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solution. For example, an agent that regularly walks around in the world may
know the locations of objects (or other agents). These virtual agents will be
discussed in the next section.

2 Intelligent virtual agents

Software agents are programs designed to perform a specified task for a user or
another agent. In contrast to normal computer programs, however, agents have
several unique characteristics:

e Autonomy: The agent is able to make some decisions without needing to
contact the user that uses the agent. Specifically, the decisions that the user
should not be concerned with are handled by the agent.

e Social ability: Agents can interact with users or other agents.

o Long-lived: This means that an agent is usually not terminated when a task
has been completed. The agent will remain present in the system until it is
needed again, possibly by another user.

e Reactivity. The agent will modify its parameters based on the current state of
the environment. For example, the agent can respond to a situation change in
the environment and change its activities to reflect these changes.

e Proactive: An agent can execute a task before a user has requested the agent
to perform that task. The agent can monitor the environment, and may start
to execute a task before the user notices that the task must be performed.

A virtual agent is an agent that is present in a virtual environment. The agent
will have an avatar representation in the environment, to facilitate the
interaction with users.

An intelligent agent is an agent that has the capability to learn some of the
tasks it has to perform, either by experimenting in its environment and
examining the results or by studying previously executed correct examples of the
task. How a computer program can learn to perform a task will be discussed in
the next section.

3 Genetic programming

Evolutionary algorithms are an optimization technique based on Darwin’s
principles of survival of the fittest. In this technique, a population of candidate
solutions for a problem is maintained, and the quality of these solutions is
determined and called the fitness of the solution. Based on their fitness,
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e Several methods to reduce the average size of the solutions in the population
of genetic programming will be presented and compared with each other.
Again, the effect on average size and convergence speed will be studied.

e An algorithm will be introduced to maintain the diversity of a population in
genetic programming, and its effects on convergence speed will be presented.
This method can be used to drastically reduce the population size without
negatively affecting performance.

o Genetic programming will be applied to agents on the Robocup domain. The
effects of the optimizations on genetic programming described above are
studied on a complex problem.

5 Thesis overview

This thesis is divided in two parts. Part I will discuss the topics related to virtual
agents, but will not discuss the learning of the agents in the environments.
Chapter 2 discusses the uses of virtual environments, and gives examples of
existing applications. Chapter 3 deals with several important problems that occur
in virtual environments: constructing a map of the environment, navigation and
collision avoidance. Chapter 4 introduces Robocup as a research domain for
virtual environments and collaborative agents.

Part II of the thesis will focus on the artificial intelligence aspect of virtual
agents, using genetic programming. In chapter 5 the concepts of genetic
programming will be explained and several examples of genetic programming will
be given. Chapter 6 and chapter 7 present several optimization techniques that
will increase the convergence speed of genetic programming and produce better
solutions. In chapter 8, genetic programming will be applied to learn behaviors
for agents in the Robocup domain using the optimization techniques presented
in chapter 6 and chapter 7. Finally, conclusions and directions for future work
will be presented in chapter 9.
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most important sensory system, and therefore most work concentrates on the
graphical aspects of virtual environments. However, to achieve the highest level
of immersion for the user, audio and haptic interfaces to the virtual environment
must also be considered [88]. The virtual environment is used to execute a
specific task in a more natural and intuitive way. The task to be executed
depends on the domain in which the virtual environment is used. The work in
this thesis will focus mainly on the visual aspects of virtual environments.

1.2 What is an agent?

According to Wooldridge and Jennings [112], in a weak notion of agency, the
term agent is used to denote a hardware or software system that has the
following properties:

o Autonomy: Agents operate without direct intervention of humans or others,
and have control over their actions and internal state.

e Social ability: Agents interact with other agents or humans via some kind of
agent-communication language.

e Long-lived: Because agents are autonomous, they can remain active in the
environment after a task performed for a user is completed. The agent can
remain present in the system until it is needed again, possibly by another user
or agent.

e Reactivity: Agents perceive their environment and respond in a timely fashion
to changes that occur in it.

e Pro-activeness: Agents do not simply act in response to their environment,
they are able to exhibit goal-directed behavior by taking the initiative.

A virtual agent is an agent that exists in a virtual environment and uses the
sensory inputs provided by the environment. In this case, the virtual agent uses
a set of synthetic sensors to observe the environment, and interacts with the
environment in an identical way as human users. The virtual agent also has a
physical representation in the virtual environment, called an avatar.

2 Examples of virtual environments

To demonstrate the usefulness of virtual environments and virtual agents, several
examples of virtual environments and/or virtual agents will be presented. These
application areas include medical and military applications, design and
engineering, modeling, virtual communities and entertainment.
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2.4 Modeling

To design a virtual environment, a modeling tool is used. Often, these tools
operate in a virtual environment. The UNC-Chapel Hill Immersive Modeling
Program (CHIMP) is a modeling environment that allows a modeler to design
virtual rooms using libraries of existing objects [66]. IM-Designer, developed by
Coninx [15][16], is another environment that also allows the creation of new
objects. IM-Designer uses a combination of 2D and 3D user interfacing. ICOME,
which is an abbreviation for Immersive Collaborative 3D Object Modeling
Environment, is a modeling environment where several users can work together
on a modeling task [89]. ICOME is the successor of IM-Designer, and will be used
in the next chapter as an environment to test navigation and map construction.

2.5 Virtual communities

Virtual communities are networked virtual environments where multiple users can
join and interact with each other. Applications of virtual communities include
virtual conferences, virtual marketplaces or multiplayer on-line games. The
Distributed Interactive Virtual Environment (DIVE) [10] is an internet-based
multi-user VR system where participants navigate in 3D space and see, meet and
interact with other users and applications. DIVE applications and activities
include virtual battlefields, spatial models of interaction, virtual agents, real-
world robot control and multi-modal interaction. MASSIVE is another distributed
virtual reality system and concentrates on the interaction between users and/or
agents in the environment [28]. VLNet [9][82] is a virtual environment using
realistic human-like avatars. VLNet supports the simulation of the virtual
environment, communication with agents and users, object behavior, and
navigation. The environment also supplies an interface for detailed face and body
representations.

2.6 Other applications

Virtual environments can also be used in many other application areas. For
example, the virtual environment can be used as an interface for another
computer program, to make the interaction with this program more intuitive. An
example is given by the UNIX process manager PSDoom, developed by Chao [11].
This is a UNIX administration tool based on the first-person shooter game
“Doom”. The monsters in the environment represent the processes running on the
computer. The player can move around in this environment and shoot at the
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makes this approach inappropriate for our system, because only sensor
information about a limited view angle in front of the agent is available.

The agents of Kuffner and Latombe [46] remember the ID's of visible objects, and
their transformation at the moment they were last observed. This information is
stored to assist the agent with navigation.

Zhukov et al. [114] use agents that build maps of the environment off-line by
subdividing the environment in areas that are connected by an accessibility

graph.
3 Synthetic vision

Our goal is to develop a synthetic vision system that resembles real world vision,
and is still efficient enough to operate in real-time. This section describes the
synthetic vision system developed by us, as presented in [68] and [69]. Human
vision is able to detect the distance of objects by comparing two stereo images.
While this is possible to do, this approach is difficult and too slow to implement
in a real-time agent. Therefore, most mobile robot systems are also equipped
with proximity sensors like sonar or a laser range finder. However, in virtual
reality, the depth information of the visible environment is already calculated by
the graphic pipeline and is available in the depth buffer of the rendered image.
This provides the agent with the distance to the objects in the environment over
an angle of about 60 degrees in front of the agent, without performing time-
consuming calculations.

The virtual agent can sample the depth buffer, and store the retrieved distances
in a vision buffer that represents the entire 360-degree area around the agent.
This vision buffer is a discrete subdivision of this environment in small segments.
Each segment contains one depth value of a small angle around the agent (about
1 to 3 degrees, depending on the resolution of the vision buffer).

When the agent moves around in the world, previously invisible areas around the
agent will become visible, and these readings will be added to the vision buffer.
New readings are added to the previous readings, so the agent can obtain the
depth information about the entire area around it when it rotates around its axis.
During every simulation step, the sensors are updated with the currently visible
depth values. The following steps must be performed during every update:

e Reading and correcting the depth information from the depth buffer.
e Filling the vision buffer.
¢ Transforming the depth information after every move of the agent.

In the remainder of this paragraph, we will elaborate on each step.
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(3.2)
Correction; = y/1+ (i - C)
where the constant C is defined by equation (3.3):
(3.3)

il tan(ViewAngle /2)
ViewPortW /2

where ViewAngle is the camera's field of view in the horizontal direction, and
ViewPortW is the resolution of the view port in the horizontal direction. The
values Correction, need to be computed only once and are then stored in memory.

3.2 Filling the vision buffer

When the depth values are transformed, the value at the center of every visible
segment is placed in the vision buffer, overwriting any previous estimated values.
By comparing the detected value with the estimated value, it is possible to
detect changes in the environment. This information could then be used to
identify moving objects. However, this is currently not implemented in our
system. The obstacle avoidance and map construction algorithms can now use the
data in the vision buffer.

3.3 Transforming the depth information

The coordinate system of the vision buffer is relative to the position and
orientation of the agent. This means that the depth information about the visible
area is always stored in the same segments. As a result, after the agent moves
using a transformation matrix M, the depth values in the buffer must be
transformed to correspond to the new position and orientation of the agent. To
calculate the new vision buffer, every depth value in the buffer is transformed to
its coordinates in 2D-space. The inverse transformation M” is applied to these
coordinates, and the new position is then inserted in the new buffer (as is shown
in figure 3.3). This gives the agent a prediction of the environment. This
prediction will be updated with the sensor readings of the new position.

The simple approach presented above has several problems. First, it is possible
that two adjacent points in the original buffer will be transformed to non-
adjacent positions in the new buffer. In this case, a “hole” is created in the
buffer (this is demonstrated in figure 3.3). To fill these holes, a depth value has
to be interpolated based on the surrounding values.
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Figure 3.4: Rotating a point in the vision buffer using several methods.

The second solution is to store the remainder of the rotation as a local offset in
every segment of the vision buffer. This is shown in the last row in figure 3.4. As
can be seen, this gives the best approximation and this is the method that is
currently used in our implementation. There is a small memory overhead because
every segment must store an additional value, but this overhead is negligible.

4 Collision avoidance

When the agent knows the distance to the obstacles surrounding it, it can use
this information to avoid colliding with them. Using the vision buffer, obstacle
avoidance can be performed at two levels. At the lowest level this is done by
ensuring that the movement commands issued at the current time step will not
cause a collision. At the higher level, when moving towards a target position, a
temporary short-term goal can be created to move around nearby obstacles.
These two methods will now be explained.

4.1 Short range collision avoidance

At the end of a time step, the navigation system will calculate the movement of
the agent during the next time step based on the current translation and
rotation speed of the agent. The vision buffer is checked to see if sufficient
space is available for this move. If this is not the case, an additional speed
vector is added to the agent’s speed that will prevent the collision. This system
responds directly to the sensors, and the agent is therefore able to react
immediately to unexpected obstacles.
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2 Architecture of an agent’s brain

2.1 Layered behaviors

Because of the complexity of the robotic soccer domain, it is impossible to
construct a solution directly from the available communication primitives. It is
therefore necessary to decompose the task in several less complicated tasks. In
[102], Stone and Veloso introduce the concept of layered learning. This approach
splits the problem in several layers of complexity. The tasks in every layer can
then be trained by separate learning techniques. At the lowest level, a number of
skills are build from the basic commands of the communication protocol. These
skills are primitive actions like intercepting the ball, dribbling or shooting the
ball to a position. Using these primitive skills, higher level skills can be
constructed. The different layers of learning Robocup are shown in table 4.1. The
individual player skills will be described in the next section. One-to-one and one-
to-many player skills will be discussed in sections 3.1 and 3.2 of this chapter.
Finally, action selection will be learned using evolutionary techniques, which will
be discussed in chapter 8.

Layered level Examples

Individual player skills Intercept, MoveTo

One-to-one player skills PassTo

One-to-many player skills | Avoiding other players

Action selection Pass or dribble or shoot?

Team collaboration 1-2 combination, positioning

Table 4.1: Different layers of behaviors.

2.2 Individual player skills

In [17], Cossement implemented the following individual player skills:

e Estimating the position of objects based on previous observations: Given the
speed and position of an object at a previous time, an estimate of the current
position can be made. This is useful because sensor information is not
received every time step, and objects behind the player are not visible.
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4.2 Locker-room agreements

This technique was used by Stone and Veloso for their CMUnited Robocup teams
[102]. Since the Robocup players have only a limited amount of bandwidth
available for communication, it is useful to agree to a team strategy when the
team is able to synchronize privately. This can happen for example before play
begins and during half time of a game. These team strategies are called locker-
room agreements. During the game, the players can keep track of the state of
world using its sensors, the player's internal state, and the locker-room
agreements made.

