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Abstract 

Recursive subdivision surfaces allow considerable freedom in designing 
surfaces of arbitrary topology. Tools to manipulate them, however, are still 
not as powerful as existing tools for longer established modeling paradigms, 
such as B-spline surfaces. Furthermore, the most well-behaved and most 
widely used schemes are approximating schemes, which do not interpolate 
their initial control points. 

This dissertation describes a new modeling paradigm, providing the 
possibility of locally choosing an interpolating variant of the conventionally 
approximating subdivision scheme. Our approach combines the advantages 
of approximating schemes with the precise control of interpolating schemes. 
Unlike other solutions that mostly focus on locally changing the weighting 
factors of the subdivision scheme, we keep the underlying uniform scheme 
intact. Our method is based upon introducing additional control points on 
well-chosen locations, with optional interactive user control over the tangent 
plane (or surface normal) and the tension of the surface near the interpolating 
control points. 

The same techniques used for surface modeling and editing are also adapted 
to implement a versatile free-form deformation tool, especially designed for 
2D textured objects. Based on subdivision surfaces applied in 2D, our method 
successfully combines the following features: fluid good-looking movement, 
both general global and precise local control and explicit discontinuities.  

As a different item of interest, we noticed a lack in the current range of 
subdivision surface schemes. Quadrilateral schemes are organized logically as 
primal and dual schemes, but for triangular subdivision, only primal schemes 
are described in the literature. This is a pity, as recently research papers have 
been published showing that primal and dual schemes can be successfully 
combined to create surfaces with an arbitrarily high degree of continuity. 
Therefore, we introduce a new hexagonal scheme, opening a fascinating 
range of possibilities. 
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1 Introduction 

In this dissertation, new techniques are developed for the modeling of 
subdivision surfaces. Although the theories behind recursive subdivision 
surface schemes have been around for more than 20 years, only recently have 
they begun to get full attention. An important factor in the increase of their 
popularity was Pixar’s very successful experience in 1998 with subdivision 
surfaces in the creation of the character of their short animations, Geri’s Game 
[DeRose98] and later Toy Story 2 [Porter00]. 

For modeling surfaces such as the ones used in character animation, there 
exist many good reasons to employ the subdivision paradigm. Subdivision 
schemes use simple rules to generate high-quality surfaces from coarse 
polygonal models. Unlike most competing methods for generating surfaces, 
they allow surfaces of arbitrary topology to be created using one single 
consistent paradigm. There is no need to stitch together different surface 
parts. This makes animating these surfaces much easier, as there is no fear of 
breaking the borders where patches are stitched together. 

The most important implication of allowing arbitrary topologies is not the 
creation of surfaces containing holes, but the ability to vary the density of 
control points over the surface. This permits the creation of small details and 
bodily limbs without the obligation to add numerous control points. 

Also important for subdivision surfaces is its extensive mathematical 
background, with important links to wavelet theory and multi-resolution 
analysis, which have proven their usefulness in many scientific fields. The 
divide-and-conquer approach, furthermore, allows for many applications in 
the field of simulating physical processes. 

Besides their specific usefulness for modeling surfaces used in animation, as 
well as in engineering applications, subdivision surfaces can easily be 
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extended to allow for creases and sharp and semi-sharp edges. Due to these 
extensions, subdivision surfaces are starting to become commonplace in 
professional animation packages, such as Alias|Wavefront’s Maya [Maya01]. 

The main contributions of our research in the field of recursive subdivision 
schemes are the following: 

 a local interpolation tool for subdivision curves of any degree; this tool, 
furthermore, allows for control of the tangent line and a useful tension 
parameter; 

 an extension of this tool for subdivision surfaces, with specific algorithms 
for its optimal use in the Catmull-Clark and Loop subdivision schemes 
[Catmu78, Loop87]; 

 an application of these techniques outside the world of surface modeling, 
where subdivision surfaces are used in 2D as a base for free-form 
deformations to fluently manipulate 2D animation objects; 

 and the introduction of a new subdivision surface scheme, based on 
hexagonal meshes. 

In chapter 2, we start by explaining the paradigm of subdivision curves. 
Algorithms for curves are easier to understand and analyze, so they form a 
good introduction for studying their generalization to subdivision surfaces. 
Properties of interpolatory and approximate schemes are discussed and 
compared. 

The concept of subdivision surface schemes is introduced in chapter 3, where 
we explain the usual taxonomy of subdivision surface schemes, which is still 
in use at prominent conferences [Zorin00a, Hubeli01]. Then we show that this 
taxonomy lacks, in our opinion, an important class of schemes, namely 
hexagonal ones. Hexagonal schemes are important, as they form the dual of 
triangular schemes. The duality between subdivision surface schemes has 
been proven very useful in recent papers [Zorin01a, Stam01], which show 
how to combine dual quadrilateral schemes to create surfaces with an 
arbitrarily high degree of continuity. Chapter 3 also contains an extensive list 
of existing subdivision schemes, each with its specific properties. This forms 
the base for studying the properties of our own new hexagonal scheme, 
which is postponed to chapter 5. 

An extensive list of properties and practical applications of subdivision 
surfaces form the main ingredients of chapter 4, while chapter 5 introduces 
and analyzes our new hexagonal subdivision scheme. 
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In chapter 6, we describe our extension to allow for local interpolation on 
otherwise approximate subdivision curves of any degree. This extension, 
furthermore, allows for a handy tension parameter and control of the curve 
normal.  

Chapter 7 forms an introduction to the subsequent chapters, outlining the 
need for local interpolation for subdivision surfaces and investigating related 
work. 

In chapter 8, we show how this local interpolation technique can be 
implemented for the quadrilateral Catmull-Clark subdivision scheme. Also, 
different methods for setting up and arranging the newly introduced ghost 
points are discussed. It is further shown that the new techniques can be 
combined successfully with recent extensions like semi-sharp edges. 

A similar technique for the triangular Loop scheme is explained in chapter 9, 
where we further employ the results of chapter 6 to create locally 
interpolating boundaries. This leads to a very versatile modeling tool, 
allowing for an intuitive control over surface normal and a convenient tension 
parameter. 

The techniques of chapter 9 can be applied in a totally different field, which is 
elaborated in chapter 10. A 2D representation of locally interpolating 
subdivision surfaces is used to create a flexible free-form deformation tool. 

In chapter 11, we discuss potential directions to extend our research, which is 
an ongoing process. This is followed by our general conclusions in chapter 12. 
This dissertation ends with a bibliography, lists of figures and tables, and two 
appendices containing the proofs behind the techniques described in 
chapter 6. 
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2 Subdivision curves 

2.1 Introduction 

In this chapter, we explain the concept of subdivision curves. Studying their 
properties usually is much simpler than for surfaces, making it easier to gain 
insights that later can be generalized to subdivision surfaces. Moreover, many 
subdivision surfaces schemes are directly or indirectly based on subdivision 
curve schemes. Therefore, this chapter is not only an introduction to chapter 
6, where we explain a local interpolation technique for subdivision curves, but 
also for all the other chapters concerning subdivision surfaces. 

In the context of this chapter (and also chapter 6), recursive subdivision is the 
process of repeatedly refining an initial control polygon P0 in order to 
produce a sequence of increasingly more refined polygons P0, P1, P2, P3, … 
hence approaching a limit polygon, actually a curve: 

j

j
PP


 lim  

In [Stoll96], it is elucidated that the subdivision process can be viewed as a 
two-step process of splitting and averaging. Given a control polygon Pj at 
level j in the subdivision process, the splitting step generates an intermediate 

control polygon 1jP


that contains all the control points of Pj, as well as 
additional control points inserted at the midpoints of all the edges 
constituting Pj. This narrows down to: 
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In order to get the final positions of the control points 1j

ic  in Pj+1, the 

intermediate control points 1j

ic


 in 1jP


are averaged using a so-called 

averaging mask mkmkrr  )( (the exact meaning/size of m is not important 

right now, it will be given in section 6.3): 

 11 



  j

ki

m

mk k

j

i crc


 (2-2) 

In Chaikin’s algorithm [Chaik74] the averaging mask is r = ½ (0, 1, 1). In cases 
where the averaging mask remains the same along the curve, the scheme is 
called a uniform subdivision scheme. It is called a stationary scheme in cases 
where the same mask is used in each subdivision level. In this dissertation, the 
focus is on uniform and stationary subdivision schemes. 

When reconstructing the history of subdivision schemes for curves and 
surfaces, it can be noted that most researchers refer back to Chaikin’s 1974 
paper. However, it turns out that he was not the first one to publish about this 
topic. Already in 1956, G. de Rham, a French mathematician, published about 
recursively corner cutting a piecewise linear approximation to obtain a 
smooth curve [DeRham56, Dubuc98]. [Sabin01] describes some interesting 
thoughts about de Rham’s algorithm. 

In section 2.2, we show how this formulation is extended to B-splines of any 
degree, and in section 2.3 we discuss an example of an interpolatory scheme. 
In section 2.4, we compare approximating and interpolatory schemes. Finally, 
in section 2.5, we demonstrate how eigenanalysis supports the study of the 
limit behavior of subdivision curves. 

 

 

 

 

 

2.2 Extension to higher degree B-splines 

Riesenfeld [Riese75] was able to show that the curves generated by Chaikin’s 
algorithm are uniform quadratic B-splines. It is proven by Lane and Riesenfeld 
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[Lane80] that Chaikin’s algorithm can be generalized to generate uniform B-
splines of degree n+1 by using an averaging mask with entries 

 
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Thus, in case n = 2, the averaging mask r = ¼ (r-1, r0, r1) = ¼ (1, 2, 1) results in a 
cubic B-spline as limit curve. 

This is a so-called approximating subdivision scheme, since the limit curve 
generated by these averaging masks in general does not interpolate the 

vertices 0

ic of the initial control polygon P0. The first smooth interpolating 

subdivision curve scheme was presented by Dyn, Levin and Gregory in 1987 
[Dyn87]. This scheme is described in more detail in section 2.3. 

A very interesting observation made by Lane and Riesenfeld, was that in order 
to calculate a refinement step for a degree n+1 B-spline, it is not necessary to 
collect all n+1 control points from the previous subdivision level. The same 
result can be obtained by n subsequent average steps of just two control 
vertices. For subdivision curves, this does not seem to be too useful, but when 
the scheme is used as a base for a subdivision surface, this very local behavior 
proves to be very powerful. For subdivision surfaces it is far from clear how to 
collect further away neighbor points, as the mesh for the surface can contain 
multiple extraordinary vertices, where the regular spline pattern is lost. Both 
Jos Stam [Stam01] and Zorin and Schröder [Zorin01a] came to the conclusion 
that subdivision surface schemes that were first developed to generalize 
lower degree curves, could be extended to higher degree surfaces, by 
applying this repeated averaging technique. 

In figures 2-1 through 2-4, an example of the generation of a cubic B-Spline 
via subdivision is shown. Starting from the eight vertices of the initial control 
polygon of figure 2-1, the first subdivision step adds a new vertex in the 
center of each edge (figure 2-2). As the averaging mask is ¼ (1, 2, 1) the newly 
added vertices stay on their original position, while the old vertices are 
relaxed towards the mean of the two new surrounding vertices. Figure 2-3 
shows one subdivision step further, while figure 2-4 shows the resulting limit 
curve. 
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Fig. 2-1. The original control polygon. Fig. 2-2. One subdivision step for 
the cubic B-spline scheme. 
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Fig. 2-3. Two subdivision steps for the 
cubic B-spline scheme. 

Fig. 2-4. The limit curve for the cubic 
B-spline scheme. 

Another observation from Lane and Riesenfeld was that it is not necessary 
that the subdivision process is restricted to divisions by a factor of two. In fact, 
the same principles can be used to generate B-splines by any integer number 
of splitting steps. For example, for a ternary refinement of a quadratic curve, 
[Sabin01] derived the coefficients of equation 2-4. The first formula relaxes 
the position of an old control point, while the second and third define the 
position of the newly inserted vertices. 
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In figure 2-5 an example of this ternary scheme is shown, while figure 2-6 
shows the resulting quadratic B-spline. In [Kobbe00] a ternary subdivision 
scheme for cubic curves is used to serve as a border for his Sqrt(3) subdivision 
surface scheme. In our research about a hexagonal subdivision surface 
scheme, we used a ternary scheme for a quadratic curve. We refer to chapter 
5 for more details about this new scheme for subdivision surfaces. 
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Fig. 2-5. The first subdivision step of 
the quadratic B-spline scheme, each 
time dividing the original edges by a 

factor of three. 

Fig. 2-6. The limit curve for the 
quadratic B-spline scheme 

(obtained by ternary subdivision). 

2.3 Interpolating subdivision curves – the four-point scheme 

Dyn, Gregory and Levin [Dyn87] suggested a way of creating a subdivision 
curve that interpolates the points of a given input polygon. Between each 
two successive points, a new point is inserted depending on the positions of 
the surrounding control points. If only two nearby points are used, without 
any additional information, the optimal position would be to add the new 
point in the middle between the two existing points. This process leads to a 
piecewise linear interpolation of the original control points, thus a C0 curve. 
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As only looking at two surrounding points turns out to only lead to a 
piecewise linear approximation, Dyn et al. considered the four point 
neighborhood: two points on either side of the new point. Four points can be 
used to construct a third degree interpolating polynomial. The parameter 
value in the middle of that curve defines the location of a new point. 

If the old points are taken at equidistant parameter values, the new point can 
be calculated using fixed weights. The new point p is inserted between the 
existing points p1 and p2, which have p0 and p3 as immediate neighbors: 

  2101 99
16

1
ppppp    (2-5) 

This process can be executed for all points of the polygon, and repeated 
recursively to generate a sequence of each time denser polygons. In the limit, 
a smooth curve will be obtained. The limit curve turns out to be C1, but not C2. 
In general the limit curve will not be a cubic polynomial. Only when the initial 
points all lie on the same cubic polynomial will the resulting limit curve be 
that same cubic polynomial. However, the curve is generally much smoother 
than a general C1 curve, which leads to the statement that the curve is 
“almost C2”. 

The four-point scheme is illustrated in figures 2-7 through 2-10. Starting from 
the initial control polygon of figure 2-7, new points are added between the 
existing ones. Figure 2-8 shows the first subdivision step where the position 
of the new points is defined as the center of the unique cubic curve that 
interpolates the four surrounding points. Figure 2-9 shows the second step, 
and after an infinite refinement results in the curve of figure 2-10. 
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Fig. 2-7. Original control polygon. Fig. 2-8. One subdivision step of the four-
point scheme. 
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Fig. 2-9. Two subdivision steps of the 
four-point scheme. 

Fig. 2-10. Limit curve step of the four-point 
scheme. 

By considering larger neighborhoods, the idea behind the four-point scheme 
can be extended to create higher-degree curves. For example, a six-point 
neighborhood creates new points using a fifth-degree polynomial. If applied 
using equidistant parameter values, also this scheme can be expressed with 
fixed weights. In [Sabin01], the following weights are calculated for the new 
point between p0 and p1 in the six-point scheme: 

  321012 325150150253
256

1
ppppppp    (2-7) 

The four-point subdivision scheme has been used a lot as an example for 
further investigation. [Dyn98] derived conditions to maintain geometric 
constraints, such as preserving the convexity of the initial data, by allowing 
the weights of the scheme to vary. A method to analyze the continuity of this 
kind of schemes can be found in [Kobbe98]. 

The four-point subdivision scheme inspired Dyn, Levin and Gregory to create 
a variant of Loop’s scheme that interpolates the points of its initial control 
mesh. Kobbelt used a similar approach to create an interpolatory 
quadrilateral scheme [Kobbe96]. Later, also Labsik used the same curve 
scheme to create another interpolatory triangular scheme [Labsik00a]. These 
schemes are described in sections 3.9, 3.10 and 3.11 of this dissertation. 

2.4 Comparing approximating and interpolatory curves 

The approach used to create the four-point scheme and examples such as 
figure 2-10 suggest that the scheme would always produce nice-looking 
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interpolating curves. In reality, it turns out that these interpolatory curves 
have some annoying peculiarities. 
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Fig. 2-11. The approximating scheme for 
cubic B-Splines using a simple looking 

control polygon. 

Fig. 2-12. The interpolating four-point 
scheme using the same control polygon. 

Figure 2-11 shows an example of a cubic approximating scheme for a quite 
innocent-looking control polygon. Locally, four control points influence the 
form of the curve, which approximates their form, but normally does not 
interpolate them. 

The same control polygon is used showing the behavior of the interpolatory 
four-point scheme (figure 2-12). Again, four surrounding points control the 
local behavior of the curve. Although the curve is smooth, it is not as “fair” as 
one would like. The popping up of bumps is difficult to control, due to the 
interpolatory conditions put on the curve. One partial solution to the problem 
would be to allow the four-point scheme to be non-uniform: instead of taking 
all parameter values equidistant, allow them to be irregularly spaced, which 
actually creates many more degrees of freedom. Kobbelt and Schröder 
[Kobbe97] also suggested a variational approach to further improve the 
quality of the curve: at each subdivision step, an energy function is evaluated 
as well in order to minimize the bending energy. 

As reverting to non-uniformly sampled B-Splines, and even more so for the 
variational approach, results in curves that are more difficult to evaluate and 
analyze mathematically, for many applications the more intuitively behaving 
approximating schemes are used. When subdivision schemes are applied to 
create surfaces, the interpolating schemes produces bulges which are even 
more difficult to manipulate, implying that the approximating schemes are 
seen much more often in practical situations. 
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2.5 Eigenanalysis of subdivision curve schemes 

Eigenanalysis is a handy tool to study the limit behavior of a subdivision curve 
scheme. A single step can be described in matrix form. In order to cope with 
end-point conditions, the matrix formulation has the problem that the matrix 
should double in size after every subdivision step. Therefore, usually a matrix 
of infinite dimensions is used. Such a matrix can either represent the 
subdivision of an infinite chain of points, or a closed curve. However, for many 
practical investigations, also a very limited matrix can also be used. In that 
case, the matrix represents a local environment, that shrinks with every 
subdivision step [Halst93, Joy96]. 

As an example, let us consider the subdivision scheme for cubic B-splines 
[Lane80]. 

In the local environment of three consecutive control points p-1, p0 and p1 the 
refinement process can be written as: 
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For the cubic scheme, the refinement matrix S is equal to: 
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Repeated refinement can be seen as a matrix multiplication. The n-th 
refinement step can be expressed by applying S k times: 
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The limit position p0
 can be calculated after decomposing S into three 

separate matrices: 

 a matrix, R, whose rows are the right eigenvectors of S, 
 a matrix, L, whose columns are the left eigenvectors, 
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 and the matrix  with a diagonal of eigenvalues. 

Using the fact that R∙L = L∙R is equal to the identity matrix, applying the 
subdivision matrix n times to the local environment can be expressed as: 

 LRLRS nnn  )(  (2-11) 

Therefore, R and L control the behavior of the local environment as n 
approaches infinity: 
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In the limit, with n approaching infinity this equation narrows down to: 
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Using the concrete values of R and L for the refinement matrix of Chaikin’s 
scheme, this equation can be expanded as: 
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Therefore, in the limit this local neighborhood ends in one point: 
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The tangent vectors can also be calculated similarly. To study such properties 
as curvature, an extended matrix using a larger local environment must be 
employed. Halstead et al. describe an extension of eigenanalysis to 
subdivision surfaces in order to deduce much useful information about the 
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limit surface [Halst93]. In chapter 5, eigenanalysis is used to study our new 
hexagonal subdivision surface scheme. 
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3 Subdivision surfaces 

3.1 Introduction 

Subdivision surfaces have been known to the computer graphics community 
since 1978, when Ed Catmull and Jim Clark published their tensor product 
extension of cubic uniform B-splines to surfaces [Catmu78]. They were 
followed at the end of the same year by Donald Doo and Malcolm Sabin who 
applied a similar technique to generalize quadratic uniform B-splines [Doo78]. 
Both schemes were named for their inventors and both operate on 
quadrilateral polygonal meshes of arbitrary topology. Some years later, in 
1987, Charles Loop developed the first subdivision surface scheme based on a 
triangular control mesh, extending the formulas for a symmetric quartic box-
spline to cope with extraordinary vertices [Loop87].  

Since then, the research in these recursive subdivision surface schemes has 
led a rather neglected existence, until recently the legendary animation 
company Pixar focussed attention on them again. In 1998 subdivision 
surfaces were used as the main modeling tool for their short Geri’s Game 
[DeRose98]. Developments picked up during 2000 and 2001 by the 
introduction of several new subdivision schemes and many new features, 
applications areas, modeling tools and profound mathematical analysis. 

Subdivision surfaces are defined as the limit surface obtained by repeated 
refinement of a 3D control point mesh. In general, this limit surface does not 
have an exact algebraic representation. Many subdivision surface schemes 
are generalizations of tensor product B-spline surfaces or box-splines, so they 
are equal to these underlying schemes in the regions where the mesh 
exhibits a regular structure. 
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The 3D control point mesh that is used as input for subdivision surface 
generation is organized as a non-manifold polygonal mesh. The word 
“polygonal” is deceiving, however, as the polygons do not need to be planar. 
Even if they were planar, the subdivision process usually creates new non-
planar polygons. In the rest of the text, the word “face” will often be used to 
refer to these polygons, as in general computer graphics applications a “face” 
is a 3D polygon with an established orientation. The orientation decides 
which side should be considered “outside” and it also defines a natural order 
around vertices, which is used during the creation of new faces. 

The valence of vertex is also often referred to. The valence is the number of 
neighboring edges of a vertex. For example, a cube contains six faces and 
eight vertices. Each of the eight vertices has three neighbors, so their valence 
is three. The valence is very important in a subdivision surface scheme. The 
scheme behaves best for vertices with a regular valence. In triangular meshes 
this regular valence is six, in quadrilateral meshes it is four and in hexagonal 
meshes this valence is three. Vertices with a valence that is preferred by the 
scheme are called ordinary vertices. In general, the surface will be the 
smoothest around these vertices. Vertices with any other valence are called 
extraordinary, and usually the surface will have a lower degree of continuity 
in such regions. Luckily, all the new vertices produced by a subdivision 
scheme are all ordinary. (Section 3.3 explains in more detail the differences 
between primal and dual schemes.) During the recursive subdivision process, 
more and more ordinary vertices are created, which leads to an isolation of 
the extraordinary vertices. 

Important for subdivision surfaces compared to other surface representations 
is that they allow the surface to have an arbitrary topology. Subdivision 
surfaces can be used to model a large class of surfaces, which can combine 
smooth and non-smooth features like creases and semi-sharp edges. The 
polygonal mesh that represents the limit surface allows for a simple and 
intuitive interaction with the models. 

Subdivision surface schemes are defined as a multi-stage recursive process. 
During the first stage, the input mesh is upsampled by adding new vertices, in 
a way depending on the particular subdivision scheme. For example, the 
Loop scheme, which is only defined on triangles, adds new vertices at the 
center of the existing edges. Some subdivision schemes keep their old 
vertices, while in other schemes they are removed. The initial upsampling 
stage is followed by one or more averaging stages. The positions of the new 
vertices are averaged with their neighbors. The rules again depend on the 
particularities of the subdivision scheme, and on whether the vertex is an 
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existing one, or where exactly it is inserted relative to the original polygon 
mesh. Furthermore, these rules depend on the valence of the vertex. These 
stages are repeated recursively, usually leading to a smooth limit surface. In 
practice, the recursive process is stopped after some determined number of 
repetitions. In order to minimize the number of polygons generated to 
represent a smooth enough representation of the surface, adaptive 
subdivision techniques are introduced, which subdivide further where the 
surface is highly curved and less in more planar regions. 

