

transnationale Universiteit Limburg
School voor Informatietechnologie

“Nieuwe technieken voor de modellering van subdivisie-
oppervlakken”

“New approaches in the modeling of subdivision surfaces”

Proefschrift voorgelegd tot het behalen van de graad van

doctor in de wetenschappen, richting informatica

aan de transnationale Universiteit Limburg te verdedigen
door

Johan CLAES

Promotor : Prof. dr. E. Flerackers

Co-promotor : Prof. dr. F. Van Reeth

2001

 i

Preface

This dissertation would not have been possible without the help of many.

First of all, I wish to express my gratitude to my thesis supervisors, Eddy
Flerackers and Frank Van Reeth, for their continuing support, guidance,
encouragement and friendship during the preparation of this work. Frank’s
introduction to the exciting world of subdivision surfaces allowed me to
combine my interests for computational geometry with the wonderful world
of computer animation.

Koen Beets, Fabian Di Fiore, Jan Van den Bergh and Marc Ramaekers
successfully implemented many of the ideas presented in this dissertation
into working prototypes. I enjoyed discussing new ideas with them and the
search for solutions to tricky implementation problems.

Without the help of the graphical designers, especially Joan Cabot, but also
Paul Akkermans, Bart "Pokke" Van Bael and Luis Gutierrez, our publications
would have been much less lively. They also pointed out important user
interface issues and discussed potential extensions and improvements.

Special words of thank also have to go to Peter Vandoren for kindly helping
with many layout issues and to Mike Staples for carefully checking my use of
the English language.

Certainly, I need to thank the institutions helping to fund our research,
especially the European TMR (Training and Mobility of Researchers) project
PAVR (Platform for Animation and Virtual Reality), the EFRD (European Fund
for Regional Development) and the Flemish Government. This funding further
allowed me to travel to conferences and personally meet other researchers,
which led to motivating international contacts and warm friendships.

Last, but not least, I have to thank my family and close friends for their warm
support during this time of hard work. I have been especially fortunate in
having the care and affection of my girlfriend Maribel to help me through it –
nunca hay demasiado amor.

 iii

Abstract

Recursive subdivision surfaces allow considerable freedom in designing
surfaces of arbitrary topology. Tools to manipulate them, however, are still
not as powerful as existing tools for longer established modeling paradigms,
such as B-spline surfaces. Furthermore, the most well-behaved and most
widely used schemes are approximating schemes, which do not interpolate
their initial control points.

This dissertation describes a new modeling paradigm, providing the
possibility of locally choosing an interpolating variant of the conventionally
approximating subdivision scheme. Our approach combines the advantages
of approximating schemes with the precise control of interpolating schemes.
Unlike other solutions that mostly focus on locally changing the weighting
factors of the subdivision scheme, we keep the underlying uniform scheme
intact. Our method is based upon introducing additional control points on
well-chosen locations, with optional interactive user control over the tangent
plane (or surface normal) and the tension of the surface near the interpolating
control points.

The same techniques used for surface modeling and editing are also adapted
to implement a versatile free-form deformation tool, especially designed for
2D textured objects. Based on subdivision surfaces applied in 2D, our method
successfully combines the following features: fluid good-looking movement,
both general global and precise local control and explicit discontinuities.

As a different item of interest, we noticed a lack in the current range of
subdivision surface schemes. Quadrilateral schemes are organized logically as
primal and dual schemes, but for triangular subdivision, only primal schemes
are described in the literature. This is a pity, as recently research papers have
been published showing that primal and dual schemes can be successfully
combined to create surfaces with an arbitrarily high degree of continuity.
Therefore, we introduce a new hexagonal scheme, opening a fascinating
range of possibilities.

 v

Table of contents

Preface ...i

Abstract .. iii

Table of contents .. v

1 Introduction .. 1

2 Subdivision curves .. 5
2.1 Introduction ... 5

2.2 Extension to higher degree B-splines ... 6

2.3 Interpolating subdivision curves – the four-point scheme ... 9

2.4 Comparing approximating and interpolatory curves .. 11

2.5 Eigenanalysis of subdivision curve schemes .. 13

3 Subdivision surfaces ... 17

3.1 Introduction ... 17

3.2 Classification of subdivision surface schemes .. 19

3.3 Primal versus dual subdivision surface schemes ... 22

3.4 Midedge subdivision ... 24

3.5 Catmull-Clark ... 26

3.6 Doo-Sabin .. 28

3.7 Higher degree B-Spline surfaces .. 29

3.8 Loop’s scheme .. 30

3.9 Sqrt(3) subdivision ... 31

3.10 Interpolatory Sqrt(3) subdivision ... 32

3.11 The Butterfly scheme .. 34

3.12 Interpolatory subdivision for quadrilateral meshes ... 35

3.13 Velho and Zorin’s 4-8 scheme .. 35

3.14 The Dagstuhl scheme ... 37

4 Properties of subdivision surfaces .. 39
4.1 Arbitrary topology ... 39

4.2 Level of detail .. 39

4.3 Numerical quality ... 40

4.4 Convex hull property .. 40

4.5 Exact evaluations of points and normals ... 41

 vi

4.6 Editing subdivision surfaces .. 41

4.7 Sharp and semi-sharp features ... 41

4.8 Boundaries ... 44

4.9 Parameterization (texture mapping coordinates) ... 44

4.10 Multi-resolution editing ... 46

4.11 Wavelets ... 48

4.12 Interpolating point sets .. 48

4.13 Free-form deformations ... 49

4.14 Simulating physical processes ... 49

5 A hexagonal subdivision surface scheme ... 51
5.1 Introduction ... 51

5.2 Subdivision surface schemes and duality .. 53

5.3 Hexagonal meshes... 54

5.4 Hexagonal subdivision ... 55

5.5 Proposed stationary subdivision rules ... 60

5.6 Surface continuity .. 66

5.7 Converting triangular to hexagonal meshes .. 69

5.8 Curves and borders ... 74

5.9 Adaptive subdivision .. 74

5.10 An interpolating variant ... 75

5.11 Results ... 76

5.12 Discussion .. 80

6 Local interpolation for subdivision curves .. 83
6.1 Introduction ... 83

6.2 Control point interpolation, normal interpolation and tension control: the cubic case ... 84

6.3 The general cases ... 86

6.4 Results ... 90

6.5 Discussion .. 95

7 Locally interpolating subdivision surfaces .. 97
7.1 Introduction ... 97

7.2 Advantages of the most widespread schemes .. 98

7.3 Requirements .. 98

7.4 Related work .. 99

8 Locally interpolating Catmull-Clark surfaces .. 101
8.1 Introduction .. 101

8.2 Geometric conditions for interpolation .. 101

8.3 Methods for setting up ghost points ... 106

8.4 Results .. 109

 vii

9 Locally interpolating Loop surfaces ... 113
9.1 Introduction .. 113

9.2 Geometric discussion ... 114

9.3 Implementation ... 118

9.4 Results .. 120

9.5 Discussion ... 122

10 An application: a free-form deformation tool .. 123
10.1 Introduction ... 123

10.2 Free-form deformation (FFD) in 2D ... 124

10.3 Locally interpolating subdivision surfaces ... 127

10.4 Implementation .. 128

10.5 Discussion ... 131

11 Directions for future research .. 133

11.1 Further extending subdivision surface editing... 133

11.2 Other applications benefiting local interpolation ... 133

11.3 Further investigation of hexagonal subdivision ... 134

11.4 Putting functions into the weights .. 134

12 Conclusions .. 137

Bibliography .. 139

List of figures ... 151

List of tables ... 159

Appendix 1: Invariance conditions for cubic curves .. 161

Appendix 2: Invariance conditions for curves of any degree 163

Samenvatting .. 167

 1

1 Introduction

In this dissertation, new techniques are developed for the modeling of
subdivision surfaces. Although the theories behind recursive subdivision
surface schemes have been around for more than 20 years, only recently have
they begun to get full attention. An important factor in the increase of their
popularity was Pixar’s very successful experience in 1998 with subdivision
surfaces in the creation of the character of their short animations, Geri’s Game
[DeRose98] and later Toy Story 2 [Porter00].

For modeling surfaces such as the ones used in character animation, there
exist many good reasons to employ the subdivision paradigm. Subdivision
schemes use simple rules to generate high-quality surfaces from coarse
polygonal models. Unlike most competing methods for generating surfaces,
they allow surfaces of arbitrary topology to be created using one single
consistent paradigm. There is no need to stitch together different surface
parts. This makes animating these surfaces much easier, as there is no fear of
breaking the borders where patches are stitched together.

The most important implication of allowing arbitrary topologies is not the
creation of surfaces containing holes, but the ability to vary the density of
control points over the surface. This permits the creation of small details and
bodily limbs without the obligation to add numerous control points.

Also important for subdivision surfaces is its extensive mathematical
background, with important links to wavelet theory and multi-resolution
analysis, which have proven their usefulness in many scientific fields. The
divide-and-conquer approach, furthermore, allows for many applications in
the field of simulating physical processes.

Besides their specific usefulness for modeling surfaces used in animation, as
well as in engineering applications, subdivision surfaces can easily be

2 1 Introduction

extended to allow for creases and sharp and semi-sharp edges. Due to these
extensions, subdivision surfaces are starting to become commonplace in
professional animation packages, such as Alias|Wavefront’s Maya [Maya01].

The main contributions of our research in the field of recursive subdivision
schemes are the following:

 a local interpolation tool for subdivision curves of any degree; this tool,
furthermore, allows for control of the tangent line and a useful tension
parameter;

 an extension of this tool for subdivision surfaces, with specific algorithms
for its optimal use in the Catmull-Clark and Loop subdivision schemes
[Catmu78, Loop87];

 an application of these techniques outside the world of surface modeling,
where subdivision surfaces are used in 2D as a base for free-form
deformations to fluently manipulate 2D animation objects;

 and the introduction of a new subdivision surface scheme, based on
hexagonal meshes.

In chapter 2, we start by explaining the paradigm of subdivision curves.
Algorithms for curves are easier to understand and analyze, so they form a
good introduction for studying their generalization to subdivision surfaces.
Properties of interpolatory and approximate schemes are discussed and
compared.

The concept of subdivision surface schemes is introduced in chapter 3, where
we explain the usual taxonomy of subdivision surface schemes, which is still
in use at prominent conferences [Zorin00a, Hubeli01]. Then we show that this
taxonomy lacks, in our opinion, an important class of schemes, namely
hexagonal ones. Hexagonal schemes are important, as they form the dual of
triangular schemes. The duality between subdivision surface schemes has
been proven very useful in recent papers [Zorin01a, Stam01], which show
how to combine dual quadrilateral schemes to create surfaces with an
arbitrarily high degree of continuity. Chapter 3 also contains an extensive list
of existing subdivision schemes, each with its specific properties. This forms
the base for studying the properties of our own new hexagonal scheme,
which is postponed to chapter 5.

An extensive list of properties and practical applications of subdivision
surfaces form the main ingredients of chapter 4, while chapter 5 introduces
and analyzes our new hexagonal subdivision scheme.

1 Introduction 3

In chapter 6, we describe our extension to allow for local interpolation on
otherwise approximate subdivision curves of any degree. This extension,
furthermore, allows for a handy tension parameter and control of the curve
normal.

Chapter 7 forms an introduction to the subsequent chapters, outlining the
need for local interpolation for subdivision surfaces and investigating related
work.

In chapter 8, we show how this local interpolation technique can be
implemented for the quadrilateral Catmull-Clark subdivision scheme. Also,
different methods for setting up and arranging the newly introduced ghost
points are discussed. It is further shown that the new techniques can be
combined successfully with recent extensions like semi-sharp edges.

A similar technique for the triangular Loop scheme is explained in chapter 9,
where we further employ the results of chapter 6 to create locally
interpolating boundaries. This leads to a very versatile modeling tool,
allowing for an intuitive control over surface normal and a convenient tension
parameter.

The techniques of chapter 9 can be applied in a totally different field, which is
elaborated in chapter 10. A 2D representation of locally interpolating
subdivision surfaces is used to create a flexible free-form deformation tool.

In chapter 11, we discuss potential directions to extend our research, which is
an ongoing process. This is followed by our general conclusions in chapter 12.
This dissertation ends with a bibliography, lists of figures and tables, and two
appendices containing the proofs behind the techniques described in
chapter 6.

 5

2 Subdivision curves

2.1 Introduction

In this chapter, we explain the concept of subdivision curves. Studying their
properties usually is much simpler than for surfaces, making it easier to gain
insights that later can be generalized to subdivision surfaces. Moreover, many
subdivision surfaces schemes are directly or indirectly based on subdivision
curve schemes. Therefore, this chapter is not only an introduction to chapter
6, where we explain a local interpolation technique for subdivision curves, but
also for all the other chapters concerning subdivision surfaces.

In the context of this chapter (and also chapter 6), recursive subdivision is the
process of repeatedly refining an initial control polygon P0 in order to
produce a sequence of increasingly more refined polygons P0, P1, P2, P3, …
hence approaching a limit polygon, actually a curve:

j

j
PP


 lim

In [Stoll96], it is elucidated that the subdivision process can be viewed as a
two-step process of splitting and averaging. Given a control polygon Pj at
level j in the subdivision process, the splitting step generates an intermediate

control polygon 1jP


that contains all the control points of Pj, as well as
additional control points inserted at the midpoints of all the edges
constituting Pj. This narrows down to:

 j

i

j

i cc 1

2


(vertex split point)

 and)(12
11

12

j

i

j

i

j

i ccc 



 


(edge split point) (2-1)

6 2 Subdivision curves

In order to get the final positions of the control points 1j

ic in Pj+1, the

intermediate control points 1j

ic


 in 1jP


are averaged using a so-called

averaging mask mkmkrr )((the exact meaning/size of m is not important

right now, it will be given in section 6.3):

 11 



  j

ki

m

mk k

j

i crc


 (2-2)

In Chaikin’s algorithm [Chaik74] the averaging mask is r = ½ (0, 1, 1). In cases
where the averaging mask remains the same along the curve, the scheme is
called a uniform subdivision scheme. It is called a stationary scheme in cases
where the same mask is used in each subdivision level. In this dissertation, the
focus is on uniform and stationary subdivision schemes.

When reconstructing the history of subdivision schemes for curves and
surfaces, it can be noted that most researchers refer back to Chaikin’s 1974
paper. However, it turns out that he was not the first one to publish about this
topic. Already in 1956, G. de Rham, a French mathematician, published about
recursively corner cutting a piecewise linear approximation to obtain a
smooth curve [DeRham56, Dubuc98]. [Sabin01] describes some interesting
thoughts about de Rham’s algorithm.

In section 2.2, we show how this formulation is extended to B-splines of any
degree, and in section 2.3 we discuss an example of an interpolatory scheme.
In section 2.4, we compare approximating and interpolatory schemes. Finally,
in section 2.5, we demonstrate how eigenanalysis supports the study of the
limit behavior of subdivision curves.

2.2 Extension to higher degree B-splines

Riesenfeld [Riese75] was able to show that the curves generated by Chaikin’s
algorithm are uniform quadratic B-splines. It is proven by Lane and Riesenfeld

2 Subdivision curves 7

[Lane80] that Chaikin’s algorithm can be generalized to generate uniform B-
splines of degree n+1 by using an averaging mask with entries

 














































n

n

n

nnn
n

,
1

,...,
1

,
02

1
. (2-3)

Thus, in case n = 2, the averaging mask r = ¼ (r-1, r0, r1) = ¼ (1, 2, 1) results in a
cubic B-spline as limit curve.

This is a so-called approximating subdivision scheme, since the limit curve
generated by these averaging masks in general does not interpolate the

vertices 0

ic of the initial control polygon P0. The first smooth interpolating

subdivision curve scheme was presented by Dyn, Levin and Gregory in 1987
[Dyn87]. This scheme is described in more detail in section 2.3.

A very interesting observation made by Lane and Riesenfeld, was that in order
to calculate a refinement step for a degree n+1 B-spline, it is not necessary to
collect all n+1 control points from the previous subdivision level. The same
result can be obtained by n subsequent average steps of just two control
vertices. For subdivision curves, this does not seem to be too useful, but when
the scheme is used as a base for a subdivision surface, this very local behavior
proves to be very powerful. For subdivision surfaces it is far from clear how to
collect further away neighbor points, as the mesh for the surface can contain
multiple extraordinary vertices, where the regular spline pattern is lost. Both
Jos Stam [Stam01] and Zorin and Schröder [Zorin01a] came to the conclusion
that subdivision surface schemes that were first developed to generalize
lower degree curves, could be extended to higher degree surfaces, by
applying this repeated averaging technique.

In figures 2-1 through 2-4, an example of the generation of a cubic B-Spline
via subdivision is shown. Starting from the eight vertices of the initial control
polygon of figure 2-1, the first subdivision step adds a new vertex in the
center of each edge (figure 2-2). As the averaging mask is ¼ (1, 2, 1) the newly
added vertices stay on their original position, while the old vertices are
relaxed towards the mean of the two new surrounding vertices. Figure 2-3
shows one subdivision step further, while figure 2-4 shows the resulting limit
curve.

8 2 Subdivision curves

-0,5

0

0,5

1

1,5

2

2,5

-0,5 0 0,5 1 1,5 2 2,5 3 3,5

 -0,5

0

0,5

1

1,5

2

2,5

-0,5 0 0,5 1 1,5 2 2,5 3 3,5

Fig. 2-1. The original control polygon. Fig. 2-2. One subdivision step for
the cubic B-spline scheme.

-0,5

0

0,5

1

1,5

2

2,5

-0,5 0 0,5 1 1,5 2 2,5 3 3,5

 -0,5

0

0,5

1

1,5

2

2,5

-0,5 0 0,5 1 1,5 2 2,5 3 3,5

Fig. 2-3. Two subdivision steps for the
cubic B-spline scheme.

Fig. 2-4. The limit curve for the cubic
B-spline scheme.

Another observation from Lane and Riesenfeld was that it is not necessary
that the subdivision process is restricted to divisions by a factor of two. In fact,
the same principles can be used to generate B-splines by any integer number
of splitting steps. For example, for a ternary refinement of a quadratic curve,
[Sabin01] derived the coefficients of equation 2-4. The first formula relaxes
the position of an old control point, while the second and third define the
position of the newly inserted vertices.

2 Subdivision curves 9

  1010 7
9

1
' pppp  

  101 36
9

1
' ppp  (2-4)

  102 63
9

1
' ppp 

In figure 2-5 an example of this ternary scheme is shown, while figure 2-6
shows the resulting quadratic B-spline. In [Kobbe00] a ternary subdivision
scheme for cubic curves is used to serve as a border for his Sqrt(3) subdivision
surface scheme. In our research about a hexagonal subdivision surface
scheme, we used a ternary scheme for a quadratic curve. We refer to chapter
5 for more details about this new scheme for subdivision surfaces.

-0,5

0

0,5

1

1,5

2

2,5

-0,5 0 0,5 1 1,5 2 2,5 3 3,5

 -0,5

0

0,5

1

1,5

2

2,5

-0,5 0 0,5 1 1,5 2 2,5 3 3,5

Fig. 2-5. The first subdivision step of
the quadratic B-spline scheme, each
time dividing the original edges by a

factor of three.

Fig. 2-6. The limit curve for the
quadratic B-spline scheme

(obtained by ternary subdivision).

2.3 Interpolating subdivision curves – the four-point scheme

Dyn, Gregory and Levin [Dyn87] suggested a way of creating a subdivision
curve that interpolates the points of a given input polygon. Between each
two successive points, a new point is inserted depending on the positions of
the surrounding control points. If only two nearby points are used, without
any additional information, the optimal position would be to add the new
point in the middle between the two existing points. This process leads to a
piecewise linear interpolation of the original control points, thus a C0 curve.

10 2 Subdivision curves

As only looking at two surrounding points turns out to only lead to a
piecewise linear approximation, Dyn et al. considered the four point
neighborhood: two points on either side of the new point. Four points can be
used to construct a third degree interpolating polynomial. The parameter
value in the middle of that curve defines the location of a new point.

If the old points are taken at equidistant parameter values, the new point can
be calculated using fixed weights. The new point p is inserted between the
existing points p1 and p2, which have p0 and p3 as immediate neighbors:

  2101 99
16

1
ppppp   (2-5)

This process can be executed for all points of the polygon, and repeated
recursively to generate a sequence of each time denser polygons. In the limit,
a smooth curve will be obtained. The limit curve turns out to be C1, but not C2.
In general the limit curve will not be a cubic polynomial. Only when the initial
points all lie on the same cubic polynomial will the resulting limit curve be
that same cubic polynomial. However, the curve is generally much smoother
than a general C1 curve, which leads to the statement that the curve is
“almost C2”.

The four-point scheme is illustrated in figures 2-7 through 2-10. Starting from
the initial control polygon of figure 2-7, new points are added between the
existing ones. Figure 2-8 shows the first subdivision step where the position
of the new points is defined as the center of the unique cubic curve that
interpolates the four surrounding points. Figure 2-9 shows the second step,
and after an infinite refinement results in the curve of figure 2-10.

-0,5

0

0,5

1

1,5

2

2,5

-0,5 0 0,5 1 1,5 2 2,5 3 3,5

 -0,5

0

0,5

1

1,5

2

2,5

-0,5 0 0,5 1 1,5 2 2,5 3 3,5

Fig. 2-7. Original control polygon. Fig. 2-8. One subdivision step of the four-
point scheme.

2 Subdivision curves 11

-0,5

0

0,5

1

1,5

2

2,5

-0,5 0 0,5 1 1,5 2 2,5 3 3,5

 -0,5

0

0,5

1

1,5

2

2,5

-0,5 0 0,5 1 1,5 2 2,5 3 3,5

Fig. 2-9. Two subdivision steps of the
four-point scheme.

Fig. 2-10. Limit curve step of the four-point
scheme.

By considering larger neighborhoods, the idea behind the four-point scheme
can be extended to create higher-degree curves. For example, a six-point
neighborhood creates new points using a fifth-degree polynomial. If applied
using equidistant parameter values, also this scheme can be expressed with
fixed weights. In [Sabin01], the following weights are calculated for the new
point between p0 and p1 in the six-point scheme:

  321012 325150150253
256

1
ppppppp   (2-7)

The four-point subdivision scheme has been used a lot as an example for
further investigation. [Dyn98] derived conditions to maintain geometric
constraints, such as preserving the convexity of the initial data, by allowing
the weights of the scheme to vary. A method to analyze the continuity of this
kind of schemes can be found in [Kobbe98].

The four-point subdivision scheme inspired Dyn, Levin and Gregory to create
a variant of Loop’s scheme that interpolates the points of its initial control
mesh. Kobbelt used a similar approach to create an interpolatory
quadrilateral scheme [Kobbe96]. Later, also Labsik used the same curve
scheme to create another interpolatory triangular scheme [Labsik00a]. These
schemes are described in sections 3.9, 3.10 and 3.11 of this dissertation.

2.4 Comparing approximating and interpolatory curves

The approach used to create the four-point scheme and examples such as
figure 2-10 suggest that the scheme would always produce nice-looking

12 2 Subdivision curves

interpolating curves. In reality, it turns out that these interpolatory curves
have some annoying peculiarities.

-1

0

1

2

3

4

5

-1 0 1 2 3 4 5 6 7 8

-1

0

1

2

3

4

5

-1 0 1 2 3 4 5 6 7 8

Fig. 2-11. The approximating scheme for
cubic B-Splines using a simple looking

control polygon.

Fig. 2-12. The interpolating four-point
scheme using the same control polygon.

Figure 2-11 shows an example of a cubic approximating scheme for a quite
innocent-looking control polygon. Locally, four control points influence the
form of the curve, which approximates their form, but normally does not
interpolate them.

The same control polygon is used showing the behavior of the interpolatory
four-point scheme (figure 2-12). Again, four surrounding points control the
local behavior of the curve. Although the curve is smooth, it is not as “fair” as
one would like. The popping up of bumps is difficult to control, due to the
interpolatory conditions put on the curve. One partial solution to the problem
would be to allow the four-point scheme to be non-uniform: instead of taking
all parameter values equidistant, allow them to be irregularly spaced, which
actually creates many more degrees of freedom. Kobbelt and Schröder
[Kobbe97] also suggested a variational approach to further improve the
quality of the curve: at each subdivision step, an energy function is evaluated
as well in order to minimize the bending energy.

As reverting to non-uniformly sampled B-Splines, and even more so for the
variational approach, results in curves that are more difficult to evaluate and
analyze mathematically, for many applications the more intuitively behaving
approximating schemes are used. When subdivision schemes are applied to
create surfaces, the interpolating schemes produces bulges which are even
more difficult to manipulate, implying that the approximating schemes are
seen much more often in practical situations.

2 Subdivision curves 13

2.5 Eigenanalysis of subdivision curve schemes

Eigenanalysis is a handy tool to study the limit behavior of a subdivision curve
scheme. A single step can be described in matrix form. In order to cope with
end-point conditions, the matrix formulation has the problem that the matrix
should double in size after every subdivision step. Therefore, usually a matrix
of infinite dimensions is used. Such a matrix can either represent the
subdivision of an infinite chain of points, or a closed curve. However, for many
practical investigations, also a very limited matrix can also be used. In that
case, the matrix represents a local environment, that shrinks with every
subdivision step [Halst93, Joy96].

As an example, let us consider the subdivision scheme for cubic B-splines
[Lane80].

In the local environment of three consecutive control points p-1, p0 and p1 the
refinement process can be written as:





































1

1

0

1

1

1

1

1

0

p

p

p

S

p

p

p

 (2-8)

For the cubic scheme, the refinement matrix S is equal to:



















404

044

116

8

1
S (2-9)

Repeated refinement can be seen as a matrix multiplication. The n-th
refinement step can be expressed by applying S k times:

































































1

1

0

1

1

1

1

1

0

1

1

0

p

p

p

S

p

p

p

S

p

p

p
n

n

n

n

n

n

n

 (2-10)

The limit position p0
 can be calculated after decomposing S into three

separate matrices:

 a matrix, R, whose rows are the right eigenvectors of S,
 a matrix, L, whose columns are the left eigenvectors,

14 2 Subdivision curves

 and the matrix  with a diagonal of eigenvalues.

Using the fact that R∙L = L∙R is equal to the identity matrix, applying the
subdivision matrix n times to the local environment can be expressed as:

 LRLRS nnn )((2-11)

Therefore, R and L control the behavior of the local environment as n
approaches infinity:


















































































































1

1

0

1

1

0

1

1

0

1

1

0

2

1
00

0
2

1
0

001

p

p

p

LR

p

p

p

LR

p

p

p

S

p

p

p

n

n

n

nn

n

n

n

 (2-12)

In the limit, with n approaching infinity this equation narrows down to:





























































1

1

0

1

1

0

000

000

001

p

p

p

LR

p

p

p

 (2-13)

Using the concrete values of R and L for the refinement matrix of Chaikin’s
scheme, this equation can be expanded as:































































































































1

1

0

1

1

0

1

1

0

114

114

114

6

1

112

330

114

6

1

000

000

001

211

211

101

p

p

p

p

p

p

p

p

p

 (2-14)

Therefore, in the limit this local neighborhood ends in one point:

 1100
6

1

6

1

3

2
pppp  


 (2-15)

The tangent vectors can also be calculated similarly. To study such properties
as curvature, an extended matrix using a larger local environment must be
employed. Halstead et al. describe an extension of eigenanalysis to
subdivision surfaces in order to deduce much useful information about the

2 Subdivision curves 15

limit surface [Halst93]. In chapter 5, eigenanalysis is used to study our new
hexagonal subdivision surface scheme.

 17

3 Subdivision surfaces

3.1 Introduction

Subdivision surfaces have been known to the computer graphics community
since 1978, when Ed Catmull and Jim Clark published their tensor product
extension of cubic uniform B-splines to surfaces [Catmu78]. They were
followed at the end of the same year by Donald Doo and Malcolm Sabin who
applied a similar technique to generalize quadratic uniform B-splines [Doo78].
Both schemes were named for their inventors and both operate on
quadrilateral polygonal meshes of arbitrary topology. Some years later, in
1987, Charles Loop developed the first subdivision surface scheme based on a
triangular control mesh, extending the formulas for a symmetric quartic box-
spline to cope with extraordinary vertices [Loop87].

Since then, the research in these recursive subdivision surface schemes has
led a rather neglected existence, until recently the legendary animation
company Pixar focussed attention on them again. In 1998 subdivision
surfaces were used as the main modeling tool for their short Geri’s Game
[DeRose98]. Developments picked up during 2000 and 2001 by the
introduction of several new subdivision schemes and many new features,
applications areas, modeling tools and profound mathematical analysis.

Subdivision surfaces are defined as the limit surface obtained by repeated
refinement of a 3D control point mesh. In general, this limit surface does not
have an exact algebraic representation. Many subdivision surface schemes
are generalizations of tensor product B-spline surfaces or box-splines, so they
are equal to these underlying schemes in the regions where the mesh
exhibits a regular structure.

18 3 Subdivision surfaces

The 3D control point mesh that is used as input for subdivision surface
generation is organized as a non-manifold polygonal mesh. The word
“polygonal” is deceiving, however, as the polygons do not need to be planar.
Even if they were planar, the subdivision process usually creates new non-
planar polygons. In the rest of the text, the word “face” will often be used to
refer to these polygons, as in general computer graphics applications a “face”
is a 3D polygon with an established orientation. The orientation decides
which side should be considered “outside” and it also defines a natural order
around vertices, which is used during the creation of new faces.

The valence of vertex is also often referred to. The valence is the number of
neighboring edges of a vertex. For example, a cube contains six faces and
eight vertices. Each of the eight vertices has three neighbors, so their valence
is three. The valence is very important in a subdivision surface scheme. The
scheme behaves best for vertices with a regular valence. In triangular meshes
this regular valence is six, in quadrilateral meshes it is four and in hexagonal
meshes this valence is three. Vertices with a valence that is preferred by the
scheme are called ordinary vertices. In general, the surface will be the
smoothest around these vertices. Vertices with any other valence are called
extraordinary, and usually the surface will have a lower degree of continuity
in such regions. Luckily, all the new vertices produced by a subdivision
scheme are all ordinary. (Section 3.3 explains in more detail the differences
between primal and dual schemes.) During the recursive subdivision process,
more and more ordinary vertices are created, which leads to an isolation of
the extraordinary vertices.

Important for subdivision surfaces compared to other surface representations
is that they allow the surface to have an arbitrary topology. Subdivision
surfaces can be used to model a large class of surfaces, which can combine
smooth and non-smooth features like creases and semi-sharp edges. The
polygonal mesh that represents the limit surface allows for a simple and
intuitive interaction with the models.

