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1
Introduction

The (human) body is one of the most particular and complex systems to our knowl-

edge. It is in the human nature to investigate, understand, and mimic the world

surrounding him. As such, a substantial amount of research is attributed to under-

standing the human body. One part of this study consists of how the human body

handles substances administered one way or another. This type of study is known

as pharmacokinetics. It is one of the corner stones of current pharmaceutical re-

search and has wide applications from dose finding, drug interactions, formulation

development, bioequivalence up to many advanced pharmaceutical modelling. Its

key elements is briefly introduced in Section 1.1. The main part of this dissertation

handles about drug formulations with a specific administration, i.e., it is controlled,

altered, or delayed. Section 1.2 introduces briefly the concepts and pitfalls of the

analysis of such controlled-release formulations using In Vitro-In Vivo Correlation

(IVIVC) models, which is a technique that relates an in-vitro property of the formu-

lation to the in-vivo behavior. Section 1.3 gives a short overview of the contents of

the dissertation.

1.1 Pharmacokinetics

During drug development and after registration of the drug candidate, patients are

exposed to drug products, in order to the benefit of the patients’ condition. As the

1



2 Chapter 1. Introduction

administration of such drug substances has an impact on the body, it is important

to understand their behavior over time. Two time evolutions can be considered: the

time evolution of the systemic exposure itself is called pharmacokinetics, i.e., it studies

what the body does to the drug substance over time (Gibaldi and Perrier, 1982). This

is in contrast to pharmacodynamics, where one studies what a drug substance does

to the body over time Gabrielson and Weiner (2000). The latter consists of studying

any beneficial or adverse effect, such as blood pressure changes, receptor binding

(Kenakin, 1997), etc. Although the human body is very complex, it is important

to translate these processes into mathematical and statistical models to allow for a

better understanding and to be able to predict. For a more thorough introduction

to pharmacokinetics, I refer to Gabrielson and Weiner (2000), Wagner (1975), and

Gibaldi and Perrier (1982).

In the case of an orally administered drug formulation, the capsule or tablet dis-

solves and becomes available for the body. Four processes can be identified from

this point onwards and pharmacokinetics can be considered as the study of this so-

called “ADME” of a drug substance (Eddershaw, Beresford and Bayliss, 2000). This

abbreviation means:

• absorption: how does the body transfer the extravascular administration of the

drug substance into the bloodstream?

• distribution: how is the drug substance distributed throughout the entire body?

• metabolism: is the drug substance broken down to more soluble molecules that

are easier to eliminate? This process involves the liver enzymes.

• excretion: how is the drug substance eliminated from the body? The main

elimination path is via the kidneys for most compounds.

One can obtain a good understanding by repeated plasma sampling and analyzing

the plasma concentrations as a time profile. In general, such a time profile is charac-

terized by a steep increase corresponding primarily to the absorption phase, followed

by the gradual decay mainly due to metabolism and elimination.

One can classify the analysis of pharmacokinetic concentration-time profiles roughly

in two classes, a non-compartmental and a compartmental analysis. A non-compartmental

analysis is most frequently used in standard analyzes. It summarizes the concentration-

time profile to a number of summary measures, such as an Area Under the Curve

(AUC), maximum concentration (Cmax), time to maximum concentration (tmax), to-

tal apparent body clearance (CLF), etc (Rowland and Tucker, 1980).
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In a compartmental analysis, one assumes that the plasma concentration-time

profile behaves according to a mathematical model (Gabrielson and Weiner, 2000).

These parametric models describe the heterogeneity and the rates with which the

drug substance is changing over time in the body. Not only is the drug substance

eliminated from the body at a certain rate, it is also distributed within the body

at a certain rate. If the rate from one part of the body back to the bloodstream

differs from the other transfer rates, the body behaves in a heterogeneous way. Math-

ematically, different parts of the body with the same transfer rates are grouped into

compartments. Such compartments are mathematical representations of the hetero-

geneity of the drug substance in the (human) body, such as blood versus tissue or the

blood brain barrier. Typically, the change of drug substance from one compartment

to another is characterized by a subject specific transfer rate constant.

As the plasma concentration-time profile evolves over time, it is natural to describe

this change. Mathematically, change can be expressed as a differential equation (Wag-

ner, 1975). Therefore, the concentration-time profile can be described by a differential

equation. Following equation represents a one-compartment model, i.e., the human

body behaves homogeneously, as an example (Gabrielson and Weiner, 2000).

dC

dt
(t) =

D

V
I(t) − kC(t), (1.1)

where C(t) is the plasma concentration, D the administrated dose, V the volume of

distribution, k the elimination rate constant, and I(t) the input function depending

on the mode of administration. Typical input functions I(t) are 0 for an IV-bolus

injection, and exp(−kat) for a first order absorption as for a tablet. Other input

functions can be found in Gabrielson and Weiner (2000).

The use of the compartmental analysis is not only to describe and to understand,

but more important to predict the drug exposure under different circumstances, such

as in the case of multiple dosing, drug-drug-interactions, and special populations like

hepatic impaired patients. Further, pharmacokinetic and pharmacodynamic data can

then be combined to understand the dose-response relationship of clinical symptoms

and benefits. All these models and applications share the same goal: to predict the

drug exposure and, hopefully, the efficacy and toxicity related to it.

Pharmacokinetics (PK) and pharmacodynamics (PD) cannot be considered sep-

arately and Figure 1.1, taken from Gabrielson and Weiner (2000), shows how the

different parts of pharmacokinetics and pharmacodynamics are entangled.



4 Chapter 1. Introduction

Pharmacodynamics

Pharmacokinetics

Efficacy Toxicity

@
@

@
@

@
@@I

�
�

�
�

�
���

Tissue or Receptor

6

?

Distribution

Extra-

vascular

Administration

-
Absorption

Blood

�
�

�
��	

@
@

@
@@R

Metabolism Excretion

Figure 1.1: A schematic representation of the relation between pharmacokinetics and

pharmacodynamics
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1.2 In-vitro – In-vivo Correlation Modeling

From this point onwards the focus will be on a very specific form of pharmacokinetic

analysis, called In-vitro – In-vivo Correlation modeling (IVIVC). Whereas in the

previous section any drug product was considered, IVIVC modeling is limited to the

case where the administration of an existing drug product is altered, spread over time,

or even delayed (Emami, 2006). Such a formulation of a drug substance is typically

referred to as a controlled-release formulation or a slow-acting formulation. Examples

of such drug formulations are depot formulations, where the drug product is released

gradually over time.

An IVIVC is defined as

“A predictive mathematical model describing the relationship between an

in-vitro property of an extended-release dosage form (usually the rate or

extent of drug dissolution or release) and a relevant in-vivo response, e.g.,

plasma drug concentration or amount of drug absorbed.”

in the FDA guideline (CDER 1997). This means that the release mechanism over

time is tested in a laboratory setting, typically using a rotating basket or paddle.

These are two of the most commonly adapted apparatus for the testing (Ju and Liaw,

1997). The obtained release time profiles are sometimes referred to as dissolution time

profiles to indicate that it often represents the drug substance going into solution. A

mathematical or statistical model is sought to relate these release profiles with the

in-vivo systemic drug exposure such as the plasma concentration-time profiles in

patients.

In FDA guideline (CDER 1997), one makes the distinction between four types of

IVIVC correlation.

• Level A: It represents a point-to-point relationship between an in-vitro dissolu-

tion and the in-vivo release, i.e., using hierarchical modeling. The observed and

model predicted plasma concentrations are compared directly. This means that

individual plasma concentration-time profiles can be predicted with sufficient

accuracy.

• Level B: In this case, the IVIVC the mean in-vitro dissolution and the mean

in-vivo release profile are linked, typically using a marginal model. This means

that only an average profile is predicted.

• Level C: The IVIVC establishes a single point relationship with a dissolution

parameter. This can be a percentage dissolved at a specified time point versus a
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non-parametric pharmacokinetic parameter. Whereas before the entire plasma

concentration time curve is predicted for level A and B, the focus is here on the

prediction of a summary parameter.

• Multiple Level C: As the name suggests, it relates some pharmacokinetic param-

eters to the amount of drug dissolved at several time points of the dissolution

profile.

Only level A IVIVC models will be considered in this dissertation because of its clear

superior predictive properties.

As the name and the definition state, the in-vitro properties of the drug are trans-

lated to the in-vivo setting. Therefore, it is very valuable for the pharmaceutical

researchers: it enables to replace some in-vivo tests by its in-vitro equivalent. As

such, it is a resource saving technique: in-vitro testing does not involve living or-

ganisms, is less expensive and often a less time consuming approach to demonstrate

the required effects. For these reasons, it is frequently applied in formulation devel-

opment and scale-up and post-approval changes (SUPAC). Therefore, it comes with

no surprise that pharmaceutical researchers invest in developing an IVIVC model

for their drug products. To illustrate its importance, the following is an incomplete

list of drug products for which an IVIVC can be found in literature; acetaminophen

(Dalton et al., 2001), buspirone hydrochloride (Takka et al., 2003), carbamazepine

(Veng-Pedersen et al., 2000), diltiazem (Sirisuth et al., 2002), divalproex (Dutta et

al., 2005), doxorubicin (Chueng et al., 2004), levosimendan (Kortejarvi et al., 2006),

metformin (Balan et al., 2001), metoprolol (Mahayni et al., 2000), (Sirisuth and Ed-

dington, 2000), montelukast (Okumu et al., 2008), ...

Some drug products have a fast elimination. There are two possibilities to ensure

that the patient retains an efficacious exposure: give a very high dose once a day, or a

frequent administration scheme. Both are however unacceptable. The high dose once

a day may lead to unacceptable high drug exposures shortly after administration and

thus may induce unwanted adverse effects, whereas a frequent administration scheme

may not be practical for patients. Also compliance issues play its role here. How-

ever, if such a frequent administration of the drug product would be altered to a

single administration with a release at multiple time points, the drug product may

be preferred by patients and, therefore, correspond to a medical need. The use of a

controlled-release formulation might also enable the development of a drug product

with suboptimal pharmacokinetic properties. Rather than creating a multitude of

controlled-release formulations, an optimal drug exposure is first determined. Then

one derives the in-vivo release time profile required for the corresponding plasma
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concentration-time profile. If an IVIVC is already established at this point, the opti-

mal in-vitro properties can be determined directly. On the other hand, if no IVIVC

model is established yet, a plausible relation between the in-vitro dissolution time

profile and the in-vivo release time profile is chosen. As such, one can construct a

limited number of controlled-release formulations to be tested in man. Without the

use of such an IVIVC, a larger number of formulations would be required to ensure

the identification of one leading to an optimal drug exposure. Thus a smaller number

of drug formulations are tested in a clinical trial, which reduces the sample size and

thus saves time, and resources.

The application of IVIVC is however not restricted to formulation development.

The technique has also its use after marketing of the drug product. During develop-

ment, drug product is produced according to certain procedures to obtain a relative

small amount of drug product. However, these procedures may have to be altered to

allow for large scale production. By changing these production procedures, one might

inadvertent modify the release of the drug product and as such obtain a drug formu-

lation with a different efficacy/safety profile. The impact of these scale-up changes to

the production procedures can be assessed in-silico: One assesses the in-vitro disso-

lution time profile of the newly produced drug product and translates the impact of

the production procedures to the potential effect on the in-vivo drug exposure. Here,

one assumes that plasma concentration-time profiles can be used as a surrogate for

the clinical effect.

Therefore, IVIVC is an inexpensive technique that can replace bioequivalence test-

ing between batches and other SUPAC-related modifications, but also allows for the

optimization of the drug exposure during drug development (Emami, 2006). How-

ever, not all drug products allow for the development of a controlled-release drug

formulation.

The biopharmaceutics classification system (BCS) groups drug products in four

classes according to the solubility and permeability of the drug product, as these

govern the rate and extend of drug absorption for solid oral dosage forms (Amidon,

G.L., Lennernas, H., Shah, V.P., and Crison, J.R. 1995). Permeability is determined

as the ability of the drug molecule to permeate through the intestine into the systemic

circulation. One can roughly group drug products according having good or bad

solubility and good or bad permeability properties. BCS is considered as a guideline

for determining when an IVIVC can be expected.

For drug products from BCS-1, the limiting factor is the gastric emptying. If the

dissolution of the controlled-release formulation is slower than the gastric emptying,

it is expected that a level A IVIVC can be established unless the permeability is site
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Table 1.1: The biopharmaceutics classification system of drug products is based on

the solubility and permeability of the drug product

Good Solubility Poor Solubility

Good Permeability BCS-1 BCS-2

Poor Permeability BCS-3 BCS-4

dependent.

The solubility and hence the dissolution of BCS-2 drugs is the main constraint for

absorption. This can for example be caused by insufficient fluid in the intestines to

allow for complete dissolution of the dose. In such cases, high doses cannot attain

complete dissolution. For smaller doses, an IVIVC is expected depending the in-vitro

properties.

The permeability and as such the absorption is the blocking factor for BCS-3, and

no IVIVC would be expected. BCS-4 drug products have both absorption and solubil-

ity challenges and are not expected to form a good oral controlled-release formulation.

No IVIVC is expected.

It is important to note that the BCS system is for oral dosage forms. The above

does not apply to other administration modes such as depot formulations. A more

extensive description of BCS, and applications of IVIVC in general, can be found in

Emami (2006).

1.3 Thesis Overview

In what follows is an overview of the different chapters of the dissertation.

Two case studies are introduced in Chapter 2. The complexity and particularities

of the data is described to familiarize with the setting of IVIVC modeling.

In Chapter 3 the philosophy and concepts of IVIVC modeling are introduced.

The IVIVC models in literature and traditional pharmacokinetic models are at first

sight very different. The hidden relation between traditional pharmacokinetic mod-

els and IVIVC models is illustrated for a special case. This is then followed by a

more formal description of current convolution-based IVIVC modeling. The chapter

also contains methods for IVIVC model evaluation and practical aspects of IVIVC

modeling.
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IVIVC modeling traditionally restricts to homogeneous drug formulations, i.e., the

drug unit is filled with one type of drug formulation. As such, all the drug product is

released in a controlled way. A new model is developed in Chapter 4 to cope with a

heterogeneous drug formulation, i.e., where one part of the drug substance is released

immediately and the remaining part is released gradually over time. The IVIVC model

in this chapter uses a one-stage approach, i.e., all in-vitro and in-vivo data is modelled

simultaneously. However, the convolution-based IVIVC modeling as introduced by

O’Hara et al. (2001) fits first the immediate-release plasma concentration-time profile

for each subject and subsequently imputes the obtained parameter estimates in the

second stage of the model. In Chapter 5, the impact of such a two-stage modeling

approach is assessed in comparison to a one-stage modeling.

One important part of modeling is model diagnostics. In the IVIVC setting, the

model diagnostics are traditionally restricted to residual analysis and inspection of

the Average Percentage Prediction Error (%PE). We show in Chapter 6 that this

method is appropriate but insufficient to detect potential outlying subject’s plasma

concentration-time profiles. Local influence (Cook, 1986) is introduced as a suitable

alternative approach. Other alternative techniques are based on the leave-one-out

principle, see for example Sadray, Jonsson, and Karlsson (1999).

Now that the concepts of IVIVC modeling are clarified and illustrated, the rele-

vance of IVIVC modeling to the research and development is illustrated in Chapter 7.

In this chapter, a new application of IVIVC modeling is presented. The IVIVC model

is used in combination with a PK/PD model to understand the clinical impact of

changes in the in-vitro dissolution profile. As such, one can determine clinically rele-

vant dissolution specifications. This expands the ideas of Hayes et al. (2004) from a

bioequivalence setting towards a clinical setting.

One of the more traditional applications of IVIVC modeling is to prove that a new

batch of the drug product is bioequivalent to the reference batch. This reference batch

is typically the phase III batch. One claims that the efficacy and safety is maintained

between the batches in case the in-vivo test shows bioequivalence or the in-vitro

dissolution time-profile complies to the dissolution specifications. As such, the IVIVC

model is a surrogate for the bioequivalence testing. However, bioequivalence testing

(Schuirmann, 1987, Boddy et al., 1995) often does not take into account the dose

response relationship of the clinical effects. In Chapter 8, we extend bioequivalence

testing to incorporate the dose response relationship via the therapeutic window. In

contrast to current methods, our method complies to the FDA guideline (CDER 2003)

by explicitly preventing therapeutic failure or unwanted side effects.

Up to this point, plasma concentration-time profiles are considered. One often
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assumes that this is a good surrogate for the clinical effects of the drug product.

Further, the physiology of the human body is taken into account to explain clinical

effects. However, plasma concentrations are not always available. In Chapter 9,

we demonstrate that plasma concentrations are not always required to fit a model

that contains a physiological interpretation to the parameter estimates. Such models

are referred to as K-PD models to stress the fact that only the pharmacodynamic

response is measured without the plasma concentration-time profile (Jacqmin et al.,

2007). The potential bias of this model is illustrated in an example.

Finally, in Chapter 10, some concluding remarks regarding the different chapters

are offered.



2
Case Studies

The novel methodology, models and concepts in the dissertation will be illustrated

with some case studies. As the particularities of the data gave rise to reconsidering

the current methodology, it is worth spending some time on these examples before

discussing the methodology.

2.1 Galantamine

The acetylcholinesterase inhibitor Galantamine is used for the treatment of Alzheimer’s

disease (Lilienfeld 2002). Galantamine formulations currently on the market are

tablets, a syrup and extended-release capsules.

Within the population of subjects with Alzheimer’s disease, the duration of drug

exposure can sometimes be too short to guarantee sufficient protection for a cer-

tain time period due to poor compliance. Therefore, a controlled-release formulation

of Galantamine was developed in an attempt to optimize drug exposure. Whereas

an immediate-release formulation dissolves instantaneously and the drug product

is immediately available in the gut, an extended-release formulation releases the

drug product slowly over time allowing the body to absorb the drug product grad-

ually. The controlled-release formulation under investigation here consisted of the

extended- and immediate-release components combined in the same pellet as 2 lay-

ers (ratio CR/IR: 3/1) separated by a rate-controlling membrane containing 5-12%

11
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Figure 2.1: Galantamine: In-Vitro dissolution curves of twelve individual capsules of

the four controlled-release Galantamine formulations

ethylcellulose/hydroxypropyl-methylcellulose (EC/HPMC; ratio: 75/25). The rela-

tively high water solubility (3.3 g/100 m` water, pH=5.2) and absolute oral bioavail-

ability (88.5%) of Galantamine are pharmaceutical characteristics indicative of a drug

whose controlled-release formulation is a good candidate for IVIVC exploration.

Four different controlled-release formulations were studied (slow, fast, between

and medium), however for the sake of simplicity the focus is only on one controlled-

release formulation (the slow one). For each controlled-release formulation, twelve

dissolution curves were assessed in-vitro. The dissolution data were generated using

an USP apparatus 2 - paddle with 50 rpm (s.e. 2 rpm) speed of shaft rotation. The

dissolution medium used was a volume of 900 m` of 0.050 M phosphate buffer at pH

6.5. The percentage dissolution was registered between 0.5 and 18 hours, as shown in

Figure 2.1 for a controlled-release formulations.

In a clinical trial, seventeen healthy subjects were first administered to the immediate-
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Figure 2.2: Galantamine: Individual in-vivo plasma concentrations for the immediate-

release formulation of Galantamine.

release formulation and then randomized according to a four period latin square de-

sign. Treatments were the four controlled-release formulations (slow, fast, between

and medium) of Galantamine. One subject dropped out after the immediate-release

period. He did not receive the controlled-release formulations and was included as

such in the analysis. To demonstrate our methodology in chapter 4, only one of the

four controlled-release formulation, the slow one, is included in this analysis. A venous

blood sample was taken for the measurement of Galantamine plasma concentrations

at prespecified time points during the study, from pre-dose (0 hour) until 60 hours

post-dose for the immediate-release formulation, and up to 72 hours post-dose for the

controlled-release formulations.

The immediate-release plasma concentration-time data are shown in Figure 2.2,

while the plasma concentration-time data for the controlled-release formulations are

presented in Figure 2.3. In the former, maximal plasma concentrations were reached
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Figure 2.3: Galantamine: Individual in-vivo plasma concentrations for the four

controlled-release formulations of Galantamine.

faster and were higher, but they decreased rapidly. In the latter, a bimodal profile was

present: one steep peak was present after 30 minutes followed by a second smoother

peak 6 hours after intake. In addition, the decrease of plasma concentration was

slower after the second peak.

The advantage of combining the extended- and immediate-release formulation lies

in this bimodal profile. The goal of the extended-release part is to ensure that pa-

tients remain in the effective plasma concentration range from 3-4 until 24 hours, and

therefore it is hoped that the patients remain protected for the full 24 hours. The

extended-release fraction on its own would not reach the therapeutic window quickly

enough; levels would remain too low during the first 3 hours post-dose. Therefore,

a loading dose consisting of an immediate-release fraction, is added. Hence, patients

remain protected for the full 24 hours.

The current IVIVC methodology is restricted to homogeneous formulations. The
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heterogeneity of the capsules resulted in a modification of the convolution-based

IVIVC model as described in Chapter 4.

2.2 Long Acting Injectable Antipsychotic Agent

This second case study is a long acting injectable formulation for intramuscular admin-

istration for an antipsychotic agent with potent dopamine-D2 antagonistic properties.

The IVIVC model will be combined with a PK/PD model to give a clinical interpre-

tation to the in-vitro dissolution specifications. This novel concept is explained in

Chapter 7. The data is also used to illustrate the local influence technique in Chap-

ter 6.

The long acting injectable formulation consists of microspheres of a biologically

degradable polymer matrix in which the active compound is embedded. These mi-

crospheres are to be reconstituted and consequently the obtained aqueous suspension

can be injected in the gluteal or deltoid muscle. Gradual degradation of the polymer

at the site of injection ensures a slow but steady release of the drug product over

a period of several weeks. In single dose studies, the plasma concentrations of the

active antipsychotic fraction showed release of a minor fraction of the active com-

pound within 8 to 24 hours following the intramuscular injections of the long acting

injectable. A gradual release of the main fraction of the long acting injectable started

2-3 weeks following injection, peaked at about 5 weeks and lasted until 7 weeks after

the injection.

The controlled-release plasma concentration-time profiles used in our analysis were

obtained from an open-label phase I trial in 54 patients. Plasma levels were measured

for 12 weeks. The elimination transfer rates were estimated from the unit impulse

response data (IV bolus formulation). These were obtained from another open 3-

treatment cross-over bioavailability trial in 12 healthy subjects. For the controlled-

release formulation, in-vitro release curves were obtained. The averaged percentage

release was registered up to 43 days. The in-vitro specifications were determined as

releasing 50% of the drug product within days 26–35, and 80% should be released

before day 41. Figure 2.4 shows the controlled-release plasma concentration time

profiles after the administration of a single dose. The majority of the subjects have a

small peak shortly after administration followed by a peak after four to seven weeks.

Four patients have a marked release during the first week in contrast to the other

patients.

The unit impulse response data (IV-bolus formulation) was obtained from a differ-
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Figure 2.4: Long Acting Injectable: The controlled-release plasma concentration-time

profiles following the single administration of the long acting injectable intramuscular

formulation of the antipsychotic agent.

ent, open 3-treatment cross-over bioavailability trial in 12 healthy subjects. Pharma-

cokinetic parameters were derived from this small study under the assumption that

the population of both studies are comparable. The data is shown in Figure 2.5.

For each controlled-release formulation, twelve dissolution curves were assessed in-

vitro. The percentage dissolution was registered up to 43 days, as shown in Figure 2.6

for the controlled-release formulation. The graph clearly demonstrates that the drug

product is released after several weeks unlike more conventional controlled-release

drug formulations.
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Figure 2.5: Long Acting Injectable: The immediate-release plasma concentration data

used to establish the IVIVC model.
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Figure 2.6: Long Acting Injectable: The averaged in-vitro dissolution time profile of

the long acting injectable intramuscular formulation of the antipsychotic agent.