Although the limit surface can never actually be reached, mathematical tools 
like eigenanalysis make it possible to obtain exact information about the limit 
surface, such as the limit position of arbitrary points on the surface, as well as 
their normal and even their curvature. This is again useful for physical 
simulations and for applications like ray-tracing the surface. 

A good introduction to subdivision schemes can be found at [Joy96]. For a 
more in-depth overview of the state of the current research in subdivision 
surfaces, we refer to [Zorin00a] and [Hubeli01]. An overview of more general 
surface representations can be found in [Hubeli00]. Although this work is 
mainly directed at geologic applications, its 142 pages give an extensive 
taxonomy of surface representations. 

Subdivision surface schemes have many attractive features, which are 
elaborated in chapter 4. First, the following sections provide a global 
overview of existing schemes known in the subdivision literature. 

3.2 Classification of subdivision surface schemes 

In this section, we give a classification of subdivision schemes. For more 
details about the mentioned schemes, we refer to the subsequent sections. 
This classification is not only a useful introduction to the growing set of 
subdivision schemes, it also explains our motivation for proposing a new 
subdivision scheme, which is presented in chapter 5. 
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Primal (face-split) Dual (vertex-split) 

Triangles Quadrilaterals Quadrilaterals 

Approximating 
(not interpolating 
original vertices) 

Loop Catmull-Clark 
Doo-Sabin 

Midedge 

Interpolating       
the original 

vertices 

Butterfly 

Modif.Butterfly 
Kobbelt  

Table 3-1. Usual classification of subdivision surface schemes. The mentioned 
schemes are explained in more detail in the later sections of this chapter. 

Table 3-1 represents the usual classification for the different subdivision 
surface schemes that exist today: schemes are classified as either 
approximating or interpolating, and further as either primal face-splitting 
algorithms or dual vertex-split algorithms. 

Interpolating schemes, such as the Butterfly scheme ([Dyn90], see section 
3.11), interpolate all vertices of their initial control mesh. Approximating 
schemes only approximate their initial control mesh, leading to surfaces that 
have less unwanted bulges and behave more predictable during interactive 
manipulations. 

A face-split algorithm splits the existing faces by dividing their edges (usually 
into two) and creates new faces. In both the triangular and the quadrilateral 
schemes, the faces are typically split into four. In the quadrilateral case, this 
requires also a new vertex in the center. More details about the properties of 
both type of schemes can be found in section 3.3. 

A vertex-split algorithm replaces all existing vertices by a new face. As the 
existing faces survive the subdivision process, but with their old vertices cut 
away, these schemes are also called corner-cutting schemes. In order to get 
the mesh closed again, usually the existing edges also need to be replaced by 
new faces. These schemes are called dual, because their effect on the mesh 
connectivity can be seen as a face-split operation, followed by interchanging 
the roles of vertices and of faces. Old vertices become the center of new faces 
and old faces are reduced to new vertices. The classical example of such a 
vertex-split algorithm is the Doo-Sabin scheme. 
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The classification of table 3-1 is found for example in the subdivision course 
notes of Siggraph 2000 [Zorin00a], that are generally regarded as 
representing the current state-of-the-art. Similar classifications can be found 
in the even more recently course notes of IEEE Visualization 2001 [Hubeli01] 
or the paper by Zorin and Schröder [Zorin01a]. 

Recently, however, new schemes have been presented that do not directly fit 
into this classification. Kobbelt’s Sqrt(3) scheme [Kobbe00], splits triangles 
into three, but needs to flip the existing edges to create new faces.  Two 
subsequent subdivisions, however, flip the edges back to their original 
orientation and result in splitting the faces into nine subfaces. A scheme with 
the same effect on the connections of the mesh but with different subdivision 
rules has been presented at a Dagstuhl conference and is mentioned in 
[Sabin01]. The double step of both schemes fits in the approximating face-
split classification. 

Based on the connectivity rules of the Sqrt(3) scheme, Labsik and Greiner 
[Labsik00a] introduced an interpolatory variant, employing the interpolation 
ideas of the Butterfly scheme [Dyn90] and Kobbelt’s interpolating scheme for 
quadrilateral meshes [Kobbe96].  

Velho and Zorin came up with a new idea based on dividing quadrilaterals 
diagonally into two triangles [Velho01a]. The scheme behaves like a face-
splitting scheme, but surprisingly it splits quadrilaterals by creating triangles. 
The originators called this the 4-8 scheme, as it works with vertices which 
alternate valences four and eight. 

As these recent schemes do not strictly fit into the original classification of 
table 3-2, we added them, in italics, at the most appropriate position. 

A more important observation about the classification of table 3-1 is that for 
the primal schemes two types of meshes can be used: triangular and 
quadrilateral. For the dual schemes, however, the classification only considers 
quadrilateral meshes. It is strange that the table does not provide a dual 
scheme for triangular meshes. The dual of a regular triangular mesh is a 
hexagonal mesh, and it is not too difficult to define schemes that operate on 
these meshes, as we show in chapter 5 of this dissertation. Regarding the 
connectivity of the subdivided mesh, two types of schemes can be defined. 
The first one divides hexagons into four new hexagons, of which three need 
neighboring hexagons to get closed. Such a scheme is described in a paper 
under preparation by Simoens, Dyn and Levin [Simoe01]. As this scheme does 
not yet have a fixed name, we’ll refer to it as the hexagon-by-four scheme. 
The scheme is a dual scheme, but is not really a vertex split scheme as the 
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original vertices are not removed (see section 5.4). The second type of 
scheme replaces existing hexagons with three new hexagons and effectively 
replaces every old vertex with a new one. We call this scheme the hexagon-
by-three scheme. It will be explained in full detail in chapter 5 of this 
dissertation. 

All these considerations convert the classification of table 3-1 to the extended 
classification of table 3-2, shown below. 

 
Primal (face split) Dual (vertex split) 

Triangles Quadrilaterals Quadril. Hexagons 

Approximating 
(not interpolating 
original vertices) 

Loop 

Sqrt(3) 

Dagstuhl 

Catmull-Clark Doo-Sabin 

Midedge 

Hexagon-
by-3 

Hexagon-
by-4 

4-8 Scheme (Velho) 

Interpolating       
the original 

vertices 

Butterfly 

Modif.Butterfly 

Interp. Sqrt(3) 

Kobbelt   

Table 3-2. Extended classification of subdivision surface schemes. 

Each of the schemes depicted in table 3-2 will be detailed in the sections 
starting with section 3.4, explaining their definition and their most important 
properties. But first, section 3.3 will elaborate the important difference 
between primal and dual schemes. 

3.3 Primal versus dual subdivision surface schemes 

In [Zorin01a] and [Stam01], the duality between subdivision surface schemes 
is an important concept. The dual of a polygonal mesh is formed by 
exchanging the role of points and faces. For example, in the case of the 
Platonic solids (see figure 3-1), the cube and the octahedron are each other’s 
dual: the cube has faces with four edges and vertices with valence three, 
while the octahedron has faces with three edges and vertices with valence 
four. In the same way, the dodecahedron with faces with five edges and 
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vertices with valence three is the dual of the icosahedron. The tetrahedron is 
special because its dual is again a tetrahedron. 

 

Fig. 3-1. The five Platonic solids: The tetrahedron, the cube, the octahedron, the 
dodecahedron and the icosahedron. The cube and the octahedron are each other’s 

dual, just as the dodecahedron and the icosahedron. The tetrahedron is its own dual. 

Subdivision surface schemes are considered primal if the meshes they 
generate are obtained by splitting the faces, usually into four smaller faces 
[Catmu78, Loop87]. These four parts together again represent their original 
face. For a dual scheme, this is no longer true: the newly created faces can 
either match vertices, edges or faces of the original faces [Doo78, Peters97]. 

The preferred number of vertices for the faces of a scheme depends on the 
regular grid on which it is based. This regular grid can either be triangular 
[Loop87, Dyn90, Kobbe00], quadrilateral [Catmu78, Doo78, Kobbe96, 
Peters97] or hexagonal [Simoe01, Claes02]. The preferred valence also 
depends on this regular grid, and is four for quadrilateral schemes, six for 
triangular schemes and three for hexagonal schemes. Every vertex that has 
the preferred valence is called ordinary; all the others are extraordinary. The 4-
8 scheme [Velho01a] is a special case, as it is based on regular grids with 
mixed valences. 

Primal schemes generate new polygons that all have the scheme’s preferred 
number of edges. Existing extraordinary vertices are left untouched, while 
newly generated vertices again have the scheme’s preferred valence. 

For dual schemes, also here the roles of vertices and faces are exchanged. 
Dual schemes shrink existing irregular faces, leaving their number of edges 
intact. Extraordinary vertices, however, are converted to faces with an 
irregular number of edges. For quadrilateral schemes, the new faces have the 
same number of edges as the valence of the vertex from which they originate. 
All newly created vertices are all ordinary. 



24 3 Subdivision surfaces 

 

Therefore, after the first subdivision step, either only faces with the preferred 
number of edges (for the primal schemes) or only ordinary vertices (for the 
dual schemes) remain. The dual schemes can create extraordinary faces 
during their first subdivision step, but from then on, the number of 
extraordinary faces stays constant, while the number of regular faces grows 
exponentially during each subsequent subdivision step. 

In practice, dual subdivision schemes are used much more than primal 
schemes. The most important reason for this is that primal schemes keep 
their existing edges, which are subdivided in a very similar way as if they were 
subdivision curves. In fact, by arranging the points of the faces in a 
symmetrical way, it is possible to oblige the edges to interpolate a subdivision 
curve. This property of dual schemes turns out very handy for creating 
borders and sharp edges, and even semi-sharp edges [Hoppe94, Schwe96, 
DeRose98]. Dual schemes cut off their existing edges, which makes 
implementing borders and sharp edges more complicated [Nasri87]. 

For primal schemes, the silhouette edges keep looking good, even when the 
mesh is only subdivided a few times. This is an important benefit for primal 
schemes, as silhouettes are an important visual clue to how a surface looks. In 
dual schemes, the edges are constantly cut away, considerably changing the 
look of the silhouettes at each subsequent step. After a few subdivision steps, 
however, the surface is smoothed a lot, and silhouettes only change in a 
subtle way thereafter. 

3.4 Midedge subdivision 

Jörg Peters and Ulrich Reif proposed a very simple way to subdivide a 
polygonal mesh [Peters97]. They create new edges in a polygonal mesh by 
interconnecting the midpoints of each edge to the midpoints of all edges 
that have both a face and a vertex in common. By joining these edges a new 
mesh is created to form two types of faces: 

 Each existing vertex in the old mesh is replaced by a new face, effectively 
cutting the vertex away. 

 Each existing face of the old mesh is replaced by a smaller face consisting 
of the midpoints of its old edges. 

Remark that in general these cuts are not planar. The subdivision rules are 
very simple: there is only one type of new point (the midpoint of the edge), 
whose position is calculated using only two old vertices.  
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It turns out that, when limited to regular quadrilateral meshes, two steps of 
this subdivision algorithm are equal to a factored box-spline subdivision. The 
underlying four-directional symmetrical box-spline is known as the Zwart-
Powell element. 

As these simple rules lead to too slow convergence speeds for polygons with 
a large number of vertices, Peters and Reif adapted their scheme to make sure 
that all polygons shrink at the same rate. Therefore, they need to include all 
vertices of the polygon into the equation, which is furthermore only defined 
when combining two steps. This makes their modified scheme very similar to 
the Doo-Sabin scheme, with some slightly different rules for extraordinary 
vertices. Unfortunately, no adapted rules exist for the single step algorithm. 

Six subsequent steps of the Midedge subdivision are shown in figure 3-2. 
Note that each step simply creates new faces by connecting the centers of the 
edges. In this simple version of the Midedge scheme, the triangles that are 
formed at the corners of the original cubes shrink more quickly then the 
quadrilaterals. 
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Fig. 3-2. Six steps of the Midedge subdivision of a cube. 

3.5 Catmull-Clark 

In 1978, Ed Catmull and Jim Clark introduced the first subdivision scheme to 
generate surfaces with an arbitrary topology [Catmu78]. They generalized the 
subdivision scheme for cubic B-splines to a tensor-product definition (see 
section 2.2 of chapter 2). This approach is nicely defined on regular 
quadrilateral meshes and can be executed in two separate passes. First, the 
curve scheme is executed in one direction, followed by a second pass in the 
orthogonal direction. Catmull and Clark’s most important innovation was the 
extension of the scheme allowing it to cope with non-regular meshes. In the 
regular setting, the mesh consists solely of quadrilaterals and all vertices have 
a valence of four. Catmull and Clark observed that they could split faces that 
are not quadrilaterals in a similar way as the faces are split in the regular case. 
Just add a point in the center of the face and connect it to the center of every 
edge. This ensures that starting from the first subdivision step, all generated 
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faces are quadrilaterals. Also newly generated points at the centers of the 
edges nicely get a valence of four. Only the centers of input faces that were 
not quadrilaterals lead to the creation of an extraordinary vertex. This implies 
that the number of extraordinary vertices stays constant, namely one for each 
extraordinary vertex in the input mesh and one for each face that was not a 
quadrilateral. 
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Fig. 3-3. Subdivision around a central vertex V0, showing 
surrounding control points (Qi), edge points (Ei) and face points 

(Fi). 

Starting from figure 3-3, we’ll describe the rules used by the Catmull-Clark 
scheme. Catmull and Clark designed their rules to match the tensor product 
in the regular case and to try to mimic this as much as possible for irregular 
cases. Figure 3-3 depicts the situation around an existing vertex. An initial 
vertex V0 is surrounded by n edges, leading to n neighbor vertices Qi. A first 
step in the subdivision process is to insert so-called face points Fi at the 
centers of the faces. Then, for every edge a so-called edge point Ei is 
calculated as the mean between the two vertices and the two face points of 
the faces that make up the edge. Finally, the positions of the existing vertices 
are relaxed by averaging them with their neighbors in the following way. V1 is 
the position of V0 after the first subdivision step and is calculated as: 
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After using these rules for face points, edge points and vertex points, new 
faces are formed. First the existing edges are split using the edge points and 
the new vertex points, and then new faces are formed by connecting the 
edge points with the face points. 

In the literature, different weighting factors have been used for the 
calculation of the new vertex point. But, as long as these weights stay within 
certain limits and are applied in a uniform and stationary way, most features 
of the original scheme stay valid [Zorin00a]. 

Catmull-Clark’s scheme is not only the first scheme, it is also the most used in 
modeling applications, as it lends itself to model objects with rectangular 
symmetries and typical cylindrical features, such as arms and legs. 
Furthermore, it can be extended quite easily to support sharp and semi-sharp 
edges [DeRose98] (see also section 4.7). Halstead et al. used eigenanalysis on 
Catmull-Clark’s scheme to obtain explicit formulas for the limit position of the 
vertices and the surface normals [Halst93]. 

3.6 Doo-Sabin 

During the same year that Catmull and Clark published their scheme, Donald 
Doo and Malcolm Sabin introduced their scheme, also based on a tensor 
product for subdivision curves. Instead of cubic curves, they used quadratic 
curves. This leads to quite simple rules. Only one type of new point is 
introduced, at the center of a quadrilateral formed by an existing vertex, two 
edge points and the center of the face. This effectively shrinks the existing 
faces to half their original size. In order to close the mesh again, also new 
faces are put around the old vertices and edges. This has the visual effect of 
cutting away the corners of the polygonal mesh. The mesh obtained is the 
dual of the mesh from the Catmull-Clark scheme, interchanging the roles of 
points and faces. 

In figure 3-4 the Doo-Sabin subdivision process is illustrated for a polygon 
with five vertices. 
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Fig. 3-4. Left: An input polygon with surrounding edges. Right: The new faces created 
by one subdivision step of the Doo-Sabin algorithm. 

3.7 Higher degree B-Spline surfaces 

In 2001, two research papers were published containing the idea to use 
repeated averaging to obtain surfaces with a higher degree of continuity. 
Zorin and Schröder [Zorin01a] as well as Jos Stam [Stam01] started from the 
idea of factorizing Lane and Riesenfeld’s formula for subdivision curves with 
any degree of continuity [Lane80] (see section 2.2). For example, a subdivision 
scheme for a B-spline curve of degree six normally needs a support of seven 
neighboring vertices. The interesting observation made by [Zorin01a] and 
[Stam01] is that the same scheme can be factorized in six subsequent 
averaging steps, each time using only two neighboring vertices. For curves, 
this factorization does not seem to help a lot, but for subdivision surface 
schemes based on these curves, it brings essential new possibilities. For 
surface meshes, a neighborhood of seven vertices in every direction would 
require a region of 49 vertices in a regular quadrilateral mesh. A key issue for 
subdivision surface schemes, however, is that they also should be defined for 
irregular meshes, making it practically impossible to define how the 
surrounding region should be sampled for every irregular combination. 
Subdivision surface schemes already have enough problems defining how to 
adequately sample a neighborhood of one or maximally two surrounding 
vertices. The factorization of the subdivision rules, however, permits this 
higher degree of continuity to be obtained by repeatedly averaging a limited 
region. 
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It turns out that, for the repeated averaging, it is not possible to work with 
one simple mesh. In the case of curves, every averaging step of the vertices of 
a control polygon creates a new control polygon with vertices in the middle 
of the existing ones. The total number of vertices stays the same, however. 
The new mesh can be considered as the dual of the old one: just interchange 
the roles of vertices and the edges connecting them. To imitate this behavior 
on the surface schemes that are defined as tensor products of these curves, 
also a dual mesh is needed. For the polygonal meshes, this dual mesh consists 
of interchanging the roles of polygons and vertices. The meshes generated by 
Catmull-Clark’s and Doo-Sabin’s scheme possess such a duality and were 
employed by Stam, Zorin and Schröder to create surfaces with a high degree 
of continuity.  

3.8 Loop’s scheme 

In 1987, Charles Loop generalized the subdivision rules of a symmetric quartic 
box-spline over a regular triangulation to include rules to be applied in the 
vicinity of extraordinary points [Loop87]. The limit surface is C2 continuous 
everywhere except at the extraordinary points, where it is only C1. Loop 
showed that at the extraordinary points the surface exhibits a continuous 
tangent plane, as long as the weighting factors stay between certain limits. 
Although part of Loop’s motivations were based on intuition, it turned out 
that the rules that he considered as optimal still survive today as being the 
most suited for stationary triangular subdivision. 

In a document that has only been published as a draft on the Internet, but 
nevertheless is often referenced, Joe Warren [Warren95] proposed some 
alternative rules. For most practical applications, the visual difference 
between the two sets of rules is minimal, but Warren’s rules have the 
advantage that they are simpler for mathematical analysis. 

Loop’s scheme has been studied extensively. Prautzsch, for example, showed 
how the eigenvalues of the subdivision matrix can be changed to optimize 
the continuity of the limit surfaces [Praut99, Praut00]. And Bischoff et al. even 
studied the possibilities of a hardware implementation of this scheme 
[Bisch00]. 

Loop’s scheme is used in chapters 9 and 10 of this dissertation, where more 
mathematical details about the scheme can be found. 
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In figure 3-5, four consecutive steps of the Loop subdivision scheme of a 
triangle is shown. Each time all existing triangles are divided into four smaller 
triangles. 

 

Fig. 3-5. Four steps in the subdivision of a triangle. 

3.9 Sqrt(3) subdivision 

At Siggraph 2000, Leif Kobbelt presented a new scheme for triangular 
meshes. While Loop divided the existing triangles by cutting every edge into 
two pieces, Kobbelt adds a new point in its center. In order to keep the newly 
generated triangles from getting skinnier and skinnier, at each subdivision 
step, the connecting edge between neighboring triangles is flipped (see 
figure 3-6). After two successive subdivisions, the triangles revert to their 
original orientation. It turns out that two steps divide the original triangle into 
nine smaller ones and split the edges into three. Therefore, Kobbelt 
suggested that one subdivision step cuts the edge length by a factor of 
sqrt(3). This remark inspired the name for his new subdivision scheme. 

 

Fig. 3-6. The Sqrt(3) subdivision scheme on a regular triangular grid. Left: The original 
triangles. Center: New points are added in the center and new triangles are created 

by flipping the existing edges. Right: The result after one subdivision step. 

Kobbelt suggested the following rules for his Sqrt(3) scheme. A new point Q 
in the center of a triangle P1P2P3 is simply calculated as: 
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Furthermore, the position of the existing points are relaxed by averaging 
them with their immediate neighbors. The new position P’ of an existing 
point P, surrounded by n original points P1P2…Pn is calculated as: 
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Equation 3-3 uses a weighting factor n  that depends on the valence of P. 

Using eigenanalysis, Kobbelt concluded that the following value for n would 

be optimal: 
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The Sqrt(3) scheme does not seem to be based on a particular box-spline. 
Therefore, evaluating the surface and analyzing the behavior is more 
complicated than with the more conventional subdivision surface schemes. 

An advantage of the Sqrt(3) scheme compared with schemes like Loop’s and 
Catmull-Clark’s, is that the number of generated polygons only grows with a 
factor of three by each subdivision step, compared to the factor of four for the 
conventional schemes. This makes it more probable that a certain level of 
detail is reached using fewer polygons. The difference between three and 
four becomes clear when one looks at multiplication factors by which new 
polygons are generated. For the Sqrt(3) scheme, these factors are growing 
like 3, 9, 27, 81, 243, … for subsequent subdivision steps, while for the Loop 
scheme they grow like 4, 16, 64, 256, … . After four steps, the Loop scheme 
already created more than three times the number of faces compared to the 
Sqrt(s) scheme and that difference grows exponentially with the number of 
subdivision steps. 

3.10 Interpolatory Sqrt(3) subdivision 

Inspired by the new connectivity of the Sqrt(3) scheme, Labsik and Greiner 
[Labsik00a] created an interpolatory variant. They employed the interpolation 
ideas of the Butterfly scheme [Dyn90] and Kobbelt’s interpolating scheme for 
quadrilateral meshes [Kobbe96]. In order to get a small support region they 
also employed the four-point scheme for curves to derive a rule for inserting 
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the new points. As it is an interpolating scheme, there are no rules for the 
existing points: they simply stay in their original position. Only a rule for the 
new point in the center of each triangle is needed.  When vertices with a 
valence different to six are encountered in the neighborhood, the rules are a 
bit complicated and are not written down explicitly. They are calculated from 
the results of an eigenanalysis of the subdivision matrix. As in the ordinary 
Sqrt(3) scheme, they need to combine two steps to get an analyzable 
situation.  

As the connectivity of the mesh is the same as for the Sqrt(3) scheme, the 
generated meshes have the same structure as figure 3-6. 

Q

P3P6

P2P1

P9P8

P7
P10

P11P12

P4

P5  

Fig. 3-7. Situation around a new point Q for 
the interpolating Sqrt(3) scheme. 

For the configuration shown in figure 3-7, Labsik and Greiner derived the 
following formula to calculate the new position of the point Q. As it is an 
interpolating scheme, no new positions are needed for the already existing 
points. 
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32
PPPPPPPPPPPPQ    (3-5) 

Around extraordinary points, more complicated formulas are needed, which 
were only derived for a double subdivision step.  



34 3 Subdivision surfaces 

 

3.11 The Butterfly scheme 

The structure of the meshes created by the Butterfly algorithm is very similar 
to the meshes created by Loop’s scheme [Dyn90, Dyn93]. It also creates new 
points by splitting the edges into two, followed by a relaxing step. The 
averaging masks used are quite different, however. The vertex-points always 
stay in their original position, which causes this scheme to be an interpolating 
one. The averaging mask for the newly inserted edge-points is depicted in 
figure 3-8 The form of this mask resembles a butterfly, hence the name of the 
scheme. 

