated treatment effects. In case

we assume both treatment-effect estimates to be independent (which would result

from a univariate choice on the endpoint dimension), Ci would be assumed to be

diagonal, even though this may be unrealistic.

Further, we assume a normal model for the true trial-specific treatment effects

around the true overall treatment effects:




µSi

αi

βi


 ∼ N







µS

α

β


 , Σ


 . (2.11)

The resulting marginal model, combining (2.10) and (2.11), is:




µ̂Si

α̂i

β̂i


 ∼ N







µS

α

β


 , Σ + Ci


 . (2.12)

Maximum likelihood estimation for this model can be quite easily carried out by

using mixed model software, provided the values for Ci can be input and held fixed,

as is the case in the SAS procedure MIXED. An example program is provided in the

Appendix of this chapter.

2.6 Endpoint Dimension

It seems natural to assume both endpoints to be correlated. However, this assumption

will almost always complicate modelling and corresponding parameter estimation.

In addition, the bivariate nature of the outcome is related for the better part with

individual-level surrogacy whereas our main goal is trial-level surrogacy. This suggests

an additional simplification, i.e., by considering separate, independent models for each

of the endpoints. It then remains to be seen inhowfar such a simplification hampers

estimation of trial-level surrogacy.
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We need to make a distinction between two cases, according to the corresponding

choice on the trial dimension. In the random-effects approach, this simplification

would lead to a pair of univariate hierarchical models, one for each endpoint. In

the fixed-effects approach, one would fit a separate linear regression model per end-

point and per trial. It is easy to show that the parameter estimates as well as the

estimated variances are identical to the ones obtained from fitting a fixed-effects bi-

variate model to each trial separately. This follows from standard multivariate normal

theory (Johnson and Wichern 1992).

2.7 Case Studies

We consider three case studies, two of which were considered by Buyse et al. (2000).

It permits us to compare their results with those obtained from a full set of compu-

tational approaches. Further, they cover three important but different therapeutic

areas. Finally, by considering three case studies, we avoid the risk of running into

results that are interesting but too specialized to a particular situation.

The first one, the Age Related Macular Degeneration Study, is an ophthalmologic

study. The other two are from advanced colorectal and advanced ovarian cancer.

These examples have been studied in Buyse et al. (2000a, 2000b). We will compare

their results to the ones from the simplified approaches proposed in this chapter.

Results are summarized in Table 2.1, following the three dimensions of Figure 2.1. The

focus is on trial-level surrogacy, captured by R2
trial

. While, of course, the individual-

level surrogacy is of interest when the focus is on predicting a particular patient’s

behavior and, in some contexts, can even be of primary interest (Alonso et al. 2001),

it is fair to say that the clinical trialist will primarily be interested in the trial-level

surrogacy. Further, since the inclusion of the individual-level surrogacy forces the

models to have a bivariate nature, this comes at a computational cost.

In addition, we distinguish between “full” models where the trial level surrogacy

R2
trial

is calculated as in (2.5), and “reduced” models, where no random intercepts are

included and hence R2
trial(r) as in (2.6) is used. Combining all possibilities on three

dimensions and furthermore distinguishing between full and reduced models would, in

principle, lead to 24 different approaches. However, the three bivariate random-effects

approaches coincide. The columns for the full approaches are numbered for reference

in the simulation study (Section 2.8).
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Table 2.1: Results of the trial-level surrogacy analysis for the three examples R2
trial

(a

− symbol indicates non-convergence).

Full Model

Univariate Approach

Fixed-effects approach Random-effects approach

Unweighted Weighted Stijnen Unweighted Weighted Stijnen

Study 1 2 3 4 5 6

ARMD 0.692 0.693 0.689 0.664 0.801 −

Colorectal 0.473 0.488 0.466 − − −

Ovarian 0.939 0.917 0.937 0.911 0.905 −

Bivariate Approach

Fixed-effects approach Random-effects approach

Unweighted Weighted Stijnen

Study 7 8 9 10–12

ARMD 0.692 0.693 0.698 −

Colorectal 0.473 0.488 0.472 −

Ovarian 0.939 0.917 0.938 −

Reduced Model

Univariate Approach

Fixed-effects approach Random-effects approach

Study Unweighted Weighted Stijnen Unweighted Weighted Stijnen

ARMD 0.776 0.758 0.775 0.659 0.786 0.623

Colorectal 0.527 0.497 0.596 − − −

Ovarian 0.928 0.909 0.925 0.911 0.905 0.900

Bivariate Approach

Fixed-effects approach Random-effects approach

Study Unweighted Weighted Stijnen

ARMD 0.776 0.758 0.719 −

Colorectal 0.527 0.497 0.471 −

Ovarian 0.928 0.909 0.938 0.951

2.7.1 Age Related Macular Degeneration Study (ARMD)

These data arose from a randomized clinical trial comparing an experimental treat-

ment (interferon-α) to placebo in the treatment of patients with age-related macular
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degeneration. The aim of the study was to compare placebo and the highest dose

of interferon-α. The treatment indicator is Zij = 1 for treatment and 0 for placebo.

Since we have a single multi-centric trial, i refers to center and j to patient within

center. The true endpoint in this study was the change in visual acuity at 12 months

after starting the treatment. The surrogate endpoint considered is visual acuity at

6 months. Results from assessing the surrogate in terms of the Prentice-Freedman

framework were reported in Buyse et al. (2000a) and are not repeated here.

Buyse et al. (2000a) experienced problems in fitting the full random-effects mod-

els, irrespective of whether standard statistical software or user-developed alternatives

were used. Therefore, they entertained a (unweighted) fixed-effects approach instead.

This produced a moderate trial-level surrogacy: R2
trial (f) = 0.692 (s.e. 0.087). The

standard error has been calculated by means of a straightforward application of the

delta method. Let us now compare their result to the ones obtained from the ap-

proaches described in Section 2.3.

As mentioned earlier, for the fixed-effects approaches, univariate and bivariate

results values are equal. Of course, the univariate approach prohibits the assessment

of individual-level surrogacy but, as mentioned earlier, in many trials the main interest

is on trial-level surrogacy.

For the R2
trial, Stijnen’s approach is more difficult to fit in the sense that the

random-effects values cannot be obtained.

The reduced-model values are generally higher than the full-model values, sug-

gesting that the trial-specific intercept terms for the surrogate model does convey

information and, if possible, full models should be used. Within the reduced-model

approach, Stijnen’s univariate random-effects approach yields a low value. This is

in line with intuition, since it corrects for measurement error present in the esti-

mated treatment effects. Simulations will have to weigh costs and benefits from this

approach. In general computational terms, a choice for univariate models and/or

fixed-effects approaches is less expensive.

2.7.2 Advanced Colorectal Cancer

We consider data from two randomized multicenter trials in colorectal cancer. These

constitute the largest source of randomized data available in advanced colorectal can-

cer. All data were collected and checked by the Meta-Analysis Group In Cancer

between 1990 and 1996 (Corfu-A Group, 1995; Greco et al. 1996) to confirm the
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benefits of experimental fluoropyrimidine treatments with 5-fluorouracil (5FU) in ad-

vanced colorectal cancer. The principal investigators of all trials provided data for

every patient, whether eligible or not, and whether properly followed-up or not. Pre-

vious publications provide full details on the trials included the treatments tested,

the patient characteristics, and the therapeutic results (Burzykowski et al. 2001).

In this example, we will use Zij = 0 to denote 5FU plus interferon and for 5FU

alone. The final endpoint Tij will be survival time in years. The surrogate endpoint

Sij will be progression-free survival time, i.e., the years between the randomization

to clinical progression of the disease or death. In agreement with previous analyses,

only centers with at least 3 patients on each treatment arm are considered. The

data include 48 centers, with a total sample size of 642 patients. Using the bivariate

unweighted fixed-effects approach model proposed by Buyse et al. (2000a) we obtain

R2
trial (f) = 0.473 (s.e. 0.108), which is, of course, too low to be useful.

Results of fitting the various approaches and reported in Table 2.1 largely confirm

the results from the ARMD study in terms of ease of convergence for the univariate

and/or fixed-effects approaches. All coefficients are relatively close to each other,

although the reduced versions tend to be a bit higher than the full versions.

2.7.3 Advanced Ovarian Cancer

These data arose from a meta-analysis of ovarian cancer (Ovarian Cancer Meta-

Analysis Project, 1991). The comparison of two treatments was the principal aim

of this study. We use Zij = 0 when cyclosphosphamide was applied and Zij = 1 when

cyclosphosphamide plus cisplatin was applied. We considered survival time in years

as final endpoint Tij . The surrogate endpoint Sij is progression-free survival time.

We used center as the unit of analysis given that the number of trials is insufficient

to applied meta-analytic methods. The number of patients distributed over a total of

50 units varies from 2 to 254.

The bivariate fixed-effects approach used by Buyse et al. (2000a) produces

R2
trial (f)

= 0.917 (s.e. 0.017), which is much higher than in the colorectal cancer

case. Arguably, this is due to the relatively short time span that typically elapses

between both endpoints. The difference between this result and those from the other

approaches is even smaller than in the other two case studies. Further, the relative

computational complexity, suggested by the other case studies, is confirmed here as

well.
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2.8 A Simulation Study

We studied performance of the various approaches, in terms of estimation (point and

interval) of R2
trial, and in terms of convergence through a simulation study. To make

our results comparable with those from Buyse et al. (2000a), the same configuration

setting is adopted. Precisely, model (2.1)–(2.2) is considered with (mSi
, mT i

, ai, bi) ∼
N(0, D), µS = 50, µT = 45, α = 5, β = 3,

D = σ2




1 0.8 0 0

0.8 1 0 0

0 0 1 ρ

0 0 ρ 1




, (2.13)

with ρ2 = 0.5 or ρ2 = 0.9, and (εSij
, εT ij

) ∼ N(0, Σ) with

Σ = 3

(
1

√
0.8√

0.8 1

)
.

The parameter σ2 was chosen to be either 3 or 10. Five hundred runs were completed

for every setting, consisting of 25 trials each. The true R2, following from (2.5) and

(2.13) is set equal to either 0.5 or 0.9.

Results are presented in Tables 2.2–2.3. In all settings, convergence was 100%,

which is slightly different from the analysis of the examples.

Stijnen’s approach exhibits a small amount of bias. In case R2 = 0.9 and σ2 = 3,

there is a hint of underestimation in column 3, 6, and somehow also 9. The situation

is more dramatic in the case of R2 = 0.5, where indeed we observe now overestimation

in all but one columns, the exception being the full model (columns 10–12).



1
8

C
h
a
p
ter

2

Table 2.2: Means of the estimated trial-level surrogacy and 95% simulation-based confidence intervals for R2 = 0.90.

Column numbers refer to the columns of Table 2.1.

# Sub 1, 2, 7, 8 3 4, 5 6 9 10–12

Variance 10

50 0.898 (0.894;0.902) 0.895 (0.890;0.900) 0.898 (0.895;0.902) 0.894 (0.890;0.898) 0.898 (0.894;0.902) 0.896 (0.892;0.900)

60 0.900 (0.897;0.904) 0.899 (0.896;0.903) 0.901 (0.897;0.904) 0.897 (0.893;0.900) 0.900 (0.896;0.903) 0.897 (0.894;0.901)

70 0.898 (0.894;0.902) 0.896 (0.892;0.901) 0.898 (0.894;0.902) 0.894 (0.890;0.899) 0.897 (0.893;0.902) 0.895 (0.891;0.900)

80 0.899 (0.895;0.903) 0.898 (0.894;0.902) 0.899 (0.895;0.903) 0.895 (0.891;0.899) 0.898 (0.894;0.902) 0.896 (0.892;0.900)

90 0.900 (0.896;0.903) 0.899 (0.895;0.902) 0.900 (0.896;0.903) 0.896 (0.892;0.899) 0.899 (0.896;0.903) 0.897 (0.893;0.901)

100 0.901 (0.898;0.905) 0.901 (0.897;0.904) 0.901 (0.898;0.905) 0.897 (0.894;0.901) 0.901 (0.897;0.904) 0.898 (0.895;0.902)

Variance 3

50 0.893 (0.889;0.897) 0.889 (0.885;0.894) 0.894 (0.890;0.898) 0.892 (0.888;0.896) 0.892 (0.888;0.896) 0.896 (0.891;0.900)

60 0.896 (0.893;0.900) 0.893 (0.889;0.897) 0.897 (0.893;0.901) 0.896 (0.892;0.899) 0.895 (0.892;0.899) 0.897 (0.893;0.901)

70 0.894 (0.890;0.898) 0.890 (0.886;0.895) 0.894 (0.890;0.898) 0.891 (0.887;0.896) 0.893 (0.889;0.897) 0.895 (0.890;0.899)

80 0.895 (0.891;0.899) 0.892 (0.888;0.896) 0.896 (0.892;0.900) 0.894 (0.890;0.898) 0.895 (0.891;0.899) 0.896 (0.892;0.900)

90 0.897 (0.893;0.900) 0.894 (0.890;0.898) 0.897 (0.894;0.901) 0.893 (0.889;0.897) 0.896 (0.893;0.900) 0.897 (0.893;0.901)

100 0.898 (0.895;0.902) 0.896 (0.892;0.899) 0.899 (0.895;0.902) 0.895 (0.891;0.899) 0.898 (0.894;0.901) 0.898 (0.894;0.902)
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Table 2.3: Means of the estimated trial-level surrogacy and 95% simulation-based confidence intervals for R2 = 0.50.

Column numbers refer to the columns of Table 2.1.

# Sub 1, 2, 7, 8 3 4, 5 6 9 10–12

Variance 10

50 0.527 (0.515;0.539) 0.526 (0.514;0.538) 0.528 (0.516;0.540) 0.523 (0.511;0.535) 0.526 (0.514;0.538) 0.498 (0.485;0.510)

60 0.532 (0.520;0.544) 0.531 (0.519;0.543) 0.533 (0.521;0.544) 0.529 (0.517;0.540) 0.531 (0.519;0.543) 0.502 (0.490;0.515)

70 0.525 (0.513;0.538) 0.524 (0.512;0.537) 0.526 (0.513;0.538) 0.522 (0.509;0.535) 0.525 (0.512;0.537) 0.500 (0.487;0.513)

80 0.522 (0.509;0.536) 0.522 (0.509;0.535) 0.523 (0.510;0.536) 0.520 (0.506;0.533) 0.522 (0.509;0.535) 0.498 (0.484;0.511)

90 0.524 (0.512;0.535) 0.523 (0.511;0.535) 0.524 (0.512;0.536) 0.520 (0.509;0.532) 0.523 (0.511;0.535) 0.501 (0.488;0.513)

100 0.526 (0.514;0.538) 0.525 (0.513;0.538) 0.527 (0.514;0.539) 0.523 (0.510;0.535) 0.525 (0.513;0.538) 0.503 (0.490;0.516)

Variance 3

50 0.539 (0.527;0.551) 0.535 (0.523;0.547) 0.542 (0.530;0.554) 0.534 (0.522;0.546) 0.538 (0.526;0.550) 0.496 (0.483;0.510)

60 0.542 (0.531;0.554) 0.539 (0.527;0.551) 0.545 (0.534;0.557) 0.538 (0.526;0.550) 0.542 (0.530;0.553) 0.501 (0.488;0.514)

70 0.533 (0.521;0.546) 0.530 (0.518;0.543) 0.535 (0.522;0.547) 0.528 (0.516;0.541) 0.532 (0.520;0.545) 0.497 (0.484;0.511)

80 0.531 (0.517;0.544) 0.529 (0.516;0.542) 0.533 (0.519;0.546) 0.527 (0.514;0.540) 0.530 (0.517;0.543) 0.497 (0.483;0.511)

90 0.531 (0.519;0.542) 0.529 (0.517;0.540) 0.532 (0.520;0.544) 0.527 (0.515;0.538) 0.530 (0.518;0.542) 0.500 (0.487;0.512)

100 0.531 (0.519;0.544) 0.530 (0.518;0.542) 0.534 (0.521;0.546) 0.528 (0.516;0.541) 0.531 (0.519;0.543) 0.502 (0.489;0.515)
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2.9 Conclusions

In this chapter, we have investigated several strategies to deal with the computational

burden posed by using hierarchical linear models, primarily in the context of validating

surrogate markers. These strategies are ordered following three choices: (1) whether

trial-specific parameters are treated as random or fixed, (2) whether the endpoints

are treated as correlated or not (bivariate versus univariate approach) and (3) the

method of dealing with measurement error.

As a result of this, we recommend simplified computational methods for two main

reasons. First, they are generally faster and easier to implement with standard soft-

ware. Second, we showed, through simulations, that the simplified approaches often

perform almost as good as the more advanced methods, and moreover enjoy much

better convergence properties. In particular, opting for a fixed-effects approach over

a full random-effects approach is very beneficial since there is at most a minor loss

in statistical efficiency, the method has extremely good convergence properties, and

is usually more than 10 times faster than the full approach. In addition, from the

different simplifications proposed here, univariate approaches are the easiest to imple-

ment because they can be performed by means of linear regression by using any basic

software. However, in case of using the Stijnen’s correction a more powerful software

is needed.

We re-analyzed the three case studies considered by Buyse et al. (2000), from three

therapeutic areas: ophthalmology, advanced colorectal cancer, and advanced ovarian

cancer. In agreement with the simulation study, the fixed-effects approaches have good

convergence properties, but there are problems with the random-effects approaches.

In particular, none of the fully bivariate random-effects models converged, while there

were also problems with their univariate and/or reduced counterparts. While there

are twelve versions of each fixed-effects approach, the results are generally very similar

across these, except that there is a noticeable but not a dramatic difference between

the full and reduced versions. Therefore, it is recommendable to use the full model

version since, in doing so, full information is used towards estimation of the trial-level

surrogacy.
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Appendix

/* First stage: bivariate fixed-effects model */

proc mixed data=mydata method=reml;

class trial subj endpoint;

model outcome=endpoint*trial endpoint*trial*treat

/ noint s covb ddfm=bw;

repeated endpoint / subject=subj type=un r rcorr;

make ’SolutionF’ out=effects;

make ’CovParms’ out=covparms;

make ’covb’ out=covar;

run;

/*

** Assembling trial-specific covariance matrices of estimated

** fixed effects. There is one line per trial, each such line

** corresponding to a matrix.

*/

data cov0;

set covar;

drop _row_ _effect_ trial endpoint;

run;

proc iml;

use cov0;

ntrial=25;

read all into tempdat;

dummy=j(ntrial,7,0);

do i=1 to ntrial;

dummy[i,1]=tempdat[2*i-1,2*ntrial+(2*i-1)];

dummy[i,2]=i;

dummy[i,3]=tempdat[2*i-1,2*ntrial+2*i];

dummy[i,4]=tempdat[2*ntrial+2*i,2*ntrial+(2*i-1)];

dummy[i,5]=tempdat[2*i-1,2*i-1];

dummy[i,6]=tempdat[2*ntrial+(2*i-1),2*ntrial+(2*i-1)];

dummy[i,7]=tempdat[2*ntrial+2*i,2*ntrial+2*i];
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end;

nms={"cmsal","trial","cmsbe","calbe","varms","varal","varbe"};

create cova0 from dummy [colname=nms];

append from dummy;

quit;

data effects;

set effects;

keep _EFFECT_ _EST_ _se_ trial endpoint order int surro main;

int=0;

surro=0;

main=0;

if _effect_=’TRIAL*ENDPOINT’ then do;

if endpoint=1 then delete;

if endpoint=0 then do;

order=3;

int=1;

end;

end;

if _effect_=’TREAT*TRIAL*ENDPOINT’ then do;

if endpoint=0 then do;

order=1;

surro=1;

end;

if endpoint=1 then do;

order=2;

main=1;

end;

end;

run;

proc sort data=effects;

by trial order;

run;

data stijnen;

set effects;

drop _est_;
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est=_est_;

run;

proc sort data=stijnen;

by trial order;

run;

data row1;

set cova0;

keep row col value trial;

col=trial;

row=1;

value=varal;

run;

...

data row6;

set cova0;

keep row col value trial;

col=trial;

row=6;

value=varms;

run;

data matrix;

set row1 row2 row3 row4 row5 row6;

run;

proc sort data=matrix;

by col row;

run;

/* Second stage: Stijnen’s regression */

proc mixed data=stijnen order=data method=real asycov scoring=2;

class trial order;

model est = order / solution noint ddfm=bw;
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random order / subject=trial group=trial type=un gdata=matrix;

repeated order / subject=trial type=un;

make ’CovParms’ out=covparms noprint;

make ’AsyCov’ out=asycov noprint;

run;



Chapter 3

Multivariate Survival Models

and Copulas

3.1 Introduction

The main purpose of this chapter is to review definitions, properties and concepts of

copulas. We will consider a general copula approach to multivariate survival mod-

elling. This summary is based on the monography by Nelsen (1999) where the proofs of

theorems included in this chapter can be found. Copulas were used in survival analysis

by Clayton (1978), Hougaard (1986), Marshall and Olkin (1988), Oakes (1989), Bag-

donavicius, Malov and Nikulin (1999), Shih and Louis (1995), Burzykowski (2001),

etc. Copulas provide a general framework, that could encompass many models gen-

erally presented without link between them.

The main differences between univariate and multivariate survival models is that

the last models cover the field where independence between survival times cannot be

assumed. The joint distribution of the survival times and the corresponding multi-

variate survival function need to be specified. This is usually done in two steps. In

the first step we consider univariate separated models in order to characterize the

margin distributions, afterwards a model for the joint model of the survival times is

constructed by using the information obtained in the first step.

A multivariate survival function with given margins can be constructed using

copulas. One of the first propositions in this area was done by Clayton (1978) who

25
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used a bivariate association model for survival analysis. At that moment the concept

of copula was not mentioned but implicitly a copula was used.

The aim of this chapter is to introduce some concepts that will be used along this

work and to provide the reader with some flavor of the use of survival copulas and

some measures of association related to the concept of copulas.

3.2 Definitions and Notation

Let us suppose that we have a survival time, or in a more general framework a time-

to-event, T , with distribution F . The survival function is then given by

S(t) = Pr(T > t) = 1 − F (t).

The density f of T can be obtained by taking the first derivate of F or, equivalently,

the first derivate of −S(t).

When interested in modeling survival times, one of the main concepts is the so-

called hazard rate, a function that can be interpreted as the instantaneous failure rate

of an individual, given that it survived up to time t.

The hazard rate is defined as follows,

λ(t) = lim
∆→0+

1

∆
Pr(t ≤ T ≤ t + ∆|T ≥ t).

Another equivalent expression for λ is

λ(t) = −∂S(t)

∂t
.

1

S(t)
=

f(t)

S(t)
.

Therefore, the integral between 0 and t represents the cumulative hazard function

Λ(t);

Λ(t) =

∫ t

0

λ(x)dx.

There is a natural relationship between the cumulative hazard function and the sur-

vival function, given by

S(t) = exp(−Λ(t)).

A baseline hazard function λ0 can also be incorporated into the model. One way

to incorporate explanatory variables (X) is by means of Cox’s (1972) proportional

hazards model. It takes the following expression:

λ(t) = exp(β′X)λ0(t).
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Up to now we presented some concepts of univariate survival analysis. These can

be extended to the more general case of multivariate survival data.

If T1, . . . , Tk are k survival times, taking values in IR+, the multivariate survival

function S(t) is defined as

S(t1, . . . , tk) = Pr(T1 > t1, . . . , Tk > tk).

These k survival times have marginal survival functions S1(t1), . . . , Sk(tk). Note that,

we assume that the survival times are continuous and take values in IR+. In general,

a distribution function is defined by F (t) = Pr(T ≤ t). This motivates the definition

we used here for the survival function S(t) = 1 − F (t) = Pr(T > t), however, we can

adopt the following definition S(t) = Pr(T ≥ t).

As a consequence of that

Sn(tn) = Pr(Tn > tn)

= Pr(T1 ≥ 0, . . . , Tn−1 ≥ 0, Tn > tn, Tn+1 ≥ 0, . . . , Tk ≥ 0)

= S(0, . . . , 0, tn, 0, . . . , 0).

Unfortunately the relationship between the multivariate survival distribution F and

the multivariate survival function S is not a straightforward as in the univariate case

because

S(t1, . . . , tk) 6= 1 − F (t1, . . . , tk).

However, if the survival function S is absolutely continuous, the joint density function

can be written as

f(t1, . . . , tk) =
∂kF (t1, . . . , tk)

∂t1 . . . ∂tk
= (−1)k.

∂kS(t1, . . . , tk)

∂t1 . . . ∂tk
.

By using similar ideas, we can find an expression for the multivariate hazard rate

and hazard function as follows

λ(t1, . . . , tk)

= lim
max∆k→0+

1

∆1 . . . ∆k

Pr(t1 ≤ T1 ≤ t1 + ∆1, . . . , tk ≤ Tk ≤ tk + ∆k|T1 ≥ t1, . . . , Tk ≥ tk)

=
f(t1, . . . , tk)

S(t1, . . . , tk)

=
(−1)k

S(t1, . . . , tk)

∂kS(t1, . . . , tk)

∂t1 . . . ∂tk
,
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and

Λ(t1, . . . , tk) =

∫ t1

0

· · ·
∫ tk

0

λ(x1, . . . , xk)dx1 . . . dxk.

In this case we cannot find a simple expression to link S and Λ as before and

the survival function cannot be constructed easily. We focus our research on another

approach called copula modelling. This is a marginal model. Many different options

exist but for reasons explained later our work is based on the so-called Plackett-Dale

copula. First some general ideas will be introduced.

3.3 Copulas

In this section we will introduce the concept of copulas and we will give some general

definitions and known properties that we will use in subsequent chapters. The main

topics are discussed here but a full explanation about copulas and related issues can

be found in Nelsen (1999).

We will start by giving some ideas about bivariate copulas and we will extend

them to the multivariate case with some emphasis on survival copulas.

Definition 1 A bivariate copula C is a function from [0, 1] × [0, 1] into [0, 1] such

that:

1. For every u, v in [0, 1], C(u, 0) = C(0, v) = 0, C(u, 1) = u and C(1, v) = v.

2. For every u1 ≤ u2 and v1 ≤ v2 in [0, 1],

C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0.

It immediately follows that a copula is a bivariate distribution function with uniform

margins. When the margins are independent we obtain the so-called product copula:

CP (u, v) = uv.

For every copula C and every (u, v) in [0, 1]×[0, 1] the following version of the Fréchet-

Hoeffding bounds (1951) holds;

max(u + v − 1, 0) ≡ W (u, v) ≤ C(u, v) ≤ M(u, v) ≡ min(u, v),

where W (u, v) and M(u, v) are (degenerate) copulas.

The following theorem, due to Sklar (1959), is one of the main theorems in copulas

theory.
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Theorem 1 If we consider F a bivariate joint distribution function with margins F1

and F2, there exists a copula C such that for all x1, x2 in [−∞, +∞]:

F (x1, x2) = C{F1(x1), F2(x2)}. (3.1)

In addition, C is unique if F1(x1) and F2(x2) are continuous, otherwise C is uniquely

determined on Ran(F1) × Ran(F2), where Ran(Fi) denotes the ranges of Fi. Con-

versely, given a copula C and F1 and F2 univariate distribution functions, F defined

by (3.1) is a joint distribution with margins F1 and F2.

Theorem 1 can be translated in terms of random variables and their respective

distribution functions and we will do so in the next two theorems.

Theorem 2 Let X1 and X2 be random variables with F , F1 and F2 the joint distri-

bution function and the marginals respectively. There exists a copula function CX1X2

such that

F (x1, x2) = CX1X2{F1(x1), F2(x2)}.

If F1 and F2 are continuous, then CX1X2 is unique, otherwise CX1X2 is uniquely

determined on Ran(F1) × Ran(F2), as before.

We can interpret a copula as a function that establishes a particular dependence

structure on two given random margins. The following theorem formalizes this fact.

Theorem 3 Let X1 and X2 be continuous random variables with margins F1 and F2;

respectively. The variables X1 and X2 are independent if and only if the corresponding

copula CX1X2 equals the product copula CX1X2 ≡ CP .

Before giving results for survival analysis we will extend these concepts to the

multivariate situation. A multivariate copula is a continuous multivariate distribu-

tion function with uniform margins on the unit interval. Sklar (1959) demonstrated

that any joint distribution F (y1, . . . , yn) with marginals F1(y1), . . . , Fn(yn) could be

written as F (y1, . . . , yn) = C[F1(y1), . . . , Fn(yn)], where C is a n−dimensional copula,

according to the following definition.

