
t transnationale
UNIVERSITEIT LIMBURG

u

L
School voor Informatietechnologie

Kennistechnologie, Informatica, Wiskunde, ICT

Geometric and Algorithmic Aspects of Topological Queries to
Spatial Databases

Proefschrift voorgelegd tot het behalen van de graad van
Doctor in de Wetenschappen, richting Informatica,
te verdedigen door

FLORIS GEERTS

Promoter : Prof. dr. J. Van den Bussche

• . 11.

2001

L O NOV. 2001

681. 3 1
GEER
2001

luc . luc

t transnationale
UNIVERSITEIT LIMBURG

u
L

School voor Informatietechnologie
Kennistechnologie, Informatica, Wiskunde, ICT

Geometric and Algorithmic Aspects of Topological Queries
to Spatial Databases

Proefschrift voorgetegd tot het behaten van de graad van
Doctor in de Wetenschappen, richting Informatica, O 113 8 '7
te verdedigen door

FLORIS GEERTS

Promotor : Prof. dr. J. Van den Bussche

2001

2 0 NOV. 2001

PARTNER IN DE UNIVERSITEIT LIMBURG

According to the guidelines of the Limburgs Universitair Centrum,
a copy of this publication

has been filed in the Royal Library Albert I, Brussels,as publication
D/2001/ 2451/41

Preface

First of all, I would like to thank Jan Van den Bussche for his support during the last
four years. His never ending enthusiasm and advice made this dissertation possible.
His intensive use of red ballpoints, learned me, hopefully, how to write scientific texts.
Further, I am grateful to Bart Kuijpers. His geometrical insights were of great help.
I am also grateful to Peter Revesz. The Renumbering Algorithm in Chapter 6 is
the result of our joint work. I am also grateful to Bart Goethals. Apart from his
enjoyable company as office-mate, his programming skills and SUN Ultra 10, made
the experiments in Chapter 6 possible.

This dissertation further benefitted from pleasant discussions with, among others,
Chris Giannella, Stephan Kreutzer and Leonid Libkin. I also would like to thank
Masahiro Shiota for bringing Lemma I.1.3 and Lemma I.1.5 in his book (66] to my
attention.

I thank the members of our research group for creating a stimulating environment.
Many thanks to all people who contributed to this dissertation in some way or

another. More specifically, my thanks go to the administrative staff, colleagues, family,
and friends.

Finally, I would like to thank Kristin for her support over the years.

Diepenbeek, December 2001

ii

Contents

1 Introduction

2 Preliminaries
2.1 The Polynomial Constraint Model
2.2 The Linear Constraint Model
2.3 Generic Queries
2.4 Transitive Closure Logics

3 Expressiveness Results
3.1 Recursive Functions on the Natural Numbers
3.2 Finite Representation of Z-linear Constraint Databases .
3.3 Natural Number Representation
3.4 Completeness Result for Z-linear Constraint Databases .
3.5 Implications for Polynomial Constraint Databases

4 Geometric Properties of Semi-algebraic Sets
4.1 The Regular Decomposition .
4.2 The Whitney Decomposition
4.3 Transversality
4.4 The Cone Radius
4.5 The Uniform Cone Radius Decomposition
4.6 Box Collections
4. 7 Expressing the Box Covering Query

5 Linearization and Approximation
5.1 Construction of a Special Box Collection .

5.1.1 Base Case: n-dimensions
5.1.2 Induction: from n dimensions ton - l

5.2 The Algorithm
5.3 Rational Linearizations
5.4 The Connectivity Query
5.5 Volume Approximation .

iii

1

7
7

13
13
15

19
19
21
23
26
27

33
34
36
39
41
46
49
52

55
55
56
62

63
69
70
71

iv Contents

6 The Topological Invariant 77
6.1 The Maintenance of the Topological Invariant of Labeled Plane Graphs 78

6.1.1 Definitions 78
6.1.2 Data Structure and Updates 80
6.1.3 The Maintenance Algorithm. 81

6.2 The Maintenance of the Topological fuvariant of Arbitrary Graphs 87
6.2.1 Definitions 87
6.2.2 Data Structure and Updates . 88
6.2.3 The Renumbering Algorithm . 90
6.2.4 The Topology Tree Algorithm . 94
6.2.5 Experimental Results 100

Bibliography

Index

Sam.envatting

103

109

111

1
Introduction

Spatial database systems (1, 9, 19, 34, 35, 63] are concerned with the representation
and manipulation of data that has a geometric or topological interpretation. Con­
ceptually, spatial databases store geometric figures , which are possibly infinite sets of
points in a real space Rn. The framework of constraint databases (51], introduced
by Kanellakis, Kuper, and Revesz (39], provides an elegant and powerful model for
spatial databases. In the setting of the constraint model, a geometric figure is finitely
represented as a Boolean combination of polynomial equalities and inequalities over
the real numbers. Such figures are known as semi-algebraic sets. The special case of
figures definable by linear polynomials are known as semi-linear sets.

The relational calculus (first-order logic), expanded with polynomial equalities
and inequalities and evaluated over the semi-algebraic sets (viewed as relations over
the reals) stored in the database, serves as a basic spatial query language, and is de­
noted by FO+ POLY. The special case of queries expressed using linear equalities and
inequalities is denoted by FO+LIN. Several authors have argued that the restriction
to linear polynomial constraints provides a sufficiently general framework for spatial
database applications (31, 73, 74]. Indeed, in geographic information systems (GIS),
which form one of the main application areas of spatial databases, linear representa­
tions are used to model spatial objects (51, Chapter 9]. Existing implementations of
the constraint model, for instance, the work on the system DEDALE (29, 30, 31], are
also restricted to linear polynomial constraints. The evaluation of queries expressed
in FO+LIN is conceptually easy and can be computed by numerous efficient algo­
rithms for geometric operations on linear figures [60]. The computational complexity
of evaluating an FO+ LIN query on linear constraint databases (NC1) is also slightly
lower than that of evaluating an FO+PoLY query on polynomial constraint databases
(NC) [3, 13, 32, 62, 69].

1

2 1. Introduction

Since the expressive power of the basic query languages FO+POLY and FO+LIN
is rather limited [51, Chapter 5 and 6], it makes sense to consider more powerful
extensions.

Extensions with Recursion Various extensions with recursion have been intro­
duced and studied. Grumbach and Kuper (28] defined syntactic variants ofDATALOG
with linear constraints which capture exactly the queries on linear constraint data­
bases in the plane, which have PTIME and PSPACE data complexity. Kreutzer [45]
defines several recursive languages capturing PTIME and PSPACE on a restricted
class of linear constraint databases. Termination properties of DATALOG with poly­
nomial constraints are investigated by Kuijpers, Smits, and Van den Bussche [48, 50].

In this dissertation, we study the expressive power of FO+POLY (and FO+ LIN)
extended with the transitive closure operator TC. Transitive closure is a simple form of
recursion and we only apply it in a simple way, i.e., we do not apply TC to formulae
with extra free variables (parameters), as is allowed in the standard definition of
transitive closure logic [17].

In Chapter 3, we obtain the following result: when we extend the TC operator
with explicit stop conditions, which we denote by TCS, the language FO+LIN+TCS
is computationally complete on the class of Z-linear databases, i.e., databases which
can be defined by linear polynomials with integer coefficients. This means that for
every partial computable query Q, there is a formula cp such that for every Z-linear
database D, the evaluation of cp on D terminates if and only if Q(D) is defined and
results in Q(D). It remains an open problem whether FO+Lrn+TC (without explicit
stop conditions) is also computationally complete in this sense.

Whether FO+POLY+TCS is computationally complete on polynomial constraint
databases, also remains an open problem. Recently, Kreutzer (44] defined a different
extension of FO+ LIN with a transitive closure operator and also obtained the compu­
tationally completeness of this language. Koiran, Cosnard, and Garzon [41] investi­
gated similar issues in the context of piecewise linear dynamical systems. Other com­
putationally complete languages for linear constraint queries are studied by Gyssens,
Van den Bussche, and Van Gucht (36].

Linearization Although it is not clear whether FO+Po1v+TCS is computation­
ally complete on polynomial constraint databases, we obtain an expressivity result
of FO+Po1v+TCS for a restricted class of queries. This class of queries, important
for many spatial database applications, consists of those queries involving only topo­
logical properties of the database, which therefore is called the class of topological
queries. For instance, the query which asks whether a database is open or connected,
is a topological query. The query which asks whether the distance between two points
in the database is 5 cm, is an example of a query which is not topological.

The research on topological properties of spatial databases is focused on two topics,
the first being topological query languages. For instance, a query language based on
topological information of a set of regions is studied by Egenhofer [18] . Region-based
query languages date back to Clark [11], and have been used in reasoning about

3

spatial knowledge in Artificial Intelligence [12, 59]. We also refer to the region-based
languages of Papadimitriou, Suciu, and Vianu (57]. The expressivity of FO+POLY,
with respect to topological queries, is investigated by Kuijpers, Paredaens, and Van
den Bussche [49], Segoufin and Vianu [64], and Grobe and Segoufin [27].

In Chapters 4 and 5, we prove that there is a formula in FO+POLY+TC that
expresses linearization. When evaluated on an arbitrary semi-algebraic set A, the
formula results in a semi-linear set A, topologically equivalent (i.e., homeomorphic)
to A. Moreover, .4 is Z-linear.

The linearization formula always terminates, in the sense that on any input A,
every application of the TC operator in the formula converges after a finite number of
stages. As a consequence, the language FO+PoLY+TCS is computationally complete
on the class of polynomial constraint databases as far as all boolean topological queries
are concerned.

Benedikt, Grohe, Libkin, and Segoufin [5] proved that extending FO+POLY with a
topological property results in a closed query language, i.e., the result of a query in this
language is still a polynomial constraint database. Adding all topological properties
to FO+POLYclearly results in a language which is complete with respect to Boolean
topological queries. However, we believe it is more elegant to extend FO+POLY with
a single new feature, like a transitive closure operator, instead of extending FO+POLY
with an uncountable number of new features (there are uncountable many topological
properties).

The FO+Po1v+TC linearization formula described above also has other con­
sequences. For instance, in Chapter 5, we prove that the connectivity query on
polynomial constraint databases is expressible by an always terminating formula
in plain FO+PoLY+TC. Since DATALOG with polynomial constraints contains
FO+POLY+TC, the connectivity query is also expressible in DATALOG with poly­
nomial constraints. This answers the question, raised by Kuijpers and Smits [50],
which was already partially solved [23, 24], affirmatively.

The linearization formula can be sharpened so as to result in a set A that is
arbitrarily close to the input set A, on condition that A is bounded. There is an
always terminating formula in FO+POLY+TC that evaluates on a given bounded
semi-algebraic set A to a number that is arbitrarily close to the volume of A. Other
techniques for approximating the volume in extensions of FO+POLY can be found
in [7].

The Topological Invariant The second topic in the research on topological prop­
erties of spatial databases is the representation of topological information. It is known
that for polynomial constraint databases in the plane, there exists a finite combina­
torial structure which is called the topological invariant and captures exactly the
topological information in the database. Intuitively, the invariant is obtained as fol­
lows: first, the "cells" need to be identified, i.e., the points, lines, and faces that are
topologically significant. This can be done by using the well-known cell decomposition
of polynomial constraint databases (8, 37, 42, 62]. Next, the adjacency relationships
between the cells, i.e., endpoints of lines, boundaries of faces and so forth, need to be

4 1. Introduction

identified, as well as the external face and the circular list of lines and faces adjacent
to each point.

There exists a unique cell decomposition with a minimal number of cells. The finite
structure describing this cell decomposition is called the topological invariant and is
known to be complete [47, 57]. This means that two planar polynomial constraint
databases which have isomorphic topological invariants, are indistinguishable from a
topological point of view. In the theory of spatial query languages, the topological
invariant is used to obtain expressiveness results [64]. More specifically, topological
queries are translated to its topological invariant.

Of course, if we want to answer queries using the topological invariant instead
of the original polynomial constraint database, we are faced with the online mainte­
nance of the topological invariant under updates to the original polynomial constraint
database. The class of online algorithms which react on updates are called dynamic
algorithms and can be divided into fully dynamic algorithms, which react correctly
on all possible updates, and partially dynamic algorithms, which react correctly on
only one type of update [2, 20].

In Chapter 6, we consider the problem of maintaining the topological invariant
of a polynomial constraint database. We note that the cell decomposition described
above provides another way to model a planar spatial database, i.e., as a planar
subdivision consisting of points, lines, and areas, which is the approach taken in
many geographical information systems [70]. The common data structure used to
represent planar subdivisions is the plane graph structure [43], perhaps better known
as the doubly connected edge list [60, 15].

We give a fully dynamic algorithm which maintains the topological invariant of a
labeled planar graph, representing a polynomial constraint database. The algorithm
is built on top of the doubly connected edge list, and has has complexity 0(£) per
update, with £ the current size of the invariant.

We then focus on general graphs, i.e., we do not make any assumptions on the
graph such as planarity and the like, and provide two partially dynamic algorithms
for maintaining the topological invariant of a graph. The algorithms are partially
dynamic because we only admit edge insertions. Both algorit hms have complexity
O(log £) per update, with £ the number of edges. The topological invariant of a graph
is obtained by eliminating all "regular" vertices, which are the vertices that are part
of chain; in graph theoretic terms they are the vertices of degree two.

Regular vertices often occur abundantly. For example, in a road network, each
bend in the road is represented by a vertex, which will be regular. The same applies
more generally to all networks represented on top of a discrete raster [80], where a
curved line is approximated by many straight line segments between raster points,
which will then be regular.

Since both algorithms have the same complexity, we have performed an empirical
study on their relative performance. More precisely, we implemented both algorithms
and performed experiments on input graphs subject to edge insert ions only.

5

Overview The following chapters are organized as follows . Chapter 2 provides the
necessary background on constraint databases and query languages. It gives the defi­
nition of topological queries and introduces transitive closure logics. Chapter 3 shows
that FO+LIN+TCS is computationally complete on Z-linear constraint databases,
and that FO+Po1v+TCS is computationally complete on polynomial constraint da­
tabases with respect to Boolean topological queries.

Chapter 4 looks at the geometric properties of polynomial constraint databases
and shows that many of these properties are expressible by first-order means. More
specifically, we define the local cone structure of polynomial constraint databases
for boxes, and proof that this is a first-order expressible property. We conclude
this chapter by defining the uniform cone radius decomposition and the notion of
a box collection, which we will use in Chapter 5. In that chapter, we construct a
special box collection and show how it can be used to construct a linearization of a
polynomial constraint database. We then show that this construction is expressible in
FO+Po1v+TC. As a consequence, we show that the connectivity query is expressible
in FO+Po1v+TC. After a minor adaptation of the linearization, we show how it
can be used to approximate the volume of a polynomial constraint database. Finally,
Chapter 6 deals with the online maintenance of the topological invariant.

6 1. Introduction

2
Preliminaries

In this chapter, we formally define the polynomial constraint database model as an
extension of the classical relational database model, and the linear constraint database
model as a restriction of the polynomial constraint model. We introduce the concept
of query in these models and define the basic constraint query language for both
models.

We discuss the notion of genericity in the context of constraint databases and look
closer to queries which are generic with respect to topological transformations, i.e.,
homeomorphisms.

Next, the basic constraint query languages are augmented with a very simple re­
cursion mechanism, namely a transitive closure operator, which is denoted by TC.
Transitive closure is a very simple form of recursion, moreover, we do not use ap­
plications of TC to formulae with extra free variables (parameters), as is allowed in
the standard definition of transitive closure. We also extend the TC operator with
explicit stop conditions, which results in a very expressive query langauge, as will be
shown in the next chapter.

2.1 The Polynomial Constraint Model

In the polynomial constraint model, geometric data which can be defined in first­
order logic over the real numbers with addition and multiplication is considered.
Geometric data can be represented with first-order logic formulae as follows. Assume
an infinite set of variables which range over the real numbers. We call these variables
real variables and denote them with xi, X2, • . • • Define a polynomial constraint term
as a polynomial in real variables with algebraic coefficients. An atomic polynomial

7

8 2. Preliminaries

Figure 2.1: Example of a semi-algebraic figure.

constraint formula is built from a polynomial constraint term using binary comparison
relations, i.e., t () 0 where tis a polynomial constraint term and B E { =, <, >, ~' ~' #}.
A polynomial constraint formula is defined inductively as follows:

• every atomic polynomial constraint formula is a polynomial constraint formula;

• if :p and 'lj; are polynomial constraint formulae, then <p/\'lf; and ,<pare polynomial
constraint formulae; and

• if x is a real variable and <p is a polynomial constraint formula in which x occurs
free, then (3x)<p(x) is a polynomial constraint formula.

Every polynomial constraint formula <p with n free real variables x1 , ... , Xn defines a
geometric figure

{(xi, ... , Xn) E Rn I <p(x1, ... , Xn)}

in the n-dimensional real space Rn.

Example 2.1.1. The polynomial constraint formula

x4 + y4 + z4 + 2x2
y

2 + 2x2 z2 + 2y2 z2
- 2(r5 + ri)x2

+ 2(r5 - ri)Y2
- 2(r5 + ri)z2 + (r5 - ri)2 = 0

defines the torus shown in Figure 2.1 for r0 = 2 and r1 = 1/2 (r0 is the major radius
of the torus, r 1 is the minor radius). D

We now define the class of figures which correspond to the geometric figures de-­
scribed by polynomial constraint formulae. A basic semi-algebraic set in (Euclidean
space) Rn is a point set

where p(x1 , ••. ,xn) is a polynomial with algebraic coefficients in the real variables
x1, ... , Xn . A semi-algebraic set in Rn is inductively defined as follows:

2.1. ThePolynomial Constraint !'f~~el

y

I I
I

I I
I

X
--t-+--+--+-+--1--+-t--t-~

Figure 2.2: An example of a set which is not semi-algebraic.

• A basic semi-algebraic set in Rn is a semi-algebraic set in Rn; and

9

• if A and B are two semi-algebraic sets in Rn, then A n B and Rn - A are
semi-algebraic sets in Rn.

Of course, not every set is semi-algebraic.

Example 2.1.2. The geometric figure defined as

{(X1, X2) E R 2 I X1 E Z /\ X1 :s:; X2 :s:; X1 + 1}

is not semi-algebraic (see Figure 2.2). D

It is clear that semi-algebraic sets in Rn are exactly the sets in Rn described by
a quantifier free polynomial constraint formula.

We refer to Bochnak, Coste and Roy [8), and Benedetti and Rissler [4] for an
exposition of real algebraic geometry and properties of semi-algebraic sets.

Tarski-Seidenberg Theorem ([65, 69]). Let A be a semi-algebraic set in R n+1,
and let IT : R n+l -+ Rn be the projection on the space of the first n coordinates. Then
IT(A) is a semi-algebraic set in Rn. D

The logical equivalent of this theorem is that first-order logic over t he real numbers
with addition and multiplication has quantifier elimination. This means that every
polynomial constraint formula is equivalent to a quantifier free polynomial constraint
formula.

The existence of quantifier eliminat ion for polynomial constraint formulae follows
directly from the Tarski-Seidenberg Theorem. Indeed, let <p(x1, ... ,xn,XnT1) be a
quantifier free polynomial constraint formula, and let A= {(x1 , ... , xn+d E R n+i I
<p(x1, ... ,Xn+1)}. Then A'= {(x1, ... ,xn) E R n I (:3xn+1)<p(x1, ... ,Xn+1)} is equal
to II(A), with II the natural projection II : Rn+l -+ Rn. By the Tarski-Seidenberg
Theorem, the set A' is also semi-algebraic, and hence can be defined with quantifier
free polynomial constraint formulae only.

Example 2.1.3. Let <p(a, b, c, d) be the polynomial constraint formula

(:3x)(:3y)(:3u)(:3v)(xa +ye= l /\ xb +yd= 0 /\ ua + vc = 0 /\ ub + vd = l).

10 2. Preliminaries

The formula ip(a, b, c, d) asserts that the matrix

is invertible. It is well-known that r,o(a, b, c, d) is equivalent to the quantifier free
polynomial constraint formula ad - be =I 0. D

Later in this chapter we will see the application of quantifier elimination in the
context of query evaluation.

We proceed with introducing the polynomial constraint database model. In the
relational database model, a relation consists of columns that store values of some
alpha-numerical data type. The polynomial constraint database model extends this
model by adding an extra geometric column that store semi-algebraic sets. In contrast
with the alpha-numerical data columns, there is a sharp distinction between what is
stored in a geometric column (quantifier free polynomial constraint formulae) and the
interpretation of the stored data (geometric figures in Euclidean space) .

Formally, we define a polynomial constraint database scheme, S, as a finite set of
relation names. With each relation name, R, a type is associated. A type is a pair
of natural numbers, (m, n] , where m denotes the number of alpha-numerical columns,
and n denotes the dimension of the single geometric column of R. A polynomial
constraint database schema has type (m1, n1; ... ; mk, nk] if the schema consists of
relation names, R1, . .. ,Rk, of type [m1,n1], . .. , [mk,nk] respectively. A syntactic
polynomial constraint relation of type (m, n] is a finite set of tuples of the form

with v1, ... , Vk being alpha-numerical values of some domain U, and ip(x1, ... , Xn) a
quantifier free polynomial constraint formula with n free real variables. A syntactic
polynomial constraint database instance, or shortly, a polynomial constraint database,
is a mapping I, assigning to each relation name R of a schema S, a synt actic poly­
nomial constraint relation I (R) of the same type.

Given a syntactic polynomial constraint relation R, the semantic polynomial con­
straint relat ion, J(R), is defined as

LJ {(t.v1, ... , t.vm)} X {(u1, ... , Un) E Rn I t.ip(u1, ... , Un)},
tER

Given a syntactic polynomial constraint database instance I over a polynomial con­
straint database scheme S, the semantic polynomial constraint database instance is
t he mapping J, assigning to each relation name R in S the semantic polynomial
constraint relation I(I(R)).

Example 2.1.4. In this example a piece of a polynomial constraint database con­
taining information on paintings in a museum of modern art is shown. The schema
has type (4, O; 2, 2]. The first relation consists entirely of alpha-numerical data con­
taining the name of the artist, the name of the work, the year of creation, and an

~..: 1. The f>_olynomial Con~~_aint M_odel 11

ID number of the piece of art. The second relation consists of an alpha-numerical
part, containing an ID number and a name of a color. The geometric part contains
the polynomial constraint representation of parts of the painting, which are colored
according to the color in the second column.

y

4

3

2

1

1 2 3 4 5

X

Artist Work Year ID
Piet Mondriaan Composition with red, green and black 2001 1

ID Color Geometry
1 Red 2<x<3A2<y<3
1 Green 0<x<1Al<y<2
1 Black ((y = 0.25 Vy = 0.5 Vy = 2 Vy = 3) /\ 0 ~ x ~

5) V ((x = 2 V x = 3) /\ 0 ~ y ~ 5) V (3 ~ X ~
5 t\ 0.25 ~ y ~ 0.5)

D

In standard relational databases, a query is a mapping associating to each database
an answer relation. In the polynomial constraint model, the picture is somewhat
more complicated. Given an input scheme Sin and an output scheme Sout, a query is
a mapping of the polynomial constraint database instances of Sin to the polynomial
constraint relation instances of Sout , at both the syntactic and the semantic level.

We associate with every query a type

[m1,n1; ... ;mk,nk] ~ [m,n)

with [m1 , n1; ... ; mk, nk] the type of the input database scheme and [m, n) the type
of the output database scheme.

By adding to the language of polynomial constraint formulae t he following:

12 2. Preliminaries

• a totally ordered infinite set of variables, called value variables, disjoint from
the set of real variables, which range over the alpha-numerical domain U;

• atomic formulae of the form v1 = v2, with v1 and v2 value variables;

• atomic formulae of the form R(v1, .. . , Vm; x1, ... , Xn), with R a relation name
of type [m, n], v1, ... , Vm value variables, and x1, ... , Xn real variables; and

• existential quantification of value variables,

we obtain a query language, which is known as the polynomial ronstraint calculus,
and is denoted by FO+POLY. We say that <p is an FO+PoLY formula over schema
S, if the relation names occurring as atomic subformulae in <pare in S.

A query of type [m1, n1; ... ; mk, nk] -+ [m,n] is expressible in FO+ POLY if there
exists an FO+POLY formula <p with m free value variables and n free real vari­
ables such that at the semantic level, for every input database instance of type
[m1, n1; .. . ; mk, nk] the output database equals

{(vi, ... , Vmi xi, ... ,xn) I <p(v1, ... , Vm,Xt, ... ,xn)}.

Queries of type [m1,n1; . . . ;mk,nk]-+ [0,0] are called Boolean queries , because the
sets { ()} and {} can be seen as encoding, the truth values true and false respectively.

Notational Convention. In all queries below, the input database schema S consists
of relation names S1, ... , Sk of purely geometric type [O, n1; . . . ,; 0, nk]. We then say
that Si has arity ni, for i = 1, ... , l. If D is a polynomial constraint database over
schema S, then we denote the semantic polynomial database instance I(D(Si)) by
Sf, for i = 1, ... , k. If <pis a formula in FO+POLY over S, then we denote the output
semantic polynomial database instance by <p(Si), for i = 1, ... , k. We will represent
n-tuples of variables x1, ... , Xn, with x.

Example 2 .1.5. Let S = {S}, with San n-ary relation name. The query which
asks whether a database is bounded, is expressible in FO+PoLY. Indeed, define the
formula over S

bounded = 3M\fx(S(x)-+ x~ + x~ + · · · + x~ < M).

Then, for any database D over S, bounded(D) is true if and only if SD ~ Rn is
bounded. D

FO+POLY queries can be effectively evaluated as follows. Let <p(x1, ... ,xk) be an
FO+PoLY formula over schema S, and let D be a database over S. For every SES,
we represent the set SD by some quantifier-free polynomial constraint formula '¢s(Y1,
·· · ,Yk), where k is the arity of S that defines SD in the sense that SD = {(a1,,,.,
an) E Rn I 'I/Js(a1, ... , an)}. Now replace in <p every subformula of the form S(z1,
... , Zn) by 'I/Js(z1, ... , zn). Doing these replacements for every S E S we obtain a
polynomial constraint formula which we denote by <pD, and which defines <p(D) in
the sense that <p(D) = {(a1 , ... ,ak) E Rk I 'I/Js(a1, ... ,ak)}.

By the Tarski-Seidenberg T heorem, we can rewrite <pD in a quantifier-free form
from which we see that <p(D) is a semi-algebraic set. This is called the closure prin­
ciple.

2.2. The Linear Constraint Model 13

2.2 The Linear Constraint Model

When only linear polynomials are considered in the polynomial constraint model, one
obtains the so-called linear constraint database model.

We distinguish between two different linear constraint models, depending on the
choice of coefficients in the linear polynomials.

We define a Z-linear constraint term as a polynomial in real variables with integer
coefficients. An atomic Z-linear constraint formula is built from a Z-linear constraint
term using binary comparison relation, i.e., t () 0, where t is a Z-linear constraint
term and() E { =, <, >, ~' ~' :;t:}. Polynomial constraint formulae built from atomic
Z-linear constraint formulae are called Z-linear constraint formulae. The Z-linear
constraint formulae are equivalent to first-order formulae over the real numbers with
addition.

A Z-linear constraint formula <p(x1, ... , Xn) with n free real variables x1, ... , Xn

defines a geometric figure {(xi, ... ,xn) I <p(x1, .. . ,xn)} in Rn by allowing the real
variables to range over the real numbers.

Using algebraic computational techniques for the elimination of variables in sets of
linear equalities and inequalities, one obtains an exact correspondence between these
figures defined by a Z-linear constraint formula and the so-called Z-linear sets.

Polynomial constraint databases containing only Z-linear sets as geometric data
are called Z-linear constraint databases. The syntactic and semantic relations of a
Z-linear constraint database are called, syntactic and semantic Z-linear constraint
relations respectively.

When we allow real algebraic coefficients in the linear polynomials, we talk about
A-linear constraint terms, atomic A-linear constraint formulae, A-linear sets, A­
linear constraint relations and A-linear constraint databases.