Subdivision surface schemes are defined as a multi-stage recursive process.
During the first stage, the input mesh is upsampled by adding new vertices, in
a way depending on the particular subdivision scheme. For example, the
Loop scheme, which is only defined on triangles, adds new vertices at the
center of the existing edges. Some subdivision schemes keep their old
vertices, while in other schemes they are removed. The initial upsampling
stage is followed by one or more averaging stages. The positions of the new
vertices are averaged with their neighbors. The rules again depend on the
particularities of the subdivision scheme, and on whether the vertex is an

3 Subdivision surfaces 19

existing one, or where exactly it is inserted relative to the original polygon
mesh. Furthermore, these rules depend on the valence of the vertex. These
stages are repeated recursively, usually leading to a smooth limit surface. In
practice, the recursive process is stopped after some determined number of
repetitions. In order to minimize the number of polygons generated to
represent a smooth enough representation of the surface, adaptive
subdivision techniques are introduced, which subdivide further where the
surface is highly curved and less in more planar regions.

Although the limit surface can never actually be reached, mathematical tools
like eigenanalysis make it possible to obtain exact information about the limit
surface, such as the limit position of arbitrary points on the surface, as well as
their normal and even their curvature. This is again useful for physical
simulations and for applications like ray-tracing the surface.

A good introduction to subdivision schemes can be found at [Joy96]. For a
more in-depth overview of the state of the current research in subdivision
surfaces, we refer to [Zorin00a] and [Hubeli01]. An overview of more general
surface representations can be found in [Hubeli00]. Although this work is
mainly directed at geologic applications, its 142 pages give an extensive
taxonomy of surface representations.

Subdivision surface schemes have many attractive features, which are
elaborated in chapter 4. First, the following sections provide a global
overview of existing schemes known in the subdivision literature.

3.2 Classification of subdivision surface schemes

In this section, we give a classification of subdivision schemes. For more
details about the mentioned schemes, we refer to the subsequent sections.
This classification is not only a useful introduction to the growing set of
subdivision schemes, it also explains our motivation for proposing a new
subdivision scheme, which is presented in chapter 5.

20 3 Subdivision surfaces

Primal (face-split) Dual (vertex-split)

Triangles Quadrilaterals Quadrilaterals

Approximating
(not interpolating
original vertices)

Loop Catmull-Clark
Doo-Sabin

Midedge

Interpolating
the original

vertices

Butterfly

Modif.Butterfly
Kobbelt

Table 3-1. Usual classification of subdivision surface schemes. The mentioned
schemes are explained in more detail in the later sections of this chapter.

Table 3-1 represents the usual classification for the different subdivision
surface schemes that exist today: schemes are classified as either
approximating or interpolating, and further as either primal face-splitting
algorithms or dual vertex-split algorithms.

Interpolating schemes, such as the Butterfly scheme ([Dyn90], see section
3.11), interpolate all vertices of their initial control mesh. Approximating
schemes only approximate their initial control mesh, leading to surfaces that
have less unwanted bulges and behave more predictable during interactive
manipulations.

A face-split algorithm splits the existing faces by dividing their edges (usually
into two) and creates new faces. In both the triangular and the quadrilateral
schemes, the faces are typically split into four. In the quadrilateral case, this
requires also a new vertex in the center. More details about the properties of
both type of schemes can be found in section 3.3.

A vertex-split algorithm replaces all existing vertices by a new face. As the
existing faces survive the subdivision process, but with their old vertices cut
away, these schemes are also called corner-cutting schemes. In order to get
the mesh closed again, usually the existing edges also need to be replaced by
new faces. These schemes are called dual, because their effect on the mesh
connectivity can be seen as a face-split operation, followed by interchanging
the roles of vertices and of faces. Old vertices become the center of new faces
and old faces are reduced to new vertices. The classical example of such a
vertex-split algorithm is the Doo-Sabin scheme.

3 Subdivision surfaces 21

The classification of table 3-1 is found for example in the subdivision course
notes of Siggraph 2000 [Zorin00a], that are generally regarded as
representing the current state-of-the-art. Similar classifications can be found
in the even more recently course notes of IEEE Visualization 2001 [Hubeli01]
or the paper by Zorin and Schröder [Zorin01a].

Recently, however, new schemes have been presented that do not directly fit
into this classification. Kobbelt’s Sqrt(3) scheme [Kobbe00], splits triangles
into three, but needs to flip the existing edges to create new faces. Two
subsequent subdivisions, however, flip the edges back to their original
orientation and result in splitting the faces into nine subfaces. A scheme with
the same effect on the connections of the mesh but with different subdivision
rules has been presented at a Dagstuhl conference and is mentioned in
[Sabin01]. The double step of both schemes fits in the approximating face-
split classification.

Based on the connectivity rules of the Sqrt(3) scheme, Labsik and Greiner
[Labsik00a] introduced an interpolatory variant, employing the interpolation
ideas of the Butterfly scheme [Dyn90] and Kobbelt’s interpolating scheme for
quadrilateral meshes [Kobbe96].

Velho and Zorin came up with a new idea based on dividing quadrilaterals
diagonally into two triangles [Velho01a]. The scheme behaves like a face-
splitting scheme, but surprisingly it splits quadrilaterals by creating triangles.
The originators called this the 4-8 scheme, as it works with vertices which
alternate valences four and eight.

As these recent schemes do not strictly fit into the original classification of
table 3-2, we added them, in italics, at the most appropriate position.

A more important observation about the classification of table 3-1 is that for
the primal schemes two types of meshes can be used: triangular and
quadrilateral. For the dual schemes, however, the classification only considers
quadrilateral meshes. It is strange that the table does not provide a dual
scheme for triangular meshes. The dual of a regular triangular mesh is a
hexagonal mesh, and it is not too difficult to define schemes that operate on
these meshes, as we show in chapter 5 of this dissertation. Regarding the
connectivity of the subdivided mesh, two types of schemes can be defined.
The first one divides hexagons into four new hexagons, of which three need
neighboring hexagons to get closed. Such a scheme is described in a paper
under preparation by Simoens, Dyn and Levin [Simoe01]. As this scheme does
not yet have a fixed name, we’ll refer to it as the hexagon-by-four scheme.
The scheme is a dual scheme, but is not really a vertex split scheme as the

22 3 Subdivision surfaces

original vertices are not removed (see section 5.4). The second type of
scheme replaces existing hexagons with three new hexagons and effectively
replaces every old vertex with a new one. We call this scheme the hexagon-
by-three scheme. It will be explained in full detail in chapter 5 of this
dissertation.

All these considerations convert the classification of table 3-1 to the extended
classification of table 3-2, shown below.

Primal (face split) Dual (vertex split)

Triangles Quadrilaterals Quadril. Hexagons

Approximating
(not interpolating
original vertices)

Loop

Sqrt(3)

Dagstuhl

Catmull-Clark Doo-Sabin

Midedge

Hexagon-
by-3

Hexagon-
by-4

4-8 Scheme (Velho)

Interpolating
the original

vertices

Butterfly

Modif.Butterfly

Interp. Sqrt(3)

Kobbelt

Table 3-2. Extended classification of subdivision surface schemes.

Each of the schemes depicted in table 3-2 will be detailed in the sections
starting with section 3.4, explaining their definition and their most important
properties. But first, section 3.3 will elaborate the important difference
between primal and dual schemes.

3.3 Primal versus dual subdivision surface schemes

In [Zorin01a] and [Stam01], the duality between subdivision surface schemes
is an important concept. The dual of a polygonal mesh is formed by
exchanging the role of points and faces. For example, in the case of the
Platonic solids (see figure 3-1), the cube and the octahedron are each other’s
dual: the cube has faces with four edges and vertices with valence three,
while the octahedron has faces with three edges and vertices with valence
four. In the same way, the dodecahedron with faces with five edges and

3 Subdivision surfaces 23

vertices with valence three is the dual of the icosahedron. The tetrahedron is
special because its dual is again a tetrahedron.

Fig. 3-1. The five Platonic solids: The tetrahedron, the cube, the octahedron, the
dodecahedron and the icosahedron. The cube and the octahedron are each other’s

dual, just as the dodecahedron and the icosahedron. The tetrahedron is its own dual.

Subdivision surface schemes are considered primal if the meshes they
generate are obtained by splitting the faces, usually into four smaller faces
[Catmu78, Loop87]. These four parts together again represent their original
face. For a dual scheme, this is no longer true: the newly created faces can
either match vertices, edges or faces of the original faces [Doo78, Peters97].

The preferred number of vertices for the faces of a scheme depends on the
regular grid on which it is based. This regular grid can either be triangular
[Loop87, Dyn90, Kobbe00], quadrilateral [Catmu78, Doo78, Kobbe96,
Peters97] or hexagonal [Simoe01, Claes02]. The preferred valence also
depends on this regular grid, and is four for quadrilateral schemes, six for
triangular schemes and three for hexagonal schemes. Every vertex that has
the preferred valence is called ordinary; all the others are extraordinary. The 4-
8 scheme [Velho01a] is a special case, as it is based on regular grids with
mixed valences.

Primal schemes generate new polygons that all have the scheme’s preferred
number of edges. Existing extraordinary vertices are left untouched, while
newly generated vertices again have the scheme’s preferred valence.

For dual schemes, also here the roles of vertices and faces are exchanged.
Dual schemes shrink existing irregular faces, leaving their number of edges
intact. Extraordinary vertices, however, are converted to faces with an
irregular number of edges. For quadrilateral schemes, the new faces have the
same number of edges as the valence of the vertex from which they originate.
All newly created vertices are all ordinary.

24 3 Subdivision surfaces

Therefore, after the first subdivision step, either only faces with the preferred
number of edges (for the primal schemes) or only ordinary vertices (for the
dual schemes) remain. The dual schemes can create extraordinary faces
during their first subdivision step, but from then on, the number of
extraordinary faces stays constant, while the number of regular faces grows
exponentially during each subsequent subdivision step.

In practice, dual subdivision schemes are used much more than primal
schemes. The most important reason for this is that primal schemes keep
their existing edges, which are subdivided in a very similar way as if they were
subdivision curves. In fact, by arranging the points of the faces in a
symmetrical way, it is possible to oblige the edges to interpolate a subdivision
curve. This property of dual schemes turns out very handy for creating
borders and sharp edges, and even semi-sharp edges [Hoppe94, Schwe96,
DeRose98]. Dual schemes cut off their existing edges, which makes
implementing borders and sharp edges more complicated [Nasri87].

For primal schemes, the silhouette edges keep looking good, even when the
mesh is only subdivided a few times. This is an important benefit for primal
schemes, as silhouettes are an important visual clue to how a surface looks. In
dual schemes, the edges are constantly cut away, considerably changing the
look of the silhouettes at each subsequent step. After a few subdivision steps,
however, the surface is smoothed a lot, and silhouettes only change in a
subtle way thereafter.

3.4 Midedge subdivision

Jörg Peters and Ulrich Reif proposed a very simple way to subdivide a
polygonal mesh [Peters97]. They create new edges in a polygonal mesh by
interconnecting the midpoints of each edge to the midpoints of all edges
that have both a face and a vertex in common. By joining these edges a new
mesh is created to form two types of faces:

 Each existing vertex in the old mesh is replaced by a new face, effectively
cutting the vertex away.

 Each existing face of the old mesh is replaced by a smaller face consisting
of the midpoints of its old edges.

Remark that in general these cuts are not planar. The subdivision rules are
very simple: there is only one type of new point (the midpoint of the edge),
whose position is calculated using only two old vertices.

3 Subdivision surfaces 25

It turns out that, when limited to regular quadrilateral meshes, two steps of
this subdivision algorithm are equal to a factored box-spline subdivision. The
underlying four-directional symmetrical box-spline is known as the Zwart-
Powell element.

As these simple rules lead to too slow convergence speeds for polygons with
a large number of vertices, Peters and Reif adapted their scheme to make sure
that all polygons shrink at the same rate. Therefore, they need to include all
vertices of the polygon into the equation, which is furthermore only defined
when combining two steps. This makes their modified scheme very similar to
the Doo-Sabin scheme, with some slightly different rules for extraordinary
vertices. Unfortunately, no adapted rules exist for the single step algorithm.

Six subsequent steps of the Midedge subdivision are shown in figure 3-2.
Note that each step simply creates new faces by connecting the centers of the
edges. In this simple version of the Midedge scheme, the triangles that are
formed at the corners of the original cubes shrink more quickly then the
quadrilaterals.

26 3 Subdivision surfaces

Fig. 3-2. Six steps of the Midedge subdivision of a cube.

3.5 Catmull-Clark

In 1978, Ed Catmull and Jim Clark introduced the first subdivision scheme to
generate surfaces with an arbitrary topology [Catmu78]. They generalized the
subdivision scheme for cubic B-splines to a tensor-product definition (see
section 2.2 of chapter 2). This approach is nicely defined on regular
quadrilateral meshes and can be executed in two separate passes. First, the
curve scheme is executed in one direction, followed by a second pass in the
orthogonal direction. Catmull and Clark’s most important innovation was the
extension of the scheme allowing it to cope with non-regular meshes. In the
regular setting, the mesh consists solely of quadrilaterals and all vertices have
a valence of four. Catmull and Clark observed that they could split faces that
are not quadrilaterals in a similar way as the faces are split in the regular case.
Just add a point in the center of the face and connect it to the center of every
edge. This ensures that starting from the first subdivision step, all generated

3 Subdivision surfaces 27

faces are quadrilaterals. Also newly generated points at the centers of the
edges nicely get a valence of four. Only the centers of input faces that were
not quadrilaterals lead to the creation of an extraordinary vertex. This implies
that the number of extraordinary vertices stays constant, namely one for each
extraordinary vertex in the input mesh and one for each face that was not a
quadrilateral.

V
0

F
3

E
2

E
1

F
1

E
3

F
2E

4

Q
3

Q
4

Q
1

Q
2

Fig. 3-3. Subdivision around a central vertex V0, showing
surrounding control points (Qi), edge points (Ei) and face points

(Fi).

Starting from figure 3-3, we’ll describe the rules used by the Catmull-Clark
scheme. Catmull and Clark designed their rules to match the tensor product
in the regular case and to try to mimic this as much as possible for irregular
cases. Figure 3-3 depicts the situation around an existing vertex. An initial
vertex V0 is surrounded by n edges, leading to n neighbor vertices Qi. A first
step in the subdivision process is to insert so-called face points Fi at the
centers of the faces. Then, for every edge a so-called edge point Ei is
calculated as the mean between the two vertices and the two face points of
the faces that make up the edge. Finally, the positions of the existing vertices
are relaxed by averaging them with their neighbors in the following way. V1 is
the position of V0 after the first subdivision step and is calculated as:

28 3 Subdivision surfaces

  


 ii F
n

Q
n

V
n

n
V

2201

112
 (3-1)

After using these rules for face points, edge points and vertex points, new
faces are formed. First the existing edges are split using the edge points and
the new vertex points, and then new faces are formed by connecting the
edge points with the face points.

In the literature, different weighting factors have been used for the
calculation of the new vertex point. But, as long as these weights stay within
certain limits and are applied in a uniform and stationary way, most features
of the original scheme stay valid [Zorin00a].

Catmull-Clark’s scheme is not only the first scheme, it is also the most used in
modeling applications, as it lends itself to model objects with rectangular
symmetries and typical cylindrical features, such as arms and legs.
Furthermore, it can be extended quite easily to support sharp and semi-sharp
edges [DeRose98] (see also section 4.7). Halstead et al. used eigenanalysis on
Catmull-Clark’s scheme to obtain explicit formulas for the limit position of the
vertices and the surface normals [Halst93].

3.6 Doo-Sabin

During the same year that Catmull and Clark published their scheme, Donald
Doo and Malcolm Sabin introduced their scheme, also based on a tensor
product for subdivision curves. Instead of cubic curves, they used quadratic
curves. This leads to quite simple rules. Only one type of new point is
introduced, at the center of a quadrilateral formed by an existing vertex, two
edge points and the center of the face. This effectively shrinks the existing
faces to half their original size. In order to close the mesh again, also new
faces are put around the old vertices and edges. This has the visual effect of
cutting away the corners of the polygonal mesh. The mesh obtained is the
dual of the mesh from the Catmull-Clark scheme, interchanging the roles of
points and faces.

In figure 3-4 the Doo-Sabin subdivision process is illustrated for a polygon
with five vertices.

3 Subdivision surfaces 29

Fig. 3-4. Left: An input polygon with surrounding edges. Right: The new faces created
by one subdivision step of the Doo-Sabin algorithm.

3.7 Higher degree B-Spline surfaces

In 2001, two research papers were published containing the idea to use
repeated averaging to obtain surfaces with a higher degree of continuity.
Zorin and Schröder [Zorin01a] as well as Jos Stam [Stam01] started from the
idea of factorizing Lane and Riesenfeld’s formula for subdivision curves with
any degree of continuity [Lane80] (see section 2.2). For example, a subdivision
scheme for a B-spline curve of degree six normally needs a support of seven
neighboring vertices. The interesting observation made by [Zorin01a] and
[Stam01] is that the same scheme can be factorized in six subsequent
averaging steps, each time using only two neighboring vertices. For curves,
this factorization does not seem to help a lot, but for subdivision surface
schemes based on these curves, it brings essential new possibilities. For
surface meshes, a neighborhood of seven vertices in every direction would
require a region of 49 vertices in a regular quadrilateral mesh. A key issue for
subdivision surface schemes, however, is that they also should be defined for
irregular meshes, making it practically impossible to define how the
surrounding region should be sampled for every irregular combination.
Subdivision surface schemes already have enough problems defining how to
adequately sample a neighborhood of one or maximally two surrounding
vertices. The factorization of the subdivision rules, however, permits this
higher degree of continuity to be obtained by repeatedly averaging a limited
region.

30 3 Subdivision surfaces

It turns out that, for the repeated averaging, it is not possible to work with
one simple mesh. In the case of curves, every averaging step of the vertices of
a control polygon creates a new control polygon with vertices in the middle
of the existing ones. The total number of vertices stays the same, however.
The new mesh can be considered as the dual of the old one: just interchange
the roles of vertices and the edges connecting them. To imitate this behavior
on the surface schemes that are defined as tensor products of these curves,
also a dual mesh is needed. For the polygonal meshes, this dual mesh consists
of interchanging the roles of polygons and vertices. The meshes generated by
Catmull-Clark’s and Doo-Sabin’s scheme possess such a duality and were
employed by Stam, Zorin and Schröder to create surfaces with a high degree
of continuity.

3.8 Loop’s scheme

In 1987, Charles Loop generalized the subdivision rules of a symmetric quartic
box-spline over a regular triangulation to include rules to be applied in the
vicinity of extraordinary points [Loop87]. The limit surface is C2 continuous
everywhere except at the extraordinary points, where it is only C1. Loop
showed that at the extraordinary points the surface exhibits a continuous
tangent plane, as long as the weighting factors stay between certain limits.
Although part of Loop’s motivations were based on intuition, it turned out
that the rules that he considered as optimal still survive today as being the
most suited for stationary triangular subdivision.

In a document that has only been published as a draft on the Internet, but
nevertheless is often referenced, Joe Warren [Warren95] proposed some
alternative rules. For most practical applications, the visual difference
between the two sets of rules is minimal, but Warren’s rules have the
advantage that they are simpler for mathematical analysis.

Loop’s scheme has been studied extensively. Prautzsch, for example, showed
how the eigenvalues of the subdivision matrix can be changed to optimize
the continuity of the limit surfaces [Praut99, Praut00]. And Bischoff et al. even
studied the possibilities of a hardware implementation of this scheme
[Bisch00].

Loop’s scheme is used in chapters 9 and 10 of this dissertation, where more
mathematical details about the scheme can be found.

3 Subdivision surfaces 31

In figure 3-5, four consecutive steps of the Loop subdivision scheme of a
triangle is shown. Each time all existing triangles are divided into four smaller
triangles.

Fig. 3-5. Four steps in the subdivision of a triangle.

3.9 Sqrt(3) subdivision

At Siggraph 2000, Leif Kobbelt presented a new scheme for triangular
meshes. While Loop divided the existing triangles by cutting every edge into
two pieces, Kobbelt adds a new point in its center. In order to keep the newly
generated triangles from getting skinnier and skinnier, at each subdivision
step, the connecting edge between neighboring triangles is flipped (see
figure 3-6). After two successive subdivisions, the triangles revert to their
original orientation. It turns out that two steps divide the original triangle into
nine smaller ones and split the edges into three. Therefore, Kobbelt
suggested that one subdivision step cuts the edge length by a factor of
sqrt(3). This remark inspired the name for his new subdivision scheme.

Fig. 3-6. The Sqrt(3) subdivision scheme on a regular triangular grid. Left: The original
triangles. Center: New points are added in the center and new triangles are created

by flipping the existing edges. Right: The result after one subdivision step.

Kobbelt suggested the following rules for his Sqrt(3) scheme. A new point Q
in the center of a triangle P1P2P3 is simply calculated as:

32 3 Subdivision surfaces

  321
3

1
PPPQ  (3-2)

Furthermore, the position of the existing points are relaxed by averaging
them with their immediate neighbors. The new position P’ of an existing
point P, surrounded by n original points P1P2…Pn is calculated as:

    inn P
n

PP
1

1'  (3-3)

Equation 3-3 uses a weighting factor n that depends on the valence of P.

Using eigenanalysis, Kobbelt concluded that the following value for n would

be optimal:

 

9

/2cos24 n
n





 (3-4)

The Sqrt(3) scheme does not seem to be based on a particular box-spline.
Therefore, evaluating the surface and analyzing the behavior is more
complicated than with the more conventional subdivision surface schemes.

An advantage of the Sqrt(3) scheme compared with schemes like Loop’s and
Catmull-Clark’s, is that the number of generated polygons only grows with a
factor of three by each subdivision step, compared to the factor of four for the
conventional schemes. This makes it more probable that a certain level of
detail is reached using fewer polygons. The difference between three and
four becomes clear when one looks at multiplication factors by which new
polygons are generated. For the Sqrt(3) scheme, these factors are growing
like 3, 9, 27, 81, 243, … for subsequent subdivision steps, while for the Loop
scheme they grow like 4, 16, 64, 256, … . After four steps, the Loop scheme
already created more than three times the number of faces compared to the
Sqrt(s) scheme and that difference grows exponentially with the number of
subdivision steps.

3.10 Interpolatory Sqrt(3) subdivision

Inspired by the new connectivity of the Sqrt(3) scheme, Labsik and Greiner
[Labsik00a] created an interpolatory variant. They employed the interpolation
ideas of the Butterfly scheme [Dyn90] and Kobbelt’s interpolating scheme for
quadrilateral meshes [Kobbe96]. In order to get a small support region they
also employed the four-point scheme for curves to derive a rule for inserting

3 Subdivision surfaces 33

the new points. As it is an interpolating scheme, there are no rules for the
existing points: they simply stay in their original position. Only a rule for the
new point in the center of each triangle is needed. When vertices with a
valence different to six are encountered in the neighborhood, the rules are a
bit complicated and are not written down explicitly. They are calculated from
the results of an eigenanalysis of the subdivision matrix. As in the ordinary
Sqrt(3) scheme, they need to combine two steps to get an analyzable
situation.

As the connectivity of the mesh is the same as for the Sqrt(3) scheme, the
generated meshes have the same structure as figure 3-6.

Q

P3P6

P2P1

P9P8

P7
P10

P11P12

P4

P5

Fig. 3-7. Situation around a new point Q for
the interpolating Sqrt(3) scheme.

For the configuration shown in figure 3-7, Labsik and Greiner derived the
following formula to calculate the new position of the point Q. As it is an
interpolating scheme, no new positions are needed for the already existing
points.

     121110987654321
81

2

81

1

81

32
PPPPPPPPPPPPQ  (3-5)

Around extraordinary points, more complicated formulas are needed, which
were only derived for a double subdivision step.

34 3 Subdivision surfaces

3.11 The Butterfly scheme

The structure of the meshes created by the Butterfly algorithm is very similar
to the meshes created by Loop’s scheme [Dyn90, Dyn93]. It also creates new
points by splitting the edges into two, followed by a relaxing step. The
averaging masks used are quite different, however. The vertex-points always
stay in their original position, which causes this scheme to be an interpolating
one. The averaging mask for the newly inserted edge-points is depicted in
figure 3-8 The form of this mask resembles a butterfly, hence the name of the
scheme.

The limit surface is differentiable everywhere except at extraordinary points
of valence n = 3 and n >= 8 [Praut00]. Although the surface is tangent plane
continuous at extraordinary points of valence n >= 8, the surface is not
regular as it has self-intersections. To overcome this shortcoming Zorin,
Schröder and Sweldens [Zorin96] extended the algorithm creating G1-
surfaces for every type of extraordinary point.

Q

P3 P5P4

P2P1

P8P7P6

Fig. 3-8. Situation around a newly inserted
edge point for the interpolatory Butterfly

scheme.

Dyn et al. derived the following formula to calculate the position of the newly
inserted point Q depicted in figure 3-8:

      87654321 2
2

1
PPPPwPPwPPQ  (3-7)

This equation uses a tension parameter that can be freely chosen between
some bounds. Usually it is set to 1/16.

3 Subdivision surfaces 35

Junkins et al. based a real-time game application on the Butterfly subdivision
scheme [Junki00]. The subdivision approach allowed them to work with
objects in different levels of detail, generate efficient bounding boxes and
implement a lazy evaluation approach.

3.12 Interpolatory subdivision for quadrilateral meshes

Leif Kobbelt further generalized the four-point interpolatory subdivision
scheme for curves to a tensor product subdivision scheme for surfaces
[Kobbe96]. So, where the Butterfly scheme is defined on triangular meshes,
Kobbelt’s scheme operates on quadrilateral meshes. The connectivity of how
new points are introduced into the mesh, is the same as for Catmull-Clark’s
scheme, but the rules for calculating their positions is different. In his
Siggraph’96 paper, Kobbelt describes specific rules for the computation of
these positions, which are too elaborated to copy here. Kobbelt also
introduces methods to create boundaries, sharp features and adaptive
refinement. He further proves the C1 continuity of his scheme.

3.13 Velho and Zorin’s 4-8 scheme

Recently, in 2001, Luiz Velho and Denis Zorin [Velho01a] introduced the first
subdivision surface scheme that is not based on meshes of regular polygons.
Until then, the standard meshes were either based on quadrilaterals with
regular vertices having valence four or on triangles with regular vertices
having valence six. Instead, their new scheme has regular vertices that
alternate valences four and eight, with the basic polygon type being a right
triangle. These right triangles are obtained by cutting quadrilaterals over their
diagonal into two pieces.

Usually the starting mesh of their scheme needs some preprocessing. If the
given mesh is mainly quadrangular, it suffices to add diagonals in alternating
directions. For triangular starting meshes, they described a more involved
geometric construction.

Figure 3-9 shows a regular 4-8 tiling and two refinement steps. Meshes with
irregular vertices are subdivided in a similar way.

36 3 Subdivision surfaces

Fig. 3-9. Left: A regular 4-8 tiling, with one basic tile highlighted. Center: A new
subdivision step first introduces new vertices in the center of the diagonals (marked
with small circles) and adds new diagonals that are rotated 45º compared with the

previous step (thick lines). Right: The subsequent subdivision step.

Due to how Velho and Zorin designed their subdivision rules, the scheme is
more closely related to quadrilateral than to triangular schemes. Hence, two
successive subdivision steps mimic a quadrilateral subdivision like Catmull-
Clark’s. An important difference with Catmull-Clark’s scheme is that the 4-8
scheme generates surfaces that are C4 everywhere, except in the
neighborhood of a few isolated extraordinary points, where the surface in
only C1. A drawback, however, is that the 4-8 scheme needs a larger support
area, making the required masks for calculating tangent vectors significantly
larger.

Fig. 3-10. A: The initial control mesh. B: Uniform subdivision. C: An adaptively refined
mesh applying geometric stopping criteria. D: Adaptive subdivision with a spatial

threshold, illustrating how rapidly the polygon density can change.

3 Subdivision surfaces 37

The most important feature of the 4-8 is its flexibility in which it allows
adaptive refinement. As the number of faces only multiplies with a factor of
two with each subdivision step, there can be an enormous difference in
number of polygons between nearby areas. Figure 3-10 (courtesy of
[Velho01a]) shows such adaptive subdivisions of a simplified mesh of the
Stanford bunny.

3.14 The Dagstuhl scheme

This scheme is only mentioned in [Sabin01] and seems to be proposed at a
Dagstuhl conference. Its way of generating new meshes, is similar to the
Sqrt(3) scheme, but it uses a little larger support.

Sabin only describes the rules for the regular setting, which are derived from
a particular box-spline surface. For a new point Q generated in the center of a
triangle P1P2P3, and with P4P5P6 as the extreme corner points of the three
direct neighboring triangles the formula is (see figure 3-11, left):

  654321 222
9

1
PPPPPPQ  (3-8)

And the position of an existing point P0 surrounded by six direct neighbors
(P1P2P3P4P5P6) is relaxed using equation 3-9 (see figure 3-11, right):

  65432100 3
9

1
' PPPPPPPP  (3-9)

Q
P3

P6
P2

P1

P4

P5

P3

P6

P2

P1

P0

P4

P5

Fig. 3-11. The regular masks for the Dagstuhl scheme.

38 3 Subdivision surfaces

 39

4 Properties of subdivision surfaces

4.1 Arbitrary topology

The most important advantage of subdivision surfaces compared to
alternative techniques is that subdivision surfaces allow surfaces of arbitrary
topology to be created. Not only can the mesh have any number of holes, it is
also possible to seamlessly combine rough regions having a small polygon
count with regions containing much more detail.

Before subdivision surfaces were in widespread use, surfaces were stitched
together from rectangular or triangular patches, which needed to be trimmed
to fit together. As the trimming process cannot always guarantee a precise
border, small gaps and discontinuities are difficult to prevent.

The topology does not need to be restricted to manifold meshes. In a
manifold mesh, each local environment of a point is topologically equivalent
to a disk. In many applications, it can be handy to work with non-manifold
meshes, where several surfaces can share common boundaries. Examples are
a fish with fins or a plane with wings. Ying and Zorin show how Loop’s
subdivision scheme can be extended to operate on these non-manifold
meshes [Ying01].

4.2 Level of detail

Depending on the requirements of the task at hand, subdivision surfaces can
be generated with different levels of detail. When speed is important, a quick
preview can be obtained using only one or two subdivisions. For a final high-
quality rendering, many more subdivision steps will be computed [Pulli96].