By giving every player a predetermined set of team actions, it is possible that the
team will not be flexible or robust to failure. This can happen when the locker-
room agreement divides the team goal into several rigid roles, and assigns one
player to every role. The team is then inflexible, both to short-term changes like
the unavailability of a player, and to long-term changes such as an ejected
player. Reassigning a task to a different player will then be difficult because of
the limited communication that is available,

To increase the flexibility of a team, players can switch to a different set of
behaviors when certain sensory triggers are received. For example, the team can
switch from a defensive setup to a more offensive setup when the team is losing.
This switch can be triggered when the opposing team leads by two goals. Also,
predefined multi-agent plans can be specified for some frequently occurring
situations such as free kicks. The positions of players are also specified in the
locker-room agreement. These include the area on the field that is the ‘home’-
position of the player, and the role of the player such as attacker or defender.
These positions can change because of sensor triggers.

5 Conclusion

This chapter has introduced Robocup as a virtual multi-agent system that
simulates robotic soccer. In this systems, virtual agents control individual soccer
players. To construct behavior for these agents, several layers of behaviors are
used. The lowest layer implements individual player skills, which are mostly
manually coded. The next layers implement obstacle avoidance and passing the
ball, using the vision buffer techniques described in chapter 3. The next layer
implements action selection, and will be developed using evolutionary
computation. This technigue, and its application to Robocup, will be described in
Chapter 4 of this thesis.
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Chapter 5: Genetic programming

1 Introduction

This chapter introduces genetic programming as a general problem solving
technique. Genetic programming is very different from traditional AI problem
solving methods. Traditional AI uses computational models and requires a large
amount of task specific knowledge about the problem to be able to solve it.
These are called strong AI methods, and while they may be able to rapidly find
an exact solution for a problem, collecting sufficient task specific knowledge may
not be easy. Also, strong AI methods often have problems with real-world
problems where unpredicted events cause the problem solving method to fail
completely. A typical example of traditional strong AI methods is a knowledge
base containing thousands of task specific rules. Weak AI methods on the other
hand rely less on built-in task specific knowledge. Instead, knowledge about the
environment is added when it is identified through experimentation. Therefore,
these methods are more robust and will work on a wider variety of problems, but
finding a solution may take longer compared to a strong AI method.

Genetic programming is an evolutionary weak Al method inspired by natural
evolution. Task specific knowledge is gathered by testing the quality of a set of
candidate solutions. New candidate solutions are generated by combining the
features of the best solutions. Initially, no knowledge about the environment is
available and the candidate solutions are generated randomly.

This chapter will tackle genetic programming in section 4, preceded by
introducing the related techniques of evolutionary computation in section 2 and
genetic algorithms in section 3. Several typical genetic programming problems
will be discussed in section 5, and finally some often used extensions to genetic
programming are given in section 6.
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individual 7, and the population consists of N individuals, the average fitness of
the individuals in the population is defined by equation (5.1):

D 5.1
FedSs (5.1)
The selection probability p, of individual 7 is then given by equation (5.2):
5.2
ol B i
: Z,f; f‘N
i

Advantage:
e The method is hiologically plausible.
Disadvantages:

e Premature convergence: If an individual in an early generation has a very high
fitness compared to the average fitness of the population, this individual will
be overselected and copies of this individual will occupy the entire population
after several generations. At this point, new individuals can only be
introduced through mutation.

e Stagnation: After several generations, when all individuals have fitness values
that are close to each other, there is very small selection pressure, and it will
be difficult to discriminate good solutions from slightly worse ones. However,
this problem can be solved by scaling the fitness values of the population to
the interval between the lowest and highest fitness values.

2.1.2 Rank selection

Rank selection is used to overcome the disadvantages of fitness proportionate
selection. This selection method assigns a selection probability to an individual
based on that individual's rank in the current population. To determine the rank
of an individual, the N members of a population are sorted according to their
fitness value. The best individual will have a rank of 0, the worst will have a rank
of N - 1. The selection probability of an individual with rank 7 can then be given
by a linear function (p, = a*7 + b) or by a negative exponential function (p, =
a*exp(b*i + c)). The constants a, & and ¢ must be chosen so the sum of all
probabilities will be 1.

Advantages:
e No premature convergence.
e No stagnation

o The explicit fitness value of the individuals is not needed. Consequently, it is
sufficient to compare the result of individuals.
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Two types of reproduction are possible: sexual and asexual reproduction. With
asexual reproduction, a single parent is used to create offspring. Asexual
reproduction is also observed in single cell life forms like bacteria, where the
genetic material is copied during a cell division. Small errors can occur during
this duplication process, which may lead to improvements. Sexual reproduction
requires two parents, and the genetic material from both parents is combined to
form the genetic material of the offspring. This method attempts to combine the
favorable properties of both parents to create a better individual. In nature,
sexual reproduction is typically encountered in higher life forms.

2.3 Mutation

A fundamental property of evolutionary algorithms is that a diverse population of
different candidate solutions is maintained. Because of this, the search space is
examined in several places simultaneously. New places in the search space are
examined by combining solutions at different locations in the search space. As a
result, when all the individuals in the population resemble each other, the
potential to sample the search space is reduced and it will be difficult to find
new solutions. Mutation can be used to introduce diversity in the population by
randomly making small modifications to the genetic structure of some
individuals. As a result, mutation allows the evolutionary algorithm to escape
from local optima in the search space by re-introducing lost genetic material in
the population.

2.4 Basic evolutionary algorithm

The basic evolutionary algorithm is given below:

// Initialization:
Gen = 0
Create a random initial population P(Gen)
Evaluate the population P(Gen) and assign fitness
While the termination criterium is not satisfied:
// Select the parents for the next generation:
P2 = SelectParents (P (Gen))
// Create the next population:
Gen = Gen + 1
P(Gen) = Reproduce (P2)
Apply mutation to P (Gen)

Evaluate the population P(Gen) and assign fitness
End while
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space, the fitness landscape is obtained. A graph representing the fitness
landscape of this problem is shown in figure 5.1.

3.2 Representation

When genetic algorithms are used to find a solution for a problem, it is necessary
to construct a representation that encodes candidate solutions as a fixed length
string. A representation of the rational approximation of pi needs to encode two
integer numbers. If the range of these two integers is restricted to the range {0,
1, 2, ..., 1023}, a candidate solution can be encoded using a 20 bit string, where
the first 10 bits represent the value a, and the last 10 bits represent the value b.
These numbers can be represented using the standard binary encoding of
integers, or a more complex encoding such as Gray codes can be used. The use of
Gray codes has the advantage that small mutations in the genotype will cause
only small changes in the phenotype. An example of standard binary encoding is
shown in figure 5.2, where the number a, with a value of 311, is represented by
the first ten bits and the value b, with a value of 157, is represented by the last
ten bits, shown in italic font. This genotype represents the value v = 1.98089...
(a/b) and has a fitness value of 1.16070... (|v - @|).

lo[1]ofol1[1]of1[1]1Tolol 1[alol 1] 1] 1]0]1]
Figure 5.2: Binary representation of the two 10-bit integers 311 and 157.

3.3 Genetic operators

The genetic operators are responsible for the creation of new individuals from the
individuals in the current population. In genetic algorithms, the crossover
operator is typically used for sexual reproduction, and the cloning and mutation
operators are used for asexual reproduction. The cloning operator simply copies
an individual to the next generation. The other operators are discussed below.

3.3.1 Crossover

This form of sexual reproduction selects two individuals from the current
population and exchanges genetic material between them to form two new
individuals. In the case of one-point crossover, one crossover point is selected in
both character strings, and the genetic material at one side of this crossover
point is exchanged between the individuals. This is demonstrated in figure 5.3.
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Because crossover can only exchange the characters that are present at that
position, in this case it will be impossible to retrieve these lost characters.
Mutation is then the only way to reintroduce lost characters. Mutation is
demonstrated in figure 5.5.

Parent:
oj1/o]lof1|1]|0of1|1]|1[olof1|0]|0[1]1[1|0]|1

Offspring:
oj|1/ojof1]|1]|0f1|o|1|olol1|1]|0[1]1][71|0]1

Figure 5.5: Example of two random mutations on a bit string.
4 Genetic programming

Genetic algorithms are an evolutionary search technique whose candidate
solutions represent the solution for a single problem. Genetic programming is an
extension to genetic algorithms, where the candidate solutions are programs
that, when executed, solve a class of problems. While the underlying evolutionary
algorithm is identical to the one described in section 2.4, the representation of
candidate solutions and genetic operators differ from those used in genetic
algorithms. The selection methods, however, are still identical to those described
in section 2.1.

4.1 Representation

Computer programs typically have a variable length. Consequently, programs in
genetic programming are typically represented by trees. For example, the
expression ((3+x)*5) can be represented by the tree shown in figure 5.6.

Figure 5.6: Tree representation of the expression (3+x)*5.
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This operator is demonstrated in figure 5.7. The size of offspring is usually
different from the size of their parents.

Other forms of crossover are also possible. It is easy to implement multi-point
crossover, where several crossover points are selected in both individuals. Yet
another variation is homologous crossover, where the crossover point is selected
at an identical position in both individuals. This causes the genetic code to be
moved to a similar position in the offspring.

Parents: + °
(+ 5 H (+)
Y ©

(+)
ONO
@ O

Figure 5.7: Single-point tree-based crossover between the expressions ((x*(2-y))+5)

and ((3/x)*(y+0)).

4.2.2 Combination

Combination is an asexual genetic combination operator that selects a root node
for a new individual by randomly selecting a node from the non-terminal set. The
children of the root node are then added using selection, crossover, or by
recursively applying combination. When selection is used to select a child node,
it is possible to either select an entire individual from the population or only
select a subtree of an existing individual. In the recursive application of the
combination operator, nodes can also be selected from the terminal set. This
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undefined. The terminal and non-terminal set must satisfy the closure property to
ensure that all programs generated by the genetic operators are syntactically
correct. It may therefore be necessary to modify the terminal and/or non-
terminal set slightly to ensure that only valid results are generated. For the
example given above, it will be necessary to modify the division operator to
handle division by zero and instead return a default value such as 0.

If all the operators in the terminal and non-terminal sets are replaced by
protected versions that satisfy the closure property, syntactical correctness is
ensured if the return values of every operator have an identical type.
Unfortunately, this is only possible for simple problems. When nodes of different
types are present in the terminal and/or non-terminal set, the genetic operators
will have to be modified to ensure syntactically correct individuals are generated.
In section 6.1, strongly typed genetic programming will be presented as a way to
handle multiple types.

5 Example problems

This section will introduce several of the toy problems that are typically used to
test or demonstrate the usefulness of genetic programming. Most of these
problems are described by Koza in [44].

5.1 Symbolic regression

Symbolic regression attempts to find a symbolic representation of a function,
given a set of data points of this function. There are four requirements to solve a
symbolic regression problem with genetic programming:

e A set of data points must be available.

e The dependent variable of the data points must be selected.

e A fitness function must be defined that calculates the quality of a candidate
solution. Usually this means that a candidate solution is evaluated over all
the points in the data set, and the result is compared with the dependant
variable of the data set. The sum of all the errors over all data points can then
be used as a fitness value.

e The terminal and non-terminal set must be selected. The terminal set must at
least contain the independent variables of the data set. The non-terminal set
must contain sufficient operators to solve the problem. For example, it will be
impossible to find a correct solution for data points from the function
log(1 + x) when the terminal set only contains the functions {+, -}.
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:effect (and (not (at-briefcase ?briefcase ?from))
(at-briefcase ?briefcase ?to)
(forall (?0bj)
(when (in ?obj ?briefcase)
(and (not (at-obj ?obj ?from))
(at-obj ?obj ?to))))))

(:raction put-in
:parameters (?object - physobject
?briefcase - briefcase
?location - location)
:precondition (and (at-briefcase ?briefcase ?loc)
(at-obj ?object ?loc)
(forall (?b)
(not (in ?object ?b))))
:effect (in ?object ?briefcase))

(:action take-out
:parameters (?object - physobject
?briefcase - briefcase
?loc - location)
:precondition (and (in ?object ?briefcase)
(at-briefcase ?briefcase ?loc))
:effect (not (in ?object ?briefcase)))

)

The above code defines the types and predicates used in the environment, and
describes the actions that can be used (mov-b, put-in, take-out). To define a
planning task, an initial state and goal state can be described in the following
way:

# Briefcase problem

(define (problem get-paid)
(:domain briefcase-world)
(:init (location Home) (location Office)
(briefcase Briefcasel)
(physobject P) (physobject D)
(at Briefcasel Home) (at P Home) (at D Home)
(in P Briefcasel))
(:goal (and (at Briefcasel 0Office) (at D Office)
(at P Home)))
)

Muslea [73][74], and later Westerberg [110], developed an AI planning system
based on the genetic programming paradigm. To represent a plan using genetic
programming, the following terminal and non-terminal sets are defined:
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e Modify the genetic operators to only create or modify syntactically correct
individuals. In the case of the crossover operator, this means that the cut-off
points selected in both individuals must be of the same type. This method will
be described here.