The restrictions of the query language FO+PoLY to the context of Z-linear con­
straint database, and to the context of A-linear databases, are denoted by FO+ Z-LIN,
and FO+A-LIN respectively.

Formulae in FO+Z-LIN (FO+A-LIN) also admit quantifier elimination, so if D is
a Z-linear (A-linear) database, and <pis in FO+Z-LIN (FO + A-LIN) , then also <p(D)
is Z-linear (A-linear). Hence, there is also a closure principle for FO+Z-LrN and
FO+A-LIN, provided we work with Z-linear (A-linear) database only.

We shall talk about linear constraint terms, atomic linear constraint formulae, lin­
ear constraint formulae, semi-linear sets, linear constraint relations, linear constraint
databases, linear queries, and FO+LrN whenever the distinction between integer or
algebraic coefficients is irrelevant.

2.3 Generic Queries

In the context of the relational database model, Chandra and Hare] [10] invest igated
which queries are "reasonable". They characterized this class of queries by means
of the concept of genericity. Informally, this means that output of a generic query
is independent of the internal representation of the data and only depends on the

14 2. Preliminaries

logical structure of the databases. Paredaens, Van den Bussche and Van Gucht (58]
have shown that for constraint databases, the definition of genericity depends on the
particular kind of geometry in which the spatial information is to be interpreted.

Let !fJ be a query of type (0, n; .. . ; 0, n] --+ [O, m] and let g be a group of transfor­
mations of Rn. The query Q is Q-generic if, for every transformation g E g and any
two input database instances D1 and D 2 of type [O, n; ... ; 0, n] ,

(2.3.1)

where the transformation g is assumed to canonically extend from Rn to R kn, for
any value of k EN.

Example 2.3.1. Let A be the group of affinities. Then, the query which asks whether
the database lies on a straight line, is A-generic since affinities preserve collinearity.

D

We are interested in queries which are generic for the group of homeomorphisms,
which we denote by 1-1.. A homeomorphism h of Rn is a bijective mapping form Rn
to Rn such that both hand its inverse h-1 are continuous. Two subsets X and Y
of Rn are topologically equivalent if there exists a homeomorphism h of Rn such that
h(X) = Y.

Example 2.3.2. A square and a circle are topologically equivalent. Indeed, let
S1 = {(x,y) E R 2 I x 2 + y2 = 1} be the unit circle in R 2 , and let Sq= {(x,y) E

R 2 I max{lxl, IYI} = 1} be the square of size 2 centered at the origin. Consider the
mapping

Jx:+y2 (x, y) if x ~ 0 I\ X ~ y

~ (x,y) if x < 0/\x ~ y

h : R 2 --+ R 2
: (X, y) f-t ~ (X' y) if y ~ 0 I\ y ~ X

~ (X, y) if y < 0 I\ y ;::: X

(0, 0) if (x, y) = (0, 0).

This mapping h projects each point on Sq radially inward to the sphere S 1 (see
Figure 2.3). It is easy to show that his a homeomorphism of R 2 and h(Sq) = S1

.

D

Following the definition of genericity, a query is topological if it is 1-1.-generic.

Example 2.3.3. The query of Example 2.3.1, which asks whether a polynomial
constraint database lies on a straight line is not topological. The connectivity query,
which asks whether a polynomial constraint database is connected, is an example of
a topological query. The query expressed by the formula

3e:(e: f O I\ Vy(x - e: < y < x + e: --+ S(y)))

returns the interior of the semi-algebraic set SD when evaluated on any polynomial
constraint database D. This query is a topological query. D

2.4. Transit~ve Closur~_~ogics 15

Figure 2.3: A square and a circle are topologically equivalent.

2.4 Transitive Closure Logics

Many interesting spatial database queries are not expressible in the first-order query
languages FO+POLY and FO+LIN, for example, the query that asks whether a given
database is topologically connected. Therefore, it makes sense to consider extensions
of FO+POLY (or FO+LIN) with recursion to obtain more powerful query languages.
We study one of the most simple recursion constructs in this context, i.e., the t ran­
sitive closure operator TC. An immediate observation is that TC cannot be added
just like that with its standard mathematical semantics, without losing the impor­
tant closure principle. For example, the transitive closure of the semi-algebraic set
{(x,y) E R2 I y = 2x} equals {(x,y) E R2 I 3i E N : y = 2ix}, which is not
semi-algebraic.

Therefore, we look at the TC operator quite naturally as a programming construct
with a purely operational semantics. For example, we will look at the transitive
closure example just mentioned simply as a non-terminating computation. Almost all
programming languages allow the expression of non-terminating computations, and
it is part of the programmer's job to avoid writing such programs.

A formula in FO+POLY+ TC is a formula built in the same way as an FO+POLY
formula, but with the following extra formation rule: if 1/J(x, y) is a formula with x,y
k-tuples of variables, and s,t are k-tuples of variables, then

(2.4.1)

is also a formula which has as free variables those in s and t. Since the only free
variables in 'ljJ(x, ii) are those in x and y, we do not allow parameters in applications
of the TC operator, as is allowed in finite model theory. With parameters, it is not
so clear how to preserve the simple and elegant operational semant ics we define next.

The semantics of a subformula of the above form (2.4.1) evaluated on a database
D is defined in the following operational manner:

1. Evaluate, recursively, 1/J(D).

2. Start computing the following iterative sequence of 2k-ary relations:

Xo 1/J(D)
XH1 .- xi u { (x, 'ii) E R 2k I 3zXi(x, z) A x i (z, y) }.

16 2. Preliminaries

t

TC

~

:Pi (D)

s

t

8

TCS

~4

<p2(D)

Figure 2.4: Illustration of the difference between transitive closure without stop con­
dition (left) and with stop condition (right).

3. Stop as soon as an i has been found such that Xi = Xi+l·

4. Evaluate the formula X(s, i) where relation name X has the relation Xi as
value.

Since every step in the above algorithm, including the test for X i = Xi+1, is express­
ible in FO+POLY, every step is effective and the only reason why the evaluation may
not be effective is that the computation does not terminate. In that case the evalua­
tion of the formula 2.4.1 (and any other formula in which it occurs as subformula) is
undefined. The language FO+LIN+TC consists of all FO+POLY+TC programs that
do not use multiplication.

Example 2.4.1. Let S = {S}, with San n-ary relation name. Consider the following
FO+POLY+TC formula over S:

connected= Vv/fiS(x) I\ S(ii)-+ [TCr;slineconn](i,y)

where lineconn(r, SJ is the formula

3,\(0::; ,\::; 1 /\ Vt(t = ,\f + (1 - ,\)s-+ S(i))}.

In Chapter 5, we will prove that the TC-subformula in connected terminates on all
linear constraint databases over S, and asks whether the linear constraint database
is connected. D

We will sometimes need to be able to specify an explicit termination condition on
transitive closure computations. Thereto we introduce the language FO+ POLY+ TCS.

Formulae in FO+PoLY+TCS are again built in the same way as in FO+ PoLY
but with the following extra formation rule: if 'lj;(x, ii) is a formula with x,fi k-tuples of
variables; a is an FO+ POLY sentence (formula without free variables) over the schema
S expanded with a special 2k-ary relation name X; and s, t k-tuples of variables, then

[TCx;y'I/J I a](s,i) (2.4.2)

2.4. Ttansi~ive Closure Logi_cs 17

is also a formula which has as free variables those in s and f. We call u the stop
condition of this formula.

The semantics of a subformula of the above form (2.4.2) evaluated on databases
D is defined in the same manner as in the case without stop condition, but now we
stop not only in case an i is found such that Xi = Xi+1 , but also in case an i is found
such that (D, Xi) p u, whatever case occurs first.

Example 2.4.2. Let S = {S}, with S an n-ary relation in name. Consider the
FO+POLY+TCS formula

<p1(s, t) = [TCx;yS](s, t) (2.4.3)

and the formula
<p2(s, t) = [TCx;yS I X(l, 8)](s, t). (2.4.4)

On the polynomial constraint database D over S, where SD = {(x, y) E R 2 I y = 2x},
the evaluation of formula (2.4.3) does not terminate, but formula (2.4.4) evaluates in
3 iterations to {(s, t) E R2 It = 2s Vt= 4s Vt= 6s Vt= 8s} (see Figure 2.4) . D

The language FO+LIN+TCS consists of all FO+POLY+TCS programs that do
not use multiplication.

18 2. Preliminaries

3
Expressiveness Results

In this chapter, we show a general result on the expressive power of FO+Lrn+ TCS.
More specifically, we prove that FO+Lrn+TCS is computationally complete on Z­
linear constraint databases (Theorem 3.4.1). The proof consists of three steps. In
the first step, we show that any computable function on the natural numbers can be
simulated by an FO+LIN+TCS expression (Lemma 3.1.1). In the second step, we
show that there exists an encoding of Z-linear constraint databases by finite sets of
rational numbers, and show that both the encoding and the corresponding decoding
are in FO+LIN+TCS (Lemma 3.2.1 and Lemma 3.3.1). In the third step, we show
that there exists an encoding of finite sets of rational numbers by natural numbers, and
show that both the encoding and the corresponding decoding are in FO+ Lrn+ TCS.
This implies that FO+LIN+TCS is computationally complete on Z-linear constraint
databases.

For polynomial constraint databases we show that FO+POLY+TCS is computa­
tionally complete for Boolean topological queries. This follows from the complete­
ness on Z-linear constraint databases and the existence of an FO+POLY+ TC query
that, given any polynomial constraint database as input, returns a Z-linear constraint
database which is topological equivalent to the input. In this chapter we show that
this "linearization query" is not expressible in FO+PoLY. The FO+ POLY+ TC con­
struction will be presented in Chapter 5 (with preparations in Chapter 4).

3.1 Recursive Functions on the Natural Numbers

We first show that FO+LIN+TCS is computationally complete on the set of natural
numbers N.

19

20 3. Expressiveness Results

Lemma 3.1.1. For every partial computable function f : Nk -+ N there exists a
formula <fJt(Y) in FO+LIN+TCS over the schema S = {S}, with S a k-ary relation,
such that for any database Dover S such that SD= {(n1 1 • • • ,nk)}, we have that
<fJt(D) is defined if and only if J(n1 , . .. , nk) is defined, and in this case <fJt(D) =
{f(n1, ... ,nk)} .

Proof. We show this by simulating the run of a non-deterministic p-counter machine
Mt which computes f. Here Mt = (Q,8,qo,qt) where Q is a finite set of internal
states, q0 E Q is the initial state, and qt E Q is the final (halting) state. 8 is a
set of quadruples of the form [q, i, s,q'] E Q x {l, ... ,p} x {Z,P} x Q or [q,i ,d,q'] E
Q x {1, . . . ,p} x {-, +} xQ. The quadruple [q, i, s, q'] means that if Mt is in state q and
the ith counter is equal to zero (whens= Z), or positive (whens= P), then change
the state into q'. The quadruple [q, i, d, q'] means that if Mt is in state q, then increase
the ith counter by one (when d = +) or decrease the ith counter by one (when d = -),
andchangethestateintoq'. WeassumethatQ = {0,1, ... ,m-1,m},qo = Oandqt =
m. Moreover, we assume that p ~ k and that the initial configuration of Mt when
computing f(n 1 , ••. , nk) has n 1 , .. . , nk as the values of the first k counters. When a
halting state is reached, we assume that the first counter contains f(n1, ... ,nk)-

We define the first-order formula Wstep(q, n1, ... , np, q', n~, ... , n~) as a finite dis­
junction of the following formulae for [q, i, s, q'] and [q, i, d, q'] in 8:

W[q,i,Z,q'] = Q(q) I\ Q(q') I\ n~ = ni = 0 I\ I\

W[q,i,P,q'] = Q(q) I\ Q(q') I\ n~ = ni > 0 I\

W[q,i,+,q'] = Q(q) I\ Q(q') I\ n~ = ni + 11\

W[q,i,-,q'] = Q(q) I\ Q(q') I\ n~ = ni - 11\

jE{l, ... ,i-1,i+l, ... ,p}

I\
jE{l, ... ,i- 1,i+l, ... ,p}

I\
j E{ l , ... ,i-1,i+l, .. . ,p}

I\
j E{l, ... ,i-1,i+l, .. . ,p}

The formula Wstep describes a single step in a run of MJ.

We use the following stop condition a:

Here, 01 denotes the £-tuple (0, ... ,0). The desired fomula <fJt(Y) is

3y2, ... , 3yp, 3n1, ... , 3nk(S(n1, . .. , nk)

I\ [TCq,ii;q' ,ii' Wstep I a] (0, n1, ... , nk, Op-k, m , Y, Yz, .. . , Yv)).

D

3.2. Finite Representation of Z-linear Constraint Databases 21
--·· - -- .~--

3.2 Finite Representation of Z-linear Constraint Da­
tabases

Lemma 3.2.1. There exists an encoding of Z-linear constraint databases into finite
relational databases over the rationals, and a corresponding decoding, which are both
expressible in FO+LIN+TCS.

Proof. It was shown by Vandeurzen et al. [73, 75] that any Z-linear constraint database
has a finite geometric representation by means of a finite dat se over Q consisting of
(n+ 1)2-ary tuples. Basically, this geometric representation contains the projective co­
ordinates1 of a complete triangulation of the Z-linear constraint database. Moreover,
this representation can be expressed in FO+PoLY. Vandeurzen et al. [73, 75] actually
show that this representation can be expressed in an extension of FO+ LIN with some
limited amount of multiplicative power. Also, the corresponding decoding, which
computes the Z-linear constraint database given its finite geometric representation,
can be expressed in this logic.

Hence, the lemma follows, if we can show that FO+LIN+TCS can perform this
limited amount of multiplication.

More specifically, we have to be able to express the multiplication of rationals qi
from a finite set S = {q1, ... , qm} with a real number x, i.e., qix for i = 1, ... , m.
First, we express how integers ni and di can be computed in FO+Lrn+TCS such
that qi = ~: for i = 1, ... , m.

We assume that all rational numbers in the set S are positive. The case of negative
rational numbers being completely analogous. If both positive and negative rational
numbers occur in the set, we separate the positive from the negative and treat both
sets separately.

Consider the following mapping enum of N x N -+ N x N:

(..) {(i+l, j - 1) ifj > O; enum: i J f-t
' (O,i+l) ifj = O.

It is an easy exercise to show for every pair (p, q) EN x N different from (0, 0) , there
exists a k E N, such that enumk (0, 0) = (p, q). We shall interpret (p, q) as the rational
number ~ in case q -:/- 0, and as O otherwise.

Given a rational number q and two natural numbers n and d, we can test in
FO+LIN+TCS whether q = l This test can be performed as follows. Let frac :
R 3 -+ R 3 be the mapping defined as

frac : (q, j, v) f-t (q, j - 1, v + q).

Then q = J for q E Q, and n,d E N if and only if fracd(q , d ,O) = (q , 0,n).
To find the numerator and denominator of a rational number q, we t est for each

(n, d) = enumk(O, 0) , whether q = J· For this, we combine enum and frac into a
1 Projective coordinates are used to deal with unbounded databases and the unbounded simplices

in their triangulation.

22 3. Expressiveness Results

mapping tryall : R 5 -+ R 5 defined as

{(. . / ') . . q,i,J,U ,v
tryall: (q, i,J,u,v) r-+ (., ., .,)

q,i ,J , J ,0

with (q,u',v') =frac(q,u,v), ifu ~ 1,

with (i',j') = enum(i , j) , if u = 0.

It is clear that there exists an FO+LIN formula, "Ptryau(q,i, j,u,v,q',i' ,j',u',v') , ex-
. h t ll(. .) (I •/ ·/ I 1) Le ,T,(• • I •/ •/ I 1) b pressmgt at rya q, i ,J,u,v = q,i,J,u,v. t~ q, i,J ,u, v,q, i ,J,u,v e

the formula:

'- 0 . '- 0 . '- 0 •I '- 0 ·I '- 0 I nl , (. . I •/ ·I I ') q,:::; I\ i,:::; /\J,:::; I\ i ,:::; /\J ,:::; I\ q = q I\ 'Ptryall q,i,J,u,v,q , i ,J ,u ,v .

Given a finite set of rational numbers S = { q1, ... , qm}, we obtain a denominator
and numerator for all these numbers by taking the transitive closure

[TCq,i,j,u ,v;q' ,i' ,j' ,u' ,v' 'P I a] (S, ij, (3.2.1)

wheres and tare 5-tuples of variables, and where

a= Vq(S(q)-+ 3n3dX(q,0,0,0,0,q,n,d,O,n)).

This condition stops the computation of the transitive closure of (3.2.1) when for
each rational number q in S, a pair of natural numbers (n, d) is encountered, such
that dq = n. If multiple pairs (n, d) represent the same rational number in S, we
select the pair with the smallest value of n. Thus, we obtain for each q E S a unique
denominator and numerator.

We now show how to express the multiplication of a finite number of rational
numbers with a real number. Without loss of generality, we may assume that the
rational number is represented as a numerator/ denominator pair, i.e., we may assume
that S = {(n1, di), ... , (nm, dm)}.

Let max be the largest natural number occurring in S. We now compute any
multiplication of the form rn with r E R, and O ~ n ~ max and n E N.

For this, we consider the following formula

natmult(x,y,z,x',y' , z') = x = x' I\ y' = y-1 I\ z' = z + x
/\ 3max(3n(S(max,n) V S(n,max)) /\ VnV(S(n,d)-+ s ~ max/\d ~ max)

I\ 0 ~ y I\ y ~ max).

Then the formula

mult(a, b, c) = [TCx,y,z;x',y' ,z'natmult](a, b, 0, a, 0,c)

holds if and only if ab = c, for a E R, b E N and b ~ max. In this way, we can retrieve
any multiple (up to max) of any real number.

Finally, we define ratmult(z ,y,n,d) = 3u(mult(z ,d, u) /\mult(y,n,u)). This
formula holds for (z , y , n , d) if and only if z = yq with z , y E R , and q = J with
(n,d) ES. 0

3.3. Natural Number Representation 23
~-- - --- ··---

3.3 Natural Number Representation

Lemma 3.3.1. There exists an encoding of finite relations over the rational numbers
into single natural numbers, and a corresponding decoding, which are both expressible
in FO+Lrn+TCS.

Proof. We assume that the relation to be encoded involves positive rational num­
bers only. The general case can be dealt with by splitting the relation into "sign­
homogeneous" pieces, dealing with each piece separately, and encoding the tuple of
natural numbers obtained for each piece again into a single natural number.

In the proof of Lemma 3.2.1, we have seen that we can go in FO+LIN+TCS
from rational numbers (out of a finite set) to denominator/nominator pairs and back.
Hence, we can actually assume that the relation to be encoded involves positive
natural numbers only.

We will encode this in two steps. In the first step, we encode a finite relation
over N into a finite subset of N. In the second step, we encode a finite subset of N
into a single natural number. Since queries can be composed, we can treat these two
encoding steps (and their corresponding decoding steps) separately.

Encoding, first step A finite k-ary relation s over N can be encoded into a finite
subset Enc1 (s) of N:

k

Enc1(s) := {!Jpf• I (ni, ... ,nk) Es}.
i=l

Here, Pi denotes the ith prime number.
Now let S be a k-ary relation name. We will construct an FO+Lrn+TC formula

t:1 over { S} such that for any database D where 5D is finite and involves natural
numbers only, i::1(D) = Enc1(SD). For notational simplicity, we give the construction
only for the case k = 2; the general case is analogous.

Consider the following formula '1f'(X1, x2, y, x~, x~, y'):

3u13u2(S(u1, u2) I\ xi ::::; u2 I\ X2 ::::; u2)

/\ ((Xi > 0 I\ x~ = Xi - 1 /\ x; = X2 I\ y' = 2y)

V (x1 ::::; 0 /\ x2 > 0 I\ x~ = 0 I\ x; = x2 - 1 /\ y' = 3y)).

Here, y' = 2y is an abbreviation for y' = y + y, and similarly for y' = 3y; note that 2
and 3 are the first two prime numbers. Then the desired formula i::1 (y) is

Decoding, first step Let S be a unary relation name. We will construct an
FO+LIN+TC formula 81 over {S} such that for any database D where SD equals
Enc1(r) for some r, we have 81 (D) = r. As above we keep with the case k = 2.

24 3. -~xpressivene!'s Results

Consider now the following formula 'I/J(x1, x2, y, x~, x;, y'):

X1 2:: 0 /\ X2 2:: 0 /\ y 2:'. 1 /\ ((x~ = X1 + 1 /\ x~ = X2 I\ y' = 2y)

V (x~ = xi I\ x~ = x2 + 1 /\ y1 = 3y)) I\ :lu(S(u) I\ y':::; u)

Then the desired formula 81 (n1 , n2) is

Encoding, second step A finite ordered subset s = {n1, . .. , n,} of N can be
encoded into a single natural number Enc2 (s) := f1;=1 p~•. Let S be a unary relation
name. We will construct an FO+LIN+TCS formula t:2 over {S} such that for any
database D where 5D is a finite subset of N, we have t:2 (D) = {Enc2(SD)}.

We will use the following auxiliary FO+LIN+TCS formulae; we will explain how
to get them later (except for min and max which are easy to get).

• Formulae card, min, and max over { S}, with the property that for any D where
5D is finite of cardinality£: card(D) = { £}; min(D) = {min SD}; and max(D) =
{max SD}.

• Formulae prime, mult, and nat, over {M}, with Ma unary relation name, with
the property that for any D where MD= {m} is a natural number singleton:

- prime(D) = {Pm};
- mult(D) = {(x,y,z) E R 3 I xy = z & y EN & y:::; m}; and

- nat(D) = {0,1,2, ... ,m}.

• Formula pow over {M, M2 }, with M, M 2 unary relation names, with the prop­
erty that for any D where MD = {m} and Mf = {m2 } are natural number
singletons: pow(D) = {(x,y,z) E R 3 I xY = z & x EN & x:::; m & y EN &
Y:::; m2}.

Using composition, we also obtain:

• maxprime = prime(card), defining Pl where i is the cardinality of S;

• nat' = nat(maxprime), defining {0, 1, 2, ... ,pt}; and

• pow' = pow(maxprime,max), defining exponentiation of natural numbers :::; PL
by natural numbers :::; max S.

We furthermore construct the following formulae:

• mult', obtained from mult by replacing each occurrence of a subformula M(u)
by

:lp,:lm(maxprime(p,) /\ max(m) /\ pow'(p, , m, u))

This formula defines multiplication by natural numbers :::; Jif'ax 8 .

3.3. Natural Number Representation 25 ---------- - -- -

• isprime(p), which defines {p1,.P2, .. . ,pl}:

nat' (p) I\ p > l /\ ,:lu:lv(nat' (u) I\ nat' (v) I\ u > 11\ v > 11\ mult' (u, v,p)).

Consider now the following formula 'lj)(x,p, y, x',p', y'):

S(x) I\ succ(x, x') I\ next(p,p') /\ :ly" (pow' (p, x, y") I\ mult'(y, y", y')),

where succ(x, x') is the formula

(,max(x) /\ S(x') I\ x < x'

I\ ,:lx"(S(x") I\ x < x" < x')) V (max(x) /\ x' = x + 1),

and next(p,p') is the formula

(,maxprime(p) /\ isprime(p') /\p < p'

/\ ,:lp"(isprime(p") /\p < p" < p')) V (maxprime(p) /\p1 = p + I).

Then the desired formula €2 (n) is

:ln1:lm:lpt(min(n1) /\ max(m) /\ maxprime(pt)

I\ [TC:i:,p,y;z',p',y''I/J](n1,2,1,m+ 1,PL + 1,n)).

It remains to show how the auxiliary formulae can be constructed.
Formula card(£) can be written as

:ln1:lm(min(n1) /\ max(m)

I\ [TC:i:,c;z',c' S(x) I\ succ(x, x') I\ c' = c + l)(n1, 0, m + 1, £)),

where succ(x, x') is as above.
From the computationally completeness of FO+LIN+TCS (Lemma 3.1.1), we

derive directly the prime.
For formula mult, consider the following formula 'lj)(x,y,u,x',y',u'):

x' = x I\ y' = y - I/\ u' = u + x I\ 0 < y I\ :lm(M(m) I\ y ~ m)

Then mult(x,y,z) is [TCx ,y,u;z',y',u''IP](x,y,0,x,0,z).
Formula nat(n) can be written as

n = 0 V [TCx;z' 0 ~ x I\ :lm(M(m) I\ x < m) I\ x' = x + 1)(0, n).

Finally, for formula pow, consider the following formula 'lj,(x, u, v; x', u', v'):

nat(x)/\:lm(M(m)/\x < m)/\0 ~ u/\:lm2(M2(m2)/\u < m2)/\u1 = u+l/\mult(v,x,v')

Then pow(x, y, z) is (y = 0 I\ z = I) V [TC:i:,u,v;z' ,u' ,v,'lj,](x, 0, 1, x, y, z).

26 3. Expressiveness Results

Decoding, second step Let E be a unary relation name. We will construct an
FO+LIN+TCS formula <52 over {E} such that for any database D where ED is a
singleton {e} such that e equals Enc2 (s) for some s, we have i52(D) = s .

By Lemma 3.1.1, we have formulae highprime and highexp over {E} such that
for any Das above, we have highprime(D) = {pt} and highexp(D) = {m}, where
Pl is the highest prime factor of e, and m is the highest exponent of a prime number
in the prime factorization of n. Composing the formula pow of above with these
two formulae, we obtain a formula defining exponentiation of natural numbers :s; Pl
by natural numbers :s; m, which we again denote by pow'. Also, analogously to
the way we constructed the formula isprime of above, we obtain a formula defining
{p1,P2, ... ,pt}, which we again denote by isprime.

Consider further the following formula 'l/J(u, v, u', v'):

0 :s; u I\ 3e(E(e) I\ u :s; e) /\ v 2:: 1 /\ v' = v I\ u' = u - v

and let di visor(d) be the formula

3e(E(e) I\ [TCu,v;u•,v•'l/J](e,d,O,d)).

Then the desired formula i52(n) is

3p(isprime(p) /\ 3d(pow'(p,n,d) I\ divisor(d))

I\ ,3n'3d'(pow'(p,n',d') I\ divisor(d') /\ n' > n)).

D

3.4 Completeness Result for Z-linear Constraint Da­
tabases

Theorem 3.4.1. For every computable query Q on Z-linear constraint databases,
there exists an FO+LIN+TCS formula cp such that for each database D, cp(D) is
defined if and only if Q(D) is, and in this case cp(D) and Q(D) are equal.

Proof. The proof follows directly from the lemmas above, as is illustrated in the
following diagram. Let D be a Z-linear constraint database, and Q an arbitrary
computable query.

D encoding in finite
Dfin

encoding in integer
nn EN

database (Lemma 3.2.1) (Lemma 3.3.1)

Ql /Q 1 (Lemma 3.1.1)

Q(D) decoding from finite
Q(D)fin

decoding from integer
nQ(D)

database (Lemma 3.2.1) (Lemma 3.3.1)

First, D is encoded in a finite database Dfin which in its turn is encoded in a natural
number nn. Since Q is computable, there exists a partial computable function /Q

3.5. Implic~tions for Polynomia~ q~~s!raint Datab~es 27

'

/

.,· E
• \ ,,,r/'.,,.,.,.. ""'"

/',--......--,
/ . 1 \

~ . ~ '\ ,,, i

'

.,.._

A

Figure 3.1: Example of an algebraic c:-approximation (left), a rational c:­
approximation (middle), and an algebraic linearization (left)

which implements Q on these encodings. Let nQ(D) be the result of /Q on input nv.
This integer is decoded into a finite relation Q(D)rm which in its turn can be decoded
in a Z-linear constraint database D1

• This database is then the result of the query Q
on the input database D, i.e., D 1 = Q(D). 0

3.5 Implications for Polynomial Constraint Databa­
ses

For polynomial constraint databases we have to settle for less. Although finite repre­
sentations of polynomial constraint databases exists, it is not known whether a finite
encoding can be expressed in FO+POLY+TCS.

Let A be a semi-algebraic set in Rn. An algebraic linearization of A is an A-linear
set A in Rn, such that A and A are topologically equivalent. A rational linearization
of A is a Z-linear set Arat in Rn, such that A and Arat are topologically equivalent.