40 4 Properties of subdivision surfaces

Furthermore, techniques have been developed to adaptively approximate a
surface depending on error bounds, like flatness or size of the final polygons.
A subdivision surface scheme having an extreme capacity of combining both
coarse and highly subdivided regions is the 4-8 subdivision introduced by
Velho and Zorin [Velho01a].

Many practical tips are described in [Junki00] to incorporate the use of
subdivision surfaces in a real-time game. With the help of lazy evaluation,
parts of a subdivision surface that would be clipped away during the
rendering, can be skipped, effectively minimizing the consumed computation
time.

4.3 Numerical quality

The meshes produced by subdivision possess many of the nice properties
finite element solvers require [Reif00]. Commonly applied subdivision
surfaces schemes guarantee at least C1 continuity and are suitable for many
numerical simulation tasks, so they can be used in animation systems or
engineering calculations.

Furthermore, the subdivision process makes use of simple linear
combinations to calculate new points and new positions, so there is no need
to multiply or divide the input variables with each other or to evaluate them
in higher degree polynomials. All this leads to less susceptibility to rounding
errors, ensuring a numerically stabile environment.

4.4 Convex hull property

When the weights in the subdivision mask are all positive and sum to 1, the
limit surface is guaranteed to lie inside the convex hull of a limited set of
neighboring control points. Moreover, this property is propagated by the
recursive subdivision process, where each subsequent step puts the limit
surface in a smaller convex hull [Pulli96].

This property is very useful, for example, when displaying the surface; as soon
as all the control points of a part of the surface lie outside the view frustum,
this part can be clipped away. A similar approach can be used for collision
detection algorithms.

While almost all approximating subdivision schemes are restricted to use
positive masks, interpolating schemes necessarily need negative weights for

4 Properties of subdivision surfaces 41

generating a smooth interpolating surface [Dyn90]. Consequently, the
interpolating schemes don’t exhibit an easy convex hull property, which is
one of the reasons why interpolating schemes are used less in practical
applications.

4.5 Exact evaluations of points and normals

Besides the ability to construct a mesh using recursive refinement, some
applications need a more exact evaluation of the limit points and limit
normals of a surface. At the places where the mesh is regular, this information
can be calculated straightforwardly using the underlying tensor product or
box-spline. For the extraordinary points, Halstead et al. [Halst93] showed how
eigenanalysis leads to exact formulas for their limit positions. The area around
the extraordinary points, however, is more complicated, as it is formed by a
recursive cascade of concentric bands. Each band viewed separately is
regular, but bears an infinite series of smaller similar bands inside, ultimately
converging to the limit position of the extraordinary point. With the help of
eigenanalysis and pre-computed matrices, however, Jos Stam succeeded in
calculating limit positions and normals for arbitrary points of the surface
[Stam98, Stam99]. Later Zorin and Kristjansson extended this research to work
in even more general conditions [Zorin00b].

4.6 Editing subdivision surfaces

The edit interface is simple and without the many limitations imposed by
patched surfaces. Users can edit the arbitrary meshes freely and do not need
to worry about the conditions to keep the surfaces without undesired
discontinuities.

Special purpose editors can try to optimally exploit the possibilities of
subdivision surfaces, minimizing the number of required polygons and trying
to avoid as much as possible the introduction of extra-ordinary points. An
example is the editor for cartoon faces by Skaria, Akleman and Parke
[Skaria01].

4.7 Sharp and semi-sharp features

Subdivision surfaces are not limited to completely smooth surfaces. For
example, in the Catmull-Clark scheme (see section 3.5), sharp edges can be

42 4 Properties of subdivision surfaces

generated by keeping the points of the sharp edges in their original place
instead of relaxing them by the normal subdivision rules [DeRose98]. The
surrounding points keep following the standard rules of the scheme. Earlier
Hugues Hoppe [Hoppe94] described similar approaches for Loop’s scheme,
for which he also added corners and cusp and conical points. These
extensions were further analyzed and formalized by the work of Jean
Schweitzer [Schwe96].

Fig. 4-1. An image taken from Geri’s Game. DeRose et al. used subdivision surfaces
with sharp and semi-sharp edges to model Geri’s head and jacket (©Pixar).

Instead of completely sharp edges, also semi-sharp edges are a desired
feature, both for modeling artists and for industrial designers. These semi-
sharp edges can be generated in a way similar to the sharp ones. The first few
subdivision steps keep the involved points in their original place, but after a
user-defined number of steps, also these points revert to the standard rules.
To make things even more adapted to the user’s needs, this number of steps
does not need to be restricted to an integer. When it is set to a fractional
number, such as for example 3.45, the first three steps are performed without
moving the point. For the fourth step, the fixed position and the position
obtained by standard rule are interpolated using the fractional part (0.45 in
the example given). And for every subsequent subdivision step, again the

4 Properties of subdivision surfaces 43

standard rule is used. Figure 4-1 shows an example of sharp and semi-sharp
features in Pixar’s short animation, Geri’s Game [DeRose98].

Sharp edges are most easily implemented on schemes where the original
points and edges do not get replaced by multiple new points, but instead are
only moved to relax the scheme. Fully interpolating schemes are also difficult
to adapt to allow sharp edges, as the existing points are already kept in their
place and the surrounding new points would have to fulfill too many
constraints.

Therefore, except for the Catmull-Clark scheme, also the Loop scheme (see
section 3.8) and the 4-8 scheme (see section 3.10) lend themselves naturally
to being adapted to cope with sharp edges. The Sqrt(3) scheme (see section
3.9) is a little more complicated to adapt. This scheme also moves its existing
points, but at the same time restructures the connections of the edges, so
that an edge is only at its same topological position every two steps.

On the other hand, corner-cutting schemes – like the Doo-Sabin scheme (see
section 3.6), the midedge scheme (see section 3.4) and the hexagonal scheme
described in chapter 5 – are not so easy to adapt for sharp edges. In these
schemes every subdivision step replaces existing points and edges by
completely new polygons, making it difficult to indicate an edge that has to
be sharp. Tricks like adding an imaginary border and making the surface
touch itself can establish a sharp C0 border. Semi-sharp edges would need an
algorithm that first performs some subdivision steps, taking the imaginary
border into account, and after a user defined number of steps, ignores that
border again, using the standard rules.

Fig. 4-2. A control mesh for a smooth Catmull-Clark surface (left); the resulting surface after
indicating four edges as sharp (center) and after indicating four more edges as sharp (right).

44 4 Properties of subdivision surfaces

Figure 4-2 gives an example of our implementation of semi-sharp edges in
the Catmull-Clark scheme [Claes01b]. At the left, a control mesh for a torus,
together with the resulting smooth surface is shown. The image in the center
is the result of indicating four of the outermost edges as interpolating. The
image at the right also has four of the innermost edges indicated as sharp.

4.8 Boundaries

Although the basic formulas for subdivision surfaces are defined for closed
meshes, they do not need to stay restricted to closed surfaces. Special rules
for borders can simply mimic the behavior of a particular subdivision surface,
where newly generated points on the boundary only depend on other
boundary points. This simple setup works for face-splitting subdivision
schemes with a small support, such as the Catmull-Clark [Catmu78] and the
Loop scheme [Loop87]. Levin remarked that this approach sometimes leads
to self-overlapping surfaces near the border, and proposed some
modification to the subdivision rules for the point near the borders [Levin00].

Making sure that rules on the boundary do not depend on internal points is
useful to create creases and sharp edges. The only requirement to get a
neatly closed crease is to put the control points for the boundary on the same
position for different surfaces.

Doo defined boundaries to the Doo-Sabin scheme by simply doubling the
boundary edges [Nasri87]. In his setup, at each boundary edge he placed an
artificial rectangle replicating the points of the edge. Nasri described more
complex ways to define boundaries [Nasri87].

4.9 Parameterization (texture mapping coordinates)

Rectangular patches that are tensor products, for example of two splines,
have a very straightforward texture parameterization. Each point of the
surface is the sum of two points, one on each of the spanning curves, letting
the point inherit its u and v coordinate from the parameterization of the
curves. Similarly, triangular patches have a u and v coordinate limited to a
triangular domain.

As subdivision surfaces are defined over meshes exhibiting an arbitrary
topology, they lack a simple parameterization. In their paper discussing the
subdivision techniques used to create the Geri’s Game short animation, Tony

4 Properties of subdivision surfaces 45

DeRose and coworkers [DeRose98] propose the following approach. Texture
coordinates can be attached to the points of the defining mesh, using
techniques like planar, spherical and cylindrical projections or letting a user
assign them in an interactive way. Afterwards, these coordinates need to be
distributed properly over the newly generated points of the little polygons
making up the subdivision surface. It turns out that this distribution can be
accomplished in exactly the same way as the distribution of the X, Y and Z
values of the points of the initial mesh. So, whenever a new point is created
(or an existing one is moved), not only is the 3D coordinate calculated, but
also the u and the v coordinates are averaged using the same scheme.

This approach does not need to be restricted to texture coordinates. Tony
DeRose also introduced scalar values that were distributed in a similar way. In
the construction of the Geri’s Game animation, darker regions like cavities
and bright spots on the surface were marked by assigning scalar values to the
control points of the coarse mesh. The subdivision process then distributed
these values to every vertex of the subdivided mesh. During the rendering
stage, these values were used as part of the procedural shading calculations.
This method turned out very effective in allowing the artist to fine-tune the
optimal shading he had in mind. Figure 4-3 illustrates this with an actual
image taken from Geri’s Game.

46 4 Properties of subdivision surfaces

Fig. 4-3. Geri, from the Geri’s Game animation short. DeRose et
al. distributed a scalar parameter value over the subdivision

surface that represents his jacket. This scalar value was used in
the procedural shading to accentuate stiches and folds (©

Pixar).

4.10 Multi-resolution editing

The recursive subdivision process is fundamentally linked to multi-resolution
analysis and wavelet theory, as described in the book by Stollnitz, DeRose and
Salesin [Stoll96]. In a multi-resolution description of an object, a very coarse
first approximation is used. Gradually more levels, each one attaching more
details, are added. This allows for powerful editing at one level without losing
the details added by the lower levels. A multi-resolution description strongly
resembles the subdivision process. The main difference is that the
subsequent representations of a subdivision surface are all approximations of
the same limit surface, while in a multi-resolution representation more
information can be added at each level. Eck et al. show how to convert
arbitrary polygon meshes into multi-resolution meshes [Eck95].

A multi-resolution representation is also very useful when sending geometric
information over the Internet. After receiving the coarsest mesh, the target

4 Properties of subdivision surfaces 47

computer can already start displaying it, gradually updating the finer details
as they get progressively transmitted [Hoppe96, Certa96, Labsik00b].

Khodakovsky et al. show how multi-resolution analysis and wavelet based
methods can be used to progressively compress a polygonal mesh [Khoda00].
An underlying subdivision surface scheme allows for meshes with arbitrary
topology. An example from their results is shown in figure 4-4.

Fig. 4-4. Using multi-resolution methods to obtain progressive meshes [Khoda00].

An interesting variation on multi-resolution representations is a so-called
displaced subdivision surface [Lee00]. Here the fine detail is represented as a
scalar-valued displacement over a smooth domain surface. Similar to a multi-
resolution representation, these meshes can be used to strongly compress
detailed geometric information, but also allow an easier way of editing and
animating the surface.

Another example of the power of the subdivision paradigm for multi-
resolution meshes is the integration of engraving, embossing and trimming
[Bierm01, Litke01]. In a similar context, [Velho01b] shows how a multi-
resolution representation can be combined successfully with synthetic
procedural texture generators. This is a powerful and general shape modeling
paradigm as these textures can be applied at different levels and can be fused
together seamlessly. The underlying surface can either be captured or
modeled by an artist. As these surface representations can rely on lazy
evaluation, the finest detail only needs to be generated when viewed from a
close distance.

48 4 Properties of subdivision surfaces

4.11 Wavelets

Wavelets play a very important role in many different scientific research fields,
such as image analysis and signal processing. As wavelets can also be applied
to tackle differential equations, the theory behind it has been applied
successfully in many studied physical phenomena [Stoll96].

While a Fourier transform converts a signal to a frequency domain, wavelets
simultaneously approach the frequency and the time domain. In wavelet
analysis, a window is shifted along the signal and for every position the
spectrum is calculated. This process is repeated many times with a scaled
down version of the window.

Image-processing applications use wavelets to highly compress images in a
top-down way or to fill in gaps of missing information in images [Adels87,
Lundm01]. In medical image processing, wavelets are used to find
correlations between different parts of the image [Laine93].

4.12 Interpolating point sets

Subdivision surfaces have also been used successfully to approximate or
interpolate point sets, such as the ones obtained by optical scanners
[Hoppe93, Hoppe94, Schwe96]. Nasri [Nasri87] describes an approach to
constructing a control mesh for a Doo-Sabin scheme such that this mesh
interpolates an initial set of points. Similarly, Halstead et al. [Halst93] moved
the control points for a Catmull-Clark subdivision such that the scheme would
interpolate its original mesh. As the resulting mesh had unwanted bumps and
irregularities, they applied an energy-minimizing process, moving the points
of the first and the second subdivision, in order to get the surface as fair as
possible. An interesting approach is described by Zhang et al., who use a
strategy based on subdivision surfaces and minimizing strain energy to move
bad data-points [Zhang01]. These points could be obtained from a laser
scanner, or they could be badly located points that appeared during the
interactive design of a model.

Another more direct approach comes from Dyn, Levin and Gregory, when
they presented their Butterfly scheme (see section 3.10), directly interpolating
the initial points of the control mesh. Similar methods have been used by
Kobbelt [Kobbe96] and Labsik and Greiner [Labsik00a] for other types of
meshes.

4 Properties of subdivision surfaces 49

4.13 Free-form deformations

Subdivision surfaces and their extension to volumes have been used as a base
for free-form animation tools. By moving only the control vertices, the
subdivision process smoothly transforms the space between them.
MacCracken and Joy used a particular extension of the Catmull-Clark scheme
to volumes [MacCr96] and in our work we applied the Loop scheme with local
interpolation [Claes00]. In chapter 10 we explain more details about the
techniques we used.

4.14 Simulating physical processes

Subdivision schemes combined with multi-resolution methods have been
proven successful in studying physical processes like the motion of fluid flow
[Weimer99]. In this context, the subdivision schemes serve as a framework to
solve differential equations. The same authors, Weimer and Warren, also
proved how thin plate splines, as an approximation of bending energy, are a
good way to tackle the modeling of “fair” surfaces [Weimer98].

A specific advantage of both subdivision surfaces and subdivision volumes
for studying physical processes, are the arbitrary topology, allowing the
solution space to be planar, hyperbolic, or free-form. Another advantage is
the possibility of keeping the influence between nodes local, highly speeding
up the calculations.

Cirak, Ortiz and Schröder show how Loop’s subdivision surface scheme can
be incorporated in thin-shell finite-element calculations [Cirak00]. Their new
paradigm turned out to be highly accurate with an optimal convergence.
Especially the fact that Loop surfaces are guaranteed to have a finite bending
energy plays a key role in their analysis methods. Moreover, subdivision
allows the geometric modeling and the finite-element analysis to use an
identical representation, making the implementation more robust. Additional
advantages are the integration of non-smooth elements such as boundary
conditions and creases (see sections 4.7 and 4.8).

Subdivision is also used in engineering applications, in combination with the
finite element method. If not only the outer surface, but also the inner
structure of an object is important, subdivision volumes are used [MacCr96,
Bajaj01, Mandal99].

McDonnells and Qin used finite elements methods in combination with
physics based modeling to simulate the behavior of clay [McDon00]. Qin also

50 4 Properties of subdivision surfaces

studied howto use subdivision methods to tackle variational problems
[Qin98]. Recently Chris Raymaekers and Koen Beets published a paper about
how to use subdivision techniques in haptic rendering of a surface [Rayma01].

 51

5 A hexagonal subdivision surface scheme

5.1 Introduction

In this chapter we introduce a new hexagonal scheme for subdivision
surfaces. The main idea was born after reading a recent paper by Zorin and
Schröder about how the duality between subdivision surface schemes leads
to higher-degree continuity [Zorin01a]. They only consider quadrilateral
subdivision schemes, as the dual of a quadrilateral scheme is again a
quadrilateral scheme, while the dual of a triangular scheme would be a
hexagonal scheme. In this chapter we propose such a hexagonal scheme,
which can be considered the dual of Kobbelt’s Sqrt(3) scheme for triangular
meshes [Kobbe00]. Figure 5-1 already gives a first impression of how such a
hexagonal scheme would operate on a regular dodecahedron as input mesh.
Each time, all corners of the previous mesh are cut off, replacing them with a
hexagon.

52 5 A hexagonal subdivision surface scheme

Fig. 5-1. Four consecutive steps of a hexagonal corner-cutting scheme applied to a
dodecahedron. Each of the generated polyhedra consists of 12 pentagons and a number of

hexagons that triples at each subdivision step. The polyhedron at the right contains 360
hexagons.

We also introduce recursive subdivision rules for meshes with arbitrary
topology. These rules have a simplicity comparable to the Doo-Sabin scheme:
only new vertices of one type are introduced and every subdivision step
removes the vertices of the previous steps. Furthermore, we show the
relationship between the scheme and a quadratic subdivision curve, which
can be used as a border.

The rest of this chapter is organized as follows. We start with section 5.2
introducing the duality between subdivision surface schemes. In section 5.3
we give an overview of the use of hexagonal meshes in other research fields,
followed by a discussion in section 5.4 about the possible ways of recursively
subdividing a regular hexagonal mesh. Then, in section 5.5, we propose
stationary subdivision rules for a new hexagonal subdivision scheme. Section
5.6 is dedicated to the continuity analysis of the surfaces generated by this
new scheme. As many common meshes found in computer graphics
environments are triangular, section 5.7 proposes two different constructions
to convert these meshes to hexagonal ones. Section 5.8 explains a relation
with curves and an idea for creating borders for the hexagonal scheme, while
section 5.9 gives some preliminary ideas about adaptive subdivision. In
section 5.10 we shortly introduce a method to interpolate the initial control
points. Finally, in section 5.11 we show some results, followed by a
concluding discussion in section 5.12.

5 A hexagonal subdivision surface scheme 53

5.2 Subdivision surface schemes and duality

For a recursive subdivision surface scheme to be based on a mesh of one type
of polygons, either triangles, quadrilaterals or hexagons have to be
considered. These are the only types of polygons that allow a regular tiling of
an infinite 2D plane.

A mentioned in chapter 3, in 1978 the first two subdivision schemes were
published, both based on quadrilaterals. Ed Catmull and Jim Clark’s scheme is
a so-called primal scheme, splitting each input quadrilateral on one level into
four smaller quadrilaterals on the next subdivision level, after which the new
positions are averaged out [Catmu78]. Donald Doo and Malcolm Sabin’s
scheme operates on the dual mesh of Catmull-Clark’s scheme: the roles of
points and polygons are interchanged, just as a Voronoi diagram is the dual
of a Delaunay triangulation [O’Rour94]. Doo-Sabin’s scheme is called a corner-
cutting scheme, because it has the visual appearance of recursively cutting
away corners of the input polyhedron [Doo78].

In 2001, two research papers were published containing the idea of using
repeated averaging to obtain surfaces with a higher degree of continuity
[Zorin01a, Stam01]. The starting idea comes from factorizing Lane and
Riesenfeld’s formula for subdivision curves with any degree of continuity
[Lane80]. For example, a subdivision scheme for a B-spline curve of degree six
normally needs a support of seven neighboring vertices. The interesting
observation made by [Zorin01a] and [Stam01] is that the same scheme can be
factorized in six subsequent averaging steps, each time using only two
neighboring vertices. For curves, this factorization does not seem to help a
lot, but for subdivision surface schemes based on these curves, it brings
essential new possibilities. For surface meshes, a neighborhood of seven
vertices in every direction would require a region of 49 vertices in a regular
quadrilateral mesh. A key issue for subdivision surface schemes however, is
that they should also be defined for irregular meshes, making it practically
impossible to define how the surrounding region should be sampled for
every irregular combination. Subdivision surface schemes already have
enough problems defining how to adequately sample a neighborhood of one
or maximally two surrounding vertices. The factorization of the subdivision
rules, however, allows this higher degree of continuity to be obtained by
repeatedly averaging a limited region.

54 5 A hexagonal subdivision surface scheme

5.3 Hexagonal meshes

Although the ancient Greeks were already convinced of the honeycomb
conjecture, it has only recently been proven mathematically: a hexagonal
tiling is the least-perimeter way to enclose infinitely many unit areas in the
plane [Hales99].

This is just one of the features that makes hexagonal lattices interesting. In
the field of wavelet analysis, it has been argued that hexagonal sampling is
the optimal sampling strategy for signals that are band-limited over a circular
region in the frequency domain [He97]. This is similar to what human eyes are
believed to do [Adels87, Watson87, Aznar00]. Their three axes of symmetry
(0º, 60º and 120º) give more possibilities compared to the two axes (0º and
90º) of quadrangular lattices.

Lundmark et al. [Lundm99, Lundm01] stated that a recursive subdivision
using nearly hexagonal fractal tiles forms a good basis for variable resolution
image coding. They used the same strategy for distributing the cells of a cell-
phone system with a mesh resolution adapted to the different densities
needed in different areas.

Tiles with a fractal boundary that can be replicated to fill an infinite plane
have been studied by Vince, who also provides numerous pointers to related
work about self-replicating tilings [Vince99]. Recursive regular tilings have
also been studied by Cannon et al. [Cannon99, Cannon01].

Sahr and White apply a multi-resolution hexagonal grid to create a spatial
database, for example, to cover the earth’s surface. They noted that in a
hexagonal grid, all adjacent cells of whose corners touch always have an edge
in common [Sahr98]. They called this uniform adjacency, as all six neighbors
have their center at the same distance. In triangular and quadrilateral meshes,
different types of neighbors exist, with some only touching by a corner. In a
related type of application, Ferhatosmanoglu et al. [Ferha01] showed how
hexagonal partitioning has an optimal I/O cost for querying a spatial
database.

Hexagonal meshes can also break the annoying straight-line patterns as seen,
for example, in fractal terrain modelers using quadrilateral or triangular grids.
These patterns also pop up in subdivision surfaces. Although these patterns
can be desirable for artificial objects, for many natural-looking surfaces these
patterns are to be avoided.

5 A hexagonal subdivision surface scheme 55

These promising experiences in other fields of research form a good basis to
assume that studying a hexagonal scheme for subdivision surfaces would
open a world of new exciting ideas. In the following sections, we’ll describe
the possibilities to create hexagonal schemes and propose a set of stationary
subdivision rules.

5.4 Hexagonal subdivision

Similar to other recursive subdivision schemes, we would like to repeatedly
subdivide an initial hexagonal mesh into smaller hexagonal meshes. In order
to get simple symmetrical subdivision rules this subdivision should treat all
input polygons in an equal way, independent from their position in the mesh.

After some subdivision steps, subdivision schemes locally look like a regular
grid. Therefore, we’ll first have a look at how to refine a regular hexagonal
grid in the plane. It turns out there exist many ways in which a hexagonal grid
can be recursively refined. A simple construction to create such a subdivision
relation between an original hexagonal grid G0 and a refined grid G1, is to
choose two arbitrary cells, a and b, in G1, as shown in figure 5-2. Then align
the center of a with a cell p in the coarse grid G0 and scale and rotate the G1
until the center of cell b is exactly aligned to a direct neighbor of p in G0. In
figure 5-3 two cells of grid G0 are drawn in thicker lines, while in figure 5-4 the
centers of a and b are aligned to p and its neighboring cell in G0, shown in
figure 5-3.

a b

c

p

a b

c

Fig. 5-2. Choosing two
arbitrary cells, a and b in the
fine grid G1. Cell c is a direct

neighbor of a.

Fig. 5-3. Two cells, p and a
direct neighbor, in the coarse

grid G0.

Fig. 5-4. The centers of a and b
get aligned to the centers of p

and its neighbor.

In this construction, the distance between a and b, divided by the cell
distance in G1, determines how many times the grid is scaled down by the

56 5 A hexagonal subdivision surface scheme

subdivision. In the example of figure 5-2, where c is such a direct neighbor of
a, this factor is:

 7
),(

),(


cadist

badist
 (5-1)

While the grid is scaled down by this number, the area of each cell is scaled
down by the square of this number. Therefore, the square of the scale factor,
is the multiplication factor for the cells. In this example, the area is scaled by a
factor of seven, allowing the linking of exactly seven cells of G1 to each cell of
G0.

In figure 5-5 we show an overview of the smallest of the possible
multiplication factors. These factors can grow to arbitrarily large numbers, but
for a subdivision scheme the small numbers are especially interesting. The
cell at the top, marked with “0”, represents cell a of figure 5-2. For each
possible choice for cell b, the multiplication factor is written down inside the
cell. As all around cell a these factors are repeated in a regular pattern, we
only show one sextant of the grid.

5 A hexagonal subdivision surface scheme 57

0

1

1

3

4

4

9

16

7

7

9

12

13

13

16

25

27

28

2821

21

25

19

19

31

31

36

36

Fig. 5-5. Possible multiplication factors for hexagonal subdivision,
depending on the distance where the finer grid is aligned to the coarse

one. The actual scaling factor is the square root of the displayed
number.

In figure 5-6, we show the first three non-trivial of the possible subdivisions
that can be obtained via the above procedure. For the factors three and four,
most cells of the finer grid are at the border between two cells of the coarse
grid.

 Fig. 5-6. A subdivision of a regular mesh with a factor of three, four and seven. Each
time the center of the cell of the finer grid is aligned to the center of the coarse grid.

It turns out that, apart from aligning the center of the finer grid to the centers
of the coarse grid, another possible construction is to align the vertices of the
finer grid to the centers of the coarse grid [Lundm01]. This would have the

58 5 A hexagonal subdivision surface scheme

advantage that more of the hexagons of the finer grid can be linked to each
single cell of the coarse grid, as is demonstrated in the right image of figure 5-
6. When we consider this type of arrangement for our subdivision application,
however, we notice that its dual arrangement would have two different types
of subdivision for the triangles.

For hierarchical subsampling of images, Lundmark, Wadströmer and Li
suggest recursively dividing hexagons into seven smaller hexagons
[Lundm99, Lundm01], as in the right image of figure 5-6. In their apparently
independent research concerning geodesic mapping, Sahr and White choose
a similar approach, after first mapping the earth’s surface to a regular
icosaheder [Sahr98]. Mathematical properties of this special type of
subdivision and its fractal boundary have also been investigated by Vince
[Vince99].

From figure 5-5, it is clear that the smallest non-trivial scaling factors are three
and four. The scaling factor seven is also appealing, because by partitioning a
hexagon into seven, the new hexagons occupy more or less the same area as
the original one. With a partition into three or four, some of the new
hexagons have necessarily to be shared with the neighbors. A very annoying
problem with the scaling factor of seven is that the new mesh is rotated by
about 19º (to be precise, asin(sqrt(3/28)), which implies that the repeated
subdivision steps lose their alignment with the original mesh. This makes
analyses for its use as a subdivision surface scheme quite complicated.
Furthermore, this rotation prevents the scheme from being applied in a
symmetrical way. Unfortunately, all the scaling factors that are not
combinations of three and four are subject to this kind of irregular rotations.

A scaling factor of four is investigated in the paper by Simoens, Dyn and Levin
[Simoe01]. A scaled-down version of the input hexagon is dropped in its
center, after which the old vertices are reconnected to the nearest new
vertices, replacing each old edge by a new hexagon (such as in the center
image of figure 5-6). This can be viewed as an edge-cutting operation. This
setup introduces one type of new vertex at a similar position as in the Doo-
Sabin scheme. However, contrary to Doo-Sabin’s scheme, this hexagonal
scheme needs to keep the existing vertices. So two types of rules are needed:
one for the new vertices, and possibly one for relaxing the position of the old
ones. Possible rules for calculating the new vertices and relaxing the old ones
can be found in [Simoe01], which also proposes rules to cope with
extraordinary vertices. It should be noted that Simoens et al. mainly look at
combining hexagonal and triangular schemes, implying that their hexagonal
scheme is not treated as an explicit separate scheme. For regular meshes, this

5 A hexagonal subdivision surface scheme 59

subdivision by a factor of four is also addressed in [Praut01] as an example of
the subdivision of half-box-splines. Such a scheme with a scaling factor of
four would be the dual of triangular schemes that split triangles into four,
such as Charles Loop’s scheme [Loop87]. As this scheme for hexagonal
subdivision (multiplying the number of hexagons by four in each subdivision
step) does not have a fixed name yet, we propose to call it the hexagon-by-
four scheme.

Fig. 5-7. A subdivision of a regular mesh with a factor of three and four (left and
center). This time the vertices of the cell of the finer grid are aligned to the center of
the coarse grid. At the right, the triangular dual of this subdivision by four is shown.

Unfortunately, the triangles are not treated evenly is this dual subdivision.

An observation is that to get a symmetrical subdivision, it is not necessary to
align the centers of the new grid with the centers of the old one. An
alternative possibility is to align the vertices of the new grid with the centers
of the old one, as shown in figure 5-7. This alignment is less interesting
however, as rules for more types of new vertices need to be addressed.
Furthermore, the dual of such a scheme would be a triangular scheme that no
longer treats all of the triangles equally.

Our attention is focussed on a hexagonal subdivision that multiplies the
number of hexagons by a factor of three (such as in the left image of figure 5-
6). At the same time the average surface area of the hexagons is divided by
three, and the average edge length by a factor of sqrt(3). This last observation
inspired Kobbelt to call his scheme the Sqrt(3) scheme [Kobbe00]. We
propose to simply call the new scheme the hexagon-by-three scheme.

An interesting feature that a hexagon-by-three subdivision shares with the
well-known Doo-Sabin scheme [Doo78] is that only one type of new vertex is
introduced. In our scheme, the vertex is created in the center of the triangle
formed by the two neighboring old vertices and the center of a hexagon. For
the quadrilateral Doo-Sabin scheme, the new vertex is created in the center of
the quadrilateral formed by the old vertex, the center of the polygon and the

60 5 A hexagonal subdivision surface scheme

two midpoints of the neighboring edges. Also mimicking the Doo-Sabin
scheme, each subdivision step removes all old vertices. A difference with the
Doo-Sabin scheme is that our new scheme, except for keeping smaller copies
of the existing faces, creates only one type of new face, while the Doo-Sabin
scheme creates two types of new faces.