To overcome the closure constraint, Montana [72] introduces strongly typed
genetic programming. In this system, a type must be associated with the
arguments and return types of all terminal and non-terminal nodes. The genetic
operators are modified to generate only syntactically correct types. A restriction
of the method used by Montana is that only two levels of typing are possible: all
types are derived from a common parent class, but no types can be derived from
a non-parent type. Haynes [30] removes this restriction by allowing a type
hierarchy. His system allows subtyping, meaning that any object that requires a
child of a type T will also accept any type that is a subtype of 7. This allows a
form of polymorphism in the definition of type constraints of child nodes.

When strongly typed genetic programming is used, the search space of the
problem is reduced. As a result the search time needed to solve a problem
decreases. In [65], McPhee uses strongly typed genetic programming on
essentially typeless problems, and notes an improvement in performance in some
cases. However, this increase may also be due to the fact that the strongly typed
representation makes it easier for internal nodes in the typeless representation to
be modified, which can be an advantage in some problem domains.

6.2 Automatically defined functions

In any programming task, the use of subroutines can make that task significantly
easier. Consider for example the odd N-parity problem discussed in section 5.2.2.
A simple solution for this problem would be the program (d, xor d, xor ... xor d, ).
However, the function xor is not part of the non-terminal set, even though an
xor(a, b) function can be constructed with the expression ((a nand b) and (a or
b)). This program, containing 7 nodes, is a solution for the odd 2-parity problem.
A solution for the odd N-parity problem, where N = 2" for some n € N, can be
constructed by joining two solutions of the odd 2"-parity problem using the xor
function. However, this solution of the odd N-parity problem will contain 2N*-1
nodes (see Appendix D). If the xor-primitive can be used, the solution contains
only 2N-1 nodes. This demonstrates that the introduction of new primitives, even
if those primitives can be constructed from the existing primitives, can reduce
the complexity of the solution. Therefore, if the genetic programming system is
able to construct new primitives from existing ones, finding a solution may
become easier.
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Figure 5.10: Individuals share identical subtrees in a directed acyclic graph.

6.3.1 Representation of objects

Because identical subtrees must be shared between individuals, it is necessary
that identical subtrees can be detected easily. This can be accomplished by using
an appropriate representation:

All objects, both terminals and non-terminals, are given a unique index
number.

All types of non-terminal object (such as the types +’ or ‘and’) are also given
a unique index number.

An appropriate data structure is used to store all terminal symbols. For
example, integers can be stored in a hash table and real numbers can be
stored in a sorted tree. When a new terminal object is about to be created,
these structures can easily test if the new terminal object is already present in
the population. If the object already exists, that object will be re-used.
Otherwise, a new object will be created, added to the data structure and will
be given a new unique index.

All non-terminal objects of arity a and type index t can be represented by a
vector containing (a + 1) indices. This vector is (¢, c, ..., ¢,), where ¢, is the
index of child node i of the object. These vectors can be stored in an
appropriate data structure, for example a sorted tree using lexicographical
ordering. When a new non-terminal object is about to be created, this data
structure can be tested to determine if the new object is already present in
the population. If the object is found, it will be re-used. Otherwise, a new
object will be created, added to the data structure and will be given a new
unique index.

A population of N individuals is represented by a set of N indices, where every
index represents the root node of every individual.
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whose condition is always false). They can also be nodes that have no effect on
the result of the individual when executed (for example adding 0 to another
number). Nodes that have no effect on the result, and therefore on the fitness of
an individual are often called introns. This is a term used in biology that
describes genes in a genotype that are not expressed in the phenotype.

The cause of bloat has been the subject of extensive research. In [61], Luke
describes four major theories of bloat:

e Hitchhiking: This theory, introduced by Tackett in [103], says that introns are
spread from parents to offspring because of the crossover operator. Introns
are transferred along with the essential nodes of the parents.

o Defense against crossover: Blicke and Thiele in [6], and Nordin and Banzhaf
in [77] argue that adding introns to partial solutions protects these partial
solutions from being split up and destroyed because of crossover. As a result,
the offspring has a higher chance to have a fitness similar to its parents
fitness, which is typically above average.

e Removal bias: Soule and Foster [100] focus on a special case of introns,
namely unviable code. This is code which can never have any effect on the
result of an individual, even when modified. Typically, unviable code is
located near the leaves of an individual. Consequently, removing a small
subtree near the leaves is more likely to remove only unviable code and leave
the individual intact. The size of the subtree that is added on the other hand
has little or no effect on the fitness of the individual. This favors the removal
of small subtrees during crossover, while no bias exists for the size of the
added subtrees. As a net result, the average size of individuals will grow.

e Diffusion: Langdon and Poli [49][50] argue that because a solution can be
represented in different ways, and because there exist more solutions with a
greater size than simple solutions, it is only natural that more of the larger
solutions are found. As a result, bloat is caused by fitness based selection.

While defense against crossover and removal bias are reasonable explanations of
bloat in a population where improvement becomes difficult, it does not explain
the early growth in a population [64]. Therefore, it is likely that bloat is caused
by a combination of these factors, and possibly others as well. This is confirmed
in [4], where Banzhaf en Langdon use a simple model to simulate the size,
fitness, and the amount of active and inactive code of the individuals in a
population. The model was used to test the theories of removal bias and
diffusion. Their results indicate that both these theories partially explain bloat.
On the other hand, Soule and Heckendorn [101] perform experiments to test the
effects of defense against crossover, removal bias, and diffusion. These
experiments show that defense against crossover and removal bias are
responsible for code growth, but diffusion has little or no effect.
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2 The advantages and disadvantages of bloat

The most obvious disadvantages of bloat are the higher memory requirement and
the longer execution time. However, memory has become very cheap to upgrade
nowadays and is therefore not a significant problem. The longer execution times
can be reduced somewhat by smart evaluation, such as only needing to execute
one branch in an AND-node if the first node returns false. Execution time can
further be reduced by caching partial results of subtrees when using the directed
acyclic graph representation described by Handley [29]. Unfortunately, this is
only an option when the unexecuted nodes have no side-effects.

On the other hand, according to the removal bias and protection against
crossover theories, bloat appears to be helpful for the evolution. Introns can
reduce the chance of destructive crossover, thereby increasing the average
fitness of the offspring. However, the chance of a successful crossover is also
reduced and crossover will usually have no effect on the fitness and behavior of
offspring [64]. In this case, introns help insure that the successful individuals
are transferred to the next generation, embedded within introns. However, this
can also be accomplished by an elitist approach.

In [111], Wineberg and Oppacher claim that adding introns dynamically reduces
the search space of a problem. They use a fixed-length representation for a
solution, and simulate a variable-length representation by using a non-terminal
node that ignores all but one of its child nodes. The ignored child nodes are thus
by definition introns. Because of the fixed-length representation, introns cause a
reduction of the phenotype size, and therefore limit the search space. However,
because of the fixed representation length, these introns are not useful to study
the effects of code growth in genetic programming in an unlimited variable
length representation.

Another feature of introns is that they can store potentially useful code, that
may become more useful after changes in the environment [3][50][111]. This can
be especially important when looking for a solution in a dynamic environment,
where features that were useful in the past can be saved to be later reintroduced
as active code in the population.

In [1], Andre and Teller report that the occurrence of introns is damaging in
experiments on the 5-parity, lawnmower and symbolic regression problems.

There are several disadvantageous of bloat:

e The memory requirement and execution time are higher because of introns.

e Crossover has no effect when introns are selected in both parents [1]. While
children are not worse than their parent, neither will they be better and
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impact on the results, it was not possible to measure the effects of the increased
size and inactive code on the results.

3 Detecting and removing inactive nodes

Since inactive code appears to make up most of the code of a bloated individual,
it makes sense that bloat can be reduced if the inactive nodes can be removed
from the individuals. In this paragraph, this idea will be explored for several
problem domains where it is easy to detect and remove inactive nodes. After
discussing some related work on removing inactive code, a method will be
described to measure the influence every node has on the result of an individual.
Nodes that have no influence are by definition introns, and a method to remove
them from the individual will be presented. The effect of removing inactive code
will be tested experimentally, and finally some conclusions will be given.

3.1 Related work

In [77], Nordin and Banzhaf identify different types of introns:

e Global and local introns: Global introns are nodes that have no effect on the
behavior of an individual for every possible input in the program domain.
Local introns have no effect for every input in the training set used to
evaluate the individual. This code may become active when used in a different
context.

o Absolute introns: These are nodes that have no effect on the behavior of an
individual, and applying crossover on these nodes will not modify this
behavior.

e Continuously defined introns behavior: In this case, nodes are given a
numerical value of their sensitivity to crossover. An example is the underlined
code in (/ (=Y 3) (EXP (EXP 10))), whose result is dominated by the value of
the second part. Changes to the underlined code will have a negligible effect
on the result of the individual.

Koza [44] describes a way to add syntactic rules to simplify individuals. This
includes reducing trees with only constant nodes to a constant value, and
reducing expressions like (Not (Not X)) to X. The purpose of these syntactic rules
was mainly to make individuals easier to read when displayed, but they were not
used to influence the behavior of the genetic programming system.

Soule, Foster and Dickinson [98] use a set of syntactic rules to remove inactive
code from individuals. They report that when non-functional code is removed,
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3.2 Measuring the influence child nodes have on their
parents

In genetic programming, a program is typically represented by a tree of nodes.
The result of the program is produced by the individual nodes of this program
tree. However, some nodes have a larger impact on the final result than other
nodes. For example, nodes near the top of the tree will usually have a larger
effect on the result of the program than nodes located near the base of the tree.
But even two children of the same non-terminal node can have a different
influence on the result of their parent node, and thus on the final result of the
genetic program. For example, in the program (2 + 5), the child node 5 will have
a larger effect on the result than the child node 2. It is also possible that a child
node has no effect on the result of the parent node. For example, in the program
(0 + 4), child node 0 has no effect, and in the program (0 * 4), child node 4 has
no effect on the result of the calculation. In these cases, the inactive nodes can
be removed from the program without altering its result, resulting in the
programs (4) and (0) respectively.

In general, it is impossible to measure the influence each child node has on its
parent. However, for some typical non-terminal nodes, it is possible to discover
specific formulas for different node types that can calculate the influence of their
child nodes during the evaluation of a program. In this section, several formula
are designed by us to calculate the influence of child nodes for some specific
non-terminal nodes. These formulas will then be used to detect and remove
inactive code, and to test its effect on code growth. These results will indicate
whether it is worthwhile to calculate the influences of child nodes. Otherwise,
other methods need to be used to reduce code growth.

When calculating the fitness of an individual, the code of the individual is
typically evaluated several times using different inputs. For example, a
mathematical function can be evaluated using different values for its variables.
While the influence of a subtree can be very low during some evaluations, the
subtree may produce valuable results during other evaluations. Therefore, a
subtree can only be considered inactive when it consistently has a low influence
over all evaluations. As a result, the influences of all evaluations must be
combined to produce the total influence value.

3.3 Removing inactive code

Immediately after the evaluation of an individual, when the influence values of
the children are measured, inactive children can be removed from the individual.
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e Influence of Condition: 1/3.
e Influence of True-case: (2/3)*(T/N).
e Influence of False-case: (2/3)*((N - T)/N).

The sum of these influences is 1. If Condition was false in every evaluation, the
influence of True-case will be 0. In this case, the entire If-Then-Else node can be
replaced by False-case. Similarly, if Condition is always false the If-Then-Else
node can be replaced by True-case.

3.4.2 Add/subtract nodes

Addition and subtraction are nodes of arity 2, whose child nodes and return value
have a numerical type.

During a single evaluation, the child nodes have numerical values N, and N,. The
total effect of this node is defined as | N,| + | N,|. For example, the node (2 + 5)
will have a total effect of 7, and the node (4 + -4) will have a total effect of 8,
even though the final result of that node is 0. If N, and N, are both 0, this
evaluation will not be used to calculate the total influence of the child node over
all evaluations.

The influence of child node i during this evaluation is set to | N|/(| N,| + | N,])-
Consequently, when the result of one child is small compared to the result of the
other child, that node will have a low influence value.

To obtain the influence of a child node over all evaluations, the average is taken
of all the influence values of the single evaluations (where either N, or N, was not
0). As a result, the final influence of a child node will be low if the value of that
child node is consistently smaller than the value of the other child node. If the
influence of a child node is below a threshold value (for example 0.01), the child
node can be removed without modifying the result of the parent node much.