The limit surface is differentiable everywhere except at extraordinary points 
of valence n = 3 and n >= 8 [Praut00]. Although the surface is tangent plane 
continuous at extraordinary points of valence n >= 8, the surface is not 
regular as it has self-intersections. To overcome this shortcoming Zorin, 
Schröder and Sweldens [Zorin96] extended the algorithm creating G1-
surfaces for every type of extraordinary point. 

Q

P3 P5P4

P2P1

P8P7P6  

Fig. 3-8. Situation around a newly inserted 
edge point for the interpolatory Butterfly 

scheme. 

Dyn et al. derived the following formula to calculate the position of the newly 
inserted point Q depicted in figure 3-8: 

      87654321 2
2

1
PPPPwPPwPPQ     (3-7) 

This equation uses a tension parameter that can be freely chosen between 
some bounds. Usually it is set to 1/16. 
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Junkins et al. based a real-time game application on the Butterfly subdivision 
scheme [Junki00]. The subdivision approach allowed them to work with 
objects in different levels of detail, generate efficient bounding boxes and 
implement a lazy evaluation approach. 

3.12 Interpolatory subdivision for quadrilateral meshes 

Leif Kobbelt further generalized the four-point interpolatory subdivision 
scheme for curves to a tensor product subdivision scheme for surfaces 
[Kobbe96].  So, where the Butterfly scheme is defined on triangular meshes, 
Kobbelt’s scheme operates on quadrilateral meshes. The connectivity of how 
new points are introduced into the mesh, is the same as for Catmull-Clark’s 
scheme, but the rules for calculating their positions is different. In his 
Siggraph’96 paper, Kobbelt describes specific rules for the computation of 
these positions, which are too elaborated to copy here. Kobbelt also 
introduces methods to create boundaries, sharp features and adaptive 
refinement. He further proves the C1 continuity of his scheme. 

3.13 Velho and Zorin’s 4-8 scheme 

Recently, in 2001, Luiz Velho and Denis Zorin [Velho01a] introduced the first 
subdivision surface scheme that is not based on meshes of regular polygons. 
Until then, the standard meshes were either based on quadrilaterals with 
regular vertices having valence four or on triangles with regular vertices 
having valence six. Instead, their new scheme has regular vertices that 
alternate valences four and eight, with the basic polygon type being a right 
triangle. These right triangles are obtained by cutting quadrilaterals over their 
diagonal into two pieces.  

Usually the starting mesh of their scheme needs some preprocessing. If the 
given mesh is mainly quadrangular, it suffices to add diagonals in alternating 
directions. For triangular starting meshes, they described a more involved 
geometric construction. 

Figure 3-9 shows a regular 4-8 tiling and two refinement steps. Meshes with 
irregular vertices are subdivided in a similar way. 
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Fig. 3-9. Left: A regular 4-8 tiling, with one basic tile highlighted. Center: A new 
subdivision step first introduces new vertices in the center of the diagonals (marked 
with small circles) and adds new diagonals that are rotated 45º compared with the 

previous step (thick lines). Right: The subsequent subdivision step. 

Due to how Velho and Zorin designed their subdivision rules, the scheme is 
more closely related to quadrilateral than to triangular schemes. Hence, two 
successive subdivision steps mimic a quadrilateral subdivision like Catmull-
Clark’s. An important difference with Catmull-Clark’s scheme is that the 4-8 
scheme generates surfaces that are C4 everywhere, except in the 
neighborhood of a few isolated extraordinary points, where the surface in 
only C1. A drawback, however, is that the 4-8 scheme needs a larger support 
area, making the required masks for calculating tangent vectors significantly 
larger. 

    

Fig. 3-10. A: The initial control mesh. B: Uniform subdivision. C: An adaptively refined 
mesh applying geometric stopping criteria. D: Adaptive subdivision with a spatial 

threshold, illustrating how rapidly the polygon density can change. 
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The most important feature of the 4-8 is its flexibility in which it allows 
adaptive refinement. As the number of faces only multiplies with a factor of 
two with each subdivision step, there can be an enormous difference in 
number of polygons between nearby areas.  Figure 3-10 (courtesy of 
[Velho01a]) shows such adaptive subdivisions of a simplified mesh of the 
Stanford bunny. 

3.14 The Dagstuhl scheme 

This scheme is only mentioned in [Sabin01] and seems to be proposed at a 
Dagstuhl conference. Its way of generating new meshes, is similar to the 
Sqrt(3) scheme, but it uses a little larger support. 

Sabin only describes the rules for the regular setting, which are derived from 
a particular box-spline surface. For a new point Q generated in the center of a 
triangle P1P2P3, and with P4P5P6 as the extreme corner points of the three 
direct neighboring triangles the formula is (see figure 3-11, left): 

  654321 222
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And the position of an existing point P0 surrounded by six direct neighbors 
(P1P2P3P4P5P6) is relaxed using equation 3-9 (see figure 3-11, right): 
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Fig. 3-11. The regular masks for the Dagstuhl scheme. 
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4 Properties of subdivision surfaces 

4.1 Arbitrary topology 

The most important advantage of subdivision surfaces compared to 
alternative techniques is that subdivision surfaces allow surfaces of arbitrary 
topology to be created. Not only can the mesh have any number of holes, it is 
also possible to seamlessly combine rough regions having a small polygon 
count with regions containing much more detail.  

Before subdivision surfaces were in widespread use, surfaces were stitched 
together from rectangular or triangular patches, which needed to be trimmed 
to fit together. As the trimming process cannot always guarantee a precise 
border, small gaps and discontinuities are difficult to prevent. 

The topology does not need to be restricted to manifold meshes. In a 
manifold mesh, each local environment of a point is topologically equivalent 
to a disk. In many applications, it can be handy to work with non-manifold 
meshes, where several surfaces can share common boundaries. Examples are 
a fish with fins or a plane with wings. Ying and Zorin show how Loop’s 
subdivision scheme can be extended to operate on these non-manifold 
meshes [Ying01]. 

4.2 Level of detail 

Depending on the requirements of the task at hand, subdivision surfaces can 
be generated with different levels of detail. When speed is important, a quick 
preview can be obtained using only one or two subdivisions. For a final high-
quality rendering, many more subdivision steps will be computed [Pulli96]. 
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Furthermore, techniques have been developed to adaptively approximate a 
surface depending on error bounds, like flatness or size of the final polygons. 
A subdivision surface scheme having an extreme capacity of combining both 
coarse and highly subdivided regions is the 4-8 subdivision introduced by 
Velho and Zorin [Velho01a]. 

Many practical tips are described in [Junki00] to incorporate the use of 
subdivision surfaces in a real-time game. With the help of lazy evaluation, 
parts of a subdivision surface that would be clipped away during the 
rendering, can be skipped, effectively minimizing the consumed computation 
time. 

4.3 Numerical quality 

The meshes produced by subdivision possess many of the nice properties 
finite element solvers require [Reif00]. Commonly applied subdivision 
surfaces schemes guarantee at least C1 continuity and are suitable for many 
numerical simulation tasks, so they can be used in animation systems or 
engineering calculations. 

Furthermore, the subdivision process makes use of simple linear 
combinations to calculate new points and new positions, so there is no need 
to multiply or divide the input variables with each other or to evaluate them 
in higher degree polynomials. All this leads to less susceptibility to rounding 
errors, ensuring a numerically stabile environment.  

4.4 Convex hull property 

When the weights in the subdivision mask are all positive and sum to 1, the 
limit surface is guaranteed to lie inside the convex hull of a limited set of 
neighboring control points. Moreover, this property is propagated by the 
recursive subdivision process, where each subsequent step puts the limit 
surface in a smaller convex hull [Pulli96]. 

This property is very useful, for example, when displaying the surface; as soon 
as all the control points of a part of the surface lie outside the view frustum, 
this part can be clipped away. A similar approach can be used for collision 
detection algorithms. 

While almost all approximating subdivision schemes are restricted to use 
positive masks, interpolating schemes necessarily need negative weights for 
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generating a smooth interpolating surface [Dyn90]. Consequently, the 
interpolating schemes don’t exhibit an easy convex hull property, which is 
one of the reasons why interpolating schemes are used less in practical 
applications. 

4.5 Exact evaluations of points and normals 

Besides the ability to construct a mesh using recursive refinement, some 
applications need a more exact evaluation of the limit points and limit 
normals of a surface. At the places where the mesh is regular, this information 
can be calculated straightforwardly using the underlying tensor product or 
box-spline. For the extraordinary points, Halstead et al. [Halst93] showed how 
eigenanalysis leads to exact formulas for their limit positions. The area around 
the extraordinary points, however, is more complicated, as it is formed by a 
recursive cascade of concentric bands. Each band viewed separately is 
regular, but bears an infinite series of smaller similar bands inside, ultimately 
converging to the limit position of the extraordinary point. With the help of 
eigenanalysis and pre-computed matrices, however, Jos Stam succeeded in 
calculating limit positions and normals for arbitrary points of the surface 
[Stam98, Stam99]. Later Zorin and Kristjansson extended this research to work 
in even more general conditions [Zorin00b]. 

4.6 Editing subdivision surfaces 

The edit interface is simple and without the many limitations imposed by 
patched surfaces. Users can edit the arbitrary meshes freely and do not need 
to worry about the conditions to keep the surfaces without undesired 
discontinuities. 

Special purpose editors can try to optimally exploit the possibilities of 
subdivision surfaces, minimizing the number of required polygons and trying 
to avoid as much as possible the introduction of extra-ordinary points. An 
example is the editor for cartoon faces by Skaria, Akleman and Parke 
[Skaria01]. 

4.7 Sharp and semi-sharp features 

Subdivision surfaces are not limited to completely smooth surfaces. For 
example, in the Catmull-Clark scheme (see section 3.5), sharp edges can be 
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generated by keeping the points of the sharp edges in their original place 
instead of relaxing them by the normal subdivision rules [DeRose98]. The 
surrounding points keep following the standard rules of the scheme. Earlier 
Hugues Hoppe [Hoppe94] described similar approaches for Loop’s scheme, 
for which he also added corners and cusp and conical points. These 
extensions were further analyzed and formalized by the work of Jean 
Schweitzer [Schwe96]. 

 

Fig. 4-1. An image taken from Geri’s Game. DeRose et al. used subdivision surfaces 
with sharp and semi-sharp edges to model Geri’s head and jacket (©Pixar). 

Instead of completely sharp edges, also semi-sharp edges are a desired 
feature, both for modeling artists and for industrial designers. These semi-
sharp edges can be generated in a way similar to the sharp ones. The first few 
subdivision steps keep the involved points in their original place, but after a 
user-defined number of steps, also these points revert to the standard rules. 
To make things even more adapted to the user’s needs, this number of steps 
does not need to be restricted to an integer. When it is set to a fractional 
number, such as for example 3.45, the first three steps are performed without 
moving the point. For the fourth step, the fixed position and the position 
obtained by standard rule are interpolated using the fractional part (0.45 in 
the example given). And for every subsequent subdivision step, again the 
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standard rule is used. Figure 4-1 shows an example of sharp and semi-sharp 
features in Pixar’s short animation, Geri’s Game [DeRose98]. 

Sharp edges are most easily implemented on schemes where the original 
points and edges do not get replaced by multiple new points, but instead are 
only moved to relax the scheme. Fully interpolating schemes are also difficult 
to adapt to allow sharp edges, as the existing points are already kept in their 
place and the surrounding new points would have to fulfill too many 
constraints.  

Therefore, except for the Catmull-Clark scheme, also the Loop scheme (see 
section 3.8) and the 4-8 scheme (see section 3.10) lend themselves naturally 
to being adapted to cope with sharp edges. The Sqrt(3) scheme (see section 
3.9) is a little more complicated to adapt. This scheme also moves its existing 
points, but at the same time restructures the connections of the edges, so 
that an edge is only at its same topological position every two steps. 

On the other hand, corner-cutting schemes – like the Doo-Sabin scheme (see 
section 3.6), the midedge scheme (see section 3.4) and the hexagonal scheme 
described in chapter 5 – are not so easy to adapt for sharp edges. In these 
schemes every subdivision step replaces existing points and edges by 
completely new polygons, making it difficult to indicate an edge that has to 
be sharp. Tricks like adding an imaginary border and making the surface 
touch itself can establish a sharp C0 border. Semi-sharp edges would need an 
algorithm that first performs some subdivision steps, taking the imaginary 
border into account, and after a user defined number of steps, ignores that 
border again, using the standard rules. 

   

Fig. 4-2. A control mesh for a smooth Catmull-Clark surface (left); the resulting surface after 
indicating four edges as sharp (center) and after indicating four more edges as sharp (right). 



44 4 Properties of subdivision surfaces 

 

Figure 4-2 gives an example of our implementation of semi-sharp edges in 
the Catmull-Clark scheme [Claes01b]. At the left, a control mesh for a torus, 
together with the resulting smooth surface is shown. The image in the center 
is the result of indicating four of the outermost edges as interpolating. The 
image at the right also has four of the innermost edges indicated as sharp. 

4.8 Boundaries 

Although the basic formulas for subdivision surfaces are defined for closed 
meshes, they do not need to stay restricted to closed surfaces. Special rules 
for borders can simply mimic the behavior of a particular subdivision surface, 
where newly generated points on the boundary only depend on other 
boundary points. This simple setup works for face-splitting subdivision 
schemes with a small support, such as the Catmull-Clark [Catmu78] and the 
Loop scheme [Loop87]. Levin remarked that this approach sometimes leads 
to self-overlapping surfaces near the border, and proposed some 
modification to the subdivision rules for the point near the borders [Levin00]. 

Making sure that rules on the boundary do not depend on internal points is 
useful to create creases and sharp edges. The only requirement to get a 
neatly closed crease is to put the control points for the boundary on the same 
position for different surfaces. 

Doo defined boundaries to the Doo-Sabin scheme by simply doubling the 
boundary edges [Nasri87]. In his setup, at each boundary edge he placed an 
artificial rectangle replicating the points of the edge. Nasri described more 
complex ways to define boundaries [Nasri87]. 

4.9 Parameterization (texture mapping coordinates) 

Rectangular patches that are tensor products, for example of two splines, 
have a very straightforward texture parameterization. Each point of the 
surface is the sum of two points, one on each of the spanning curves, letting 
the point inherit its u and v coordinate from the parameterization of the 
curves. Similarly, triangular patches have a u and v coordinate limited to a 
triangular domain. 

As subdivision surfaces are defined over meshes exhibiting an arbitrary 
topology, they lack a simple parameterization. In their paper discussing the 
subdivision techniques used to create the Geri’s Game short animation, Tony 
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DeRose and coworkers [DeRose98] propose the following approach. Texture 
coordinates can be attached to the points of the defining mesh, using 
techniques like planar, spherical and cylindrical projections or letting a user 
assign them in an interactive way. Afterwards, these coordinates need to be 
distributed properly over the newly generated points of the little polygons 
making up the subdivision surface. It turns out that this distribution can be 
accomplished in exactly the same way as the distribution of the X, Y and Z 
values of the points of the initial mesh. So, whenever a new point is created 
(or an existing one is moved), not only is the 3D coordinate calculated, but 
also the u and the v coordinates are averaged using the same scheme. 

This approach does not need to be restricted to texture coordinates. Tony 
DeRose also introduced scalar values that were distributed in a similar way. In 
the construction of the Geri’s Game animation, darker regions like cavities 
and bright spots on the surface were marked by assigning scalar values to the 
control points of the coarse mesh. The subdivision process then distributed 
these values to every vertex of the subdivided mesh. During the rendering 
stage, these values were used as part of the procedural shading calculations. 
This method turned out very effective in allowing the artist to fine-tune the 
optimal shading he had in mind. Figure 4-3 illustrates this with an actual 
image taken from Geri’s Game. 
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Fig. 4-3. Geri, from the Geri’s Game animation short. DeRose et 
al. distributed a scalar parameter value over the subdivision 

surface that represents his jacket. This scalar value was used in 
the procedural shading to accentuate stiches and folds (© 

Pixar). 

4.10 Multi-resolution editing 

The recursive subdivision process is fundamentally linked to multi-resolution 
analysis and wavelet theory, as described in the book by Stollnitz, DeRose and 
Salesin [Stoll96]. In a multi-resolution description of an object, a very coarse 
first approximation is used. Gradually more levels, each one attaching more 
details, are added. This allows for powerful editing at one level without losing 
the details added by the lower levels. A multi-resolution description strongly 
resembles the subdivision process. The main difference is that the 
subsequent representations of a subdivision surface are all approximations of 
the same limit surface, while in a multi-resolution representation more 
information can be added at each level. Eck et al. show how to convert 
arbitrary polygon meshes into multi-resolution meshes [Eck95]. 

A multi-resolution representation is also very useful when sending geometric 
information over the Internet. After receiving the coarsest mesh, the target 
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computer can already start displaying it, gradually updating the finer details 
as they get progressively transmitted [Hoppe96, Certa96, Labsik00b]. 

Khodakovsky et al. show how multi-resolution analysis and wavelet based 
methods can be used to progressively compress a polygonal mesh [Khoda00]. 
An underlying subdivision surface scheme allows for meshes with arbitrary 
topology. An example from their results is shown in figure 4-4. 

 

Fig. 4-4. Using multi-resolution methods to obtain progressive meshes [Khoda00]. 

 

An interesting variation on multi-resolution representations is a so-called 
displaced subdivision surface [Lee00]. Here the fine detail is represented as a 
scalar-valued displacement over a smooth domain surface. Similar to a multi-
resolution representation, these meshes can be used to strongly compress 
detailed geometric information, but also allow an easier way of editing and 
animating the surface. 

Another example of the power of the subdivision paradigm for multi-
resolution meshes is the integration of engraving, embossing and trimming 
[Bierm01, Litke01]. In a similar context, [Velho01b] shows how a multi-
resolution representation can be combined successfully with synthetic 
procedural texture generators. This is a powerful and general shape modeling 
paradigm as these textures can be applied at different levels and can be fused 
together seamlessly. The underlying surface can either be captured or 
modeled by an artist. As these surface representations can rely on lazy 
evaluation, the finest detail only needs to be generated when viewed from a 
close distance. 
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4.11 Wavelets 

Wavelets play a very important role in many different scientific research fields, 
such as image analysis and signal processing. As wavelets can also be applied 
to tackle differential equations, the theory behind it has been applied 
successfully in many studied physical phenomena [Stoll96]. 

While a Fourier transform converts a signal to a frequency domain, wavelets 
simultaneously approach the frequency and the time domain. In wavelet 
analysis, a window is shifted along the signal and for every position the 
spectrum is calculated. This process is repeated many times with a scaled 
down version of the window. 

Image-processing applications use wavelets to highly compress images in a 
top-down way or to fill in gaps of missing information in images [Adels87, 
Lundm01]. In medical image processing, wavelets are used to find 
correlations between different parts of the image [Laine93].  

 

4.12 Interpolating point sets 

Subdivision surfaces have also been used successfully to approximate or 
interpolate point sets, such as the ones obtained by optical scanners 
[Hoppe93, Hoppe94, Schwe96]. Nasri [Nasri87] describes an approach to 
constructing a control mesh for a Doo-Sabin scheme such that this mesh 
interpolates an initial set of points. Similarly, Halstead et al. [Halst93] moved 
the control points for a Catmull-Clark subdivision such that the scheme would 
interpolate its original mesh. As the resulting mesh had unwanted bumps and 
irregularities, they applied an energy-minimizing process, moving the points 
of the first and the second subdivision, in order to get the surface as fair as 
possible. An interesting approach is described by Zhang et al., who use a 
strategy based on subdivision surfaces and minimizing strain energy to move 
bad data-points [Zhang01]. These points could be obtained from a laser 
scanner, or they could be badly located points that appeared during the 
interactive design of a model. 

Another more direct approach comes from Dyn, Levin and Gregory, when 
they presented their Butterfly scheme (see section 3.10), directly interpolating 
the initial points of the control mesh. Similar methods have been used by 
Kobbelt [Kobbe96] and Labsik and Greiner [Labsik00a] for other types of 
meshes. 
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4.13 Free-form deformations 

Subdivision surfaces and their extension to volumes have been used as a base 
for free-form animation tools. By moving only the control vertices, the 
subdivision process smoothly transforms the space between them. 
MacCracken and Joy used a particular extension of the Catmull-Clark scheme 
to volumes [MacCr96] and in our work we applied the Loop scheme with local 
interpolation [Claes00]. In chapter 10 we explain more details about the 
techniques we used. 

4.14 Simulating physical processes 

Subdivision schemes combined with multi-resolution methods have been 
proven successful in studying physical processes like the motion of fluid flow 
[Weimer99]. In this context, the subdivision schemes serve as a framework to 
solve differential equations. The same authors, Weimer and Warren, also 
proved how thin plate splines, as an approximation of bending energy, are a 
good way to tackle the modeling of “fair” surfaces [Weimer98].   

A specific advantage of both subdivision surfaces and subdivision volumes 
for studying physical processes, are the arbitrary topology, allowing the 
solution space to be planar, hyperbolic, or free-form. Another advantage is 
the possibility of keeping the influence between nodes local, highly speeding 
up the calculations. 

Cirak, Ortiz and Schröder show how Loop’s subdivision surface scheme can 
be incorporated in thin-shell finite-element calculations [Cirak00]. Their new 
paradigm turned out to be highly accurate with an optimal convergence. 
Especially the fact that Loop surfaces are guaranteed to have a finite bending 
energy plays a key role in their analysis methods. Moreover, subdivision 
allows the geometric modeling and the finite-element analysis to use an 
identical representation, making the implementation more robust. Additional 
advantages are the integration of non-smooth elements such as boundary 
conditions and creases (see sections 4.7 and 4.8). 

Subdivision is also used in engineering applications, in combination with the 
finite element method. If not only the outer surface, but also the inner 
structure of an object is important, subdivision volumes are used [MacCr96, 
Bajaj01, Mandal99]. 

McDonnells and Qin used finite elements methods in combination with 
physics based modeling to simulate the behavior of clay [McDon00]. Qin also 
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studied howto use subdivision methods to tackle variational problems 
[Qin98]. Recently Chris Raymaekers and Koen Beets published a paper about 
how to use subdivision techniques in haptic rendering of a surface [Rayma01]. 
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5 A hexagonal subdivision surface scheme 

5.1 Introduction 

In this chapter we introduce a new hexagonal scheme for subdivision 
surfaces. The main idea was born after reading a recent paper by Zorin and 
Schröder about how the duality between subdivision surface schemes leads 
to higher-degree continuity [Zorin01a]. They only consider quadrilateral 
subdivision schemes, as the dual of a quadrilateral scheme is again a 
quadrilateral scheme, while the dual of a triangular scheme would be a 
hexagonal scheme. In this chapter we propose such a hexagonal scheme, 
which can be considered the dual of Kobbelt’s Sqrt(3) scheme for triangular 
meshes [Kobbe00]. Figure 5-1 already gives a first impression of how such a 
hexagonal scheme would operate on a regular dodecahedron as input mesh. 
Each time, all corners of the previous mesh are cut off, replacing them with a 
hexagon. 
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Fig. 5-1. Four consecutive steps of a hexagonal corner-cutting scheme applied to a 
dodecahedron. Each of the generated polyhedra consists of 12 pentagons and a number of 

hexagons that triples at each subdivision step. The polyhedron at the right contains 360 
hexagons. 

We also introduce recursive subdivision rules for meshes with arbitrary 
topology. These rules have a simplicity comparable to the Doo-Sabin scheme: 
only new vertices of one type are introduced and every subdivision step 
removes the vertices of the previous steps. Furthermore, we show the 
relationship between the scheme and a quadratic subdivision curve, which 
can be used as a border. 