Definition 2 An n-copula is a function C from [0, 1]n into [1, 0], satisfying the con-

ditions
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1. C(1, . . . , 1, xi, 1, . . . , 1) = xi, for i = 1, . . . , n and xi ∈ I.

2. C(x1, . . . , xn) = 0 if xi = 0 for any i.

3. C is n-increasing (in other words the C-volume of any n-dimensional interval

is non-negative).

From this last definition, it is clear that a copula in fact is a distribution function

with uniform marginals. Therefore, a natural extension of the bivariate copula to a

multivariate one is just by considering F1(x1), . . . , Fp(xp). Then the function

C{F1(x1), . . . , Fp(xp)} = F (x1, . . . , xp)

defines a multivariate distribution function evaluated at x1, . . . , xp with marginal

distributions F1, . . . , Fp. When the xi’s are continuous, C is unique. In case of dis-

crete data, the construction is only uniquely determined on the range of the margins.

Reversely, any copula function with given margins generates a multivariate distribu-

tion having these margins. Other parametric families of copulas have been defined,

including one or more parameters, to express a wide range of positive or negative

dependence.

In the next section we will introduce some concepts related to survival analysis.

3.4 Survival Copulas

In this section we will extend the notions of copulas, as introduced before, to survival

analysis.

Definition 3 If CS is a copula we can define a multivariate survival function S as

follows

S(t1, . . . , tk) = CS(S1(t1), . . . , Sk(tk))

where S1, . . . , Sk are the marginal survival functions.

From Nelsen (1999) it can be seen that CS couples the joint survival function and

its univariate margins, analogous to the way of ordinary copula connects a joint

distribution to its margins.

For survival distributions there is a version of the Sklar (1959) theorem where the

proof is similar to the one for distribution functions.
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Theorem 4 (Sklar’s canonical representation) Let S be a k-dimensional sur-

vival function with margins S1, . . . , Sk. Then S has a copula representation:

S(t1, . . . , tk) = CS(S1(t1), . . . , Sk(tk)).

If the margins are continuous, the copula CS it is unique, otherwise is uniquely de-

termined on Ran(S1) × · · · × Ran(Sk).

This theorem is proved for the case k = 2 in Nelsen (1999) via distribution func-

tions. In addition if C is a copula function of (T1, T2), then we write

S(t1, t2) = Pr(T1 > t1, T2 > t2)

= 1 − F1(t1) − F2(t2) + F (t1, t2)

= S1(t1) + S2(t2) − 1 + C(1 − S1(t1), 1 − S2(t2))

= CS(S1(t1), S2(t2)),

where CS(u1, u2) = u1 + u2 − 1 + C(1 − u1, 1 − u2).

We can easily verify that CS is a copula function:

1. The margins of CS are uniform:

CS(u1, 1) = u1 + C(1 − u1, 0) = u1

CS(1, u2) = u2.

2. CS verifies CS(u, 0) = CS(0, u) = 0

CS(u, 0) = CS(0, u)

= u − 1 + C(1, 1 − u)

= u − 1 + 1 − u

= 0.

3. CS is an increasing function. If (u1, u2) ∈ [0, 1]×[0, 1] and (v1, v2) ∈ [0, 1]×[0, 1],

such that 0 ≤ u1 ≤ v1 ≤ 1 and 0 ≤ u2 ≤ v2 ≤ 1. We define

HCS
([u1, v1]× [u2, v2]) = CS(v1, v2)−CS(v1, u2)−CS(u1, v2) + CS(u1, u2) ≥ 0.
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We can then translate this last equation in terms of the copulas function C as

follows

HCS
([u1, v1] × [u2, v2]) = C(1 − v1, 1 − v2) − C(1 − v1, 1 − u2)

−C(1 − u1, 1 − v2) + C(1 − u1, 1 − u2).

Using ũi = 1 − ui and ṽi = 1 − vi we have

HCS
([u1, v1] × [u2, v2]) = HC([ũ1, ṽ1] × [ũ2, ṽ2]),

because C is increasing, 0 ≤ ṽ1 ≤ ũ1 ≤ 1 and 0 ≤ ṽ2 ≤ ũ2 ≤ 1.

The results presented for the bivariate case can be extended to the general case

but they will not be used in this work.

3.5 Examples of Copula Families

The definitions given in previous section can be used to obtain different copula fami-

lies. In this section we present some examples of copula functions. We will start by

reviewing some bivariate copulas with only one parameter and we will give some hints

for the extension to higher order in case that this is possible.

From a long list of different type of copulas we will present here four examples of

families, Frank (1979), Clayton (1978), Mardia (1970) and Plackett (1965). Of course

many other copulas families exist and details can be found in other texts as Nelsen

(1999). The expressions for these selected copulas are presented next together with

some limit properties.

• Frank

Cθ(u, v) = −1

θ
ln

[
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

]

with

θ ∈ IR \ {0}
C0(u, v) = uv

C−∞ = max(u + v − 1, 0)

C+∞ = min(u, v).

• Clayton

Cθ(u, v) = (u−θ + v−θ − 1)1/θ

with
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θ ∈ [−1, +∞) and θ 6= 0

C0(u, v) = uv

C−1 = max(u + v − 1, 0)

C+∞ = min(u, v).

• Mardia

Cθ(u, v) =
θ2(1 + θ)

2
min(u, v) + (1 − θ)2uv +

θ2(1 − θ)

2
max(u + v − 1, 0)

with

θ ∈ [−1, 1]

C0(u, v) = uv

C−1 = max(u + v − 1, 0)

C+1 = min(u, v).

• Plackett

Cθ(u, v) =
[1 + (θ − 1)(u + v)] −

√
[1 + (θ − 1)(u + v)]2 − 4uvθ(θ − 1)

2(θ − 1)

with

θ ∈ (0, +∞) and θ 6= 1

C1(u, v) = uv

C0 = max(u + v − 1, 0)

C+∞ = min(u, v).

It can be seen from these last expressions that in all the cases the copulas enjoy

the property of symmetry Cθ(u, v) = Cθ(v, u), moreover the parameter θ models the

association between the two margins. Concepts of positive and negative dependence

can be defined based on copula functions. We can say that positive dependence is

induced by a copula function if for all u and v in the unit interval Cθ(u, v) ≥ uv. In

analogous way the concept of negative dependence is such as Cθ(u, v) ≤ uv for all

u, v ∈ [0, 1].

In the families of Frank, Clayton and Plackett the parameter θ measures the

strength of dependence between both margins. In addition to that Frank and Clayton
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belong to the class of Archimedean copulas. This means that these functions can be

generated by choosing appropriate φ functions such as

Cθ(u, v) = φ−1[φ(u) + φ(v)]

with φ an strictly decreasing continuous function going from the unit interval to

IR≥0, and such that φ(1) = 0 and φ(0) = +∞. Unfortunately Plackett copula does

not belong to this family.

An extension of this last result to the n-variate case by using a Cn function from

[0, 1]× · · · × [0, 1] to [0, 1] can be found in Kimberling (1974).

We will now turn our attention to the Plackett copula, in the next section we will

present some results for this particular case.

3.6 Plackett Copula

In order to understand the characteristics and the properties of the Plackett copula

we will start by introducing the bivariate Plackett distribution. Let X = (X1, X2)
T

be a bivariate random variable. Suppose F (x1, x2) is its joint distribution function

with marginal distributions Fj(xj), (j = 1, 2). The global cross-ratio at (x1, x2) given

by

θ12(x1, x2) =
p11p22

p12p21
=

F (1 − F1 − F2 + F )

(F1 − F )(F2 − F )
. (3.2)

where F1 ≡ F1(x1) and F2 ≡ F2(x2) are the marginal cumulative density functions

and F ≡ F (x1, x2). The quantities pij (i, j = 1, 2) are the quadrant probabilities in

IR2 with vertex at (x1, x2) as it can be seen from Figure 3.1. For a constant cross-

ratio, θ12(x1, x2) ≡ θ, the Plackett distribution is obtained (Plackett 1965, Mardia

1970). The values are found as one of the two solutions of the following second

degree polynomial equation if the marginal distribution functions F1 and F2, and the

cross-ratio θ12 are known:

θ12(F − F1)(F − F2) − F [F − (F1 + F2 − 1)] = 0. (3.3)

Dale (1986) and Mardia (1970) gave an explicit solution for (3.3), F (x1, x2) as
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-

6

F2(x2) − F (x1, x2)F (x1, x2)

1 − F1(x1) − F2(x2) + F (x1, x2)F1(x1) − F (x1, x2)

•

(x1, x2)

Figure 3.1: Construction of Plackett’s distribution.

follows, for θ12 in [0, +∞], where:

F (x1, x2) =





1 + (F2(x2) + F1(x1))(θ12 − 1) − H(x2, x1)

2(θ12 − 1)
if θ12 6= 1,

F2(x2)F1(x1) if θ12 = 1, (3.4)

with

H(x1, x2) =
√

[1 + (θ12 − 1)(F1(x1) + F2(x2))]2 + 4θ12(1 − θ12)F1(x1)F2(x2).

(3.5)

Mardia (1970) showed that F (x1, x2) is always a bivariate copula. Here, θ12 =

θ12(x1, x2) satisfies 0 ≤ θ12 ≤ ∞ when F (x1, x2) satisfies the Fréchet-Hoeffding (1951)

bounds.

max(F1 + F2 − 1, 0) ≤ F ≤ min(F1, F2).

At this point we can make some remarks, first notice that the lower bound of the

last inequality is attained if θ12 = 0. The upper bound is reached if θ12 = +∞. In
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addition to that we observe that if θ12 → 1 then F → F1F2. Other consequence of

the Fréchet bounds is that all four quadrant probabilities are all nonnegative.

In Mardia (1970) a detailed discussion on the so-called contingency type distribu-

tion can be found. One of the most interesting features is that most properties are

independent of the choice for the distribution function. A thorough discussion can be

found also in Schweizer and Sklar (1983).

Theorem 1, due to Sklar, connects the Plackett distribution to the Plackett copula.

This fact implies that the Plackett distribution defined in (3.4) can be expressed as a

one parameter family of bivariate copulas, Cθ, with θ in [0, +∞]:

Cθ(x, y) =






1 + (x + y)(θ − 1) − Hθ(x, y)

2(θ − 1)
if θ 6= 1,

xy if θ = 1,

(3.6)

where

Hθ(x, y) =
√

[1 + (θ − 1)(x + y)]2 + 4θ(1 − θ)xy. (3.7)

Note that here θ = 0 and θ = +∞ corresponds to the copulas W2(x, y) and

M2(x, y), respectively, that are the so-called the Fréchet bounds.

It is known (Schweizer and Sklar, 1983) that for every copula C the following

inequalities hold

Wn(x1, . . . , xn) ≤ C(x1, . . . , xn) ≤ Mn(x1, . . . , xn)

with xi ∈ I for all i, and

Wn(x1, . . . , xn) = max

(
n∑

i=1

xi − n + 1, 0

)

Mn(x1, . . . , xn) =
n

min
i=1

xi.

(3.8)

where Mn is a copula in any dimension and Wn is a copula only for n = 2. The case

θ = 1 corresponds to the independence copula CP (x, y) = xy. From Mardia (1970) it

follows that Cθ is a 2-copula for every θ ∈ [0, +∞]. In an alternative way the bivariate

Plackett copula can be seen as the only root of

θ(C − a1)(C − a2) − (C − b1)(C − b2) = 0,

with

a1 = x, b1 = 0,

a2 = y, b2 = x + y − 1,
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that satisfies

W2(x, y) ≤ C(x, y) ≤ M2(x, y).

This will be the basis for the extension of the case of n variables, i.e., the construction

of a Plackett n-copula. To define the n-dimensional Plackett distribution, choose a

set of 2n − 1 generalized cross-ratios taking positive values

θij , (1 ≤ i < j ≤ n),
...

θi1...ik
, (1 ≤ i1 < · · · < ik ≤ n),

...

θ1...n.

(3.9)

The generalized cross-ratios will be linked to a distribution in the same way we

did it for the bivariate case. To create a unified description, we will introduce the

odds of the marginals by

θi =
Fi

1 − Fi
, (3.10)

with 1 ≤ i ≤ n. The bivariate associations are defined as in (3.2):

θij =
Fij(1 − Fi − Fj + Fij)

(Fi − Fij)(Fj − Fij)
, (3.11)

with (1 ≤ i < j ≤ n). The joint distribution Fij can be calculated when θi, θj and θij

are known. Note that the cross-ratios θij can be written as the odds ratio of θi and

θj defined by (3.10). The three-dimensional cross-ratios can be defined in a similar

way by means of the two-dimensional cross-ratios and the distribution functions F ’s.

θ123 =
p111p122p212p221

p112p121p211p222
(3.12)
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where the orthant probabilities in the three dimensional case are defined as follows:

p111 = F123,

p112 = F12 − F123,

p121 = F13 − F123,

p211 = F23 − F123,

p122 = F1 − F12 − F13 + F123,

p212 = F2 − F12 − F23 + F123,

p221 = F1 − F12 − F13 + F123,

p222 = 1 − F1 − F2 − F3 + F12 + F13 + F23 − F123.

(3.13)

This is only an example but a systematic derivation of this result can be found in

Molenberghs (1992) and a n-way Plackett distribution can be constructed following

these lines. There also some interesting properties of the corresponding Plackett

copula were studied.

3.7 Dependence Measures and Related Concepts

In this section we will discuss some general ideas about dependence in particular in the

field of survival analysis. The dependence between random variables is characterized

entirely by the copula of the corresponding multivariate distribution as it was noted

by Deheuvels (1978) and Schweizer and Wolff (1981). However, the direct comparison

between survival copulas may not be obvious. An interesting issue could be to use

a dependence measure, i.e., a single value to relate different survival functions. Cor-

relation measures are standard, but for correlated survival times this concept is not

always useful. Copulas then bring a natural way to study and measure dependence

between random variables as we will show next.

The traditional way of evaluating dependence in a bivariate distribution is by

means of the Pearson correlation coefficient. It is defined by (Hougaard, 2000)

ρ(T1, T2) =
cov(T1, T2)√
var(T1)var(T2)

,

with

cov(T1, T2) =

∫ ∞

0

∫ ∞

0

(S(t1, t2) − S1(t1)S2(t2))dt1dt2,
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and

var(Ti) = 2

∫ ∞

0

tSi(t)dt −
[∫ ∞

0

Si(t)dt

]2

, i = 1, 2.

The Pearson correlation is an appropriate measure of dependence when the random

variables jointly have a multivariate normal distribution. Moreover, the standard

correlation approach of dependency remains natural and unproblematic in the class

of elliptical distributions as noted by Embrechts et al. (1999). When the distribution

is not elliptical, the use of Pearson correlation may be problematic, as is the case in

general in survival analysis (Lindeboom and Van Den Berg, 1994).

3.8 Dependence Measures

It is well known that the correlation is a relevant measure of dependence in a few

special cases. More appropriate are measures of concordance (Nelsen (1999), p. 136).

This is the case for Kendall’s τ and Spearman’s ρ. We will give here a summary of

the main properties and definitions. A detailed explanation can be found in Chapter

5 of Nelsen (1999).

Kendall’s τ can be seen as the difference between the probability of concordance

and the probability of discordance of two realizations of (T1, T2). This coefficient lies

in the [−1, 1] interval and a zero value implies independence between T1 and T2. There

exists a relationship between Kendall’s τ and θ for any copula C(t1, t2, θ) (Genest and

MacKay, 1986):

τ(θ) = 4

∫ 1

0

∫ 1

0

CT1T2(t1, t2, θ)CT1T2(dt1, dt2, θ) − 1. (3.14)

The marginal distributions of T1 and T2 do not affect (3.14), and hence it follows

that τ only depends on the copula function CT1T2 (Schweizer and Wolff, 1981). Such a

relationship is very simple for the Clayton and Hougaard copulas (Burzykowski et al.,

2001). Precisely, one obtains τ = (θ−1)/(θ+1) for Clayton and τ = 1−θ for Hougaard.

Estimates and confidence intervals (using the delta method) are accordingly easily

obtained.

Spearman’s ρ is a particular interesting measure, which enjoys the properties of

being independent of marginal transformations and of being a non-parametric mea-

sure. The Spearman’s ρ is also based on concordance and discordance, independent

of the marginal distributions as we said, and belongs to the interval [−1, 1]. The
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relationship between Spearman’s ρ and the copula function is

ρ(θ) = 12

∫ 1

0

∫ 1

0

CT1T2(t1, t2, θ)dt1dt2 − 3. (3.15)

The following theorem gives the link between the expression of τ and ρ for a copula

and the corresponding survival copula.

Theorem 5 Kendall’s tau and Spearman’s rho of a survival copula CS are equal to

the Kendall’s tau and Spearman’s rho of the associated copula C.

Proof Spearman’s coefficient ρ can be written as

ρ(CS) = 12

∫ ∫

[0,1]2
CS(t1, t2)dt1dt2 − 3

= 12[t21t2 + t1t
2
2 − t1t2]

1
0 + 12

∫ ∫

[0,1]2
C(1 − t1, 1 − t2)dt1dt2 − 3

= ρ(C)

and τ can be written as

τ(CS) = 1 − 4

∫ ∫

[0,1]2

∂C(t1, t2)

∂t1

∂C(t1, t2)

∂t2
dt1dt2

= 1 − 4

∫ ∫

[0,1]2

[
1 − ∂C(1 − t1, t2)

∂t1

] [
1 − ∂C(1 − t1, t2)

∂t2

]
dt1dt2

= τ(C),

therefore the coefficients corresponding to both copulas are exactly the same.

Different copula models have different parameters and therefore the results cannot

be compared in a direct way. However, the two measures of concordance proposed

here can easily be obtained for every copula model, sometimes with a closed for-

mula, sometimes using integration by means of expressions (3.14) and (3.15); making

straightforward the comparison between two different copula models.

3.9 Statistical Inference

In this section, we discuss some methods to estimate multivariate survival functions.

We do not provide an exhaustive review of all the methods. For example, we do not

consider non-parametric estimation methods or counting process approaches. More-

over, the methodology will be presented for survival-times, but the results are valid

for other type of time-to-event variables as well.



Multivariate Survival Models and Copulas 41

3.9.1 Maximum Likelihood Method

We consider the estimation problem for a vector of parameters φ of the survival

function S with a copula structure, we have then,

S(t1, t2, φ) = CS(S1(t1, φ
1), S2(t2, φ

2), φ12),

with φ = (φ1, φ2, φ12). In this case, φ1 and φ2 are specific parameters of the univari-

ate functions, whereas φ
12 is the parameter (in IRp) of the survival copula function.

Let us assume that we have a sample of bivariate survival times t1, . . . , tn where

ti = (t1i, t2i) with i = 1, . . . , n.

Hence, the log-likelihood is

ℓ(t, φ) =

n∑

i=1

ln f(ti, φ).

The ML estimate (MLE) corresponds then to

φ̂ML = arg max
φ∈Φ

ℓ(t, φ),

with Φ the corresponding parameter space. However, dealing with survival times is

often subject to additional complexity, because records on survival times are often

incomplete. Censoring and truncation are often present in survival data and this has

to be taken into account. We will consider a general situation with T the survival

time, C− the left censoring time, C+ the right censoring time and D the observed

time.

We observe the triplet (D, ∆−, ∆+) with

D = C−I[T≤C−] + TI[C−<T≤C+] + C+I[C+<T ]

and (∆−, ∆+) = (I[T≤C−], I[T>C+]).

The three possible cases can be summarized as follows,

Case Observed ∆− ∆+

C− < T ≤ C+ T 0 0

T ≤ C− C− 1 0

C+ < T C+ 0 1
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Moreover, we could consider a left truncation variable W . D is observed only if

T > W , but this is out of the scope of this work. In what follows, bivariate survival

data correspond to a sample of the form

y = {yi = (d1i, d2i, ∆
−
1i, ∆

−
2i, ∆

+
1i, ∆

+
2i), i = 1, . . . , n}.

We will briefly explain how to estimate the parameters of this model. To do that

we will assume that censoring times are independent of the survival times and that

they are not informative, i.e., the censoring at time t does not depend on the observed

process up to time t. In process-dependent censoring an individual can be censored

based on his history.

First we will calculate all the different contributions to the likelihood. We will

tackle the case of censoring but extensions for left truncation also exist.

In the bivariate case, we observe (D1, D2, ∆
−
1 , ∆−

2 , ∆+
1 , ∆+

2 ) and we further assume

that survival times are independent of the censoring times. Let us suppose that we

have a function CS with density cS and that g−1 , g+
1 , g−2 , g+

2 are the density functions

associated to C−
1 , C+

1 , C−
2 and C+

2 , respectively. To simplify notation we will not

write the parameter φ in the survival functions.

We can distinguish the following cases of contributions to the likelihood:

1. T1 and T2 not censored. Then, (∆−
1 , ∆−

2 , ∆+
1 , ∆+

2 ) = (0, 0, 0, 0) and

Pr{D1 ≤ d1, D2 ≤ d2} = Pr{T1 ≤ d1, T2 ≤ d2}

= 1 − S1(d1) − S2(d2) + CS(S1(d1), S2(d2)).

Hence the contribution to the likelihood can be written as

cS(S1(d1), S2(d2))f1(d1)f2(d2).

2. T1 is right censored and T2 is not censored. Then, (∆−
1 , ∆−

2 , ∆+
1 , ∆+

2 ) = (0, 0, 1, 0)

and

Pr{D1 ≤ d1, D2 ≤ d2} = Pr{C+
1 ≤ d1, T2 ≤ d2, T1 > C+

1 }

=

∫ ∫ ∫
I[c≤d1,t2≤d2,t1>c]f(t1, t2)g

+
1 (c)dt1dt2dc

=

∫ d1

0

[∫ ∞

c

∫ d2

0

f(t1, t2)dt1dt2

]
g+
1 (c)dc

=

∫ d1

0

[S1(c) − CS(S1(c), S2(d2))] g
+
1 (c)dc
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and the contribution to the likelihood can be written as

∂2CS(S1(d1), S2(d2))f2(d2)g
+
1 (d1).

3. T2 is right censored and T1 is not censored, then (∆−
1 , ∆−

2 , ∆+
1 , ∆+

2 ) = (0, 0, 0, 1)

and the contribution to the likelihood can be written as

∂1CS(S1(d1), S2(d2))f1(d1)g
+
2 (d2).

4. T1 is left censored and T2 is not censored. Then, (∆−
1 , ∆−

2 , ∆+
1 , ∆+

2 ) = (1, 0, 0, 0),

Pr{D1 ≤ d1, D2 ≤ d2} = Pr{C−
1 ≤ d1, T2 ≤ d2, T1 > C−

1 }

=

∫ ∫ ∫
I[c≤d1,t2≤d2,t1≤c]f(t1, t2)g

−
1 (c)dt1dt2dc

=

∫ d1

0

[∫ c

0

∫ d2

0

f(t1, t2)dt1dt2

]
g−1 (c)dc

=

∫ d1

0

[1 − S1(c) − S2(d2) + CS(S1(c), S2(d2))] g
+
1 (c)dc

and the contribution to the likelihood can be written as

(1 − ∂2CS(S1(d1), S2(d2))) f2(d2)g
−
1 (d1).

5. T2 is left censored and T1 not censored, then (∆−
1 , ∆−

2 , ∆+
1 , ∆+

2 ) = (0, 1, 0, 0)

and, symmetrically we can write the contribution to the likelihood as follows

(1 − ∂1CS(S1(d1), S2(d2))) f1(d1)g
−
2 (d2).

6. T1 and T2 are right censored. Then, (∆−
1 , ∆−

2 , ∆+
1 , ∆+

2 ) = (0, 0, 1, 1), and we

have

Pr{D1 ≤ d1, D2 ≤ d2}

= Pr{C+
1 ≤ d1, C

+
2 ≤ d2, T1 > C+

1 , T2 > C+
2 }

=

∫ ∫ ∫ ∫
I[c1≤d1,c2≤d2,t1>c1,t2>c2]f(t1, t2)g

+
1 (c1)g

+
2 dt1dt2dc1dc2

=

∫ d1

0

∫ d2

0

[∫ ∞

c1

∫ ∞

c2

f(t1, t2)dt1dt2

]
g+
1 (c1)g

+
2 (c2)dc1dc2
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and the contribution to the likelihood can be written as

CS(S1(d1), S2(d2))g
+
1 (d1)g

+
2 (d2).

7. T1 and T2 are left censored. Then, (∆−
1 , ∆−

2 , ∆+
1 , ∆+

2 ) = (1, 1, 0, 0), and doing

similar calculations to the right censored case we obtain the contribution to the

likelihood as

(1 − S1(d1) − S2(d2) + CS(S1(d1), S2(d2))) g−1 (d1)g
−
2 (d2).

8. T1 right censored and T2 left censored. Then, (∆−
1 , ∆−

2 , ∆+
1 , ∆+

2 ) = (0, 1, 1, 0),

and we have the contribution to the likelihood written as

(S1(d1) − CS(S1(d1), S2(d2))) g+
1 (d1)g

−
2 (d2).

9. T1 left censored and T2 right censored is symmetric to the previous case, with

(∆−
1 , ∆−

2 , ∆+
1 , ∆+

2 ) = (1, 0, 0, 1). Then the contribution to the likelihood can be

written as

(S2(d2) − CS(S1(d1), S2(d2))) g−1 (d1)g
+
2 (d2).

Now we will integrate all the different cases assuming that the censoring times are

independent of the survival times and not informative. Therefore,

ln f(yi, φ)

∝ (1 − ∆−
1i)(1 − ∆−

2i)(1 − ∆+
1i)(1 − ∆+

2i) ln(CS(S1(d1i, φ
1), S2(d2i, φ

2), φ12)+

(1 − ∆−
1i)(1 − ∆+

1i)(1 − ∆+
2i∆

−
2i) ln f1(d1i, φ

1)+

(1 − ∆−
2i)(1 − ∆+

2i)(1 − ∆+
1i∆

−
1i) ln f2(d2i, φ

2)+

∆−
1i(1 − ∆−

2i)(1 − ∆+
1i)(1 − ∆+

2i) ln

(
1 − ∂CS(S1(d1i, φ

1), S2(d2i, φ
2), φ12)

∂t2

)
+

(1 − ∆−
1i)∆

−
2i(1 − ∆+

1i)(1 − ∆+
2i) ln

(
1 − ∂CS(S1(d1i, φ

1), S2(d2i, φ
2), φ12)

∂t1

)
+

(1 − ∆−
1i)(1 − ∆−

2i)∆
+
1i(1 − ∆+

2i) ln

(
∂CS(S1(d1i, φ

1), S2(d2i, φ
2), φ12)

∂t2

)
+

(1 − ∆−
1i)(1 − ∆−

2i)(1 − ∆+
1i)∆

+
2i ln

(
∂CS(S1(d1i, φ

1), S2(d2i, φ
2), φ12)

∂t1

)
+
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∆−
1i∆

−
2i(1 − ∆+

1i)(1 − ∆+
2i)

ln
(
1 − S1(d1i, φ

1) − S2(d2i, φ
2) + CS(S1(d1i, φ

1), S2(d2i, φ
2), φ12)

)
+

∆−
1i(1 − ∆−

2i)(1 − ∆+
1i)∆

+
2i ln

(
S2(d2i, φ

2) − CS(S1(d1i, φ
1), S2(d2i, φ

2), φ12)
)
+

(1 − ∆−
1i)∆

−
2i∆

+
1i(1 − ∆+

2i) ln
(
S1(d1i, φ

1) − CS(S1(d1i, φ
1), S2(d2i, φ

2), φ12)
)
+

(1 − ∆−
1i)(1 − ∆−

2i)∆
+
1i∆

+
2i ln

(
CS(S1(d1i, φ

1), S2(d2i, φ
2), φ12)

)
.

Hence the log-likelihood can be constructed and the maximum likelihood estimator

of the vector parameter φ obtained as the solution of

∂

∂φ
ℓ(y, φ) = 0.

Let us call φ̂ the ML estimate of φ0 the true parameter vector. Therefore, un-

der regularity conditions,
√

n(φ̂ − φ0) is asymptotically normally distributed with

N(0, I−1(φ0)) and where I(φ0) is the called information matrix.

It is important to point out that in this approach, the vector of the parameters is

estimated simultaneously. It means that we perform a full likelihood estimation. This

procedure can be computationally very expensive, therefore Shih and Louis (1995)

proposed the so-called two stage ML method. As its name suggests this method

performs the estimations in two steps. In the first step φ1 and φ2 are estimated by

using the log-likelihood of the univariate survival distributions. And in the second

step the copula φ12 parameters are estimated, given the values obtained in the first

step. There is also another alternative that we will discuss in the next section.