3
Methodology

As can be seen from the case studies and the definition, IVIVC modeling requires

nonlinear hierarchical modeling approaches. Further more, it necessitates the com-

bination of several responses, i.e., the in-vitro dissolution, the immediate-release and

controlled-release plasma concentration-time profiles. This chapter focuses on the

methodology needed for such an analysis. Before postulating complicated equations

and model statements, the general concept of IVIVC modeling is introduced using an

intuitive approach in Section 3.1. In this section, the IVIVC models will be translated

to the standard PK-setting. The convolution-based models as introduced by Dunne

et al. (1999) and O’Hara et al. (2001) are explained more formally in Section 3.2. The

goodness of the model fit is quantified using the average percentage prediction error

(%PE). This metric is introduced in Section 3.3. Some pitfalls of this measure are

listed. Finally, some modeling tricks are described in Section 3.4.

The following notation will be used in this dissertation. Yi1`(t) stands for the

measured dissolution for the in-vitro data of drug-unit i at time t, Yi2k`(t) for the

measured in-vivo plasma concentration of subject k after administration of drug-unit

i of formulation ` at time t. The index 1 denotes the in-vitro data, while 2 will be used

for in-vivo, i is the statistical unit representing the drug-unit for in-vitro; k denotes

the subject; ` denotes the formulation. The immediate-release formulation will be

denoted with δ instead of `, owing to its special status in IVIVC modeling and to

emphasize that the underlying probability density function of the release mechanism

19
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follows, in this case, Dirac’s Delta distribution. F will denote the actual dissolu-

tion/release fraction, c stands for the actual plasma concentration profile, c2kδ(t) is

the actual immediate-release plasma concentration-time profile, also referred to as the

unit impulse response. This is traditionally, but not necessarily, based on a compart-

mental model.

3.1 Bridging PK and IVIVC

Before embarking on equations and models, the concept of controlled-release formu-

lations is introduced based on a theoretical example. Further, it is noted that current

literature on IVIVC modeling and the existing pharmacokinetics literature do not

correspond. Therefore, the typical IVIVC models are bridged towards the traditional

PK setting.

Gillespie and Veng-Pedersen (1985) proved that the controlled-release plasma

concentration-time profile at time t, denoted by ci2k`(t), can be derived as the con-

volution of the unit impulse response c2kδ(t), which is typically an IV bolus plasma

concentrations, and the in-vivo release mechanism F ′
i2k`,

ci2k`(t) = D

∫ t

0

c2kδ(t − τ)F ′
i2k`(τ)dτ. (3.1)

To have an intuitive understanding of this formula, it is important to understand

how plasma concentrations accumulate after repeated administration. It is based on

the principle of superposition within pharmacokinetics, i.e., the assumption that each

mechanism acts independently of each other and there is linear kinetics. This is a

crucial assumption in the IVIVC setting.

The third column in Figure 3.1 shows the repeated plasma concentration-time

profile in the case of a one-compartment bolus injection (middle column). For the

example chosen here, the plasma concentration-time profile decreases very rapidly.

To ensure an effective drug exposure for 24 hours, a very high single dose should be

administered as can be seen in the top row. However, the high plasma concentrations

shortly after administration would potentially lead to toxicity. B.i.d. administration

seems not to improve the situation as can be seen in the second row. The plasma

concentrations of the second administration can be calculated easily as the addition

of the equation at the time of administration to the single dose profile.

The administration every three hours in the lowest row seems more appropriate:

a steady state condition is reached after the fifth administration. Additional admin-

istrations of the same dose with the same time interval would not change the pattern.
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Figure 3.1: Plasma concentration-time profiles in the case of single, b.i.d. and repeated

administration over time. The first column represents the administration time and

dose, the second corresponds to the single dose plasma concentration, and the last

column is the resulting plasma concentration-time profile.

Again the plasma concentrations from the next administration can be calculated as

the iterative summation of the bolus equation for each administration.

However, it is not in the patients interest to have a drug product that has to be

administered every three hours. Therefore, an option to save the drug product is the

creation of a controlled-release formulation. Figure 3.2 shows the administration of

100 mg of the product spread over several administrations and dose levels. Again,

the plasma concentration-time profile is the summation over the individual admin-

istrations. Whereas the first two rows represent a discrete administration, the last

row corresponds to a continuous, controlled release over time. It is easy to under-

stand that if the 100 mg is spread even more frequently over time that the plasma

concentration-time profile becomes smoother. The mathematical consequence is that
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Figure 3.2: Plasma concentration-time profiles in the case of very discrete, more

frequent and continuous administration over time.

the weighted summation of the bolus plasma concentration-time profile converges

towards the integral found in (3.1).

The strong asset is the smoothness of the profile, the low maximal drug concen-

tration and effective plasma concentrations for a much longer duration than in the

case of the 100 mg bolus injection as seen in the middle column of the above figures.

One of the difficulties with IVIVC modeling is that (3.1) does not correspond to

the typical derivative equations as found in pharmacokinetic modeling. To understand

the relation between both forms of notation, the specific case of a one-compartment

model is chosen for illustration purposes only.

Following equation as found on p. 302 in Khuri (1993) will be applied: If

G(x2) =

∫ θ(x2)

λ(x2)

f(x1, x2)dx1,
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then

dG

dx2
=

∫ θ(x2)

λ(x2)

∂f(x1, x2)

∂x2
dx1 + θ′(x2)f(θ(x2), x2) − λ′(x2)f(λ(x2), x2).

This reduces our model to

dci2k`

dt
(t) =

d

dt
D

∫ t

0

c2kδ(t − τ)F ′
i2k`(τ)dτ

= D

∫ t

0

∂

∂t
(c2kδ(t − τ)F ′

i2k`(τ))dτ + Dc2kδ(0)F ′
i2k`(t)

=
D

V
F ′

i2k`(t) + D

∫ t

0

F ′
i2k`(τ)

∂

∂t
c2kδ(t − τ)dτ

=
D

V
F ′

i2k`(t) − kD

∫ t

0

c2kδ(t − τ)F ′
i2k`(τ)dτ

=
D

V
F ′

i2k`(t) − kci2k`(t).

The obtained equation corresponds to (1.1), where F ′
i2k`(t) is the input function

I(t) representing the in-vivo release mechanism and V is the theoretic volume over

which the dose D is spread. Even though the above derivation is for the specific

case of a one-compartmental model, a similar derivation can be performed for higher

order compartmental models. However, in that case, the amount of drug exposure

is modeled rather than the plasma concentration. This amount of drug exposure is

easy to understand: it is the total amount of drug product within a compartment

and corresponds to the product of the drug concentrations and the volume of the

corresponding compartment.

3.2 Convolution-based Models

Gillespie and Veng-Pedersen (1985) were the first to state that a controlled-release

drug-product can be predicted based on the in-vitro dissolution data of the drug-unit

and the in-vivo plasma concentration-time profile derived from the immediate-release

formulation. They used the convolution product of these quantities. For decades,

this method was applied using a deconvolution-based method. Deconvolution-based

methods are, however, out of the scope of this dissertation. O’Hara et al. (2001)

introduced a convolution-based method, which will be the method under study in

this thesis.

An IVIVC model typically consists of three types of data: (1) the in-vitro disso-

lution time profile Yi1`(t) = Fi1`(t) + εi1`, with εi1` ∼ N(0, σ2
0), (2) the immediate-

release plasma concentration profile Y2kδ(t) = c2kδ(t) + ε2k with ε2kδ ∼ LN(0, σ2
1),
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and (3) the controlled-release plasma concentration profile Yi2k`(t) = ci2k`(t) + εi2k`

with εi2k` ∼ LN(0, σ2
2).

O’Hara et al. (2001) proposed to use a two-stage modeling approach. The first

stage consists of modeling the immediate-release plasma concentration-time profile

for each subject separately. Typically, a compartmental model is used for this unit

impulse response. Then, the parameter estimates are incorporated in the second-

stage modeling, where the in-vitro dissolution data and the controlled-release plasma

concentrations time profile are modelled simultaneously. Dunne et al. (2005) and

Gaynor et al. (2006) showed that this method is more robust and superior to the

deconvolution-based methods.

As mentioned before, Gillespie and Veng-Pedersen (1985) proved that the controlled-

release plasma concentration-time profile at time t, denoted by ci2k`(t), can be derived

as the convolution of the unit impulse response ci2kδ and the in-vivo release mecha-

nism F ′
i2k`,

Yi2k`(t) = D

∫ t

0

c2kδ(t − τ)F ′
i2k`(τ)dτ + εi2k`,

εi2k` ∼ LN(0, σ2
2),

where the in-vitro dissolution data Fi1` is often modeled using a Weibull type of

model (Comets and Mentré, 2001). However, the in-vivo release is required in the

convolution model, rather than the in-vitro dissolution.

Therefore, Dunne et al. (1999) proposed to consider the in-vitro dissolution curve

Fi1` and the in-vivo release curve Fi2k` both as the cumulative distribution function

of the stochastic process representing the in-vitro dissolution of the molecule into

solution and the in-vivo release, respectively. The quantity F ′
i2k`, as part of the

convolution model, stands for the density function corresponding to the underlying

in-vivo mechanism of the molecule release into the solution. However, this latter

quantity is unobserved. Dunne et al. (1999) proposed to use an hypothetical link

between these two cumulative distribution functions. The most stringent relation

Fi2k`(t) = Fi1`(t) (3.2)

corresponds to superimposable release mechanisms in-vitro and in-vivo. From a phys-

iological point of view, this is a serious restriction as there is no a priori reason that

the in-vitro setting mimics perfectly the in-vivo release. A more liberal relation re-

lies on the concept of proportionality, such as the proportional odds, proportional

hazards, and the proportional reversed hazards model.

g (Fi2k`) (t) = α + g {Fi1` (t)} (3.3)
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Based on this interpretation, O’Hara (2001) incorporated following more liberal

IVIVC link between the in-vitro and in-vivo release in the case of one formulation:

Fi2k`(t) = g−1 {θ0 + θ1t + sik + ui + g[Fi1`(t)]} , (3.4)

with ui ∼ N(0, σ2
u) representing the dosage unit variability as found in the in vitro

dissolution time profile; sik ∼ N(0, σ2
s) the combined effect of both the subject and

dosage unit variability. g(·) is either the logit, log-log, or the complementary log-

log link function, although other link functions could be considered too. In this

formula, the parameters θ0, θ1, and sik capture the influence of the gastrointestinal

tract, whereas ui and g[F1`(t)] correspond to the dissolution. Typically, the variability

associated to in-vitro dissolution testing is very small, implying that ui will be omitted

in the simulations. The term sik will therefore correspond to a random intercept

associated to the fixed effect θ0 with variability σ2
θ0

.

3.3 Goodness-of-fit

Regulatory guidances (FIP 1996, CDER 1997) proposed that the adequacy of IVIVC

model fitting is determined by the average absolute percent prediction error (%PE),

calculated both for Cmax and AUC separately. This was defined as the mean of
∣

∣

∣

∣

xobs,k − xpred,k

xobs,k

∣

∣

∣

∣

× 100, (3.5)

where x.,k is the Area Under the Curve to the last measurable observation (AUClast)

or the maximal concentration (Cmax) of the empirical Bayes estimates and the ob-

served concentrations for subject k.

The %PE of the IVIVC model fitting is classified into three categories (CDER

1997):

• %PE ≤ 10% establishes the predictability of the IVIVC if the %PE for each

formulation does not exceed 15%;

• 10% ≤ %PE ≤ 20% indicates inconclusive predictability and the need for fur-

ther study using additional data sets;

• %PE > 20% indicates inadequate predictability.

In the case of an IVIVC model with a fourth formulation, the model is created using

only three formulations and the fourth one will serve as an external validation. Then

a similar evaluation of the %PE occurs only using the external validation data.
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Unfortunately it is not specified in the guidelines how to calculate the %PE. Here

are some possible ways to calculate it:

• geometric version: Calculate the %PE per subject and formulation. Calculate

the average of the log-transformed quantities and back-transform it.

• arithmetic version: Calculate the %PE per subject and formulation and subse-

quently calculate the average.

• marginalized version: Marginalize the model by integrating out the random

effects, subsequently calculated a marginalized AUClast and Cmax. The observed

plasma concentration are averaged over the subjects and the %PE is calculated

by comparing the marginalized and the averaged observed values.

• median version: Set the random effects equal to zero to obtain a form of median

subject profile. This is then compared with the AUClast and Cmax using the

median of the observed plasma concentrations per time point.

• average version: Calculate the average of the observed and the average of the

predicted observations. Use these to obtain the observed and predicted AUClast

and Cmax.

However, the statistical appropriateness of the different methods is questionable

for the last four methods: The latter three are easy to rule out as they do not

agree with the hierarchical modeling philosophy used in IVIVC modeling. Given the

skewed distribution of the subject %PE, the logarithm of the ratios approximates

better normality. Therefore, only the geometric version is statistically appropriate

and will be used in the rest of this thesis.

The %PE measure does not incorporate the measurement’s uncertainty. Our first

proposal for modification, relative to the existing literature, is to use the upper limit

of the one-sided 95% confidence interval rather than the average as a criterion. It

yields the range of the population mean with 95% certainty. This is clearly conser-

vative when compared to the existing criterion. It ensures that most profiles have an

adequate fit, whereas if the focus is on the mean, one might encourage overfitting of

the data, in the sense that some profiles might fit extremely well, while the model

fails to predict the profile for others.

Calculating the %PE on the original dataset, which is used for parameter estima-

tion, is known to be kind for the model. Alternative approaches would be jackknife

or leave-one-subject-out approach. Also the recent normalized prediction distribution

errors (Brendel et al, 2006) is an option. However, given the long run-time of the
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IVIVC models, bootstrapping methods or similar jeopardize the practical implemen-

tation of these methods.

Following simulated example illustrates the danger of judging the model fit solely

on the %PE. Assume following dissolution curve:

Fi1`(t) = 100 (1 − exp {− exp [φ1 (t − φ2)]}) , (3.6)

with φ1 ∼ N(0.14, 0.012), φ2 = 36, and a residual standard deviation of 0.5. The

immediate-release plasma concentration-time profile is defined as

c2kδ(t) =
D

V
exp(−ket), (3.7)

where D = 100 is the dose, log(ke) ∼ N(−1, 0.422), log(V ) = −3.7, and a residual

standard deviation of 0.01. For the IVIVC part of the model, θ0 ∼ N(1, 42) and

θ1 = 0 was chosen. When fitting the data, the in-vitro release will be considered as

the perfect predictor for the in-vivo release, i.e., the parameters θ0 and θ1 are fixed

to 0. As this is an artificial example to illustrate the weakness of the criterion, this

does not restrict the result. The model fit is depicted in figure 3.3. It is clear that

the peak of the plasma concentration profile is systematically predicted too early or

too late. Nevertheless, the geometric mean %PE is 9.87% and 8.23% for AUC and

Cmax, respectively, indicating an adequate fit.

3.4 Practical Aspects

Pharmacokinetic models are highly non-linear models. Non-linear mixed-effects mod-

eling exhibits a number of additional complexities compared to linear and generalized

linear mixed-effects modeling, such as starting values for the iterative maximum like-

lihood optimization.

However, IVIVC modeling has an additional complexity. The controlled-release

plasma concentrations are modelled as the convolution product of the immediate-

release plasma concentration profile and the in-vivo release of the drug product.

Typically, this convolution integral is too complicated to find an analytical solution.

Therefore, the integral was approximated as a finite sum over small time intervals.

ci2k`(t) =

∫ t

0

c2kδ(t − τ)F ′
i2k`(τ)dτ + ε2,

∼=

t
∑

ti

[c2kδ(t − ti)F
′
i2k`(ti) + c2kδ(t − ti−1)F

′
i2k`(ti−1)]

ti − ti−1
+ εi2k`,

εi2k` ∼ N(0, σ2
2).
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Figure 3.3: A simulated example of a poor model fit despite acceptable %PE for both

AUC and Cmax.

It is important not only to cope with the traditional complexities of non-linear mixed-

effects modeling, but also to take into account the influence of the time intervals of this

finite summation. Therefore, one should consider the use of different time intervals

for the convolution model and its effect on the parameter estimates. This means

that models with decreasing time intervals should be fitted until parameter estimates

stabilize.

Throughout the thesis, maximum likelihood estimation of the set of models was

implemented in the SAS procedure NLMIXED (version 9.1). Model convergence was

obtained using the first-order integration method of Beal and Sheiner (1982).



4
Combined Models for Data

From IVIVC Experiments

Contrary to other published results (Modi et al. 2000, Veng-Pedersen et al. 2000) a

heterogeneous formulation is modelled in this chapter. As described in Chapter 2,

the galantamine formulation contains an extended-release part overencapsulated with

immediate-release material, and will be referred to as controlled-release capsule in

the remainder of the chapter. For illustration purposes, the analysis is limited to

the slowest release formulation. The formulation index ` is left out to simplify the

notation in this chapter. The present chapter is based on Jacobs et al. (2008).

4.1 Methodology

First, four types of models used for describing the in-vitro dissolution curves are intro-

duced in Section 4.1.1. Then a novel in-vivo convolution-based IVIVC methodology

coping with heterogeneous drug products is described in Section 4.1.2; This model is

fitted on the galantamine data in Section 4.1.3.

29
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4.1.1 In-vitro Dissolution Models

The in-vitro dissolution profile is often described by a Weibull function (Comets and

Mentré, 2001). Besides the Weibull function, also a simpler exponential function and

a more complex Gompertz in-vitro dissolution model will be evaluated.

The simplest model for the in-vitro dissolution profile is given by the exponential

model:

Yi1(t) = Fi1(t) + εi1, εi1 ∼ N(0, σ2
0),

Fi1(t) = φ1 {1 − exp[−(t − φ3)φ2i]} , (4.1)

with 0 < φ1 ≤ 1, φ2i ∼ logN(φ2, σ
2
φ2

), and φ2i the capsule-specific scale parameter

and φ3 a lag time. This model has a steep increase in the beginning and converges

slowly to the asymptotic maximal dissolution, φ1.

The following extension of the exponential model copes with the heterogeneity of

the formulation via the φ4-parameter.

Yi1(t) = Fi1(t) + εi1, εi1 ∼ N(0, σ2
0),

Fi1(t) = φ4 + (φ1 − φ4) {1 − exp[−(t − φ3)φ2i]} , (4.2)

where φ4 captures an initial jump followed by the previous version of the exponential

model.

The previous models, however, lack the capability to fit a sigmoidal curvature.

Therefore, the traditional Weibull function with the initial jump φ4 is proposed to

check for the improvement under these conditions, see model 4.3. The parameter φ2

has the same interpretation as for the exponential model, whereas φ3 determines the

shape.

Yi1(t) = Fi1(t) + εi1, εi1 ∼ N(0, σ2
0),

Fi1(t) = φ4 + (φ1 − φ4)
{

1 − exp[−(tφ2)
φ3i ]

}

. (4.3)

The dissolution profiles in Figure 2.1 contain both an asymmetrical S-shaped cur-

vature and an initial jump. The Gompertz curve has the first property, but it has

its short curvature at the end. The following modification of the Gompertz function

(Lindsey 1997) will serve to model this feature and to challenge the performance of

the Weibull model:

Yi1(t) = Fi1(t) + εi1, εi1 ∼ N(0, σ2
0)

Fi1(t) = φ4 + [φ1i − φ4] exp {− exp[−φ2(t − φ3i)]} , (4.4)
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where φ4 represents the initial jump. The coefficient φ1i ∼ N(φ1, σ
2
φ1

) corresponds to

the asymptotic maximum dissolution. φ3i represents a capsule specific lag-time, φ2 is

the scale parameter and is related to the inverse half-life of the curve.

4.1.2 Combination Models

All published models are limited to homogeneous formulations. A naive approach

would be to ignore the heterogeneity of the formulation and fit the traditional model

mentioned in Section 3.2 for a homogeneous formulation. However, in case of a het-

erogenous formulation of both immediate and extended-release material, the cumula-

tive distribution function does not start at 0 but rather at a quantity approximately

similar to the proportion of immediate-release material within the mixture. The in-

clusion of this initial jump alters the density function F ′
i2k(τ). Therefore, we propose

in this section a new model that takes this heterogeneity into account.

For the convolution model a similar derivation is possible. Recall from Sec-

tion 2.1 that the capsules represent a heterogeneous formulation, consisting in part of

immediate-release and in part of extended-release. As a result, two different underly-

ing dissolution processes can be expected to be present.

The principle of superposition within pharmacokinetics, i.e., the assumption that

each mechanism acts independently of each other and there is linear kinetics, means

that the plasma concentration-time profile of the controlled-release formulation can be

described as a weighted combination of each of the drug product plasma concentration-

time profiles. This is a valid assumption (Piotrovsky et al. 2003). Based on this

principle, one part of the profile corresponds to the immediate-release drug product

within the formulation, the other one corresponds to the extended-release drug prod-

uct. Clearly, these considerations imply a specific form for the model to be consid-

ered. The plasma concentration time profile corresponding to the immediate-release

drug product can be considered as identical to the one observed from the immediate-

release formulation whereas the latter follows the convolution model as described in

Section 3.2. Therefore, the following new model is proposed:

Yi2k(t) = φ4Dc2kδ(t) + [φ1 − φ4]D

∫ t

0

c2kδ(t − τ)F ′
i2k(τ)dτ + εi2k, (4.5)

εi2k ∼ LN(0, σ2
2),

where φ4 is the weight corresponding to the quantity of immediate-release drug prod-

uct within the formulation and D represents the dose. This corresponds to the initial

jump observed in the in-vitro models.
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Furthermore, the in-vivo release Fi2k(t) model is slightly modified compared to

the proposal of O’Hara et al. (2001):

Fi2k(t) = g−1 {θ0 + θ1t + g [Fi1(t)]} , (4.6)

where the index i stands for the capsule i dependent variability of the in-vitro disso-

lution Fi1. As this is unobserved for the capsule administered to the subject k, this is

indirectly included via the subject level. Thus, the random effects are included at the

in-vitro level of the model rather than as a random intercept. This corresponds to

the underlying source of variation. Further, the gastro-intestinal subject level sik was

removed from the IVIVC, because the inclusion of an additional random intercept,

next to the presence of the random effect in the in-vitro part of the equation, could

jeopardize convergence or lead to very long run-times. Additionally, one can only es-

timate these inter-subject gastro-intestinal differences when multiple formulations per

subject are analyzed to enable the dissociation between subject- and drug-unit-driven

variability.

Although it is not in the traditional sense, but this newly proposed combination

model can be considered as a mixture distribution at two levels. A first mixture is

situated in the in-vitro dissolution: it represents a mixture cumulative distribution

function of a step function for the immediate-release material of the formulation on one

hand and a second cumulative distribution function such as the weibull distribution

for the slow release drug product on the other hand. The mixture is also present at

a second level: it is a combination of two log-normally distributed processes for the

immediate-release plasma concentration time-profile on one hand and the convolution

based profile for the slow release product on the other hand. Again, the weight φ4

comes in in order to attribute the ratio of the two distinct underlying release processes.

4.1.3 Model Fitting

The models for the immediate-release plasma levels and the in-vitro dissolution were

initially fitted separately to obtain good starting values for fitting the IVIVC model.

The immediate-release pharmacokinetics of Galantamine are known to follow a two-

compartmental model (Piotrovsky et al. 2003). This was based on population mod-
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eling of several studies in elderly patients:

Y2kδ(t) = c2kδ(t) + ε2kδ,

c2kδ(t) =
ka

VF

[

(k21 − αk)e−αk(t−tlag)

(ka − αk)(βk − αk)
+

(k21 − βk)e−βk(t−tlag)

(ka − βk)(αk − βk)

+
(k21 − ka)e−ka(t−tlag)

(αk − ka)(βk − ka)

]

,

ε2kδ ∼ LN(0, σ2
1), (4.7)





αk

βk



 ∼ N









α

β



 ,





σ2
α cαβσασβ

cαβσασβ σ2
β







 .