In the next section, we make a proposal for stationary subdivision rules for
this new hexagonal scheme.

5.5 Proposed stationary subdivision rules

5.5.1 Subdivision rules in the regular case

In order to search for the most interesting values for the subdivision weights,
we make the following considerations. First, we would like the support area to
be small such that every control point exhibits only a local influence.
Therefore, we look for solutions that are restricted to using the points of the
polygon in which we are creating the new points. Furthermore, just as in
existing schemes, it makes sense to look for a symmetrical scheme, invariant
to the order in which the points are considered and letting all points play an
equal role. For the standard mesh (hexagons where every point has valence
3), these considerations lead to the existence of three different weights (see
figure 5-8):

5 A hexagonal subdivision surface scheme 61

 one for the two points closest to the new point (a),

 another weight for the two points in the middle (b),

 and a third weight for the two furthest points (c).

P1

P4

P3

P2

P6

P5

P

a

a

b

b

c

c

M

Fig. 5-8. The position of the new point P is a
weighted average of the points of the surrounding

hexagon.

Expressed using these factors, the equation for the new point is then written
as:

654321P cPcPbPbPaPaP  (5-2)

Another consideration is that for an input configuration of all equal regular
hexagons, the new points should be located such that all newly created small
hexagons are again exactly equally sized. As for each input hexagon, three
new hexagons are created, and the area of the new hexagons has to be equal
to one third of the area of the original ones. To obtain this, the sides of the
hexagons have to be divided by a factor of 1/sqrt(3). Due to the symmetry of
the regular hexagons, this is only possible if the weight c = a – 1/3.

For the scheme to be invariant under affine transformations, the sum of these
weights should be equal to one: 2a + 2b + 2c = 1. So, together with the
condition on c, this condition leads to b = 5/6 – 2a.

Putting all this in a matrix, we get the subdivision matrix with only one
variable left (a).

62 5 A hexagonal subdivision surface scheme





























a2a-5/61/3-a1/3-a2a-5/6a

aa2a-5/61/3-a1/3-a2a-5/6

2a-5/6aa2a-5/61/3-a1/3-a

1/3-a2a-5/6aa2a-5/61/3-a

1/3-a1/3-a2a-5/6aa2a-5/6

2a-5/61/3-a1/3-a2a-5/6aa

'S (5-3)

As the new points are rotating the input points by 30º, this matrix has only
complex eigenvalues, which is not suited for our goal to analyze the scheme.
Therefore, as in [Kobbe00] and [Labsik00a], we consider a combination of two
subdivision steps, after which we rotate the configuration back by 60º to
match the original orientation.

This double matrix looks like equation (5-4):



















































18

29
8a-12a

9

4
4a6a-

9

5
4a6a-

18

25
8a-12a

9

5
4a6a-

9

4
4a6a-

9

4
4a6a-

18

29
8a-12a

9

4
4a6a-

9

5
4a6a-

18

25
8a-12a

9

5
4a6a-

9

5
4a6a-

9

4
4a6a-

18

29
8a-12a

9

4
4a6a-

9

5
4a6a-

18

25
8a-12a

18

25
8a-12a

9

5
4a6a-

9

4
4a6a-

18

29
8a-12a

9

4
4a6a-

9

5
4a6a-

9

5
4a6a-

18

25
8a-12a

9

5
4a6a-

9

4
4a6a-

18

29
8a-12a

9

4
4a6a-

9

4
4a6a-

9

5
4a6a-

18

25
8a-12a

9

5
4a6a-

9

4
4a6a-

18

29
8a-12a

222222

222222

222222

222222

222222

222222

S

This matrix has the following eigenvalues:

 10 

 3/1, 21 

 424a-36a, 2

43  (5-5)

 05 

The symmetry of the scheme forces the matrix to be of rank 5, implying that
zero is one of the eigenvalues. In the literature [Doo78, Ball86, Ball88, Reif95,
Kobbe00, Praut97, Zorin00a, Umlauf00, Sabin01], the following is reported
about the nature of the eigenvalues of the subdivision matrix:

5 A hexagonal subdivision surface scheme 63

 The largest (or dominant) eigenvalue should be 1. This is necessary for the
scheme to be affine invariant.

 The second and third largest eigenvalues (sorted by their absolute values)
should be equal, and they should be strictly larger than the next
eigenvalues for the scheme to be C1 [Umlauf00]. These are the so-called
subdominant eigenvalues. They are the factor by which the configuration
shrinks at each subdivision step and control the first derivative. The left
eigenvalues belonging to these subdominant eigenvalues determine the
tangent plane of the limit surface.

 The fourth and fifth eigenvalues should optimally be the square of the
subdominant eigenvalues. These eigenvalues are related to the out-of-
the-plane behavior of the configuration.

Consequently, we try to set the fourth and fifth eigenvalue to the square of
the subdominant eigenvalue:

2

13   (5-6)

which is rewritten as:

2

2

3

1
424a-36a 








 (5-7)

This equation leads to the following values for a, b and c (in equation 5-8, see
figure 5-8):

18

1
c

18

1
b

18

7
a  (5-8)

or:

18

1-
c

18

5
b

18

5
a  (5-9)

The first solution consists entirely of positive weights, while the second
solution uses a negative weight. As negative weights result in the loss of the
convex hull property for the scheme, we opt for the first solution [Reif95,
Melkm97, Kobbe00].

For that first solution, the single- and double-step subdivision matrices
around a hexagon would be

64 5 A hexagonal subdivision surface scheme





























711117

771111

177111

117711

111771

111177

18

1
'S (5-10)

and





























171155511

111711555

511171155

551117115

555111711

115551117

54

1
S (5-11)

5.5.2 Rules for the extraordinary case

The rule for the case that the original polygon is a hexagon can be viewed in
another way. Instead of formulating it using the six points of the hexagon, we
could see it as taking the uniformly weighted average of the two nearby
points with the center of the hexagon. This evokes the formulation of the
Doo-Sabin scheme [Doo78], where the new point is the average between the
nearby original point, the center and the two edge points.

A simple rule for the polygons of the old mesh that are not hexagons is to use
the same approach as for hexagons: just take the average of the center and
the two nearby points. As in the Midedge scheme [Peters97], however, such
weights would mean that polygons with more than six points would shrink
more slowly than the hexagons, leading to flat spots on the surface. And
polygons with fewer points would shrink too fast, leading to annoying pointy
features.

Therefore, as Peters and Reif did for their Midedge scheme, the weights
should be adapted to get a uniform shrinking between all types of polygons.
If we stay with the idea that the new point should be an average (though not
uniformly weighted) between the two nearby points and the center, we
would get the following formula (see figure 5-9):

5 A hexagonal subdivision surface scheme 65

 Mw
PP

w)1(
2

P 21 


 (5-12)

P1

P4

P3

P2

Pn

Pn-1

P

w

w

(1-w)

M

Fig. 5-9. Situation of a polygon in the extraordinary case.

Here M is the center of the polygon, calculated as the weighted average of its
n points. The only way to get the shrinking factor equal to the shrinking by
one-third of the hexagon is for w to equal:

)cos(3

1

n
w


 (5-13)

For use in matrix calculations, we should write the formula with M being
replaced by its original components:

nP
n

w
P

n

w
P

n

w
P

n

wn
P

n

wn 














1
...

11

2

2)2(

2

2)2(
P 4321

 (5-14)

5.5.3 Isolation of singularities

As in the Doo-Sabin scheme, two different kinds of irregularities can be
present in the original mesh. First, some of the original vertices can have a
valence different from three, which is the standard valence for regular
hexagonal meshes. Second, the original mesh can contain polygons that are
different from hexagons. The first kind of irregularity disappears after one
subdivision step. Each vertex that doesn’t have valence three will be
converted to a polygon with twice the number of vertices as the valence of
the original vertex. If the mesh contains polygons that are not hexagons, the

66 5 A hexagonal subdivision surface scheme

subdivision process will scale them down and surround them with hexagons.
Each subdivision step isolates these non-regular polygons further, in the limit
contracting each of them to a point: a so-called extraordinary point. This
isolation process is illustrated by figure 5-10.

Fig. 5-10. The quadrilateral and the octagon are extraordinary polygons in the original
mostly hexagonal mesh (left). Each subsequent step of the subdivision process isolates
them further apart, increasingly filling the rest of the space with hexagons (center and

right).

5.6 Surface continuity

A standard way to study the properties of a subdivision scheme is to look at
the underlying generating function [Catmu78, Doo78, Loop87]. Most existing
subdivision schemes are either based on box-splines or are a tensor product
of B-splines. Therefore, in the regular case, they are equal to these underlying
functions, inheriting among others their degree of continuity. For our new
scheme, however, such an underlying function is not known, similar to the
situation with the Sqrt(3) scheme [Kobbe00].

We had a closer look at box-splines, as Prautzsch and Böhm [Praut01] already
described some kind of regular hexagonal subdivision. In their study of box-
splines, they developed a theory of half-box-splines. Box-splines are a
generalization of B-splines to higher dimensions and have been used to
develop subdivision surface schemes, such as Loop’s scheme. Tensor product
B-splines, such as the one used for the Catmull-Clark subdivision scheme, are
just one of the special cases of box-splines. Prautzsch and Böhm observed
that by combining two half-box-splines, the theory of box-splines can be
generalized to regular hexagonal grids. We refer to [Praut01] for the details
about these half-box-splines and to the book by De Boor, Höllig and
Riemenschneider [DeBoor93] for a more comprehensive treatment of box-

5 A hexagonal subdivision surface scheme 67

splines. Another interesting work in this context is by Mueller, who describes
ways to adopt box-splines to model for free-form surface modeling [Muell96].

Unfortunately, the symmetric half-box-splines with small support lead to
schemes that are not compatible with our hexagon-by-three scheme. For
example, if a ternary subdivision were applied to the symmetric cubic C1
scheme described in section 4.3 of [Praut01], the resulting mesh would have
the same type of connectivity as the double step of our scheme. Its weights
are not compatible, however. Using Prautzsch’s formulas, we derived a matrix
for a ternary subdivision of a hexagonal mesh. This matrix is depicted in
equation 5-15 and has rank six, while the symmetry conditions of our scheme
oblige dependencies between the rows, yielding a matrix of rank five.





























1044144

4104414

4410441

1441044

4144104

4414410

27

1
boxsplineS (5-15)

So, although the half-box-splines are closely related to our scheme, they don’t
seem to give direct answers to its nature. The next step in our analysis is to
decompose the subdivision matrix into a product of three matrices: a matrix
with left eigenvectors, a diagonal matrix of eigenvectors and a matrix of right
eigenvectors. Following the analysis of Halstead et al. [Halst93], this
decomposition is an essential issue in deriving the limit behavior of the
scheme. A condition posed by [Halst93] is that the subdivision matrix may not
be defective: the matrix of eigenvectors should be inversible. We
demonstrate that our hexagonal scheme accomplishes these conditions.

Equation 5-16 shows this decomposition of the double subdivision matrix S.
The right eigenvectors are the columns of matrix R, while the left
eigenvectors form the rows of matrix L. As R∙L = L∙R is equal to the identity
matrix, applying the subdivision matrix n times to a given configuration of

control points can be expressed as Sn = (R∙∙L) n= R∙ n∙L. Therefore, R and L
control the behavior of the configuration as n approaches infinity.

68 5 A hexagonal subdivision surface scheme













































































111111

211211

121121

211211

121121

111111

6

1

110101

101011

111111

110101

101011

111111

LRS

with  the matrix of eigenvalues:





























000000

0910000

0091000

0003100

0000310

000001

 (5-16)

Following the conclusions of [Halst93], the normalized left eigenvector
belonging to the dominant eigenvalue 1 determines the position of the limit
point. Here “normalized” should be interpreted as summing to 1. In our case,
this is a vector with all components equal to one-sixth. Hence, in the limit of
the recursive subdivision process, all vertices of the constantly shrinking
hexagon end up in its center.

Further, the normal in the limit position is the plane spanned by c2·P and c3·P.
Here c2 and c3 are the left eigenvectors belonging to the second and third
largest eigenvalue. P is the column matrix representing the neighborhood of
the extraordinary point that is being investigated. Therefore, these two
vectors spanning the limit tangent plane are:

)22(
6

1
Pc 6543212 PPPPPP 

)2121(
6

1
Pc 6543213 PPPPPP  (5-17)

Eigenanalysis shows that the generated surface of our hexagonal scheme is
C1 and probably C2 in the regions where the mesh is regular. In the
environment of extraordinary vertices the surface is probably C1. These
hypotheses are further endorsed by studies like [Peters00] revealing that

5 A hexagonal subdivision surface scheme 69

almost all subdivision schemes are C1 continuous, especially when they are
purely based on positive weights. Further investigations are needed to
understand more about the properties of the kind of surfaces generated by
our scheme. As can be verified by [Zorin00b], rigorous analysis of this kind of
subdivision surface schemes can be very mathematically involved.

Reif noted that another condition for a subdivision scheme to behave
properly is that the characteristic map needs underlying analyzable basis
functions and should be regular and injective (without local self-intersections)
[Reif95]. The characteristic map defines a local parameterization based on the
subdominant eigenvectors.

As rigorously checking the characteristic map can be rather complicated,
many researchers [Schwe96, Kobbe00, Simoe01] suggest a visual check on
the characteristic map to verify that the scheme behaves well around
extraordinary vertices. In figure 5-11 we show a visualization of the
characteristic map for polygons with three to ten edges. These characteristic
maps show a very uniform and smooth behavior.

Fig. 5-11. Characteristic map around polygons with three to ten vertices. The closer
the number of edges is to the preferred number of six, the more regular the

characteristic map.

5.7 Converting triangular to hexagonal meshes

In general, polygonal meshes found in computer graphics environments
mainly consist of triangles and quadrilaterals. Meshes that mostly contain

70 5 A hexagonal subdivision surface scheme

hexagons are quite rare. The meshes obtained from 3D laser scanners for
example are typically arranged in a triangular way, exhibiting an arbitrary
topology. In this section, we’ll describe ways of converting triangular meshes
to mainly hexagonal ones. Meshes containing polygons with more than three
vertices can easily be triangulated using standard techniques [O’Rour94].

Our hexagonal scheme is not the only one that requires a preprocessing step
to make general meshes more suitable. Also Velho and Zorin [Velho01a], who
recently introduced the promising 4-8 scheme, require adapting meshes that
were not especially designed for their scheme.

It turns out that two suitable methods to convert a triangular to a hexagonal
mesh can be constructed: namely, by cutting the corners of the triangles or
by replacing the mesh by its dual. These methods are described in the
following subsections. At this stage, we suppose the input is a closed
manifold triangular mesh, exhibiting an arbitrary topology. The handling of
borders will be discussed in section 5.8.

5.7.1 Replacing the triangular mesh by its dual

A first way to convert a triangular to a hexagonal mesh is to replace the mesh
by its dual. All triangles of the original mesh will be converted to vertices, and
all vertices of the original mesh will be converted to polygons. For each
vertex, the centers of the surrounding triangles are connected to form a
polygon. The number of sides is determined by the valence of the original
vertex. In figure 5-12, the vertices with the regular valence of six in the
triangular mesh are converted to hexagons, while valence five vertices are
converted to pentagons. While the polygons created by this process can have
an extraordinary number of vertices, the newly created vertices themselves all
have a valence of three, as would be needed for a regular hexagonal mesh.
Luckily, for all subsequent subdivisions, the only newly created polygons will
be hexagons.

5 A hexagonal subdivision surface scheme 71

Fig. 5-12. Left: In a triangular mesh the centers of the triangles are marked. Right: These
centers are used to construct the dual hexagonal mesh.

5.7.2 Cutting the corners of the triangles

Another method for converting a triangular mesh to a hexagonal is to cut the
edges of the triangles at one-third and at two-thirds. Suppose we have an
edge between points P1 and P2. The position of a new point P, at one-third of
the edge and next to P1, would then be:

 21
3

1

3

2
PPP  (5-18)

Inside each existing triangle a new hexagon is formed by joining the
shortened edges and cutting away the corners of the triangle. Figure 5-13
illustrates this process. The neighborhood around the old vertices is filled in
again by replacing the vertex with a polygon, with a number of sides equal to
the valence of the old vertex. As in the previous section, only if the old vertex
has a regular valence of six will a hexagon be created, and thus polygons with
any number of edges are possible. Luckily, the subdivision process quickly
isolates these extraordinary cases.

In the newly generated hexagonal mesh, all vertices have a valence of three,
as all of them are at the border of two old triangles converted to hexagons
and one new polygon replacing the vertex.

72 5 A hexagonal subdivision surface scheme

Fig. 5-13. Left: In the triangular mesh of figure 5-12, points now mark the division
of the edges at one-third and two-thirds. Right: Using the marked points to

convert the triangular mesh to a hexagonal one.

A first impression of figure 5-13 is that the mesh looks rather irregular:
although the triangular mesh looks quite homogeneously distributed, the
generated polygons are not as convex as one would expect. This is because a
stencil of only two nearby points is used to calculate the position of the newly
introduced points. The next possible stencil would also include the two
extreme points of the two triangles sharing the edge. If P3 and P4 are the
points that together with P1 and P2 form the triangles sharing the edge for the
new point, a good formula for the position of the new point would be:

 4321
9

1

9

1

9

2

9

5
PPPPP  (5-19)

P1

P P4

P3

P2

M123

M142

Fig. 5-14 Two triangles sharing the edge near which
a new point will be inserted.

5 A hexagonal subdivision surface scheme 73

Other weights would also be possible, as long as the new point would be
positioned at one-third of the edge in the case of both triangles being
equilateral. The suggested weights seem to be natural, as they uniformly
average the two centers of the triangles with P1 (M123 and M142 in figure 5-14).
The result is shown at the left of figure 5-15.

Fig. 5-15. Left: The mesh obtained by corner-cutting the triangles, with
additional averaging by direct neighbors. Right: The mesh obtained by

subdividing the dual mesh once, resulting in a more regular appearance.

5.7.3 Which method is better?

It turns out that when the mesh obtained via the dual method of section 5.7.1
is subdivided once, it is topologically equivalent to the mesh obtained by the
splitting method of section 5.7.2. The meshes have the same number of
polygons and vertices arranged in exactly the same way. The positions of the
vertices, however, are slightly different. With the dual-mesh method, the
positions will be averaged with a support area of n+1 in the original triangular
mesh, where n is the valence of the nearest point. On the contrary, the
method of section 5.7.1 only uses four surrounding points.

Which method to choose depends on whether the application at hand
prefers a smoother surface versus a surface that more strictly follows the
original edges. For meshes resulting from an optical scanner for example, the
dual-conversion method will be preferred. Usually those meshes are dense
and demonstrate small accuracy errors, which will be nicely smoothed by the
conversion to hexagons. For an interactive modeling application, the one-
third - two-thirds method looks more appealing, as the user will have a higher
control over the local form of the surface.

74 5 A hexagonal subdivision surface scheme

5.8 Curves and borders

By putting hexagons symmetrically around the control points of a quadratic
subdivision curve, the resulting subdivision surface will interpolate that curve.
Under these conditions, the subdivision rules mimic a ternary division of the
cubic curve (see section 2.2). This is similar to how the four-point subdivision
scheme for curves is embedded in the Butterfly scheme [Dyn90].

For a ternary refinement of a quadratic curve, [Sabin01] derived the
coefficients of equation 5-20. The first formula relaxes the position of an old
control point, while the second and third define the position of the newly
inserted vertices.

  1010 7
9

1
' pppp  

  101 36
9

1
' ppp  (5-20)

  102 63
9

1
' ppp 

While on triangular schemes, the related curve is defined by the control
vertices, for our dual-hexagonal scheme it is defined by the centers of the
edges, as with the Doo-Sabin scheme [Nasri01b]. Nasri also showed how to
create a border by virtually mirroring the mesh polygons near the border for
the Doo-Sabin scheme. A similar approach could be worked out for our
hexagonal scheme.

The simpler approach of letting vertices fall together near the border also
gives a reasonable result for the Doo-Sabin scheme. The border of a
hexagonal mesh is more complicated and does not allow for such an
approach.

5.9 Adaptive subdivision

Although our hexagonal scheme has only a multiplication factor of three, as
in any subdivision surface scheme, the number of polygons generated grows
exponentially. Therefore, most practical implementations of subdivision
surface schemes build in an adaptive subdivision strategy. Depending on
user-controlled stopping criteria the mesh will be subdivided less into regions
that are relatively flat, and more into heavily curved regions.

5 A hexagonal subdivision surface scheme 75

With the hexagonal scheme, as in most other adaptive subdivision
approaches, adaptive subdivision is possible if the subdivision of neighboring
polygons never differs more than one level. Effectively implementing such an
adaptive subdivision is a topic of future research.

5.10 An interpolating variant

Analogous to the approach of Halstead et al. [Halst93], instead of just
approximating the original vertices, we can adapt the scheme to interpolate
these vertices. By the scheme's construction, it is clear that each polygon
constantly shrinks towards its center, in the limit being contracted completely
to that center.

In Halstead’s constructions for the Catmull-Clark scheme, the vertex only
interpolated the desired control point in its limit position. Every finite number
of subdivision steps only approximates the chosen control point. With our
hexagonal scheme, however, the center of the polygons will be interpolated
during every subdivision step, allowing an application to interpolate a desired
set of points even after executing just a few subdivision steps.

Therefore, we implemented a variant to Halstead’s approach, where we move
the vertices of the hexagonal mesh in an iterative process, to interpolate the
vertices of the original triangular mesh. We choose an iterative approach
instead of solving a set of equations. Particularly, the equations leave some
degree of freedom, which permits our approach to simultaneously optimize
other constraints, such as maximizing the hexagons' convexity.

76 5 A hexagonal subdivision surface scheme

5.11 Results

Fig. 5-16. Four steps of the recursive hexagonal subdivision on a mushroom mesh.

Figure 5-16 shows four subsequent steps of the subdivision process for an
irregularly modeled mushroom.

Figures 5-17 and 5-18 show the result of different subdivision schemes for a
mesh with an extraordinary vertex of valence 20. After three subdivision
steps, the Loop subdivision of figure 5-17 multiplies the initial number of
triangles by 64 and is comparable to the Sqrt(3) subdivision which multiplies
the number of triangles by 81 after four steps. Figure 5-18 uses the dual of the
triangular mesh. The hexagonal subdivision multiplies the number of
polygons by about 81. The optimized subdivision rules result in the 20-gon
shrinking at a pace that is more comparable to that of the hexagons.

Fig. 5-17. Left: A triangular mesh with a vertex of valence 20 (160 triangles). Center: A
Loop subdivision after three steps (10,240 triangles). Right: A Sqrt(3) subdivision after

four steps (12,960 triangles).

5 A hexagonal subdivision surface scheme 77

Fig. 5-18. Left: The dual hexagonal mesh from the mesh of the previous figure
(82 polygons). Center: A hexagon-by-three subdivision after three steps (6,486

polygons) and using the simple rules. Right: The same scheme using the
optimized rules (also 6,486 polygons).

Figure 5-19 shows three subsequent steps in the hexagonal subdivision of a
cat model, and in figure 5-20 a Phong-rendered image of the mesh generated
by the third subdivision level of figure 5-19 is shown.

Fig. 5-19. Three consecutive steps of the Hexagon-by-three scheme.

78 5 A hexagonal subdivision surface scheme

Fig. 5-20. A Phong-rendered image of the
third subdivision level in figure 5-19.

In figure 5-21, three different approximating schemes operating on triangular
meshes are compared. All three schemes lead to similar results, showing that
the new hexagonal scheme is an equal competitor with the existing
subdivision schemes.

5 A hexagonal subdivision surface scheme 79

Fig. 5-21. A cat model, comparing different subdivision schemes: subdivided three times
using the Sqrt(3) scheme (left), two times using Loop’s scheme (center) and three times

using the Hexagon-by-three scheme (right).

Finally, in figures 5-22, 5-23 and 5-24, we compare the different corner-cutting
schemes. In figure 5-22, four subdivision steps for a cube with the Midedge
scheme are shown [Peters97], while figure 5-23 shows four steps of our new
hexagonal scheme using the same cube. And in figure 5-24, the Doo-Sabin
subdivision is shown [Doo78]. Most notable, is the difference in convergence
speed. The Midedge scheme only doubles the number of polygons in each
step, our hexagonal triples this number, and the Doo-Sabin scheme
quadruples it.

All three schemes shrink the original squares by a factor that is the square
root of the multiplication factor of the scheme. For the Doo-Sabin scheme,
this is the integer factor of 2, for the Hexagon-by-three scheme this is sqrt(3)
and for the Midegde scheme this is sqrt(2). Both the hexagonal and the
Midedge scheme constantly rotate these original squares, while the Doo-
Sabin scheme maintains their original orientation.

A cube is a very interesting object for comparing quadrilateral and hexagonal
schemes. The faces of the cubes have the preferred number of vertices for the
quadrilateral schemes, while the vertices have the preferred valence for
hexagonal schemes.

80 5 A hexagonal subdivision surface scheme

Fig. 5-22. Four steps of the Midedge scheme subdividing a cube.

Fig. 5-23. Four steps of the Hexagon-by-three scheme on a cube.

Fig. 5-24. Four steps of the Doo-Sabin scheme subdividing a cube.

5.12 Discussion

In this chapter we proposed a new hexagonal subdivision surface scheme.
When operating on a triangular input mesh, the mesh is first transformed to
its dual by putting new faces in the place of old points, and new points at the
center of the old faces. The scheme uses a minimum of existing vertices to
generate smooth surfaces from meshes of arbitrary topology. As the scheme

5 A hexagonal subdivision surface scheme 81

consequently cuts corners of polygonal meshes, only one type of new points
is generated; consequently, the scheme has a simplicity comparable to the
well-known Doo-Sabin scheme.

Considering the recent work of [Zorin01a] and [Stam01] about using dual-
quadrilateral schemes to create surfaces with a high continuity, the new
scheme would be an ideal candidate to be used together with Kobbelt’s
Sqrt(3) scheme for a similar setup for triangular and hexagonal schemes.

Furthermore, a close relation of the new hexagonal scheme with a ternary
subdivision for quadratic B-spline curves is shown. These curves could be
used to form the border of the generated surfaces and to create sharp edges.

As in the Sqrt(3) scheme, each subdivision step multiplies the number of
polygons by a factor of three. Fewer polygons are created by each step
compared to the standard algorithms that have a multiplication factor of four.
Therefore, the mesh that meets the requirements for a close enough
approximation of the limiting surface will in general be smaller.

 83

6 Local interpolation for subdivision curves

6.1 Introduction

As mentioned in chapter 2, fully interpolating schemes are not very well
suited for interactive curve design. Approximation schemes are much easier
to manipulate, but sometimes it is desired that the curve locally interpolates
one or more of its control points. In this chapter, we show how we can get the
best of both worlds, introducing a new method for turning approximating
recursive subdivision techniques into an interpolating modeling tool. The
approach is based on generating local invariances for the subdivision process
around the control points to be interpolated, and allows normal interpolation
as well as tension control. The underlying methodology is explained and
implementation results and applications are elucidated. We also dedicated a
research paper to this topic [VanRe01].

The main objective of the work reported upon in this chapter is to introduce a
method for transforming these approximating uniform subdivision schemes
into an interpolating subdivision curve design and manipulation tool, at the
same time achieving additional advantages. B-splines of any degree as limit
curves can be generated, with optional normal interpolation as well as

tension control around the vertices 0

ic of the initial control polygon P0. Our

method mainly involves introducing suitable ghost points around the vertices
0

ic . In the next section (section 6.2) we develop the technique in the context

of uniform cubic B-splines. In section 6.3 we generalize the method to B-
spines of degree n+1, and in section 6.4 we give some examples illustrating
the method. We finish with conclusions and views on further work (section
6.5).

84 6 Local interpolation for subdivision curves

6.2 Control point interpolation, normal interpolation and
tension control: the cubic case

Recall the splitting and averaging process described in chapter 2. Given a
control polygon Pj at level j in the subdivision process, the splitting step
generates an intermediate control polygon 1jP


that contains all the control

points of Pj, as well as additional control points inserted at the midpoints of all
the edges constituting Pj. This narrows down to:

 j

i

j

i cc 1

2


(vertex split point) (6-1)

and

)(12
11

12

j

i

j

i

j

i ccc 



 


(edge split point) (6-2)

In order to get the final positions of the control points 1j

ic in Pj+1, the

intermediate control points 1j

ic


 in 1jP


are averaged using a so-called

averaging mask mkmkrr )((the exact meaning of m will be given in

section 6.3):

 11 



  j

ki

m

mk k

j

i crc


 (6-3)

In Chaikin’s algorithm [Chaik74] the averaging mask is r = ½ (0, 1, 1).
Riesenfeld [Riese75] was able to show that the curves generated by Chaikin’s
algorithm are uniform quadratic B-splines. It is proven by Lane and Riesenfeld
[Lane80] that Chaikin’s algorithm can be generalized to generate uniform B-
splines of degree n+1 by using an averaging mask with entries

 














































n

n

n

nnn
n

,
1

,...,
1

,
02

1
. (6-4)

The key insight of the proposed method exploits the fact that, under certain
conditions, a generally approximating subdivision scheme can yield a locally
interpolating result. Consider the case in which the averaging mask r = ¼ (r-1,
r0, r1) = ¼ (1, 2, 1) is used. As mentioned in section 2.2, applying this averaging
mask in the subdivision scheme of an initial control polygon P0 generates an
approximating cubic B-spline as the limit curve. An important case is that
when:

i. three successive control points j

ic 1 , j

ic and j

ic 1 are collinear, and

6 Local interpolation for subdivision curves 85

ii. j

ic is the midpoint between j

ic 1 and j

ic 1

After the splitting step, the intermediate control points 22

1

2)(



 k

j

kic


are

generated around j

ic according to equation 6-1. This situation is

schematically depicted in figure 6-1.

Fig. 6-1. Specific conditions on successive control points (cubic case).

It is easy to verify (cfr. Appendix 1, at the end of this dissertation) that the

averaging step will not change the position of 1

12





j

ic


, 1

2

j

ic


 and 1

12





j

ic


, and that

we have a situation in which:

(i) three successive control points 1

12





j

ic , 1

2

j

ic and 1

12





j

ic are collinear,

(ii) 1

2

j

ic is the midpoint between 1

12





j

ic and 1

12





j

ic , and,

(iii) 1

2

j

ic = j

ic

Here the subdivision rules generate a so-called local invariance around j

ic

with respect to the averaging rules, and the approximating scheme becomes

a locally interpolating scheme around j

ic . Further, where the straight-line

situation shown in figure 6-1 is present in the initial control polygon P0 (i.e.

when j=0), the above scheme will interpolate j

ic in each iteration of the

subdivision process. This property is fundamental in the proposed curve
design method.