To remove a child node from an add node, the inactive node and the add node
are removed, and only the active node is retained. An inactive second child node
of a subtract node can be removed in an identical way. However, if the first child
node of a subtract node is inactive, the parent node must be replaced by a unary
minus node, with the active child node as the child node of minus. For example,
(0 - 5) can be replaced by (- 5). If a unary minus operator is not part of the non-
terminal set of the genetic programming system, the inactive child node can not
be removed.
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change as the total magnitude of the multiplication. After a single evaluation,
the influence of child node 7 is given by equation (6.2):

(6.2)

log(M,)+ Neg, -log(M, - M ,)
(14 Neg, + Neg,)-log(M,-M,)

Influence; =

where Neg, is 1 if the value of child 7 is negative, and 0 otherwise. For example,

the influences of the children of (-1 * 100) are both 0.5. The sum of the

influences is again 1, and the total influence after all evaluations is again the
average of the single influences.

A child node can be removed if two conditions are satisfied:

e The magnitude influence of the child node is very small.

e The sign influence of the child node is either 0 or 1. If the sign influence is 0,
the parent node is replaced by the other child node. Otherwise, the parent
node can be replaced by a unary minus operator with the active child node as
a child, if this operator is present in the non-terminal set. Otherwise, the
node can not be removed.

If the first child node of a division is removed, the division node can be replaced

by a unary Inverse operator if this operator is present in the non-terminal set,

with as child the active child node. If this operator is not available, the node can
not be removed.

3.4.4 And/Or nodes

And nodes are nodes of arity 2 that have Boolean arguments and return value
and perform a logical And operator on its arguments. The child influences of a
single evaluation are calculated as follows:

e If both children have the same logical value, this evaluation is not used to
calculate the total influence after all evaluations.

e Otherwise, the child node with the True value will have an influence of 0, and
the child node with the False value will have an influence of 1. This is because
False dominates the result of the And node, setting the result to False
regardless of the value of the other node.

If a child node always has a value of False, the influence of this child node will

be 1 and the And node can be replaced by this node. If a child node is always

True, the And node can be replaced by the other child node. If both children

always have the same value, the And node can be replaced by either child node,

preferably the smallest one.

A similar approach can be used to calculate the influence of logical Or nodes,

changing the influence of True child nodes to 1 and False child nodes to 0.
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by its parent node, or can be replaced by a No-Operation node if this node is part
of the terminal set.

3.5 Experimental results

In this section, the effects of removing inactive subtrees will be examined on the
6-multiplexer and symbolic regression problems. Both the effect on the average
size of the members of the population, and the number of generations needed to
find a perfect solution will be tested. The GP system uses a steady state
algorithm, where identical individuals are not allowed in the population.
Individuals with identical fitness value are ordered by size. The steady state
algorithm starts with a random population of a size N, and in every following
generation N new individuals are created, evaluated and added to the population.
Identical copies of existing individuals are rejected and in this case a new
individual is generated. At the end of the generation, the best N individuals are
retained in the population.

For all experiments, the following settings were used: population size 200, 70%
of the individuals are created by crossover, 30% by combination, and a 2%
chance that an individual is mutated when it is created. The mutation operator
replaces a random node with a compatible node. The combination operator
selects a random non-terminal primitive and creates children for this primitive
using selection, crossover or combination. A run is terminated when no solution
is found within 65 generations. The averages shown are taken over 100 runs, but
only the runs that have not yet found a perfect solution are included in the
average.

3.5.1 6-Multiplexer

This is the standard problem described in paragraph 5.2 of chapter 5. The non-
terminal set is {And, Or, Not, If-Then-Else}, which means that all inactive nodes
can be removed. The syntactic replacement rule that (Not (Not X)) = X is also
used in the experiment, and the influence threshold used is 0.0.

When inactive nodes are not removed, a solution was found in 72% of the runs.
The maximum average size of the population climbs to 677 at generation 50, and
then lowers again to 538 at generation 65. When inactive nodes are removed, a
solution was found in 94% of the runs, and the average size of the population
rises to 194 at generation 41, and then drops to 129 at generation 65. The
average size drops at a given moment because at some point all individuals of
the population have the same fitness (only 32 different fitness values are
possible for the 6-multiplexer problem). At this moment, smaller individuals are
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an influence threshold of 0.01, a solution is found in only 72% of the runs, and
surprisingly the average size increases to 1144 after 65 generations. If the
influence threshold is increased to 0.05, the success rate drops further to 66%,
but the size also decreases to 851 after 65 generations. In this example,
removing inactive code has a negative effect on the convergence speed and no
effect or a negative effect on the size.
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Figure 6.2: Average best fitness, average size and standard deviation of symbolic
regression problem without unary minus and inverse operators, without
removing inactive nodes (left), and removing inactive nodes with influence
threshold of 0.01 (middle) and influence threshold of 0.05 (right).

3.5.3 Symbolic regression with unary operators

This problem tries to solve the same problem as in the previous paragraph, but
the non-terminal set is extended with the unary minus and inverse operators. As
a result, all inactive child nodes can be removed. However, by adding these two
oparators, the search space has been increased and finding a solution becomes
more difficult. The syntactic rules that (-(-X)) = X and (Inv(Inv(X))) = X are also
used. All other settings are identical to the settings used in paragraph 3.5.2.

When inactive nodes are not removed, a solution is found in only 38% of the
runs, and the average size of the population of the unfinished runs at generation
65 is 916. If the inactive code is removed with a threshold of 0.01, the average
size drops to 674, but a solution is found in only 35% of the runs. Using a
threshold of 0.05, the average size drops further to 564, but the success rate also
decreases to 31%. In this example, removing inactive code has a positive effect
on code size but a negative effect on convergence speed. However, the average






page 82

to solve the problem. This is consistent with the results of Soule, Foster and
Dickinson in [98], where inactive code was replaced by non-executed code. The
approach described in this section is also able to detect and remove non-
executed code, which demonstrates that both inactive and non-executed code, as
well as continuously defined intron behavior, are not the only causes for the
rapid growth of the individuals’ size. A similar result was also reported by Luke in
[57].

Also, when working with other problem domains, it may be more difficult of even
impossible to calculate the influence of some child nodes. To combat bloat
effectively, it is therefore necessary to use other approaches, possibly combined
with this technique. A comparison of combining this technique with several other
techniques is described in [70] and in the next section.

4 Limiting code growth

4.1 Introduction

The previous sections of this chapter introduced the problem of bloat and
investigated the causes and problems of bloat. Also, an attempt was made to
reduce bloat by removing what appeared to be the most important contributor to
bloat: inactive and unexecuted code. While this approach was somewhat
successful in some problem domains, it had almost no effect, or even a negative
effect in other domains. Even in successful domains, bloat was still considerable.
Therefore, it is necessary to consider other means to combat bloat.

In paragraph 4.2, related work on different techniques to reduce bloat will be
discussed. Paragraph 4.3 will present several methods, and these will be tested
and compared with each other in paragraph 4.4 by running several experiments.
Finally, conclusions will be presented in paragraph 4.5.

4.2 Related work

Because the problem of bloat is known since the beginning of genetic
programming, a lot of work on different techniques to reduce code growth exist.
Koza [44] uses the following techniques to fight bloat:

e The individuals that are created for the initial populations are restricted to
depths between 2 and 6.
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It is also possible to introduce a form of hill climbing in the crossover process
[51][81], as described by Langdon and O'Reilly. Using this approach, individuals
created by the crossover operator are rejected if the result is not fitter or smaller
than its parents. This approach was reported to be vastly superior over the
simulated annealing approach, and restricts bloat considerably. If a strict hill
climbing approach was used, bloat disappears even completely, but more time is
needed to find better solutions. This will be confirmed in paragraph 4.4.
However, strict hill climbing tends to stifle evolution when a local optimum is
reached.

Another method to modify crossover was discussed in [97] by Smith and Harries.
They introduce a same-depth crossover operator that selects subtrees of equal
depth when performing crossover. As a result, the depth of individuals can not be
changed because of crossover. While same-depth crossover eliminated bloat, the
success rate of the evolution was reduced too drastically to be useful. When
same-depth crossover was used in 50% of the time and standard crossover was
used otherwise, bloat was reduced, but the success rate was lower as well.

In [5], Blickle compares the use of simple parsimony pressure, marking crossover
[6]. explicitly defined introns [97], and adaptive parsimony pressure [113]. He
concludes that the use of explicitly defined introns and the marking crossover
offer no advantage over the use of a simple parsimony pressure in continuous
problems. On the other hand, the marking crossover was superior in discrete
problems. These results are comparable to the results obtained in paragraph 3.5
of this chapter. However, all methods were successful in reducing the size of
individuals in the population.

In [64][84][85], Poli and McPhee develop an exact theory of bloat. When the
exact causes of bloat are understood, it would be possible to construct genetic
operators that are unbiased towards creating bloat. However, more research on
this subject is needed.

In [50][52], Langdon and Poli examine bloat in dynamic environments. The
“defense against crossover” theory of bloat indicates that children having an
identical behavior as their parents is an evolutionary advantage. As a result, in a
dynamic environment where the requirements of survival can change every
generation, this effect should disappear. Their experiments indicated that in this
case bloat was indeed reduced, but the generalization capability of the resulting
individuals decreased as well. This confirms that defense against crossover is part
of the cause of bloat.
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maximum size of 32. Additionally, all of the 50 runs were completed successfully
at generation 74.
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Figure 6.7: Result of combining hill climbing and removing inactive code.

4.4.6 Dynamic size limiting and hill climbing

By combining these two approaches, the average size of the individuals is
reduced even more (to a size of 17), but the success rate decreases to 70%.
These results seem to confirm that hill climbing is a successful way to reduce the
size, at the cost of finding solutions slower. These results are shown in figure
6.9.
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Figure 6.8: Result of dynamic size limiting.
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4.4.8 Combining all techniques

When all three optimization techniques are combined, the results of figure 6.11
are obtained. The average size of individuals remains small, but the success rate
is only slightly better than the results of only combining dynamic size limiting
and hill climbing or combining hill climbing and removing inactive code.
However, it is significantly worse than the result of combining dynamic size
limiting and removing inactive code. The combination of all techniques seems to
be too restrictive to discover improvements.
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Figure 6.11: Result of combining all three optimization techniques.

4.5 Conclusions

In this section, a new approach to reduce bloat in genetic programming was
introduced, and compared with other approaches. This technique imposes a
dynamically changing maximum size on newly created individuals, based on the
size of the best individual of the previous generation. This approach has benefits
over other approaches because it is very simple and even improves the speed at
which a solution is found in the symbolic regression test case. The technique will
also be used later in this thesis on the AI planning test case and the Robocup
domain. In these cases, the technique also maintains a small average population
size.

A possible concern about the dynamic size limiting technique is that it may stop
evolution when a small best individual is found, and better individuals are only
possible for a size that is larger than the allowed limit. Therefore, when no better
individual is discovered for several generations, the size limit is increased






Chapter 7: Measuring and
maintaining the diversity of a
population

1 Introduction

An important problem encountered in evolutionary algorithms is that after
several generations, the individuals of the population begin to resemble each
other, or put in other words: the diversity of the population has decreased. This
happens when a highly fit individual is used as a parent for most of the new
members of the population, which also have above average fitness. As a result, it
is possible that genetic material, needed for a complete solution, is removed
from the population. If this happens, the population has converged prematurely.

To counter this problem, the size of the population is often set to a large value.
In this case, it takes longer before the diversity of the population is lost.
However, evaluation of a generation will also take longer in this case. Another
solution is to use a method to increase the diversity of a population. Such a
method must perform two tasks. First, it must be able to determine the similarity
of the individuals in the population. This is usually done either with a distance
metric between two individuals, or with a distance metric between an individual
and the rest of the population. Secondly, the method must remove those
individuals that are too similar to others, and/or add individuals that are
different from the existing individuals of the population. In this chapter, we
develop a method that measures the similarity of individuals with the rest of the
population, and removes individuals that are too similar [71].

2 Related work

A typical method used in genetic algorithms to increase the diversity of a
population is called fitness sharing [27]. When using this approach, similar
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In this equation, D(X) represents the number of different subtrees present in X.
This measure can easily be calculated when using the directed acyclic graph
representation in O(n).

Mawhinney uses the Unix diff program to calculate the difference between
individuals [62]. This gives a rough measure of the syntactic similarity between
two individuals. Individuals that are similar to other individuals are replaced by
new random individuals. To calculate this similarity measure, every combination
of two individuals is compared using the diff function. Thus, comparing two
individuals has a time complexity of 0(n), and processing the entire population
has a time complexity of 0(p’n).

In [41], Keller and Banzhaf use the “edit distance” to measure the difference
between two individuals. This distance measures the number of primitive edit
operations needed to transform one individual into another. The primitive actions
used are divided in two categories. The first category involves the adding or
removing of a child node, and the second category involves modifying the type
of a node. A two-dimensional vector can then be associated with every
individual, representing the number of operations needed to transform an
individual with only a single node to the given individual. The first value of the
vector represents the number of operations of the first category, and the second
value the number of operations of the second category. Consequently, every
individual of a population can be represented by a point in R? within the
bounding rectangle containing all these points. The largest area rectangle
containing none of these points is calculated. The diversity of the population is
then represented as 1 - (area of largest area rectangle)/(area of the largest
possible bounding rectangle). When the diversity of a population drops below a
threshold, individuals that have the same position vector as another individual
are replaced by a new individual that approximates the position of the largest
area rectangle. Processing the entire population has a time complexity of
0(p*(n + log p)).