In this model, VF is the apparent volume of distribution, tlag is a lag-time, ka is the

absorption coefficient, k21, α, and β are transfer rate constants. The best fit to the

data was attained by choosing random effects on α and β, with associated variabilities

σ2
α and σ2

β . This was based on visual inspection of the fit of the individual profiles

as well as by comparison of the likelihood functions. The absorption rate constant

ka could not be estimated by fitting the immediate-release formulation alone because

too few samples were taken during the absorption phase shortly after drug intake and

ka had to be fixed in the immediate-release model.

O’Hara et al. (2001) fits first the immediate-release profile per subject and then

in a second stage fits the convolution. In a second stage he fits then the convolution

and the IVIVC using the empirical Bayes’ estimates of the immediate-release plasma

concentration time profile. A possible drawback of such a two-stage modeling ap-

proach is that this might lead to biased results (Verbeke and Molenberghs 2000). Our

proposal is to fit all the submodels simultaneously to tackle this potential source of

bias. The two methods are formally compared in Chapter 5. The possible impact is

discussed further in Section 4.3 as well as in Chapter 5.

4.2 Results

As mentioned in Section 4.1.1, the modified Gompertz function fitted the data well.

Random effects were added to φ1 and φ3 since, as seen in Figure 2.1, the asymptotic

maximum dissolution was drug-unit dependent. The random effect on the lag time

improved the fit further. Conventional model selection tools, such as the likelihood

ratio and the Akaike Information Criterion (AIC), were used.

A system of sub-models is proposed for the IVIVC modeling consisting of the

combination of models 4.4, 4.5, 4.6, and 4.7. Contrary to O’Hara et al. (2001) are all
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four submodels fitted simultaneously. This allows exchange of information between

models. Whereas the absorption rate constant ka could not be estimated for the

immediate-release model alone, owing to insufficient early sampling points, the pool-

ing of information about common parameters from different data sources did allow

for estimation of ka for model 4. In models 1–3, log(ka) = −3 had to be fixed to allow

convergence. Additionally, log(VF ) = −4.64 had to be fixed in models 1–2. Some

simplifications were done for the system of sub-models compared to the separate sub-

models: (i) No random effect was used on the α-component of the two-compartmental

model because inclusion of this random effect made the model diverge (non-positive

hessian matrix). While this seems a disadvantage, one ought not to forget that the

models are highly non-linear and rather complex. Therefore, one should keep the

complexity of the random effects structure within reasonable limits; (ii) The dissolu-

tion random effects φi1 and φ3i were forced to be independent otherwise estimation of

the correlation could not be established: many observations are needed to accurately

estimate correlations between random effects.

The following models were fitted: Model (1)–(2) using the exponential dissolution

and logit link as a convolution and a combination model, Model (3) as a combination

model with a Weibull dissolution and logit link function, and Model (4) as a combina-

tion model with a Gompertz dissolution and logit link. Model (2)–(4) are the newly

proposed models to cope with the heterogeneity of the data. Estimates of the model

parameters can be found in Table 4.1 for the four different dissolution curves.
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Table 4.1: Parameter estimates (95% confidence interval) for Mod-

els 1–4 using a one-stage convolution-based approach.

Model 1 Model 2 Model 3 Model 4

Est. Est. Est. Est.

Parameter (95% CI) (95% CI) (95% CI) (95% CI)

Immediate-release

ka (hr−1) 0.026

(0.004 ; 0.163)

VF (L) 0.00356 0.0018

(0.00305 ; 0.00417) (0.0003 ; 0.0121)

k21 (hr−1) 0.43 0.48 0.067 0.033

(0.26 ; 0.73) (0.28 ; 0.83) (0.063 ; 0.071) (0.005 ; 0.205)

α (hr−1) 0.37 0.41 2.54 2.57

(0.23 ; 0.62) (0.25 ; 0.69) (2.13 ; 3.03) (2.12 ; 3.11)

β (hr−1) 11.5 11.5 0.14 0.14

(10.9 ; 12.1) (10.9 ; 12.1) (0.123 ; 0.16) (0.12 ; 0.16)

σβ 0.06 0.05 0.24 0.21

(0.04 ; 0.09) (0.03 ; 0.08) (0.14 ; 0.33) (0.13 ; 0.29)

σ1 0.29 0.29 0.19 0.19

(0.26 ; 0.32) (0.27 ; 0.32) (0.18 ; 0.21) (0.17 ; 0.21)
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Table 4.1: Parameter estimates (95% confidence interval) for Mod-

els 1–4. (continued)

Model 1 Model 2 Model 3 Model 4

Est. Est. Est. Est.

Parameter (95% CI) (95% CI) (95% CI) (95% CI)

In Vitro Dissolution

φ1 1.02 0.91 0.91 0.88

(0.98 ; 1.05) (0.88 ; 0.94) (0.89 ; 0.93) (0.86 ; 0.90)

φ2 0.12 0.31 0.14 0.29

(0.10 ; 0.13) (0.28 ; 0.34) (0.13 ; 0.15) (0.28 ; 0.31)

φ3 -1.74 0.72 1.39 4.07

(-1.98 ; -1.50) (0.46 ; 0.97) (1.28 ; 1.50) (3.83 ; 4.30)

φ4 0.27 0.23 0.22

(0.26 ; 0.28) (0.21 ; 0.25) (0.20 ; 0.24)

σ0 2.95 2.33 3.26 1.33

(2.54 ; 3.37) (1.99 ; 2.66) (2.82 ; 3.71) (1.13 ; 1.53)

σφ1
0.03

(0.019 ; 0.04)

σφ2
0.012 0.23
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Table 4.1: Parameter estimates (95% confidence interval) for Mod-

els 1–4. (continued)

Model 1 Model 2 Model 3 Model 4

Est. Est. Est. Est.

Parameter (95% CI) (95% CI) (95% CI) (95% CI)

(0.004 ; 0.020) (0.16 ; 0.31)

σφ3
0.001 0.21

(0.001 ; 0.100) (0.10 ; 0.33

ρφ1φ3
0.74

(0.32 ; 1.00)

Controlled-release

θ0 4.37 2.41 0.01 1.43

(4.19 ; 4.56) (2.19 ; 2.63) (-0.22 ; 0.25) (1.23 ; 1.63)

θ1 -0.78 -0.17 -0.08 0.09

(-0.93 ; -0.63) (-0.33 ; -0.01) (-0.10 ; -0.06) (0.06 ; 0.12)

σ2 0.56 0.53 0.68 0.66

(0.54 ; 0.59) (0.50 ; 0.55) (0.64 ; 0.71) (0.63 ; 0.70)
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Table 4.2: Model fit based on the criterion of average absolute percent prediction

error and its 90% confidence interval for Models 1–4.

Model Cmax AUClast AUC0−4

1 82.95 (81.70 ; 84.22) 75.27 (73.19 ; 77.40) 76.92 (75.68 ; 78.18)

2 82.94 (81.83 ; 84.06) 74.06 (73.01 ; 75.13) 77.09 (75.82 ; 78.39)

3 8.06 ( 5.24 ; 12.40) 7.32 ( 5.13 ; 10.45) 8.46 ( 5.93 ; 12.08)

4 9.21 ( 5.54 ; 15.31) 4.67 ( 3.20 ; 6.83) 7.08 ( 4.34 ; 11.56)

The fit based on the different dissolution models was formally compared by Akaike’s

Information Criterion (AIC): 937.8, 880.3, 668.3, and 502.4 for model 1–4, respec-

tively. The model prediction of the controlled-release plasma concentration of a ran-

domly chosen subject for the different models is depicted in Figure 4.1. The fit of the

Gompertz odds model was judged based on visual inspection of the empirical Bayes

estimates versus the observed controlled-release profiles on the one hand and the av-

erage absolute percent prediction error on the other hand. Figure 4.3-4.5 contains

the observed as well as the model predictions of the in-vitro dissolution, the immedi-

ate and the controlled-release plasma concentrations time profiles for the Gompertz

model.

The %PE of the different models can be found in Table 4.2. The first two columns

correspond to the Cmax and AUClast as requested in the regulatory guidelines (FIP

1996, CDER 1997), the last represents AUC0−4 and is an indication of the model fit

for the data up to 4 hours. The model with the exponential dissolution does not fit the

data well. The addition of the combination model to the exponential dissolution does

not improve the model. The in-vitro exponential mixture dissolution model however

misses the S-shape as observed in the data, see Figure 2.1. Therefore, the model is

extended to the Weibull model and the Gompertz model as a combination model.

The %PE indicates a significant improvement of the model fit for models 3 and 4.

The parameter estimates for the immediate-release part of the model show a per-

mutation: values for α in models 1 and 2 have the same magnitude, and hence

physiological meaning as β for models 3 and 4. The residual variance is lower for the

latter models (standard deviation of 19 instead of 29). Some of the inadequacy of

the first model is demonstrated in the asymptotic maximal dissolution parameter φ1.

In theory, all material should dissolve. Even though dissolution is not fully complete

after 18 hours, the in-vitro release profile contradicts this. The half-life of the disso-
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Figure 4.1: Observed and predicted controlled-release Galantamine concentrations of

one randomly chosen subject for the different models.

lution φ2 is estimated to be 0.1 for models 1 and 3 whereas models 2 and 4 produce

an estimate of 0.3. This 3-fold difference might indicate that also model 3 is not free

of issues. The estimated proportion immediate-release formulation φ4 is close to the

known formulation heterogeneity ratio of 0.25 for all 3 models. The parameters θ0

and θ1 have no physiological meaning and differences between the models are difficult

to interpret.

4.3 Discussion

A model with clear improvements over the standard IVIVC models at two levels

is presented: It allows the fitting of formulations containing both extended- and

immediate-release material and it is a true one-stage analysis method. We employed
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Figure 4.2: Observed and predicted in-vitro as well as in-vivo controlled and

immediate-release Galantamine concentrations time profile for a randomly chosen

subject and capsule. Predictions are based on the Gompertz odds model.

the SAS procedure Nlmixed rather than the standardly used NONMEM package.

All publications up to now have been limited to homogeneous formulations. In this

chapter, we extend the convolution-based method for a heterogeneous formulation of

both an immediate- and an extended-release drug product by a combination model.

Four different models were evaluated during the model building: The first model used

the convolution with the Exponential dissolution model and the logit link function.

The average percent error %PE of both Cmax and AUClast remained well above the

10% criterion as in the guidelines (FIP 1996, CDER 1997), see Table 4.2, indicating

an inadequate model fit.

The model was therefore extended to the combination model with the logit link

function because this used the underlying heterogeneous structure of the capsules and

fitted a bimodal profile. The use of this combination imposes, however, no restrictions
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Figure 4.3: Observed and predicted in-vitro dissolution per drug-unit for the Gom-

pertz odds model.

on the model. It relies on the principle of superposition within pharmacokinetics, i.e.,

the assumption that each mechanism acts independently of each other and there is

linear kinetics. The metabolism of the drug remains unchanged during the drug

product release and only depends on the amount of drug product released. The

standard convolution model itself assumes already the superposition principle and

linear kinetics. The %PE for Cmax of this model remained in the same order of

magnitude. The fit of the in-vitro dissolution data indicated however that further

refining was required: the exponential model has a steep incline for the first hours

and converges to its asymptotic limit, whereas the in-vitro dissolution data showed

an asymmetric S-shaped curve. The model was finetuned with the use of the Weibull

and the Gompertz model for the in-vitro dissolution in combination with the logit

link function. This lead to a substantial decrease in %PE. Although the %PE was

well below 10% for all parameters, only the Gompertz model had the upper limit of
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Figure 4.4: Observed and predicted immediate-release Galantamine concentrations

per subject for the Gompertz odds model.

the 90% confidence interval below 10% for AUClast. The Gompertz model can be

considered as the superior model given this better prediction of the overall exposure

AUClast and the ability to estimate all parameters of the model without fixing any of

them.

This illustrates that traditional models should not be used in case of formulations

consisting of both immediate-release and slow-release drug product. The risk of over-

fitting is limited given that the construction of the model is based on the formulation

properties and the clearly bimodal profiles.

Models 3 and 4 meet the regulatory specifications on the point estimate, see Ta-

ble 4.2. Whereas the guidelines (FIP 1996, CDER 1997) focus only on the mean

%PE being less than 10% to conclude IVIVC predictability, this does not take into

account the possible variability of the prediction. Even though the average might be

less than 10%, a large variability of the individual %PE might indicate that some
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Figure 4.5: Observed and predicted controlled-release Galantamine concentrations

per subject for the Gompertz odds model.

subject’s controlled-release profile is poorly estimated. Therefore, one should rather

use the non-inferiority philosophy and look at the upper limit of the 90% confidence

interval.

A second, more fundamental change to the convolution method of O’Hara (O’Hara

et al. 2001) is that all models are fitted simultaneously, whereas O’Hara’s method

first fits the immediate-release profile per subject and then fits in a second stage the

convolution and the IVIVC using the empirical Bayes’ estimates of the immediate-

release plasma concentration time profile. A possible drawback of such a two-stage

modeling approach is that this might lead to biased results (Verbeke and Molenberghs,

2000). In the first stage, the immediate-release plasma concentration time profile

is reduced to a couple of summary statistics and residual error is ignored. In the

second stage, these estimates are used as if they are error-free. Hence, the possible

error of these coefficients will be reallocated to the remaining coefficients and as such
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introduce possibly bias. Fitting everything at once however does not ignore the error

in the individual compartmental pharmacokinetic parameters. On the contrary, it

allows a pooling of information about common parameters of the immediate- and the

extended-release model. This might lead to more accurate parameter estimation like

for example the ka in the case study. A formal comparison of the two approaches is

given in Chapter 5. The advantage of the two-stage approach is that the parameter

space is split. As a result, the two-stage approach is more flexible, in the sense of

adding random effect, and model convergence is easier and faster.

It is not clear, based on these data, whether a modified sampling would have

allowed for better estimation. Intuitively, additional early sampling might enhance

estimation of the parameter ka, but this was not formally established. On the other

hand, only a limited number of blood samples can be taken for ethical and practical

reasons. Therefore, the current sampling scheme is arguably the best feasible one:

additional early samples might jeopardize later sampling.

In conclusion, a novel one-stage methodology was proposed as well as a combina-

tion model to cope with heterogeneous formulations in IVIVC testing. Based on the

case study it was shown superior to the traditional model.



5
One- versus Two-stage IVIVC

Modeling

An IVIVC model combines the in-vitro dissolution properties with the in-vivo immedi-

ate-release plasma concentration-time profile to accurately, i.e., the estimation is un-

biased, and precisely, i.e., with low uncertainty, predict the in-vivo controlled-release

plasma concentration time profile. Once such an IVIVC model is obtained, it can

be used for the development of new formulations, as well as to assess the impact of

manufacturing procedures, and even to detect batch differences. Therefore, an accu-

rate estimation of the area under the plasma concentration time curve (AUC) and

maximal concentration (Cmax) is indispensable.

Gaynor, Dunne, and Davis (2007) demonstrated that the current standard method,

based on deconvolution (FDA CDER 1997), results in a potentially biased prediction

of both AUC and Cmax, whereas this is less pronounced for the two-stage convolution

technique.

The convolution method, as introduced by O’Hara et al., (2001) fits the immediate-

release plasma concentration time profile first per subject. Then, in a second stage,

the convolution model as well as the in-vitro dissolution model is fitted simultaneously.

However, as the convolution model combines the immediate-release plasma concen-

tration time profile and the in-vivo release of the drug substance, this convolution

45
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model shares a number of parameters with the immediate-release plasma concentra-

tion model as well as with the in-vitro dissolution model via the hypothetical IVIVC

link function. This implies that information on parameters of these submodels is con-

tained within the controlled-release plasma concentration time profile. However, the

model as introduced by O’Hara et al. (2001) does not use this shared information.

Therefore, it is of interest to compare the behavior of the model as introduced by

O’Hara et al. (2001) versus the one-stage modeling approach, where all three sub-

models are fitted simultaneously (Jacobs et al. 2008). For the latter, a non-linear

mixed-effects model (Gabrielson and Weiner, 2000) is used for the immediate-release

plasma concentration time profile, rather than an approach based on fitting a separate

model to each subject.

Gaynor, Dunne, and Davis (2007) demonstrated the unbiased prediction of the

summary measures AUC and Cmax for the two-stage convolution method. Although

this suffices for most applications, the accurate time profile prediction required in,

for example, novel formulation development, cannot be taken for granted based on

this result. Therefore, a simulation study was set up to compare the parameter

estimates with the values used for data generation. The two-stage convolution-based

method (O’Hara et al. 2001) was compared with the novel one-stage convolution-

based method (Jacobs et al. 2008). This chapter is based on Jacobs et al. (2009)

and is organized as follows. The set-up of the simulation study to investigate the

difference between a one- and a two-stage approach is described in Section 5.1. The

analysis of the simulation study can be found in Section 5.2.

5.1 Design of Simulation Study

As already clear from the previous chapters, there are two possible convolution-based

approaches. The two-stage modeling of O’Hara et al. (2001) as introduced in chap-

ter 3 will be compared to the one-stage modeling discussed in chapter 4 by way of a

simulation study. For simplicity, attention is restricted to a single formulation.

An overview table with the parameter values used for the simulation can be found

in Table 5.1. Two types of in-vitro dissolution models are used to ensure a representa-

tive simulation setting. The first dissolution model is chosen to have a rapid release,

i.e., from the start onwards, substantial amounts of drug product are released over

time. A good candidate for such a model is the exponential dissolution model, taking

the form:

Fi1`(t) = φ1 {1 − exp [− (t − φ3) φ2i]} , (5.1)
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Table 5.1: These parameter values were used to simulate the in vitro data as well as

the in vivo controlled-release and immediate-release plasma concentration profiles for

the different settings and levels of variability.

Exponential 1 Exponential 2 Gompertz 1 Gompertz 2

D 100 100 100 100

φ1 0.95 0.95 0.95 0.95

φ2 -1 -1 0.1 0.1

φ3 -0.5 -0.5 -0.5 -0.5

σφ2
0.04 0.04 0.01 0.01

σ0 0.5 0.5 0.5 0.01

log(ke) -1 -1 -1 -1

log(V ) -3.7 -3.7 -3.7 -3.7

σke
0.42 0.05 0.05 0.05

σ1 0.05 0.01 0.05 0.01

θ0 1 2 3 4

θ1 0.2 0.2 0.2 0.2

σθ0
0.2 0.2 0.2 0.2

σ2 0.05 ; 0.1 ; 0.15 0.05 ; 0.1 ; 0.15 0.05 ; 0.1 ; 0.15 0.05 ; 0.1 ; 0.15

0.2 ; 0.25 ; 0.3 0.2 0.2 ; 0.25 ; 0.3 0.2

where φ1 = 0.95 is the asymptotic maximal dissolution, φ2i ∼ N(p2, σ
2
φ2

) is the drug-

unit-specific scale parameter, φ3 = −0.5 the dissolution lag-time, and εi1` ∼ N(0, σ2
0).

Values of −3 and −1 for p2 were used and labelled ”exponential 1” and ”exponential

2,” respectively.

The second dissolution model has a built-in delay, i.e., a small amount of drug

product is released in the beginning of the in-vitro dissolution testing, and the ma-

jority of the drug product is released only after some time. A Gompertz dissolution

model is then well suited:

Fi1`(t) = φ1 (1 − exp {− exp [φ2i (t − φ3)]}) , (5.2)

where, again φ1 = 0.95, is the asymptotic maximal dissolution, φ2i ∼ N(0.1, σ2
φ2

)

is the drug-unit-specific scale parameter, φ3 = 30 the dissolution lag-time, εi1` ∼
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Figure 5.1: Simulation of an IVIVC study using one controlled-release formulation (–

. –), an exponential dissolution curve (– –) and an IV bolus as the immediate-release

plasma concentration time profile (—).

N(0, σ2
0), and σ2

φ2
= 0.01.

For the immediate-release plasma concentrations c2kδ(t), an intravenous bolus

one-compartmental model (Gabrielson and Weiner, 2000) will be used:

c2kδ(t) =
D

V
exp(−ket), (5.3)

where D = 100 is the administered dose, log(ke) ∼ (−1, σ2
ke

) is the subject de-

pendent elimination rate constant, V = 0.27 is the volume of distribution, and

ε2kδ ∼ LN(0, σ2
1). Further, σ2

1 = 0.05(0.01) for the first (second) exponential set-

ting. The standard deviation σke
of the random effect was set to 0.42, 0.05, 0.05, and

0.05 for the first and second exponential and Gompertz settings, respectively.

Examples of the simulation data can be found in figure 5.1 and 5.2 for an exponen-

tial and Gompertz setting. The poor choice of both θ0 and θ1 to be positive leads to
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Figure 5.2: Simulation of an IVIVC study using one controlled-release formulation (–

. –), a gompertz dissolution curve (– –) and an IV bolus as the immediate-release

plasma concentration time profile (—).

observed plasma concentrations for the first 24 hours only. In reality, the parameter

estimate of θ0 is typically negative. However, the choice of the parameters does not

jeopardize the results of this simulation study.

In the two-stage method (O’Hara et al. 2001) the immediate-release plasma con-

centration time profile are first modelled separately per subject. In the one-stage

method, a non-linear mixed-effects submodel (Molenberghs and Verbeke 2005, Pin-

heiro and Bates 2000) is implemented.

The parameter estimates obtained by both methods in the simulation were divided

by the original values used for data generation and subsequently averaged. Values

close to 1 indicate more unbiased estimation, values further from 1 points to the

presence of bias. At the same time, precision of the estimation is assessed by means

of standard deviation.
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Maximum likelihood estimation of the set of models was implemented in the SAS

procedure NLMIXED (version 9.1). Model convergence was monitored using the first-

order integration method of Beal and Sheiner (1982). Gaussian quadrature might have

yielded better numerical accuracy (Molenberghs and Verbeke, 2005), but the very long

run times prohibited the use of this method in the simulation setting. A very small

simulation setting was additionally performed using adaptive gaussian quadrature

to ensure that the results are not restricted to the first-order method. Only three

quadrature points were used to allow a feasible runtime.

A large number of different simulation settings are studied to ensure the represen-

tation of the results. For each setting, 50 virtual studies were generated and analyzed.

These studies can be grouped into four main categories.

• Exponential 1: high variable clearance and high residual variance for c2kδ(t), a

fast exponential in-vitro dissolution curve, six different variances for the slow-

release plasma concentrations.

• Exponential 2: low variable clearance and small residual variance for c2kδ(t),

a slow exponential in-vitro dissolution curve, four different variances for the

slow-release plasma concentrations.

• Gompertz 1: high variable clearance and high residual variance for c2kδ(t), a

Gompertz in-vitro dissolution curve, six different variances for the slow-release

plasma concentrations.

• Gompertz 2: low variable clearance and low residual variance for c2kδ(t), a

Gompertz in-vitro dissolution curve, four different variances for the slow-release

plasma concentrations.

5.2 Results

The accuracy and precision of one- versus two-stage modeling is assessed via a sim-

ulation study. For a number of settings in our simulation study, the Hessian of the

model was not positive definite, a typical issue in non-linear mixed-effects modeling

(Pinheiro and Bates 2000, Davidian and Giltinan 1995). Therefore, these studies were

excluded from further analysis (see Table 5.2). The fairness of comparison is not jeop-

ardized because only studies are included where both the one- and two-stage model

converged. It is of interest to note that almost all of the Hessian matrix problems are

due to the two-stage models (Tables 5.3 and 5.4).
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Table 5.2: Number of studies used to compare the one-stage and two-stage approaches

for the different settings and levels of variability. ’.’ denotes not investigated settings.

σ2 Exponential 1 Exponential 2 Gompertz 1 Gompertz 2

0.05 28 42 35 36

0.10 27 43 35 32

0.15 25 41 34 34

0.20 34 47 41 34

0.25 28 . 44 .

0.30 27 . 40 .

Table 5.3: Number of studies with a positive Hessian matrix using a one-stage model

for the different settings and levels of variability.