Let x E Rn, then we denote the Euclidean norm Jxr + · · · + x~ by llxll- A
linearization approximates the set A also from a metric point of view if the following
condition is satisfied: for every point pin A, IIP - h(q) II < c: for a fixed c: > 0, were
h is a homeomorphism of Rn, such that h(A) = A. If this condition is satisfied for a
(rational) linearization, we call this linearization a (rational) c:-approximation of the
set A. We will denote the rational and algebraic c:-approximation respectively by

Arat,e: and A".

Example 3.5.1. Consider the planar semi-algebraic set A = {(x, y) E R 2 I x2 + y2 =
v'2}. Let c = !v'2- In Figure 3.1, we have drawn an algebraic c:-approximation A" =
{(x,y) E R 2 I max{lxl, lvl} = v'2}, an rational c:-approximation Arat,e: = {(x,y) E

R 2 I max{lxl, IYI} = 1}, and a linearization A which is not an c:-approximation. D

28 3. Expressiveness Results

Algebraic and rational linearizations exist for any polynomial constraint database.
This is no longer true for £-approximations, where the existence is only guaranteed
for bounded polynomial constraint databases. Consider e.g., the semi-algebraic set
{(x, y) E R 2 I y = x2 }. It is easy to see that this parabola cannot be approximated
by a finite number of line segments, and hence has no £-approximation for any c > 0.

Let S = {S}, with S an n-ary relation name. We define an algebraic (rational)
linearization query Qlin (Qrat-iin), as a query such that Qrat(D) (Qrat-iin(D)) is an
algebraic (rational) linearization of sn, for any polynomial constraint database D
over S.

Similarly, for any c > 0, we define an algebraic (rational} £-approximation query
Q

0
(Qrat,c:), as a query such that Q0 (D) (Qrat,c:(D)) is an algebraic (rational) £­

approximation of sn, for any polynomial constraint database D over S.
We now prove some inexpressibility results for FO+PoLY.

T heorem 3.5.1. The query Qrat-lin is not expressible in FO+POLY.

Proof. Let S = {S}, with S an n-ary relation name. We shall prove that if D is a
polynomial constraint database over S, such that sn is a finite set of real numbers,
then there exists no formula ratlin(x) E FO+PoLY over S, such that ratlin(D) =
Qrat-iin(D). Note that Qratlin(D) is a set of the same cardinality assn consisting of
rational numbers only.

More specifically, we shall prove that if we suppose that such a formula ratlin(x)
exists, then there exists a number MEN such that if JSDI > M, then Jratlin(D)I <
M.

We may assume that ratlin(x) is a safe query, and hence, since safe queries coin­
cide with the class of queries in the polynomial range-restricted form of Benedikt and
Libkin [6], there exists a collection of polynomials P = {P1 (x, Yt, . .. , Yk), ... ,Pm(x, Y1,
... , Yk)} such that ratlin(D) ~ Rootp(D). Here,

m

Rootp(D) = LJ u {x ER I Pi(x,a) = O},
i= l iiEadom(D)k

where adom(D) is the active domain of D, i.e., the set of all values that occur in
the relations in D, and where the Pi are not identical to zero. One may assume that
m = 1 by considering the polynomial p(x, y) = n: 1 Pi(x, y). Let Y be the set of all
possible sequences of variables in {y1 , ... , Yk} of length k. We define the polynomial

q(x, y) := IJ p(x, y/a),
o-EY

where ii/a means that Yi is replaced with the ith element in a. For example, when k =
2 and p(x, Yt, y2) = x-y1y2, then q(x, Yt, Y2) = (x-y1Y1)(x-y1y2)(x- y2y1)(x-y2y2).
Hence,

Rootp(D) = {x ER I (3a E adom(D)k)(q(x,a) = 0 & a1 < a2 < · · · < ak)} . (3.5.1)

3._5_. Impl!_cation~ for Pol)'_~Omial Constraint __ Databa~s 29

Let R< := {(Yi, . . . ,Yk) I Yi< Y2 < · · · < yk} ~ Rk, and let Zt be the set

{ (a1, ... , ak) E R< I q(x, a) has exact ly £ distinct real zeros}.

Now, R< = Zo U · · · U Zctegz q , with degx q the degree of q(x, if). Because dim R< =
max{dimZo, ... ,dimZctegzq} , there exists ap such that dimZp = k. Let Y ~ Zp be
an open set of dimension k. 2

By the Cell Decomposition Theorem (71, Theorem 2.11], Y can be chosen such
that there exist p continuous real-valued functions 6 (if) < · · · < f..v(if> on Y such that

q(f_,j(if), if) = 0, for j = 1, .. . ,p.

Let M be any number greater than max{k,p + l}, and consider the FO+POLY
formula ratlin(D / z, x) where D / z denotes that any occurrence of the relat ion name
S(t) is replaced by the disjunction V1;1 (t = zi), where z1 , .. . , ZM are variables not
occurring in <p. The set

LJ <p(D) = {x I 3z1, ... ,3zMratlin(D/z,x)}
D,IDl~M

(3.5.2)

is semi-algebraic and may only attain rational values. Since semi-algebraic sets, con­
sisting of rational values only, are finite sets, (3.5.2) consists of a finite number of
rational values { q1 , .. . , QN }, such that O < Qi < Qi+i for i = 1, .. . , N - 1.

Let !Qi =J (qdQi+i)/2, (qi+1 +qi+z)/2(for i = 1, ... , N -2, and IQo =]-oo, (q1 +
q2)/2(and IQN- 1 =](QN- 1 +qN)/2, +oo(. Then there exists an open set Y' ~ Y such
that for each function E_,j(if) there exists a unique interval IQ, which we denote with
Ii , such that

(3.5.3)

Let p E Y' with coordinates (p1 , . .. ,Pk), and let c > 0 such that Bk (p,c) ~ Y'.
Let D be such that sD = {Pi, ... ,Pk,Pk+l, ... ,PM}, with

ll(p1, ·· · ,Pk) - (pM-k+l , ···,PM)II < €.

Then <p(D) is included in the set defined in (3.5.1) . But any sequence of length k
of elements of {Pt , ... ,Pk,Pk+i, ... ,PM} is in Y', so by (3.5.3) at most p different
rational values can be returned by ratlin.

This is a contradiction, since ratlin(x) must be satisfied for M > p rational
values. D

It is an open question whether the previous theorem still holds for Qlin rather
than Qrat-lin·

With respect to the €-approximation query, neither the algebraic, nor the rational
version can be expressed in FO+ P oLY. We restrict ourselves to bounded polynomial
constraint databases, because otherwise the result would be trivially true by the
remark above.

2T he dimension of a semi-algebraic set A is defined as dimA := max{p E N I
A contains a neighborhood which is topologically equivalent to R P}. To the empty set, we assign
the dimension -1.

30 3. Expressiveness Results

Figure 3.2: When £ is fixed, the number of corner points in the c-approximation of
a circle through three points p, if, and r, increases when the points p, if, and r are
moved away from each other.

Proposition 3.5.1. Let£> 0 be a real number. The queries Qe and Qrat,e are not
expressible in FO+PoLY.

Proof. Let S = {S}, with Sa binary relation name. Let D be a polynomial constraint
database over S. We consider the following FO+POLY formulae over S:

• A formula circle such that for any database Dover S, circle(D) is either the
circle through the points of sn, if sn consists of three non-collinear points, or
circle(D) = 0. This formula is easily seen to be in FO+ PoLY.

• A formula cornerpointssuch that for any database Dover S, cornerpoints(D)
is either the set of points in which sn is not locally a straight line, in case sn is
semi-linear, or cornerpoints(D) = 0, otherwise. By a result of Vandeurzen et
al. (16], it is expressible in FO+POLY whether a semi-algebraic set is semi-linear.
Hence, cornerpoints is expressible in FO+POLY.

Assume that the query Qe (and similarly, Qrat,e) is expressible in FO+ POLY. Let
&-approx be the formula which expresses Qe. Then the formula

<p '= cornerpoints(c-approx(circle))

is also in FO+ POLY. However, the number of points in c.p(D) , l<p(D)I , can be made
arbitrarily large by choosing D to be a database over S such that sn consist of three
points far enough apart (see Figure 3.2). This contradicts the Dichotomy Theorem
of Benedikt and Libkin (6], which guarantees the existence of a polynomial p"' such
that Jip(D)I < p"'(ISDI) = p"'(3) in case lc.p(D)I is finite. D

In Chapter 5, we show that there exists an FO+PoLv+TC expressible algebraic
linearizat ion query (Theorem 5.2.1), an FO+ POLY+ TC expressible rational lineariza­
tion query (Theorem 5.3.1), an FO+PoLY+TC expressible algebraic £-approximation

3:..5. _Implication!_f_?_!_ Polynomial Constraint ~a_!'.._a_bas_es 31

ratlin

~onn
yes

Figure 3.3: The query which asks whether the database is connected, is asked to the
linearization of the database.

query (Theorem 5.2.2), and an FO+POLY+TC expressible rational €-approximation
query (Theorem 5.3.2).

We shall denote the FO+POLY+TC formula which expresses the rational lin­
earization by ratlin. Let Q be a computable Boolean topological query. Since
Q is computable, it is in particular computable on Z-linear constraint databases,
and therefore, by Theorem 3.4.1 expressible on these databases by a formula '{)Q in
FO+LIN+TCS.

Because Q is topological, Q(D) is true if and only if '{)Q(ratlin(D)) is true (see
Figure 3.3). Hence, we have proven the following theorem:

Theorem 3.5.2. For every computable Boolean topological query Q on polynomial
constraint databases, there exists an FO+ PoLY+TCS formula <p such that for each
database D, <p(D) is defined if and only if Q(D) is defined, and in this case <p(D) and
Q(D) are equal.

32 --~----- 3. Expressiveness Results

4
Geometric Properties of
Semi-algebraic Sets

In this chapter, we discuss a number of geometric properties of semi-algebraic sets,
and show that these properties are expressible in FO+POLY. In Section 4.4, we define
the cone radius of a semi-algebraic set in a point and prove that a semi-algebraic set
has a cone radius in any of its points. We also define a cone radius query and prove
that there exist s a cone radius query which is expressible in FO+POLY. In order to
prove this expressibility result, we define the regular and Whitney decomposition of
semi-algebraic sets in Section 4.1 and Section 4.2. We also give constructions for both
decompositions, and show that these are expressible in FO+POLY. In Section 4.3, we
define the notion of "being in general position" which will be of great importance in
the next chapter. In Section 4.5, we define a uniform cone radius decomposition, which
will be an important building block in the construction of a linearization. We give a
construction of a uniform cone radius decomposition and show that this construction
is expressible in FO+POLY. In Section 4.6 we define box collections and study some
properties of them. Finally, we define the box covering query and show t hat this
query is not expressible in FO+POLY, but is expressible in FO+Po1v+TC.

33

34 4. Geo~etric Properties of Semi-al1?;ebraic Sets

We will use the following notation: For A ~ B ~ Rn, the closure of A in B is
denoted by clB(A), and the interior of A in B is denoted by intB(A). Similarly, the
boundary of A in Bis denoted by 8BA = clB(A)-intB(A). When the ambient space
Bis Rn, we omit the subscript B. A closed in

4.1 The Regular Decomposition

In this section, we construct a decomposition of semi-algebraic sets such that a certain
regularity condition is satisfied on each part of the decomposition. In order to define
this regularity condition, we need to define the tangent space to a semi-algebraic set
in a point.

Let A be a semi-algebraic set in Rn. The secants limit set of A in a point jJ E A,
is defined as the set

limsecpA := n cl({.A(u - iJ) E Rn I,\ ER and it,v EA n Bn(jl, 11)}).
11>0

If limseci1 A is a vector space (this means that for all t, P E limsecv A, also the sum
f + P is an element of limseci1A), then we define the tangent space of A in jJ as
T PA : = jJ + limsecp' A. If limsecp' A is not a vector space, the tangent space of A in jJ
is undefined.

Let S = {S}, with San n-ary relation name. We define the query Qtangent as the
query such that for any polynomial constraint database D over S,

Qtangent(D) := {(x, iJ) E sD X Rn I Tx sD exists in X and VE Tii sD}.

Lemma 4.1.1 ([61]). The query Qtangent is expressible in FO+ POLY. D

The set A is regular in jJ if and only if there exist a neighborhood U of jJ such that
the orthogonal projection of An U on the Ti1A is bijective. A set is regular if it is
regular in all its points.

Example 4.1.1. In Figure 4.1 we have illustrated the three possible cases: TPA
does not exist, T <i A and Tr A exist, but A is not regular in q and f, and finally, A is
regular in s. D

We denote the set of points where A is regular and where the local dimension of
A is k with Regk(A). Note that Regk(A) is either empty or dimRegk(A) = k.

Define inductively for k = n, n - 1, ... , 0, the sets

n

Rk := R egk(A- LJ Rj)­
i =k+1

These sets are pairwise disjoint and form a decomposition of A, i.e.,

A = Rn U Rn- 1 U .. · U Jlo.

(4.1.1)

(4.1.2)

4.1. The Regul~r Decomposi_~i~

0

0

0

0

00

0

0 0

0 0

0

oo

35

0

Figure 4.1: A has no tangent space in ff, A has a tangent space in if and r, but is not
regular in these points, and A is regular in s.

• • • 0 0 0

• • 0 00

\ u : • 0 • 0 Oo • 0

••• • u 0 0 0 0 u
0

• • • 00
0 0 • • • • • 0 0 oo

R3 R2 R1 Ro

Figure 4.2: The three-dimensional set A of Figure 4.1 is decomposed into four parts
~,R1,R2, and R3 according to the construction of the regular decomposition.

36 _4. Geometric Properties of Semi-:_a._lgebraic ~~ts

Note that n + 1 parts are really sufficient, because for any semi-algebraic set X ~ Rn
of dimension d, X - Regd(X) has a strict lower dimension than X [72].

Moreover, by (4.1.1) each Rk is regular and hence, we define the regular decompo­
sition of A as then+ l sets Ro, .. . ,Rn. In Figure 4.2 we have drawn an example of
the regular decomposition of a three-dimensional set in R 3 •

Let S = { S}, with S an n-ary relation name. We define the n + 1 queries Q k-reg

inductively as the queries such that for every polynomial constraint database,

for k = 0, ... , n, with Ro, ... , Rn the regular decomposition of sn.
It is proved by Rannou [61], that checking whether a semi-algebraic set is regular

in a point is first-order expressible, hence, the next lemma follows.

Lemma 4.1.2. The queries Qk-reg, k = 0, l , ... , n are expressible in FO+POLY. D

Regular decompositions of semi-linear sets are fully treated in [16, 73]. It is shown
there, that on semi-linear databases, the n + l queries Qk-reg are already expressible
expressible in FO+LrN. There is however a great difference. Indeed, in the semi­
algebraic case, regularity implies that the set is a C 1-smooth algebraic variety, while in
the semi-linear case, regularity implies that the set is a C 00-smooth algebraic variety.
One could ask if it possible to define a regularity condition in first-order logic, such
that it also induces C 00 -smoothness of semi-algebraic sets, but this is impossible [78].

4.2 The Whitney Decomposition

In this section, we refine the regular decomposition of a semi-algebraic set, such
that any two points in the same part of the regular decomposition, have the same
topological type. That this not necessarily holds for regular decompositions is shown
in the following example.

Example 4.2.1. Let A ~ R 3 be the semi-algebraic set defined by the polynomial
constraint formula x 2 - z y2 • This set is known as the Whitney Umbrella. As shown in
Figure 4.3, the regular decomposition consists of two non-empty parts: R1 and R2. It
is clear that any two points in R2 have the same topological type (this will be defined
formally in the next section). However, in R1 , the topological type of the origin is
different from that of any other point in R 1 . D

To avoid such situations as in Example 4.2.1, Whitney introduced the following
condition for regular sets X and Yin Rn, and a point x EX [76, 77]. We say that
the triple (X, x, Y) has the Whitney property when the following holds. If (iJi)iEN is a
sequence of points in Y which converge to x such that the sequence of tangent spaces
Ty, Y converge to a subspace T C Rn, and if (xi)iEN is a sequence of points in X which
converges to x such that the sequence of Jines ({A(xi - Yi) I >.. E R})iEN converges to
a line e C Rn, then we must have that e CT. We say that the pair (X, Y) has the
Whitney property if (X, x, Y) has the Whitney property in every point x E X .

4.2. The ~ll_~t~11_e;y Decomposition 37

z d R1 rsJ'
y d W1 W,

X

w/'jw
Figure 4.3: The regular decomposition (top right) and the Whitney decomposition
(bottom right) of the Whitney Umbrella.

Define inductively for k = n , n - l, ... , 0, the sets

n

n

R~ := Regk(A - LJ Wi)
j =k+l

wk:= n intR~({pE R~ I (R~,p, Wj) has the Whitney property}).
i =k+l

(4.2.1)

(4.2.2)

These set Wo, .. . , Wn are pairwise disjoint and form a decomposition of A, i.e.,

A= Wn U Wn- 1 U · · · U Wo. (4.2.3)

Note that n + l parts are really sufficient, because for any two regular semi-algebraic
sets X, Y ~ Rn, the set of points of X, where (X,x, Y) does not have the Whitney
property, has a strict lower dimension than X [72].

Moreover, by (4.2.1) each Wk is regular, and by (4.2.2) (Wk, Wj) has the Whitney
property for every j > k. Hence, we define the Whitney decomposition of A as the
n + l sets Wo, . .. , Wn.

Example 4.2.2. In Figure 4.3 we have drawn the Whitney decomposition of the
Whitney Umbrella. It consist of three parts Wo, W1 , and W2 • As can be easily
verified, the topological type remains constant on each connected component of these
parts. D

Let S = {Si , S2}, with S1 and S2 two n-ary relation names. We define the query
Qwhitney, as the query such that for every polynomial constraint database Dover S,

Qwhitney(D) := {x E Rn I sf ,sf are regular

and (Sf, x, Sf) has the Whitney property}.

38 4_:_ G_eometric Properties of Semi-algebraic Sets

• •

C'1
-, • •

\~I~ • •
• •

- - -- • • •• • • • ,~ \~;;,~ I
•
• • ..

• • •

Figure4.4: An example of the Whitney decomposition compatible with R1 := {O} xR,
R2 :=Rx {O}, and R12 := {0,0).

Lemma 4.2.1 {[61]). The query QWhitney is expressible in FO+POLY. D

Let A be a semi-algebraic set in Rn. For each k = 0, ... , n, and any sequence of
i1, ... , ik E {l, . . . , n} such that i1 < i2 < · · · < ik, we define the sets R;1 ... ik := { x E
Rn I X;1 = 0, ... , Xik = O}.

We now define a Whitney decomposition Zo, ... , Zn of A such that for each con­
nected component Z of the Z;, either Z ~ R;1 ... ik, or Z nRii ... ik = 0 for any i1, . .. , ik.
We then say that Zo, ... , Zn is compatible with {R;1 ... ik}.

Define A(T1 ···<Tn := {xE A I X1a10, ... ,XnO"n0}, with a1, ... ,an E {<,=,>}. For
each n-tuple <T = (a1 , . .. , an) E { <, =, > }n, we define inductively for k = n, n -
1, . .. , 0, the sets

n

n

R'{ := Regk(Au - LJ Z3)
j = k+l

Wf := n intR;:({pE R'{ I {R'{,ff,Zj) has the Whitney property})
j=k+l

Zk := W{-cl(u
u' E{<,= ,>}"

u 1cfcu

(4.2.4)

(4.2.5)

(4.2.6)

Then we define zk := UuE{ <,= ,> }" Z'{.
These set Z0 , • . • , Zn are pairwise disjoint and form a decomposition of A, i.e.,

A = Zn U Zn-1 U · · · U Zo. (4.2.7)

Moreover, by (4.2.4) each Zk is regular, by {4.2.5) (Zk, Z3) has the Whitney prop­
erty for every j > k, and (4.2.6) ensures that the connected components of Zk lie
either completely in R;1 ... ik, or are disjoint with Ri1 ... ik, for any i1, ... , ik . Hence,
we define the Whitney decomposition of A compatible {Ri1 ... ik} as the n + 1 sets
Zo, ... ,Zn.

Let S = {S}, with San n-ary relation name. We define the n+l queries Qk-Whitney

inductively as the queries such that for every polynomial constraint database D,

Qk-Whitney{D) := Zk

4.3. Transversality 39

for k = 0, ... , n, with Zo, ... , Zn the Whitney decomposition of SD compatible
{Ri1 ... ik}.

The following lemma is immediately implied by Lemma 4.1.2 and Lemma 4.2.1.

Lemma 4.2.2. The queries Qk-Whitney, k = 0, 1, ... ,n are expressible in FO+POLY.
0

4.3 'Iransversality

In computational geometry, a convenient assumption is the hypothesis of "general
position", which dispenses with the detailed consideration of special cases. In the
description of the linearization algorithm in Section 5.2, we would like to assume this
hypothesis. However, we need to make precise what we mean by general position,
and see if this may be assumed indeed.

Let A and B be two regular semi-algebraic sets in Rn. We say that A and B
intersect transversally at p E A n B, if i

(4.3.1)

The sets A and B are in general position if they intersect transversally in every point
of An B. We denote this by A rh B. This is illustrated in Figure 4.5 and Figure 4.6
where some examples of transversal and non-transversal intersections in R2 and R 3

are depicted.
Let A = {Ai, ... ,An} and B = {Bi, ... ,Bm} be finite sets of regular semi­

algebraic sets in Rn such that Ai n Ai = 0 (Bin Bi = 0) for i =j:. j . We say that A and
B are in general position if Ai and Bj are in general position for every i = 1, ... , n
and every j = 1, ... , m. We denote this with A rh B.

Let S = {Si, S2}, with Si and S2 two n-ary relation names. We define the Boolean
query Qrt,, such that for every polynomial constraint database Dover S,

Qrt,(D) := true if and only if Sf and Sf] are regular, and Sf rh Sf].

Condition (4.3.1) can be readily expressed in FO+POLY, and by Lemma 4.1.2, regu­
larity is expressible in FO+PoLY. Hence:

Lemma 4.3.1. The Boolean query Qrt, is expressible in FO+POLY. 0

Given two arbitrary regular semi-algebraic sets A and B in Rn which are not
in general position, we can ask how to force them to be in general position? The
following theorem answers this question. A translation of a set X c Rn is a set of
the form X + T := {x +TE Rn IX EX}, where TE Rn.

Theorem 4.3.1 ([33]). Let A and B two regular semi-algebraic sets in Rn. For
almost all T E Rn, we have that A+ T and B are in general position. 0

1 Let U and V be two subspaces of a vector space X, then the sum U + V is the set of all vectors
i1 + v, where i1 E U and v EV. Besides, U +Vis a subspace of X.

40 4. Geometric Properties of Semi-algebraic Sets

>< Q X
transversal nontransversal

Figure 4.5: Curves in R 2 .

transversal nontransversal

transversal nontransversal

Figure 4.6: Curves and surfaces in R 3 •

Here, "almost all" means that the set of translation vectors 7' for which A + r and
B are not in general position has measure zero. 2 Since a set of measure zero cannot
contain an open set in Rn, the set of translation VECtors 7' for which A + T and B
are in general position is dense in Rn.

Actually, in [33], Theorem 4.3.1 is proved for C00-smooth varieties in Rn. However,
every regular semi-algebraic set admits a decomposition into a finite number of C00

-

smooth varieties, called the Nash decomposition [8]. So the case of regular semi­
algebraic sets can be reduced to the case of C00 -smooth varieties.

Moreover, Theorem 4.3.1 can be easily generalized as follows:

Corollary 4.3.1. Let A= {A1 , .. ,,An} and B = {B1, .. ,,Bm} be finite sets of
regular semi-algebraic sets in Rn such that Ai n Aj = 0 {Bin B j = 0) for i -:/- j. Then
for almost all T E Rn, A + T rh B. D

We mention two useful properties of sets in general position: Let A and B be as
above, then if A rh B, then there exists an e > 0 such that A + r m B for any r E R n
of norm less than e. One says that transversality is a stable property [33]. A second
useful property is that the intersection of two regular sets in general position, is again
regular.

2 A set in R n has measure zero if it can be covered by a countable number of n-dimensional boxes
with arbitrary small volume.

4.4. The Cone Radius 41

h --
AnlBI Cone(A n 8IBl,p)

Figure 4.7: The local conic structure of semi-algebraic sets.

4.4 The Cone Radius

Let A be a semi-algebraic set in Rn, and pbe a point in Rn. We define the cone with
base A and top pas the union of all closed line segments between p and points in A .
Formally, this is the set= {tb + (1 - t)p I b E A,O ~ t ~ l} and we denote this set
with Cone(A,p).

Consider a 2n-tuple B = (a1,b1, .. . ,an,bn) E R 2n with ai::;; bi for each i . One
can associate with each such tuple an n-ary relation IBI in Rn:

IBI := {(xi, ... , Xn) E Rn I (a1 ::;; X1 :::; b1) /\ .. · /\ (an ::,; Xn ::;; bn)},

We call Ba box in Rn and IBI is the geometric realization of B. The dimension of
a box is the maximal number of pairs (ai, bi) with ai -:j:. bi. The diameter of a box
B, diam(B), equals (L~=1(bi - ai)2)1/2. The center of Bis the point (a1 + (b1 -
a1)/2, ... ,an+ (bn - an)/2).

We define a cone radius of A in a point p E cl (A) as a positive real number c such
that if B is an n-dimensional box in Rn with

l. p E int(IBI); and

2. IBI ~ (p1 - €,Pi+ c) X · · · X (pn - €,Pn + c),

then, An IBI is homeomorphic to Cone(A n 81Bl,.P), in case p E A, and An IBI is
homeomorphic to Cone(A n olBl,p) - {p}, in case p E cl(A) - A (see Figure 4.7).

Two points p and if have the same topological type (with respect to A), if An
Bn(p, cv) is topologically equivalent to An Bn(if, €if), where cp (cij) is a cone radius
of ff (ijJ .

Let S = { S}, with S an n-ary relation name. We define a cone radius query
Qradius, as a query such that for every polynomial constraint database Dover S,

Qradius(D) := {(ff, r) E cl(SD) x RI r is a cone radius of SD in p},

and such that for every p E cl(SD) there exists a pair (ff, r) E Qradius(D).

Theorem 4.4.1 (Local Cone Structure). Let A be a semi-algebraic set in Rn,
and let p be a point in cl(A). Then there exists a cone radius of A in p.

42 4. Geometric Properties of Semi-algebraic Sets

A
0
C3 ,

I
I

Figure 4.8: The point Co is a critical point of fs(x,y,z) = (p3 - x3)2, c1 , and <:Sare
critical points of fi(x,y ,z) = (p1 - x1)2, and c3 is a critical point of h(x,y,z) =
(p1 - x1) 2 + (p2 - x2)2 + (p3 - x3)2. Since no critical point of the functions /i for
i = 1, ... , 7, lies inside the box B = (p1 - e,P1 + e,P2 - t:,P2 + t: , Pa - e ,Pa + t:), every
number smaller than e is a cone radius of A in p.

Proof. Let Zo, . .. , Zn be the Whitney decomposition of A compatible with {Ri, ... i1., }.
Let x = (x1, .. ,,xn) E Rn, and define /i(x) = (P1 - x1)2, .. . ,fn(x) = (pn -
Xn)2, f n+l (x) = (p1 - X1)2 + (p2 - x2)2, .. , , f m(X) = (pn- 1 - Xn- 1)2 + (pn - Xn)2,
fm+1(X) = (p1 -x1)2 + (P2-x2)2 + (Pa -xa)2,, ·, , ft(x) = (p1 -x1)2 +' · ·+ (pn -Xn)2 ·

Let e > 0 and let Ebe an n-dimensional box (p1 - t:,P1 + t:, . . . ,Pn - t: ,Pn + e:),
such that for i = 0, ... , l and k = 0, . .. , n, the restrictions

hl((Zk n IEI) - J; 1 (0)) --+ R have no critical points. (4.4.1)

Here, the critical points of filZk are the points x E Zk where the differential mapping
dxUilZk) is not surjective.

Claim 4 .4 .1. There exists a positive real number e such that (4.4,1} holds.