3.9.2 Semi-parametric Estimation

This approach is called semi-parametric in the sense that we will use non-parametric

estimators of the survival functions Ŝi, while the copula parameters are estimated by

maximizing the log-likelihood
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ln f(yi, φ
12)

∝ (1 − ∆−
1i)(1 − ∆−

2i)(1 − ∆+
1i)(1 − ∆+

2i) ln(CS(Ŝ1(d1i), Ŝ2(d2i), φ
12)+

∆−
1i(1 − ∆−

2i)(1 − ∆+
1i)(1 − ∆+

2i) ln

(
1 − ∂CS(Ŝ1(d1i), Ŝ2(d2i), φ

12)

∂t2

)
+

(1 − ∆−
1i)∆

−
2i(1 − ∆+

1i)(1 − ∆+
2i) ln

(
1 − ∂CS(Ŝ1(d1i), Ŝ2(d2i), φ

12)

∂t1

)
+

(1 − ∆−
1i)(1 − ∆−

2i)∆
+
1i(1 − ∆+

2i) ln

(
∂CS(Ŝ1(d1i), Ŝ2(d2i), φ

12)

∂t2

)
+

(1 − ∆−
1i)(1 − ∆−

2i)(1 − ∆+
1i)∆

+
2i ln

(
∂CS(Ŝ1(d1i), Ŝ2(d2i), φ

12)

∂t1

)
+

∆−
1i∆

−
2i(1 − ∆+

1i)(1 − ∆+
2i)

ln
(
1 − Ŝ1(d1i) − Ŝ2(d2i) + CS(Ŝ1(d1i), Ŝ2(d2i), φ

12)
)

+

∆−
1i(1 − ∆−

2i)(1 − ∆+
1i)∆

+
2i ln

(
Ŝ2(d2i) − CS(Ŝ1(d1i), Ŝ2(d2i), φ

12)
)

+

(1 − ∆−
1i)∆

−
2i∆

+
1i(1 − ∆+

2i) ln
(
Ŝ1(d1i) − CS(Ŝ1(d1i), Ŝ2(d2i), φ

12)
)

+

(1 − ∆−
1i)(1 − ∆−

2i)∆
+
1i∆

+
2i ln

(
CS(Ŝ1(d1i), Ŝ2(d2i), φ

12)
)

.

Notice that in this last expression the parameters φ1 and φ2 vanish because no para-

metric form is assumed for the marginal survival distributions.

This estimation method has been introduced by Genest et al. (1995) and Shih

and Louis (1995), who both show that this semi-parametric estimator is consistent

and asymptotically normally distributed.

3.10 Conclusions

In this chapter, we have introduced a general copula approach to multivariate mod-

elling. The main theorems of the copula theory have been presented and survival

copulas have been defined. We showed how copulas can be used in survival analysis.

We discussed some measures of concordance for copula models and we stated the

basic general properties that link the vector of parameters of a copula model with

Kendall’s and Spearman’s coefficients. In that sense copula models give a powerful



Multivariate Survival Models and Copulas 47

tool to estimate the strength of the association between two random variables, in par-

ticular dealing with survival times. However, the methods to estimate the parameters

of these models can be very expensive in computational terms. In the last section of

this chapter we presented the different expressions for these log-likelihood functions

whether a parametric method or semi-parametric estimation is used to estimate the

marginal distributions. We mentioned other alternative methods as well.

It is clear, just by looking at the expression of the log-likelihood function for the

bivariate case, that the extension to a multivariate case will be a non-trivial task for

some specific copula families. In some cases, where for example the copula structure

has special characteristics, it can be easier but still poses non trivial numerical com-

plexities. In the next chapter we will introduce ideas of pseudo-likelihood estimation

to tackle the issue of the multivariate estimation that at a very low cost in efficiency

reduces the amount of numerical problems and gives estimates for all parameters in

the copula model at once.



Chapter 4

Pseudo-likelihood Estimation:

Definitions and Properties

4.1 Introduction

Pseudo-likelihood (PL) method is an alternative estimation method when the maxi-

mum likelihood method becomes prohibitive for different reasons. We present a formal

definition of this technique together with the most relevant properties and asymptotic

results based on the work of Aerts et al. (2002). The PL method is a non-likelihood

method where the principal idea is to replace a numerically complex joint density by

a simpler function that is a suitable product of ratios of likelihoods of subsets of the

variables. This method becomes important to estimate de parameters of the models

we will develop in next chapters. One important feature of this model is that while

the method achieves important computational economies by changing the estimation

strategy, it does not have any impact on the model interpretation. In other words,

model parameters can be chosen in the same way as with the full likelihood and they

retain their meaning. But the most attractive characteristic of this method is that

it converges quickly with only minor efficiency loses, especially for a range of real-

istic parameter setting. In next chapters we will apply this methodology to obtain

estimates of the parameters of a multivariate survival model.

48
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4.2 Pseudo-likelihood Definition

In this section, we will formally introduce the pseudo-likelihood method in a general

framework but we will focus on a particular case that we will call pairwise pseudo-

likelihood as we will explain in Section 4.4. For convenience we use the definition given

by Arnold and Strauss (1991) and Geys (1999) that was adopted by Renard (2002) in

the context of multilevel data. We assume the response vector Y i for subject i with

i = 1, . . . , N to have a constant length L, however the extension to variable lengths

of Y i is not problematic and can be easily performed.

To formally introduce pseudo-likelihood let us start by defining S as the set of

all 2L − 1 vectors of length L, consisting solely of zeros and ones, in addition to

that we consider vectors having at least one non zero entry. Let us denote by y
(s)
i

the subvector of yi corresponding to the components of s that are not zero. The

associated joint density is fs(y
(s)
i , φ). We define now a pseudo-likelihood function by

choosing a set δ = {δs|s ∈ S} of real numbers such as there is at least one none zero

component.

The log of the pseudo-likelihood function is defined as

ln pℓ =

N∑

i=1

pℓi, (4.1)

with

pℓi =
∑

s∈S

δs ln fs(y
(s)
i , φ).

By setting δs = 1 if s is the vector consisting solely of ones, and δs = 0 otherwise,

the classical log-likelihood function is found.

An example where pseudo-likelihood is very relevant was studied by Geys (1999)

within the framework of exponential family models. The pseudo-likelihood there is

found by replacing the joint density by the product of univariate full conditional den-

sities. Other types of pseudo-likelihood functions were considered in many different

situations (Aerts et al., 2002).

Similarly to maximum likelihood estimation the pseudo-likelihood estimator can

be obtained by maximizing the pseudo-likelihood expression (4.1). Therefore this

value can be calculated by differentiating (4.1) and setting the derivate to zero.
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It means,

∂

∂φr
ln pℓ =

∂

∂φr

N∑

i=1

∑

s∈S

δs ln fs(y
(s)
i , φ)

=

N∑

i=1

∑

s∈S

δs
∂fs(y

(s)
i , φ)/∂φr

fs(y
(s)
i , φ)

= 0

(4.2)

for r = 1, . . . , p.

Adequate regularity conditions have to be assumed to ensure that (4.1) can be

maximized, in addition to that the pseudo-likelihood estimator enjoys attractive as-

ymptotic properties that we will show in next sections.

4.3 Pseudo-likelihood Estimator Properties

We will start with a series of required assumptions on the density functions fs(y
(s)
i , φ).

(A1) The parameter space Ω contains an open region ω of which the true parameter

value φ0 is an interior point and where ω is such that for all s ∈ S and for

almost all y(s), the density f(y
(s)
i , φ) admits third derivates

∂3

∂φk∂φl∂φm
f(y

(s)
i , φ)

for all φ ∈ ω.

(A2) The first and the second order logarithmic derivates of fs satisfy the following

equations for all s ∈ S

Eφ

[
∂ ln fs(y

(s)
i , φ)

∂φr

]
= 0, r = 1, . . . , p, (4.3)

and

Eφ

[
∂ ln fs(y

(s)
i , φ)

∂φr

∂ ln fs(y
(s)
i , φ)

∂φl

]
= Eφ

[
−∂2 ln fs(y

(s)
i , φ)

∂φr∂φl

]
< ∞,

(4.4)

with r, l = 1, . . . , p.
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(A3) The matrix J(φ), defined by

Jrl(φ) = −
∑

s∈S

δsEφ

[
∂2 ln fs(y

(s), φ)

∂φr∂φl

]
, (4.5)

is positive definite for all φ ∈ ω.

(A4) There exist functions Mklr such that

∣∣∣∣∣
∑

s∈S

δsEφ

[
∂3 ln fs(y

(s), φ)

∂φk∂φl∂φr

]∣∣∣∣∣ ≤ Mklr(y) for all φ ∈ ω,

with mklr = Eφ[Mklr(y)] < ∞.

The following theorem proven by Arnold and Strauss (1991) ensures the existence

of at least one solution to the pseudo-likelihood equations (4.1), which is consistent

and asymptotically normal distributed.

Theorem 6 (Consistency and Asymptotic Normality)

Let us assume that a vector (Y 1, . . . , Y N ) have a common density that depends on φ.

Then under the assumptions(A1)–(A4), the pseudo-likelihood estimator φ̂N , defined

as the maximizer of (4.1), has the following properties

1. the pseudo-likelihood estimator of φ0, φ̂N , converges in probability to the true

parameter, in other words, φ̂N is consistent for estimating φ0.

2.
√

N(φ̂N − φ0) converges in distribution to

Nq(0, J(φ0)
−1K(φ0)J(φ0)

−1) (4.6)

with J(φ) defined by (4.5) and K(φ) by

Krl =
∑

s,t∈S

δsδtEφ

[
∂ ln fs(y

(s)
i , φ)

∂φr

∂ ln ft(y
(t)
i , φ)

∂φl

]
. (4.7)

The proofs are closely related to the classical proofs for maximum likelihood esti-

mator, for more details see Lehmann (1983, p. 429-434).

It is important to point out the connection existing between pseudo-likelihood

and estimating equations. Many researchers have used them to model correlated

data because they have the advantage of no requiring knowledge about the whole
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distribution of the response vector. Therefore they avoid the need of prohibited

calculations for the likelihood. Estimating equations replace then the classical score

equations and they have the advantage that are much easier to evaluate. An estimator

can be defined as a solution of the estimating equation g(y, φ) = 0. Examples in

literature are, among others, the approach to model correlated discrete data used by

Liang and Zeger (1986).

However, a major advantage of pseudo-likelihood over other estimating equa-

tion approach is that we face an optimization problem, i.e., maximizing the pseudo-

likelihood function. A further advantage of the PL approach is the close connection

of pseudo-likelihood with likelihood, enabling one to construct pseudo-likelihood ratio

and pseudo-score test statistics that have easy-to-compute expressions and intuitively

appealing distributions (Aerts et al. 2002). These tests will be extended in the

framework of multivariate survival data as we will show in Chapter 6.

Similar in spirit to generalized estimating equations (Liang and Zeger 1986), this

asymptotic normality result provides an easy way to estimate consistently the asymp-

totic covariance matrix. Indeed, the matrix J is found from evaluating the second

derivate of the log pℓ function at the PL estimate. The expectation in K can be

replaced by the cross-product of the observed scores. We will refer to J−1 as the

model based variance estimator, which should not be used as such because it overesti-

mates precision; to K as the empirical correction; and to J−1KJ−1 as the empirically

corrected variance estimator.

As discussed by Arnold and Strauss (1991), the Cramèr-Rao inequality implies

that J−1KJ−1 is greater than the inverse of I, corresponding to the Fisher infor-

mation matrix for the maximum likelihood case, in the sense that J−1KJ−1 − I−1

is positive semidefinite. Therefore, a PL estimator is always less efficient than the

corresponding ML estimator. In other words, maximum likelihood estimator will be,

in general, more efficient than maximum pseudo-likelihood estimators. Aerts et al.

(2002) show that in many realistic settings efficiency losses are minor. Sacrificing

some efficiency is therefore the price to pay for computational simplicity. The covari-

ance matrix of the pseudo-likelihood estimator φ̂N in practice can be easily estimated

(consistently) by

Σ̂N = J−1
N KNJ−1

N , (4.8)
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with

JN = −
N∑

i=1

∑

s∈S

δs
∂2 ln fs(y

(s)
i , φ̂N )

∂φ∂φT
(4.9)

and

KN =
N∑

i=1

∑

s,t∈S

δsδt
∂ ln fs(y

(s)
i , φ̂N )

∂φ

∂ ln ft(y
(t)
i , φ̂N)

∂φT
. (4.10)

The expression (4.8) is known as a “sandwich” estimator, similar in sprit to the

robust variance estimate of Liang and Zeger (1986). Some properties of this estimator

together with examples and some applications are discussed by Royall (1986). In order

to estimate J(φ0) we can use (4.4), which does not require evaluation of any second

order derivate and then we can write

JN =
N∑

i=1

∑

s∈S

δs
∂ ln fs(y

(s)
i , φ̂N )

∂φ

∂ ln fs(y
(s)
i , φ̂N )

∂φT
(4.11)

4.4 Pairwise Pseudo-likelihood

We have introduced the concept of pseudo-likelihood in a very general framework.

The principal idea, as mentioned before, is to replace a complicated joint density

by a simpler function, for example the product of the conditional distributions. We

will restrict this work to a particular form of pseudo-likelihood, that we call pairwise

pseudo-likelihood. We will combine this technique with survival multivariate models,

and even if this methodology have not been used very much in practical situations until

quite recently, the main advantages were showed in the spatial data context (Hjort,

1993), correlated multivariate data (Geys, 1999), multilevel modeling (Renard, 2002),

etc.

Other examples of pseudo-likelihood are the works of Le Cessie and Van Houwelin-

gen (1994) who used this technique to fit a model with logistic marginal responses

probabilities, using the odds ratio or tetrachoric correlation as a measure of associa-

tion.

Geys, Molenberghs and Lipsitz (1998) compared pairwise pseudo-likelihood with

other approaches in marginally specified odds ratio models with exchangeable associ-

ation structure and Kuk and Nott (2000) used pairwise pseudo-likelihood in a model

with a more general specification for the association structure.
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Technically, the pairwise likelihood consists in replacing the likelihood contribution

f(y1j , . . . , ynjj) by the product of all possible pairwise densities. The logarithm of

the pairwise likelihood for the response vector yj can be expressed as

pℓj(φ) =

nj∑

i=1

∑

i′>i

ln fykyl
(yi′j , yij , φ).

Notice first that the pairwise pseudo-likelihood and the classical likelihood func-

tions are identical if all clusters have size 2. Second, the marginal pairwise densities

are all marginal and not conditional.

The procedures to obtain estimates of the parameters remain the same as described

in previous section. The covariance matrix of φ is constructed as shown in Section 4.3

with a “sandwich type” estimator.

4.5 Conclusions

We have introduced the method of PL as an alternative to ML. The asymptotic

properties together with the advantages have been discussed. We comment on the

different advantages of this method over the ML, especially in the case of multivariate

data. We have been proposed a “sandwich” type estimator for the variance of the

parameters of the model. At the end we focused on the pairwise version of the PL

method that will be used in next chapter to fit a multivariate marginal survival model.



Chapter 5

Pseudo-likelihood Estimation

for a Marginal Multivariate

Survival Model

5.1 Introduction

This chapter is devoted to the development of a new multivariate model for survival

outcomes based on the Plackett-Dale distribution (Dale 1986). The pseudo-likelihood

method for the estimation of the parameters introduced in Chapter 4 and these ideas

are applied to two case studies.

The chapter is organized as follows. Section 5.2 motivates the problem through

two case studies. Section 5.3.1 gives a description of the Plackett-Dale model (Molen-

berghs and Lesaffre 1994) for survival data in the bivariate case. Section 5.3.2 de-

scribes an extension of the model to the case of k correlated survival times and pro-

poses a pseudo-likelihood approach for the estimation of the parameters of the model.

Section 5.4 gives a summary of the association measures and Section 5.5 contains

the analysis of the case studies. The first study is in AIDS where overall survival

time and different opportunistic infections in HIV-infected patients are studied. The

second study is on adoption data where the association of the survival times within

families is modeled, applying the proposed methodology in the context of population

genetics.

55
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Survival models have been used intensively during the past two decades, across a

number of application areas. Medical researchers used them extensively but in many

other fields, where the main interest is in time-to-event, they became an important

tool as well (Fleming and Harrington 1991). The effect of one or more covariates

on the patient’s survival can be modeled via the Cox model (Cox 1972), but we

should recall that independence of survival times from one observation to the other

is one of the basic assumptions of this model. However, in the last years there has

been an increasing interest in frameworks where two or more events per patient or

per statistical unit are observed. These statistical units can refer to clusters and

hence multivariate survival models should be used, taking into account within-cluster

dependencies. The former phenomenon is observed in groups of patients that share

common characteristics, such as in family studies where the members share genetic

and environmental factors. There are several issues one should take into account when

extending the Cox model or any other univariate survival model, to the situation

where the association needs to be modeled, which is the topic of the current chapter.

The key idea is to introduce a model that allows for a full association structure

between the times to event pertaining to a given unit while, due to an appropriate

use of pseudo-likelihood ideas, keeping the computational burden under control.

5.2 Motivating Cases

In this section, we will introduce two different studies for which the proposed method-

ology is of use. The AIDS case study deals with intrasubject correlation, i.e., multiple

events per subjects are recorded. The adoption study is an example of a study where

clustering, i.e., within-cluster dependencies, are present.

5.2.1 The AIDS Study

These data arise from randomized clinical trials. A total of 1530 patients who par-

ticipated in two clinical trials sponsored by the AIDS Clinical Trials Group (ACTG):

ACTG 116A (Dolin et al. 1995) and 116B/117 (Kahn et al. 1992) were randomized

to compare zidovudine (ZDV) and two doses of didanosine (ddI). Participants either

had a diagnosis of AIDS or AIDS related complex (ARC) and/or had CD4 counts of

300 or fewer. The primary outcomes of interest for this analysis were survival and ap-

pearance of new or recurrent AIDS-defining events. Patients were randomly assigned
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to receive one of the following three treatments: ddI 750 mg per day, ddI 500 mg per

day, or ZDV 600 mg per day. These studies enrolled patients between October 1989

and April 1991; patients were followed for a median of 65 weeks and a maximum of

132 weeks. For illustration, ZDV is compared to any dose of ddI; therefore we use a

binary indicator variable for treatment effect. Measures of CD4 for individual patients

are included in the model. This choice is supported by the work of Saah et al. (1994),

who found that CD4 was a laboratory measure in a Cox proportional hazards model

which predicted survival after AIDS. There has been some debate in the literature as

to whether a dichotomization of CD4 can be justified or not. We will use a contin-

uous version of this variable but any other categorization can be considered without

substantially having to modify the methodology. Molenberghs, Williams, and Lipsitz

(2002) studied the joint modeling of survival and CD4 count on these data.

5.2.2 The Adoption Study

This study, presented in Sørensen et al. (1988), was carried out to analyze the impact

of environmental and genetic factors on survival of adult adoptees. To this end, de-

pendencies between the survival times of children and biological parents, and between

children and adoptive parents are the focus of interest. In this study, families with

adoptive children, born between 1924 and 1926, were analyzed. The basic idea is that

association between survival times of biological parents and children can be assigned

to some extent to genetic factors, while associations between children and adoptive

parents can be due only to environmental factors.

These data were studied by Nielsen et al. (1992) who proposed a shared gamma

frailty model and by Parner (2001) who proposed a composite likelihood method for

the estimation of the frailty parameters and the standard deviations. We propose to

use a Plackett-Dale model for correlated survival times data with Weibull margins,

as will be described next.

5.3 Model Description

5.3.1 Bivariate Plackett-Dale Model for Survival Data

In this section, we will introduce the Plackett-Dale model for two survival outcomes.

Assume that T1 and T2 are correlated survival times, then the joint survival function
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of (T1, T2) can be written as

ST1T2(t1, t2) = P (T1 ≥ t1, T2 ≥ t2)

= Cθ12{ST1(t1), ST2(t2)}, t1, t2 ≥ 0,
(5.1)

where ST1 and ST2 denote marginal survival functions and Cθ12 is a copula. An

attractive feature of model (5.1) is that the margins do not depend on the choice of

the copula function.

In principle, in model (5.1) any copula function can be used. For simplicity, we

consider primarily one-parameter families; hence the use of a single parameter θ12

in (5.1). Some possible options are the Clayton, Hougaard, and Plackett copulas.

Burzykowski et al. (2001) studied them in detail within the framework of surrogate

endpoints. For the Clayton and Hougaard copulas, model (5.1) reduces to a propor-

tional frailty model (Oakes 1989) with frailties generated, respectively, by the gamma

and the positive stable distributions.

To model the effect of specific covariates on the marginal distributions of T1 and

T2 in (5.1) we propose to use the proportional hazard model:

STk
(tk) = exp

{
−
∫ tk

0

hTk
(x) exp(βTk

Zk)dx

}
, k = 1, 2, (5.2)

where hT1 and hT2 are marginal baseline hazard functions and βT1
and βT2

are vec-

tors of unknown regression parameters corresponding to the covariates Z1 and Z2.

The hazard functions can be specified parametrically or can be left unspecified as in

the classical model proposed by Cox (1972). When the hazard functions are specified,

maximum likelihood estimates of the parameters for joint model (5.1)–(5.2) can be

obtained (Lehmann 1983). Alternatively, the two-stage parametric procedure pro-

posed by Shih and Louis (1995) can be used, in which parameters of the marginal

survival functions ST1 and ST2 are estimated first (assuming independence), and then

θ12 is estimated conditional on the estimated values of the marginal parameters.

This one-parameter family is closely related to the Plackett family of bivariate

distributions (Plackett 1965). In this case the dependence can be defined using a

global cross-ratio at (t1, t2) which, given the marginal cumulative density functions

FT1 and FT2 , is given by

θ12(t1, t2) =
F (t1, t2)[1 − FT1(t1) − FT2(t2) + F (t1, t2)]

[FT1 (t1) − F (t1, t2)][FT2 (t2) − F (t1, t2)]
. (5.3)
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Note that “global” refers to the fact that, at every point, the bivariate space is divided

into four quadrants. Then, the probability over each quadrant is calculated and these

four quantities are then used to compute the odds ratio. In chapter 3 we presented a

graphical representation of the construction of the Plackett’s distribution.

The components in (5.3) are the quadrant probabilities in IR2 with vertex at

(t1, t2). Specifically, in the survival setting this parameter can be expressed for two

survival times T1 and T2 as

θ12 =
P (T1 > t|T2 > k)P (T1 ≤ t|T2 ≤ k)

P (T1 ≤ t|T2 > k)P (T1 > t|T2 ≤ k)
. (5.4)

and therefore is naturally interpreted as the ratio of the odds for surviving beyond

time t given response higher than k to the odds of surviving beyond time t given

response at most k. Mardia (1970) showed that FT1,T2(t1, t2) is always a bivariate

copula, with θ12 in [0, +∞].

Based upon this distribution function, we can derive a bivariate Plackett density

function fT1T2(t1, t2) for two survival times by calculating ∂FT1T2(t1, t2)/∂t1∂t2 in an

appropriate way taking censoring into account.

The parameters of this model and their standard deviations can be estimated by

means of the maximum likelihood method. We provide the expression for the log

likelihood function, together with the derivatives of the distribution function F in the

next paragraphs.

Let (T1, T2) denote paired failures times and (S1, S2), (f1, f2) the corresponding

marginal survival and density functions. Then, the joint survival and density functions

of (T1, T2) are given by

S(t1, t2) = FT1T2(ST1(t1), ST2(t2)),

f(t1, t2) =
∂2S(t1, t2)

∂t1∂t2
fT1(t1)fT2(t2),

(5.5)

respectively, with t1, t2 ≥ 0.

Let us denote by (C1, C2) the paired censoring times. For i = 1, . . . , n, assume that

(Ti1, Ti2) and (Ci1, Ci2) are independent. For each i we observe Tij = min(Dij , Cij)

j = 1, 2 then ∆ij = I{Dij = Tij}, i.e., indicates whether the lifetime is observed

(∆ij = 1) or not (∆ij = 0).

In Chapter 3 we have defined a general expression for the log-likelihood function

using any copula structure and with different possible kind of censoring. We will write
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this general log-likelihood for the case of the Plackett copula with right censored times.

We can write the log likelihood function by combining four different situations in one

expression as follows

• Case 1 : ∆i1 = 1 and ∆i2 = 1

• Case 2 : ∆i1 = 1 and ∆i2 = 0

• Case 3 : ∆i1 = 0 and ∆i2 = 1

• Case 4 : ∆i1 = 0 and ∆i2 = 0

Therefore,

log ℓ =

n∑

i=1

∆1i∆i2 log(f(ti1, ti2)) + ∆i1(1 − ∆i2) log

(
−∂S(ti1, ti2)

∂t1

)

+(1 − ∆i1)∆i2 log

(
−∂S(ti1, ti2)

∂t2

)

+(1 − ∆i1)(1 − ∆i2) log(S(ti1, ti2))

(5.6)

where S(t1, t2) and f(t1, t2) were defined in (5.5).

The estimated parameters of this bivariate model can be obtained via ML method

by maximizing the expression (5.6). The distribution function together with its

derivates for the case θ 6= 1 are displayed in the appendix of this chapter. The

case θ = 1 is trivial and it corresponds to the independence case.

5.3.2 Multivariate Plackett-Dale Model for Survival Data with

Pseudo-likelihood Estimation

While the model described in Section 5.3.1 suffices to analyze bivariate time-to-event

outcomes, an extension is needed for applications with more than two times. To

this end, consider an experiment involving N subjects or clusters of k time-to-event

measurements.

The principal idea can be laid out in three steps. First, we construct a model for

these k times by considering univariate models for every time-to-event separately. It is

evident that covariates can be included in these parametric marginal models. Second,

we consider bivariate models for every possible pair that can be formed from the k

times and of which the univariate marginal models are the ones already considered; in

other words, Plackett-Dale models will be considered for every possible pair. Third,
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in order to avoid the full multivariate specification of the model, while nevertheless

properly accounting for the full association structure, pseudo-likelihood ideas are used

to obtain valid point estimates as well as valid precision estimates.

This approach is similar in spirit to the one proposed by Parner (2001) in the sense

that both are marginal models for multivariate survival data and both use pseudo-

likelihood related ideas. However, the actual copulas chosen are different, enabling

a comparison of the results from both, for example. Since there is no unambiguous

choice as to what the best model would be for multivariate survival data, a more

ample choice of models is desirable and can lead up to a sensitivity analysis.

Suppose that we also observe a vector of covariates Z. A Weibull distribution is as-

sumed for each time Tj with λTj
and pTj

the scale and shape parameters, respectively.

While we focus on Weibull marginals, different researchers may choose to use different

univariate marginal survival distributions, implying only relatively small adaptations

of the methodology. The information concerning subject i can be expressed in vector

format as (Ti1, . . . , Tik, ∆i1, . . . , ∆ik, zi1, . . . , zink
), with nk the number of covariates,

so that W ij = (Tij , ∆ij , Zi) are the values for a particular subject i and time point j.

While a full multivariate formulation of the Plackett-Dale model has been done

in the context of ordinal data (Molenberghs and Lesaffre 1994, 1999), it poses non-

trivial computational complexities. Instead, marginal pseudo-likelihood ideas will be

used to keep the amount of computation under control, while enabling to answer

relevant research questions (le Cessie and Van Houwelingen 1994; Geys, Molenberghs

and Lipsitz 1998; Geys, Molenberghs and Ryan 1999).

In Chapter 4 the pseudo-likelihood method was introduced with all its different

versions. In the same chapter we commented on the potential advantages in some

areas where it eliminates the difficulties due to strong distributional assumptions or

intensive computations. In the particular case of a multivariate Plackett model PL

avoids the need to find the zeros of a polynomial of a high degree and to compute

numerical implicit derivates.

The idea behind our (pairwise) pseudo-likelihood function is based on considering

all possible pairs (W ir, W il) of outcomes on an individual, producing fTrTl
(W ir, W il),

rather than the full multivariate density, and then taking the product over them. The

resulting function will be denoted by PL and its log by

ln pℓ(φ) =
N∑

i=1

pℓi, (5.7)
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with

pℓi =
∑

(s,t)∈S

ln fTsTt
(W is, W it, φ),

where S is the set of indices with all possible pairs of outcomes of interest, fTsTt
is

the value of the function defined in Section 5.3.1 evaluated in the respective outcomes

for subject i, and φ is the vector of parameters. Specifically φ′ = (θ′, β′
T , λ′

T , p′
T )

with θ the subvectors of association parameters, βT the subvector of coefficients

corresponding to the covariates z and, λT and pT subvector of parameters from the

Weibull distribution.