σ2 Exponential 1 Exponential 2 Gompertz 1 Gompertz 2

0.05 50 50 49 49

0.1 48 50 49 49

0.15 50 50 50 49

0.2 50 50 50 50

0.25 50 . 50 .

0.3 50 . 50 .

Figures 5.3 and 5.4 and Table 5.5 and 5.6 contain the relative accuracy of the

parameter estimates as well as the precision of both modeling methods for the four

groups of simulation settings. Values closer to 1 indicate less bias, whereas large

deviations from 1 indicate that the averaged parameter estimate within the setting

deviates considerable from the target parameter value.

The simulation study showed systematically that parameter estimates were less

accurate for the two-stage approach compared to the one-stage approach. The pa-

rameter estimation of the dissolution parameters φ1, φ2, and φ3 can be considered

as very accurate for both methods for most settings. The fixed effects θ0 and θ1, on

the contrary, exhibit considerable inaccuracy for the two-stage method, and little to

no bias for the one-stage method. At first sight, θ1 is estimated with less accuracy
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Table 5.4: Number of studies with a positive Hessian matrix using a two-stage model

for the different settings and levels of variability.

σ2 Exponential 1 Exponential 2 Gompertz 1 Gompertz 2

0.05 28 42 35 37.00

0.10 29 43 35 32.00

0.15 25 41 34 34.00

0.20 34 47 41 34.00

0.25 28 . 44 .

0.30 27 . 40 .

than θ0. However, the parameter is not more sensitive to bias. The inaccuracy of θ0

is spread over both the fixed effect and the inflated random effects variability. There-

fore, it gives the false impression of being more accurately estimated than θ1. The

residual standard deviation σ2 seems most problematic. It was systematically overes-

timated for all four settings in the case of the two-stage approach: 4.118, 2.943, 5.109,

and 6.697 versus 1.098, 1.017, 0.999, and 109.8 for the first and second exponential

and Gompertz, in the case of two- versus one-stage modeling, respectively. Also, the

random-effects standard deviations σφ2
and σθ0

are substantially overestimated for

the two-stage modeling approach.

Not only the behavior in terms of bias is inferior for the two-stage approach, also

its precision is worse for most parameter estimates: the standard deviations on the

original scale are systematically larger than for the one-stage method for almost all

parameters. Again, this is most prominent for the residual standard deviations and

random-effects standard deviations, whereas the difference in precision is negligible

for the fixed effects of the dissolution part of the model.

A very small simulation of 100 studies using Gaussian quadrature confirmed these

results. Also in this case, only 24 out of 100 studies converged for the two-stage

method versus 95 out of 100 for the one-stage method. The bias of the estimates is

however smaller using gaussian quadrature.
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Figure 5.3: Boxplot of the log-transformed parameter estimates for the dissolution

parameters for the different settings. In the legend, a and b indicates the one- or two-

stage estimation, P1, P2, P3, S0, and SP2 are φ1, φ2, φ3, σ0, and σφ2
, respectively.
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Figure 5.4: Boxplot of the log-transformed parameter estimates for the IVIVC param-

eters for the different settings. In the legend, a and b indicates the one- or two-stage

estimation, S2, Sth, T0, and T1 are σ2, σθ0
, θ0, and θ1, respectively.
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Table 5.5: Relative bias and absolute efficiency of the parameter estimates after the

simulation of two- versus one-stage IVIVC modeling using an exponential in-vitro

dissolution function.

2-stage 1-stage

relative mean std relative mean std

φ1 0.998 0.0066 1.000 0.0021

φ2 0.991 0.0200 1.000 0.0044

φ3 1.855 8.7735 0.999 0.0482

σφ2
2.770 17.339 0.935 0.2457

exponential 1 (N = 169) σ0 1.023 0.1515 1.002 0.0486

θ0 1.868 0.2566 0.974 0.0687

θ1 0.056 0.0651 1.002 0.0545

σθ0
2.034 2.6012 0.924 0.1966

σ2 4.118 2.8185 1.098 0.1408

φ1 1.000 0.0006 1.000 0.0005

φ2 1.090 0.0867 1.001 0.0144

φ3 1.022 0.0632 1.005 0.0242

σφ2
6.364 3.1339 0.935 0.2164

exponential 2 (N = 173) σ0 1.018 0.0592 1.001 0.0525

θ0 0.900 0.0628 0.959 0.0969

θ1 0.114 0.0028 1.192 0.2843

σθ0
0.689 0.8804 0.986 0.3721

σ2 2.943 1.9414 1.017 0.0405



56 Chapter 5. One- versus Two-stage IVIVC Modeling

Table 5.6: Relative bias and absolute efficiency of the parameter estimates after

the simulation of two- versus one-stage IVIVC modeling using a Gompertz in-vitro

dissolution function.

2-stage 1-stage

relative mean std relative mean std

φ1 0.999 0.0012 0.999 0.0012

φ2 1.011 0.0286 0.989 0.0351

φ3 0.999 0.0011 1.000 0.0011

σφ2
2.082 3.4603 0.938 0.2959

Gompertz 1 (N = 229) σ0 1.036 0.0761 1.028 0.0714

θ0 1.817 0.1931 1.047 0.1411

θ1 0.095 0.1642 0.964 0.0401

σθ0
3.174 1.7929 0.762 0.4320

σ2 5.109 3.5562 0.999 0.1838

φ1 0.999 0.0012 0.999 0.0012

φ2 1.009 0.0278 0.988 0.0334

φ3 1.000 0.0012 1.000 0.0012

σφ2
1.691 3.6415 0.977 0.1986

Gompertz 2 (N = 136) σ0 1.031 0.0599 1.025 0.0592

θ0 1.833 0.3368 1.045 0.1470

θ1 0.107 0.1799 0.961 0.0292

σθ0
3.154 2.1457 0.843 0.3813

σ2 6.697 3.9426 1.098 0.1046
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5.3 Discussion

Up to now, deconvolution-based methods are standard practice in IVIVC model-

ing. However, Gaynor, Dunne, and Davis (2007) demonstrated that the two-stage

convolution-based method (O’Hara et al. 2001) is superior for the prediction of the

overall (AUC) and peak (Cmax) exposure of controlled-release drug products. Al-

though this is an excellent result for most applications, in certain circumstances, such

as formulation development, the interest of the IVIVC model predictions is not in

the accurate prediction of drug exposure measures AUC and Cmax, but rather in the

accurate prediction of the individual plasma concentration time profiles, which corre-

sponds to the estimation of the parameter estimates. To get a better understanding of

the accuracy and precision of the two-stage convolution-based method, its estimation

properties are compared to the more recent one-stage convolution-based method of

Jacobs et al. (2008) in a simulation study.

The numerical performance of both models is very different. Indeed, using the

same starting values, the two-stage method leads more frequently to a non-positive

Hessian matrix than for the one-stage model. Not surprisingly, also the run-times are

strikingly different: the partitioning of the parameter space allows for a much faster

convergence for the two-stage method. The increase over run-time mainly depends

on the complexity of the random-effects structure, an important disadvantage of the

one-stage method in the case of complex submodels.

Comparison of the accuracy of the parameter estimates indicates that the one-

stage method outperforms the two-stage method. In particular, the estimation of

the residual and random-effects standard deviations are worrisome for the two-stage

method due to the serious overestimation. The fixed-effects estimation in the con-

volution submodel exhibits a similar inaccuracy. The fixed effects of the in-vitro

dissolution submodel have acceptable accuracy.

From both methodological considerations and simulations, it is clear that the

submodels share a number of parameters as well as information on parameters, i.e.,

the controlled-release plasma concentrations time profiles also contain information

on the parameters of the in-vitro dissolution model as well as of the parameters of

the immediate-release plasma concentration time profile. Therefore, it comes as no

surprise that also the precision of the one-stage method is better than the two-stage

method.

One should be aware that the first-order integration method of Beal and Sheiner

(1982) was used rather than the more accurate Gaussian quadrature. The long run-

times of the latter prevented the implementation in a large simulation study. A very
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small simulation study indicated that its estimation was better than in the case of the

first-order method, but the discrepancy between the one- and the two-stage method

remained. Also the impact of the approximation of the convolution model 3.1 as a

finite sum might have have introduced bias.

Does this mean that one should abandon not only the deconvolution-based method,

but also the two-stage convolution-based method of O’Hara et al. (2001)? There is

no straightforward answer. Indeed, as long as interest in and application of the

IVIVC model is restricted to the estimation of overall and peak exposure estimation,

Gaynor, Dunne, and Davis (2007) demonstrated that the two-stage method performs

well. The shorter run-times are a very convenient additional feature. However, if

the application of the IVIVC model should predict accurately the individual time

concentration profile, such as in formulation development, then the more accurate

parameter estimations of the one-stage method would lead to more reliable simulated

plasma concentration time profiles, and, therefore, it seems to be the appropriate

method in that case.



6
Outlying Subject Detection in

In-vitro – In-vivo Correlation

Models

Having introduced the concepts and an example of IVIVC modeling in the previous

chapters, the focus of this chapter will be on the model diagnostics, i.e., how well

does the model behave and are there outlying observations that might influence the

estimation. As already mentioned, the accurate prediction of the drug exposure plays

a crucial role in IVIVC modeling. It is conventionally assessed with the average

absolute percentage prediction error, %PE (CDER 1997). However, special attention

is required to particular observations that have a strong influence on the estimation

of the IVIVC model, as these might represent perfectly normal data, but also may

represent problematic data such as outliers, indicate inadequate data sampling, or

might be due to an incorrect model (Verbeke and Molenberghs, 2000).

Several diagnostic tools were developed to detect outlying observations. For the

linear regression model, residual analysis, leverage, Cook’s distance, and local influ-

ence are standard techniques. However, not all of these methods retain validity in

the case of nonlinear models (St-Laurent and Cook, 1996). Local influence (Cook

1986) assesses the impact of small perturbations of the likelihood function. There-
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fore, this method retains validity for nonlinear mixed effects models. Local influence

is, however, not always a calibrated metric and measures the relative local influence

compared to the other observations. Poon and Poon (1999) extended the method

using the conformal normal curvature. This ensures a calibrated metric falling within

the unit interval.

Although local influence is a likelihood-based and therefore generally valid method,

its use is frequently restricted to (generalized) linear (mixed) models (Verbeke and

Molenberghs, 2000, Thomas and Cook, 1990). Some papers applied local influence

on other types of data and models, such as nonlinear structural equation models

(Lee and Tang 2004), incomplete multivariate and longitudinal data (Jansen et al.

2003), survival data (Escobar and Meeker, 1992), growth data (Shi and Ojeda 2004).

However, no paper focuses on local influence for nonlinear mixed effects models in

pharmacokinetics. The diagnostic tools used in pharmacokinetics often are restricted

to the goodness-of-fit of the model, such as residual analysis (Gabrielson and Weiner,

2001). It must be said that some outlier detection methods have been proposed,

but these are based on a leave-one-out principle, e.g., Sadray, Jonsson, and Karlsson

(1999).

Whereas %PE is an overall indicator of the goodness-of-fit recommended by reg-

ulatory authorities (CDER 1997), one could also consider the %PE evaluated per

subject, i.e., how well does the hierarchical model predict the AUC and Cmax for

each subject separately. This quantity assesses how well the model fit the time-profile

for the particular subject. In the current paper, we explore the relation between both

%PE and local influence as methods for detecting outlying subjects using a real life

example and a simulation study.

The chapter is based on Jacobs et al. (2009) and is organized as follows. Local

influence is introduced in Section 6.1. The set up of the simulation study is described

in Section 6.2. The relation between both outlier detection methods is found in

Section 6.4.

The likelihood in this chapter was implemented using the Laplace approximation

as described in Pinheiro and Bates (2000).

6.1 Local Influence

Failing to model the IVIVC relation might be due to a number of reasons. Even under

the assumption of a correctly specified model, it might occur that some of the data

have an unusually high influence on the model estimation and influence the results

of the analysis. Such data might represent valid data, but might also signal model
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inadequacy, inappropriate data, or insufficient data sampling. Therefore, a thorough

study of such potential outlying and influential observations is deemed necessary.

Cook (1986) introduced the concept of local influence. It comprises of assessing

the impact of a set of observations on the likelihood function, which is defined as

L(Θ) =

N
∑

n=1

Ln(Θ), (6.1)

where Θ assembles all parameters, N is the number of observations, and Ln(Θ) is the

likelihood contribution of the nth observation. Likelihood-based methods consist of

maximizing the quantity −2 log[L(Θ)]. Local influence studies the impact of minor

perturbations to this function. If the impact is large, then the perturbation is highly

influential. In this case, the data might represent for example an outlying observation.

The impact of perturbations to subject k can be assessed via

L(Θ | ω) =

N
∑

n=1

wnLn(Θ), (6.2)

where wn is a weight, 1 if the observation belongs to subject k, 0 else. Then, the local

influence of the subject k on the likelihood L(Θ | ω) can be derived to take the form

(Verbeke and Molenberghs, 2000)

Ck = 2 | ∆′
kL̈−1∆k |, (6.3)

where ∆ is defined as the vector of second derivatives of L(Θ | ω) with respect to

wn and all components of Θ and evaluated in the original estimated maximum log-

likelihood. ∆k is the kth column. L̈ represent the estimated Hessian matrix of the

log-likelihood.

However, local influence as defined by Cook (1986) has one strong disadvantage:

it is not calibrated, and can take any value (Poon and Poon 1999). Hence, the local

influence measurement of a particular subject should be interpreted relative to the

local influence of the other subjects. Poon and Poon (1999) introduced the conformal

normal curvature approach of local influence, which incorporates a calibration factor:

Bk =
| ∆′

kL̈−1∆k |
√

tr[(∆′L̈−1∆)2]
, (6.4)

where tr is the trace of a matrix. This calibration ensures that Bk falls within the

unity interval. Values above twice the average Bk require further scrutinizing (Verbeke

and Molenberghs, 2000).
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In our setting, the interest is in detecting influential subjects. Therefore, the wn

are set to 1 for a particular subject and to zero for all others.

The derivation ∆k of the likelihood to the parameters of the model was performed

numerically, i.e.,
L(Θ + hΘ | ω) − L(Θ | ω)

hΘ
, (6.5)

where hΘ was set to 10−7 for each parameter, and each element of the column ∆k

represents the derivative to a different model parameter evaluated for the subject k.

%PE, as introduced in Section 3.3, is one of the traditional model diagnostic

utilities. It is of interest to verify how much local influence and %PE overlap each

other as diagnostic tools. Therefore, calculating the %PE for each subject separately

could also be considered as a measurement of the goodness-of-fit of the model for the

corresponding subject, hence be used as a method to detect potential outliers. On the

other had, one might also consider the %PE for each subject as a form of aggregated

residual analysis ignoring the time component of the data.

6.2 Simulation Set up

A simulation study was set up to study the relation between local influence as defined

by Poon and Poon (1999) and %PE. An exponential in-vitro dissolution time profile

with lag-time φ3 is chosen.

Fi1`(t) = 100φ1 {1 − exp [− (t − φ3) exp (φ2i)]} + εi1, (6.6)

where εi1 ∼ N(0, σ2
0) and φ2i ∼ N(0, σ2

φ2
). φ1 corresponds to the asymptotic max-

imum amount of drug product release in-vitro. The unit impulse response c2kδ(t)

consisted of a one-compartmental IV-bolus injection.

c2kδ(t) =
D

V
exp(−ket), (6.7)

where D represents the dose, V is the apparent volume of distribution, ke is the

subject-dependent elimination rate, and residual error has a log-normal distribution.

The hypothetical link function between the in-vitro dissolution and the in-vivo release

was set to

Fi2k`(t) = g−1 {θ0 + θ1t + sik + g [Fi1` (t)]} ,

where θ0, θ1, and sik are parameters correcting for the subject-dependent differences

between the in-vivo release and the in-vitro dissolution.

A perturbation was added to one of the three parameters (φ1, θ0, and θ1) for the

first subject of each simulated study to explore the impact of an outlying subject on
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the likelihood estimation. The chosen parameter was multiplied with a factor 2.5, 5,

7.5, or 10. The factors are chosen to generate mildly to extreme outlying profiles. As

such, the simulation also explores the power of the method to detect outlying profiles.

Per parameter and perturbation factor, 500 studies were generated with 20 subjects.

The quantities Bk, %PEAUC , and %PECmax were calculated for the obtained model

fits.

The correspondence between the obtained measurements is subsequently studied

to assess the degree of one method confirming the other. The verification of such

correspondence can be done using reliability theory. The concept was introduced by

Fleiss (1986). For a more general approach of the concept, we refer to Vangeneugden

et al. (2004). In our case, the correspondence reduces to the correlation between the

metrics.

6.3 The Case Study

Our case study is a long acting injectable formulation for intramuscular administra-

tion. The data is described in Section 2.2. An IVIVC model is established for one

batch only. The impact of each subject on the likelihood function is assessed and po-

tential outlying subjects are identified. A more thorough understanding of the data

allows for an improved model estimation. An IVIVC for the formulation is set up.

However, the degree of metabolism of compound is subject-dependent. Therefore, the

metabolic ratio M is included in both the clearance and the IVIVC link function to

correct for poor versus extensive metabolizing subjects,

Fi2k`(t) = g−1 {θ0 + θ01M + θ1t + θ11Mt + g [Fi1` (t)]} .

Note that the random effect sik was removed from the model, because it was not sta-

tistically significant. The controlled-release plasma concentration-time profile data

was modelled as a mixture of a slow-release and a small immediate-release process,

because a small amount of immediate release of drug product was observed in all pa-

tients. This was due to specific steps in the manufacturing process of the formulation.

6.4 Results

The quality of the IVIVC modeling is investigated using residual analyses and %PE

following the FDA guidelines. Although the FDA guidelines do not mention diag-

nostics for outlier detection, it is worth to verify whether the quantity %PE would

be a suitable diagnostic tool, in particular for the assessment of outlier detection. A



64
Chapter 6. Outlying Subject Detection in In-vitro – In-vivo Correlation

Models

theta0

time

C
p

0 20 40 60

0
20

0
40

0
60

0
80

0

theta1

time

C
p

0 20 40 60

0
50

0
15

00
25

00

phi1

time

C
p

0 20 40 60

0
20

0
40

0
60

0
80

0

Figure 6.1: The unperturbed (bold) and perturbed controlled-release profiles with

increasing degrees of perturbation (2.5,5,7.5,10) used in the simulation study.

simulation was set up to explore a potential relation between %PEAUCk
and local

influence Bk and the power of both methods to detect subjects with outlying plasma

concentration-time profiles.

Figure 6.1 shows the standard profile as well as the perturbed profiles for one

subject. The unperturbed simulated profiles are shown in bold. A perturbation is

added to the model parameters for one subject leading to the other profiles. Residual

and random-effects variances are set to zero for graphical purposes only. Table 6.1

contains the number of studies with an appropriate model convergence and positive-

definite Hessian matrix. This number is low despite the use of a grid of starting values.

However, the focus of the chapter is on the outlier detection rather than fitting of the

simulated data. The %PEAUC of the perturbed subjects are depicted in Figure 6.2

for the different perturbation scenarios. From this graph, it is clear that %PEAUC

is capable of detecting outlying pharmacokinetic time profiles for parameters θ0 and
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Table 6.1: Number of simulated studies with an appropriate model convergence as a

function of the perturbation factor.

0 2.5 5 7.5 10

φ1 324 322 330 334 344

θ0 328 329 319 281

θ1 351 322 340 311

Table 6.2: The correlation between Bk and log(%PEAUCk
) indicate an absence of

relation for each of the perturbation scenarios.

0 2.5 5 7.5 10

φ1 0.11 0.09 0.12 0.12 0.13

θ0 0.11 0.15 0.17 0.17

θ1 0.10 0.08 0.09 0.11

to a smaller extent also for θ1, but not for φ1, i.e., the boxplots show a large and

small increase of %PEAUC with increasing perturbation for θ0 and θ1, respectively.

Figure 6.3 suggests that %PECmax fails to detect outlying subjects. On the other

hand, Figure 6.4 depicts the boxplots of the local influence metric Bk of the simulation

study as a function of the degree of perturbation. Again, the figure is restricted to

the perturbed subject of each simulated trial. No impact of the perturbation on the

local influence is observed for the dissolution parameter φ1, whereas a clear increase

of Bk is obtained for the IVIVC parameters θ0 and θ1. This is a reassuring, though

surprising result, i.e., it is possible to detect outlying subjects using local influence in

the case of IVIVC modeling; however, only if the perturbation occurs on the in-vivo

release parameters θ0 and θ1, and not when the perturbation occurs at φ1, which

corresponds to the asymptotic cumulative percentage of product released in-vitro.

The insensitiveness of the method for the perturbation at φ1 is striking; Even in the

extreme case of φ1 reduced by a factor ten, both methods are not able to detect the

outlying behavior, although the impact of the perturbation on φ1 is very small in

Figure 6.1.

Bearing in mind this result, one might wonder whether both methods confirm
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Figure 6.2: Boxplots of %PEAUC of the perturbed subject as a function of the per-

turbation factor. For each perturbation level the number of subjects was 20 (19

unperturbed, 1 perturbed) and 500 replicates were generated.

each other, thus whether there is a one-to-one relation between %PEAUCk
and Bk.

Therefore, the local influence measurements Bk and %PEAUCk
are depicted per per-

turbation scenario in Figure 6.5. The figure suggests that only a weak relation between

Bk and %PEAUCk
can be expected for the different scenarios. A more formal analysis

of the simulation was carried out with a correspondence analysis (Vangeneugden et

al., 2004). Table 6.2 contains the correspondence Corr(Bk,%PEAUCk
) for the differ-

ent perturbation settings. This formally confirms that the methods share little to no

information on outlier detection, despite the fact that both are capable to identify

outliers. Therefore, the focus on residual analysis and %PEAUCk
, which is a special

case of the former, can be considered as appropriate but insufficient and the data can

be explored from a different angle using local influence. The relation between Bk and

%PECmaxk
is tabulated in Table 6.3. Also in this case, the correspondence is weak
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Figure 6.3: Boxplots of %PECmax of the perturbed subject as a function of the

perturbation factor. For each perturbation level the number of subjects was 20 (19

unperturbed, 1 perturbed) and 500 replicates were generated.

(25-30%). The scatterplot between Bk and %PECmaxk
show a similar picture as in

Figure 6.5.

After the introduction of the local influence method and the exploration of its

properties, it is worth submitting the method to a stress test to find potential is-

sues or weaknesses of the technique. Our case study has some specific characteristics

which pose some challenges to IVIVC modeling and thus provide a good opportunity

to explore the behavior of model diagnostics under circumstances where they mat-

ter most; (1) an imbalanced study design in the sense that immediate-release and

controlled-release plasma concentrations are not measured in the same patients, (2)

unusual profiles with the majority of the plasma samples close to the detection limit,

(3) only few samples measured near the peak plasma concentrations, and (4) the spe-

cific manufacturing process of the formulation leads to a small amount of immediate
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Figure 6.4: Boxplots of Bk of the perturbed subject as a function of the perturbation

factor. For each perturbation level the number of subjects was 20 (19 unperturbed,

1 perturbed) and 500 replicates were generated.

release of the drug product.

The goodness-of-fit of the model for the case study was 20% and 15% for %PEAUC

and %PECmax , respectively. Figure 6.6 shows the local influence of the different

patients. Six profiles had a local influence of more than twice the average of Bk and

are worth further scrutinizing. The model fit of the nine patients with the highest

influence metric are depicted in Figure 6.7. It turns out that the four patients with the

highest influence have a model fit for which the estimated peak plasma concentration

is estimated too early or too late. Whereas at least seven detectable plasma levels are

sampled for more traditional pharmacokinetic profiles, the profiles in this case study

have only 2 to 5 plasma samples which contribute to the peak plasma concentration

estimation. Thus, these most extreme local influence values indicate that a different

plasma sampling scheme with more sampling during the main release period of the
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Figure 6.5: Explorative relation between influential subjects Bk and %PEAUCk
in a

simulation study with different degrees of perturbations implemented for each param-

eter estimate. The grey line depicts a smoothed relation between the two metrics.

product ought to be considered. However, also some other patients in Figures 6.8

– 6.12 with smaller influence metrics have predicted peak plasma concentrations not

coinciding with the ones observed. In these cases, less plasma samples were taken near

the peak and, therefore, less observations were predicted erroneously. As the local

influence of the subject is an aggregate measure over the entire profile, few outlying

samples are insufficient to yield the entire profile as influential. As a result, the local

influence is smaller for these patients.

