
t transnationale
UNIVERSITEIT LIMBURG

u

L
School voor Informatietechnologie

Kennistechnologie, Informatica, Wiskunde, ICT

Evolving Virtual Agents using Genetic Programming

Proefschrift voorgelegd tot het behalen van de graad van
Doctor in de Wetenschappen, richting Informatica,
te verdedigen door

Patrick MONSIEURS

Pro motor : Prof. dr. E. Flerackers
Co-promotor : Prof. dr. F. Van Reeth

2002

l f\.\(J V L\.JIJL
} . "

681.39
MONS
2002

luc . luc

! I I

t transnati o nale
UNIVERSITEIT LIMBURG

u
L

School voor Informatietechnologie
Kennistechnologie, Informatica, Wiskunde, ICT

Evolving Virtual Agents using Genetic Programming

Proefschrift voorgelegd tot het behalen van de graad van
Doctor in de Wetenschappen, richting Informatica,
te verdedigen door

Patrick MONSIEURS

Promotor : Prof. dr. E. Flerackers
Co-promotor : Prof. dr. F. Van Reeth

2002

, L, NOV 2002

-~ PARTNER IN DE UNIVERSITEIT LIMBURG

According to the guidelines of the Limburgs Universitair Centrum,
a copy of this publication

has been filed in the Royal Library Albert I, Brussels,as publication
D/ 2002/ 2451/ 45

page i

Acknowledgements
I would like to thank my promoter, Prof. Dr. Eddy Flerackers, and my co-promoter
Prof. Dr. Frank Van Reeth for their guidance and support, and for giving me the
freedom to investigate several areas of research. Thanks also go to Prof. Dr. Karin
Coninx for helping me with the writing of several papers.
I would also like to thank my colleagues for the support and friendship they have
given me over the past years. In particular I would like to thank Michael Bar,
Johan Claes, Fabian Di Fiori, Guy Linsen, Kris Luyten, Chris Raymaekers, Jan Van
den Bergh, and Tom Van Laerhoven.

Thanks also go to Nathalie Cossement, Kurt Driessens and Nico Jacobs for their
help and advice while working on the Robocup domain. Without them, the early
work on developing Robocup players would not have been possible.
I would also like to thank the friends I made over the course of my studies and
afterwards, in particular those from the student organizations Filii Lamberti,
Ast0ria, WINA, and Biomedica.

Last but not least, I would like to thank my parents and my sister, who supported
me all these years. Without them, this would not have been possible.

page ii

page iii

Abstract
Virtual environments are used in a diverse number of applications, ranging from
medical applications, military simulations, modeling and engineering, to
entertainment such as games or virtual communities. In these applications,
virtual agents can be used to make the environment more realistic, perform tasks
that are tedious and time consuming for humans, or even simulate the presence
of other users in the environment.
When constructing an agent for a virtual environment, several issues are
encountered that must be resolved. First, a virtual agent must be able to explore
and navigate in the virtual environment in a realistic way while avoiding
collisions with obstacles. If the virtual agent does not have access to the internal
representation of the environment, it will have to use its virtual sensors to
observe the environment. In this thesis, an algorithm is presented to perform
obstacle avoidance and map construction in a virtual environment using a
synthetic vision sensor. The constructed map can then also be used to navigate
in the environment.
A second issue is communication between agents and users in the environment.
Agents and users must be able to Locate agents that can perform certain tasks,
and agents may offer their services to users or other agents. These issues are
discussed briefly in this thesis, and a prototype of a multi-agent virtua l
environment is presented.
The most difficult issue of virtual agents is learning to solve problems in an
environment, without knowing the constraints and rules of the environment in
advance. This thesis will examine the use of genetic programming to train virtual
agents. Two important problems are encountered when using genetic
programming in this domain. First, programs constructed using genetic
programming tend to grow rapidly before an acceptable solution is found. Several
techniques will be presented to reduce the size of the evolved genetic programs,
and a comparison will be made between these techniques. Secondly, evaluation
of candidate solutions is usually very time consuming, making it impractical to
maintain a large population of candidate solution. A large population is usually a
requirement to evolve good solutions. Therefore, an algorithm to reduce the size
of the population while maintaining the diversity of a larger population is
presented. These optimizations will also be applied to the virtua l mu lti-agent
system of robotic soccer to examine the effects of these optimizations in a
complex environment.

page iv

page v

Table of contents
Acknowledgements i
Abstract iii
Table of contents v
List of figures xi
List of tables xv
List of tables xv

Chapter 1 : Introduction .. 1

1 Virtual environments 1
2 Intelligent virtual agents 2
3 Genetic programming 2
4 Contributions of this thesis 3
5 Thesis overview 4

Part I : Virtual agents .. 6

Chapter 2 : Agents and virtual environments 7

1 Introduction 7
1.1 What is a virtual environment? 7
1.2 What is an agent? 8

2 Examples of virtual environments 8
2.1 Medical applications 9
2.2 Military applications 9
2.3 Design and engineering 9
2.4 Modeling 10
2.5 Virtual communities ... 10
2.6 Other applications 10

3 Issues concerning virtua l agents 11
3.1 Navigation in the virtual environment.. 11
3.2 Communication between users and/or agents 11
3.3 Intelligent virtual agents 12

Chapter 3 : Navigation in virtual environments 13

1 Introduction 13
2 Related work 14

page vi

3 Synthetic vision 16
3.1 Reading depth information 17
3.2 Filling the vision buffer 18
3.3 Transforming the depth information 18

4 Collision avoidance 20
4.1 Short range collision avoidance 20
4.2 Medium range collision avoidance 21

5 Map construction 22
5.1 Creating a single area 23
5.2 Creating additional areas 23
5.3 Adding and removing links between areas 25

6 Path planning 25
7 Results 26
8 Conclusion 28

Chapter 4 : Robocup ..•..••.•.••..••••..•......•.•..••.•..••..•....••.•••• 29

1 Introduction 29
1.1 Challenges of Robocup 30
1.2 Description of the simulation environment 31

2 Architecture of an agent's brain 34
2.1 Layered behaviors 34
2.2 Individual player skills 34

3 Obstacle avoidance in Robocup 35
3.1 Determining safe directions for movement. 36
3.2 Determining safe directions for passing the ball 37

4 Teamwork in Robocup 38
4.1 The joint intentions framework 39
4.2 Locker-room agreements 40

5 Conclusion 40

Part II : Genetic programming ..•....................................• 41

Chapter 5 : Genetic programming•........................ 42

1 Introduction 42
2 Evolutionary computation 43

2.1 Selection 43
2.2 Reproduction 45
2.3 Mutation 46
2.4 Basic evolutionary algorithm 46

3 Genetic algorithms 47

page vii

3.1 Example 47
3.2 Representation 48
3.3 Genetic operators 48

4 Genetic programming 50
4.1 Representation 50
4.2 Genetic operators 51
4.3 Closure 53

5 Example problems 54
5.1 Symbolic regression 54
5.2 Boolean functions 55
5.3 Artificial ant 56
5.4 AI planning 57

6 Extensions to genetic programming 59
6.1 Strongly typed genetic programming 59
6.2 Automatically defined functions 60
6.3 Representing the population with a minimal directed acyclic graph .. 61

7 Conclusion 63

Chapter 6 : Reducing code growth in genetic programming 65

1 The causes of bloat 65
2 The advantages and disadvantages of bloat 68
3 Detecting and removing inactive nodes 70

3.1 Related work 70
3.2 Measuring the influence child nodes have on their parents 72
3.3 Removing inactive code 72
3.4 Examples 73
3.5 Experimental results 78
3.6 Conclusion 81

4 Limiting code growth 82
4.1 Introduction 82
4.2 Related work 82
4.3 Methods to reduce code growth 85
4.4 Experiments 85
4.5 Conclusions 90

Chapter 7 : Measuring and maintaining the diversity of a
population .. 9 2

1 Introduction 92
2 Related work 92

2.1 Distance measures for genetic programs 93

page viii

2.2 Other diversity measures for genetic programming 96
3 Sharing identical subtrees 96
4 Calculating the added diversity of an individual 97
5 Removing individuals with low diversity 99
6 Experimental results 100

6.1 Symbolic regression ... 100
6.2 AI planning 101

7 Conclusion 102

Chapter 8 : Applying evolutionary computing to Robocup 103

1 Using genetic algorithms to train a reactive action selection network 104
1.1 Description of the action selection network 104
1.2 Training the action selection network 108
1.3 Conclusion 112

2 Using genetic programming to learn action selecti on 112
2.1 Related work 113
2.2 Description of problems and primitive sets 119
2.3 Experimental results 121
2.4 Comparison of the experiments 133
2.5 Conclusion 135

Chapter 9 : Conclusions and future work 136

1 Conclusions 136
2 Future work 137

2.1 Improvements to map construction 137
2.2 Improved individual player skills for Robocup 138
2.3 Explicit credit assignment and directed crossover 138
2.4 Determining a maximum size limit.. ... 138
2.5 Improving the diversity measure .. 139

Appendix A : Communication between virtual agents 140

1 Introduction 140
2 Modes of communication 140
3 Directory agents and protocols 141
4 Application prototype 142

Appendix B : Description of the neural network 144

1 Problem description 144
2 Implementation 145

page ix

3 Training results 146

Appendix C : Implementation of genetic programming 149

1 The create algorithm 149
2 Calculating MininstanceSize of primitives 150
3 Strongly-typed crossover algorithm 152

Appendix D : Complexity of the N-parity problem 153

References ••.•..•.•.......•.••..••..•...••..•.....••...•...•..........•.... 15 4

Samenvatti ng .. 16 3

1 Inleiding en overzicht 163
2 Agenten en virtuele omgevingen 163
3 Navigatie in virtuele omgevi ngen 164
4 Robocup 167
5 Genetisch programmeren 168
6 Het probleem van de sterke groei van program ma's 171
7 Meten en behouden van de diversiteit van een populatie 17 4
8 Evolutionair programmeren toegepast op Robocup 175
9 Conclusies en bespreking 178

page x

page xi

List of figures
Figure 3.1: Current and previous sensor data around the agent 14
Figure 3.2: Correcting the depth value 17
Figure 3.3: Transforming the depth values can leave holes in the vision buffer. 19
Figure 3.4: Rotating a point in the vision buffer using several methods 20
Figure 3.5: Avoiding an obstacle by creating a temporary destination 21
Figure 3.6: Example of an area. The thick lines represent the borders of the area,

and the squares connected to the central square represent the open points
of the area 22

Figure 3.7: A completed map. Thick lines represent obstacles, the centers of the
areas are represented by the squares, and a line indicates that two areas are
reachable from each other. 24

Figure 3.8: Removing redundant links 25
Figure 3.9: Reduced map 26
Figure 3.10: A more complex environment 27
Figure 3.11: Moving towards a destination in an unknown environment from t he

bottom right corner towards the top left corner of the environment 28
Figure 4.1: Graphical representation of the Robocup software simulator 30
Figure 4.2: Overview of the Robocup soccer simulator client/server model. 32
Figure 4.3: The positions of visible and recently observed players are stored in

the vision buffer of a player 36
Figure 4.4: Danger values surrounding players and selected direction 37
Figure 4.5: Danger and safety values around opponents and teammates to

determine the safest passing direction 38
Figure 5.1: Fitness landscape of a rational approximation of the number pi 47
Figure 5.2: Binary representation of the two 10-bit integers 311 and 157 48
Figure 5.3: One-point crossover between two individuals 49
Figure 5.4: Two-point crossover between two individuals 49
Figure 5.5: Example of two random mutations on a bit string 50
Figure 5.6: Tree representation of the expression (3+x)*5 50
Figure 5. 7: Single-point tree-based crossover between the expressions

((x*(2-y))+5) and ((3/x)*(y+O)) 52
Figure 5.8: Example of the combination operator 53
Figure 5.9: The Santa Fe trail used in the artificial ant problem 56
Figure 5.10: Individuals share identical subtrees in a directed acyclic graph 62
Figure 6.1: Average best fitness, average size and standard deviation of the 6-

multiplexer problem without removing inactive nodes (left) and removing
inactive nodes (right) 79

page xii

Figure 6.2: Average best fitness, average size and standard deviation of symbolic
regression problem without unary minus and inverse operators, without
removing inactive nodes (left), and removing inactive nodes with influence
threshold of 0.01 (middle) and influence threshold of 0.05 (right) 80

Figure 6.3: Average best fitness, average size and standard deviation of symbolic
regression problem with unary minus and inverse operators, without
removing inactive nodes (left), and removing inactive nodes with influence
threshold of 0.01 (middle) and influence threshold of 0.05 (right) 81

Figure 6.4: Result when no optimizations are used 86
Figure 6.5: Result of removing inactive code 86
Figure 6.6: Result of hill climbing optimisation 87
Figure 6.7: Result of combining hill climbing and removing inactive code 88
Figure 6.8: Result of dynamic size limiting 88
Figure 6.9: Result of combining dynamic size limiting and hi ll climbing 89
Figure 6.10: Result of combining dynamic size limiting and removing inactive

code 89
Figure 6.11: Result of combining all three optimization techniques 90
Figure 7.1: Sharing identical subtrees between individuals with the directed

acyclic graph representation 97
Figure 7.2: Nodes are marked to determine the similarity between individuals . . 98
Figure 7.3: Similarity measure is not symmetric. ... 99
Figure 7.4: Effect of diversity on symbolic regression problem 100
Figure 7 .5: Result of using diversity on the AI planning problem 101
Figure 8.1: Positions of players depending on their player numbers 103
Figure 8.2: Action selection uses current and predicted world states 104
Figure 8.3: The action selection network. Actions are listed in the second column.

Terminal nodes are directly linked to sensors 105
Figure 8.4: Average fitness of the population when training a team of 6 players

against a fixed reference team 109
Figure 8.5: Number of wins, losses and ties of the teams in a population when

training a team of 6 players against a fixed reference team 110
Figure 8.6: Fitness values of the best individual in the left and right population

after co-evolution 111
Figure 8. 7: Average fitness of the population when training a team of 11 players

against a fixed reference team 111
Figure 8.8: Number of wins, losses and ties of the teams in a population when

training a team of 11 players against a fixed reference team 112
Figure 8.9: Evolution of fitness in experiment 1. 122
Figure 8.10: Evolution of fitness in experiment 2 123
Figure 8.11: Evolution of fitness in experiment 3 123
Figure 8.12: Evolution of fitness in experiment 4 124

page xiii

Figure 8.13: Evolution of average size and maximum size of the individuals of a
generation in experiment 1 125

Figure 8.14: Evolution of average size and maximum size of the individuals of a
generation in experiment 2 126

Figure 8.15: Evolution of average size and maximum size of the individuals of a
generation in experiment 3 127

Figure 8.16: Evolution of average size and maximum size of the individuals of a
generation in experiment 4 127

Figure 8.17: Evolution of the number of individuals containing the MyType
primitive created at every generation in experiment 1 128

Figure 8.18: Evolution of the number of individuals containing the MyType
primitive created at every generation in experiment 2 130

Figure 8.19: Evolution of the number of individuals containing the MyType
primitive created at every generation in experiment 3 131

Figure 8.20: Evolution of the number of individuals containing the My Type
primitive created at every generation in experiment 4 132

Figure 8.21: Comparison of the evolution of fitness of the different runs 134
Figure A.1: Sending a message to another user in a virtual environment by

clicking on its avatar 143
Figure 8.1: Adjacent depth values used as input for the neural network 144
Figure 8.2: Structure of the neural network 148

page xiv

page xv

List of tables
Table 4.1: Different layers of behaviors 34
Table 4.2: Comparison of teamwork strategies 38
Table 8.1: Hierarchy of STGP primitives used by Luke et al. 114
Table 8.2: List of primitives used by Andre 117
Tab le 8.3: List of primitives used by Hsu and Gustafson 118
Table 8.4: Modified and added primitives of the hierarchy of STGP primitives. 120
Table C.1: A simple strongly-typed hierarchy of primitives 151

page 1

Chapter 1: Introduction

The goal of this thesis is to design agents that exist in a virtual environment.
These agents must be able to interact with the environment, with each other,
and with users present in these environments. Furthermore, these agents must be
able to perform certain tasks, and learn to improve themselves through
experience in the environment. The most important method used for learning in
this thesis will be genetic programming. The key elements of the thesis will be
discussed in the remainder of this chapter, followed by an overview of the thesis.

1 Virtual environments

Because of the recent technological advances in computer graphics hardware and
computing power, realistic virtual 3D environments have become a reality.
Computer generated environments are currently being used for various
applications. Some typical examples of virtual environments are virtual networked
communities, first person shooter games and virtual marketplaces.

Virtual environments can also be useful for other applications. For example, a
simulation of a rea l environment can be a useful tool for training military
personnel in dangerous situations. They are also used for the creation of
animation films or for adding special effects to movies, where the realism of the
environment is of great importance. Virtual environments can also be used to
provide a more natural interface to existing applications.
The advantage of using a virtual environment is that the user has a feeling of
being present in the environment. Because of this immersion, the user is able to
interact more naturally with the environment. When the user also has a graphical
representation of himself in the environment (called an avatar), it is also
possible for other users to easily recognize each other, identify them, and see
what they are doing.

A disadvantage of virtual environments is that some tasks are more difficu lt to
perform graphically. For example, entering numeric data, placing an object at an
exact location or finding a certain object or user in the environment. For some of
these problems, agents moving arou nd in t he environment can provide a

page 2

solution. For example, an agent that regularly walks around in the world may
know the locations of objects (or other agents). These virtual agents will be
discussed in the next section.

2 Intelligent virtual agents

Software agents are programs designed to perform a specified task for a user or
another agent. In contrast to normal computer programs, however, agents have
several unique characteristics:
• Autonomy: The agent is able to make some decisions without needing to

contact the user that uses the agent. Specifically, the decisions that the user
shou ld not be concerned with are handled by the agent.

• Social ability: Agents can interact with users or other agents.
• Long-lived: This means that an agent is usually not terminated when a task

has been completed. The agent will remain present in t he system until it is
needed again, possibly by another user.

• Reactivity. The agent will modify its parameters based on the current state of
the environment. For example, the agent can respond to a situation change in
the environment and change its activities to reflect these changes.

• Proactive: An agent can execute a task before a user has requested the agent
to perform that task. The agent can monitor the environment, and may start
to execute a task before the user notices that the task must be performed.

A virtual agent is an agent that is present in a virtual environment. The agent
will have an avatar representation in the environment, to facilitate the
interaction with users.
An intelligent agent is an agent that has the capability to learn some of the
tasks it has to perform, either by experimenting in its environment and
examining the results or by studying previously executed correct examples of the
task. How a computer program can learn to perform a task wi ll be discussed in
the next section .

3 Genetic programming

Evolutionary algorithms are an optimization technique based on Darwin's
principles of survival of the fittest. In this technique, a population of candidate
solutions for a problem is maintained, and the quality of these solutions is
determined and called the fitness of the solution. Based on their fitness ,

Chapter 1: Introduction page 3

so lutions are selected from the population (the parents) and combined with each
other to form new candidate solutions in the population (the children). This way,
the good parts of different solutions have a chance to be combined in a new
solution. After a 'generation', all the parents in the population have been
replaced by their children.
Genetic algorithms are evolutionary algorithms where a so lution is sought for one
specific problem. Often, a set of numbers must be found that optimize a
criterion. Solutions can be combined by cutting the bit string representing these
numbers and swapping the parts between individuals.
Genetic programming is an extension to genetic algorithms where the candidate
so lutions represent a program that attempts to solve several instances of a
problem. The representation is often a tree consisting of operations on va lues,
variables or other operations. Solutions are combined by swapping subtrees
between candidate solutions. The tree representation has a variable length.

Genetic programming has several problems that must be dealt with:

• Because of the variable length encoding, the size of the solutions can grow
rapidly. As a result, the solutions take more time to evaluate, require more
memory to store. Also, because of the principle of Occam's Razor, these
solutions tend to be less general than shorter solutions.

• For complex problems, types and syntactic constraints must be added to the
nodes of the t ree.

• After seve ral generations, all the candidate so lutions in the population tend
to have a similar structure, and it becomes very hard to find better solutions.
In this case, the diversity of the solution has become too low.

In this thesis, solutions for these issues will be presented.

4 Contributions of this thesis

This thesis has the following contributions to the domains of virtual rea lity and
genetic programming:

• Algorithms will be presented to perform map construction, collision avoidance
and navigation of an agent in a virtual environment, using synthetic vision
sensor data of the agent (depth information). These problems are also
encountered by mobile robots in non-virtual environments.

• A method to remove code from genetic programs that has no effect on the
result of the program will be presented. The effects of this method on the size
and convergence speed of the population will be examined.

page 4

• Several methods to reduce the average size of the solutions in the population
of genetic programming will be presented and compared with each other.
Again, the effect on average size and convergence speed will be studied.

• An algorithm will be introduced to maintain the diversity of a population in
genetic programming, and its effects on convergence speed will be presented.
This method can be used to drastically reduce the population size without
negatively affecting performance.

• Genetic programming will be applied to agents on the Robocup domain. The
effects of the optimizations on genetic programming described above are
studied on a complex problem.

5 Thesis overview

This thesis is divided in two parts. Part I will discuss the topics related to virtual
agents, but will not discuss the learning of the agents in the environments.
Chapter 2 discusses the uses of virtual environments, and gives examples of
existing applications. Chapter 3 deals with several important problems that occur
in virtual environments: constructing a map of the environment, navigation and
collision avoidance. Chapter 4 introduces Robocup as a research domain for
virtual environments and collaborative agents.
Part II of the thesis will focus on the artificial intelligence aspect of virtual
agents, using genetic programming. In chapter 5 the concepts of genetic
programming will be explai ned and several examples of genetic programming will
be given. Chapter 6 and chapter 7 present several optimization techniques t hat
will increase the convergence speed of genetic programming and produce better
solutions. In chapter 8, genetic programming will be applied to learn behaviors
for agents in the Robocup domain using the optimization techniques presented
in chapter 6 and chapter 7. Finally, conclusions and directions for future work
will be presented in chapter 9.

Chapter 1: Introduction page 5

Part I: Virtual agents

Chapter 2: Agents and virtual
environments

1 Introduction

This chapter introduces the key concepts of this thesis: virtual environments and
agents. First, definitions of these concepts will be given. Afterwards, several
application areas of virtual environments and agents will be presented. Finally,
some important issues that must be covered in an application using agents in
virtual environments will be presented. These issues will be covered in the
following chapters.

1.1 What is a virtual environment?

Several definitions of virtual environments can be found in the literature.
According to Dix et al. [21], "Virtual Reality (VR) refers to the computer-generated
simulation of a world, or a subset of it, in which the user is immersed. It represents
the state of the art in multimedia systems but concentrates on the visual senses".
Bryson [8] states that "Virtual reality is the use of various computer graphics
systems in combination with various display and interface devices to provide the
effect of immersion in an interactive three-dimensional computer-generated
environment in which the virtual objects have spatial presence. We call this
interactive three-dimensional computer-generated environment a virtual
environment".

A third definition is given by Kalawski [39]: "Virtual environments are synthetic
sensory experiences that communicate physical and abstract components to a
human operator or participant. The synthetic sensory experience is generated by a
computer system that one day may present an interface to the human sensory
systems that is indistinguishable from the real physical world".
All these definitions have in common that the representation of the artificially
created world is represented to a user through the sensory system. Vision is the

page 8

most important sensory system, and therefore most work concentrates on the
graphical aspects of virtual environments. However, to achieve the highest level
of immersion for the user, audio and haptic interfaces to t he virtual environment
must also be considered [88]. The virtual environment is used to execute a
specific task in a more natural and intuitive way. The task to be executed
depends on the domain in which the virtual environment is used. The work in
this thesis will focus main ly on the visual aspects of virtual environments.

1.2 What is an agent?

According to Wooldridge and Jennings [112], in a weak notion of agency, the
term agent is used to denote a hardware or software system that has the
following properties:

• Autonomy: Agents operate without direct intervention of humans or others,
and have control over their actions and internal state.

• Social ability: Agents interact with other agents or humans via some kind of
agent-communication language.

• Long-Lived: Because agents are autonomous, they can remain active in the
environment after a task performed for a user is completed. The agent can
remain present in the system until it is needed again, possib ly by another user
or agent.

• Reactivity: Agents perceive their environment and respond in a timely fashion
to changes that occur in it.

• Pro-activeness: Agents do not simply act in response to their environment,
they are able to exhibit goal-directed behavior by taking the initiative.

A virtual agent is an agent that exists in a virtual environment and uses the
sensory inputs provided by the environment. In this case, the virtual agent uses
a set of synthetic sensors to observe the environment, and interacts with the
environment in an identical way as human users. The virtual agent also has a
physical representation in the virtual environment, called an avatar.

2 Examples of virtual environments

To demonstrate the usefulness of virtual environments and virtual agents, several
examples of virtual environments and/or virtual agents will be presented. These
application areas include medical and military applications, design and
engineering, modeling, virtual communities and entertainment.

Chapter 2: Agents and virtual environments page 9

2.1 Medical applications

Virtual environments have several applications in medicine. Lee et al. [54] use
virtual environments to train medical students on eye examinations. Neumann et
al. [75] use a virtual model of a patients skull to plan surgery to correct skull
deformations, and to predict the result of this surgery. Di Girolamo et al. [20]
investigated the use of virtual reality in both the assessment and rehabilitation
of vestibular conditions. However, Rajani and Perry (87] noted that virtua l reality
techniques should only be applied in medicine if the starting point of the
research is the nature of medical work and not the technology itself.

2.2 Military applications

Virtual environments are a useful tool to train personnel for situations that are
too dangerous or expensive to train in real life. For example, Everett et al. [24)
describe a virtual environment to train fire fighters aboard a navy ship. Another
use of virtual environments is the simulation of combat situations. Hix et al. [33]
and Julier et al. [38] describe how such a simulation can be visualized in order to
determine the outcome and effectiveness of the simulation. Because these
simulations require many participants, a Lot of research focuses on networked
virtual environments [96). Some of these participants can be replaced by virtual
agents. Hill et al. [32] use agents to control helicopters in a battlefield
simulator.

2.3 Design and engineering

Virtual reality has the advantage that objects can be examined before they are
actually created. This can be a useful tool in design and engineering
applications. For example, Sastry and Boyd [95] demonstrated the usefulness of
virtua l environments in this area by creating applications for virtual prototyping,
virtual assembly and virtual simulation. Virtual assembly can also be used for the
design and evaluation process of mechanical machines, as demonstrated by
Jayaram et al. [37]. Giallorenzo et al. [26] used virtua l reality to model the
ventilation system of a hospital using computational fluid dynamics. Virtual
agents could be used in virtual simulation to model humans walking around in
the environment, making the simulation more realistic.

page 10

2.4 Modeling

To design a virtual environment, a modeling tool is used. Often, these tools
operate in a virtual environment. The UNC-Chapel Hill Immersive Modeling
Program (CHIMP) is a modeling environment that allows a modeler to design
virtual rooms using libraries of existing objects [66]. IM-Designer, developed by
Coninx [15] [16], is another environment that also allows the creation of new
objects. IM-Designer uses a combination of 20 and 3D user interfacing . !COME,
which is an abbreviation for Immersive Collaborative 3D Object Modeling
Environment, is a modeling environment where several users can work together
on a modeling task [89). !COME is the successor of IM-Designer, and will be used
in the next chapter as an environment to test navigation and map construction.

2.5 Virtual communities

Virtual communities are networked virtual environments where multiple users can
join and interact with each other. Applications of virtual communities include
virtual conferences, virtual marketplaces or multiplayer on-Line games. The
Distributed Interactive Virtual Environment (DIVE) [10] is an internet-based
multi-user VR system where participants navigate in 3 D space and see, meet and
interact with other users and applications. DIVE applications and activities
include virtual battlefields, spatial models of interaction, virtual agents, real­
world robot control and multi-modal interaction. MASSIVE is another distributed
virtual reality system and concentrates on the interaction between users and/or
agents in the environment [28]. VLNet [9][82] is a virtual environment using
realistic human-Like avatars. VLNet supports the simulation of the virtual
environment, communication with agents and users, object behavior, and
navigation. The environment also supplies an interface for detailed face and body
representations.

2.6 Other applications

Virtual environments can also be used in many other application areas. For
example, the virtual environment can be used as an interface for another
computer program, to make the interaction with this program more intuitive. An
example is given by the UNIX process manager PSDoom, developed by Chao (11].
This is a UNIX administration tool based on the first-person shooter game
"Doom". The monsters in the environment represent the processes running on the
computer. The player can move around in this environment and shoot at the

Chapter 2: Agents and virtual environments page 11

different processes, reducing their priority, or even terminating them when they
are killed . Processes can defend themselves by attacking the user, or even other
processes.

3 Issues concerning virtual agents

When developing virtual agents, several important issues arise which must be
resolved.

3.1 Navigation in the virtual environment

Because virtual agents have a spatia l presence in the environment and use the
same sensory and motion systems as normal users, navigation of the agents in
the environment is a problem. The agents are expected to move towards specified
places in the environment without bumping into obstacles or getting trapped in
the environment. Therefore, the agent must be able to exp lore the environment
and construct a map of the environment. The agent can then use path planning
to move around in the environment in an efficient way. In a multi-agent system,
some specific agents can be assigned to this task, and can then help the other
agents with path planning. Navigation and collision avoidance will be covered in
detail in chapter 3.

3.2 Communication between users and/or agents

When constructing a community of virtual agents and users, several
communication issues arise. First, methods must be developed on how agents
and/or users can communicate with each other. Secondly, a method to Locate an
agent that can perform a given task must be present. Thirdly, when the avatar of
an agent or user is encountered in the virtual environ ment, a method must be
developed to discover the capabilities of this avatar. These issues will be
discussed briefly in Appendix A. In [83], Pandzic et al. di scuss the addition of
autonomous actors in VLNet, and their interfaces with the environment and
users.

page 12

3.3 Intelligent virtual agents

It is difficult to give an accurate definition of intelligence. However, intelligence
of virtual agents implies that the agents are able to adapt to the environment
they inhabit and learn to improve themselves, without giving the agents explicit
knowledge about this environment. Using evolutionary methods, it may be
possible to achieve this adaptation. Chapter 5 of this thesis deals with the
evolutionary computation paradigm of genetic programming, and discusses some
specific problems that must be dealt with when developing virtual agents.
Possible solutions for these problems are developed in chapter 6 and chapter 7,
and in chapter 8 these solutions will be tested on the more complex domain of
virtual robotic soccer players.

Chapter 3: Navigation· in virtual
environments

The algorithm presented in this chapter allows an agent to navigate through a
virtual world in real time without colliding with obstacles, and to construct an
isometric topological map of the environment using only a virtual depth sensor.
The maps created are compact and contain the necessary information for
navigation and path planning.

A future goal of our research is to speed up map construction by having several
agents explore the world simultaneously, and exchanging pieces of the map when
they encounter each other. Another possible extension is to construct three­
dimensional maps. This would complicate the algorithm, but the same ideas
could be used in three dimensions.

1 Introduction

The world of virtual agents is simi lar to that of mobile robotics: in both areas, an
entity must be able to navigate in an environment. In this chapter a method will
be presented for an agent to navigate in a virtual world, without requiring access
to the internal representation of this world. The only perception the agent has of
the world is available through the depth information of an image that is rendered
from the position of the agent. The advantages of using a rendered image are:

• The agent can be used with different virtual environments that use different
internal representations.

• The image of the environment may be rendered on a different machine. In
thi s case, only the rendered image is avai lable to the agent.

• The technique more closely resem bles the real world where robots use distance
sensors to sense the environment.

• The technique does not depend on the complexity of the environment.
By working in virtual reality, it is possible to avoid the hardest problems that are
encountered when working with mobile robots in the real world . These problems
are noisy sensors and determining the exact location of the robot. The problem

page 14

can be simplified even further by limiting the movement of the agent to two
dimensions. Because of these simplifications, it is possible to concentrate on the
problems of collision avoidance, path planning and map construction.
Depending on the view angle of the rendering system, the sensors of the agent
detect only a small portion of the environment around the agent, typically an
area of about 60 degrees. To extend this range to the full 360 degrees around the
agent, it rotates and previous measurements are used to supplement the current
measurements (see figure 3.1). When the agent makes a full turn around its
center, it will have observed the entire environment around its current position.

Currently
visible area

e
Agent

Previously
visible area

Figure 3.1: Current and previous sensor data around the agent.

The recorded depth information is used in several ways. At the lowest level of
navigation, it is used to avoid collisions during the next time step by comparing
the current speed of the agent with the distance of obstacles in its path. At a
higher level, this information is used to move around obstacles when moving to
intermediate destinations that are selected by higher levels. At the highest level,
a map of the environment and an accessibility graph connecting areas is created
that is used for path finding .

2 Related work

Other researchers have already used virtual perception for navigation. Reynolds
[90) discusses several techniques for low-level obstacle avoidance. These include
using silhouettes of obstacles, obstacle density images, and the use of a depth
image of the environment. The main drawback of the techniq ue is that without
higher level planning, the agent tends to move into local openings that turn out
to be dead ends. Blumberg [7] used motion energy of images for Low-level
navigation of virtual creatures through corridors. Rabie and Terzopoulos [107]
use color histograms of stereo images to detect a target in the environment.

Chapter 3: Navigation in virtual environments page 15

Kuffner and Latombe [46) render a scene with flat shading where every object
has a unique color to determine the visible objects in the scene. The objects are
then retrieved from the internal representation to determine their position and
speed.

The problem of map construction has been studied extensively in mobile robotics,
although most work in that area concentrates on location determination and
resolving sensor noise. For the actual map construction, two methods can be
used: topological maps and grid-based (metric) maps. When using a grid-based
map, the environment is subdivided by a grid of equally spaced cells. Each cell
contains a value that indicates the probability that an obstacle is present in the
area of the cell. A topological map consists of a graph where nodes represent
locations in the environment, and two nodes are connected by an edge if a direct
path exists between the locations of their nodes.

Both approaches have their strengths and weaknesses. These are discussed in
(108), but we mention here the most important differences. Grid-based maps are
easy to construct but have large space and time complexity. They also have a
fixed resolution. Topological maps are compact and allow fast path planning, but
are difficult to construct.

Noser et al. (79) use depth information retrieved from the Z-buffer for navigation
and map construction in a virtual environment. The constructed map is stored in
an octree. The map is dynamically updated when new obstacles are detected, or
when previously observed objects are moved. Navigation is performed by creating
high level and low level goals, such as following corridors or moving to a
specified location. Obstacle avoidance uses low level vision information to avoid
co llisions.

Thrun (108)(109) combines both approaches by building a topological map on
top of a grid-based map. The algorithm creates a small set of regions by
decomposing the grid-based map. These regions are separated by narrow
passages, called critical lines. The partitioned map is then mapped to an
isomorphic graph where the regions correspond to nodes and the critical lines to
edges.

Choset (13) uses an algorithm that constructs a generalized voronoi graph of an
environment using only local sensor information. This graph is used as a map of
the environment, where its edges can be used for path planning. The edges of
the generalized voronoi graph represent locations that are equidistant to the
nearest surrounding points in the environment. The graph is created
incrementally by tracing the edge of the generalized voronoi graph, using the
location of the m nearest points to the robot (where m is the dimension of the
environment). To determine the nea rest points, the robot uses omni-directional
sensor information around the robot at every step of the algorithm. This feature

page 16

makes this approach inappropriate for our system, because on ly sensor
information about a limited view angle in front of the agent is avai lable.
The agents of Kuffner and Latombe [46] remember the !D's of visible objects, and
their transformation at the moment they were last observed. This information is
stored to assist the agent with navigation.
Zhukov et al. [114] use agents that build maps of the environment off-line by
subdividing the environment in areas that are connected by an accessibi lity
graph.

3 Synthetic vision

Our goal is to develop a synthetic vision system that resembles real world vision,
and is still efficient enough to operate in real-time. This section describes the
synthetic vision system developed by us, as presented in [68] and [69]. Human
vision is able to detect the distance of objects by comparing two stereo images.
While this is possible to do, this approach is difficult and too slow to implement
in a real-time agent. Therefore, most mobile robot systems are also equipped
with proximity sensors Like sonar or a laser range finde r. However, in virtual
reality, the depth information of the visible environment is already calculated by
the graphic pipeline and is available in the depth buffer of the rendered image.
This provides the agent with the distance to the objects in the environment over
an angle of about 60 degrees in front of the agent, without performing time­
consuming calculations.
The virtual agent can sample the depth buffer, and store the retrieved distances
in a vision buffer that represents the entire 360-degree area around the agent.
This vision buffer is a discrete subdivision of this environment in small segments.
Each segment contains one depth value of a small angle around the agent (about
1 to 3 degrees, depending on the resolution of the vision buffer).
When the agent moves around in the world, previously invisib le areas around the
agent will become visible, and these readings will be added to the vision buffer.
New readings are added to the previous readings, so the agent can obtain the
depth information about the entire area around it when it rotates around its axis.
During every simulation step, the sensors are updated with the currently visible
depth values. The following steps must be performed during every update:

• Reading and correcting the depth information from the depth buffer.
• Filling the vision buffer.
• Transforming the depth information after every move of the agent.
In the remainder of this paragraph, we will elaborate on each step.

Chapter 3: Navigation in virtual environments page 17

3.1 Reading depth information

Since we restrict the movement of the agent to two dimensions, only obstacles
located at the same height as the agent need to be detected. Therefore, it
suffices to scan the single line of the depth buffer at the same height as the
virtual camera. This simplification can cause problems with concave objects, but
these problems can be solved when the system is expanded to three dimensions.

In the next step, two corrections must be performed on the retrieved depth
values. In the OpenGL Z-buffer implementation, the values stored in the depth
buffer are a non-linear mapping of the distance between the near and far
clipping planes to the interval [O; 1) . This mapping has a higher resolution at the
nearby distances. The measured va lues can be transformed to the real distance by
equation (3.1):

. -2·F·N
ReaJW orldD1stance = (X) ()

2 Z - 0.5 F - N - F + N

(3.1)

where F and N are the distances to the far and near dipping planes respectively,
and Z is the depth value that was extracted from the depth buffer.

Measured
distance

Real
distance

View ct·rection

Agent

:::::~~:tr::::::::::::::::::::::::::::: I 2 I 1 I O I I I 2 I
fjgure 3.2: Correctjng the depth value.

A second transformation is necessary because the measured depth value is not
the distance from the came ra to the obstacle, but the distance to the plane
orthogonal to the camera position (see figure 3.2) . To correct this, the distance
at pixel; is multiplied by Correction;, where pixel

0
is the pixel in the center of the

view port, and pixel; is the pixel at a distance of i pixels fro m pixel
0

• The values
Correction; are ca lculated with equation (3 .2):

page 18

Correctioni = ~1 + (i. C)2

where the constant C is defined by equation (3.3):

C = tan{ViewAngle/2)
ViewPortW / 2

(3.2)

(3.3)

where ViewAngle is the camera's field of view in the horizontal direction, and
ViewPortW is the resolution of the view port in the horizontal direction. The
values Correction; need to be computed only once and are then stored in memory.

3.2 Filling the vision buffer

When the depth values are transformed, the value at the center of every visible
segment is placed in the vision buffer, overwriting any previous estimated values.
By comparing the detected value with the estimated value, it is possible to
detect changes in the environment. This information could then be used to
identify moving objects. However, this is currently not implemented in our
system. The obstacle avoidance and map construction algorithms can now use the
data in the vision buffer.