The pseudo-likelihood estimator φ̂ is defined as the maximizer of (5.7) as explained

in Chapter 4. Consistency also holds for the pairwise version of this method (see

Chapter 4) where φ̂ converges in probability to φ0, the true parameter value and√
N(φ̂ − φ0) converges in distribution to

Nq(0, J(φ0)
−1K(φ0)J(φ0)

−1), (5.8)

with J(φ) defined by

Jrl = −
∑

(s,t)∈S

Eφ

(
∂2 ln fTsTt

(tis, tit)

∂φr∂φl

)
(5.9)

and K(φ) by

Krl = −
∑

(s,t)∈S

Eφ

(
∂ ln fTs

(tis, tit)

∂φr

∂ ln fTt
(tis, tit)

∂φl

)
. (5.10)

The main difference with the general theory already introduced is that the set of in-

dices S contains all different pairs of observations. The asymptotic covariance matrix

can be estimated in an easy way. Indeed, the matrix J is found from evaluating the

second derivate of the log pℓ function at the PL estimate and K can be replaced by

the cross-product of the observed scores.

5.4 Association Measures

The Plackett-Dale model allows us to estimate and interpret the strength of the as-

sociation between a pair of survival times via global cross ratios (the θ parameters in

the model). Therefore, θ may be considered a natural candidate for the measure of
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association. However, some researchers may find it is hard to get a feel for it because

it ranges throughout the entire real line. Further, different copulas (like the Clay-

ton and Hougaard copulas; Hougaard, 2000) carry different and less straightforward

association parameters. In such a situation it would be easier to work with a transfor-

mation of θ that has the interpretational properties of a correlation coefficient, such

as Kendall’s τ or Spearman’s ρ. These will be reviewed in turn.

5.4.1 Kendall’s τ

This measure defined in Chapter 3 for any pair of random variables and for any

copula can be seen as the difference between the probability of concordance and the

probability of discordance of two realizations of (T1, T2), lies in the [−1, 1] interval

and a zero value implies independence between T1 and T2. For any copula C(t1, t2, θ)

(Genest and MacKay, 1986) found the following expression:

τ(θ) = 4

∫ 1

0

∫ 1

0

CT1T2(t1, t2, θ)CT1T2(dt1, dt2, θ) − 1. (5.11)

One interesting feature is that the marginal distributions of T1 and T2 do not

affect (5.11), and hence it follows that τ only depends on the copula function CT1T2

For the Plackett copula there is no closed form for Kendall’s τ and an estimate has

to be obtained directly from (5.11). Confidence intervals via the delta method can

be constructed, we have developed a SAS IML 8.02 macro to obtain τ̂ and confidence

intervals.

Kendall’s τ is very useful in the sense that it measures the association between

both time points after adjustment for the covariates used in the model.

5.4.2 Spearman’s ρ

Spearman’s ρ is also based on concordance and discordance, it can be shown that it

equals Pearson’s product-moment for grades of a pair of continuous random variables.

The relationship between Spearman’s ρ and the Plackett copula function is

ρ(θ) = 12

∫ 1

0

∫ 1

0

CT1T2(t1, t2, θ)dt1dt2 − 3

=
θ + 1

θ − 1
− 2θ ln θ

(θ − 1)2
.

(5.12)
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As we can see from (5.12) there is a closed-form expression for the Plackett copula

and in addition to that an estimate follows from ρ = ρ(θ̂), with delta-method variance

Var(ρ̂) =

[
−4(θ̂ − 1) + 2(θ̂ + 1) ln θ̂

(θ̂ − 1)3

]2

Var(θ̂).

The asymptotic properties are analogous to these for the general case, i.e., ρ(θ) → 0

when θ → 1, ρ(θ) → −1 when θ → 0 and ρ(θ) → 1 when θ → ∞.

5.5 Case Studies

We are now in a position to analyze the data from Sections 5.2.1 and 5.2.2. Pseudo-

likelihood estimates were obtained using Newton-Raphson with analytical first deriv-

atives and numerical second derivatives, implemented in SAS IML 8.02 and using

routine NLPNRR (SAS Institute Inc. 1999–2001). Standard errors of the parameters

were calculated using the inverse of the observed matrix of second derivatives. Al-

though in these two examples a trivariate model is considered, the methodology is

fully generally applicable to longer sequences of time-to-event endpoints. Indeed, the

structure of the SAS programs allows us to fit any model and any number of outcomes

with only minor changes. Using a flexible design matrix structure, a large class of

model specifications is possible.

5.5.1 Analysis of the Adoption Study

We first consider bivariate analyses, selecting pairs out of the three possible survival

times of interest. The first aim is to describe the biological associations between

mother, father and child, and then to study the environmental effect, e.g., correlations

with the adoptive parents. In each case, a trivariate analysis is envisaged. We will

start with bivariate analyses and compare these results with those obtained from

modeling the trivariate data directly. We will use the abbreviations BM, BF and ACh

for biological mother, biological father and adoptive child in the biological models,

replacing BM with AM and BF with AF in the adoptive models. The corresponding

subscripts are 1, 2, and 3 in each case. All results for the biological families are

presented in Table 5.1, while Table 5.2 presents estimates for the adoptive families.

The marginal distributions are all assumed to be Weibull with parameters λj and pj ,

j = 1, 2, 3, and we consider three different parameters β1, β2, and β3 to adjust for
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the sex of the child as it was done by Parner (2001). All association parameters are

assumed to be constant.

It is clear from the way in which PL is defined that ML estimates are exactly the

same when only two outcomes are considered. Although model-based standard errors

and empirically corrected standard errors (i.e., those based on (5.8)) are numerically

different, they are of similar magnitudes and no clear ordering is seen between them.

The tables reveal that the model based standard errors calculated by means of the

information matrix and the empirically corrected ones differ only slightly. Common

parameters estimated using two different bivariate models are similar since all models

are of a marginal type. By “marginal type” we mean that the univariate marginal

parameters in a bivariate model have exactly the same meaning as their counterparts

in the corresponding univariate model. For example, β̂1 = −0.085 in model BM–BF

as opposed to β̂1 = −0.086 in BM–ACh.

Tables 5.1 and 5.2 include all three types of association parameters: not only the

odds ratios θ but also Kendall’s τ and Spearman’s ρ, as introduced in Section 5.4.

We observe the association is not very strong but nevertheless significantly different

from zero in some cases. The τ and ρ parameters are relatively similar but, in spite

of them ranging on the same scale, they have a different meaning and they are not

directly comparable.

Let us now turn attention to the trivariate situation. Let us consider a model with

different association parameters for each pair of outcomes θ12, θ13, and θ23 and with

different parameters for the covariates corresponding to each outcome β1, β2, and

β3. Specific Weibull distributions with different scale and shape parameters for each

outcome were used to model the marginals, i.e., p1, p2, p3, λ1, λ2, and λ3. Effectively,

this is the trivariate version of the previous bivariate ones. For the trivariate models,

only empirically corrected standard errors are given in Tables 5.1 and 5.2, since the

model-based ones ignore the fact that in using all pairs out of three survival times on

a cluster, all outcomes are used twice, leading to an exaggerated precision.

Therefore, model-based standard errors are useless, even if all marginal and as-

sociation models are correctly specified. We like to point out this feature since it is

different from the GEE setting. Other than being a disadvantage, it is merely a “side

effect” of the way marginal pseudo-likelihood works. Let us add that obtaining con-

vergence was not difficult and using different sets of starting values showed stability

of the process.

Parameters retain their meaning they had in the bivariate models, with two ad-
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vantages. First, using the data in a trivariate model is more statistical efficient than

using them in three separate models. Second, one avoids the occurrence of double

estimates for the marginal parameters (β, λ, and p parameters), in spite of them being

not too different between various bivariate models. The same model was applied to

the biological and adoptive families, enabling to contrast both sets of dependencies.

Comparisons of our association parameters with the ones given by Parner (2001)

cannot be made directly, since they are expressed on different scales. The association

in our case is the global odds ratio, while Parner’s quantity is based on the mean

and variance of the assumed Gamma distribution. Therefore, both sets of associa-

tion parameters are transformed to Kendall’s τ and Spearman’s ρ. There is a close

agreement between both methods (see Table 5.2), and both enable consideration of

multivariate models.

According to Parner’s conclusions, the environmental association between the

adoptive child and the mother was significant and negative; the environmental asso-

ciation between adoptive father and the adoptive mother was significant. In our case,

we can see from Table 5.2 that the estimated Kendall’s coefficients are, τ13 = −0.036

with a 95% confidence interval (−0.060,−0.012) and τ12 = 0.052 with a 95% con-

fidence interval (0.041, 0.063) respectively. These results suggest that the longevity

of the mother and the adoptive child were negatively correlated. Thus, we arrived

to the same conclusions. The estimates are similar to the estimates obtained using

Parner’s model as shown in Table 5.2. We could also test for equal environmental

effects and genetic effects using a Wald type test, but this is not the main goal of this

work; details can be found in Parner (2001).
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Table 5.1: Adoption study: Model for the biological families. Maximum likelihood

estimates (model based standard errors; empirically corrected standard errors) of bi-

variate survival times and pseudo-likelihood estimates (standard errors) for trivariate

model. For Kendall’s τ and Spearman’s ρ, estimates and 95% confidence intervals

are given.

Par. BM-BF BM-ACh BF-ACh BM–BF–ACh

θ12 1.076(0.128;0.128) 1.076(0.127)

θ13 1.164(0.193;0.187) 1.164(0.187)

θ23 1.176(0.194;0.202) 1.175(0.201)

β1 -0.085(0.086;0.077) -0.086(0.086;0.077) -0.084(0.069)

β2 -0.009(0.078;0.072) -0.010(0.078;0.072) -0.004(0.036)

β3 -1.066(0.164;0.159) -1.060(0.164;0.159) -1.063(0.137)

p1 0.220(0.017;0.015) 0.219(0.017;0.015) 0.220(0.013)

p2 0.279(0.011;0.010) 0.279(0.011;0.010) 0.279(0.006)

p3 0.086(0.054;0.063) 0.085(0.054;0.063) 0.086(0.054)

λ1 3.818(0.146;0.178) 3.817(0.146;0.179) 3.818(0.155)

λ2 5.568(0.179;0.201) 5.568(0.179;0.200) 5.568(0.174)

λ3 2.312(0.175;0.290) 2.313(0.176;0.291) 2.313(0.252)

τ12 0.016(0.003,0.029) 0.016(0.003,0.029)

τ13 0.034(0.016,0.051) 0.034(0.016,0.051)

τ23 0.036(0.018,0.054) 0.036(0.017,0.054)

(Parner) τ12 0.035(0.024,0.045)

(Parner) τ13 0.050(0.036,0.064)

(Parner) τ23 0.037(0.023,0.050)

ρ12 0.024(-0.053,0.102) 0.024(-0.053,0.102)

ρ13 0.051(-0.054,0.155) 0.051(-0.054,0.155)

ρ23 0.054(-0.054,0.162) 0.054(-0.058,0.165)

(Parner) ρ12 0.052(-0.010,0.113)

(Parner) ρ13 0.075(-0.010,0.165)

(Parner) ρ23 0.055(-0.027,0.137)
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Table 5.2: Adoption study: Model for the biological and adoptive families. Maximum

likelihood estimates (model based standard errors; empirically corrected standard er-

rors) of bivariate survival times and pseudo-likelihood estimates (standard errors) for

trivariate model. For Kendall’s τ and Spearman’s ρ, estimates and 95% confidence

intervals are given.

Par. AM-AF AM-ACh AF-ACh AM–AF–ACh

θ12 1.265(0.132;0.127) 1.265(0.127)

θ13 0.844(0.138;0.133) 0.849(0.133)

θ23 1.237(0.200;0.198) 1.240(0.197)

β1 -0.015(0.077;0.072) -0.012(0.077;0.072) -0.029(0.064)

β2 0.078(0.075;0.074) 0.077(0.075;0.074) 0.025(0.034)

β3 -1.066(0.164;0.159) -1.064(0.164;0.158) -1.068(0.137)

p1 0.210(0.009;0.009) 0.210 (0.009;0.009) 0.211(0.008)

p2 0.235(0.008;0.008) 0.235(0.008;0.008) 0.241(0.005)

p3 0.085(0.054;0.063) 0.085(0.054;0.063) 0.086(0.055)

λ1 6.402(0.203;0.218) 6.406(0.203;0.219) 6.405(0.189)

λ2 7.223(0.210;0.220) 7.228(0.210;0.220) 7.222(0.191)

λ3 2.312(0.176;0.290) 2.311(0.176;0.291) 2.312(0.252)

τ12 0.052(-0.045,0.150) 0.052(0.041,0.063)

τ13 -0.038(-0.184,0.108) -0.036(-0.060,-0.012)

τ23 0.047(0.030,0.065) 0.048(0.030,0.065)

(Parner) τ12 0.051(0.040,0.061)

(Parner) τ13 -0.069(-0.085,-0.052)

(Parner) τ23 0.041(0.027,0.054)

ρ12 0.078(-0.501,0.657) 0.078(0.013,0.143)

ρ13 -0.057(-0.931,0.818) -0.055(-0.198,0.089)

ρ23 0.071(-0.033,0.175) 0.072(-0.034,0.177)

(Parner) ρ12 0.076(0.013,0.140)

(Parner) ρ13 -0.103(-0.202,-0.004)

(Parner) ρ23 0.061(-0.021,0.143)
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5.5.2 Analysis of the AIDS Study

In this section, we analyze the data described in Section 5.2.1. In the original paper

by Finkelstein et al. (1996) the pattern of the development of opportunistic infections

in HIV-infected patients was evaluated, based on a cohort of 1530 patients.

The more common AIDS-defining opportunistic infections are Pneumocystis carinii

pneumonia (PCP), Mycobacterium avium complex (MAC), cytomegalovirus (CMV)

and systemic mycosis. These authors performed all the analyses adjusted for CD4

count. Without loss of generality, we perform the analysis for three time-to-event

outcomes: PCP, CMV and the overall survival time of the AIDS patients (DTH).

The main objective is to describe the association between all three outcomes after

adjusting by CD4 count and treatment effect.

Parameters are subscripted with 1, 2, and 3 to refer to CMV, DTH, and PCP,

respectively. For the sake of illustration, consider βT to be the common treatment

effect and β1, β2, and β3 the outcome-specific parameters associated with the CD4

count. We will assume a Weibull distribution with parameters p1, p2, p3, λ1, λ2, and

λ3. Therefore, the vector of parameters to be estimated has 13 components:

φ = (θ12, θ13, θ23, βT , β1, β2, β3, p1, p2, p3, λ1, λ2, λ3), (5.13)

where θ12, θ13 and θ23 are the global cross ratios. Using generalized linear models

technology, it is straightforward to construct the overall design matrix X, consisting

of 13 columns (as many as there are parameters), and 3×7×N rows. The calculation

of the number of rows follows because there are 3 pairs to be formed out of three out-

comes, for each pair (i.e., for each bivariate model), there are 7 “natural” parameters

(an association parameter, and then a β, λ, and p parameter for each component of

the pair).

Let us exemplify the construction of a design matrix for the this case study. The

contribution of a single individual can be seen in our case as the contribution of three

pseudo-likelihood individuals. Thus, X can be written as N blocks,

X =




X1

X2

...

XN




,
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where the block corresponding to subject i is expressed as:

Xi =




Xi12

Xi13

Xi23


 ,

where

Xi12 =




1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 trti cd4i 0 0 0 0 0 0 0 0

0 0 0 trti 0 cd4i 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0




,

Xi13 =




0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 trti cd4i 0 0 0 0 0 0 0 0

0 0 0 trti 0 0 cd4i 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1




,

and

Xi23 =




0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 trti 0 cd4i 0 0 0 0 0 0 0

0 0 0 trti 0 0 cd4i 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1




.

Generalization to more than three outcomes is straightforward and the SAS macro

we developed carries the general situation. Parameter estimates are summarized in

Table 5.3.

Parameters in common between different bivariate models are generally fairly

close, with the exception of βT , which is even changing signs. While not signifi-

cant, this is a clear indication that the trivariate model is the more appealing one,
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Table 5.3: AIDS study: Maximum likelihood estimates (model based standard errors;

empirically corrected standard errors) of bivariate survival times and pseudo-likelihood

estimates (standard errors) for trivariate model. For Kendall’s τ and Spearman’s ρ,

estimates and 95% confidence intervals are given.

Par. CMV–DTH CMV–PCP DTH–PCP CMV–DTH–PCP

θ12 5.165(2.570;2.401) 4.369(1.165)

θ13 4.434(1.850;2.182) 4.466(1.446)

θ23 3.943(1.023;0.959) 3.691(0.865)

βT -0.054(0.020;0.020) 0.183(0.032;0.033) -0.014(0.019;0.019) 0.016(0.111)

β1 1.708(1.816;1.681) 1.504(1.892;1.547) 1.579(1.095)

β2 2.160(0.706;0.752) 2.010(0.696;0.703) 2.069(0.732)

β3 2.037(1.570;1.845) 2.168(1.487;1.838) 2.109(1.169)

p1 -0.240(0.137;0.142) -0.657(0.193;0.184) -0.451(0.350)

p2 0.341(0.033;0.038) 0.353(0.032;0.035) 0.338(0.164)

p3 -1.147(0.257;0.331) -0.807(0.203;0.270) -0.958(0.469)

λ1 1.606(0.033;0.030) 1.406(0.023;0.022) 1.487(0.136)

λ2 1.941(0.015;0.017) 1.933(0.015;0.016) 1.940(0.111)

λ3 1.117(0.012;0.014) 1.215(0.014;0.018) 1.161(0.108)

τ12 0.352(0.307,0.397) 0.318(0.292,0.345)

τ13 0.321(0.272,0.370) 0.323(0.291,0.355)

τ23 0.297(0.273,0.322) 0.284(0.260,0.308)

ρ12 0.503(0.269,0.736) 0.459(0.318,0.599)

ρ13 0.462(0.204,0.721) 0.464(0.295,0.634)

ρ23 0.430(0.298,0.563) 0.412(0.283,0.541)

in spite of a larger standard error. Note that for some, but not all, parameters the

standard error produced by the trivariate model is smaller. The global cross ratios θ

are quite large, showing a strong association between all pairs of outcomes. Also here,

Kendall’s τ and Spearman’s ρ are calculated to get a better grip on the association.

Based on the correlation parameters ρ, a consistent picture of a correlation around

0.5 emerges.
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5.6 Conclusions

In this chapter, we have extended the Plackett-Dale model for survival data to the

multivariate case and we have shown that pseudo-likelihood estimation, in the sense

of Arnold and Strauss (1991), is a viable and attractive alternative to maximum like-

lihood in case of multivariate survival data. Maximum likelihood becomes prohibitive

for large sequences of times, due to computational requirements. In contrast, the

pseudo-likelihood procedure gives quite satisfactory results. In addition, we proposed

other association measures and we have shown the link of Spearman’s ρ and Kendall’s

τ to the association parameter of the Plackett-Dale model θ. The method yields con-

sistent and asymptotically normal estimates of the parameters of interest and the

computational complexity is manageable.

The choice of the Plackett-Dale model was motivated by the fact that the as-

sociation parameter θ, has a natural interpretation for this copula. However, other

copulas can be considered (Oakes 1989; Shih and Louis 1995; Joe 1997; Nelsen 1999).

To this end, checking the goodness of fit of copulas to bivariate survival data can be

done by using the method proposed by Wang and Wells (2000) and an adaptation of

this method to our framework is a topic for future research. It is also worth noting

that, while in this work we considered Weibull marginal distributions, it is possible

to use other distributional assumptions, or even use a semi-parametric approach with

unspecifed baseline hazard functions (Shih and Louis 1995).

The approach we presented gives a flexible tool for modeling any kind of time-to-

event data accounting for the association between two or more outcomes. To illustrate

our findings we have applied the proposed method in two different situations. Also, we

have shown how the standard errors of the parameters need to be corrected in order

to account for the lack of independence introduced by the fact that the information

of a single subject is used more than once.
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Appendix

Distribution function and its derivatives for the case θ 6= 1.

F (u, v, θ) =
1

2(θ − 1)
+

u + v

2
− H(u, v, θ)

2(θ − 1)

H(u, v, θ) =
√

(1 + (θ − 1)(u + v))2 − 4θ(θ − 1)uv

∂H

∂u
=

(θ − 1)

H(u, v, θ)
[(1 + (θ − 1)(u + v)) − 2θv]

∂H

∂v
=

(θ − 1)

H(u, v, θ)
[(1 + (θ − 1)(u + v)) − 2θu]

∂H

∂θ
=

(1 + (θ − 1)(u + v))(u + v) − 2uv(2θ − 1)

H(u, v, θ)

∂2H

∂u2
=

[
(θ − 1)2 − (

∂H

∂u
)2
]

H(u, v, θ)

∂2H

∂v2
=

[
(θ − 1)2 − (

∂H

∂v
)2
]

H(u, v, θ)

∂2H

∂θ2
=

[
(u − v)2 − (

∂H

∂θ
)2
]

H(u, v, θ)

∂2H

∂u∂θ
=

∂H

∂u

[
1

θ − 1
− 1

H(u, v, θ)

∂H

∂θ

]
+

(θ − 1)(u − v)

H(u, v, θ)

∂2H

∂v∂θ
=

∂H

∂v

[
1

θ − 1
− 1

H(u, v, θ)

∂H

∂θ

]
+

(θ − 1)(v − u)

H(u, v, θ)

∂2H

∂u∂v
= − 1

H(u, v, θ)

[
∂H

∂u

∂H

∂v
+ (θ − 1)(θ + 1)

]

∂F

∂u
=

1

2

[
1 − 1

θ − 1

∂H

∂u

]

∂F

∂v
=

1

2

[
1 − 1

θ − 1

∂H

∂v

]

∂F

∂θ
= −H(u, v, θ)

θ − 1
+

1

2(θ − 1)

[
u + v − ∂H

∂θ

]
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∂2F

∂u2
= − 1
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Chapter 6

Multivariate Plackett-Dale

Inference to Study the

Inheritance of Longevity in a

Belgian Village

6.1 Introduction

In Chapter 5 we have proposed a marginal multivariate survival model and we have

shown how pseudo-likelihood methods can be applied to obtain estimates of the pa-

rameters. In this chapter we propose a series of tests to perform inferences of these

model parameters. In addition, we apply our methodology to study familial transmit-

tance of longevity. We focus on associations between mother, father and first child,

and therefore we deal with family clusters of equal size. The methodology is applied

to a demographic database of a Flemish village (18th-20th century). We investigate

familial transmission mainly via the mother and we explore the impact of such other

factors as censoring, gender effect, age at death, etc. This work complements the

results of Matthijs et al. (2002) and suggests further analyses to better understand

the precise mechanisms behind these associations.
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The main aim of this work is to propose a set of inferential tools for the parame-

ters of a multivariate marginal survival model. We will explain the methodology and

apply it to the study of associations between longevity of family members in a small

Flemish village. Each family is treated as a cluster and we will use a multivariate Dale

model for survival data combined with pseudo-likelihood ideas already introduced in

Chapter 4. In the next sections the statistical model will be described shortly and the

methodology for performing inferences will be presented in detail. The main substan-

tive is differences in the influences of fathers and mothers on the female offspring’s

longevity. This issue is closely linked to the discussion on the mitochondrial theory

of ageing, which expects a relatively strong influence of the mother on the offspring’s

longevity.

It has frequently been claimed that longevity has a familial component, namely

that longevity of parents is associated with longevity of offspring (Gavrilova et al.

1998a; Gudmundsson et al. 2000; Korpelainen 1999; Matthijs et al. 2002). We

limited the research to a relatively small number of observations and we will therefore

concentrate on a specific aspect of the longevity problem. Apart from the discussion

whether this association is biological rather than social, many issues remain under

debate, such as the gender-specificity of the patterns. In this chapter we address the

effect of parental longevity on female mortality. Matthijs et al. (2002) found that

for females born in the early 19th century, parental longevity had a relatively strong

effect, while for the male offspring, the effect is only present some decades later. The

precise mechanisms underlying this association remained however unexplored.

The mitochondrial theory of ageing emphasises the adverse role of life-long mu-

tation accumulation in the maternally inherited mitochondrial DNA (Korpelainen

1999). This should cause a greater maternally inherited genetic component in human

life span. Analysing genealogies of a sample of noble families, Korpelainen (1999)

indeed found such a maternal inherited longevity. Tanaka et al.’s (1998) research on

Japanese centenarians support the concept that to carry an mtDNA genotype pre-

disposing resistance to adult-onset diseases is one of the genetic factors for longevity.

However, in a sample of mainly Russian noble families, Gavrilova et al.(1998b) did

not find such a pattern (1998). They suggest a contradictory pattern of paternally

dominated transmission, to be expected as a result of hemizygosity of genes on sex

chromosomes in males.

Yet, not only genetic factors are important. Gavrilova et al.(1998c), for instance,

points to the strong maternal-child interaction during in utero development and
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later during the formative years of the child. Also “social” factors might be im-

portant. For instance, the intergenerational transmission of a weak position within

the intra-household resource competition could cause a correlation of mother-daughter

longevity. That is, in those households with strong resource competition (very poor

families), one can expect negative effects on female longevity. If such a household’s

characteristic is transmitted from generation to generation, which is not improbable,

then we could expect that especially females’ longevity is correlated.

To explore this issue further, we need to address two specific questions. The first

and most important question is whether we effectively find differences in the influ-

ence of fathers and mothers on the transmission of longevity. The second question

is whether the transmission of mortality is age-related. Oftentimes, the analysis of

longevity is limited to persons over age 50. The reason for this is that elimination of

“phenotypic variation due to contagious diseases, accidents and war, and environmen-

tal maternal effect during early childhood” (Korpelainen, 1999) is necessary in order

to detect the potentially maternally (or paternally) inherited genetic component in

life span. Indeed, causes of death such as accidents and pregnancy-related diseases

dominate the mortality pattern under that age and therefore may disturb the mea-

surement. Furthermore, genetic variability for survival is expected to increase with

age following the evolutionary theory of ageing and the mutation accumulation hy-

pothesis in particular (Gavrilova et al., 1998a). Of course, there are situations were

a different choice of age cutoff is warranted. For example, Gavrilova et al. (1998abc)

motivate the use of age 30 as a relevant cutoff.

If we find that the association is age-related, that is, if it is only visible at a

later age, this will give credit to the views that there is a strong difference between

adult and old age mortality. Yet, in a study of a population of French farmers,

Cournil et al. (2000) found that the parent-daughter association is already visible at

a relatively young age. Such a finding that there is no age-relatedness of association in

longevity, will not exclude the existence of mother-child association at later age (e.g.,

due to mitochondrial processes). Nevertheless, if mortality of young adult females is

mainly associated with the causes proposed by Korpelainen (i.e., accidents, contagious

diseases, etc.), this finding gives some support for the view that alternative, social

explanations are not to be excluded.

This chapter is organized as follows. In Section 6.2 we introduce the data and

describe the village (Moerzeke) within which they were gathered. In Section 6.3 we

present the statistical model used in the analysis. Proposals for statistical tests are
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made in Section 6.4. Data from the Moerzeke study are analysed in Section 6.5.

Section 6.6 is devoted to the impact of censoring on the analysis. Conclusions are

formulated in Section 6.7.

6.2 Context of the Study

Moerzeke is a small village in the center of Flanders, the Dutch speaking part of

Belgium, within the province of East Flanders (Oost-Vlaanderen). It is a geographical

isolate as it is almost completely surrounded by the river Scheldt. Moerzeke was

mainly populated by farmers until well into the 20th century (De Ridder, 1984).

During the second half of the 19th century the rural textile industry gradually became

more important. Before the First World War almost every inhabitant worked in

agriculture (De Beule, 1962). After the War some (modest) industrial activity came

to the village, but in 1947, sixty percent of the employed males were still involved in

farming (De Beule, 1962).