No major deviation was observed for patient 30068 (Figure 6.7) despite the high

values for local influence. On the contrary, patient 30024 has the fifth most extreme

local influence. He has an aberrant profile, i.e., high plasma concentrations during

the first week after administration. This is due to an unintentional early release. It

is of interest to note that the profile of the patient having the 8th highest (30010)
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Table 6.3: The correlation between Bk and log(%PECmaxk
) indicate an absence of

relation for each of the perturbation scenarios.

0 2.5 5 7.5 10

φ1 0.28 0.27 0.27 0.28 0.27

θ0 0.25 0.22 0.24 0.20

θ1 0.29 0.31 0.29 0.33

local influence also exhibits an elevated release in the first week. The third patient

(30032), showing such an early release out of a total of 54 patients, does not have

a high influence metric (0.012), but in this case, the early peak is restricted to two

sampling points, hence the method might discard the patient as having an erroneous

sample rather than an aberrant profile. These three patients can be considered as real

outliers because the release of the drug product is not immediately after injection like

for the other patients, but seems to take several hours or even some days. Therefore,

the model was refitted after exclusion of these patients. However, the %PE remains

unaltered for both AUC and Cmax as can be expected from the absence of correlation

between %PE and local influence.

6.5 Discussion

The emphasis of statistical model diagnostic techniques in the case of nonlinear mixed-

effects modeling traditionally restricts to residual analyses. In the specific case of

pharmacokinetics, the exclusion of aberrant observations is typically subject to the

pharmacokinetisist’s subjective judgment. The reason for this is that only few outlier

detection methods are available in standard software or described in literature, to our

knowledge. These are based on the leave-one-out principle, see for example Sadray,

Jonsson, and Karlsson (1999). In this paper, we have shown that local influence is

a powerful tool for the detection of outliers not only in linear and generalized linear

(mixed effects) models, but that it also can be used to detect complex outlying phar-

macokinetic time profiles. The focus has been on a specific type of pharmacokinetic

models, i.e., IVIVC models.

Regulatory guidelines state that the model fit of IVIVC models should comply with

%PE < 10%. This %PE can be considered as an aggregated residual measurement
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Figure 6.6: Influence of the subjects on the likelihood estimation for a long acting

injectable formulation.

that ignores the time aspect of the data. An increase of %PEAUC is found for the

perturbated profiles in the simulation. This standard method detects the deviation

and, therefore, can be used to detect outliers. On the contrary, %PECmax turns out

to be useless to detect outliers. The local influence method is also applied in the same

simulation. Again, a perturbation dependent increase is found by using local influence.

This proves that local influence is also capable to detect outlying subject profiles. It

is worth noting that the correlation between both methods is weak. This suggests

that both methods detect different aspects of the outlying profiles. Therefore, the

focus on %PEAUC as per guideline can be considered as appropriate but insufficient.

The calculation of the local influence of a subject’s plasma concentration-time profile

sheds some new light on the data and focuses on the problem from a different angle.

However, the case study clearly points out one of the limitations of both tech-

niques. Both %PEAUC and local influence are an aggregate measurement of the fit of
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Figure 6.7: Model fit for the nine subjects with the largest influence on the likelihood

estimation for a long acting injectable formulation. The influence is added in the

upper left corner for each subject.

the entire profile. The methods work well for traditional pharmacokinetic profiles, but

their performance might decrease for cases of controlled-release formulations where

the majority of the many plasma concentrations is close to the detection level and only

few samples describe the peak plasma concentration. However, local influence does

take the time aspect into account via the likelihood approach, in contrast to %PE

based on AUC and Cmax, which ignores the time aspect. As a result, local influence

is capable of detecting a change in the time of the peak plasma concentration tmax,

which %PE based on AUC cannot. However, if very few plasma samples are taken

near the peak plasma concentration as in the case study, the misfit of the Cmax is not

detected with local influence, but would be found with the %PE method. Therefore,

it is our recommendation not to restrict the goodness-of-fit to either of the techniques,

but rather to consider both as complementary due to their focus on different aspects



6.5. Discussion 73

30070

time (days)

pl
as

m
a 

co
nc

en
tr

at
io

n

0 20 40 60 80

0
40

80
12

0
0.035

30065

time (days)

pl
as

m
a 

co
nc

en
tr

at
io

n

0 20 40 60 80

0
40

80
12

0

0.034

30021

time (days)

pl
as

m
a 

co
nc

en
tr

at
io

n

0 20 40 60 80

0
40

80
12

0

0.033

30029

time (days)

pl
as

m
a 

co
nc

en
tr

at
io

n

0 20 40 60 80

0
40

80
12

0

0.033

30003

time (days)

pl
as

m
a 

co
nc

en
tr

at
io

n

0 20 40 60 80
0

40
80

12
0

0.03

30067

time (days)

pl
as

m
a 

co
nc

en
tr

at
io

n

0 20 40 60 80

0
40

80
12

0

0.028

30072

time (days)

pl
as

m
a 

co
nc

en
tr

at
io

n

0 20 40 60 80

0
40

80
12

0

0.026

30005

time (days)

pl
as

m
a 

co
nc

en
tr

at
io

n

0 20 40 60 80

0
40

80
12

0

0.021

30007

time (days)
pl

as
m

a 
co

nc
en

tr
at

io
n

0 20 40 60 80

0
40

80
12

0

0.021

Figure 6.8: Model fit for the nine subjects with the largest influence on the likelihood

estimation for a long acting injectable formulation. The influence is added in the

upper left corner for each subject (continued).

of data modeling.
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Figure 6.9: Model fit for the nine subjects with the largest influence on the likelihood

estimation for a long acting injectable formulation. The influence is added in the

upper left corner for each subject (continued).
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Figure 6.10: Model fit for the nine subjects with the largest influence on the likelihood

estimation for a long acting injectable formulation. The influence is added in the upper

left corner for each subject (continued).



76
Chapter 6. Outlying Subject Detection in In-vitro – In-vivo Correlation

Models

30053

time (days)

pl
as

m
a 

co
nc

en
tr

at
io

n

0 20 40 60 80

0
40

80
12

0

0.005

30033

time (days)

pl
as

m
a 

co
nc

en
tr

at
io

n

0 20 40 60 80

0
40

80
12

0

0.005

30026

time (days)

pl
as

m
a 

co
nc

en
tr

at
io

n

0 20 40 60 80

0
40

80
12

0

0.004

30025

time (days)

pl
as

m
a 

co
nc

en
tr

at
io

n

0 20 40 60 80

0
40

80
12

0

0.004

30066

time (days)

pl
as

m
a 

co
nc

en
tr

at
io

n

0 20 40 60 80

0
40

80
12

0

0.003

30002

time (days)

pl
as

m
a 

co
nc

en
tr

at
io

n
0 20 40 60 80

0
40

80
12

0

0.003

30064

time (days)

pl
as

m
a 

co
nc

en
tr

at
io

n

0 20 40 60 80

0
40

80
12

0

0.003

30018

time (days)

pl
as

m
a 

co
nc

en
tr

at
io

n

0 20 40 60 80

0
40

80
12

0

0.002

30016

time (days)

pl
as

m
a 

co
nc

en
tr

at
io

n

0 20 40 60 80

0
40

80
12

0

0.002

Figure 6.11: Model fit for the nine subjects with the largest influence on the likelihood

estimation for a long acting injectable formulation. The influence is added in the upper

left corner for each subject (continued).
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Figure 6.12: Model fit for the nine subjects with the largest influence on the likelihood

estimation for a long acting injectable formulation. The influence is added in the upper

left corner for each subject (continued).





7
Can In-vitro Dissolution

Specifications be Determined

by its Clinical Relevance?

In-vitro tests play a vital role in the pharmaceutical industry. They avoid the

use of resource-intensive clinical trials by performing less resource consuming, well-

controlled laboratory tests instead. One of these tests is the in-vitro dissolution test

for controlled-release formulations. It assesses the in-vitro release over time of the

medicinal product. Setting dissolution specifications of such controlled-release for-

mulations corresponds to defining as the number of release percentages that must be

attained after a prespecified time interval under controlled conditions, such as pH,

dosage form, and excipient. Such dissolution specifications ought to retain the in-vivo

drug exposure bioequivalent, i.e., within 20% of the reference exposure, and as such

the therapeutic effect should be unaltered. Hayes et al. (2003) described that these

dissolution specifications can be optimized as a function of the bioequivalence criteria.

We study the clinical relevance of these dissolution specifications by formulating

an answer to the question as to whether these limits guarantee that the clinical effects

observed remain unchanged? If specifications are too liberal, this might lead to an

increase of unwanted effects or the loss of efficacy. If, on the contrary, the speci-
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fications are too conservative, too many acceptable batches of drug product would

unnecessarily be discarded for alleged insufficient quality.

In this chapter, we present a case study in which we determine the relation between

the in-vitro release-time profile and the clinical outcome for the controlled-release

formulation. We will use this relation to translate in-vitro changes into changes of

the clinical response. As such, clinically relevant in-vitro release specifications can

be determined. It ought to be noted that it is not our intent to show that a perfect

relation exists for our case study. Rather, the principal idea of our paper is that one

can apply the concept to any other drug product, under certain conditions.

Instead of translating changes of the in-vitro dissolution time profile directly into

clinical effects, we use a pharmacokinetic/pharmacodynamic (PK/PD) relationship

to relate the controlled-release plasma concentration-time profile to the receptor bind-

ing. For our case study, a consensus about the clinical interpretation of the receptor

binding exists (Kapur et al. 1999, 2000), reducing our research quest to finding a re-

lation between the in-vitro dissolution time profile and the controlled-release plasma

concentration-time profile. In Vitro-In Vivo Correlation (IVIVC) modeling combines

the in-vivo drug release with the immediate-release plasma concentration-time profile

to predict the controlled-release plasma concentration-time profile. This is estab-

lished by imposing a posited relationship between the in-vitro dissolution and the

unobserved in-vivo release and verification of its predictive capacity.

The combination of the above models will enable us to relate D2 receptor binding

with in-vitro release properties of the drug formulation and, therefore, indirectly to

associate a clinical interpretation to the dissolution specifications, i.e., the increased

hazard to occurrence of extrapyramidal symptoms with D2 receptor occupancy ex-

ceeding 80%. The lack of efficacy is associated with a D2 receptor binding below

65%.

The chapter is based on Jacobs et al. (2009) and organized as follows. The case

study, motivating this research, is described in Section 7.1. The set up of the sim-

ulation study is described in Section 7.2. The model fits as well as the simulations

for establishing the clinically relevant dissolution specifications are the subject of

Sections 7.3.1 and 7.3.2, respectively.

7.1 The Case Study

Again, the data from long acting injectable formulation for intramuscular administra-

tion of an antipsychotic agent with potent dopamine-D2 antagonistic properties were

used to relate in-vitro changes to in-vivo effects. The averaged percentage in-vitro
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release was registered up to 43 days. The in-vitro specifications were determined as

releasing 50% of the drug product within days 26–35, and 80% should be released

before day 41.

A PK/PD relationship between plasma concentrations and target D2 receptor

binding was established (Nyberg et al. 1995, Remington et al. 1998, and 2006, and

Kapur et al. 1999). All of these studies indicate that 80% receptor occupancy is

a threshold above which a higher incidence of extrapyramidal symptoms (EPS) is

observed. Beyond this point, a steep increase of this side effect is observed, resulting

in 30% of the subjects passing this threshold to develop EPS. On the other hand,

a receptor binding of 65% is required to achieve clinical benefit (Kapur et al. 1999,

2000).

7.2 Simulation Study

Investigations of in-vitro release-time profiles traditionally focus on two aspects: when

are 50% and 80% of the drug product released? The rationale for this is the consensus

that the time of 50% release is considered to correspond to the time the maximum

plasma concentration (tmax) is attained. The difference between the time of 80% and

50% release on the other hand is considered to indicate the release rate. Intuitively,

one can expect higher peak plasma concentrations (Cmax) in case of a faster release

than for a shallow release mechanism. Therefore, two simulations are required; the

tmax simulation will study the impact of changes to the time of 50% release while

maintaining the rate of release fixed, the Cmax simulation assesses the impact of

altering the rate of release while fixing the time of 50% release.

Both simulations have a similar set up to mimic the effects of switching from the

reference batch to a novel one, i.e., the reference batch is administered five times,

followed by three times the test batch. In order to mimic reality, parameter estimates

of the analysis of actual data were used. A two-week administration interval was

used. For each simulation, a number of in-vitro release-time profiles is generated.

Subsequently, the IVIVC model is combined with the PK/PD model to translate

the changes of the in-vitro release-time profile into changes of the clinical outcome.

The plasma concentration-time profiles of two hundred patients are generated for each

release profile and the number of times that the clinical threshold is passed is counted.

The plasma concentration-time profiles were generated using the established IVIVC

model. The inter-individual variability of the clearance as observed in the case study

is included in the simulation.

The tmax simulation investigates the impact of altering the time of 50% release
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(t50) while fixing the release rate F ′
i2k(t50, λ, κ),

F ′
i2k`(t50, λ, κ) = p1`

κ

λ

[

(
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]

exp

[

−

(
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. (7.1)

The parameters κ2` and λ2` determine the Weibull function corresponding to the

limited release after 10 to 20 days and will be fixed. The following set of equations is

then solved for κ and λ to alter the main release such that the t50 varies from day 10

to 59, while the overall slope at t50 remains unaltered.

0.50 = p1`

{

1 − exp

[

−

(

t50
λ

)κ]}

+ (1 − p1`)

{

1 − exp

[

−

(

t50
λ2`

)κ2`
]}

,

F ′
i2k`(t50, λ, κ) = F ′

i2k`(t50ref , λ1`, κ1`). (7.2)

Here, t50ref = 31.63 is defined as the time 50% has dissolved for the reference batch.

The set of equations was solved numerically.

The Cmax simulation investigates the impact of the release rate F ′
i2k`(t50, λ, κ)

when t50 is fixed to t50ref . Therefore, λ and κ should satisfy following set of equations:

Fi2k`(t50ref , λ, κ) = Fi2k`(t50ref , λ1`, κ1`), (7.3)

F ′
i2k`(t50ref , λ, κ) = F ′. (7.4)

Again, the set of equations was solved numerically. In the simulation, log(F ′) varies

from −4.0 to −1.5, by steps of 0.05. The reference slope F ′ = 0.096.

For both simulations, it is important to minimize the number of incorrect decisions

for each batch of the product, i.e., the batch being compliant to the dissolution

specifications but with clinically significant effects; otherwise it would be violating

the dissolution specifications while having no clinical changes. This means we want

to maximize the probability of a correct decision:

P (correct) = P (C | D)P (D) + P (C ′ | D′)P (D′), (7.5)

where P (C | D) corresponds to the probability that no clinical changes (C) are

observed given that the batch complies with the dissolution specification (D). P (C ′ |

D′) is the probability that clinically significant effects are observed for a batch with its

dissolution profile outside the specifications. The above probabilities can be calculated

based on the simulations and the optimal dissolution specifications can be obtained.

It is important to note that all simulated patients receive a fixed dose of 50 mg. For

many patients, such a dose would be too high and lower doses would be administered
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to reduce the risk of safety issues while maintaining the clinical benefits. As such,

the incidence of passing the safety threshold does not correspond to clinical reality.

However, the importance of the simulation lies in the change of passing the safety

threshold rather than the absolute number. This applies to both of the simulations.

7.3 Results

7.3.1 IVIVC model

A two-stage IVIVC hierarchical model is fitted to the data set. Attention is restricted

to the active moiety. In the first stage, the immediate-release plasma concentration-

time profile as well as the in-vitro release-time profile are modelled. The estimates

obtained are then used in the second stage to model the controlled-release plasma

concentration-time profile from the commercial batch, further denoted as the refer-

ence batch, according to convolution model (3.1). From the graphs of the individual

fits in the previous chapter, it can be seen that the model exhibits a good fit for the

majority of the patients. For some patients, the time of the peak is estimated either

too early or too late. A few other subjects had a plasma concentration peak higher

(lower) than estimated, suggesting that these patients had a lower (higher) elimina-

tion rate than observed from the immediate-release plasma concentration-time profile.

Further, all plasma concentration-time profiles share a small peak shortly after ad-

ministration. The manufacturing of a depot formulation requires the overencapsuling

of the particles. At the end of this process, the remaining free product is washed

away with ethanol. However, a very small, variable quantity (∼ 1%), close to the

overencapsuled product, is not washed off. This free product is released immediately

after injection. Therefore, the controlled-release plasma concentration time-profile

data are modelled as the mixture of a controlled-release and a very small amount

of immediate-release drug product (Jacobs et al. 2008). The fit is quantified using

the average percent prediction error (%PE) and its 95% confidence interval for both

AUC and Cmax. It is estimated to be 20 and 15%, respectively.

The proposed IVIVC model has some weaknesses: the fit is not perfect for each

subject’s plasma concentration-time profile. A number of explanations can be postu-

lated. First, the immediate-release data originate from a different study, i.e., patients

different from the ones who received the controlled-release plasma concentrations;

hence one might question whether the estimation of the clearance and its associated

variability is representative for the clearance of the patients from the controlled re-

lease study. Second, the formulation itself is a long acting injectable formulation with

the main release after several weeks, i.e., it has many observations below the detection
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limit for the first weeks. The likelihood-based model fitting encounters the problem

that it aims at optimizing the fit of the model at all time points. However, the log-

arithmic transformation of the plasma concentration is fitted in accordance with the

distribution of the data. Owing to the over-representation of values close to zero and

the logarithmic distribution, the algorithm could experience difficulties to optimize

the fit of the plasma concentration peaks. This problem is absent in traditional PK-

analyses. The sampling issue for the case study is described formally in Jacobs et al.

(2009).

Despite the fit of the IVIVC model failing the acceptance criteria of to the FDA

guideline (CDER 1997), the model is retained; the key message of the current paper is

not the establishment of an IVIVC model for our case study, but rather to capitalize

on the concept of attributing a clinical interpretation to changes of the release-time

profile and as such also to the release specifications.

7.3.2 Simulation Results

The designs of the two simulations are described in Section 7.2. Both simulations

mimic the situation where patients at steady state conditions switch from an old to

a new batch of product.

The release profiles in the tmax simulation are depicted in Figure 7.1(a). Figure 7.2

contains a selection of the corresponding simulated plasma concentration-time pro-

files. As expected, the effect of changing t50 has a dramatic impact on the plasma

concentration-time profiles when the time of 50% release differs substantially from

the one of the reference batch, i.e., t50 equal to day 32 versus much earlier such as t50

before day 25. The extreme case of t50 at day 15 results in a coincidence of the plasma

concentration peaks from the last administration from the reference batch and the

first administration from the new batch. In this case, the coincidence of the release

of the fifth and sixth administration leads to plasma concentrations far beyond the

safety threshold. The more the release profile approaches the reference batch and

t50 increases towards day 32, the more the plasma concentration-time profiles stem-

ming from the fifth and sixth administration disentangle, i.e., the more the plasma

concentrations exhibit two peaks. This can be seen in Figure 7.2, where the plasma

concentration-time profiles of the fifth and sixth administration coincide for t50 up

to day 20. The plasma concentration-time profile still coincides partially for t50 at

day 25. For t50 from day 30 onwards, the profiles clearly separate. Having simulated

the plasma concentration-time profiles for the batches with different values for t50,

one can now calculate the probability of a correct classification as a function of the
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in-vitro dissolution specifications. Figure 7.1(b) depicts this probability as a function

of the lower and upper in-vitro limit. From this figure, it turns out that the highest

probability of a correct classification is obtained for 27 < t50 < 59.

The in-vitro release profiles used in the Cmax simulation are depicted in Fig-

ure 7.1(c). The reference slope at t50 of the reference batch is 0.096. The plasma

concentration-time profiles for a selection of the different release batches are depicted

in Figure 7.3. It is clear from the simulated plasma concentration-time profiles that

steeper (slope=0.135) slopes for the release profiles result in higher plasma concentra-

tion peaks, whereas more shallow (slope=0.027) in-vitro release profiles yield lower

plasma concentration-time profiles. This is not surprising: the peak plasma concen-

tration is higher if the release is limited to a very short time frame compared to when

the release would be spread over time. Again, one can calculate the probability of a

correct classification as a function of the choice of the in-vitro dissolution specification

for the slope F ′ at t50. This is depicted in Figure 7.1(d). The optimal dissolution

specification for the slope turns out to be −3.4 < log(F ′) < −2.3.
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7.4 Discussion

Quality control plays an important role in the manufacturing process of medicines.

In the case of a controlled-release drug formulation, an in-vitro release-time profile

and the associated release specifications is one of the tests to ensure that the drug

product retains the proven clinical behavior within limits. However, this clinical

behavior is not incorporated at the time the release specifications are set, apart from

the bioequivalence criteria, which claim that a difference of 20% in exposure is not

clinically relevant. In this paper, we have described a way to include this information

and applied it to a real life manufacturing study.

The link of the clinical behavior to the release specification is done by establishing

a relationship between changes of the release-time profile and the clinical effects. An

IVIVC model is fitted to relate the release-time profile to the plasma concentration-

time profile in a first step. The second step consists of a PK/PD model, which relates

the controlled-release plasma concentration-time profile to the target receptor binding.

Occupancy levels at these target receptor have an established clinical interpretation

(Kapur et al. 1999, 2000). Combining the above models allows for simulated plasma

concentration-time profiles for a different number of batches. The specification of the

dissolution limits reduces to an optimalization problem: to maximize the probability

of a correct decision, i.e., if the in-vitro dissolution profile is compliant, then the

clinical effects should remain unaltered, and if the in-vitro violate the specifications,

then this ought to translate in clinically significant changes.

IVIVC modeling combines an immediate-release plasma concentration-time profile

with an in-vivo release profile to predict the controlled-release plasma concentration-

time profile. Owing to the design of the study, we decided to fit the immediate-release

plasma concentrations and the in-vitro release profile in a first stage. The obtained es-

timates were then used to fit the controlled-release plasma concentration-time profile.

The rationale behind this is that immediate- and controlled-release plasma concen-

trations were measured in different studies with different patients. Therefore, no

exchange of information within the same patient is possible and the advantage of a

simultaneous fit disappears. This is in contrast to O’Hara et al. (2001), who also use

a two-stage method but only the immediate-release plasma concentrations are fitted

at the first stage, and Jacobs et al. (2008), who use a one-stage approach.