The rest of this chapter is organized as follows. We start with section 5.2 
introducing the duality between subdivision surface schemes. In section 5.3 
we give an overview of the use of hexagonal meshes in other research fields, 
followed by a discussion in section 5.4 about the possible ways of recursively 
subdividing a regular hexagonal mesh. Then, in section 5.5, we propose 
stationary subdivision rules for a new hexagonal subdivision scheme. Section 
5.6 is dedicated to the continuity analysis of the surfaces generated by this 
new scheme. As many common meshes found in computer graphics 
environments are triangular, section 5.7 proposes two different constructions 
to convert these meshes to hexagonal ones.  Section 5.8 explains a relation 
with curves and an idea for creating borders for the hexagonal scheme, while 
section 5.9 gives some preliminary ideas about adaptive subdivision. In 
section 5.10 we shortly introduce a method to interpolate the initial control 
points.  Finally, in section 5.11 we show some results, followed by a 
concluding discussion in section 5.12. 
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5.2 Subdivision surface schemes and duality 

For a recursive subdivision surface scheme to be based on a mesh of one type 
of polygons, either triangles, quadrilaterals or hexagons have to be 
considered. These are the only types of polygons that allow a regular tiling of 
an infinite 2D plane. 

A mentioned in chapter 3, in 1978 the first two subdivision schemes were 
published, both based on quadrilaterals. Ed Catmull and Jim Clark’s scheme is 
a so-called primal scheme, splitting each input quadrilateral on one level into 
four smaller quadrilaterals on the next subdivision level, after which the new 
positions are averaged out [Catmu78]. Donald Doo and Malcolm Sabin’s 
scheme operates on the dual mesh of Catmull-Clark’s scheme: the roles of 
points and polygons are interchanged, just as a Voronoi diagram is the dual 
of a Delaunay triangulation [O’Rour94]. Doo-Sabin’s scheme is called a corner-
cutting scheme, because it has the visual appearance of recursively cutting 
away corners of the input polyhedron [Doo78]. 

In 2001, two research papers were published containing the idea of using 
repeated averaging to obtain surfaces with a higher degree of continuity 
[Zorin01a, Stam01]. The starting idea comes from factorizing Lane and 
Riesenfeld’s formula for subdivision curves with any degree of continuity 
[Lane80]. For example, a subdivision scheme for a B-spline curve of degree six 
normally needs a support of seven neighboring vertices. The interesting 
observation made by [Zorin01a] and [Stam01] is that the same scheme can be 
factorized in six subsequent averaging steps, each time using only two 
neighboring vertices. For curves, this factorization does not seem to help a 
lot, but for subdivision surface schemes based on these curves, it brings 
essential new possibilities. For surface meshes, a neighborhood of seven 
vertices in every direction would require a region of 49 vertices in a regular 
quadrilateral mesh. A key issue for subdivision surface schemes however, is 
that they should also be defined for irregular meshes, making it practically 
impossible to define how the surrounding region should be sampled for 
every irregular combination. Subdivision surface schemes already have 
enough problems defining how to adequately sample a neighborhood of one 
or maximally two surrounding vertices. The factorization of the subdivision 
rules, however, allows this higher degree of continuity to be obtained by 
repeatedly averaging a limited region. 
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5.3 Hexagonal meshes 

Although the ancient Greeks were already convinced of the honeycomb 
conjecture, it has only recently been proven mathematically: a hexagonal 
tiling is the least-perimeter way to enclose infinitely many unit areas in the 
plane [Hales99]. 

This is just one of the features that makes hexagonal lattices interesting. In 
the field of wavelet analysis, it has been argued that hexagonal sampling is 
the optimal sampling strategy for signals that are band-limited over a circular 
region in the frequency domain [He97]. This is similar to what human eyes are 
believed to do [Adels87, Watson87, Aznar00]. Their three axes of symmetry 
(0º, 60º and 120º) give more possibilities compared to the two axes (0º and 
90º) of quadrangular lattices. 

Lundmark et al. [Lundm99, Lundm01] stated that a recursive subdivision 
using nearly hexagonal fractal tiles forms a good basis for variable resolution 
image coding. They used the same strategy for distributing the cells of a cell-
phone system with a mesh resolution adapted to the different densities 
needed in different areas.  

Tiles with a fractal boundary that can be replicated to fill an infinite plane 
have been studied by Vince, who also provides numerous pointers to related 
work about self-replicating tilings [Vince99]. Recursive regular tilings have 
also been studied by Cannon et al. [Cannon99, Cannon01]. 

Sahr and White apply a multi-resolution hexagonal grid to create a spatial 
database, for example, to cover the earth’s surface. They noted that in a 
hexagonal grid, all adjacent cells of whose corners touch always have an edge 
in common [Sahr98]. They called this uniform adjacency, as all six neighbors 
have their center at the same distance. In triangular and quadrilateral meshes, 
different types of neighbors exist, with some only touching by a corner. In a 
related type of application, Ferhatosmanoglu et al. [Ferha01] showed how 
hexagonal partitioning has an optimal I/O cost for querying a spatial 
database. 

Hexagonal meshes can also break the annoying straight-line patterns as seen, 
for example, in fractal terrain modelers using quadrilateral or triangular grids. 
These patterns also pop up in subdivision surfaces. Although these patterns 
can be desirable for artificial objects, for many natural-looking surfaces these 
patterns are to be avoided. 
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These promising experiences in other fields of research form a good basis to 
assume that studying a hexagonal scheme for subdivision surfaces would 
open a world of new exciting ideas. In the following sections, we’ll describe 
the possibilities to create hexagonal schemes and propose a set of stationary 
subdivision rules. 

5.4 Hexagonal subdivision 

Similar to other recursive subdivision schemes, we would like to repeatedly 
subdivide an initial hexagonal mesh into smaller hexagonal meshes. In order 
to get simple symmetrical subdivision rules this subdivision should treat all 
input polygons in an equal way, independent from their position in the mesh. 

After some subdivision steps, subdivision schemes locally look like a regular 
grid. Therefore, we’ll first have a look at how to refine a regular hexagonal 
grid in the plane. It turns out there exist many ways in which a hexagonal grid 
can be recursively refined. A simple construction to create such a subdivision 
relation between an original hexagonal grid G0 and a refined grid G1, is to 
choose two arbitrary cells, a and b, in G1, as shown in figure 5-2. Then align 
the center of a with a cell p in the coarse grid G0 and scale and rotate the G1 
until the center of cell b is exactly aligned to a direct neighbor of p in G0. In 
figure 5-3 two cells of grid G0 are drawn in thicker lines, while in figure 5-4 the 
centers of a and b are aligned to p and its neighboring cell in G0, shown in 
figure 5-3. 

a b

c

 

p

 

a b

c

 

Fig. 5-2. Choosing two 
arbitrary cells, a and b in the 
fine grid G1. Cell c is a direct 

neighbor of a. 

Fig. 5-3. Two cells, p and a 
direct neighbor, in the coarse 

grid G0. 

Fig. 5-4. The centers of a and b 
get aligned to the centers of p 

and its neighbor. 

In this construction, the distance between a and b, divided by the cell 
distance in G1, determines how many times the grid is scaled down by the 
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subdivision. In the example of figure 5-2, where c is such a direct neighbor of 
a, this factor is: 

 7
),(

),(


cadist

badist
 (5-1) 

While the grid is scaled down by this number, the area of each cell is scaled 
down by the square of this number. Therefore, the square of the scale factor, 
is the multiplication factor for the cells. In this example, the area is scaled by a 
factor of seven, allowing the linking of exactly seven cells of G1 to each cell of 
G0.  

In figure 5-5 we show an overview of the smallest of the possible 
multiplication factors. These factors can grow to arbitrarily large numbers, but 
for a subdivision scheme the small numbers are especially interesting. The 
cell at the top, marked with “0”, represents cell a of figure 5-2. For each 
possible choice for cell b, the multiplication factor is written down inside the 
cell. As all around cell a these factors are repeated in a regular pattern, we 
only show one sextant of the grid. 
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Fig. 5-5. Possible multiplication factors for hexagonal subdivision, 
depending on the distance where the finer grid is aligned to the coarse 

one. The actual scaling factor is the square root of the displayed 
number. 

In figure 5-6, we show the first three non-trivial of the possible subdivisions 
that can be obtained via the above procedure. For the factors three and four, 
most cells of the finer grid are at the border between two cells of the coarse 
grid. 

   

 Fig. 5-6. A subdivision of a regular mesh with a factor of three, four and seven. Each 
time the center of the cell of the finer grid is aligned to the center of the coarse grid. 

It turns out that, apart from aligning the center of the finer grid to the centers 
of the coarse grid, another possible construction is to align the vertices of the 
finer grid to the centers of the coarse grid [Lundm01]. This would have the 
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advantage that more of the hexagons of the finer grid can be linked to each 
single cell of the coarse grid, as is demonstrated in the right image of figure 5-
6. When we consider this type of arrangement for our subdivision application, 
however, we notice that its dual arrangement would have two different types 
of subdivision for the triangles. 

For hierarchical subsampling of images, Lundmark, Wadströmer and Li 
suggest recursively dividing hexagons into seven smaller hexagons 
[Lundm99, Lundm01], as in the right image of figure 5-6. In their apparently 
independent research concerning geodesic mapping, Sahr and White choose 
a similar approach, after first mapping the earth’s surface to a regular 
icosaheder [Sahr98]. Mathematical properties of this special type of 
subdivision and its fractal boundary have also been investigated by Vince 
[Vince99]. 

From figure 5-5, it is clear that the smallest non-trivial scaling factors are three 
and four. The scaling factor seven is also appealing, because by partitioning a 
hexagon into seven, the new hexagons occupy more or less the same area as 
the original one. With a partition into three or four, some of the new 
hexagons have necessarily to be shared with the neighbors. A very annoying 
problem with the scaling factor of seven is that the new mesh is rotated by 
about 19º (to be precise, asin(sqrt(3/28)), which implies that the repeated 
subdivision steps lose their alignment with the original mesh. This makes 
analyses for its use as a subdivision surface scheme quite complicated. 
Furthermore, this rotation prevents the scheme from being applied in a 
symmetrical way. Unfortunately, all the scaling factors that are not 
combinations of three and four are subject to this kind of irregular rotations. 

A scaling factor of four is investigated in the paper by Simoens, Dyn and Levin 
[Simoe01]. A scaled-down version of the input hexagon is dropped in its 
center, after which the old vertices are reconnected to the nearest new 
vertices, replacing each old edge by a new hexagon (such as in the center 
image of figure 5-6). This can be viewed as an edge-cutting operation. This 
setup introduces one type of new vertex at a similar position as in the Doo-
Sabin scheme. However, contrary to Doo-Sabin’s scheme, this hexagonal 
scheme needs to keep the existing vertices. So two types of rules are needed: 
one for the new vertices, and possibly one for relaxing the position of the old 
ones. Possible rules for calculating the new vertices and relaxing the old ones 
can be found in [Simoe01], which also proposes rules to cope with 
extraordinary vertices. It should be noted that Simoens et al. mainly look at 
combining hexagonal and triangular schemes, implying that their hexagonal 
scheme is not treated as an explicit separate scheme. For regular meshes, this 
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subdivision by a factor of four is also addressed in [Praut01] as an example of 
the subdivision of half-box-splines. Such a scheme with a scaling factor of 
four would be the dual of triangular schemes that split triangles into four, 
such as Charles Loop’s scheme [Loop87]. As this scheme for hexagonal 
subdivision (multiplying the number of hexagons by four in each subdivision 
step) does not have a fixed name yet, we propose to call it the hexagon-by-
four scheme. 

   

Fig. 5-7. A subdivision of a regular mesh with a factor of three and four (left and 
center). This time the vertices of the cell of the finer grid are aligned to the center of 
the coarse grid. At the right, the triangular dual of this subdivision by four is shown. 

Unfortunately, the triangles are not treated evenly is this dual subdivision. 

An observation is that to get a symmetrical subdivision, it is not necessary to 
align the centers of the new grid with the centers of the old one. An 
alternative possibility is to align the vertices of the new grid with the centers 
of the old one, as shown in figure 5-7. This alignment is less interesting 
however, as rules for more types of new vertices need to be addressed. 
Furthermore, the dual of such a scheme would be a triangular scheme that no 
longer treats all of the triangles equally. 

Our attention is focussed on a hexagonal subdivision that multiplies the 
number of hexagons by a factor of three (such as in the left image of figure 5-
6). At the same time the average surface area of the hexagons is divided by 
three, and the average edge length by a factor of sqrt(3). This last observation 
inspired Kobbelt to call his scheme the Sqrt(3) scheme [Kobbe00]. We 
propose to simply call the new scheme the hexagon-by-three scheme. 

An interesting feature that a hexagon-by-three subdivision shares with the 
well-known Doo-Sabin scheme [Doo78] is that only one type of new vertex is 
introduced. In our scheme, the vertex is created in the center of the triangle 
formed by the two neighboring old vertices and the center of a hexagon. For 
the quadrilateral Doo-Sabin scheme, the new vertex is created in the center of 
the quadrilateral formed by the old vertex, the center of the polygon and the 
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two midpoints of the neighboring edges. Also mimicking the Doo-Sabin 
scheme, each subdivision step removes all old vertices. A difference with the 
Doo-Sabin scheme is that our new scheme, except for keeping smaller copies 
of the existing faces, creates only one type of new face, while the Doo-Sabin 
scheme creates two types of new faces. 

In the next section, we make a proposal for stationary subdivision rules for 
this new hexagonal scheme.  

5.5 Proposed stationary subdivision rules 

5.5.1 Subdivision rules in the regular case 

In order to search for the most interesting values for the subdivision weights, 
we make the following considerations. First, we would like the support area to 
be small such that every control point exhibits only a local influence. 
Therefore, we look for solutions that are restricted to using the points of the 
polygon in which we are creating the new points. Furthermore, just as in 
existing schemes, it makes sense to look for a symmetrical scheme, invariant 
to the order in which the points are considered and letting all points play an 
equal role. For the standard mesh (hexagons where every point has valence 
3), these considerations lead to the existence of three different weights (see 
figure 5-8): 
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 one for the two points closest to the new point (a), 

 another weight for the two points in the middle (b), 

 and a third weight for the two furthest points (c). 

P1

P4

P3

P2

P6

P5

P

a

a

b

b

c

c

M

 

Fig. 5-8. The position of the new point P is a 
weighted average of the points of the surrounding 

hexagon. 

Expressed using these factors, the equation for the new point is then written 
as: 

 
654321P cPcPbPbPaPaP   (5-2) 

Another consideration is that for an input configuration of all equal regular 
hexagons, the new points should be located such that all newly created small 
hexagons are again exactly equally sized. As for each input hexagon, three 
new hexagons are created, and the area of the new hexagons has to be equal 
to one third of the area of the original ones. To obtain this, the sides of the 
hexagons have to be divided by a factor of 1/sqrt(3). Due to the symmetry of 
the regular hexagons, this is only possible if the weight c = a – 1/3. 

For the scheme to be invariant under affine transformations, the sum of these 
weights should be equal to one: 2a + 2b + 2c = 1. So, together with the 
condition on c, this condition leads to b = 5/6 – 2a. 

Putting all this in a matrix, we get the subdivision matrix with only one 
variable left (a). 
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As the new points are rotating the input points by 30º, this matrix has only 
complex eigenvalues, which is not suited for our goal to analyze the scheme. 
Therefore, as in [Kobbe00] and [Labsik00a], we consider a combination of two 
subdivision steps, after which we rotate the configuration back by 60º to 
match the original orientation. 

This double matrix looks like equation (5-4): 
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This matrix has the following eigenvalues: 

 10   

 3/1, 21   

 424a-36a, 2

43   (5-5) 

 05   

The symmetry of the scheme forces the matrix to be of rank 5, implying that 
zero is one of the eigenvalues. In the literature [Doo78, Ball86, Ball88, Reif95, 
Kobbe00, Praut97, Zorin00a, Umlauf00, Sabin01], the following is reported 
about the nature of the eigenvalues of the subdivision matrix: 
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 The largest (or dominant) eigenvalue should be 1. This is necessary for the 
scheme to be affine invariant. 

 The second and third largest eigenvalues (sorted by their absolute values) 
should be equal, and they should be strictly larger than the next 
eigenvalues for the scheme to be C1 [Umlauf00]. These are the so-called 
subdominant eigenvalues. They are the factor by which the configuration 
shrinks at each subdivision step and control the first derivative. The left 
eigenvalues belonging to these subdominant eigenvalues determine the 
tangent plane of the limit surface. 

 The fourth and fifth eigenvalues should optimally be the square of the 
subdominant eigenvalues. These eigenvalues are related to the out-of-
the-plane behavior of the configuration. 

Consequently, we try to set the fourth and fifth eigenvalue to the square of 
the subdominant eigenvalue: 

 
2

13    (5-6) 

which is rewritten as: 

 

2
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3

1
424a-36a 








  (5-7) 

This equation leads to the following values for a, b and c (in equation 5-8, see 
figure 5-8): 
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c
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1
b
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7
a   (5-8) 

or: 

 
18

1-
c

18

5
b

18

5
a   (5-9) 

The first solution consists entirely of positive weights, while the second 
solution uses a negative weight. As negative weights result in the loss of the 
convex hull property for the scheme, we opt for the first solution [Reif95, 
Melkm97, Kobbe00]. 

For that first solution, the single- and double-step subdivision matrices 
around a hexagon would be 
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5.5.2 Rules for the extraordinary case 

The rule for the case that the original polygon is a hexagon can be viewed in 
another way. Instead of formulating it using the six points of the hexagon, we 
could see it as taking the uniformly weighted average of the two nearby 
points with the center of the hexagon. This evokes the formulation of the 
Doo-Sabin scheme [Doo78], where the new point is the average between the 
nearby original point, the center and the two edge points. 

A simple rule for the polygons of the old mesh that are not hexagons is to use 
the same approach as for hexagons: just take the average of the center and 
the two nearby points. As in the Midedge scheme [Peters97], however, such 
weights would mean that polygons with more than six points would shrink 
more slowly than the hexagons, leading to flat spots on the surface. And 
polygons with fewer points would shrink too fast, leading to annoying pointy 
features. 

Therefore, as Peters and Reif did for their Midedge scheme, the weights 
should be adapted to get a uniform shrinking between all types of polygons. 
If we stay with the idea that the new point should be an average (though not 
uniformly weighted) between the two nearby points and the center, we 
would get the following formula (see figure 5-9): 
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Fig. 5-9. Situation of a polygon in the extraordinary case. 

Here M is the center of the polygon, calculated as the weighted average of its 
n points. The only way to get the shrinking factor equal to the shrinking by 
one-third of the hexagon is for w to equal: 
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For use in matrix calculations, we should write the formula with M being 
replaced by its original components: 
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5.5.3 Isolation of singularities 

As in the Doo-Sabin scheme, two different kinds of irregularities can be 
present in the original mesh. First, some of the original vertices can have a 
valence different from three, which is the standard valence for regular 
hexagonal meshes. Second, the original mesh can contain polygons that are 
different from hexagons. The first kind of irregularity disappears after one 
subdivision step. Each vertex that doesn’t have valence three will be 
converted to a polygon with twice the number of vertices as the valence of 
the original vertex. If the mesh contains polygons that are not hexagons, the 
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subdivision process will scale them down and surround them with hexagons. 
Each subdivision step isolates these non-regular polygons further, in the limit 
contracting each of them to a point: a so-called extraordinary point. This 
isolation process is illustrated by figure 5-10. 

   

Fig. 5-10. The quadrilateral and the octagon are extraordinary polygons in the original 
mostly hexagonal mesh (left). Each subsequent step of the subdivision process isolates 
them further apart, increasingly filling the rest of the space with hexagons (center and 

right). 

5.6 Surface continuity 

A standard way to study the properties of a subdivision scheme is to look at 
the underlying generating function [Catmu78, Doo78, Loop87]. Most existing 
subdivision schemes are either based on box-splines or are a tensor product 
of B-splines. Therefore, in the regular case, they are equal to these underlying 
functions, inheriting among others their degree of continuity. For our new 
scheme, however, such an underlying function is not known, similar to the 
situation with the Sqrt(3) scheme [Kobbe00]. 

We had a closer look at box-splines, as Prautzsch and Böhm [Praut01] already 
described some kind of regular hexagonal subdivision. In their study of box-
splines, they developed a theory of half-box-splines. Box-splines are a 
generalization of B-splines to higher dimensions and have been used to 
develop subdivision surface schemes, such as Loop’s scheme. Tensor product 
B-splines, such as the one used for the Catmull-Clark subdivision scheme, are 
just one of the special cases of box-splines. Prautzsch and Böhm observed 
that by combining two half-box-splines, the theory of box-splines can be 
generalized to regular hexagonal grids. We refer to [Praut01] for the details 
about these half-box-splines and to the book by De Boor, Höllig and 
Riemenschneider [DeBoor93] for a more comprehensive treatment of box-



5  A hexagonal subdivision surface scheme 67 

 

splines. Another interesting work in this context is by Mueller, who describes 
ways to adopt box-splines to model for free-form surface modeling [Muell96]. 

Unfortunately, the symmetric half-box-splines with small support lead to 
schemes that are not compatible with our hexagon-by-three scheme. For 
example, if a ternary subdivision were applied to the symmetric cubic C1 
scheme described in section 4.3 of [Praut01], the resulting mesh would have 
the same type of connectivity as the double step of our scheme. Its weights 
are not compatible, however. Using Prautzsch’s formulas, we derived a matrix 
for a ternary subdivision of a hexagonal mesh. This matrix is depicted in 
equation 5-15 and has rank six, while the symmetry conditions of our scheme 
oblige dependencies between the rows, yielding a matrix of rank five. 
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So, although the half-box-splines are closely related to our scheme, they don’t 
seem to give direct answers to its nature. The next step in our analysis is to 
decompose the subdivision matrix into a product of three matrices: a matrix 
with left eigenvectors, a diagonal matrix of eigenvectors and a matrix of right 
eigenvectors. Following the analysis of Halstead et al. [Halst93], this 
decomposition is an essential issue in deriving the limit behavior of the 
scheme. A condition posed by [Halst93] is that the subdivision matrix may not 
be defective: the matrix of eigenvectors should be inversible. We 
demonstrate that our hexagonal scheme accomplishes these conditions. 

Equation 5-16 shows this decomposition of the double subdivision matrix S.  
The right eigenvectors are the columns of matrix R, while the left 
eigenvectors form the rows of matrix L.  As R∙L = L∙R is equal to the identity 
matrix, applying the subdivision matrix n times to a given configuration of 

control points can be expressed as Sn = (R∙∙L) n= R∙ n∙L. Therefore, R and L 
control the behavior of the configuration as n approaches infinity. 
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Following the conclusions of [Halst93], the normalized left eigenvector 
belonging to the dominant eigenvalue 1 determines the position of the limit 
point. Here “normalized” should be interpreted as summing to 1. In our case, 
this is a vector with all components equal to one-sixth. Hence, in the limit of 
the recursive subdivision process, all vertices of the constantly shrinking 
hexagon end up in its center. 

Further, the normal in the limit position is the plane spanned by c2·P and c3·P. 
Here c2 and c3 are the left eigenvectors belonging to the second and third 
largest eigenvalue. P is the column matrix representing the neighborhood of 
the extraordinary point that is being investigated. Therefore, these two 
vectors spanning the limit tangent plane are: 

)22(
6
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Eigenanalysis shows that the generated surface of our hexagonal scheme is 
C1 and probably C2 in the regions where the mesh is regular. In the 
environment of extraordinary vertices the surface is probably C1. These 
hypotheses are further endorsed by studies like [Peters00] revealing that 
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almost all subdivision schemes are C1 continuous, especially when they are 
purely based on positive weights. Further investigations are needed to 
understand more about the properties of the kind of surfaces generated by 
our scheme. As can be verified by [Zorin00b], rigorous analysis of this kind of 
subdivision surface schemes can be very mathematically involved. 