The population of Moerzeke rose from approximately 2000 in 1761 to 4706 in 1950

(De Beule, 1962). Not surprisingly for a farmers’ community, the mean age at first

marriage was rather high, i.e., 31.3 years for men and 28.0 for women in the 19th

century. It rose from 1760 onwards (De Ridder, 1984) and peaked in the mid 19th

century. Also, fertility was traditionally high (De Ridder, 1984) and dropped at the

beginning of the 20th century. In the 18th century major mortality crises (mainly

dysentery) occurred, 24.8 percent of the children born in Moerzeke died within the

first year, but these became less severe as the 18th century progressed. Infant and

childhood mortalities were strikingly high. Infant mortality did not drop until the

first decades of the 20th century. The life expectancy at age 50 steadily rose for those

born in the 19th century, reaching a peak at the end of the observation period (those

born after 1850). For the group under study, the mean age at death for those who

were born and deceased in Moerzeke was 71.9 years for men and 71.7 for women,

respectively. In addition, the upper 10% percentiles for the lifespan are 83.3, 84.2,

84.8 and 84.4 years, for mothers, fathers, sons, and daughters, respectively.

The information in the Moerzeke database is drawn from church and civil registers.

In Belgium, these sources are of good quality and appropriate for populations studies.

The database contains all individuals who were born, married or died in Moerzeke.
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6.3 Statistical Model

In this section, we will review the multivariate Dale model for survival times. This

particular model augments standard univariate survival distributions for each of the

family members (mother, father, and child) separately, with global odds ratios to

describe the association between pairs of longevity outcomes. The main advantage

of this modelling approach is that the univariate distributions derived from such a

joint distribution are exactly equal to those that would be obtained were univariate

analyses done on each outcome separately. In contrast, in the frailty model case

(Clayton 1978, Hougaard 1986) the marginal distribution does not readily follow,

implying that deriving, for example, the father’s, mother’s or children’s marginal

longevity distribution would be awkward.

Thus, a very attractive feature of this approach is the elegant way in which the

association between the various longevities is modeled. This is important when one is

interested in a separation between social and genetic aspects of longevity. Regarding

the former, it is a strong asset that a number of covariates describing social and

demographic aspects can be incorporated in the models (e.g., gender, parity, etc.).

Social explanations often have empirical implications in terms of gender and parity

differences. For example, if inheritance of material products, such as a farm, is gender

and birth order related, then this must be reflected in the gender and parity pattern

of longevity inheritance.

As indicated by Molenberghs and Lesaffre (1994), the multivariate Dale distrib-

ution can in principle be specified for any number of outcomes, using two-way and

higher-order odds ratios to specify the associations. Such a specification is unavoid-

able should one choose for full maximum likelihood inference. However, calculations

quickly become very cumbersome, not just in the binary or ordinal cases studied by

these authors, but a fortiori so in the (possibly censored) survival time situation con-

sidered here. Therefore, we follow an alternative route, obviating the need to specify

associations beyond the second order. Indeed, pseudo-likelihood ideas will be used to

estimate the parameters. Building on Tibaldi et al. (2003), the procedure is detailed

here while, in addition, a number of inferential tools are proposed. The methods will

be applied to the Moerzeke study, where we consider the survival times Tj of mother,

father, and first child (j = 1, 2, 3) of 457 families with complete information on dates

of death and the censored observations will be included in a second stage.

Suppose that, in addition, we observe a vector of covariates Z and assume marginal
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Weibull distributions for each survival time Tj , with density

fTj
(t) = λTj

pTj
(λTj

t)pTj
−1 exp(−(λTj

t)pTj ),

with λTj
, and pTj

the scale and shape parameters, respectively. The corresponding

distribution for Tj is

FTj
(t) = 1 − exp(−(λTj

t)pTj exp(zβ)) (6.1)

where β is the vector of coefficients corresponding to covariates z. While we focus

on Weibull margins, different choices of univariate marginal survival distributions

can be made, implying only relatively small modifications to the methodology, typ-

ically without major impact on the numerical values of the association parameters.

Let us consider the individual information of family i expressed in vector format as

(Ti1, Ti2, Ti3, ∆i1, ∆i2, ∆i3, zi1, . . . , zin3) so that W ij = (T i,∆i, Zi) are the values for

a particular cluster i and survival time j within cluster. The indicator ∆ij indicates

whether the lifetime is observed or not.

The pseudo-likelihood function to estimate the parameters of this model is con-

structed by considering all three possible pairs of outcomes on an family (W 1r, W 2ℓ)

(W 1r, W 3ℓ) and (W 2r, W 3ℓ). Those pairs produce fTrTℓ
(W ir, W iℓ) with r < ℓ,

r = 1, 2, 3 and ℓ = 1, 2, 3, where fTrTℓ
is the density function of the Plackett-Dale

distribution defined in Chapter 5

Also in this case, the dependency can be defined using a global cross-ratio at

(tr, tℓ) given by θrℓ(tr, tℓ) and the Plackett distribution is obtained for constant cross-

ratio θrℓ(tr, tℓ) ≡ θ. Based upon this distribution function, we can derive a bi-

variate Plackett density function fTrTℓ
(tr, tℓ) for two survival times by calculating

∂FTrTℓ
(tr, tℓ)/∂tr∂tℓ as follows

fTrTℓ
(tr, tℓ)

=
∂2S(tr, tℓ)

∂tr∂tℓ
fTr

(tr)fTℓ
(tℓ)

= ∆r∆ℓ log(f(tr, tℓ)) + ∆r(1 − ∆ℓ) log

(
−∂S(tr, tℓ)

∂tr

)

+(1 − ∆r)∆ℓ log

(
−∂S(tr, tℓ)

∂tℓ

)
+ (1 − ∆r)(1 − ∆ℓ) log(S(tr, tℓ)),

(6.2)

where S(tr, tℓ) is the joint survivorship function and ∆i equals 1 if the survival time is

observed and 0 otherwise. Next, we can use pseudo-likelihood methodology to obtain
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estimates of φ the vector of parameters. Specifically, φ′ = (θ′, β′
T , λ′

T , p′
T ) with θ the

subvector of association parameters, βT the subvector of coefficients corresponding

to the covariates z and, λT , and pT a subvector of parameters from the Weibull

distribution.

The pseudo-likelihood estimator φ̂ is defined as the maximiser of ln pℓ(φ). Consis-

tency and asymptotic normality results provide an easy way to consistently estimate

the asymptotic covariance matrix. Because φ̂ converges in probability to the true pa-

rameter value φ0, and
√

N(φ̂ − φ0) converges in distribution to normal distribution

with covariance matrix J(φ0)
−1K(φ0)J(φ0)

−1 where J(φ) is defined by (5.9) and

K(φ) by (5.10). Indeed, the matrices J and K are found, as we showed in Chapter 5,

from expression (5.11).

The Plackett-Dale model allows us to estimate and interpret the strength of the

association between a pair of survival times Tr and Tℓ, via global cross ratios (the θ

parameters in the model). Nevertheless, it is often easier to work with a transforma-

tion of θ such as Spearman’s ρ or Kendall’s τ , which can be interpreted similar to

Pearson’s correlation coefficient. Kendall’s τ ranges within the [−1, 1] interval and

a zero value implies independence between Tr and Tℓ. There exists a relationship

between Kendall’s τ and θ for any copula C(tr , tℓ, θ) and independent of the marginal

distributions as it can be seen in Chapter 3.

Kendall’s τ thus measures the association between both time points after ad-

justment for the covariates used in the model. Estimates and confidence intervals,

using the delta method, are accordingly easily obtained. There is no closed form for

Kendall’s τ in the Plackett-Dale case and an estimate has to be obtained directly

using numerical integration. We have developed a SAS IML 8.02 macro to this effect.

Spearman’s ρ is also independent of the margins, and belongs to the unit interval.

The relationship between Spearman’s ρ and θ is

ρ(θ) =
θ + 1

θ − 1
− 2θ ln θ

(θ − 1)2
. (6.3)

An estimate follows from ρ̂ = ρ(θ̂), with variance estimated using the delta method.

Figure 6.1 graphically displays the relationships between these three quantities (θ, ρ,

and τ). The (ρ, τ) plot shows an almost linear relationship. Depending on the context,

one can choose one of these three quantities to study association. By comparing the

expressions to compute Spearman’s and Kendall’s coefficients, we observe that the

computation of τ is more complex given that this involves numerical integration. In

contrast, ρ is very easy to obtain by plugging the estimated value of θ in formula (6.3).
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Figure 6.1: Relationship between θ, log(θ), τ and ρ plotted in pairs.

From the shape of the curves represented in Figure 6.1 we observe that for values

of θ larger than 10 the curves are quite stable and one really needs extreme values

for θ to get values of τ and ρ close to 1. Of course, the independence case (τ = 0 and

ρ = 0) corresponds to θ = 1, in line with expectation.

Even though the use of marginal copula models, like the one proposed here, can

be very much motivated by substantive considerations as given at the start of the

section, one may want to reflect on the adequacy of model fit. Wang and Wells (2000)
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developed such a method, confined though to Archimedean copulas. In principle, such

an approach could be extended to copulas of the non-Archimedean type such as the

one considered here. However, this is outside of the scope of this work. At any rate,

an advantage of the Dale approach is that the choice for the univariate marginal

distributions is independent of the association model choice. For example, should

one want to replace the Weibull model with a different one, such as the Gompertz-

Makeham distribution chosen by Gavrilova and Gavrilov (1991), then this is perfectly

possible within this framework.

6.4 Test Statistics

The association between longevity of family members can be estimated with the

pseudo-likelihood method presented in Section 6.3. In the case of maximum likelihood

estimation, several tools can be used to test the parameters of the model such as Wald,

score, or likelihood ratio tests. However, those tests need to be extended in our case

as it was done by Geys et al. (1999) in the presence of clustered multivariate binary

data. While point estimation and asymptotic normality have already been established

in Section 6.3, the following subsections are devoted to the construction of the pseudo-

likelihood counterparts to classical inferential tools such as ratio test statistics and

score test statistics. Particularly, to perform a test for the association parameters of

the model, we need to extend the Wald, score, and likelihood ratio test statistics to

the pseudo-likelihood framework. The strategies proposed here are not restricted to

those parameters and it can be applied to any other model parameter.

Association parameters θij equaling one indicate independence between Ti and Tj .

This can be translated in terms of hypotheses such as

H0 : θrℓ = 1 θrℓ ∈ IR≥0 r, ℓ = 1, 2, 3.

More generally, let us assume we are interested in an hypothesis of the type

H0 : ϕ = ϕ0 where ϕ denotes a q-dimensional subvector of the p-dimensional vector

of regression parameters φ and write φ = (ϕ′, β′)′. We will discuss a number of tests

in turn, whereafter they will be applied.
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6.4.1 Wald Test Statistics

To construct this test we will use the asymptotic normality properties of the pseudo-

likelihood estimators. We use the following result

W ∗ = N(ϕ̂ − ϕ0)
′Σ−1

ϕϕ(ϕ̂ − ϕ0) ∼ χ2
q.

In this expression, Σϕϕ denotes the q × q submatrix of Σ = J−1KJ . The matrices J

and K were defined according to (5.9) and (5.10). The matrix Σ can be estimated by

using the pseudo-likelihood estimate φ̂. Thus, the Wald statistic is very easy to obtain

and the more convienient one in cases where model fitting is very time consuming.

However, it is highly sensitive to changes in parameterization as it was noted by Fears

et al. (1996). We can see, via the delta method, that the value of the Wald statistic

used for the hypothesis H0 : ϕ = 0 doubles the one corresponding to H0 : ϕ2 = 0.

In this study, the fact that individual association parameters will be tested implies

ϕ0 = θrℓ with r, ℓ = 1, 2, 3 therefore q = 1. Hence, W ∗ ∼ χ2
1 and the normal

distribution on the square root can be used to produce p-values.

6.4.2 Pseudo-score Test Statistics

This test is constructed by fitting the null model and it has the advantage over the

Wald test that it is invariant to reparametrisation. Let us call U(φ) the pseudo-score

vector, specifically the derivative of the log of the pseudo-likelihood; and Uϕ(φ) the

q-dimensional subvector. An empirically corrected version of this pseudo-score can

be defined as

S∗(e.c) =
1

N
(Uϕ(ϕ0, β̂(ϕ0))

′JϕϕΣ−1
ϕϕJϕϕUϕ(ϕ0, β̂(ϕ0))),

where β̂(ϕ0) is the maximum pseudo-likelihood estimator of β when ϕ is fixed to be

ϕ0, Jϕϕ is the q × q submatrix of the inverse of J , and JϕϕΣ−1
ϕϕJϕϕ is evaluated

under H0. We will use the fact that under mild regularity conditions S∗(e.c.) ∼ χ2
r .

However, computational problems were observed by Rotnitzky and Jewell (1990) in

the context of generalised estimating equations, therefore an alternative model based

version is proposed as follows

S∗(m.b) =
1

N
(Uϕ(ϕ0, β̂(ϕ0))

′JϕϕUϕ(ϕ0, β̂(ϕ0))).

Its asymptotic distribution under H0 is given by
∑q

j=1 ηjχ
2
1(j) where χ2

1(j) are all

independent random variables with χ2
1 distribution and η1 ≥ η2 ≥ · · · ≥ ηq are the

eigenvalues of (Jϕϕ)−1Σϕϕ under H0.
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To simplify calculations and to have a χ2
q distribution we propose to compute the

adjusted pseudo-score statistic, similar to Rotnizky and Jewell (1990), as follows:

S∗
a(m.b) = S∗(m.b)/η̄,

with

η̄ =

q∑

j=1

ηj/q.

Note that several adjustments have been proposed in literature by Rao and Scott

(1987) and Robert, Rao, and Kumar (1987). One interesting feature of all tests is

that in the maximum likelihood context all eigenvalues are equal to one and therefore

all three statistics coincide. In our scalar case, S∗(mb) = S∗
a(mb) holds because q = 1.

6.4.3 Pseudo-likelihood Ratio Test Statistics

Another proposal for testing H0 is based on likelihood ratio ideas:

G∗2 = 2[pℓ(φ̂) − pℓ(ϕ0, β̂(ϕ0))]

and is termed pseudo-likelihood ratio test statistic. The asymptotic distribution of

G∗ can be written as
∑q

j=1 ηjχ
2
1(j), with χ2

1(j) independently distributed according to

χ2
1 and η1 ≥ η2 ≥ · · · ≥ ηr the eigenvalues of (Jϕϕ)−1Σϕϕ under H0 as before.

Similarly, we can define an adjusted pseudo-score statistic:

G∗
a
2 = G∗2/η̄,

that can be approximated by χ2
q. It can be shown that G∗2 can be expressed as an

approximation to a Wald test. Note that, when applying the pseudo-likelihood ratio

test, the model needs to be fitted twice, for the full and the reduced models, potentially

making the procedure more time consuming. It is well known from (pseudo-)likelihood

theory that the Wald test is the one with lowest power. However, from a practical

point of view it is the more convenient one. All test statistics have been implemented

using the SAS IML procedure.

6.5 Analysis of Moerzeke Data

The proposed methodology is used to analyze the Moerzeke data, making it the first

application of this particular model to data of a familial type. To proceed we first fit
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a multivariate Plackett-Dale model. Second, inferences are made by using the tests

proposed in Section 6.4. Before we turn to the results, we give a short description of

the model and the group selection procedure.

For reasons outlined in Section 6.1, we direct the analysis towards the questions

of scientific interest. First, we carry out the analysis on the persons who were born

and died in Moerzeke (the so-called “stable population”). In the next section, we will

introduce a strategy to use censored lifetimes in order to incorporate some informa-

tion from those individuals whose demographic data were for some reasons (mainly

migration) not completely recorded. However, this does not provide much extra in-

formation. Second, we restrict the analysis to a subgroup of families having at least

one child. For families having more than one child we will investigate the association

of the parents and the oldest child where families having no children were excluded.

Other approaches using the complete cluster of all family members can of course also

be considered and are a topic of future research. Third, we restrict the analysis to

families whose fathers were born between 1750 and 1830. From earlier studies we

know that for this group, familial transmittance of longevity to daughters is rela-

tively large (Matthijs et al. 2002). In this study, we address whether this association

is mainly maternally or paternally transmitted.

The model contains three “longevity” variables: for the father, mother, and child,

respectively. The longevity of a family member is measured by number of days lived,

even though we use another scale in this analysis for numerical reasons (without any

impact on the analysis’ results). The year-of-birth of each family member and the

gender (0 for females, 1 for males) of the child are included as covariates into model

(6.1). Note that, of course, each family member’s outcome is affected by a different

year of birth, while a common gender-of-child effect is assumed for all members of the

same family. This leads to the following parameters: βYB1 year of birth of the mother,

βYB2 year of birth of the father, and βYB3 year of birth of the child. The gender of the

child, βG, was included in all marginal Weibull distributions.

It is known that differences in longevity between males and females are not the

same in all mortality groups. Whether or not we consider a cut-off point at 50 years

for the age at death, differences are clearly seen. In Figure 6.2, we plotted the crude

(i.e., unadjusted for year of birth) estimated survival curves for sons and daughters

in three different age groups.

The selected group contains all families in which both father and mother reach the

age of 50, while the child reaches at least the age of 10. We perform several analyses
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Figure 6.2: Moerzeke Study: Survival curves for sons and daughters with a cutoff

point of 50 years.

with this model and selection of groups. First, we fit a multivariate Plackett-Dale

model and estimate its parameters. The Weibull parameters p1, p2, p3, λ1, λ2, and

λ3 also result from the fitting procedure. Table 6.1 shows the pseudo-likelihood esti-

mates of the parameters. The estimated association parameter between mother and

child is 1.349 (95% confidence interval [1.002; 1.696]), indicating a positive associa-

tion between them. However, for father-child the value seems to be lower (0.983; not

statistically significant). In addition, values of Spearman’s and Kendall’s coefficients,

together with their confidence intervals, are presented in Table 6.2.

Second, inferences are made using the tests defined in Section 6.4. The null hy-

pothesis of no association was tested in each case via the Wald, score, and pseudo-

likelihood ratio tests and the results are displayed in Table 6.3.

From Table 6.3, similar conclusions are obtained irrespective of the test applied,

while the Wald statistics gives the least significant p-value. Observe that the null

hypotheses of no association between father’s and mother’s longevities on the one
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Table 6.1: Moerzeke Study: Model for father, mother, and child (son or daughter).

Pseudo-likelihood estimates (empirically corrected standard errors) of the survival

times.

Effect Parameter Estimates (s.e.)

Association (1,2) θ12 1.136 (0.160)

Association (1,3) θ13 1.349 (0.177)

Association (2,3) θ23 0.983 (0.133)

Gender βG -0.113 (0.041)

Year of birth of mother βYB1 -1.067 (1.313)

Year of birth of father βYB2 -0.899 (1.523)

Year of birth of child βYB3 -3.800 (1.293)

Shape parameter mother p1 4.799 (0.167)

Shape parameter father p2 5.770 (0.194)

Shape parameter child p3 3.002 (0.134)

Scale parameter mother λ1 0.215 (0.491)

Scale parameter father λ2 0.185 (0.473)

Scale parameter child λ3 1.587 (0.782)

hand and father’s and child’s longevities on the other hand (θ12 = 1 and θ23 = 1)

cannot be rejected, but the situation is different for mother and child. Indeed, we

reject θ13 = 1. The latter was already reflected in the fact that the 95% confidence

intervals for Kendall’s and Spearman’s coefficients contain the zero value for the first

and third hypotheses but not for the second one.

To explore this topic in more detail, we apply the model to different subsets. First,

we make a distinction between sons and daughters. It is known that differences in

mortality between males and females are not the same for all age groups. Figure 6.2

plots the estimated survival unadjusted curves for sons and daughters in three different

groups for our data (same selection as outlined above). One possible way of tackling

this problem in a simple way is by performing similar analysis in each group, i.e.,

sons and daughters separately. This is not the most efficient strategy but it will give

us some idea about the hypotheses that the association depends on gender of the

offspring.

Table 6.4 displays gender specific parameter estimates. We also performed the

test for the association parameters and we can see from Table 6.5 that for sons there
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Table 6.2: Moerzeke Study: Model for father, mother, and child (son or daughter).

Pseudo-likelihood estimates and inference for the association parameters θ, Kendall

and Spearman coefficients (95 % confidence intervals).

(i, j) θij log(θij) Kendall’s τij Spearman’s ρij

(1, 2) 1.136 (0.823;1.449) 0.127 (-0.013;0.268) 0.028 (-0.013;0.044) 0.042 (-0.049;0.134)

(1, 3) 1.349 (1.002;1.696) 0.299 (0.168;0.430) 0.066 (0.052;0.081) 0.099 (0.015;0.184)

(2, 3) 0.983 (0.723;1.243) -0.017 (-0.152;0.117) -0.004 (-0.019;0.011) -0.006 (-0.094;0.083)

Table 6.3: Moerzeke Study: Model for father, mother, and child (son or daughter).

Pseudo-likelihood tests and theirs p-values

H0 Wald p-value G∗2
p-value S∗(mb) p-value S∗(ec) p-value

θ12 = 1 0.854 0.395 0.922 0.337 1.224 0.269 0.821 0.365

θ13 = 1 1.969 0.048 5.637 0.018 4.434 0.035 5.361 0.021

θ23 = 1 -0.128 0.898 0.017 0.896 0.025 0.874 0.016 0.899

are no significant differences at the 10% level, while for daughters there seems to

be a stronger association in case of mothers and daughters than for the rest of the

association parameters (θ13). The p-values corresponding to the Wald statistics are

greater than 0.05 but the rest of the pseudo-likelihood tests gave significant results

at the 10% level.

Second, we want to explore whether associations between families can also depend

on the age at death of the offsprings (see Section 6.3). Therefore, we propose to fit

the Plackett-Dale model in six different groups, i.e., we consider models for overlap-

ping sets of offspring, reaching at least the age of 10, 20, 30, 40, 50, and 60 years,

respectively. On the other hand this produces a decreasing number of observations in

column n from Table 6.6.

The results in Table 6.6 show the parameter estimates per subgroup. We need to

interpret these results carefully, because of low (and different) numbers of observa-

tions. However, it seems clear that the association between mother and daughter is

not gradually becoming stronger when stepwise excluding those daughters who have

died at an early age. On the other hand, parameters for those who have reached the
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Table 6.4: Moerzeke Study: Model for father, mother, and child (son and daughter

separately). Pseudo-likelihood estimates of the survival times.

Estimates (s.e.)

Effect Parameter Sons Daughters

Association (1,2) θ12 0.979 (0.200) 1.350 (0.266)

Association (1,3) θ13 1.262 (0.244) 1.413 (0.248)

Association (2,3) θ23 0.953 (0.194) 1.033 (0.188)

Year of birth of mother βYB1 -2.732 (1.721) 0.997 (2.069)

Year of birth of father βYB2 0.492 (2.179) -2.360 (2.121)

Year of birth of child βYB3 -5.149 (1.905) -2.671 (1.827)

Shape parameter mother p1 4.778 (0.242) 4.829 (0.234)

Shape parameter father p2 5.853 (0.267) 5.689 (0.281)

Shape parameter child p3 3.498 (0.232) 2.612 (0.152)

Scale parameter mother λ1 0.395 (0.645) 0.100 (0.768)

Scale parameter father λ2 0.119 (0.667) 0.295 (0.668)

Scale parameter child λ3 2.181 (0.977) 1.044 (1.280)

age of 50 are generally lower. This finding is somewhat surprising in the light of,

for example, the findings of Korpelainen (1999; see Section 6.1). Nevertheless, the

same findings are recovered for a set of French agricultural villages (Cournil et al.,

2000). It must be added that the fact that the association is visible for daughters at

an early age, is not against a social explanation of the transmittance of mortality that

focuses on the position of women in intra-household resource competition. It might

not be excluded that the weak position of women within some households has effects

at almost every age.

A graphical summary of the log of the association values (and their 95 % confidence

intervals) is given in Figure 6.3, where we plot all three log(θ) parameters for each

group using as cut-off-point the age of mortality of the offspring.

Each set of parameters represents, from left to right, log(θ12), log(θ13), and

log(θ23). Therefore, the second log(θ) estimate in each group of three corresponds to

the mother–child relationship; this particular relationship typically exhibits a stronger

association than for the other pairs. In addition to that for the group containing all

offsprings dying older than 10 years, the confidence interval hardly contains the value

of one, in agreement with the conclusions drawn from the tests before.
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Table 6.5: Moerzeke Study: Model for father, mother, and child (son and daughter

separately). Pseudo-likelihood tests and theirs p-values for the association parameters

for models from Table 6.4

Offspring H0 Wald p-value G∗2 p-value S∗(mb) p-value S∗(ec) p-value

Sons θ12 = 1 -0.104 0.916 0.013 0.910 0.022 0.883 0.011 0.917

θ13 = 1 1.074 0.282 1.656 0.198 1.373 0.241 1.502 0.220

θ23 = 1 -0.244 0.807 0.066 0.798 0.121 0.728 0.057 0.812

Daughters θ12 = 1 1.316 0.188 2.473 0.116 2.521 0.112 2.283 0.131

θ13 = 1 1.663 0.091 3.884 0.049 2.952 0.086 3.928 0.048

θ23 = 1 0.177 0.859 0.033 0.8561 0.047 0.828 0.032 0.856

Moreover, in the second panel, associations between parents and daughters were

plotted and there clearly is a different structure as opposed to the other two. Larger

values of log(θ13) are observed in almost every group. The latter result implies, once

more, higher associations between longevity of mother and daughters. As we indicated

before, some care has to be taken, given that the groups overlap. The differences ob-

served in the length of the confidence intervals are due to the progressively decreasing

sample sizes.

Finally, we will explore the influence of the age-at-death of the parents. Figure 6.4

gives a graphical display of their log’s to ease interpretation of theses values. These

confirm the previous findings that the association between mother and daughters is

strongest and visible at all ages of the daughter. Consequently, this suggests that

adult mortality of female family members is connected in a very general way, lead-

ing to associations in longevity between mothers and daughters irrespective of age

groups. We must however add that interpretation should be done cautiously due to

low numbers of observations.

Once again, in this case, qualitatively the same association picture is obtained,

even though the significance has been removed.

6.6 The Impact of Censoring

In the work by Matthijs et al. (2002) censoring problems were avoided by limiting

the analysis to a subset of the population with complete data on lifetimes.
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Table 6.6: Moerzeke Study: Model for father, mother, and child (all children; son and

daughter separately); overlapping age groups. Pseudo-likelihood estimates (s.e.) of

the association parameters between the survival times.

Year θ12 p-value θ13 p-value θ23 p-value n

All Children

10 1.136 (0.160) 0.395 1.349 (0.177) 0.048 0.983 (0.133) 0.898 457

20 1.129 (0.164) 0.431 1.338 (0.192) 0.078 1.007 (0.148) 0.962 421

30 1.079 (0.167) 0.636 1.079 (0.167) 0.636 0.974 (0.149) 0.861 385

40 1.107 (0.181) 0.554 1.303 (0.206) 0.141 1.066 (0.192) 0.731 342

50 1.096 (0.192) 0.617 1.094 (0.175) 0.591 1.077 (0.185) 0.677 307

60 0.973 (0.184) 0.883 0.950 (0.153) 0.743 1.132 (0.216) 0.541 269

Sons

10 0.979 (0.200) 0.916 1.262 (0.244) 0.282 0.953 (0.194) 0.808 238

20 1.038 (0.212) 0.857 1.217 (0.239) 0.363 1.112 (0.238) 0.637 224

30 1.015 (0.213) 0.943 1.194 (0.231) 0.401 1.019 (0.216) 0.929 214

40 1.136 (0.248) 0.583 1.107 (0.219) 0.625 1.190 (0.265) 0.473 188

50 1.143 (0.269) 0.595 1.029 (0.212) 0.891 1.174 (0.261) 0.504 174

60 1.038 (0.274) 0.889 0.795 (0.158) 0.194 1.270 (0.327) 0.408 149

Daughters

10 1.350 (0.266) 0.188 1.413 (0.248) 0.091 1.033 (0.188) 0.860 219

20 1.265 (0.269) 0.324 1.439 (0.296) 0.138 0.940 (0.186) 0.747 197

30 1.182 (0.278) 0.512 1.427 (0.338) 0.206 0.940 (0.210) 0.775 171

40 1.098 (0.282) 0.728 1.601 (0.400) 0.132 0.929 (0.268) 0.791 154

50 1.055 (0.288) 0.848 1.200 (0.301) 0.506 0.955 (0.250) 0.857 133

60 0.928 (0.263) 0.784 1.199 (0.323) 0.537 0.977 (0.266) 0.931 120

Family members with incomplete records were excluded from the analysis. How-

ever, in some situations, some information can be extracted from incomplete records.

Even if not directly specified in the data, there are sometimes indication that the

person was alive, and hence at risk of dying.

Essentially, we used two sources of information to recover additional observations.