3.3 Transforming the depth information

The coordinate system of the vision buffer is relative to the position and
orientation of the agent. This means that the depth information about the visible
area is always stored in the same segments. As a result, after the agent moves
using a transformation matrix M, the depth values in the buffer must be
transformed to correspond to the new position and orientation of the agent. To
calculate the new vision buffer, every depth value in the buffer is transformed to
its coordinates in 2D-space. The inverse transformation M·1 is applied to these
coordinates, and the new position is then inserted in the new buffer (as is shown
in figure 3.3). This gives the agent a prediction of the environment. This
prediction will be updated with the sensor readings of the new position.
The simple approach presented above has several problems. First, it is possible
that two adjacent points in the original buffer will be transformed to non­
adjacent positions in the new buffer. In this case, a "hole" is created in the
buffer (this is demonstrated in figure 3.3). To fill these holes, a depth value has
to be interpolated based on the surrounding values.

Chapter 3: Navigation in virtual environments page 19

A second problem is the occurrence of rounding errors when a depth value is
transformed around the agent. The rounding error.s are due to the discrete
subdivision around the agent. The transformed point will be placed in the
segment that is nearest to its new position, resulting in a small error. This error
is cumulative with the transformation errors of all the previous time steps, and as
a result the point will appear to be rotating faster or slower than it should be.
This effect is shown in figure 3.4. In this figure, a number of segments are
represented by the columns. Each row represents the position of a point after
several successive rotations. The first row contains the correct position of the
points, and the second row has the positions of the points with the cumulative
error that was just described. In this case, the point is rotating too slowly. The
next two rows contain two possible corrections that are described below.

-e- Original depth values

...... ... Transformed depth values

_. Holes in transformed depth values

flgure 3.3: Transforming the depth values can leave holes in the visfon buffer.

A first solution to this problem is to clip the rotational component of M-1 to the
nearest multiple of the segment angle . The remainder of the rotation will be
stored as a global offset and is added to the transformation in the next time
step. The result of this approach is demonstrated in the third row in figure 3.4,
and has only a small error in every step that is not cumulative.

page 20

Segments

Correct positions e •
Simple algorithm e e e e e e

Global offset e e
Local offset e

• • •
•

•
Figure 3.4: Rotating a point in the vision buffer using several methods.

The second solution is to store the remainder of the rotation as a local offset in
every segment of the vision buffer. This is shown in the last row in figure 3.4. As
can be seen, this gives the best approximation and this is the method that is
currently used in our implementation. There is a small memory overhead because
every segment must store an additional value, but this overhead is neg ligible.

4 Collision avoidance

When the agent knows the distance to the obstacles surrounding it, it can use
this information to avoid colliding with them. Using the vision buffer, obstacle
avoidance can be performed at two levels. At the lowest level this is done by
ensuring that the movement commands issued at the current time step will not
cause a collision. At the higher level, when moving towards a target position, a
temporary short-term goal can be created to move around nearby obstacles.
These two methods will now be explained.

4.1 Short range collision avoidance

At the end of a time step, the navigation system will calculate the movement of
the agent during the next time step based on the current t ranslation and
rotation speed of the agent. The vision buffer is checked to see if sufficient
space is available for this move. If this is not the case, an additional speed
vector is added to the agent's speed that will prevent the collision. This system
responds directly to the sensors, and the agent is therefore able to react
immediately to unexpected obstacles.

Chapter 3: Navigation in virtual environments page 21

4.2 Medium range collision avoidance

During the simulation, higher-level processes (like the path planner or map
construction algorithm that will be discussed in the next paragraph) will create
short-term destinations for the agent. A short-term destination is a position that
is reachable from the agent's current position without complex path planning,
but it does not exclude the possibility that small obstacles are present on the
direct Line between the agent and the destination. In this case, the agent must
make a small course correction to avoid the obstacle.

The destination is represented as a depth value in the vision buffer. This way,
obstacles can easily be detected by testing for a nearer value in the buffer. If an
obstacle is found, the segment next to the obstacle that is the closest to the
original direction is selected (see figure 3.5). A temporary destination is then
created along this direction, at the same distance as the original destination. The
agent will then move towards this temporary destination until the original
destination becomes visible. At that time, the temporary destination is replaced
by the original destination.

Obstacle

Temporary destination

Figure 3.5: Avoiding an obstacle by creating a temporary destination.

Using the aforementioned methods of collision avoidance, in most cases the
agent is able to reach the short-term destinations. It is however still possible
that the agent will get stuck in the environment. This is possible because some
obstacles are only detected when moving closer towards them. Also, some
obstacles can be closer than detected because of inaccuracies of the depth
sensor. If such an obstacle is detected while moving, the collision avoidance
module signals a failure to the higher-Level task. The higher-level task can then
try to resolve its task in another way.

page 22

5 Map construction

As the agent wanders around in the virtual world, it constructs a map of the
environment. This map can then be used for high-level path planning. The
structure of the constructed map is explained below.
The environment is divided into overlapping areas. Each area has a center, where
the area is defined as the environment that is visible from its center. The borders
of this area will be approximated by a collection of straight li nes, and a set of
Links to other areas that are reachable from the center of the area is also
maintained. The areas and Links fo rm an isometric accessibility graph of the
environment. An example of a single area is given in figure 3.6. In t his figure,
the thick lines represent the borders of the area. Discontinuities in the border are
marked by the squares originating from the center of the area (the square in the
middle). These squares, called the open points, represent passages to other
hidden parts of the environment and are potential locations of the centers of
adjacent areas in the map.

Figure 3. 6: Example of an area. The thick lines represent the borders of the area,
and the squares connected to the central square represent the open points of
the area.

Chapter 3: Navigation in virtual environments page 23

5.1 Creating a single area

First, the agent finds the complete depth information around its position by
rotating (without translating) around its axis until it has completed a full circle.
Then, it can construct the borders that limit the area by grouping adjacent depth
values in the vision buffer that are not separated by a discontinuity. Detecting
these discontinuities based on the depth values is not a trivial task. The only
concrete rule that we could discover was that the distance between depth values
of adjacent points must be greater than the size of the agent (otherwise the
agent wou ld not be able to pass through the opening). To solve this problem, a
neural network was used to detect a discontinuity. To construct a training set for
the neural network, the depth values of a mapping run (using a collection of
complex rules) were collected, and the incorrect values were manually corrected.
To detect a discontinuity between two points, the four depth values (d

1
to dJ

surrounding the possible discontinuity were used. Also, the differences between
the values (e,. = d,..1 - d,. (i = 1, 2, 3), (= e,..1 - e,. (i = 1, 2) and 91 = f2 - f1 were
used as inputs. The neural network could classify the training set very we ll, and
generalized reasonably to other scenes as well. At the discontinuities, an open
point is created halfway between the edges of the discontinuity. The result is
shown in figure 3.6. The working of the used neural network is explained in
Appendix B.

5.2 Creating additional areas

The open points of an area are candidates for the centers of adjacent areas. A
new area will be created at an open point unless that point is already part of
another area reachable from the current area, and vice versa . Another area is
reachable if the agent can move there in an almost straight line (using the
obstacle avoidance algorithm described in section 4). If the other area is
reachable, the open point is removed and an accessibility link to the other area
is created (if one was not already present) . Otherwise, the agent moves to the
open point, which then becomes the center of a new area. When there are no
remaining open points in all the areas, a map of the entire environment has been
created. The entire map can be displayed to a user by drawing the borders of all
the areas simultaneously. However, due to rounding errors, obstacles that are
visib le in multiple areas may not be perfectly aligned in the combined map (see
figure 3.7).

page 24

Figure 3.7: A completed map. Thick lines represent obstacles, the centers of the
areas are represented by the squares, and a Line indicates that two areas are
reachable from each other.

In some cases, it is possible that a discontinuity is not detected (this can be
seen in figure 3.7 where the left inner square appears connected to t h·e outer
square). This can happen when the agent looks at an obstacle at a very sharp
angle. In such a case, because of the discrete nature of t he vision buffer, it can
be impossible to differentiate between a wall viewed from a sharp angle and a
discontinuity. This is, however, not a serious problem because the discontinuity
can often be observed from another area that has a better view of it, and will be
detected in that area.
When the neural network for discontinuities is changed to detect more open
points, the opposite can happen. In this case, open points t hat are located in an
obstacle will be detected. These false open points will be identifi ed when the
agent tries to move towards the point, and discovers that the point is located
inside a wall. When this happens, the agent will remove the false open point and
move towards the next open point.

Some improvement for optimizing the neural network is still possible, but it will
always be impossible to correctly detect every discontinuity in t he environment
due to the finite resolution of the sensors. It is therefore necessary that the
agent can recover from errors: when the agent is moving towards an open point,
but is blocked by an obstacle in the environment, the open point is discarded.
This will be detected by the low-level collision avoidance.

Chapter 3: Navigation in virtual environments page 25

The map construction algorithm can be used in two ways. The first way is using it
to build a map of the entire environment. This is done by running the algorithm
until all the open points are removed. The other way to use it is for moving the
agent towards a high-level destination in an unexplored environment. To
accomplish this, in every new area, the agent will fi rst move towards the open
point that is closest to the destination (instead of the nearest open point). If no
open points exist in the area, the agent will move to the area closest to the
destination that still has open points. When the destination becomes visible, the
agent moves to the destination and the search is complete. An example of this is
given in section O of this chapter.

5.3 Adding and removing links between areas

When a new area has just been created, all areas whose centers are visib le from
the new area are immediately connected with the new area. Note that the
presence of a Link does not represent a path between the areas: it only indicates
that the areas are reachable from each other.
As can be seen in figure 3.7, the map construction algorithm creates a large
number of links. This number can be reduced by removing redundant links. For
example, when areas A, B and C are fully connected (see figure 3.8), and the
distance AC is not much smaller than the distance AB + BC, link AC can be
removed because C can still be reached from A via B without much overhead. The
result of applying this reduction on all the links of the map in figure 3.7 is shown
in figure 3.9.

A C

~
Figure 3.8: Removing redundant links.

6 Path planning

Using the map, it is simple to plan the shortest route between two points in the
world. First, the areas containing the begin- and endpoints of the route are
located. Then, the A *-algorithm is used to find the shortest path between the
centers of these areas.

page 26

Figure 3.9: Reduced map.

When the path is constructed, the agent can follow it by creating short-term
destinations that correspond to the centers of the areas on the path. It is
possible to create shortcuts when following this path: as soon as the next point
on the path becomes visible, that point replaces the current short-term
destination. This way, the agent follows a path that is able to cut some corners.
When a link on the path is blocked, the collision avoidance module notifies the
path planner. At that time, the blocked link is marked in the map as temporarily
inaccessible and an alternative path is calculated.

7 Results

The algorithm described in this paper is implemented on an SGI InfiniteReality2
running IRIX 6.4, using on ly a single 195 Mhz MIPS processor to run both the
agent and the virtual environment. The virtual environment ICOME [89] was used
for the experiments. Constructing the map shown in figure 3.10 took 1702
simulation steps of the agent. The agent was able to complete 72 simulation
steps per second, showing t hat the algorithm is fast enough to work in real time.
The code was also ported to a Windows 2000 platform, and run on a Pentium
111/500 PC using a NVIDIA RIVA TNT2 Model 64 video adapter, where a similar
speed of 75 simulation steps per second was achieved. These frequencies (72 and
75 steps per second respectively) correspond to the refresh rates of the displays

Chapter 3: Navigation in virtual environments page 27

used. This means that the highest possible speed was reached, since the virtual
sensor (the depth information) can only be updated at this frequency .

\
\

\

•

\

•

/ \:·

Figure 3.10: A more complex environment.

•

The same environment was used for moving towards a destination in an
un explored environment. The starting point is located in the lower right corner of
the environment, and the destination was placed at the top left corner. The
result of the search is shown in figure 3.11, and took 214 steps to complete.
The environment that was used represents a square room that contains 23 wall
segments. The wall segments are placed at various angles, and a large number of
intersections between corridors are present to complicate the map construction.
An interesting feature was discovered when the obstacle avoidance code was
accidentally linked with the avatar of a human user in the environment. The user
can move in the environment normally using the keyboard, but when a command
of the user would result in a collision with an obstacle, the obstacle avoidance
routines would override the user commands and either step arou nd the obstacle
or stop the users avatar. This behavior is an example how an agent can pro­
actively take action to assist a user.

page 28

Figure 3.11: Moving towards a destination in an unknown environment from the
bottom right corner towards the top left corner of the environment.

8 Conclusion

The algorithm presented in this chapter allows an agent to navigate through a
virtual world in real time without colliding with obstacles, and to construct an
isometric topological map of the environment using on ly a virtua l depth sensor.
The virtual depth sensor is used to scan the distance to objects around the
agent. The distance to surrounding objects is then used to prevent collisions with
detected objects while moving. The entire environment can be mapped by moving
to different areas, and by overlapping the distance information of these areas.
The maps created are compact and contain the necessary information for
navigation and path planning.
In the next chapter, the co llision avoidance techniques described here will be
used by virtual soccer players in the Robocup domain. In this domain, the agents
that control the soccer players receive distance information about objects on the
field, similar to the virtual depth sensor described here.

Chapter 4: Robocup

1 Introduction

The Robot World Cup Initiative (Robocup) is an attempt to create a standard task
for AI research on fast-moving multiple robots, which collaborate to solve
dynamic problems [43]. The Long-term goal of Robocup is to create a soccer team
with real robots that play against the current human world champion team. To
reach this long-term goal, a more limited version of robot soccer was developed
that uses small robots playing on small soccer fields. The robots in this domain
have to control their movements, process sensor information, handle
communication with each other, and develop multi-agent strategies to play a
soccer game. As a result, much focus is placed on the problems that are typical in
robotics, and Less emphasis is placed on multi-agent strategies. For researchers
that prefer to work mainly on the higher-level multi -agent aspects of robot
soccer, a software platform was developed in which robots are simulated. As a
result, the robotics aspects, such as object recognition, communications and
hardware issues are avoided. A graphical representation on the software
environment is shown in figure 4.1. In the remainder of this thesis, on ly the
Robocup software simulator will be discussed.
To compare different AI techniques used in Robocup, a yearly competition among
teams build by different research groups is organized. In order to make a
meaningful comparison between two teams, it is necessary that the environment
in which both teams play is standardized. For this purpose, the soccer simulator
that was developed handles the playing field, the physics of the world, a sensor
model and a referee. Programs controlling the players must connect with the
simulator through a fi xed interface, and communication with other players is only
allowed through the simulator. To design a team of Robocup players, a multi­
agent system must be designed, consisting of 11 agents that control the players
and process sensor information.

The Robocup domain will be used to test some of the ideas presented in this
thesis. First, the obstacle avoidance techniques deve loped in chapter 3 will be
applied to Robocup. Then, in chapter 8 evolutionary computation will be applied
to train the behavior of Robocup players.

page 30

".l Untitled - Soccerrnonitor
Soccermon,tor Logplayer Coach VEw ?

-1 ~1 .P l ·1 1110114 I I ~1 I •-1 •-I •I fr~I - 100ra:@! 111I _!l

f;gure 4.1: Graphical representation of the Robocup software simulator.

1.1 Challenges of Robocup

The Robocup domain provides the following challenges to multi-agent systems:

• The environment is highly dynamic. As a result, short and medium-term plans
of the agents must be updated continuously because unexpected events will
make previous plans obsolete.

• The perception of each agent is limited. Visual information is restricted to a
90 degrees field of view in the direction the player's head is facing, and the
accuracy of the received information depends on the distance of t he observed
objects. As a result, the agent must be able to handle incomplete and noisy

Chapter 4: Robocup page 31

information and must be fault-tolerant to compensate for unexpected events
and errors.

• Communication between agents is limited. Therefore, a trade-off must be
made between the cost of communication and their potential benefits.
Consequently, communication protocols that minimize communication and
promote distributed reasoning must be developed.

• Each player has limited stamina. As a result, players must decide when to
perform great efforts and when to recover from these efforts.

• The simulation occurs in real time. The agents must therefore be implemented
efficiently, and heuristics often have to be used instead of exact analytic
solutions.

• The agents do not know the exact results of the actions they perform. The
agent must observe the changes in the environment to determine the result of
the executed actions. This leads to the design of verification mechanisms that
detect errors in the execution of actions.

1.2 Description of the simulation environment

The soccer simulator program is the central part of the simulation environment.
It manages the physical aspects of the objects in the environment: the players,
the ball and the field. This includes the movement of ball and players, and the
information received from the virtual sensors of the players. The simulator also
provides protocols to allow programs to communicate with the simulator over a
network connection. These programs include the different players of both teams,
but also a monitor program that gives a graphical representation of the soccer
field, as well as coach programs. Coaches can either be programs that give
limited advice to players during a match, or can be a privileged program that can
position objects on the field during the training phase of a team.
The simulator works with discrete time steps of a fixed duration (currently 100
ms). At regular intervals (by default 150 ms), the player receives visual sensor
information about the objects that are currently within visual range of the player.
Once during every time step, a player agent may send a command to t he
simulator to control the movement of its player.
The communication between the simulator and the other programs happens with
a client/server model using network communication. This is demonstrated
graphically in figure 4.2. The communication protocol between the simulator and
the player agents will be described in the next section. A more detailed
description is given in [12].

page 32

Coach A Monitor Coach 8

Player A1 Player 81

Player A2 Player 82

Player A11 Player 811

i
I
I
I

, -.. 1

Simulator

Figure 4.2: Overview of the Robocup soccer simulator client/server model.

1.2.1 Movement commands

The following commands are available to control the movement of a player:

• (turn Moment): This command rotates the player over an angle Moment. If t he
player is currently moving, Moment will be reduced by an amount depending
on the current speed of the player. This simulates that turning is more
difficult while moving rapidly.

• (dash Power): This command increases the speed of the player in its current
direction by an amount Power. When no dash commands are sent to the
server, the speed of a player will decrease every time step. If Power is
negative, the player will slow down or move backwards.

• (kick Power Direction): If the player is within range of the ba ll, this command
will kick the ball in the specified Direction with the given Power.

• (move X Y): This command can only be used before a kick off to immediately
place the player at a given position (X, Y) on the field.

• (catch Direction): This command can only be used by the goa lie player to
catch the ball, if within range. The Direction towards t he position of the ba ll
must be specified.

Chapter 4: Robocup page 33

1.2.2 Sensor commands

A player can send the following commands to the simulator to control its sensors.
These commands can be sent in addition to a movement command:

• (change_view AngleWidth Quality): This command changes the viewing angle
of the visual sensor and the precision of the received information. Larger
viewing angles and higher quality increase the interval by which sensor
information is send to the players. The default viewing angle is 90 degrees,
and the default quality is 'normal'.

• (say Message) : This command sends an ASCII string Message to all the players
near the sending player.

• (turn_neck Angle): The visual sensor of a player does not have to face in the
same direction as the body of a player. The angle of the visual sensor relative
to the angle of the body can be modified with this command. This simulates
turning the neck of a player.

The simulator sends the following sensor information to the players:

• (see Time Objectlnfo*): This message contains a symbolic representation of
the objects that are visible by the player at the specified Time. Visible objects
include other players and the ball, but also fixed reference points on the field
like goals, lines and 'flags' placed at various places. The visual information
about the fixed reference points can be used to estimate the absolute position
of the player on the field. Objectlnfo * is a list of information about visible
objects. This information contains the name of the object, the distance and
the direction to the object. Mobile objects also contain the change in
distance and direction since the previous observation, and the direction a
player is facing. If the object is far away from the player, some of this
information may be omitted.

• (hear Time Sender Message): This message contains an ASCII Message that was
send by another player through a say message. If multiple say messages are
received by a player, only one randomly selected message will be sent to the
player by the simulator.

• (sense_body Time Playerlnfo): This message is transmitted every time step to
the players and contains information about the current state of the player.
This information contains, among other information, the current stamina
level, speed and head angle of the player.

page 34

2 Architecture of an agent's brain

2.1 Layered behaviors

Because of the complexity of the robotic soccer domain, it is impossible to
construct a solution directly from the available communication primitives. It is
therefore necessary to decompose the task in several less complicated tasks. In
[102], Stone and Veloso introduce the concept of layered learning. This approach
splits the problem in several layers of complexity. The tasks in every layer can
then be trained by separate learning techniques. At the lowest level, a number of
skills are build from the basic commands of the communication protocol. These
skills are primitive actions like intercepting the ball, dribbling or shooting the
ball to a position. Using these primitive skills, higher level ski lls can be
constructed. The different layers of learning Robocup are shown in table 4.1. The
individual player skills will be described in the next section. One-to-one and one­
to-many player skills will be discussed in sections 3.1 and 3.2 of this chapter.
Finally, action selection will be learned using evolutionary techniques, which will
be discussed in chapter 8.

Layered level Examples

Individual player skills Intercept, MoveTo

One-to-one player skills PassTo

One-to-many player skills Avoiding other players

Action selection Pass or dribble or shoot?

Team collaboration 1-2 combination, positioning

Table 4.1: Different Layers of behavfors.

2.2 Individual player skills

In [17], Cossement implemented the following individual player ski lls:

• Estimating the position of objects based on previous observations: Given the
speed and position of an object at a previous time, an estimate of the current
position can be made. This is useful because sensor information is not
received every time step, and objects behind the player are not visible.

Chapter 4: Robocup page 35

• Moving to a position on the field: This skill will execute a number of turn and
dash commands to move to the specified position.

• Moving to the ball: This skill is similar to the previous skill, moving to the
current position of the ball.

• Marking a player: This skill will move the player near an opponent, hindering
the opponent's ability to receive or pass the ball.

• Turning the player: This skill turns the player over a specified angle, taking
into account the current speed of the player. At higher speeds, it is more
difficult to turn .

• Shooting the ball to the goal: This skill kicks the ball to the goal at the
highest possible speed.

• Passing the ball to another player: The ball will be kicked to the position
where the other player is estimated to be after several time steps.

• Running with the ball: This skill will combine kick, dash and turn commands
to move with the ball to a specified position.

• Dribbling: This skill is similar to running with the ball, but will also try to
avoid opponents.

• Intercepting the ball: This skill moves to a position where the ball is
estimated to be at the time the player can be there as well.

3 Obstacle avoidance in Robocup

Because the simulated soccer field does not contain any static obstacles, there is
no need to use the map construction techniques discussed in chapter 3. However,
the short and medium range collision avoidance techniques discussed there are
still useful in the Robocup domain. The sensor information received from the
simulator is similar to the synthetic vision used in chapter 3, since only the
objects in a 90 degrees angle in front of a player are visible and their depth
information is available. This information can then be stored in a vision buffer,
as shown in figure 4.3. The positions of objects that are not in front of the player
are estimated based on their last known position and speed. When these objects
were observed in the recent past, these predictions are relatively accu rate and
the objects can be added to the vision buffer. The vision buffer can then be used
to avoid collisions with other players, and also to keep some distance from
opposing players who will try to steal the ball. The vision buffer can also be used
to determine the best direction for passing a ball, selecting a path that keeps
away from opposing players. These two forms of obstacle avoidance will be
discussed next.

page 36

Visible area

• Opponent

Q Teammate

Figure 4.3: The positions of visible and recently observed players are stored in the
vision buffer of a player.

3.1 Determining safe directions for movement

When a player is observed and placed in one or more segments of the vision
buffer, those segments are considered blocked from the position of the player
onward. However, because players are mobile objects whose movements are
difficult to predict, adjacent segments are marked as blocked as well. To account
for the uncertainty of the future positions of players, a danger value is associated
with blocked segments depending on the chance that the player will be at that
segment after several time steps. The segment that a player currently occupies is
given the highest danger value, and adjacent segments are assigned increasingly
lower danger values. If a segment is given a danger va lue because of multiple
players, the danger va lues will be added together. Since teammates are less likely
to disrupt the movement of the player, less segments are marked as dangerous
around teammates, and the danger values are lower as well. This is demonstrated
in figure 4.4.
When the segments surrounding all the players are marked, a safe movement
direction can be selected. The segment closest to the target direction that has no
danger value is selected as the safest direction. If t he player is surrounded by
other players, it is possible that all the segments in the vision buffer are marked
as dangerous. In this case, the segment with the lowest danger value can be

Chapter 4: Robocup page 37

selected as the movement direction, but the action selection module of the
player may decide that movement is not a good option and select an alternative
to moving instead.

Selected direction

Target direction

Danger value

• Opponent

Q Teammate

Figure 4.4: Danger values surrounding players and selected direction.

3.2 Determining safe directions for passing the ball

The objective of a pass is to kick the ball towards a teammate, who then controls
the ball, without losing control of the ball to an opponent. Finding an optimal
direction for passing can be accomplished in a similar way as finding a safe
movement direction. The segments containing opponents are given a danger
value, as are their surrounding segments. On the other hand, segments
containing teammates are given safety values, as are their surrounding segments.
If a segment contains both a danger value and a safety value, the two values are
subtracted from each other, considering the safety value as a negative danger
value. The segment containing the highest safety value is then selected as the
direction for the pass. This is demonstrated in figure 4.5, where a pass is not
given directly to a teammate but to the direction of the segment next to him,
because an opponent is nearby.

page 38

Selected direction

Safety value

Danger value

Q Teammate

Figure 4.5: Danger and safety values around opponents and teammates to
determine the safest passing direction.

4 Teamwork in Robocup

The highest Layer of behavior presented in table 4.1 is team collaboration. These
behaviors ensure that the individual players work together as a team with the
same team goal. However, it is not sufficient to supply every member of the team
with a fixed pre-planned strategy, since unforeseen events can disrupt this
strategy. Therefore, it must be possible to modify the team plan during its
execution.

Joint intentions framework Locker-room agreements

Communication cost High Low

Applicability High Medium

Complexity High Medium

Table 4.2: Comparison of teamwork strategies.

In this section, the following teamwork strategies will be discussed briefly:

• The joint intentions framework.

Chapter 4: Robocup page 39

• Locker-room agreements.

These methods have different advantages and disadvantages concerning the
amount of communication needed, the domains where the technique can be
applied, and the complexity of implementing the technique. These advantages
and disadvantages are summarized in table 4.2.

4.1 The joint intentions framework

The joint intentions framework was developed by Cohen en Levesque in [14][55]
and was also used by Tambe in [104]. In this framework, a team E> jointly
intends a team action when all members are jointly committed to completing this
team action, while mutually believing that they are doing it. A joint commitment
in turn is defined as a joint persistent goal (JPG). A JPG to achieve p, where p
stands for completion of a team action, is denoted as JPG(E>, p) .

JPG(E>, p) holds if three conditions are satisfied:

• All team members mutually believe that p is currently false.
• All team members mutually know that they want p to be eventually true.
• All team members mutually believe that until p is mutually known to be

achieved, unachievable or irrelevant, each holds p as a weak goal (WG).
WG(µ, p, E>), where µ is a team member in E>, implies that µ either:

o Believes p is currently false and wants it to be eventually true.
o Having privately discovered p to be achieved, unachievable or

irrelevant, µ has committed to having this private belief become
E>'s mutual belief.

This model of teamwork requires that the agents communicate with each other to
share their beliefs about the current team actions, to prevent other agents from
performing actions that are no longer relevant or even interfere with the current
team goal. However, communication in Robocup is expensive and is not
guaranteed to be successful. Therefore, the unconditional commitment to
communicate a change in a team's activities is modified to be conditional on
communication benefits to the team outweighing costs to the team.
It is not always necessary to communicate a change in a player's belief. First, it
is checked if the other team members require the new information to complete
the team goal. If this is not the case, no communication is necessary. Secondly,
a check is made to test if other team members are already aware of the new
information. If this is true, there is no need for communication.

page 40

4.2 Locker-room agreements

This technique was used by Stone and Veloso for their CMUnited Robocup teams
[102]. Since the Robocup players have only a limited amount of bandwidth
available for communication, it is useful to agree to a team strategy when the
team is able to synchronize privately. This can happen for example before play
begins and during half time of a game. These team strategies are called locker­
room agreements. During the game, the players can keep track of the state of
world using its sensors, the player's internal state, and the locker-room
agreements made.
By giving every player a predetermined set of team actions, it is possible that the
team will not be flexible or robust to failure. This can happen when the locker­
room agreement divides the team goal into several rigid roles, and assigns one
player to every role. The team is then inflexible, both to short-term changes like
the unavailability of a player, and to long-term changes such as an ejected
player. Reassigning a task to a different player will then be difficult because of
the limited communication that is available.
To increase the flexibility of a team, players can switch to a different set of
behaviors when certain sensory triggers are received. For example, the team can
switch from a defensive setup to a more offensive setup when the team is losing.
This switch can be triggered when the opposing team leads by two goals. Also,
predefined multi-agent plans can be specified for some frequently occurring
situations such as free kicks. The positions of players are also specified in the
locker-room agreement. These include the area on the field that is the 'home'­
position of the player, and the role of the player such as attacker or defender.
These positions can change because of sensor triggers.

5 Conclusion

This chapter has introduced Robocup as a virtual multi-agent system that
simulates robotic soccer. In this systems, virtual agents control individual soccer
players. To construct behavior for these agents, several layers of behaviors are
used. The lowest layer implements individual player skills, which are mostly
manually coded. The next layers implement obstacle avoidance and passing the
ball, using the vision buffer techniques described in chapter 3. The next layer
implements action selection, and will be developed using evolutionary
computation. This technique, and its application to Robocup, will be described in
Chapter 4 of this thesis.

Part II: Genetic
• programm1ng

page 42

Chapter 5: Genetic programming

1 Introduction

This chapter introduces genetic programming as a general problem solving
technique. Genetic programming is very different from traditional AI problem
solving methods. Traditional AI uses computational models and requires a Large
amount of task specific knowledge about the problem to be able to solve it.
These are called strong AI methods, and while they may be able to rapidly find
an exact solution for a problem, collecting sufficient task specific knowledge may
not be easy. Also, strong AI methods often have problems with real-world
problems where unpredicted events cause the problem solving method to fail
completely. A typical example of traditional strong AI methods is a knowledge
base containing thousands of task specific rules. Weak AI methods on the other
hand rely less on built-in task specific knowledge. Instead, knowledge about the
environment is added when it is identified through experimentation. Therefore,
these methods are more robust and will work on a wider variety of problems, but
finding a solution may take longer compared to a strong AI method.

Genetic programming is an evolutionary weak AI method inspired by natural
evolution. Task specific knowledge is gathered by testing the quality of a set of
candidate solutions. New candidate solutions are generated by combining the
features of the best solutions. Initially, no knowledge about the environment is
available and the candidate solutions are generated randomly.
This chapter will tackle genetic programming in section 4, preceded by
introducing the related techniques of evolutionary computation in section 2 and
genetic algorithms in section 3. Several typical genetic programming problems
will be discussed in section 5, and finally some often used extensions to genetic
programming are given in section 6.

Chapter 5: Genetic programming page 43

2 Evolutionary computation

Evolutionary computation is an optimization technique inspired by the process of
natural evolution, as described by Charles Darwin [18] in the 19th century. This
process is often called "survival of the fittest". In natural evolution, a species
consists of a population of individuals. In this population, individuals that are
better adapted to their environment (i .e. fitter individuals) have a larger chance
to survive long enough to produce offspring. These fitter individuals pass their
genetic material on to their offspring. On the other hand, the less fit individuals
either die before they can reproduce, or reproduce less often. As a result,
offspring will have a higher chance to have their fitter parents' properties that
caused them to be better adapted to the environment. Thus, natural selection
causes the average fitness of the individuals in the population to increase, as
new individuals are more likely to have an above average fitness.
The concept of evolution can also be applied to optimization problems in
computer science. The basic idea is to maintain a population of candidate
solutions for a problem that compete among each other for the chance to
reproduce. The quality of these candidate solutions is measured and a fitness
value is awarded accordingly. This fitness value will then determine the
probability by which an individual will be selected to survive in the population
and/or produce offspring. This process will be described in section 2.1 and 2.2.
Initially, the algorithm uses a population of randomly generated candidate
solutions. In every subsequent step of the algorithm, called a generation, a new
population will be created from the existing popu lation. When an acceptable
solution is encountered, or when a predefined number of generations are
completed, the algorithm ends.

2.1 Selection

The fitness of a solution determines the probability that it will be select ed to
survive and produce offspring. Several selection methods are possible, and have
different advantages and disadvantages [86]. The most frequently used
techniques are presented below.

2.1.1 Fitness proportionate selection

This method is also referred to as roulette wheel selection, and is the most
frequently used selection technique. With this method, the selection probability
of an individual is directly related to its fitness va lue. If/; is the fitness value of

page 44

individual i, and the population consists of N individuals, the average fitness of
the individuals in the population is defined by equation (5 .1):

(5.1)

The selection probability P; of individual i is then given by equation (5.2):

Advantage:

• The method is biologically plausible.
Disadvantages:

(5.2)

• Premature convergence: If an individual in an early generat ion has a very high
fitness compared to the average fitness of the population, this individual will
be overselected and copies of this individual will occupy the entire population
after several generations. At this point, new individuals can only be
introduced through mutation.

• Stagnation: After several generations, when all individuals have fitness values
that are close to each other, there is very small selection pressure, and it will
be difficult to discriminate good solutions from slightly worse ones. However,
this problem can be solved by scaling the fitness values of the population to
the interval between the lowest and highest fitness values.

2.1.2 Rank selection

Rank selection is used to overcome the disadvantages of fitness proportionate
selection. This selection method assigns a selection probability to an individual
based on that individual's rank in the current population. To determine t he ran k
of an individual, the N members of a population are sorted according to their
fitness value. The best individual will have a rank of 0, the worst wi ll have a rank
of N - 1. The selection probability of an individual with rank ; can then be given
by a linear function (P; = a*i + b) or by a negative exponential function (P; =
a*exp(b*i + c)). The constants a, b and c must be chosen so the sum of all
probabilities will be 1.

Advantages:

• No premature convergence.
• No stagnation
• The explicit fitness va lue of the individuals is not needed. Consequently, it is

sufficient to compare the resu lt of individuals.

Chapter 5: Genetic programming page 45

Disadvantages:

• Overhead of sorting the members of the population.
• Theoretical analysis of convergence is difficult.
• Biologically not very plausible.

2.1.3 Tournament selection

When using tournament selection to select an individual, a small group of N (N >

1) individuals is selected uniformly from the population. The individual in the
group with the highest fitness value is selected, while the rest is ignored. This
method behaves like a noisy version of rank selection.
Advantages:

• No premature convergence.
• No stagnation.
• The explicit fitness value of the individuals is not needed.
• No overhead needed to sort the population.
• Naturally inspired.
Disadvantage:

• Noise.

2.1.4 Elitist selection

When elitist selection is used, one or more of the best solutions of a generation
are automatically transferred to the next population. This selection method is
used in combination with one of the selection methods described before.
Advantage:

• Convergence: if the global maximum is discovered, the search will converge
towards it.

Disadvantage:

• Risk of getting trapped in a Local optimum.

2.2 Reproduction

Reproduction is an operator that is used to generate new candidate solution(s),
called offspring, from existing solutions, called the parent(s) . During
reproduction, the genetic material from the parent(s) is somehow used to create
the genetic material of the offspring in an attempt to transfer the good qualities
of the parent(s) to the offspring.

page 46

Two types of reproduction are possible: sexual and asexual reproduction. With
asexual reproduction, a single parent is used to create offspring. Asexual
reproduction is also observed in single cell life forms like bacteria, where the
genetic material is copied during a cell division. Small errors can occur during
this duplication process, which may lead to improvements. Sexual reproduction
requires two parents, and the genetic materia l from both parents is combined to
form the genetic material of the offspring. This method attempts to combine the
favorable properties of both parents to create a better individual. In nature,
sexual reproduction is typically encountered in higher life forms.

2.3 Mutation

A fundamental property of evolutionary algorithms is that a diverse population of
different candidate solutions is maintained. Because of this, the search space is
examined in several places simultaneously. New places in the search space are
examined by combining solutions at different locations in the search space. As a
result, when all the individuals in the population resemble each other, the
potential to sample the search space is reduced and it will be difficult to find
new solutions. Mutation can be used to introduce diversity in the population by
randomly making small modifications to the genetic structure of some
individuals. As a result, mutation allows the evolutionary algorithm to escape
from local optima in the search space by re-introducing lost genetic material in
the population.

2.4 Basic evolutionary algorithm

The basic evolutionary algorithm is given below:
II Initialization:
Gen= 0
Create a random initial population P(Gen)
Evaluate the population P(Gen) and assign fitness
While the termination criterium is not satisfied:

II Select the pare nts for the next generation:
P2 = SelectParents{P(Gen))
II Create the next population:
Gen= Gen+ 1
P(Gen) = Reproduce(P2)
Apply mutation to P(Gen)

Evaluate the population P(Gen) and assign fitness
End while

Chapter 5: Genetic programming page 47

3 Genetic algorithms

Genetic algorithms are a type of evolutionary computation that was originally
devised by John Holland [34] . The candidate solutions of genetic algorithms are
typically represented by fixed length character strings. The characters of these
strings are often the binary numbers O and 1, but other characters, such as a
range of integer numbers or a set of symbols are also possible. The character
string, the genotype of the solution, can be decoded to the actual solution,
called the phenotype. The basic genetic algorithm is identical to the basic
evolutionary algorithm described in section 2.4, where the reproduction operator
is usually crossover. This operator will be explained in section 3.3.1.

3.1 Example

la/b. pil

a

Figure 5.1: Fitness Landscape of a rational approximation of the number pi.

As an example for genetic algorithms, consider the problem of finding t he best
rational approximation of the number 7t [86] . A candidate solution will consist of
two integer numbers a and b. The objective is to find a pair of numbers that
minimizes the equation la/b - 1tj, which gives a fitness value for every candidate
solution (a;, bJ. When the fitness value is calculated for all values of the search

page 48

space, the fitness landscape is obtained. A graph representing the fitness
landscape of this problem is shown in figure 5.1.

3.2 Representation

When genetic algorithms are used to find a solution for a problem, it is necessary
to construct a representation that encodes candidate solutions as a fixed le ngth
string. A representation of the rational approximation of pi needs to encode two
integer numbers. If the range of these two integers is restricted to the range {O,
1, 2, ... , 1023}, a candidate solution can be encoded using a 20 bit string, where
the first 10 bits represent the value a, and the last 10 bits represent the value b.
These numbers can be represented using the standard binary encoding of
integers, or a more complex encoding such as Gray codes can be used. The use of
Gray codes has the advantage that small mutations in the genotype will cause
only small changes in the phenotype. An example of standard binary encoding is
shown in figure 5.2, where the number a, with a value of 311, is represented by
the first ten bits and the value b, with a value of 157, is represented by the last
ten bits, shown in italic font. This genotype represents the value v = 1.98089 ...
(a/b) and has a fitness value of 1.16070 .. . (Iv - 1tl).

lol1 lolol1 l1 lol1 l1 l1 lolol 1lolol 1l 1l 1lol 1I
Figure 5.2: Binary representation of the two 10-bit integers 311 and 157.

3.3 Genetic operators

The genetic operators are responsible for the creation of new individuals from the
individuals in the current population. In genetic algorithms, the crossover
operator is typically used for sexual reproduction , and the cloning and mutation
operators are used for asexual reproduction . The cloning operator simply copies
an individual to the next generation. The other operators are discussed below.