Reif noted that another condition for a subdivision scheme to behave 
properly is that the characteristic map needs underlying analyzable basis 
functions and should be regular and injective (without local self-intersections) 
[Reif95]. The characteristic map defines a local parameterization based on the 
subdominant eigenvectors. 

As rigorously checking the characteristic map can be rather complicated, 
many researchers [Schwe96, Kobbe00, Simoe01] suggest a visual check on 
the characteristic map to verify that the scheme behaves well around 
extraordinary vertices. In figure 5-11 we show a visualization of the 
characteristic map for polygons with three to ten edges. These characteristic 
maps show a very uniform and smooth behavior. 

    

    

Fig. 5-11. Characteristic map around polygons with three to ten vertices. The closer 
the number of edges is to the preferred number of six, the more regular the 

characteristic map. 

5.7 Converting triangular to hexagonal meshes 

In general, polygonal meshes found in computer graphics environments 
mainly consist of triangles and quadrilaterals. Meshes that mostly contain 
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hexagons are quite rare. The meshes obtained from 3D laser scanners for 
example are typically arranged in a triangular way, exhibiting an arbitrary 
topology. In this section, we’ll describe ways of converting triangular meshes 
to mainly hexagonal ones. Meshes containing polygons with more than three 
vertices can easily be triangulated using standard techniques [O’Rour94]. 

Our hexagonal scheme is not the only one that requires a preprocessing step 
to make general meshes more suitable. Also Velho and Zorin [Velho01a], who 
recently introduced the promising 4-8 scheme, require adapting meshes that 
were not especially designed for their scheme. 

It turns out that two suitable methods to convert a triangular to a hexagonal 
mesh can be constructed: namely, by cutting the corners of the triangles or 
by replacing the mesh by its dual. These methods are described in the 
following subsections. At this stage, we suppose the input is a closed 
manifold triangular mesh, exhibiting an arbitrary topology. The handling of 
borders will be discussed in section 5.8. 

5.7.1 Replacing the triangular mesh by its dual 

A first way to convert a triangular to a hexagonal mesh is to replace the mesh 
by its dual. All triangles of the original mesh will be converted to vertices, and 
all vertices of the original mesh will be converted to polygons. For each 
vertex, the centers of the surrounding triangles are connected to form a 
polygon. The number of sides is determined by the valence of the original 
vertex. In figure 5-12, the vertices with the regular valence of six in the 
triangular mesh are converted to hexagons, while valence five vertices are 
converted to pentagons. While the polygons created by this process can have 
an extraordinary number of vertices, the newly created vertices themselves all 
have a valence of three, as would be needed for a regular hexagonal mesh. 
Luckily, for all subsequent subdivisions, the only newly created polygons will 
be hexagons. 
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Fig. 5-12. Left: In a triangular mesh the centers of the triangles are marked. Right: These 
centers are used to construct the dual hexagonal mesh. 

5.7.2 Cutting the corners of the triangles 

Another method for converting a triangular mesh to a hexagonal is to cut the 
edges of the triangles at one-third and at two-thirds. Suppose we have an 
edge between points P1 and P2. The position of a new point P, at one-third of 
the edge and next to P1, would then be: 

 21
3

1

3

2
PPP   (5-18) 

Inside each existing triangle a new hexagon is formed by joining the 
shortened edges and cutting away the corners of the triangle. Figure 5-13 
illustrates this process. The neighborhood around the old vertices is filled in 
again by replacing the vertex with a polygon, with a number of sides equal to 
the valence of the old vertex. As in the previous section, only if the old vertex 
has a regular valence of six will a hexagon be created, and thus polygons with 
any number of edges are possible. Luckily, the subdivision process quickly 
isolates these extraordinary cases. 

In the newly generated hexagonal mesh, all vertices have a valence of three, 
as all of them are at the border of two old triangles converted to hexagons 
and one new polygon replacing the vertex. 
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Fig. 5-13. Left: In the triangular mesh of figure 5-12, points now mark the division 
of the edges at one-third and two-thirds. Right: Using the marked points to 

convert the triangular mesh to a hexagonal one. 

A first impression of figure 5-13 is that the mesh looks rather irregular: 
although the triangular mesh looks quite homogeneously distributed, the 
generated polygons are not as convex as one would expect. This is because a 
stencil of only two nearby points is used to calculate the position of the newly 
introduced points. The next possible stencil would also include the two 
extreme points of the two triangles sharing the edge. If P3 and P4 are the 
points that together with P1 and P2 form the triangles sharing the edge for the 
new point, a good formula for the position of the new point would be: 
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Fig. 5-14 Two triangles sharing the edge near which 
a new point will be inserted. 
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Other weights would also be possible, as long as the new point would be 
positioned at one-third of the edge in the case of both triangles being 
equilateral. The suggested weights seem to be natural, as they uniformly 
average the two centers of the triangles with P1 (M123 and M142 in figure 5-14). 
The result is shown at the left of figure 5-15. 

  

Fig. 5-15. Left: The mesh obtained by corner-cutting the triangles, with 
additional averaging by direct neighbors. Right: The mesh obtained by 

subdividing the dual mesh once, resulting in a more regular appearance. 

5.7.3 Which method is better? 

It turns out that when the mesh obtained via the dual method of section 5.7.1 
is subdivided once, it is topologically equivalent to the mesh obtained by the 
splitting method of section 5.7.2. The meshes have the same number of 
polygons and vertices arranged in exactly the same way. The positions of the 
vertices, however, are slightly different. With the dual-mesh method, the 
positions will be averaged with a support area of n+1 in the original triangular 
mesh, where n is the valence of the nearest point. On the contrary, the 
method of section 5.7.1 only uses four surrounding points. 

Which method to choose depends on whether the application at hand 
prefers a smoother surface versus a surface that more strictly follows the 
original edges. For meshes resulting from an optical scanner for example, the 
dual-conversion method will be preferred. Usually those meshes are dense 
and demonstrate small accuracy errors, which will be nicely smoothed by the 
conversion to hexagons. For an interactive modeling application, the one-
third - two-thirds method looks more appealing, as the user will have a higher 
control over the local form of the surface. 
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5.8 Curves and borders 

By putting hexagons symmetrically around the control points of a quadratic 
subdivision curve, the resulting subdivision surface will interpolate that curve. 
Under these conditions, the subdivision rules mimic a ternary division of the 
cubic curve (see section 2.2). This is similar to how the four-point subdivision 
scheme for curves is embedded in the Butterfly scheme [Dyn90]. 

For a ternary refinement of a quadratic curve, [Sabin01] derived the 
coefficients of equation 5-20. The first formula relaxes the position of an old 
control point, while the second and third define the position of the newly 
inserted vertices. 
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While on triangular schemes, the related curve is defined by the control 
vertices, for our dual-hexagonal scheme it is defined by the centers of the 
edges, as with the Doo-Sabin scheme [Nasri01b]. Nasri also showed how to 
create a border by virtually mirroring the mesh polygons near the border for 
the Doo-Sabin scheme. A similar approach could be worked out for our 
hexagonal scheme. 

The simpler approach of letting vertices fall together near the border also 
gives a reasonable result for the Doo-Sabin scheme. The border of a 
hexagonal mesh is more complicated and does not allow for such an 
approach. 

5.9 Adaptive subdivision 

Although our hexagonal scheme has only a multiplication factor of three, as 
in any subdivision surface scheme, the number of polygons generated grows 
exponentially. Therefore, most practical implementations of subdivision 
surface schemes build in an adaptive subdivision strategy. Depending on 
user-controlled stopping criteria the mesh will be subdivided less into regions 
that are relatively flat, and more into heavily curved regions. 
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With the hexagonal scheme, as in most other adaptive subdivision 
approaches, adaptive subdivision is possible if the subdivision of neighboring 
polygons never differs more than one level. Effectively implementing such an 
adaptive subdivision is a topic of future research. 

5.10 An interpolating variant 

Analogous to the approach of Halstead et al. [Halst93], instead of just 
approximating the original vertices, we can adapt the scheme to interpolate 
these vertices. By the scheme's construction, it is clear that each polygon 
constantly shrinks towards its center, in the limit being contracted completely 
to that center. 

In Halstead’s constructions for the Catmull-Clark scheme, the vertex only 
interpolated the desired control point in its limit position. Every finite number 
of subdivision steps only approximates the chosen control point. With our 
hexagonal scheme, however, the center of the polygons will be interpolated 
during every subdivision step, allowing an application to interpolate a desired 
set of points even after executing just a few subdivision steps. 

Therefore, we implemented a variant to Halstead’s approach, where we move 
the vertices of the hexagonal mesh in an iterative process, to interpolate the 
vertices of the original triangular mesh. We choose an iterative approach 
instead of solving a set of equations. Particularly, the equations leave some 
degree of freedom, which permits our approach to simultaneously optimize 
other constraints, such as maximizing the hexagons' convexity.  



76 5  A hexagonal subdivision surface scheme 

 

5.11 Results 

 

Fig. 5-16. Four steps of the recursive hexagonal subdivision on a mushroom mesh.  

Figure 5-16 shows four subsequent steps of the subdivision process for an 
irregularly modeled mushroom. 

Figures 5-17 and 5-18 show the result of different subdivision schemes for a 
mesh with an extraordinary vertex of valence 20. After three subdivision 
steps, the Loop subdivision of figure 5-17 multiplies the initial number of 
triangles by 64 and is comparable to the Sqrt(3) subdivision which multiplies 
the number of triangles by 81 after four steps. Figure 5-18 uses the dual of the 
triangular mesh. The hexagonal subdivision multiplies the number of 
polygons by about 81. The optimized subdivision rules result in the 20-gon 
shrinking at a pace that is more comparable to that of the hexagons. 

   

Fig. 5-17. Left: A triangular mesh with a vertex of valence 20 (160 triangles). Center: A 
Loop subdivision after three steps (10,240 triangles). Right: A Sqrt(3) subdivision after 

four steps (12,960 triangles). 
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Fig. 5-18. Left: The dual hexagonal mesh from the mesh of the previous figure 
(82 polygons). Center: A hexagon-by-three subdivision after three steps (6,486 

polygons) and using the simple rules. Right: The same scheme using the 
optimized rules (also 6,486 polygons). 

Figure 5-19 shows three subsequent steps in the hexagonal subdivision of a 
cat model, and in figure 5-20 a Phong-rendered image of the mesh generated 
by the third subdivision level of figure 5-19 is shown. 

   

Fig. 5-19. Three consecutive steps of the Hexagon-by-three scheme. 
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Fig. 5-20. A Phong-rendered image of the 
third subdivision level in figure 5-19. 

In figure 5-21, three different approximating schemes operating on triangular 
meshes are compared. All three schemes lead to similar results, showing that 
the new hexagonal scheme is an equal competitor with the existing 
subdivision schemes. 
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Fig. 5-21. A cat model, comparing different subdivision schemes: subdivided three times 
using the Sqrt(3) scheme (left), two times using Loop’s scheme (center) and three times 

using the Hexagon-by-three scheme (right). 

Finally, in figures 5-22, 5-23 and 5-24, we compare the different corner-cutting 
schemes. In figure 5-22, four subdivision steps for a cube with the Midedge 
scheme are shown [Peters97], while figure 5-23 shows four steps of our new 
hexagonal scheme using the same cube. And in figure 5-24, the Doo-Sabin 
subdivision is shown [Doo78]. Most notable, is the difference in convergence 
speed. The Midedge scheme only doubles the number of polygons in each 
step, our hexagonal triples this number, and the Doo-Sabin scheme 
quadruples it. 

All three schemes shrink the original squares by a factor that is the square 
root of the multiplication factor of the scheme. For the Doo-Sabin scheme, 
this is the integer factor of 2, for the Hexagon-by-three scheme this is sqrt(3) 
and for the Midegde scheme this is sqrt(2). Both the hexagonal and the 
Midedge scheme constantly rotate these original squares, while the Doo-
Sabin scheme maintains their original orientation. 

A cube is a very interesting object for comparing quadrilateral and hexagonal 
schemes. The faces of the cubes have the preferred number of vertices for the 
quadrilateral schemes, while the vertices have the preferred valence for 
hexagonal schemes.  
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Fig. 5-22. Four steps of the Midedge scheme subdividing a cube. 

 

Fig. 5-23. Four steps of the Hexagon-by-three scheme on a cube. 

 

Fig. 5-24. Four steps of the Doo-Sabin scheme subdividing a cube. 

5.12 Discussion 

In this chapter we proposed a new hexagonal subdivision surface scheme. 
When operating on a triangular input mesh, the mesh is first transformed to 
its dual by putting new faces in the place of old points, and new points at the 
center of the old faces. The scheme uses a minimum of existing vertices to 
generate smooth surfaces from meshes of arbitrary topology. As the scheme 
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consequently cuts corners of polygonal meshes, only one type of new points 
is generated; consequently, the scheme has a simplicity comparable to the 
well-known Doo-Sabin scheme. 

Considering the recent work of [Zorin01a] and [Stam01] about using dual-
quadrilateral schemes to create surfaces with a high continuity, the new 
scheme would be an ideal candidate to be used together with Kobbelt’s 
Sqrt(3) scheme for a similar setup for triangular and hexagonal schemes. 

Furthermore, a close relation of the new hexagonal scheme with a ternary 
subdivision for quadratic B-spline curves is shown. These curves could be 
used to form the border of the generated surfaces and to create sharp edges. 

As in the Sqrt(3) scheme, each subdivision step multiplies the number of 
polygons by a factor of three. Fewer polygons are created by each step 
compared to the standard algorithms that have a multiplication factor of four. 
Therefore, the mesh that meets the requirements for a close enough 
approximation of the limiting surface will in general be smaller.  
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6 Local interpolation for subdivision curves 

6.1 Introduction 

As mentioned in chapter 2, fully interpolating schemes are not very well 
suited for interactive curve design. Approximation schemes are much easier 
to manipulate, but sometimes it is desired that the curve locally interpolates 
one or more of its control points. In this chapter, we show how we can get the 
best of both worlds, introducing a new method for turning approximating 
recursive subdivision techniques into an interpolating modeling tool. The 
approach is based on generating local invariances for the subdivision process 
around the control points to be interpolated, and allows normal interpolation 
as well as tension control. The underlying methodology is explained and 
implementation results and applications are elucidated. We also dedicated a 
research paper to this topic [VanRe01]. 

The main objective of the work reported upon in this chapter is to introduce a 
method for transforming these approximating uniform subdivision schemes 
into an interpolating subdivision curve design and manipulation tool, at the 
same time achieving additional advantages. B-splines of any degree as limit 
curves can be generated, with optional normal interpolation as well as 

tension control around the vertices 0

ic of the initial control polygon P0. Our 

method mainly involves introducing suitable ghost points around the vertices 
0

ic . In the next section (section 6.2) we develop the technique in the context 

of uniform cubic B-splines. In section 6.3 we generalize the method to B-
spines of degree n+1, and in section 6.4 we give some examples illustrating 
the method. We finish with conclusions and views on further work (section 
6.5). 
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6.2 Control point interpolation, normal interpolation and 
tension control: the cubic case 

Recall the splitting and averaging process described in chapter 2. Given a 
control polygon Pj at level j in the subdivision process, the splitting step 
generates an intermediate control polygon 1jP


that contains all the control 

points of Pj, as well as additional control points inserted at the midpoints of all 
the edges constituting Pj. This narrows down to: 
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In order to get the final positions of the control points 1j

ic  in Pj+1, the 

intermediate control points 1j
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

 in 1jP


are averaged using a so-called 

averaging mask mkmkrr  )( (the exact meaning of m will be given in 

section 6.3): 
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In Chaikin’s algorithm [Chaik74] the averaging mask is r = ½ (0, 1, 1). 
Riesenfeld [Riese75] was able to show that the curves generated by Chaikin’s 
algorithm are uniform quadratic B-splines. It is proven by Lane and Riesenfeld 
[Lane80] that Chaikin’s algorithm can be generalized to generate uniform B-
splines of degree n+1 by using an averaging mask with entries 
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The key insight of the proposed method exploits the fact that, under certain 
conditions, a generally approximating subdivision scheme can yield a locally 
interpolating result. Consider the case in which the averaging mask r = ¼ (r-1, 
r0, r1) = ¼ (1, 2, 1) is used. As mentioned in section 2.2, applying this averaging 
mask in the subdivision scheme of an initial control polygon P0 generates an 
approximating cubic B-spline as the limit curve. An important case is that 
when: 

i. three successive control points j

ic 1 , j

ic  and j

ic 1  are collinear, and 
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ii. j

ic  is the midpoint between j

ic 1  and j

ic 1  

After the splitting step, the intermediate control points 22

1

2 )( 



 k

j

kic


are 

generated around j

ic  according to equation 6-1. This situation is 

schematically depicted in figure 6-1. 

Fig. 6-1. Specific conditions on successive control points (cubic case). 

It is easy to verify (cfr. Appendix 1, at the end of this dissertation) that the 

averaging step will not change the position of 1
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we have a situation in which:  

(i) three successive control points 1
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ic  and 1
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
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ic , and, 

(iii) 1

2

j

ic = j

ic  

Here the subdivision rules generate a so-called local invariance around j

ic  

with respect to the averaging rules, and the approximating scheme becomes 

a locally interpolating scheme around j

ic . Further, where the straight-line 

situation shown in figure 6-1 is present in the initial control polygon P0 (i.e. 

when j=0), the above scheme will interpolate j

ic in each iteration of the 

subdivision process. This property is fundamental in the proposed curve 
design method. 

Indeed, around each control point 0

ic of P0 (cfr. figure 6-2, in which the 

dashed line represents a part of the initial control polygon P0) through which 
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an interpolatory condition is required (possibly all initial control points), 

additional points – so-called ghost points 0

1,ig  and 0

1,ig  – are introduced in 

such a way that a local invariance is introduced: 0

1,ig , 0

ic  and 0

1,ig  are 

collinear, and 0

ic  is the midpoint between 0

1,ig  and 0

1,ig . The new 

configuration around 0

ic  is depicted in solid lines in figure 6-2. 

Fig. 6-2. Introduction of additional ghost points. 

Extending the initial control polygon P0 with all the additionally created ghost 
points and subsequently applying the uniform recursive subdivision rules 
with the averaging mask r = ¼ (r-1, r0, r1) = ¼ (1, 2, 1) will hence lead to an 
interpolatory subdivision curve with a cubic B-spline as limit curve. The 

normal to the curve in an interpolatory 0

ic  is perpendicular to the line passing 

through the ghost points at issue (i.e. 0

1,ig  and 0

1,ig ). Setting the orientation 

of this line perpendicular to the desired normal in 0

ic implies normal 

interpolation. Changing the (equal) distances from the ghost points to 0

ic  will 

affect the tension of the resulting curve around 0

ic . 

6.3 The general cases 

We now show that it is possible to generate an interpolatory uniform 
subdivision curve with normal interpolation and tension control, which has a 
B-spline of degree n+1 as limit curve. Consider the case in which the 
averaging mask of equation 6-4 is used for a given n. Since the results are 
slightly different depending on n being odd or even, we first treat the case n 
even. 

0

1,ig  0

1,ig  

0

1ic  
0

1ic  

0

ic  
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Case n is even: 

Here we have: 

(i) 2m + 1 successive collinear control points mkm

j

kic  )( , and 

(ii) each of the control points j

kic   and j

kic   )0( mk  are 

equidistant to j

ic . 

After the splitting step, the intermediate control points mkm

j

kic 22

1

2 )( 






 are 

generated around j

ic  according to equation 6-1 and 6-2.  

The situation we have after the splitting step is schematically depicted in 
figures 6-3a (for m odd) and 6-3b (for m even).  

Fig. 6-3a. Specific conditions on successive control points in the general case, for m 
odd. 
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Fig. 6-3b. Specific conditions on successive control points in the general case, for m 
even. 

We now have an odd number (n+1) of normalized binomial coefficients in the 
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will be vertex split points; otherwise, they will be edge-split points; 

hence, the reason for the difference of the points at issue in figures 6-3a and 

6-3b.) Because the 2m+1 successive control points mkm

j

kic  )(  are collinear 

and equidistant, the intermediate control points mkm
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 are collinear 

and equidistant as well. Furthermore, in Appendix 2 (at the end of this 
dissertation) it is shown that after the averaging step, we have a situation in 

which the control points mkm
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

 )( 1 around 1j

ic  are on the same position as 

the intermediate control points mkm
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. Since this invariance is 

independent of j, on each level we have an interpolating subdivision scheme 

around j

ic . 

We now follow the approach as set up in section 2.2 to come to an 
interpolating subdivision curve design tool. We introduce ghost points 

mkkig  0
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, )(  at each control point 0

ic of P0 we wish to 

interpolate. These points are introduced so that mkkig  0

0

, )( , 0

ic  and 

mkkig  0

0

, )(  are collinear and the ghost points are equidistant from 0

ic , as in 

figure 6-4 where the original control polygon is shown dashed. Here the new 

configuration around 0

ic  is depicted with solid lines. 
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Fig. 6-4. Introduction of additional ghost points. 

The generalization of the cubic case to B-splines of degree n+1 follows 
straightforwardly if we use the rule in equation 6-4 to generate our averaging 

mask. Here the normal to the curve in an interpolatory 0

ic  is perpendicular to 

the line passing through the ghost points mkkig  0

0

, )(  and mkkig  0

0

, )(  at 

issue. Setting the orientation of this line perpendicular to the desired normal 

in 0

ic implies normal interpolation. Changing the equidistances from the 

ghost points to 0

ic  will affect the tension of the resulting curve around 0

ic . 

Case n is odd: 

In the general case, we have to deal with the possibility of n being odd. In this 
case, n+1 is even and we will have an even number of normalized binomial 
coefficients in the averaging mask. Accordingly, the averaging step will move 

the intermediate control points mkm
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 away from the position of an 

initial control point 0

ic . Here each intermediate control point mkm
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will become the midpoint to the two surrounding control points in the 
averaging step (proof in Appendix 2, at the end of this dissertation). This 

implies that on each iteration of the subdivision 0

ic  will be interpolated, but, 

contrary to the case where n is even, we no longer have a control point at 0

ic . 

After each subdivision step, the midpoint of the two control points 

surrounding 0

ic  will interpolate it. 
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Some closing remarks:  

(1) It is not necessary for the control points j

kic   to be distributed 

equidistantly among themselves. As long as the corresponding points j

kic   

and j

kic  are equidistant to the interpolatory point j

ic  (and equal 

corresponding weights), we maintain interpolation. If they are not distributed 
equidistantly among themselves, then averaging the corresponding 

intermediate points 1



j

kic


 and 1



j

kic


will move them over an equal distance with 

respect to j

ic  (the proof becomes a bit more complicated as well). We set 

them equidistantly in our implementation for reasons of symmetry.  

(2) It is not necessary for the averaging mask entries to be equal to the 
normalized binomial coefficients in order to have an interpolatory situation. It 
is sufficient for them to sum to one and to form a palindrome (i.e. the 

corresponding split points 1



j

kic


 and 1



j

kic


 get the same weighting factor). As 

mentioned in section 6.1, in [Lane80] it is proven that the limit curve is a B-
spline of degree n+1 if they do equal the normalized binomial coefficients. 
Since this is a desirable property to have, we set our entries to these values. 