First, the date of marriage, if present, can be used as a censored time for lifetime of

both parents. Second, the date of birth of the last child of the family can be used to

define censoring for mother’s survival time. By combining all of these strategies, only
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Table 6.7: Moerzeke Study: Model for father, mother, and child (son and daughter

separately); overlapping age groups; parents dying at ages above 50 years. Pseudo-

likelihood estimates (s.e.) of the association parameters between the survival times.

Interval θ12 p-value θ13 p-value θ23 p-value n

Sons

10 0.917 (0.223) 0.708 1.191 (0.305) 0.533 0.867 (0.207) 0.519 163

20 0.970 (0.236) 0.899 1.081 (0.293) 0.781 0.996 (0.271) 0.989 154

30 0.967 (0.245) 0.892 1.255 (0.348) 0.464 0.927 (0.246) 0.768 149

40 1.188 (0.307) 0.540 0.982 (0.252) 0.944 1.039 (0.284) 0.891 129

50 1.142 (0.303) 0.640 0.943 (0.250) 0.820 1.045 (0.290) 0.877 121

60 1.205 (0.339) 0.546 0.827 (0.230) 0.451 1.362 (0.411) 0.379 107

Daughters

10 1.201 (0.303) 0.507 1.518 (0.312) 0.098 0.784 (0.191) 0.258 147

20 0.970 (0.236) 0.989 1.081 (0.293) 0.269 0.996 (0.271) 0.058 132

30 1.053 (0.315) 0.866 1.272 (0.372) 0.465 0.774 (0.204) 0.268 116

40 1.015 (0.315) 0.962 1.482 (0.482) 0.317 0.715 (0.231) 0.218 103

50 1.358 (0.450) 0.425 1.281 (0.398) 0.480 0.928 (0.275) 0.794 91

60 1.335 (0.459) 0.465 1.218 (0.416) 0.600 1.050 (0.310) 0.873 81

17 new families were incorporated and the analyses were repeated not only due to an

expanded basis of inference, but also by way of sensitivity analysis. Table 6.8 contains

the results of all fits. The first column shows the results for sons and daughters

together; the last two columns show the results for each of the genders separately.

Interestingly enough, the previously obtained mild but significant association be-

tween mothers and children in terms of longevity has disappeared when additionally

taking censored lifetimes into account. Of course, the differences between the p-values

is fairly small and it is fair to say that, in all cases, evidence for an association be-

tween mothers and children is modest. We want to point out that these techniques

easily allow one to work with censored times. Whether or not to include censored

observations depends, of course, on the context.



94 Chapter 6

Minimal cut-off age of lifespan in years for sons

Lo
g 

of
 A

ss
oc

ia
tio

n 
P

ar
am

et
er

s

10 20 30 40 50 60

-1
.0

-0
.5

0.
0

0.
5

1.
0

Minimal cut-off age of lifespan in years for daughters

Lo
g 

of
 A

ss
oc

ia
tio

n 
P

ar
am

et
er

s
10 20 30 40 50 60

-1
.0

-0
.5

0.
0

0.
5

1.
0

Minimal cut-off age of lifespan in years

Lo
g 

of
 A

ss
oc

ia
tio

n 
P

ar
am

et
er

s

10 20 30 40 50 60

-1
.0

-0
.5

0.
0

0.
5

1.
0

Figure 6.3: Moerzeke Study: Log of association parameters θ12, θ13, and θ23 (from

left to right) for offspring mortality group.

6.7 Conclusions

In this chapter we have applied a multivariate Plackett-Dale model to study the

inheritance of longevity in a Flemish village (18th–20th century). The model was

applied for the first time in a family study and, in particular, to a subset of the whole

population with the characteristics explained in Section 6.5. The associations of the

longevity between mother, father and the first child were estimated.

We proposed three different alternatives to perform inferences for the model pa-

rameters: Wald, pseudo-likelihood ratio, and score type tests. We illustrated how

these test can be performed. Even if the Wald test is the one with less power, in this

context we noticed that it is easily implemented from a computational point of view.

Even though the pseudo-likelihood and pseudo-score tests are the most powerful, as

was observed with other types of data (Geys et al. 1999), here it demands to fit
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Figure 6.4: Moerzeke Study: Log of associations for sons and daughters using intervals

for mortality, considering only offspring with parents dying older than 50 years.

different models. Given the complexity of these models it can be hard to obtain the

building blocks needed to calculate these statistics.

Turning attention to the results regarding this study, we built on the analysis

done in the original paper by Matthijs et al. (2002), using a different methodological

approach. We defined a strategy for censoring to incorporate more observations into

the analysis. However, the results did not change drastically and we opted to report
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Table 6.8: Moerzeke Study: Model for father, mother, and child (all children; son

and daughter separately). Pseudo-likelihood estimates of the survival times. Censored

observations are included

Estimates (s.e.)

Effect Parameter All children Sons Daughters

Association (1,2) θ12 1.139 (0.160) 0.981 (0.200) 1.352 (0.266)

Association (1,3) θ13 1.329 (0.171) 1.282 (0.242) 1.356 (0.235)

Association (2,3) θ23 1.020 (0.137) 0.982 (0.202) 1.075 (0.194)

Gender βG -0.117 (0.041) – –

Year of birth of mother βYB1 -0.713 (1.299) -2.154 (1.687) 1.115 (2.063)

Year of birth of father βYB2 -0.812 (1.511) 0.315 (2.165) -1.990 (2.103)

Year of birth of child βYB3 -3.760 (1.274) -4.749 (1.892) -3.010 (1.781)

Shape parameter mother p1 4.732 (0.162) 4.698 (0.234) 4.775 (0.225)

Shape parameter father p2 5.733 (0.191) 5.799 (0.266) 5.669 (0.274)

Shape parameter child p3 2.976 (0.129) 3.455 (0.222) 2.599 (0.147)

Scale parameter mother λ1 0.190 (0.493) 0.323 (0.643) 0.100 (0.775)

Scale parameter father λ2 0.182 (0.472) 0.125 (0.669) 0.264 (0.665)

Scale parameter child λ3 1.586 (0.777) 1.831 (0.980) 1.340 (1.256)

results primarily for the complete cases. The main substantial conclusion is that

significant associations were detected between mother and child. In a second step the

associations were modelled within the group of daughters and sons separately and

we observed significant associations between mother and daughter, but not between

mother and sons.

One should make a careful distinction between the effect of a covariate, such as

gender and year of birth, on the individual longevities on the one hand and on the as-

sociation on the other hand. Our model has been conceived such that the longevities

are allowed to depend on important covariates while the association between them

is kept constant. Now, in line with Molenberghs and Lesaffre (1994), the associa-

tion model can be extended to be covariate dependent rather than constant, but we

consider this to be outside of the scope of this paper.

This finding confirms the role of the mother in the transmission of longevity.

However, as these findings were present not only for mothers and daughters above

the age of fifty, but also for mothers and daughters reaching at least the age of 10, this
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finding does not support the view that familial association in adult mortality is only

discernible at older ages. In our opinion, this finding is not in contradiction with social

explanations that claim that females’ weak position in intra-household competition

leads to the association of mortality of females belonging to poor households. In other

words, in some ages food competition placed the females in a weak position compared

to the males within the family.



Chapter 7

Application of a Plackett-

Dale Model to Study

Associations in a Pilot Cancer

Clinical Trial

7.1 Introduction

The work developed in this chapter was motivated by the need to find surrogate

endpoints for survival of patients in oncology studies. In Chapter 2 we have introduced

the basic ideas of surrogacy in a general framework with only one surrogate and

one true endpoint. This methodology has been presented for normally distributed

endpoints, in addition simplified strategies have been proposed within this setting.

Specifically, for endpoints of survival type, Burzykowski et al., (2001) studied

this situation by using a bivariate survival model with copula functions to model

the associations between the margins. However, there are cases where more than

one measurement is used as potential surrogate. Then, the need for multivariate

models becomes clear. Even though most of the work in this area assumes that

only one potential surrogate is going to be evaluated, Alonso et al.(2003) studied the

validation of surrogates markers in multiple randomized clinical trials with repeated

98
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measurements, where the concept of surrogacy was extended to settings with more

than one surrogate marker. Further, studies involving survival times like in oncology

were not extensively considered and it is a topic of ongoing research.

A starting point when studying surrogacy is to state a joint model for the true and

the surrogate endpoints. Oftentimes, this task is far from trivial. For time-to-event

responses with possibly censored outcomes the problem of finding such a model is

even more complex, not many multivariate survival models are available.

In Chapter 5, a multivariate survival model to analyze non independent survival

responses has been proposed, and to some extent, we have applied it to different

settings with three survival outcomes. In this chapter, we intent to determine as-

sociations between five time-to-event outcomes, coming from three clinical trials for

non small cell lung cancer. In particular, we use the multivariate Dale model for

time-to-event and we fit the model to these data, using a pseudo-likelihood approach

to estimate the model parameters.

We evaluate and compare the performance of different dimensional models and we

relate the Dale model association parameter, i.e., the odds ratio, to well known quan-

tities such as Kendall’s τ and Spearman’s ρ. Finally, the results are discussed with

a perspective on surrogate marker validation. Some suggestions are made regarding

further studies in this field.

Survival time of patients is one of the most common outcomes when assessing

response to treatment in cancer clinical trials. While tumor response or percentage of

tumor shrinkage has been used as a surrogate endpoint for cytotoxic drugs, it has been

questioned at several occasions (Anderson et al., 1983; Ellenberg et al., 1989; Buyse et

al., 1998). There is a need to detect potential surrogate endpoints to decrease costs,

time, and/or to improve the quality of life of cancer patients. Appropriate models,

considering the type of response (continuous, binary, time-to-event, etc.) have to be

proposed and applied to this effect.

Here, we use a multivariate survival model to estimate associations between time-

to-event responses, to explore surrogacy of candidate markers, potentially after ad-

justment for other factors. The model used here has the advantage that its association

parameter, the odds ratio, can be translated without difficulty into quantities that

are considered easier to interpret, such as Spearman’s rank correlation coefficient ρ

or Kendall’s τ . Appropriate hypothesis tests can be applied to assess the strength of

the association.

Survival-type models using copulas were developed by Burzykowski et al. (2001)
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and extended by Tibaldi et al., (2003) to the multivariate case by using pseudo-

likelihood estimation of the parameters.

In Section 7.2, a pilot study in cancer vaccination for non small cell lung cancer

(NSCLC) patients is described. The focus is the assessment of the association be-

tween five time-to-event outcomes, one of which can be considered the true endpoint

from a surrogate marker point of view. The statistical model and pseudo-likelihood

estimation of its parameters are presented in Section 7.3. The analysis of the data is

presented in Section 7.4.

7.2 Clinical Trials for Non Small Cell Lung Cancer

Three pilot clinical trials were performed, with the aim of testing safety, immunogenic-

ity, and survival of a therapeutic vaccine based on the epidermal growth factor (EGF)

molecule in patients with advanced non small cell lung cancer (NSCLC)(Gonzalez et

al., 1998; Gonzalez et al., 2002). A first pilot study tested the vaccine in 20 patients

with NSCLC, randomized to the EGF vaccine with two different adjuvants Alum and

Montanide ISA-51. The vaccine was administered in a 5 doses schedule for 51 days.

Immunogenicity data were collected weekly during the treatment period and monthly

during follow-up. The second pilot trial studied the same vaccines in an additional

group of 20 patients, but with common 3 days pre-treatment with cyclosphosphamide.

In the third trial, 21 patients were assigned randomly to two different EGF vaccine

doses.

In all three trials, the scope of patients is reduced to very advanced cancer patients

at stages III, IIIb or IV without any other alternative of oncospecific treatment, with

ECOG performance status less than 3. Survival time was considered from the day of

random treatment assignment until the day of death, regardless of its cause. There

were three participating hospitals. The mechanism of vaccine activity ought to induce

an anti-tumoral immune response. Time to a good immune response could be an

indicator of a possible clinical effect. The quality of the immune response is assessed

by its titer and the titer ratio with respect to the baseline value.

The immune response was measured through an immuno-enzymatic experiment

(ELISA). The titer was defined as the highest dilution for which the sample develops

a significant intensity compared to the control sample. An immune response, 2X, is

obtained when the sample achieves a titer value two times greater than the control

sample. An immune response 1:2000 and 4X, is obtained when the sample achieves a
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titer value four times greater than the control sample at least at a level 1:2000.

We consider five time-to-event outcomes. Time 1 is time to response immuno-

genecity 2X; Time 2 is time to response of immunogenecity 1:2000 and 4X; Time 3

is time to maximum titer; TTP is time to progression and TSV is overall survival

time. The latter is the true endpoint whereas the earlier can be seen as four potential

surrogate endpoints. All times are expressed in months. Available covariate infor-

mation includes age (on a continuous scale), disease stage (categories III, IIIb, and

IV), indicator for patient’s previous treatment (e.g., chemotherapy), and, of course,

treatment assignment.

In a previous analysis, a relationship between immunological response and survival

time was detected (Torres et al., 2001). For one of the trials, there was a clear

advantage on survival for the group of high immunological responders (Torres et al.,

2002).

7.3 Statistical Model

Let us consider a trial involving N subjects with k time-to-event measurements. In

our case study, k = 5 with times Time 1, Time 2, Time 3, TTP, and TSV defined in

Section 7.2.

Suppose that we also observe a vector of covariates Z and assume a Weibull distri-

bution for each time Tj with λTj
and pTj

the scale and shape parameters, respectively.

For any pair of survival times (T1, T2) assume that T1 and T2 are correlated survival

times, then the joint survival function can be written as

ST1T2(t1, t2) = P (T1 ≥ t1, T2 ≥ t2) = Cθ12{ST1(t1), ST2(t2)}, t1, t2 ≥ 0,

(7.1)

where ST1 and ST2 denote marginal survival functions and Cθ12 is the Plackett copula

(Chapter 3). To model the effect of specific covariates on the marginal distributions

of T1 and T2 in (7.1) we propose to use the proportional hazard model:

ST1(t1) = exp

{
−
∫ t1

0

hT1(x) exp(βT1
Z1)dx

}
, (7.2)

ST2(t2) = exp

{
−
∫ t2

0

hT2(x) exp(βT2
Z2)dx

}
, (7.3)

where hT1 and hT2 are marginal baseline hazard functions and βT1
and βT2

are vectors

of unknown regression parameters corresponding to the covariates Z. The classical
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model proposed by Cox (1972) is used for the hazard functions. In this case the

dependence can be defined using a global cross-ratio θ12 at defined in Section (3.6).

While we will focus on Weibull marginals, choosing different univariate mar-

ginal survival distributions will not induce additional complexities. The choice of

marginal survivorship functions will, of course, impact the fit of the marginal out-

comes but is expected to have less impact on the estimated values of the associa-

tion parameters. Express the observed information on individual i in the format:

(Ti1, . . . , Tik, ∆i1, . . . , ∆ik, zi1, . . . , zink
) so that W ij = (Tij , ∆ij , Zi) are the values

for a particular subject i and time point j, with j = 1, . . . , k.

As it was done before also pseudo-likelihood estimation is used here. It is well

known that full maximum likelihood estimation can become prohibitive for many

(marginal) models in particular in this study having five outcomes to be considered.

The pseudo-likelihood function constructed for the estimation of the parameters of

this model is based on considering all (in our case, ten) possible pairs of outcomes on

an individual (W ir, W iℓ) with 1 ≤ r < ℓ ≤ 5. These pairs produce fTrTℓ
(W ir, W iℓ),

where fTrTℓ
is the density function of the Plackett-Dale distribution defined in Chap-

ter 3.

Precisely, we can define the pseudo-likelihood function PL through its logarithm,

that in this case is expressed by

pℓ(φ) =

N∑

i=1

∑

(r,ℓ)∈S

ln fTrTℓ
(W ir, W iℓ, φ), (7.4)

where S = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)} is the set

of all ten possible pairs of outcomes, fTrTℓ
is the value of the function defined earlier

and evaluated in the corresponding outcomes for subject i, and φ is the vector of

parameters, φ′ = (θ′, β′
T , λ′

T , p′
T ), with θ the subvector of association parameters,

βT the subvector of coefficients corresponding to the covariates Z and, λT and pT

subvector of parameters from the Weibull distribution.

The pseudo-likelihood estimator φ̂ is defined as the maximizer of (7.4). The

Plackett-Dale model allows us to estimate and interpret the strength of the association

between a pair of survival times via global cross ratios, the θ parameters in the

model. We consider a transformation of θ that has the interpretational properties of

a correlation coefficient, this is the case of Spearman’s ρ or Kendall’s τ .

Kendall’s τ measures the association between both time points after adjustment

for the covariates used in the model; and it was defined in Section 5.4. Estimates and
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confidence intervals, using the delta method, are accordingly easily obtained. Since

there is no closed form for Kendall’s τ in the Plackett-Dale case, an estimate has to

be obtained from (5.11).

Spearman’s ρ is also independent of the margins, and belongs to the unit inter-

val. An estimate can be obtained from ρ̂ = ρ(θ̂), with variance estimated using a

straightforward application of the delta method.

This allows estimation of the associations between the five outcomes by fitting a

multivariate model and adjusting for other variables: age of the patients, previous

treatment status, stage of the diseases, etc., as we will see in Section 7.4.

Pseudo-likelihood estimates were obtained using Newton-Raphson with analyti-

cal first derivatives and numerical second derivatives, as implemented in SAS IML

8.02 and using routine NLPNRR (SAS Institute Inc. 1999–2001). Standard errors of

the parameters were calculated using the inverse of the observed matrix of second

derivatives.

This model has important implications in the assessment of surrogacy. In previous

studies (Burzykowski et al., 2001), the validation of a new variable as surrogate was

performed on only one surrogate and only one true endpoint. In our case, the model

allows to study several surrogates and several true endpoints at the same time. It

gives also the possibility of developing new strategies not only to validate already

identified candidates, but also to identify new variables that have potential regarding

surrogacy.

Both Kendall’s τ and Spearman’s ρ quantities can serve as an indication of indi-

vidual level surrogacy in the sense of Buyse et al. (2000a). In case data are available

from a sufficiently large number of trials and/or centers, these authors’ meta-analytic

perspectives can be adopted as well.

7.4 Analysis of the Data

In this section we will analyse the data introduced in Section 7.2. The overall median

survival time achieved by the patients was 8.13 months with a range of 25 months.

The median time to immune response given by time to response immunogenicity 2X

(Time 1), time to response immunogenicity 1:2000 and 4X (Time 2) and time to

achieve the maximum titer (Time 3) are less than 3 months. In addition, the time

to progression endpoint has a median of 3 months. The average difference of these

endpoints with respect to survival time is 5 months, giving an opportunity to look for
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a possible surrogacy of the immune response. The age of the patients was on average

59 years, 57.38% of the patients were in stage IV and 54.1% were previously treated

with other oncospecific treatments. The objective response in these advanced non-

small cell lung cancer patients is hardly seen during their evaluation period, which is

their lifetime. Hence, it would be of interest to assess the immune response endpoints

and the time to progression as possible surrogates of the survival time.

We will now fit the proposed model to the data described in Section 7.2. Even

when the association between outcomes is of primary scientific interest, as is the case

here, it is mandatory to appropriately adjust the marginal survival regressions for

covariate effects. We have included patients’ characteristics: age (as a continuous

variable), disease stage (three categories labelled III, IIIb, and IV), whether or not

a patient received previous treatment (e.g., chemotherapy), and treatment arm. The

time unit for the outcomes was months.

We will use the indices 1, 2, 3, 4 and 5 to identify the outcomes Time 1, Time 2,

Time 3, TTP and TSV, respectively. Thus, for example, θ15 denotes the association

between outcomes Time 1 and TSV. Note that the models of primary interest are

those containing the variable TSV, considered to be the true endpoint in this study.

Nevertheless, the other models are useful to further insight into the association struc-

ture.

In the first part of the analysis we explored the importance of hospital and trial

to estimate the pairwise associations. We fitted all possible bivariate models using as

covariates age, stage, prevtrt and group in four different situations. Firstly, we fitted

models with the variables hospital and trial ; secondly, with the variable hospital only;

thirdly, with the variable trial only and fourthly with neither of these variables. The

results, not shown here, reveal that no large differences were observed between the

association parameters across the four choices, so it was decided to retain the simplest

model and both trial and hospital were dropped from further consideration.

We first considered all possible bivariate models (1B to 10B) and all different

trivariate models (1T to 10T). The association parameters obtained from these mod-

els, as well as those from the five-variate model (1F), are presented in Table 7.1. The

primary use of the bivariate and trivariate models lies in their comparison with the

full 5-variate model. Indeed, given the marginal nature of the models, corresponding

associations have the same meaning. While each association occurs only once in the

collection of bivariate models, they do so several times in the collection of trivariate

models, disallowing their easy use. Similarly, each association is used only once in
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the full 5-variate model. The most obvious advantage is that all associations feature

within a single, integrated model. They are also estimated with increased precision

as opposed to their bivariate and trivariate counterparts. The bivariate models are

also useful to provide starting values for the 5-variate model. Indeed, the model is

not easy to bring to convergence in the absence of reasonable starting values.

Let us zoom in on the comparison of association parameters across models. For

example, the association between TTP and TSV, θ45, can be found from Models 10B,

1T, 2T, 3T, and 1F. The results are very similar, as can be seen in most other rows

in Table 7.1, with somewhat exceptional behavior for θ12 and θ13. Such behavior is

not uncommon for relatively large odds ratios, and the difference is less prominent on

the log odds ratio scale.

Full details of the parameter estimates from the 5-variate model are given in Ta-

bles 7.2 and 7.3. Table 7.2 described the association parameters. Apart from the

original odds-ratio scale (θ parameters), the easier-to-interpret Kendall’s τ and the

Spearman’s ρ coefficient are included, together with asymptotic 95% confidence inter-

vals. The θ-confidence intervals not containing one provide evidence for association

between the corresponding pair of times, after correction for the covariates. Note that

the covariates and other marginal regression parameters are displayed in Table 7.3. A

corresponding association assessment based on Kendall’s τ and Spearman’s ρ requires

exclusion of the zero value from the corresponding confidence intervals.

Several substantive conclusions can be drawn from the model fits. From Model 1F

we see that the highest association is observed between TTP and TSV. We further

observe a significant association between Time 1 and Time 2. While the first two

of these three associations are of direct interest, and may lead to reconsideration of

Model 2T (containing Time 2, TTP, and TSV), it is of interest to consider a 4-variate

model as well, i.e., a model with outcomes 1, 2, 4, and 5 (i.e., Time 1, Time 2,

TTP, and TSV). Indeed, through its association with Time 2, Time 1 may indirectly

contribute useful information. In any case, Time 3 appears to have no association

with any of the other outcomes. Thus, a 4-variate model as presented in Table 7.4

will be considered our final model.

In summary, we have some evidence that TTP and Time 2 can be used as sur-

rogates for TSV, with some auxiliary information coming from Time 1. Of course,

the evidence apported here is just from three relatively small trials, and is based on

an assessment of the association between responses only. Clearly, more exhaustive

studies need to be designed in order to evaluate the surrogacy in a more authorita-
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tive fashion, preferably in a meta-analytic setting such as the one proposed by Buyse

et al. (2000a) or Burzykowski et al. (2001).

7.5 Conclusions

We have proposed the use of a multivariate Plackett-Dale model for estimating asso-

ciations between, possibly censored, time-to-event outcomes. Specifically, we showed

how this methodology can be useful in the context of surrogate marker validation.

Given the difficulties of manipulating the likelihood function in this case, a pseudo-

likelihood approach was undertaken as a viable and attractive alternative to maximum

likelihood. The computational complexity of the algorithm used for the estimation of

the model parameters was overcome by using initial values obtained from the bivariate

fitted models. Good numerical results were obtained in most cases.

Kendall’s τ and Spearman’s ρ coefficients can be used as measures of individual

level surrogacy (Burzykowski et al., 2001). In spite of the multivariate flavor of this

model, the pairwise pseudo-likelihood approach provides only bivariate association

measures. Valid confidence intervals for such quantities were constructed using the

delta method.

One of the primary purposes of this study was to detect or identify possible new

surrogate endpoints for survival time. We are particularly interested in the validation

of four different surrogate variables (Time 1, Time 2, Time 3 and TTP). This implies

the need of a multivariate model considering all of these surrogates and the true

endpoint.

We want to point out that the methodology we applied here focuses only on the

individual level surrogacy but similar ideas as in Buyse et al. (2000a) for the meta-

analytic framework need to be developed further.

Using the selected 4-variate model a high association between Time 1 and Time 2

can be observed. This evidenced that the time of reaching the double baseline titer,

for most of the patients, had a strong relationship with the time to achieve a high

titer value (1:2000 and 4X).

None of the times to reach a good immune response seem to have a high association

with TTP, or with survival time. It seems that, with the accumulated evidences in

this patient population, time to a good immune response is not strongly associated

with the time to reach a good immune response. Other immune information seems to

be more important and this should be the objective of further research. In addition,
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Table 7.1: Pilot Clinical Trial Study: Comparison of the association parameters θ,

obtained from bivariate (B), trivariate (T), and five-variate(F) models. Estimates of

the association parameters and standard errors.

Model

Par. 1T 2T 3T 4T 5T 6T 7T 8T 9T 10T 1F 1B-10B

θ12 – – – 11.10 – – 10.96 – – 11.09 8.82 17.52

(6.89) (0.46) (6.98) (2.79) (8.85)

θ13 – – – – – 5.58 – 5.61 – 5.81 4.79 8.93

(5.04) (5.03) (5.12) (2.28) (5.14)

θ14 0.84 – – – – – 0.86 0.85 – – 0.86 0.83

(0.48) (0.46) (0.46) (0.26) (0.41)

θ15 0.71 – – 0.71 – 0.72 – – – – 0.72 0.68

(0.30) (0.28) (0.29) (0.19) (0.31)

θ23 – – – – 1.55 – – – 1.56 1.64 1.57 1.58

(0.76) (0.76) (0.90) (0.41) (0.68)

θ24 – 1.04 – – – – 1.06 – 1.07 – 1.05 1.07

(0.60) (0.46) (0.61) (0.37) (0.50)

θ25 – 0.55 – 0.51 0.53 – – – – – 0.55 0.51

(0.29) (0.28) (0.28) (0.17) (0.24)

θ34 – – 1.06 – – – – 1.06 1.05 – 1.06 1.05

(0.42) (0.43) (0.41) (0.28) (0.39)

θ35 – – 1.86 – 1.90 1.94 – – – – 1.90 1.91

(0.73) (0.75) (0.80) (0.52) (0.76)

θ45 11.22 11.17 11.16 – – – – – – – 10.56 11.93

(5.09) (5.10) (5.06) (3.31) (4.67)

if individual-level associations are weak, then time to immune response are unlikely

to be good surrogates for survival, but this is a topic that deserves further analysis.

However, there is evidence that TTP is highly associated with survival time. In

practice, this variable is not very convienient given its closeness to the actual survival

time. The marginal gain does not justify its use as a surrogate.
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Table 7.2: Pilot Clinical Trial Study: Pseudo-likelihood estimates of the association

parameters (95% confidence intervals) of the five-variate model, with outcomes Time1,

Time2, Time3, TTP, and TSV. Apart from the original odds ratio scale, Kendall’s τ

and Spearman’s ρ are presented.

(i, j) θij Kendall’s τij Spearman’s ρij

(1, 2) 8.821 (3.363;14.280) 0.454 (0.426;0.482) 0.628 (0.497;0.759)

(1, 3) 4.790 (0.325;9.255) 0.337 (0.290;0.384) 0.483 (0.238;0.727)

(1, 4) 0.857 (0.356;1.358) -0.034 (-0.067;-0.002) -0.051 (-0.246;0.143)

(1, 5) 0.716 (0.348;1.083) -0.074 (-0.103;-0.046) -0.111 (-0.280;0.058)

(2, 3) 1.565 (0.766;2.363) 0.099 (0.071;0.127) 0.148 (-0.019;0.315)

(2, 4) 1.045 (0.311;1.779) 0.010 (-0.029;0.049) 0.015 (-0.219;0.249)

(2, 5) 0.545 (0.209;0.881) -0.134 (-0.168;-0.100) -0.200 (-0.398;-0.002)

(3, 4) 1.060 (0.521;1.599) 0.013 (-0.015;0.041) 0.019 (-0.150;0.189)

(3, 5) 1.896 (0.882;2.910) 0.141 (0.112;0.171) 0.210 (0.039;0.381)

(4, 5) 10.567 (4.088;17.046) 0.487 (0.460;0.514) 0.665 (0.544;0.785)

Table 7.3: Pilot Clinical Trial Study: Pseudo-likelihood estimates (standard errors)

of the survival regression parameters in the five-variate model with outcomes Time1,

Time2, Time3, TTP, and TSV.