3.3.1 Crossover

This form of sexual reproduction selects two individuals from the current
population and exchanges genetic material between them to form two new
individuals. In the case of one-point crossover, one crossover point is selected in
both character strings, and the genetic material at one side of this crossover
point is exchanged between the individuals. This is demonstrated in figure 5.3.

Chapter 5: Genetic programming page 49

Parents: Crossover point

lol1 lolol1 l1 lol l1 l1 l1 lolol 1lolol 1l 1l 1lol 1I

l1 l1 lol 1 lololol lol1 lol 1l 1lolol 1l 1lo l 1l 1lol
Offspring:

lol 1 lolol 1 I 1 lol lol1 lol 1l 1I ol ol 1111 ol 1111 ol

l1 l1 lol1 lololol l1 l1 l1 lalal 1lalal 1l 1l 1lal 1I
f;gure 5.3: One-point crossover between two individuals.

The disadvantage of single-point crossover is that the two pieces of genetic
material at both ends of the character string can not both be transferred to the
new individual, because they will always be separated by the crossover point.
This can be solved by selecting two or more crossover points. Two-point crossover
is demonstrated in figure 5.4.

Parents: Crossover point 1 Crossover point 2

lol1 lo lo l1 l1 lol l1 l1 l1 lalal 1lalal I 1l 1l 1lol 1I
l1 l1 lol1 lololol lol1 lol 1l 1lolol 1I I 1lol 1l 1lol

Offspring:

lol1lolol1l1lol lol1lol1l1lolol 1I l1l1l1lo l1I

l1l1lol1lol olol l1l1l1lalal1lalal l1lol1l1 lol
f;gure 5.4: Two-point crossover between two individuals.

3.3.2 Mutation

Mutation is a form of asexual reproduction that randomly modifies one or more
characters in the character string. This operator is necessary to maintain diversity
in a population. Diversity can be lost when not all possible characters exist at a
given position in the representation over all individuals in the population.

page 50

Because crossover can only exchange the characters that are present at that
position, in this case it will be impossible to retrieve these Lost characters.
Mutation is then the only way to reintroduce Lost characters. Mutation is
demonstrated in figure 5.5.

Parent:

lol1 lolol1 l1 lol 1 l1 l1 lolol 1lolol 1l 1l 1lol 1I
Offspring:

lol 1 lolol1 l1 lol 1 lol1 lolol 1i 1l ol 1l 1l 1lol 1I
Figure 5.5: Example of two random mutations on a bit string.

4 Genetic programming

Genetic algorithms are an evolutionary search technique whose candidate
solutions represent the solution for a single problem. Genetic programming is an
extension to genetic algorithms, where the candidate solutions are programs
that, when executed, solve a class of problems. While the underlying evolutionary
algorithm is identical to the one described in section 2.4, the representation of
candidate solutions and genetic operators differ from those used in genetic
algorithms. The selection methods, however, are still identical to those described
in section 2.1.

4.1 Representation

Computer programs typically have a variable Length. Consequently, programs in
genetic programming are typically represented by trees. For example, the
expression ((3+x)*5) can be represented by the tree shown in figure 5.6.

Figure 5. 6: Tree representation of the expression (3+x) *5.

Chapter 5: Genetic programming page 51

When a representation is chosen to solve a problem using genetic programming,
it is necessary to choose appropriate sets of terminal and non-terminal nodes.
Some examples of terminal and non-terminal sets are presented below.

4.1.1 Non-terminal sets

The set of non-terminal nodes contains operators that have one or more other
nodes as children. Some typical non-terminal nodes are given below, with the
arity of the operators specified in subscript.

• Arithmetic: +2, -2, \, /2, -1, •··

• Mathematical: sin1, co5i, exp 1, • ••

• Boolean: and2, or 2, not1, xor2, •••

• Conditional: if-then-else
3

• Looping: for
4

, while2, •••

4.1.2 Terminal sets

The set of terminal nodes contains all nodes that don't have any child nodes.
Typical terminal nodes are given below.

• Variables: x, y, ...
• Constants: 1, -3, 3.1415, ...
• Functions without arguments: rand(), move-forward(), ...

4.2 Genetic operators

Because genetic programming uses a tree representation to represent t he
candidate solutions of a problem, the genetic operators have to be modified to
work with trees. The operators that are most frequently used are tree-based
versions of single-point crossover and mutation. A new operator ca lled
combination will also be presented in this section.

4.2.1 Crossover

As in genetic algorithms, the tree-based crossover operator is a sexual
combination operator that exchanges genetic material between two parent
individuals. Single-point tree-based crossover selects a link between two nodes in
both individuals as the crossover points. The subtrees under the crossover points
are then exchanged between the two individuals to produce two new individuals.

page 52

This operator is demonstrated in figure 5. 7. The size of offspring is usually
different from the size of their parents.
Other forms of crossover are also possible. It is easy to implement multi-point
crossover, where several crossover points are selected in both individuals. Yet
another variation is homologous crossover, where the crossover point is selected
at an identical position in both individuals. This causes the genetic code to be
moved to a similar position in the offspring.

Parents:

f;gure 5.7: s;ngle-po;nt tree-based crossover between the expressfons ((x*(2-y))+5)
and ((3/x) *(y+O)) .

4.2.2 Combination

Combination is an asexual genetic combination operator that selects a root node
for a new individual by randomly selecting a node from the non-terminal set. The
children of the root node are then added using selection, crossover, or by
recursively applying combination. When selection is used to select a child node,
it is possible to either select an entire individual from the population or only
select a subtree of an existing individual. In the recursive application of the
combination operator, nodes can also be selected from the terminal set. This

Chapter 5: Genetic programming page 53

operator can be useful in problem domains where concatenating partial solutions
has a good chance to produce a better individual. This operator is demonstrated
in figure 5.8.

Step 1: select a non-terminal typA
Step 2: select a subtree for child 1.

Step 3: select a terminal type for child 2.

3

Figure 5.8: Example of the combination operator.

4.2.3 Mutation

Mutation is an asexual combination operator that modifies a single individual.
Several types of tree-based mutation exist, and result in varying degrees of
change in the new individual. The least destructive form of mutation selects a
single node in an individual, and replaces it by a different node t hat is
compatible with the replaced node. A more destructive form of mutation will
select a node from an individual and replace it with a randomly generated
subtree. The most destructive form of mutation, called headless chicken
crossover, generates a new random individual and applies crossover between the
selected and the random individual.

4.3 Closure

Closure in genetic programming means that every non-terminal node must be
able to work with the result provided by any possible child node. For example,
the non-terminal node '+' req ui res two values as its child nodes to ca lculate its
result. If one of the child nodes is the subtree (2/0), the result will be

page 54

undefined. The terminal and non-terminal set must satisfy the closure property to
ensure that all programs generated by the genetic operators are syntactically
correct. It may therefore be necessary to modify the terminal and/or non­
terminal set slightly to ensure that only valid results are generated. For the
example given above, it will be necessary to modify the division operator to
handle division by zero and instead return a default value such as 0.
If all the operators in the terminal and non-terminal sets are replaced by
protected versions that satisfy the closure property, syntactical correctness is
ensured if the return values of every operator have an identical type.
Unfortunately, this is only possible for simple problems. When nodes of different
types are present in the terminal and/or non-terminal set, the genetic operators
will have to be modified to ensure syntactically correct individua ls are generated.
In section 6.1, strongly typed genetic programming will be presented as a way to
handle multiple types.

5 Example problems

This section will introduce several of the toy problems that are typically used to
test or demonstrate the usefulness of genetic programming. Most of these
problems are described by Koza in [44] .

5.1 Symbolic regression

Symbolic regression attempts to find a symbolic representation of a function,
given a set of data points of this function. There are four requirements to solve a
symbolic regression problem with genetic programming:

• A set of data points must be available.
• The dependent variable of the data points must be selected.
• A fitness function must be defined that calculates the quality of a candidate

solution. Usually this means that a candidate solution is evaluated over all
the points in the data set, and the result is compared with the dependant
variable of the data set. The sum of all the errors over all data points can then
be used as a fitness value.

• The terminal and non-terminal set must be selected. The terminal set must at
least contain the independent variables of the data set. The non-terminal set
must contain sufficient operators to solve the problem. For example, it will be
impossible to find a correct solution for data points from the function
log(1 + x) when the terminal set only contains the functions{+, -}.

Chapter 5: Genetic programming page 55

Simple functions that are often used to test the performance of genetic
programming systems are x4 + x3 + x2 + x, x 5- 3x3 + x, and x5

- 3x4 + x2.

5.2 Boolean functions

Boolean functions are programs that use a number of Boolean variab les and
operators, and calculate a Boolean value. Similar to symbolic regression, a set of
data points is used to evaluate programs, and the fitness of a program is equal to
the number of correct results returned by the program. The Boolean problems
most frequently used are multiplexer and parity functions.

5.2.1 N-Multiplexer

The inputs used in the N-multiplexer problem are k Boolean address variables a
0

,

••• , a k- i and i Boolean data variables d0, •• • , d
2

,_
1

, where N = k + i. The desired
return value of the N-multiplexer is the value of the data variable d;, where i is

k- 1

the address formed by the address variables: i = ~>i -2i . Typical values of k are
j;/J

6 and 11.

The terminal set of the multiplexer problems consists of the N address and data
variables of the multiplexer. The non-terminal set contains the four Boolean
functions {and, or, not, if-then-else}. The fitness function returns the number of
correctly classified inputs.

5.2.2 N-Parity functions

N-parity functions have N Boolean input variables d0, ••• , dN_
1

• An even N-parity
function returns the value true if the inputs d0, ••• , d N-i contain an even number
of true values and false otherwise, while an odd N-parity function tests for an
uneven number of true values.

The terminal set used to solve N-parity functions consists of the N input
variables, and the non-terminal set contains the Boolean functions {and, or,
nand, nor}. Note that the Boolean xor-function, which would be very useful to
solve this problem, is not present in the non-terminal set. Even though the
function set is sufficient to construct any possible Boolean function , the
complexity of constructing a solution for an N-parity function increases
quadratically. If xor is added to the function set, the complexity is only linear.

page 56

5.3 Artificial ant

The task of the artificial ant problem is to construct a program that navigates an
artificial ant in an environment, picking up all the food that Lies on an irregular
trail in the environment. The environment is a toroidal grid of square cells. The
following commands can be used to control the ant:

• Move-forward: This moves the ant one space forward in the current direction
it is facing . If the ant moves to a square containing food, the food is eaten
and removed from the grid.

• Turn-left, turn-right: These commands turns the ant 90° Left or right.
• If-food-ahead: This function tests if the square directly in front of the ant

contains a piece of food. If true, the first argument of this function is
executed, otherwise the second argument is executed.

• Prog2, prog3: These functions are used to sequentially execute 2 or 3
arguments.

-- ------,- • I: -,- • --- •

•

•
I ••• • •

---- ----- • ---,-

----+-
---- • • - ft---1

I

• •
I I I

Figure 5.9: The Santa Fe trail used in the artificial ant problem.

The commands move-forward, turn-left and turn-right each require one time unit
to be executed. A program is run for a Limited amount of time. The programs that

Chapter 5: Genetic programming page 57

control the ant will be repeated, until either the time limit has been reached or
all the food in the environment has been eaten.
The terminal set contains the instructions {move-forward, turn-left, turn-right}
and the non-terminal set contains the instructions {if-food-ahead, prog2, prog3}.
The fitness function returns the number of food pieces remaining in the
environment when the program ends.
The environment that is typically used to train the artificial ant is called the
Santa Fe trail. This is a 32x32 grid, containing a trail of 144 squares with 21
turns and 89 pieces of food. The Santa Fe trail is shown in figure 5.9. The black
squares represent the pieces of food, and the gray squares denote empty squares
on the trail. Initially, the ant is placed in the upper left corner facing the trail,
indicated by the arrow. The time limit in the Santa Fe trail is set to 600 time
units.

5.4 AI planning

AI planning is a separate field of artificial intelligence, where the objective is to
find a sequence of actions that lead from an initial state to a goal state. The
initial and goal states are described using a list of predicates that are true
initially and in the goal state respectively. The actions that can be applied in the
environment are also specified. These actions contain a number of preconditions
that must be satisfied before the action can be executed, and a list of results
that modify the current state of the environment.
A typical example of AI planning is the briefcase problem. The environment
contains a number of locations, briefcases and pencils. Briefcases and pencils are
at one location. Pencils can be put in and taken out of briefcases, and briefcases
can be moved from one location to another location . The task is, given an initial
distribution of the briefcases and pencils, to move all the pencils to a specified
target location. This environment can be described as follows:

Briefcase domain

(define (domain briefcase-world)
(: types location physobject briefcase)
(:predicates (at-briefcase ?b - briefcase ?l - location)

(at-obj ?o - physobject ?l - location)
(in ?o - physobject ?b - briefcase))

(:action mov-b
:parameters (?briefcase - briefcase

?from ?to - location)
:precondition (and (at-briefcase ?briefcase ? from)

(not (= ?from ?to)))

page 58

:effect (and (not (at-briefcase ?briefcase ?from))
(at-briefcase ?briefcase ?to)

(:action put-in

(forall (?obj)
(when (in ?obj ?briefcase)

(and (not (at-obj ?obj ?from))
(at-obj ?obj ?to))))))

:parameters (?object - physobject
?briefcase - briefcase
?location - location)

:precondition (and (at-briefcase ?briefcase ?lac)
(at-obj ?object ?loc)
(forall (?b)

(not (in ?object ?b))))
:effect (in ?object ?briefcase))

(:action take-out
:parameters (?object - physobject

?briefcase - briefcase
?lac - location)

:precondition (and (in ?object ?briefcase)
(at-briefcase ?briefcase ?lac))

:effect (not (in ?object ?briefcase)))

The above code defines the types and predicates used in the environment, and
describes the actions that can be used (mov-b, put-in, take-out). To define a
planning task, an initial state and goal state can be described in the following
way:

Briefcase problem

(define (problem get-paid)
(:domain briefcase-world)
(:init (location Home) (location Office)

(briefcase Briefcasel)
(physobject P) (physobject D)
(at Briefcasel Horne) (at P Horne) (at D Horne)
(in P Briefcasel))

(:goal (and (at Briefcasel Office) (at D Office)
(at P Horne)))

Muslea [73][74], and later Westerberg [110], developed an AI planning system
based on the genetic programming paradigm. To represent a plan using genetic
programming, the following terminal and non-terminal sets are defined:

Chapter 5: Genetic programming page 59

• Terminal set: This set contains the objects specified in the domain and the
problem. In the briefcase problem defined above, this set is {Home, Office,
Briefcasel, P, D}.

• Non-terminal set: This set contains the actions described in the domain.
Additionally, the functions prog2 and prog3 are added to make it possib le to
construct a sequence of actions. In the briefcase problem, this set is {prog2,
prog3, mov-b, put-in, take-out}. mov-b , put-in and take-out have a number
of child nodes equal to the number of parameters defined by the domain.

The fitness of a plan is calculated by executing the plan, starting from the initial
state. If an action is encountered whose preconditions are not satisfied, that
action will be ignored. When the plan is executed, the number of goal conditions
that are not satisfied is counted and is used as the fitness of that plan.

6 Extensions to genetic programming

In the previous sections, the basic principles of genetic programming have been
introduced. However, for practical reasons it is often necessary to extend this
basic algorithm. This section will discuss strongly typed genetic programming,
automatically defined functions and the use of an acyclic directed graph to
represent a population.

6.1 Strongly typed genetic programming

The closure property requires that every object can be used as a child node of any
non-terminal object. Unfortunately, not all problems can be represented easily
with only a single type. For example, the briefcase problem described in section
5.4 uses terminal nodes that have different types (location, briefcase,
physobject). The actions in this problem require child nodes that have a specific
type. There are several possibilities to enforce these type requirements:

• Greatly reduce the fitness value of individuals that violate the type
requirements. The problem of this approach is that almost every generated
individual is likely to contain invalid types, and all individuals will have
identical fitness. Evolution will be severely hindered in this case.

• Transform object of invalid type to the correct type. This technique was used
by Muslea [74] to convert terminal nodes in the AI planning domain to the
correct type. In this domain, non-terminal nodes all have the same type, so
no conversion was needed there.

page 60

• Modify the genetic operators to only create or modify syntactically correct
individuals. In the case of the crossover operator, this means that the cut-off
points selected in both individuals must be of the same type. This method will
be described here .

To overcome the closure constraint, Montana [72] introduces strongly typed
genetic programming. In this system, a type must be associated with the
arguments and return types of all terminal and non-terminal nodes. The genetic
operators are modified to generate only syntactically correct types. A restriction
of the method used by Montana is that only two levels of typing are possible: all
types are derived from a common parent class, but no types can be derived from
a non-parent type. Haynes [30] removes this restriction by allowing a type
hierarchy. His system allows subtyping, meaning that any object that requires a
child of a type T will also accept any type that is a subtype of T. This allows a
form of polymorphism in the definition of type constraints of child nodes.
When strongly typed genetic programming is used, the search space of the
problem is reduced. As a result the search time needed to solve a problem
decreases. In [65], McPhee uses strongly typed genetic programming on
essentially typeless problems, and notes an improvement in performance in some
cases. However, this increase may also be due to the fact that the strongly typed
representation makes it easier for internal nodes in the typeless representation to
be modified, which can be an advantage in some problem domains.

6.2 Automatically defined functions

In any programming task, the use of subroutines can make that task significantly
easier. Consider for example the odd N-parity problem discussed in section 5.2.2.
A simple solution for this problem would be the program (d0 xor d1 xor ... xor d"_J.
However, the function xor is not part of the non-terminal set, even though an
xor(a, b) function can be constructed with the expression ((a nand b) and (a or
b)) . This program, containing 7 nodes, is a solution for the odd 2-parity problem.
A solution for the odd N-parity problem, where N = 2••1 for some n E lN 0 can be
constructed by joining two solutions of the odd 2"-parity problem using the xor
function. However, this solution of the odd N-parity problem will contain 2N

2

-1
nodes (see Appendix D). If the xor-primitive can be used, the solution contains
only 2N-1 nodes. This demonstrates that the introduction of new primitives, even
if those primitives can be constructed from the existing primitives, can reduce
the complexity of the solution. Therefore, if the genetic programming system is
able to construct new primitives from existing ones, finding a solution may
become easier.

Chapter 5: Genetic programming page 61

In [44) and [45), Koza introduces the concept of an automatically defined
function (ADF). When ADFs are used in genetic programming, the non-termina l
set must be extended with the symbols ADF

0
, ... , ADF._

1
, each with arity a

0
, .. . ,

a.
1

• The number n and the values a
0

, ... , a"_
1

are part of the representation of the
problem. The ADF-symbols represent calls to subroutines that will be evolved
along with a solution. Additionally, every individual in the population will
contain n additional subtrees containing the definitions of the n ADFs. These
ADFs will be represented using a tree similar to a normal genetic program, but
with slightly modified terminal and non-terminal sets. The terminal set usable by
ADF; is the terminal set of the original representation, extended with the a;
formal parameters of the subroutine. The available non-terminal set is the
terminal set of the original representation, extended with the symbols ADF

0
, ... ,

ADF;_1• As a result, every ADF can only use previously defined ADFs, and infinite
recursion between subroutines is not possible.

When ADFs are used by the genetic programming system, the crossover operator
must be modified to handle the ADF definitions in individuals correctly. This
crossover operator, called structure-preserving crossover, will only swap subtrees
between individuals that are part of the same ADF, or that are both part of the
main program. This ensures that the terminal and non-terminal sets of the main
tree and ADF trees remains constant in all individuals.

6.3 Representing the population with a minimal directed
acyclic graph

In genetic programming, the population contains many individuals represented
by a tree. In this population, there will be many individuals that contain
identical subtrees. Normally, every instance of the identical subtree will contain a
different copy of that subtree, causing a large amount of duplication. If all these
identical instances are represented by a single object that is shared between all
individuals, the memory required to store the population will decrease
considerably. This is demonstrated in figure 5.10, where the expressions (a­
(a+b)) and ((a+b)*c) share their identical subtree (a+b) . Also, the first
expression uses the terminal a two times, and re-uses the object representing a.
When the entire population is represented in this way, a directed acyclic graph
(DAG) is formed. The DAG is minimal if every distinct subtree is only represented
once in the DAG. This representation for a population in genetic programming
was first used by Handley [29), and was later also used by Keijzer [40).

page 62

Figure 5.10: Individuals share identical subtrees in a directed acyclic graph.

6.3.1 Representation of objects

Because identical subtrees must be shared between individuals, it is necessary
that identical subtrees can be detected easily. This can be accomplished by using
an appropriate representation:
• All objects, both terminals and non-terminals, are given a unique index

number.
• All types of non-terminal object (such as the types '+' or 'and') are also given

a unique index number.
• An appropriate data structure is used to store all termina l symbols. For

example, integers can be stored in a hash table and real numbers can be
stored in a sorted tree. When a new terminal object is about to be created,
these structures can easily test if the new terminal object is already present in
the population. If the object already exists, that object will be re-used.
Otherwise, a new object will be created, added to the data structure and will
be given a new unique index.

• All non-terminal objects of arity a and type index t can be represented by a
vector containing (a + 1) indices. This vector is (t, c1, ... , c.), where c; is the
index of child node i of the object. These vectors can be stored in an
appropriate data structure, for example a sorted tree using lexicographical
ordering. When a new non-terminal object is about to be created, t his data
structure can be tested to determine if the new object is already present in
the population. If the object is found, it will be re-used. Otherwise, a new
object will be created, added to the data structure and will be given a new
unique index.

• A population of N individuals is represented by a set of N indices, where every
index represents the root node of every individual.

Chapter 5: Genetic programming page 63

6.3.2 Advantages of the DAG representation

The DAG representation has the following advantages:

• Less memory is needed to store the entire population. In a population of size
500, Handley [29] reported a 15 to 28-fold reduction in the number of nodes.

• When the evaluation of subtrees have no side effects, the results of previous
evaluations of a subtree can be cached in a node and can be re-used when the
subtree is evaluated again. Handley [29] reported a 11 to 30-fold reduction in
the number of evaluated nodes, again using a population size of 500.

• The DAG representation can be used to easily find structurally similar elements
between different individuals. Keijzer used the DAG representation to define a
distance measure between individuals [40]. In the next chapter, the DAG
representation will be used to increase the diversity of a population by
removing similar individuals from the population.

Unfortunately, the DAG representation also has some disadvantages:

• Implementation of the representation is more complex.
• Adding an individual containing n nodes to a population containing p nodes

takes O(nlogp) time. With the traditional representation, this takes O(n) time.
• Removal of nodes from the DAG representation is difficult. This typically

requires some form of garbage collection, which is computationally expensive.

7 Conclusion

This chapter introduced genetic programming as a general machine learning
technique. This technique creates variable length programs, represented as trees,
that are used as candidate solutions for a problem. A number of programs is
maintained in a population. The quality of the candidate solutions is measured,
and a fitness value is assigned based on this quality. Better solutions have a
higher chance to be selected by genetic operators such as crossover or mutation.
These operators are used to create new programs based on existing programs, in
an attempt to combine good properties of the existing programs.
The crossover operator generates two new programs based on two existing
programs. Although the combined size of both new programs is equal to t he
combined size of the existing programs, the individual lengths of both new
programs are usually different from their parents. Interestingly, the Larger
program will tend to have a better fitness value then the smaller program.
Consequently, the size of programs can grow rapidly. This phenomenon wi ll be
examined in detail in the next chapter, and new and existing techniques will be
presented to reduce this growth.

Chapter 6: Reducing code growth
in genetic programming

When genetic programming is used to evolve a solution for a problem, it quickly
becomes apparent that the average size of the individuals in the population
increases rapidly. This phenomenon, often called ,,bloat", has been reported in
many genetic programming publications [3][4][44][49][50][51][52][61][63][98].
This phenomenon is also present in other evolutionary algorithms that use
variable length representations. According to Langdon in [53], at early
generations the size of individuals grows sub-quadratic with respect to the
number of generations. Later, this appears to converge towards quadratic growth.
After several generations, bloat can become a problem because of the increased
need of memory to store the solutions, and a longer evaluation time when
assigning a fitness value to these individuals. Other problems of large solutions
are that the generated solutions are less general, and bloat can also have a
negative impact on the speed at which genetic programming can find so lutions.
In [44], Koza introduces two methods to reduce code growth. First, a fixed
maximum tree depth of 17 is imposed on individuals. Second, parsimony pressure
is used where the size of an individual influences its fitness value. In this case,
smaller individuals have a better fitness value. However, more advanced methods
are needed.
In this section, first the causes of bloat and their effect on the evolution of the
population will be discussed. Then, the effect of detecting and removing inactive
code from individuals will be examined. Finally, several methods to reduce bloat
will be compared with each other.

1 The causes of bloat

When observing the large individuals in a population after several generations, it
becomes apparent that a large part of these individuals are nodes that have no
effect on the result of that individual. These can be nodes that are never visited
during the execution of the individual (for example a conditional expression

page 66

whose condition is always false). They can also be nodes t hat have no effect on
the result of the individual when executed (for example adding O to another
number). Nodes that have no effect on the result, and therefore on the fitness of
an individual are often called introns. This is a term used in biology that
describes genes in a genotype that are not expressed in the phenotype.

The cause of bloat has been the subject of extensive research. In [61), Luke
describes four major theories of bloat:

• Hitchhiking: This theory, introduced by Tackett in [103), says that introns are
spread from parents to offspring because of the crossover operator. Introns
are transferred along with the essential nodes of the parents.

• Defense against crossover: Blicke and Thiele in [6], and Nordin and Banzhaf
in [77] argue that adding introns to partial solutions protects these partial
solutions from being split up and destroyed because of crossover. As a result,
the offspring has a higher chance to have a fitness simi lar to its parents
fitness, which is typically above average.

• Removal bias: Soule and Foster (100) focus on a special case of introns,
namely unviable code. This is code which can never have any effect on the
result of an individual, even when modified. Typically, unviable code is
located near the leaves of an individual. Consequently, removing a small
subtree near the leaves is more likely to remove only unviab le code and leave
the individual intact. The size of the subtree that is added on the other hand
has little or no effect on the fitness of the individual. This favors the removal
of small subtrees during crossover, while no bias exists for the size of the
added subtrees. As a net result, the average size of individuals will grow.

• Diffusion: Langdon and Poli [49][50] argue that because a solution can be
represented in different ways, and because there exist more solutions with a
greater size than simple solutions, it is only natural that more of the larger
solutions are found. As a result, bloat is caused by fitness based selection.

While defense against crossover and removal bias are reasonable explanations of
bloat in a population where improvement becomes difficult, it does not explain
the early growth in a population [64]. Therefore, it is likely that bloat is caused
by a combination of these factors, and possibly others as well. This is confirmed
in [4], where Banzhaf en Langdon use a simple model to simulate t he size,
fitness, and the amount of active and inactive code of the individuals in a
population. The model was used to test the theories of remova l bias and
diffusion . Their results indicate that both these theories partially explain bloat.
On the other hand, Soule and Heckendorn [101] perform experiments to test the
effects of defense against crossover, removal bias, and diffusion. These
experiments show that defense against crossover and removal bias are
responsible for code growth, but diffusion has little or no effect.

Chapter 6: Reducing code growth in genetic programming page 67

An exact theory of code growth was developed by Poli and McPhee. This theory
was originally limited to linear structures in [64)[84], but was later expanded to
include variable-length structures when using homologous crossover [85]. Their
work shows that standard crossover has a bias towards (over-)selecting smaller
structures on a flat fitness landscape when using a linear representation. Also,
when there is an infinite population and only two possible fitness values, the
average size of the population converges towards the average size of the fitter
individuals. However, the average size of the individuals does not change
because of crossover when no individuals are removed from the population. This
implies that when duplicate individuals are removed from a population, the
average size of the individuals will increase. This is because it is more likely t hat
duplicate elements occur among small individuals because the search space
contains less individuals of a small size. As a result, small individuals have a
larger change to be removed. Also, when less fit individuals are removed, the
average size tends to increase because larger individuals with more inactive code
have a higher chance to keep the above average fitness of their parents after
crossover.

When observing the code of a bloated individual, large parts of this code
constitute of inactive or non-executed code, also called first-order introns.
However, these first-order introns are not the only ways to increase the size of
individuals. Another way to add unnecessary nodes to a solution is by adding
code to a solution, as well as other code elsewhere that nullifies the effects of
the first section of code. This type of introns are called higher order introns.
These pieces of code can be located at great distances from each other in t he
representation, and are in general impossible to detect in less than exponential
time. For example, in the expression (x+((x*x)-x), the underlined pieces of code
cancels each other out.

Another cause of bloat is called incremental fitness introns described by Smith
and Harries in [97]. These are large pieces of code that have only a small effect
on the result of the entire individual. This can happen when the results of these
nodes are dominated by the results of other nodes. For example in the individual
((x1

+ 4x4) + C), the term (x1
+ 4x4) will dominate the result if C consists of a large

sum of constants and instances of the lower orders of the variable x. Adding
terms to C will cause only small changes on the fitness of the individual, either
positive or negative. If the code (x5 + 4x4) has a high fitness, adding the term C
will still result in a high fitness. This provides the evolutionary process with an
easy way to produce individuals with a high fitness value, and the size of
individuals will begin to grow rapidly.

page 68

2 The advantages and disadvantages of bloat

The most obvious disadvantages of bloat are the higher memory requirement and
the longer execution time. However, memory has become very cheap to upgrade
nowadays and is therefore not a significant problem. The longer execution times
can be reduced somewhat by smart evaluation, such as on ly needing to execute
one branch in an AND-node if the first node returns false . Execution time can
further be reduced by caching partial results of subtrees when using t he directed
acyclic graph representation described by Handley [29]. Unfortunately, this is
only an option when the unexecuted nodes have no side-effects.
On the other hand, according to the removal bias and protection against
crossover theories, bloat appears to be helpful for the evolution. Introns can
reduce the chance of destructive crossover, thereby increasing the average
fitness of the offspring. However, the chance of a successful crossover is also
reduced and crossover will usually have no effect on the fitness and behavior of
offspring [64]. In this case, introns help insure that the successful individuals
are transferred to the next generation, embedded within introns. However, this
can also be accomplished by an elitist approach.
In [111], Wineberg and Oppacher claim that adding introns dynamically red uces
the search space of a problem. They use a fixed-length representation for a
solution, and simulate a variable-Length representation by using a non-terminal
node that ignores all but one of its child nodes. The ignored child nodes are thus
by definition introns. Because of the fixed-Length representation, introns cause a
reduction of the phenotype size, and therefore limit the search space. However,
because of the fixed representation length, these introns are not useful to study
the effects of code growth in genetic programming in an unlimited variab le
length representation.
Another feature of introns is that they can store potentially useful code, that
may become more useful after changes in the environment [3][50][111]. Th is can
be especially important when looking for a solution in a dynamic environment,
where features that were useful in the past can be saved to be later reintroduced
as active code in the population.
In [1] , Andre and Teller report that the occurrence of introns is damaging in
experiments on the 5-parity, Lawnmower and symbolic regression pro blems.

There are several disadvantageous of bloat:

• The memory requirement and execution time are higher because of introns.
• Crossover has no effect when introns are selected in both parents [1]. While

children are not worse than their parent, neither will they be better and

Chapter 6: Reducing code growth in genetic programming page 69

evolution slows down and eventually the population consists of instances of
similar solutions [97].

• When the depth of individuals is restricted, the solution space becomes
cramped [1][25]. This means that the result of crossover can be rejected
because the depth of the individual is too large, regardless of its fitness
value. If bloat is prevented, the individuals would not easily become large
enough to be rejected. Thus, introns limit the solution space.

• Occam's razor: small solutions to a problem tend to be more general then
larger solutions [42][92][93][98] . Zhang and MUhlenbein measured a decrease
in generalization of Larger individuals when evolving neural networks [113].

• Changes to large programs tend to be local [50][51]. This is because the
effect of a node at a deeper level tends to be smaller than the effect of higher
nodes. In a Large individual, more nodes are situated at deeper levels and
therefore the changes are smaller. As a result, the search may become trapped
in a loca l maximum in the search space.

• Larger solutions are more difficult to understand by human observers [42].
In [78], Nordin, Banzhaf and Francone introduce explicitly defined introns (EDI)
for linear structures of machine code. An EDI is a special type of node that has
no effect on the result of an individual, and has an associated weight. This
weight influences the probability of a crossover happening immediately before or
after the EDI. On the problems discussed in [78], EDI's have the following
advantages:

• Average fitness, generalization and CPU time needed to evaluate individuals is
frequently improved.

• Implicit introns and EDI's work together.
• Sometimes, EDI's replace implicit introns (those that are naturally present).
• EDI's protect against the destructive effect of crossover.
• When combining parsimony pressure and EDI's, bloat is reduced whi le

maintaining the advantages of introns.
In [97], Smith and Harries implement EDI's for tree structures. They conclude
that the effects of EDI's on Linear structures are very different from their effects
on tree structures. Because introns protect against disruptive crossover, introns
cause the evolutionary process to maintain its current fitness instead of
improving the best fitness of the population, and caused evolution to stop. As a
result, average fitness of a population is not necessarily a good measure of the
quality of evolution.

O'Neill [80] uses explicitly defined introns in grammatical evolution to improve
the performance of the system in some cases. These explicit introns introduced a
bias in the selection of certain terminal or non-terminal nodes. In the cases
where these terminals are more useful for finding a solution, the use of in trons
improved the convergence speed. Because these side-effects have such a strong

page 70

impact on the results, it was not possible to measure the effects of the increased
size and inactive code on the results.

3 Detecting and removing inactive nodes

Since inactive code appears to make up most of the code of a bloated individual,
it makes sense that bloat can be reduced if the inactive nodes can be removed
from the individuals. In this paragraph, this idea will be explored for several
problem domains where it is easy to detect and remove inactive nodes. After
discussing some related work on removing inactive code, a method will be
described to measure the influence every node has on the result of an individual.
Nodes that have no influence are by definition intrans, and a method to remove
them from the individual will be presented. The effect of removing inactive code
will be tested experimentally, and finally some conclusions will be given.

3.1 Related work

In [77), Nordin and Banzhaf identify different types of intrans:

• Global and local introns: Global intrans are nodes that have no effect on the
behavior of an individual for every possible input in the program domain.
Local intrans have no effect for every input in the t raining set used to
evaluate the individual. This code may become active when used in a different
context.

• Absolute introns: These are nodes that have no effect on the behavior of an
individual, and applying crossover on these nodes will not modify this
behavior.

• Continuously defined introns behavior: In this case, nodes are given a
numerical value of their sensitivity to crossover. An example is the underlined
code in (/ (- Y 3) (EXP (EXP 10))), whose result is dominated by the value of
the second part. Changes to the underlined code will have a negligible effect
on the result of the individual.

Koza [44) describes a way to add syntactic rules to simplify individuals. This
includes reducing trees with only constant nodes to a constant va lue, and
reducing expressions like (Not (Not X)) to X. The purpose of these syntactic rules
was mainly to make individuals easier to read when displayed, but they were not
used to influence the behavior of the genetic programming system.
Soule, Foster and Dickinson [98) use a set of syntactic rules to remove inactive
code from individuals. They report that when non-functiona l code is removed,

Chapter 6: Reducing code growth in genetic programming page 71

bloat still occurs but the non-functional code is replaced by non-executed code
instead. The use of parsimony pressure is more effective to limit the growth of
individuals. However, the fitness of the best individual does not appear to be
affected by size limiting approaches.
Nordin and Banzhaf [77] detect inactive code in strings of machine code by
replacing every single instruction with a no-operation instruction and comparing
the results of both programs. If the results are identical, the replaced instruction
is inactive and is removed. Unfortunately, this technique can only detect single
instructions that have no effect and is computationally expensive.
Blickle and Thiele [6] detect inactive code in the 6-multiplexer domain by
inserting a NOT-node between the nodes of every edge of an individual. If the
result of this new individual is identical to the result of the original, the subtree
under the inserted NOT-node is by definition inactive. However, this process is
very time-consuming. They also propose a new genetic operator called marking
crossover. To use this crossover, nodes in an individual that are traversed during
execution of the individual are marked. When two individuals are selected for
crossover, only nodes that are marked can be selected as a crossover point. This
prevents the crossover operator from exchanging useless code. Unfortunately,
this method can only detect non-executed code, not non-active code. For
example in the expression And(Inac6ve, False), the subtree Inactive will be
executed but has no effect on the result. Marking crossover was successful in
some domains, but was ineffective in other domains.
Rosca [92] measures the size of executed code in individuals by examining which
nodes of a tree are executed during the evaluation of an individual. This method
is able to detect non-executed code, but code that is executed but has no effect
on the result of an individual is not detected in this way. Also, only the provided
fitness cases are used to test if code is executed, meaning local introns instead
of global introns are detected. This may be an advantage, because otherwise code
for which no fitness is known can survive in the population. This can lead to a
mutation-like behavior when the non-executed code is transferred to an active
location after a crossover operation. Consequentially, the system may perform a
higher percentage of mutation-like operations than specified by the mutation
probability.
In [105] and [106], Teller calculates the influence of nodes to assign explicit
credit to the nodes of an individual. The correlation between the desired output
of an individual and the output value of individual nodes is calculated. This va lue
is an approximation of the contribution of that node to the result of the
individual.

page 72

3.2 Measuring the influence child nodes have on their
parents

In genetic programming, a program is typically represented by a tree of nodes .
The result of the program is produced by the individual nodes of this program
tree. However, some nodes have a larger impact on the fina l result than other
nodes. For example, nodes near the top of the tree will usually have a larger
effect on the result of the program than nodes located near the base of the tree.
But even two children of the same non-terminal node can have a different
influence on the result of their parent node, and thus on t he final resu lt of the
genetic program. For example, in the program (2 + 5), the child node 5 will have
a larger effect on the result than the child node 2. It is also possible that a child
node has no effect on the result of the parent node. For example, in the program
(0 + 4), child node O has no effect, and in the program (0 * 4), child node 4 has
no effect on the resu lt of the calculation. In these cases, the inactive nodes can
be removed from the program without altering its resu lt, resulting in the
programs (4) and (0) respectively.
In general, it is impossible to measure the influence each child node has on its
parent. However, for some typical non-terminal nodes, it is possible to discover
specific formulas for different node types that can calculate the influence of their
child nodes during the evaluation of a program. In this section, several formu la
are designed by us to calculate the influence of child nodes for some specific
non-terminal nodes. These formulas will then be used to detect and remove
inactive code, and to test its effect on code growth. These results will indicate
whether it is worthwhile to calculate the influences of child nodes. Otherwise,
other methods need to be used to reduce code growth .
When calculating the fitness of an individual, the code of the individual is
typically evaluated several times using different inputs. For example, a
mathematical function can be evaluated using different values for its variables.
While the influence of a subtree can be very low during some evaluations, the
subtree may produce valuable results during other evaluations. Therefore, a
subtree can only be considered inactive when it consistently has a low influence
over all evaluations. As a result, the influences of all evaluations must be
combined to produce the total influence value.

3.3 Removing inactive code

Immediately after the eva luation of an individual, when the influence values of
the chi ldren are measured, inactive children can be removed from the individual.

Chapter 6: Reducing code growth in genetic programming page 73

When the influence of a subtree is determined to be 0, the subtree is inactive
and can be removed without changing the result of the individual. Cutting away
a subtree however will produce a syntactically invalid individual, because the
parent node's arity is usually constant. Therefore, a syntactic rule must be
provided that removes a subtree from an individual. For example, the subtree
(X - 0) can be reduced to (X), removing both the inactive subtree (0) and the
parent node'-'.