Two simulation studies were set up to study the criteria at the time of 50% and

80% release, t50 and t80 respectively. t50 is a marker for tmax, whereas t80 − t50 is

a marker for the release rate and therefore an indication of Cmax. The tmax simula-

tion demonstrates that for a novel batch with an early release, e.g., at day 15, the
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(a) in-vitro time point simulation
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(c) in-vitro time interval simulation
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Figure 7.1: Panels (a) and (c) represent the in-vitro dissolution curves utilized in the

tmax and Cmax simulation, respectively. The dotted lines represent the prespecified

dissolution specifications. The left optimal specification found in the tmax coincides

with the clinical batch, whereas the right optimal specification corresponds to the

specification that 80% should be released before day 41. Panels on the right represent

the probability of a correct classification as a function of the lower and upper limit

of the in-vitro dissolution specification for the (b) tmax and (d) Cmax simulation,

respectively.
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Figure 7.2: Median, 5th and 95th quantile of the simulated controlled-release plasma

concentration-time profiles from the tmax simulation for shifted times of 50% release

and constant release slopes. The horizontal lines represent the plasma concentra-

tions corresponding to the efficacy and safety threshold as obtained from the PK/PD

model.

plasma concentration peak tends to coincide with the plasma concentration peak of

the previous administration from the reference batch. The simulation indicates the

appropriateness of the release specification for t50 to avoid an increase of the safety

hazard. The release rate is investigated in the Cmax simulation. It was prespecified

that 80% should be released before day 41. Based on the simulation, the current

dissolution specification might require some fine-tuning, because it allows for a drug

release within a short time interval. In such a case, the incidence of exceeding the

safety threshold might become an issue. Therefore, it would be appropriate to add a

restriction to the release rate in the form of a restriction on the slope of the release

function. The Cmax simulation indicated that restricting the release rate F ′ at t50 to
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Figure 7.3: Median, 5th and 95th quantile of the simulated controlled-release plasma

concentration-time profiles from the Cmax simulation for altered release rates while

maintaining the time of 50% release fixed. The horizontal lines represent the plasma

concentrations corresponding to the efficacy and safety threshold as obtained from

the PK/PD model.

the interval −3.4 to −2.3 is optimal. This means that indeed 80% of the drug product

should be released before day 41, but not faster than the current phase 3 batch.

Although other drug products do not target the same receptor, the knowledge of

the method of action exists for many compounds. This can be used to set up a similar

relation between the in-vitro tests and the clinical outcome. As such, it is possible to

obtain more relevant release specifications that guarantee the clinical response of the

novel batches. The idea behind such a technique is that the release specifications one

obtains from the simulations ensure that the new batch will retain the same efficacy

and safety profile as the reference batch, hence it is in the patients’ interest. On the

other hand, it might be that in some cases the release specifications are prespecified
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too conservative, hence good batches are unnecessarily discarded, so the company

gains using the approach as exemplified here. In the latter case, less base product is

required, so the method also has an environmental benefit. Further, the method does

not restrict to a research setting, but also allows for specification modifications based

on novel post-marketing information. A prerequisite for applying the concept, is that

during the different stages of drug development the appropriate studies are done to

collect the data needed to built the different models.
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Incorporating Therapeutic

Window in Bioequivalence

Acceptance Limits

The main topic of the previous chapters was on IVIVC modeling. As explained in

Section 1.2, one of the main applications after the set up of an IVIVC model is

related to SUPAC, i.e., ensuring that a new batch of the drug product will lead to

the same in-vivo drug exposure. However, pharmaceutical companies would also like

to test for equality of drug exposure before IVIVC models are established. This is

then performed using an in-vivo bioequivalence study. This is typically a cross-over

study where healthy volunteers, patients or animals receive both the reference and

test drug product in a random order. The bioequivalence testing procedure and

methodology quantifies the maximal deviation of the exposure from the test versus

the reference drug product. This maximal deviation is uniform for all drug products.

Our criticism is that this equivalence testing ought to be considered in perspective;

can one request the same criterion for a drug product for which minor changes of

the exposure lead to major clinical changes compared to a drug formulation for which

altering the exposure with factor two would not have a clinical impact? Therefore, the

current methodology is extended to differentiate according to the therapeutic window

91
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(Jacobs et al. 2008). Part of the history and the philosophy of bioequivalence testing is

explained in Section 8.1. The methodology is extended in Section 8.2, followed by the

performance of the method as evaluated through simulations in Section 8.3. Finally

the method is applied to three known examples of narrow index drugs (theophylline,

digoxin, and phenytoin) in Section 8.4.

8.1 Philosophy and Rationale of Bioequivalence Test-

ing.

Bioequivalence studies are important in drug development to prove that two drug

products give similar in-vivo exposure, and therefore that the safety and efficacy

profile is not altered and therapeutic equivalence can be claimed. Bioavailability

and bioequivalence studies are performed to evaluate differences in drug products,

for example research versus market tablets, various batches, or production sites. At

the same time, those techniques are also used for evaluating food effects, drug-drug

interactions, and comparing administration routes.

Schuirmann (1987) laid the foundations of modern bioequivalence testing. He

proposed to perform two one-sided tests, to test the hypothesis that the ratio of the key

pharmacokinetic parameters AUC and Cmax is contained within a prespecified range,

which usually is 80–125%. At the end of the twentieth century, average bioequivalence

as proposed by Schuirmann was questioned because it only focusses on whether the

average exposure of the study population is equivalent (Anderson and Hauck, 1990,

Scheiner 1992). In the typical situation where drugs are on the market, each patient

should maintain the same exposure independent of his choice. This led to the concept

of individual bioequivalence (Anderson and Hauck, 1990), also known as switchability.

Owing to the complexity of the technique and its favoring of highly variable drug

products (Hsuan 2000), individual bioequivalence has not been used extensively to

date.

There are two situations in which the traditional approach with a fixed acceptance

range is not optimal: first the one of highly variable drug products, and secondly nar-

row index drugs, i.e., drugs where comparatively small differences in dose or concen-

tration lead to dose-and concentration-dependent, serious therapeutic failures and/or

serious adverse drug reactions.

An area of discussion is the bioequivalence assessment of highly variable drug

products, i.e., products with a within-subject variability of more than 30%. Au-

thorities acknowledge that the large sample sizes for trials with such drug products
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cannot always be ethically justified (FDA 2003, CPMP EMEA 2006). The simplest

correction for highly variable drug products, is by extending the acceptance limits

from 80–125% to 75–133% (CPMP EMEA 2001). Boddy (1995) proposed to modify

the limits for highly variable drug products according to a predefined estimate of the

within-subject variability of the reference drug product. The disadvantage of the 30%

threshold is a discontinuity at that threshold: For example, it is possible that in a

given study, a within-subject variability of 29% is observed and no modification of

the limits is applied, while if the variability was slightly more than 30%, adaptation

of the acceptance limits could have yielded to a different conclusion.

Karalis et al. (2004, 2005) modified the idea of extending the bioequivalence limits.

Whereas Boddy et al. (1995) categorize drug substances according to a within-subject

variability of less versus more than 30%, Karalis expands the bioequivalence limits in a

continuous fashion as a function of the within-subject variability. However, expanding

the acceptance limits increases the risk of false positives, i.e., falsely concluding two

drug products to be bioequivalent. Therefore, Karalis proposed to incorporate the

observed geometric mean ratio of the pharmacokinetic parameters AUC and Cmax in

the acceptance limits: the further the geometric mean ratio deviates from equality,

the more conservative the acceptance range becomes.

As suggested by the FDA guidance, the therapeutic window should be taken into

account instead of performing an automatic extension of the acceptance ranges:

“Where the test product generates plasma concentrations that are sub-

stantially above those of the reference product, the regulatory concern is

not therapeutic failure, but the adequacy of the safety database from the

test product. Where the test product has plasma concentrations that are

substantially below those of the reference product, the regulatory concern

becomes therapeutic efficacy. When the variability of the test product

rises, the regulatory concern relates to both safety and efficacy, because

it may suggest that the test product does not perform as well as the ref-

erence product, and the test product may be too variable to be clinically

useful.” (FDA 2003)

The aim of the research in this paper is to present further approaches in bioequiv-

alence acceptance taking into account the therapeutic window as suggested by the

guidelines (FDA 2003). The proposed bioequivalence limits in this paper consider the

position of the therapeutic dose with respect to the lowest effective dose (LED) and

the maximum tolerated dose (MTD). A dose close to the LED and/or the MTD

may require more stringent limits ensuring exposure remains within the therapeutic
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window.

8.2 Methodology

Let us first introduce some notation: U and L are the upper and lower acceptance

limit, α the traditional limit (125%), β the extended limit (143%), Ψ the geometric

mean ratio, σw the within-subject standard deviation, γ, δ, and θ are rate constants.

D is the therapeutic dose, which usually corresponds more or less to the administered

dose, however, the phenytoin example is an example where the administered dose is

lower than the therapeutic dose.

A first approach to adapt the bioequivalence limits for studies with highly variable

drug substances was introduced by Boddy (1995). His method maintains the original

method and acceptance ranges proposed by Schuirmann (1987) for drug substances

with a low variability, i.e., %CV < 30%. For drug substances with a higher variability,

the acceptance ranges are rescaled using the within-subject variability, with the 90%

confidence interval of the difference on the logarithmic scale satisfying the criterion:

| µT − µR |≤ ϑσw, (8.1)

where the left side of the expression is the treatment difference on the logarithmic

scale, σw the within-subject standard deviation, and usually ϑ = 1. However, this

approach has one important weakness: there is a discontinuation in the acceptance

ranges at a within-subject variability of 30%. To illustrate this, imagine a study with

an observed %CV of 29%. To conclude bioequivalence the 90% confidence interval on

the logaritmic scale should fall within the interval (-0.223; 0.223). However, if samples

had been slightly less accurately analysed, leading to a %CV of 31%, then the 90%

confidence interval should fall within the interval (-0.294; 0.294), by using relation

(8.6) between σw and %CV . In this case, the study with the the higher accuracy will

fail to show bioequivalence, whereas bioequivalence is concluded for the less precise

study but with the same observed geometric mean ratio.

Karalis et. al. (2005) tried to overcome the problems associated with the discon-

tinuity and proposed three types of bioequivalence limits depending on the geometric

mean ratio and at the same time rescaling according to the within-subject variability

in a continuous manner. In this paper Weibull type limits will be used to further

refine the proposed approach of Karalis:

U = α + (5 − 4Ψ)(β − α)
{

1 − e−(γσw)2
}

, (8.2)
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with γ a constant to regulate the expansion of the acceptance limit, the lower ac-

ceptance limit L is 1/U . For low within-subject variability and Ψ = 1, the upper

limit remains approximatively α, whereas for large variability and Ψ = 1, the upper

limit approximates β. With Ψ = α, the upper limit is fixed to α, regardless of the

variability.

A more general formulation is

U = α + 5

(

1 −
1

α
Ψ

)

(β − α)
{

1 − e−(γσw)2
}

1Ψ≤α, (8.3)

with L = 1/U as before. Using α = 125% in the above equation simplifies to (8.2).

1Ψ≤α is added to indicate explicitly that Ψ should fall within the acceptance range.

As the focus is not on the choice of γ, it will be fixed in the rest of the paper to a

value of 3. This restricts by no means the results of the paper and is mainly chosen

based on the simulations from Karalis (2005) to ensure that the acceptance ranges

remain close to the standard 80–125% for small variabilities.

In this paper, the expansion of the acceptance range will not only depend on the

within-subject variability, but will also depend on the therapeutic window. There-

fore, a second correction factor, which represents a similar sigmoidal function of the

therapeutic window is added.

U = α + 5

(

1 −
1

α
Ψ

)

(β − α)
{

1 − e−(γσw)2
}{

1 − e−(δ MT D
D )

2
}

1Ψ≤α,

L =
1

α + 5
(

1 − 1
αΨ

)

(β − α)
{

1 − e−(γσw)2
}

{

1 − e−(δ D
LED )

2
}

1Ψ≥α

,

(8.4)

where D is the therapeutic dose, and δ is a constant for the rate of change. The

therapeutic window is defined as the ratio D/LED and the ratio MTD/D. Note

the asymmetric character of the acceptance limits: the lower limit depends on the

distance between the dose and the LED, whereas the upper limit depends on the

distance between the dose and the MTD.

A more conservative approach can be applied for narrow-index drugs. The concern

has been introduced in the Canadian guideline (Ministry of Health Canada, 2006) that

for certain drugs the 80–125% acceptance range would be too liberal. Therefore, the

standard 125% limit, which is used as a starting point in the current approach, can

be modified in a similar way. This renders the resulting acceptance ranges even more

narrow in case of narrow-index drugs. As a result, the following type of bioequivalence
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acceptance range is introduced:

U = α” + 5

(

1 −
1

α”
Ψ

)

(β − α”)
{

1 − e−(γσw)2
} {

1 − e−(δ MT D
D )

2
}

1Ψ≤α”,

L =
1

α′ + 5
(

1 − 1
α′

Ψ
)

(β − α′)
{

1 − e−(γσw)2
}

{

1 − e−(δ D
LED )

2
}

1Ψ≥α′

,

α′ = 1 + (α − 1)
{

1 − e−(θ(1+ D
LED ))

2
}

,

α” = 1 + (α − 1)
{

1 − e−(θ(1+ MT D
D ))

2
}

, (8.5)

where, as before, δ, γ, and θ are rate constants.

A new study protocol would consist of fixing the rate constants γ, δ, and θ, based

upon interaction with the regulatory authorities, stating the therapeutic window LED

and MTD of the drug product, and the anticipated therapeutic dose, i.e., the dose

most frequently used by patients. The sample size calculation can then be performed

using simulation-based methodology.

8.3 Simulation Study

The proposed bioequivalence acceptance ranges (8.5) depend on the therapeutic win-

dow as well as on the within-subject variability. These parameters, as well as the

influence of the choice of the parameters δ, θ, and γ, are explored through simula-

tions.

In the first simulation run, the acceptance ranges are calculated using (8.5) to

explore their behavior for different values of θ, δ, the ratios MTD/D and D/LED,

and the within-subject variability with Ψ = 1. The within-subject variability is

presented as a coefficient of variation (%CV ) in line with pharmacokinetics practice.

It is linked to the within-subject variability, as follows:

σw =
√

ln(1 + %CV 2). (8.6)

Figure 8.1 shows the new acceptance range for different choices of δ and θ as a

function of the ratio MTD/D for the upper limit and D/LED for the lower limit.

It shows that, for each choice of δ and θ, the upper or the lower acceptance limit is

reduced when the tested dose approaches the boundary of the therapeutic window,

i.e., when MTD/D or D/LED approach unity. For doses far from the boundary of the

therapeutic window, the ratios MTD/D and D/LED are larger and the acceptance

ranges broaden. This is a conservative approach to ensure patients maintain a safe and

efficacious exposure. With θ increasing from 0.1 to 1, the slopes of the acceptance
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Figure 8.1: Illustration of the influence of therapeutic window by varying θ from 0.1

(middle) to 1 (outside) on the newly proposed bioequivalence acceptance range for

different δ. The tick line represents the case θ = 0.3. For the upper limit, the ratio in

the x-axis represents MTD/D whereas D/LED for the lower limit. A %CV of 30%

was assumed.

ranges become steeper near the therapeutic borders. A value of 0.3 for θ seems

reasonable: the resulting shallow slope protects patients by imposing strict acceptance

limits close to the borders of the therapeutic window. For a higher value of θ, the

influence of the ratios MTD/D and D/LED vanishes and they may not be sufficiently

conservative.

Whereas the parameter θ regulates the shrinkage of the acceptance range with

respect to the therapeutic window, the parameter δ determines the expansion of the

limits as a function of the therapeutic window and the within-subject variability. It

basically means that for a highly variable drug product with a dose near the bound-

aries of the therapeutic window, the expansion of the acceptance limits is smaller
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Figure 8.2: Influence of the within-subject variability on the acceptance (%) of bioe-

quivalence trials using Schuirmann’s method, Karalis and our new proposal with

MTD/D = D/LED from 1 to 10. The sample size is fixed to 36 subjects.

than the ones proposed by Karalis et al. (2005). For a dose far from the therapeutic

boundary, the acceptance ranges behave similar to the ones in the above article.

A small value for δ, e.g., 0.1, penalizes the acceptance ranges in a very conservative

way, whereas values ranging over 0.7–1 are too liberal and impose little restriction

(Figure 8.1). Therefore, an intermediate value of 0.4 for δ seems reasonable.

Although not demonstrated in the figures, the approach of Karalis et al. (2005)

is maintained and extended: the acceptance ranges depend on the within-subject

variability of the drug products and gradually expand from 80–125% to 70–143%, as

a function of the within-subject variability.

Whereas the previous calculations mainly illustrated the general concepts of the

new approach to acceptance limits, the ensuing set of simulations was performed

to compare it to existing methods (Figure 8.2). One thousand two-treatment, two-
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period cross-over studies with 36 subjects were simulated per condition, defined by

the within-subject variability (%CV of 15%, 35%, and 55%), and the true geometric

mean ratio Ψ (100% to 150%). θ was fixed at 0.3, and δ set to 0.4. The simulation was

simplified in a first step by setting MTD/D equal to D/LED. These ratios varied

from 1 to 10 in the simulation, to cover a broad spectrum of therapeutic windows.

This resulted in 33,000 trials simulated for a sample size of 36 patients. Simulations

were performed using SAS 9.1 and analyzed with procedure MIXED.

Our acceptance limits and those obtained by the method of Karalis et al. coincided

for 35%CV for a MTD/D ratio from 7 onwards. For a narrow-index drug, e.g.,

a MTD/D of 3 or less, the acceptance rate is strongly decreased due to desired

shrinkage of the acceptance limits. For low-variability drugs (15% CV), the methods

are essentially equivalent to the Schuirmann method, but for highly variable drug

products (55%CV), the methods give clear differences. The proposed method behaves

as liberal as the Karalis’ method for drugs with a broad therapeutic window, and more

conservative than Schuirmann for narrow-index drugs. The simulations also indicate

that only a very small amount of the studies with Ψ superior to 125% conclude

bioequivalence as would be expected based on (8.5). For any Ψ, the acceptance rate

increases with the therapeutic window. Further exploration of the effect of the sample

size and changes of the within-subject variability in Figures 8.3 and 8.4 confirmed the

previous conclusions.

Table 8.1 contains a summary of the above simulations for the specific case of

Ψ = 125%, i.e. the point from where onwards bioequivalence is rejected in classic

bioequivalence testing. It represents the proportion of simulated trials where bioe-

quivalence is concluded, whereas in fact the two products are bio-inequivalent. This

corresponds to the type-1 error for the Schuirmann method. These values are larger

than for Schuirmann, but correspond to the method of Karalis for large MTD/D,

but they decrease well below the Schuirmann error rate when the dose approaches

the MTD. Therefore, the new acceptance limits are conservative when it is in the

patients interest. This illustrates well the strength of the method.

Figures 8.5 – 8.7 represent the same simulations as before, but now for a situation

where the dose is closer to the LED than the MTD, where D/LED varies from 1 to

10 and MTD/D is fixed to 10. When the dose is close to the LED, i.e. less than 3,

the number of accepted trials when Ψ = 100% was lower than when Ψ = 105%. Here,

the conservative nature of the acceptance limits clearly distinguishes our method from

Schuirmann’s and Karalis’ methods: The asymmetry of the limits render many trials

inconclusive for a true Ψ of 100%, whereas this is not the case for Ψ = 105%. This

ensures patients will maintain an efficacious exposure.
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Figure 8.3: Influence of the within-subject variability on the acceptance (%) of bioe-

quivalence trials using Schuirmann’s method, Karalis and our new proposal with

MTD/D = D/LED from 1 to 10. The sample size is fixed to 24 subjects.

Figure 8.8 shows the most extreme observed value for Ψ as a function of %CV

that leads to the acceptance of bioequivalence. The figure represents different case of

D/LED = MTD/D. This most extreme value Ψe is defined as

Ψe = U − σw

√

2/Nt0.95,N−2

for the upper range. Ψe declines towards 100% for increasing %CV , i.e., if a drug

product is more variable, then Ψ has to reduce further to allow for the trial to be bioe-

quivalent. Although it is not easy to see based on the formula, the figure demonstrates

that, for a given position of the therapeutic dose within the therapeutic window, the

acceptance limits behave, up to a constant, similar to the limits introduced by Karalis

et. al. (2005).
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Figure 8.4: Influence of the within-subject variability on the acceptance (%) of bioe-

quivalence trials using Schuirmann’s method, Karalis and our new proposal with

MTD/D = D/LED from 1 to 10. The sample size is fixed to 12 subjects..
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Table 8.1: The proportion of simulated trials for which bioequivalence was concluded

erroneously at Ψ = 125%, as a function of %CV and sample size, in the case of

MTD/D = D/LED = R, θ = 0.3, δ = 0.4, and γ = 3 .

Sample size Sample size Sample size

12 24 36

%CV 15 35 55 15 35 55 15 35 55

Schuirman 0.0512 0.0190 0.0023 0.0475 0.0485 0.0066 0.0493 0.0529 0.0324

Karalis 0.0515 0.0227 0.0028 0.0478 0.0636 0.0601 0.0497 0.0641 0.0976

R = 10 0.0515 0.0227 0.0028 0.0478 0.0636 0.0601 0.0497 0.0641 0.0976

R = 7 0.0503 0.0225 0.0028 0.0468 0.0624 0.0591 0.0474 0.0637 0.0970

R = 5 0.0394 0.0177 0.0021 0.0327 0.0539 0.0458 0.0308 0.0545 0.0876

R = 3 0.0083 0.0037 0.0001 0.0027 0.0171 0.0020 0.0013 0.0184 0.0324

R = 2 0.0007 0.0002 0 0 0.0005 0 0 0.0022 0

R = 1 0 0 0 0 0 0 0 0 0
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Figure 8.5: Influence of the within-subject variability on the acceptance (%) of bioe-

quivalence trials using Schuirmann’s method, Karalis and our new proposal with only

D/LED from 1 to 10 and MTD considered large. The sample size is fixed to 36

subjects.
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Figure 8.6: Influence of the within-subject variability on the acceptance (%) of bioe-

quivalence trials using Schuirmann’s method, Karalis and our new proposal with only

D/LED from 1 to 10 and MTD considered large. The sample size is fixed to 24

subjects.
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Figure 8.7: Influence of the within-subject variability on the acceptance (%) of bioe-

quivalence trials using Schuirmann’s method, Karalis and our new proposal with only

D/LED from 1 to 10 and MTD considered large. The sample size is fixed to 12

subjects.
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Figure 8.8: The most extreme geometric mean ratio leading to conclusion of bioe-

quivalence as a function of the coefficient of variation. The lines indicate different

positions of the therapeutic dose within the therapeutic window. Most narrow ther-

apeutic windows lead to the most stringent limits (closest to 1). The sample size is

fixed to 36 subjects.
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8.4 Application

The Canadian health authorities recently published a guideline for critical dose drugs

(Ministry of Health Canada, 2006). In the appendix of the guideline, a list can

be found with a number of drug substances for which a small difference in dose or

concentration lead to dose- and concentration-dependent, therapeutic failure and/or

serious adverse drug reactions: cyclosporine, digoxin, flecainide, lithium, phenytoin,

sirolimus, tracolimus, theophylline, and warfarin. For these drug substances, the more

stringent 90–112% acceptance limits for AUC in case of single dose administration

are proposed. The three examples below illustrate well the conservative behavior of

the new acceptance limits for narrow index drugs. Within the three examples, the

parameters γ = 3, θ = 0.3, and δ = 0.4 were kept fixed.

8.4.1 Theophylline

Theophylline belongs to the list of critical-dose drugs (Ministry of Health Canada,

2006). The data of Mistry et al (1999) is reanalyzed with the different techniques.

The study was set up to demonstrate the absence of a drug interaction of indinavir

on a single dose of 250 mg theophylline immediate release. Note that the study was

not fully powered, i.e., no formal sample size assessment for any of the methods was

performed.

The MTD and LED of theophylline can be derived from the literature. Theo-

phylline therapeutic plasma concentrations range from 10 to 20 µg/mL, seizures

and cardiac problems can occur at the upper limit (Ministry of Health Canada,

2006). Estimates of the first-order compartmental model (ke, ka rate constants,

CL clearance) were obtained from Pinheiro and Bates (2000): log(ke) = −2.4327,

log(ka) = −0.45146, and log(CL) = −3.2145, where dose was denoted in mg/kg. The

accumulation factor for multiple dosing is 1/ [1 − exp (−keτ)], τ corresponding to 8

hours. Solving the equations for a Cmax set equal to the above range limits yields

an LED of 220 mg and a MTD of 450 mg for a subject of 70 kg. Estimates for the

variability are derived from Steinijans et al (1995): %CV for AUC is 12%, 20% for

Cmax.