Proof of Claim. A critical value of filZk is the image by fi lZk of a critical point. The
set of critical points of filZk is semi-algebraic and admits a C1-cell decomposition
C = {Ci, .. . ,Cm} such that filCi is C1 [71]. Sard's Theorem for C1-mapping [79]
implies that each filCi attains only a finite number of values. Hence the image by
fi lZk of the set of critical points is finite. This is true for every i = 1, .. . , £ and every
k = 0, . .. , n. Denote with Tik the minimal positive critical value of fi lZk . (If this not
exists, set rik = 1.) Then any e < min{~ Ii = 1, .. . ,£, k = 0, . .. , n} is such
that (4.4.1) is satisfied. D

We can actually give a geometric interpretation of the critical points.

Claim 4.4 .2. A point x E Rn is a critical point of filZk, with f i = (Pi, - xii)2 + · · ·+
(pi,.,. - Xi,,,)2 , if and only if the tangent space of Zk in x is orthogonal to (0, ... , Pi1 -

XiJ, · · ·, Pim - Xi.,,) • · •) 0),

4.4. The Cone Radius 43

Proof of Claim. We assume that /i = Xi+···+ x~, the other cases being similar.
We compute the differential dx(fi/Zk) as follows: Locally around x, we may assume
that the projection on the first k coordinates II : Z-+ U C Rk, is a homeomorphism.
By definition of the differential, dx(fi /Zk) = (d(x, , ... ,xk)9)(d(x, , ... ,xk)rr- 1)- 1, where
g = (/i/Zk) o rr- 1. By the C1 Inverse Function Theorem, we may assume that rr-1 :
U-+ Z: (X1, ... ,Xk) 1-t (x1, .. ,,Xk,lpk+1, .. , ,cpn), where <pi(X1, .. ,,xk) are C1 -

mappings, and hence g : U r-r R : (X1, ... , x k) = I::=l (pi - Xi)2 + I:;:k+l (pj - <pj (X1,
... , xk))2. An elementary calculation shows that the differential of fi/Zk in xis the
vector

Since d(x,, ... ,xk)rr-1 is an isomorphism between the tangent space T(x,, ... ,xk)U of U in
the projection II(x) , and the tangent space TxZ of Zin x, any tangent vector (v1 , ... ,

vn) E TxZ is of the form (d(x,, ... ,xk)II-1)(v1, .. . ,vk), More specifically, any tangent
vector v E TxZ can be written as

Hence, the product

is equal to 2 I::1 (xi - Pi)Vi· This implies that the differential mapping d;;(fi/Zk) is
not surjective if and only if 2 I::1 (pi -xi)Vi = 0 for all tangent vectors v E TxZk. D

The proof of the theorem now continues as follows. If (4.4.1) is satisfied, then for
any n-dimensional box B = (p1 -a1,P1 +b1, ... ,Pn-an,Pn +bn), such that /B/ ~ /E/
there exists a homeomorphism

h: An /B/ -+ Cone(A n 8/B/,p).

The homeomorphism h is obtained as follows: By the construction of the Whitney
decomposition Zo, . .. , Zk, each Zi is the disjoint union of Zf for a E { <, =, > }n.

For each Zf, set
f[= -grad(/j /Zf').

Here /j is chosen so that if Ri, ... ik is the smallest set (in dimension) such that Zf ~
R;, ... ik, then /j(x) = x~, + ... +x~, with iL ... ,i~-k E {1, ... ,n}- {i1, ... ,ik}

l n-k

(see Figure 4.9). Recall that the gradient vector field grad(/ /X) is defined as a
mapping from X -+ UxEX Tx X such that (dxf/X)w = grad(//X)(x)w for all vectors

44 4. Geometric Properties of Semi-algebraic Sets

Figure 4 .9: The vector fields f{ for the case that A = R2 and p = (0, 0) . Here,
e= = ~<= = (- 2x,O), ~=< = ~=> = (0,-2y), and e> = e< = ~<> = ~<<
(-2x, - 2y).

'WE T'"X. Clearly grad(JIX)(x) = 0 if and only if xis a critical point of /IX. On
each stratum Zf , we can obtain a continuous flow B'[, i.e., a continuous mapping
IX (Zf n BIBI))-+ zr n IB I with IC R, such that B'[(O,xo) = Xo, and

dB'{(t, xo) = C'! (B'! (....)) dt <,,, , t, Xo ,

for all x0 E Zf n BIBI. Moreover, by (4.4.1), the vector field ~f = -grad(filZk) is
nowhere vanishing on Zin IBI and points to a direction of decreasing /j.

In general we cannot expect to obtain a continuous flow on the set A by just
putting the flows B'[together. However, by (4.4.1), the Whitney decomposition of
IBI compatible with {Ri1 ... ik} is transversal with Zo, ... , Zn. Hence, we obtain a
Whitney decomposition Yo, . .. , Yn of An IBI compatible with {Ri1 .. . ik} (Lemma
1.3, [26]). By Lemma I.1.3, [66], there exists a controlled tube system To, .. . , Tn of
Y0 , • • • , Yn, By Lemma I.1.5, [66], we can use this tube system to modify the vector
fields ~'[inductively on the dimension of ~ such that

1. the resulting vector fields point to a direction of decreasing /j (for the appro­
priate /j); and

2. the flows of the resulting vector fields can be put together to get a continuous
flow e : I X (An BIBI) -+An IBI,

For each t E (0, 1], define the box Bt = (P1 + t(a1 - P1),P1 + t(b1 - pi), ... ,Pn +
t(an - Pn),Pn + t(bn - Pn)). Because for each point xo E An BIB I, the flow 0(t, xo)
has no tangent line parallel to the coordinate axis (Claim 4.4.2), and approaches p
for increasing values of t, we obtain the homeomorphisms

ht : An BIBI-+ (An IBI) - {p}: x ~ e(x) n BIBt l,

where B(x) = {x1 EA n IBI I :3t0(t,x) = x}.

4.4. The Cone Radius 45

Since the cylinder (O, 1] x (An alBI) is homeomorphic to the cone Cone(A n
alBl,p) - {p}, e.g., by the homeomorphism

h2(t,x) == (1- t)fJ+ tx,

we obtain a homeomorphism

h3 := h2 0 h-;- 1
: (An IBJ) - {p}-+ Cone(A n alBl,p)) - {p}.

The homeomorphism h3 can easily be extended to the point jJ, resulting in the desired
homeomorphism h. D

We remark that this theorem was already known for semi-algebraic sets in a2 ,

but the proof technique used there was specific for two dimensions [49].

Theorem 4.4.2. There exists an FO+POLY expressible cone radius query.

Proof. As is clear from the proof of Theorem 4.4.1, we can define the following cone
radius query Qradius, such that for every polynomial constraint database D over S,

Qradius(D) := {(jJ,r) E an X a I pE cl(SD) and r E (O,c)},

where c is such that (4.4.1) in the proof of Theorem 4.4.1 is satisfied. Let us express
this query in FO+POLY.

We define the critical point query Qcrit, such that for every polynomial constraint
database D over S,

Qcrit(D) := {(p,x) E an X an I PE cl(SD)

and x E Qk-Whitney(D) for a some k

and xis a critical point of !ilQk-Whitney(D) for a certain i}.

The critical point query Qcrit can be easily expressed in FO+POLY. Indeed, the
consider the following formula cri t(p, x):

closure(p)
n + l

/\ V (Vv(tangent(k-Whitney)(x, v) -+ (pl - xi)v1 = 0)) V ...

k= O
V (Vv(tangent(k-Whitney)(x, v) -+ (Pn - Xn)Vn = 0))
V (Vv(tangent(k-Whitney)(x, if)

V (Vv(tangent(k-Whitney)(x, v)

V (Vv(tangent(k- Whitney)(x, v)
-+ (p1 - X1)v1 + (p2 - X2)V2 + (p3 - X3)v3 = 0)) V · · ·

V (Vv(tangent(k-Whitney)(x, v)
-+ (p1 - X1)V1 + · · · + (pn - Xn)Vn = 0)).

46 4. Geometric Properties o_! Semi-alg~braic Set_5-

This formula expresses Qcrit correctly by Claim 4.4.2. Here, closure denotes the
FO+PoLY formula expressing the query which returns the closure of the polynomial
constraint database, k-Whitney denotes an FO+POLY formula expressing Qk-Whitney

for k = 0, ... , n (Lemma 4.2.1), and tangent is an FO+PoLY formula expressing
Qtangent (Lemma 4.1.1) .

The query which returns the set of critical values is expressible in FO+POLY by
the formula

val(p,r) = :lx(crit(p,x) /\ U1(x) V · · · V fe(x))) ·

We therefore conclude that the query expressed in FO+PoLY as

radius(p,r) = Vr'(val(p,r') -tr< r'),

is a cone radius query, as desired. D

In the result of the cone radius query radius(D), each point p E cl(SD) is asso­
ciated with a continuum of cone radii of sn in p'. However, by definable choice [71],
for each point p, we can select a unique representant rv in {r I (j,r) E radius(D)}.
Hence, there exists an FO+POLY formula uniqueradius over S, such that for each
point pE cl(SD), there exists a unique cone radius r, such that the pair (p,r) is in
uniqueradi us(D).

We define the following polynomial constraint formula:

'Ycone,A : cl(A) -t R: pt-t rp, (4.4.2)

such that (p, rv) E uniqueradius(D), with D a database over S such that SD = A.

4.5 The Uniform Cone Radius Decomposition

Although every point of a semi-algebraic set has a cone radius which is strictly greater
than zero (Theorem 4.4.1), we are now interested in finding a uniform cone radius for
a semi-algebraic set. We define a uniform cone radius of a semi-algebraic set A~ Rn
as a real number t:A > 0 such that t:A is a cone radius of A in all points of A. For
any X ~ A ~ Rn, we define a uniform cone radius of X with respect to A, as a real
number c: > 0 such that c: is a cone radius of A in all points of X.

A first observation is that a uniform cone radius of a semi-algebraic set does not
always exist.

Example 4.5.1. Consider the set shown in Figure 4.10. We have drawn the maximal
cone radius around the points p1 , p2 , p3 , p4 , and p5 • It is clear that the closer these
points are to the point p, the smaller their maximal cone radius. Because we can
make the maximal cone radius arbitrarily small by taking points very close top, we
may conclude that the set shown in this figure has no uniform cone radius. D

Let A be a semi-algebraic set in Rn. Let U0 , •.• , Um be a finite set of pairwise
disjoint semi-algebraic sets in Rn, which satisfy the following conditions:

4.5. The Uniform Cone Radius Decomposition 47
- --- --- - - -~----

Figure 4.10: Example of a semi-algebraic set which does not have a uniform cone
radius.

• The sets Ui, for i = 0, ... , m form a decomposition of cl(A),i.e.,

cl(A) = Uo U · · · U Um.

• For any m-tuple (c:o, ... , c:m) of positive real numbers, and for i = 0, .. . , m, the
sets

m

Ui- LJ U? (4.5 .1)
i =i+l

have a uniform cone radius with respect to A if they are nonempty. 3

We say that t he sets Uo, ... , Um form a uniform cone radius of A. We now construct
a uniform cone radius of A. For any closed subset X C cl(A), we define

rnc(X) := {pE XI 'Ycone,A Ix is not continuous in p}. (4.5.2)

Let Ao := cl(A), and let Ai+i := cl(rnc(Ai)) n Ai . We define inductively fork=
0, 1, ... , m, the sets

(4.5.3)

Lemma 4.5.1. For each semi-algebraic set X C cl(A) in Rn, the set r nc(X) is a
semi-algebraic set in Rn and

dim(r nc(X)) < dimX.

3We define the 1,-neighborhood of a semi-algebraic set A <:;; Rn as

48 4. Geometric Propert!e_s __ of Semi-algebraic Sets

Proof. The set

rnc(X) = {pE Rn I (3c > O)(\f8 > 0)(3p E Rn)(p EX n Bn(p,8)

I\ l'Ycone,A (jJ') - 'Ycone,A (p) I ;::, €)},

is clearly semi-algebraic. This proves the first assertion.
We prove the second assertion by contradiction. Let d = dim X and suppose that

dim(I'nc(X)) = d, then there exists a semi-algebraic cell V ~ I'nc(X) of dimension d.
By the Cell Decomposition Theorem of semi-algebraic sets [71, Theorem 2.11] there
exists a semi-algebraic cell decomposition of V into a finite number of semi-algebraic
cells,

V = Vi U · · · U Vk U Vk+i U · · · U Vt,

with dim(Y;) = d for i = 1, ... , k and dim(Vj) < d for j = k + 1, ... , £, such that

'Ycone,A Iv. is continuous for every i = 1, . .. , £. (4.5.4)

Since V; c V has dimension d for i = 1, ... , k, Vi is open in V, and Vi is also open in
X for i = l, ... ,k. From (4.5.4) we deduce that each Vi for i = 1, ... ,k is included
in X -I'nc(X) which is impossible since V ~ I'nc(X). Hence, dim(I'nc(X)) < d. D

An immediate consequence of this lemma is that there are at most n + l nonempty
sets Ci (or, m ~ n).

We now prove that for any tuple (co, .. . , cm) of positive real numbers, the sets

for i = 0, 1, ... , m,

have a uniform cone radius if they are nonempty. Since Cm = Am is closed, 'Ycone,A (Cm)
is also closed and therefore has a minimum which is positive. Hence, Cm has a uniform
cone radius. For i > 0, we have the inclusion

(4.5.5)

where T) < min{co, ... ,cm}· Let Z = ~i -A41 . Z is closed and 'Ycone,A lz is
continuous. Hence, 'Ycone,A(Z) is closed in R, and has a minimum which is strict
positive. We may conclude that Z has a uniform cone radius, and by (4.5.5) so has
the Ci - LJ;i+1 C?. So, Co, ... , Cm is a uniform cone radius decomposition of cl(A).

In Figure 4.11, we have shown the uniform cone radius decomposition of Exam­
ple 4.5.1.

Let S = {S}, with San n-ary relation name. We define the n+l queries Qk-uniform,
such that for every polynomial constraint database over S,

Qk-uniform(D) := Ck,

4.6. Box Collections 49

Figure 4.11: The points Pi, P2, p3, p4, and p5 form the part Co which has €1 as
uniform cone radius. As can be seen, the set C1 = A - cg0 has a uniform cone radius
€1.

fork= 0,1, ... ,n, with Co, ... ,Cn (with Cm+l = ··· = Cn = 0) being the uniform
cone radius decomposition of sn.

Because the graph of the mapping 'Ycone,SD equals uniqueradius(D), and by Theo­
rem 4.4.2 uniqueradius is a formula in FO+POLY, the following lemma is immediate.

Lemma 4.5.2 . The queries Qk-uniform, k = 0, 1, ... , n are expressible in FO+POLY.
D

4.6 Box Collections

We need one more ingredient before we can start explaining the linearization algo­
rithm. Until now every geometric property we discussed in this chapter was first-order
expressible. In this section, we will construct a collection of boxes covering a set in
Rn. We will see that this covering cannot be computed in FO+PoLY, but we show
how to compute it in FO+POLY+TC.

We define an-dimensional box collection l3 in Rn as a finite set of n-dimensional
boxes satisfying an intersection condition: Let B1 and B2 be two arbitrary boxes in
B. Then, if IB1 I and IB2 I intersect, the intersection is included in their boundaries
8IB1 I and 8IB2 I- By the geometric realization IBI of B, we mean the union of the
geometric realizations of all boxes in B.

Let D be a set of n-dimensional boxes, which does not necessarily satisfy the
above intersection condition. In the following, we show how to split in FO+ POLY
the boxes in D into smaller boxes, such that the collection of these smaller boxes
is a box collection. We call this the box collection of D, and denote it with V. By
construction, the geometric realization of each box in D is the union of the geometric
realizations of certain boxes of V.

We first give an example of the construction and then present the general con­
struction more formally.

Example 4 .6.1. Fix the dimension n 2, and consider the set D consisting of

50 4. Geometric Properties of Semi-a!g~braic Sets

' ' ' ' I ' ' ' ' -- - -- ..._ - - - - -

IB1I IBsl: IBol
Hs -- - - - --- - - - -

IB4 I IB&I !Bal

--- -- -- -
IB1 I; ID2I IB3I :

' ' ' ' I ' ' I ' IDI

Figure 4.12: A two-dimensional example of the construction of a box collection for
two boxes in the R2 .

two boxes (0,2,0,3) and (1,3,1,4). The geometric realization ID I of Dis depicted
in Figure 4.12. In this figure, two sets of lines 1iv,x = {H1,H2,H3,H4}, and
1iv,y = {Vi, Vi, Vi, Vi}, are drawn. Denote the intersection LJ1iv,x n LJ1iv,y by I.
In this example, I consists of 16 points {.Pt, ... , .P16}. From these points we construct
the set P which contains the 9 two-dimensional boxes denoted by Bi, i = 1, ... , 9.
The geometric realizations of these boxes are shown in the figure. As can be seen,
these boxes intersect only at their boundaries, and hence form a two-dimensional box
collection. Finally, we define the box collection 1) of D as the boxes included in IDI,
i.e., TJ = {B1 ,B2,B4,B6,B6,Bs,B9}. D

In general, we define n sets of (n - 1)-dimensional hyperplanes

for i = 1, ... , n . Let I c Rn be the finite set of points

u 1iv,1 n · · · nu 1iD,n·

Next, we construct a n-dimensional box collection, which we denote by P, such that
the geometric realization of each box in D is the union of the geometric realizations
of boxes in P. More specifically,

P := {(a1, b1, ... , an, bn) E R 2
n I 3p1, 3qj_, ... , 3pn, 3/fu E J

n

I\ (ai = (.Pi)i I\ bi = (IJi)i I\ ai < bi)
i = l

n

I\ (Vr E J f\ -,(ai < (r)i < bi))}.
i=l

Finally, we define 1) as those n-dimensional boxes B in P such that JB I is included
in the geometric realization of any of the boxes in B. By construction, 1) is a box
collection, and the geometric realization of any box in D is the union of the geometric

4.6. Box Collections 51

t-10- 11 12
15 I 18 21 24

7 8 g

14 17 20 23

1
4 5 6 I

13 16 19 22 I

2
- - .. 3

Figure 4.13: The set IDI - IDl2 (left). The one-dimensional box collection P., U Py
where the line segment Li is labeled with the number i (center). The set ID lo (right).

realizations of certain boxes in D. The construction of 1) for a given D , can be
expressed in FO+POLY, as is clear from the above expressions for 1-lD,i and P.

This construction can also be applied to the union of box collections, D U D'. We
will denote the resulting box collection by 1) LJ D'.

Example 4.6.2. (see Figure 4.12 and Figure 4.13). Let us return to the previous ex­
ample. Let IDl2 be the set in R2 defined by uiE{l,2,4,5,6,8,9} int(IBil) Consider the set
ID I- IDl2 and define P., to be the set of horizontal line segments Li, with i = 1, __ ., 12,
and let Py be the set of vertical line segments L i, with i = 13, ... , 24. The line seg­
ments Li can easily be defined from the points in I and form a one-dimensional box
collection. We define 1)

1 to be the box collection consisting of boxes in P., UPy, which
are contained in 1v1. Next, define IDl1 to be the set uiE{l , ... ,24}-{3,10,12,15} int(ILi j).
Here, when taking the interior, we regard each !Li l as a space on itself, so the result
is an open line segment without the endpoints (as opposed to the empty set when we
would regard each ILi l as a set in R 2

). Now, IDI - IDl2 - IVl1 is a subset of I , which
we denote by IVlo- Hence, we have obtained a decomposit ion of IVI .

This decomposition is important for two reasons. First, the geometric realization
of each box of D is the disjoint union of the interiors of the geometric realizations
of certain boxes in 1)2, 1)1, and v0 • Secondly, the interiors of boxes in 1) are open
subsets of Reg2(IVI), the interiors of boxes in V1 are open subsets of Reg1(IVI-IVl2),
and finally IVlo equals Rego(IVI - IVl2 - IDl1). D

In general, the construction of this decomposition goes as follows. For k =
0, 1, .. . ,n and any combination of k different elements ii, ... ,ik in {1, . .. ,n}, we

52 4. Geometric Properties_ of Semi-algebraic Se~s

define the following set of n - k-dimensional boxes in Rn:

iE{l, ... ,n }- { i1 , ... ,ik}

n

/\ VrE If\ ,(ai < (fJi < b;))
i= l

/\ I\ (ai = (jli)i /\(bi= (IJi);) /\a;= b;)}. (4.6.1)
iE{i1, ... ,ik}

Note that P(l, ... ,n) = I, and P0 = P. It is clear that these sets are expressible in
FO+POLY. We also define for k = 0, 1, ... , n and any combination of k different
elements i 1 , •.. , i k in { 1, ... , n}, the following n - k-dimensional box collection in Rn:

D(i1 , ... ,ik) := {(a1, b1, ... , an, bn) E P(i1, .. ,,ik) I /\3(ai' bi' ... ' a~, o~) ED
n

/\ I\ (a~ :;,; a;/\ bi :;,; Vi)}.
i=l

We then define
vn-k := u 1)(i1, .. ,,ik)'

(i1, .. ,,ik)

Finally, for k = 0, 1, .. . , n, we define IDln-k as the union of the interiors of the
geometric realizations of boxes in vn-k. Here, when taking the interior, we regard
each geometric realization of a box as a space on itself, so the result is an open box.
By construction, we have the following properties:

1.

IDI = I Din U · · · U ID lo; (4.6.2)

2. each geometric realization of a box in 1) is the union of the geometric realizations
of boxes in IDlk, fork = 0, 1, ... , n; and

3. the geometric realizations of boxes in l7Jlk are open subsets of R egk (l1Jl - l1Jln -
... - IDIH1).

4. 7 Expressing the Box Covering Query

Let 8 > 0 be a real number. We define the n-dimensional standard grid of size 8 as
then-dimensional box collection 8-grid consisting of all boxes of the form (k18, (k1 +
1)8, ... , kno, (kn + 1)8), where k1, k2 , •• • , kn E Z. We define the box covering of size
8 of a semi-algebraic set A, denoted with 8-cover(A), as those boxes in 8-grid, which
intersect the closure of A (see Figure 4.14). Let S = {S}, with S an n-ary relation

'!: 7. Expressi11_g_t~~B0x Cove~n~ Que~y __ _ 53

y

V

' I I\

I\

I.I

1
-t-+-+-+--1-+'-1 ~,...,,.. -H-!-"f +-+-+-+-+-+•x

Figure 4.14: The 6-cover of a semi-open annulus for 6 = 1.

name. We define for each 6 > 0, the box covering query Q.s.cover, such that for every
constraint database Dover S,

Q.s-cover := 6-cover(SD).

Proposition 4 .7.1. Let 6 > 0. The query Q.s -cover is not expressible in FO+POLY.

Proof. Let S = {S}, with S a binary relation name. We consider the following
FO+POLY formula over S: a formula circle such that for any database D over
S, either circle(D) is the circle through the points of SD, if SD consists of three
non-collinear points, or circle(D) = SD.

Assume that the query Q.s-cover is expressible in FO+ POLY. Let 6-cover be the
formula which expresses Q.s-cover· Then the formula cp = 6-cover(circle) is also
expressible in FO+PoLY. However, the number of 4-tuples in cp(D) can be made
arbitrarily large by choosing D to be a database over S, such that SD consists of
three points far enough apart. This contradicts the Dichotomy Theorem of Benedikt
and Libkin [6], which guarantees the existence of a polynomial Pep such that /cp(D)/ <
Pcp(/SD/) = Pcp(3) in case /cp(D)/ is finite. D

However, in FO+PoLY+ TC we can express the box covering query:

Proposition 4.7.2. For each 6 > 0, the query Qo-cover is expressible in FO+ POLY+TC
when restricted to bounded input databases.

Proof. Let S = { S}, with S an n-ary relation name. Let D be a database over
S such that SD is bounded. Let boundingbox(x) be a formula over S with the
property that boundingbox(D) = {M}, with M the minimal real number such that
cl(SD) ~ [-M, Mr. It is clear that boundingbox E FO+POLY (see Example 2.1.5).
Let

grid(u) = [TC:i:;x':3M(boundingbox(M) /\ x ~ 0

I\ x1 = x + 6 I\ x1
::;;: M](O, u) V u = 0.

54 4. Geometr!c Properties of Semi-algebraic Sets

Let

n

8-cover(u1, V1, ... , Un, Vn) = I\ (vi= ui + 8 I\ grid(ui))
i = l

n

A 3x(cI(S)(x) A/\ ui <xi< vi)-
i= l

Then Oo-cover(D) = 8-cover(D) for any database Dover S such that SD is bounded.
D

5
Linearization and
Approximation

In this chapter, we give a construction of both an algebraic linearization and an c­
approximation of semi-algebraic sets which are implementable in FO+PoLY+TC.
This implementation is based on the construction of a box collection satisfying some
special properties. More specifically, it is shown in Section 5.1 how to construct such a
box collection. In Section 5.2 we develop an algorithm LINEARIZE-IN-n-DIMENSIONS,
which uses this special box collection to build the algebraic linearizations and the
c-approximations of bounded semi-algebraic sets. In the same section, we prove the
correctness of the algorithm LINEARIZE-IN-n-DIMENSIONS. We also show how to ex­
tend this algorithm such that it also builds algebraic linearizations of possibly un­
bounded semi-algebraic sets. Finally, in Section 5.3 we show that after some minor
changes, the algorithm LINEARIZE-IN-n-DIMENSIONS can be used to build rational
linearizations and c-approximations of semi-algebraic sets.

5.1 Construction of a Special Box Collection

Let B be an n-dimensional box collection in Rn, and let X = {X1 , ... ,Xd be a finite
set of pairwise disjoint semi-algebraic sets in Rn. We now define when B and X are in
general position. We are going to decompose IBI and X into a finite number of regular
sets, and then define "being in general position", in terms of these decompositions.

In (4.6.2), we defined a decomposition of a box collection into regular sets. Applied
to IBI, this results in the decomposition IBln, .. . , 1Blo, where IBli is a union of interiors
of i-dimensional boxes in Rn. Similarly, in (4.1.2) , we defined a decomposition of semi-

55

56 5. Linearization and Approximation

algebraic sets into regular sets. Applied to each Xi, for i = 1, ... , k, this results in
the decompositions R;,n, . . . , R;,0 , where R;,i is a j-dimensional regular set in Rn.

We say that l3 and X are in general position if and only if {IBln, . . . , IBlo} and
{R1,n, ... , R1,o, ... , Rk,n, . .. , Rk,o} are in general position.

5.1.1 Base Case: n-dimensions

Let A be a bounded semi-algebraic set in Rn.

Statement of the requirements Let C ={Co, . .. ,Ck} be a finite set consisting
of the parts of the uniform cone radius decomposition of A, as defined in Section 4.5.
Let l3 be a fixed n-dimensional box collection in Rn, which is in general position with
u.

We will construct a box collection n and a positive real number 8, such that the
following properties are satisfied:

(i) cl(Co U · · · U Ck}°~ int(IRI);

(ii) for all r E Rn of norm less than 8, ('R + r) U l3 m {Co, ... , Ck}; and

(iii) for all r E Rn of norm less than 8, and for each n-dimensional box B E ('R+r) U

!3, int(IBI) n (Co u · · · uCk) -:/, 0, and for any point pE int(IBI) n (Co u · · · UCk),
"/cone(.pJ > diam(B).

Construction We construct n inductively on the number of parts in C. For the
base case, i.e., when A is the empty set, we let n be the empty box collection. The
properties (i),(ii), and (iii) are then trivially satisfied.

Next, suppose that C consists of k + 1 parts. By induction, there exists a n-
dimensional box collection 'R' and a positive real number 81

, such that

(i)' cl(C1 LJ • • • LJ ck)'i' ~ int(IR'I);

(ii)' for all r E Rn of norm less than 81
, ('R' + r) U l3 m {Ci, ... , Ck}; and

(iii)' for all r E Rn of norm less than 8', and for each n-dimensional box BE ('R,1 +
r)UI3, int(IBl)n(C1U· · ·UCk) -:/, 0, and for any point p E int(IBl)n(C1 U· · ·UCk),
'Ycone(.pJ > diam(B).