Other methods that only detect completely inactive code have difficulty in
continuous domains where subtrees have a negligible (but non-zero) effect. This
was reported in [5] and [97], and is the cause of incremental fitness intrans. In
[97], t hese nodes where prevented by using a hill climbing approach where the
result of the individual must be greater than a small threshold value. By
measuring the influence of nodes and using a threshold value, these nodes can
be detected and removed. If the influence of a child node is very low, the node is
an incremental fitness intron [97] and can be removed.
Sometimes a parent node with an inactive child can be reduced by replacing it
with a different node with lower arity, keeping only active children. For example,
the subtree (0 - X) can be reduced to (- X), where '-' is a unary minus operation.
Simi larly, a Prog3 node with one inactive child can be reduced to a Prog2 node.

3.4 Examples

In this section, several examples are provided to calculate the influence of child
nodes and remove inactive subtrees. Whi le the influence calculated in these
examples is only an approximation of the real influence of a child node, it is a
good heuristic when the influence of a node is low. As a result, this method
suffices to detect inactive code and incremental fitness intrans.

3.4.1 If-Then-Else nodes

An If-Then-Else node has an arity of 3, with child nodes Condition, True-case,
and False-case. The Condition is a Boolean node, and the other children can be of
any type (but must both be of the same type). The return type has the same type
as True-case and False-case. The result of If-Then-Else is equal to the result of
the True-case if Condition is true, and is equal to the resu lt of the False-case
otherwise.

During the fitness evaluation of the individual, an If-Then-Else node will be
evaluated a number N times. The number of times the condition will be t rue is
represented by T, and the number of times it will be false is then (N - T) . The
influences of the child nodes are then, after N evaluations (when N > O):

page 74

• Influence of Condition: 1/3.
• Influence of True-case: (2/3)*(T/N).
• Influence of False-case: (2/3)*((N - T)/N).
The sum of these influences is 1. If Condition was false in every evaluation, the
influence of True-case will be 0. In this case, the entire If-Then-Else node can be
replaced by False-case. Similarly, if Condition is always false the If-Then-Else
node can be replaced by True-case.

3.4.2 Add/subtract nodes

Addition and subtraction are nodes of arity 2, whose child nodes and return value
have a numerical type.
During a single evaluation, the child nodes have numerical values N1 and N2• The
total effect of this node is defined as I N

1
I + I NJ For example, the node (2 + 5)

will have a total effect of 7, and the node (4 + -4) will have a total effect of 8,
even though the final result of that node is 0. If N1 and N2 are both 0, this
evaluation will not be used to calculate the total influence of t he child node over
all evaluations.
The influence of child node i during this evaluation is set to I N;l/(1 N1I + I N21).
Consequently, when the result of one child is small compared to the result of the
other child, that node will have a low influence va lue.
To obtain the influence of a child node over all evaluations, the average is taken
of all the influence values of the single evaluations (where either N1 or N2 was not
0). As a result, the final influence of a child node will be low if the value of that
child node is consistently smaller than the va lue of the other child node. If the
influence of a child node is below a threshold va lue (for example 0.01), the child
node can be removed without modifying the result of the parent node much.
To remove a child node from an add node, the inactive node and the add node
are removed, and only the active node is retained. An inactive second child node
of a subtract node can be removed in an identical way. However, if the first child
node of a subtract node is inactive, the parent node must be replaced by a unary
minus node, with the active child node as the child node of minus. For example,
(0 - 5) can be replaced by (- 5). If a unary minus operator is not part of the non­
terminal set of the genetic programming system, the inactive child node can not
be removed.

Chapter 6: Reducing code growth in genetic programming page 75

3.4.3 Multiplication/division nodes

Multiplication and division nodes are nodes of arity two with numerical children
and return type. In this case, the child nodes have two ways to affect the resu lt
of the parent node, and an influence value for both is calculated:

• The magnitude of the result of the child nodes will affect the magnitude of
the result of the parent node.

• The signs of the result of the child nodes will affect the sign of the result of
the parent node.

The magnitude influence of the child nodes is calculated after every evaluation,
and is averaged after all evaluations to obtain the total magnitude influence. If
the child nodes have numerical values N

1
and N

2
, the magnitude influence is

calculated as follows:

• If both N1 and N2 are 0, 1 or infinity, this evaluation is not used to calculate
the final magnitude influence.

• If Ni is O or infinity, the magnitude influence of child i is 1 and the magnitude
influence of the other child is 0.

• Otherwise, calculate the intermediate values M1 and M1 : if INil < 1, M; = 1/INil'
otherwise M; = IN,I. This operation ensures that M

1
and M

1
are both ~ 1, and

M1M2 > 1. The effect of a child node increases as its value moves further away
from 1. A value X has a similar effect on the magnitude of the multiplication
as the value 1/X, both modifying the other value of the mu ltiplication by a
factor X. Therefore, using the inverse of the value when it is less than 1 does
not affect the magnitude influence and allows us to compare the effects of
both children. The magnitude influence of child i is then given by equation
(6.1):

logM.
Magnitudelnfluence; = '

1og(M1 · M 2)

{6.1)

The total effect of the node is represented by log(M1 M1
), and the effect of node i

is represented by log(MJ. The sum of the magnitude influences of both children
is 1, and the influence of a child becomes O when M, (and thus INil) approaches
1. The magnitude influence of all evaluations is the average of these influences.
The sign influences of the children can be calculated by counting the number of
times a value was positive or negative (ignoring evaluations where the value is
0). If after N evaluations child i was negative Ni times, the sign influence of child
i will be N/N.

To calculate the total influence of a child, the magnitude influence and sign
influence must be combined. If a child has a negative value, the result of the
multiplication will change from a value A to a value -A, causing an equally large

page 76

change as the total magnitude of the multiplication. After a single evaluation,
the influence of child node ; is given by equation (6.2):

(6.2)

where Neg; is 1 if the value of child i is negative, and O otherwise. For example,
the influences of the children of (-1 * 100) are both 0.5. The sum of the
influences is again 1, and the total influence after all evaluations is again the
average of the single influences.
A child node can be removed if two conditions are satisfied:
• The magnitude influence of the child node is very small.
• The sign influence of the child node is either O or 1. If t he sign influence is o,

the parent node is replaced by the other child node. Otherwise, the parent
node can be replaced by a unary minus operator with the active child node as
a child, if this operator is present in the non-terminal set. Otherwise, the
node can not be removed.

If the first child node of a division is removed, the division node can be replaced
by a unary Inverse operator if this operator is present in the non-termina l set,
with as child the active child node. If this operator is not available, the node can
not be removed.

3.4.4 And/Or nodes

And nodes are nodes of arity 2 that have Boolean arguments and return value
and perform a logical And operator on its arguments. The child influences of a
single evaluation are calculated as follows:

• If both children have the same logical value, this evaluation is not used to
calculate the total influence after all evaluations.

• Otherwise, the child node with the True value will have an influence of 0, and
the child node with the False value will have an influence of 1. This is because
False dominates the result of the And node, setting the result to False
regardless of the value of the other node.

If a child node always has a value of False, the influence of this child node will
be 1 and the And node can be replaced by this node. If a child node is always
True, the And node can be replaced by the other child node. If both children
always have the same value, the And node can be replaced by either child node,
preferably the smallest one.
A similar approach can be used to calculate the influence of logical Or nodes,
changing the influence of True child nodes to 1 and False child nodes to 0.

Chapter 6: Reducing code growth in genetic programming page 77

3.4.5 ProgN nodes

ProgN nodes (where N is an integer value Larger than 1) are used to sequentially
execute N nodes that perform actions with side effects in an environment. To
calculate the influence of the child nodes of a ProgN node, three functions must
be provided by this environment. It should be noted that it may not be possible
to implement all three functions in complex real world problems. In these
complex environments, it will not be possible to calculate the influences of the
child nodes.

• GetState(): This function returns information about the current state of the
environment, such as the position of a robot, the current time, the number of
food items eaten, the number of completed goals, etc.

• Effect(Statel, State2): This function returns a positive value that represents
the amount of change between two states. Changes are for example changes
in position, and the difference between eaten food items or goals completed.

• Effort(Statel, State2): This function returns a positive value that represents
the effort that was needed to move from Statel to State2. This can be for
example the difference of time between the two states, or the number of
actions taken.

During the evaluation of the ProgN node, the following algorithm is executed:
State 0 = GetState()
for i = 1 to N do

Evaluate child node i
Statei = GetState()

The influence of every child i can then be calculated with equation (6.3):

(6.3)
l

,11 Ejfect(State;_i,StateJ n1 ,uence. =~---'-''--~---'--'--~--'--~
' C · (Ejfort(State;_1, State;)+ 1)

where C is a normalization factor that is equal to the total effect of the children
of the ProgN node, to ensure that the sum of the influences is 1, shown in
equation (6.4):

C = I, Effect(Statei-1,State;)

i=I Ejfort(Statei-l, State;)+ l

(6.4)

Effort is increased by one in equation 3 to avoid a possible division by zero.
When the effect between the eva luation of two child nodes is 0, the influence of
that child node will be 0. If the ProgN node contains K inactive child nodes (0 >

K > N - 1), the ProgN node can be rep laced by a Prog(N - K) node that contains
the active child nodes. If K = N - 1, the ProgN node can be replaced by the on ly
active child node. If K = N, the ProgN node itself if inactive and can be rem oved

page 78

by its parent node , or can be replaced by a No-Operation node if this node is part
of the terminal set.

3.5 Experimental results

In this section, the effects of removing inactive subtrees will be examined on the
6-multiplexer and symbolic regression problems. Both the effect on the average
size of the members of the population, and the number of generations needed to
find a perfect solution will be tested. The GP system uses a steady state
algorithm, where identical individuals are not allowed in the population.
Individuals with identical fitness value are ordered by size. The steady state
algorithm starts with a random population of a size N, and in every following
generation N new individuals are created, evaluated and added to the population.
Identical copies of existing individuals are rejected and in this case a new
individual is generated. At the end of the generation, the best N individuals are
retained in the population.
For all experiments, the following settings were used: population size 200, 70%
of the individuals are created by crossover, 30% by combination, and a 2%
chance that an individual is mutated when it is created. The mutation operator
replaces a random node with a compatible node. The combination operator
selects a random non-terminal primitive and creates children for this primitive
using selection, crossover or combination. A run is terminated when no solution
is found within 65 generations. The averages shown are taken over 100 runs, but
only the runs that have not yet found a perfect so lution are included in the
average.

3.5.1 6-Multiplexer

This is the standard problem described in paragraph 5.2 of chapter 5. The non­
terminal set is {And, Or, Not, If-Then-Else}, which means that all inactive nodes
can be removed. The syntactic replacement rule that (Not (Not X)) = X is also
used in the experiment, and the influence threshold used is 0.0.
When inactive nodes are not removed, a solution was found in 72% of the runs.
The maximum average size of the population climbs to 677 at generation 50, and
then Lowers again to 538 at generation 65. When inactive nodes are removed, a
so lution was found in 94% of the runs, and the average size of the population
rises to 194 at generation 41, and then drops to 129 at generation 65. The
average size drops at a given moment because at some point all individuals of
the population have the same fitness (only 32 different fitness values are
possible for the 6-multiplexer problem). At this moment, smaller individuals are

Chapter 6: Reducing code growth in genetic programming page 79

considered better then larger individuals, and therefore replace the larger
individuals. This happens in the case when introns are removed around
generation 40, and in the case when introns are not removed around generation
50. The delay in the second case is due to the fact that when introns are
removed the population tends to converge faster to an optimal solution , and
therefore reaches a point of identical high fitness values earlier.

1400

1200 -i--~~~~~ ~~rt1ttttr7~~~~~~ -------:~~ --a-...-~H

1000 ~~~~~~~-----ct,-1tm-t-1HIH-Httlt-Httt-~~~~---~ 11n-.ft.-1•~-~

11 22 33 44 55 0 11 22 33 44 55

Generation

[~~Average Size - Fitness I

0.7

Figure 6.1: Average best fitness, average size and standard deviation of the 6-
multiplexer problem without removing inactive nodes (left) and removing
inactive nodes (right).

A significant improvement on both size and convergence speed can be detected
in this example by removing the inactive subtrees, although the average size of
the individuals is still much larger than necessary to find a solution.

3.5.2 Symbolic regression without unary operators

This problem attempts to discover a symbolic representation of the polynomial x5
- 3i + x. The non-terminal set consists of the functions {+, - (binary), *, /}, and
the terminal set is {x}. Note that the unary minus and inverse operators are not
present, so not all nodes with inactive code can be removed. The search space is
more restricted though, which can lead to a faster convergence. The experiment
was run with influence threshold values of 0.01 and 0.05.
When inactive child nodes are not removed, in 83% of all runs a solution is found
in less than 65 generations. The average size of the elements in the populations
that have not found a solution grows to 870. When inactive code is removed with

page 80

an influence threshold of 0.01, a solution is found in only 72% of the runs, and
surprisingly the average size increases to 1144 after 65 generations. If the
influence threshold is increased to 0.05, the success rate drops further to 66%,
but the size also decreases to 851 after 65 generations. In this example,
removing inactive code has a negative effect on the convergence speed and no
effect or a negative effect on the size.

Cl>
N

-V------,------=-------.n-:--.;-=---1 0.75

0.7

in 1000 +I------

0.55

0 -ffimiiiimnmmrrnmirmmmnnm-rrmmmmmi'ii'rmmnmmnnmmmmrmmi'TI11fffrmffi'iiiiiiiiiimirminmmlfflfflT""""m!lffl,..,!- 0.5

0 11 22 33 44 55 0 11 22 33 44 55 0 11 22 33 44 55

Generation

I~- Average Size --Fitness [

Figure 6.2: Average best fitness, average size and standard deviation of symbolic
regression problem without unary minus and inverse operators, without
removing inactive nodes (left) , and removing inactive nodes with influence
threshold of 0.01 (middle) and influence threshold of 0.05 (right) .

3.5.3 Symbolic regression with unary operators

This problem tries to solve the same problem as in the previous paragraph, but
the no n-terminal set is extended with the unary minus and inverse operators. As
a result, all inactive child nodes can be removed. However, by adding these two
oparators, the search space has been increased and finding a solution becomes
more difficult. The syntactic rules that (-(-X)) = X and (Inv(Inv(X))) = X are also
used. All other settings are identical to the settings used in paragraph 3.5.2.

When inactive nodes are not removed, a solution is found in only 38% of the
runs, and the average size of the population of the unfinished runs at generation
65 is 916. If the inactive code is removed with a threshold of 0.01, the average
size drops to 674, but a solution is found in only 35% of the runs. Using a
t hreshold of 0.05, the average size drops further to 564, but the success rate also
decreases to 31%. In this example, removing inactive code has a positive effect
on code size but a negative effect on convergence speed. However, the average

Chapter 6: Reducing code growth in genetic programming page 81

size sti ll grows rapidly, well beyond the minimum size needed to solve the
problem.

0.8

0.75

0.7
~ ! 1000 -+---..rl=----nl!Hillit----J-------cti-H-------.1-------+ 0.65 2!

:t::
0.6 u.

0.55

0 -l;ij;;';:;,:,,,,,mmr,mm,nmm,mm,mmmn-m!mirmrmmmtmrrrrmrm-,mnmmmr.mrmi'immrm-mr=oimm==ml- 0 .5

0 11 22 33 44 55 0 11 22 33 44 55 0 11 22 33 44 55

Generation

j--Average Size --Rtness I

Figure 6.3: Average best fitness, average size and standard deviation of symbolic
regression problem with unary minus and inverse operators, without removing
inactive nodes (left), and removing inactive nodes with influence threshold of
0.01 (middle) and influence threshold of 0.05 (right).

3.6 Conclusion

In a first attempt to reduce code growth, a technique was developed to detect
and remove inactive code from programs. Inactive code was detected by
calculati ng the influence child nodes have on their parents. Child nodes with a
low influence were removed from the individual. This technique can detect
inactive and unexecuted code, as well as continuously defined intron behavior.
To calculate this influence, formulas were designed for several specific types of
nodes. The effect of removing inactive code on code growth was then tested
experimentally on the problems of 6-multiplexer and symbolic regression.
In the case of the 6-multiplexer problem, a significant increase in convergence
speed and decrease in average size was demonstrated by removing inactive
nodes. However, in the symbolic regression problem, a smaller decrease in size
was observed in some cases, but convergence speed decreased when inactive
subtrees were removed.
Even in the 6-multiplexer problem where the average size of the population was
significantly decreased, the average size would still grow beyond the size needed

page 82

to solve the problem. This is consistent with the results of Soule, Foster and
Dickinson in [98], where inactive code was replaced by non-executed code. The
approach described in this section is also able to detect and remove non­
executed code, which demonstrates that both inactive and non-executed code, as
well as continuously defined intron behavior, are not the only causes for the
rapid growth of the individuals' size. A similar result was also reported by Luke in
[57].

Also, when working with other problem domains, it may be more difficult of even
impossible to calculate the influence of some child nodes. To combat bloat
effectively, it is therefore necessary to use other approaches, possibly combined
with this technique. A comparison of combining this technique with several other
techniques is described in [70] and in the next section.

4 Limiting code growth

4.1 Introduction

The previous sections of this chapter introduced the problem of bloat and
investigated the causes and problems of bloat. Also, an attempt was made to
reduce bloat by removing what appeared to be the most important contributor to
bloat: inactive and unexecuted code. While this approach was somewhat
successful in some problem domains, it had almost no effect, or even a negative
effect in other domains. Even in successful domains, bloat was still considerable.
Therefore, it is necessary to consider other means to combat bloat.

In paragraph 4.2, related work on different techniques to reduce bloat will be
discussed. Paragraph 4.3 will present several methods, and these will be tested
and compared with each other in paragraph 4.4 by runni ng severa l experiments.
Finally, conclusions will be presented in paragraph 4.5.

4.2 Related work

Because the problem of bloat is known since the beginning of genetic
programming, a lot of work on different techniques to reduce code growth exist .
Koza [44] uses the following techniques to fight bloat:

• The individuals that are created for the initial populations are restricted to
depths between 2 and 6.

Chapter 6: Reducing code growth in genetic programming page 83

• Subtrees that are generated for subtree mutation are limited to a depth of 4,
and non-terminal nodes are selected as mutation points with a probability of
90%.

• The creation of new individuals is limited to a depth of 17. Since this puts a
hard limit on code growth, this may slow down the discovery of usefu l
features. Also, this approach tends to generate fuller trees, which may or may
not be advantageous for a given problem domain.

Another often used technique to slow bloat is the use of parsimony pressure
[98][99][113] . In this case, an individual's fitness function is a (linear)
combination of its performance and its size, where a larger size decreases the
fitness value. While this approach reduces the average size of the population, it
can also reduce the speed at which better solutions are discovered. Furthermore,
it is possible that the population will get trapped in a local minimum where the
combined fitn ess function is dominated by the size component and only
individuals of a minimal size exist [77][99]. An additional difficulty is that an
appropriate va lue must be found to combine raw fitness value and size. Zhang
and MUhlenbein [113] solve this by calculating a parsimony value (also called
Occam Factor) that depends on the complexity and raw fitness value of the best
individual of the current population. Iba et al. [36] use a minimum description
length principle to define the fitness of classifiers. This principle uses the size of
an individual, combined with the size of the incorrectly classified test cases. The
objective is to minimize this value.
In [94], Ryan describes a method where two populations of individuals are
maintained. The first population contains individuals that are selected based only
on their performance, while the second population contains individuals that have
a small size. Crossover is then applied between individuals from both populations
to create new individuals that are small and have a high performance.
Code editing is another way to reduce the size of individuals. In this approach,
inactive code is removed from the individual. However, inactive code is not the
only way to introduce bloat, as was demonstrated in section 3. By removing the
inactive code, other forms of bloat will begin to dominate the population.
Another way to reduce the size of individuals is to use a multi-objective method,
as described in [19] and [22]. When using this approach, the population of
individuals is restricted to those members that either have good fitness or a
small size, but where no member exist that has both better fitness and smaller
size. This set of individuals is called the set of Pareto-optimal solutions.
In [51], Langdon describes a simulated annea ling technique where the maximum
size of offspring depends on its parents' size. In the beginning of a run, the
resulting size is allowed to be considerably larger than its parents' size, but this
allowance decreases over time as the system "cools down".

page 84

It is also possible to introduce a form of hill climbing in t he crossover process
[51][81] , as described by Langdon and O'Reilly. Using this approach, individuals
created by the crossover operator are rejected if the result is not fitter or smaller
than its parents. This approach was reported to be vastly superior over the
simulated annealing approach, and restricts bloat considerably. If a strict hill
climbing approach was used, bloat disappears even completely, but more time is
needed to find better solutions. This will be confirmed in paragraph 4.4.
However, strict hill climbing tends to stifle evolution when a Local optimum is
reached.
Another method to modify crossover was discussed in [97] by Smith and Harries.
They introduce a same-depth crossover operator that selects subtrees of equal
depth when performing crossover. As a result, the depth of individuals can not be
changed because of crossover. While same-depth crossover eliminated bloat, the
success rate of the evolution was reduced too drastically to be useful. When
same-depth crossover was used in 50% of the time and standard crossover was
used otherwise, bloat was reduced, but the success rate was Lower as well.
In [5], Blickle compares the use of simple parsimony pressure, marking crossover
[6], explicitly defined introns (97], and adaptive parsimony pressure (113]. He
concludes that the use of explicitly defined introns and the marking crossover
offer no advantage over the use of a simple parsimony pressure in continuous
problems. On the other hand, the marking crossover was superior in discrete
problems. These results are comparable to the results obtained in paragraph 3.5
of this chapter. However, all methods were successful in reducing the size of
individuals in the population.
In [64][84][85], Poli and McPhee develop an exact theory of bloat. When the
exact causes of bloat are understood, it would be possible to construct genetic
operators that are unbiased towards creating bloat. However, more research on
this subject is needed.
In [50][52], Langdon and Poli examine bloat in dynamic environments. The
"defense against crossover" theory of bloat indicates that children having an
identical behavior as their parents is an evolutionary advantage. As a result, in a
dynamic environment where the requirements of survival can change every
generation, this effect should disappear. Their experiments indicated that in this
case bloat was indeed reduced, but the generalization capability of t he resulting
individuals decreased as well. This confirms that defense against crossover is part
of the cause of bloat.

Chapter 6: Reducing code growth in genetic programming page 85

4.3 Methods to reduce code growth

In this section, three methods to reduce bloat are presented: removing inactive
code, hill climbing and dynamic size limiting. The effect of these methods on the
growth of the average size of the population and the convergence speed wi ll be
examined in pa ragraph 4.4.

Removing inactive code: This is the method described in section 3 of this
chapter, where subtrees that do not contribute significantly to the result of the
individual are removed.
Hill climbing: This is the approach used in [51] and [99]. The method was
described in paragraph 4.2.
Dynamic size limiting: In this new approach developed by us, new individuals
that are larger than a value MaxNewWeight are rejected. MaxNewWeight is set at
the beginning of every generation, and is equal to C*CurrentBestWeight, where
CurrentBestWeight is the weight of the current best individual of the population,
and C is a constant. The best individual of a population is the individual with the
highest fitness value. When several individuals have an identical fitness value,
the smallest individual is the best one. C must be larger than 1, and typical
values are 1.33 and 1.5.

4.4 Experiments

To compare the different optimization techniques, the domain of symbolic
regression was used. In all experiments, the objective was to discover the
function x5-2K +x. The terminal set only contained the variable x, and the set of
non-terminal nodes was {+, -, *, /}, where '/' is protected division. The
population size in every experiment was 200, and a maximum of 100 generations
were calculated. The three different optimization techniques (and combinations
of those techniques) described above were tested on this domain. Child nodes are
considered inactive when their influence value is below 0.05. For every
experiment, the algorithm was run 50 times, and the averages of those runs are
displayed. A run is terminated when a correct solution is found, or after 100
generations. In the graphs, the individual's average size at every generation is
shown, as well as the number of runs at every generation that have not yet
discovered an optimal solution.

page 86

4.4.1 No optimizations

Figure 6.4 shows the result when no optimizations are used . As expected, the
average size of the individuals rises rapidly, up to 650 nodes at generation 100.
In 74% of the runs, a solution is found within 100 generations.

50--------------·---,- 700

40 +------~---------- - ~ - ,- 600

~ ~
~ 30 400 ~ - unsolved
0

§ 20 t-----------=~~~;;;;;;;;;;;;;;;~- - -----, 300 iii --Avera eSize
........ ---.1--200

,o 100

O +rmirmmnmTm'l'!1'1cmmmm-mrrrrmm"ITITl'Tm-rrrmrm"IT!Tl'TITmTmrn1nmTmml- 0

C) '\ "I), '1," '1,'o ,,_,0 1)-'1, r,.'1> 0<o <o":) '\() '\'\ ~ '1>" C/)'o

Generation

Figure 6.4: Result when no optimizations are used.

4.4.2 Removing inactive code

700

1~ ------'~-------- - - --1----1 600

~ ~

~ 30 400 Na, - Unsolved
0 § 20 -l------- ---=~~!,,,,l(~ - - - --=t 300 iii --Avera e Size

....... --....... ~1 200
10 100

O -frmmm,rmm-m,r.rrrrrrrmmmTITTTTTTTmTmrmmm-T1Trmmrmmm=mmirmT1Tr Q

C) '\ "t,. '1," '1,'o ,,_,0 b,.'1, r,.'<> 0<o <o":, '\C) '\'\ ~ 0" 0:,'<>

Generation

Figure 6.5: Result of removing inactive code.

In figure 6.5, the effect of removing inactive code is demonstrated. The results
are only slightly better than the non-optimized case. Initially, the average size
rises more slowly, but sti ll rises to 625, and 74% of the runs find a solution. This

Chapter 6: Reducing code growth in genetic programming page 87

demonstrates that inactive code is only a small part of the cause of code growth
in the domain of symbolic regression.

4.4.3 Hill climbing

Figure 6.6 shows the result of using the hill climbing approach. The average size
of the individuals is reduced significantly to 90 nodes after 100 generations, but
in only 70% of the runs a solution is discovered. This is consistent with results
reported by Langdon in (51], indicating that hill climbing slows down evolution
when a local maximum is reached.

50 100
45 - ! 90

40 - ! 80

35 70 ,,
II) 30 - - 60
>
0 25 I 50
(/)

20 C: 40
::,

15 - 30
10 - / 20
5 - ; 10
0 , .. I 0

C) '\ .._"o< 'V re, t?,<o 'o<'l, ~ <olo lot?, '\C) "" ~ 0:i" 0;i'o

Generation

Figure 6. 6: Result of hill climbing optimisation.

4.4.4 Hill climbing and removing inactive code

--Unsolved II)
N
en -Average Size

When code editing is combined with hill climbing, the results shown in figure 6.7
are achieved. The average size is reduced significantly to 60, but the chance to
find a solution decreases to 54%.

4.4.5 Dynamic size limiting

In this case, the size of new individuals is restricted to 1.333 times the size of
the best individual of the population (or to a size of 20 for the initial
population). For small sizes of the best individual, the new maximum weight is
set to at least 2 more than the size of the best individual, to ensure that
evolution is not stopped (because the minimum increase in size of a binary tree
is 2) . Figure 6.8 illustrates the result of this approach. The average size of the
individuals is reduced even more compared to the hill climbing approach, to a

page 88

maximum size of 32. Additionally, all of the 50 runs were completed successfully
at generation 74.

50
45
40
35

--....
~~

'
~

70

60

50

i 30
o 25
:!! 20
::, 15

/ '-- 40 - Unsolved -~

10
5
0

,-/

/

rn ' "

~

'-

' " " ' ' " ' " ' " ' '; ' "

C) '\ "'>< 'l.,"° ~ 0;,<o ~ ~OJ <ofo fo<>:, '\C) ""' q,'>< OJ" OJ'b

Generation

30 "' --Average Size

20

10

0

Figure 6. 7: Result of combining hill climbing and removing inactive code.

4.4.6 Dynamic size limiting and hill climbing

By combining these two approaches, the average size of the individuals is
reduced even more (to a size of 17), but the success rate decreases to 70%.
These results seem to confirm that hill climbing is a successful way to reduce the
size, at the cost of finding solutions slower. These results are shown in figure
6.9.

'C
CII
>
0
(I)
C:

::,

50 -,._,~---~---~~~-----,- 35
45 - 30

-l--""11------ --~ >-----"r- - - - --------j 40 -
35
30
25
20
15
10
5
0

-l----l--- ----1---- - -'v'"~----=t 25

20 ~ --Unsolved

15 in --Average Size

+-- - ~ ~-------- --- - -~ 10

5

L ""'"'"'"""""""'""""""'=~==~a,,,=rmfflT,,,,.J. o

C) '\ "'>< 'l.,"- ~ 0;,<o ~ ~ <ofo fo<>:, '\C) "'" q,'>< OJ" OJ'b

Generation

Figure 6.8: Result of dynamic size Umiting.

Chapter 6: Reducing code growth in genetic programming page 89

50 20
~ 45 18

'
40
35

al 30
~ 25 g
C 20
::> 15

10
5
0

1\/
~ ~

'

.

"'\..
\. --,.__

'-,,,__

.. " " ' " " ' " ""

~ '\ ~ ~" ~'o (':)<-, ~ ~ <-,'<i '<if':) '\~ ,(I ~ OJ" OJ'o

Generation

16
14
12

Cl)

10 .!::!

8 "'
6
4
2
0

-unsolved

--Average Size

Figure 6.9: Result of combining dynamic size limiting and hill climbing.

4.4.7 Dynamic size limiting and removing inactive code

Combining these two optimizations gives similar results to dynamic size li miting,
as shown in figure 6.10: the average size is reduced to 28, and 98% of the runs
are successful after 61 generations. Only a single run failed to find a solution in
less than 100 generations.

"C
GI
>
0
rn
C
::>

50
45
40 +---l-- - - - - --,,C.~=>=,.J'---- - - - -----=r 25
35
30 -
25 -

20

,c___*'"- - - - -------- -+ 15 -~
20 - "'
15
10
5
0

5

c = ==~==;;;;;;;;;;;;;;;;io
~ '\ .,_b< rt- ~'o (':)<-, b,.~ b,.OJ <-,'<i '<if':) '\~ '\'\ ~ OJ" OJ'o

Generation

- -Unsolved

--Average Size

Figure 6.10: Result of combining dynamic size limiting and removing inactive code.

page 90

4.4.8 Combining all techniques

When all three optimization techniques are combined, the results of figure 6.11
are obtained. The average size of individuals remains small, but the success rate
is only slightly better than the results of on ly combining dynamic size limiting
and hill climbing or combining hill climbing and removing inactive code.
However, it is significantly worse than the result of combining dynamic size
limiting and removing inactive code. The combination of all techniques seems to
be too restrictive to discover improvements.

"Cl
CII
>
0
Cl)
C
::,

50
45
40 ' \...../
35
30
25
20
15

""'- 12
-l----------~-----------1

~ 10 ~ i-----------~ ~'-\..--~1 B ~

"'- 6

10 -·1-------------------< 4
+--- - - ------------~ 2 5

0 -

o '\ ~ rv ~ '!>0 ~'v ~ 0ro ro'?J '\o "" ~ ~" ~<o

Generation

... 0

--Unsolved

- - Average Size

Figure 6.11: Result of combining all three optimization techniques.

4.5 Conclusions

In this section, a new approach to reduce bloat in genetic programming was
introduced, and compared with other approaches. This technique imposes a
dynamically changing maximum size on newly created individuals, based on the
size of the best individual of the previous generation. This approach has benefits
over other approaches because it is very simple and even improves the speed at
which a solution is found in the symbolic regression test case. The technique will
also be used later in this thesis on the AI planning test case and the Robocup
domain. In these cases, the technique also maintains a small average population
size.
A possible concern about the dynamic size limiting technique is that it may stop
evolution when a small best individual is found, and better individuals are only
possible for a size that is larger than the allowed limit. Therefore, when no better
individual is discovered for several generations, the size limit is increased

Chapter 6: Reducing code growth in genetic programming page 91

gradually until an improvement is found. Surprisingly, when evolution failed to
find better individuals for several generations (around 20) and the maximum size
Limit was so large that it was essentially no longer present. bloat was still not
observed, even after a large number of generations.
When excessive code growth is eliminated, it becomes possible to evolve a
population over a Large number of generations without becoming unmanageably
Large. However, evolution over a Large number of generations often introduces
the problem of premature convergence. In this case, a highly successful
individual manages to create a large number of offspring that resemble their
parent. As a result, a large part of the population consists of individuals that are
very similar to each other. When this happens, the diversity of the population
has been reduced too much and creating original new individuals becomes very
difficult. Therefore, it is necessary that a method is used to maintain the
diversity of a population. This issue will be discussed in the next chapter.

Chapter 7: Measuring and
maintaining the diversity of a
population

1 Introduction

An important problem encountered in evolutionary algorithms is that after
several generations, the individuals of the population begin to resemble each
other, or put in other words: the diversity of the population has decreased. This
happens when a highly fit individual is used as a parent for most of t he new
members of the population, which also have above average fitness. As a result, it
is possible that genetic material, needed for a complete solution, is removed
from the population. If this happens, the population has converged prematurely.
To counter this problem, the size of the population is often set to a large value.
In this case, it takes Longer before the diversity of the population is Lost.
However, evaluation of a generation will also take longer in this case. Another
solution is to use a method to increase the diversity of a population. Such a
method must perform two tasks. First, it must be able to determine the similarity
of the individuals in the population. This is usually done either with a distance
metric between two individuals, or with a distance metric between an individual
and the rest of the population. Secondly, the method must remove those
individuals that are too similar to others, and/or add individuals that are
different from the existing individuals of the population. In this chapter, we
develop a method that measures the similarity of individuals with the rest of the
population, and removes individuals that are too similar [71].

2 Related work

A typical method used in genetic algorithms to increase the diversity of a
population is called fitness sharing [27] . When using t his approach, similar

Chapter 7: Measuring and maintaining the diversity of a population page 93

individuals have to ,,share" their fitness value. This means that the fitness J; of
an individual is reduced by a value mi, called a niche count. This value is defined
by equation {7.1):

m; = f s(d(i,J))
(7.1)

j ; \

In this equation, p is the population size, d is a distance metric between the
individuals i and j, and S is a decreasing function, called the sharing function. A
typical sharing function is given in equation {7 .2):

S(d)={1-(%J ifd~O"
0 if d > a

{7.2}

Here, a is the niche radius that is user-specified, and a is typically set to 1.
Fitness sharing causes a decrease in the fitness of large groups of similar
individuals. As a result, some of these individuals will be removed from the
population and the fitness of the other members of the group will increase.

The disadvantages of this approach are that calculating the distance between all
individuals is time consuming (O(p2)), and it may be difficult to find an
appropriate value for a.

2.1 Distance measures for genetic programs

In genetic algorithms, the distance between two individuals can be measured by
calculating the hamming distance between their bit string representations. In
genetic programming however, where a variable length representation is used,
this is not possible and more complex methods have to be employed.
In the time complexity formulas in this paragraph, n represents the average size
of individuals and p represents the population size.
Keijzer [40] defines the distance between two individuals using the directed
acyclic graph representation discussed in [29] and in section 6.3 of chapter 5.
The distance is defined as the difference between the number of different nodes
of the union of the two individuals and the number of subtrees the individuals
have in common, shown in equation (7.3).

t5r1a
8
(X,Y) = ID(X) u D(Y)I-JD(X) n D(Y)I

(7.3)

page 94

In this equation, D(X) represents the number of different subtrees present in X.
This measure can easily be calculated when using the directed acyclic graph
representation in O(n) .

Mawhinney uses the Unix diff program to calculate the difference between
individuals [62]. This gives a rough measure of the syntactic similarity between
two individuals. Individuals that are similar to other individuals are replaced by
new random individuals. To calculate this similarity measure, every combination
of two individuals is compared using the diff function. Thus, comparing two
individuals has a time complexity of O(n), and processing the entire population
has a time complexity of O(p2n) .

In [41], Keller and Banzhaf use the "edit distance" to measure the difference
between two individuals. This distance measures the number of primitive edit
operations needed to transform one individual into another. The primitive actions
used are divided in two categories. The first category involves t he adding or
removing of a child node, and the second category involves modifying the type
of a node. A two-dimensional vector can then be associated with every
individual, representing the number of operations needed to transform an
individual with only a single node to the given individual. The first value of the
vector represents the number of operations of the first category, and t he second
value the number of operations of the second category. Consequently, every
individual of a population can be represented by a point in JR.;

0
within the

bounding rectangle containing all these points. The Largest area rectangle
containing none of these points is calculated. The diversity of the population is
then represented as 1 - (area of largest area rectangle)/(area of the largest
possible bounding rectangle). When the diversity of a population drops below a
threshold, individuals that have the same position vector as another individual
are replaced by a new individual that approximates the position of the largest
area rectangle. Processing the entire population has a time complexity of
O(p* (n + log p)).

In [91], Rosca uses the fitness and "expanded structural complexity" of
individuals to determine similarity between individuals. Because t hese features
are computed during the evaluation of the individual without significant extra
cost, there is no added time complexity for using this method. However, because
structurally different individuals can still have identical fitness and/or expanded
structural complexity, this method is not very accurate in detecting similar
individuals.

Nienhuys-Cheng [76) defines a metric between two nodes p and q with arity of n
and m respectively in equation (7.4):

Chapter 7: Measuring and maintaining the diversity of a population page 95

{

I if p =t= q or n =t:- m

d(p(si,s2 , ... ,sJ,q(t1,t2 , •.• ,tJ)= ...L ~d(t) ·t _
Zn L, S;' ; 1 p - q

i=I

(7.4)

This distance between the individuals T1 and T2 can be computed in
O{min(ITJIT2I)), where IT;I is the number of nodes of Ti.
Ekart uses a method based on the structure of individuals to measure the
difference between them [23]. The method works in three steps:

• The two individuals are placed on an identical tree structure, adding empty
child nodes where necessary.

• The distances between the types of the nodes at identical position in t he
identical tree structure is calculated.

• These distances are combined in a weighted sum to result in the distance
between the two individuals.