Parameters k

1 2 3 4 5

agek 0.404 (0.077) 0.143 (0.060) -0.103 (0.072) -0.106 (0.057) -0.220 (0.097)

stage1k 0.746 (0.209) -0.196 (0.216) 0.235 (0.230) -0.220 (0.146) -0.143 (0.194)

stage2k -0.789 (0.252) -0.903 (0.241) -0.472 (0.270) 0.122 (0.180) -0.007 (0.241)

prvtrtk 0.001 (0.158) -0.065 (0.137) -0.326 (0.124) -0.420 (0.124) 0.004 (0.156)

trtk 0.538 (0.165) 1.251 (0.162) 0.310 (0.142) -0.208 (0.118) -0.039 (0.141)

pk 1.230 (0.053) 0.903 (0.039) 1.184 (0.039) 1.085 (0.041) 1.638 (0.066)

λk -2.659 (0.438) -2.901 (0.551) -0.665 (0.412) -0.599 (0.284) -1.539 (0.335)
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Table 7.4: Pilot Clinical Trial Study: Pseudo-likelihood estimates (standard errors) of

the survival regression and association parameters in four-variate model with outcomes

Time1, Time2, TTP, and TSV.

Par. Time1-Time2-TTP-SVT

θ12 9.441 (5.417)

θ14 0.856 (0.245)

θ15 0.712 (0.184)

θ24 1.041 (0.558)

θ25 0.543 (0.189)

θ45 10.820 (3.559)

age1 0.424 (0.112)

age2 0.141 (0.118)

age4 -0.109 (0.071)

age5 -0.209 (0.100)

stage11 0.826 (0.261)

stage12 -0.164 (0.341)

stage14 -0.216 (0.201)

stage15 -0.140 (0.196)

stage21 -0.758 (0.287)

stage22 -0.904 (0.333)

stage24 0.133 (0.216)

stage25 -0.022 (0.247)

prvtrt1 0.001 (0.199)

prvtrt2 -0.072 (0.227)

prvtrt4 -0.422 (0.153)

prvtrt5 0.008 (0.171)

trt1 0.531 (0.185)

trt2 1.240 (0.272)

trt4 -0.203 (0.143)

trt5 -0.057 (0.155)

p1 1.231 (0.053)

p2 0.881 (0.057)

p4 1.081 (0.055)

p5 1.630 (0.074)

λ1 -2.784 (0.697)

λ2 -2.928 (1.119)

λ4 -0.593 (0.391)

λ5 -1.561 (0.336)



Chapter 8

Conditional Linear Mixed

Models with Crossed

Random-Effects

8.1 Introduction

The analysis of continuous hierarchical data such as, for example, repeated measures

or data from meta-analyses can be done by means of the linear mixed-effects model

(Verbeke and Molenberghs, 2000). However, in some situations this model, in its

standard form, does pose computational problems. For example, when dealing with

crossed random-effects models the estimation of the variance components becomes

a non-trivial task if only one observation is available for each cross-classified level.

Pseudo-likelihood ideas were used by Renard et al. (2002) in the context of binary

data with standard generalized linear multilevel models. Also in this case the problem

of the estimation of the variance remains non-trivial. We propose a method to fit a

crossed random-effects model with two levels and continuous outcomes, by borrowing

ideas from the conditional linear mixed effects models theory. We apply this method

to a case study with data coming from the field of psychometry and study a series

of items (responses) crossed with subjects. A simulation study assesses the operating

characteristics of the method.

Models where population units are hierarchically structured have been studied

110
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extensively for several decades. However, in many cases, units at the same level of a

hierarchy are simultaneously classified by more than one factor. To fix ideas, let us

consider the case where school pupils are classified by the school they attend as well

as by the neighborhood they live in. Since schools usually attract pupils from sev-

eral neighborhoods and children from the same neighborhood usually attend several

schools, these two factors are crossed, i.e., one factor is not nested within the levels of

the other. While crossed random-effects models extend classical hierarchical multilevel

models, they can be fitted using procedures designed for purely hierarchical or multi-

level structures. Of course, they are technically and computationally more demanding

and can become prohibitive since the data cannot be grouped into independent blocks.

For binary data, Renard et al. (2002) considered crossed random-effects models and

used pseudo-likelihood for parameter estimation. Here, in the context of continuous

outcomes, we apply conditional linear mixed model ideas (Verbeke, Spiessens, and

Lesaffre 2001) to conveniently estimate parameters as well as precision. The major

advantage of the approach is that, by appropriate conditioning, the original model

maps into two hierarchical ones, for which conventional and hence computationally

efficient and fast techniques can be used.

We organize this chapter as follows. In Section 8.2 we introduce the cross classifica-

tion multilevel models in a psychometric context. The case study we use to illustrate

our method is described in Section 8.3. A full description of the methodology is given

in Section 8.4 and the case study is analyzed in Section 8.5. To conclude, a simulation

study is carried out in Section 8.6, followed by a discussion in Section 8.7.

8.2 Cross-classification Multilevel Models in Psy-

chometry

Suppose a set of items has been offered to a group of pupils and for each pupil the

correctness of the responses has been recorded. These responses have random and

systematic components, due to a difference in the ability of pupils to correctly respond

to an item, as well as due to a difference in the difficulty of the items. Although one

often encounters dichotomous items (e.g., correct/incorrect), item responses may also

be categorical (e.g., yes/perhaps/no), and an appropriate aggregation can convert

them into quasi-continuous responses. Let us refer to such aggregations as targets.

We will focus on such targets and hence on continuous outcomes. In the analysis of
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the case study, we will comment on issues stemming from targets that are made up of

variable numbers of items. Extensions of the methodology from the continuous case

to the binary case is the subject of further research.

If both targets as well as persons could be regarded as random samples from a pop-

ulation of targets and a population of persons, one can define a random residual error

for both persons and targets. Because persons and targets are in a non-hierarchical

relationship, classical methodology for hierarchical models is in need of extension.

In the multilevel literature, such a model therefore is often referred to as a cross-

classification model or crossed random-effects model (Goldstein 1987; Raudenbush

1993). Note that there usually is only one observation for each target × person

combination.

8.3 Psychometric Study

The Flemish Community in Belgium issued a set of attainment targets that specify

the basic competences that are expected from pupils leaving primary education. De

Boeck et al. (1997) explored the assessment of the attainment targets of reading

comprehension in Dutch. These attainment targets can be characterized by the text

type and by the level of processing. In the example, we use the data of one of the tests

that were developed by De Boeck et al. (1997) and studied by Van den Noortgate

et al. (2003). These data were analyzed before by Janssen et al. (2000). The data

consist of the responses of a group of 539 pupils from 15 schools who answered 57 items

assumed to measure 9 attainment targets. In Table 8.1, the 9 attainment targets are

described by the type of text and by the level of processing. In addition, we indicate

the number of items (Ik) that were used to measure each one of the targets.

As our response variables, we will use the sum of all positive answers within a

category and we will assume them to be continuous. The methodological aspect will

be discussed in the next sections.

8.4 Methodology

Let us consider a continuous random variable Yij and a general model with two

random factors: αi for subjects or persons (i = 1, . . . , I) and βj (j = 1, . . . , J) for

targets, assumed to be crossed with each other. Further, we assume αi and βj to follow

N(0, σ2
α) and N(0, σ2

β) distributions, respectively. The residual errors are assumed to
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Table 8.1: Psychometric Study: Text type, Level of Processing, and Number of Items

for the Attainment Targets of the Text. From Janssen et al. (2000), used with the

permission of the authors.

k Text Type Level of Ik

Processing

1 Instructions Retrieving 4

2 Articles in magazine Retrieving 6

3 Study material Structuring 8

4 Tasks in textbook Structuring 5

5 Comics Structuring 9

6 Stories, novels Structuring 6

7 Poems Structuring 8

8 Newspapers for children, textbooks encyclopedias Evaluating 6

9 Advertising material Evaluating 5

follow a N(0, σ2) distribution. All random terms are assumed to be independent of

each other. The model can be written as:

Yij = µ + αi + βj + εij . (8.1)

The parameters of interest are the variances σ2
α and σ2

β of the random effects and the

residual variance σ2.

We will now briefly describe the general conditional linear mixed model (Sec-

tion 8.4.1) and then focus on the particular situation of crossed random-effects (Sec-

tion 8.4.2).

8.4.1 Conditional Linear Mixed Models

Conditional linear mixed models were used by Verbeke, Spiessens and Lesaffre (2001)

(see also Verbeke and Molenberghs 2000) to analyze longitudinal data without the

need to specify time-independent effects such as, for example, the effect of baseline

covariates that are assumed to have a constant effect over time.

Consider the general linear mixed-effects model, of which (8.1) is a special case:

Y = Xβ + Zb + ε, (8.2)
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where β corresponds to the fixed part of the model, b to the random part and the

errors ε are assumed to be normally distributed with zero mean and variance matrix

equal to σ2I. Typically, the random effects b are assumed to be zero-mean normally

distributed.

Verbeke, Spiessens, and Lesaffre (2001) conceived conditional linear mixed-effects

models to consist of two steps. In the first step, they conditioned on sufficient statistics

for the cross-sectional component of the model. In order to proceed, they rewrite the

general model

Yi = 1ni
b∗i + Xiβ + Zibi + εi, (8.3)

where the matrices Xi and Zi and the vectors β and bi are those submatrices and

subvectors of their original counterparts Xi, Zi, β, and bi obtained from deleting

the elements which correspond to the cross-sectional component. The component b∗i
groups all cross-sectional components, considered to be of nuisance in this approach,

and combining, for example, random intercepts and time-invariant effects of baseline

covariates. Conditional linear mixed models now proceed in two steps. In a first step,

we condition on sufficient statistics for the nuisance parameters b∗i . In a second step,

classical estimation procedures for nested random effects are used to estimate the

remaining parameters in the conditional distribution of the Yi given these sufficient

statistics.

Conditional on the subject-specific parameters b∗i and bi in (8.3), we have that Yi

is normally distributed with mean vector 1ni
b∗i + Xiβ + Zibi and covariance matrix

σ2Ini
, from which it readily follows that yi =

∑
j yij/ni is sufficient for b∗i . Further,

the distribution of Yi, conditional on yi and on the remaining subject-specific effects

bi, is given by

fi(yi|yi, bi) =
fi(yi|b∗i , bi)

fi(yi|b∗i , bi)

=
(
2πσ2

)−(ni−1)/2 √
ni exp

{
− 1

2σ2
(yi − Xiβ − Zibi)

′

×
(
Ini

− 1ni

(
1′

ni
1ni

)−1
1′

ni

)
(yi − Xiβ − Zibi)

}
. (8.4)

It now follows directly from some matrix algebra (Seber 1984, property B3.5, p. 536),

that (8.4) is proportional to

(
2πσ2

)−(ni−1)/2
exp
{
− 1

2σ2
(A′

iyi − A′
iXiβ − A′

iZibi)
′
(A′

iAi)
−1

(8.5)

(A′
iyi − A′

iXiβ − A′
iZibi)

}
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for any set of ni × (ni − 1) matrices Ai of rank ni − 1 which satisfy A′
i1ni

= 0.

This shows that the conditional approach is equivalent to transforming each vector

Yi orthogonal to 1ni
. If we now also require the Ai to satisfy A′

iAi = I(ni−1), we have

that the transformed vectors A′
iYi satisfy

Yi
∗ ≡ A′

iYi = A′
iXiβ + A′

iZibi + A′
iεi

= X∗
i β + Z∗

i bi + ε∗

i
, (8.6)

where X∗
i = A′

iXi and Z∗
i = A′

iZi and where the ε∗

i
= A′

iεi are normally distributed

with mean 0 and covariance matrix σ2Ini−1.

Model (8.6) is now again a linear mixed model, but with transformed data and

covariates, and such that the only parameters still in the model are the longitudinal

effects and the residual variance. Hence, the second step in fitting conditional linear

mixed models is to fit model (8.6) using maximum likelihood or restricted maximum

likelihood methods. Note that once the transformed responses and covariates have

been calculated, standard software for fitting linear mixed models (e.g., SAS procedure

MIXED) can be used for the estimation of all parameters in model (8.6).

Note that the conditional linear mixed model is, in spirit, very similar to REML

estimation in the classical linear mixed model, where the variance components are

estimated after transforming the data such that the fixed effects vanish from the

model. As shown by Harville (1974) and by Patterson and Thompson (1971), and

as discussed in Verbeke and Molenberghs (2000, Sec. 5.3.4), the REML estimates

for the variance components do not depend on the selected transformation, and no

information on the variance components is lost in the absence of information on the

fixed effects. It has been shown by Verbeke, Spiessens and Lesaffre (2001) that similar

properties hold for inferences obtained from conditional linear mixed models; that is,

it was shown that results do not depend on the selected transformation Yi → A′
iYi

and that no information is lost on the average, nor on the subject-specific longitudinal

effects, from conditioning on sufficient statistics for the cross-sectional components b∗i
in the original model.

8.4.2 Models for Crossed Random-Effects

Let us return to model (8.1) and apply conditional linear mixed model ideas to it. It is

convenient to rewrite our model in vectorized form. To this end, group the outcomes

into a vector Y , with the second index varying more rapidly than the first one, and
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write (8.1) as

Y = µ1 + Z(α)




α1

...

αI


+ Z(β)




β1

...

βJ


+ ε, (8.7)

where the design matrices, using Kronecker products, are Z(α) = II ⊗ 1J and

Z(β) = 1I ⊗ IJ , respectively. It means that,

Z(α) =




1 0 . . . 0
...

...
...

1 0 . . . 0

0 1 . . . 0
...

...
...

0 1 . . . 0
...

...
...

0 0 . . . 1
...

...
...

0 0 . . . 1




and Z(β) =




1 0 . . . . . . 0

0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
...

...
...

...
...

...
...

...
...

...

1 0 . . . . . . 0

0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1




.

The dimensions of these are IJ × I and IJ × J , respectively. We will now apply

the conditional linear mixed model idea twice, once to remove the αi and once to

remove the βj .

First, focusing on removal of the αi effects, we need to construct a matrix A with

dimensions IJ × J(I − 1) such that A′Z(α) = 0 and A′A = I. Assuming such a

matrix has been constructed, we obtain a transformed response vector

Y ∗ = A′Y

= A′µ1 + A′Z(α)




α1

...

αI


+ A′Z(β)




β1

...

βJ


+ A′ε (8.8)

= Z∗(β)β + ε∗,

where ε∗ are normally distributed with mean 0 and covariance matrix σ2IJ−1.
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Let us now find a matrix A such that Z∗(α) = A′Z(α) = 0 or, equivalently,

A′(II ⊗ 1J) = 0. In this case, due to the specific format of Z(α), the matrix A′ can

be written as A′
1⊗A′

2. By using the fact that (A′
1 ⊗A′

2)(II ⊗1J) = (A′
1II)⊗ (A′

21J),

we just need to find a matrix A′
2 such as A′

2A2 = IJ−1.

For a p-dimensional matrix, we define

A =




1/
√

2 1/
√

6 1/
√

12 . . . 1/
√

p + p2

−1/
√

2 1/
√

6 1/
√

12 . . . 1/
√

p + p2

0 −2/
√

6 1/
√

12 . . . 1/
√

p + p2

0 0 −3/
√

12 . . . 1/
√

p + p2

0 0 0 . . . 1/
√

p + p2

...
...

...
...

...

0 0 0 . . . −p/
√

p + p2




.

Therefore, if we define

A2,ij =






0, 1 + j < i,

−j/
√

j + j2, 1 + j = i,

1/
√

j + j2, 1 + j > i,

and using A′
1 = II , we get

Z∗(α) = A′Z(α) = (A′
1⊗A′

2)(II⊗1J) = (A′
1II)⊗(A′

21J ) = II⊗0(J−1)×1 = 0I(J−1)×I

and the resulting model contains only one random factor β.

Second, with entirely similar logic, we need to apply a different transformation, B

say, to (8.7) to eliminate βj, and details are omitted. We obtain a second conditional

linear mixed model:

Y ∗∗ = Z∗∗(α)α + ε∗∗. (8.9)

Note that, just as Z(α) has been removed by the transformation A, now Z(β) has

been removed. Further, ε∗∗ ∼ N(0, σ2II−1), and hence the residual error variance

component occurs in both (8.8) and (8.9), while the random effects occur in just one

of these models.

8.5 Analysis of Data from Psychometric Study

To fit model (8.1) to the data described in Section 8.3, we will pass by conditionally

derived models (8.8) and (8.9). The models were fitted to the data of our case study
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Table 8.2: Psychometric Study: Parameters estimates (standard errors) for the con-

ditional linear mixed effects model.

Effect Parameter Model 1 Model 2 Combined Standard Error

Person σ̂2
α 1.3634 – 1.3634 0.0017

Item Group σ̂2
β – 2.2155 2.2155 0.0040

Residual σ̂2 0.6704 0.7477 0.7090 0.0030

by means of the SAS procedure MIXED. Macros constructing the matrices A and B,

applying the orthogonal transformations before applying the SAS procedure MIXED,

are given in the Appendix of this chapter. In Table 8.2, the estimated values are

displayed. The parameters, obtained with (8.9) and (8.8) are labeled ‘Model 1’ and

‘Model 2’, respectively.

Note that σ̂2
α and σ̂2

β are obtained from just one of the models, while the residual

variance is estimated twice.

In order to obtain a unique estimated value for the residual variance we propose

to combine these two numbers into a single one using the following strategy. Define

σ̂2 = (σ̂2
(1) + σ̂2

(2))/2, producing an overall estimate of the residual variance. To obtain

its standard error, let us proceed as follow. Construct

B̂ =

2∑

k=1

(σ̂2
(k) − σ̂2)2,

which reduces to B̂ = (σ̂2
(1) − σ̂2

(2))
2/2, and Ŵ = (v(1),11 + v(2),11)/2, with v(k),11 the

element of the covariance matrix of the covariance parameters for model k = 1, 2. The

covariance matrix of the covariance parameters can then be written as V̂ = Ŵ + B̂.

Table 8.2 shows the final numerical results of the estimation process in the last two

columns.

8.5.1 Discussion and Scope of Results

Table 8.2 shows that the expected score of a pupil on a target varies over persons and

especially over targets. Both variance components are highly significant (p < 0.0001)

using a Wald test, whether or not one corrects for the fact that the null hypothesis lies

on the boundary of the parameter space (Verbeke and Molenberghs, 2000 Section 6.3).
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Although pupils and targets explain a very large part of the total variability, 32%

and 52%, respectively, the residual variability is substantial and statistically highly

significant as well (p < 0.0001). This indicates that the score for a pupil on a target

may deviate from the score that is expected based on the person ability and the target

difficulty. It implies that there is some interaction between persons and targets.

Our model contains random effects only; no fixed effects are included apart from

an intercept that is removed in the conditioning process. This means that both person

abilities as well as target difficulties are assumed to be independently and identically

drawn from a normal distribution with variances as in Table 8.2. Further exploration

of these person abilities and target difficulties can be done by studying the empirical

Bayes estimates of the αi and βj . In many practical situations, however, one may

want to explain, for example, differences in target difficulties based on a priori grounds,

say, using target-level covariates. The same might be true at the level of the pupil.

Such person-level covariates may be continuous (e.g., age) or categorical (e.g., sex).

Similarly, target characteristics (e.g., number of subtasks, as discussed below, or the

type of problem) can often be assumed to influence the target difficulty. It is also

possible that person-by-target characteristics have an effect. This is a topic of further

research.

Of course, model (8.7) can easily be extended by including such person, target,

or interaction effects as covariates. This is conveniently done by replacing µ1 in

(8.7) by a full fixed-effects design, Xβ. The inclusion of covariates can be based on

prior beliefs of the researcher about effects of these characteristics, but may also be

a tool to explore possible relations. The use of the cross-classification model comple-

mented with target and person predictors yields a flexible predictive and explanatory

approach, as it includes error terms at both sides. For instance, the targets in our

example are characterized by a combination of text type and the level of processing.

One could include one or both variables in the model to explore if they explain part

of the variance between targets. Since this would side track from our methodological

development, we have chosen not to discuss this further.

A person covariate of particular interest is a person group. For instance, pupils

can be grouped into schools. When the groups are seen as randomly drawn from a

population of groups, the group effects can be modeled as random rather than as

fixed effects. For the cross-classification model discussed above, this would result in

a model with crossed as well as nested random effects. Although the conditional

linear mixed model approach could still be used, the discussion of this extension of
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the simple cross-classification model is beyond the scope of this chapter.

8.5.2 Unequal Number of Items per Target

From Table 8.1 we see that the number of items per target varies. This is bound

to occur whenever a compounded score, such as the targets used here, are subject

of analysis. In cases, unlike here, the number of items per targets varies widely and

one insists on retaining stability of variances at the item level, rather than at the

target level, then one can proceed as follows. Let us extend (8.1) by denoting Yijk

the response by person i = 1, . . . , I on item k = 1, . . . , Kj contributing to target

j = 1, . . . , J and write the item level model:

Yijk = µ̃ + αi + βj + ε̃ijk, (8.10)

with distributions αi ∼ N(0, σ2
α), βj ∼ N(0, σ2

β), and ε̃ijk ∼ N(0, σ2). Then, the

derived target level model is

Yij =

∑Kj

k=1 Yijk

Kj
= µ + αi + βj + εij , (8.11)

with unaltered distributions for the random effects and

εij ∼ N
(
0, σ2/Kj

)
. (8.12)

In other words, this model is similar to (8.1), except for a heteroscedatstic mea-

surement error variance. Next, we need to apply transformations A and B as in

Section 8.4.2, but with a slightly different requirement. For example, we would trans-

form still Yi → Ã′
iYi, requiring Ãi to be orthogonal onto the unit vector, but with

condition Ã′
iΛiÃi = I(ni−1), where Λi is a diagonal matrix with jth diagonal element

equal to 1/Kj. Then, after transformation, the residual errors are zero-mean normally

distributed with covariance σ2I(ni−1) and the only programming required is the im-

plementation of this alternative transformation. For the B transformation, where the

data are grouped by targets j rather than by persons i, the only modification required

is to multiply all elements of B, as described in Section 8.4.2, by
√

Kj.

Doing so, produces σ̂2
β = 29.11 (s.e. 0.42), σ̂2

α = 13.08 (s.e. 0.08), and σ̂2 = 0.9506

(s.e. 0.0006). The difference in random-effects variances is, of course, due to the fact

that the variability is now at item level rather than at target level, and hence the

inclusion of the factor Kj in (8.12) changes the balance between the random-effects
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variances and the measurement error variance. A further reason why the results differ

here, in comparison to those obtained at the target level is that we now properly

account for the different number of items per target, whereas before this aspect was

ignored.

8.6 Simulation Study

We conducted a simulation study to evaluate the performance of the conditional

linear mixed model for crossed random-effects. The design of the simulation study

was carried out under different settings to investigate the impact of number of subjects

and number of items on the performance.

First, we generated data where the true parameters were set equal to the estimates

obtained from the analysis done in Section 8.5. Five hundred simulation data sets

were generated. Other, additional settings were also used to study changes on the

variances of the random effects. They were defined in the following way:

Setting 1.

σ2
α = 1.3634; σ2

β = 2.2155; σ2 = 0.7090; I = 20, 50, 100; J = 5, 10, 20, 30.

Setting 2.

σ2
α = 0.50 to 8.50 by 0.5; σ2

β = 2.2155; σ2 = 0.7090; I = 10, 20, 50, 100; J = 10.

Setting 3.

σ2
α = 1.3634; σ2

β = 0.50 to 8.50 by 0.5; σ2 = 0.7090; I = 20, 50, 100; J = 10.

We report the results of Setting 1 in Table 8.3. Bias and relative bias was calculated

by taking the average of σ̂2−σ2 from 500 replicates, Mean(SE) denotes the average of

the estimated standard errors of the estimates. The 95% confidence interval coverage

probabilities are included as well.

From this table it can be seen that the method performs well in most cases. The

relative bias regarding the estimation of σ2
α decreases when the number of subjects

increases, however it is always smaller than 0.06. An identical situation can be ob-

served for σ2
β where the relative bias decrease when the number of items increase

being always smaller than 0.04. This similarity is, of course, to be expected.

The 95% coverage probabilities are all rather high and even in the most unfavorable

situation, i.e., a low number of subjects as well as of items, the coverage probabilities

are 98.6% and 90.2% for the variance of the subjects and items, respectively. It is
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Table 8.3: Results of the simulation study.

Subjects 20 50 100

Items Parameters σ2

α σ2

β σ2

ε σ2

α σ2

β σ2

ε σ2

α σ2

β σ2

ε

5 Estimate 1.281 2.125 0.769 1.287 2.126 0.771 1.289 2.132 0.772

Bias 0.081 0.089 0.060 0.076 0.088 0.062 0.073 0.083 0.064

Rel. Bias 0.060 0.040 0.084 0.055 0.040 0.088 0.054 0.037 0.089

Mean(SE) 0.847 0.339 0.018 0.536 0.213 0.011 0.381 0.150 0.008

95% coverage 98.6 90.2 99.2 94.0 99.8 95.8

10 Estimate 1.290 2.133 0.772 1.287 2.135 0.772 1.286 2.134 0.772

Bias 0.072 0.082 0.063 0.075 0.079 0.063 0.076 0.081 0.063

Rel. Bias 0.053 0.037 0.088 0.055 0.035 0.089 0.056 0.036 0.090

Mean(SE) 0.568 0.242 0.012 0.360 0.150 0.008 0.254 0.105 0.006

95% coverage 99.4 91.2 99.8 94.2 100 96.4

20 Estimate 1.289 2.131 0.772 1.287 2.132 0.772 1.289 2.134 0.773

Bias 0.074 0.084 0.063 0.076 0.082 0.064 0.077 0.081 0.064

Rel. Bias 0.054 0.038 0.089 0.055 0.037 0.089 0.056 0.036 0.090

Mean(SE) 0.390 0.171 0.008 0.247 0.106 0.006 0.175 0.074 0.004

95% coverage 99.8 95.4 100 96.8 100 97.4

30 Estimate 1.288 2.133 0.772 1.287 2.134 0.773 1.286 2.135 0.773

Bias 0.074 0.081 0.064 0.075 0.080 0.064 0.076 0.079 0.064

Rel. Bias 0.054 0.036 0.089 0.055 0.036 0.090 0.056 0.035 0.090

Mean(SE) 0.316 0.140 0.007 0.200 0.087 0.004 0.141 0.061 0.003

95% coverage 99.8 97.0 100 96.6 100 96.2

important to point out that our case study contains 9 items and 500 subjects being

the scenario with 10 items and 100 subjects the closest. In this setting we obtained a

coverage of 100% and 96.4% for each of the crossed random-effects.

To explore the impact of the magnitude of the variances on the estimation, we

performed simulations by fixing one of the variances and varying the other, between

0.5 and 8.5. The variances were fixed to be 1.3634 and 2.2155, according to the values

obtained from the data set. We conducted the simulation study for a fixed number
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Variance of alpha for 50 subjects
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Figure 8.1: Simulation results for variance of beta equal to 2.2155 and variance of

alpha varying between 0.5 and 8.5. Each panel corresponds to different numbers of

subjects. The segments indicate the size of the 95% confidence intervals.

10 of items and for four different choices for the number of subjects, i.e., 10, 20, 50,

and 100.

The numerical results are graphically displayed to facilitate interpretation. Fig-

ure 8.1 contains the results of the simulations with fixed variance of beta and Fig-

ure 8.2 displays equivalent results with fixed variance of alpha. Each panel corresponds

to a different number of subjects. True values are plotted against true values, together

with their confidence intervals. The dotted lines indicate the estimated values of al-

pha.

These figures show that almost all points virtually fall on the dotted line, indicating

a high agreement between true and estimated values. As it can be expected, the size of

the confidence intervals increases with variance and decreases with number of subjects.
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Variance of beta for 50 subjects
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Variance of beta for 100 subjects
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Figure 8.2: Simulation results for variance of alpha equal to 1.3634 and variance of

beta varying between 0.5 and 8.5. Each panel corresponds to different numbers of

subjects. The segments indicate the size of the 95% confidence intervals.

8.7 Conclusions

We have proposed an estimation method for the variance components of a crossed

random-effects model when only one observation is available in each cross classified

level. We have illustrated the methodology using data coming from a psychometric

study. Of course, there is no restriction for our methodology to be applied in different

scientific fields. To estimate the variance of the error and the standard deviation of

these variances, we proposed an approach to combine the values obtained from the

fit of two simple models after an appropriate transformation of the response and the

effects. We implemented our approach by means of a SAS macro.