6.4 Results 

The techniques presented in this chapter have been implemented in C++, 
using the OpenGL graphic interface [Fosne96]. The basic approximating 
subdivision scheme is depicted in figure 6-5, where four control vertices 
define a smooth cubic B-spline. Figure 6-6 shows the same scheme with ghost 
points added to obtain interpolation in one of the original control vertices. 
The position of the ghost points further influences the direction of the normal 
and a tension around the interpolating vertex. 
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Fig. 6-5. The standard approximating cubic subdivision process: starting from a set of 
4 original control vertices (left), a finer mesh (center) is created, in the limit converging 

to a smooth curve (right). 

 
 

Fig. 6-6. Adding two ghost points around one vertex of the mesh of figure 6-5 makes sure 
the curve smoothly interpolates that vertex (left).  The normal in that vertex and a tension 

parameter can be controlled by interactively moving the position of the ghost points 
(right). 

The same technique as used at the interior points of the curve, can also be 
applied to the ends of an open curve (see figure 6-7, left and center), resulting 
in precise control at these ends. Connecting two open curves creates the 
possibility of a sharp corner at the joint point (see figure 6-7, right). 
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Fig. 6-7. The same technique can be applied to control normal and tension at the ends 
of an open curve.  Left: The control vertices and ghost points. Center: The resulting 
open curve. Right: Connecting the ends of an open curve allows the creation of a 

closed curve with a sharp corner. 

Applying a binomial averaging mask with a larger support generates B-spline 
curves of a higher degree. Adding the appropriate number of ghost points 
will also make these curves locally interpolating (see figure 6-8). 

In figures 6-9, 6-10 and 6-11 we show some characters that are created using 
our tool. Local interpolation, normal and tension control and sharp corners 
were used to create and manipulate these drawings in a straightforward way. 
The curve editing tools can be used as a base of an animation tool, which is 
illustrated by the eight frames of a running animation of figure 6-12, inspired 
by Preston Blair’s book about traditional animation [Blair94]. 

 
 

Fig. 6-8. A 4th degree curve with four 
ghost points added. 

Fig. 6-9. The control vertices determining 
the contours of a 2D face. 
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Fig. 6-10. An example of an animation character created via our curve 
tool, combining local interpolation, normal and tension control. 

 

Fig. 6-11. Another example, where a varying 
line thickness is also applied. 
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Fig. 6-12. Some frames from an animation sequence created using the locally 
interpolating curves described in this chapter. 
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6.5 Discussion 

In this chapter, we described a new technique for generating and 
manipulating interpolatory subdivision curves. The central idea for obtaining 
local interpolation is based on generating a local invariance with respect to 
the subdivision process by accurately placing additional control points (ghost 
points) in the initial control polygon. The proposed method interpolates the 
initial control points in each iteration of the subdivision process and supports 
normal manipulation as well as tension control. It should be noted that the 
idea of generating local invariance could be applied to make other 
approximating subdivision schemes locally interpolatory as well. Applications 
of the proposed scheme go beyond curve-editing and manipulation; for 
example, it can be applied to free-form deformation (see chapter 10) and 
morphing. Moreover, we have been working on extending the ideas to 3D 
modeling and manipulation, as described in chapters 5, 6 and 7. Future work 
can also involve applying similar methods in non-uniform subdivision 
schemes; e.g. to address bias control around the interpolatory points.  
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7 Locally interpolating subdivision surfaces 

7.1 Introduction 

This chapter forms an introduction to the three following ones, explaining 
specific local interpolation techniques for different subdivision surface 
schemes. 

As explained in chapter 3, the subdivision surface schemes that are most 
applied in practical applications are Catmull-Clark’s [Catmu78] and Loop’s 
schemes [Loop87]. Catmull-Clark’s quadrilateral scheme is preferred when the 
objects to be modeled have 90 and 180 symmetries or many rectangular 
parts, such as animation characters. Loop’s triangular scheme is chosen for 
free-form surfaces without this kind of symmetry [Zorin00a]. 

Both schemes are non-interpolating: in general, their limit surface only 
approximates the original control points, without actually interpolating them. 
Besides these approximating schemes, interpolating schemes have also been 
investigated. The most well-known is the extended Butterfly subdivision 
scheme [Dyn90, Zorin96], creating C1 continuous surfaces interpolating every 
single point of the original control mesh. Unfortunately, schemes that rely 
purely on interpolation have some intrinsic problems: their appearance is 
harder to control and they produce more bulges and unwanted folds. This 
makes them much less attractive for use in animation, limiting their main 
application to situations where a given set of measured or calculated points 
has to be interpolated by a smooth surface. 

In section 7.2 we explain why we want to create local interpolation for 
approximating schemes, instead of reverting to other solutions such as fully 
interpolatory schemes. In section 7.3 we explain our requirements in more 
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detail, and finally section 7.4 gives an overview of the related work in this 
area. 

7.2 Advantages of the most widespread schemes 

Both the Catmull-Clark and Loop schemes have been studied extensively, and 
many features have been developed. Most features explained in chapter 4 are 
applied most easily on these two schemes. Sharp and semi-sharp edges, for 
example, have not really been investigated yet for other schemes [Hoppe94, 
Schwe96, DeRose98]. 

Another advantage of approximating schemes compared to interpolating 
schemes is their convex hull property: all newly generated points remain 
inside the box defined by a small set of spanning control points. Due to the 
stationary nature of the scheme, this property can be applied recursively, 
helping, for example, in deciding which part of a mesh to display, further 
gaining in performance as non-displayed subsets need not be subdivided 
[Pulli96]. Approximating schemes also have a much narrower support as 
compared to interpolating schemes, ensuring that editing of the control 
mesh has a purely local effect. 

Specifically interesting for Catmull-Clark surfaces is that they can be rendered 
directly using off-the-shelf software, such as Alias|Wavefront’s Maya [Maya01]. 
This means that the models created by our tools can be employed directly in 
this high-end animation software. 

7.3 Requirements 

The most studied subdivision schemes are both uniform and stationary. In a 
uniform scheme, the same subdivision rules are used for every point of the 
mesh. If the same scheme is applied unaltered for every recursive subdivision 
step, the scheme is said to be stationary. Both characteristics facilitate the 
writing of applications and studying of mathematical properties. Exceptions 
to a uniform or stationary approach are normally only employed to cope with 
special situations; for example, at a boundary or to create creases.  Due to the 
importance of both uniform and stationary rules, we try to avoid affecting 
these properties with our modifications. 

In our modeling application, we want to combine the benefits of the 
approximating schemes with the possibility of editing locally in an 
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interpolating way. We noticed that the users of our modeling tools 
sometimes needed the surface they were designing to interpolate a given 
point. As the subdivision meshes we generate are displayed by standard 
rendering software, we require the underlying subdivision scheme to stay 
intact.  

7.4 Related work 

An interesting view on interpolating a given set of points comes from 
Halstead et al. [Halst93]. They describe a way of displacing all control points of 
an existing approximating mesh and so obtaining a new mesh whose limit 
surface interpolates the original mesh points. They continue to use the 
original subdivision rules of Catmull and Clark, but applied to a larger mesh. 
As the mesh they obtained from displacing the points of the approximating 
mesh turned out to be too bumpy, they applied a second step, moving the 
points of the first and second subdivisions in order to optimize some local 
and global fairness constraints. 

As they describe global displacements of an already subdivided mesh, their 
approach is not very appropriate if one’s goals include interactive 
modifications. Furthermore, their global optimization technique imposes 
local changes with a possible global effect. This is not a problem for their 
primary goal – interpolation of a given set of points – but is undesirable for an 
interactive modeling tool. 

More recently, Levin and Biermann [Levin00, Bierm00] describe a clever 
mathematical framework modifying existing subdivision rules to globally use 
the normal Catmull-Clark scheme, except at a chosen set of points, where an 
interpolating variant is used. A non-uniform scheme replaces the original 
uniform scheme, offering new functionality. Making the scheme non-uniform, 
however, especially when allowing negative weight factors, dramatically 
changes the characteristics of the subdivision scheme. The convex hull 
property is lost, hindering the quick decisions about which parts of an object 
to display, or about collision detection. Also, schemes for describing the 
surface in an easily computable way, as in [Stam98, Zorin01b], get much more 
complicated. Furthermore, extensions such as the sharp and semi-sharp 
edges introduced by DeRose et al. [DeRose98] are not easily incorporated 
with the changed subdivision rules. Or, to put it more generally, many studied 
features, tools [Pulli96] and extensions [Reif00] depend heavily on the original 
rules set out by Catmull and Clark. 
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In [Nasri87] some editing and modeling tools especially directed to Doo-
Sabin subdivision surfaces are described. Although the Doo-Sabin subdivision 
scheme is not much used in practice, the techniques suggested in [Nasri87] 
help a lot in defining which tools can be used to improve the modeling 
capabilities for subdivision surfaces. Among the editing tools, Nasri describes 
a geometric construction to interpolate some or all of the vertices of a 
subdivision mesh. As all points to be interpolated need to be indicated in one 
step, and a potentially global optimization process is involved, this approach 
is less fit for the interactive control we have in mind. Furthermore, his 
approach does not provide tension control. Later [Nasri99, Nasri00, Nasri01b] 
he extended his set of tools with methods to construct Doo-Sabin surfaces 
which interpolate some specific type of curves. 

Considering all this, we decided to try to achieve interpolation on selected 
control points without modifying the original scheme. By introducing 
additional control points – which we call ghost points – and calculating their 
positions carefully, we not only achieve our goal, but also give the user 
optional control of the tangent plane and the tension around the 
interpolating point. 

In chapter 8 we describe how such a local interpolation tool can be designed 
for the Catmull-Clark scheme, while in chapter 9 we describe the intricacies of 
a similar tool for Loop surfaces. Chapter 10 discusses a free-form deformation 
tool based on these extensions. Our approaches are also discussed in three of 
our own publications [Claes00, Claes01a, Claes01b]. 
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8 Locally interpolating Catmull-Clark surfaces 

8.1 Introduction 

Motivated by the discussion of chapter 7, we now describe a new method to 
locally interpolate a Catmull-Clark surface. The method not only allows for 
locally interpolating any number of indicated points, it also provides a control 
over the tangent plane and a tension parameter in these points. 

The rest of this chapter is organized as follows. In section 8.2, we investigate 
the conditions for getting local interpolation. Section 8.3 discusses the 
geometric possibilities for arranging the ghost points and an algorithm for 
constructing an optimal configuration. Finally, section 8.4 shows some 
images illustrating the techniques discussed in this chapter. 

8.2 Geometric conditions for interpolation 

We refer to section 3.5 in chapter3 for a more elaborated description of 
Catmull-Clark’s subdivision surface scheme. 

Let’s assume we have an original control point V0, which we want to 
interpolate with a Catmull-Clark subdivision surface. In order to do so, 
without touching the uniformness of the subdivision scheme, we add a 
number of ghost points. The purpose of these ghost points is to create 
around V0 a carefully constructed submesh that automatically induces 
interpolation at V0. Two decisions need to be taken: 

 determine where these ghost points need to be inserted in the mesh, and 

 determine what the positions of these ghost points should be.  
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Therefore, it is useful to have a look at the formulas to calculate the limit 
position V∞ of V0. In [Halst93] the following formula is derived and analyzed 
(see figure 8-1): 
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Fig. 8-1. Subdivision around a central vertex V0, showing 
surrounding control points (Qi), edge points (Ei) and face points 

(Fi). 

This formula uses the points from the first subdivision. V0 is surrounded by n 
edges, leading to n ghost vertices Qi, inserted into the original mesh. The n 
points Fi are called the face points, where each Fi is the mean of all vertices 
making up one of the polygons surrounding V0. The n edge points Ei are the 
mean between the two vertices and the two face points of the polygons that 
make up the edge. V1 is the position of V0 after the first subdivision step of 
Catmull and Clark’s scheme, and is given as: 
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In the literature, different weighting factors have been used between these 
terms. But, as long as these weights stay within certain limits, and are applied 
in a uniform and stationary way, most features of the original scheme stay 
valid. Changing these weighting factors mostly affects the curvature, which 
contributes to a better continuity in all points. In equation 8-2 we used the 
original weights suggested by Catmull and Clark, but our construction would 
be exactly the same if we employed other weights. 

Substituting equation 8-2 into equation 8-1 results in expressing the limit 
position in terms of the original points:  
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In this equation, we can express the Ei in terms of their assembling parts, 
leading to the following formula: 
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Fig. 8-2. Situation around V0 when the ghost 
points are arranged in triangles. 

If all Fi have exactly three vertices (see figure 8-2), this equation can be further 
simplified: 
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or after regrouping: 
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Now, if we want the limit position to be equal to our original input point, all 
we need to do is to make sure we can get V∞ equal to V0. In that case, 
equation 8-5 leads to a simple relationship between the position of the vertex 
to be interpolated, and the surrounding ghost points Qi: 

  0
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n
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Thus, to get our desired interpolation, it is both a necessary and sufficient 
condition that the ghost points be arranged in triangles and moved so that 
their average is at the same position as the point we want to interpolate. 
Moreover, not only will the limit position stay in this same position, but so will 
all the points generated during the subsequent subdivision steps (this can be 
verified by substituting the formula for the face points into equation 8-2). This 
characteristic is useful because it guarantees that also a slightly subdivided 
mesh will be interpolating at the chosen vertex. For use in a real-time 
environment, only a limited number of polygons can be processed, which is 
translated in executing only a few subdivision steps. 
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Fig. 8-3. Situation around V0 when the ghost points 
are arranged in quadrilaterals. 

In equation 8-4 we could also choose all surrounding polygons to have 
exactly four vertices (see figure 8-3). Such a polygon (around the face point Fi) 
will consist of the central point V0, the neighboring ghost vertices Qi and 
Q(i+1)mod n and a fourth vertex, Ri. Equation 8-4 will then be converted to: 
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or after regrouping: 
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So, with ghost polygons consisting of four vertices, getting the limit position 
the same as the original point needs the following relation to be true: 
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Equation 8-8 has the same advantage as equation 8-6: the vertex at issue is 
interpolated in all iterations of the subdivision scheme (and not only in the 
theoretical limit). Again, this property can be verified by substituting the 
formulas for the face points of this specific configuration into the formulas of 
the subdivision steps (equation 8-2). 

It can be noted that except for all triangles or all quadrilaterals, other 
arrangements of ghost points can also be found that would lead to simple 
equations like equations 8-6 and 8-8. As Catmull-Clark’s scheme prefers 
polygons with four vertices, we opt to compose multiple quadrilaterals 
together whenever polygons with more than four vertices are desired. 

8.3 Methods for setting up ghost points 

In the previous section, it was shown that, when arranging the ghost points in 
triangles, it suffices to make sure that their mean is equal to V0. This can be 
achieved in multiple ways. First, we observe that it would be desirable to have 
all ghost points in one plane throughout V0. Indeed, when they are not in the 
same plane and in order to keep equation 8-6 (or equation 8-8) fulfilled, some 
points need to be “higher” than others. In that case, the subdivision scheme 
will generate extra wiggles, which we absolutely want to avoid. We call this 
plane the ghost plane, as it contains all our ghost points. 
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8.3.1 Calculating the ghost plane 

The orientation of the ghost plane described in the previous section, can be 
calculated in one of the following ways: 

 using Newell’s method [Foley91] to calculate the ghost plane parallel to 
the average plane throughout all the neighboring vertices of V0; 

 employing a similar approach as the normal calculation for Phong 
shading [Foley91], in particularly calculating the average normal of the 
planes of the polygons touching V0; 

 using the formulas of [Halst93] for calculating the exact limit normal in V0. 

All of these methods give rise to more or less the same plane equation. Only 
in some special cases, one method looks more intuitive to the user. Therefore, 
we let users choose between one of the three suggested methods, but also 
let them interactively rotate the plane to model a specific feature. 

We will be calculating the positions of the ghost points starting from the 
positions of the edges that neighbor V0 in the original mesh. As a first step in 
our algorithm, these points will be projected to the ghost plane. These 
projections will reside too tightly to the original neighboring vertices, so we 
scale them down by a user-tunable tension factor. This factor is default set to 
0.5. But, depending on the user’s modeling needs, it can interactively be put 
to any desired value, hence providing a flexible tension control. Making the 
tension factor smaller results in a narrower bump, while making it larger 
creates a bigger bump around the interpolation point (see figure 8-5). 

In the following sections, different approaches for distributing the ghost 
points are studied. 

8.3.2 Even distribution on a circle 

Distributing the ghost points evenly on a circle with V0 as center is an easy 
way to make sure their average coincides with V0. A disadvantage is that this 
will not necessarily be compatible with the original distribution of points 
around V0. If there is a big difference between the angles of the different 
edges, distributing the points evenly on a circle will lead to unwanted twists 
in the final subdivided surface. 

8.3.3 Just moving all points with a vector 

Instead of arranging the ghost points on a circle, we could also translate them 
from their temporary position (obtained from projecting the original 
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neighboring points to the ghost plane and scaling by the tension factor). 
From equation 8-6, we can calculate : 

  iQ
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being the error between the temporary position and the position needed to 
get the subdivision surface to interpolate V0. Just adding D to all the Qi will 
make sure that their new mean position will be equal to V0. 

8.3.4 Keeping the points near their original location 

The method proposed in the previous section is still not the optimal one, as 
the translation by D moves the points further away from their original edges, 
which could cause undesired twists. 

Therefore we worked out an algorithm that tries to satisfy both the condition 
from equation 8-6 and to keep the points as close as possible to their original 
edges. The following pseudo-code describes the algorithm: 

Input: A vertex V0 surrounded by n vertices Pi, all on the 

original subdivision mesh.  

Output: Adding a set of ghost vertices to the mesh such that the 

surface obtained by the Catmull-Clark subdivision of the 

resulting mesh interpolates V0. 

Algorithm: 

1. Calculate T, the tangent plane in V0 (see section 8.3.1). 

This plane is optionally rotated by the user. 

2. Project all Pi to plane T, obtaining points P’i. Then scale 

these points with the tension factor towards V0, obtaining 

the temporary position for our ghost points, the Qi. So Qi 

:= V0 + tensionFactor * (P’i - V0). 

3. Calculate M being the mean of the distances between the 

Qi and V0. 

4. Calculate D := 1/n * sum (Qi). This is the mean of the ghost 

points, that ultimately should coincide with V0. 
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5. Translate all Qi with the vector V0 - D, so Qi := Qi + (V0 - 

D)  (this will put the new mean of the Qi at V0). 

6. Project all Qi back on the original line (P’i - V0) where they 

were at step 2. This will move the mean of the Qi a little bit 

away from V0. 

7. Calculate M’, the new mean of the distances between the Qi 

and V0. Because step 6 also pushes all the Qi closer to V0, in 

order to prevent the ghost points collapsing towards V0, 

they should be moved again to their original distance Qi := 

V0 + M / M’ * (Qi - V0). 

8. Repeat steps 4 to 7 until D and V0 get close enough 

together. As in some configurations this will lead to an 

infinite loop, we will stop the loop after 100 iterations. 

9. The ghost points obtained in this way, will be connected 

into triangles between the original surrounding points (the 

Pi) and the point V0 that should be interpolated. 

8.3.5 Using the first subdivision points as ghost points 

Instead of adding completely new points, we could also run a similar 
algorithm with the points obtained from the first subdivision. But this has as 
its main drawback that when many neighboring control points are indicated 
as interpolating, the algorithm gets into trouble positioning the subdivision 
points in between these control points. Furthermore, this would lead to non-
local effects when indicating points as interpolating, which we want to avoid. 

8.4 Results 

In this section we show some pictures illustrating our editing tool. Figure 8-4 
shows a torus where we constructed a submesh so the surface interpolates a 
given vertex. In figure 8-5 we show the effect of interactively manipulating 
the tension parameter. Figure 8-6 makes clear that our method can be 
combined with other methods, such as the sharp edges introduced by 
[DeRose98]. 
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Fig. 8-4. A torus: at the left with the original mesh, at the right with the modified mesh, 
making one vertex interpolating. 

  

Fig. 8-5.  Setting the tension parameter to a small value (at the left) or a 
large one (at the right, from a slightly different viewpoint) influences the 

form of the bump. 
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Fig. 8-6. Combining our method with sharp edges. The original input mesh is a 
pyramid, where we marked the top as interpolating. Two edges were marked as being 

sharp. 
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9 Locally interpolating Loop surfaces 

9.1 Introduction 

In this chapter, we extend the existing editing tools and manipulation 
possibilities of the approximating Loop scheme for triangular meshes 
[Loop87]. When interactively creating a new surface, local interpolation is 
often desired, preferably without having to cope with the difficulties of the 
fully interpolating schemes. It turns out that we can achieve this goal by 
extending the original control mesh with a particular geometric construction. 
The points introduced by this construction will be called ghost points. In the 
previous chapter, we described a similar approach for the interior of Catmull-
Clark surfaces. Here we concentrate on which constructions and algorithms 
are needed for the Loop scheme, and we investigate how this approach can 
be extended to the borders of the surface. 

The ghost points used for local interpolation also give rise to even more 
attractive editing tools. By rotating the plane containing these ghost points, 
the user can easily give any direction to the tangent plane (or surface normal) 
in the interpolated point. Furthermore, the distance between the 
interpolating point and the ghost points can be scaled, providing an intuitive 
tension control. 

All this can be achieved while keeping the underlying Loop subdivision 
scheme intact, enabling the resulting control meshes to be incorporated 
directly by existing rendering and modeling software. 

The rest of this chapter is organized as follows. In section 9.2 we analyze the 
geometric constructions that achieve local interpolation in points indicated 
by a user. These points can be situated either at the interior of the surface or 
at its border. Section 9.3 discuses some implementation issues and a practical 
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algorithm, whereas section 9.4 illustrates the techniques described in this 
chapter. Finally, section 9.5 concludes this chapter discussing the benefits of 
these techniques and comparing them with alternative approaches. 

9.2 Geometric discussion 

9.2.1 Loop’s subdivision scheme 
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Fig. 9-1. Situation around 
an interior edge. 

Fig. 9-2. Situation 
around an interior 

vertex. 

Fig. 9-3. Situation around a 
border edge and a border 

vertex. 

We refer to section 3.8 of this dissertation for a more general introduction to 
Loop’s scheme. Here, we only describe the essential formulas needed to 
explain our approach to local interpolation. 

Loop’s subdivision scheme consists of two alternating stages executed in a 
recursive way. During the first stage, new control vertices are introduced in 
the middle of each edge and both old and new vertices are all reconnected to 
form four new smaller triangles. In the second smoothing stage, all vertices 
are averaged with their surrounding vertices. Executing this process 
recursively to a usually coarse initial polygon mesh obtains a fine subdivided 
mesh of small triangles, in the limit forming a smooth surface. The new points 
at the middle of an edge are called edge points, while the points of the 
existing mesh are called vertex points. The following formula controls the 
averaging of a new edge point E (on the edge between V1 and V2 and with Q1 
and Q2 as immediate neighbors) in the interior of the mesh (see figure 9-1): 
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And the formula for averaging an interior point V0 (surrounded by k vertices 
Q1 … Qk) is the following (see figure 9-2): 
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For border-vertices there are only “surrounding” vertices on one side. If one 
would employ the same rules as at the interior, the averaging process pulls 
everything too far to the interior. Therefore, the formulas for new edge and 
vertex points at the border do not take the interior points into account. In 
practical situations, the formulas are often simplified to the ones used for 
subdivision curves (see figure 9-3): 
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9.2.2 Interpolation at the border 

As the formulas at the border of the Loop surfaces are the same as for 
subdivision curves, it looks appealing to investigate whether we can 
incorporate the technique described in chapter 6 dealing with locally 
interpolating subdivision curves. In chapter 6, local interpolation is 
accomplished by extending the control polygon of the curve with ghost 
points on a line throughout the point to be interpolated. The orientation of 
this line controls the tangent (thus the normal) at the interpolated point, 
while the distance between the ghost points affects the tension. Hence, 
besides local interpolation, the described technique also provides normal and 
tension control without having to revert to a non-uniform or a non-static 
scheme. See figure 9-4 for an example of a curve interpolating one of its 
points. Extra details and a mathematical discussion about this type of local 
interpolation can be found in chapter 6. 
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Fig. 9-4. A control polygon and the resulting curve without interpolation (left) 
and with ghost points added to obtain interpolation in one of the points (right). 