First step: extending n1 We extend 'R' to a box collection 'R11 such that cl(C0 U
· · · U Ck) 011 ~ int(l'R"I) for some 811 > 0.

All points of Co that can become uncovered by translating l'R'I by a vector r with
llrll < f are included in the following set.

V := Co - (l'R'I - (8l'R' I) ~).

5. ! ._ Co~s~ruction of a Special Box Collection _ 57

IV

l'R.'I

IR' IUIVI IR'uv1 IR" I

Figure 5.1: Extending R' to R", keeping R' intact.

By (i)', the minimal distance from any point in C1 U · · · U Ck to the boundary a(IR' I)
is greater than or equal to 8'. This implies that

and hence, because Co, ... , Ck is a uniform cone radius decomposition, there exists a
uniform cone radius, cv, of A for the set V. Let V be

4
e7n-cover(V) such that

diam(B) = '°; < cv (5.1.1)

for any box B EV. The reason why we take this specific box covering is that the box
collection, which we are constructing, must satisfy property (iii).

We now take the union R' U V. However, since R 1 already has the desired prop­
erties, we only want to add boxes outside IR' I. This can be done, as illustrated in
Figure 5.1, by performing the following steps: First, take the union R' U V, which is
shown in the middle of Figure 5.1. Next, remove then-dimensional boxes in R 1 UV,
whose geometric realization is included in IR'I, and finally, add the boxes in R' again.
The resulting box collection, R", is shown at the right in Figure 5.1.

We now show that there exists a positive real number 811 such that (i) holds for
R" and 811

•

We partition Co u · · · u Ck into three parts: C1 u · · · u Ck, V, and W := C0 n
(IR'I - (olR'l)f). By the induction hypothesis,

•' cl(C1 U · · · U Ck) 3 ~ int(IR'I) ~ int(IR"I). (5.1.2)

We shall need the following property.

Claim 5.1.1. Let X and Y be two sets in Rn. If X is bounded, then cl(X) ~ int(Y)
implies that there exists a positive real number€ such that cl(Xt ~- int(Y).

Proof of Claim. Suppose that for any m E N , m > 0, cl(X)1/m ~ int(Y) . Then
there exist two sequences of points (xm) E cl(X) and (iim) E (Rn - int(Y)), such
that llxm -17ml l < 1/m. Since cl(X) is compact, the sequence (xm) has a convergent
subsequence (xmk). Let x E cl(X) be the limit point of this sequence. Since Rn -
int(Y) is closed, the corresponding sequence (iimk) has also a limit point ii E (Rn -
int(Y)). However, x must be equal to ii, but this is impossible by the assumption
that cl(X) n (Rn - int(Y)) = 0. D

58 5. Linearization and Approximation

lh.

.,.

Figure 5.2: A box collection (left) is brought into general position with the thick curve
by translating it (right).

By definition of a box covering, cl(V) ~ int(IVI) ~ int(IR,,I). Since A is bounded,
V is also bounded. By Claim 5.1.1, there exists a positive real number 1/ such that,

cl(V)7l C int(l'R/' I).

We now prove that Claim 5.1.1 can also be used for W.

Claim 5.1.2. cl(W) ~ int(IR'I)

(5.1.3)

Proof of Claim. Suppose that there exists a point pE cl(W) such that p(/. int(IR'I).
Let m E N, m > 0, and let (jfm) be a sequence of points in W, such that I IP - Pm 11 <
1/m. By the definition of W, for all points in r E 8\R'\, llr-Pmll;;:: f, for all m EN.

Now, every line segment A.Pm + (1 - >..)p, for O ,::;; >,. ,::;; 1, intersects 8\R' I in a
point f'm. However, since \\Pm - Pl\ < 1/m, also \IPm - r'mll < 1/m. So, we obtain a
contradiction for m large enough such that i < f. D

Hence, by Claim 5.1.1 and Claim 5.1.2 there exists a positive real number (, such
that

w< ~ int(\R'I) ~ int(\R,,\). (5.1.4)

From the inclusions (5.1.2), (5.1.3), and (5.1.4), it follows that property (i) is sat isfied
for R" and J,, with J,, = min{f_ 1/ '} ' 3 , , ., •

Second step: translating R,, The box collection R,, already satisfies property
(i) for J,,_ However, properties (ii) and (iii) are not necessarily satisfied. Indeed, at
the left in Figure 5.2, we have drawn a piece of Co together with a box collection
R,, LJ E. As can easily be verified, property (ii) is violated in IB1 l,IB2 \ ,\B3 \, and \B4 \
for r = 0. Property (iii) is violated only in IB11 and \B4\, for T = 0, because Co only
intersects the boundaries of these boxes. As can be seen at the right in Figure 5.2,
after translating the 6 boxes, we can obtain a box collection which satisfies both
properties (ii) and (iii).

Claim 5.1.3. There exists a translation r E Rn of norm \\ r \l < J,, , such that

(R,, + r) u B rh {Co, ... , Ck}.

5.1. Constructio11 o_f a Special B~~_ Collec~i-~~ __ 59

Proof of Claim. Consider the decomposition of I (R/' + r) U B l into the sets I (R" +
r) u Bli, for i = 0, 1, ... ,n. Recall that l(R11 + r) U Bli is the union of the geometric
realizations of boxes in BE ((R11 + r) u B)i.

We need to prove that there exists a translation r E Rn, of norm O ~ llrll < 011 ,

such that for any j = 0, ... , n, and for each box B E ((R11 + r) U B)J,

IBI rh R;,r for i = 0, ... , k, r = 0, ... , n - i, (5.1.5)

where Ri,r = Regr(Ci)- Let T be the set { r E Rn I O ~ llrll < 011
}. We are going to

impose several conditions on T, such that if r E T and r satisfies these conditions,
then (5.1.5) holds for r.

So, let BE ((R11 +r) uB)J for some j E {O, ... ,n} and consider x E IBI n Ri,r for
some i = 0, ... , k and r = 0, ... , n - i . We distinguish between the following cases:

l. i > 0. By construction of R", B E ((R' + T) U B)J for any T E Rn, of norm less
than 811

• Hence, by the induction hypothesis, IBI rh Ci. In particular, !Bl and
Ri,r are transversal in x for all r E T.

2. i = 0. By definition of the union operator U, there exists a neighborhood W of
x such that one of the following three cases holds:

(a) IBI n W = IB'I n W for some B' E BP for some p. Note that,

Tx IBI = Tx(IBI n W) = T;(IB'I n W) = Tx IB' I· (5.1.6)

By the given that, B rh Co, IB'I and Ro,r are transversal in x for all r ET.
By (5.1.6), we may conclude that IBI and Ro,r are transversal in i for all
T ET.

(b) IBI n W = IB11 I n W for some B" E (R" + r)q for some q. Note that,

(5.1. 7)

Suppose that
(R" + r) rh Co. (Tl)

Then, IB11 I rh Co and hence, IE" I and Ro,r are transversal in x for all T E T
such that condition (Tl) is satisfied. By (5.1.7), we may conclude that IBI
and Ro,r are transversal in i for all r E T such that condition (Tl) is
satisfied.

(c) IBI n W = IB'I n IB"I n W for some B' E BP for some p, and for some
B" E (R11 + r)q for some q. Suppose that

(IR"I + r) rh IBI. (T2)

Because the intersection of regular sets in general position is regular, the
tangent space Tx(IB'I n IB"I) exists. Note that,

T; IBI = Tx(IBI n W) = Tx(IB'I n JB"J n W) = Tz(JB' J n IB"I). (5.1.8)

60 5. Linearization and Approximation

Furthermore, suppose that in IB'l,1

(IB'I n IB"I) rh (IB'I n Ro,r)• (T3)

In particular, T1(IB'I n IB" I) + Tz(IB'I n Ro,r) = Tz IB'I· By the given
that B rh Co, T1IB'I + T1Ro,r = Rn. Because the tangent space of
the intersection of two regular sets in a point in this intersection, is the
intersection of the tangent spaces of the regular sets in this point, we have
that Tz(IB'I n Ro,r) ~ Tx(Ro,r)- Hence,

Tx IBI + T1(Ro,r) Tx(IB'I n IB"I) + Tx(Ro,r)

= Tx(IB'I n IB"I) + Tx(IB' I n Ro,r) + Tx(Ro,r)

= Tz(\B'I) + Tx(Ro,r)
= Rn.

Hence, we may conclude that IB\ and Ro,r are transversal in x for all TE T
such that conditions (T2) and (T3) are satisfied.

We may conclude that l(R" + T) U El rh C, if T ET and T is such that for each box
B E ((R" + T) U E)i for j = 0, ... , n, either no extra condition holds, the condition
(Tl) holds, or both conditions (T2) and (T3) hold. Hence, we obtain a finite number
of conditions on the translations in T. By Corollary 4.3.1, the set of translations
T E T for which a single transversality condition, like (Tl), (T2), and (T3), is not
satisfied, has measure zero. Since a finite union of sets of measure zero, also have
measure zero, this implies that for almost all translations in T, all conditions can be
satisfied simultaneously. This concludes the proof of the claim. D

Let To be a translation, as specified in Claim 5.1.3. Define R := R" + r 0 . By
stability of transversality, there exists a positive real number r such that (R+T) UE rh
C for any TE Rn such that O ~ IIT I\ < T . Let 8 = min{8" -1\roll,r}.

Claim 5.1.4. The box collection Rand 8 are such that property (i},(ii} and (iii} are
satisfied.

Proof of Claim. We first prove that property (i) is satisfied. We know already that
this property is satisfied for R" and 8". It follows that

cl(Co U · · · U Ck)~ int(IR"I) + T, for all TE Rn, I\TI\ < 8". (5.1.9)

Indeed, suppose that (5.1.9) is not true. Then there exists a point p E cl(Co U · · ·UCk)
and a vector T 1 E Rn, I\T1II < 811

, such that p<f_ int(IR"I) + T1 - Define x = p- T1.
o" Then, x </. int(IR"I) and x E cl(C0 U · · · U Ck) . This is impossible since R" and 8"

satisfy property (i). As a result, (5.1.9) holds. In particular,

cl(Co U · · · U Ck)~ int(IR"I) + To+ r , for all TE Rn, \\T II < 8" - \ITol \. (5.1.10)
1 If X and Y are two regular subsets of a regular set Z, then X and Y are called transversal in

Z, if T 1 X + Tx Y = T z Z, for any point in the intersection X n Y.

5.!. Construction of a ~pecial Bo~ _qolle~t;i()n. 61

Now, suppose that cl(Co U · · · U Ck}° i int(l'R.I). Then there exists a point p E cl(C0 U
· · · U Ck}° such that p </. int(l'R.I). Moreover, there exists a point x E cl(Co U · · · U Ck)
such that llff-xll < J. Define T1 = x-p. Because x E cl(CoU· · ·UCk) and x = p+T1
with p </. int(IRI),

cl(Co U · · · U Ck) i int(l'R.11 1) +To+ T1 = int(IRI) + T1,

which contradicts (5.1.10) because IIT1II < J. Hence, cl(Co U · · · U Ck)° C int(l'R.I)
and property (i) is satisfied for 'R. and J.

Property (ii) is trivially satisfied for 'R. and J by the definition of J and To.
We now prove that property (iii) is satisfied. Let BE ('R.+T) U/3. We distinguish

between the following two cases:

l. B E ('R.' + ro + T) U 13. Note that IITo + TII < J'. Hence, by the induction
hypothesis, int(IBI) n (C1 U · · · U Ck) f:. 0, and for any point p E int(IB I) n (C1 U
· · · U Ck), 'Ycone(it) > diam(B).

2. B E (('R.11
- 'R.') +To+ T) U 13. It remains to show that int(IBI) n C0 f. 0 and

for any point p E int(IBI) n Co, 'Ycone(it) > diam(B).

We first prove that IBI n C0 f. 0 implies that int(IBI) n Co f. 0.

So let, x E IB I n Co . If x E int(IBI), we are done. Thus, we assume that
x E BIBI. Then x E IB'I n Co for some IB'I E (('R. + T) U /3)P and some p. Let
D = (xi -c:,x1 +c:, ... ,xn -c:, Xn +c:) be an n-dimensional box centered around
x, with c: ER. For c: sufficiently small, IB'I n int(IDI) has the form

or a permutation of this form, which is handled analogously. Hence, int(IBI) n
int(IDI) has the form

or a permutation of this form which is handled analogously, or even a variant of
this form where some of the n-p intervals (xi, Xi +c:) are replaced by (xi -c:, Xi),
which again is handled analogously.

By property (ii),

(5.1.11)

Now, any v E TxJB'J is of the form v = (v1, ... ,vv,Xv+i,···,xn), hence,
by (5.1.11) there exists a tangent vector w E T :tCo such that Xv+i < Wv+i,
... , Xn < Wn· By definition of the tangent space, if llw - xii is small enough,
there exists a point in C0 arbitrary close tow. This point, then also has n - p
last coordinates which are strictly greater than the n - p last coordinates of x,
and hence, is in int(IBI) n IDI. Hence, we have found a point in int(IBI) n C0 ,

as desired.

62 5. Linearization and -~pproxi~ation

This reasoning actually shows that by property (ii), the set of boxes in ((R" -
R') + T) U B which intersect Co is independent of T. Hence, we may assume
that IBI n Co -/- 0 for any box in ((R" - R') + T) UB and any TE Rn, IITII < 8.

It remains to show that the diameter of B is smaller than rcone(pJ, for a point
jJ E int(IBI) n Co. Now, any box in ((R" - R') +To+ T) U B is included in
a box in V + To + T. By (5.1.1), V consists of boxes which have a diameter
which is strictly smaller than the uniform cone radius of int (IBI) n Co . Hence,
'Ycone(ff) > diam(IBI) for any point in int(IBI) n Co.

As a result, property (iii) is satisfied for n and 8. D

5.1.2 Induction: from n dimensions ton - 1

From R we compute the n-dimensional box collections R(i) for i
(4.6.1)), and we define the semi-algebraic sets

1, ... ,n, (see

Coord(R(i)) = { a E R I :la1, :lbi, ... , :lai- 1, :lbi- i, :lai+l, :lbH1, ... , :lan, :lbn

(ai, bi, ... , ai-1, bi- i, a, a, ai+i, bi+i, ... , an, bn) E R(i) },

and

A(i),a; := {(xi,· .. ,Xi- i,Xi+i,···,Xn) E Rn- i I
(xi, ... , Xi-i,ai,Xi+i, ... ,xn) E IR(i) I n A}

for i = 1, ... , n.
Similarly, we define the (n - 1)-dimensional box collections

R(i),a, := {Cai, bi ... , bi- i, ai+l, ... , an, bn) E R 2
(n- l) I

(a1, b1 . . . , bi- 1, ai, ai, ai+l, ... , an, br,) E 'R(i) },

for i = 1, ... , n.
Since A= Co U · · · u Ck, and Ci= Rj,o U · · · U Rj,j, we have that

A(i) ,a, = (Co)(i),a, U · · · U (Ck)(i),a,

(Cj)(i),a, = (Rj,o) (i),a, U · · · U (Rj,j)(i) ,a, ·

(5.1.12)

(5.1.13)

Claim. The sets (Co)(i),a,, ... , (Ck)(i),a, form a uniform cone radius decomposition

of A(i),a,.

Proof. T he proof of Theorem 4.4.1 shows that a cone radius t: of A in a point jJ is
also a cone radius of An H for jJ, if jJ E H, with Ha hyperplane parallel to one of
the coordinate planes. Indeed, the critical points of A n H are already identified in
the computation of t:, and hence condition (4.4.1) is trivially satisfied with respect to
AnH and jJ. D

Claim. The sets (Rj,o)(i),a;, ... , (Rj ,j)(i),a, form the regular decomposition of (Cj)(i) ,a;.

5._2. The Algorithffi: _ 63

Proof. The sets (R3,r)(i),a, = R 3,rn IR(i) I· Since Rm R3,r, and the intersection of
two regular sets in general position is regular, (R3,r)(i),a, is indeed regular. D

Claim.
R(i),a, rh {(Co)(i),a;, · · ·, (Ck)(i),aJ·

Proof. Let BE (7<-(i),a,)P for some p. We need to show that IBI and (R3,r) (i},a; are
in general position. Let x E IBI n Rj,r· Now, (vi, ... ,vn-1) E T;;((R3,r)(i),aJ if
and only if (v1, ... ,vi-l,ai,Vi+1,···,vn-l) E T;;(Rj,r n IB 1 1) for some B' E R (i),a,·
Because TxlBI +Tx(Rj,r) = Rn, we have that Tx(Rj,r n IB'I) = TxRj,r nTx lB'I.
So, (v1, .. . ,Vn-1) E Tx((Rj,r)(i),aJ if and only if (v1, .. . ,Vi- t,ai,Vi+t,··· , vn- l) E
T;;(Rj,r). Hence, T;; IB I + T:t((Rj,r)(i},aJ = Rn-l. D

5.2 The Algorithm

The algorithm that constructs an A-linear set which is homeomorphic to a given
semi-algebraic set, works inductively on the dimension of the surrounding space in
which the semi-algebraic set is embedded.

The bounded case The algorithm consists of two parts. The first part is a pre­
processing step: One gives a bounded semi-algebraic set A in Rn, together with the
dimension n as input. As output one gets the regular decomposition of each part of
the uniform cone radius decomposition of A.

Algorithm PREPROCESS:

lnput:A semi-algebraic set A in Rn.

Output:A finite sequence Ro,o, R1,1, R1,o, ... , Rn,n, Rn,n-t, ... , Rn,o of semi-algebraic
sets in Rn.

Method:

I .Compute the uniform cone radius decomposition of A:

A = CoU···UCk.

2.Compute the regular decomposition of Ci, for i = 0, . .. , k:

Ci = ll;,o u · · · u R;,i·

After this we can feed the output of the preprocessing, combined with an empty box
collection B to the linearization algorithm:

Algorithm LINEARIZE-IN-n - DIMENSIONS:

64 5. Linearization and Approximation

Input:({RJ,r }, B), with {Rj,r} a regular decomposition of a semi-algebraic set A in
Rn, and B an n-dimensional box collection in Rn.

Output:An A-linear set A in Rn which is homeomorphic to A

Method:

I.Compute the box collection n constructed in Section 5.1

2.Compute the (3n+ 1)-ary relation P consisting of all pairs (B,PB, b), where
B is an n-dimensional box inn, PB E Rn is the center of IBI, and either
b = l, if An IBI is homeomorphic to Cone(A n 8 IBl,fi') for some p' E
int(IBI), orb= 0, if An IBI is homeomorphic to Cone(A n ojBj,p') - {p'}
for some p' E int(IBI).

3.ln case n > 0 do the following:

(a)Compute R(i),a with a E Coord(R(i)) and i E {1, ... ,n}.
(b)Compute (Rj,r)(i),a C Rn-l with a E Coord(R(i)) and i E {1, ... , n}.
(c)Apply LINEARIZE-IN-(n -1)-DIMENSIONS in parallel to all input pairs

((Rj,r)(i),a, R(i),a.) with a E Coord(R(i)) and i E {l, ... , n } .

4.Initialize A to the union of the results of the calls to LINEARIZE-IN-(n -1)­
DIMENSIONS of step 3(c).

5.0utput

A:= Au {Cone(A noB,PB) I (B,PB,b) E P and b = l }

u {Cone(A n oB,PB) - {PB} I (B,PB, b) E p and b = O}.

Theorem 5.2.1. For each n there exists an FO+POLY+TC formula linearize over
the schema S = { S}, with S an n-ary relation name, such that for any polynomial
constraint database D over S, linearize(D) is an algebraic linearization of SD, if
sn is bounded.

Proof. The desired FO+POLY+TC formula linearize expresses the algorithms PRE­
PROCESS and LINEARIZE-IN-n-DIMENSIONS described above. From Lemma 4.5.2 and
Lemma 4.1.2 , it follows that the algorithm PREPROCESS is FO+ POLY-expressible.
What concerns the algorithm LINEARIZE-IN-n-DIMENSIONS, from Lemma 4.3.1, from
the constructions in Section 4.6 and from the construction of the special box collection
in Section 5.1, it follows that these are all expressible in FO+Po1v+TC.

We still need to show that A is indeed a linearization of A. The linearity of A is
immediate, so we focus on the existence of a homeomorphism h: Rn ~ Rn which
maps A to A.

Let R,:(k be the union of all boxes in R,k, ... , n°. We shall construct homeomor­
phisms hk: IR;,,.kl-+ IR,.;kl, such that

• hk(A n IR~kl) = An IR,.;kl; and

5.2. The Algorithm 65

• hk I IBI : IBI -+ IBI is a homeomorphism for all boxes B in nk, ... , n°.

We shall construct the homeomorphisms hk by induction on k. For the base case,
n° n A is a finite set of points. We define ho to be the identity mapping on 1n° I·

Suppose we have constructed a homeomorphism hk-1 : 1n~k-tl -+ 1n~k-11 such
that

• hk-1l 1BI : IBI-+ IBI is a homeomorphism for all boxes in nk- 1, ... , n°.

Let B E nk, then we define hkl lBI : IBI -+ IBI as follows . Since the diameter J of
Bis smaller than the uniform cone radius of IBI n A, by Theorem 4.4.1 there exists a
homeomorphism 9I IBI : IBI -+ IBI such that gla1BI = id, and YIIBl(IBlnA) = Cone(An
BIBl,PB), in case PB E P, and such that YI IBl(IB I nA) = Cone(AnBIB J,PB) - {PB},
in case PB E P 1

• We omit this last case since it is completely analogous.
Suppose that IB I = (a1,bi) x ··· x [an,bn], then PB= (c1, ... , c,.), with ci =

ai + b,2a, for i = 1 .. . , n. We define the following sets

b1 - a1 b1 - a1
IBtl := [a1 + (1- t) -

2
- ,ai + (1 + t)

2
] x · · ·

[()
bn - an bn - an

X an+ 1 - t
2

, an+ (1 + t)
2

_] O~t~l.

Furthermore, we define fl lBI : IBI -+ IBI as

where

• t0 is such that x E BIBt0 I,

• Lis the half line from PB to x,
• fj is L n BIBI, and

• L' is the half line from PB to hk-1 (ii).

It can easily be verified that fl lBI is a homeomorphism from IBI to IBI such that

fl 1B1(Cone(A n BIBI, (P'B) = Cone(hk- 1((A n BIBl),PB)). (5.2.1)

Finally, we define hkl lBI : IBI -+ IBJ as the composition of the two homeomor­
phisms fl lBI and YI IBI, i.e., hkl lBI = f llBl9I IBI· Hence hk llBI is also a homeomorphism.

We now show that for any k-dimensional box B 1 E nk in Rn,

(5.2.2)

66 5. Linearization and Approximation

Indeed, if IBI n IB'I = 0, then we are done. Suppose that x E IBI n IB'I- Then by
the definition of a box collection, x E 8 IBI n 8IB' I- Now, for every box B" E nk,
hklaJB"l(x) = /laJB" j(X) = hk-i(x). Hence,

hk laJBJn8JB1 I (x)
hk- 1 (x)

hk la1B1 Jn8 IBI (x)

(hk iJB1 J) iJ BI (x).

Since for every two boxes B and B' in Rk, (5.2.2) is satisfied, we may conclude
that hkl JBJuJB' I = hkiJBI U hklJB' I : IBI U IB'I -+ IBI U IB'I is also a homeomorphism
(this is known as the Gluing Lemma [52, Lemma 3.8]). We define

hk := u hki JBI·
IBIERk

We still need to verify that hk(A n IR~kl) = A n IR~kl. It is sufficient to show that
hk(A r IBI) =An IBI for any BE R,k. By (5.2.1), the induction hypothesis, and the
definition of A in the algorithm LINEARIZE-IN-n-DIMENSIONS,

Cone(hk-1(A n 81Bl),PB)

Cone(A n 8IBl,PB)

AnlBI.

Since l'RI is closed, using standard techniques from topology [55] , the final home-
omorphism hn can be extended to a homeomorphism h: Rn-+ R n. D

We illustrate the algorithms PREPROCESS and LINEARIZE-IN-n-DIMENSIONS on the
following semi-algebraic set in R 2

:

CD
First, we run the algorithm PREPROCESS on it. The output are three regular sets:

Co = ,c,CD,andC,~'

We will only describe the linearization of the left part of the input figure, the right
part being a mirrored copy of this. We compute a two-dimensional box collection R
as described in Section 5.1. This is done as follows: compute a box covering of size
smaller t han the cone radius of C2 :

5.2. The Algorithm 67

CUD
Next, the cone radius 8 of the part of C1 which lies in the dark region of the next
figure, is computed. Then, the box covering of size 8 of this dark region is computed.
As can be seen, C1 intersects some boxes only at the boundaries (this happens in if
and r) . Because we have covered more than just C1 (more specifically, we covered
the dark region), we may translate the box covering with a small translation T. The
resulting box collection is shown in the figure on the right. This box collections in
general position with Co and C1.

T -
/

I
r,-

1

,_._
I

\

\

Finally, the dark rectangular two-dimensional part needs to be covered by boxes:

-- -k I - \

, \
\

' : '
' \ ,

' --
I I

We now have the box collection n. The next step in the algorithm is the computation
of the sets R(x),a and R(y),b with a E Coord(R(x)) and b E Coord(R(y))- These are
shown respectively in the left and the right figure:

- "l- ' ----

::j ' I
\ \ -I I

\

I I

I I
I I

I
I

I
/

- - J - - ~

n(x) ,a RcvJ,a

Since LINEARIZE-IN-I- DIMENSION is trivial, we start directly by connecting the points
and line segments with the centers of some of the boxes inn. By Theorem 5.2.1, this
results in a linearization, which is shown in the following figure.

68 5. Linearization and Approximation

If the linearization obtained in Theorem 5.2.1 also needs to be a good approxima­
tion from a metrical point of view, we can easily adapt the algorithms such that the
approximation lies arbitrarily close to the original polynomial constraint dat abase.
Indeed, we can simply bound the diameter of the boxes used in the const ruction by
a specified £-value. We will see some applications of these £-approximations in t he
next section.

Theorem 5.2.2. For each n there exists an FO+ POLY+TC query £-approx over
the schema S = { S} with S an n-ary relation name, such that for any polynomial
constraint database D over S such that SD is bounded, c:-approx(D) is an algebraic
£-approximation of sn. D

The general case Let A be an unbounded semi-algebraic set in Rn. We reduce
the construction of an algebraic linearization of A to the construction for bounded
semi-algebraic sets as follows:

First, we need to define the cone radius of A in the point at infinity Pao- Consider
the embedding i: Rn-+ Rn+i : (xi , ... ' Xn) f-t (xi, . . . ' Xn, 0). Let p: R n+l -+ R n+i
be the reflection defined by (xi, ... ,xn+i) f-t (xi, ... , Xn, -xn+d · Let R n U {Pao} be
the Alexandrov one-point compactification of Rn. Finally, consider the stereographic
projection(}' : sn((O, ... '0), 1) -+ i(Rn)u{ffao } defined by u (x1 , ... , Xn+i) = (~~;::;)
and u(O, ... , 0, 1) = Pao·

We define a cone radius of A at Pao as a cone radius of the semi-algebraic set

in the origin of Rn. The local conic structure of semi-algebraic sets implies that there
exists an m > 0 such that {x E Rn I llxll ;:: m} n A is topologically equivalent to
{.\x E Rn Ix E 8([-m,m] x . .. x [- m,m]) n A I\.\ ;:: 1}.

We now present the unbounded version of the algorithm.

Algorithm LINEARIZE-IN-n-DIMENSIONS' :

l nput:A semi-algebraic set A in R n, and Bann-dimensional box collect ion in R n.

Output:An A-linear set A in Rn which is homeomorphic to A.

Method:

5.3. Rational Linearizations 69

0,0,1)
up

Figure 5.3: A semi-algebraic set is mapped onto the sphere S2((0, 0, 0), 1), flipped
vertically, and projected back onto the sphere S2((0, 0, 0), 1). This brings the point
at infinity p00 to the origin (0, 0, 0).

I.Compute a cone radius m of A in p00 • Let M = [-m, m] x ... x [-m, m].

2.Apply PREPROCESS to An M.

3.Apply LINEARIZE-IN-n-DIMENSIONS to the result of step 3 and an empty
box collection B.