We have conducted several simulation studies of the proposed method under a
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variety of circumstances, e.g., different number of subjects, items and a range of

values for the variance of alpha and beta. Our method performs quite well for the

estimation of the variance components in most of the cases.

Some extensions of this method can easily be carried out, for example, fixed co-

variates can be included in the model without major changes to the general structure

of the programs. However, it would be interesting to investigate the possibilities of ap-

plying this strategy with other type of responses, such as binary or general categorical

outcomes.
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Appendix: SAS Macros

The macro condlin1 finds the transformation for the model that conditions over

subjects and fits the linear model with items. The macro condlin2 reverses the roles

of subjects and items.

• id: random factor corresponding to subject

• target: random factor corresponding to item

• I: Number of subjects

• J: Number of items

First Conditional Linear Mixed Model

%macro condlin1(I,J);

proc sort data=<dataset>;

by <factor1> <factor2>;

run;

data help;

set <dataset>;

by <factor1> <factor2>;

if first.<factor2>;

run;

proc iml;

a=J(&J,&J-1,0);

do i= 1 to &J;

do j=1 to (&J-1);

a[i,j]=( (1+j=i)*(-j)+(1+j>i)*1 ) / ( sqrt(j+j*j) );

end;

end;

A2t=t(a);

Za=I(&I)@J(&J,1,1);

Zb=J(&I,1,1)@I(&J);

A1t=I(&I);

At=A1t@A2t ;

Zbstar=(At*Zb);
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use help;

labelx = {scorec target};

labelid = {id};

read all var labelid into id;

read all var labelx into x;

close help;

do s=1 to &I;

do ss=1 to (&J-1);

id2=id2//s;

end;

end;

ytt=At*x[,1];

btt=zbstar*x[1:&J,2];

hulp=id2||ytt||btt;

name = labelid||labelx;

create outdata1 var name;

append from hulp;

quit;

%mend;

proc sort data=outdata1;

by <factor1> <factor2>;

run;

proc mixed data=outdata1 method=reml asycov covtest;

class <factor1> <factor2>;

model <response> = / solution noint;

random <factor2> / type=vc subject=<factor1> V solution;

run;

Second Conditional Linear Mixed Model

%macro condlin2(I,J);

data help;

set <dataset>;

by <factor1> <factor2>;

if first.<factor2>;

run;
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proc sort data=help;

by <factor2> <factor1>;

run;

proc iml;

a=J(&I,&I-1,0);

do i= 1 to &I;

do j=1 to (&I-1);

a[i,j]=( (1+j=i)*(-j)+(1+j>i)*1 ) / ( sqrt(j+j*j) );

end;

end;

A2t=t(a);

Za=I(&J)@J(&I,1,1);

Zb=J(&J,1,1)@I(&I);

A1t=I(&J);

At=A1t@A2t ;

Zbstar=(At*Zb);

use help;

labelx = {scorec id};

labelid = {target};

read all var labelid into target;

read all var labelx into x;

close crossre;

do s=1 to &J;

do ss=1 to (&I-1);

id3=id3//s;

end;

end;

ytt=At*x[,1];

btt=zbstar*x[1:&I,2];

hulp=id3||ytt||btt;

name = labelid||labelx;

create outdata2 var name;

append from hulp;

quit;

%mend;
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proc mixed data=outdata2 asycov covtest;

class <factor1> <factor2>;

model <response> = / solution noint;

random <factor1> / type=vc subject=<factor2> solution;

run;



Chapter 9

Conditional Linear Mixed

Models with Crossed

Random-Effects for Binary

Data

9.1 Introduction

In the previous chapter we have shown how conditional linear mixed models can be

used in presence of crossed random-effects. In particular, if the response variable is

continuous, conditioning on sufficient statistics allow us to produce estimates of the

variances of the random effects. We used data from a psychometric study and we have

proposed an estimation strategy in case of dealing with continuous or quasi-continuous

responses.

The first challenge we faced was the fact that not all responses (the so-called tar-

gets) were based on averaging an equal number of items. To tackle this, we proposed

an alternative method properly adjusting for this unequal number of items per target.

The main idea is to modify the original matrices in order to take into account the

extra variability introduced by the different number of items within each target.

Thus, our modelling approach still assumes response variables (targets) to be con-

tinuous. However, the nature of this experiment produces binary responses because
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the correctness of each item is recorded as 0 and 1.

In this chapter we intend to present a solution to this problem and we develop

a method based on conditional logistic regression and pseudo-likelihood methods for

the estimation of the model parameters.

9.2 Methodology

We will start by introducing the model that will be used to analyze the data of the

psychometric study, described in Section 8.3.

Given that we have only two random effects, let us consider

logit(Pr(Yij = 1|ai, bj)) = µ + ai + bj ,

where ai and bj represent the random effects corresponding to person i and item j,

respectively. Of course, the effect of other covariates can be explored by adding an

extra term in the model. However, we will focus only on models with two random

effects.

For example, a logistic model for binary data is useful in designs with matched

pairs. In such a case one expresses by (Yi1, Yi2) pairs of matched observations where

i = 1, . . . , n. In addition, Yij is a binary response with two possible outcomes: 1 for

success and 0 for failure.

One often considers a model which permits separate response distributions for

each pair (Agresti, 1990). A common effect is then considered as follows

logit(Pr(Yi1 = 1)) = ai,

logit(Pr(Yi2 = 1)) = ai + β.

It immediately follows that the marginal probabilities can be written as

Pr(Yi1 = 1) = exp(ai)/[1 + exp(ai)],

Pr(Yi2 = 1) = exp(ai + β)/[1 + exp(ai + β)].

Using ideas of sufficiency, the parameters ai’s can be eliminated by conditioning on

Si = yi1 + yi2. Of course,

Pr(Yi1 = Yi2 = 0|Si = 0) = 1,

Pr(Yi1 = Yi2 = 1|Si = 2) = 1.

Thus, we conclude that such probabilities depend on β only when Si = 1 because
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Pr(Yi1 = yi1, Yi2 = yi2|Si = 1)

=
Pr(Yi1 = yi1, Yi2 = yi2)

Pr(Yi1 = 1, Yi2 = 0) + Pr(Yi1 = 0, Yi2 = 1)

=

(
eai

1 + eai

)yi1
(

1

1 + eai

)1−yi1
(

eai+β

1 + eai+β

)yi2
(

1

1 + eai+β

)1−yi2

(
eai

1 + eai

)(
1

1 + eai+β

)
+

(
1

1 + eai

)(
eai+β

1 + eai+β

) .

There are only two possibilities for this last expression depending on the values of yij

correspond to Si = 1.

If yi1 = 1 and yi2 = 0 then

Pr(Yi1 = 1, Yi2 = 0|Si = 1)

=

(
eai

1 + eai

)(
1

1 + eai+β

)

(
eai

1 + eai

)(
1

1 + eai+β

)
+

(
1

1 + eai

)(
eai+β

1 + eai+β

)

= 1/(1 + eβ).

If yi1 = 0 and yi2 = 1 then

Pr(Yi1 = 0, Yi2 = 1|Si = 1)

=

(
1

1 + eai

)(
eai+β

1 + eai+β

)

(
eai

1 + eai

)(
1

1 + eai+β

)
+

(
1

1 + eai

)(
eai+β

1 + eai+β

)

= eβ/(1 + eβ).

Hence, conditional on Si = 1, the joint distribution of the matched pairs is

∏

Si=1

(
1

1 + eβ

)yi1
(

eβ

1 + eβ

)yi2

= eβ
∑

yi2(1 + eβ)−
∑

Si

and the maximum likelihood estimates are obtained differentiating the log of this

so-called conditional likelihood.

In classical conditional logistic regression models one has that

logit(Pr(Yij=1|xij , ai)) = ai + x′
ijβ,



Conditional Linear Mixed Models with Crossed Random-Effects for Binary Data 133

and the likelihood is constructed by conditioning upon sufficient statistics for ai.

In our case, the response Yij is binary. Therefore Si =
∑ni

j=1 Yij , representing the

number of successes, is a sufficient statistics.

In this case the likelihood function can be written as

ni∏

j=1

f(yij |xij)

∑

p∈℘

ni∏

j=1

f(yij |xip(j))

, (9.1)

where ℘ is the set of all permutation of (yi1, . . . , yini
).

Following ideas similar to the matched pairs situation in the case of ni = 2,

(9.1) can be expressed as

f(yi1|xi1)f(yi2|xi2)

f(yi1|xi1)f(yi2|xi2) + f(yi1|xi2)f(yi2|xi1)
=

eβ(xi1yi1+xi2yi2)

eβ(xi1yi1+xi2yi2) + eβ(xi2yi1+xi1yi2)

=
e{β(yi1(xi1−xi2)+yi2(xi2−xi1)}

1 + e{β(yi1(xi1−xi2)+yi2(xi2−xi1)}

Therefore, it follows for the case of matched pairs that this expression is the same

with yi1 ≡ 0 and yi2 ≡ 1.

The likelihood can be easily written if we have 2 factors only in each crossed level.

In other words, let us assume that we have two persons and two items, hence we can

write

f(yi1|b1)f(yi2|b2)

f(yi1|b1)f(yi2|b2) + f(yi1|b2)f(yi2|b1)
=

eb1yi1+b2yi2

eb1yi1+b2yi2 + eb1yi2+b2yi1

=
e{(b1−b2)yi1+(b2−b1)yi2}

1 + e{(b1−b2)yi1+(b2−b1)yi2}

=
eb̃(yi1−yi2)

1 + eb̃(yi1−yi2)
,

where b̃ ∼ N(0, 2σ2).

However, in our case study, we have more than two items. Then the aforemen-

tioned approach fails to be applicable in this way and needs to be generalized. Let us

suppose that we have three items and three subjects. Then, the previous expression
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becomes
f(yi1|b1)f(yi2|b2)f(yi3|b3)∑

tk≤3, k=1,...,6

f(yit1 |bt4)f(yit2 |bt5)f(yit3 |bt6)
.

It is clear that for more than 2 items (subjects), this expression gets cumber-

some. To overcome this, we propose to use the case of two items and two subjects

nevertheless and combine it using pseudolikelihood ideas.

This procedure has to be implemented in two stages. First, consider all possible

pairs of items (j, j′). Therefore, there will be
(

J
2

)
of such pairs within person i and

where J is the total number of items. If this strategy is repeated for all I subjects

we will then have a new dataset containing
(

J
2

)
× I observations. Second, conditional

logistic regression is applied by considering each pair as a unit. The resulting variance

is 2σ2
b , and the variance of this last estimator can be obtained by means of the

sandwich estimator var(σ2)(J − 1).

Finally, in order to estimate the variance and its standard deviation corresponding

to the factor item, a complete symmetric situation is considered where
(
I
2

)
pairs of

observations are constructed by using (i, i′) all possible subjects. Then, var(σ2
a)(I−1)

gives an estimator of the variance of the point estimator.

In the next section, we will illustrate this strategy using the case example intro-

duced in Section 8.3.

9.3 Application to the Psychometric Study

To fit the model described in Section 9.2 to the data from the study introduced in

Section 8.3 we will start by structuring the data in an appropriate way. To this end,

we construct two new datasets. The first one contains I × 2 × J observations where

each row corresponds to a pair, being a combination of two different items, and I

is the total number of persons in the original dataset. Similarly, the second dataset

contains J × 2×I observations where now each row corresponds to a determined item

and contains pairs of observation corresponding to different subjects.

We developed a SAS macro to this effect. After having arranged the data in a

more convienient way, we fit two conditional logistic models by means of the SAS

NLMIXED procedure (the code is presented in the appendix of this chapter).

In Table 9.1 the estimated values of σ2
a and σ2

b and their standard errors are

presented using the fact that SAS NLMIXED procedure in our case gives an estimate

of 2σ2
a and 2σ2

b . Thus the estimates in the table were obtained merely by dividing
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Table 9.1: Psychometric Study: Parameters estimates (standard errors) for the con-

ditional logistic mixed effects model, fitted to the psychometric data.

Effect Parameter Estimates Standard Error

Person σ̂2
a 0.0795 0.927

Item Group σ̂2
b 0.0405 0.212

the obtained values by 2. We want to point out that there exists a way of obtaining

these values directly from the SAS procedure.

An important issue when using the SAS NLMIXED procedure is to reach con-

vergency. First, different initial values of the parameters can be tried if convergency

fails with the default option. Second, different optimization techniques can be chosen

and some of them are faster to reach convergency. In our case, we have tried different

choices of initial values of the parameters and different optimization techniques before

obtaining convergency. However, once the convergency is reached it seems that the

algorithm is quite stable with respect to different initial values.

The numerical results obtained via this approach cannot be compared with the

ones presented in the previous chapter. An obvious reason is that the nature of the

outcome is different, in other words, while before the response was assumed to be

continuous and a linear model used, in the present approach the response was treated

as binary and a conditional logistic model applied.

From the numerical values obtained after fitting the models, it can be seen that

the variability between subjects is larger than the variability between items, but this

conclusion should be used carefully given that the Wald test will fail to reject the null

hypotheses due to the large standard errors.

9.4 Conclusions

We have proposed an alternative estimation method for the variance component of a

crossed random-effect model when the response is binary and in addition to that only

one observation is available in each crossed classified level.

We have illustrated this method with data coming from a psychometric study.

The estimation of the variance of the random effects has been carried out by using

conditional logistic regression together with pseudo-likelihood ideas. For more de-

tails about pseudo-likelihood methods, see Chapter 4. Throughout the text we have
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established the relationship between our approach and the framework of matched

pairs.

Extensions can be carried out for example including covariates and the study of

the performance of this method as it was done in the continuous case via simulations

is a topic of further research.
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Appendix: SAS Procedures

We display here the SAS code for fitting both conditional logistic models. We assumed

the data are structured in the way we mentioned in Section 9.2. The first procedure

is for fitting the model with random effect person and the second analogous for item.

• id: random factor corresponding to subject.

• item: random factor corresponding to item.

• y: difference between the values corresponding to each pair of item of persons

depending on which model we are fitting.

First Conditional Logistic Model

data model1;set dataset1;

one=1;

y=x1-x2;

run;

proc nlmixed data = model1 tech=nrridg;

parms s2b=<start>;

eta = b*Y ;

expeta = exp(eta);

p = expeta/(1+expeta);

model one ~ binary(p);

random b ~ normal(0,s2b) subject = id ;

run;

Second Conditional Logistic Model

data model2;set dataset2;

one=1;

y=x1-x2;

run;

proc nlmixed data = model2 tech=nrridg;

parms s2b=<start>;

eta = b*Y;

expeta = exp(eta);

p = expeta/(1+expeta);

model one ~ binary(p);

random b ~ normal(0,s2b) subject = item;

run;



Chapter 10

Conclusions and Topics for

Further Research

The main goal of this thesis has been the development of models for different types

of complex structures, all of which involving dependent outcomes. The first chapters

were devoted to the study and modelling of continuous data within the framework

of surrogate endpoints. We contributed to the modelling of correlated survival data,

using a Plackett copula and a set of inferential tools. Towards the end of this thesis,

we studied models with crossed random effects in different settings and we proposed

an alternative method for the estimation of the effects in particular situations.

10.1 Methodology for the Evaluation of Surrogate

Endpoints

In Chapter 2 we have presented simplified approaches to surrogate endpoint validation

in a metanalytic framework. Following the ideas of Buyse et al. (2000a), we have

investigated several strategies to deal with the computational problems when using

hierarchical models. The methodology has been developed in the context of surrogate

marker validation, but in principle it could be applied to any other settings were

hierarchies are present.

As a result of our research in Chapter 2 we have recommended to use these simpli-

fied methods primarily because they are faster and easier to implement. We support

our conclusions with some simulation results for the case when both endpoints are
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normally distributed. A natural extension of this method could be to situations where

the responses cannot be considered normally distributed. This is the case for binary-

binary, survival-survival or other settings where both responses are of different type.

This last issue was not studied yet and it may be interesting to explore these situations

in order to analyze further the performance of our method.

10.2 Multivariate Survival Model with Pseudo-

likelihood Estimation

An important part of this work has been devoted to constructing and testing in a

new multivariate survival model.

Like in any modelling problem, checking and diagnostics are important issues

that need to be explored. In particular, given the large number of copula functions,

goodness-of-fit is one of the points of attention in this area. An extension of the

method proposed by Wang and Wells (2000) could be a possible solution and it is a

topic of further research.

The case studies used in this research contain no censored or right censored vari-

ables. However, in Chapter 3, we displayed the bivariate loglikelihood function in a

very general way, and it can be used to construct the pseudolikelihood function in

presence of other kinds of censoring mechanisms. In the same spirit other marginal

distribution functions can be considered, for example, when dealing with longevity

data, Gavrilova et al. (1991) suggested that the Gompertz-Makeham distribution

could be more appropriate in some cases. Obviously, this problem can be solved by

using other approaches such as semiparametric or non parametric marginal functions,

as suggested by Shih and Louis (1995).

It was our choice to use a Plackett-Dale model to estimate the association between

any pair of survival outcomes. This choice was motivated by the fact that the parame-

ter obtained using this model is easy to interpret. However, the methodology we have

developed is not restricted to this particular copula expression. Hence, other copulas

(see Chapter 3) as Clayton, Frank, etc. can be used combined with pseudolikelihood

ideas in analogous way as it was in case of the Plackett copula.

In a broader extension, we believe that the idea of using pseudolikelihood concepts

to fit marginal multivariate models can be extended to other settings apart from

the survival framework. To fix ideas, let us suppose we have three variables: one

categorical and two time-to-event variables where the goal is to estimate associations

in a multivariate way. By using the bivariate distribution functions, i.e., the one
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corresponding to the categorical-survival pair, following ideas of Geys et al. (1999)

and the one corresponding to the survival-survival pair, as it was done already in

Chapter 5, the construction of the PL function is straightforward and all parameters

can be estimated at once. This issue was not tackled in this work but we want to set

up some lines of further research.

Another area where these methods could be an important help is in the surrogate

validation field. Our model allows us to easily estimate associations but it is well

known that this is not enough to assess surrogacy and measures, such as R2 at trial and

at individual-level need to be extended to this case. It will be interesting to construct

a global measure of surrogacy based on the copula model. The latter will help us

to evaluate surrogate endpoints and to identify new potential surrogate variables as

well.

10.3 Crossed Random-Effect Models

We have considered models where random-effects are assumed to be crossed and in

addition to that only one observation per crossed level is available. We used data from

a psychometric study and as a consequence of this specific design only two factors

were studied in Chapters 8 and 9. We developed a method for two different situations

assuming continuous responses and binary responses as well. Two important issues

should be explored in the future. First, the inclusion of covariates in the model,

similarly as it was done by Verbeke et al. (2001) within the framework of longitudinal

data. Second, to explore situations with a larger number of crossed factors.
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Samenvatting

Statistische Modellen en Gecorreleerde Gegevens

In deze sectie geven we een overzicht van het statistisch modelleren in de context van

gecorreleerde gegevens, zowel van overlevingstijden, als van continue en categorische

gegevens. Het hoofddoel in heel wat gebieden van de statistiek is een model opbouwen

om een afhankelijke of responsvariabele te verklaren. Dit kan al of niet gebeuren in

aanwezigheid van covariaten of verklarende variabelen. In een aantal gevallen gaat

de interesse verder dan dit objectief en is het doel de studie van correlatie tussen

responsvariabelen onderling. Juist in situaties waar gegevens in groepen of clusters

worden verzameld, is de associatie vaak doel van wetenschappelijke vraagstelling.

Naast de mogelijkheid interessante wetenschappelijke vragen te beantwoorden, wordt

er ook een veelheid aan modelleringsvragen opgeroepen.

Inderdaad, het analyseren van dergelijke gegevensstructuren brengt een zekere

complexiteit met zich mee. Onderzoek naar het modelleren van gecorreleerde gegevens

heeft enorm aan populariteit gewonnen gedurende de laatste jaren. Deze modellen

behoren tot het vitale en zeker interessante hart van het statistisch modelleren. Es-

timating equations (schattingsvergelijkingen) en modellen met random effects (toe-

valseffecten) zijn ongetwijfeld de twee populairste aanpakken om gegevens van een

dergelijk type te analyseren, in een groot aantal toepassingsgebieden. Longitudinale

toepassingen zijn heel belangrijk, maar ook ruimtelijke gegevens komen veel voor, in

de medische wetenschappen, genetische studies, klinische studies, volksgezondheid,

economie, politieke wetenschappen en sociologie.

Aanvankelijk werd veel onderzoek verricht voor continue gegevens, maar een deel

van de complexiteit ontstaat omdat men gegevens van verscheidene types ontmoet,

soms zelfs in één en dezelfde studie. Gegevens kunnen, naast continu (normaal

verdeeld), ook binair zijn, categorisch, of overlevingstijden. Random-effects mod-

ellen, zoals het lineair gemengd model, werden ontwikkeld voor continue gegevens,
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maar aanpassingen zijn nodig voor elk ander type van responsvariabele.

Aangepaste modellen werden ontwikkeld in de context van herhaalde metingen

(longitudinale gegevens, Verbeke en Molenberghs, 2000) en van cluster gegevens

(Aerts et al., 2002). Nochtans werden deze methoden in hoofdzaak ontwikkeld voor

klassieke gegevensstructuren. Plausibele en flexibele alternatieven zijn nodig voor

complexere structuren, en precies daaraan draagt deze thesis bij.

Uiteraard werd er reeds heel wat werk verricht. Toen Liang en Zeger (1986), Zeger

en Liang (1986) en Zeger, Liang en Albert (1988) hun generalized estimating equations

(GEE, veralgemeende schattingsvergelijkingen) voorstelden voor gecorreleerde binaire

gegevens, werd het een onmiddellijke succes. Als de wetenschappelijke vraag beperkt

blijft tot eerste momenten, kan men gebruik maken van GEE1. Toch zijn er situaties

waar ook de tweede momenten (associaties) van belang zijn, en daartoe stelden Zhao

en Prentice (1990) en Liang, Zeger en Qaqish (1992) gepaste uitbreidingen voor: de

GEE2 methode. Uitgaande van deze modellen werden heel wat alternatieve marginale

modellen voorgesteld, waarbij de klemtoon ligt op het efficiënt schatten van de effecten

van covariaten op marginale kansen, op de verwachte waarde van een aantal, enz.

Een aantrekkelijk alternatief voor GEE, ontwikkeld in de context van multivari-

ate gecorreleeerde binaire gegevens, bestaat erin van likelihood te vervangen door

pseudo-likelihood (Geys 1999), waarbij de echte multivariate dichtheidsfunctie ver-

vangen wordt door een veel makkelijker te manipuleren product van marginale of

conditionele dichtheden. Reeds bij herhaalde meetreeksen van een matige lengte blijkt

de normaliseringsconstante van bepaalde types van loglineaire modellen zo goed als

onoverkomelijke computationele vereisten te stellen. Een gepaste keuze van de pseudo-

likelihoodfunctie vermijdt het voorkomen van een dergelijke constante. Sterke punten

van deze methode zijn, naast het vereenvoudigen van de berekeningen: (1) de inter-

pretatie van de modelparameters wijzigt niet en (2) de efficiëntie van de methode is in

veel realistische situaties niet noemenswaardig lager dan wanneer likelihood gebruikt

wordt. Uit onderzoek van Geys (1999) blijkt dat deze beweringen breed geldig zijn.

Gegevensstructuren

We geven een overzicht van de diverse hiërarchische gegevensstructuren die zich vo-

ordoen, naast in de studies beschouwd in deze thesis, ook meer algemeen. Dit sluit

aan bij de modelleringsconcepten van de vorige sectie.

Naast gegevens afkomstig van observationele studies, verzameld in humane en bi-

ologische experimenten, zijn er nog heel wat voorbeelden te noemen van gecorreleerde,

cluster, of hiërarchische structuren. Bijvoorbeeld, erfelijkheidsstudies in mens en dier
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leiden bijna altijd tot een hiërarchie, waarbij nakomelingen familie-gerelateerde clus-

ters vormen. Uiteraard hebben nakomelingen van dezelfde ouders de neiging om

gelijkaardig te scoren in hun lichamelijke en geestelijke kenmerken, dan wanneer men

individuen vergelijkt die uit totaal verschillende families afkomstig zijn. Een een-

voudig voorbeeld bestaat in de vaststelling dat kinderen binnen eenzelfde familie

dezelfde neiging hebben voor een grote, gemiddelde, of kleine lichaamsbouw. Naast

genetische factoren spelen hierbij typisch ook omgevingsfactoren een belangrijke rol.

Ook in survey gegevens ontmoet men op zeer regelmatige basis hiërarchische

gegevens, omdat het studie-opzet daar in vele gevallen expliciet in voorziet. Pop-

ulaire manieren om een dergelijke situatie aan te pakken omvatten (1) het gebruik

van het opzet om te corrigeren voor aspecten zoals clustering, het voorkomen van

hiërarchische gegevens, e.d. en (2) het expliciet modelleren van de correlatie bij

hiërarchische gegevens (Tibaldi et al. 2003).

Andere voorbeelden omvatten klinische studies, uitgevoerd in verschillende

groepen van individuen, zoals in verschillende centra. Recent is hieromtrent veel

onderzoek verricht en dit werk beschouwt dergelijke studies met als oogmerk de eval-

uatie van surrogaatrespons. Als de primaire respons duur is (zoals in het geval van

bepaalde laboratoriumwaarden) of als het verzamelen ervan veel tijd in beslag neemt

(zoals overlevingstijd), wensen onderzoekers over te schakelen op een zogenaamde

surrogaatrespons. Natuurlijk kan dit niet zomaar gebeuren en dient men na te gaan

of de potentiële surrogaatrespons voldoende goed is, d.w.z. een voldoende betrouw-

bare vervanger is voor de primaire respons. Al gedurende meer dan een decennium

wordt onderzoek gedaan naar dergelijke gegevens en deze thesis richt zich specifiek

op continue, normaal verdeelde surrogaat- en primaire respons. Daarnaast zullen we

aandacht schenken aan het geval van overlevingstijden.

Aan de andere kant vinden we gecorreleerde gegevens in familiestudies, waar corre-

latie afkomstig is van karakteristieken, gemeenschappelijk aan alle familieleden. Eerst

introduceren we een adoptiestudie, waar de associatie tussen overlevingstijden van bi-

ologische en adoptieve familie wordt gemodelleerd. Vervolgens presenteren we een

zogenaamde longevity studie, waar gelijkaardige karakteristieken gevonden worden

in een grote dataset. In heel wat andere gebieden komt associatie tussen overlev-

ingstijden voor. Ter illustratie bestuderen we correlatie tussen overlevingstijden van

dezelfde patiënt, in een klinische studie.

Aan het einde van dit werk concentreren we ons op gegevens afkomstig van een psy-

chometrische studie. Meer in het bijzonder ligt de klemtoon op zogenaamde gekruiste

random effecten. Er worden een aantal vragen (items) gesteld aan een aantal stu-

denten, en voor beide, gekruiste, niveaus worden random effecten voorzien. Daar
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waar dergelijke gegevens, mits gepaste keuzes, nog vrij vlot kunnen gemodelleerd en

geanalyzeerd worden in het geval van continue gegevens, doen zich bijkomende com-

plicaties voor wanneer de respons binair of categorisch is. In het bijzonder besteden

we aandacht aan het binaire geval, waar pseudo-likelihood wordt gebruikt, samen met

concepten uit conditionele logistische regressie, om dit probleem aan te pakken.

Alle studies hebben een gemeenschappelijk kenmerk: complexe, gecorreleerde

gegevensstructuren. Likelihood methodologie voor complexe hiërarchische mod-

ellen wordt aangevuld met concepten uit pseudo-likelihood, conditionele regressie,

en vereenvoudigde methoden, om een grote klasse van dergelijke problemen aan te

pakken. Uit de toepassing van deze methoden vloeit nieuw inzicht voor op basis van

bestaande en reeds voorheen geanalyzeerde gegevens. Natuurlijk kunnen technieken

maar toegepast worden indien betrouwbare en gebruiksvriendelijke software aanwezig

is. Aan de hand van SAS routines wordt de toepassing van de voorgestelde methoden

mogelijk.

Naast gecorreleerde overlevingstijden concentreren we ons ook op continue en op

binaire gegevens. Toepassingen worden gevonden in de klinische studies, in het bi-

jzonder met het oog op de validering van surrogaatrespons, de populatie-genetische

studies en de psychometrische studies.