Only ordered binary trees were considered, because the time complexity of
aligning unordered trees is exponential. In this case, comparing two individuals
has a time complexity of O(n). The diversity of a population is defined as the
mean distance of two individuals of that population, and has a time complexity
of O(p2n). The fitness of a population is maintained through fitness sharing:
individuals close to each other share the same fitness value, meaning t heir
fitness decreases as more individuals are in their neighborhood. This causes other
(and therefore more diverse) individuals to be selected by genetic operators,
which tend to create new individuals in the less populated environments and
remove individuals in crowded areas.
Most of the distance measures between two individuals described in this
paragraph are based on the syntactic similarity between two individuals. This
similarity is determined by comparing the tree representations of the individua ls
from root node to leave nodes. As a result, two individuals that have a simi lar
upper part are closer to each other than two individuals with different types of
root node. However, two syntactically identical upper parts of a tree can have
completely different behaviors, depending on the results of the lower parts of the
trees. After a crossover operation between two individuals, the upper part of one
of the individuals will be transferred to the new individual, together with some of
the lower part of the other individual. If the transferred subtree is not an intron
or identical to the replaced subtree, the behavior of the new individual will
probably be different from their parent. It is therefore important that the
diversity of the lower subtrees in the population is also maintained. Otherwise,
crossover may tend to produce similar structures because the replaced subtrees
will often be similar. A method that determines the diversity of these Lower
subtrees will be introduced in section 3.

page 96

2.2 Other diversity measures for genetic programming

While using a distance measure between individuals to measure the diversity of a
population allows the re-use of methods designed for genetic algorithms, other
methods are possible as well. This includes our new algorithm, which will be
described in the next paragraph. In the remainder of this section, we will
describe the work related to these diversity measures.
In [52] , Langdon and Poli detect similar individuals by comparing their fitness
values on identical test cases. A fitness penalty was added to offspring t hat was
similar to their parents. Using this technique, the diversity of the population was
increased and bloat was reduced by 50%, while performance decreased only
slightly.
In [111], Wineberg and Oppacher measure the randomness of nodes at given
positions (called a locus) in an individual. Randomness of a given locus is
calculated using the entropy measure in equation (7 .5):

(7.5)

This measure is called the genie diversity of a locus. In this equation, L is a
random variable over the range R = {g

1
, g

2
, ... }, where R is the alphabet of the

possible genes. J; = prob(L = g) is the frequency of a gene g; occurring at the
specified node, looking across the entire population. The diversity of the
individual is then calculated as the average of the genie diversity across all loci
of the individual.
Rosca [92] also uses entropy as a measure of diversity of a population. In this
case, the population is divided in a set of partitions that have similar behavior,
for example an equal number of hits in a parity problem. The va lues J; of equation
(7.5) are the fractions of individuals that are part of the partition i.

In [19], De Jong uses a multi-objective function to reduce bloat and increase
diversity simultaneously. The distance measure between two individuals that was
used is the sum of different nodes at overlapping locations divided by the size of
the tree, as in equation (7 .4).

3 Sharing identical subtrees

The distance measure between an individual and the rest of t he population
developed by us relies on the directed acyclic graph representation of a
population [29]. In this representation, when two individuals share an identical

Chapter 7: Measuring and maintaining the diversity of a population page 97

subtree, this identical subtree will be represented by the same object in memory.
For example, in figure 7.1 the individuals (3*(2+X)) and ((2+X)-X) share the
identical subtree (2+X). Also, the node (X) occurs two times in the second
individual and is also represented by the same object.

Figure 7.1: Sharing identical subtrees between individuals with the directed acyclic
graph representation.

Using this representation has several advantages. Obviously, by re-using identical
structures, the memory required to store the entire population decreases. Also,
when the effects of the nodes have no side effects when executed, the results of
calculations of shared subtrees can be re-used, potentially saving significant
processing time. However, the most important advantage related to diversity is
that it is easy to calculate the similarity between individuals. This is
demonstrated in the next section.

4 Calculating the added diversity of an
individual

Most of the techniques discussed in section 2 use a distance measure between
two individuals, and determine the diversity of the population by ca lculating the
distance between every pair of individuals in the population. The time complexity
of this operation is O(p2), where p is the population size. This has to be
multiplied with the time it takes to calculate the distance measure, which is
usually O(n), giving a total time complexity of O(np2). In this case, n is the size
of the individual.
The algorithm presented here compares an individual to the entire set of
previously processed individuals, and has a time complexity of O(np). The only
extra cost needed for the algorithm to work comes from the need to store the
entire population as an acyclic directed graph. This increases the cost to

page 98

construct an individual from O(n) to O(n log n). As a result, the time needed to
construct, evaluate and remove individuals with low diversity is O((n log n)p).

After a generation has been completed, the algorithm will process the entire
population and remove individuals that do not add sufficient diversity to it. The
algorithm is presented below:

* Sort the individuals of the population by fitness. I f
two individuals have equal fitness, order them by size
(smaller is better).
* Unmark all nodes of all individuals.
* Iterate over a ll indivi duals, starting with the fittest:
* The added diversity of this individual=

(number of unmarked nodes)/(number of nodes)
* If the individual has sufficient diversity, mark all

nodes of the individual . Otherwise, remove it from the
population.

Because the identical nodes of individuals are shared between all the
population's individuals, marking one individual's nodes will mark nodes of
several individuals in the rest of the population. It is therefore possible to
efficiently compare an individual with all previously tested individuals.
The algorithm tests how much new genetic material would be added to t he
population if the individual would be added to the population. Because no nodes
are marked at the beginning of the algorithm, the fittest individual will always
have a diversity of 1 (the highest value), and will always be accepted. If an
entire individual is a part of a fitter individual, its fitness wi ll be O (the lowest
va lue) and it will always be rejected.

Figure 7.2: Nodes are marked to determine the similarity between individuals.

As an example, the similarity between the two individuals described in figure 7 .1
will be determined. First, because the first individual's diversity is 1, all its nodes
will be marked. Because the similar nodes of the two individuals are shared, this
means that these nodes in the other individual are marked as well (see figure
7.2). To calculate how different the second individual is from the first, the
marked nodes in the second individual are counted (4 in t his example, because

Chapter 7: Measuring and maintaining the diversity of a population page 99

the X node occurs twice). The second individual contains 5 nodes, so the
similarity of the second node can be defined as the number of marked nodes
divided by the total number of nodes (in this example 0.8).

Note that this similarity measure is not a distance measure, since the similarity
between a and b is not equal to the similarity between b and a. In the above
example, if the second individual's nodes are marked first, the simi larity of the
first individual would be 0.6 instead of 0.8 (see figure 7 .3).

Figure 7.3: Similan'ty measure is not symmetric.

5 Removing individuals with low diversity

Determining when an individual will be allowed to remain in the population
depends on the added diversity of the individual, and on its fitness. Very fit
individual do not require much added diversity. Also, very unfit individuals that
have much genetic code that does not appear anywhere else in the population
can also be allowed in the population, because they introduce variety.
In our current implementation, an individual is accepted in the population when
equation (7 .6) is satisfied:

(
.)D

D
. . l
iversity 2'.

PopulationSize

(7.6)

In this equation, Diversity is the diversity calculated in section 4, D is a constant
used to balance the effect of diversity versus fitness, and i is the rank of the
individual in the population, where the fittest individual has a rank of 0. Using
this criterion, the fittest individuals do not require much added diversity, while
the lowest fitness individuals are only accepted when their diversity is close to 1.
In the experiments performed, the constant D was set to 1. Varying this constant
between 0.5 and 2 did not seem to affect the results significantly.

page 100

6 Experimental results

The effect of the diversity measure was tested on the problems of symbolic
regression (described in section 5.1 of chapter 5) and AI planning (described in
section 5.4 in chapter 5). The experiments also used the removal of inactive code
and dynamic size limiting optimizations described in chapter 6.

6.1 Symbolic regression

The target function used was x5
- 2x3 + x, using the function set {+, -, *, /, x}.

The following parameters were used: 70% crossover, 30% combination, 1%
mutation, population size 200. A total of 100 runs were performed for a
maximum of 100 generations or until a perfect solution was found. Figure 7.4
lists the number of unfinished runs after a given generation with and without
using the diversity measure.

100 -

90 -

VI 80
C:
::, 70 ...
'O 60 !
Q) 50 0.
E
0

40
<.> 30 -C:
:::,

20 -

10 -
0 .

Generation

- without diversi measure --with diversity measure

Figure 7.4: Effect of diversity on symbolic regression problem.

When the individuals with low diversity are removed from the population, a
solution is discovered faster (at generation 21, 77% of the runs have found a
solution versus 56% when increasing diversity). However, the overall success rate
is similar {97%). It should also be noted that in early generations, t he diversity
measure removes most of the individuals from the population and keep only

Chapter 7: Measuring and maintaining the diversity of a population page 101

between 5 and 10 individuals. Because these individuals still contain almost all
the genetic material of the entire population, new combinations of genetic
material will be discovered faster. This leads to the faster convergence observed
in the experiment. These results also suggest that this diversity measure allows
the use of a much smaller population size, which may be very useful in domains
where evaluation of individuals is extremely time consuming.

6.2 AI planning

The test case used was the briefcase problem, with 5 objects, 5 briefcases, and 5
locations. The non-terminal set was {put_in , take_out, move, prog2, prog3}, and
the terminal set was {01, • • • , 05, l 1, ... , L5 , 81, ... , 85}. The settings used were 30%
crossover, 30% mutation, 40% combination, and a population size of 200. A total
of 100 runs were performed, to a maximum of 200 generations or until a perfect
solution was found. Figure 7 .5 lists the results of using the diversity measure on
this problem. When the diversity measure was used, all the runs were able to find
a so lution after 181 generations, while otherwise only 72% of the runs were
successful after 200 generations. The convergence speed was also significantly
higher in this case. It is not known whether the runs that did not use the
diversity measure would eventually all find a solution.

100
90

VJ 80 -
C
:, 70 ...
'O 60 2

50 : Q)

ii
E 40 '
0
I.) 30 C:

::::i 20 -

10
0

Generation

Without diversity measure --with diversi measure

Figure 7.5: Result of using diversity on the AI planning problem.

page 102

7 Conclusion

This chapter introduced a method to measure the diversity an individua l adds to
the rest of the population. This measure concentrates on detecting similar
subtrees in the lower parts of the tree representation of an individual. The
method is based on the directed acyclic graph representation of a population to
efficiently determine the similarities between two individuals or between an
individual and an entire population. When using the diversity measure to remove
individuals that do not contribute enough new genetic material to the
population, an increase in convergence speed was observed on the problems of
symbolic regression and AI planning. This appears to indicate that the
evolutionary process is more efficient at discovering new st ructures. Moreover,
the use of the diversity measure to remove individuals from the population also
leads to much smaller populations. These smaller populations were sti ll able to
find equally good solutions as fast or even faster as a large population. This
suggests that the use of the diversity measure is a good way to reduce the
population size, which is very helpful in domains where the evaluation of
individuals is very time consuming.

Chapter 8: Applying evolutionary
computing to Robocup

In this chapter, we will use genetic algorithms and genetic programming to train
a team of agents in the Robocup domain, described in chapter 4. All players of
the team will be controlled by an identical agent program, but their behavior may
depend on their player number. For example, the position of a player is
determined by this number, as shown in figure 8.1. The use of identical programs
has the advantage that any player can perform the actions of any other player
when necessary, and all the agents can be trained simultaneously.

Figure 8.1: Positions of players depending on their player numbers.

When training a team, every player of the team must learn when to execute
which action, depending on the detected and predicted state of the environment.
This process is called action selection, and is shown in figure 8.2 . Various
techniques can be used to learn action selection . Two techniques will be
described in this chapter. In section 1, we will use a reactive action selection
network, linking the results of sensor inputs and predictions directly to action

page 104

selection. The weights of the links in this network can then be trained using a
genetic algorithm. In section 2, we use genetic programming to create a program
that calculates a movement or kicking vector to control a player.

Current
world state

Predicted
world state

Action
selection Action

Figure 8.2: Action selection uses current and predicted world states.

1 Using genetic algorithms to train a reactive
action selection network

In a first attempt to implement action selection, an action selection network was
developed. This network consists, somewhat like a neural network, of nodes that
accept and transmit values. The terminal nodes of this network transmit a value
that depends on the received sensor information of t he player. Other nodes
process the values from other nodes and combine this to a new value. Some
nodes can execute an action when their value exceeds a threshold.
This structure has the following advantages:

• Because the terminal nodes are directly linked to the sensors of a player, the
action selection network responds immediately to changes in the
environment.

• It is possible to construct several behavior groups of related actions. Different
behavior groups can be divided by a node that activates a group based on the
result of a sensor or other node.

1.1 Description of the action selection network

The action selection network is shown in figure 8.3. Every link in the network
contains a weight value, by which the output of a node is multiplied. These
values can be trained by a genetic algorithm. The nodes in the second column
represent all the possible actions of a player. Terminal nodes are directly linked
to sensors, or predictions of the sensor values. Mutex nodes will activate the
child node that returns the highest value, and deactivate the rest. Switch nodes
will activate one of two child nodes, depending on the value of a third child

Chapter 8: Applying evolutionary computing to Robocup page 105

node. The other nodes will be discussed briefly in the next sections, while a more
detailed description is available in [67].

PlayerMissing

BallMissing LookForBall

Interc ept

Mutex
Ball Distance MoveBack

PlayerPosition DoNothing

Attacking MarkPlayer

PlayerMarked MoveToPass

MoveFree

MoveWithBall

Threatened MoveAway

Vision Strategy

GoalFree LongPass

ShootGoal

Figure 8.3: The action selection network. Actions are listed in the second column.
Terminal nodes are directly linked to sensors.

1.1.1 Sensor nodes

The terminal nodes of the network indicate the current state of the environment
of a player. These nodes are:

• BallMissing: This node returns a positive value when the ball has not been
observed for several time steps. As the current position of the ball plays an
important role in the action selection, it is necessary that accurate
information about its position is known . The player will start Looking for the
ball if this node is active.

page 106

• PlayerMissing: In some rare cases, it is possible that insufficient reference
points are observed to determine the position of the player on the fie ld. In
this case, the player will turn around to look for reference points.

• BallDistance: This node returns the distance from the player to the ball.
• PlayerPosition: Each player is assigned an area on the field in which that

player is supposed to play. This area depends on the player number assigned
to the player when connecting to the soccer simulator. When the player is
inside this area, the node will return the distance of the player to the edge of
the area . When the player is outside this area, a negative value of minus the
distance to the edge of the are will be returned. This node encourages a
player to stay inside its assigned position.

• Attacking: This node indicates whether the player is currently involved in an
attack. If the player is attacking, this node will reduce the effect of the
PlayerPosition node to ensure that the player will not suddenly turn around
when moving with the ball to the goal. This node introduces persistence to
the action selection.

• PlayerMarked: This node actually consists of 11 nodes, each one observing an
opponent. If a teammate is close to the targeted opponent, and the opponent
is in a position to receive a pass, that opponent is considered to be 'marked'.
Otherwise, this node will return a positive value and this player may decide to
mark the targeted opponent.

• GoaLFree: This node returns a value that indicates the number of players
standing between this player and the goal. If this value is low enough, the
player may decide to shoot at the goal.

• Threatened: This node returns the number of opponents that are close to this
player. The player may decide to pass the ball to a safer teammate when it is
threatened by several opponents.

• Vision: This node uses the vision buffer, discussed in section 3 of chapter 4,
to determine how safe it is to move or pass, based on the calculated danger
values.

• MoveToPass: When a player gives a pass to a teammate, a message is sent to
this player to notify him that a pass is given. If a player receives such a
message, this node will return a positive value, activating t he behavior that
will cause the player to move to intercept the ball.

• MoveAway: This node is activated when the player is standing in the way of a
teammate that controls the ball. This causes the player to move away from the
ball to allow the teammate to move along.

• MoveFree: When the player is marked by an opponent, this node will be
activated. The player will then try to move away from the player so it may
receive a pass if necessary.

Chapter 8: Applying evolutionary computing to Robocup page 107

• HasBall: This node is activated when the player controls the ball and enables
the behaviors that are only possible when the player controls the ball, such as
passing the ball.

• BallPosition: This node is activated when a teammate controls the ball. This
node splits the offensive behaviors from the defensive behaviors of the player.

1.1.2 Behavior nodes

Some of the nodes in the action selection network have a behavior attached to
them, that is executed when the node is active. These nodes are:

• LookForBall: This behavior will cause the player to turn around, looking for
the ball. However, when the MoveBack behavior is also active, these behaviors
will interfere with each other. A negative connection to this behavior will
prevent it from interfering with the MoveBack behavior.

• Intercept: This behavior will try to intercept the ball.
• MoveBack: This behavior will cause the player to return to his position on the

fie ld when it is not currently involved in an attack.
• DoNothing: When the player is at its position and the ball is far away, it does

not have to do anything.
• MarkPlayer: This behavior will cause the player to mark an opponent by

moving between the opponent and the ball. This will make it difficult for the
opposing team to pass to that opponent.

• MoveWithBall: This behavior will cause the player to dribble with the ball in
the general direction of the opponent's goal. This behavior can be stimulated
when the player is in its position area, the player is not threatened and a safe
direction is available in the vision buffer.

• Strategy: Sometimes, a group of players will execute a predefined sequence of
actions such as a one-two combination. These sequences of actions are part of
the highest layer of learning discussed in section 2.1 of chapter 4. This
behavior determines when such a sequence will be started. While executing
such a sequence, the action selection network is not used until the action is
completed or has failed.

• LongPass: This behavior determines when a pass is given to another player.
This depends on the safety values calculated in the vision buffer.

• ShootToGoal: This behavior decides when a shot at the goal is attempted.
Two criteria must be met: the goal must be close enough, and the number of
players between the goal and the ball must be small.

page 108

1.2 Training the action selection network

When all the behaviors are implemented and the action selection network is
constructed, the action selection itself must be trained by assigning weights to
the links in the network. In the action selection network described in the
previous sections, it is not hard to determine whether nodes have positive or
negative effects on other nodes. Positive effects are represented by positive
weight values, whi le negative effects use negative va lues. However, the actua l
magnitude of these weights is much more difficult to estimate. If t he weights of
the links are stored as a string of numbers, genetic algorithms can be used to
train these weights.

1.2.1 Representation and fitness function of the genetic algorithm

The genome representing the weight values of the action selection network
consists of a fixed-length string of floating point values. The primitive elements
of the string are floating point numbers, so crossover points will never be
selected inside a value. Also, because the signs of the weights are fixed in the
network, the genetic operators will never change the sign of the weights.
The weights of a team are evaluated by playing a match against another team.
The other team can either be a fixed reference team, or another team from the
population. After the match is played, a fitness value is calculated using equation
(8.1):

{
- 7.ST if S me =OandSopponent =0

(s,.,,. -Sopponent Xi+ o.1(s me + s opponent)X2T - E) otherwise

(8.1)

In this equation, Sm• and S
0

pponent represent the scores of the evaluated team and
the opposing team, Tis the maximum duration of a match, and f is the time the
game actua lly lasted. The initial population will contain a lot of teams that
simply stand still on the field. When two of these teams play against each other,
the final score will be 0-0. To remove these teams as quickly as possible from the
population, both are given the lowest possible fitness value. This is handled by
the first part of equation (8.1).
Normally, one or both of the teams will score several goals and the second part
of equation {8.1) will calculate the fitness value. The first part of the equation
will ensure that the winner of the match will receive a positive value, and the
loser will receive a negative va lue. A draw gives a fitness value of 0. The second
part of the equation encourages the scoring of goals. To decrease the evaluation
time, when a combined total of 5 goals are scored by both sides before the end

Chapter 8: Applying evolutionary computing to Robocup page 109

of the official play time, a match will end. The third part of the equation rewards
matches that quickly score 5 times.
The genetic algorithm uses the following settings:

• Population size of 64.
• Elitism: the best 20% are immediately transferred to the next generation and

the lowest 20% are immediately removed from the population.
• The remaining 80% of the next generation are constructed with single-point

crossover, and 5% of these new individual will also be mutated. Mutation will
cause one floating point value to be multiplied or divided by a value chosen
randomly from the interval [1, 2].

1.2.2 Training against a fixed reference team of 6 players

In a first experiment (using version 3.x of the simulator), a team of only 6
players was trained against a fixed reference team of 6 players. The advantage of
using smaller teams is that the computational needs to run only two teams is
much lower, and strategies for teams are easier to learn. The team was trained
over five generations against the reference team. The average fitness of t he
population is shown in figure 8.4. The number of wins, losses and ties of the
teams in the population is displayed in figure 8.5. As the number of wins and ties
increases over time, the average fitness of the teams improves after several
generations.

0

-1000

(/) -2000
(/)
a,
E -3000
;;:
a, -4000 c»
~ -5000 a,
>
~ -6000

-7000

/
/

~
-8000

2

~

3

Generation

---¥

4

...
/

/

5

Figure 8.4: Average fitness of the population when training a team of 6 players
against a fixed reference team.

page 110

60 ~----------------.

50___--=•==:::::::::::~ ---- --------i
40 _, ______ :-9:::::::...._~........_, ____ ,

~ 30 -,~--------------- 1

20 +------ - -------c--:=__........-=_~

10

0-----------------
2 3

Generation

4 5

-+-wins

--Losses

-+-Ties

Figure 8.5: Number of wins, losses and ties of the teams in a population when
training a team of 6 players against a fixed reference team.

When the experiment was repeated using complete teams of 11 players, none of
the teams of the initial population was able to defeat the reference team after 4
generations, and as a result the fitness values of all teams were very low. After
several generations, no improvement was noticeable. A possible explanation is
that as all individuals have a similar fitness value, evolution was halted . The
experiment had to be aborted after the installation of a new version (4.18) of the
soccer simulator, needed to be able to participate to the Robocup world cup.
Because of this, the players of both teams had to be modified considerably and
were incompatible with previous versions.

1.2.3 Training using co-evolution with teams of 11 players

A second experiment was performed where co-evolution was used instead of
using a fixed reference team, using version 4.18 of the soccer simulator. In t his
experiment, two separate populations of teams were maintained, and teams from
both populations play against each other. One population evolves the left teams,
while the other population evolves the right teams. After a generation, the best
result of a population was compared with the best result of the initial
population. Because of time constraints, the experiment could only be run for 5
generations. The fitness of the best individuals is shown in figure 8.6. The results
of this limited experiment are somewhat disappointing, as the best individual
does not seem to improve significantly. This may be caused by the inaccuracy of
the fitness function that uses the results of a single match to calcu late a result,
which uses the results of a si ngle match to ca lculate a result. These resu lts can
change significantly when two matches are played between the same teams.

Chapter 8: Applying evolutionary computing to Robocup page 111

Because training against a fixed reference team appeared to be more promising,
another more extensive experiment with a fixed reference team was performed.

12000

8000
If)

4000 If)
Q)

C ..,
0 u::

-4000

-8000

2 3

Generation

4 5

~ left

-right

Figure 8. 6: Fitness values of the best individual in the Left and right population
after co-evolution.

1.2.4 Training against a fixed reference team of 11 players

The experiment of training against a fixed reference team of 11 players was
repeated using modified versions of the players for version 4.18 of the soccer
simulator. This experiment was run for 12 generations, and the resu lts are
displayed in figure 8.7 and figure 8.8. There are no results for generation 3
because the file containing the results of this generation was corrupted after the
experiment. In this case, a number of teams are able to defeat the reference
team in the initial population and this number increases slowly.

-4000

-6000
If)
If) -8000 Q)
C ..,

-10000 u::
-12000

-14000 ,

0 2 3 4 5 6 7 8 9 10 11 12

Generation

!--Average fitness I

Figure 8. 7: Average fitness of the population when training a team of 11 players
against a fixed reference team.

page 112

0 1 2 3 4 5 6 7 8 9 10 11 12

Generation

-+-win
- Loss
_._Tie

Figure 8.8: Number of wins, losses and ties of the teams in a population when
training a team of 11 players against a fixed reference team.

1.3 Conclusion

In the experiments described above, a team of Robocup players was trained by
optimizing a set of weights of an action selection network using genetic
algorithms. After several generations, the performance of the population of
teams grows slowly. Due to the fixed structure of the action selection network,
however, the players of the evolved teams will tend to play using similar
strategies. This may be changed by giving the evolutionary process more
flexibility to implement action selection. In the remainder of this chapter,
genetic programming will be used to construct a program to control the player.

2 Using genetic programming to learn action
selection

Because the Robocup simulator is becoming more realistic over time and new
functionality is added, Robocup players and teams have to be modified after
every modification. As a result, hand coded behaviors have to be adapted to
these changes and the use of new commands and sensor readings must be
incorporated in the action selection of the players. Also, the behaviors and

Chapter 8: Applying evolutionary computing to Robocup page 113

strategies of hand coded players will be inspired by how humans think soccer
should be played. An unbiased Learning technique on the other hand might
discover completely different strategies and would automatically adapt to any
changes in the simulator environment. In this section, the use of genetic
programming to evolve the behavior of a team of soccer team will be studied.

2.1 Related work

The first team developed by genetic programming to enter the Robocup
competition was developed by Luke et al. in 1997 [56][60)[61]. Because of the
complexity of the Robocup domain, several specific problems and challenges had
to be solved. A first problem was the long time needed to evaluate a population
of teams. The fitness value of a team is calculated using co-evolution by letting
the teams of a population play against each other. The advantage of co-evolution
is a better generalization compared to evaluation against a fixed reference team.
Typically, a co-evolution problem needs about 100.000 evaluations to evolve to a
good result [59]. As a match on the Robocup simulator takes 10 minutes, this
would lead to an impractical evaluation time. As a result, several methods were
used to reduce this evaluation time:

• Matches were executed in parallel on a supercomputer.
• The duration of a match was reduced from 10 minutes to between 20 seconds

and 1 minute.
• The population size and number of generations were reduced. Between 100

and 400 individuals were evolved over 52 generations. (Note that "individual"
refers to an entire team.)

• Higher level primitives were used that are biased towards playing soccer.
• Simultaneous runs with different genome structures were evolved in parallel,

making it easier to choose an appropriate structure later.
• After 40 generations, the population was seeded with the best individuals

discovered so far. The run was then continued for 12 generations.

Another problem of the Robocup domain are border conditions. For example,
there is no purpose in executing a kick command when a player is not within
reach of the ball. This problem was solved by splitting the genome in two parts.
The first part would calculate a kick vector, and this part is executed when the
ball is within reach of the player. This vector causes the ball to be kicked to the
specified position. The second part calculates a move vector and is executed
when the ball can be observed but is not within reach. This causes the player to
move and turn towards the specified position. If the ball can not be observed,
the player would turn around in an attempt to locate the ball, and no part of t he
genome is executed.

page 114

Base Boolean squad1()
opp-closer()
mate-closer()
ofme(Integer)
ofhome(Integer)
ofgoal(Integer)
opponent-close(Integer)

Integer {O, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Move Vector home()
ball()
findball()
block-goal()
away-mates()
away-opps()
home-of(Integer)
block-near-opp (MoveVector)
mate(Integer, MoveVector)
weight-+(Integer, MoveVector, MoveVector)
if-v(Boolean, MoveVector, MoveVector)

sig ht(MoveVector)

KickVector far-mate(Integer, KickVector)
mate-m(Integer, Integer, KickVector)

kick-goal(Integer, KickVector)
dribble(Integer, KickVector)
kick-goal!()

far-mate!()
kick-clear()
kick-if(Boolean, KickVector, KickVector)

Table 8.1: Hierarchy of STGP primitives used by Luke et al.

A third problem is the credit assignment problem: which player of the team is
responsible for the success or fai lure of the team, and which part of the genome
was responsible for it? This problem can be avoided by representing the entire
team by an individual. There are three ways to represent an entire team in a

Chapter 8 : Applying evolutionary computing to Robocup page 115

single genome. The first is to use a homogeneous team where every player uses
the same program. A second method is the use of heterogeneous teams where
every player is represented by a different program. The advantage of
homogeneous teams is that a solution may be found more easily as less code
must be evolved, but the team will not have specialized players. An intermediary
solution is to divide the team in several groups of homogeneous players such as
defenders and attackers. This allows specialization at a reduced number of
programs that must be evolved. When heterogeneous teams are used, [59]
demonstrated that restricted breeding was useful for promoting specia li zation.
When using restricted breeding, genetic materiel is exchanged only between
similar parts of individuals.
The function set used by the genetic programming system contains several
soccer-related primitives. Some of these primitives were themselves evolved using
genetic programming. The set of primitives uses strongly typed genetic
programming, and the hierarchy of these primitives is shown in table 8.1.
A description of these primitives is given below. The value max is the maximum
distance of kicking and is set to 3.5.

• squad1(): Test whether this player is the first player in its group.
• opp-closer(): Test whether an opponent is closer to the ball than this player.
• mate-closer(): Test whether a teammate is closer to the ball than this player.
• ofme(Integer i): Test whether the ball is closer than i/max from this player.
• ofhome(Integer i): Test whether the ball is closer than i/max of the player's

home position.
• ofgoal(Integer i): Test whether the ball is closer than ;/max from the goal.
• opponent-close(Integer i): Test whether an opponent is closer than max/1.Si

to this player.
• home(): Returns a vector to t he home position of this player.
• ball(): Returns a vector to the position of the ball.
• findball(): Returns a zero-Length vector to the ball.
• block-goal(): Returns a vector towards the closest point on the line segment

between the ball and the player's goal.
• away-mates(): Returns a vector away from the observed teammates.
• away-opps(): Returns a vector away from the observed opponents.
• home-of(Integer i): Returns a vector to the home position of teammate i.
• block-near-opp (MoveVector m): Returns a vector to the closest point on the

Lin e between the ball and the nearest observed opponent. If no opponents are
observed, m is returned instead.

• mate(Integer i, MoveVector m): Returns a vector to teammate i. If the
position of this teammate is unknown, m is returned instead.

page 116

• weight-+(Integer i, MoveVector m
1

, MoveVector m
2
): Returns t he vector

(i*m
1

+ (9 - i)*m2)/9.
• if-v(Boolean b, MoveVector m1 , MoveVector m

2
): Returns m

1
if b is true, or m

2

otherwise.
• sight(MoveVector m): Returns the vector m, but rotated just enough to keep

the ball in sight.
• far-mate(Integer i, KickVector k): Returns a vector to the most offensive­

positioned teammate who can receive the ball with at least (i + 1)/ 10
probability, or returns k instead if no such teammate can be observed.

• mate-m(Integer i
1

, Integer i2, KickVector k): Returns a vector to teammate i
1

if
his position is known and can receive a pass with at least (i

2
+ 1)/10

probability, or returns k instead otherwise.
• kick-goal(Integer i, KickVector k): Returns a vector to the goal if the shot will

be successful with at least (i + 1)/10 probability, or returns the vector k
instead otherwise.

• dribble(Integer i, KickVector k): Returns the vector k*(max*i/20) .
• kick-goal!(): Returns a vector to the opponent's goal.
• far-mate!() : Returns a vector to the most offensively positioned teammate.
• kick-clear() : Returns a vector similar to the one calculated by away-opps, but

ensures that the direction is at least 135 degrees from t he player's goal.
• kick-if(Boolean b, KickVector k

1
, KickVector k2): Returns the vector k

1
if b is

true, or the vector k2 otherwise.

Initially, most of the teams did not move around or kick t he ball. However, some
randomly generated individuals that contained the (ball) and (kick-goal!)
primitives were able to score easily and soon spread over the population. This
resulted in "kiddie-soccer", where all players of both teams move towards the ball
and kick towards the goal. However, this behavior disappea red after several
generations when some players assumed more defensive positions. Eventually,
players would spread out over the field and give passes to each other.
A second attempt to create a Robocup team using genetic programming was
made one year later by Andre and Teller [2]. In contrast to the primitives used by
Luke, Andre and Teller developed programs using the primitives specified in the
protocol of the soccer simulator. To compensate for the higher level of
complexity of using this primitive set, the fitness function was also made more
complex by assigning a score for various actions of increasing complexity. These
actions are, in increasing order of complexity:

• Getting near the ball.
• Kicking the ball.
• Regularly being on the same side of the fie ld where the ball is.
• Being alive (executing at least one turn and one move action).

Chapter 8: Applying evolutionary computing to Robocup page 117

• Scoring a goal.
• Winning a game.

Inputs: Player.X.pos()
Player.Y.Pos()

Dist.To.Ball()
Dir. To. Ball()
Dist.To.Goal()
Dir.To.Goal()
Ball. Dist. Delta()
Ball. Dir. Delta()
T-Dist(Real n) (Distance to n'th closest teammate)
T-Dir(Real n) (Direction to n'th closest teammate)
0-Dist(Real n) (Distance to n'th closest opponent)
0-Dir(Real n) (Direction to n'th closest opponent)

Constants: Real valued constants

Memory: Read(Real)
Write(Real, Real)

Calculations: Add(Real, Real)

Sub(Real, Real)
Mult(Real, Real)
Div(Real, Real)
Sin (Real)
Cos(Real)
IFLTE(Real a, Real b, Real c, Real d) (if a < b return c else d)

Actions: Kick(Real, Real)
Turn(Real)
Dash (Real)
Grab() (only usable by goa lie)

Team-shared: ADF1, ADF2, ADF3 , ADF4, ADF5 , ADF6, ADF7, ADF8

Table 8.2: List of primitives used by Andre.

page 118

Additionally, teams had to pass three tests before they were allowed to enter a
competition:

• The team must be able to score on an empty field within 30 seconds.
• The team must be able to win against a fixed team of stationary opponents

that kick the ball when it is within reach.
• The team must be able to win against the winning team of the previous year's

competition.

The function set of the programs also contained a fixed number of automatica lly
defined functions (ADFs). Initially, these ADFs contained code for simple hard­
coded soccer actions. The teams were also non-homogeneous, but all players
used the same set of ADFs within the same team. Additionally, the function set
contained instructions to use an indexed memory of 10 memory cells. ALL t he
primitive functions return a real value, and are shown in table 8.2. The action
that is executed by the player is the Last action (kick, turn, dash, grab) executed
during evaluation of the program. The grab command can only be executed by
the goalie of the team. Unfortunately, no results were shown for the quality of
the evolved teams.

Defender()

Mate1()

Mate2()

Ball()

Rotate90(Vector)

Random (Vector)

Negate(Vector)

Div2{Vector)

Mult2(Vector)

VAdd (Vector, Vector)

VSub(Vector, Vector)

Vector to opponent

Vector to first teammate

Vector to second teammate

Vector to the ball

Rotate vector 90 degrees counter-clockwise

Random vector with magnitude between O and
current value

Reverse vector direction

Divide vector magnitude by 2

Multiply vector magnitude by 2

Add two vectors

Subtract two vectors

IFLTE(Vector a, Vector b, If ll al l < llbll return c else return d
Vector c, Vector d)

Table 8.3: List of primitives used by Hsu and Gustafson.

Hsu and Gustafson [35) use genetic programming to learn a subtask of t he
Robocup domain called keep-away soccer. In keep-away soccer, the objective is

Chapter 8: Applying evolutionary computing to Robocup page 119

that a team of three players remain in possession of the ball while one opponent
attempts to steal the ball. Layered learning GP is used to simplify the learning
task. Initially, a simpler task with a more primitive fitness criterion is used to
create a population of solutions. These solutions are then used as the initia l
population for the more complex task. For the task of keep-away soccer, initially
the players must remain in possession of the ball while giving passes without an
opponent. This first layer is intended to train a passing behavior. In the second
layer of the learning task the agents must also learn to keep away from the
opponent.
The team of players used in this experiment are homogeneous players that do not
use communication. The set of primitives used for the task is similar to those
used by Luke [56][60] and Andre [2] and is shown in table 8.3. All the primitives
return a vector. The players contain a move-tree and a kick-tree, similar to the
teams developed by Luke.

2.2 Description of problems and primitive sets

In [58], Luke discusses some of the problems encountered while training his
Robocup team:
• Because the evaluation time of a population takes a long time, the population

size was kept very small.
• The results of a match between two teams contains a lot of randomness.

Consequently, the result of a single match may give an inaccurate fitness
value to the evaluated teams.

• Teams are evolved instead of individual players. The use of heterogeneous
groups of players can result in the development of positional players, but the
time needed to evolve heterogeneous teams was too long to be successfu l.

• The function set was biased with primitive functions that implement human
soccer behaviors. Also, players do not maintain an internal state.

The Robocup players that are implemented by us are based on the
implementation by Luke et al. To deal with the problems described above, the
following modifications were made:

• The technique described in chapter 7 to remove individuals that do not
contribute to the diversity of the population is used. As a result, it is possible
to use a much smaller population size without losing diversity in the
population.

• The teams in a population are evaluated using a Swiss tournament format
[115]. In this format, all teams play an equal number of rounds. In each
round, a team is paired against another team with a similar performance in
the previous rounds. In contrast to a single elimination tournament fo rmat,

page 120

this gives a more detailed measure of the quality of all the teams in a
population instead of just the top teams.

• Primitive functions are added that allow a player to investigate the position
of that player such as goalie or attacker. This allows the evolution of
heterogeneous players that still use identical programs.

• Some actions require a number of primitive actions that are executed
sequentially. In this case, the primitive actions for subsequent time steps can
be stored in a queue and will be executed automatically in the next time step,
without the need to re-evaluate the program tree.

The set of primitive functions used is mostly identical to the one presented in
table 8.1, with some small changes. More recent versions of the soccer simulator
support commands to turn the neck of a player. As a result, t he player can look in
a direction not directly in front of him . This makes it possible to keep looking at
the ball while moving in another di rection. The commands to follow the ball can
be hard-coded in the players, making the evolutionary primitives to t rack the ba ll
redundant. Consequently, the primitives findball and sight can be removed from
the primitive set. On the other hand, primitives to investigate the position of a
player have been added to the primitive set. Also, primitive functions to
reference a player are added . Primitives that used to refere nce a player with an
integer number are modified. The added and modified primitives are shown in
table 8.4:

Base Boolean My Type(PlayerType)

Player Type {goalie, defender, midfield, forward}

Move Vector home-of(Player Base)
mate(PlayerBase, MoveVector)

KickVector mate-m(PlayerBase, Integer, KickVector)

Player Base NearestMate()

NearestMateType(PlayerType, PlayerBase)
NearestMate Dist(Integer, PlayerBase)

SoccerPlayer(MoveVector, KickVector)

Table 8.4: Modified and added primitives of the hierarchy of STGP primitives.

The primitives home-of, mate and mate-m are modified to take an argument of
type PlayerType. When a player is started, a PlayerType is assigned to the player
based on its number. Player 1 is a goalie, players 2, 3, 4 and 5 are defenders,
players 6, 7, 8 and 9 are midfields, and players 10 and 11 are forwards. The
primitive MyType can be used to test if a player has a given PlayerType.

Chapter 8: Applying evolutionary computing to Robocup page 121

NearestMate returns a reference to the nearest observed teammate.
NearestMateType returns a reference to the nearest observed teammate of a given
type, or returns the second argument if no teammate can be observed instead.
NearestMateDist returns a reference to the teammate closest to the specified
distance, or the second argument if no teammate can be observed instead. The
Move-tree and Kick-tree of a soccer player are stored in the primitive
SoccerPlayer.
The population size in all the experiments was 32: every generation, 32 new
individuals are added to the population. If the population size exceeds 64 at the
end of the evaluation process, only the best 64 individuals are retained in the
population and the rest is removed. This only occurs if the method to remove
individuals from the population based on the diversity is not used. Otherwise, the
population size is already significantly smaller than 64.

2.3 Experimental results

Several experiments using different settings were performed. Due to the amount
of time necessary to evaluate a population (several hours) , it was impossible to
perform sufficient different runs to calculate meaningful averages. However, it
was still possible to observe the effects on code growth and specialization in
these individual runs . The following experiments were performed:

• One run of 131 generations using dynamic size limiting and the diversity
measure.

• One run of 121 generations using the diversity measure but without dynamic
size limiting.

• One run of 119 generations using dynamic size limiting and the diversity
measure. This run uses the same setup as the first run.

• One run of 71 generations using dynamic size limiting, but without the
diversity measure.

Because the population size was not reduced based on diversity in the last
experiment, more evaluations were needed to evaluate the entire population.
This resulted in a significant increase of the evaluation time, and as a result the
experiment was stopped after 71 generations. This indicates that the diversity
measure is able to significantly reduce evaluation time of a generation .