4.0utput

A:= (AnM) u {,\x E Rn Ix EA n 8M I\,\~ l}.

The following theorem can readily be verified.

Theorem 5.2.3. For each n there exists an FO+Po1v+TC formula linearize' over
the schema S = { S}, with S an n-ary relation name, such that for any polynomial
constraint database D over S, linearize'(D) is an algebraic linearization of SD. D

5.3 Rational Linearizations

We now refine the previous theorems to rational linearization.

Theorem 5.3.1. For each n there exists an FO+Po1v+TC query ratlin over the
schema S = {S}, with S n -ary, such that for any polynomial constraint database D
over S such that SD is bounded, ratlin(D) is a rational linearization of SD.

Proof. We can obtain this result easily by modifying the construction of the special
box collection in Section 5.1 in the following way. When in this construction the box
covering V of size 7n is computed, we compute a rational number that is smaller
than 7n, and take this as the size of the box covering V to be computed. By similar
techniques as in Chapter 3, it is easy to show that there exists an FO+Po1v+TC
query which returns a rational number smaller than the input number. In this way,
all boxes in R C Q2n. Hence, the points PB which are selected by the algorithm
LINEARIZE-IN-n-DIMENSIONS will have rational coordinates. D

70 5. Linearization and Approximation

We also have a rational equivalent of Theorem 5.2.2. Its proof is analogue to the
previous one.

Theorem 5.3.2. For each n there exists an FO+POLY+TC query c-ratlin over
the schema S = { S}, with S an n-ary relation name, such that for any polynomial
constraint database D over S such that sn is bounded, c-ratlin(D) is a rational
€-approximation of sn. D

5.4 The Connectivity Query

In this section, we show that the connectivity query, which asks whether a polynomial
constraint database is connected, is expressible in FO+PoLY+TC.

Let A be a semi-algebraic set in Rn. For semi-algebraic sets, expressing the
connectivity query is the same as expressing whether any two points can be connected
by a path lying entirely in A [8, Proposition 2.5.13]. One can even choose the paths
to be semi-algebraic, in case of a semi-algebraic set, and semi-linear, in case of a
semi-linear set [71, Proposition 3.2, Chapter 6].

We now show that this query can be expressed in FO+POLY+TC using the for­
mula linearize1 given in Theorem 5.2.3.

Let S = {S}, with S an n-ary relation name. Consider the FO+ POLY+TC
formula lineconn(f', s) over S

3.\(0 ~ .\ ~ 11\ Vt(t = .\r + (1 - .\)s -t linearize1(0)}.

Define the following FO+POLY+TC sentence

connected = V'jNiflinearize1(pj I\ linearize1(q) -t [TCx;ylineconn](p, q).

Proposition5.4.1. LetS = {S} withS ann-aryrelationname. TheFO+ POLY+TC
formula connected asks whether sn is connected for any polynomial constraint da­
tabase over S.

Proof. Since linearize1(D) is semi-linear and topologically equivalent to SD, two
points pand qbelong to the same connected component of linearize'(D) if and only
if there exists a semi-linear continuous mapping 1 : [O, 1] -t Rn such that 1 (0) = p
and 1 (1) = q. This proves the correctness of the formula connected.

To conclude that the evaluation of the transitive closure in the formula connected
ends in finitely many steps, we need to show that there exists an upper bound on the
number of line segments in linearize1(D), needed to connect any two points in the
same connected component of linearize1(D). Now, any semi-linear set can be de­
composed in a finite number of open convex sets. The finiteness of this decomposition
yields the desired bound on the number of line segments needed to connect any two
points in the same connected component of linearize1(D). D

This is the generalization of the well-known result that first-order logic extended
with a transitive closure logic can express graph connectivity.

5.5. Volume Approximation 71

L

0 0
A

Figure 5.4: A semi-algebraic set A with ~(A) = 12.

Since FO+POLY+TC is included in stratified DATALOG with polynomial con­
straints, Proposition 5.4.1 solves the question raised in [23, 48, 50] whether stratified
DATALOG with polynomial constraints can express the connectivity of polynomial
constraint databases.

5.5 Volume Approximation

In this section, we shall use the box covering and the c:-approximation to approxi­
mate the volume of semi-algebraic sets with an FO+PoLY+TC formula. We restrict
our attention to bounded semi-algebraic sets and require that the evaluation of this
FO+Po1Y+TC formula is effective for all bounded semi-algebraic inputs.

Let S = { S}, with S an n-ary relation name. Let D be a polynomial constraint
database over S.

The volume of a database D is defined as the Lesbesgue-measure of the semi­
algebraic set SD~ Rn, and is denoted by Vo1(D).

Since we want an FO+ POLY+TC formula whose evaluation is effective on all da­
tabases, it is impossible to define the exact volume of polynomial constraint databases
in FO+ PoLY+TCS. Indeed, consider the database consisting of the unit disk D in
R2

. The volume of D equals 1r. Since 1r is not algebraic, this value cannot be the
output of an effective FO+PoLY+TC query.

Hence, as suggested by Koiran [40], and Benedikt and Libkin [7], we consider for
each c: > 0, an £-volume approximation query Vo1s , such t hat for any polynomial
constraint database Dover S, there exists a real number v E Vo1s(D) such that

It is known that Vo1s is not expressible in FO+POLY [7]. We show that there
exists an FO+POLY+TC expressible £-volume approximation query.

We will use the following result:

Theorem 5.5.1 ([40]) . Let A be a semi-algebruic set in Rn, and let a-cover(A) be
its box covering of size o. Then

1vo1(A) - Vo1(0-cover(A))I < i(diam(A)r+l~(A)n, (5.5.1)

72 5. Linearization and Approximation
- -

where 11;(A) is the maximal number of connected components of the intersection of A
with any axis-parallel line L (see Figure 5.4), and where diam(A) is the diameter of
A. 2 D

Theorem 5.5.2. For each c > 0, there exists an e:-volume approximation query in
FO+PoLY+TC.

Proof. We first show that the number 1,,(SD) of Theorem 5.5.1 is expressible in
FO+PoLY+TC. Indeed, first we define n sets Ki which contains 2n - I-tuples
(a1, ... ,ai-t,ai+1 , ... ,an,p) where ai ER for j = 1, . . . ,i -1,i + l, ... ,n, and
where pis either an isolated point on the intersection of A with {x I 1\#ixi = aj},
or the middle of an interval in this intersection. Using similar techniques as in Chap­
ter 3, we compute for each (a1, ... ,ai- 1, ai+I, ... , an) the number of points p, such
that (a1 , ... , ai-t, ai+ 1, ... , an, p) E Ki. We then obtain n sets Kf consisting of
n-tuples (a1 , ... ,ai-t,ai+l, ... ,an,N) with NE N, and we define Mi to be the max­
imum of all those N which are in Kl for some (a1, ... , ai-1, ai+l, ... , an). Finally, let
1,,(SD) = max{ M1, ... , Mn}.

Let 8 = i(diam(SD))n1,,(SD)n + l. By Proposition 4.7.2, the box covering of
sn of size 8 is expressible in FO+POLY+TC. By Theorem 5.5.1 , VoL(<5-cover(SD))
approximates the volume of SD within an e:-error margin.

Recall that 8-cover(SD) is represented as a 2n-ary relation. Each 2n-tuple corre­
sponds to an n-dimensional box of size <5 (see Section 4.6). Let nrofboxes(y) be the
formula

[TC-b .-b, ,lexicographic(b, b1
) I\ x ' = x + l](bmin, 1, bmax, y), ,x , ,x

where lexicographic(b, b') is an FO+ POLY formula expressing that bis less than b'
with respect to the lexicographical ordering on tuples in Rn, and where bmin ,bmax E
<5-cover(SD) is the minimum (respectively maximum) n-tuple in <5-cover(SD) with
respect to the lexicographical ordering. Finally, let N E R such that nrofboxes(N)
holds. Then we define VoLc(v) to be the FO+POLY+TC formula which expresses
that v = NJn. D

Since the 8-approximation of A is included in the box covering 8-cover(A) , a
better volume approximation can be obtained by using the volume of the <5-approxi­
mation instead of the volume of 8-cover(A). By the next Theorem, this also gives an
FO+ PoLY+TC expressible e:-approximation query.

It is known that taking the volume of a semi-linear set does not take us out the
semi-algebraic setting and that the volume of a semi-linear set can be expressed in
the aggregate language FO+POLY+SuM [7). Benedikt and Libkin (7) have shown
that the exact volume of a semi-linear set, even with parameters, can be expressed in
this aggregate language. Their proof consists of inductively summing over parame­
terized finite sets. Since we do not allow the computation of the transitive closure of
parameterized relations, we restrict ourselves to a single semi-linear set A C Rn.

2 Let X be a set in Rn. The diameter of X is defined as sup{ ll.i - YII I .i, fj E X}.

5.5. Volume Approximation 73

Theorem 5.5.3. Let S = {S}, with S an n-ary relation name. There exists an
FO+POLY+TC formula volume over S, such that volume(SD) is the volume of SD
for any linear constraint database D over S.

Proof. If dim(SD) < n , then we define volume(x) = x = 0. Suppose that dim(SD) =
n. Since VOL(SD) = VoL(cl(int(SD))), we actually may assume that SD is closed
and consists entirely of n-dimensional pieces.

It is well-known that SD is a finite union of closed convex sets c1 , ... , Cr of a parti­
tion of Rn induced by a finite number of (n - 1)-dimensional hyperplanes H1 , . .. , Hs .
Vandeurzen et al.[75] show that there exists an FO+PoLY formula hyperplanes(v1 ,

. . . ,vn,d) such that hyperplanes(D) consists of s tuples (ih ,di), ... , (vs,ds) such
that Hi = {x E Rn I ViX = di}. Moreover, there exists an FO+POLY formula
specialpoints such that specialpoints(D) contains the extremal points of the
convex sets c1 , . .. , Cs. Recall that the extremal points of a convex set are those points
which cannot be written as a linear combination of two other points of the convex
set (81].

We now define an FO+POLY+TC formula unique over S such that unique(D)
consists of points .P1 , .. . , Ps such that Pi E int (Ci) for i = 1, ... , s. The formula unique
makes use of the following formulae over S.

• A formula over S which computes the barycenter of any n-dimensional simplex
obtained as the convex hull of an (n + 1)-tuple of points in specialpoints(D),
i.e.,

n

barycenter(x') = =Jfii ... 3ffn+l (/\ specialpoints(:ili)
i= l

I\ Xi= _!_l ((iJi)i + · · · + (Yn+i)i)). n +

• A formula interiors over S which computes the interiors of the sets c1 , ... , Cs,

i.e.,

interiors(x) = S(x) I\ ,(3v3d(hyperplanes(v, d) I\ ifI' x = d)).

• A formula over S which checks whether two barycenters are in the same convex
set Ci for some i, i.e.,

samecell(x, y) = barycenter(x) /\ barycenter(y)

/\ v'A(interiors(AX + (1 - A)y) I\ 0 ~ A ~ 1).

We then define the formula unique(i) as

VZ,:TCx;i7samecell](x, z) ~ l exicographic(x, z),

where lexicographic(x, z) is an FO+ POLY formula expressing that x is less than z
with respect to the lexicographical ordering on tuples in R n.

74 5. Linearization and Approximation

Figure 5.5: Triangulation of a convex set in R 2
.

Define the formula over S

extremal(x', if) = specialpoints(x') /\ unique(i/)

/\ 'v'A(interiors(y + >.x) I\ 0 ~A< 1).

We can use this formula together with the points p1, ... ,Ps in unique(D) to identify
the extremal points of c1, ... , c8 •

It is not difficult to see that there exists an FO+POLY formula triang(x1, ... , Xn+i)
over S, such that triang(D) consist of (n + 1)-tuples of points which define a trian­
gulation of SD for any polynomial constraint database D such that SD is the set of
extremal points of a convex set. By a triangulation of a convex set c, we mean a finite
set T of (n + 1)-tuples of independent points such that

1. dim(CH(p1, . .. ,Pn+i) n CH(PL . . . ,~+1)) < n for all different pairs of (n + 1)­
tuples of points in T; and

2. C = u(Pl,··· ,Pn+1) ET CH(fi1, ... ,Pn+1).

Here, CH denotes the convex hull of a finite set of points. Let convexhull be the
FO+POLY formula over S, such that convexhull(D) = CH(SD) for any polynomial
constraint database such that sn is a finite set of points. For instance, in the two­
dimensional space R 2 the formula triang(x'1,x'2,x3) is defined as the formula which
tests the following conditions (this description is taken from [7]): (1) x1 is the lexico­
graphical minimal extremal vertex of the convex set represented by SD; (2) either x2
is adjacent to x3, and x2 is lexicographically less than x3, and x'1 is not adjacent to x'2

and x3 , or x1 is adjacent to x2 , and x2 is adjacent to x3 , but x1 is not adjacent to X3
(see Figure 5.5). Here, two points are adjacent if there exists a line on the boundary
of the convex set connecting the two points.

Let (fi1, ... ,'Pn+1) be an (n + 1)-tuple of independent points. Let f'; = Pi - P1 for
i = 2, . .. , n + l, and let G be the n x n matrix whose rows contain the coordinates
of the vectors '0 for 1 ~ j ~ n. Then by the Gram determinant formula [56] , the
volume of CH(fi1, ... ,Pn+1) is equal to

ldet(GGt)I!
n!

75

where Gt is the transpose of G. Hence, the volumes of the convex hulls of (n + 1)­
tuples of independent points are expressible by an FO+POLY formula, which we will
denote by volsimplex.

We now define the FO+POLY+TC formula completetriang over S such that
completetriang(D) is a triangulation of SD, for any polynomial constraint database
Dover {S}.

completetriang(x1, . . . ,xn+1) = 3y(triang(extremal)(x1 , ... ,Xn+i,y)

/1. unique(y')).

Next, define

ilr(y) = [TCx,s;x',s'S = volsimplex(convexhull(ff1, ... ,~+1))

I\ s' = volsimplex(convexhull(qi, ... ,Cfu+1))

/1. lexicographic(qi, . .. ,Cfu+1,P1, ... ,Pn+i)
/1. completetriang(ff1, . .. ,Pn+i) I\ completetriang(qi , . .. , Cfu+i)

I\ x' = x + s](O, V1, Y, Vn),

where v1 and Vn are respectively the volume of the first and last (n + 1)-tuple of
points according to the lexicographic order. The sum of the volumes of the pieces in
the triangulation of SD is then given by

volume(v) = 3yilr(y) /1. v = y + Vn,

with Vn as above. D

76 5. Linearization and Approximation

6
The Topological Invariant

In this chapter, we look at semi-algebraic sets from a different point of view. It is
known that every semi-algebraic set admits a finite cell decomposition. This cell
decomposition can be represented by a finite relational database, which stores cell
information and cell adjacencies. This representation is especially important for pla­
nar semi-algebraic sets, i.e., sets in R2 . In two dimensions, it can be shown that
there exists a minimal cell decomposition which characterizes exactly the topology
of the semi-algebraic set. This minimal cell decomposition is called the topological
invariant.

We are interested in the problem of dynamically maintaining the topological in­
variant, i.e., we want to keep the topological invariant up-to-date at all times, while
the original decomposition is subject to changes. We consider two instances of this
problem.

First, we represent semi-algebraic sets as labeled plane graphs, and describe a
fully dynamic algorithm built on top of the doubly-connected edge list data structure.
This algorithm reacts correctly to all kinds of updates on labeled plane graphs and
has linear time complexity per update.

Secondly, we omit the planarity restriction and consider arbitrary graphs. We
define the topological invariant of a graph and describe the problem of maintaining
the topological invariant of a graph online. Two partially dynamic algorithms are
presented. They react correctly to edge insertion only, and have both logarithmic time
complexity per update. We conclude this chapter with an experimental evaluation of
the relative performance of these two algorithms.

77

78 6. The Topological Invariant

A

- line
- unbounded area

- line + area

Figure 6.1: A planar semi-algebraic set A and a possible partition of the plane corre­
sponding to A.

6.1 The Maintenance of the Topological Invariant
of Labeled Plane Graphs

6.1.1 Definitions

A plane graph, geometrically speaking, is a planar embedding of a planar graph.
Viewed purely combinatorically, however, we define a plane graph as a structure
consisting of points, lines, and areas, and the following associations:

• to each point, a circular list of its outgoing lines in clockwise order;

• to each line, its starting point, its "twin" line, and the area to its left; and

• to each area, the set of isolated points lying in that area.

The twin line represents the same geometric line, but viewed from the other direction.
So every geometric line is represented by a pair of two combinatorial line objects, one
for each direction. The unbounded area is specifically designated as such.

Suppose we augment a plane graph with a + or - label for each point, line,
and area. We call this structure a labeled plane graph. If we also add algebraic
coordinates for each point, and a semi-algebraic definition of a curve for each line, we
call the resulting structure a concrete labeled plane graph.

A semi-algebraic set A can be represented by a concrete labeled plane graph as
follows (see Figure 6.1). Consider a partition of the plane such that

• each class is of one of the following four types: a single point; homeomorphic to
R; to R 2 ; or to R 2 minus a finite number of points;

• exactly one class is unbounded, and must have dimension 2;

• each class is labeled by + or - ;

• the union of all +-labeled classes equals S.

~l. Th~ MaintenaJ1c~~ t_he Topo~ogical I_!ry~iant of Labele<i_ Plane Graphs 79

Figure 6.2: The three simplification rules pi, p2, and p3

It is known that every semi-algebraic set admits such decomposition [42, 62] and the
complexity of computing such decomposition is in NC.

This partition naturally yields a concrete labeled plane graph representing A.
Note that in general, there can be many concrete labeled plane graphs representing
S. However, one concrete labeled plane graph represents only one semi-algebraic set.

Take a concrete labeled plane graph G and a semi-algebraic set A such that G
represents S. Let H be the labeled plane graph underlying G. Then we say that
H also represents A. Note that a labeled plane graph can represent many different
semi-algebraic sets. However, we will see next that all these sets must be isotopic.
The two sets A and A' are called isotopic if there exists an orientation-preserving
homeomorphism h: R2 -+ R 2 such that h(A) = A'.

Call two labeled plane graphs H1 and H2 equivalent if they represent precisely
the same semi-algebraic sets. We will now show how we can associate to each labeled
plane an equivalent one, which is unique up to isomorphism, and is such that none of
the following patterns occur in it:

• a line with the same label as its left and right areas (the right area of a line is
the left area of its twin);

• a point with only two outgoing lines, which have the same label as the point;

• an isolated point with the same label as its area .

We then call a labeled plane graph a topological invariant. The following t heorem
shows the importance of topological invariants:

Theorem 6.1.1 ([46]). Let H and H' be topological invariants and let A and A'
be semi-algebraic sets represented by H and H' respectively. Then H and H' are
isomorphic if and only if A and A' are isotopic. D

The topological invariant can also be defined such that Theorem 6.1.1 holds for
homeomorphisms instead of isotopies. This definition of the topological invariant is
used by by Papadimitriou, Suciu and Vianu [57).
Note that the if-implication in the above theorem implies that for each labeled plane

graph there is a topological invariant. Indeed, by the theorem, there cannot be two
that are non-isomorphic. Moreover, to find the equivalent topological invariants, we
can use the following simplification rules (see Figure 6.2):

P1: if there is a line with the same label as its left and right areas, remove this line
and merge the two areas.

80 6. The Topological Invariant

- line + line + area A

- unbounded area

•

- point

Figure 6.3: The maximal partition of R 2 induced by the semi-algebraic set A, shown in
Figure 6.1. The labeled planar graph describing this decomposition is the topological
invariant of A

p2: if there is a point with only two outgoing lines, which have the same label as
the point, remove this point and merge the two lines. (do this only when the
two lines are not twins of each other) .

p3 : if there is an isolated point with the same label as its area, remove this point.

It can be verified that the rewrite system {p1 , p2 , p3} is terminating and has the
Church-Rosser property. Moreover, by first applying p1 exhaustively, then P2, and
finally p3 , we can transform an arbitrary labeled plane graph into its topological
invariant in linear time.

The topological invariant of a planar semi-algebraic set A is a topological invariant
G such that A is represented by G (see Figure 6.3).

6.1.2 Data Structure and Updates

From the definition of a labeled plane graph in Section 6.1, it is straightforward to use
the doubly-connected edge list [15, 60] as data structure for labeled plane graphs, after
two remarks have been made. (1) In order to associate the circular list of outgoing
lines to a point, we store for each point a pointer to an arbitrary outgoing line record;
(2) To efficiently find the lines on the boundary of an area, we store for each area a
pointer to an arbitrary line on the outer boundary of the area, and a list of pointers
to arbitrary lines on the inner boundaries of the area.
Furthermore, we extend each record with a label (+ or -) , and in case of a concrete
labeled plane graph, each point record is extended with coordinate fields, and each
line record contains its semi-algebraic definition.

We also need the notion of the "Next" of a line L: this is the next line in the
circular list of the source of the twin line of L, L. This corresponds to walking on the
outer boundary of the area in counterclockwise direct ion (see Figure 6.4).

We now introduce our update dictionary.

1. Insert an isolated point p to area a.

6.1. The Maintenancf: of __ the Topological Invariant of Labeled Plane _9raphs 81

~n(L)

i.::L)~

Figure 6.4: The Next and Twin of a line L

2. Insert a point p to line L, splitting the line L into two lines L1 and L2.

3. Insert a line N between two points p and q, following the line Lin the circular
list of outgoing lines of p, and preceding line M in the circular list of outgoing
lines of q. (L, respectively M, does not need to be specified if p, respectively q,
is isolated.)

4. Delete isolated point p from area a. This is only allowed if the label of point p
equals the label of area a.

5. Delete point p with only two outgoing lines L1 and L2, coalescing lines L1 and
L2 into a new line L. This is only allowed if L1 and L2 have the same label as
p.

6. Delete line L, coalescing its adjacent areas. This is only allowed if the areas
adjacent to L have the same label as L.

7. Change the label of point p.

8. Change the label of line L.

9. Change the label of area a.

The implementation of updates on doubly-connected edge lists is trivial for up­
dates 7, 8, and 9, and is straightforward for updates 1, 2, 4, 5, and 6. The only update
that needs further comment is update 3. When a line N is added, it splits an area
a in two, possible the same, areas a 1 and a 2. It depends on the existence of a path
between p and q on the boundary of a, whether a 1 equals a 2 , or not. To decide if
a path exists, start with line Land apply Next repeatedly. If Mis reached, a path
between p and q exists. If L is reached, no path exists between p and q. In the first
case a1 does not equal a 2 , while in the second case a 1 equals a 2 •

6.1.3 The Maintenance Algorithm

Given two doubly-connected edge lists: one representing the concrete labeled plane
graph, and one representing the topological invariant. If we perform one of the nine

82 6. The Topological Invariant

f ...
a 'l

point f line f area f
a i A H a (3
b j B,C I

c,d J_ D,E I
e,f J_ F,G I

Figure 6.5: Example of the partial function f

updates of Section 6.1.2 on the concrete labeled plane graph, what has to be done on
the topological invariant such that it remains the topological invariant of the changed
concrete labeled plane graph?

To obtain a better performance than computing the topological invariant of the
concrete labeled plane graph from scratch, we maintain a correspondence between
the concrete labeled plane graph and its topological invariant. This correspondence
is given by the partial function f as is illustrated in Figure 6.5.

The partial function f is either defined for an object o of the concrete labeled
plane graph, or is undefined in o, in which case we write f(o) = J_ _ The function f is
surjective and is always defined on areas.

The first auxiliary notion we introduce is that of the coalesce class of a line L
or area a in the concrete labeled plane graph. This is defined as the set of all lines
L' (areas d) for which f(L') = f(L) (!(a') = f(a)). Of course the crucial issue is
how to find this coalesce class. This is possible in time proportional to the size of
the coalesce class, and will govern the complexity of our algorithm as is shown in
Theorem 6.1.2

Translating the Simplification Rules In our maintenance algorithm, we will
need to apply the simplification rules p1 , p2 and p3 defined in Sect ion 6.1.1 to specified
parts of the topological invariant. In doing so, we also must update our mapping /.
The details are as follows:

p1 : Let L be a line in the concrete labeled plane graph, and let a and (3 be its
adjacent areas. Assume that f(L) is defined, and has the same label as f(a)
and f ((3). We then perform the following operations:

(a) Delete f(L) from the topological invariant. This will imply that /(a) and
f ((3) will be coalesced in the topological invariant into an area 'Y.

(b) Put f (L) := L

6.1. The Maintenanc~ of the Topo!ogical I~"ariant of Labe!ed Plane Grap~~ ._ 83

(c) Put f(a.') := 1 for each a' in the coalesce class of a, and similarly for f).

P2: Let p be a point in the concrete labeled plane graph, and let L and M be its
only adjacent lines. Assume that f(p), f(L), and f(M) are defined, and all
have the same label. We then perform the following operations:

(a) Delete f(p) from the topological invariant. This will imply that f(L) and
f (M) will be coalesced in the topological invariant into a line N.

(b) Put f(p) := 1-.

(c) Put f(L') := N for each L1 in the coalesce class of L, and similarly for M.

p3: Let p be an isolated point in the concrete labeled plane graph, and adjacent
with the area a. Assume that f (p) is defined, and f (p) and f (a) have the same
label. We then perform the following operation:

(a) Delete f (p) from the topological invariant.

(b) Put f(p) := 1- .

Translating the Inverse Simplification Rules In our maintenance algorithm,
we will also need to apply "inverses" of the simplification rules. We denote these
procedures by 81 , 02, and 83. They work as follows:

81: Let N be a line of the concrete labeled plane graph with endpoints p and q,
predecessor L in the list of outgoing lines of p, and successor M in the list of
outgoing lines of q. Assume that both J(p) and f(q) are defined, and f(N) = 1-.
Denote with 01 and a2 the areas adjacent to L. In this case f(ai) = f (a2) = 'Y·
We then perform the following operations:

(a) In the circular list around p, starting with L, look backwards for a line L'
such that f (L1) is defined. Similarly, in the circular list around q, starting
with M, look forwards for a line M' such that f(M') is defined.

(b) Insert a new line, f(N), in the topological invariant between f(p) and f (q)
with predecessor f (L') and successor f (M').

(c) By the insertion of f(N) in the topological invariant, we have possibly split
area I in two areas 11 and "(2. We partition the coalesce class of a 1 (which
coincides with coalesce class of a 2) as follows: If ai is in the coalesce class
of a1, and there exists a path connecting a point in a 1 to a point in ai,
such that this path only crosses lines K =/:- N, for which f(K) = ..l, then
ai is in the new coalesce class of a1. Put f(aD = 11 and similarly for a2.

52 : Let p be a point in the concrete labeled plane graph, and L and M its only two
different outgoing lines. Assume that f(p) = 1-, and f(L) = f(M) = N. We
then perform the following operations:

(a) Insert a new point, f(p), in the topological invariant on line N.

84 6. The Topological Invariant

Figure 6.6: The fully dynamical maintenance algorithm

(b) By the insertion of f(,p) in the topological invariant, the line N is split in
two lines N1 and N2. We partition the coalesce class of L (which equals
the coalesce class of M) as follows: If L' is in the coalesce class of L and
is reachable from L by repeatedly performing Next, then L' is in the new
coalesce class of L. Put f(L') = N 1 and similarly for M.

('3 : Let p be a point of the concrete labeled plane graph such that either pis isolated,
or f is undefined for all outgoing edges of p. Let a be an adjacent area of p and
assume that f(,p) = 1.. We then perform the following operation:

(a) Insert a new isolated point, f (,p), in the topological invariant to area f (a).

All the procedures Pi and Oi change the topological invariant and adapt the partial
function f to this new topological invariant. The difference between Pi and Oi is
that the parameters of Pi are objects of the topological invariant, while for oi, the
parameters are objects of the concrete labeled plane graph.

The Maintenance Algorithm We are now ready to describe the maintenance
algorithm (see Figure 6.6). It is a fully dynamic algorithm, which means that it keeps
the topological invariant up-to-date when the concrete labeled plane graph is subject
to one of nine updates defined in Section 6.1.2.

Consider the nine kinds of updates defined in Section 6.1.2.

l. Insertion of a new isolated point p in area a.