In [91], Rosca uses the fitness and “expanded structural complexity” of
individuals to determine similarity between individuals. Because these features
are computed during the evaluation of the individual without significant extra
cost, there is no added time complexity for using this method. However, because
structurally different individuals can still have identical fitness and/or expanded
structural complexity, this method is not very accurate in detecting similar
individuals.

Nienhuys-Cheng [76] defines a metric between two nodes p and g with arity of n
and m respectively in equation (7.4):
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2.2 Other diversity measures for genetic programming

While using a distance measure between individuals to measure the diversity of a
population allows the re-use of methods designed for genetic algorithms, other
methods are possible as well. This includes our new algorithm, which will be
described in the next paragraph. In the remainder of this section, we will
describe the work related to these diversity measures.

In [52], Langdon and Poli detect similar individuals by comparing their fitness
values on identical test cases. A fitness penalty was added to offspring that was
similar to their parents. Using this technique, the diversity of the population was
increased and bloat was reduced by 50%, while performance decreased only
slightly.

In [111], Wineberg and Oppacher measure the randomness of nodes at given
positions (called a locus) in an individual. Randomness of a given locus is
calculated using the entropy measure in equation (7.5):

: (7.5)
H(L)=Zfl.log?

izl i

This measure is called the genic diversity of a locus. In this equation, L is a
random variable over the range R = {g,, g,, ... }, where R is the alphabet of the
possible genes. f, = prob(L = g) is the frequency of a gene g, occurring at the
specified node, looking across the entire population. The diversity of the
individual is then calculated as the average of the genic diversity across all loci
of the individual.

Rosca [92] also uses entropy as a measure of diversity of a population. In this
case, the population is divided in a set of partitions that have similar behavior,
for example an equal number of hits in a parity problem. The values f, of equation
(7.5) are the fractions of individuals that are part of the partition i.

In [19], De Jong uses a multi-objective function to reduce bloat and increase
diversity simultaneously. The distance measure between two individuals that was
used is the sum of different nodes at overlapping locations divided by the size of
the tree, as in equation (7.4).

3 Sharing identical subtrees

The distance measure between an individual and the rest of the population
developed by us relies on the directed acyclic graph representation of a
population [29]. In this representation, when two individuals share an identical
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6 Experimental results

The effect of the diversity measure was tested on the problems of symbolic
regression (described in section 5.1 of chapter 5) and Al planning (described in
section 5.4 in chapter 5). The experiments also used the removal of inactive code
and dynamic size limiting optimizations described in chapter 6.

6.1 Symbolic regression

The target function used was X’ — 2x’ + x, using the function set {+, -, *, /, x}.
The following parameters were used: 70% crossover, 30% combination, 1%
mutation, population size 200. A total of 100 runs were performed for a
maximum of 100 generations or until a perfect solution was found. Figure 7.4
lists the number of unfinished runs after a given generation with and without
using the diversity measure.
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Figure 7.4: Effect of diversity on symbolic regression problem.

When the individuals with low diversity are removed from the population, a
solution is discovered faster (at generation 21, 77% of the runs have found a
solution versus 56% when increasing diversity). However, the overall success rate
is similar (97%). It should also be noted that in early generations, the diversity
measure removes most of the individuals from the population and keep only
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selection. The weights of the links in this network can then be trained using a
genetic algorithm. In section 2, we use genetic programming to create a program
that calculates a movement or kicking vector to control a player.

Current
world state \
Action ’
selection Action
Predicted | _— "
world state

Figure 8.2: Action selection uses current and predicted world states.

1 Using genetic algorithms to train a reactive
action selection network

In a first attempt to implement action selection, an action selection network was
developed. This network consists, somewhat like a neural network, of nodes that
accept and transmit values. The terminal nodes of this network transmit a value
that depends on the received sensor information of the player. Other nodes
process the values from other nodes and combine this to a new value. Some
nodes can execute an action when their value exceeds a threshold.

This structure has the following advantages:

e Because the terminal nodes are directly linked to the sensors of a player, the
action selection network responds immediately to changes in the
environment.

e It is possible to construct several behavior groups of related actions. Different
behavior groups can be divided by a node that activates a group based on the
result of a sensor or other node.

1.1 Description of the action selection network

The action selection network is shown in figure 8.3. Every link in the network
contains a weight value, by which the output of a node is multiplied. These
values can be trained by a genetic algorithm. The nodes in the second column
represent all the possible actions of a player. Terminal nodes are directly linked
to sensors, or predictions of the sensor values. Mutex nodes will activate the
child node that returns the highest value, and deactivate the rest. Switch nodes
will activate one of two child nodes, depending on the value of a third child
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e PlayerMissing: In some rare cases, it is possible that insufficient reference
points are observed to determine the position of the player on the field. In
this case, the player will turn around to look for reference points.

e BallDistance: This node returns the distance from the player to the ball.

o PlayerPosition: Each player is assigned an area on the field in which that
player is supposed to play. This area depends on the player number assigned
to the player when connecting to the soccer simulator. When the player is
inside this area, the node will return the distance of the player to the edge of
the area. When the player is outside this area, a negative value of minus the
distance to the edge of the are will be returned. This node encourages a
player to stay inside its assigned position.

e Attacking: This node indicates whether the player is currently involved in an
attack. If the player is attacking, this node will reduce the effect of the
PlayerPosition node to ensure that the player will not suddenly turn around
when moving with the ball to the goal. This node introduces persistence to
the action selection.

e PlayerMarked: This node actually consists of 11 nodes, each one observing an
opponent. If a teammate is close to the targeted opponent, and the opponent
is in a position to receive a pass, that opponent is considered to be ‘marked’.
Otherwise, this node will return a positive value and this player may decide to
mark the targeted opponent.

o GoalFree: This node returns a value that indicates the number of players
standing between this player and the goal. If this value is low enough, the
player may decide to shoot at the goal.

e Threatened: This node returns the number of opponents that are close to this
player. The player may decide to pass the ball to a safer teammate when it is
threatened by several opponents.

e Vision: This node uses the vision buffer, discussed in section 3 of chapter 4,
to determine how safe it is to move or pass, based on the calculated danger
values.

e MoveToPass: When a player gives a pass to a teammate, a message is sent to
this player to notify him that a pass is given. If a player receives such a
message, this node will return a positive value, activating the behavior that
will cause the player to move to intercept the ball.

e MoveAway: This node is activated when the player is standing in the way of a
teammate that controls the ball. This causes the player to move away from the
ball to allow the teammate to move along.

e MoveFree: When the player is marked by an opponent, this node will be
activated. The player will then try to move away from the player so it may
receive a pass if necessary.
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1.2 Training the action selection network

When all the behaviors are implemented and the action selection network is
constructed, the action selection itself must be trained by assigning weights to
the links in the network. In the action selection network described in the
previous sections, it is not hard to determine whether nodes have positive or
negative effects on other nodes. Positive effects are represented by positive
weight values, while negative effects use negative values. However, the actual
magnitude of these weights is much more difficult to estimate. If the weights of
the links are stored as a string of numbers, genetic algorithms can be used to
train these weights.

1.2.1 Representation and fitness function of the genetic algorithm

The genome representing the weight values of the action selection network
consists of a fixed-length string of floating point values. The primitive elements
of the string are floating point numbers, so crossover points will never be
selected inside a value. Also, because the signs of the weights are fixed in the
network, the genetic operators will never change the sign of the weights.

The weights of a team are evaluated by playing a match against another team.
The other team can either be a fixed reference team, or another team from the
population. After the match is played, a fitness value is calculated using equation
(8.1):

(8.1)

~7.5F if §,, =0and S, ., =0

{(sw =8 s onent N1+ 0.1(S 1, + 8 ppomens 2T — E) otherwise
In this equation, S,, and S, .., represent the scores of the evaluated team and
the opposing team, T is the maximum duration of a match, and £ is the time the
game actually lasted. The initial population will contain a lot of teams that
simply stand still on the field. When two of these teams play against each other,
the final score will be 0-0. To remove these teams as quickly as possible from the
population, both are given the lowest possible fitness value. This is handled by
the first part of equation (8.1).

Normally, one or both of the teams will score several goals and the second part
of equation (8.1) will calculate the fitness value. The first part of the equation
will ensure that the winner of the match will receive a positive value, and the
loser will receive a negative value. A draw gives a fitness value of 0. The second
part of the equation encourages the scoring of goals. To decrease the evaluation
time, when a combined total of 5 goals are scored by both sides before the end
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Figure 8.5: Number of wins, losses and ties of the teams in a population when
training a team of 6 players against a fixed reference team.

When the experiment was repeated using complete teams of 11 players, none of
the teams of the initial population was able to defeat the reference team after 4
generations, and as a result the fitness values of all teams were very low. After
several generations, no improvement was noticeable. A possible explanation is
that as all individuals have a similar fitness value, evolution was halted. The
experiment had to be aborted after the installation of a new version (4.18) of the
soccer simulator, needed to be able to participate to the Robocup world cup.
Because of this, the players of both teams had to be modified considerably and
were incompatible with previous versions.

1.2.3 Training using co-evolution with teams of 11 players

A second experiment was performed where co-evolution was used instead of
using a fixed reference team, using version 4.18 of the soccer simulator. In this
experiment, two separate populations of teams were maintained, and teams from
both populations play against each other. One population evolves the left teams,
while the other population evolves the right teams. After a generation, the best
result of a population was compared with the best result of the initial
population. Because of time constraints, the experiment could only be run for 5
generations. The fitness of the best individuals is shown in figure 8.6. The results
of this limited experiment are somewhat disappointing, as the best individual
does not seem to improve significantly. This may be caused by the inaccuracy of
the fitness function that uses the results of a single match to calculate a result,
which uses the results of a single match to calculate a result. These results can
change significantly when two matches are played between the same teams.
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Figure 8.8: Number of wins, losses and ties of the teams in a population when
training a team of 11 players against a fixed reference team.

1.3 Conclusion

In the experiments described above, a team of Robocup players was trained by
optimizing a set of weights of an action selection network using genetic
algorithms. After several generations, the performance of the population of
teams grows slowly. Due to the fixed structure of the action selection network,
however, the players of the evolved teams will tend to play using similar
strategies. This may be changed by giving the evolutionary process more
flexibility to implement action selection. In the remainder of this chapter,
genetic programming will be used to construct a program to control the player.

2 Using genetic programming to learn action
selection

Because the Robocup simulator is becoming more realistic over time and new
functionality is added, Robocup players and teams have to be modified after
every modification. As a result, hand coded behaviors have to be adapted to
these changes and the use of new commands and sensor readings must be
incorporated in the action selection of the players. Also, the behaviors and
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Base |Boolean squad1()

opp-closer()
mate-closer()
ofme(Integer)
ofhome(Integer)
ofgoal(Integer)
opponent-close(Integer)

Integer {0,1,2,3, 4,5,6,7,8,9}

MoveVector |home()

ball()

findball()

block-goal()

away-mates()

away-opps()

home-of(Integer)

block-near-opp (MoveVector)
mate(Integer, MoveVector)
weight-+(Integer, MoveVector, MoveVector)
if-v(Boolean, MoveVector, MoveVector)
sight(MoveVector)

KickVector | far-mate(Integer, KickVector)
mate-m(Integer, Integer, KickVector)
kick-goal(Integer, KickVector)
dribble(Integer, KickVector)
kick-goal!()

far-mate!()

kick-clear()

kick-if(Boolean, KickVector, KickVector)

Table 8.1: Hierarchy of STGP primitives used by Luke et al.

A third problem is the credit assignment problem: which player of the team is
responsible for the success or failure of the team, and which part of the genome
was responsible for it? This problem can be avoided by representing the entire
team by an individual. There are three ways to represent an entire team in a
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e weight-+(Integer 7, MoveVector m, MoveVector m,): Returns the vector
(i*m, + (9 - )*m,)/9.

o if-v(Boolean b, MoveVector m,, MoveVector m,): Returns m, if b is true, or m,
otherwise.

e sight(MoveVector m): Returns the vector m, but rotated just enough to keep
the ball in sight.

e far-mate(Integer 7, KickVector k): Returns a vector to the most offensive-
positioned teammate who can receive the ball with at least (i+ 1)/10
probability, or returns k instead if no such teammate can be observed.

e mate-m(Integer 7, Integer 7, KickVector k): Returns a vector to teammate 7, if
his position is known and can receive a pass with at least (i, + 1)/10
probability, or returns k instead otherwise.

e kick-goal(Integer i, KickVector k): Returns a vector to the goal if the shot will
be successful with at least (7 + 1)/10 probability, or returns the vector k
instead otherwise.

e dribble(Integer i, KickVector k): Returns the vector k*(max*i/20).

e kick-goal!(): Returns a vector to the opponent’s goal.

e far-mate!(): Returns a vector to the most offensively positioned teammate.

e kick-clear(): Returns a vector similar to the one calculated by away-opps, but
ensures that the direction is at least 135 degrees from the player’s goal.

o kick-if(Boolean b, KickVector k,, KickVector k,): Returns the vector k, if b is
true, or the vector &, otherwise.