When extending this approach for curves to get interpolation at the border of 
a subdivision surface, it is not sufficient just to add some ghost points. As 
Loop’s control mesh may only consist of triangles, these ghost points have to 
be connected to the interior points as well. The insertion of the two ghost 
points will change the two neighboring polygons from triangles to 
quadrilaterals (or into pentagons, when two neighboring border vertices 
should be interpolating). A simple solution would be to divide each 
quadrilateral into two triangles using one of the diagonals of the 
quadrilateral. However, in general this creates rather narrow triangles, which 
can cause undesired wrinkles in the resulting subdivision surface. That’s why 
we opt to add a new point in the center of each quadrilateral and form 
triangles by connecting each vertex to the center. This creates an extra 
degree of freedom, which we can use to optimize the fairness of the surface. 

The geometric construction needed for the local interpolation at the border, 
can also be used to change the tangent (and thus the normal) in the 
interpolated point. To achieve this, it suffices to rotate the line that the ghost 
points are put on. Furthermore, by changing the distance between the ghost 
points and the interpolated vertex, a handy tension parameter can easily 
manipulate the form of the curve forming the border of the subdivision 
surface. 
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9.2.3 Interpolation at interior vertices 

While at the border the formulas only take neighboring border vertices into 
account, getting interpolation at interior vertices is more complicated. At the 
interior, there is a ring of surrounding vertices that jointly influence the 
subsequent positions of a point in the subdivision mesh. 

In order to derive conditions to get interpolation at a point V0 surrounded by 
k ghost vertices Qi we start by rewriting equation 9-2, as: 
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Here we see that if the mean of the surrounding ghost points Qi is equal to V0, 
then the next iteration of V0 will stay on the same place. This condition is 
formulated as: 
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Continuing our derivation, we use equation 9-1, which defines how the 
neighboring edge points will be moved. In the recursive subdivision process 
these edge points will namely be the surrounding vertices for the next 
subdivision iteration. Equation 9-2 will be able to calculate V0’’ - the position 
of V0 in the second iteration - expressed in function of the position V0’ at the 
first iteration: 
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If we substitute equation 9-1, adapted to the specific edges, we get: 
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Equation 9-5 shows that if equation 9-4 is true for the first iteration, it will hold 
again for the next iteration. Therefore, applying this line of thought by 
induction, equation 9-4 is a sufficient condition to keep every subsequent 
mesh interpolating in V0 during every single subdivision step and thus also in 
the final limit. 

We will be adding a ring of ghost points around V0 to satisfy equation 9-4. In 
theory these ghost points don’t need to lie in one plane. But then equation 9-
4 will oblige some points to be above the tangent plane, and some under the 
tangent plane. This will introduce some folding that we want to avoid. 

   

Fig. 9-5. Showing the difference between a very small (left), a normal 
(center) and a large tension (right). 

Just as we can manipulate the tangent line at the selected border vertices, we 
can also rotate the tangent plane for the ghost points of the interior points. 
This can be used as a modeling tool to give the surface any desired tangent 
plane in an interpolating interior vertex. Furthermore, equation 9-4 will stay 
invariable when the ghost points Qi are scaled with respect to V0. So scaling 
these ghost points gives the possibility of manipulating a tension parameter. 
Figure 9-5 shows an example of changing the tension parameter. 

 

9.3 Implementation 

The geometric construction of the previous section, led to a practical 
algorithm containing the following steps: 
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1. We start with a polygonal mesh and mark some of its points as 

interpolating. The polygonal mesh can have an arbitrary topology 

and optionally have a border. An example of such an original mesh 

is shown in figure 9-6. 

2. Ghost points are added into the topology of the mesh. For every 

interpolating vertex there will be added a ghost point on every 

surrounding edge. The resulting mesh will contain polygons of 

more than three vertices. Depending on the number of points that 

have to be made interpolating, these polygons can have four, five 

or six vertices. 

3. Just triangulating the polygons with too many vertices will usually 

result in some of the polygons being quite narrow, causing 

unwanted folds. Therefore, a center point of the polygon is 

calculated, and all of its vertices are connected to this center point. 

4. A tangent plane to the surface is calculated, which is optionally 

rotated by the user. All ghost points introduced in step 2 are 

projected onto this plane. 

5. Then these ghost points are moved such that their mean is equal to 

the point we want to interpolate, satisfying equation 4. Optionally, 

these projected ghost points are scaled by a user-supplied tension 

parameter. 

6. Finally, the center points introduced in step 3 are moved to get the 

surface as fair as possible. The final construction together with the 

resulting surface is shown in figure 9-7. 

To get equation 9-4 satisfied, we tried several approaches. Our first 
implementation distributed the points evenly over a circle, which resulted in 
a very fair surface near our interpolating point, but in many cases got some 
torsion effects. A next approach was to just calculate the current mean of the 
ghost points and move all of them with the vector between this mean and 
the desired mean V0. Usually this gives acceptable results, but sometimes it 
resulted in a torsion effect. Therefore, we extended this last approach with an 
iterative loop, moving the points to get their desired mean and reprojecting 
them towards their original edge.  
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Fig. 9-6. A standard mesh. The resulting 
Loop surface does not interpolate its 

control points. 

Fig. 9-7. The mesh is extended with a 
geometric construction to make the limit 

surface interpolate the topmost point. 

9.4 Results 

Figure 9-8 shows an object modeled with Loop subdivision surfaces, making 
use of the tools introduced in this chapter. In figure 9-9, a close-up of the beak 
shows the difference between a standard modeling technique and the 
application of our extensions. 
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Fig. 9-8. A chicken modeled with Loop surfaces, making use of interpolatory points, 
tension and normal control. 

  

Fig. 9-9. Zoomed in on the beak of the chicken. At the left no interpolation is used, 
while in the image at the right some points are made interpolating and adequate 

tension parameters are set. 
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9.5 Discussion 

In this chapter, we described a modeling tool that has the ability to 
interpolate selected points for surfaces constructed by the traditionally 
approximating Loop scheme. The main advantage of our solution compared 
with other approaches is that we keep the underlying uniform and stationary 
scheme completely intact, only adding carefully located ghost points to the 
original mesh. Hence, we keep all the existing features of the Loop scheme, 
only adding new editing tools. This way existing rendering engines, for 
example, can be employed directly without any change. Our new tools can 
also extend an existing modeling toolbox, to be used either separately or in 
combination. 

Furthermore, we provide the user with the possibility to edit the interpolatory 
normal direction and control the surface tension at the interpolating point. 

It turned out that the described framework is not only useful for modeling 3D 
objects, but is also very useful for creating an interactive deformation tool, 
which we elaborate in the next chapter. 
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10 An application: a free-form deformation tool 

10.1 Introduction 

This chapter describes a free-form deformation scheme dealing with 2D 
animated objects. As animations are mostly shown as moving 2D images, it 
often suffices to only decide about the movements in two dimensions to 
create convincing animations. This does not work out properly when 
physically correct movements are needed, but is very suitable to informally 
deliver creative ideas to a viewer. 

The following requirements showed up for free-form deformations suited to 
accomplish this goal: 

 There should be fluid movement, not only at the border, but also at the 
interior of the animated object, and the texture parameterization of the 
surface should be deformed in a smooth, natural-looking way. 

 Both global control, needing limited user interaction, and fine local 
control near specified joints should be integrated into one consistent 
interface paradigm. 

 Specific discontinuities should be allowed, such as a hole inside the 
animated object or limbs sticking out of it. For example, although a 
character’s two feet can be situated close together, usually they should be 
animated and deformed independently and they can even overlap. 

In order to cope with all this, we closely examined existing free-form 
deformation schemes, but, unfortunately, none of them combined all desired 
requirements. Therefore, we opted to investigate the application of the 
extensions of the subdivision scheme described in chapter 9. 

The rest of this chapter is organized as follows. Section 10.2 describes free-
form deformations, gives some pointers to related work and explains how 
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they will be used in our application. Section 10.3 deals with subdivision 
surfaces with local interpolation and explains how they can be used for free-
form deformations. In section 10.4, the details of our implementation are 
elucidated, while the next section formulates a conclusion and explains our 
ongoing future work. 

10.2 Free-form deformation (FFD) in 2D 

10.2.1 Existing FFD schemes 

Sederberg [Seder86] and Barr [Barr84] were among the first to point out 
possibilities, advantages and implementation schemes of deformations and, 
more particularly, of free-form deformations (FFDs). Many followed this trail, 
improving and extending their usability for different tasks and requirements. 

Sederberg put a 3D B-spline lattice around a selected object, then modified 
the positions of the vertices of the control lattice, and finally applied that 
deformation to the object. Coquillart combined Sederberg’s lattices to allow 
more complicated deformations [Coqui90]. In a follow-up paper, she also 
decoupled the lattice from the object to allow animating the lattice 
separately or to move the object through a deformed space [Coqui91]. 

Different representations of the deformation tool were investigated: 

 a surrounding control lattice [Seder86], 
 combining multiple lattices [Coqui90], 
 a lattice build up from subdivision volumes [MacCr96], 

 some controlling curves or based on an axis [Barr84], 

 control surfaces [Feng96] or 
 a scattered set of points [Mocco97]. 

The type of tool used for the deformation strongly determines what kinds of 
deformations are feasible and how easily the user can control them. Each tool 
can be adequate in its own right, depending on the needs in the specific 
application. 

Most work in FFDs concentrates on 3D deformations, considering 2D 
deformations as a simplification: just leave out one dimension. This ignores 
that when you restrict yourself to 2D deformations, additional goals can be 
achieved, as explained in the introduction (see section 10.1). One of the 
people specifically tackling 2D deformations was Sederberg in his 
Siggraph’93 paper [Seder93], where he describes a method to interpolate 
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between two deformed 2D objects. Each object is represented by a polygon. 
The paper restricts itself to the behavior of the border, giving no clue about 
how the interior of the polygons should be deformed. 

10.2.2 Deforming parameterization and local control 

In [Inter97] arguments are given to show the significance of texture mapping 
for conveying 3D shape, even for non-deformable objects. Moreover, when 
we only dispose of a flat 2D deformable object that pretends to represent a 
3D shape, precise control of the texture mapping becomes extremely 
important in order to deform in a convincing way. 

Zonenschein et al. [Zonen98] studied the texturing of deformable implicit 
surfaces, indicating texture artifacts (“ghosting”) when the objects are 
deformed. In their implementation, they needed to blend colors and 
transformations to get a plausible result. We opt for a more exact control of 
the texture, so we try to avoid blending. 

The FFD schemes mentioned in section 10.2.1 do not specifically take care of 
the parameterization (texturing) of the surface; they only concentrate on the 
general shape. Furthermore, with most of these FFD schemes, local control is 
not so easy. Local control implicates a denser mesh, but usually this is only 
possible if the complete mesh is subdivided, which obliges the user to control 
a huge set of points. Only [Mocco97] and [MacCr96] allow local control, so 
their approaches needed to be studied closer in view of our application. 

We considered the approach of [Mocco97], who organizes scattered control 
points into a Delaunay triangulation. Their mesh is not explicitly visible to the 
user, which has the advantage that the user doesn’t need to spend time to 
create the connections, but has the disadvantage that the user cannot make 
different connections when needed, for example to mimic certain physical 
connections. As the main goal in [Mocco97] is deforming hands represented 
by many control points that are positioned relatively close together, a 
Delaunay triangulation forms the most adequate connectivity. When 
attempting to apply this approach for 2D animation purposes, however, with 
only a limited number of control points, the possibility to create own 
connections, including explicit discontinuities, turned out to be a necessity. 
Nevertheless, [Mocco97]’s idea to start out with a Delaunay triangulation is 
also useful in our approach, where we extend the idea with the possibility of 
re-editing the generated mesh. Unfortunately, their scheme for calculating 
the coordinates in the mesh is no longer applicable, as it strongly depends on 
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the Voronoi diagrams defined by these triangulations; furthermore, the 
convex hull property prohibits having the type of discontinuities we need. 

MacCracken and Joy’s solution to FFDs [MacCr96] is based on subdivision 
volumes created by 3D lattices of arbitrary topology. We liked their idea to 
use subdivision, as it is the only FFD approach facilitating arbitrary topologies. 
Nevertheless, although in theory there is considerable freedom in 
manipulating deformations, their setup is rather hard to establish and control 
by a user. Also, their way of subdividing space makes calculating the 
coordinates of a point referring to the deforming mesh less straightforward. 
In our approach, instead of their 3D subdivision volumes, we apply 
subdivision surfaces, augmented with adequate control tools. 

The system we propose has specific advantages and features when compared 
to the previously described techniques. None of the techniques combines all 
of these features into one concise interface. The main differences are: 

 We allow both general global local control in areas of less interest and 
simultaneously precise local control where needed. This combined type 
of control is also possible in [MacCr96], but their 3D lattices are hard to 
handle and to position precisely, and furthermore they don’t allow for 
local interpolations. [Mocco97] also allows some combination of local and 
global control, but does not provide discontinuities. 

 None of the FFD techniques described in section 10.2.1 explicitly cares 
what happens to the object outside of the border. Objects are just 
embedded in a larger space. Everything that could happen to the FFD 
transformation outside of the border is simply ignored. In our approach, 
however, we want to allow for discontinuities. If the transformation 
extends too far outside the border, the effect of an FFD applied to one 
part will result in an overlap with neighboring parts of the object. This 
overlapping complicates making sure the animation of one part does not 
influence a neighboring part, as, for example, in the case of two legs. 
Therefore, we provide very precise border control. 

 Most FFD approaches can easily deform an object as a whole, but have 
problems handling the interior just as easy. The interior is deformed as to 
minimize distortions, but this cannot be guided as fluently as desired by 
an animator. We solve this by allowing for interpolating points, not only at 
the border but also at the interior. 
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10.3 Locally interpolating subdivision surfaces 

10.3.1 Recursive subdivision schemes 

Recursive subdivision schemes have been used to define curves (in 2D or in 
3D), surfaces (usually in 3D) and volumes (in 3D) [MacCr96]. Such a scheme 
starts with a set of control points, and in each subsequent subdivision step, 
in-between points are introduced and simultaneously averaged by their 
neighbors. Depending on how adequate the averaging scheme is, this 
process will eventually converge to a smooth curve, surface or volume. It will 
result in a curve if the points are connected in one linked list (like a polygon), 
in a surface if the points are connected like a polyhedron and in a volume 
with points connected in a lattice. Recursive subdivision schemes are 
explained in more detail in chapters 3 and 4 of this dissertation. 

10.3.2 Using subdivision surfaces for FFD 

We based our FFD scheme on subdivision surfaces, as such a surface can both 
represent the border and the interior of a 2D object. A subdivision scheme is 
said to be uniform if the same scheme is applied unchanged to every point. 
The scheme is stationary if the same rules are used for all subsequent 
subdivisions. As interesting mathematical and practical properties depend on 
the scheme being both stationary and uniform, people only avoid them if 
they want to achieve exceptional goals. One of these goals can be coping 
with boundary conditions, because the ordinary rules for the interior do not 
work at the border. As we want to describe a 2D surface that does not cover 
the entire plane, we necessarily need to have surfaces with a border. Luckily, 
the standard rules for borders keep the properties of the otherwise fully 
uniform Loop scheme mostly intact [Hoppe94, Schwe96]. 

Chapter 7 discussed the need for local interpolation of subdivision surfaces, 
and chapters 8 and 9 presented actual methods to achieve local interpolation 
for the most widespread schemes, Catmull-Clark’s and Loop’s. For reasons of 
easy and smooth editing control and the requirements of our free-form 
deformation application, we chose to work with an approximating scheme 
based on triangles: Loop’s subdivision surfaces. We preferred Loop’s 
triangular scheme, because triangles are easier to parameterize 
unambiguously. Furthermore, in a 2D environment, triangles can more freely 
be adapted to specific configurations, while quadrilaterals as in Catmull-
Clark’s scheme are more suited for rectangular symmetries. 
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10.3.3 Local interpolation, normal and tension control 

As the surface is employed in 2D, it necessarily has to deal with a border. 
From the formulas of chapter 9, it is clear that the border of the Loop surfaces 
is just a subdivision curve, with no interior point taken into account. This 
makes the technique described in chapter 6, dealing with locally interpolating 
subdivision curves, very valuable for our FFD implementation. Local 
interpolation is accomplished by extending the control polygon of the curve 
with ghost points on a line throughout the point to be interpolated. The 
orientation of this line controls the tangent (and thus the normal) at the 
interpolated point, while the distance between the ghost points affects the 
tension. Hence, besides local interpolation, the described techniques also 
provide normal and tension control, without having to revert to a non-
uniform scheme. In figure 10-1, we show an example of the behavior of the 
mesh. For a more detailed description of the interpolation at the border, we 
refer to chapter 6. 

   

Fig. 10-1. A subdivision surface mesh in 2D, at the left without interpolation, at 
the center interpolating a border vertex, and at the right interpolating an interior 

point (note that for clarity also the normals at the border edges are shown). 

The technique for local interpolation can furthermore be extended to the 
interior of the Loop surfaces, as described in chapter 9. Figure 10-1 is an 
example of a mesh with the two sorts of interpolation. 

10.4 Implementation 

In our basic approach, we start out with a 2D object to be deformed. The 
object is represented by a 2D image and can have an arbitrary topology, like 
having holes or limbs sticking out. On this image, the user draws a net of 
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control points. The control points are put both at the interior and near the 
border. At most places, just an approximating control mesh suffices, but 
wherever more control is needed, the user can choose to insert an 
interpolating point, as demonstrated in figure 10-2. An example of a mesh for 
the head of an animation character is shown in figure 10-3. At the right of 
figure 10-3, this mesh is subdivided once. The user can also create some kind 
of skeleton using the mesh, but this is not a necessity. 

   

Fig. 10-2. Using the local interpolation and normal control of the border to fit the 
surface to the object. Left: The situation without local interpolation. Center: 

Interpolation, but with a bad tension. Right: Fitting the tension at the border. 

  

Fig. 10-3. The original and the subdivided control mesh for an animation character. 

Furthermore, special care is taken on the border near places where separate 
parts that stick out come close together, as, for example, between the upper 
lip and the nose. In more traditional FFD approaches, at those places the 
control mesh would be interconnected, forming something similar to a 
convex hull. We will draw the discontinuities explicitly, by continuing the 
border between them. 
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When the user finishes setting up the initial mesh, this mesh is frozen to the 
object, analogous to other FFD approaches. Internally in our program, the 
mesh is converted into the triangles belonging to some level of subdivision. 
At the corner of each triangle, texture coordinates will be generated, 
mapping the undeformed initial 2D image to this geometry. 

In the next stage – also a typical step in FFD – the user can start moving 
points of the control mesh or even animate them. In the program, the mesh 
will be subdivided again, the texture coordinates belonging to the initial 
position will be applied and everything will be redrawn, resulting in a 
deformed object. Typical for our approach, is that apart from moving control 
points, the user can also manipulate the tension and the normal, giving rise to 
appealing effects that are hard to establish with other methods. Figure 10-4 
shows a typical example. 

  

Fig 10-4. An example of changing only the tension in the 
border point at the tip of the nose. 

An additional advantage of working with the approximating Loop subdivision 
scheme is that we can set up a tree of convex hulls. In that tree, each 
subsequent subdivision level is contained into a convex hull defined by the 
control points of that level. This enables a quick search for where a point 
resides in the generated mesh. 

Figure 10-5 refers to a very expressive animation that was created with a small 
amount of user input. The animation gives a lot of 3D feeling, while all 
manipulations are kept strictly 2D. 
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Fig. 10-5. Some frames from an animation created by our system. More control 
points and interpolation are used around the eyes, to provide better local 

control. Between the upper lip and the nose there is an explicit discontinuity to 
prevent lip movements from having undesired effects on the nose. 

10.5 Discussion 

In this chapter we described a method for deforming 2D images, based on 
locally interpolating subdivision surfaces with normal and tension control. 
Our method enables a very smooth movement, explicit discontinuities and 
both global and local control. None of the other FFD approaches, described in 
section 10.2.1 is able to combine all these features in one uniform concept. 

In our ongoing future work, we are investigating ways to incorporate higher-
level editing of the mesh, such as multi-resolution editing. Furthermore, we 
want to have a closer look at combining our methods with physically-based 
modeling techniques and constraint-based systems. 

In addition, we are thinking about extending our approach to 3D, keeping in 
mind the requirements that are also important for 2D deformations. Another 
track is instead of deforming objects, deforming the space through which the 
object moves, similar to the ideas presented in [Coqui91]. 
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11 Directions for future research 

11.1 Further extending subdivision surface editing 

Skaria et al. [Skaria01] described an interesting implementation of a tool to 
create faces for cartoon characters. With a combination of easy-to-use 2D 
interfaces, they create subdivision surfaces with a minimal number of control 
vertices, especially taking care to strongly restrict the number of 
extraordinary points. In a similar way, powerful editors should be built for 
many more applications, helping the designer of a surface to obtain a good-
looking model with low polygon count. A very interesting feature of 
subdivision surface modeling is that the designer can work with an easy-to-
understand-and-manipulate polygonal model. Nevertheless, specific tools for 
high-level control are still a long way from full maturity. 

We are also convinced that a surface modeler that directly operates on the 
hexagonal meshes for the new subdivision surface scheme described in 
chapter 5, could have the same control and flexibility as existing modelers for 
Catmull-Clark and Loop surfaces. Maybe it would even be possible to specify 
a hybrid subdivision scheme, combining the advantages of the schemes for 
each of the three types of meshes, depending on local criteria. 

11.2 Other applications benefiting local interpolation  

As morphing between objects is quite related to free-form deformations, it 
makes sense to investigate how the locally interpolating subdivision can be 
put to use for that kind of application. Moreover, by combining free-form 
deformations and morphing into an animation tool, it would become 
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possible to create stunning animations needing little user effort. Physics-
based methods could further facilitate intuitive control. 

At the Expertise Centre for Digital Media, a new 2.5D rendering and automatic 
inbetweening tool is currently being investigated [DiFio01]. Subdivision 
curves and surfaces could also play a role there - for example, to control the 
texture mapping of these 2.5 D objects. The higher level of control described 
in this dissertation would also bring additional advantages and possibilities to 
this kind of applications. 

11.3 Further investigation of hexagonal subdivision 

The full mathematical analysis of our hexagonal subdivision scheme still has 
to be done, as is the case for subdivision surface schemes in general. For 
example, most of these schemes are tangent plane continuous, but not 
curvature continuous at extraordinary points. Mathematically, it is stated 
these surfaces are C1, but not C2. However, there is a strong feeling that they 
are “more” continuous than just C1. To take an example of subdivision curves, 
the interpolating four-point scheme is C1 but not C2. Yet, between many 
possible ways of defining a curve that locally only uniformly depend on four 
surrounding control vertices, they provide a very smooth solution. 

Another topic of further research is to investigate how the hexagonal scheme 
can be effectively combined with a triangular scheme to obtain surfaces with 
a higher order of continuity. For this, also a further investigation of the 
relation with box-splines and half-box-splines [Praut01], which are defined on 
purely regular meshes, would be very helpful. 