(a) Insert a new point, f(,p) , in area f(a) of the topological invariant.

2. Insertion of a new point p on a line L.

(a) If f(L) = ..l. and f(r) = ..l. and/or f(s) = ..l., where r and s are the
endpoints of L, perform 03 or 82 on r and/ors, and apply 81 on L.

6.1. The Maintenanc~_of the Top?logical Im,~iant_o! Labeled Plane Graphs 85

(b) Insert a new point, f(p), in the topological invariant on f(L).

(c) By the insertion of p in the concrete labeled graph, the line L is split in
two lines L1 and L2. Correspondingly, the line f(L) is split into M1 and
M2. We partition the coalesce class of L1 (which equals the coalesce class
of Li and L2) as follows: if Li is in the coalesce class of L1 and is reached
by performing Next on L i , then Lt is in the new coalesce class of L1 . Put
f(LD = M1 and similarly for L2.

(d) Finally apply P1 to M1 and M2 if possible, and perform P2 or p3 to f(p),
f(r), and f(s), if possible

3. Insertion of a new line N between p and q with predecessor L in the list of lines
around p, and successor M in the list around q.

(a) If f(p) = ..l, perform 82 or 83 (whichever appropriate) on p. Similarly for
q.

(b) In the circular list around p, starting with L, look backwards for a line L'
such that f (L') is defined. Similarly, in the circular list around q, starting
with M, look forwards for a line M' such that f(M') is defined.

(c) Insert a new line, f (N), in the topological invariant between f (p) and f (q)
with predecessor f(L') and successor f(M').

(d) By the insertion of Nin the concrete labeled plane graph, we have possibly
split an area a in two areas a1 and a2. Correspondingly, f(a) has been
split in two areas '}'i and '}'2- We partition the coalesce class of a 1 (which
coincides with coalesce class of a2) as follows: If ai is in the coalesce class
of a 1 , and there exists a path connecting a point in a:1 to a point in a:i,
such that this path only crosses lines K =/: N, for which f(K) = ..l, then
a;. is in the new coalesce class of a1. Put f (a:D = '}'1 and similarly for 0:2.

(e) Finally, perform Pt on f(N) if possible, and perform P2 and p3 on f(p)
and f (q), if possible.

4. Deletion of an isolated point p in area a.

(a) This update is already performed by p3 on the topological invariant, if
possible.

5. Deletion of point p with only two outgoing lines L1 and L 2 .

(a) This update is already performed by P2 on the topological invariant, if
possible

(b) By the deletion of point p, we have coalesced the lines L1 and L2 into a new
line, L, in the concrete labeled plane graph. Set f(L) := f(L1) = f(L2).

6. Deletion of a line L with endpoints p and q.

(a) This update is already performed by P1 on the topological invariant, if
possible.

86 ________ 6. The Topological Invari_ant

(b) By the deletion of the line L , we have possibly coalesced the adjacent areas
a 1 and a2 into a new area, a, in the concrete labeled plane graph. Set
J(a) := f(ai) = J(a2).

7. Relabeling a point p.

(a) If f(p) = .l, and f (L') = ..L for each L' in the circular list around p, then
apply 83 top. If f (p) = ..L, and f(L') = .l for each L' in the circular list
around p, except for two lines Li, and L2, such that f(L1) = J(L2), apply
82 top.

(b) Relabel point J(p).

(c) Apply P2 or p3 to f(p), if possible.

8. Relabeling a line L between p and q.

(a) If j(p) = ..L, perform 82 or 83 (whichever appropriate) on p and similarly
for q.

(b) If J(L) = ..L, then apply 81 to line L.

(c) Relabel j(L).

(d) Perform p1 to f(L) if possible, and apply P1 or P2 to J(p) and J(q), if
possible.

9. Relabeling an area a.

(a) If J(p) = ..L for an isolated point pin a, or a point p on the boundary of
a, for which f is undefined for all outgoing lines, then perform 83 to p. If
f(q) = .l for a point q on the boundary of a, then apply 82 to q. Finally,
if j(L) = .l for a line Lon the boundary of a, then apply 81 to L.

(b) Relabel area f(a).

(c) Apply p1 for each line f(L) on the boundary off (a) , if possible. For each
point f (q) on the boundary off (a), perform P2 if possible, and for each
isolated point f(p) in f(a), apply p3, if possible.

Complexity Analysis The time needed to maintain the topological invariant by
the Maintenance Algorithm just described is equal to the size of the coalesce classes
involved. Since these coalesce classes can be linear in the size of the topological
invariant, we obtain that the Maintenance Algorithm has linear t ime complexity per
update.

Theorem 6.1.2. The total time spent on £ updates by Maintenance Algorithm is
0(£2).

6.2. The Main~e~~c_e of the Topolog~c_~l Invariant of Arbitr~ry Graphs 87

Figure 6.7: A graph (thin lines) together with it topological invariant (thick lines).

6.2 The Maintenance of the Topological Invariant
of Arbitrary Graphs

6.2.1 Definitions

We can also define the notion of a topological invariant for arbitrary graphs. Consider
an undirected graph with weighted edges G = (V, E, >.), with n = IVI the number of
vertices, and m = IEI the number of edges. The weights of the edges are given by
a mapping >. : E -t N+. Two vertices are adjacent if there exists an edge between
them. We will use the following definitions

1. A vertex v is regular if and only if it is adjacent to precisely two edges.

2. A vertex that is not regular is called singular.

3. A path between two singular vertices that passes only through regular vertices
is called a regular path.

We assume that the graph G does not contain regular cycles, i.e., a cycle consisting
only of regular vertices.
The topological invariant G 1 = (Vi, E 1, >.1) of the graph G, is a multigraph which is
obtained as follows (see Figure 6.7).

1. Vi is the subset of V consisting of all singular vertices.

2. E1 consists of all pairs (v, w) such that there is a regular path between v and
w. There is an edge for each regular path between v and w. We call these edges
topological edges.

3. >.1((v, w)) is the sum of all >.(e) where e is an edge on the regular path between
v and w, corresponding to the edge (v,w).

88 6. The Topological Invariant

6.2.2 Data Structure and Updates

We will use the standard data structures for undirected graphs, as provided e.g.,
by LEDA (Library of Efficient Data Types and Algorithms,[54]). Since these data
structures are standard, we discuss how the updates on the graph G must be translated
into updates on its topological invariant G 1.

We only consider insertions of a new isolated vertex and insert ions of edges between
existing vertices in the graph G (other more complex insertion operations can be
translated into a sequence of these basic insertion operations). The insertion of an
isolated vertex is handled trivially, i.e., we insert it in Vi.

For the insertion of an edge we distinguish between six cases that are explained
below and depicted in Figures 2- 7. The left side of each figure shows the situation
before the insertion of the edge {x,y}, which is the dotted line and the right side
shows the situation after the insertion. As before, the topological edges are drawn in
thick lines.

Case 1 Vertices x and y are both singular and deg(x) =/- 1 and deg(y) =/- 1.
Then the edge { x, y} is also inserted in G 1.

Figure 2: Case 1

Case 2 Vertices x and y are both singular and one of them, say x, has degree one.
Let {z , x} be the edge in G 1 adjacent to x. Extend this edge to the new edge
{ z, y} in G 1 , putting A 1 ({ z, y}) : = A 1 ({ z, x}) + A ({ x , y}) . Note that x becomes
a regular vertex after the insertion.

Figure 3: Case 2

Case 3 Vertices x and y are both singular and deg(x) = deg(y) = 1.
Let {z1,x} ({z2,Y}) be the edge in G1 adjacent with x (y). Suppose z1 =/- y

(z2 =I- x). Then merge the edges {z1, x} and {y, z2} in G1 into a single, new edge
{z1,z2} in G1, putting A1({z1,z2}) := A1({z1,x}) + A1({y, z2}) + A({x,y}). If
z1 = y (z2 = x) then extend the edge {x, y} to, a new edge {x, x} in G1, putting
A1({x,x}) := A1({x, y}) + ,\({x, y}).

Figure 4: Case 3

Case 4 One of the vertices x and y is regular, say x, and the other vertex, y, is
singular and has degree one.

6.2. The Maintenance of t~e Topological Inv~riant of Arbitrary Graph~_ 89

First, the edge { z1, z2} of Gr which corresponds to the regular path between z1
and z2 on which x lies, must be split into two new edges { z1, x} and { x, z2} of
G1. Here, we put >.r({z1,x}) := I;>.({u,v}) , where the summation is over all
edges in G on the regular path from z1 to x. We similarly define >.1 ({ x, z2}) .
Secondly, let { Z3, y} be the edge in Gr adjacent to y. Then we extend this edge
to a new edge {z3, x} in G1, putting, >.r({x, z3}) := >.1({y, Z3}) + >.({ x, y}).

Figure 5: Case 4

Case 5 One of the vertices, say x, is regular and the other one, y, is singular with
degree not equal to one.
Then we split exactly as in case 4, and now we also insert { x, y} as a new edge
in Gr.

~~
@ c£

Figure 6: Case 5

Case 6 Both x and y are regular: two splits must be performed

Figure 7: Case 6

As can be seen in the description of cases 1--6, if no regular vertices are involved,
then the update on the graph G translates trivially in exactly the same update on
the topological invariant Gr - It is only in cases 4, 5, and 6, that the update on the
graph G involves vertices which have no counterpart in the topological invariant GI·
However, we need to know which edge we need to split and what the weights are of
the topological edges created by the split. Consequently, the problem of maintaining
the topological invariant G 1 of a graph G amounts to two tasks:

• Maintain a function find topological edge, which takes a regular vertexas input,
and outputs the topological edge whose regular path in G contains the input
vertex.

• Maintain a function find weights which outputs the weights of the edges created
when a topological edge is split at the input vertex.

We note that the Maintenance Algorithm of Section 6.1.3 finds the topological
edge, by storing, for each regular vertex, a pointer to its topological edge. This makes

90 6. The Topological Invariant

the topological edge accessible in constant time, but the maintenance of the pointers
under updates can cost linear time in the worst case.

We next describe two algorithms which are more efficient. Both algorithms keep
the topological invariant of a graph up-to-date when the graph is subject to edge
insertions only.

6.2.3 The Renumbering Algorithm

We first show how the topological edges can be found efficiently.

Assigning numbers to the regular vertices We number the regular vertices,
that lie on a regular path, consecutively. The numbers of the regular vertices on any
regular path will always form an interval of the natural numbers. The Renumbering
Algorithm will maintain two properties:

Interval property the assignment of consecutive numbers to consecutive regular
points;

Disjointness property different regular paths have disjoint intervals.

We then have a unique interval associated with each regular path, and hence
with each topological edge of size > 0. Moreover, we choose the minimum of such
an interval as a unique number associated with a topological edge. Specifically, the
minimal number serves as a key in a dictionary. Recall that in general, a dictionary
consists of pairs (key,item), where the item is unique for each key. Given a number
k, the function which returns the item with the maximal key smaller than k can be
implemented in O(log N) time, where N is the number of items in the dictionary [14].

The items we use contain the following information.

1. An identifier of the topological edge associated with the key.

2. The number of regular vertices on the regular path corresponding to this topo­
logical edge.

3. An identifier of the regular vertex on the regular path corresponding to this
topological edge, which has the key as number.

In Figure 6.8 we give an example of a dictionary containing three keys, corresponding
to the three topological edges in the topological invariant G 1 of the graph G.

Maintaining the numbers of the regular vertices We must now show how
to maintain this numbering under updates, such that the interval and disjointness
properties ment ioned above remain satisfied.

Actually, only in case 3 in Section 6.2.2 we need to do some maintenance work
on the numbering. Indeed, by merging two topological edges, the numbering of the
regular vertices is no longer necessarily consecutive. We resolve this by renumbering

6.2. Th~ Maintenance of the_ Topological Invar_i3.:11.t of Arbitrary Graphs

dictionary
(key, item

(10, e 5 1'min)

(30, f 4 Vmin)

(50, g 2 Wrnin

Figure 6.8: Dictionary example.

91

the vertices on the shortest of the two regular paths. Note that the size of a regular
path is stored in the dictionary item for that path.

In order to keep the intervals disjoint, we must assume that the maximal number
of edge insertions to which we need to respond is known in advance. Concretely, let
us assume that we have to react to at most £ update operations.1 A regular path
is "born" with at most two regular vertices on it. Every time a new regular path is
created, say the kth time, we assign the number 2kf to one of the two regular vertices
on it. Hence, newly created topological edges correspond to numbers which are 2£
apart from each other. Since a newly created topological edge can become at most
f - 1 vertices longer, no interference is possible.

Finding the topological edge Consider that we are in one of the cases 4-6 de­
scribed in Section 6.2.2, where we have to split the topological edge at vertex x. We
look at the number of x, say k, and find in the dictionary the item associated with
the maximal key smaller than k. This key corresponds to the interval to which k
belongs, or equivalently, to the regular path to which x belongs. In this way we find
the topological edge which has to be split, since this edge is identified in the returned
item.

The numbering thus enables us to find an edge in O(log m') time, where m' is the
number of edges in G 1 which correspond to a regular path passing through at least
one regular vertex. Because m' is at most m, the number of edges in G, we obtain:

Proposition 6.2.1. Given a regular vertex and its number, the dictionary returns
in O (log m) time the topological edge corresponding to the regular path on which this
regular vertex lies.

We next show how, when a topological edge is split, we can quickly find the weights
of the two new edges created by the split.

1This assumption is rather harmless: one can set this maximum limit to a large number. If it is
eventually reached, we restart from scratch.

92 6. The Topological Invariant

... r'\~
l~~

Figure 6.9: Assigning new numbers and weights of regular vertices simultaneously
when two topological edges are merged. The numbers of regular vertices are in bold,
the weights are inside the vertices.

Assigning weights to the regular vertices We define the weight of a regular
vertex as a mapping >. * : Vr -+ N and assign values to this mapping. Let us define
the kth vertex of a regular path as the vertex with numbers, such thats - Smin = k,
where Smin is the minimal number of the vertices on the regular path. Let vk be the
kth regular vertex, and let { x, y} be the topological edge corresponding to the regular
path. We then define >.*(vo) := 0 fork= 0, and >.*(vk) := >.*(vk_i) + >.({vk-1,vk})
fork> 0.

Maintaining the weights of regular vertices The maintenance of the weights
of regular vertices, under edge insertions is easy. It requires only constant time when
a topological edge is extended. Let { x, y} be a topological edge, and suppose that we
extend this edge by inserting {y, z}. Let u be the regular vertex adjacent toy. Then,

• if >.*(u) < 0, then >.*(y) := >.*(u) - >.({u,y}).

• if >.*(u) ~ 0, and no regular vertex with a positive weight is adjacent to u, then
,* (y) := >.*(u) + >.({ u, y}). Otherwise, the >.* (y) := >.*(u) - >.({ u, y}).

It takes no time at all when a topological edge is split. However, when two
topological edges are merged, we need to adjust the weights of the regular vertices on
the shortest of the two regular paths, as shown in Figure 6.9. This adjustment of the
weights can clearly be done simultaneously with the renumbering of the vertices, as
explained above.

Finding the weights The weights of regular vertices now enable us to find the
weights of the two edges created by a split of a topological edge in logarithmic time.
Indeed, given the number of the regular vertex where the split occurs, we search in the
dictionary which topological edge needs to be split; call it {z1, z2} . In the returned
item we find the vertex which has the minimal number of the vertices on the regular
path corresponding to { z1 , z2 }. Denote this vertex with u which is adjacent to either
z1 or z2 • We assume that u is adjacent to z1 , the other case being analogous. The
weight of the two new topological edges { z1 , x} and { x, z2 } can be computed easily:

• A({z1,x}) := >.({z1,u}) + J>.*(1.t) - >.*(x)J; and

6.~.~T!le_Maintenance of the Topological In~~iant ~f-~rbitrary Grap~~ 93

If only one regular vertex remains on a regular path after a split, or a regular
vertex becomes singular, then the weight of this vertex is set to 0. This all takes
constant time plus the time for one lookup in the dictionary, which takes logarithmic
time. Hence, with e the current number of edge insertions, we obtain:

Proposition 6.2.2. The weights of the two new edges created by a split can be com­
puted in O(log £) time.

Complexity analysis By the amortized complexity of an on-line algorithm [68, 53],
we mean the total computational complexity of supporting e updates (starting from
the empty graph), as a function of e, divided bye to get the average time spent on
supporting one single update. We will prove here that the Renumbering Algorithm
has O(logf) amortized time complexity. We only count edge insertions because the
insertion of an isolated vertex has zero cost.

Theorem 6.2.1. The total time spent one updates by the Renumbering Algorithm is
O(flogf).

Proof. If we look at the general description of the Renumbering Algorithm, we see
that in each case only a constant number of steps are performed. These are either
elementary operations on the graph, or dictionary lookups. There is however one
important exception to this. In cases where we need to merge two topological edges,
the renumbering of regular vertices (and simultaneously adjustment of their weights)
is needed. Since every elementary operation on the graph takes constant time, and
every dictionary lookup takes O(logf) time, all we have to prove is that the total
number of renumberings is O(flog £).

A key concept in our proof is the notion of a super edge (see Figure 6.10). Super
edges are sets of topological edges which can be defined inductively: initially each
topological edge (with one or two regular vertices on it) is a member of a separate
super edge. If a member a of a super edge A is merged with a member b of another
super edge B, then the two super edges are unioned together in a new super edge C
and a and b are merged into a new member c of the new super edge C. If a member
d of a super edge is split into e and f, then both e and f will belong to the same super
edge as d did. The important property of super edges is that the total number of
vertices can only grow. We call this number the size of a super edge. A split operation
does not affect the size of super edges, while merge operations can only increase it.

We now prove by induction on e that the total number of renumberings in a super
edge of size e is O(flogl).

The statement is trivial for e = 0, so we take e > 0. We may assume that the
£th update involves a merge of two topological edges, since this is the only update
for which we have to do renumbering. Suppose that the sizes of the two super edges
being unioned are e1 and £2 . Without loss of generality assume that £1 ~ £2 . Hence,
according to the Renumbering Algorithm which renumbers the shortest of the two,
we have to do £1 renumbering steps: £1 to assign new numbers, and £1 to assign

94 6. The Topological Invariant

C
······· ··· ········ ····· ··· ······ ·· ···· ···· ·· ·········

A
··· ······· ········ ······ B

······

Figure 6.10: An example of some super edges (dotted lines)

new weights. The size of the new super edge will be £ = f.1 + £2 • By the induction
hypothesis, the total numbers of renumberings already done while building the two
given super edges are £1 logf.1 and £2 logf.2. It is known that

1 1
2min{x, 1-x}:::; xlog - + (1 - x) log~-,

X l-X
(6.2.1)

for x E [O, 1] [67]. Define x =£if£. By (6.2.1), we then obtain the following inequality

as had to be shown. D

To conclude this section, we recall from the previous section that the maximal
number assigned to a regular vertex is 2£2. So, all numbers involved in t he Renum­
bering Algorithm take only O(logf.) bits in memory. Indeed, Theorem 6.2.1 assumes
the standard RAM computation model with unit costs. H logarithmic cost s are de­
sired, the complexity is O(f.log2 £).

6.2.4 The Topology Tree Algorithm

In this section we introduce another algorithm for keeping the topological invariant of
a graph up-to-date when this graph is subject to edge insertions. We only describe the
case of edge insertion, but it is straightforward to extend the Topology Tree Algorithm
to a fully dynamic algorithm. The algorithm is based on the topology t ree, which has
been introduced by Frederickson [21, 22], and is used extensively in other partially,
and fully dynamic algorithms [38].

We first show how the topological edge can be found efficiently.

Regular multilevel partition We define a cluster as a set of vertices. The size of
a cluster is the number of vertices it contains. A regular cluster is a cluster of size
at most two, containing adjacent regular vertices. A regular partition of a graph G is

6.2. The Maintenance of the To_pological Inv~jant of Arbitrarr Graphs

- - - level 0
- ·-·- level 1
··· ·· level 2
- level 3

Figure 6.11: Example of a regular multilevel partition of a graph.

95

a partition of the set of regular vertices, Vr = V - Vi, such that for any two adjacent
regular vertices v and w, the following holds:

• either v and w are in the same regular cluster C; or

• v and w are in different regular clusters Cv and Cw, and at least one of these
regular clusters has size two.

A regular multilevel partition of a graph G is a set of partitions of Vr that satisfy the
following (see Figure 6.11):

1. For each level i = 0, 1, ... , k, the clusters at level i form a partition of lt~.

2. The clusters at level O form a regular partition of Vr.

3. The clusters at level i form a regular partition when viewing each cluster at
level i - 1 as a regular vertex.

A regular forest of a graph G is a forest based on a regular multilevel partition of
G.

We focus on the construction of a single tree in the forest corresponding to a single
regular path. A single tree is constructed as follows (see Figure 6.12).

1. A vertex at level i in the tree represents a cluster at level i in the regular
multilevel partition.

2. A vertex at level i > 0 has children that represent the clusters at level i - 1
whose union is the cluster it represents.

The height of a topology tree is logarithmic in the number of regular vertices in the
leafs (21] .

We also store adjacency information for the clusters. Two regular clusters C and
C' at level Oare adjacent, if there exists a vertex v E C and a vertex w EC' such that
v and ware adjacent in G.

96 6. The Topol~gical Invariant

level 3

level 2

level 1

level 0

Figure 6.12: The regular forest corresponding to the regular multilevel partition shown
in Figure 6.11

We call two clusters C and C' at level i adjacent, if they have adjacent children. A
regular cluster C at level O is adjacent to a singular vertex s if there exists a regular
vertex v E C adjacent to s. A cluster at level i > 0 is adjacent to a singular vertex s
if it has a child adjacent to s .

Maintaining a regular multilevel partition It is very easy to adjust the regular
partition, i.e., the regular clusters at level O of the regular multilevel partition. When
an edge e = { x, y} is inserted, we distinguish between the following cases: 1. the edge
e destroys a regular vertex u; 2. the edge e destroys two regular vertices u and v; 3.
the edge e creates a regular vertex u; 4. the edges e creates two regular vertices u and
v; 5. the edge e does not change the number of regular vertices. We denote with Cu
(Cv) the regular cluster containing the vertex u (v). We treat these cases as follows.

1. If t he size of Cu is 1, then this cluster is deleted. Otherwise if Cu is adjacent to
a cluster C of size one, remove u from Cu and union Cu with C.

2. Apply case 1 to both Cu and Cv.

3. Create a new cluster Cu only containing u. If Cu is adjacent to a cluster C of
size one, union Cu with C.

4. Apply case 3, but if both Cu and Cv are not adjacent to a cluster of size one,
then they are unioned together.

5. ~othing has to be done.

As an example consider the graph depicted in Figure 6.13. The insertion of edge
{x, y} destroys the regular vertex x, so we are in case 1. Because C' is adjacent to
C" and the size of C" is one, we must union C' and C" together into a new regular
cluster C. The maintenance of the regular partition is completed after adjusting the
adjacency information of both C and V, as shown in Figure 6.13.

6.2. The Maintenance of the Topological Invariant o(~_r-~itrary q_Eap~~ __ 97

C" C' 1)

C 1)

Figure 6.13: Adjusting the regular partition after inserting edge {x,y}.

We assume that the regular partition at level O reflects the insertion of an edge,
as discussed above. The number of clusters which have changed, inserted or deleted
is at most some constant. We put these clusters in a list Le, L1 , and LD according
to whether they are changed, inserted or deleted. More specifically, these lists are
initialized as follows. Each regular cluster that has been split or combined to form a
new regular cluster is inserted in Ln, while each new regular cluster is inserted in list
L1. The adjacency information is stored with the clusters in L1. For clusters in LD
every adjacency information is set to null, except the parent information. For each
regular cluster whose set of vertices has not changed but its adjacency information
has changed, update the adjacency information and insert it into L e .

We create lists L'n, L~, and L0 to hold the clusters at the next higher level of the
regular multilevel partition. These list s are initially empty.

We first adjust the clusters in the list LD, Every cluster C in LD is removed from
LD, and C is removed as child from its parent P (if this exists) .

• If P has no children, then insert P in L'n.

• If P still has a child C1
, then if C1 is not already in Le or LD, then insert C'

into Le .

Next, we search the list Le for clusters that have siblings. Suppose that C E Le has
a sibling C1 and parent P .

• If C and C1 are adjacent, then remove C from the list Lo, and remove C1 from
Le if it is in this list. Insert P into L0.

• If C and C' are not adjacent, then remove C and C1 as children from P . Remove
C from the list Le, and also remove C1 from Le if it is in t his list. Insert both
C and C1 into Li, and insert P in L'n,

Finally, we treat the remaining clusters in Le and in L1. Let C be such a cluster.
Remove C from the appropriate list. In what follows, the degree of C is the number
of adjacent clusters.

98 6. The Topological Invariant

• If C has degree zero, then it is the root of a tree in the regular forest. Insert its
parent P in L'n (if it exists).

• If C has degree one or two, then we have the following possibilities:

- If every adjacent cluster to C has a sibling, then insert the parent P of C
into Le in case P exists. In case C does not have a parent, create a new
parent cluster P and insert it into L1.

- Let C1 be a cluster adjacent to C which has no sibling. Remove C1 from the
appropriate list, if it is in a list. If both C and C' have a parent, denoted
by P and P' respectively, then remove C as child of P and make it a child
of P'. Insert P into L'n, and insert P' into Le. If both C and C' have no
parent, then create a new parent P of C and C', and insert Pinto L1. If
C has a parent P, and C' has no parent, then make C' a child of P and
insert P into Le. The case that C' has a parent P', and C has no parent
is analogous.

When all clusters are removed from Ln, Le, and L1, determine and adjust the adja­
cency information for all clusters in L'n, Le, and L1 and reset Le to be Le, L e to
be Le, and L 1 to be L1. If no clusters are present in L'n, Le or L1, nothing needs
to be done and the iteration stops. This completes the description of how to handle
the lists Ln, Le, and L1.

Finding a topological edge Consider that we are in one of the cases 4---6 described
in Section 6.2.2, where we have to split a topological edge. Let x be the regular vertex
at which we have to split the topological edge. We store a pointer from x to the regular
cluster Cx in which it is contained. We also store a pointer from each root of a tree T
in the regular forest to the topological edge, corresponding to the regular path formed
by all vertices in the leaves of T. We find the topological edge which needs to be split
by going from Cx to the root of the tree containing Cx. Since the height of the tree
is at most O(log£), where£ is the current number of edge insertions, we obtain the
following.

Proposition 6.2.3. Given a regular vertex x, the regular forest returns the topological
edge corresponding to the regular path on which this regular vertex lies in O (log m)
time.

Storing weight information We store weight information in two different places.
We define the weight of a regular cluster at level O of size one as zero. Let C be a
cluster at level O of size two, and let v and w be the two regular vertices in C. Then
we define the weight of C as the weight of the edge { v, w} . If a cluster at level O is
adjacent to a singular vertex s, then we store the weight of { v, s} together with the
adjacency information (Here, v is the vertex in C adjacent to s). If two clusters C
and C' at level O are adjacent, then we store the weight of { v, w} together with their
adjacency information (here v EC and w EC' and vis adjacent tow).

6.2. The ~aintenance of the 1:'op9l?gical In_:7ariant oL~rbitrary Gr~_hs _ 99

Figure 6.14: Example of a regular tree together with its weight information.

The weight of a cluster of size one at level i > 0, is defined as the weight of its
child at the next lower level. The weight of a cluster of size two at level i > 0 equals
the sum of the weights of its two children and the weight stored with their adjacency
information. If two clusters at level i > 0 are adjacent, we store the weight of the
adjacency information of their adjacent children. If a cluster at level i > 0 is adjacent
to a singular node, we store the weight of the adjacency information of its child and
the singular node.

Maintaining weight information The weight of clusters and the weights stored
together with the adjacency information, is updated after each run of the update
procedure for the regular multilevel partition, with an extra constant cost. Indeed,
both the weights of clusters at level O and the weights stored with the adjacency
information, are trivially updated. When we assume that all levels lower than i
represent the weight information correctly, the weight information of clusters in Le
and L1 is trivially updated using the weight information at level i - 1.