Initially, most of the teams did not move around or kick the ball. However, some
randomly generated individuals that contained the (ball) and (kick-goal!)
primitives were able to score easily and soon spread over the population. This
resulted in “kiddie-soccer”, where all players of both teams move towards the ball
and kick towards the goal. However, this behavior disappeared after several
generations when some players assumed more defensive positions. Eventually,
players would spread out over the field and give passes to each other.

A second attempt to create a Robocup team using genetic programming was
made one year later by Andre and Teller [2]. In contrast to the primitives used by
Luke, Andre and Teller developed programs using the primitives specified in the
protocol of the soccer simulator. To compensate for the higher level of
complexity of using this primitive set, the fitness function was also made more
complex by assigning a score for various actions of increasing complexity. These
actions are, in increasing order of complexity:

e Getting near the ball.

e Kicking the ball.
Regularly being on the same side of the field where the ball is.
Being alive (executing at least one turn and one move action).






page 118

Additionally, teams had to pass three tests before they were allowed to enter a
competition:

e The team must be able to score on an empty field within 30 seconds.
e The team must be able to win against a fixed team of stationary opponents
that kick the ball when it is within reach.

e The team must be able to win against the winning team of the previous year's
competition.

The function set of the programs also contained a fixed number of automatically
defined functions (ADFs). Initially, these ADFs contained code for simple hard-
coded soccer actions. The teams were also non-homogeneous, but all players
used the same set of ADFs within the same team. Additionally, the function set
contained instructions to use an indexed memory of 10 memory cells. All the
primitive functions return a real value, and are shown in table 8.2. The action
that is executed by the player is the last action (kick, turn, dash, grab) executed
during evaluation of the program. The grab command can only be executed by
the goalie of the team. Unfortunately, no results were shown for the quality of
the evolved teams.

Defender() Vector to opponent

Mate1() Vector to first teammate

Mate2() Vector to second teammate

Ball() Vector to the ball

Rotate90(Vector) Rotate vector 90 degrees counter-clockwise

Random(Vector) Random vector with magnitude between 0 and
current value

Negate(Vector) Reverse vector direction

Div2(Vector) Divide vector magnitude by 2

Mult2(Vector) Multiply vector magnitude by 2

VAdd(Vector, Vector) Add two vectors

VSub(Vector, Vector) Subtract two vectors

IFLTE(Vector a, Vector b, |If [|a]| < ||b]| return c else return d
Vector c, Vector d)

Table 8.3: List of primitives used by Hsu and Gustafson.

Hsu and Gustafson [35] use genetic programming to learn a subtask of the
Robocup domain called keep-away soccer. In keep-away soccer, the objective is
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this gives a more detailed measure of the quality of all the teams in a
population instead of just the top teams.

e Primitive functions are added that allow a player to investigate the position
of that player such as goalie or attacker. This allows the evolution of
heterogeneous players that still use identical programs.

e Some actions require a number of primitive actions that are executed
sequentially. In this case, the primitive actions for subsequent time steps can
be stored in a queue and will be executed automatically in the next time step,
without the need to re-evaluate the program tree.

The set of primitive functions used is mostly identical to the one presented in
table 8.1, with some small changes. More recent versions of the soccer simulator
support commands to turn the neck of a player. As a result, the player can look in
a direction not directly in front of him. This makes it possible to keep looking at
the ball while moving in another direction. The commands to follow the ball can
be hard-coded in the players, making the evolutionary primitives to track the ball
redundant. Consequently, the primitives findball and sight can be removed from
the primitive set. On the other hand, primitives to investigate the position of a
player have been added to the primitive set. Also, primitive functions to
reference a player are added. Primitives that used to reference a player with an
integer number are modified. The added and modified primitives are shown in
table 8.4:

Base |Boolean MyType(PlayerType)

PlayerType |{goalie, defender, midfield, forward}

MoveVector | home-of(PlayerBase)
mate(PlayerBase, MoveVector)

KickVector | mate-m(PlayerBase, Integer, KickVector)

PlayerBase | NearestMate()
NearestMateType(PlayerType, PlayerBase)
NearestMateDist(Integer, PlayerBase)

SoccerPlayer(MoveVector, KickVector)

Table 8.4: Modified and added primitives of the hierarchy of STGP primitives.

The primitives home-of, mate and mate-m are modified to take an argument of
type PlayerType. When a player is started, a PlayerType is assigned to the player
based on its number. Player 1 is a goalie, players 2, 3, 4 and 5 are defenders,
players 6, 7, 8 and 9 are midfields, and players 10 and 11 are forwards. The
primitive MyType can be used to test if a player has a given PlayerType.
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evolved. In the first 30 generations, the fitness gradually increases. At that
point, there is a small decrease in performance for about 15 generations. Finally,
the average fitness increases again until the end of the run. It is however not
sure if the decrease in performance is caused by the randomness of the
evaluation or if the generated programs are effectively performing less good.

The results of these experiments are consistent with the results reported by Luke
[60][61]. The initial populations consistently perform very bad because most
teams remain stationary, while only a few individuals move towards the ball.
After several generations, most teams are playing “kiddie-soccer”, where all
players run towards the ball and kick towards the opposing team’s goal. Finally,
the behavior of teams changes towards a passing game where several players
remain at several positions on the field or interfere with the movement of
opposing players.

The huge amount of noise in the results can be explained partially by the
randomness of the environment, but the less than optimal implementation of the
primitive skills may also be responsible.

Score

====5 per. Mov. Avg. |
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Figure 8.12: Evolution of fitness in experiment 4.

2.3.2 Evolution of code growth

In [61], Luke reported that the size of the individuals grows rapidly and becomes
almost unmanageable after about 40 generations. As a result, reducing the
effects of bloat is an important factor in the experiments since they lasted for
more than 100 generations. This section shows the average and maximum sizes
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2.3.3 Evolution of specialization

In [60], Luke discovered that teams of homogeneous agents learn to play an
acceptable level of soccer before their heterogeneous counterparts. However, the
players of a homogeneous team are unable to evolve to specialized position
players

The teams evolved using the set of primitive functions listed in table 8.4 are
essentially homogeneous. However, to introduce the possibility of evolving
heterogeneous players, the primitive (MyType <Type>) was added to the primitive
set. When used in combination with an if-statement, the same program can
demonstrate different behaviors depending on the position of the player. This
section will examine how many programs made use of the MyType primitive, and
how long this primitive survives in the population. This can give a measure of the
specialization of teams and their success in the evolution.

35, —— . : = =t
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Figure 8.17: Evolution of the number of individuals containing the MyType primitive
created at every generation in experiment 1.

Figure 8.17 shows the number of individuals created at every generation that
contain at least one instance of the MyType primitive in experiment 1. Of the
4222 individuals created in the entire run, 368 use MyType. In the first
generations of the run, when a lot of individuals are mostly random, several
instances of MyType can be found. When the behavior of the individuals evolves
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Figure 8.18: Evolution of the number of individuals containing the MyType primitive
created at every generation in experiment 2.

The results of specialization in the third experiment are shown in figure 8.19.
Only 78 of the 4013 created individuals in this experiment contained a MyType
primitive. None of these individuals was able to provide an evolutionary
advantage, resulting in the extinction of the MyType primitive. As a result, no
specialization was observed in this run.


















Chapter 9: Conclusions and
future work

1 Conclusions

The work performed in this thesis concerning virtual agents can be divided in two
parts. In the first part, the problem of navigation and obstacle avoidance was
considered. To solve this problem, the virtual agent uses a virtual visual sensor
that measures the depth value of the observed objects in front of the agent. The
agent then uses this depth information to construct a map of the area
surrounding the agent by rotating. To construct a map of the entire environment,
the agent moves to openings in the area and repeats the process, until the entire
environment has been visited. The constructed map can then be used for path
planning in the environment, and can be shared with other agents or users in the
environment. The depth information about obstacles around the agent is also
used to perform collision avoidance while moving in the environment. If
movement in a direction would result in a collision with the detected object, the
movement command is modified to aveid a collision. This can be done either by
moving around the obstacle or by stopping the agent.

There are several advantages to the use of a virtual sensor to detect the
environment instead of using the internal representation of the environment.
First, using a virtual sensor is a more realistic simulation of the real world, as
mobile robots often also use depth sensors for navigation. A second advantage is
that it is not necessary for the virtual agent to have access to the internal
representation of the environment. When only a rendered image of the
environment is required, the virtual agent can work in every environment that
supports the rendering of this image.

The second part of the thesis deals with training virtual agents to perform a task.
The use of genetic programming in this context was examined. Two main
problems were identified when evolving virtual agents using genetic
programming. First, the size of the evolved genetic programs tends to grow
rapidly very soon. Secondly, because evaluation of evolved virtual agents usually
takes a long time, the number of evaluations must be reduced. Unfortunately,
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2.2 Improved individual player skills for Robocup

The current implementation of the individual player skills used for genetic
programming is far from perfect. These individual skills can be trained using
genetic programming. In this case, the primitive set of instructions includes the
primitive actions of the Robocup server protocol. Training can be done by setting
up a number of trials, setting up initial positions of the ball and players. After
each experiment, a fitness value can be calculated, for example by calculating
the distance from the ball to a specified target position. It would then be
interesting to investigate if improved individual player skills can reduce the noise
encountered in the evolution of action selection in Robocup.

2.3 Explicit credit assignment and directed crossover

Genetic programming assigns a fitness value to an individual after it has been
evaluated, representing the quality of that individual. However, this fitness value
provides no information about which parts of the individual are responsible for
the quality (or lack thereof) of the result. In [47] and [48], Langdon describes a
technique where a subtree with a low performance has a higher chance to be
removed by the crossover operator. This technique is called directed crossover.

Using the influence values of child nodes after a single evaluation, it is possible
to distribute the error value of the evaluation over the different nodes of the
individual. This gives an explicit credit score to the nodes of an individual for
that evaluation. Starting at the root node, the error value can be assigned to the
root node and then divided over its child nodes proportional to their influence
value. This process can then be applied recursively to the child nodes. The error
values assigned to the nodes are accumulated over all the single evaluations.

When all evaluations have been completed, the total error value of all evaluations
is again distributed over the nodes of the individual, using the total influence
values of these nodes. These total error values can then be compared with the
accumulated error values. If the accumulated error value is larger than the total
error value, this signifies that the node lowers the overall performance of the
individual. These nodes can then be given a higher chance to be removed by the
crossover operator, increasing the chance that a better individual will be created.

2.4 Determining a maximum size limit

The dynamic size limiting technique discussed uses the size of the current best
individual in the population to determine the maximum size of new individuals.






Appendix A: Communication
between virtual agents

1 Introduction

Agents are constructed to help users and other agents with their work. Virtual
agents are no exception to this. For example, when a user needs a map of the
environment, he may contact a mapping agent (as described in chapter 3) and
receive a map of the environment. If the agent has already explored the
environment before the user contacted it, the map is readily available. The only
problems for the user are how he can locate an agent that has a map of the
environment, and how to communicate with this agent.

As virtual agents have a spatial representation in the environment (an avatar),
users can encounter such an agent while exploring. The purpose of an agent can
be indicated by the appearance of the agents avatar. The user can then contact
the agent, and make use of the agents services.

2 Modes of communication

In networked environments, communication is performed by a network protocol
such as TCP or UDP to a network port on the IP address of the receiver. This type
of communication requires that the sender knows the IP address and port number
of the receiver. Two forms of communication can be distinguished:

2.1 Long range communication

Long range communication takes place between any two agents and/or users in
the environment, regardless of their current position in the environment. This
form of communication typically takes place using the IP address and port
number of both participants of the communication.
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As finding an agent that supports a specific protocol may take a long time, a
virtual agent can be used that maintains a directory of all agents that it
encountered, and the protocols they support. Communication with this agent is
then performed using a directory protocol. This protocol can request the long-
range communication address of another agent with a specific protocol, or the
registration of protocols with the directory agent. If an agent is known that
supports a requested protocol, the address of this agent will be returned.
Otherwise, the directory agent will store the request, and when an agent with the
requested protocol is discovered later, the directory agent will notify the agent.

All agents that support the directory protocol are able to make use of its services.
Additionally, all these agents can also perform some of the tasks of the directory
agent, at least for the protocols they are interested in. These agents can also
provide the long-range communication address of the directory agent they use.
As a result, when a new virtual agent enters the environment and encounters
another virtual agent that supports the directory protocol, the new agent is
immediately able to directly contact the directory agent and locate any other
agent in the environment.