2.3.1 Evolution of fitness

The evolution of the fitness of the best individual of every generation can be
observed by evaluating a population that consists of these best individuals. The
evaluation used a Swiss tournament consisting of 8 rounds. If an individual has

page 122

the highest fitness for several generations, it participated only once in the
evaluation tournament. The results are represented in a graph where the
horizontal axis represents the best individual of the corresponding generation,
and the vertical axis represents the rank of this individual after the evaluation.
The results of experiment 1 are shown in figure 8.9. Because of the randomness
of the eva luation, these results contain a lot of noise. However, the teams of the
first 30 generations are mostly unable to win from the teams from the last 70
generations. After generation 60, the performance of the teams does not appear
to improve much, as indicated by the average over 5 generations.
The results of the second experiment are shown in figure 8.10. Again, the results
of the experiments contain a lot of noise. Only during the first 10 generations is
the performance of the teams considerably Lower, but t he average score over 5
generations rises steadily over several generations .

120 • ..,. ... •
•• •• 100

•
80 ·

• Score
!!!
0 60 0

1/J • -s per. Mov. Avg .

• Score

•
20

0
0 20 40 60 80 100 120

Generation

Figure 8.9: Evolution of fitness in experiment 1.

Figure 8.11 shows the results of experiment 3. During the first 15 generations,
the average fitness of the evolved teams increases rapid ly, but stabilizes
afterwards.

Chapter 8: Applying evolutionary computing to Robocup

120

100

80

~
0
0

(/)

40

20 40 60

Generation

80 100 120

Figure 8.10: Evolution of fitness in experiment 2.

120

• •
100 ·

80

II) ..
60 0 u

U)

40 ·

••
20 . ,

••
20 40 60 80 100 120

Generation

Figure 8.11: Evolution of fitness in experiment 3.

page 123

• Score

-s per. Mov. Avg.
(Score

• Score

--5 per. 11/bv. Avg.
(Score)

Figure 8.12 shows the evolution of fitness in the fourth experiment. The
evaluation time of a single generation is much longer in this experiment, because
the population size was not reduced. As a result, only 71 generations were

page 124

evolved. In the first 30 generations, the fitness gradually increases. At that
point, there is a small decrease in performance for about 15 generations. Finally,
the average fitness increases again unti l the end of the run. It is however not
sure if the decrease in performance is caused by the randomness of the
evaluation or if the generated programs are effectively performing less good.
The results of these experiments are consistent with the results reported by Luke
[60][61]. The initia l populations consistently perform very bad because most
teams remain stationary, while only a few individuals move towards the ball.
After several generations, most teams are playing "kiddie-soccer", where all
players run towards the ball and kick towards the opposing team's goa l. Finally,
the behavior of teams changes towards a passing game where several players
remain at several positions on the field or interfere with the movement of
opposing players.
The huge amount of noise in the results can be explained partially by the
randomness of the environment, but the less than optimal implementation of the
primitive skills may also be responsible .

• • • •
60 • • • •
50

40 • • Score
~ • •
0
0 -5 per. Mov. Avg. Cl) 30

Score

20

10

0

0 20 40 60

Generation

Figure 8.12: Evolution of fitness in experiment 4.

2.3.2 Evolution of code growth

In [61], Luke reported that the size of the individuals grows rapidly and becomes
almost unmanageable after about 40 generations. As a resu lt , reducing the
effects of bloat is an important factor in the experiments since they lasted for
more than 100 generations. This section shows the average and maxim um sizes

Chapter 8: Applying evolutionary computing to Robocup page 125

of the new individuals created during every generation over the course of all
experiments.
Figure 8.13, figure 8.15 and figure 8.16 show the result of applying dynamic size
limiting and the results are very similar. The average size of the individuals
stabilizes around 17 in the first experiment and 20 in the third experiment. In
the fourth experiment, the average size increases slowly to 20. During most of
the runs, the maximum size of new individuals is set to 32, a fixed minimum size
of all individuals. However, only very few individuals were created (and rejected)
that exceeded this limit. Removing these few individuals is sufficient to keep the
size of individuals small after a large number of generations.

Cl>
N

in
Cl>
DI
Ill ...
Cl>
>
ct

35 ~--.- ~---.• - .-. -.. • • ' ' -· ' ' ' , •• -· ' , • •. • • ' .--i
•' • .. , , ... , •"•' •'•·' ~ ,, •' • . ,.,\ ~ - •' ' ,, .. ,, ,,., v, ,

___, .. \. .. ~-4'-\ - o-l"'- - - ~ ...\,- ~ :\,_.a_ v..___..____..__,
,,. I \ 1 I lllf \ • llf It \ fl I 111 V ' ti

30
•'" I W 11 , . "'', I ,t ,,, , I

o ~· ',to I I t i It II I \flt "' ,,
25

.. , ..
- . .. I

' '
20

10

5

0 -1nn.=======~======~=== ..,,.,;
C) ~ ,<o cv ":)ro ~ q ro":> ,{1, <a' ~1:::i ~~ ,1:::i<o ,~ ,<fJ>

Generation

--AvgSize

....... tv1axSize

Figure 8.13: Evolution of average size and maximum size of the individuals of a
generation in experiment 1.

In experiment 2, when the size of new individuals was not restricted, the results
of figure 8.14 were obtained. In this run, the average size grows towards 60 after
100 generations, but decreases again later towards 35. However, many very large
individuals are present. Inspection of the individuals of this experiment shows
that the increase in size is mostly caused by long chains of similar instructions
that have no or little effect when chained together. An example of this is given
in the following individual, created at generation 103. This individual is an
example of defense against crossover. Exchanging code between two chains of
similar code does not change the behavior of the individuals.

page 126

(SoccerPlayer (WeightI (Int 4) (WeightI (Int 4) (Mate
(NearestMate} (MoveVectorTerminal Ball})
(MoveVectorTerminal Ball}} (MoveVectorTerminal Ball})
(PassFarMate (Int 4) (PassFarMate (Int 2) (PassFarMate
(Int 4) (PassFarMate (Int 2) (PassFarMate (Int 5)
(PassFarMate (Int 5) (PassFarMate (Int 5) (PassFarMate
(Int 4) (PassFarMate (Int 7) (PassFarMate (Int 5)
(PassFarMate (Int 4) (PassFarMate (Int 2) (PassFarMate
(Int 7} (PassFarMate (Int 5} (PassFarMate (Int 2}
(PassFarMate (Int 5) (PassFarMate (Int 5) (PassFarMate
(Int 5) (PassFarMate (Int 2) (PassFarMate (Int 5)
(PassFarMate (Int 5) (PassFarMate (Int 4) (PassFarMate
(Int 7) (PassFarMate (Int 5) (PassFarMate (Int 5)
(PassFarMate (Int 5) (PassFarMate (Int 4) (PassFarMate
(Int 4) (PassFarMate (Int 4) (PassMate (NearestMateType
(PlayerType defender} (NearestMate}) (Int 7) (PassFarMate
(Int 9) (KickVectorTerminal
KickGoal)))}}))})))))))))))))))))))))))))

Cl)
N
iii
Cl)
C)
IQ ..
Cl)

>
<(

180

160

140

120

100

80

60

40

20

0

I • ., •'•
, ... ' . , ,..

,I .

I ,• •' , ... , ,,,,,: •' . ,-.,- ;',
I a •r I
r \ I

() 'O "(o 1' ~'1, t,..() t,..'b ~(o tJ' '\'1, 'b() 'b'b o.,<'o "()t,.. ""'l, "'l,()

Generation

---AvgSize

• • • • · ·MaxSize

Figure 8.14: Evolution of average size and maximum size of the individuals of a
generation in experiment 2.

Chapter 8: Applying evolutionary computing to Robocup

40

35
I

I \ '
__ _}

30 · I . ., •, J ,,,. ,, • J

', ... ,. , , .
Q) 25 N
iii
Q)
0) 20
Ill ...
Q)
> 15 <(

10

5

O i'TmTmTTffl'M'1ffl'!Trmn'TTlmfflfflrmTI'm'TT'lfflmrmTI'l'T'1'1"!lfflmrmTI'TM'T'TTffl'M'1'1Tm'mm"fflfflfflfflmmii

Q ~ ~ ~~~~~~~~~~~~~~~

Generation

page 127

---AvgSize

• • · • • ·MaxSize

Figure 8.15: Evolution of average size and maximum size of the individuals of a
generation in experiment 3.

Q)
N
iii
Q)
0)
Ill ...
Q)
>
<(

35

: ,• I .. / 30 · .
':.., t I -· . .

' ,. ' ... ' ., , ,' •,;''I,,,', " ... , , - , .,., . ,
~ ~ ~~,~ ,~-.~,,'--#--,\~-.-. • ~._~, ;-~ - -r

',' . \ \ ',
\ \. _,

25 •,
I

20

15

10

5

0 +,-,,.,.,.,...,..,..,..,..,..,..,..M"M'.,..,..,..,..,..,...,..,..,..,..,..,..,..,..,..,..,..,..,..,.,..,..,..,..,..,..,.,...,.,.,,.,..,..,..,..,..,.,.,..,..,.,..,.,.,..,..,...,..,..,..,.~

o 0 ._a ._0 'l,o 'l,'? ")o ")'? ~c::, ~'? 0c::i ':>0 roe::, 00 '\Cl

Generation

---AvgSize

• • • • • ·MaxSize

Figure 8.16: Evolution of average size and maximum size of the individuals of a
generation in experiment 4.

page 128

2.3.3 Evolution of specialization

In (60], Luke discovered that teams of homogeneous agents Learn to play an
acceptable level of soccer before their heterogeneous counterparts. However, the
players of a homogeneous team are unable to evolve to specialized position
players
The teams evolved using the set of primitive functions listed in table 8.4 are
essentially homogeneous. However, to introduce the possibility of evolving
heterogeneous players, the primitive (My Type <Type>) was added to the primitive
set. When used in combination with an if-statement, the same program can
demonstrate different behaviors depending on the position of the player. This
section will examine how many programs made use of the MyType primitive, and
how Long this primitive survives in the population. This can give a measure of the
specialization of teams and their success in the evolution.

ti)
~ 15 +----------------- ----- R---1

C

~
:i
(,)
(,)

0

5

O +rm=mrnrmrri'n-rrl-frrrlm'm-trmlm'nfr.rlrrr'rl'n~rr'rl'n~i'M'r+-1',,-,Wl-rM,,'rmn'n'r',,.,.,,.,.mm,.,.,,.,.rrrmTm"rr

o~~n~~~~~~~~~~~*~~~~
V V ,-; ~ ~ "V

Generation

Figure 8.17: Evolution of the number of indMduals containing the My Type pn'mitive
created at every generation in expen'ment 1.

Figure 8.17 shows the number of individuals created at every generation that
contain at least one instance of the MyType primitive in experiment 1. Of the
4222 individuals created in the entire run, 368 use MyType. In the first
generations of the run, when a lot of individuals are mostly random, several
instances of MyType can be found. When the behavior of t he individuals evolves

Chapter 8: Applying evolutionary computing to Robocup page 129

to kiddy-soccer, specialization of players becomes an evolutionary disadvantage,
because the number of teammates surrounding the ball increases the probabi lity
that a teammate can kick the ball. If some specialized players do not play kiddy­
soccer, the team will perform worse and specialization disappears from the
population. At this stage, new instances of MyType can only be introduced
through random mutations in individuals, and often don't improve the behavior
of teams, even when teams learn to pass and distribute themselves over the field.
Around generation 105, a more successful application of MyType is discovered,
and this application is transmitted to new individuals through crossover. An
example of an individual created during generation 130 is shown below. The
successful part of code that is transmitted during several generations is
highlighted. This demonstrates that in this run, a position for a defender was
eventually evolved.

(SoccerPlayer
(If<MoveVector> (MyType (PlayerType defender))

(MoveVectorTerminal Ball)
(WeightI

(Int 7)
(HomeOf

(NearestMateDist
(Int 3)
(NearestMate)))

(MoveVectorTerminal Ball)))
(KickVectorTerminal KickGoal))

Figure 8.18 displays the number of individuals containing MyType created in the
second experiment. From the 4095 individuals created during the run, 907
contained at least one instance of MyType. In this run , there appear to be several
periods where individuals containing MyType are reasonably successful for several
generations and are able to reproduce, but die out Later. Inspection of the code
of these individuals reveals that the MyType primitive is not responsible for the
success of these individuals. Instead, MyType appears mostly as inactive code or
in parts of code that have only limited influence on the behavior of players. For
example, the individual below, created at generation 25, contains specialized
code shown in boldface. However, because of the two Weight! primitives
preceding this code, less then 10% of the calculated vector is created by the
specialized code.

(SoccerPlayer
(WeightI

(Int 4)
(WeightI

(Int 2)
(BlockNearOpp

(If<MoveVector> (MyType (PlayerType forward))
(WeightI

page 130

"' Cl)
()
C
e!
::,
()
()

0

(Int 8)
(BlockNearOpp

(HomeOf (NearestMate)))
(If<MoveVector> (BoolTerminal OpponentCloser)

(Mate
(NearestMate)
(MovevectorTerminal BlockGoal))

(Mate
(NearestMate)
(MoveVectorTerminal AwayOpps))))

(MoveVectorTerminal Ball)))
(MoveVectorTerminal Ball))

(MoveVectorTerminal Ball))
(KickVectorTerminal KickGoal))