Finding the weights As mentioned above, each root of a regular tree in the regular
forest, has a pointer to a unique topological edge. This root has its own weight, as
defined above, and is adjacent to two singular vertices. The weight of the topological
edge is obtained by summing the weight of the root together with the weights of the
adjacency information of the two singular vertices. This is illustrated in Figure 6.14

Complexity Analysis The complexity of the Topology Tree Algorithm is governed
by two things: the maximal height of a single tree in the regular forest, and the amount
of work that needs to be done at each level in the maintenance of the regular multilevel
partition. The height of a single tree is easily shown to be logarithmic in the number
of regular vertices on the regular path on which the tree is built. Moreover, it is
shown by Frederickson [21], that in the lists Le, Ln, and L1 only a constant number
of clusters are stored. This means that since these lists are updated at most O(log .e)
times, where f is the number of edge insertion, the total update time is still O(log £)
per edge insertion. Hence, we may conclude that

Theorem 6.2.2. The total time spent on .e updates by the Topology Tree Algorithm
is O(t'log.e).

100 ~. The Topological Invariant

6.2.5 Experimental Results

For our experiments, we used the implementations of the Renumbering Algorithm
and Topology Tree Algorithm. The correctness of the implementations was checked
by comparing the topological invariants of graphs obtained by a random sequence of
edge insertions.

Test Environment

Both implementations where implemented in C++ using LEDA. We used the GNU
g++ compiler version 2.95.2 without any optimization option. Our experiments were
performed on a SUN Ultra 10 running at 440 Mhz with 512Mb internal memory. We
measured the time for performing the sequence of updates.

A comparative test

We conducted our experiments on three types of inputs. First of all, we extensively
studied random inputs, which are random sequences of updates on random graphs.
This establishes the average case performance of the algorithms. Next, we used two
kinds of non-random graph inputs which focus on specific features of the algorithms.
More specifically, we constructed a graph input which repeatedly merges topological
edges and a graph input which first creates a very large number of small topological
edges, and then splits these edges randomly. Finally, we ran both algorithms on two
graph instances originating from real data sets.

Random Inputs The random inputs consist of random graphs that are generated,
given the number of vertices and edges. Each experiment builds the random graph
incrementally with the insertions uniformly distributed over the set of edges. We
conducted a series of tests for different number of nodes n and number of edges m.
For every pair of values for n and m we did 1000 experiments and computed t he ratio
between the total time the Topology Tree Algorithm needed to perform the t est and
the total time the Renumbering Algorithm needed to accomplish the same task. We
took the average of this ratio and computed the 95% confidence interval. A value
smaller than 1 means t hat the Topology Tree Algorithm is faster in 95% of the cases.
The results of these experiments are shown in Table 6.1.

For small numbers of edge insertions, i.e., when the probability of having many
regular vertices is large, we see that the Renumbering Algorithm is faster. However,
when the number of edge insertions increases, the Topology Tree Algorithm becomes
slightly faster. This is probably due to the fact that the dictionary in the Renumbering
Algorithm becomes very large, i.e., t here are many short topological edges, and hence,
it takes longer to search a topological edge. The Topology Tree Algorithm probably
becomes faster because the heights of the trees in the regular forest become smaller.
This is confirmed by the results of experiments on non-random inputs.

Non-Random Inputs The non-random inputs consisted of two types. For the
first type, we first created a large number of topological edges and then started to

6.2. T!~ -~ai_i:itenance of the Tope>_lo_E;ic:_al_ Invariant of Arbi~rary Graphs 101

I vertices\edges m=5000 m=lOOOO m=20000 I
I n=lOOO [1.10, 1.15] [1.03, 1.06] [0.97,o.99] I
I vertices\edges m=5000 m=25000 m= 75ooo I
I n=5000 [1.25, 1.29] [1.01, 1.03] [o.96, o.98] I
I vertices\ edges m=lOOOO m=50000 m=15oooo I
I n=50000 [1.30, 1.35] [1.06, 1.07] [o.91 , o.92J I
I vertices\edges m=lOOOO m=lOOOOO m=3ooooo I
I n=lOOOOO [1.21, 1.23] [0.98, 0.99] [o.85, o.86] I

Table 6.1: Experimental results on random inputs.

vertices\ edges m=20000 I
n=lOOOO [1.7, L75J I

vertices\ edges m=6oooo I
n=15000 [o.85, o.87] I

Table 6.2: Experimental results on two types of non-random inputs.

merge these edges pairwise. The end result was a very long topological edge. For the
second type, we first created a very large number of topological edges corresponding
to a regular path consisting of a single regular vertex, and then started to split the
topological edges randomly in the regular vertices. The results shown in Table 6.2
are obtained after doing 200 experiments. In each experiment, we computed the ratio
between the total time the Topology Tree Algorithm needed to perform the test and
the total time the Renumbering Algorithm needed to accomplish the same task. We
took the average of this ratio and computed the 95% confidence interval. For the first
type of inputs, the Topology Tree Algorithm has to maintain large topology trees,
which is probably the reason that it is slower than the Renumbering Algorithm. For
the second type of inputs, the topology trees all have height one, but the dictionary
is very large. This is probably the reason that the Renumbering Algorithm is slower
on these kinds of inputs.

Real Data Inputs We also tested the relative performance of both algorithms with
respect to graphs representing real data. We present the results on two data sets:

Hydrography graph A data set representing the hydrography of Nebraska. This set
contains 157972 vertices, of which 96636 are regular.

Railroad graph A data set representing all railway mainlines, railroad yards, and ma­
jor sidings in the continental U.S. compiled at a scale 1 : 100 000. It contains
133 752 vertices of which only 14 261 are regular.

The results shown in Table 6.3 are obtained after performing 200 experiments. In
each experiment, we ran both algorithms in a random way on these data sets. We

102 6. The Topological Invariant

vertices\ edges m=l01336
n=157972 (1.60, 1.63]

vertices\ edges m=164380
n=133 752 [0.94, 0.95]

Table 6.3: Experimental results on two real data sets.

computed the ratio between the total time the Topology Tree Algorithm needed to
perform the test and the total time the Renumbering Algorithm needed to accomplish
the same task. We took the average of this ratio and computed the 95% confidence
interval. Again, we see that when there are only few, but long, topological edges,
the Renumbering Algorithm is faster than the Topology Tree Algorithm. When there
are many, short, topological edges, like in the railroad graph, the Topology Tree
Algorithm is slightly faster that the Renumbering Algorithm.

Bibliography

[1] D. Abel and B.C. Ooi, editors. Advances in Spatial Databases- 3rd Symposium
SSD'93, volume 692 of Lecture Notes in Computer Science. Springer-Verlag, 1993.

[2] D. Alberts, G. Cattaneo, and G.F. Italiano. An empirical study of dynamic graph
algorithms. ACM Journal of Experimental Algorithms, 2(5), 1997.

[3] S. Basu, R. Pollack, and M.-F. Roy. On the combinatorial and algebraic com­
plexity of quantifier elimination. Journal of the ACM, 43(6):1002- 1046, 1996.

[4] R. Benedetti and J.J. Risler. Real Algebraic and Semi-algebraic Sets. Hermann,
Paris, 1990.

[5] M. Benedikt, M. Grahe, L. Libkin, and L. Segoufin. Reachability and connectivity
queries in constraint databases. In Proceedings of the 19th ACM Symposium on
Principles of Database Systems, pages 104-115. ACM Press, 2000.

[6] M. Benedikt and L. Libkin. Safe constraint queries. Siam Journal on Computing,
29(5):1652-1682, 2000

[7] M. Benedikt and L. Libkin. Exact and approximate aggregation in constraint
query languages. In Proceedings of the 18th ACM Symposium on Principles of
Database Systems, pages 102- 113. ACM Press, 1999. To appear in the Journal
of Computer and System Sciences.

[8] J. Bochnak, M. Coste, and M.-F. Roy. Real Algebraic Geometry, volume 36 of
Ergebenisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, 1998.

[9] A. P. Buchmann, 0. Gunther, T . R. Smith, and Y.-F. Wang, editors. Design
and implementation of large spatial databases- 1st Symposium, volume 409 of
Lecture Notes in Computer Science. Springer-Verlag, 1989.

[10] A. Chandra and D. Hare!. Computable queries for relational data bases. Journal
of Computer and System Sciences, 21(2):156-178, 1980.

[11] B. Clark. A calculus of individuals based on "connection". Notre Dame Journal
of Formal Logic, 22(3):204-218, 1981.

103

104 Bibliography

[12) A. G. Cohn, D. A. Randell, and Z. Cui. Taxonomies of logically defined quali­
tative spatial relations. In N. Guarino and R. Poli, editors, Formal ontology in
conceptual analysis and knowledge representation, 43(5-6):831-846,Kluwer, 1995.

[13] G.E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In H. Brakhage, editor, Automata Theory and Formal Languages,
volume 33 of Lecture Notes in Computer Science, pages 134-183, Berlin, 1975.
Springer-Verlag.

[14] T.H. Cormen, C.E. Leierson, and R.L. Rivest. Introduction to Algorithms. MIT
Press, 1990.

[15) M. de Berg, M. van Kreveld, M. Overmars, and 0. Schwarzkopf. Computational
Geometry- Algorithms and Applications. Springer-Verlag, 1997.

[16] F. Dumortier, M. Gyssens, L. Vandeurzen, D. Van Gucht. On the Decidability of
Semilinearity for Semialgebraic Sets and Its Implications for Spatial Databases.
Journal of Computer and System Sciences, 58(3):535- 571 ,1999.

[17) H.D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, Berlin,
1995.

[18) M. Egenhofer. A model for detailed binary topological relationships. Geomatica,
47(3-4):261-273, 1993.

[19) M.J. Egenhofer and J .R. Herring, editors. Advances in Spatial Databases- 4th
Symposium SSD'95, volume 951 of Lecture Notes in Computer Science. Springer­
Verlag, 1995.

[20) D. Eppstein, z. Galil, G.F . Italiano, and A. Nissenzweig. Sparsification - a tech­
nique for speeding up dynamic graph algorithms. Journal of the ACM, 44(5):669-
696, 1997.

[21) G.N. Frederickson. Data structures for on-line updating of minimal spanning
trees. SIAM Journal of Computing, 14:781- 798, 1985.

[22) G.N. Frederickson. Ambivalent data structures for dynamic 2-edge-connectivity
and k smalles spanning trees. SIAM Journal of Computing, 26(2):484-538, 1997.

[23] F. Geerts and B. Kuijpers. Expressing topological connectivity of spat ial databa­
ses. In Research Issues in Structured and Semistructured Database Programming.
Proceedings of 8th International Workshop on Database Programming Languages,
volume 1949 of Lecture Notes in Computer Science, pages 224- 238. Springer­
Verlag, 1999.

[24] F. Geerts and B. Kuijpers. Linear approximation of planar spatial databases
using transitive-closure logic. In Proceedings of the 19th ACM Symposium on
Principles of Database Systems, pages 126-135. ACM Press, 2000.

105

[25] F. Geerts, B. Kuijpers, and J. Van den Bussche. Topological canonization of
planar spatial data and its incremental maintenance. In T. Polle, T. Ripke,
and K.-D. Schewe, editors, Proceedings of the 7th International Workshop on
Foundations of Models and Languages for Data and Objects, pages 55-68. Kluwer
Academic Publisher, 1998.

(26) C. G. Gibson, K. Wirthmiiller, A. A. du Plessis, and E. J. N. Looijenga. Topolog­
ical Stability of Smooth Mappings, volume 552 of Lecture Notes in Mathematics.
Springer-Verlag, 1976.

(27] M. Grohe and L. Segoufin. On first-order topological queries. In Proceedings of
the 15th IEEE Symposium on Logic in Computer Science, pages 349--360. IEEE
Press, 2000. To appear in the ACM Transactions on Computational Logic.

[28] S. Grumbach and G. Kuper. Tractable recursion over geometric data. In
G. Smolka, editor, Proceedings of the 3rd Conference on Principles and Prac­
tice of Constraint Programming, number 1330 in Lecture Notes in Computer
Science, pages 450-462. Springer-Verlag, 1997.

[29] S. Grumbach, P. Rigaux, M. Scholl, and L. Segoufin. DEDALE, a spatial con­
straint database. In S. Cluet and R. Hull, editors, Proceedings of the 7th Work­
shop on Database Programming Languages, volume 1369 of Lecture Notes in
Computer Science, pages 38- 59. Springer-Verlag, 1998.

(30] S. Grumbach, P. Rigaux, and L. Segoufin. The DEDALE system for complex
spatial queries. In L.M. Haas and A. Tiwary, editors, Proceedings of the ACM
International Conference on Management of Data, pages 213- 224. ACM Press,
1998.

(31] S. Grumbach and J. Su. Towards practical constraint databases. In Proceedings
of the 15th ACM Symposium on Principles of Database Systems, pages 28-39.
ACM Press, 1996.

(32] S. Grumbach and J. Su. Queries with arithmetical constraints. Theoretical Com­
puter Science, 173(1):151-181, 1997.

(33] V. Guillemin and A. Pollack. Differential topology. Prentice-Hall, 1974.

(34] 0. Gunther and H.-J. Schek, editors. Advances in Spatial Databases- 2nd Sympo­
sium SSD'91, volume 525 of Lecture Notes in Computer Science. Springer-Verlag,
1991.

(35] R.H. Giiting, editor. Advances in Spatial Databases- 6th Symposium SSD'99,
volume 1651 of Lecture Notes in Computer Science. Springer-Verlag, 1999.

(36] M. Gyssens, J. Van den Bussche, and D. Van Gucht. Complete geometrical query
languages. Journal of Computer and System Sciences, 58(1):483- 511, 1999.

106 Bibliography

(37] J. Heintz, T. Recio, and M.-F. Roy. Algorithms in real algebraic geometry
and applications to computational geometry. In J . Goodman, R. Pollack, and
W. Steiger, editors, Discrete and Computational Geometry, volume 6. AMS­
ACM, 1991.

(38] G. Italiano. Dynamic graph algorithms. In Mikhail J. Atallah, editor, Handbook
on Algorithms and Theory of Computation. CRC Press, 1998.

(39] P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. Constraint query languages.
Journal of Computer and System Science, 51(1):26- 52, 1995.

[40] P. Koiran. Approximating the volume of definable sets. In Proceedings of the
36th IEEE Symposium on Foundations of Computer Science, pages 134-141.
IEEE Press, 1995.

[41] P. Koiran, M. Cosnard, and M. Garzon. Computability with low-dimensional
dynamical systems. Theoretical Computer Science, 132:113- 128, 1994.

[42] D. Kozen and C.-K. Yap. Algebraic cell decomposition in nc. In Proceedings of
the 26th IEEE Symposium on Foundations of Computer Science, pages 515- 521.
IEEE Press, 1985.

[43] D.C. Kozen. The Design and Analysis of Algorithms. Springer-Verlag, 1992.

(44] S. Kreutzer. Operational semantics for fixed-point logics on constraint databa­
ses. In Proceedings of the 8th International Conference on Logic for Program­
ming, Artificial Intelligence and Reasoning, Lecture Notes in Computer Science.
Springer-Verlag, 2001.

[45] S. Kreutzer. Query languages for constraint databases: First-order logic, fixed­
points, and convex hulls . In J. Van den Bussche and V. Vianu, editors, Pro­
ceedings of the 9th International Conference on Database Theory, volume 1973
of Lecture Notes in Computer Science, pages 248- 262. Springer-Verlag, 2001.

[46] B. Kuijpers. Topological Properties of Spatial Databases in the Polynomial Con­
straint Model. PhD thesis, University of Antwerp (UIA), 1998.

[47] B. Kuijpers and J. Paredaens and J. Van den Bussche .. Lossless representation
of topological spatial data In Egenhofer and Herring (19], pages 1- 13.

(48] B. Kuijpers, J. Paredaens, M. Smits, and J . Van den Bussche. Termination
properties of spatial datalog. In D. Pedreschi and C. Zaniolo, editors, Logic in
Databases, volume 1154 of Lecture Notes in Computer Science, pages 101- 116.
Springer-Verlag, 1996.

[49] B. Kuijpers, J. Paredaens, and J. Van den Bussche. Topological elementary
equivalence of closed semi-algebraic sets in the real plane. Journal of Symbolic
Logic, 65(4):1530-1555, 2000.

Bi~liogr~phy 107

[50) B. Kuijpers and M. Smits. On expressing topological connectivity in spatial
datalog. In V. Gaede, A. Brodsky, 0. Gunter, D. Srivastava, V. Vianu, and
M. Wallace, editors, Proceedings of the 2nd Workshop on Constraint Databases
and Applications, volume 1191 of Lecture Notes in Computer Science, pages 116-
133. Springer-Verlag, 1997.

[51) G.M. Kuper, J. Paredaens, and L. Libkin, editors. Constraint Databases.
Springer-Verlag, 2000.

[52) John. M. Lee. Introduction to Topological Manifolds, volume 202 of Graduate
Texts in Mathematics. Springer-Verlag, 2000.

[53) K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching. EACTS
Monographs on Theoretical Computer Science. Springer-Verlag, 1984.

[54) K. Mehlhorn and S. Na.her. LEDA: A platform for combinatorial and geometric
computing. Communications of the ACM, 38(1):96-102, 1995.

[55) E.E. Moise. Geometrical Topology in Dimensions 2 and 3. Springer-Verlag, 1977.

[56] J . O'Rourke. Computational Geometry in C. Cambridge University Press, 1998.

[57] C. H. Papadimitriou, D. Suciu, and V. Vianu. Topological queries in spatial
databases. Journal of Computer and System Sciences,58(1):29- 53,1999.

[58] J . Paredaens, J. Van den Bussche, and D. Van Gucht. Towards a theory of spatial
database queries. In Proceedings of the 13th ACM Symposium on Principles of
Database Systems, pages 279-288. ACM Press, 1994.

[59) Ian Pratt and Dominik Schoop. Expressivity in polygonal, plane mereotopology.
Journal of Symbolic Logic, 65(2):822- 838, 2000.

[60) F.P. Preparata and M.I. Shamos. Computational Geometry-An Introduction.
Springer-Verlag, 1985.

[61) E. Rannou. The complexity of stratification computation. Discrete and Compu­
tational Geometry, 19:47- 79, 1998.

[62) J. Renegar. On the computational complexity and geometry of the first-order
theory of the reals. Journal of Symbolic Computation, 13:1992, 1992.

[63] M. Scholl and A. Voisard, editors. Advances in Spatial Databases- 5th Sym­
posium SSD'97, volume 1262 of Lecture Notes in Computer Science. Springer­
Verlag, 1997.

[64] L. Segoufin and V. Vianu. Querying spatial databases via topological invariants.
Journal of Computer and System Sciences, 61(2):270-301,2000.

[65) A. Seidenberg. A new decision method for elementary algebra. Annals of Math­
ematics, 60:365- 374, 1954.

108 Bibliography

(66] M. Shiota. Geometry of Subanalytic and Semialgebmic Sets. Birkhauser, 1997.

(67] R. Tamassia On-line planar graph embedding. Journal of Algorithms, 21:201-
239,1996.

(68] R.E. Tarjan. Data structures and network algorithms. In GEMS-NSF Regional
Conference Series in Applied Mathematics, volume 44. SIAM, 1983.

(69] A. Tarski. A Decision Method for Elementary Algebra and Geometry. University
of California Press, 1951.

(70] D. Thompson and R. Laurini. Fundamentals of Spatial Information Systems.
Number 37 in APIC Series. Academic Press, 1992.

(71] L. van den Dries. Tame Topology and 0-minimal Structures. Cambridge Univer­
sity Press, 1998.

[72] L. van den Dries and C. Miller. Geometric categories and 0 -minimal structures.
Duke Mathematical Journal, 82(2):497-540, 1996.

[73] L. Vandeurzen. Logic-Based Query Languages for the Linear Constraint Database
Model. PhD thesis, Limburgs Universitair Centrum (LUC), 1999.

(74] L. Vandeurzen, M. Gyssens, and D. Van Gucht. On the desirability and limi­
tations of linear spatial query languages. In Egenhofer and Herring (19], pages
14- 28.

(75] L. Vandeurzen, M. Gyssens, and D. Van Gucht. An expressive language for
linear spatial database queries. In Proceedings of the 17th ACM Symposium on
Principles of Database Systems, pages 109-118. ACM Press, 1998.

(76] H. Whitney. Local properties of analytical varieties. Differential And Combina­
torial Topology, pages 205- 244, 1965.

(77] H. Whitney. Tangents to an analytic variety. Annals of Mathematics, 81:496- 549,
1965.

(78] A.J. Wilkie. On defining C 00
• Journal of Symbolic Logic, 59:344, 1994.

(79] A.J. Wilkie. A theorem of the complement and some new o-minimal structures.
Selecta Mathematica, New Series, 5:397-421, 1999.

(80] M. F. Worboys. GIS: A Computing Perspective. Taylor&Francis, 1995.

(81] G. M. Ziegler. Lectures on Polytopes, volume 152 of Graduate Texts in Mathe­
matics. Springer-Verlag, 1998.

Index

c:-neighborhood, 47
c:-approximation

algebraic, 27
query, 28
rational, 27

FO+LIN, 13
FO+POLY, 12

algorithm
fully dynamic, 84

almost all, 40
amortized complexity, 93
arity, 12

box,41
center, 41
collection, 49
covering, 52
covering query, 53
diameter, 41
dimension, 41

cluster, 94
adjacent, 95
regular, 94
size, 94

coalesce class, 82
cone radius, 41

at infinity, 68
query, 41
uniform, 46

connectivity
query, 14

constraint database
A-linear, 13
Z-linear, 13

109

linear, 13
schema, 10

critical
points, 42
value, 42

decomposition
compatible, 38
regular, 36
uniform cone radius, 4 7
Whitney, 37

diameter
of a box, 41
of a set, 72

dictionary, 90
dimension, 29
doubly-connected edge list, 80

Euclidean norm, 27
extremal points, 73

flow of vector field, 44

general position, 39
geometric realization, 41
gradient vector field, 43
graph

concrete, 78
equivalent, 79
labeled, 78
plane, 78

homeomorphism, 14

isotopic, 79

line

110

next, 80
twin, 78

linear constraint
formula

Z-linear, 13
linearization

algebraic, 27
query, 28
rational, 27

measure zero, 40

polynomial constraint
calculus, 12
database

semantic, 10
syntactic, 10

formula, 8

quantifier elimination, 9
query, 11

Boolean, 12
evaluation, 12
expressible in, 12
genericity, 14
topological, 14
volume approximation, 71

regular
cluster, 94
decomposition, 36
forest, 95
in a point, 34
multilevel partition, 95
partition, 95
path, 87
set, 34

regular vertex, 87
number, 90
weight, 92

semi-algebraic set, 8
semi-linear set, 13
singular vertex, 87
stable property, 40
stop condition, 17

tangent space, 34
query, 34

topological
edges, 87

topological invariant
of a graph, 87
of planar graph, 79
of semi-algebraic set, 80

topological type, 41
topologically equivalent, 14
transitive closure logic

FO+LIN+TC, 16
FO+LIN+TCS, 17
FO+PoLY+TC, 15
FO+POLY+TCS, 16

transversal intersection, 39
triangulation, 74

uniform cone radius
decomposition, 47

volume, 71
approximtion query, 71

Whitney
decomposition, 37

compatible, 38
property, 36
umbrella, 36

Index

Samenvatting

Gedurende de laatste jaren is de behoefte aan gegevensbanksystemen die, naast de
klassieke alfanumerieke gegevens, ook overweg kunnen met ruimtelijke gegevens, zeer
sterk toegenomen. Een van de gegevensbankmodellen die voorgesteld werden om dit
probleem op te lossen, is het polynomiale constraint model.

Het polynomiale constraint model is een uitbreiding van het welbekende rela­
tionele model, het standaard model voor gegevensbanken die alleen maar alfanu­
merieke gegevens verwerken. In het polynomiale constraint model worden de mogelijke
oneindige verzamelingen punten in de n-dimensionale ruimte Rn eindig voorgesteld
door Booleaanse combinaties van polynomiale vergelijkingen en ongelijkheden. De
ruimtelijke gegevens die zo gerepresenteerd kunnen word en, noemen we semi-algebraische
verzamelingen. Dergelijke gegevensbanken noemen we polynomiaal. lndien er slechts
lineaire vergelijkingen en ongelijkheden met gehele coefficienten voorkomen in de rep­
resentatie, spreken we over lineaire gegevensbanken.

De standaard bevragingstaal in het polynomiale constraint model is de relationale
calculus, uitgebreid met polynomiale vergelijkingen en ongelijkheden. Uitdrukkin­
gen in deze taal kunnen effectief berekend worden dankzij een kwantor-eliminatie­
procedure, waarvan het bestaan werd aangetoond door Tarski.

Dit proefschrift handelt hoofdzakelijk over uitbreidingen van de zojuist genoemde
calculus met recursie, en over de uitdrukkingskracht van deze uitbreidingen met be­
trekking tot bevragingen over topologische eigenschappen van gegevensbanken.

We beginnen met de uitbreiding van de calculus met een recursiemechanisme,
namelijk de transitieve sluiting. De transitieve sluiting is een heel eenvoudige vorm
van recursie en we laten slechts een elementair gebruik van deze operator toe in deze
recursieve bevragingstaal, die we FO+TC noemen. Wanneer we aan FO+ TC een
expliciete stop-conditie toevoegen, tonen we aan <lat alle berekenbare bevragingen
aan lineaire gegevensbanken gesteld kunnen worden. Vervolgens tonen we aan <lat
in FO+TC, uitgebreid met een expliciete stopconditie, alle berekenbare Booleaanse
topologische bevragingen aan polynomiale gegevensbanken gesteld kunnen worden.
We tonen dit aan door een linearisatie te construeren in FO+TC. Deze linearisatie is
een lineaire gegevensbank die topologisch equivalent is met een gegeven, polynomi­
ale gegevensbank. Op deze manier kunnen bevragingen, wat betreft de topologische
eigenschappen, vertaald worden naar lineaire gegevensbanken toe. De constructie van
de linearisatie steunt op de eigenschap van semi-algebraische verzamelingen dat er in

111

112 Samenvatting

elk punt een zogenaamde "conische straal" bestaat. Binnen deze straal is de semi­
algebraische verzameling topologisch equivalent met een conische figuur. We bewijzen
een variant van deze eigenschap en tonen aan <lat de conische straal een eigenschap
is die reeds uitdrukbaar is in de ruimtelijke calculus. Dat deze linearisatie uitdruk­
baar is in FO+ TC heeft tot gevolg <lat de topologische samenhang van polynomiale
gegegevensbanken uitgedrukt kan worden in deze taal. Een ander gevolg is <lat deze
linearisatie willekeurig dicht bij de polynomiale gegevensbank gekozen kan worden, zo­
dat het tevens een benadering van de polynomiale gegevensbank wordt met betrekking
tot metrische eigenschappen. We passen deze eigenschap toe op het benaderen van
het volume van polynomiale gegevensbanken tot op willekeurige nauwkeurigheid .

We ronden <lit proefschrift af met de studie van algoritmische aspecten van de zoge­
naamde topologische invariant van vlakke polynomiale gegevensbanken. Deze topol­
ogische invariant is een klassieke relationele gegevensbank die de topologische infor­
matie van een vlakke polynomiale gegevensbank volledig bevat. Wanneer men nu
topologische bevragingen wil stellen aan de topologische invariant in plaats van aan
de polynomiale gegevensbank, dan stelt zich het volgende probleem: hoe kan men
op een efficiente manier de topologische invariant aanpassen wanneer de polynomiale
gegevensbank onderhevig is aan veranderingen? Eerst beschrijven we een algoritme
voor deze taak, gebruik makend van een welbekende datastructuur om vlakke figuren
voor te stellen. Dit algoritme reageert correct op elke mogelijke update. Vervolgens
beschouwen we algemene grafen en geven twee algoritmen die de topologische invari­
ant onderhouden wanneer enkel toevoegingen van bogen aan de grafen toegelaten zijn.
Tenslotte bespreken we de relatieve performantie van de laatste twee algoritmen en
geven aan wanneer welk van deze twee algoritmen het best gebruikt kan worden.

	Floris Geerts - voorblad
	Floris Geerts - deel 1
	Floris Geerts - deel 2