4 Application prototype

To test the principles described above, a prototype application was constructed
that contained virtual agents and users. When the virtual environment is loaded,
a directory agent will be started that connects to the environment. The task of
this agent is to wander around in the environment and contact every agent or
user it encounters to store its supported protocols. However, the agent will need
a map of the environment to be able to wander around the entire environment,
without missing areas. Because the directory agent doesn’t have the mapping
algorithm to construct a map, it will create a specialized virtual mapping agent
(and add it to its directory). The directory agent then contacts the mapping
agent and requests a map of the environment. The mapping agent uses the
algorithms described in chapter 3 to construct a map. Whenever a new area in
the map is created, the directory agent gets notified that the map is updated,
and the directory agent will update its map. When the mapping agent completes
its task, it will also wander around in the environment looking for anyone that
needs its services.

When a user enters the environment, he will soon encounter an agent in the
environment, and be able to communicate with a directory agent. As soon as the
directory agent is contacted, the directory agent will query the user’s avatar
about the protocols that it supports.
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The following standard variations are used to improve the convergence speed of
the neural network:

e Momentum: A momentum factor is added to equation (B.2) to prevent
oscillation of the weights using the change of the weight of the previous time
step, shown in equation (B.5):

(B.5)

Aw,(t+1)=-n aaE +0Aw, (1)

if

e Alternative cost function: A small value is added to cost function (B.3) to
speed up convergence when the cost surface is relatively flat, as shown in
equation (B.6):

B.6
o =gy +01)er o) k=

e Variable learning rate: The learning rate 7 is modified dynamically to speed up
learning when the training error decreases and to learn more slowly when an
increase in training error is detected, as shown in equation (B.7):

+a if AE <0 consistently (B.7)
An=:-bn if AE>0
0 otherwise

e Noise was added to the training data to improve generalization.

3 Training results

3.1 Training run 1

In the first training experiment, the set of 622 training examples for an avatar
size of 0.1 was used. The inputs of the neural network were the four distance
values d. of each sample in the training set, and the three differences between
these distance values dd, = d,, - d.. Every node in the network is also connected
with a weight to a constant value of 1, to create a bias value. After training, the
neural net was able to correctly classify all members of the training set. However,
when the mapping task was performed using an avatar size of 0.3, a lot of cases
were classified incorrectly.
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primitives will be called MinInstanceSize(t). The algorithm used to calculate
these values is described in the next section. Using the function
MinInstanceSize, the new Create function is shown below:
Function Create (NodeType T, MaxSize M)
Construct set S of all non-abstract types derived from T
where MinInstanceSize(t) <= M
Select a type t from S
N = Arity(t)
For i = 1 to N do
NodeType t; = the type required for child i of t
w; = MinInstanceSize(t;)
ty = random()
d fo
= B
= Xy
For 1 = 1 to N do
// Distribute the available MaxSize (M - 1 - W) over
// all children and add MinInstanceSize
m; = (I‘i/R)*(M -1 - W) + Wi
Node c; = Create(t;, m;)
End for
Return ConstructNodeOfTypeWithChildren(t, ¢;, .., Cy)
End

First, the algorithm selects a type that is able to construct an object smaller or
equal to M. If the selected type is not a terminal type, the available size will be
distributed over the child nodes. The available size is M - 1, as the parent node
of type t has a size of 1. First, the minimum required size of every child node is
calculated. This leaves (M — 1 — W) nodes that can be distributed randomly over
the N child nodes. The child nodes are created recursively with a size constraint
m. The child nodes are then used to construct the node of type t. The use of
MinInstanceSize removes the need to construct any “types possibilities tables” as
described by Montana in [72].

2 (Calculating MinInstanceSize of primitives

Table C.1 shows a simple example of a strongly-typed hierarchy of primitive types
used for genetic programming. Primitive types are derived from the primitive type
to the right of them. The number of children and their types are given between
brackets. Abstract primitive types have no brackets.

The algorithm of the previous section requires the minimum possible size of an
object of a given type. For example, objects of type Constant have a minimum
size of 1 because they are terminals. Objects of type RealBase also have a
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wanneer gepast, zelf initiatieven nemen, en kan communiceren met gebruikers en
andere agenten. Een virtuele agent heeft, net als een gebruiker, een
representatie in een virtuele omgeving die een avatar wordt genoemd.

Bij het ontwerpen van een virtuele agent treden verschillende moeilijkheden op.
Vermits de virtuele agent een representatie heeft in de omgeving, is het nodig
dat de agent op een natuurlijke manier kan navigeren in de omgeving. Dit wordt
behandeld in sectie 3 van deze samenvatting.

Vervolgens is het in een multi-agent systeem nodig dat de verschillende agenten
met elkaar en met de gebruikers van het systeem kunnen communiceren. Dit
onderwerp wordt niet behandeld in deze samenvatting, maar wordt kort
behandeld in Appendix A van het Engelstalige gedeelte van deze thesis.

Ten slotte is het nodig dat virtuele agenten leren een taak te verrichten in hun
omgeving. In deze thesis wordt genetisch programmeren beschouwd als een
manier om agenten te trainen. Genetisch programmeren heeft echter enkele
problemen, die belangrijk zijn in een domein zoals virtuele agenten waar
evaluatie van programma’s zeer lang kan duren. Wanneer genetisch programmeren
wordt gebruikt, wordt vastgesteld dat de grootte van programma’s zeer snel
groeit, zonder veel bij te dragen aan de kwaliteit van het programma. Vaak zorgt
deze groei er zelfs voor dat de evolutie van programma’s sterk vertraagd. Ook is
het nodig om gebruik te maken van een grote populatie van kandidaat
oplossingen om de diversiteit van de populatie te behouden. Omdat dit voor zeer
lange evaluatietijd zorgt, is het nodig dat de grootte van de populatie
verminderd kan worden zonder de diversiteit ervan aan te tasten. Oplossingen
voor deze twee problemen worden besproken in secties 6 en 7 van deze
samenvatting. Verder worden deze oplossingen ook toegepast op het multi-agent
domein van robotvoetbal, om de efficiéntie van deze oplossingen te testen op
een complex leerprobleem. Dit zal worden besproken in sectie 8.

3 Navigatie in virtuele omgevingen

Een virtuele agent kan op verschillende manieren navigeren in een virtuele
wereld. Als de agent toegang heeft tot de interne representatie van de omgeving
kan hij een kaart opstellen van de omgeving. Met behulp van deze kaart kan hij
dan routes plannen naar andere plaatsen en vaste obstakels in de omgeving
vermijden.

Indien de agent echter geen toegang heeft tot de interne representatie zal hij
zelf een representatie van de omgeving moeten opbouwen. Dit moet gebeuren via
de sensors waarmee hij de omgeving kan waarnemen, zoals een synthetische
visuele sensor die een beeld genereert vanuit het oogpunt van de agent.
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3.3 Constructie van een kaart van de omgeving

Als de diepte-informatie van alle obstakels rondom de agent gekend is, kan een
kaart worden gemaakt van het gebied waarin de agent zich bevindt. De langs
elkaar liggende dieptewaarden worden benaderd door een aantal rechte lijnen
waar dit mogelijk is. Deze lijnen worden opgenomen in de kaart van dit gebied.
Op sommige plaatsen zullen echter discontinuiteiten voorkomen in deze lijnen.
Deze open punten stellen openingen voor waarlangs het mogelijk is om
aangrenzende gebieden te betreden. De open punten worden eveneens
opgeslagen in de kaart van het gebied, en stellen mogelijke plaatsen voor om de
kaart van de omgeving uit te breiden met nieuwe gebieden. Om deze
discontinuiteiten te detecteren wordt gebruik gemaakt van een neuraal netwerk.

Om nieuwe gebieden toe te voegen aan de kaart worden de open punten van een
bestaand gebied beschouwd. Als dit open punt leidt naar een reeds bestaand
gebied, wordt het beschouwde open punt verwijderd en wordt een verbinding
tussen deze twee gebieden toegevoegd. In het andere geval beweegt de agent
naar het nieuwe gebied en detecteert de diepte-informatie in het nieuwe gebied
dat wordt toegevoerd aan de kaart. Wanneer alle open punten in alle gebieden
van de kaart zijn verwijderd, is de volledige kaart van de omgeving voltooid. Op
dat moment kunnen overbodige verbindingen tussen gebieden worden verwijderd
om de kaart te vereenvoudigen.

3.4 Het vinden van paden met behulp van de kaart

Met behulp van de kaart van de omgeving is het mogelijk om het kortste pad te
vinden tussen twee punten in de omgeving. In een eerste stap worden de twee
gebieden van de kaart gevonden waarvan hun centrum het dichtst bij de begin-
en eindpositie van het pad liggen. Vervolgens kan een standaard
padvinderalgoritme, zoals het A*-algoritme, worden gebruikt om het kortste pad
tussen deze twee gebieden te vinden. Het gevonden pad is dan een
aaneenschakeling van rechte lijnen, waarvan de verbindingspunten worden
gebruikt als doelposities van het navigatiesysteem van de agent. Zodra een
volgend punt op het pad zichtbaar wordt, wordt de huidige doelpositie vervangen
door de volgende doelpositie. Op deze manier kunnen hoeken in het gevonden
pad worden afgesneden.

Padvinden en het construeren van een kaart kunnen worden gecombineerd om
een positie te bereiken in een onbekende omgeving. In dit geval worden eerst de
open punten in een gebied onderzocht die het dichtst liggen bij de te bereiken
doelpositie,
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bevinden zich eenvoudige taken zoals het onderscheppen van de bal of het
bewegen naar een positie op het veld. Deze taken maken gebruik van de
primitieve acties van de simulator. Daarboven zijn er taken om samen te werken
met één andere speler, zoals het geven van een pas. Nog hoger zijn taken in
verband met meerdere andere spelers, zoals het ontwijken van tegenstanders. In
de volgende laag wordt bepaald welke actie van een lager niveau de agent op een
bepaald moment gaat uitvoeren. Hier wordt bijvoorbeeld beslist of het beter is
om met de bal te dribbelen of een pas te geven. De hoogste laag behandelt
teamwerk. Hier wordt bijvoorbeeld bepaald welke posities de spelers innemen op
het veld en wat hun taak is.

De moeilijkste taak van een agent in het Robocup domein is het leren van de
actie selectie. In deze thesis zullen evolutionaire algoritmes worden gebruikt
voor deze taak. Zowel genetische algoritmes als genetisch programmeren worden
hiervoor beschouwd. Deze technieken worden besproken in sectie 5, en worden
toegepast op het Robocup domein in sectie 8 van deze samenvatting.

4.3 Ontwijken van obstakels in Robocup

De technieken om obstakels te vermijden die beschreven werden in sectie 3.2
kunnen ook worden gebruikt in Robocup. Vermits de agent afstandsinformatie
ontvangt over de andere spelers die zichtbaar zijn, kan een gezichtsbuffer worden
bijgehouden van de andere spelers. Deze gezichtsbuffer kan dan worden gebruikt
om te bewegen in een richting die andere spelers vermijt, en waarbij vooral
afstand wordt gehouden van tegenstanders. De gezichtsbuffer wordt ook gebruikt
om te bepalen in welke richting een veilige pas kan worden gegeven. In dit geval
worden de richtingen en afstanden van medespelers en tegenstanders vergeleken.

5 Genetisch programmeren

Evolutionaire algoritmes zijn zoektechnieken die gebaseerd zijn op de natuurlijke
evolutietheorie beschreven door Darwin in de 19° eeuw. Volgens deze theorie
worden in de natuur eigenschappen die een organisme helpen overleven vaker
doorgegeven aan hun nageslacht, waardoor deze goede eigenschappen in meer
individuen van een populatie gaan voorkomen. Dit gebeurt omdat de organismen
met goede eigenschappen meer kans hebben om lang genoeg te leven om zich te
kunnen voortplanten. Om dezelfde reden zullen organismen met slechte
eigenschappen zich minder vaak kunnen voortplanten, waardoor de slechte
eigenschappen verdwijnen uit de populatie. Bijgevolg worden de organismen na
verloop van tijd steeds beter in het overleven in hun omgeving.
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5.2 Genetische algoritmes

Een genetisch algoritme is een evolutionair algoritme waar een oplossing wordt
gezocht voor een bepaald probleem, zoals een verzameling optimale parameters
voor een proces. Een kandidaat oplossing in een genetisch algoritme wordt
meestal voorgesteld door een reeks elementen. De lengte van deze reeks is
dikwijls contant voor alle kandidaat oplossingen van de populatie. De elementen
van de reeks kunnen bits, getallen, symbolen enz. zijn, afhankelijk van het op te
lossen probleem.

De meest gebruikte vorm van seksuele reproductie bij genetische algoritmes is
crossover. Bij deze operator worden de reeksen van twee kandidaat oplossingen
geselecteerd. Vervolgens wordt een crossover punt gekozen in de reeks van
elementen. Twee nieuwe kandidaat oplossingen worden gecreéerd door de
elementen van de eerste ouder voor het crossover punt te combineren met de
elementen achter het crossover punt van de tweede ouder, en vice versa. Er zijn
ook varianten mogelijk waarbij meerdere crossover punten worden geselecteerd.
Mutatie gebeurt meestal door een willekeurig element van de reeks te vervangen
door een nieuw element.