Indeed, around each control point 0

ic of P0 (cfr. figure 6-2, in which the

dashed line represents a part of the initial control polygon P0) through which

j

ic

j

ic 1

1

22





j

ic


1

12





j

ic


1

2

j

ic


1

12





j

ic


j

ic 1

1

22





j

ic


86 6 Local interpolation for subdivision curves

an interpolatory condition is required (possibly all initial control points),

additional points – so-called ghost points 0

1,ig and 0

1,ig – are introduced in

such a way that a local invariance is introduced: 0

1,ig , 0

ic and 0

1,ig are

collinear, and 0

ic is the midpoint between 0

1,ig and 0

1,ig . The new

configuration around 0

ic is depicted in solid lines in figure 6-2.

Fig. 6-2. Introduction of additional ghost points.

Extending the initial control polygon P0 with all the additionally created ghost
points and subsequently applying the uniform recursive subdivision rules
with the averaging mask r = ¼ (r-1, r0, r1) = ¼ (1, 2, 1) will hence lead to an
interpolatory subdivision curve with a cubic B-spline as limit curve. The

normal to the curve in an interpolatory 0

ic is perpendicular to the line passing

through the ghost points at issue (i.e. 0

1,ig and 0

1,ig). Setting the orientation

of this line perpendicular to the desired normal in 0

ic implies normal

interpolation. Changing the (equal) distances from the ghost points to 0

ic will

affect the tension of the resulting curve around 0

ic .

6.3 The general cases

We now show that it is possible to generate an interpolatory uniform
subdivision curve with normal interpolation and tension control, which has a
B-spline of degree n+1 as limit curve. Consider the case in which the
averaging mask of equation 6-4 is used for a given n. Since the results are
slightly different depending on n being odd or even, we first treat the case n
even.

0

1,ig 0

1,ig

0

1ic
0

1ic

0

ic

6 Local interpolation for subdivision curves 87

Case n is even:

Here we have:

(i) 2m + 1 successive collinear control points mkm

j

kic )(, and

(ii) each of the control points j

kic  and j

kic )0(mk  are

equidistant to j

ic .

After the splitting step, the intermediate control points mkm

j

kic 22

1

2)(






 are

generated around j

ic according to equation 6-1 and 6-2.

The situation we have after the splitting step is schematically depicted in
figures 6-3a (for m odd) and 6-3b (for m even).

Fig. 6-3a. Specific conditions on successive control points in the general case, for m
odd.

1

2





j

mic


1

12





j

ic


 1

22





j

ic


j

ic 1

j

mic 

j

ic 1

j

mic 

j

ic

1

2

j

ic


1

12





j

ic


1

22





j

ic


1

2





j

mic


1

22





j

mic


1

22





j

mic


88 6 Local interpolation for subdivision curves

Fig. 6-3b. Specific conditions on successive control points in the general case, for m
even.

We now have an odd number (n+1) of normalized binomial coefficients in the

averaging mask and m = n/2. (We note that, if m is even, then 1

2





j

mic


 and
1

2





j

mic


will be vertex split points; otherwise, they will be edge-split points;

hence, the reason for the difference of the points at issue in figures 6-3a and

6-3b.) Because the 2m+1 successive control points mkm

j

kic )(are collinear

and equidistant, the intermediate control points mkm

j

kic 22

1)(






 are collinear

and equidistant as well. Furthermore, in Appendix 2 (at the end of this
dissertation) it is shown that after the averaging step, we have a situation in

which the control points mkm

j

kic 



)(1 around 1j

ic are on the same position as

the intermediate control points mkm

j

kic 



)(1
. Since this invariance is

independent of j, on each level we have an interpolating subdivision scheme

around j

ic .

We now follow the approach as set up in section 2.2 to come to an
interpolating subdivision curve design tool. We introduce ghost points

mkkig  0

0

,)(and mkkig  0

0

,)(at each control point 0

ic of P0 we wish to

interpolate. These points are introduced so that mkkig  0

0

,)(, 0

ic and

mkkig  0

0

,)(are collinear and the ghost points are equidistant from 0

ic , as in

figure 6-4 where the original control polygon is shown dashed. Here the new

configuration around 0

ic is depicted with solid lines.

1

2





j

mic


1

12





j

ic


 1

22





j

ic


j

ic 1

j

mic 

j

ic 1

j

mic 

j

ic

1

2

j

ic


1

12





j

ic


1

22





j

ic


1

2





j

mic


1

22





j

mic


1

22





j

mic


6 Local interpolation for subdivision curves 89

Fig. 6-4. Introduction of additional ghost points.

The generalization of the cubic case to B-splines of degree n+1 follows
straightforwardly if we use the rule in equation 6-4 to generate our averaging

mask. Here the normal to the curve in an interpolatory 0

ic is perpendicular to

the line passing through the ghost points mkkig  0

0

,)(and mkkig  0

0

,)(at

issue. Setting the orientation of this line perpendicular to the desired normal

in 0

ic implies normal interpolation. Changing the equidistances from the

ghost points to 0

ic will affect the tension of the resulting curve around 0

ic .

Case n is odd:

In the general case, we have to deal with the possibility of n being odd. In this
case, n+1 is even and we will have an even number of normalized binomial
coefficients in the averaging mask. Accordingly, the averaging step will move

the intermediate control points mkm

j

kic 



)(1

2


 away from the position of an

initial control point 0

ic . Here each intermediate control point mkm

j

kic 



)(1

2



will become the midpoint to the two surrounding control points in the
averaging step (proof in Appendix 2, at the end of this dissertation). This

implies that on each iteration of the subdivision 0

ic will be interpolated, but,

contrary to the case where n is even, we no longer have a control point at 0

ic .

After each subdivision step, the midpoint of the two control points

surrounding 0

ic will interpolate it.

0

, mig  0

2,ig 0

1,ig 0

ic 0

1,ig 0

2,ig 0

, mig 

0

1ic
0

1ic

90 6 Local interpolation for subdivision curves

Some closing remarks:

(1) It is not necessary for the control points j

kic  to be distributed

equidistantly among themselves. As long as the corresponding points j

kic 

and j

kic  are equidistant to the interpolatory point j

ic (and equal

corresponding weights), we maintain interpolation. If they are not distributed
equidistantly among themselves, then averaging the corresponding

intermediate points 1



j

kic


 and 1



j

kic


will move them over an equal distance with

respect to j

ic (the proof becomes a bit more complicated as well). We set

them equidistantly in our implementation for reasons of symmetry.

(2) It is not necessary for the averaging mask entries to be equal to the
normalized binomial coefficients in order to have an interpolatory situation. It
is sufficient for them to sum to one and to form a palindrome (i.e. the

corresponding split points 1



j

kic


 and 1



j

kic


 get the same weighting factor). As

mentioned in section 6.1, in [Lane80] it is proven that the limit curve is a B-
spline of degree n+1 if they do equal the normalized binomial coefficients.
Since this is a desirable property to have, we set our entries to these values.

6.4 Results

The techniques presented in this chapter have been implemented in C++,
using the OpenGL graphic interface [Fosne96]. The basic approximating
subdivision scheme is depicted in figure 6-5, where four control vertices
define a smooth cubic B-spline. Figure 6-6 shows the same scheme with ghost
points added to obtain interpolation in one of the original control vertices.
The position of the ghost points further influences the direction of the normal
and a tension around the interpolating vertex.

6 Local interpolation for subdivision curves 91

Fig. 6-5. The standard approximating cubic subdivision process: starting from a set of
4 original control vertices (left), a finer mesh (center) is created, in the limit converging

to a smooth curve (right).

Fig. 6-6. Adding two ghost points around one vertex of the mesh of figure 6-5 makes sure
the curve smoothly interpolates that vertex (left). The normal in that vertex and a tension

parameter can be controlled by interactively moving the position of the ghost points
(right).

The same technique as used at the interior points of the curve, can also be
applied to the ends of an open curve (see figure 6-7, left and center), resulting
in precise control at these ends. Connecting two open curves creates the
possibility of a sharp corner at the joint point (see figure 6-7, right).

92 6 Local interpolation for subdivision curves

Fig. 6-7. The same technique can be applied to control normal and tension at the ends
of an open curve. Left: The control vertices and ghost points. Center: The resulting
open curve. Right: Connecting the ends of an open curve allows the creation of a

closed curve with a sharp corner.

Applying a binomial averaging mask with a larger support generates B-spline
curves of a higher degree. Adding the appropriate number of ghost points
will also make these curves locally interpolating (see figure 6-8).

In figures 6-9, 6-10 and 6-11 we show some characters that are created using
our tool. Local interpolation, normal and tension control and sharp corners
were used to create and manipulate these drawings in a straightforward way.
The curve editing tools can be used as a base of an animation tool, which is
illustrated by the eight frames of a running animation of figure 6-12, inspired
by Preston Blair’s book about traditional animation [Blair94].

Fig. 6-8. A 4th degree curve with four
ghost points added.

Fig. 6-9. The control vertices determining
the contours of a 2D face.

6 Local interpolation for subdivision curves 93

Fig. 6-10. An example of an animation character created via our curve
tool, combining local interpolation, normal and tension control.

Fig. 6-11. Another example, where a varying
line thickness is also applied.

94 6 Local interpolation for subdivision curves

Fig. 6-12. Some frames from an animation sequence created using the locally
interpolating curves described in this chapter.

6 Local interpolation for subdivision curves 95

6.5 Discussion

In this chapter, we described a new technique for generating and
manipulating interpolatory subdivision curves. The central idea for obtaining
local interpolation is based on generating a local invariance with respect to
the subdivision process by accurately placing additional control points (ghost
points) in the initial control polygon. The proposed method interpolates the
initial control points in each iteration of the subdivision process and supports
normal manipulation as well as tension control. It should be noted that the
idea of generating local invariance could be applied to make other
approximating subdivision schemes locally interpolatory as well. Applications
of the proposed scheme go beyond curve-editing and manipulation; for
example, it can be applied to free-form deformation (see chapter 10) and
morphing. Moreover, we have been working on extending the ideas to 3D
modeling and manipulation, as described in chapters 5, 6 and 7. Future work
can also involve applying similar methods in non-uniform subdivision
schemes; e.g. to address bias control around the interpolatory points.

 97

7 Locally interpolating subdivision surfaces

7.1 Introduction

This chapter forms an introduction to the three following ones, explaining
specific local interpolation techniques for different subdivision surface
schemes.

As explained in chapter 3, the subdivision surface schemes that are most
applied in practical applications are Catmull-Clark’s [Catmu78] and Loop’s
schemes [Loop87]. Catmull-Clark’s quadrilateral scheme is preferred when the
objects to be modeled have 90 and 180 symmetries or many rectangular
parts, such as animation characters. Loop’s triangular scheme is chosen for
free-form surfaces without this kind of symmetry [Zorin00a].

Both schemes are non-interpolating: in general, their limit surface only
approximates the original control points, without actually interpolating them.
Besides these approximating schemes, interpolating schemes have also been
investigated. The most well-known is the extended Butterfly subdivision
scheme [Dyn90, Zorin96], creating C1 continuous surfaces interpolating every
single point of the original control mesh. Unfortunately, schemes that rely
purely on interpolation have some intrinsic problems: their appearance is
harder to control and they produce more bulges and unwanted folds. This
makes them much less attractive for use in animation, limiting their main
application to situations where a given set of measured or calculated points
has to be interpolated by a smooth surface.

In section 7.2 we explain why we want to create local interpolation for
approximating schemes, instead of reverting to other solutions such as fully
interpolatory schemes. In section 7.3 we explain our requirements in more

98 7 Locally interpolating subdivision surfaces

detail, and finally section 7.4 gives an overview of the related work in this
area.

7.2 Advantages of the most widespread schemes

Both the Catmull-Clark and Loop schemes have been studied extensively, and
many features have been developed. Most features explained in chapter 4 are
applied most easily on these two schemes. Sharp and semi-sharp edges, for
example, have not really been investigated yet for other schemes [Hoppe94,
Schwe96, DeRose98].

Another advantage of approximating schemes compared to interpolating
schemes is their convex hull property: all newly generated points remain
inside the box defined by a small set of spanning control points. Due to the
stationary nature of the scheme, this property can be applied recursively,
helping, for example, in deciding which part of a mesh to display, further
gaining in performance as non-displayed subsets need not be subdivided
[Pulli96]. Approximating schemes also have a much narrower support as
compared to interpolating schemes, ensuring that editing of the control
mesh has a purely local effect.

Specifically interesting for Catmull-Clark surfaces is that they can be rendered
directly using off-the-shelf software, such as Alias|Wavefront’s Maya [Maya01].
This means that the models created by our tools can be employed directly in
this high-end animation software.

7.3 Requirements

The most studied subdivision schemes are both uniform and stationary. In a
uniform scheme, the same subdivision rules are used for every point of the
mesh. If the same scheme is applied unaltered for every recursive subdivision
step, the scheme is said to be stationary. Both characteristics facilitate the
writing of applications and studying of mathematical properties. Exceptions
to a uniform or stationary approach are normally only employed to cope with
special situations; for example, at a boundary or to create creases. Due to the
importance of both uniform and stationary rules, we try to avoid affecting
these properties with our modifications.

In our modeling application, we want to combine the benefits of the
approximating schemes with the possibility of editing locally in an

7 Locally interpolating subdivision surfaces 99

interpolating way. We noticed that the users of our modeling tools
sometimes needed the surface they were designing to interpolate a given
point. As the subdivision meshes we generate are displayed by standard
rendering software, we require the underlying subdivision scheme to stay
intact.

7.4 Related work

An interesting view on interpolating a given set of points comes from
Halstead et al. [Halst93]. They describe a way of displacing all control points of
an existing approximating mesh and so obtaining a new mesh whose limit
surface interpolates the original mesh points. They continue to use the
original subdivision rules of Catmull and Clark, but applied to a larger mesh.
As the mesh they obtained from displacing the points of the approximating
mesh turned out to be too bumpy, they applied a second step, moving the
points of the first and second subdivisions in order to optimize some local
and global fairness constraints.

As they describe global displacements of an already subdivided mesh, their
approach is not very appropriate if one’s goals include interactive
modifications. Furthermore, their global optimization technique imposes
local changes with a possible global effect. This is not a problem for their
primary goal – interpolation of a given set of points – but is undesirable for an
interactive modeling tool.

More recently, Levin and Biermann [Levin00, Bierm00] describe a clever
mathematical framework modifying existing subdivision rules to globally use
the normal Catmull-Clark scheme, except at a chosen set of points, where an
interpolating variant is used. A non-uniform scheme replaces the original
uniform scheme, offering new functionality. Making the scheme non-uniform,
however, especially when allowing negative weight factors, dramatically
changes the characteristics of the subdivision scheme. The convex hull
property is lost, hindering the quick decisions about which parts of an object
to display, or about collision detection. Also, schemes for describing the
surface in an easily computable way, as in [Stam98, Zorin01b], get much more
complicated. Furthermore, extensions such as the sharp and semi-sharp
edges introduced by DeRose et al. [DeRose98] are not easily incorporated
with the changed subdivision rules. Or, to put it more generally, many studied
features, tools [Pulli96] and extensions [Reif00] depend heavily on the original
rules set out by Catmull and Clark.

100 7 Locally interpolating subdivision surfaces

In [Nasri87] some editing and modeling tools especially directed to Doo-
Sabin subdivision surfaces are described. Although the Doo-Sabin subdivision
scheme is not much used in practice, the techniques suggested in [Nasri87]
help a lot in defining which tools can be used to improve the modeling
capabilities for subdivision surfaces. Among the editing tools, Nasri describes
a geometric construction to interpolate some or all of the vertices of a
subdivision mesh. As all points to be interpolated need to be indicated in one
step, and a potentially global optimization process is involved, this approach
is less fit for the interactive control we have in mind. Furthermore, his
approach does not provide tension control. Later [Nasri99, Nasri00, Nasri01b]
he extended his set of tools with methods to construct Doo-Sabin surfaces
which interpolate some specific type of curves.

Considering all this, we decided to try to achieve interpolation on selected
control points without modifying the original scheme. By introducing
additional control points – which we call ghost points – and calculating their
positions carefully, we not only achieve our goal, but also give the user
optional control of the tangent plane and the tension around the
interpolating point.

In chapter 8 we describe how such a local interpolation tool can be designed
for the Catmull-Clark scheme, while in chapter 9 we describe the intricacies of
a similar tool for Loop surfaces. Chapter 10 discusses a free-form deformation
tool based on these extensions. Our approaches are also discussed in three of
our own publications [Claes00, Claes01a, Claes01b].

 101

8 Locally interpolating Catmull-Clark surfaces

8.1 Introduction

Motivated by the discussion of chapter 7, we now describe a new method to
locally interpolate a Catmull-Clark surface. The method not only allows for
locally interpolating any number of indicated points, it also provides a control
over the tangent plane and a tension parameter in these points.

The rest of this chapter is organized as follows. In section 8.2, we investigate
the conditions for getting local interpolation. Section 8.3 discusses the
geometric possibilities for arranging the ghost points and an algorithm for
constructing an optimal configuration. Finally, section 8.4 shows some
images illustrating the techniques discussed in this chapter.

8.2 Geometric conditions for interpolation

We refer to section 3.5 in chapter3 for a more elaborated description of
Catmull-Clark’s subdivision surface scheme.

Let’s assume we have an original control point V0, which we want to
interpolate with a Catmull-Clark subdivision surface. In order to do so,
without touching the uniformness of the subdivision scheme, we add a
number of ghost points. The purpose of these ghost points is to create
around V0 a carefully constructed submesh that automatically induces
interpolation at V0. Two decisions need to be taken:

 determine where these ghost points need to be inserted in the mesh, and

 determine what the positions of these ghost points should be.

102 8 Locally interpolating Catmull-Clark surfaces

Therefore, it is useful to have a look at the formulas to calculate the limit
position V∞ of V0. In [Halst93] the following formula is derived and analyzed
(see figure 8-1):

 

)5(

41

2









nn

FEVn
V

ii
 (8-1)

V
0

F
3

E
2

E
1

F
1

E
3

F
2E

4

Q
3

Q
4

Q
1

Q
2

Fig. 8-1. Subdivision around a central vertex V0, showing
surrounding control points (Qi), edge points (Ei) and face points

(Fi).

This formula uses the points from the first subdivision. V0 is surrounded by n
edges, leading to n ghost vertices Qi, inserted into the original mesh. The n
points Fi are called the face points, where each Fi is the mean of all vertices
making up one of the polygons surrounding V0. The n edge points Ei are the
mean between the two vertices and the two face points of the polygons that
make up the edge. V1 is the position of V0 after the first subdivision step of
Catmull and Clark’s scheme, and is given as:

  


 ii F
n

Q
n

V
n

n
V

2201

112
 (8-2)

8 Locally interpolating Catmull-Clark surfaces 103

In the literature, different weighting factors have been used between these
terms. But, as long as these weights stay within certain limits, and are applied
in a uniform and stationary way, most features of the original scheme stay
valid. Changing these weighting factors mostly affects the curvature, which
contributes to a better continuity in all points. In equation 8-2 we used the
original weights suggested by Catmull and Clark, but our construction would
be exactly the same if we employed other weights.

Substituting equation 8-2 into equation 8-1 results in expressing the limit
position in terms of the original points:

 

)5(

4
112

220

2



















nn

FEF
n

Q
n

V
n

n
n

V
iiii

or:

 

)5(

242 0









nn

FEQVnn
V

iii
 (8-3)

In this equation, we can express the Ei in terms of their assembling parts,
leading to the following formula:

    

)5(

2
4

1
42 mod100






 


nn

FFFQVQVnn

V
iniiii

or after regrouping:

 

)5(

421 0






 


nn

FQVnn
V

ii
 (8-4)

104 8 Locally interpolating Catmull-Clark surfaces

V
0

Q
3

Q
4

Q
1

Q
2

F
3

F
1

F
2

Fig. 8-2. Situation around V0 when the ghost
points are arranged in triangles.

If all Fi have exactly three vertices (see figure 8-2), this equation can be further
simplified:

    

)5(

3

1
421 mod100






  


nn

QQVQVnn

V
niii

or after regrouping:

)5(

3

14

3

1
0

















nn

QVnn

V
i

 (8-5)

Now, if we want the limit position to be equal to our original input point, all
we need to do is to make sure we can get V∞ equal to V0. In that case,
equation 8-5 leads to a simple relationship between the position of the vertex
to be interpolated, and the surrounding ghost points Qi:

 0

1
VQ

n
i  (8-6)

8 Locally interpolating Catmull-Clark surfaces 105

Thus, to get our desired interpolation, it is both a necessary and sufficient
condition that the ghost points be arranged in triangles and moved so that
their average is at the same position as the point we want to interpolate.
Moreover, not only will the limit position stay in this same position, but so will
all the points generated during the subsequent subdivision steps (this can be
verified by substituting the formula for the face points into equation 8-2). This
characteristic is useful because it guarantees that also a slightly subdivided
mesh will be interpolating at the chosen vertex. For use in a real-time
environment, only a limited number of polygons can be processed, which is
translated in executing only a few subdivision steps.

V
0

Q
3

Q
4

Q
1

Q
2

F
3

F
1

F
3

R
1

R
3

R
2

Fig. 8-3. Situation around V0 when the ghost points
are arranged in quadrilaterals.

In equation 8-4 we could also choose all surrounding polygons to have
exactly four vertices (see figure 8-3). Such a polygon (around the face point Fi)
will consist of the central point V0, the neighboring ghost vertices Qi and
Q(i+1)mod n and a fourth vertex, Ri. Equation 8-4 will then be converted to:

    

)5(

4

1
421 mod100






  


nn

RQQVQVnn

V
iniii

106 8 Locally interpolating Catmull-Clark surfaces

or after regrouping:

)5(

40

2









nn

RQVn
V

ii
 (8-7)

So, with ghost polygons consisting of four vertices, getting the limit position
the same as the original point needs the following relation to be true:

n

RQ
V

ii

5

4
0

 


One simple way to make this happen is to make both

 0

1
VQ

n
i  and 0

1
VR

n
i  (8-8)

Equation 8-8 has the same advantage as equation 8-6: the vertex at issue is
interpolated in all iterations of the subdivision scheme (and not only in the
theoretical limit). Again, this property can be verified by substituting the
formulas for the face points of this specific configuration into the formulas of
the subdivision steps (equation 8-2).

It can be noted that except for all triangles or all quadrilaterals, other
arrangements of ghost points can also be found that would lead to simple
equations like equations 8-6 and 8-8. As Catmull-Clark’s scheme prefers
polygons with four vertices, we opt to compose multiple quadrilaterals
together whenever polygons with more than four vertices are desired.

8.3 Methods for setting up ghost points

In the previous section, it was shown that, when arranging the ghost points in
triangles, it suffices to make sure that their mean is equal to V0. This can be
achieved in multiple ways. First, we observe that it would be desirable to have
all ghost points in one plane throughout V0. Indeed, when they are not in the
same plane and in order to keep equation 8-6 (or equation 8-8) fulfilled, some
points need to be “higher” than others. In that case, the subdivision scheme
will generate extra wiggles, which we absolutely want to avoid. We call this
plane the ghost plane, as it contains all our ghost points.

8 Locally interpolating Catmull-Clark surfaces 107

8.3.1 Calculating the ghost plane

The orientation of the ghost plane described in the previous section, can be
calculated in one of the following ways:

 using Newell’s method [Foley91] to calculate the ghost plane parallel to
the average plane throughout all the neighboring vertices of V0;

 employing a similar approach as the normal calculation for Phong
shading [Foley91], in particularly calculating the average normal of the
planes of the polygons touching V0;

 using the formulas of [Halst93] for calculating the exact limit normal in V0.

All of these methods give rise to more or less the same plane equation. Only
in some special cases, one method looks more intuitive to the user. Therefore,
we let users choose between one of the three suggested methods, but also
let them interactively rotate the plane to model a specific feature.

We will be calculating the positions of the ghost points starting from the
positions of the edges that neighbor V0 in the original mesh. As a first step in
our algorithm, these points will be projected to the ghost plane. These
projections will reside too tightly to the original neighboring vertices, so we
scale them down by a user-tunable tension factor. This factor is default set to
0.5. But, depending on the user’s modeling needs, it can interactively be put
to any desired value, hence providing a flexible tension control. Making the
tension factor smaller results in a narrower bump, while making it larger
creates a bigger bump around the interpolation point (see figure 8-5).

In the following sections, different approaches for distributing the ghost
points are studied.

8.3.2 Even distribution on a circle

Distributing the ghost points evenly on a circle with V0 as center is an easy
way to make sure their average coincides with V0. A disadvantage is that this
will not necessarily be compatible with the original distribution of points
around V0. If there is a big difference between the angles of the different
edges, distributing the points evenly on a circle will lead to unwanted twists
in the final subdivided surface.

8.3.3 Just moving all points with a vector

Instead of arranging the ghost points on a circle, we could also translate them
from their temporary position (obtained from projecting the original

108 8 Locally interpolating Catmull-Clark surfaces

neighboring points to the ghost plane and scaling by the tension factor).
From equation 8-6, we can calculate :

  iQ
n

VD
1

: 0 (8-9)

being the error between the temporary position and the position needed to
get the subdivision surface to interpolate V0. Just adding D to all the Qi will
make sure that their new mean position will be equal to V0.

8.3.4 Keeping the points near their original location

The method proposed in the previous section is still not the optimal one, as
the translation by D moves the points further away from their original edges,
which could cause undesired twists.

Therefore we worked out an algorithm that tries to satisfy both the condition
from equation 8-6 and to keep the points as close as possible to their original
edges. The following pseudo-code describes the algorithm:

Input: A vertex V0 surrounded by n vertices Pi, all on the

original subdivision mesh.

Output: Adding a set of ghost vertices to the mesh such that the

surface obtained by the Catmull-Clark subdivision of the

resulting mesh interpolates V0.

Algorithm:

1. Calculate T, the tangent plane in V0 (see section 8.3.1).

This plane is optionally rotated by the user.

2. Project all Pi to plane T, obtaining points P’i. Then scale

these points with the tension factor towards V0, obtaining

the temporary position for our ghost points, the Qi. So Qi

:= V0 + tensionFactor * (P’i - V0).

3. Calculate M being the mean of the distances between the

Qi and V0.

4. Calculate D := 1/n * sum (Qi). This is the mean of the ghost

points, that ultimately should coincide with V0.

8 Locally interpolating Catmull-Clark surfaces 109

5. Translate all Qi with the vector V0 - D, so Qi := Qi + (V0 -

D) (this will put the new mean of the Qi at V0).

6. Project all Qi back on the original line (P’i - V0) where they

were at step 2. This will move the mean of the Qi a little bit

away from V0.

7. Calculate M’, the new mean of the distances between the Qi

and V0. Because step 6 also pushes all the Qi closer to V0, in

order to prevent the ghost points collapsing towards V0,

they should be moved again to their original distance Qi :=

V0 + M / M’ * (Qi - V0).

8. Repeat steps 4 to 7 until D and V0 get close enough

together. As in some configurations this will lead to an

infinite loop, we will stop the loop after 100 iterations.

9. The ghost points obtained in this way, will be connected

into triangles between the original surrounding points (the

Pi) and the point V0 that should be interpolated.

8.3.5 Using the first subdivision points as ghost points

Instead of adding completely new points, we could also run a similar
algorithm with the points obtained from the first subdivision. But this has as
its main drawback that when many neighboring control points are indicated
as interpolating, the algorithm gets into trouble positioning the subdivision
points in between these control points. Furthermore, this would lead to non-
local effects when indicating points as interpolating, which we want to avoid.

8.4 Results

In this section we show some pictures illustrating our editing tool. Figure 8-4
shows a torus where we constructed a submesh so the surface interpolates a
given vertex. In figure 8-5 we show the effect of interactively manipulating
the tension parameter. Figure 8-6 makes clear that our method can be
combined with other methods, such as the sharp edges introduced by
[DeRose98].

110 8 Locally interpolating Catmull-Clark surfaces

Fig. 8-4. A torus: at the left with the original mesh, at the right with the modified mesh,
making one vertex interpolating.

Fig. 8-5. Setting the tension parameter to a small value (at the left) or a
large one (at the right, from a slightly different viewpoint) influences the

form of the bump.

8 Locally interpolating Catmull-Clark surfaces 111

Fig. 8-6. Combining our method with sharp edges. The original input mesh is a
pyramid, where we marked the top as interpolating. Two edges were marked as being

sharp.

 113

9 Locally interpolating Loop surfaces

9.1 Introduction

In this chapter, we extend the existing editing tools and manipulation
possibilities of the approximating Loop scheme for triangular meshes
[Loop87]. When interactively creating a new surface, local interpolation is
often desired, preferably without having to cope with the difficulties of the
fully interpolating schemes. It turns out that we can achieve this goal by
extending the original control mesh with a particular geometric construction.
The points introduced by this construction will be called ghost points. In the
previous chapter, we described a similar approach for the interior of Catmull-
Clark surfaces. Here we concentrate on which constructions and algorithms
are needed for the Loop scheme, and we investigate how this approach can
be extended to the borders of the surface.

The ghost points used for local interpolation also give rise to even more
attractive editing tools. By rotating the plane containing these ghost points,
the user can easily give any direction to the tangent plane (or surface normal)
in the interpolated point. Furthermore, the distance between the
interpolating point and the ghost points can be scaled, providing an intuitive
tension control.

All this can be achieved while keeping the underlying Loop subdivision
scheme intact, enabling the resulting control meshes to be incorporated
directly by existing rendering and modeling software.

The rest of this chapter is organized as follows. In section 9.2 we analyze the
geometric constructions that achieve local interpolation in points indicated
by a user. These points can be situated either at the interior of the surface or
at its border. Section 9.3 discuses some implementation issues and a practical

114 9 Locally interpolating Loop surfaces

algorithm, whereas section 9.4 illustrates the techniques described in this
chapter. Finally, section 9.5 concludes this chapter discussing the benefits of
these techniques and comparing them with alternative approaches.

9.2 Geometric discussion

9.2.1 Loop’s subdivision scheme

V
2

Q
2

EV
1

Q
1

V
0

Q
3Q

4

Q
1

Q
2

V
2

EV
1

V
2

V
1

V
0

Fig. 9-1. Situation around
an interior edge.

Fig. 9-2. Situation
around an interior

vertex.

Fig. 9-3. Situation around a
border edge and a border

vertex.