25

20 -

15

5

0 ~-fTTTrrn"rrmtTI"m.,,.,.,.,rm"l"mTT1Tffl-rn"nC"TTn"rn"n-.TTI"1rTTTT"m"TTrirn,..,.,.,.,rT"TT"l"t'T'!"M''l'n"n"l'TM1rffrrl'T"TTTTITTI"TTTTrrrrT'

~~~~~~~~~~~~~~~~~~ 

Generation 

hgure 8.18: Evolution of the number of individuals containing the My Type primitive 
created at every generation in experiment 2. 

The results of specialization in the third experiment are shown in figure 8.19. 
Only 78 of the 4013 created individuals in this experiment contained a MyType 
primitive. None of these individuals was able to provide an evolutionary 
advantage, resulting in the extinction of the MyType primitive. As a resu lt, no 
specialization was observed in this run. 



Chapter 8: Applying evolutionary computing to Robocup page 131 

20 -1----- -------- ---------------1 

XJ 15 -!------- -------- ---------- ~ 
u 
C 
!!! 
::, 
8 10 -1------- -------- ----------~I 
0 

Generation 

Figure 8.19: Evolution of the number of individuals containing the My Type primitive 
created at every generation in experiment 3. 

In the fo urth experiment, the following individual appeared in the initial random 
population: 

(SoccerPlayer 
(BlockNearOpp 

(WeightI (Int 1) 
(WeightI (Int 0) 

(BlockNearOpp (MoveVectorTerminal AwayMates)) 
(MoveVectorTerminal Home)) 

(BlockNearOpp 
(Mate 

(NearestMateType 
(PlayerType goalie) 
(Nea restMate)) 

(MoveVectorTerminal Ball))) ) ) 
(PassFarMate 

(Int 0) 
(If<KickVector> (MyType (PlayerType forward)) 

(KickVectorTerminal KickGoal) 
(PassFarMate 

(Int O) 
(KickVectorTerminal KickClear))))) 



page 132 

The section in boldface indicates code that specializes for an attacker. This 
individual proved to be very successful, and was only removed from the 
population after generation 13. The highlighted code above was replicated 
several times during this time, sometimes with small variations. In the first 20 
generations, the MyType primitive also occurs frequently in the Move-branch of 
the code and is responsible for most of the MyType occurrences in figure 8.20. 
However, the attacker specialization becomes more frequent later, and most of 
the occurrences in the last generations are copies of thi s code. The only 
modification is that the KickClear primitive is replaced by the KickGoal primitive, 
and sometimes (PlayerType forward) is replaced by other player types. Strangely 
enough, the change to (PlayerType goalie) occurs more frequently t hen the other 
possible changes. 

25 

20 -

U) 
QI 
u 
C: 
QI ... 
:J 
u 
u 
0 10 

Generation 

Figure 8.20: Evolutfon of the number of individuals containing the My Type primitive 
created at eve,y generation in experiment 4. 

Other types of specialization are rare. In generation 50, the following 
specialization for a midfield was created: 

(SoccerPlaye r 
(MoveVectorTerminal AwayMates) 
(If<KickVector> (MyType (PlayerType midfi e ld)) 

(Dribble ( Int O) 
(If<KickVector> (BoolTerminal Squadl) 



Chapter 8: Applying evolutionary computing to Robocup 

(KickVectorTerminal KickClear) 
(KickVectorTerminal KickMate ) ), ) 

(PassFarMate 
(Int 7) 
(KickVectorTerminal KickGoal ))) ) 

page 133 

Unfortunately, this individual was unable to survive in the next generation. At 
that time, 46 of the 64 surviving individuals contained the specialized attacker 
code. This demonstrates that this piece of code dominates the population, and 
new original code has little chance to survive the selection process. As a result, 
the diversity of the population has decreased, and finding better solutions 
becomes very difficult. 

2.4 Comparison of the experiments 

To be able to compare the results of the different runs of the previous section, 
the best teams of every generation of all these runs are compared in a single 
tournament. In this tournament, 420 teams participated and played 10 rounds. 
The results are shown in figure 8.21 and give a relative comparison of the 
different runs. Again, the results contain a lot of randomness, so an average over 
8 samples was added to observe any trends in the data. 

The first run appears to be the most successful in this comparison. During the 
first 40 generations, the rank of individuals is somewhat lower, but towards the 
end of the run the fitness of the individuals improves. The third run also has a 
high rank overall. The rank of the initial generations of this run are relatively 
good, but hardly any improvements are made after generation 40. This explains 
the slow growth of figure 8.11. In the first half, the results of run 2 are 
comparable with run 1 and 3. At generation 60 however, a ·sudden drop in 
performance occurs and the rank slowly increases again. The results of run 4 are 
somewhat below the average of the other runs. After generation 30, the fitness 
of the population shows little improvement. Given that the diversity of the 
population has decreased significantly at generation 50, the chance for large 
improvements decreases significantly in further generations. 

Of the four runs compared, the first run that uses both the size reduction and 
diversity measure, has the best performance. However, because of the limited 
number of runs, it is impossible to generalize this result. On the other hand, it is 
still possible to make some more general conclusions. First, the use of the 
diversity measure is able to significantly reduce the size of a population. As a 
result, the evaluation time of a population is significantly reduced. This was 
observed in the difference in evaluation time between the first 3 runs and the 
fourth run. In the last run, the evaluation time was almost twice as long, and as 
a result only 71 generations were evolved. Also, the average size of individuals 



page 134 

did not grow significantly when the dynamic maximum size was imposed on new 
individuals in runs 1, 3 and 4. Therefore, these optimizations appear to have a 
positive effect on evolution in the Robocup domain . 

- 11 
A A A 

0 

Cb 

001 400 i A 0 A 
A A D 

A,l- A A 0 0 A 

X #o D 0 D 

A A A 0 D o 
A X A A A 

aD~ 0 A a 0 
0 c9 350 

D 
8 A 

A 
~ 0 0 

0A 
0 D 

AD X 
X 0 

A 
D D 

300 A ax 
0 O 

A 
D A X 

d' A 

250 QI D 

/J. 
.II: 
C 
ca 200 a: /J. 

150 
/J. 

0 
/J. 

D /J. 

100 A /J. 
0 A 
X D D D d> 

aD 
~ /J. 0 D 

0 og< D A D 0 
D D 

50 - oX X D D D 

X X 
0 /J. g;'.x X X 

D D 
0 ca /J. 

0 D 

0 -
D 

0 20 40 60 80 100 120 

Generation 

a Run2 A Run3 o Run1 

x Run4 8 per. Mov. Avg. (Run1) --8 per. Mov. Avg. (Run2) 

--8 per. Mov. Avg. (Run3) - 8 per. Mov. Avg. (Run4) 

f;gure 8.21: Comparison of the evolution of fitness of the different runs. 

The most important problem encountered was the huge randomness of the results 
when comparing a population of evo lved teams. Other than t he randomness 
present in the Robocup simulator, this may be explained by the less than optimal 
implementation of the Robocup primitive set. Significant improvements can be 



Chapter 8: Applying evolutionary computing to Robocup page 135 

made to this implementation, which may lead to a more consistent performance 
of evolved teams. 

2.5 Conclusion 

In this section, genetic programming was used to create programs to control 
players for the Robocup simulation based on the terminal set used by Luke [60]. 
Solutions were introduced for most of the problems encountered by Luke [58]: 

• It was possible to reduce the population size when using the diversity 
measure described in chapter 7. Due to the reduced population size, the 
evaluation time of a generation is reduced significantly, while still avoiding 
premature convergence. This demonstrates the effectiveness of this technique 
for complex problems. 

• The fitness measure was made more accurate by using a Swiss style 
tournament for the fitness evaluation. Unfortunately, the results of the fitness 
evaluation were still very noisy. However, these results are most li kely still 
more consistent compared to the single round tournament used by Luke. 

• The average size of individuals in the population was reduced significantly by 
using the dynamic size limiting technique described in chapter 6. 

• The homogeneous team of players evolved by genetic programming can 
exhibit heterogeneous behavior. This is accomplished by assigning the players 
a role based on their number, and the addition of primitives to query this 
role. In some experiments, specialized players were developed. 



Chapter 9: Conclusions and 
future work 

1 Conclusions 

The work performed in this thesis concerning virtual agents can be divided in two 
parts. In the first part, the problem of navigation and obstacle avoidance was 
considered. To solve this problem, the virtual agent uses a virtual visual sensor 
that measures the depth value of the observed objects in front of the agent. The 
agent then uses this depth information to construct a map of the area 
surrounding the agent by rotating. To construct a map of the entire environment, 
the agent moves to openings in the area and repeats the process, until t he entire 
environment has been visited. The constructed map can then be used for path 
planning in the environment, and can be shared with other agents or users in the 
environment. The depth information about obstacles around the agent is also 
used to perform collision avoidance while moving in the environment. If 
movement in a direction would result in a collision with the detected object, the 
movement command is modified to avoid a collision. This can be done either by 
moving around the obstacle or by stopping the agent. 
There are several advantages to the use of a virtual sensor to detect the 
environment instead of using the internal representation of the environment. 
First, using a virtual sensor is a more realistic simulation of the real world, as 
mobile robots often also use depth sensors for navigation. A second advantage is 
that it is not necessary for the virtual agent to have access to the internal 
representation of the environment. When only a re ndered image of the 
environment is required, the virtual agent can work in every environment that 
supports the rendering of this image. 
The second part of the thesis deals with training virtual agents to perform a task. 
The use of genetic programming in this context was examined. Two main 
problems were identified when evolvi ng virtual agents using genetic 
programming. First, the size of t he evolved genetic programs tends to grow 
rapidly ve ry soon. Secondly, because evaluation of evolved virtual agents usua lly 
takes a long t ime, the number of evaluations must be reduced. Unfortunately, 



Chapter 9: Conclusions and future work page 137 

genetic programming usually requires a large population of candidate solutions 
to discover good results. 
Several solutions were developed to remove these problems. First, two new 
methods to reduce the size of evolved programs were developed, and compared 
with existing methods. The first method detects and removes inactive code from 
the genetic programs. The second method imposes a dynamically changing 
maximum size on newly created individuals, depending on the size of the current 
best individual of the population. The second of these new methods was found to 
be superior than the existing methods, and both methods can even be used 
together. 
The second problem was solved by constructing an algorithm that reduces the 
number of individuals in the population, without reducing the genetic diversity 
of the population. The algorithm works by detecting identical subtrees in 
individuals of the population, and removing those individuals mainly consisting 
of subtrees that are also present elsewhere in the population. Removing these 
individuals from the population was shown to improve convergen ce speed of the 
evolution. 
Finally, these improvements to the genetic programming algorithm were app lied 
to the virtual multi-agent system of robotic soccer. The improvements appear to 
have a positive effect on the evolution, but due to the still long evolution time 
in this domain, it was not possible to perform a sufficient number of different 
runs to draw general conclusions. 

2 Future work 

2.1 Improvements to map construction 

A future goal of our research is to speed up map construction by having several 
agents explore the world simultaneously, and exchanging pieces of the map with 
each other when they encounter each other. Another possible extension is to 
construct three-dimensional maps, allowing the agent to move in t hree 
dimensions. This would complicate the algorithm, but the same principles could 
be used in three dimensions. Also, the agent currently assumes the world is 
entirely static. It would be interesting to add non-permanent obstacles (like 
doors, or moving object). The agent can then detect changes between the 
environment and its internal representation of the environment, and update the 
representation dynamically. 



page 138 

2.2 Improved individual player skills for Robocup 

The current implementation of the individual player skills used for genetic 
programming is far from perfect. These individual skills can be trained using 
genetic programming. In this case, the primitive set of instructions includes the 
primitive actions of the Robocup server protocol. Training can be done by setting 
up a number of trials, setting up initial positions of the ba ll and players. After 
each experiment, a fitness value can be calculated, for example by calculating 
the distance from the ball to a specified target position . It would t hen be 
interesting to investigate if improved individual player skills can reduce the noise 
encountered in the evolution of action selection in Robocup. 

2.3 Explicit credit assignment and directed crossover 

Genetic programming assigns a fitness value to an individual after it has been 
evaluated, representing the quality of that individual. However, this fitness value 
provides no information about which parts of the individual are responsible fo r 
the quality ( or lack thereof) of the result. In [ 4 7] and [ 48], Langdon describes a 
technique where a subtree with a low performance has a higher chance to be 
removed by the crossover operator. This technique is called directed crossover. 
Using the influence values of child nodes after a single evaluation, it is possib le 
to distribute the error value of the evaluation over the different nodes of the 
individual. This gives an explicit credit score to the nodes of an individual for 
that evaluation. Starting at the root node, the error value can be assigned to the 
root node and then divided over its child nodes proportional to their influence 
value. This process can then be applied recursively to the child nodes. The error 
values assigned to the nodes are accumulated over all the single evaluations. 

When all evaluations have been completed, the total error value of all evaluations 
is again distributed over the nodes of the individual, using the total influence 
values of these nodes. These total error values can then be compared with the 
accumulated error values. If the accumulated error value is larger than the total 
error value, this signifies that the node lowers the overa ll performance of the 
individual. These nodes can then be given a higher chance to be removed by the 
crossover operator, increasing the chance that a better individual will be created. 

2.4 Determining a maximum size limit 

The dynamic size limiting technique discussed uses the size of the current best 
individual in the population to determine the maximum size of new individuals. 



Chapter 9: Conclusions and future work page 139 

It may be better if more individuals of the population determine this maximum 
size. For example, the average size of the best 10% of the population can be 
used, or a weighted average of all individuals of the population, where the 
weight depends on the rank of the individual. It would be interesting to study 
the effects of these changes on code growth and convergence speed. 

2.5 Improving the diversity measure 

Equation (7 .5), used to determine whether an individual is sufficiently different 
from the rest of the population, is a very simple diversity measure. Even though 
it appears to be a good and simple heuristic, it would be interesting to study 
whether a more complex measure produces even better results. 

Also, when a large number of terminal elements exists (such as the set of all real 
numbers), it is possible that most of a population's subtrees are different from 
each other, and the diversity measure will not remove any elements. If the 
directed acyclic graph representation, used to detect similar subtrees, was 
expanded to be able to detect similar internal parts of individual, more similarity 
between individuals can be detected. The detection of similar structures can also 
be interesting in the automatic creation of subroutines. It would be interesting 
to test whether the added complexity of this approach would be offset by any 
added performance of the evolutionary search. 



Appendix A: Communication 
between virtual agents 

1 Introduction 

Agents are constructed to help users and other agents with their work. Virtual 
agents are no exception to this. For example, when a user needs a map of the 
environment, he may contact a mapping agent (as described in chapter 3) and 
receive a map of the environment. If the agent has already explored the 
environment before the user contacted it, the map is readily available. The only 
problems for the user are how he can locate an agent that has a map of the 
environment, and how to communicate with this agent. 
As virtual agents have a spatial representation in the environment (an avatar), 
users can encounter such an agent while exploring. The purpose of an agent can 
be indicated by the appearance of the agents avatar. The user can then contact 
the agent, and make use of the agents services. 

2 Modes of communication 

In networked environments, communication is performed by a network protocol 
such as TCP or UDP to a network port on the IP address of the receiver. This type 
of communication requires that the sender knows the IP address and port number 
of the receiver. Two forms of communication can be distinguished: 

2.1 Long range communication 

Long range communication takes place between any two agents and/ or users in 
the environment, regardless of their current position in t he environment. This 
form of communication typically takes place using the IP address and port 
number of both participants of the communication. 



Appendix A: Communication between virtual agents page 141 

2.2 Short range communication 

Short range communication simulates two participants that are close to each 
other and ta lk to each other. As a result, this form of communication can use or 
simulate the audio sensors of the environment. This mode of communication is 
useful for two participants to initiate communication when long range 
communication is not possible because the IP address/port number of the other 
participant is unknown. This IP address and port number can then be transmitted 
using short range communication, and the remainder of the interaction can then 
take place using long range communication. 

Several ways are possible to implement short range communication in the virtual 
environment: 

• If available, the audio channel present in the environment can be used to 
communicate with the targeted participant. A message is broadcasted to all 
nearby agents and users. The targeted participant can then respond with his 
IP address and port number and communication can be resumed using long 
range communication. A problem that must be solved when using this 
approach is that the broadcasted message must contain a way to indicate the 
targeted participant. 

• The IP address and port number of the participant can be a part of the avatar 
of the participant. When the avatar is then observed, the IP address and port 
number are known and long-range communication can be initiated. This step 
is an abstraction of using an audio channel to communicate with a nearby 
participant and request the IP address and port number. This implementation 
was chosen for our prototype application. 

3 Directory agents and protocols 

Using short-range communication, an agent can begin communication with any 
other agent that has been encountered in the environment. In a second step, the 
agent investigates which tasks the other agent can perform. This is achieved by 
requesting a list of communication protocols supported by the agent. A basic 
standard communication protocol to retrieve this information is used, which is 
supported by the avatar of every agent and user in the environment. This basic 
protocol supports queries like requesting the names and versions of supported 
protocols, and the responses to these queries. This basic protocol is the only 
protocol that is strictly required to be supported by all avatars in the 
environment. 



page 142 

As finding an agent that supports a specific protocol may take a long time, a 
virtual agent can be used that maintains a directory of all agents that it 
encountered, and the protocols they support. Communication with this agent is 
then performed using a directory protocol. This protocol can request the long­
range communication address of another agent with a specific protocol, or the 
registration of protocols with the directory agent. If an agent is known that 
supports a requested protocol, the address of this agent will be returned. 
Otherwise, the directory agent will store the request, and when an agent with the 
requested protocol is discovered later, the directory agent will notify the agent. 
All agents that support the directory protocol are able to make use of its services. 
Additionally, all these agents can also perform some of the tasks of the directory 
agent, at least for the protocols they are interested in. These agents can also 
provide the long-range communication address of the directory agent they use. 
As a result, when a new virtual agent enters the environment and encounters 
another virtual agent that supports the directory protocol, the new agent is 
immediately able to directly contact the directory agent and locate any other 
agent in the environment. 

4 Application prototype 

To test the principles described above, a prototype application was constructed 
that contained virtual agents and users. When the virtual environment is loaded, 
a directory agent will be started that connects to the environment. The task of 
this agent is to wander around in the environment and contact every agent or 
user it encounters to store its supported protocols. However, the agent will need 
a map of the environment to be able to wander around the entire environment, 
without missing areas. Because the directory agent doesn't have the mapping 
algorithm to construct a map, it will create a specialized virtual mapping agent 
(and add it to its directory). The directory agent then contacts the mapping 
agent and requests a map of the environment. The mapping agent uses the 
algorithms described in chapter 3 to construct a map. Whenever a new area in 
the map is created, the directory agent gets notified that the map is updated, 
and the directory agent will update its map. When the mapping agent completes 
its task, it will also wander around in the environment looking for anyone that 
needs its services. 
When a user enters the environment, he will soon encounter an agent in the 
environment, and be able to communicate with a directory agent. As soon as the 
directory agent is contacted, the directory agent will query the user's avatar 
about the protocols that it supports. 



Appendix A: Communication between virtua l agents page 143 

When the user needs a map of the environment, he can either click on the avatar 
of a mapping agent when it is visible, or press the 'm' key to request a mapping 
agent by the directory agent. This will display a map window, where the user can 
also request a path to a location by clicking on the Location in the map window. 
The mapping agent will then calculate the shortest path to that location and 
return the result. 
The avatars of users of the virtual environment also support a chatting protocol. 
When a user clicks on the avatar of another user, the supported protocols of the 
other user will be queried. If the chat protocol is supported by both users, it will 
be activated. A text window will appear where a message can be entered and sent 
to the other user (see Figure A.1). In this figure, the avatar of the other user is 
represented by a purple cylinder. When the other user receives the message, he 
can enter a reply message and send the reply. 

To detect inactive users or agents in the environment, the basic communication 
protocol also supports a 'ping' message. Agents can send a 'ping' message to 
another agent or user, and when a reply is received, the agent or user is still 
active. If a directory agent detects that an agent or user in its directory is no 
Longer active, it will be removed from the directory. 

: Send nie":'\Sa e 
R.;f'lulo Plt,,cl Mufi ~t., ~ 
1,• ~~cjHallo/ 

Figure A.1: Sending a message to another user in a virtual environment by clicking 
on its avatar. 



Appendix B: Description of the 
neural network 

1 Problem description 

The objective of the neural network is to detect discontinuities in t he depth 
values surrounding the virtual agent, as described in section 5.1 of chapter 3. 
Four adjacent depth values d

0
, d

1
, d

2 
and d1 are availab le as inputs, and a 

discontinuity between the second and third value must be detected (see Figure 
B.1) . 

Obstacle 

d2 d3 

Discontinuity 

Obstacle 

Agent 

Figure 8.1: Adjacent depth values used as input for the neural network. 

Initially, a hand-coded algorithm was used to detect these discontinuities . Since 
these discontinuities are used to detect an opening in the environment where 
the agent can move through, the size of the discontinuity must be at least as 
large as the size of the agents avatar. This allows the rejection of most of the 



Appendix B: Description of the neural network page 145 

examined depth values, since the difference between the second and third depth 
value is usually very small. However, the algorithm still misclassified several 
instances. As a result, a feedforward neural network was considered to create a 
better classifier. 

To construct a training set, all the depth values encountered during a mapping 
task where the difference between the second and third value exceeded the 
avatar size were collected. The instances that were incorrectly classified by the 
hand-coded algorithm were corrected manually. This produced 622 training 
examples from the entire run of the mapping algorithm, using the environment 
shown in figure 3.10 (of size 25x25) and an avatar size of 0.1. It is possible to 
create more training examples using the same environment by changing the size 
of the avatar, and changing the depth values provided as inputs correspondingly. 

2 Implementation 

The neural network that was used to solve this classification problem consists of 
3 layers of 8, 6 and 1 nodes respectively (see Figure 8.2). The learning algorithm 
used was the standard backpropagation algorithm, with some variations as 
described in [31]. 

In the standard algorithm, the values of the hidden nodes is calculated using 
equation (B. 1): 

hf'= L wr;vr = L wt'g(hf> 
(B.l) 

j j 

In this equation, w;; is the weight of the connection from node vt-1 to V ;m 

between layers m-1 and m, and g is the activation function used. At the end of 
every epoch, the weights are updated using equations (B.2), (B.3) and (B.4) : 

of' = g'(hf)[(t-on 

E=.l. '°'[ rµ _Oµ J2 
2~ ~I I -

iµ 

(B.2) 

(B.3) 

(B .4) 

In these equations, (f and Of' are the target output and calculated output 

respectively of output i for training exampleµ, and 17 is a learning rate. 



page 146 

The following standard variations are used to improve the convergence speed of 
the neural network: 

• Momentum: A momentum factor is added to equation (8.2) to prevent 
oscillation of the weights using the change of the weight of the previous time 
step, shown in equation (8.5): 

oE 
Liwu(t + 1) = -1] aw + allw;/t) 

If 

(8.5) 

• Alternative cost function: A small value is added to cost function (8.3) to 
speed up convergence when the cost surface is relatively flat, as shown in 
equation (8.6): 

o,!1 = (g'(hf)+o.1Xct-of') 
(B.6) 

• Variable Learning rate: The Learning rate 1J is modified dynamically to speed up 
learning when the training error decreases and to Learn more slowly when an 
increase in training error is detected, as shown in equation (B.7): 

if LiE < 0 consistently 

if LiE > 0 

otherwise 

• Noise was added to the training data to improve generalization. 

3 Training results 

3.1 Training run 1 

(B.7) 

In the first training experiment, the set of 622 training examples for an avatar 
size of 0.1 was used. The inputs of the neural network were the four distance 
values di of each sample in the training set, and the th ree differences between 
these distance values dd; = d;.

1 
- d;. Every node in the network is also connected 

with a weight to a constant value of 1, to create a bias va lue. After training, the 
neural net was able to correctly classify all members of the training set. However, 
when the mapping task was performed using an avatar size of 0.3, a Lot of cases 
were classified incorrectly. 



Appendix B: Description of the neural network page 147 

3.2 Training run 2 

To improve the generalization of the neura l network, the training set was 
expanded with the measurements obtained while mapping four regions in the 
environment using an avatar size of 0.3. The results of these measurements were 
manually corrected where necessary. This added 44 more training instances to 
the training set. However, the neural network was unable to converge to a 
solution that correctly classified all test cases, and 5 instances were classified 
incorrectly. 

3.3 Training run 3 

To improve the results of the neural network, two modifications were made to the 
neural network. First, instead of processing the entire training set at once, the 
neural net was trained on a small subset of the training set (consisting of 20 
examples). When the neural net correctly classifies 95% of the reduced training 
set, new examples are added to the set until a new example is added t hat is 
incorrectly classified. When this happens, training is resumed until again 95% of 
the training set is classified correctly. 
The second modification updates the weights of the neural network more 
frequently. Instead of calculating the errors of the entire training set, the 
weights are updated after 20 training examples are processed. This can result in a 
faster learning when the effect of the error values over the entire training set 
cancel each other out, which causes a smaller update of the weight values. If the 
weight values are updated more frequently, the chance that the errors cancel out 
each other is reduced and the updates have more effect. 

The set of inputs was expanded with the values ddd; = dd;.1 - dd; and dddd; = ddd;.1 

- dddi. The structure of the final neural network is displayed in Figure B.2. Nodes 
h;J represents node i of hidden layer j, and node 0

0 
is the single output node. 

The training examples of the second run are used. After the network has 
converged, all examples in the training set are classified correctly. The results of 
the network in the environment using an avatar size of 0.3 were good, but still a 
few errors occurred when the depth values were very large. These errors were 
removed by adding the misclassified examples to the training set. This resulted in 
good performance of the mapping algorithm for avatar sizes of 0.1, 0.3 and 0.5. 



Figure 8.2: Structure of the neural network. 



Appendix C: Implementation of 
genetic programming 

This appendix will document our implementation of some of the algorithms of the 
genetic programming system used in this thesis. First, we explain the algorithm 
used to calculate the minimum number of nodes required to construct an object 
of a given type of node (nodes of either abstract or concrete types). The 
algorithm to create new individuals will use this number. Finally, the algorithm 
used to perform a crossover operation on two strongly typed individuals is 
discussed. 

1 The create algorithm 

A simple algorithm to construct an individual of a given type T in a genetic 
programming system with strong hierarchical typing is shown below: 

Function Cr eat e(NodeType T) 
Construct sets of all non-abstract types derived from T 
Se l ect a type t from S 
N = Arity (t) 
For i = 1 to N do 

NodeType ti= the type required for child i oft 
Node ci = Create (ti ) 

End for 
Return ConstructNodeOfTypeWithChildren(t, c 1 , •.• , cN) 

End 

While this algorithm creates a syntactically correct individual, it is difficult to 
predict the size of the created individual, or even if the algorithm will terminate 
at all (the size of an object is the number of nodes of that object). To control the 
size of new individuals when they are created, it is possible to add the maximum 
allowed size of the new individual to the Create function . To enforce this 
maximum size M, it must be possible that an object of size M or less can be 
created from the type t selected from the set 5 in the algorithm above. The size 
of the smallest object of a type t that can be created using a given set of 



page 150 

primitives will be called MinlnstanceSize(t). The algorithm used to calculate 
these values is described in the next section. Using the function 
MinlnstanceSize, the new Create function is shown below: 

Function Create(NodeType T, MaxSize M) 
Construct set S of all non-abstract types derived from T 
where MininstanceSize(t) <= M 
Select a type t from S 
N = Arity(t) 
For i = 1 to N do 

NodeType ti= the type required for child i oft 
wi = MininstanceSize (ti) 
ri = random () 

End for 
w = Li wi 
R = Li ri 
For i = 1 to N do 

// Distribute the available MaxSize (M - 1 - W) over 
// all children and add MininstanceSize 
mi = (r;/R) * (M - 1 - W) + wi 
Node c i = Create (ti, m;) 

End for 
Return ConstructNodeOfTypeWithChildren (t, c 11 .•• , cN) 

End 

First, the algorithm selects a type that is able to construct an object smaller or 
equal to M. If the selected type is not a terminal type, the available size will be 
distributed over the child nodes. The available size is M - 1, as the parent node 
of type t has a size of 1. First, the minimum required size of every child node is 
calculated. This leaves (M - 1 - W) nodes that can be distributed randomly over 
the N child nodes. The child nodes are created recursively with a size constraint 
m;. The child nodes are then used to construct the node of type t. The use of 
MinlnstanceSize removes the need to construct any "types possibi lities tables" as 
described by Montana in [72]. 

2 Calculating MinlnstanceSize of primitives 

Table C.1 shows a simple example of a strongly-typed hierarchy of primitive types 
used for genetic programming. Primitive types are derived from the primitive type 
to the right of them. The number of children and their types are given between 
brackets. Abstract primitive types have no brackets. 
The algorithm of the previous section requires the minimum possible size of an 
object of a given type. For example, objects of type Constant have a minimum 
size of 1 because they are terminals. Objects of type RealBase also have a 



Appendix C: Implementation of genetic programming page 151 

minimum size of 1, because Constant is of type RealBase and has a minimum size 
of 1. The type Add has a minimum size of 3, because the minimum size of both 
its children is 1 and the Add-node has a size of 1. 

Base Rea lBase Add(RealBase, RealBase) 
Sub(RealBase, RealBase) 

Constant() 

GraphicsBase Line( Real Base) 
ScaleGraphic(RealBase, GraphicsBase) 

Table C.1: A simple strongly-typed hierarchy of primitives. 

To calculate the MininstanceSize of all primitive types, the primitive types use 
two variables MinSize and InRecursive. MinSize contains the current minimum 
size of the object, and is initialized with +00• InRecursive is a Boolean flag that 
prevents infinite recursion and is initially False. The algorithm is presented 
below. The MinSize value must only be calculated once for each type, and a non­
recursive call to MinlnstanceSize will calculate the minimum size of the type, but 
not necessarily of other types for which MininstanceSize is called recursively. 

Function MininstanceSize(NodeType T) 
If not T . InRecursive and T.MinSize =+=then 

T . InRecursive = True 
Resl = += 
For every NodeType t derived from T do 

Resl = MIN(Resl, MininstanceSize(t)) 
End for 
If not I sAbstract(T) then 

Res = 1 // Size of this node 
For i = 1 to Arity(T) do 

// Add MinSize of child nodes 
Res = Res+ MininstanceSize(ChildType(T, i)) 

End for 
Resl = MIN(Res, Resl) 

End if 
T.MinSize = Resl 
T.InRecursive = False 

End if 
Return T.MinSize 

End 



page 152 

3 Strongly-typed crossover algorithm 

The standard crossover algorithm for typeless genetic programming selects a 
random node in two individuals and swaps the subtrees originating at the 
selected nodes. In strongly-typed genetic programming, the selected subtrees 
must be compatible with the parent node of the selected subtrees. The crossover 
operator implemented by Montana [72] selects a random node from the first 
individual. The node in the second individual is selected from those nodes t hat 
return the same type as the first node. 
The strongly typed crossover operator used in this thesis first selects a type that 
is found in both individuals, using the algorithm described below. Then, a node 
that is compatible with the selected type is selected in both individuals, and the 
subtrees originating at these nodes are exchanged to form two new individuals. 

The algorithm to select a type that occurs in both individuals is given below. It is 
assumed that all individuals of the population must be derived from a type T. 

For i = 1 to 2 do 
II Create a map Mi of the types of the nodes of 
II individual Oi. This map is a set of tupels 
II (Type, Occurences), where Occurences is the number 
II of times a node of Type occurs in the individual . 
Mi = MapTypes (Oi , T) 

End for 
II Create the division of sets M1 and M2 

M = { (Type, Occurences) I (Type, 0 1 ) E M1 and (Type , 0 2) E M2 
a nd Occurences = MIN(01 , 0 2)} 

Select a type from M whe r e types are weigh ted b y their 
occurence s 

Function MapTypes(Node N, NodeType T) 
II Add one occurrence of the root node 
Map M. add(T, 1) 
For i = 1 to Arity(N) do 

M.add (MapTypes(Chi ldNode( N, i ) , ChildType(N, i) )) 
End for 
Return M 

End 



Appendix D: Complexity of the 
N-parity problem 

The N-parity problems, described in section 5.2.2 of chapter 5 test if either an 
even or odd number of l's are present in N input Boolean variables. 
A simple solution for the odd N-parity problem, containing 2N-1 nodes, can be 
constructed when the xor function is allowed to be used with program (D.1): 

(d
0 

xor d
1 

xor ... xor d0J (D.1) 

When only the function set {and, or, nand, nor} is allowed, it is still possible to 
create every possible Boolean function. The function xor(a, b) can be constructed 
with equation (D.2): 

xor(a, b) = ((a nand b) and (a orb)) 
(D .2) 

When the xor functions of program (D.1) are replaced by the construction of 
equation (D.2), and N is 2° for some n E IN0, 2N2-l nodes are required. This can 
be demonstrated by induction: 

N = 2: 
The solution for the odd 2-parity problem is ((d0 nand dJ and (d0 or dJ). This 
solution contains 7 nodes and therefore satisfies 2N2-l. 

N = 2°·1
, n > 1 

Let the function \ be a solution for the odd 2"-parity problem for the inputs d0, 

... , d
2

n_
1 

and 5
2 

a solution for the odd 2"-parity problem for the inputs d2, , ••• , 

d
2
"''-,· Per induction, 51 and 52 contain 2(2")2-1 nodes. Then xor(5ir 52) is a 

solution for the odd 2°·1-parity problem. Using equation (D.2), this results in the 
program ((5

1 
nand 5

2
) and (5

1 
or 5)). This solution contains the three nodes 

{nand, and, or}, and four sub-expressions of size 2(2")2-1. The total number of 
nodes is thus 3+4*(2(2")2-1) = 8*(2")2-1 = 2*(i(2")2)-1 = 2*(2°·1)2-1 = 2N2-1. 

While this does not demonstrate that it is impossible to find a smaller solution 
for the N-parity problem, it gives an indication that a solution is more complex 
without the xor-operator. 



References 
1. Andre, D.; Teller, A.: A Study in Program Response and the Negative Effects 

of Intrans in Genetic Programming. In Genetic Programming 1996, 
Proceedings of the First Annual Conference, July 28-31 1996, Stanford 
University, MIT Press, pp. 12-20. 

2. Andre, D.; Teller, A.: Evolving Team Darwin United. In Robocup-98: Robot 
Soccer World Cup II (Lecture Notes in Artificial Intelligence Vol. 1604). 
Springer-Verlag, New York, NY, 1999. 

3. Angeline, P.: Genetic Programming and Emergent Intelligence. In Advances 
in Genetic Programming. MIT Press (1994) pp. 75-97. 

4. Banzhaf, W.; Langdon, W. B.: Some Considerations on the Reason for Bloat. 
In Genetic Programming and Evolvable Machines, 3, 81-91, 2002. 

5. Blickle, T.: Evolving Compact Solutions in Genetic Programming: A Case 
Study. In Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberg, Hans-Paul 
Schwefel (Eds.): Parallel Problem Solving from Nature IV. Proceedings of 
the International Conference on Evolutionary, Berlin, September 1996. 
LNCS 1141, Heidelberg: Springer Verlag. 

6. Blickle, T.; Thiele, L.: Genetic Programming and Redundancy. In Hopf, J., 
ed., Genetic Algorithms within the Framework of Evolutionary Computation 
(Workshop at KI-94, SaarbrUcken). Saarbrticken, Germany: Max-Planck­
Institut fur Informatik (1994) pp. 33-38. 

7. Blumberg, B. M. : Old Tn"cks, New Dogs: Ethology and Interactive Creatures. 
Ph.D. thesis, MIT Media Laboratory, Boston, MA, 1996. 

8. Bryson, S.: Developing Advanced Virtual Reality Applications. In chapter 
Approaches to the Successful Design and Implementation of VR 
Applications, no. 2 in Course Notes for SIGGRAPH '94, ACM. 

9. Capin, T. K.; Pandzic, I. S.; Noser, H.; Magnenat Thalmann, N.; Thalmann, 
D.: Virtual Human Representation and Communication in VLNet Networked 
Virtual Environments. IEEE Computer Graphics and Applications, Special 
Issue on Mu ltimedia Highways, 1997. 

10. Carlsson, C.; Hagsand, 0.: DIVE - a Platform for Multi-User Virtual 
Environments. Computer & Graphics, vol. 17(6), pp. 663-669, 1993. 

11. Chao, D.: Doom as an Interface for Process Management. In Proceedings of 
the Conference on Human Factors in Computing Systems (CHI), March 31 -
April 5 2001, Volume 3, Issue 1, pp. 152-157. 

12. Chen, M.; Foroughi, E.; Heintz, F.; Huang, Z. X.; Kapetanakis, S.; Kostiadis, 
K.; Kummeneje, J.; Noda, I.; Obst, O.; Riley, P.; Steffens, T.; Wang, Y.; Yin, 



References page 155 

X.: RoboCup Soccer Server. Users manual for Soccer Server Version 7 .07 and 
later, June 11, 2001. 

13. Choset, H .: Sensor Based Motion Planning: The Hierarchical Generalized 
Voronoi Graph. Ph.D. thesis, California Institute of Technology, 1996. 

14. Cohen, P. R.; Levesque, H.J .: Teamwork. In Nous, 25(4): pp. 487-512. 
15. Coninx, K.: Hybrid 2D/3D Human-Computer Interaction Techniques in 

Immersive Virtual Modeling Environments. Ph.D. thesis, Limburg University 
Center, Diepenbeek, Belgium, 1997. 

16. Coninx, K.; Van Reeth, F.; Flerackers, E.: A Hybrid 2D/3D User Interface for 
Immersive Object Modeling. In Proceedings of Computer Graphics 
International '97, Hasselt and Diepenbeek, BE, pp. 47-55, 1997. 

17. Cossement, N: Developing low-level skills for Robocup. Master thesis, 
Department of Computer Science, University of Leuven, Belgium (1998). 

18. Darwin, C.: On the Origin of Species by Means of Natural Selection. John 
Murray, 1859. 

19. De Jong, E.; Watson, R.; Pollack, J.: Reducing Bloat and Promoting Diversity 
using Multi-Objective Methods. In Proceedings of the Genetic and 
Evolutionary Computation Conference, San Fransisco, USA, July 7-11 2001, 
pp. 11-18. 

20. Di Girolamo, S.; Di Nardo, W.; Piciotti, P.; Paludetti, G.; Ottaviani, F. et al. : 
Virtual Reality in Vestibular Assessment and Rehabilitation. In Virtual 
Reality, vol. 4(3), pp. 169-183, 1999. 

21. Dix, A.; Finlay, J., Abowd, G.; Beale, R.: Human-Computer Interaction. 
Prentice Hall, 1998. 

22. Ekart, A.: Controlling Code Growth in Genetic Programming by Mutation. in 
Late Breaking Papers of EUROGP'99, Goteborg , 26-27 May 1999, pp. 3-12, 
ISSN 1386-369X. 

23. Ekart, A.; Nemeth, S. Z. : A Metric for Genetic Programs and Fitness Sharing. 
in Genetic Programming, Proceedings of EUROGP'2000, Edinburgh, 15-16 
April 2000, LNCS volume 1802, pp. 259-270, ISBN 3-540-67339-3. 

24. Everett, S. S.; Wauchope K.; Perez Q. M. A. : Creating Natural Language 
Interfaces to VR Systems. In Virtual Reality, vol. 4(2), pp. 103-113, 1999. 

25. Gathercole, C.; Ross, P.: An Adverse Interaction between the Crossover 
Operator and a Restriction of Tree Depth. In Genetic Programming 1996, 
Proceedings of the First Annual Conference, July 28-31 1996, Stanford 
University, MIT Press, pp. 291-296. 

26. Giallorenzo, V.; Bannerjee, P.; Conroy, L.; Franke, J.: Application of Virtual 
Reality in Hospital Facilities Design. In Virtual Reality, vol. 4(3) , pp. 103-
113, 1999. 

27. Goldberg, D. E.: Genetic Algorithms in Search, Optimization and Machine 
Learning. Addison-Wesley, 1989. 



page 156 

28. Greenhalgh, C.; Benford, S.: MASSIVE: a Distributed Virtual Reality System 
Incorporating Spatfol Trading. In Proceedings of t he 15th International 
Conference on Distributed Computing Systems (DCS'95), Vancouver, 
Canada, May 30-June 2, 1995, pp. 27-34, IEEE Computer Society Press, Los 
Alamitos, California. 

29 . Handley, S.: On the Use of a Directed Acyclic Graph to Represent a 
Population of Computer Programs. in Proceedings of the 1994 IEEE World 
Congress on Computational Intelligence, pp. 154-159, Orlando, Florida, 
USA: IEEE Press. 

30. Haynes, T. D.; Schoenefeld, D. A.; Wainwright, R. L.: Type Inheritance in 
Strongly Typed Genetic Programming. In Advances of Genetic Programming 
Volume 2, MIT Press {1996), pp. 359-375. 

31. Hertz, J. A.; Krogh , A. S.; Pa lmer, R. G.: Introduction to the Theory of 
Neural Computation. Addison-Wesley, 1991. 

32. Hill, R.; Chen, J.; Gratch, J.; Rosenbloom, P.; Tambe, M.: Intelligent Agents 
for the Synthetic Battlefield: A Company of Rotary Wing Aircraft. Innovative 
Applications of Artificial Intelligence (IAAI-97), 1997. 

33. Hix, D.; Swan, J. E., Gabbard, J. L.; McGee, M.; Durbin, J. et al.: User­
Centered Design and Evaluation of a Real-Time Battlefield Visualization 
Virtual Environment. In Proceedings of IEEE Virtual Reality '99, Houston, 
TE, USA, pp. 96-103, 1999. 

34. Holland, J. H.: Adaptation in natural and artificial systems. Ann Arbor, MI: 
The University of Michigan Press {1975). 

35. Hsu, W. H.; Gustafson, S. M.: Genetic Programming for Layered Learning of 
Multi-agent Tasks. In Late Breaking Papers of the 2001 Genetic and 
Evolutionary Computation Conference, July 9-11, 2001, pp. 176-182. 

36. Iba, H.; De Garis, H; Sato, T.: Genetic Programming Using a Minimum 
Descn'ption Length Principle. In Advances in Genetic Programming. MIT 
Press {1994) pp. 265-284. 

37. Jayaram, S.; Wang, Y.; Jayaram, U.; Lyons, K.; Hard, P.: The Software 
Architecture of a Real-Time Battlefield Visualisation Virtual Environment. In 
Proceedings of IEEE Virtual Reality '99, Houston, TE, USA, pp. 29-36, 1999. 

38. Julier, S.; King, R.; Colbert, B.; Durbin, J.; Rosenblum, L.: The Software 
Architecture of a Real-Time Battlefield Visualisation Virtual Environment. In 
Proceedings of IEEE Virtual Reality '99, Houston, TE, USA, pp. 29-36, 1999. 

39. Ka lawski, R. S.: The Science of Virtual Reality and Virtual Environments. 
Addison-Wesley, 1993. 

40. Keijzer, M.: Efficiently Representing Populations in Genetic Programming. In 
Advances of Genetic Programming Volume 2, MIT Press {1996), pp. 259-
278. 

41. Keller, R. E.; Banzhaf, W.: Explicit Maintenance of Genetic Diversity on 
Genospaces. Unpublished manuscript, June 1994, available at http:/ / 
citeseer. nj. nec.com/keller94explicit. html . 



References page 157 

42. Kinnear, K. E.: Generality and Difficulty in Genetic Programming: Evolving a 
Sort. In proceedings of the 5t" International Conference on Genetic 
Algorithms, ICGA-93, july 17-21, pp. 287-294. 

43. Kitano, H.; Asada, M.; Kuniyoshi, Y.; Noda, I.; Osawa, E.: Robocup: The 
Robot World Cup Initiative. Proceedings of the First International 
Conference on Autonomous Agents, Marina del Rey, CA, USA, February 5-8, 
1997. ACM Press, New York, pp. 340-347. 

44. Koza, J. R.: Genetic Programming. MIT Press, Cambridge, MA, 1992. 
45. Koza, J. R.: Genetic Programming II: Automatic Discovery of Reusable 

Programs. MIT Press, Cambridge, MA, 1994. 
46. Kuffner, J. J. Jr; Latombe, J .-C.: Fast Synthetic Vision, Memory, and 

Learning Models for Virtual Humans. In proceedings Computer Animation 
1999. 

47. Langdon, W. B.: Data Structures and Genetic Programming. In Advances of 
Genetic Programming Volume 2, MIT Press (1996), pp. 395-414. 

48. Langdon, W. B.: Directed Crossover witfon Genetic Programming. Research 
Note RN/95/71, University College London, September 1995. 

49. Langdon, W. B.; Poli, R.: Fitness Causes Bloat. In Chawdhry. Soft Computing 
in Engineering Design and Manufacturing. Springer-Verlag London (1997) 
pp. 13-22. 

50. Langdon, W. B. ; Poli, R.: Fitness Causes Bloat: Mutation. In Genetic 
Programming: Proceedings of the First European Workshop, EuroGP'98, 
Paris, France, April 14-15 1998. Springer-Verlag, Berlin, pp. 37-48. 

51. Langdon, W. B.: Fitness Causes Bloat: Simulated Annealing, Hill Climbing and 
Populations. Technical report CSRP-97-22, available at ftp://ftp.cs.bham. 
ac.uk/pub/authors/W. B. Langdon/papers/CSRP-97-22 .ps.gz . 

52. Langdon, W. B.; Poli, R.: Genetic Programming Bloat with Dynamic Fitness. 
In Genetic Programming: Proceedings of the First European Workshop, 
EuroGP'98, Paris, France, April 14-15 1998. Springer-Verlag, Berlin, pp. 97-
112. 

53. Langdon, W. B.: Quadratic Bloat in Genetic Programming. In GECC0-2000: 
Proceedings of the Genetic and Evolutionary Computation Conference, j uly 
8-12 2000. 

54. Lee, D.; Vredevoe, D. ; Kimmick, J.; Karplus, W. J.; Valentino, D. J.: 
Ophthalmoscopic Examination Training Using Virtual Reality. In Virtual 
Reality, vo l. 4(3), pp. 184-191, 1999. 

55. Levesque, H. J.; Cohen, P. R.; Nunes, J. H. T.: On Acting Together. In 
Proceedings of Eighth National Conference on Artificial Intelligence (AAAI-
90), Boston, MA, USA, pp. 94-99, 1990. 

56. Luke, S.; Hohn, C.; Farris, J.; Jackson, G.; Hendler, J.: Co-evolving Soccer 
Softbot Team Coordination with Genetic Programming. In Proceedings of the 



page 158 

First International Workshop on Robocup, at the International Joint 
Conference on Artificial Intelligence, Nagoya, Japan, 1997. 

57. Luke, S.: Code Growth is Not Caused by Introns. In Late Breaking Papers of 
the 2000 Genetic and Evolutionary Computation Conference, July 8, 2000, 
Las Vegas, Nevada, USA, pp. 228-235. 

58. Luke, S.: Evolving Soccerbots: a Retrospective. In Proceedings of the 1th 
Annual Conference of the Japanese Society for Artificial Intelligence, 1998. 

59. Luke, S.; Spector, L.: Evolving Teamwork and Coordination with Genetic 
Programming. In Genetic Programming 1996, Proceedings of t he First 
Annual Conference, July 28-31 1996, Stanford University, MIT Press, pp. 
150-156. 

60. Luke, S.: Genetic Programming Produced Competitive Soccer Softbot Teams 
for Robocup97. In Genetic Programming 1998: Proceedings of the Third 
Annual Conference, University of Wisconsin, Madison, Wisconsin, USA, July 
22-25 1998, Morgan Kaufman, pp. 214-222. 

61. Luke, S.: Issues in Scaling Genetic Programming: Breeding Strategies, Tree 
Generation, and Code Bloat. Ph.D. dissertation, Department of Computer 
Science, Uni versity of Maryland, College Park, Maryland (2000). 

62. Mahwinney, D.: Prevention of Premature Convergence in Genetic 
Programming. Honours Thesis, RMIT, Department of Computer Science, 
2000. 

63. McPhee, N. F.; Miller, J. D.: Accurate Replication in Genetic Programming. In 
Genetic Algorithms: Proceedings of the Sixth International Conference 
(ICGA95), july 15-19 1995, San Francisco, California, USA, pp. 303-309. 

64. McPhee, N. F.; Poli, R.: A Schema Theory Analysis of the Evolution of Size in 
Genetic Programming with Linear Representations. In J. Miller et al. (Eds.): 