The conclusion of Mistry et. al. based on the traditional analysis was an absence

of a drug interaction effect: 1.18 (1.13, 1.23) for AUC, and 0.99 (0.92, 1.07) for

Cmax fall both within the 80–125% Schuirmann acceptance ranges. As the Karalis

acceptance limits are always broader or equal to Schuirmann, this method also brings

us to concluding that a drug interaction is absent. Our new acceptance limits, taking
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the variability as well as the therapeutic window into account, were (0.94, 1.12) for

AUC, and (0.88, 1.15) for Cmax. Therefore, the confidence interval for AUC falls

entirely outside the acceptance range and a drug interaction would be concluded for

AUC.

8.4.2 Digoxin

Digoxin is another critical dose drug (Ministry of Health Canada, 2006). Martin et al

(1997) evaluated the drug interaction of eprosartan on 0.6 mg digoxin. We reevaluate

these study results with the new method.

Serum digoxin levels ranging from 0.8 to 2.0 ng/mL are generally considered as

therapeutic. Levels greater than 2.0 ng/mL are often associated with toxicity (Min-

istry of Health Canada, 2006). The IV compartmental model as well as parameter

estimates of digoxin for healthy volunteers are found in Wagner (1975). The bioavail-

ability for tablets is 80% (Bochner et al 1977). Estimates for the variability of digoxin

are derived from Steinijans et al (1995): %CV for AUC is 8%, 19% for Cmax. Using

these estimates, the MTD and LED of digoxin can be derived: 0.4 mg as LED, and

1 mg as MTD. These estimated quantities for LED and MTD appear to be rather

high from a clinical perspective. The example serves to illustrate the proposed tech-

nique rather than making statements about specific drugs. However, this illustrates

the need for a thorough understanding and investigation of the therapeutic window

of any drug.

The geometric mean ratio in the original analysis was 1.01 (0.81, 1.26) for AUC,

and 1.00 (0.86, 1.17) for Cmax. Our new acceptance limits were (0.90, 1.12) for AUC,

and (0.90, 1.13) for Cmax. Therefore the trial was inconclusive for both parameters.

8.4.3 Phenytoin

In Meyer (2001), three different lots of 100 mg phenytoin sodium capsules were com-

pared. In this study, the observed %CV was low, i.e., 14% and 11% for Cmax and

AUC respectively. The conclusion based on the traditional analysis was that all 3

lots were bioequivalent.

To apply our method, the MTD and LED of phenytoin were deduced from the

literature. Phenytoin exhibits Michaelis-Menten kinetics, which is described by the

following equation (Gibaldi and Perrier 1982) for the steady state plasma concentra-

tions css:

css =
FD

τCLs
, (8.7)
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where

CLs =
VmV

Km + css
, (8.8)

and τ represents the dosing interval. CLs is the clearance parameter, Vm is the theo-

retical maximum rate of the process, Km the Michaelis constant, V is the volume of

distribution, and F is the bioavailability. Estimates of the Michaelis-Menten constants

Vm and Km for phenytoin are reported as 17.87 mg/h and 4.29 mg/L, respectively

(Santos Buelga 2002). In the same study, an average steady state concentration css

of 12.5 mg/L was observed after multiple dosing of 155 mg. Given the fact that

phenytoin is traditionally prescribed as twice daily (b.i.d.), i.e., τ is set to 12 hours,

solving (8.7) and (8.8) for the unknown apparent volume of distribution, leads to an

estimate of

V/F =
D

τ

Km + css

Vmcss
= 0.97. (8.9)

Phenytoin is associated with severe neurological toxicity from 160 µmol/L onwards,

whereas therapeutic plasma concentrations range from 40 to 80 µmol/L (Ministry of

Health Canada, 2006). Therefore, a dose associated with 160 µmol/L steady state

plasma concentrations will be considered the MTD. Based on the above estimations

and equations, one can now calculate the MTD associated with css = 160 µmol/L,

or css = 43.9 mg/L, given the molecular weight of phenytoin sodium (274.3 g/mol).

Solving again (8.7) and (8.8) for D gives an MTD of 190 mg b.i.d., or a total daily

dose of 380 mg. Analogue, the lower limit of the therapeutic window is associated

with css = 40 µmol/L, or css = 10.975 mg/L. This leads to an LED of 150 mg b.i.d.

Drug-monitoring is required for phenytoin to ensure patients remain on an optimal

exposure. Therefore, the dose corresponding to 60 µmol/L in an average patient will

be considered as the therapeutic dose, i.e., 165 mg b.i.d.

Table 8.2 contains the geometric mean ratio, its 90% confidence interval, the

equivalence limits using Karalis’ equation, and our newly proposed acceptance ranges.

The conclusions do not change for the Karalis method and it is inconclusive for all but

three cases with novel method because the lower limit of the confidence interval falls

below the acceptance limit. This example illustrates that the technique of Karalis

only expands the acceptance limits, whereas in our approach, the acceptance limits

reduce if the dose is close or outside the edge of the therapeutic window.

8.5 Discussion and Conclusions

Bioequivalence testing is an important topic in drug development. In this kind of

trials, the pharmacokinetic parameters AUC and Cmax serve as surrogate markers for
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Table 8.2: Reconsidering the bioequivalence testing of Phenytoin using the data from

Meyer (2001) .

test vs 90% confidence Karalis New

reference Ψ interval limit limit

Cmax 2 vs 1 0.986 (0.90; 1.04) (0.781; 1.280) (0.921; 1.090)

3 vs 1 0.993 (0.92; 1.05) (0.781; 1.280) (0.921; 1.090)

4 vs 1 0.979 (0.89; 1.02) (0.780; 1.281) (0.920; 1.090)

3 vs 2 0.995 (0.92; 1.06) (0.782; 1.279) (0.921; 1.090)

4 vs 2 0.993 (0.92; 1.05) (0.781; 1.280) (0.921; 1.090)

4 vs 3 0.988 (0.91; 1.04) (0.781; 1.280) (0.921; 1.090)

AUC 2 vs 1 0.975 (0.90; 0.99) (0.787; 1.270) (0.922; 1.089)

3 vs 1 0.997 (0.95; 1.04) (0.788; 1.269) (0.922; 1.088)

4 vs 1 0.984 (0.92; 1.01) (0.788; 1.270) (0.922; 1.088)

3 vs 2 0.980 (0.91; 1.00) (0.787; 1.270) (0.922; 1.088)

4 vs 2 0.991 (0.93; 1.03) (0.788; 1.269) (0.922; 1.088)

4 vs 3 0.989 (0.93; 1.02) (0.788; 1.269) (0.922; 1.088)

safety and efficacy in the sense that the equivalence of the pharmacokinetic param-

eters between test and reference implicitly implies that test and reference products

have equivalent efficacy and safety. To claim bioequivalence of the parameters, an

acceptance range of 80–125% is predefined, which implicitly leads to the conclusion

that the observed differences have no efficacy or safety repercussions.

However, the assumption that changes within the 80–125% range have no clinical

implications ought to be verified. For narrow-index drugs, even an exposure change

of 10% might affect safety and/or efficacy, whereas doubling the exposure for certain

other drug products would not affect the safety at all. It is interesting to see that

this idea was already partially formulated in Macheras and Rosen (1983) and more

prominently in the conclusion of Sheiner (1992):

“. . . The main point is that the logical basis for current bioequivalence

measurement and regulation is seriously inadequate: only with an appro-

priate model for dose effect, and a clear delineation of clinical context and

values, can one devise, estimate and test bioequivalence measures that
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make clinical and scientific sense. We should judge future contributions

to the bioequivalence literature by how well they meet this requirement.”

Since then, to our knowledge, no paper has addressed bioequivalence testing in

this respect. This paper is an attempt to incorporate therapeutic relevance. Even

though the proposed method is more complex than the classical approach, it arguably

will have its use in practice and hopefully will trigger discussion and further research.

One might question the regulatory imposed acceptance ranges, since this approach

treats all drug products in the same way. One of the concerns is that highly variable

drug products, i.e., a within-subject variability of more than 30%, are treated the same

way as the rest. This results in studies with unpractical large sample sizes. Boddy

(1995) and Karalis (2004, 2005) proposed, respectively, scaled average bioequivalence

and bioequivalence with levelling-off properties. Both of these correct the acceptance

ranges with respect to the within-subject variability, but do not answer the clinical

relevance of the acceptance limits, and rather limits to the logistics and ethics of the

method.

Besides the within-subject variability, the newly proposed acceptance ranges take

also the therapeutic window into account. More specifically, the proposed approach is

highly conservative for doses near the boundaries of the therapeutic window, defined

by the ratios MTD/D and D/LED, and more liberal for doses far from the maximum

tolerated dose and lowest effective dose.

A simulation study shows that for doses near the MTD, lower acceptance limits

are imposed for the upper limit of the 90% confidence interval: this should ensure that

patients will not experience toxic exposures for compounds with a narrow therapeutic

window. The same recommended for doses close to the least effictive dose: the lower

acceptance limit will approach 100% to ensure patients remain on active doses. On

the other hand, for doses far from the boundaries of the therapeutic window, the

acceptance limits approach the ones of Karalis et al. (2005).

In the extreme case of a therapeutic dose close to the LED and very far from

the MTD, the discrepancy with the standard approach is apparent. Formulations

with slightly higher exposures (105%) are favored compared to the ones leading to

the same exposure (100%). This ought not to be considered a disadvantage. Quite

to the contrary, we perceive it as an advantage because it favors formulations that

ensure the patients to remain at efficacious and safe exposures. It takes into account

the actual position of the therapeutic dose in the therapeutic window.

Based on the simulations, it has been demonstrated that the newly proposed bioe-

quivalence limits differentiate between narrow index drugs and drug products with a
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wide therapeutic window. They are very strict when it is of interest for the patient,

and more flexible when the therapeutic effect remains unaffected. Traditional meth-

ods, on the contrary, apply a uniform method, regardless as to where the marketed

dose is positioned in the therapeutic window.

Since the newly proposed bioequivalence limits depend on the MTD and the LED,

these quantities need to be determined as accurately as possible in an early stage of

drug development. This emphasizes the need for adequate dose finding trials using

stochastic methods such as most prominently, the continuous reassessment method

(O’Quigley et al. 1990, Patterson et al. 1999). However, also literature can be a good

source for estimates of the MTD and the LED as illustrated in the application.
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A Latent Pharmacokinetic

Time Profile to Model

Dose-response Survival Data

In the previous chapters, the focus was on plasma concentration-time profiles. The

general consensus among pharmaceutical scientists is that this measure of drug expo-

sure is a good surrogate for the clinical effects, i.e., if the plasma concentrations are

unchanged, then the clinical effects are expected to remain unaltered. This relation

between plasma concentrations and clinical effects was utilized explicitly in Chap-

ter 7. Further, the equivalence of a drug exposure was related to the dose response of

the clinical effects in Chapter 8. Whereas changes of the plasma concentration-time

profiles are translated into changes of the clinical effects, this relation will be used in

the opposite direction in the current chapter to explain the clinical behavior.

The dose response behavior of the time to fall off a rod is measured and modelled.

No plasma concentration-time profile is measured. However, as Holford (2006) states,

the causal factor in generating a response is not a dose, but rather the resulting drug

concentration at the site of action, such as a receptor. Therefore, a sigmoidal model

with a latent pharmacokinetic profile is fitted. This is sometimes referred to as a

K-PD model (Jacqmin et al. 2007). The model is compared to a more traditional

113
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linear model, but also the added value of plasma sampling in the current design is

investigated. This chapter is based on Jacobs (2009).

The chapter is organized as follows. The dose-response models are presented in

Section 9.2. The case study is discussed in Section 9.3. The set up of the simulation

study is described in Section 9.4.

9.1 The rotarod experiment

The development of new medicines requires an enormous amount of research. After

potentially promising molecules have been synthesized, they are first tested in vitro,

followed by tests in animals and finally humans. Each of these steps should enable to

select the compounds with a minimum of unacceptable toxicity and a maximum of

effect, but without putting animals and patients unnecessary at risk. Therefore, it is

important to learn as much as possible with a minimum of in vivo testing.

One of such in vivo tests with mice is the accelerating rotarod test. It assesses the

impact of the new treatment on the motor coordination (Gerald and Gupta, 1977,

McIlwain et al. 2001). The treatment effect on the mice is measured by evaluating

the duration that the mice stay on top of a circular rod that rotates at accelerating

speed from 4 to 40 RPM for the first 5 min and then remains at 40 RPM for another

5 min (McIlwain et al. 2001). To acquaint the animals to the rod, the study starts

with a training phase, followed by a test phase. The animals are placed four times on

the rod at 30-minutes intervals during the training phase to allow repeated experience

leading to enhanced performance. The second phase corresponds to a dose-response

study of the effects on the motor coordination for two compounds over time. These

two compounds (phencyclidine (PCP) and d-amphetamine) are expected to disrupt

performance on the rod due to their impact on motor coordination. In the experiment

considered here, the evaluative occasions are: before administration, at 30, 60, and

90 minutes after administration. Four doses are evaluated for both compounds: 0.0,

2.5, 5.0, and 10.0 mg/kg subcutaneously. A total of 80 mice are included in the study.

All animals enter both phases. Ten mice are attributed to each compound-by-dose

level combination.

9.2 Methodology

Gerald and Gupta (1977) analyzed their data using medians and Wilcoxon tests.

They do not mention how censored data were handled. In this section, we propose

a more formal statistical framework to take into account both the censoring and the
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dose response.

The response of interest is of the time-to-event type with event falling off the rod.

The survival function, S(t), characterizes the distribution of this response and is the

probability of having a time-to-event beyond t (Klein and Moeschberger 1997). The

time-to-event data are analyzed using an accelerated failure time (AFT) model where

the natural logarithm of the time-to-event is modelled as a function of covariates.

The first step in developing the AFT model is the choice of the distribution. For the

given experiment, the Weibull distribution was chosen, based on the training dataset.

S(t) = exp [−(αt)γ ] , (9.1)

and where α > 0 is the scale parameter, γ > 0 the shape parameter, and t the time

to falling off the rod. Instead of modeling α and γ, the following transformation is

applied: α = exp(−α′) and γ = exp(−γ′) to ensure α > 0 and γ > 0. Further, we

define Ti as the evaluation time i during the testing phase; Dj correspond to the dose

level j. The right-censoring of the data is included in the likelihood function L as

described in Klein and Moeschberger (1997).

To calculate the cumulative distribution function from the density g(t), one needs

to integrate over time. The parameters α and γ are a function of time and should be

included in the integration. However, the repeated time-to-event evaluations take only

a limited amount of time in comparison to the entire experiment, or more precisely

to the underlying pharmacokinetic profile. Therefore, one could consider that the

parameters α and γ are approximately constant during each time-to-event assessment.

The integration and likelihood simplify to (9.2).

G(t) = exp [−(αt)γ ] ,

g(t) = γα
[

(αt)γ−1
]

G(t),

log [L(t)] = 1obs log [g(t)] + 1cens log [G(t)] , (9.2)

where cens denotes a right-censored observation, and obs indicates that an event was

observed. The log-likelihood function was implemented in the procedure NLMIXED

using the SAS software.

The dose-response relation is incorporated using two different models: the first

model is the linear regression model, where dose is included as a linear effect and

time as a quadratic effect. The interaction effect is included as well. Time is expected

to be quadratic, because no effect is expected at the time of administration (time 0),

whereas a large effect is expected shortly after administration (time 30), fading out

at later time points, hence the quadratic term. The interaction is needed because one
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cannot automatically expect the same dose effect at each point in time, nor can the

same time effect be expected for all doses. Table 9.1 contains the different parameters,

which allows for a better understanding of the model.

A more conventional way of modeling a dose-response relationship in pharmacol-

ogy is the so-called Emax model (Gabrielson and Weiner 2000). It assumes that the

change in time to falling off the rod depends on the underlying drug concentrations

of the compounds. These latent drug concentrations at the site of action are included

in the model in a sigmoidal way, i.e., an Emax model is fitted for both the scale

and shape parameters assuming a latent one-compartmental model with first-order

absorption (Jacqmin et al. 2007):

α′
ijk = β +

emax cij

exp(ec50) + cij
,

γ′
ijk = βγ +

emaxγ
cij

exp(ec50γ
) + cij

, (9.3)

where cij stands for

c =
Dj exp(φ2)

exp(V )[exp(φ2) − exp(φ1)]
{exp[− exp(φ1)Ti] − exp[− exp(φ2)Ti]} . (9.4)

Here, emax is the maximal asymptotic effect, and ec50 the concentration at which

50% of the maximal effect is attained. α′
ijk and γ′

ijk correspond to the scale and

shape parameter of the Weibull distribution, respectively, where different values for

emax and ec50 are used in the scale and the shape parameter. φ1 and φ2 are the rate

constants determining the latent drug concentration at the site of action model. Dj

and Ti still indicate the dose level j and the time point i. cij stands for the latent

drug concentration. This latent drug concentration is considered to correspond to

the concentration at the place of action, e.g., the receptors in the brain or in the

bloodstream. The parametrization used ensures that positive values are obtained

for exp(ec50), exp(φ1), exp(φ2), and exp(lvf). It also acknowledges the log-normal

distribution of the quantities. The number of parameters to be estimated is reduced

compared to previous models. Additionally, the model has a pharmacological basis.

The dependence of the data, i.e., each mouse is tested four times in the test phase, can

be taken into account by the inclusion of a random effect at ec50, ec50γ
, φ1, and/or

φ2. Unfortunately, the small sample size prohibited the inclusion of a random effect

in the test phase of our case study.

The median time-to-event can be calculated using the following expression, appli-

cable to the case of a Weibull distribution (Klein and Moeschberger 1997):

Γ(1 + 1/γ)

α1/γ
. (9.5)
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9.3 Analysis of the Case Study

The case study consists of two parts: the training phase to acquaint the animals to

the rod, and the test phase. No treatment is administered during the training phase,

but all 80 mice are placed four times on the rod. The mice are subsequently split

into two groups and one compound is tested per group of 40 animals. Ten mice are

then attributed per dose level (0, 2.5, 5, and 10 mg) and tested before, and 30, 60,

and 90 minutes after administration. It is favorable to estimate system parameters

such as Emax in the K-PD model simultaneously over different compounds to improve

the estimation. However, this assumes that the compounds share the same method

of action, such as blocking the same receptor. In our case study, the compounds

have different methods of action, which leads to different maximal attainable effects.

Therefore, the data of the training phase were analyzed as a whole, the test phase

was analyzed per compound.

A Weibull distribution fits the training data best in contrast to the log-logistic

and log-normal distribution (Akaike Information Criterion (AIC): 3265.7, 3379.0, and

3277.3, respectively). A random intercept is included for the training data to cope

with the dependency of the measurements between occasions. The Weibull distribu-

tion seems most appropriate and this distribution will also be used for the test phase.

In the test phase, the sample size was too small to fit a random effect in the models

described in the rest of the paper.

The test data are analyzed using a linear regression model and a pharmacological

model for both compounds separately. The first model has both the scale and shape

parameter fitted with linear dose and quadratic time incorporated. The interaction

terms are included apart from dose-by-time2 in the shape parameter γ′. Addition of

the latter resulted in failure of the model’s convergence. For the second model, the

scale and shape parameter are fitted using an Emax model. An underlying, latent, one

compartmental latent drug concentration-time profile at the site of action is estimated

(Jacqmin et al. 2007).

AIC values indicate that the second model gave a superior fit for both compounds:

1445.8 and 1427.8 for compound A, and 1489.8 and 1475.5 for compound B for the

linear and Emax models, respectively. The model fit of both models is presented in

Figures 9.1 for compound A. It illustrates superiority of the Emax model. The dashed

line in Figure 9.1 shows the inadequate fit of the linear regression model for the higher

doses at 30 seconds, whereas the Emax model performs well.

The parameter estimates for the two models can be found in Table 9.1. The

parameters of the linear model do not allow a direct physiological interpretation.
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Figure 9.1: Model prediction of the probability to stay on the rod as function over

time (seconds) for compound A for the different doses D (mg/kg) and timepoints

(minutes) after administration T , where the full line is the Emax model, and dashed

is used for the linear model.

One can generally say that a reduction of the scale parameter α′ is translated into a

shorter latency to fall off the rod. However, also the change of the shape parameter

γ′ has an impact on the median time-to-event. Although the coefficients of T and T 2

are small, it has an important impact on the fit, as time T is expressed in minutes.

The quadratic term of T allows for a high time-to-event, both at the start (before

administration) and the end of the study at 90 minutes, whereas a short time-to-event

is obtained after 30 minutes. The interaction of time with the dose is needed to enforce

that there is no change over time for the placebo dose, simultaneously allowing for a

significant reduction at 30 minutes. The parameter estimates of the Emax model are

easier to interpret, as mentioned in Section 9.2. Both the potency (EC50) and the

maximal effect Emax are directly obtained.
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Figure 9.2: Model based median reduction of time to falling off the rod for compound

A, where the full line is the Emax model, and dashed is used for the linear model.

Following symbols are used: � for 0 mg/kg, ◦ for 2.5 mg/kg, 4 for 5 mg/kg, and +

for 10 mg/kg.

Figure 9.2 contains the model-predicted median reduction of the time to falling

for both models for compound A. The dose-response relationship is readily visible in

the figure, with a peak effect at 30 minutes.

9.4 Simulation Study

The observation that a latent pharmacokinetic time profile can be estimated and

that it improves the fit compared to a more traditional linear model is worth further

scrutiny. Therefore, a simulation study is set up to explore the added value of increas-

ing the number of mice in the study before discussing the results of the experiment.

Such additional mice can theoretically be used for plasma concentration sampling or
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Figure 9.3: Box plots of the parameter estimates (β, βγ , EC50, EC50γ
, Emax, Emaxγ

,

φ1, and φ2) obtained from the study simulation in the case 10, 11, 12, or 13 mice per

dose level included in the study for either plasma concentration sampling (‘p’), time-

to-event sampling, or further dose exploration (‘d’). The horizontal line represents

the parameter values used for the simulation.

for additional time-to-event data. In the latter case, the additional mice can be at-

tributed to the existing dose levels, or, alternatively, to higher dose levels for a better

exploration of the dose-response curve.
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Table 9.1: Parameter estimates (standard error) for the different models and com-

pounds. The index γ indicates that the parameter is part of the shape parameter.