We refer to section 3.8 of this dissertation for a more general introduction to
Loop’s scheme. Here, we only describe the essential formulas needed to
explain our approach to local interpolation.

Loop’s subdivision scheme consists of two alternating stages executed in a
recursive way. During the first stage, new control vertices are introduced in
the middle of each edge and both old and new vertices are all reconnected to
form four new smaller triangles. In the second smoothing stage, all vertices
are averaged with their surrounding vertices. Executing this process
recursively to a usually coarse initial polygon mesh obtains a fine subdivided
mesh of small triangles, in the limit forming a smooth surface. The new points
at the middle of an edge are called edge points, while the points of the
existing mesh are called vertex points. The following formula controls the
averaging of a new edge point E (on the edge between V1 and V2 and with Q1
and Q2 as immediate neighbors) in the interior of the mesh (see figure 9-1):

    2121
8

1

8

3
QQVVE  (9-1)

9 Locally interpolating Loop surfaces 115

And the formula for averaging an interior point V0 (surrounded by k vertices
Q1 … Qk) is the following (see figure 9-2):

 00)1(' VkQV i  

 with























2
2

cos
4

1

8

3

8

51

kk


 (9-2)

For border-vertices there are only “surrounding” vertices on one side. If one
would employ the same rules as at the interior, the averaging process pulls
everything too far to the interior. Therefore, the formulas for new edge and
vertex points at the border do not take the interior points into account. In
practical situations, the formulas are often simplified to the ones used for
subdivision curves (see figure 9-3):

  2100
8

1

4

3
' VVVV  and  21

2

1
VVE  (9-3)

9.2.2 Interpolation at the border

As the formulas at the border of the Loop surfaces are the same as for
subdivision curves, it looks appealing to investigate whether we can
incorporate the technique described in chapter 6 dealing with locally
interpolating subdivision curves. In chapter 6, local interpolation is
accomplished by extending the control polygon of the curve with ghost
points on a line throughout the point to be interpolated. The orientation of
this line controls the tangent (thus the normal) at the interpolated point,
while the distance between the ghost points affects the tension. Hence,
besides local interpolation, the described technique also provides normal and
tension control without having to revert to a non-uniform or a non-static
scheme. See figure 9-4 for an example of a curve interpolating one of its
points. Extra details and a mathematical discussion about this type of local
interpolation can be found in chapter 6.

116 9 Locally interpolating Loop surfaces

Fig. 9-4. A control polygon and the resulting curve without interpolation (left)
and with ghost points added to obtain interpolation in one of the points (right).

When extending this approach for curves to get interpolation at the border of
a subdivision surface, it is not sufficient just to add some ghost points. As
Loop’s control mesh may only consist of triangles, these ghost points have to
be connected to the interior points as well. The insertion of the two ghost
points will change the two neighboring polygons from triangles to
quadrilaterals (or into pentagons, when two neighboring border vertices
should be interpolating). A simple solution would be to divide each
quadrilateral into two triangles using one of the diagonals of the
quadrilateral. However, in general this creates rather narrow triangles, which
can cause undesired wrinkles in the resulting subdivision surface. That’s why
we opt to add a new point in the center of each quadrilateral and form
triangles by connecting each vertex to the center. This creates an extra
degree of freedom, which we can use to optimize the fairness of the surface.

The geometric construction needed for the local interpolation at the border,
can also be used to change the tangent (and thus the normal) in the
interpolated point. To achieve this, it suffices to rotate the line that the ghost
points are put on. Furthermore, by changing the distance between the ghost
points and the interpolated vertex, a handy tension parameter can easily
manipulate the form of the curve forming the border of the subdivision
surface.

9 Locally interpolating Loop surfaces 117

9.2.3 Interpolation at interior vertices

While at the border the formulas only take neighboring border vertices into
account, getting interpolation at interior vertices is more complicated. At the
interior, there is a ring of surrounding vertices that jointly influence the
subsequent positions of a point in the subdivision mesh.

In order to derive conditions to get interpolation at a point V0 surrounded by
k ghost vertices Qi we start by rewriting equation 9-2, as:

 00)1(
1

' VkQ
k

kV i   

Here we see that if the mean of the surrounding ghost points Qi is equal to V0,
then the next iteration of V0 will stay on the same place. This condition is
formulated as:

 0

1
VQ

k
i  (9-4)

Continuing our derivation, we use equation 9-1, which defines how the
neighboring edge points will be moved. In the recursive subdivision process
these edge points will namely be the surrounding vertices for the next
subdivision iteration. Equation 9-2 will be able to calculate V0’’ - the position
of V0 in the second iteration - expressed in function of the position V0’ at the
first iteration:

')1('' 00 VkEV i  

If we substitute equation 9-1, adapted to the specific edges, we get:

     ')1(
8

1
'

8

3
'' 0mod)1(mod)1(00 VkQQQVV kikii  








 

or:

 ')
8

5
1(

8

1

8

1

8

3
'' 0mod)1(mod)1(0 VkQQQV kikii  


























  

or:

 ')
8

5
1(

1

8

5
'' 00 VkQ

k
kV i    (9-5)

118 9 Locally interpolating Loop surfaces

Equation 9-5 shows that if equation 9-4 is true for the first iteration, it will hold
again for the next iteration. Therefore, applying this line of thought by
induction, equation 9-4 is a sufficient condition to keep every subsequent
mesh interpolating in V0 during every single subdivision step and thus also in
the final limit.

We will be adding a ring of ghost points around V0 to satisfy equation 9-4. In
theory these ghost points don’t need to lie in one plane. But then equation 9-
4 will oblige some points to be above the tangent plane, and some under the
tangent plane. This will introduce some folding that we want to avoid.

Fig. 9-5. Showing the difference between a very small (left), a normal
(center) and a large tension (right).

Just as we can manipulate the tangent line at the selected border vertices, we
can also rotate the tangent plane for the ghost points of the interior points.
This can be used as a modeling tool to give the surface any desired tangent
plane in an interpolating interior vertex. Furthermore, equation 9-4 will stay
invariable when the ghost points Qi are scaled with respect to V0. So scaling
these ghost points gives the possibility of manipulating a tension parameter.
Figure 9-5 shows an example of changing the tension parameter.

9.3 Implementation

The geometric construction of the previous section, led to a practical
algorithm containing the following steps:

9 Locally interpolating Loop surfaces 119

1. We start with a polygonal mesh and mark some of its points as

interpolating. The polygonal mesh can have an arbitrary topology

and optionally have a border. An example of such an original mesh

is shown in figure 9-6.

2. Ghost points are added into the topology of the mesh. For every

interpolating vertex there will be added a ghost point on every

surrounding edge. The resulting mesh will contain polygons of

more than three vertices. Depending on the number of points that

have to be made interpolating, these polygons can have four, five

or six vertices.

3. Just triangulating the polygons with too many vertices will usually

result in some of the polygons being quite narrow, causing

unwanted folds. Therefore, a center point of the polygon is

calculated, and all of its vertices are connected to this center point.

4. A tangent plane to the surface is calculated, which is optionally

rotated by the user. All ghost points introduced in step 2 are

projected onto this plane.

5. Then these ghost points are moved such that their mean is equal to

the point we want to interpolate, satisfying equation 4. Optionally,

these projected ghost points are scaled by a user-supplied tension

parameter.

6. Finally, the center points introduced in step 3 are moved to get the

surface as fair as possible. The final construction together with the

resulting surface is shown in figure 9-7.

To get equation 9-4 satisfied, we tried several approaches. Our first
implementation distributed the points evenly over a circle, which resulted in
a very fair surface near our interpolating point, but in many cases got some
torsion effects. A next approach was to just calculate the current mean of the
ghost points and move all of them with the vector between this mean and
the desired mean V0. Usually this gives acceptable results, but sometimes it
resulted in a torsion effect. Therefore, we extended this last approach with an
iterative loop, moving the points to get their desired mean and reprojecting
them towards their original edge.

120 9 Locally interpolating Loop surfaces

Fig. 9-6. A standard mesh. The resulting
Loop surface does not interpolate its

control points.

Fig. 9-7. The mesh is extended with a
geometric construction to make the limit

surface interpolate the topmost point.

9.4 Results

Figure 9-8 shows an object modeled with Loop subdivision surfaces, making
use of the tools introduced in this chapter. In figure 9-9, a close-up of the beak
shows the difference between a standard modeling technique and the
application of our extensions.

9 Locally interpolating Loop surfaces 121

Fig. 9-8. A chicken modeled with Loop surfaces, making use of interpolatory points,
tension and normal control.

Fig. 9-9. Zoomed in on the beak of the chicken. At the left no interpolation is used,
while in the image at the right some points are made interpolating and adequate

tension parameters are set.

122 9 Locally interpolating Loop surfaces

9.5 Discussion

In this chapter, we described a modeling tool that has the ability to
interpolate selected points for surfaces constructed by the traditionally
approximating Loop scheme. The main advantage of our solution compared
with other approaches is that we keep the underlying uniform and stationary
scheme completely intact, only adding carefully located ghost points to the
original mesh. Hence, we keep all the existing features of the Loop scheme,
only adding new editing tools. This way existing rendering engines, for
example, can be employed directly without any change. Our new tools can
also extend an existing modeling toolbox, to be used either separately or in
combination.

Furthermore, we provide the user with the possibility to edit the interpolatory
normal direction and control the surface tension at the interpolating point.

It turned out that the described framework is not only useful for modeling 3D
objects, but is also very useful for creating an interactive deformation tool,
which we elaborate in the next chapter.

 123

10 An application: a free-form deformation tool

10.1 Introduction

This chapter describes a free-form deformation scheme dealing with 2D
animated objects. As animations are mostly shown as moving 2D images, it
often suffices to only decide about the movements in two dimensions to
create convincing animations. This does not work out properly when
physically correct movements are needed, but is very suitable to informally
deliver creative ideas to a viewer.

The following requirements showed up for free-form deformations suited to
accomplish this goal:

 There should be fluid movement, not only at the border, but also at the
interior of the animated object, and the texture parameterization of the
surface should be deformed in a smooth, natural-looking way.

 Both global control, needing limited user interaction, and fine local
control near specified joints should be integrated into one consistent
interface paradigm.

 Specific discontinuities should be allowed, such as a hole inside the
animated object or limbs sticking out of it. For example, although a
character’s two feet can be situated close together, usually they should be
animated and deformed independently and they can even overlap.

In order to cope with all this, we closely examined existing free-form
deformation schemes, but, unfortunately, none of them combined all desired
requirements. Therefore, we opted to investigate the application of the
extensions of the subdivision scheme described in chapter 9.

The rest of this chapter is organized as follows. Section 10.2 describes free-
form deformations, gives some pointers to related work and explains how

124 10 An application: a free-form deformation tool

they will be used in our application. Section 10.3 deals with subdivision
surfaces with local interpolation and explains how they can be used for free-
form deformations. In section 10.4, the details of our implementation are
elucidated, while the next section formulates a conclusion and explains our
ongoing future work.

10.2 Free-form deformation (FFD) in 2D

10.2.1 Existing FFD schemes

Sederberg [Seder86] and Barr [Barr84] were among the first to point out
possibilities, advantages and implementation schemes of deformations and,
more particularly, of free-form deformations (FFDs). Many followed this trail,
improving and extending their usability for different tasks and requirements.

Sederberg put a 3D B-spline lattice around a selected object, then modified
the positions of the vertices of the control lattice, and finally applied that
deformation to the object. Coquillart combined Sederberg’s lattices to allow
more complicated deformations [Coqui90]. In a follow-up paper, she also
decoupled the lattice from the object to allow animating the lattice
separately or to move the object through a deformed space [Coqui91].

Different representations of the deformation tool were investigated:

 a surrounding control lattice [Seder86],
 combining multiple lattices [Coqui90],
 a lattice build up from subdivision volumes [MacCr96],

 some controlling curves or based on an axis [Barr84],

 control surfaces [Feng96] or
 a scattered set of points [Mocco97].

The type of tool used for the deformation strongly determines what kinds of
deformations are feasible and how easily the user can control them. Each tool
can be adequate in its own right, depending on the needs in the specific
application.

Most work in FFDs concentrates on 3D deformations, considering 2D
deformations as a simplification: just leave out one dimension. This ignores
that when you restrict yourself to 2D deformations, additional goals can be
achieved, as explained in the introduction (see section 10.1). One of the
people specifically tackling 2D deformations was Sederberg in his
Siggraph’93 paper [Seder93], where he describes a method to interpolate

10 An application: a free-form deformation tool 125

between two deformed 2D objects. Each object is represented by a polygon.
The paper restricts itself to the behavior of the border, giving no clue about
how the interior of the polygons should be deformed.

10.2.2 Deforming parameterization and local control

In [Inter97] arguments are given to show the significance of texture mapping
for conveying 3D shape, even for non-deformable objects. Moreover, when
we only dispose of a flat 2D deformable object that pretends to represent a
3D shape, precise control of the texture mapping becomes extremely
important in order to deform in a convincing way.

Zonenschein et al. [Zonen98] studied the texturing of deformable implicit
surfaces, indicating texture artifacts (“ghosting”) when the objects are
deformed. In their implementation, they needed to blend colors and
transformations to get a plausible result. We opt for a more exact control of
the texture, so we try to avoid blending.

The FFD schemes mentioned in section 10.2.1 do not specifically take care of
the parameterization (texturing) of the surface; they only concentrate on the
general shape. Furthermore, with most of these FFD schemes, local control is
not so easy. Local control implicates a denser mesh, but usually this is only
possible if the complete mesh is subdivided, which obliges the user to control
a huge set of points. Only [Mocco97] and [MacCr96] allow local control, so
their approaches needed to be studied closer in view of our application.

We considered the approach of [Mocco97], who organizes scattered control
points into a Delaunay triangulation. Their mesh is not explicitly visible to the
user, which has the advantage that the user doesn’t need to spend time to
create the connections, but has the disadvantage that the user cannot make
different connections when needed, for example to mimic certain physical
connections. As the main goal in [Mocco97] is deforming hands represented
by many control points that are positioned relatively close together, a
Delaunay triangulation forms the most adequate connectivity. When
attempting to apply this approach for 2D animation purposes, however, with
only a limited number of control points, the possibility to create own
connections, including explicit discontinuities, turned out to be a necessity.
Nevertheless, [Mocco97]’s idea to start out with a Delaunay triangulation is
also useful in our approach, where we extend the idea with the possibility of
re-editing the generated mesh. Unfortunately, their scheme for calculating
the coordinates in the mesh is no longer applicable, as it strongly depends on

126 10 An application: a free-form deformation tool

the Voronoi diagrams defined by these triangulations; furthermore, the
convex hull property prohibits having the type of discontinuities we need.

MacCracken and Joy’s solution to FFDs [MacCr96] is based on subdivision
volumes created by 3D lattices of arbitrary topology. We liked their idea to
use subdivision, as it is the only FFD approach facilitating arbitrary topologies.
Nevertheless, although in theory there is considerable freedom in
manipulating deformations, their setup is rather hard to establish and control
by a user. Also, their way of subdividing space makes calculating the
coordinates of a point referring to the deforming mesh less straightforward.
In our approach, instead of their 3D subdivision volumes, we apply
subdivision surfaces, augmented with adequate control tools.

The system we propose has specific advantages and features when compared
to the previously described techniques. None of the techniques combines all
of these features into one concise interface. The main differences are:

 We allow both general global local control in areas of less interest and
simultaneously precise local control where needed. This combined type
of control is also possible in [MacCr96], but their 3D lattices are hard to
handle and to position precisely, and furthermore they don’t allow for
local interpolations. [Mocco97] also allows some combination of local and
global control, but does not provide discontinuities.

 None of the FFD techniques described in section 10.2.1 explicitly cares
what happens to the object outside of the border. Objects are just
embedded in a larger space. Everything that could happen to the FFD
transformation outside of the border is simply ignored. In our approach,
however, we want to allow for discontinuities. If the transformation
extends too far outside the border, the effect of an FFD applied to one
part will result in an overlap with neighboring parts of the object. This
overlapping complicates making sure the animation of one part does not
influence a neighboring part, as, for example, in the case of two legs.
Therefore, we provide very precise border control.

 Most FFD approaches can easily deform an object as a whole, but have
problems handling the interior just as easy. The interior is deformed as to
minimize distortions, but this cannot be guided as fluently as desired by
an animator. We solve this by allowing for interpolating points, not only at
the border but also at the interior.

10 An application: a free-form deformation tool 127

10.3 Locally interpolating subdivision surfaces

10.3.1 Recursive subdivision schemes

Recursive subdivision schemes have been used to define curves (in 2D or in
3D), surfaces (usually in 3D) and volumes (in 3D) [MacCr96]. Such a scheme
starts with a set of control points, and in each subsequent subdivision step,
in-between points are introduced and simultaneously averaged by their
neighbors. Depending on how adequate the averaging scheme is, this
process will eventually converge to a smooth curve, surface or volume. It will
result in a curve if the points are connected in one linked list (like a polygon),
in a surface if the points are connected like a polyhedron and in a volume
with points connected in a lattice. Recursive subdivision schemes are
explained in more detail in chapters 3 and 4 of this dissertation.

10.3.2 Using subdivision surfaces for FFD

We based our FFD scheme on subdivision surfaces, as such a surface can both
represent the border and the interior of a 2D object. A subdivision scheme is
said to be uniform if the same scheme is applied unchanged to every point.
The scheme is stationary if the same rules are used for all subsequent
subdivisions. As interesting mathematical and practical properties depend on
the scheme being both stationary and uniform, people only avoid them if
they want to achieve exceptional goals. One of these goals can be coping
with boundary conditions, because the ordinary rules for the interior do not
work at the border. As we want to describe a 2D surface that does not cover
the entire plane, we necessarily need to have surfaces with a border. Luckily,
the standard rules for borders keep the properties of the otherwise fully
uniform Loop scheme mostly intact [Hoppe94, Schwe96].

Chapter 7 discussed the need for local interpolation of subdivision surfaces,
and chapters 8 and 9 presented actual methods to achieve local interpolation
for the most widespread schemes, Catmull-Clark’s and Loop’s. For reasons of
easy and smooth editing control and the requirements of our free-form
deformation application, we chose to work with an approximating scheme
based on triangles: Loop’s subdivision surfaces. We preferred Loop’s
triangular scheme, because triangles are easier to parameterize
unambiguously. Furthermore, in a 2D environment, triangles can more freely
be adapted to specific configurations, while quadrilaterals as in Catmull-
Clark’s scheme are more suited for rectangular symmetries.

128 10 An application: a free-form deformation tool

10.3.3 Local interpolation, normal and tension control

As the surface is employed in 2D, it necessarily has to deal with a border.
From the formulas of chapter 9, it is clear that the border of the Loop surfaces
is just a subdivision curve, with no interior point taken into account. This
makes the technique described in chapter 6, dealing with locally interpolating
subdivision curves, very valuable for our FFD implementation. Local
interpolation is accomplished by extending the control polygon of the curve
with ghost points on a line throughout the point to be interpolated. The
orientation of this line controls the tangent (and thus the normal) at the
interpolated point, while the distance between the ghost points affects the
tension. Hence, besides local interpolation, the described techniques also
provide normal and tension control, without having to revert to a non-
uniform scheme. In figure 10-1, we show an example of the behavior of the
mesh. For a more detailed description of the interpolation at the border, we
refer to chapter 6.

Fig. 10-1. A subdivision surface mesh in 2D, at the left without interpolation, at
the center interpolating a border vertex, and at the right interpolating an interior

point (note that for clarity also the normals at the border edges are shown).

The technique for local interpolation can furthermore be extended to the
interior of the Loop surfaces, as described in chapter 9. Figure 10-1 is an
example of a mesh with the two sorts of interpolation.

10.4 Implementation

In our basic approach, we start out with a 2D object to be deformed. The
object is represented by a 2D image and can have an arbitrary topology, like
having holes or limbs sticking out. On this image, the user draws a net of

10 An application: a free-form deformation tool 129

control points. The control points are put both at the interior and near the
border. At most places, just an approximating control mesh suffices, but
wherever more control is needed, the user can choose to insert an
interpolating point, as demonstrated in figure 10-2. An example of a mesh for
the head of an animation character is shown in figure 10-3. At the right of
figure 10-3, this mesh is subdivided once. The user can also create some kind
of skeleton using the mesh, but this is not a necessity.

Fig. 10-2. Using the local interpolation and normal control of the border to fit the
surface to the object. Left: The situation without local interpolation. Center:

Interpolation, but with a bad tension. Right: Fitting the tension at the border.

Fig. 10-3. The original and the subdivided control mesh for an animation character.

Furthermore, special care is taken on the border near places where separate
parts that stick out come close together, as, for example, between the upper
lip and the nose. In more traditional FFD approaches, at those places the
control mesh would be interconnected, forming something similar to a
convex hull. We will draw the discontinuities explicitly, by continuing the
border between them.

130 10 An application: a free-form deformation tool

When the user finishes setting up the initial mesh, this mesh is frozen to the
object, analogous to other FFD approaches. Internally in our program, the
mesh is converted into the triangles belonging to some level of subdivision.
At the corner of each triangle, texture coordinates will be generated,
mapping the undeformed initial 2D image to this geometry.

In the next stage – also a typical step in FFD – the user can start moving
points of the control mesh or even animate them. In the program, the mesh
will be subdivided again, the texture coordinates belonging to the initial
position will be applied and everything will be redrawn, resulting in a
deformed object. Typical for our approach, is that apart from moving control
points, the user can also manipulate the tension and the normal, giving rise to
appealing effects that are hard to establish with other methods. Figure 10-4
shows a typical example.

Fig 10-4. An example of changing only the tension in the
border point at the tip of the nose.

An additional advantage of working with the approximating Loop subdivision
scheme is that we can set up a tree of convex hulls. In that tree, each
subsequent subdivision level is contained into a convex hull defined by the
control points of that level. This enables a quick search for where a point
resides in the generated mesh.

Figure 10-5 refers to a very expressive animation that was created with a small
amount of user input. The animation gives a lot of 3D feeling, while all
manipulations are kept strictly 2D.

10 An application: a free-form deformation tool 131

Fig. 10-5. Some frames from an animation created by our system. More control
points and interpolation are used around the eyes, to provide better local

control. Between the upper lip and the nose there is an explicit discontinuity to
prevent lip movements from having undesired effects on the nose.

10.5 Discussion

In this chapter we described a method for deforming 2D images, based on
locally interpolating subdivision surfaces with normal and tension control.
Our method enables a very smooth movement, explicit discontinuities and
both global and local control. None of the other FFD approaches, described in
section 10.2.1 is able to combine all these features in one uniform concept.

In our ongoing future work, we are investigating ways to incorporate higher-
level editing of the mesh, such as multi-resolution editing. Furthermore, we
want to have a closer look at combining our methods with physically-based
modeling techniques and constraint-based systems.

In addition, we are thinking about extending our approach to 3D, keeping in
mind the requirements that are also important for 2D deformations. Another
track is instead of deforming objects, deforming the space through which the
object moves, similar to the ideas presented in [Coqui91].

 133

11 Directions for future research

11.1 Further extending subdivision surface editing

Skaria et al. [Skaria01] described an interesting implementation of a tool to
create faces for cartoon characters. With a combination of easy-to-use 2D
interfaces, they create subdivision surfaces with a minimal number of control
vertices, especially taking care to strongly restrict the number of
extraordinary points. In a similar way, powerful editors should be built for
many more applications, helping the designer of a surface to obtain a good-
looking model with low polygon count. A very interesting feature of
subdivision surface modeling is that the designer can work with an easy-to-
understand-and-manipulate polygonal model. Nevertheless, specific tools for
high-level control are still a long way from full maturity.

We are also convinced that a surface modeler that directly operates on the
hexagonal meshes for the new subdivision surface scheme described in
chapter 5, could have the same control and flexibility as existing modelers for
Catmull-Clark and Loop surfaces. Maybe it would even be possible to specify
a hybrid subdivision scheme, combining the advantages of the schemes for
each of the three types of meshes, depending on local criteria.

11.2 Other applications benefiting local interpolation

As morphing between objects is quite related to free-form deformations, it
makes sense to investigate how the locally interpolating subdivision can be
put to use for that kind of application. Moreover, by combining free-form
deformations and morphing into an animation tool, it would become

134 11 Directions for future research

possible to create stunning animations needing little user effort. Physics-
based methods could further facilitate intuitive control.

At the Expertise Centre for Digital Media, a new 2.5D rendering and automatic
inbetweening tool is currently being investigated [DiFio01]. Subdivision
curves and surfaces could also play a role there - for example, to control the
texture mapping of these 2.5 D objects. The higher level of control described
in this dissertation would also bring additional advantages and possibilities to
this kind of applications.

11.3 Further investigation of hexagonal subdivision

The full mathematical analysis of our hexagonal subdivision scheme still has
to be done, as is the case for subdivision surface schemes in general. For
example, most of these schemes are tangent plane continuous, but not
curvature continuous at extraordinary points. Mathematically, it is stated
these surfaces are C1, but not C2. However, there is a strong feeling that they
are “more” continuous than just C1. To take an example of subdivision curves,
the interpolating four-point scheme is C1 but not C2. Yet, between many
possible ways of defining a curve that locally only uniformly depend on four
surrounding control vertices, they provide a very smooth solution.

Another topic of further research is to investigate how the hexagonal scheme
can be effectively combined with a triangular scheme to obtain surfaces with
a higher order of continuity. For this, also a further investigation of the
relation with box-splines and half-box-splines [Praut01], which are defined on
purely regular meshes, would be very helpful.

Furthermore, just as Nasri’s continuing research has improved possibilities for
the quadrilateral corner-cutting Doo-Sabin scheme [Nasri87, Nasri99, Nasri00,
Nasri01a, Nasri01b], also for the hexagonal scheme improved methods for
borders, curve interpolation, sharp and semi-sharp edges and adaptive
subdivision would be very welcome.

In other research areas, this new hexagonal scheme can also give new input
to finite element methods and to wavelet analysis.

11.4 Putting functions into the weights

A very useful property of subdivision surfaces, is the ability to have rather
high differences in density of the control points in different zones. This

11 Directions for future research 135

permits the creation of fine detail in one zone, without the need to deal with
too many control points all over the surface.

In many practical situations, however, the surface designer needs to be
careful to arrange control points in the regions where dense and coarse zones
meet each other. This problem is mainly caused by the uniform subdivision
rules, assigning the same weights to nearby and more distant control points.

Therefore, an interesting area of research is the study of non-uniform
subdivision schemes. To simplify, let us consider the subdivision scheme for a
cubic B-spline. From the masks from section 2.2, the following formulas are
derived. New vertices are inserted in the center of the existing ones:

  101,0
2

1
' ppp  (11-1)

And the existing vertices are relaxed with their neighbors using:

  1010 2
4

1
' pppp   (11-2)

As only two vertices are used in equation 11-1, it is better to leave it
untouched so as not to incorporate vertices that are further away. Equation
11-2, on the other hand, can be adapted to give higher influence to points
that are nearer. Therefore, we suggest calculating the new point as:

  110110
2

1
' pwppwp   (11-3)

The weights depend on the distances between the points (we use Euclidean
distances):

 

   1001

10
1

,,

,

ppdistppdist

ppdist
w






 (11-4)

 

   1001

01
1

,,

,

ppdistppdist

ppdist
w






 (11-5)

This approach generates a subdivision curve, where nearby points more
strongly influence the final form of the curve. The curve is not a cubic B-spline
anymore, but still very smooth and more adapted to the form of the initial
control polygon. A similar technique could be applied to subdivision surfaces,
making their appearance more similar to the control mesh. This kind of

136 11 Directions for future research

modification would make the scheme non-uniform, urging the development
of new tools to analyze their properties.

One example of non-uniform subdivision to generate surfaces can be found
in the work by Ivrissimtzis et al. [Ivris01]. They employ trigonometric
calculations, projecting the configuration on a sphere or hyperbole to derive
coefficients for approximating or interpolating schemes. By allowing the
subdivision rules to be non-stationary and letting the weights depend on the
dihedral angles between the faces, they created a non-stationary scheme
which when used on a regular Platonic solid as input will result in a sphere.

 137

12 Conclusions

In this dissertation, we investigated new techniques for recursive subdivision,
both for curves and for surfaces. The main contributions are the construction
of a new hexagonal scheme for subdivision surfaces and a new editing
paradigm.

We introduced a new subdivision surface scheme based on hexagonal
meshes. In recent classifications, the possible existence of these schemes
seems to be ignored. Such hexagonal schemes are important, however, as
they are the dual of existing triangular schemes. For quadrilateral schemes, is
has been proven that using repeated averaging, alternating between the
primal and the dual scheme, surfaces of higher continuity can be created. The
development of a concrete hexagonal scheme is a first step in a similar setup
for triangular schemes. In order to cope with already existing triangular
meshes, methods to convert them to hexagonal meshes are included. It turns
out that the hexagonal scheme can be applied in very similar ways as already
existing subdivision schemes, resulting in high-quality surfaces. Furthermore,
the new scheme has important properties such as simple construction rules
and a small local support. The scheme a dual to the Sqrt(3) scheme, recently
presented by Leif Kobbelt at Siggraph 2000 [Kobbe00].

The new editing paradigm is first worked out for subdivision curves enabling
local interpolation in points that the user can indicate interactively. Moreover,
the tool allows for easy control over the normal direction and includes a
handy tension parameter.

Later, this tool was extended to also permit local interpolation for subdivision
surfaces. Again, local interpolation and normal and tension control are
provided as direct manipulation tools. Ghost points are introduced, whose
position is carefully calculated. Both for the quadrilateral Catmull-Clark
scheme and the triangular Loop scheme, adequate algorithms are designed.

138 12 Conclusions

Finally, to show that this approach is not only useful for interactive surface
design, a new free-form deformation paradigm for 2D animated objects is
also constructed. The subdivision techniques with our extensions turn out to
be very powerful in combining precise local control with rapid global
manipulations. Furthermore, the underlying subdivision enables explicit
discontinuities.

 139

Bibliography

[Adels87] E. H. Adelson, E. Simoncelli, R. Hingorani, "Orthogonal Pyramid
Transforms for Image Coding", in Proceedings SPIE, Visual
Communication and Image Processing II, Cambridge, MA, Vol.
845, pp. 50-58, October 1987.

[Aznar00] J.A. Aznar, M. Moreno, G.s Cristobal, “La Transformada de Malla
Log-hexagonal: Muestreo Retiniano y Empaquetamiento de la
Imagen”, available at http://revc.uab.es/revista/01/0102-
abs.htm, Revista Electrónica de Visión por Ordenador, REVC,
Vol. 1,2, January 2000.