Furthermore, just as Nasri’s continuing research has improved possibilities for 
the quadrilateral corner-cutting Doo-Sabin scheme [Nasri87, Nasri99, Nasri00, 
Nasri01a, Nasri01b], also for the hexagonal scheme improved methods for 
borders, curve interpolation, sharp and semi-sharp edges and adaptive 
subdivision would be very welcome. 

In other research areas, this new hexagonal scheme can also give new input 
to finite element methods and to wavelet analysis. 

11.4 Putting functions into the weights 

A very useful property of subdivision surfaces, is the ability to have rather 
high differences in density of the control points in different zones. This 
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permits the creation of fine detail in one zone, without the need to deal with 
too many control points all over the surface. 

In many practical situations, however, the surface designer needs to be 
careful to arrange control points in the regions where dense and coarse zones 
meet each other. This problem is mainly caused by the uniform subdivision 
rules, assigning the same weights to nearby and more distant control points. 

Therefore, an interesting area of research is the study of non-uniform 
subdivision schemes. To simplify, let us consider the subdivision scheme for a 
cubic B-spline. From the masks from section 2.2, the following formulas are 
derived. New vertices are inserted in the center of the existing ones: 

  101,0
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' ppp   (11-1) 

And the existing vertices are relaxed with their neighbors using: 
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As only two vertices are used in equation 11-1, it is better to leave it 
untouched so as not to incorporate vertices that are further away. Equation 
11-2, on the other hand, can be adapted to give higher influence to points 
that are nearer. Therefore, we suggest calculating the new point as: 
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The weights depend on the distances between the points (we use Euclidean 
distances): 
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This approach generates a subdivision curve, where nearby points more 
strongly influence the final form of the curve. The curve is not a cubic B-spline 
anymore, but still very smooth and more adapted to the form of the initial 
control polygon. A similar technique could be applied to subdivision surfaces, 
making their appearance more similar to the control mesh. This kind of 
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modification would make the scheme non-uniform, urging the development 
of new tools to analyze their properties.  

One example of non-uniform subdivision to generate surfaces can be found 
in the work by Ivrissimtzis et al. [Ivris01]. They employ trigonometric 
calculations, projecting the configuration on a sphere or hyperbole to derive 
coefficients for approximating or interpolating schemes. By allowing the 
subdivision rules to be non-stationary and letting the weights depend on the 
dihedral angles between the faces, they created a non-stationary scheme 
which when used on a regular Platonic solid as input will result in a sphere. 
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12 Conclusions 

In this dissertation, we investigated new techniques for recursive subdivision, 
both for curves and for surfaces. The main contributions are the construction 
of a new hexagonal scheme for subdivision surfaces and a new editing 
paradigm. 

We introduced a new subdivision surface scheme based on hexagonal 
meshes. In recent classifications, the possible existence of these schemes 
seems to be ignored. Such hexagonal schemes are important, however, as 
they are the dual of existing triangular schemes. For quadrilateral schemes, is 
has been proven that using repeated averaging, alternating between the 
primal and the dual scheme, surfaces of higher continuity can be created. The 
development of a concrete hexagonal scheme is a first step in a similar setup 
for triangular schemes. In order to cope with already existing triangular 
meshes, methods to convert them to hexagonal meshes are included. It turns 
out that the hexagonal scheme can be applied in very similar ways as already 
existing subdivision schemes, resulting in high-quality surfaces. Furthermore, 
the new scheme has important properties such as simple construction rules 
and a small local support. The scheme a dual to the Sqrt(3) scheme, recently 
presented by Leif Kobbelt at Siggraph 2000 [Kobbe00]. 

The new editing paradigm is first worked out for subdivision curves enabling 
local interpolation in points that the user can indicate interactively. Moreover, 
the tool allows for easy control over the normal direction and includes a 
handy tension parameter. 

Later, this tool was extended to also permit local interpolation for subdivision 
surfaces. Again, local interpolation and normal and tension control are 
provided as direct manipulation tools. Ghost points are introduced, whose 
position is carefully calculated. Both for the quadrilateral Catmull-Clark 
scheme and the triangular Loop scheme, adequate algorithms are designed. 
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Finally, to show that this approach is not only useful for interactive surface 
design, a new free-form deformation paradigm for 2D animated objects is 
also constructed. The subdivision techniques with our extensions turn out to 
be very powerful in combining precise local control with rapid global 
manipulations. Furthermore, the underlying subdivision enables explicit 
discontinuities. 
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Appendix 1: Invariance conditions for cubic curves 

In this appendix, we give a proof of the invariance conditions from section 6.2 
of chapter 6 applying to locally interpolating cubic curves. That section also 
contains the meaning of the variables together with the necessary 
illustrations. 
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Appendix 2: Invariance conditions for curves of any 
degree 

In this appendix, we give a proof of the invariance conditions from section 6.3 
of chapter 6 applying to locally interpolating curves of any degree. 

The approach is slightly different depending on n (in equation 6-3 of chapter 
6) being even or odd: 
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Samenvatting 

Alhoewel subdivisie-oppervlakken reeds meer dan 20 jaar gekend zijn in de 
academische wereld, werden ze pas zeer onlangs een populaire representatie 
voor willekeurige oppervlakken, zowel in de wereld van de computeranimatie 
als voor industriële ontwerpen. Een belangrijke rol in deze populariteit werd 
gespeeld door hun succesvolle toepassing in een kortfilm van het beroemde 
productiehuis Pixar [DeRose98]. Voor hun animatiefilm, “Geri’s Game”, pasten 
ze voor het eerst subdivisie-oppervlakken toe als basisconcept voor alle 
geanimeerde oppervlakken, zoals het hoofd en het jasje van “Geri”, het 
sympathieke hoofdpersonage. Later perfectioneerde Pixar deze technieken 
voor de productie van “Toy Story II” [Porter00]. 

Subdivisie-oppervlakken vormen een compacte representatie van gladde 
oppervlakken en bieden een aantal voordelen ten opzichte van andere 
bestaande representaties. Als alternatief voor subdivisie-oppervlakken wordt 
vaak gebruik gemaakt van parametrische patches. Dit soort patches, zoals de 
gekende B-spline-patches, zijn echter slechts gedefinieerd op een eenvoudig 
rechthoekig of driehoekig domein. Om oppervlakken van een willekeurige 
topologie (met gaten en uitsteeksels) te kunnen representeren, moeten 
verscheidene patches aan elkaar vastgehecht worden. De scheidingsranden 
zijn echter niet gedefinieerd in dezelfde representatie, wat dikwijls aanleiding 
geeft tot oneffenheden en scheurtjes op deze randen, vooral wanneer de 
oppervlakken geanimeerd worden. Een echte nachtmerrie, die de artistieke 
vrijheid van de animators sterk beknot. 

Met subdivisie-oppervlakken kunnen dit soort oppervlakken echter wel in 
hun geheel via een eenduidig paradigma gedefinieerd worden. Subdivisie-
oppervlakken vertrekken van een polygonale mesh die een ruwe benadering 
van het oppervlak weergeeft. Zo een mesh bestaat uit een reeks 3D punten, 
die via polygonen met elkaar verbonden zijn. In een eerste stap wordt de 
ruwe mesh vervangen door een iets fijnere mesh, waarbij de punten 
uitgemiddeld worden. Dit proces wordt recursief herhaald en resulteert in de 
limiet in een glad oppervlak. 
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De basis van de huidige kennis rond subdivisie-oppervlakken, werd in 1974 
door Chaikin gelegd, die opmerkte dat door het repetitief afsnijden van de 
hoeken van een polygoon, uiteindelijk een gladde curve bekomen wordt 
[Chaik74]. Later bewezen Lane en Reisenfeld dat Chaikin’s curve een 
kwadratische B-spline definieert, en ze breidden het concept verder uit naar 
B-splines van willekeurige orde [Lane80]. In de beginjaren werd dit subdivisie-
principe vooral gebruikt om zoekalgoritmes te versnellen, bv. voor het vinden 
van de snijpunten tussen twee curves. Eigenlijk was Chaikin niet de eerste in 
het publiceren van subdivisie-curves. Later werd duidelijk dat een Frans 
wiskundige, G. de Rham, reeds in de jaren 50 een gelijkaardig schema 
beschreven had, dat later echter in de vergetelheid raakte [DeRham56]. 

Het eerste schema voor subdivisie-oppervlakken, het Catmull-Clark schema, 
werd in 1978 beschreven door Ed Catmull en Jim Clark, die zich baseerden op 
het repetitief opsplitsen van vierhoeken in vier kleinere vierhoeken 
[Catmu78]. De nieuwe punten werden berekend als een uitmiddeling van de 
omliggende bestaande punten, waarna ook de bestaande punten 
uitgemiddeld werden. Voor een regulier rooster past deze methode eigenlijk 
gewoon tweemaal een derdegraads subdivisie toe, een tensorproduct in 
twee loodrecht op elkaar staande richtingen. Catmull en Clarks belangrijkste 
inzicht was echter de uitbreiding van deze principes naar roosters die niet 
uitsluitend uit vierhoeken bestaan. Met deze roosters kunnen dan gesloten 
oppervlakken gedefinieerd worden, waardoor eensklaps oppervlakken van 
een willekeurige topologie in naadloos hetzelfde concept opgenomen 
worden. 

Gedurende hetzelfde jaar, 1978, toonden Donald Doo en Malcolm Sabin een 
variant van subdivisie-oppervlakken gebaseerd op het tensorproduct van 
twee kwadratische curves [Doo78]. Visueel komt deze methode overeen met 
het wegsnijden van de hoeken en randen van een polygonale mesh. Hun 
schema werd bekend onder de naam Doo-Sabin-subdivisie en heeft als een 
interessante eigenschap dat de gegenereerde limietoppervlakken de 
middelpunten van de originele polygonen interpoleren. Het Doo-Sabin 
schema genereert meshes die het duaal zijn van de meshes gegenereerd via 
het Catmull-Clark schema: overal waar het Catmull-Clark schema een nieuwe 
polygoon definieert, definieert het Doo-Sabin schema een nieuw punt in het 
midden van die polygoon. Deze punten worden dan weer verbonden tot 
polygonen, die op hun beurt rond de punten van het Catmull-Clark schema 
heen lopen. 

In 1987 presenteerde Charles Loop een subdivisie-techniek die volledig 
gebaseerd is op een uit driehoeken bestaande mesh [Loop87]. Hij breidde 
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eigenlijk een bestaand spline-type, met name een vierdegraads box-spline, 
dat reeds gedefinieerd was voor reguliere driehoekige roosters, uit naar 
roosters die ook niet-reguliere punten bevatten. 

De schema’s van Catmull-Clark, Doo-Sabin en Loop zijn allen benaderende 
schema’s. De gegenereerde oppervlakken benaderen slechts hun 
controlepunten, zonder ze effectief te interpoleren. In 1990 stelden Dyn, 
Levin en Gregory het eerste schema voor dat zijn controlepunten allemaal 
interpoleert [Doo90]. Doordat de regels voor het schema beschreven worden 
uitgaande van een configuratie van driehoeken die op een vlinder lijkt, werd 
het schema bekend onder de naam “Butterfly-schema”. Later breidden Zorin, 
Schröder en Sweldens dit schema uit zodat onder alle omstandigheden een 
C1-oppervlak bekomen wordt [Zorin96]. 

Het kunnen representeren van oppervlakken met een willekeurige topologie 
is vooral interessant, omdat het ook toelaat dat een oppervlak op 
verschillende plaatsen met een verschillende dichtheid van controlepunten 
gedefinieerd kan worden. Er kan daarom locaal met fijn detail gewerkt 
worden zonder de noodzaak om ook elders een grote massa punten te 
introduceren. 

Ondanks hun recente populariteit, zijn de eigenschappen van subdivisie-
oppervlakken grondig wiskundig geanalyseerd. Dit hebben ze o.a. te danken 
aan hun sterke relatie met wavelet- en multi-resolutie-analyse [Stoll96], met 
tal van toepassingen in vele wetenschappelijke en technische domeinen. 

In vele praktische toepassingen blijkt dat volledig gladde oppervlakken niet 
voldoende zijn. Een belangrijke uitbreiding vormt dan ook de mogelijkheid 
om scherpe en halfscherpe randen te creëren. Gelukkig past dit concept 
volledig in het paradigma van subdivisie-oppervlakken. Het werd o.a. 
uitgebreid toegepast in “Geri’s Game”. 

Doordat subdivisie-oppervlakken gedefinieerd zijn op een polygonaal model, 
zijn ze ook vrij intuïtief te editeren. Polygonen kunnen makkelijk verplaatst en 
geroteerd worden om het oppervlak te vervormen en punten kunnen op een 
eenvoudige manier ingevoegd en verwijderd worden. Gelukkig is het voor 
subdivisie-oppervlakken geen vereiste dat de punten van de polygonen in 
eenzelfde plat vlak liggen. 

De voornaamste bijdragen van deze doctoraatsverhandeling situeren zich in 
twee domeinen. Enerzijds ontwikkelden we een techniek die het toelaat dat 
een benaderend subdivisie-schema toch een aantal van zijn controlepunten 
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interpoleert. Anderzijds werkten we een volledig nieuw subdivisie-schema 
uit, gebaseerd op zeshoekige meshes. 

Volledig interpolerende schema’s voor subdivisie-oppervlakken, hebben wel 
als voordeel dat ze een oppervlak kunnen construeren dat precies doorheen 
een verzameling punten gaat, maar ze hebben ook een aantal inherente 
nadelen. Het voornaamste probleem is dat ze moeilijk te controleren bulten 
en plooien vormen. Een kleine verschuiving van een controlepunt geeft 
plotseling een heel ander oppervlak. Dat maakt dit soort schema’s ongeschikt 
voor modelerings- en animatietoepassingen. Ook hebben volledig 
interpolerende schema’s minder interessante wiskundige eigenschappen. Zo 
bestaan er bv. geen wiskundige basisfuncties die het oppervlak kunnen 
beschrijven en beïnvloeden de controlepunten een grotere zone. Ook blijft 
bij een approximatief schema het oppervlak dat door enkele controlepunten 
gedefinieerd wordt, volledig in de convexe omhullende van die punten, een 
eigenschap die interpolerende schema’s moeten missen. 

Aangezien enerzijds de volledige interpolerende schema’s niet interessant 
zijn voor modeleringstoepassingen, maar er anderzijds toch dikwijls behoefte 
is om een bepaald controlepunt te interpoleren, ontwikkelden wij een nieuwe 
techniek. Deze techniek laat toe om, met behulp van nauwkeurig berekende 
hulppunten (“ghost points”), toch een bepaald controlepunt te interpoleren. 
Onze techniek heeft als bijkomend voordeel dat ook de oppervlaktenormale 
en een handige tensie-parameter eenvoudig mee gecontroleerd kunnen 
worden in de modeleringstoepassing. 

We ontwikkelden deze methode eerst voor subdivisie-curves, en breidden 
dat daarna uit voor de twee meest gebruikte schema’s voor subdivisie-
oppervlakken, namelijk Catmull-Clark en Loop. We pasten deze technieken 
bovendien toe buiten het domein van modelering, namelijk in dat van het 
vervormen van tweedimensionale objecten (“free-form deformation”). We 
ontwierpen een applicatie die toelaat om op een zeer intuïtieve manier 
tweedimensionale animaties te creëren met een tot dan toe onbestaande 
vrijheid. 

Een beetje losstaand van de technieken rond locale interpolatie, werkten we 
ook een volledig nieuw schema voor subdivisie-oppervlakken uit, ditmaal 
gebaseerd op zeshoekige meshes. Aangezien zeshoekige meshes in de 
praktijk niet zo frequent voorkomen in grafische computertoepassingen, 
werkten we ook methodes uit om driehoekige meshes te converteren naar 
zeshoekige. 
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Onze interesse voor zeshoekige schema’s werd vooral gewekt door twee 
recente wetenschappelijke publicaties. Zowel een publicatie van Jos Stam 
[Stam01] als van Zorin en Schröder [Zorin01a] beschreven een techniek 
waardoor ze oppervlakken van willekeurig hoge graad van continuïteit 
konden bekomen, door repetitief uit te middelen tussen twee duale 
subdivisie-schema’s. Beide publicaties vermeldden enkel het bestaan van 
duale schema’s voor vierhoekige meshes. Een duaal schema voor een op 
driehoekige meshes gebaseerd schema, zou met zeshoekige meshes moeten 
werken, en die waren totnogtoe niet beschreven. 

Ons onderzoek omtrent het nieuwe schema voor zeshoekige meshes toont 
aan dat het een volwaardig alternatief is voor de bestaande schema’s en 
opent een fascinerende wereld van nieuwe mogelijkheden en toepassingen. 

De verschillende hoofdstukken van deze doctoraatsverhandeling worden 
hierna kort ingeleid. 

Hoofdstuk 1 is een algemene introductie van de verschillende onderwerpen 
in de rest van de verhandeling. 

In hoofdstuk 2 beschrijven we het principe van subdivisie-curves. We starten 
met Chaikin’s wegsnijden van hoeken voor kwadratische curves en breiden 
dat uit naar hogere-graadscurves. Naast deze curves die hun controlepunten 
benaderen, behandelen we ook een interpolerend schema, en we vergelijken 
hun eigenschappen. We tonen ook aan hoe eigenanalyse gebruikt kan 
worden om meer te weten te komen over het limietgedrag van de curve. 
Bovendien tonen we dat behalve via tweedeling, curves ook via driedeling 
gedefinieerd kunnen worden. Dit schema komt ons later van pas bij de 
bestudering van ons nieuwe schema voor zeshoekige meshes. 

Hoofdstuk 3 begint met een algemene inleiding omtrent subdivisie-
oppervlakken en toont eerst de traditionele classificatie van de verschillende 
schema’s. We merken dat deze veelgebruikte classificatie enkele leemtes 
vertoont. Enerzijds zijn er recent nieuwe schema’s omschreven die niet 
zomaar in een bestaand hokje te duwen zijn. Belangrijker is echter dat 
schema’s voor vierhoekige meshes ingedeeld zijn in primaire en duale 
schema’s, terwijl er voor driehoekige schema’s enkel primaire schema’s 
beschreven zijn. Een schema duaal aan een driehoekig is noodzakelijk 
gebaseerd op zeshoekige meshes, wat het onderwerp wordt van hoofdstuk 5. 
Eerst gaan we in hoofdstuk 3 dieper in op het verschil tussen duale en 
primaire subdivisie-schema’s. We sluiten het hoofdstuk af met een uitgebreid 
overzicht van de verschillende subdivisie-schema’s en hun eigenschappen, 
om deze in hoofstuk 5 te vergelijken met ons nieuwe schema. 
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Een uitgebreid overzicht van interessante eigenschappen en toepassingen 
van subdivisie-oppervlakken komt in hoofdstuk 4 aan bod. 

Hoofdstuk 5 is volledig aan ons nieuwe schema voor zeshoekige meshes 
gewijd. We gaan eerst na hoe subdivisie voor een reguliere zeshoekige mesh 
gedefinieerd zou kunnen worden en ontdekken dat er oneindig veel 
configuraties denkbaar zijn. Er blijken echter slechts twee configuraties te zijn 
die praktisch interessant lijken voor subdivisie-oppervlakken. Het verschil 
tussen de methodes wordt vooral bepaald door de factor waarmee het aantal 
polygonen per stap gemultipliceerd wordt. Een factor zeven lijkt interessant 
in andere toepassingsdomeinen, maar mist de symmetrie die nodig is voor 
subdivisie-oppervlakken. De kleinste factoren zijn drie en vier en het blijkt dat 
multiplicatiefactoren die geen combinatie zijn van deze twee basisfactoren, 
allemaal dit gebrek aan symmetrie vertonen. Een schema dat voor 
driehoekige meshes gedefinieerd werd, blijkt indirect op zeshoekige meshes 
te werken, en wordt op dit ogenblik bestudeerd door een collega-
onderzoeker uit Leuven [Simoe01]. We besluiten om een schema te 
ontwikkelen gebaseerd op een multiplicatiefactor van drie. Enerzijds is dat de 
kleinst mogelijke niet-triviale multiplicatiefactor. Anderzijds geeft die 
aanleiding tot de eenvoudigst mogelijke subdivisie-regels. Bovendien blijkt 
het schema duaal te zijn aan een onlangs gepubliceerd nieuw schema voor 
driehoekige meshes, Kobbelt’s Sqrt(3) schema [Kobbe00]. Via eigenanalyse 
worden nieuwe stationaire subdivisie-regels afgeleid en bestuderen we de 
eigenschappen van het nieuwe schema. Verder tonen we een interessant 
verband aan met een subdivisie-curve uit hoofdstuk 2. 

In hoofdstuk 6 bespreken we een andere belangrijke bijdrage van deze 
doctoraatsverhandeling, met name een techniek om benaderende subdivisie-
curves toch een aantal interactief door de ontwerper aangeduide punten te 
kunnen interpoleren. Dit doel blijkt bereikbaar via het introduceren van 
goedgekozen hulppunten. Ook voor hogeregraadscurves kan interpolatie 
bereikt worden, mits het introduceren van meer hulppunten. Deze 
hulppunten bieden bovendien de mogelijkheid om de raaklijn aan de curve 
te manipuleren. Ook kan een tensie-parameter gradueel ingesteld worden die 
de vorm in de omgeving van het interpolerende punt beïnvloedt. De 
correctheid van de gebruikte technieken wordt bewezen in twee appendices 
op het einde van de verhandeling. 

Hoofdstuk 7 is een algemene inleiding op de drie daaropvolgende 
hoofdstukken. De noodzaak voor locale interpolatie voor subdivisie-
oppervlakken wordt uit de doeken gedaan, en de bestaande literatuur wordt 
doorgenomen. 
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In hoofdstuk 8 is het Catmull-Clark schema aan de beurt. Er wordt nagegaan 
hoe de hulppunten het best geconfigureerd worden om bestaande punten te 
kunnen interpoleren. Analoog als in hoofdstuk 6, kan ook de 
oppervlaktenormale vrij gemanipuleerd worden. Ook is er een nieuwe tensie-
parameter, die de vorm van het oppervlak in de omgeving van het 
interpolerende punt beïnvloedt. Hoofdstuk 8 biedt ook een praktisch 
algoritme voor het berekenen van de meest geschikte posities van de 
hulppunten. 

Daarna worden, in hoofdstuk 9, de specifieke mogelijkheden voor het op 
driehoeken gebaseerde Loop-schema bestudeerd. Dit geeft aanleiding tot 
een aangepast algoritme dat de hulppunten zorgvuldig positioneert. Verder 
wordt nagegaan hoe met behulp van de technieken uit hoofdstuk 6 ook de 
punten op de rand van het oppervlak gemanipuleerd kunnen worden. 

In hoofdstuk 10 wordt een nieuwe vervormingstechniek (“free-form 
deformation”) voor tweedimensionale geanimeerde objecten uitgewerkt. Het 
blijkt dat door de techniek te baseren op subdivisie-oppervlakken in twee 
dimensies, er een interessante vervormingstechniek ontstaat, die specifieke 
nieuwe mogelijkheden biedt. Het grote voordeel van subdivisie is dat 
willekeurige topologieën en expliciete discontinuïteiten deel uitmaken van 
het basisconcept. 

Hoofdstuk 11 legt uit hoe dit onderzoek in de toekomst verder uitgebreid kan 
worden. Een aantal van de ideeën wordt nu reeds door onze 
onderzoeksgroep dieper bestudeerd. 

Om af te sluiten, formuleert hoofdstuk 12 de algemene conclusies van deze 
verhandeling. 

 