Model Parameter compound A compound B

linear β 7.9784 (1.6784) 8.7640 (1.6043)

D -0.3011 (0.1595) -0.2450 (0.1719)

T -0.06011 (0.1207) -0.1190 (0.09940)

T 2 0.001342 (0.001545) 0.001502 (0.001201)

DT -0.00728 (0.008242) 0.001677 (0.006064)

DT 2 -7.12E-6 (0.000105) -0.00006 (0.000065)

βγ -0.2791 (0.2053) -0.3784 (0.1827)

Dγ 0.04925 (0.02282) 0.03400 (0.02180)

Tγ 0.004662 (0.01296) 0.01557 (0.01219)

T 2
γ -0.00012 (0.000153) -0.00019 (0.000145)

DTγ 0.000561 (0.000346) 0.000364 (0.000358)

Emax β 10.2922 (1.1088) 10.5209 (1.2918)

emax -16.7595 (4.3503) -9.4220 (2.2230)

log(ec50) -4.2316 (11.2725) 0.6224 (1.8262)

βγ -0.5252 (0.1070) -0.5279 (0.1230)

emaxγ 1.4692 (0.6529) 1.7611 (0.7990)

log(ec50γ) -4.5599 (11.2752) 1.4254 (1.9358)

φ1 -0.7426 (32.986) -2.0620 (4.9244)

φ2 -4.4594 (0.3017) -4.4693 (1.3075)

lV f -2.2085 (22.541) -2.5522 (3.7463)
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Table 9.2: The mean and standard deviation of the parameter estimation in the

case of additional mice for time-to-event data, plasma concentration sampling, or an

additional dose level.

parameter mice time-to-event plasma concentration Dose level

(target value) per dose mean STD mean STD mean STD

β 10 10.39 1.11 10.39 1.11 10.33 1.00

(10.29) 11 10.56 1.13 10.52 1.16 10.48 1.02

12 10.46 1.05 10.44 1.10 10.27 0.88

13 10.49 1.00 10.53 1.14 10.40 0.86

emax 10 -21.95 20.52 -21.95 20.52 -17.82 2.21

(-16.76) 11 -19.4 6.66 -20.58 16.56 -17.46 1.52

12 -20.51 22.03 -19.84 11.27 -17.44 1.59

13 -20.01 8.96 -19.27 8.08 -17.35 1.56

log(ec50) 10 -3.16 1.00 -3.16 1.00 -3.12 0.22

(-4.23) 11 -3.11 0.33 -4.12 0.66 -3.16 0.18

12 -3.14 0.29 -4.09 0.58 -3.13 0.17

13 -3.13 0.32 -4.13 0.58 -3.16 0.16

βγ 10 -0.53 0.11 -0.53 0.11 -0.52 0.09

(-0.53) 11 -0.55 0.11 -0.54 0.11 -0.54 0.10

12 -0.54 0.10 -0.53 0.10 -0.52 0.08

13 -0.54 0.09 -0.54 0.11 -0.53 0.08

emaxγ 10 3.08 12.88 3.08 12.88 1.41 0.27

(1.47) 11 1.82 2.01 1.63 1.75 1.45 0.24

12 1.77 2.89 1.65 2.40 1.42 0.24

13 1.82 1.53 1.61 1.06 1.46 0.26

log(ec50γ) 10 -3.42 1.58 -3.42 1.58 -3.57 0.20

(-4.56) 11 -3.52 0.44 -4.61 0.66 -3.55 0.17

12 -3.59 0.48 -4.58 0.61 -3.56 0.17

13 -3.54 0.37 -4.61 0.69 -3.55 0.17

V 10 1.39 0.73 1.09 0.09

(2.21) 11 1.31 0.39 1.08 0.09

12 1.30 0.47 1.09 0.09

13 1.32 0.26 1.08 0.08

φ1 10 -0.83 1.00 -0.65 0.11

(-0.74) 11 -0.88 0.44 -0.66 0.09

12 -0.81 0.76 -0.65 0.10

13 -0.82 0.34 -0.66 0.09

φ2 10 -4.44 0.29 -4.47 0.13

(-4.46) 11 -4.47 0.24 -4.46 0.14

12 -4.47 0.23 -4.47 0.11

13 -4.48 0.22 -4.48 0.12
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A Weibull distribution is used to simulate four doses (0, 2.5, 5, and 10) at four

time points (before administration, 30, 60, and 90 minutes after administration).

Both the shape and scale parameter of the Weibull distribution exhibit a sigmoidal

behavior with a latent drug concentration at the site of action. Five hundred studies

are simulated per situation. The gain of sampling a number of plasma concentrations

in additional mice is assessed by plotting the accuracy of the estimates as a function

of the number of additional plasma samples. The simulation is performed under

the assumption that only one blood sample can be taken per mouse. Further, it is

assumed that blood sampling would influence the time to falling off the rod. Therefore,

an additional mouse is required for each plasma concentration sample. The number

of plasma concentration samples, and therefore the number of additional mice, is set

to vary from 0 up to 12 by steps of 4 due to the number of doses included. The

latter would lead to 10 to 13 mice per dose level. The gain of additional mice in the

study can as such be explored at three levels: (1) what is the impact on the Emax

modeling if these additional mice are used for plasma concentrations sampling on

the one hand; (2) what is the impact on the modeling if these mice were not used

for plasma concentration sampling but for additional rotarod assessments per dose;

and (3) what is the consequence of an additional, higher dose level (20 mg)s on the

accuracy and precision of the estimates?

Data were simulated according to the proposed latent drug concentration model

with and without a measured plasma concentration-time profile. Additionally, a bet-

ter dose exploration was simulated in a third part of the simulation. Random variation

was included in the simulation at two levels; the time-to-event data, and at the latent

drug rate or the plasma concentration-time profile. In the simulation, it is assumed

that both the latent drug concentration-time profile and the plasma concentration-

time profile have a mouse-dependent log-normally distributed elimination. The resid-

ual error of the plasma concentration-time profile was assumed to follow a log-normal

distribution; there was assumed to be measurement error. Contrary to the plasma

concentration-time profile, no measurement error was attributed to the latent drug

rate time profile given the latent, i.e., unmeasured, character of the profile.

The assumption of a direct response in this simulation is crucial, i.e., the time

of the peak of the plasma concentration-time profile coincides with the time the

maximal pharmacodynamic effect. This assumption is required for a fair comparison

of the three settings. If the pharmacokinetic and pharmacodynamic peak effect do

not coincide, a delay ought to be built in. This is typically achieved with an effects

compartment.

Figure 9.3 contains the boxplot with the parameter estimates from the simulation
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study. Five hundred studies per situation were simulated. This notwithstanding,

model convergence was not attained in a number of studies due to a negative Hessian

matrix: only 187, 206, 225, and 226 of the 500 studies had a positive Hessian if 10, 11,

12, and 13 mice per dose group were used. This means that this model estimation fails

in more than half of the times in the current design with the number of mice, doses

and time points of sampling. If, on the contrary 1, 2, or 3 mice per dose group were

additionally recruited for plasma concentration sampling, leading to a total sample

size of 11, 12, and 13 mice per dose group, the number of studies with a positive

Hessian matrix increased to 354, 450, and 412, respectively. In case of an additional

dose level, the number of studies with a positive Hessian matrix was 236, 264, 242,

and 239, respectively. The latent drug concentration-time profile turns out to be

difficult to estimate, which should not come as a surprise as it is difficult to estimate

an unobserved underlying profile.

It is striking that none of the box plots for each of the parameters shows any large

differences. This suggests that a small amount of additional mice for either plasma

concentration sampling or time-to-event data does not have a large impact on the

accuracy of the parameter estimation unless the dose range is explored further. The

accuracy and the precision is tabulated as the mean and standard deviation of the

parameter estimation in Table 9.2, providing additional detail over the box plots. No

major effects are observed for β and βγ .

The estimates for the simulations with a latent dose concentration and a dose

exploration both have precise estimates, but the estimation is slightly biased for EC50,

EC50γ
, and V . This is possibly due to confounding. The plasma sampling simulation

has slightly bias estimates for Emax and Emaxγ
. The strong decrease of the standard

deviation in the case of extra dose exploration suggests that the inflated variability

observed in the case study and both other simulations is due to a limited dose range

in study. Therefore, the fact that the parameter Emax is poorly estimated owes

to the poor exploration of the dose-response relationship, rather than the modeling

technique. A better dose exploration would solve this issue.

9.5 Discussion

The rotarod test is used to assess the effect in mice on motor coordination of two

compounds. The time to fall is measured. Two different models are proposed to

model the dose response time-to-event data. Both use a Weibull distribution and are

of an accelerated failure type, but the shape and scale parameters include either a

linear model or a Emax model with latent drug concentration-time profile at the site
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of action. The AIC and graphical model fit suggests that the Emax model fits the

data better.

Unlike the linear model, the parameter estimates of the Emax model have a phys-

iological interpretation. Both the potency (EC50) and the maximal effect Emax are

directly obtained, which facilitates the comparison of different compounds. The Emax

model being the superior model to the data raises the question whether an alterna-

tive design would improve the estimation properties. Therefore, a simulation study

was set up to investigate the influence on accuracy and precision if 1, 2, or 3 mice

per dose group would be added for either time-to-event data, or plasma concentra-

tions. Does the gain in accuracy and precision justify the 4, 8, or 12 additional

mice per compound? Alternatively, the impact of a better dose-response exploration

on the estimation properties is considered as well. It turns out that the latent drug

concentration-time profile is difficult to estimate in the current design, given the num-

ber of non-positive Hessian matrices, which is not surprising; only three time points

post administration contain too little information to estimate an underlying, unob-

served time profile. The accuracy and precision of the parameters β and βγ is not

altered much, whereas for the other parameters, the standard deviation is inflated if

the additional mice are used for time-to-event data compared to when these mice are

used for plasma concentration sampling. In this case, the lack of accuracy is also more

pronounced. This confirms the results of Jacqmin et al (2007). However, the inclusion

of the higher dose level improves the precision of the estimation of the parameters

tremendously. A small bias is however observed in both latent drug concentration

simulations Therefore, a better dose-response exploration would be the best option

to improve the current design of the study.

A one-compartmental latent drug concentration-time profile with first-order ab-

sorption is used as a latent time profile of the drug at the site of action. What is the

impact of miss-specifying the plasma concentration-time profile? In the given design,

this is unlikely to have a major impact at the time points the data was collected,

because only three assessments are measured after dose administration. Hence, it is

unlikely to see, for example, the difference between a one- and a two-compartment

model. On the other hand, it would be too demanding for the model to fit such a

latent two-compartment drug concentration-time profile given the ten mice per dose

group and the three post-administration observations. The impact is considered neg-

ligible, because the drug concentration-time profile is only a tool to fit the data with

some baseline, followed by a rapid change (increase or decrease) and gradual return

to baseline over time.

In conclusion, the study would have benefitted from the addition of a higher dose
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level to improve the estimation of the dose-response. The addition of minimally four

mice for plasma concentration sampling in the Emax model would only be an option

if the inclusion of a higher dose level is deemed inappropriate. In that case, historic

data might be considered if the data permits. Both would lead to more accurate and

precise estimations and as such reduce the risks of bringing the compound into clinical

early development. The Emax model with latent drug concentration-time profile at

the site of action allows for a direct estimation of the potency of the drug candidate.

It would lead to an improved comparison of the compounds and bring the study in

the more familiar setting of preclinical pharmacology.



10
Concluding Remarks and

Further Research

10.1 Concluding Remarks

Many phenomena in our world exhibit a nonlinear behavior, such as physiology,

growth curves, etc. One might even consider that all phenomena that are appar-

ently linearly, can only be considered as approximatively linear on a limited, though

relevant, interval. The (generalized) linear mixed-effects model has the appealing

feature of simplicity, which makes it very suitable for education and research, but

the physiological interpretation of the model and the correctness of a simulation is

often questionable at the limits of the apparently linear interval. Other phenomena

lack completely the linear behavior, such as the case studies in this dissertation. It

is clear from these examples that nonlinear mixed-effects modelling is a very useful

technique deserving more attention by the statistical community, but the complexity

of the methodology might be a hurdle.

IVIVC modelling exists already a number of decades. However, little attention was

paid to it. The recent introduction of the convolution-based model can be considered

as the first fundamental research beyond the application of the deconvolution-based

method on case studies since its introduction. The convolution-based model was
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the start to compare it with the existing deconvolution-based method, but also to

consider more complicated controlled-release formulations, such as a heterogeneous

formulation in Chapter 4. Indeed, to our knowledge, IVIVCs have been limited to

the case of homogeneous formulations. The standard convolution-based model is

extended by considering the in-vitro dissolution profile as a mixture of dissolution

profiles, where each profile corresponds to the dissolution of one type of drug product

within the formulation. The convolution model is then considered as a mixture of the

corresponding plasma concentration-time profiles.

Although IVIVC modelling is a special form of pharmacokinetic modelling, it has

some additional difficulties. One obvious complexity is that the input function F ′
i2k`

is unobserved, complex, and, in contrast to more standard pharmacokinetic analyses,

not estimable without imposing assumptions. Exactly these assumptions contain

the strength of the method: it imposes a hypothetical relation between the in-vitro

dissolution and the in-vivo release of the drug product. The applications vary from

formulation development, SUPAC-related issues to dissolution specification setting.

It ensures that an inexpensive, fast in-vitro test guaranties the well-behavior of the in-

vivo drug exposure. The vast amount of applications is extended in this dissertation

to relate the in-vitro dissolution specification with a clinical interpretation.

Fitting the IVIVC models requires the use of nonlinear hierarchical models. These

models can be considered as the most general type of models. Linear and generalized

linear hierarchical models can be considered as special cases of nonlinear models.

This has severe drawbacks; the strong asset of nonlinear models is that any chosen

shape can be fitted and one is not restricted to (generalized) linear fits. This allows

physiological meaningful models. The drawback is, however, that one loses some of

the advantages of (generalized) linear models. Fitting a nonlinear mixed effects model

requires well-chosen starting values to initiate the likelihood iterations, the iteration

algorithm tends to be slower, and the likelihood evaluation requires the integration of

the random effects in the likelihood function. For the specific case of IVIVC modelling,

the flexibility of nonlinear mixed effects models allows for an additional choice for the

statistician; fitting all the data at once, or breaking up to problem by fitting the UIR

first and then using these estimates in the second stage of the model. The precision

of the two-stage model is, however, less compared to the one-stage.

However, obtaining estimates of the nonlinear mixed effects model is not sufficient.

The adequacy of the model fit is crucial for the use in further simulations. The

goodness-of-fit of a IVIVC model is traditionally evaluated by a residual analysis and

%PE. In this dissertation, it is demonstrated that this is appropriate, but insufficient.

Also outlier detection ought to be performed. Local influence is an suitable technique
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for this purpose that allows for evaluating the data from a different perspective.

However, one might wonder why plasma concentrations acquire so much attention

in drug development. It is very simple: it represents the systematic exposure of a

patient to a drug substance and, therefore, it is more relevant than the administered

dose. Further, the AUC and Cmax can be considered as biomarkers for the safety and

efficacy of the drug product. The fact that IVIVC models allow for a direct translation

of the in-vitro dissolution time profile ensures the importance of the technique. How-

ever, one should beware of attributing the focus solely on the plasma concentrations.

When for example new batches of drug product are tested in-vivo, it is assumed that

a difference of less than 20% does not have a clinical impact. However, it is know that

for certain drug product, small changes in exposure might lead to significant clinical

changes. Therefore, standard bioequivalence testing is extended to cope with the size

of the therapeutic window. As such, more stringent acceptance limits are imposed for

narrow index drugs, whereas the limits are broadened for drug product with a broad

therapeutic window.

Are plasma concentrations deemed crucial to understand and model the pharma-

codynamic effects? No, it is possible to fit a dose-response model on the pharmaco-

dynamic response without having the plasma concentrations explicitly. Especially in

preclinical scenarios with for example mice, the limited amount of blood in the animal

can be prohibitive for blood sampling or it have an effect on the pharmacodynamic

response. Nevertheless, a dose response can still be fitted to the data assuming a la-

tent pharmacokinetic profile. These models are referred to as K-PD models to stress

the absence of plasma concentrations. The use of such a K-PD model allows not

only for a physiological model interpretation, it also ensures physiologically possible

simulations. This is not necessarily the case for (generalized) linear models. There-

fore, the nonlinear mixed effects model has the strong asset to allow for more realistic

simulations within pharmacology.

10.2 Further Research

One of the main restrictions of the research during the past four years was the com-

putational time for the IVIVC models, making the technique difficult to implement at

this moment. Although other software and algorithms were very briefly investigated,

no suitable alternative was found at the time. It would be of interest to reconsider the

use of different software and to reduce the computational time as such. The model

could be formulated both as a convolution product or as a differential equation in

software like monolix, winbugs, or nonmem. Also other methods might be considered
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to reduce the computational times, such as the pseudo-likelihood approach, or the

implementation of the convolution product as a fourier transformation.

On the other hand, we already illustrated in Section 3.3 that the goodness-of-fit

measurement %PE has some weaknesses. It would be useful to look for alternative

approaches to evaluate the model fit. One of the possible alternatives might be

to consider the in-vitro dissolution as a surrogate marker for the in-vivo release.

The information theory-based approach of Alonso and Molenberghs (2007) might be

considered as a potential alternative to %PE.

A lot of new research can be performed not only in IVIVC modelling, but more

generally in cost reduction and optimization of drug development. For example,

the simulations in Chapter 9 indicate that the addition of a dose level allows for

a better estimation and as such leads to a better selection of the drug candidate.

Similar to the IVIVC setting, also other potential relations ought to be found so that

the combination of in-vitro and in-vivo data increases the predictive power. The

whole setting of cost reduction via optimization of the drug candidate selection will

potentially be one of the big research topics within the pharmaceutical companies. It

is up to each statistician and pharmacometrician to prepare for these new challenges

and opportunities.
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Samenvatting

Vele fenomenen in onze wereld vertonen een niet-lineair gedrag, zoals fysiologie, de

groeicurven, enz. Men zou zelfs kunnen stellen dat voor alle fenomenen die op het

eerste zicht lineair lijken, dat dit slechts kan worden beschouwd als ongeveer lineair

op een beperkt, maar relevant, interval. Het (generalized) linear mixed-effects model

heeft het voordeel van de eenvoud, wat het voor onderwijs en onderzoek zeer geschikt

maakt, maar de fysiologische interpretatie van het model en de juistheid van een

simulatie staat vaak ter discussie aan de grenzen van het interval. Andere fenomenen

ontberen dit lineaire gedrag volledig, zoals de case studies in deze verhandeling. Deze

voorbeelden maken duidelijk dat niet-linear mixed-effects modelleren een zeer nuttige

en krachtige techniek is die meer aandacht verdient door de statistische gemeenschap.

De complexiteit van de methodologie beperkt echter de wijde toepassing.

In-vitro In-vivo correlation modelleren bestaat reeds een aantal decennia. Nochtans

werd er weinig aandacht aan besteed wat fundamenteel onderzoek betreft. Ondanks

de vele toepassingen van de deconvolutie-gebaseerde methode, kan de recente intro-

ductie van het convolutie-gebaseerde model als eerste fundamenteel onderzoek worden

beschouwd sinds de introductie van het concept. Het gedrag van de twee methoden

werd vergeleken in de eerste plaats, maar ook ingewikkeldere vertraagde-werkings

formuleringen van medicijnen kunnen worden onderzocht, zoals een heterogene for-

mulering met twee vrijgave mechanismen in Hoofdstuk 4. Zo is bij ons weten de

toepassing van IVIVCs tot op heden beperkt geweest tot homogene formuleringen.

Het standaard convolution-gebaseerde model is daarom uitgebreid door het in-vitro

oplossingsprofiel als een combinatie van twee oplossingsprofielen te beschouwen, waar-

bij elk profiel aan de oplossing van een type van drug product binnen de formulering

beantwoordt. Het convolution-gebaseerde model wordt dan beschouwd als een com-

binatie van de overeenkomstige plasma concentratie-tijd profielen.

Hoewel IVIVC als een speciale vorm van pharmacokinetisch modelleren kan wor-

den beschouwd, heeft het enkele extra complicaties. Een duidelijke complicatie is dat
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de in-vivo vrijgave F ′
i2k` van het medicijn niet is waargenomen en complexer is, en niet

schatbaar is zonder veronderstellingen aan te nemen, in tegenstelling tot meer stan-

daard pharmacokinetische analyzes. Net deze veronderstellingen zijn de sterkte van

methode: er wordt een hypothetische relatie tussen de in-vitro en de in-vivo vijgave

van het drugproduct verondersteld en geevalueerd hoe goed het model de gegevens

voorspelt. De toepassingen variëren van het ontwikkelen van nieuwe formuleringen

voor vertraagde werking van bestaande medicijnen, en de vijgave specificaties in ver-

band met SUPAC gerelateerde kwesties. Als dusdanig laat een IVIVC toe dat aan

de hand van een goedkope, snelle in-vitro test de patienten van een optimale bloot-

stelling aan het medicijn kunnen genieten. De enorme hoeveelheid toepassingen wordt

in deze verhandeling uitgebreid door de in-vitro vrijgave specificaties te relateren aan

een klinische interpretatie.

Het modelleren van IVIVC modellen vereist het gebruik van niet-lineair hiërar-

chische modellen. Deze modellen kunnen als meest algemeen soort model worden

beschouwd waarvan zowel lineaire als generalized lineaire hirarchische modellen als

speciale gevallen van kunnen worden beschouwd. Dit heeft zowel positieve als negatieve

consequencies: de flexibiliteit van niet-lineaire modellen laten toe om om het even

welke gekozen vorm van model te modelleren en men is niet beperkt tot (general-

ized) lineaire modellen. Dit laat toe om fysiologisch gebaseerde modellen te fitten.

Het nadeel is, echter, dat het de eenvoud van (generalized) lineaire modellen verloren

gaat. Het fitten van een niet-lineair mixed effects model vereist welgekozen startwaar-

den om de likelihood iteraties te initiëren. Verder verloopt de likelihood optimalisatie

veel langzamer door het uit integreren van de random effecten in de likelihood functie.

In het specifieke geval van IVIVC, is er nog een extra complexiteit voor de statisticus:

worden alle gegevens samen gemodelleerd, of worden eerst de gegevens van de unit

impuls response (UIR) gemodelleerd om dan in een tweede stap deze schattingen te

gebruiken om de gegevens van de vertraagde-werkings formulering te modelleren? De

precisie van het model in twee stadia is, echter, minder vergeleken bij het modelleren

van alle data in een enkele stap.

Het volstaat echter niet om enkel schattingen voor het niet-lineaire mixed-effects

model te verkrijgen. Hoe goed het model de gegevens benaderen is essentieel voor

het toepassen van het model in verdere simulaties. De model fit van een IVIVC

model wordt traditioneel geevalueerde door een residual analyse en %PE. In deze

verhandeling tonen we aan dat dit aangewezen maar ontoereikend is. Ook moet er

een outlier analyse worden uitgevoerd. Local influence is een geschikte techniek om

de gegevens vanuit een ander perspectief te bekijken. Hiermee wordt nagegaan wat

de impact van bepaalde gegevens is op het model.
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Men zou zich kunnen afvragen waarom er zo veel aandacht wordt besteed aan

plasmaconcentraties tijdens het ontwikkelen van een medicijn. Het is zeer eenvoudig:

het stelt de systematische blootstelling van een patiënt aan het product voor en bi-

jgevolg is het relevanter dan de toegediende dosis. In dit opzicht kunnen de totale

blootstelling AUC en de piekblootstelling Cmax als biomarkers voor de veiligheid en

de werking van het medicijn worden beschouwd. Het feit dat IVIVC modellen toe-

laten om het in-vitro vrijgave profiel direct te vertalen in de in-vivo blootstelling van

patienten aan het medicijn maakt deze techniek zo belangrijk. Men mag echter niet

alleen zich toespitsen op plasmaconcentraties. Wanneer bijvoorbeeld een nieuwe batch

van het medicijn wordt aangemaakt, veronderstelt men dat een verschil van minder

dan 20% geen klinische invloed heeft. Nochtans is het geweten dat voor bepaalde

medicijnen kleine veranderingen van de blootstelling tot klinisch significante veran-

deringen kan leiden. Daarom hebben we de standaard methode om bioequivalentie

te testen uitgebreid om de grootte van het therapeutische venster in rekening te ne-

men. Als dusdanig worden de strengere voorwaarden gesteld voor medicijnen met

een klein therapeutisch venster, terwijl de grenzen voor een product met een breed

therapeutisch venster verbreed worden.

Zijn plasma concentraties strikt genomen noodzakelijk om de farmacologie van

een geneesmiddel te begrijpen? Het is mogelijk om een relatie tussen de klinische

respons en de dosering van het geneesmiddel te bekomen zonder de specifieke sys-

teem blootstelling te kennen van de patienten. Vooral bij preklinische studies met

kleine dieren zoals bijvoorbeeld muizen, kan het onmogelijk zijn om bloedstalen te

nemen door de beperkte hoeveelheid bloed in het dier enerzijds, of kan het een effect

hebben op de pharmacodynamische uitkomst. Ook in deze situatie kan een relatie

tussen de dosering en de reactie worden opgesteld door een latent onderliggend phar-

macokinetisch profiel te veronderstellen. Deze modellen worden aangeduid als K/PD

modellen om het ontbreken van plasmaconcentraties te beklemtonen. Het gebruik

van zo een K/PD model staat niet alleen een fysiologische model interpretatie toe,

het laat ook toe om fysiologisch zinvolle simulaties uit te voeren om de impact van

veranderingen aan de studie design te bestuderen. Hierin schuilt de kracht van een

niet-lineaire model: het laat toe om realistischere simulaties binnen de farmacologie

uit te voeren in tegenstelling tot (generalized) lineaire modellen.