[Bajaj01] C. Bajaj, J. Warren, G. Xu, “A Smooth Subdivision Scheme for
Hexahedral Meshes”, submitted to the special issue of The
Visual Computer on subdivision, available at
http://www.cs.rice.edu/~jwarren/, April 2001.

[Ball86] A. Ball, D. Storry, “A Matrix Approach to the Analysis of
Recursively Generated B-Spline Surfaces”, in Computer Aided
Design, 18(8), pp. 437-447, October 1986.

[Ball88] A. Ball, D. Storry, “Conditions for Tangent Plane Continuity over
Recursively Generated B-Spline Surfaces”, in ACM Transactions
on Graphics, 7(2), pp. 83-102, April 1988.

[Barr84] A. Barr, “Global and Local Deformation of Solid Primitives”,
Computer Graphics, Vol.18, No.3 (Proc. Siggraph’84), pp. 21-30,
1984.

140 Bibliography

[Bierm00] H. Biermann, A. Levin, D. Zorin, “Piecewise Smooth Subdivision
Surfaces with Normal Control”, Computer Graphics
Proceedings (SIGGRAPH), Annual Conference Series, 2000, pp.
113-120.

[Bierm01] H. Biermann, I. M. Martin, D. Zorin, F. Bernardini, “Sharp
Features on Multiresolution Subdivision Surfaces”, to appear in
Proceedings of Pacific Graphics 2001, Tokyo, Japan, October
2001.

[Bisch00] S. Bischoff, L. Kobbelt, H.-P. Seidel, “Towards Hardware
Implementation of Loop Subdivision”, in Proceedings of
Eurographics/SIGGRAPH Graphics Hardware Workshop 2000,
pp. 41–50, July 2000.

[Blair94] P. Blair, “Cartoon Animation”, Walter Foster Publishing Inc.,
ISBN : 1-56010-084-2, 1994.

[Cannon99] J. W. Cannon, W. J. Floyd, W. R. Parry, “Finite Subdivision Rules”,
available at
http://www.math.vt.edu/people/floyd/research/papers/fsr.ht
ml, 1999.

[Cannon01] J. W. Cannon, W. J. Floyd, R. Kenyon, W. R. Parry, “Constructing
Rational Maps from Subdivision Rules”, preprint available at
http://www.math.vt.edu/people/floyd/research/papers/ratsub.
html

[Catmu78] E. Catmull, J. Clark, “Recursively Generated B-spline Surfaces on
Arbitrary Topological Meshes”, Computer-Aided Design, 10
(Sept. 1978), pp.350–355.

[Certa96] A. Certain, J. Popovic, T. Duchamp, D. Salesin, W. Stuetzle, T.
DeRose, “Interactive Multi-resolution Surface Viewing”,
Computer Graphics (SIGGRAPH’96 Proceedings), pp.91-98,
August 1996.

[Chaik74] G.M. Chaikin, “An Algorithm for High Speed Curve Generation”,
Computer Graphics and Image Processing, 1974, 3(4), pp. 346-
349.

Bibliography 141

[Cirak00] F. Cirak, M. Ortiz, P. Schröder, “Subdivision Surfaces: A New
Paradigm For Thin-Shell Finite-Element Analysis”, International
Journal for Numerical Methods in Engineering, 47:(12), pp.
2039-2072, April 2000.

[Claes00] J. Claes, F. Van Reeth, M. Ramaekers, "Locally Interpolating
Subdivision Surfaces Supporting Free-Form 2D Deformation",
Proceedings of Deform2000, Geneva. Switzerland, pp. 51-59,
November 2000.

[Claes01a] J. Claes, K. Beets, F. Van Reeth, A. Iones and A. Krupkin,
“Turning the Approximating Catmull-Clark Subdivision
Scheme into a Locally Interpolating Surface Modeling Tool”, in
Proceedings of Shape Modeling and Applications (SMI’01),
pp.42-48, Genoa, Italy, May 2001.

[Claes01b] J. Claes, M. Ramaekers and F. Van Reeth, “Providing local
interpolation, tension and normal control in the manipulation
of Loop subdivision surfaces”, in Proceedings of CGI’01, Hong-
Kong, July 3 - 6, 2001, pp.299-305.

[Claes02] J. Claes, K. Beets, F. Van Reeth, “A Corner-Cutting Scheme for
Hexagonal Subdivision Surfaces”, submitted to Shape
Modeling and Applications (SMI’02), Calgary, Canada, May
2002.

[Coqui90] S. Coquillart, “Extended Free-Form Deformation: A Sculpturing
Tool for 3D Geometric Modeling”, in Siggraph ‘90, pp. 187-196,
August 1990.

[Coqui91] S. Coquillart, “Animated Free-Form Deformation: An
Interactive Animation Technique”, in Siggraph ‘91, pp. 23-26,
July 1991.

[DeBoor93] C. De Boor, K. Höllig, D. Riemenschneider, “Box Splines”,
Springer-Verlag Berlin, 1993.

[DeRham56] G. de Rham, “Sur une Courbe Plane”, J. de Math. Pures & Appl.
35, pp. 25-42, 1956.

[DeRose98] T. DeRose, M. Kass, T. Truong, “Subdivision Surfaces in
Character Animation”, in SIGGRAPH 98 Conference
Proceedings, pp.85–94, July 1998.

142 Bibliography

[DiFio01] F. Di Fiore, P. Schaeken, K. Elens, F. Van Reeth, “Automatic
Inbetweening in Computer Assisted Animation by Exploiting
2.5D Modelling Techniques”, in Computer Animation 2001
Conference Proceedings, pp. 192-200, November 2001.

[Doo78] D. Doo, M. Sabin, “Behaviour of Recursive Division Surfaces
near Extraordinary Points”, in Computer-Aided Design, 10, pp.
356–360, September 1978.

[Dubuc98] S. Dubuc, J.L. Merrien, P. Sablonnière , “The Length of the de
Rham Curve”, in the Journal of Mathematical Analysis and
Application 1998, Vol 223, Iss 1, pp. 182-195, 1998.

[Dyn87] N. Dyn, D. Levin, J. Gregory, “A Four-point Interpolatory
Subdivision Scheme for Curve Design”, Computer Aided
Geometric Design, 4, pp. 257-268, 1987.

[Dyn90] N. Dyn, J. A. Gregory, D. Levin, “A Butterfly Subdivision Scheme
for Surface Interpolation with Tension Control”, ACM
Transactions on Graphics, Vol. 9, No. 2, pp. 160–169, April 1990.

[Dyn93] N. Dyn, S. Hed, D. Levin, “Subdivision Schemes for Surface
Interpolation”, Workshop in Computational Geometry (1993),
World Scientific, pp. 97-118.

[Dyn98] N. Dyn, F. Kuijt, D. Levin, R.M.J. Van Damme, “Convexity
Preservation of the Four-Point Interpolatory Subdivision
Scheme”, University of Twente (Enschede, The Netherlands),
memorando 1457, August 1998.

[Eck95] M. Eck, T. DeRose, T. Duchamp, “Multiresolution Analysis of
Arbitrary Meshes”, in Proceeding of SIGGRAPH ‘95, pp.173-182,
August 1995.

[Feng96] J. Feng, L. Ma, Q. Peng, “A New Free-Form Deformation
Through the Control of Parametric Surfaces”, in Computers &
Graphics, Vol. 20, No. 4, pp. 531-539, 1996.

[Ferha01] H. Ferhatosmanoglu, D. Agrawal, A. El Abbadi, “Optimal
Partitioning for Efficient I/O in Spatial Databases”, in the
Proceedings of the European Conference on Parallel
Computing (Euro-Par), Parallel I/O and Storage Technology,
Manchester, United Kingdom, August 2001.

Bibliography 143

[Foley91] J. Foley, A. Van Dam, S. Feiner, J. Hughes, "Computer Graphics
– Principles and Practice", Addison-Wesley Publishing
Company, 1991.

[Fosne96] R. Fosner, “OpenGL Programming for Windows 95 and
Windows NT”, Addison-Wesley developers Press; ISBN:
0201407094, 1996.

[Hales99] T. C. Hales, “The Honeycomb Conjecture”, available at
http://xxx.lanl.gov/abs/math.MG/9906042, June 1999.

[Halst93] M. Halstead, M. Kass, T. DeRose, "Efficient, Fair Interpolation
Using Catmull-Clark Surfaces", in the Proceedings of SIGGRAPH
‘93, pp. 35-44, July 1993.

[He97] W. He, M.-J. Lai, “On the Digital Filter Associated with Bivariate
Box Spline Wavelets”, in Journal of Electronic Imaging, 6(1997),
pp. 453-466, 1997.

[Hoppe93] H. Hoppe, T. DeRose, T. Duchamp, J. McDonalds, W. Stuetzle,
“Surface Reconstruction from Unorganized Points”, in
Computer Graphics (Siggraph ’93), 26(2), pp.71-78, July 1993.

[Hoppe94] H. Hoppe, “Surface Reconstruction from Unorganized Points”,
Ph.D. thesis, Department of Computer Science and
Engineering, University of Washington, TR-94-06-01, June
1994.

[Hoppe96] H. Hoppe, “Progressive Meshes”, in Computer Graphics
(SIGGRAPH 1996 Proceedings), pp. 99-108, August 1996.

[Hubeli00] A. Hubeli, M. Gross, “A Survey of Surface Representations”, ETH
Zürich, CS Technical Report #335, Institute of Scientific
Computing, February 28, 2000.

[Hubeli01] A. Hubeli, “Subdivision Surfaces – IEEE Visualization ‘01
Tutorial”, available at
http://www.cg.inf.ethz.ch/~hubeli/Vis2001/Tutorial.html, 2001.

[Inter97] V. Interrante, H. Fuchs, S. Pizer, "Conveying the 3D Shape of
Smoothly Curving Transparent Surfaces via Texture", IEEE
Transactions on Visualization and Computer Graphics, vol. 3,
no. 2, pp. 98-117, April-June 1997.

144 Bibliography

[Ivris01] I. Ivrissimtzis, N. Dogdson, M. Hassan, “On the Geometry of
Recursive Subdivision”, preprint available at
http://www.cl.cam.ac.uk/~ipi20/recentresearch.html , 2001.

[Joy96] K. Joy, “On-Line Geometric Modeling Notes”, webpages
available at http://muldoon.cipic.ucdavis.edu/CAGDNotes/,
1996.

[Junki00] S. Junkins, A. Hux, “Subdivision Reality – Employing
Subdivision Surfaces for Real-time Scalable 3D”, in Proceedings
of the Game Developers Conference 2000, available at
http://www.gdconf.com/archives/proceedings/2000/prog_pa
pers.html

[Kobbe96] L. Kobbelt, “Interpolatory Subdivision on Open Quadrilateral
Nets with Arbitrary Topology”, in Computer Graphics Forum,
15 (Eurographics’96 conference proceedings), pp. 409-420,
1996.

[Kobbe97] L. Kobbelt, P. Schröder, “Constructing Variationally Optimal
Curves through Subdivision”, Technical Report 97-05,
California Institute of Technology, Department of Computer
Science, 1997.

[Kobbe98] L. Kobbelt, “Using the Discrete Fourier-Transform to Analyze
the Convergence of Subdivision Schemes”, available at
http://www9.informatik.uni-erlangen.de/~Kobbelt/papers,
1998.

[Kobbe00] L. Kobbelt, “Sqrt(3) Subdivision”, in Proceedings of the
Conference on Computer Graphics (SIGGRAPH 2000), pp. 103-
112, July 2000.

[Khoda00] A. Khodakovsky, P. Schröder, W. Sweldens. “Progressive
Geometry Compression”, in Siggraph'2000 Conference
Proceedings, pp. 271-278, July 2000.

[Labsik00a] U. Labsik, G. Greiner, “Interpolatory Sqrt(3)-Subdivision”, in
Computer Grahics Forum (Eurographics 2000 Proceedings),
pp. 131-138, 2000.

[Labsik00b] U. Labsik, L. Kobbelt, R. Schneider, H.-P. Seidel, “Progressive
Transmission of Subdivision Surfaces”, in Computational
Geometry, pp. 25-39, 2000.

Bibliography 145

[Laine93] A. F. Laine, S. Schuler, W. Huda, J. C. Honeyman, B. Steinbach,
”Hexagonal Wavelet Processing of Digital Mammography”, in
Medical Imaging 1993: Image Processing, Proceedings of SPIE,
Newport Beach, CA, vol. 1898, pp. 559-573, February 1993.

[Lane80] J. Lane, R. Riesenfield, “A Theoretical Development for the
Computer Generation and Display Piecewise Polynomial
Surfaces”, in IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2(1), pp. 35-46, 1980.

[Lee00] A. Lee, H. Moreton, H. Hoppe, “Displaced Subdivision Surfaces”
in Computer Graphics (SIGGRAPH 2000 Proceedings), pages
85-94, July 2000.

[Levin00] A. Levin, “Surface Design Using Locally Interpolating
Subdivision Schemes”, in Journal of Approximation Theory,
Vol. 104, No. 1, pp. 98-120, May 2000.

[Litke01] N. Litke, A. Levin, P. Schröder, “Fitting Subdivision Surfaces”, in
Proceedings of Scientific Visualization 2001.

[Loop87] C. Loop, “Smooth Subdivision Surfaces Based on Triangles”,
Master’s thesis, University of Utah, Department of
Mathematics, 1987.

[Lundm99] A. Lundmark, N. Wadströmer, H. Li, “Recursive Subdivision of
the Plane Yielding Nearly Hexagonal Regions”,
RadioVetenskap och Komunikation, June 1999.

[Lundm01] A. Lundmark, N. Wadströmer, H. Li, “Hierarchical Subsampling
Giving Fractal Regions”, IEEE Transactions on Image
Processing, vol. 10, no. 1, pp. 167-173, January 2001.

[MacCr96] R. MacCracken, K. Joy, “Free-Form Deformations with Lattices
of Arbitrary Topology”, Siggraph’96, pp.181-188, August 1996.

[Mandal99] C. Mandal, Hong Qin , Baba C. Vemuri, “A Novel FEM-based
Dynamic Framework for Subdivision Surfaces”, in Proceedings
of the fifth symposium on Solid modeling and applications,
pp.191-202, June 1999.

[Maya01] http://www.aliaswavefront.com

146 Bibliography

[McDon00] K. T. McDonnell, H. Qin. “Dynamic Sculpting and Animation of
Free-Form Subdivision Solids”, in Proceedings of IEEE
Computer Animation 2000, pp. 126-133, May 2000.

[Melkm97] A. A. Melkman, “Subdivision Schemes with Non-negative
Masks Converge Always - Unless They Obviously Cannot?”, in
The heritage of P. L. Chebyshev: a Festschrift in honor of the
70th birthday of T. J. Rivlin., Ann. Numer. Math. 4, pp. 451-460,
1997.

[Mocco97] L. Moccozet, N. Magnenat Thalmann, “Dirichlet Free-Form
Deformations and their Applications to Hand Simulation”,
Proceedings of Computer Animation, IEEE Computer Society,
pp. 93-102, 1997.

[Muell96] T. Mueller, “Geometric Modelling with Multivariate B-Splines”,
Ph.D. dissertation, University of Utah, Dept. of Computer
Science, 1996.

[Nasri87] A. Nasri, "Polyhedral Subdivision Methods for Free-Form
Surfaces", Communications of the ACM, Transactions on
Graphics, Vol. 6, No. 1, pp. 29-73, January 1987.

[Nasri99] A. Nasri, “Free-Form Curve Generation by Recursive
Subdivision of Polygonal Strip Complexes”, Sketch, ACM
Siggraph 99, Los Angeles, pp. 8-13, August 1999.

[Nasri00] A. Nasri, “Interpolating Meshes of Boundary Intersecting
Curves by Subdivision Surfaces”, in The Visual Computer
Journal, Vol. 16, No. 1, pp. 3-14, 2000.

[Nasri01a] A. Nasri, T. Kim, K. Lee, “Fairing Recursive Subdivision Surfaces
with Curve Interpolation Constraints”, in Proceedings of Shape
Modeling and Applications (SMI’01), pp. 49-59.

[Nasri01b] A. Nasri, “Constructing Polygonal Complexes with Shape
Handles for Curve Interpolation by Subdivision Surfaces”, in
Computer Aided Design, 33, pp.753-765, September 2001.

[O’Rour94] J. O'Rourke, “Computational Geometry in C”, Cambridge
University Press, ISBN: 0521445922, 1994.

Bibliography 147

[Peters97] J. Peters, U. Reif, “The Simplest Subdivision Scheme for
Smoothing Polyhedra”, in ACM Transactions on Graphics, vol.
16, no. 4, pp. 420-431, October 1997.

[Peters00] J. Peters, G. Umlauf, “Gaussian and Mean Curvature of
Subdivision Surfaces”, in R. Cipolla and R. Martin, editors, The
Mathematics of Surfaces IX, pp. 59-69, Springer, 2000.

[Porter00] T. Porter, G. Susman, “Creating Lifelike Characters in Pixar
Movies”, Communications of the ACM, Vol.43, no.1, pp. 25-29,
January 2000.

[Praut97] H. Prautzsch, U. Reif, “Necessary Conditions for Subdivision
Surfaces”, Technical report, Sonderforschungsbereich 404,
Universitat Stuttgart, Bericht 97/04, 1997.

[Praut99] H. Prautzch, G. Umlauf, “Triangular G2-Splines”, in: P.-L. Laurent,
P. Sablonniere, L.L. Schumaker (eds.), Curve and Surface
Design, Vanderbilt University Press, pp.335-342, 1999.

[Praut00] H. Prautzch, G. Umlauf, “A G1 and G2 Subdivision Scheme for
Triangular Nets”, in International Journal for Shape Modelling,
6(1), pp. 21-35, 2000.

[Praut01] H. Prautzsch, W. Böhm, “Box Splines”, in: The Handbook of
Computer Aided Geometric Design, Farin, Hoschek, Kim (eds.)
to appear (Elsevier), 2001/2.

[Pulli96] K. Pulli, M. Segal, “Fast Rendering of Subdivision Surfaces”,
Proceedings of 7th Eurographics Workshop on Rendering,
June 1996.

[Qin98] H. Qin, B. Vemuri, “Dynamic Catmull-Clark Subdivision
Surfaces”, Siggraph 98, pp. 215-229, July 1998.

[Rayma01] C. Raymaekers, K. Beets, F. Van Reeth, “Fast Haptic Rendering
of Complex Objects Using Subdivision Surfaces”, in the
Proceedings of the Sixth PHANToM Users Group Workshop,
Aspen, USA, October 2001.

[Reif95] U. Reif, “A Unified Approach to Subdivision Schemes near
Extraordinary Vertices”, in Computer Aided Geometric Design,
12(2), pp. 153-174, 1995.

148 Bibliography

[Reif00] U. Reif, P. Schröder, “Curvature Smoothness of Subdivision
Surfaces”, TR-00-03, Caltech, Department of Computer Science,
2000.

[Riese75] R. Riesenfield, “On Chaikin’s Algorithm”, Computer Graphics
and Image Processing, 4(3), pp. 304-310, 1975

[Sabin01] M. Sabin, “Subdivision: Tutorial Notes”, tutorial of Shape
Modeling International (SMI’01), Genoa (Italy), May 2001.

[Sahr98] K. Sahr, D. White, “Discrete Global Grid Systems”, in
Proceedings of the 30th Symposium on the Interface,
Computing Science and Statistics, 30, pp. 269-278, 1998.

[Schwe96] J. Schweitzer, “Analysis and Application of Subdivision
Surfaces”, PhD dissertation, Department of Computer Science
and Engineering, University of Washington, Technical Report
UW-CSE-96-08-02, August 1996.

[Seder86] T. Sederberg, S. Parry, “Free-Form Deformation of Solid
Geometric Models”, Siggraph ‘86, pp. 151-160, August 1986.

[Seder93] T. Sederberg, P. Gao, G. Wang, H. Mu, “2-D Shape Blending: An
Intrinsic Solution to the Vertex Path Problem”, in Proceedings
of Siggraph ‘93, pp. 15-18, July 1993.

[Simoe01] J. Simoens, N. Dyn, D. Levin, “Face Value Subdivision Schemes
on Triangulations by Repeated Averaging”, in preparation,
2001.

[Skaria01] S. Skaria. E. Akleman, F. I. Parke, “Modeling Subdivision Control
Meshes for Creating Cartoon Faces”, in Proceedings of Shape
and Modeling International 2001, pp.216-227, May 2001.

[Stam98] J. Stam, “Exact Evaluation of Catmull-Clark Subdivision
Surfaces at Arbitrary Parameter Values”, (Siggraph98)
Computer Graphics Proceedings, ACM SIGGRAPH, 1998,
pp.395-404, July 1998.

[Stam99] J. Stam, “Evaluation of Loop Subdivision Surfaces",
SIGGRAPH'99 Course Notes, August 1999.

Bibliography 149

[Stam01] J. Stam, “On Subdivision Schemes Generalizing Uniform B-
Spline Surfaces of Arbitrary Degree”, in Computer Aided
Geometric Design, Special Edition on Subdivision Surfaces,
Volume 18, pp. 383-396, 2001.

[Stoll96] E. J. Stollnitz, T. D. DeRose, D. H. Salesin, “Wavelets for
Computer Graphics”, Morgan Kaufmann Publishers, San
Francisco, 1996.

[Umlauf00] G. Umlauf, “Analyzing the Characteristic Map of Triangular
Subdivision Schemes”, in Constructive Approximation, 16 (1),
pp. 145-155, 2000.

[VanRe01] F. Van Reeth, J. Claes, “Interpolatory Uniform Subdivision
Curves with Normal Interpolation and Tension Control,
Generating B-splines of Any Degree”, submitted to The Visual
Computer.

[Velho01a] L. Velho, D. Zorin, “4-8 Subdivision”, in Computer-Aided
Geometric Design, 18(5), pp. 397-427, Special Issue on
Subdivision Techniques, 2001.

[Velho01b] L. Velho, K. Perlin, L. Ying, H. Biermann, “Procedural Shape
Synthesis on Subdivision Surfaces”, in Proceedings of the
Symposium on Computer Graphics and Image Processing
(SIBGRAPI), 2001.

[Vince99] A. Vince, “Self-replicating Tiles and Their Boundary”, in Discrete
and Computational Geometry, 21, pp. 463-476, 1999.

[Warren95] J. Warren, “Subdivision Methods for Geometric Design”,
unpublished manuscript, Department of Computer Science,
Rice University, Preprint available at
http://www.cs.rice.edu/jwarren/papers/book.ps.gz, November
1995.

[Watson87] A. B. Watson, A. J. Ahumada Jr, “An Orthogonal Oriented
Quadrature Hexagonal Image Pyramid”, NASA Technical
Memorandum NASA TM-100054, NASA, December 1987.

[Weimer98] H. Weimer, J. Warren, “Subdivision Schemes for Thin Plate
Splines”, in Proceedings of Eurographics ‘98, Computer
Graphics Forum, Vol. 17, No. 3, pp. 303-313 & 392, 1998.

150 Bibliography

[Weimer99] H. Weimer, J. Warren, “Subdivision Schemes for Fluid Flow”,
SIGGRAPH 99 conference proceedings, pp. 111-120, August
1999.

[Ying01] L. Ying, D. Zorin, “Non-manifold Subdivision”, Proceedings of
IEEE Visualization 2001, to appear (also available at
http://mrl.nyu.edu/publications/), 2001.

[Zhang01] C. Zhang, P. Zhang, F. Cheng, “Fairing Spline Curves and
Surfaces by Minimizing Energy”, Computer-Aided Design, 33,
pp. 913-923, 2001.

[Zonen98] R. Zonenschein, J. Gomes, L. Velho, L. H. de Figueredo, M.
Tigges, B. Wyvill, “Texturing Composite Deformable Implicit
Objects”, Proceedings of the XI International Symposium on
Computer Graphics, Image Processing and Vision, pp. 346-353,
Rio de Janeiro, October 1998.

[Zorin96] D. Zorin, P. Schröder, W. Sweldens, “Interpolating Subdivision
for Meshes with Arbitrary Topology”, in Proceedings of
SIGGRAPH 1996, pp. 189-192, August 1996.

[Zorin00a] D. Zorin, P. Schröder, A. Levin, L. Kobbelt, W. Sweldens, T.
DeRose, “Subdivision for Modeling and Animation”, course
SIGGRAPH, July 2000.

[Zorin00b] D. Zorin, “A Method for Analysis of C1-continuity of Subdivision
Surfaces”, SIAM Journal of Numerical Analysis, vol. 37, no. 5,
2000, pp. 1677-1708.

[Zorin01a] D. Zorin, P. Schröder, “A Unified Framework for Primal/Dual
Quadrilateral Subdivision Schemes” to appear in CAGD, 2001
(also available at http://mrl.nyu.edu/publications/).

[Zorin01b] D. Zorin, D. Kristjansson, “Evaluation of Piecewise Smooth
Subdivision Surfaces”, to appear in The Visual Computer (also
available at http://mrl.nyu.edu/publications/), 2001.

 151

List of figures

Fig. 2-1. The original control polygon. ... 8

Fig. 2-2. One subdivision step for the cubic B-spline scheme.................................. 8

Fig. 2-3. Two subdivision steps for the cubic B-spline scheme. 8

Fig. 2-4. The limit curve for the cubic B-spline scheme. ... 8

Fig. 2-5. The first subdivision step of the quadratic B-spline scheme, each time
dividing the original edges by a factor of three.................................... 9

Fig. 2-6. The limit curve for the quadratic B-spline scheme (obtained by
ternary subdivision).. 9

Fig. 2-7. Original control polygon. ... 10

Fig. 2-8. One subdivision step of the four-point scheme. 10

Fig. 2-9. Two subdivision steps of the four-point scheme. 11

Fig. 2-10. Limit curve step of the four-point scheme. .. 11

Fig. 2-11. The approximating scheme for cubic B-Splines using a simple
looking control polygon. ... 12

Fig. 2-12. The interpolating four-point scheme using the same control
polygon. .. 12

Fig. 3-1. The five Platonic solids: The tetrahedron, the cube, the octahedron,
the dodecahedron and the icosahedron. The cube and the
octahedron are each other’s dual, just as the dodecahedron and
the icosahedron. The tetrahedron is its own dual. 23

Fig. 3-2. Six steps of the Midedge subdivision of a cube. 26

152 List of figures

Fig. 3-3. Subdivision around a central vertex V0, showing surrounding control
points (Qi), edge points (Ei) and face points (Fi). 27

Fig. 3-4. Left: An input polygon with surrounding edges. Right: The new faces
created by one subdivision step of the Doo-Sabin algorithm. 29

Fig. 3-5. Four steps in the subdivision of a triangle. ... 31

Fig. 3-6. The Sqrt(3) subdivision scheme on a regular triangular grid. Left: The
original triangles. Center: New points are added in the center and
new triangles are created by flipping the existing edges. Right:
The result after one subdivision step. ... 31

Fig. 3-7. Situation around a new point Q for the interpolating Sqrt(3) scheme.
 .. 33

Fig. 3-8. Situation around a newly inserted edge point for the interpolatory
Butterfly scheme. ... 34

Fig. 3-9. Left: A regular 4-8 tiling, with one basic tile highlighted. Center: A
new subdivision step first introduces new vertices in the center of
the diagonals (marked with small circles) and adds new diagonals
that are rotated 45º compared with the previous step (thick lines).
Right: The subsequent subdivision step. ... 36

Fig. 3-10. A: The initial control mesh. B: Uniform subdivision. C: An adaptively
refined mesh applying geometric stopping criteria. D: Adaptive
subdivision with a spatial threshold, illustrating how rapidly the
polygon density can change. ... 36

Fig. 3-11. The regular masks for the Dagstuhl scheme. .. 37

Fig. 4-1. An image taken from Geri’s Game. DeRose et al. used subdivision
surfaces with sharp and semi-sharp edges to model Geri’s head
and jacket (©Pixar). .. 42

Fig. 4-2. A control mesh for a smooth Catmull-Clark surface (left); the resulting
surface after indicating four edges as sharp (center) and after
indicating four more edges as sharp (right). 43

Fig. 4-3. Geri, from the Geri’s Game animation short. DeRose et al. distributed
a scalar parameter value over the subdivision surface that
represents his jacket. This scalar value was used in the procedural
shading to accentuate stiches and folds (© Pixar). 46

List of figures 153

Fig. 4-4. Using multi-resolution methods to obtain progressive meshes
[Khoda00]. .. 47

Fig. 5-1. Four consecutive steps of a hexagonal corner-cutting scheme
applied to a dodecahedron. Each of the generated polyhedra
consists of 12 pentagons and a number of hexagons that triples
at each subdivision step. The polyhedron at the right contains
360 hexagons. ... 52

Fig. 5-2. Choosing two arbitrary cells, a and b in the fine grid G1. Cell c is a
direct neighbor of a. .. 55

Fig. 5-3. Two cells, p and a direct neighbor, in the coarse grid G0. 55

Fig. 5-4. The centers of a and b get aligned to the centers of p and its
neighbor. .. 55

Fig. 5-5. Possible multiplication factors for hexagonal subdivision, depending
on the distance where the finer grid is aligned to the coarse one.
The actual scaling factor is the square root of the displayed
number. ... 57

Fig. 5-6. A subdivision of a regular mesh with a factor of three, four and seven.
Each time the center of the cell of the finer grid is aligned to the
center of the coarse grid. ... 57

Fig. 5-7. A subdivision of a regular mesh with a factor of three and four (left
and center). This time the vertices of the cell of the finer grid are
aligned to the center of the coarse grid. At the right, the
triangular dual of this subdivision by four is shown. Unfortunately,
the triangles are not treated evenly is this dual subdivision. 59

Fig. 5-8. The position of the new point P is a weighted average of the points of
the surrounding hexagon. .. 61

Fig. 5-9. Situation of a polygon in the extraordinary case. 65

Fig. 5-10. The quadrilateral and the octagon are extraordinary polygons in the
original mostly hexagonal mesh (left). Each subsequent step of
the subdivision process isolates them further apart, increasingly
filling the rest of the space with hexagons (center and right). 66

154 List of figures

Fig. 5-11. Characteristic map around polygons with three to ten vertices. The
closer the number of edges is to the preferred number of six, the
more regular the characteristic map. .. 69

Fig. 5-12. Left: In a triangular mesh the centers of the triangles are marked.
Right: These centers are used to construct the dual hexagonal
mesh. .. 71