EuroGP 2001, LNCS 2038, pp. 108-125, 2001. 

65. McPhee, N. F.; Hopper, N. J.; Reierson, M. L.: Impact of Types on Essentially 
Typeless Problems. In Genetic Programming 1998: Proceedings of the Third 
Annual Conference, University of Wisconsin, Madison, Wisconsin, USA, July 
22-25 1998, pp. 232-240. 

66. Mine, M. R.: Working in a Virtual World: Interaction Techniques Used in the 
Chapel Hill Immersive Modeling Program. Technical report 96-029, University 
of North Carolina, 1996. 

67. Monsieurs, P.: Developfog High Level Skills for Robocup. Master thesis, 
Department of Computer Science, University of Leuven, Belgium (1998). 

68. Monsieurs, P.; Coninx, K.; Flerackers, E.: Collision Avoidance and Map 
Construction Using Synthetic Vision. In Proceedings of the Second Workshop 
on Intelligent Virtual Agents, University of Salford, UK, September 13, 
1999, pp. 33-45. 

69. Monsieurs, P.; Coninx, K.; Flerackers, E.: Collision Avoidance and Map 
Construction Using Synthetic Vision. In Virtual Reality (2000) 5: pp. 72-81. 



References page 159 

70. Monsieurs, P.; Flerackers, E.: Reducing Bloat in Genetic Programming. In 
Computational Intelligence, Proceedings of 7th Fuzzy Days, Dortmund, 
Germany, October 1-3 2001, pp. 471-478, ISBN 3-540-42732-5. 

71. Monsieurs, P.; Flerackers, E.: Increasing the Diversity of a Population in 
Genetic Programming. In Proceedings of the Genetic and Evolutionary 
Computation Conference, San Francisco, California, USA, July 7-11, 2001, 
p. 185. 

72. Montana, D. J .: Strongly Typed Genetic Programming. In Evolutionary 
Computation, 3(2) pp. 199-230. 

73. Muslea, I.: A General Purpose (AI) Planning System based on the Genetic 
Programming Paradigm. In Late Breaking Papers of the 1997 Genetic 
Programming Co nference, July 13-16, 1997, pp. 157-164. 

74. Muslea, I.: SINERGY: A Linear Planner based an Genetic Programming. In 
Proceedings of the Fourth International Conference on Planning, Toulouse, 
France, September 24-26, 1997. 

75. Neumann, P.; Siebert, D.; Schulz, A.; Faulkner, G.; Krauss, M. et al. : Using 
Virtual Reality Techniques in Maxillofacial Surgery Planning. In Virtual 
Reality, vol. 4(3), pp. 213-222, 1999. 

76. Nienhuys-Cheng, S.-H.: Distance Between Herbrand Interpretations: a 
Measure for Approximations to a Target Concept. In N. Lavrac, S. Dzeroski 
(eds): Proceedings of the t h International Workshop on Inductive Logic 
Programming, volume 1297 of LNAI, pp. 213-226. Springer-Verlag, 1997. 

77. Nordin, P; Banzhaf, W.: Complexity Compression and Evolution. In Genetic 
Algorithms: Proceedings of the Sixth International Conference (ICGA 95 ), 
Pitssburg, PA, USA, july 15-19, 1995, pp. 310-317. 

78. Nordin , P.; Banzhaf, W.; Francone, F. 0.: Intrans in Nature and in Simulated 
Structure Evolution. In Bio-Computation and Emergent Computation, World 
Scientific Publishing, Skovde, Sweden (1997). 

79. Noser, H.; Renault, O.; Thalmann, D.; Magnenat Thalmann, N.: Navigation 
for Digital Actors based on Synthetic Vision, Memory and Learning. In 
Computers and Graphics, Pergamon Press, Vol. 19, No. 1, 1995, pp. 7-19. 

80. O'Neill, M.; Ryan, C.; Nicolau, M.: Grammar Defined Intrans: An Investigation 
Into Grammars, Intrans, and Bias in Grammatical Evolution. In Proceedings 
of the Genetic and Evolutionary Computation Conference, San Fransisco, 
USA, July 7-11 2001, pp. 97-103. 

81. O'Reilly, U.-M.: An Analysis of Genetic Programming. Ph.D. Dissertation, 
Carleton University, Ottawa-Carleton Institute for Computer Science, 
Ottawa, Ontario, Canada (1995). 

82. Pandzic, I. S.; Capin, T. K.; Lee, E.; Magnenat Thalmann, N.; Thalmann, D'.: 
A Flexible Architecture for Virtual Humans in Networked Collaborative Virtual 
Environments. In Proceedings Eurographics '97, Budapest, Hungary, 1997. 



page 160 

83. Pandzic, I. S.; Capin, T. K.; Lee, E.; Magnenat Thalmann, N.; Thalmann, D.: 
Autonomous Actors in Networked Collaborative Virtual Environments. In 
Proceedings of Multimedia Modeling '98, Lausanne, Switzerland, October 
12-15, 1998, pp. 138-145. 

84. Poli, R.; McPhee, N. F.: Exact Schema Theorems for GP with One-Point and 
Standard Crossover Operating on Linear Structures and Their Application to 
the Study of the Evolution of Size. In J. Miller et al. (Eds.): EuroGP 2001, 
LNCS 2038, pp. 126-142, 2001. 

85. Poli, R.; McPhee, N. F.: Exact Schema Theory for GP and Variable-length Gas 
with Homologous Crossover. In Proceedings of the Genetic and Evolutionary 
Computation Conference, San Fransisco, USA, July 7-11 2001, pp. 104-111. 

86. Poli, R.: Introduction to Evolutionary Computation. Online tutorial: 
http://www.cs.bham.ac.uk/-rmp/s lide_book/slide_book.htm l . 

87. Rajani, R.; Perry, M.: The Reality of Medical Work: The Case for a New 
Perspecrive on Telemedicine. In Virtual Reality, vo l. 4(4), pp. 243-249, 
1999. 

88. Raymaekers, C.: Haptic Feedback in Virtual Environments: Towards a Multi­
modal Interface. Ph.D. dissertation, Department of Computer Science, 
Transnationale Universiteit Limburg, Belgium, 2002. 

89. Raymaekers, C.; De Weyer, T. ; Coninx, K.; Van Reeth, F.; Flerackers, E.: 
!COME: An Immersive Collaborative 3D Object Modelling Environment. In 
Virtual Reality {1999) 4: pp. 265-274. 

90. Reynolds, C. W .: Not Bumping Into Things. Notes on "obstacle avoidance" 
for the course on Physically Based Modeling at SIGGRAPH 88, August 1-5, 
Atlanta, Georgia, 1988. 

91. Rosca, J . P. : An Analysis of Hierarchical Genetic Programming. Technical 
Report 566, University of Rochester, Rochester, NY, USA, 1995. 
http://citeseer.nj.nec.com/rosca95analysis.html. 

92. Rosca, J. P.: Entropy-Driven Adaptive Representation. In Proceedings of t he 
Workshop on Genetic Programming: From Theory to Real-World 
Applications, Tahoe City, California, USA, july 9, 1995, pp. 23-32. 

93. Rosca, J. P.: Generality versus Size in Genetic Programming. In Genetic 
Programming 1996, Proceedings of the First Annual Conference, July 28-31 
1996, Stanford University, MIT Press, pp. 381-387. 

94. Ryan , C. : Pygmies and Civil Servants. In Advances in Genetic Programming. 
MIT Press {1994) pp. 243-263. 

95. Sastry, L.; Boyd, D. R. S.: Human Factors in Virtual Environments. In Virtual 
Reality, vol. 3(4), pp. 223-225, 1998. 

96. Singhal, S.; Zyda, M.: Networked Virtual Environments: Design and 
Implementation. SIGGRAPH Book Series, ACM Press, 1999. 

97. Smith, P. W. H.; Harries, K.: Code Growth, Explicitly Defined Intrans, and 
Alternative Selection Schemes. In Evolutionary Computation, Vol. 6, No. 4, 
pp. 339-360, 1999. 



References page 161 

98. Soule, T.; Foster, J. A.; Dickinson, J.: Code Growth in Genetic Programming. 
In Genetic Programming 1996, Proceedings of the First Annual Conference, 
July 28-311996, Stanford University, MIT Press, pp. 215-223. 

99. Soule, T.; Foster, J. A.: Effects of Code Growth and Parsimony Pressure on 
Populations in Genetic Programming. In Evolutionary Computation, 6(4) 
(1998) pp. 293-309. 

100. Soule, T.; Foster, J. A.: Removal Bias: a New Cause of Code Growth in Tree 
Based Evolutionary Programming. In 1998 IEEE International Conference on 
Evolutionary Computation. Anchorage, Alaska, USA: IEEE Press (1998) pp. 
181-186. 

101. Soule, T.; Heckendorn, R. 8.: An Analysis of the Causes of Code Growth in 
Genetic Programming. Genetic Programming and Evolvable Machines, 3, 
Kluwer Academic Publishers, pp. 283-309, September 2002. 

102. Stone, P.; Veloso, M.: A Layered Approach to Learning Client Behaviors in the 
Robocup Soccer Server. In Applied Artificial Intelligence (AAI), Volume 12, 
1998. 

103. Tackett, W. A.: Recombination, Selection, and the Genetic Construction of 
Computer Programs. Ph.D. Dissertation, University of Southern California, 
Department of Electrical Engineering Systems (1994) . 

104. Tambe, M.: Implementing Agent Teams in Dynamic Multi-agent 
Environments. In Applied Artificial Intelligence (AAI), Volume 12, 1998. 

105. Teller, A.; Veloso, M .: Neural Programming and an Internal Reinforcement 
Policy. Late Breaking Papers at the Genetic Programming 1996 Conference 
Stanford University July 28-31, 1996. 

106. Teller, A.: The Internal Reinforcement of Evolving Algorithms. In Advances in 
Genetic Programming Volume 3, MIT Press(1999), pp. 325-354. 

107. Terzopoulos, D.; Rabie, T. F.: Animat Vision: Active Vision in Artificial 
Animals. In Journal of Computer Vision Research Fall 1997, Volume 1, 
Number 1, The MIT Press. 

108. Thrun, 5.: Learning Metn·c-topological Maps for Indoor Mobile Robot 
Navigation. In Artificial Intelligence, 99 (1) (1998) pp. 21-71 

109. Thrun, S.; BUcken, A.: Integrating Grid-Based and Topological Maps for 
Mobile Robot Navigation. In Proceedings of the Thirteenth National 
Conference on Artificial Intelligence AAAI, Portland, Oregon, August 1996. 

110. Westerberg, C. H.; Levine, J .: Optimizing Plans Using Genetic Programming. 
In Proceedings of the 6th European Conference on Planning, Toledo, Spain, 
September 2001, Springer Verlag. 

111. Wineberg, M.; Oppacher, F.: The Benefits of Computing with Intrans. In 
Genetic Programming 1996, Proceedings of the First Annual Conference, 
July 28-311996, Stanford University, MIT Press, pp. 410-415. 

112. Woolridge , M.; Jennings, N.: Agent Theories, Architectures, and Languages: 
A Survey. In The Knowledge Engineering Review, 10(2), 1995. 



page 162 

113. Zhang, B.-T.; Muhlenbein, H.: Balancing Accuracy and Parsimony in Genetic 
Programming. In Evolutionary Computation, Vol. 3, No. 1, 1995, pp. 17-38. 

114. Zhukov, S.; !ones, A.; Kronin, G.: Navigation of IntelHgent Characters in 
Complex JD Synthetic Environments in Real-time Applications. Proc. of 
WSCG'98 - Central European conference on Computer Graphics and 
Visua lization 1998, pp. 456-463. 

115. FIDE Swiss Rules. Federation Internationale des Echecs, available online at 
http://www.fideonline.com/officialjhandbook.asp?level=C04. 



Samenvatting page 163 

Samenvatting 
In dit gedeelte wordt een korte Nederlandstalige samenvatting van de gehele 
thesis gegeven. Voor een meer gedetailleerde beschrijving wordt verwezen naar 
het Engelstalige gedeelte van de thesis. 

1 Inleiding en overzicht 

Deze thesis behandelt agenten in virtuele omgevingen. Virtuele omgevingen zijn 
werelden die bestaan in het geheugen van een computersysteem. Gebruikers 
kunnen met behulp van grafische hardware deze wereld waarnemen en 
interageren met deze wereld. Agenten zijn zelfstandige computerprogramma's die 
eenvoudig te automatiseren taken uitvoeren voor gebruikers of andere agenten. 
Een agent die bestaat in een virtuele omgeving is een virtuele agent. 
In het eerste gedeelte van deze thesis wordt behandeld hoe een agent op een 
natuurlijke manier kan navigeren in een virtuele omgeving, en wordt robotvoetbal 
geYntroduceerd als een virtuele multi-agent omgeving. Het tweede gedeelte van 
de thesis behandelt het aspect van leren van virtuele agenten. Hiervoor wordt 
genetisch programmeren ge"introduceerd. Vervolgens worden enkele optimalisaties 
toegepast op genetisch programmeren die nuttig zijn voor het trainen van 
virtuele agenten. Ten slotte worden deze optimalisaties toegepast op het domein 
van robotvoetbal om uit te testen of deze optimalisaties ook werken op een 
complex probleem. 

2 Agenten en virtuele omgevingen 

Door de steeds beter wordende grafische hardware van computersystemen worden 
virtuele omgevingen steeds vaker gebruikt in uiteenlopende toepassingen. Deze 
toepassingen omvatten medische en militaire applicaties, ontwerp en constructie, 
modelleren, virtuele gemeenschappen en ontspanning. In al deze toepassingen is 
de gebruiker ondergedompeld in een computergegenereerde wereld om zo op een 
meer natuurlijke manier te interageren met de applicatie. In een aantal gevallen 
kan het nuttig zijn om een aantal taken te laten uitvoeren door een zelfstandig 
computerprogramma, een virtuele agent genaamd. De kenmerken van agenten 
zijn dat ze zelfstandig werken, reageren op gebeurtenissen in hun omgeving en, 



page 164 

wanneer gepast, zelf initiatieven nemen, en kan communiceren met gebruikers en 
andere agenten . Een virtuele agent heeft, net als een gebruiker, een 
representatie in een virtuele omgeving die een avatar wordt genoemd. 
Bij het ontwerpen van een virtuele agent treden verschillende moeilijkheden op. 
Vermits de virtuele agent een representatie heeft in de omgeving, is het nodig 
dat de agent op een natuurlijke manier kan navigeren in de omgeving. Dit wordt 
behandeld in sectie 3 van deze samenvatting. 
Vervolgens is het in een multi-agent systeem nodig dat de verschillende agenten 
met elkaar en met de gebruikers van het systeem kunnen communiceren. Dit 
onderwerp wordt niet behandeld in deze samenvatting, maar wo rdt kart 
behandeld in Appendix A van het Engelstalige gedeelte van deze thesis. 
Ten slotte is het nodig dat virtuele agenten leren een taak te verrichten in hun 
omgeving. In deze thesis wordt genetisch programmeren beschouwd als een 
manier om agenten te trainen. Genetisch programmeren heeft echter enkele 
problemen, die belangrijk zijn in een domein zoals virtuele agenten waar 
eva luatie van programma's zeer lang kan duren. Wanneer genetisch programmeren 
wordt gebruikt, wordt vastgesteld dat de grootte van programma's zeer snel 
groeit, zonder veel bij te dragen aan de kwaliteit van het programma. Vaak zorgt 
deze groei er zelfs voor dat de evolutie van programma's sterk vertraagd. Ook is 
het nodig om gebruik te maken van een grate populatie van kandidaat 
oplossingen om de diversiteit van de populatie te behouden. Omdat dit voor zeer 
lange evaluatietijd zorgt, is het nodig dat de grootte van de populatie 
verminderd kan warden zonder de diversiteit ervan aan te tasten. Oplossingen 
voor deze twee problemen warden besproken in secties 6 en 7 van deze 
samenvatting. Verder warden deze oplossingen ook toegepast op het multi-agent 
domein van robotvoetbal, om de efficientie van deze oplossingen te testen op 
een complex leerprobleem. Dit zal warden besproken in sectie 8. 

3 Navigatie in virtuele omgevingen 

Een virtuele agent kan op verschillende manieren navigeren in een virtuele 
wereld. Als de agent toegang heeft tot de interne representatie van de omgeving 
kan hij een kaart opstellen van de omgeving. Met behulp van deze kaart kan hij 
dan routes plannen naar andere plaatsen en vaste obstakels in de omgeving 
vermijden. 
Indien de agent echter geen toegang heeft tot de interne representatie zal hij 
zelf een representatie van de omgeving moeten opbouwen. Dit moet gebeuren via 
de senso rs waarmee hij de omgeving kan waarnemen, zoals een synthetische 
visuele sensor die een beeld genereert vanuit het oogpunt van de agent. 



Samenvatting page 165 

3.1 Synthetische visie 

In deze sectie wordt verondersteld dat de agent de omgeving enkel kan 
observeren met behulp van het gerenderde beeld van de omgeving. Vermits dit 
gerenderde beeld de diepte-informatie van elke pixel bevat die gebruikt werd om 
het beeld te genereren, kan hier gebruik van worden gemaakt. Dit proces is 
vergelijkbaar met een mobiele robot die een dieptesensor heeft. In dit gedeelte 
wordt enkel gebruik gemaakt van de diepte-informatie op dezelfde hoogte van de 
agent. De diepte-informatie geeft informatie over de afsta nd tot objecten in de 
omgeving in een hoek van 90° voor de agent. Om de informatie te krijgen van de 
volledige omgeving wordt de diepte-informatie opgeslagen in een gezichtsbuffer. 
Vervolgens roteert de agent om zijn eigen as om een nieuw stuk van de omgeving 
te observeren. Al deze stukken worden samen opgeslagen in de gezichtsbuffer, 
tot de volledige omgeving is geobserveerd. Na elke beweging van de agent 
worden de gegevens in de gezichtsbuffer aangepast aan zijn nieuwe positie. De 
opgeslagen diepte-informatie kan nu worden gebruikt voor twee doeleinden: het 
ontwijken van obstakels en het construeren van een kaart van de omgeving. 

3.2 Ontwijken van obstakels 

Als de afstand tot obstakels voor de agent gekend is, kan de agent deze gegevens 
gebruiken om een botsing met deze obstakels te vermijden tijdens het bewegen. 
Dit gebeurt zowel voor het ontwijken van obstakels op korte als op middellange 
afstand. Op korte afstand wordt rekening gehouden met de beweging van de 
agent tijdens een volgende tijdstap. Als deze beweging zou Leiden tot een 
botsing, wordt de beweging in voldoende mate aangepast om een botsing te 
vermijden. 
Op middellange afstand wordt gekeken naar de huidige doelpositie waarnaar de 
agent aan het bewegen is. Deze doelposities worden gegenereerd door functies 
van de agent die werken op een hoger niveau, zoals het niveau dat een kaart van 
de omgeving genereert. Als de doelpositie niet kan bereikt worden in een rechte 
lijn omdat er een obstakel is, wordt gekeken of het na een kleine aanpassing van 
het pad naar de doelpositie mogelijk is om hier toch voldoende dicht bij te 
komen. Als dit zo is zal een nieuwe tijdelijk doelpositie worden gegenereerd op 
dit aangepaste pad. Wanneer de oorspronkelij ke doelpositie zichtbaar wordt, 
wordt de tijdetijke doelpositie vervangen door de oorspronkelijke doelpositie. Als 
een aanpassing van het pad naar de doelpositie echter niet mogelijk is, zal het 
hogere niveau dat de doelpositie genereerde hiervan op de hoogte warden 
gebracht. Het is dan de taak van het hogere niveau om dit probleem op te lossen. 



page 166 

3.3 Constructie van een kaart van de omgeving 

Als de diepte-informatie van alle obstakels rondom de agent gekend is, kan een 
kaart worden gemaakt van het gebied waarin de agent zich bevindt. De langs 
elkaar liggende dieptewaarden worden benaderd door een aantal rechte lijnen 
waar dit mogelijk is. Deze lijnen worden opgenomen in de kaart van dit gebied. 
Op sommige plaatsen zullen echter discontinui"teiten voorkomen in deze lijnen. 
Deze open punten ste llen openingen voor waarlangs het mogelijk is om 
aangrenzende gebieden te betreden . De open punten worden eveneens 
opgeslagen in de kaart van het gebied, en stellen mogelijke plaatsen voor om de 
kaart van de omgeving uit te breiden met nieuwe gebieden. Om deze 
discontinui"teiten te detecteren wordt gebruik gemaakt van een neuraal netwerk. 
Om nieuwe gebieden toe te voegen aan de kaart worden de open punten van een 
bestaand gebied beschouwd. Als dit open punt leidt naar een reeds bestaand 
gebied, wordt het beschouwde open punt verwijderd en wordt een verbindi ng 
tussen deze twee gebieden toegevoegd. In het andere geval beweegt de agent 
naar het nieuwe gebied en detecteert de diepte-informatie in het nieuwe gebied 
dat wordt toegevoerd aan de kaart. Wanneer alle open punten in alle gebieden 
van de kaart zijn verwijderd, is de volledige kaart van de omgeving voltooid. Op 
dat moment kunnen overbodige verbindingen tussen gebieden worden verwijderd 
om de kaart te vereenvoudigen. 

3.4 Het vinden van paden met behulp van de kaart 

Met behulp van de kaart van de omgeving is het mogelijk om het kortste pad te 
vinden tussen twee punten in de omgeving. In een eerste stap worden de twee 
gebieden van de kaart gevonden waarvan hun centrum het dichtst bij de begin­
en eindpositie van het pad liggen. Vervolgens kan een standaard 
padvinderalgoritme, zea ls het A *-algoritme, worden gebruikt om het kortste pad 
tussen deze twee gebieden te vinden. Het gevonden pad is dan een 
aaneenschakeling van rechte lijnen, waarvan de verbindingspunten worden 
gebruikt als doelposities van het navigatiesysteem van de agent. Zodra een 
volgend punt op het pad zichtbaar wordt, wordt de huidige doelpositie vervangen 
door de volgende doelpositie. Op deze manier kunnen hoeken in het gevonden 
pad worden afgesneden. 
Padvinden en het construeren van een kaart kunnen worden gecombineerd om 
een positie te bereiken in een onbekende omgeving. In dit geval worden eerst de 
open punten in een gebied onderzocht die het dichtst liggen bij de te bereiken 
doelpositie. 



Samenvatting page 167 

4 Robocup 

Robocup is een onderzoeksdomein naar multi-agent systemen dat gebruik maakt 
van het domein van robotvoetbal. Het doel van Robocup is in de eerste plaats om 
een team van echte robots te ontwikkelen die een voetbalwedstrijd kunnen 
spelen. Om echter ook onderzoek te kunnen doen naar de multi-agent aspecten 
van robotvoetbal, zonder aandacht te moeten besteden aan de complexe 
problemen van robotica, is ook een software simulator ontwikkeld. In deze 
simulator wordt het besturen van robots geabstraheerd door eenvoudige 
primitieve commando's zoals draaien en vooruit bewegen. 

4.1 Uitdagingen van Robocup 

Het Robocup domein bevat een aantal interessante uitdagingen voor multi-agent 
systemen, waar elke speler wordt bestuurd door een agent. De omgeving is uiterst 
dynamisch, waardoor lange termijn plannen constant moeten worden aangepast 
aan de veranderende situaties. De sensorgegevens die de spelers ontvangen 
bevatten ook ruis en zijn soms onvolledig. Bijgevolg moeten de agenten 
fouttolerant zijn om deze fouten op te kunnen vangen. De communicatie tussen 
de spelers is ook beperkt, waardoor een gedistribueerde vorm van samenwerking 
noodzakelijk wordt. De spelers moeten ook rekening houden met een beperkte 
hoeveelheid uithoudingsvermogen, waardoor inspanningen gedoseerd moeten 
worden. D.e sim ulatie verloopt in real-time, waardoor het snel nemen van 
beslissingen noodzakelijk is. Tenslotte weet een speler ook niet of een 
uitgevoerde actie geslaagd is. De agent moet de veranderingen in de omgeving 
bestuderen om het effect van de actie te observeren. 

4.2 Werking van Robocup 

De simulator werkt volgens een client-server pnnc1pe. Verschillende agenten 
verbinden met de simulator via een netwerk. Op regelmatige intervallen 
ontvangen de agenten visuele en auditieve informatie over de objecten die 
worden geobserveerd door de speler. Elke tijdstap kan de agent commando's 
sturen naar de simulator om de speler te besturen. Dit zijn primitieve 
commando's zoals draaien rond de as van de speler, vooruit bewegen of de bal in 
een bepaalde richting trappen als deze zich dicht genoeg bij de speler bevindt. 
Om het ontwerp van een Robocup agent te vereenvoudigen wordt de 
implementatie opgedeeld in een aantal verschillende lagen. Op het laagste niveau 



page 168 

bevinden zich eenvoudige taken zoals het onderscheppen van de bal of het 
bewegen naar een positie op het veld. Deze taken maken gebruik van de 
primitieve acties van de simulator. Daarboven zijn er taken om samen te werken 
met een andere speler, zoals het geven van een pas. Nog hoger zijn taken in 
verband met meerdere andere spelers, zoals het ontwijken van tegenstanders. In 
de volgende laag wordt bepaald welke actie van een lager niveau de agent op een 
bepaald moment gaat uitvoeren. Hier wordt bijvoorbeeld beslist of het beter is 
om met de bal te dribbelen of een pas te geven. De hoogste laag behandelt 
teamwerk. Hier wordt bijvoorbeeld bepaald welke posities de spelers innemen op 
het veld en wat hun taak is. 
De moeilijkste taak van een agent in het Robocup domein is het leren van de 
actie selectie. In deze thesis zullen evolutionaire algoritmes worden gebruikt 
voor deze taak. Zowel genetische algoritmes als genetisch programmeren worden 
hiervoor beschouwd. Deze technieken worden besproken in sectie 5, en worden 
toegepast op het Robocup domein in sectie 8 van deze samenvatting. 

4.3 Ontwijken van obstakels in Robocup 

De technieken om obstakels te vermijden die beschreven werden in sectie 3.2 
kunnen ook worden gebruikt in Robocup. Vermits de agent afstandsinformatie 
ontvangt over de andere spelers die zichtbaar zijn, kan een gezichtsbuffer worden 
bijgehouden van de andere spelers. Deze gezichtsbuffer kan dan worden gebruikt 
om te bewegen in een richting die andere spelers vermijt, en waarbij vooral 
afstand wordt gehouden van tegenstanders. De gezichtsbuffer wordt ook gebruikt 
om te bepalen in welke richting een veilige pas kan worden gegeven. In dit geval 
worden de richtingen en afstanden van medespelers en tegenstanders vergeleken. 

5 Genetisch programmeren 

Evolutionaire algoritmes zijn zoektechnieken die gebaseerd zijn op de natuurlijke 
evolutietheorie beschreven door Darwin in de 19" eeuw. Volgens deze t heorie 
worden in de natuur eigenschappen die een organisme helpen overleven vaker 
doorgegeven aan hun nageslacht, waardoor deze goede eigenschappen in meer 
individuen van een populatie gaan voorkomen. Dit gebeurt omdat de organismen 
met goede eigenschappen meer kans hebben om Lang genoeg te Leven om zich te 
kunnen voortplante n. Om dezelfde reden zullen organismen met slechte 
eigenschappen zich minder vaak kunnen voortplanten, waardoor de slechte 
eigenschappen verdwijnen uit de populatie. Bijgevolg worden de organismen na 
verloop van tijd steeds beter in het overleven in hun omgeving. 



Samenvatting page 169 

5.1 Evolutionaire algoritmes 

De principes van de evolutietheorie kunnen ook worden gebruikt voor het 
oplossen van problemen in de informatica. In plaats van organismen in de natuur 
worden nu oplossingen voor problemen beschouwd. Meerdere kandidaat 
oplossingen worden bijgehouden in een populatie. Afhankelijk van hoe goed een 
beschouwde kandidaat op lossing het probleem kan oplossen wordt bepaald 
hoeveel kans deze kandidaat oplossing heeft om zich voort te planten. Betere 
kandidaat oplossingen zullen zich vaker voortplanten, en door het combineren 
van verschillende kandidaat oplossingen kunnen nieuwe kandidaat oplossingen 
gevonden worden die beter zijn dan elk van hun ouders. 
Om evolutietheorie toe te passen op informaticaproblemen moeten de volgende 
principes warden gesimuleerd: 

• Selectie: Kandidaat oplossingen die het probleem beter oplossen moeten 
vaker worden geselecteerd om nieuwe kandidaat oplossingen te genereren. 
Bijgevolg is het nodig dat de kwaliteit van een kandidaat oplossing kan 
bepaald worden. Hiervoor wordt een fitness functie gebruikt. Deze functie 
evalueert een kandidaat oplossing, en kent een fitness waarde toe aan de 
kandidaat oplossing. Deze fitness waarde wordt dan gebruikt om de kans te 
bepalen dat de kandidaat oplossing wordt geselecteerd. 

• Reproductie: Het creeren van nieuwe kandidaat oplossingen wordt 
reproductie genoemd. Er wordt een onderscheid gemaakt tussen seksuele en 
aseksuele reproductie. In het eerste geval worden twee ouders gecombineerd 
tot een nieuwe kandidaat oplossing, in de hoop de goede eigenschappen van 
beide ouders te combineren in het kind. In het tweede geval wordt een enkele 
ouder gebruikt om kind te creeren. Op deze manier worden goede 
eigenschappen bewaard in de populatie. 

• Mutatie: Een vorm van aseksuele reproductie is mutatie. In dit geval wordt 
een gedeelte van de kandidaat oplossing op een willekeurige manier 
veranderd. Het doel van mutatie is om elementen te introduceren in de 
populatie die voordien niet aanwezig waren, en om de diversiteit van de 
populatie te vergroten. 

Het evolutionaire algoritme werkt door een willekeurige populatie van kandidaat 
oplossingen te genereren. Vervolgens wordt een nieuwe populatie gegenereerd 
met behulp van reproductie, waarna deze nieuwe populatie de oude vervangt. 
Deze stap wordt een generatie genoemd. Dit proces wordt herhaald tot een 
voldoende goede oplossing is gevonden, of een maximum aantal generaties is 
bereikt. 



page 170 

5.2 Genetische algoritmes 

Een genetisch algoritme is een evolutionair algoritme waar een oplossing wordt 
gezocht voor een bepaald probleem, zoals een verzameling optimale parameters 
voor een proces. Een kandidaat oplossing in een genetisch algoritme wordt 
meestal voorgesteld door een reeks elementen. De lengte van deze reeks is 
dikwijls contant voor alle kandidaat oplossingen van de populatie. De elementen 
van de reeks kunnen bits, getallen, symbolen enz. zijn, afhankelijk van het op te 
lossen probleem. 

De meest gebruikte vorm van seksuele reproductie bij genetische algoritmes is 
crossover. Bij deze operator warden de reeksen van twee kandidaat oplossingen 
geselecteerd. Vervolgens wordt een crossover punt gekozen in de reeks van 
elementen. Twee nieuwe kandidaat oplossingen warden gecreeerd door de 
elementen van de eerste ouder voor het crossover punt te combineren met de 
elementen achter het crossover punt van de tweede ouder, en vice versa . Er zijn 
ook varianten mogelijk waarbij meerdere crossover punten worden geselecteerd. 
Mutatie gebeurt meestal door een willekeurig element van de reeks te vervangen 
door een nieuw element. 

5.3 Genetisch programmeren 

Genetisch programmeren is een specialisatie van genetische algoritmes waarbij de 
kandidaat oplossingen programma's zijn die een verzameling van problemen 
kunnen oplossen. Een kandidaat oplossing van genetisch programmeren wordt 
meestal voorgesteld door een boom van primitieve elementen. De primitieve 
elementen warden opgedeeld in twee verzamelingen: terminale en niet-terminale 
elementen. Niet-terminale elementen bevatten een aantal kinderen die warden 
gebruikt bij de evaluatie van het element. Een voorbeeld van een niet-terminaal 
element is optelling, dat twee getallen als kinderen bevat. Termina le elementen 
zijn constanten, functies zonder argumenten of variabelen. 

Mutatie in genetisch programmeren gebeurt door een willekeurige knoop te 
selecteren in een kandidaat oplossing. Deze knoop kan dan warden vervangen 
door een andere willekeurige knoop of een volledig nieuwe subboom. De 
crossover operator wordt ook toegepast bij genetisch programmeren. In elk van 
de twee ouders wordt een willekeurige knoop geselecteerd als crossover punt. De 
subbomen die beginnen bij deze geselecteerde knopen warden dan uitgewisseld 
tussen de twee ouders om twee nieuwe kinderen te vormen. Er moet hier warden 
opgemerkt dat de grootte van de kinderen na een crossover operatie meestal 
anders is dan de grootte van hun ouders: een kind zal grater zijn en het andere 
zal kleiner zijn. Er kan nu experimenteel warden vastgesteld dat het grotere kind 
meer kans heeft om een betere fitness waarde te hebben dan het kleinere kind. 



Samenvatting page 171 

Dit heeft tot gevolg dat de gemiddelde grootte van de elementen van de 
populatie groeit over verschillende generaties. Vermits deze groei tot problemen 
kan leiden, wordt in sectie 6 besproken hoe dit effect kan worden tegengegaan. 

5.4 Uitbreidingen op genetisch programmeren 

Verschillende uitbreidingen op genetisch programmeren zijn mogelijk om de 
efficientie ervan te verbeteren. Enkele belangrijke uitbreidingen zijn: 

• Sterk getypeerd genetisch programmeren: In het standaard algoritme voor 
genetisch programmeren staan er geen beperkingen op de manier waarop 
terminale en niet-terminale elementen met elkaar kunnen worden 
gecombineerd. Voor complexe zoekproblemen kan het echter nodig zijn om 
beperkingen in te voeren. Het heeft bijvoorbeeld geen zin om een optelling 
uit te voeren op twee auto's. Door types toe te kennen aan de terminale en 
niet-terminale elementen, en beperkingen te leggen op de toegelaten types 
van kinderen van niet-terminale elementen, kunnen complexe problemen 
worden voorgesteld. 

• Automatisch gedefinieerde functies: Sommige problemen kunnen efficienter 
worden opgelost door het gebruik van subroutines. Als kandidaat oplossingen 
subroutines kunnen ontwikkelen tijdens hun evolutie, kunnen deze problemen 
beter worden opgelost. 

• Voorstelling van de populatie door een gerichte acyclische graaf: Een 
populatie bevat een groot aantal deelbomen die gebruikt worden door 
meerdere elementen van die populatie. Door alle identieke deelbomen in de 
populatie voor te stellen door eenzelfde object in het geheugen kan de 
populatie compacter worden voorgesteld. Andere voordelen zijn dat de 
evaluatie van identieke deelbomen slechts een keer moet gebeuren, en het is 
eenvoudiger om overeenkomsten tussen verschillende elementen te 
detecteren. 

6 Het probleem van de sterke groei van 
program ma's 

In sectie 5.3 werd vermeld dat de gemiddelde grootte van de elementen van een 
populatie groeit na een crossover operatie. Een voor de hand liggend nadee l 
hiervan is dat meer geheugen vereist is voor het opslaan van de elementen, en 
dat de evaluatie ervan langer duurt. Andere nadelen zijn dat grotere oplossingen 



page 172 

over het algemeen minder goed generaliseren voor algemenere problemen, 
hetgeen de evolutie va.n de populatie sterk kan vertragen. 
Als de genetisch geevolueerde programma's worden onderzocht, blijkt dat grote 
stukken ervan nauwelijks of geen effect hebben op het eindresultaat. 
Verschillende theorieen zijn ontwikkeld die verklaren waarom grotere 
programma's meer kans hebben op een hoge fitnesswaarde: 

• "Lifters" (hitchhikers): Volgens deze theorie worden stukken code die geen 
of weinig effect hebben op het resultaat meegenomen met stukken zeer goede 
code, waardoor de neutrale code zich gemakkelijk kan verspreiden. 

• Verdediging tegen crossover: Een crossover operatie op een element met een 
hoge fitness heeft meestal tot gevolg dat een stuk van de goed werkende code 
wordt verwijderd. Dit heeft tot gevolg dat de fitness waarde van de kinderen 
drastisch daalt. Als stukken code die een positief effect hebben op de fitness 
van een element gegroepeerd zijn en gescheiden worden door inactieve code, 
zal er een grotere kans zijn dat crossover in de inactieve code gebeurt. 
Bijgevolg zullen de individuele goede stukken code samen blijven, hetgeen 
een positief effect heeft op de fitness van de kinderen. 

• Voorkeur van verwijdering (removal bias): Deze verklaring richt zich op 
stukken code in een element die nooit een effect hebben op het res ultaat van 
dat element. Een crossover die plaats heeft in dit soort code zal geen effect 
hebben op het individu en dit zal bijgevolg de crossover operatie overleven. 
Het gevolg hiervan zal zijn dat de gemiddelde fitness van een populatie 
verhoogt door deze te vullen met functioneel identieke kopieen van het beste 
element. Wanneer dit gebeurt zal de evo lutie van de populatie sterk 
verminderen en treedt er premature convergentie op. 

• Diffusie: Het is mogelijk om verschillende programma's te schrijven die 
eenzelfde probleem even goed oplossen. Omdat, in de oneindige zoekruimte 
van programma's, er meer grote oplossingen voor een probleem bestaan dan 
kleine, is het statistisch gezien waarschijnlijker dat een grote oplossing wordt 
gevonden. 

Verschillende manieren bestaan om de sterke groei van programma's af te 
remmen. Een van de eenvoudigste manieren is het opleggen van een maximale 
diepte voor ontwikkelde programma's. Deze manier is echter niet flexibel en 
verhindert niet de snelle groei in het begin van de evolutie. Een andere manier is 
om de grootte van programma's op te nemen in de fitness functie, zodat grotere 
programma's een slechtere fitness waarde krijgen. Het probleem met deze 
methode is dat het moeilijk is om grootte en kwaliteit ten opzichte van elkaa r te 
balanceren, en het is mogelijk dat er op deze manier optima ontstaan in het 
fitness landschap waaruit het onmogelijk is te ontsnappen. Een derde manier om 
de grootte te beperken is door gebruik te maken van een heuvelklim techniek. Na 
een crossover operatie wordt gekeken of de kinderen beter en/ of kleiner zijn dan 
hun ouders. Als dit het geval is, worden de kinderen toegelaten in de populatie, 



Samenvatting page 173 

maar in het andere geval worden ze verwijderd. Dit heeft tot gevolg dat de 
programma's niet nodeloos groeien. 
Vermits een groot deel van een programma bestaat uit inactieve code of code die 
weinig effect heeft, lijkt een voor de hand liggende manier om de groei van 
programma's te verminderen om de inactieve gedeeltes van de code te detecteren 
en te verwijderen. Dit werd geprobeerd door voor verschillende niet-terminale 
elementen de invloed te meten die hun kinderen hebben op het eindresultaat. Als 
de invloed van een kind onder een bepaalde drempelwaarde valt, wordt het kind 
verwijderd van het programma. 
Deze techniek werd uitgetest op de problemen van multiplexer en symbolische 
regressie. In het geval va n de multiplexer werd een redelijke vermindering van de 
grootte van de programma's vastgesteld na het gebruik van deze techniek. In het 
geval van de symbolische regressie werd er echter nauwelijks verbetering 
vastgesteld, ondanks het feit dat inactieve code niet meer voorkomt. In deze 
gevallen werd de inactieve code vervangen door andere vormen van code die een 
meer geleidelijk effect hebben op het resultaat van het programma. In het geval 
van de mu ltiplexer was de techniek meer succesvol omdat inactieve code veel 
gemakkelijker gevormd wordt. 
Wegens het beperkte succes van de vorige techniek werd nog een tweede 
techniek ontwikkeld. Deze techniek legt een maximale grootte op voor nieuwe 
programma's. Deze maximale grootte wordt echter dynamisch aangepast aan de 
huidige populatie. De grootte van het beste element van de populatie wordt 
vermenigvuldigd met een getal (1.33 in dit geval), en deze waarde wordt de 
maximale grootte van nieuwe elementen. Deze grootte wordt na elke generatie 
aangepast. 
Ondanks de grote eenvoud is deze techniek zeer succesvol. In een experiment 
werd het gebruik van de dynamische grootte, het verwijderen van inactieve code 
en het gebruik van de heuvelklim techniek die eerder werd besproken met elkaar 
vergeleken. Oeze technieken kunnen ook met elkaar gecombineerd worden. De 
experimenten in het domein van symbolische regressie toonden aan dat de 
dynamische grootte en de heuvelklim techniek de grootte het beste beperkten. 
Combinatie met het verwijderen van inactieve code had weinig effect op de 
resultaten. De heuvelklim techniek had echter tot gevolg dat de evolutie zeer 
sterk vertraagde, waardoor oplossingen veel minder snel werden gevonden. Het 
dynamisch aanpassen van de grootte had echter een positief effect op de 
snelheid van evolutie. Er werd dan ook geconcludeerd dat deze techniek, in het 
bijzonder gezien zijn eenvoud , een zeer goede manier is om de grootte van 
programma's te beperken. 



page 174 

7 Meten en behouden van de diversiteit van 
een populatie 

Een vaak voorkomend probleem bij evolutionaire algoritmes is dat na verloop van 
tijd de meeste elementen van een populatie sterk op elkaar lijken. Dit gebeurt 
wanneer een individu dat fitter is dan de rest van de populatie de ouder wordt 
van de meeste andere individuen die bijgevolg ook een hoge fitness hebben. Als 
dit gebeurt is de diversiteit van de populatie verloren gegaan, en kunnen nieuwe 
elementen enkel worden gei·ntroduceerd door mutaties. Vaak wordt dit probleem 
tegengegaan door de populatie zeer groot te maken zodat het langer duurt voor 
de diversiteit verdwijnt uit de populatie. Het nadeel hiervan is echter dat de 
evaluatie van de populatie langer duurt. 
Andere methodes om de diversiteit van een populatie te be houden kunnen op 
twee manieren werken. Enerzijds kan erop worden gelet dat elementen die 
worden toegevoerd aan de populatie voldoende verschillen van de huidige 
elementen. Anderzijds kunnen elementen die sterk gelijken op andere elementen 
in de populatie verwijderd worden. Beide manieren moeten op een of andere 
manier kunnen meten hoe sterk een element verschilt van een ander element of 
va n al de elementen van de populatie. 
De manier die wordt gei"ntroduceerd in deze thesis verwijdert elementen die sterk 
gelijken op de bestaande elementen van de populatie. Om de overeenkomst van 
een element met de populatie te meten wordt gebruik gemaakt van de 
representatie met beh ulp van de gerichte acyclische graaf, besproken in sectie 
5.4. Eerst worden alle elementen van de populatie gerangschikt volgens fitness 
waarde. Vervolgens worden alle elementen van de populatie geevalueerd, te 
beginnen met het beste element. Initieel zijn alle elementen van de gerichte 
acyclische graaf, die dus de volledige populatie voorstellen, ongemarkeerd. 
Tijdens de evaluatie van een element wordt het totaal aantal knopen van dat 
element vergeleken met het aanta l gemarkeerde knopen van dat ele ment. Als het 
element voldoende ongemarkeerde knopen bevat, wordt het element niet 
verwijderd uit de populatie en worden alle knopen van dat element gemarkeerd. 
Omdat identieke deelbomen worden gedeeld door alle elementen van de 
populatie, worden ook deelbomen van andere elementen gemarkeerd. Als het 
element te veel gemarkeerde knopen bevat wordt het element verwijderd uit de 
populatie en worden geen knopen gemarkeerd. De test die bepaalt of een element 
voldoende ongemarkeerde knopen bevat hangt af van de verhouding met het 
totaal aantal knopen, en met de rang van het element in de populatie. 
Experimenteel werd vastgesteld dat deze techniek nuttig was voor het oplossen 
van problemen. Gemiddeld gezien werd een oplossing voor het probleem sneller 



Samenvatting page 175 

gevonden, hetgeen zeer duidelijk was voor het probleem van AI planning dat 
redelijk veel generaties nodig had om een probleem op te lossen . 

8 Evolutionair programmeren toegepast op 
Robocup 

Om te testen of de technieken beschreven in secties 6 en 7 ook werken op een 
complexer probleem werden de technieken getest op het Robocup domein. Eerst 
wordt ook nog onderzocht of genetische algoritmes kunnen worden gebruikt om 
een Robocup speler te ontwikkelen. 

8.1 Genetische algoritmes 

In een eerste poging om een speler voor Robocup te ontwikkelen wordt gebruik 
gemaakt van een reactionair netwerk van acties en sensors. Alle spelers van een 
team maken gebruik van hetzelfde netwerk. De acties stellen laag niveau acties 
voor van een voetbalspeler, zoals trap naar de goal of pas naar een andere speler. 
De sensors geven bijvoorbeeld de afstand naar de bal aan. Als een bepaalde actie 
een vo ldoende sterk signaal krijgt om geactiveerd te worden, wordt deze actie 
uitgevoerd. De verbindingen in het netwerk verbinden de sensors, acties en 
verschillende controleknopen. Elk van deze verbindingen heeft ook een gewicht 
dat de invloed van een knoop op een andere knoop aangeeft. Het leerproces 
bestaat erin om geschikte gewichten voor deze verbindingen te vinden. 
Genetische algoritmes lijken een geschikte manier om deze gewichten te Leren. 
De evaluatie van een set gewichten voor een speler kan op twee manieren 
gebeuren. De eerste manier maakt gebruik van een vast referentieteam van 
spelers, en elke kandidaat oplossing speelt een wedstrijd tegen dit 
referentieteam. Het resultaat van die wedstrijd bepaalt de fitnesswaarde van een 
kandidaat oplossing. De tweede manier laat alle kandidaat oplossingen een 
toernooi spelen tegen elkaar. In dit geval is er geen referentieteam nodig, en 
bepaald de positie van een team op het einde van een toernooi de fitness waarde 
van dat team. In dit geval spreekt men van co-evolutie. 
Een vergelijking Leert dat het gebruik van een vast referentieteam leidt tot een 
sneller beter worden van de ontwikkelde teams, maar de ontwikkelde teams zijn 
specifiek ontworpen om het vaste referentie team te verslaan en kunnen minder 
goed veralgemenen tegen andere teams. In het geval van co-evolutie werd 
vastgesteld dat evolutie bijzonder traag was, en dat nauwelijks verbetering was 



page 176 

vast te stellen. Mogelijk is de vaste netwerkstructuur die gebruikt wordt niet 
flexibel genoeg om gemakkelijk tot grote verbeteringen te Leiden. 

8.2 Genetisch programmeren 

Om de flexibiliteit van het Leerproces te verhogen, en om de ontwikkelde 
technieken van secties 6 en 7 uit te testen, werd gebruik gemaakt van genetisch 
programmeren om een Robocup speler te ontwerpen. De implementatie van de 
gebruikte primitieven is gebaseerd op het werk van Sean Luke. Na zijn werk over 
genetisch geprogrammeerde Robocupspelers beschreef hij de volgende problemen 
die zijn aanpak had: 

• De grootte van de populatie moest erg klein worden gehouden om de 
evaluatietijd beperkt te houden. 

• De evaluatie van alle teams hangt af van een enkele wedstrijd van elk team. 
Dit kan Leiden tot een grote willekeurigheid van de fitnesswaarde van een 
team. 

• Bij de evolutie werden teams van identieke spelers ontwikkeld in plaats van 
een team van verschillende gespecialiseerde spelers. 

• De gebruikte verzameling primitieven was sterk bevooroordeeld naar het 
gedrag van menselijk voetbal. Er werd ook geen gebruik gemaakt van een 
interne staat om Lange-termijn-denken mogelijk te maken. 

• De grootte van de ontwikkelde programma's werd na ongeveer 40 generaties 
bijzonder groot. 

Deze problemen worden door ons op de volgende manier aangepakt: 

• Door het gebruik van de diversiteitsmaat besproken in sectie 7 kan de grootte 
van een populatie beperkt worden gehouden zonder de diversiteit ervan aan te 
tasten. Bijgevolg is er geen probleem meer om de grootte van de populatie 
klein te houden. 

• De evaluatie van de verschillende teams kan gebeuren met behulp van een 
"Swiss" toernooi systeem. In dit systeem speelt elk team een vast aantal 
wedstrijden, en wordt getracht om elk team tegen een ander team te Laten 
spelen dat gelijkaardig presteert. De rankschikking van de teams na het 
toernooi bepaalt dan de fitnesswaardes van de teams. 

• De spelers van elk team kregen een rol toegewezen (doelman, verdediger, 
middenvelder, aanvaller) en de verzameling van primitieven werd uitgebreid 
met een functie om deze rol op te vragen. Bijgevolg is het mogelijk om een 
en kel program ma te ontwikkelen dat gespecialiseerd is voor verschillende 
spelers. 

• Omdat de gebruikte verzameling primitieven gebaseerd is op deze van Sean 
Luke is deze nog steeds bevooroordeeld. Er wordt wel gebruik gemaakt van 



Sam en vatting page 177 

een beperkte interne staat waardoor het mogelijk is om enkele primitieve 
acties in opeenvolgende tijdstappen uit te voeren. , 

• De techniek besproken in sectie 6 beperkt de groei van programma's. 
Om de effecten van de technieken van secties 6 en 7 te onderzoeken werden de 
volgende experimenten uitgevoerd: 

• Evolutie over 131 generaties waarbij zowel het dynamisch beperken van de 
grootte als het behouden van de diversiteit werden toegepast. 

• Evolutie over 121 generaties waarbij enkel het behouden van de diversiteit 
werd toegepast. 

• Een tweede evolutie over 119 generaties waarbij zowel dynamisch beperken 
van de grootte als het behoud van de diversiteit werden toegepast. 

• Evolutie over 71 generaties waarbij enkel het dynamisch beperken van de 
grootte werd toegepast. 

In deze experimenten wordt de gemiddelde groei van de individuen van de 
populatie beschouwd, de evolutie van de kwaliteit van oplossingen en de evolutie 
van de specialisatie van de spelers. Er moet echter wel opgemerkt worden dat het 
moeilijk is om algemene conclusies uit deze resultaten te trekken wegens het 
beperkte aantal experimenten. 
De evolutie van de fitness van een experiment kan worden bestudeerd door de 
beste individuen uit elke generatie met elkaar te vergelijken met behulp van een 
toernooi. In alle vier experimenten bleek dat deze vergelijking bijzonder veel ruis 
bevat. Gemiddeld blijkt de fitness wel te stijgen over het verloop van 
verschillende generaties. 
In de drie experimenten waar de grootte van nieuwe individuen dynamisch werd 
beperkt bleef de gemiddelde grootte van individuen beperkt. In het andere 
experiment daarentegen groeide de gemiddelde grootte snel. 
De specialisatie van spelers kan worden onderzocht door de individuen te 
bekijken die het "MyType" primitief bevatten. Deze individuen bevatten code die 
specifiek is voor een bepaald soort speler. In enkele van de experimenten werd 
een succesvolle specialisatie ontdekt. In dit geval werd deze succesvolle code ook 
verder verspreid over de populatie. In het geval waar de diversiteit van de 
populatie niet werd onderzocht werd een succesvolle specialisatie echter zo 
dominant dat drie kwart van alle individuen in een populatie deze specialisatie 
bevatten. In dit geval werd de diversiteit van de populatie verlaagd, en het 
vinden van goede en originele oplossingen werd moeilijker. 
De resultaten van de vier verschillende experimenten kunnen met elkaar warden 
vergeleken door alle teams van de experimenten samen een toernooi te laten 
spelen. Het resultaat van dit toernooi bevat opnieuw zeer veel ruis, maar het 
eerste experiment lijkt hier toch de beste resultaten te geven . In dit geval blijft 
de gemiddelde fitness groeien tot het einde va n het experiment. In de andere 



page 178 

experimenten wordt ook een groei vastgesteld, maar minder sterk. In het geval 
van het derde experiment is dit vooral door de relatief hoge fitness in het begin 
va n het experiment. De gebruikte optimalisaties Lijken een positief effect te 
hebben op de gemiddelde fitness van de populatie. 

9 Conclusies en bespreking 

Het werk over virtuele agenten in deze thesis kan worden opgesplitst in twee 
delen. In het eerste deel werd het deel van navigatie en het ontwijken van 
obstakels behandeld. Om dit probleem op te lossen, maakt de virtuele agent 
gebruik van een vi rtuele optische sensor die de afstanden tot geobserveerde 
objecten detecteert voor de agent. De agent maakt vervo lgens gebruik van deze 
afstandsinformatie om een kaart te construeren va n zijn omgeving door om zijn 
as te roteren. Om een kaart van de volledige omgeving te construeren beweegt de 
agent door openingen in het huidige gebied, waarna het proces wordt herhaald 
voor het volgende gebied. Dit gebeurt tot de volledige omgeving bezocht is. De 
geconstrueerde kaart kan vervolgens worden gebruikt voor het vinden van paden 
in de omgeving, en kan worden uitgewisseld met andere agenten of gebruikers. 
De afstandsinformatie over obstakels rond de agent wordt ook gebruikt om 
botsingen te voorkomen tijdens het bewegen in de omgeving. Als een beweging 
in een richting zou Leiden tot een botsing met het gedetecteerde object wordt 
het bewegingscommando aangepast om deze botsing te vermijden. Dit kan 
gebeuren door rand het obstakel te bewegen indien mogelijk, of door de agent te 
stop pen. 
Er zijn verschillende voordelen verbonden aan het gebruik van een virtuele sensor 
om de omgeving te detecteren vergeleken met het gebruik van de interne 
representatie van de virtuele omgeving. Ten eerste is een virtuele sensor een 
meer realistische simulatie van de reele wereld, omdat mobiele robots ook 
dikwijls gebruik maken van dieptesensors voor navigatie. Een tweede voordeel is 
dat het op deze manier niet nodig is dat de virtuele agent toegang heeft tot de 
interne representatie van de omgeving. Wanneer enkel een visualisatie van de 
omgeving nodig is kan de virtuele agent in elke omgeving werken waar zulk een 
beeld beschikbaar is. 
Het tweede deel van de thesis behandelt het trainen van virtuele agenten om een 
bepaalde taak uit te voeren. In deze context werd het gebruik van genetisch 
programmeren beschouwd. Twee belangrijke problemen werden aangetroffen bij 
het evolueren van virtuele agenten met genetisch programmeren. Ten eerste 
heeft de grootte van de geevolueerde genetische programma's de neiging om zeer 
snel te groeien. Ten tweede, omdat de eva luatie van geevolueerde virtuele 
agenten meestal veel tijd vergt, moet het aantal evaluaties zo Laag mogelijk 



Samenvatting page 179 

worden gehouden. Helaas heeft genetisch programmeren meestal een grote 
populatie van kandidaat oplossingen nodig om goede resultaten te ontdekken. 
Verschillende technieken werden ontwikkeld om deze problemen op te lossen. 
Eerst werden twee nieuwe methodes ontwikkeld om de grootte van geevolueerde 
programma's te verminderen, en deze werden vergeleken met bestaande 
technieken. De eerste methode detecteert en verwijdert inactieve code uit de 
genetische programma's. De tweede methode legt een dynamisch veranderende 
maximale grootte op aan nieuwe individuen. Deze grootte hangt af van de 
grootte van het beste element van de huidige populatie. De tweede methode 
bleek beter te zijn dan de bestaande methodes, en het is zelfs mogelijk om beide 
methodes samen te gebruiken. 
Het tweede probleem werd opgelost door een algoritme te ontwerpen dat het 
aantal individuen in een populatie verlaagt, zonder de diversiteit van de 
populatie te verminderen. Het algoritme werkt door identieke deelbomen in de 
individuen van de populatie te detecteren, en vervolgens die individuen te 
verwijderen die hoofdzakelijk bestaan uit deelbomen die ook elders in de 
populatie voorkomen. Er werd ook aangetoond dat het verwijderen van deze 
individuen uit de populatie de convergentiesnelheid verbetert van de evolutie. 
Tenslotte werden deze verbeteringen op het genetisch programmeersysteem 
toegepast op het virtue le multi-agent sys teem van robotvoetbal. De 
verbeteringen lijken een positief effect te hebben op de evolutie. Wegens de zeer 
lange evaluatietijd in dit domein was het echter niet mogelijk om een voldoende 
aantal verschillende testen uit te voeren om doorslaggevend te zijn. 




	Patrick monsieurs deel 1
	Patrick monsieurs deel 2
	Patrick monsieurs deel 3
	Patrick monsieurs deel 4