5.3 Genetisch programmeren

Genetisch programmeren is een specialisatie van genetische algoritmes waarbij de
kandidaat oplossingen programma’s zijn die een verzameling van problemen
kunnen oplossen. Een kandidaat oplossing van genetisch programmeren wordt
meestal voorgesteld door een boom van primitieve elementen. De primitieve
elementen worden opgedeeld in twee verzamelingen: terminale en niet-terminale
elementen. Niet-terminale elementen bevatten een aantal kinderen die worden
gebruikt bij de evaluatie van het element. Een voorbeeld van een niet-terminaal
element is optelling, dat twee getallen als kinderen bevat. Terminale elementen
zijn constanten, functies zonder argumenten of variabelen.

Mutatie in genetisch programmeren gebeurt door een willekeurige knoop te
selecteren in een kandidaat oplossing. Deze knoop kan dan worden vervangen
door een andere willekeurige knoop of een volledig nieuwe subboom. De
crossover operator wordt ook toegepast bij genetisch programmeren. In elk van
de twee ouders wordt een willekeurige knoop geselecteerd als crossover punt. De
subbomen die beginnen bij deze geselecteerde knopen worden dan uitgewisseld
tussen de twee ouders om twee nieuwe kinderen te vormen. Er moet hier worden
opgemerkt dat de grootte van de kinderen na een crossover operatie meestal
anders is dan de grootte van hun ouders: één kind zal groter zijn en het andere
zal kleiner zijn. Er kan nu experimenteel worden vastgesteld dat het grotere kind
meer kans heeft om een betere fitness waarde te hebben dan het kleinere kind.
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over het algemeen minder goed generaliseren voor algemenere problemen,
hetgeen de evolutie van de populatie sterk kan vertragen.

Als de genetisch geévolueerde programma’s worden onderzocht, blijkt dat grote
stukken ervan nauwelijks of geen effect hebben op het eindresultaat.
Verschillende theorieén zijn ontwikkeld die verklaren waarom grotere
programma’s meer kans hebben op een hoge fitnesswaarde:

o “Lifters” (hitchhikers): Volgens deze theorie worden stukken code die geen
of weinig effect hebben op het resultaat meegenomen met stukken zeer goede
code, waardoor de neutrale code zich gemakkelijk kan verspreiden.

» Verdediging tegen crossover: Een crossover operatie op een element met een
hoge fitness heeft meestal tot gevolg dat een stuk van de goed werkende code
wordt verwijderd. Dit heeft tot gevolg dat de fitness waarde van de kinderen
drastisch daalt. Als stukken code die een positief effect hebben op de fitness
van een element gegroepeerd zijn en gescheiden worden door inactieve code,
zal er een grotere kans zijn dat crossover in de inactieve code gebeurt.
Bijgevolg zullen de individuele goede stukken code samen blijven, hetgeen
een positief effect heeft op de fitness van de kinderen.

e Voorkeur van verwijdering (removal bias): Deze verklaring richt zich op
stukken code in een element die nooit een effect hebben op het resultaat van
dat element. Een crossover die plaats heeft in dit soort code zal geen effect
hebben op het individu en dit zal bijgevolg de crossover operatie overleven.
Het gevolg hiervan zal zijn dat de gemiddelde fitness van een populatie
verhoogt door deze te vullen met functioneel identieke kopieén van het beste
element. Wanneer dit gebeurt zal de evolutie van de populatie sterk
verminderen en treedt er premature convergentie op.

o Diffusie: Het is mogelijk om verschillende programma’s te schrijven die
eenzelfde probleem even goed oplossen. Omdat, in de oneindige zoekruimte
van programma’s, er meer grote oplossingen voor een probleem bestaan dan
kleine, is het statistisch gezien waarschijnlijker dat een grote oplossing wordt
gevonden.

Verschillende manieren bestaan om de sterke groei van programma’s af te
remmen. Eén van de eenvoudigste manieren is het opleggen van een maximale
diepte voor ontwikkelde programma’s. Deze manier is echter niet flexibel en
verhindert niet de snelle groei in het begin van de evolutie. Een andere manier is
om de grootte van programma’s op te nemen in de fitness functie, zodat grotere
programma’s een slechtere fitness waarde krijgen. Het probleem met deze
methode is dat het moeilijk is om grootte en kwaliteit ten opzichte van elkaar te
balanceren, en het is mogelijk dat er op deze manier optima ontstaan in het
fitness landschap waaruit het onmogelijk is te ontsnappen. Een derde manier om
de grootte te beperken is door gebruik te maken van een heuvelklim techniek. Na
een crossover operatie wordt gekeken of de kinderen beter en/of kleiner zijn dan
hun ouders. Als dit het geval is, worden de kinderen toegelaten in de populatie,
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7 Meten en behouden van de diversiteit van
een populatie

Een vaak voorkomend probleem bij evolutionaire algoritmes is dat na verloop van
tijd de meeste elementen van een populatie sterk op elkaar lijken. Dit gebeurt
wanneer een individu dat fitter is dan de rest van de populatie de ouder wordt
van de meeste andere individuen die bijgevolg ook een hoge fitness hebben. Als
dit gebeurt is de diversiteit van de populatie verloren gegaan, en kunnen nieuwe
elementen enkel worden geintroduceerd door mutaties. Vaak wordt dit probleem
tegengegaan door de populatie zeer groot te maken zodat het langer duurt voor
de diversiteit verdwijnt uit de populatie. Het nadeel hiervan is echter dat de
evaluatie van de populatie langer duurt.

Andere methodes om de diversiteit van een populatie te behouden kunnen op
twee manieren werken. Enerzijds kan erop worden gelet dat elementen die
worden toegevoerd aan de populatie voldoende verschillen van de huidige
elementen. Anderzijds kunnen elementen die sterk gelijken op andere elementen
in de populatie verwijderd worden. Beide manieren moeten op één of andere
manier kunnen meten hoe sterk een element verschilt van een ander element of
van al de elementen van de populatie.

De manier die wordt geintroduceerd in deze thesis verwijdert elementen die sterk
gelijken op de bestaande elementen van de populatie. Om de overeenkomst van
een element met de populatie te meten wordt gebruik gemaakt van de
representatie met behulp van de gerichte acyclische graaf, besproken in sectie
5.4. Eerst worden alle elementen van de populatie gerangschikt volgens fitness
waarde. Vervolgens worden alle elementen van de populatie geévalueerd, te
beginnen met het beste element. Initieel zijn alle elementen van de gerichte
acyclische graaf, die dus de volledige populatie voorstellen, ongemarkeerd.
Tijdens de evaluatie van een element wordt het totaal aantal knopen van dat
element vergeleken met het aantal gemarkeerde knopen van dat element. Als het
element voldoende ongemarkeerde knopen bevat, wordt het element niet
verwijderd uit de populatie en worden alle knopen van dat element gemarkeerd.
Omdat identieke deelbomen worden gedeeld door alle elementen van de
populatie, worden ook deelbomen van andere elementen gemarkeerd. Als het
element te veel gemarkeerde knopen bevat wordt het element verwijderd uit de
populatie en worden geen knopen gemarkeerd. De test die bepaalt of een element
voldoende ongemarkeerde knopen bevat hangt af van de verhouding met het
totaal aantal knopen, en met de rang van het element in de populatie.

Experimenteel werd vastgesteld dat deze techniek nuttig was voor het oplossen
van problemen. Gemiddeld gezien werd een oplossing voor het probleem sneller
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vast te stellen. Mogelijk is de vaste netwerkstructuur die gebruikt wordt niet
flexibel genoeg om gemakkelijk tot grote verbeteringen te leiden.

8.2 Genetisch programmeren

Om de flexibiliteit van het leerproces te verhogen, en om de ontwikkelde
technieken van secties 6 en 7 uit te testen, werd gebruik gemaakt van genetisch
programmeren om een Robocup speler te ontwerpen. De implementatie van de
gebruikte primitieven is gebaseerd op het werk van Sean Luke. Na zijn werk over
genetisch geprogrammeerde Robocupspelers beschreef hij de volgende problemen
die zijn aanpak had:

De grootte van de populatie moest erg klein worden gehouden om de
evaluatietijd beperkt te houden.

De evaluatie van alle teams hangt af van een enkele wedstrijd van elk team.
Dit kan leiden tot een grote willekeurigheid van de fitnesswaarde van een
team.

Bij de evolutie werden teams van identieke spelers ontwikkeld in plaats van
een team van verschillende gespecialiseerde spelers.

De gebruikte verzameling primitieven was sterk bevooroordeeld naar het
gedrag van menselijk voetbal. Er werd ook geen gebruik gemaakt van een
interne staat om lange-termijn-denken mogelijk te maken.

De grootte van de ontwikkelde programma’s werd na ongeveer 40 generaties
bijzonder groot.

Deze problemen worden door ons op de volgende manier aangepakt:

Door het gebruik van de diversiteitsmaat besproken in sectie 7 kan de grootte
van een populatie beperkt worden gehouden zonder de diversiteit ervan aan te
tasten. Bijgevolg is er geen probleem meer om de grootte van de populatie
klein te houden.

De evaluatie van de verschillende teams kan gebeuren met behulp van een
“Swiss” toernooi systeem. In dit systeem speelt elk team een vast aantal
wedstrijden, en wordt getracht om elk team tegen een ander team te laten
spelen dat gelijkaardig presteert. De rankschikking van de teams na het
toernooi bepaalt dan de fitnesswaardes van de teams.

De spelers van elk team kregen een rol toegewezen (doelman, verdediger,
middenvelder, aanvaller) en de verzameling van primitieven werd uitgebreid
met een functie om deze rol op te vragen. Bijgevolg is het mogelijk om één
enkel programma te ontwikkelen dat gespecialiseerd is voor verschillende
spelers.

Omdat de gebruikte verzameling primitieven gebaseerd is op deze van Sean
Luke is deze nog steeds bevooroordeeld. Er wordt wel gebruik gemaakt van
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experimenten wordt ook een groei vastgesteld, maar minder sterk. In het geval
van het derde experiment is dit vooral door de relatief hoge fitness in het begin
van het experiment. De gebruikte optimalisaties lijken een positief effect te
hebben op de gemiddelde fitness van de populatie.

9 Conclusies en bespreking

Het werk over virtuele agenten in deze thesis kan worden opgesplitst in twee
delen. In het eerste deel werd het deel van navigatie en het ontwijken van
obstakels behandeld. Om dit probleem op te lossen, maakt de virtuele agent
gebruik van een virtuele optische sensor die de afstanden tot geobserveerde
objecten detecteert voor de agent. De agent maakt vervolgens gebruik van deze
afstandsinformatie om een kaart te construeren van zijn omgeving door om zijn
as te roteren. Om een kaart van de volledige omgeving te construeren beweegt de
agent door openingen in het huidige gebied, waarna het proces wordt herhaald
voor het volgende gebied. Dit gebeurt tot de volledige omgeving bezocht is. De
geconstrueerde kaart kan vervolgens worden gebruikt voor het vinden van paden
in de omgeving, en kan worden uitgewisseld met andere agenten of gebruikers.
De afstandsinformatie over obstakels rond de agent wordt ook gebruikt om
botsingen te voorkomen tijdens het bewegen in de omgeving. Als een beweging
in een richting zou leiden tot een botsing met het gedetecteerde object wordt
het bewegingscommando aangepast om deze botsing te vermijden. Dit kan
gebeuren door rond het obstakel te bewegen indien mogelijk, of door de agent te
stoppen.

Er zijn verschillende voordelen verbonden aan het gebruik van een virtuele sensor
om de omgeving te detecteren vergeleken met het gebruik van de interne
representatie van de virtuele omgeving. Ten eerste is een virtuele sensor een
meer realistische simulatie van de reéle wereld, omdat mobiele robots ook
dikwijls gebruik maken van dieptesensors voor navigatie. Een tweede voordeel is
dat het op deze manier niet nodig is dat de virtuele agent toegang heeft tot de
interne representatie van de omgeving. Wanneer enkel een visualisatie van de
omgeving nodig is kan de virtuele agent in elke omgeving werken waar zulk een
beeld beschikbaar is.

Het tweede deel van de thesis behandelt het trainen van virtuele agenten om een
bepaalde taak uit te voeren. In deze context werd het gebruik van genetisch
programmeren beschouwd. Twee belangrijke problemen werden aangetroffen bij
het evolueren van virtuele agenten met genetisch programmeren. Ten eerste
heeft de grootte van de geévolueerde genetische programma’s de neiging om zeer
snel te groeien. Ten tweede, omdat de evaluatie van geévolueerde virtuele
agenten meestal veel tijd vergt, moet het aantal evaluaties zo laag mogelijk
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