Fig. 5-13. Left: In the triangular mesh of figure 5-12, points now mark the
division of the edges at one-third and two-thirds. Right: Using the
marked points to convert the triangular mesh to a hexagonal one.
 .. 72

Fig. 5-14 Two triangles sharing the edge near which a new point will be
inserted.. 72

Fig. 5-15. Left: The mesh obtained by corner-cutting the triangles, with
additional averaging by direct neighbors. Right: The mesh
obtained by subdividing the dual mesh once, resulting in a more
regular appearance. .. 73

Fig. 5-16. Four steps of the recursive hexagonal subdivision on a mushroom
mesh. .. 76

Fig. 5-17. Left: A triangular mesh with a vertex of valence 20 (160 triangles).
Center: A Loop subdivision after three steps (10,240 triangles).
Right: A Sqrt(3) subdivision after four steps (12,960 triangles). 76

Fig. 5-18. Left: The dual hexagonal mesh from the mesh of the previous figure
(82 polygons). Center: A hexagon-by-three subdivision after three
steps (6,486 polygons) and using the simple rules. Right: The
same scheme using the optimized rules (also 6,486 polygons). .. 77

Fig. 5-19. Three consecutive steps of the Hexagon-by-three scheme. 77

Fig. 5-20. A Phong-rendered image of the third subdivision level in figure 5-
19. .. 78

Fig. 5-21. A cat model, comparing different subdivision schemes: subdivided
three times using the Sqrt(3) scheme (left), two times using
Loop’s scheme (center) and three times using the Hexagon-by-
three scheme (right). ... 79

Fig. 5-22. Four steps of the Midedge scheme subdividing a cube. 80

List of figures 155

Fig. 5-23. Four steps of the Hexagon-by-three scheme on a cube...................... 80

Fig. 5-24. Four steps of the Doo-Sabin scheme subdividing a cube. 80

Fig. 6-1. Specific conditions on successive control points (cubic case). 85

Fig. 6-2. Introduction of additional ghost points. ... 86

Fig. 6-3a. Specific conditions on successive control points in the general case,
for m odd. ... 87

Fig. 6-3b. Specific conditions on successive control points in the general case,
for m even... 88

Fig. 6-4. Introduction of additional ghost points. ... 89

Fig. 6-5. The standard approximating cubic subdivision process: starting from
a set of 4 original control vertices (left), a finer mesh (center) is
created, in the limit converging to a smooth curve (right). 91

Fig. 6-6. Adding two ghost points around one vertex of the mesh of figure 6-5
makes sure the curve smoothly interpolates that vertex (left). The
normal in that vertex and a tension parameter can be controlled
by interactively moving the position of the ghost points (right). 91

Fig. 6-7. The same technique can be applied to control normal and tension at
the ends of an open curve. Left: The control vertices and ghost
points. Center: The resulting open curve. Right: Connecting the
ends of an open curve allows the creation of a closed curve with a
sharp corner. .. 92

Fig. 6-8. A 4th degree curve with four ghost points added. 92

Fig. 6-9. The control vertices determining the contours of a 2D face. 92

Fig. 6-10. An example of an animation character created via our curve tool,
combining local interpolation, normal and tension control. 93

Fig. 6-11. Another example, where a varying line thickness is also applied. ... 93

Fig. 6-12. Some frames from an animation sequence created using the locally
interpolating curves described in this chapter. 94

Fig. 8-1. Subdivision around a central vertex V0, showing surrounding control
points (Qi), edge points (Ei) and face points (Fi). 102

156 List of figures

Fig. 8-2. Situation around V0 when the ghost points are arranged in triangles.
 .. 104

Fig. 8-3. Situation around V0 when the ghost points are arranged in
quadrilaterals. .. 105

Fig. 8-4. A torus: at the left with the original mesh, at the right with the
modified mesh, making one vertex interpolating. 110

Fig. 8-5. Setting the tension parameter to a small value (at the left) or a large
one (at the right, from a slightly different viewpoint) influences
the form of the bump. .. 110

Fig. 8-6. Combining our method with sharp edges. The original input mesh is
a pyramid, where we marked the top as interpolating. Two edges
were marked as being sharp. ... 111

Fig. 9-1. Situation around an interior edge. .. 114

Fig. 9-2. Situation around an interior vertex. .. 114

Fig. 9-3. Situation around a border edge and a border vertex. 114

Fig. 9-4. A control polygon and the resulting curve without interpolation (left)
and with ghost points added to obtain interpolation in one of the
points (right). ... 116

Fig. 9-5. Showing the difference between a very small (left), a normal (center)
and a large tension (right). .. 118

Fig. 9-6. A standard mesh. The resulting Loop surface does not interpolate its
control points. ... 120

Fig. 9-7. The mesh is extended with a geometric construction to make the
limit surface interpolate the topmost point. 120

Fig. 9-8. A chicken modeled with Loop surfaces, making use of interpolatory
points, tension and normal control. .. 121

Fig. 9-9. Zoomed in on the beak of the chicken. At the left no interpolation is
used, while in the image at the right some points are made
interpolating and adequate tension parameters are set. 121

Fig. 10-1. A subdivision surface mesh in 2D, at the left without interpolation,
at the center interpolating a border vertex, and at the right

List of figures 157

interpolating an interior point (note that for clarity also the
normals at the border edges are shown). .. 128

Fig. 10-2. Using the local interpolation and normal control of the border to fit
the surface to the object. Left: The situation without local
interpolation. Center: Interpolation, but with a bad tension. Right:
Fitting the tension at the border. ... 129

Fig. 10-3. The original and the subdivided control mesh for an animation
character. .. 129

Fig 10-4. An example of changing only the tension in the border point at the
tip of the nose. .. 130

Fig. 10-5. Some frames from an animation created by our system. More
control points and interpolation are used around the eyes, to
provide better local control. Between the upper lip and the nose
there is an explicit discontinuity to prevent lip movements from
having undesired effects on the nose. .. 131

 159

List of tables

Table 3-1. Usual classification of subdivision surface schemes. The mentioned
schemes are explained in more detail in the later sections of this
chapter. ... 20

Table 3-2. Extended classification of subdivision surface schemes. 22

 161

Appendix 1: Invariance conditions for cubic curves

In this appendix, we give a proof of the invariance conditions from section 6.2
of chapter 6 applying to locally interpolating cubic curves. That section also
contains the meaning of the variables together with the necessary
illustrations.

1

2

j

ic = 1

124
11

22
11

124
1 





  j

i

j

i

j

i ccc


 =)()(12
1

4
1

2
1

12
1

4
1 j

i

j

i

j

i

j

i

j

i ccccc  

 = j

i

j

i

j

i ccc 18
1

8
6

18
1

 

 = j

i

j

i

j

i

j

i cccc 18
1

112
1

8
6

18
1)( 

 = j

i

j

i cc 12
1

12
1

 

 = j

ic

1

12





j

ic = 1

24
11

122
11

224
1 





  j

i

j

i

j

i ccc


 = j

i

j

i

j

i ccc 4
11

122
1

14
1  





 = 1

122
1

12
1

2
1)(

  j

i

j

i

j

i ccc


 = 1

12





j

ic


162 Appendix 1: Invariance conditions for cubic curves

1

12





j

ic = 1

224
11

122
11

24
1 







  j

i

j

i

j

i ccc


 = j

i

j

i

j

i ccc 14
11

122
1

4
1





 


 = 1

122
1

12
1

2
1)(

  j

i

j

i

j

i ccc


 = 1

12





j

ic


1

12





j

ic


 and 1

12





j

ic


, being the midpoints of two equidistant point to j

ic , are

equidistant to j

ic . It follows immediately from the above equations that we

have a local invariance on level j+1 around 1

2

j

ic .

 163

Appendix 2: Invariance conditions for curves of any
degree

In this appendix, we give a proof of the invariance conditions from section 6.3
of chapter 6 applying to locally interpolating curves of any degree.

The approach is slightly different depending on n (in equation 6-3 of chapter
6) being even or odd:

n (in equation 3) even:

Theorem: The intermediate control points mkm

j

kic 



)(1

2


 will not move due to

the averaging step.

Proof for situation around)(1

2

j

i

j

i cc 
. The cases for mkm

j

kic 



)(1

2


give the

same result due to the collinearity of the mkm

j

kic 22

1

2)(






 and the equidistance

of the mkm

j

kic 22

1

2)(






 among themselves.

1

2

2

2/

2/ 2
1 

 









 j

kin

n

nk
c

k

n
n


 (the averaging operation of 1

2

j

ic


)

= (bring constant in front and split summation in three parts)

)(1

2

2

2/

1

1

2

2

1

2

2

1

2/2
1 









 





























 j

kin

n

k

j

in

j

kinnk
c

k

n
c

n
c

k

n
n



164 Appendix 2: Invariance conditions for curves of any degree

= (add and subtract terms)

)2

(

1

2

2

2/

1

1

2

2

1

2

2

2/

1

1

2

2

2/

1

1

2

2

2/

1

1

2

2

1

2/2
1





























































































j

kin

n

k

j

in

j

in

n

k

j

in

n

k

j

in

n

k

j

kinnk

c
k

n
c

n
c

k

n

c
k

n
c

k

n
c

k

n
n





= (rewrite term 1 and move term 3)

)

2(

1

2

2

2/

1

1

2

2

2/

1

1

2

2

1

2

2

2/

1

1

2

2

2/

1

1

2

2

1

2/2
1



























































































j

in

n

k

j

kin

n

k

j

in

j

in

n

k

j

in

n

k

j

kinnk

c
k

n
c

k

n
c

n

c
k

n
c

k

n
c

k

n
n





= (



















 k

n

k

n

nn
22

and regroup some terms)

))(

2)((

1

2

1

2

2

2/

1

1

2

2

1

2

2

2/

1

1

2

1

2

2

2/

12
1



























































j

i

j

kin

n

k

j

in

j

in

n

k

j

i

j

kin

n

k

cc
k

n

c
n

c
k

n
cc

k

n
n





= (the equidistance of corresponding points

implies)()(1

2

1

2

1

2

1

2







  j

i

j

ki

j

i

j

ki cccc


)

Appendix 2: Invariance conditions for curves of any degree 165

)2(1

2

2

1

2

2

2/

12
1 

 


















 j

in

j

in

n

k
c

n
c

k

n
n



=

))2((1

2

22

2/

12
1 

 


















 j

inn

n

k
c

n

k

n
n



= (the entries in a row of the Pascal triangle sum to 2n).

1

2

j

ic


n (in equation 3) odd:

Theorem: Each intermediate control point mkm

j

kic 



)(1

2


 will become

midpoint of the two surrounding control points due to the averaging step.

Proof for situation around 1

2

j

ic


 (the point to be interpolated). The cases for

mkm

j

kic 



)(1

2


give the same result due to the collinearity of the mkm

j

kic 22

1

2)(







and the equidistance of the mkm

j

kic 22

1

2)(






 among themselves.

Midpoint of the two surrounding control points:

)
1

(
2

1 1

2

2
1

1
2

)1(

2/)1(2
11

2

2
1

2/)1(

1
2

1
2

1 

















 




















 j

kin

n

nk

j

kin

n

n
k

c
k

n
c

k

n
nn



= (bring common factor in front and redefine k in term 2)

)
1

(
2

1 1

2

2
1

2/)1(

1
2

1
1

2

2
1

2/)1(

1
2

11




















 




















 j

kin

n

n
k

j

kin

n

n
kn c

k

n
c

k

n 

166 Appendix 2: Invariance conditions for curves of any degree

=(



















  k

n

k

n

nn
2

1
2

1 1
, add and

delete
1

2

2
1

2/)1(

1
2

12 








 









 j

in

n

n
k

c
k

n 
and regroup some terms)

)2)(

)((
2

1

1

2

2
1

2/)1(

1
2

1

1

2

1

2

2
1

2/)1(

1
2

1

1

2

1

2

2
1

2/)1(

1
2

11








































































j

in

n

n
k

j

i

j

kin

n

n
k

j

i

j

kin

n

n
k

n

c
k

n
cc

k

n

cc
k

n





= (the equidistance of corresponding points implies

)()(1

2

1

2

1

2

1

2







  j

i

j

ki

j

i

j

ki cccc


)

)2(
2

1 1

2

2
1

2/)1(

1
2

11









 









 j

in

n

n
kn c

k

n 

= (redefine k)

)2(
2

1 1

201


 







 j

i

n

kn c
k

n 

= (the entries in a row of the Pascal triangle sum to 2n).

1

2

j

ic


 167

Samenvatting

Alhoewel subdivisie-oppervlakken reeds meer dan 20 jaar gekend zijn in de
academische wereld, werden ze pas zeer onlangs een populaire representatie
voor willekeurige oppervlakken, zowel in de wereld van de computeranimatie
als voor industriële ontwerpen. Een belangrijke rol in deze populariteit werd
gespeeld door hun succesvolle toepassing in een kortfilm van het beroemde
productiehuis Pixar [DeRose98]. Voor hun animatiefilm, “Geri’s Game”, pasten
ze voor het eerst subdivisie-oppervlakken toe als basisconcept voor alle
geanimeerde oppervlakken, zoals het hoofd en het jasje van “Geri”, het
sympathieke hoofdpersonage. Later perfectioneerde Pixar deze technieken
voor de productie van “Toy Story II” [Porter00].

Subdivisie-oppervlakken vormen een compacte representatie van gladde
oppervlakken en bieden een aantal voordelen ten opzichte van andere
bestaande representaties. Als alternatief voor subdivisie-oppervlakken wordt
vaak gebruik gemaakt van parametrische patches. Dit soort patches, zoals de
gekende B-spline-patches, zijn echter slechts gedefinieerd op een eenvoudig
rechthoekig of driehoekig domein. Om oppervlakken van een willekeurige
topologie (met gaten en uitsteeksels) te kunnen representeren, moeten
verscheidene patches aan elkaar vastgehecht worden. De scheidingsranden
zijn echter niet gedefinieerd in dezelfde representatie, wat dikwijls aanleiding
geeft tot oneffenheden en scheurtjes op deze randen, vooral wanneer de
oppervlakken geanimeerd worden. Een echte nachtmerrie, die de artistieke
vrijheid van de animators sterk beknot.

Met subdivisie-oppervlakken kunnen dit soort oppervlakken echter wel in
hun geheel via een eenduidig paradigma gedefinieerd worden. Subdivisie-
oppervlakken vertrekken van een polygonale mesh die een ruwe benadering
van het oppervlak weergeeft. Zo een mesh bestaat uit een reeks 3D punten,
die via polygonen met elkaar verbonden zijn. In een eerste stap wordt de
ruwe mesh vervangen door een iets fijnere mesh, waarbij de punten
uitgemiddeld worden. Dit proces wordt recursief herhaald en resulteert in de
limiet in een glad oppervlak.

168 Samenvatting

De basis van de huidige kennis rond subdivisie-oppervlakken, werd in 1974
door Chaikin gelegd, die opmerkte dat door het repetitief afsnijden van de
hoeken van een polygoon, uiteindelijk een gladde curve bekomen wordt
[Chaik74]. Later bewezen Lane en Reisenfeld dat Chaikin’s curve een
kwadratische B-spline definieert, en ze breidden het concept verder uit naar
B-splines van willekeurige orde [Lane80]. In de beginjaren werd dit subdivisie-
principe vooral gebruikt om zoekalgoritmes te versnellen, bv. voor het vinden
van de snijpunten tussen twee curves. Eigenlijk was Chaikin niet de eerste in
het publiceren van subdivisie-curves. Later werd duidelijk dat een Frans
wiskundige, G. de Rham, reeds in de jaren 50 een gelijkaardig schema
beschreven had, dat later echter in de vergetelheid raakte [DeRham56].

Het eerste schema voor subdivisie-oppervlakken, het Catmull-Clark schema,
werd in 1978 beschreven door Ed Catmull en Jim Clark, die zich baseerden op
het repetitief opsplitsen van vierhoeken in vier kleinere vierhoeken
[Catmu78]. De nieuwe punten werden berekend als een uitmiddeling van de
omliggende bestaande punten, waarna ook de bestaande punten
uitgemiddeld werden. Voor een regulier rooster past deze methode eigenlijk
gewoon tweemaal een derdegraads subdivisie toe, een tensorproduct in
twee loodrecht op elkaar staande richtingen. Catmull en Clarks belangrijkste
inzicht was echter de uitbreiding van deze principes naar roosters die niet
uitsluitend uit vierhoeken bestaan. Met deze roosters kunnen dan gesloten
oppervlakken gedefinieerd worden, waardoor eensklaps oppervlakken van
een willekeurige topologie in naadloos hetzelfde concept opgenomen
worden.

Gedurende hetzelfde jaar, 1978, toonden Donald Doo en Malcolm Sabin een
variant van subdivisie-oppervlakken gebaseerd op het tensorproduct van
twee kwadratische curves [Doo78]. Visueel komt deze methode overeen met
het wegsnijden van de hoeken en randen van een polygonale mesh. Hun
schema werd bekend onder de naam Doo-Sabin-subdivisie en heeft als een
interessante eigenschap dat de gegenereerde limietoppervlakken de
middelpunten van de originele polygonen interpoleren. Het Doo-Sabin
schema genereert meshes die het duaal zijn van de meshes gegenereerd via
het Catmull-Clark schema: overal waar het Catmull-Clark schema een nieuwe
polygoon definieert, definieert het Doo-Sabin schema een nieuw punt in het
midden van die polygoon. Deze punten worden dan weer verbonden tot
polygonen, die op hun beurt rond de punten van het Catmull-Clark schema
heen lopen.

In 1987 presenteerde Charles Loop een subdivisie-techniek die volledig
gebaseerd is op een uit driehoeken bestaande mesh [Loop87]. Hij breidde

Samenvatting 169

eigenlijk een bestaand spline-type, met name een vierdegraads box-spline,
dat reeds gedefinieerd was voor reguliere driehoekige roosters, uit naar
roosters die ook niet-reguliere punten bevatten.

De schema’s van Catmull-Clark, Doo-Sabin en Loop zijn allen benaderende
schema’s. De gegenereerde oppervlakken benaderen slechts hun
controlepunten, zonder ze effectief te interpoleren. In 1990 stelden Dyn,
Levin en Gregory het eerste schema voor dat zijn controlepunten allemaal
interpoleert [Doo90]. Doordat de regels voor het schema beschreven worden
uitgaande van een configuratie van driehoeken die op een vlinder lijkt, werd
het schema bekend onder de naam “Butterfly-schema”. Later breidden Zorin,
Schröder en Sweldens dit schema uit zodat onder alle omstandigheden een
C1-oppervlak bekomen wordt [Zorin96].

Het kunnen representeren van oppervlakken met een willekeurige topologie
is vooral interessant, omdat het ook toelaat dat een oppervlak op
verschillende plaatsen met een verschillende dichtheid van controlepunten
gedefinieerd kan worden. Er kan daarom locaal met fijn detail gewerkt
worden zonder de noodzaak om ook elders een grote massa punten te
introduceren.

Ondanks hun recente populariteit, zijn de eigenschappen van subdivisie-
oppervlakken grondig wiskundig geanalyseerd. Dit hebben ze o.a. te danken
aan hun sterke relatie met wavelet- en multi-resolutie-analyse [Stoll96], met
tal van toepassingen in vele wetenschappelijke en technische domeinen.

In vele praktische toepassingen blijkt dat volledig gladde oppervlakken niet
voldoende zijn. Een belangrijke uitbreiding vormt dan ook de mogelijkheid
om scherpe en halfscherpe randen te creëren. Gelukkig past dit concept
volledig in het paradigma van subdivisie-oppervlakken. Het werd o.a.
uitgebreid toegepast in “Geri’s Game”.

Doordat subdivisie-oppervlakken gedefinieerd zijn op een polygonaal model,
zijn ze ook vrij intuïtief te editeren. Polygonen kunnen makkelijk verplaatst en
geroteerd worden om het oppervlak te vervormen en punten kunnen op een
eenvoudige manier ingevoegd en verwijderd worden. Gelukkig is het voor
subdivisie-oppervlakken geen vereiste dat de punten van de polygonen in
eenzelfde plat vlak liggen.

De voornaamste bijdragen van deze doctoraatsverhandeling situeren zich in
twee domeinen. Enerzijds ontwikkelden we een techniek die het toelaat dat
een benaderend subdivisie-schema toch een aantal van zijn controlepunten

170 Samenvatting

interpoleert. Anderzijds werkten we een volledig nieuw subdivisie-schema
uit, gebaseerd op zeshoekige meshes.

Volledig interpolerende schema’s voor subdivisie-oppervlakken, hebben wel
als voordeel dat ze een oppervlak kunnen construeren dat precies doorheen
een verzameling punten gaat, maar ze hebben ook een aantal inherente
nadelen. Het voornaamste probleem is dat ze moeilijk te controleren bulten
en plooien vormen. Een kleine verschuiving van een controlepunt geeft
plotseling een heel ander oppervlak. Dat maakt dit soort schema’s ongeschikt
voor modelerings- en animatietoepassingen. Ook hebben volledig
interpolerende schema’s minder interessante wiskundige eigenschappen. Zo
bestaan er bv. geen wiskundige basisfuncties die het oppervlak kunnen
beschrijven en beïnvloeden de controlepunten een grotere zone. Ook blijft
bij een approximatief schema het oppervlak dat door enkele controlepunten
gedefinieerd wordt, volledig in de convexe omhullende van die punten, een
eigenschap die interpolerende schema’s moeten missen.

Aangezien enerzijds de volledige interpolerende schema’s niet interessant
zijn voor modeleringstoepassingen, maar er anderzijds toch dikwijls behoefte
is om een bepaald controlepunt te interpoleren, ontwikkelden wij een nieuwe
techniek. Deze techniek laat toe om, met behulp van nauwkeurig berekende
hulppunten (“ghost points”), toch een bepaald controlepunt te interpoleren.
Onze techniek heeft als bijkomend voordeel dat ook de oppervlaktenormale
en een handige tensie-parameter eenvoudig mee gecontroleerd kunnen
worden in de modeleringstoepassing.

We ontwikkelden deze methode eerst voor subdivisie-curves, en breidden
dat daarna uit voor de twee meest gebruikte schema’s voor subdivisie-
oppervlakken, namelijk Catmull-Clark en Loop. We pasten deze technieken
bovendien toe buiten het domein van modelering, namelijk in dat van het
vervormen van tweedimensionale objecten (“free-form deformation”). We
ontwierpen een applicatie die toelaat om op een zeer intuïtieve manier
tweedimensionale animaties te creëren met een tot dan toe onbestaande
vrijheid.

Een beetje losstaand van de technieken rond locale interpolatie, werkten we
ook een volledig nieuw schema voor subdivisie-oppervlakken uit, ditmaal
gebaseerd op zeshoekige meshes. Aangezien zeshoekige meshes in de
praktijk niet zo frequent voorkomen in grafische computertoepassingen,
werkten we ook methodes uit om driehoekige meshes te converteren naar
zeshoekige.

Samenvatting 171

Onze interesse voor zeshoekige schema’s werd vooral gewekt door twee
recente wetenschappelijke publicaties. Zowel een publicatie van Jos Stam
[Stam01] als van Zorin en Schröder [Zorin01a] beschreven een techniek
waardoor ze oppervlakken van willekeurig hoge graad van continuïteit
konden bekomen, door repetitief uit te middelen tussen twee duale
subdivisie-schema’s. Beide publicaties vermeldden enkel het bestaan van
duale schema’s voor vierhoekige meshes. Een duaal schema voor een op
driehoekige meshes gebaseerd schema, zou met zeshoekige meshes moeten
werken, en die waren totnogtoe niet beschreven.

Ons onderzoek omtrent het nieuwe schema voor zeshoekige meshes toont
aan dat het een volwaardig alternatief is voor de bestaande schema’s en
opent een fascinerende wereld van nieuwe mogelijkheden en toepassingen.

De verschillende hoofdstukken van deze doctoraatsverhandeling worden
hierna kort ingeleid.

Hoofdstuk 1 is een algemene introductie van de verschillende onderwerpen
in de rest van de verhandeling.

In hoofdstuk 2 beschrijven we het principe van subdivisie-curves. We starten
met Chaikin’s wegsnijden van hoeken voor kwadratische curves en breiden
dat uit naar hogere-graadscurves. Naast deze curves die hun controlepunten
benaderen, behandelen we ook een interpolerend schema, en we vergelijken
hun eigenschappen. We tonen ook aan hoe eigenanalyse gebruikt kan
worden om meer te weten te komen over het limietgedrag van de curve.
Bovendien tonen we dat behalve via tweedeling, curves ook via driedeling
gedefinieerd kunnen worden. Dit schema komt ons later van pas bij de
bestudering van ons nieuwe schema voor zeshoekige meshes.

Hoofdstuk 3 begint met een algemene inleiding omtrent subdivisie-
oppervlakken en toont eerst de traditionele classificatie van de verschillende
schema’s. We merken dat deze veelgebruikte classificatie enkele leemtes
vertoont. Enerzijds zijn er recent nieuwe schema’s omschreven die niet
zomaar in een bestaand hokje te duwen zijn. Belangrijker is echter dat
schema’s voor vierhoekige meshes ingedeeld zijn in primaire en duale
schema’s, terwijl er voor driehoekige schema’s enkel primaire schema’s
beschreven zijn. Een schema duaal aan een driehoekig is noodzakelijk
gebaseerd op zeshoekige meshes, wat het onderwerp wordt van hoofdstuk 5.
Eerst gaan we in hoofdstuk 3 dieper in op het verschil tussen duale en
primaire subdivisie-schema’s. We sluiten het hoofdstuk af met een uitgebreid
overzicht van de verschillende subdivisie-schema’s en hun eigenschappen,
om deze in hoofstuk 5 te vergelijken met ons nieuwe schema.

172 Samenvatting

Een uitgebreid overzicht van interessante eigenschappen en toepassingen
van subdivisie-oppervlakken komt in hoofdstuk 4 aan bod.

Hoofdstuk 5 is volledig aan ons nieuwe schema voor zeshoekige meshes
gewijd. We gaan eerst na hoe subdivisie voor een reguliere zeshoekige mesh
gedefinieerd zou kunnen worden en ontdekken dat er oneindig veel
configuraties denkbaar zijn. Er blijken echter slechts twee configuraties te zijn
die praktisch interessant lijken voor subdivisie-oppervlakken. Het verschil
tussen de methodes wordt vooral bepaald door de factor waarmee het aantal
polygonen per stap gemultipliceerd wordt. Een factor zeven lijkt interessant
in andere toepassingsdomeinen, maar mist de symmetrie die nodig is voor
subdivisie-oppervlakken. De kleinste factoren zijn drie en vier en het blijkt dat
multiplicatiefactoren die geen combinatie zijn van deze twee basisfactoren,
allemaal dit gebrek aan symmetrie vertonen. Een schema dat voor
driehoekige meshes gedefinieerd werd, blijkt indirect op zeshoekige meshes
te werken, en wordt op dit ogenblik bestudeerd door een collega-
onderzoeker uit Leuven [Simoe01]. We besluiten om een schema te
ontwikkelen gebaseerd op een multiplicatiefactor van drie. Enerzijds is dat de
kleinst mogelijke niet-triviale multiplicatiefactor. Anderzijds geeft die
aanleiding tot de eenvoudigst mogelijke subdivisie-regels. Bovendien blijkt
het schema duaal te zijn aan een onlangs gepubliceerd nieuw schema voor
driehoekige meshes, Kobbelt’s Sqrt(3) schema [Kobbe00]. Via eigenanalyse
worden nieuwe stationaire subdivisie-regels afgeleid en bestuderen we de
eigenschappen van het nieuwe schema. Verder tonen we een interessant
verband aan met een subdivisie-curve uit hoofdstuk 2.

In hoofdstuk 6 bespreken we een andere belangrijke bijdrage van deze
doctoraatsverhandeling, met name een techniek om benaderende subdivisie-
curves toch een aantal interactief door de ontwerper aangeduide punten te
kunnen interpoleren. Dit doel blijkt bereikbaar via het introduceren van
goedgekozen hulppunten. Ook voor hogeregraadscurves kan interpolatie
bereikt worden, mits het introduceren van meer hulppunten. Deze
hulppunten bieden bovendien de mogelijkheid om de raaklijn aan de curve
te manipuleren. Ook kan een tensie-parameter gradueel ingesteld worden die
de vorm in de omgeving van het interpolerende punt beïnvloedt. De
correctheid van de gebruikte technieken wordt bewezen in twee appendices
op het einde van de verhandeling.

Hoofdstuk 7 is een algemene inleiding op de drie daaropvolgende
hoofdstukken. De noodzaak voor locale interpolatie voor subdivisie-
oppervlakken wordt uit de doeken gedaan, en de bestaande literatuur wordt
doorgenomen.

Samenvatting 173

In hoofdstuk 8 is het Catmull-Clark schema aan de beurt. Er wordt nagegaan
hoe de hulppunten het best geconfigureerd worden om bestaande punten te
kunnen interpoleren. Analoog als in hoofdstuk 6, kan ook de
oppervlaktenormale vrij gemanipuleerd worden. Ook is er een nieuwe tensie-
parameter, die de vorm van het oppervlak in de omgeving van het
interpolerende punt beïnvloedt. Hoofdstuk 8 biedt ook een praktisch
algoritme voor het berekenen van de meest geschikte posities van de
hulppunten.

Daarna worden, in hoofdstuk 9, de specifieke mogelijkheden voor het op
driehoeken gebaseerde Loop-schema bestudeerd. Dit geeft aanleiding tot
een aangepast algoritme dat de hulppunten zorgvuldig positioneert. Verder
wordt nagegaan hoe met behulp van de technieken uit hoofdstuk 6 ook de
punten op de rand van het oppervlak gemanipuleerd kunnen worden.

In hoofdstuk 10 wordt een nieuwe vervormingstechniek (“free-form
deformation”) voor tweedimensionale geanimeerde objecten uitgewerkt. Het
blijkt dat door de techniek te baseren op subdivisie-oppervlakken in twee
dimensies, er een interessante vervormingstechniek ontstaat, die specifieke
nieuwe mogelijkheden biedt. Het grote voordeel van subdivisie is dat
willekeurige topologieën en expliciete discontinuïteiten deel uitmaken van
het basisconcept.

Hoofdstuk 11 legt uit hoe dit onderzoek in de toekomst verder uitgebreid kan
worden. Een aantal van de ideeën wordt nu reeds door onze
onderzoeksgroep dieper bestudeerd.

Om af te sluiten, formuleert hoofdstuk 12 de algemene conclusies van deze
verhandeling.

