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Abstract 

This dissertation introduces query languages for structured documents and investi
gates their expressiveness and optimization. 

It is natural to model structured documents, like for example XML documents, 
by labeled trees where the children of a node are ordered. We therefore revisit some 
of the established formal language theory formalisms for computations on trees but 
approach them from a query language perspective. 

We start with a study of the classical formalism of attribute grammars to query 
documents modeled as derivation trees of context-free grammars. By restricting the 
attributes to Booleans and relations, and the semantic rules to propositional logic 
and first-order logic formulas, respectively, we obtain powerful query languages well 
suited for expressing unary and relational queries. Further restrictions as well as 
generalizations lead to a complete picture of the expressiveness of such languages. 
Interestingly, we show that the above formalisms can be readily implemented on top 
of a deductive database by exhibiting a translation into datalog with negation. 

In the rest of the dissertation, we focus on formalisms expressing unary, also called 
selection, queries. These are important as, on the one hand, they constitute the most 
simple and common form of document querying, and, on the other hand, they form the 
basis of more general query languages transforming documents into other documents. 

Specifically, we introduce extensions of attribute grammars (extended AGs) to 
query documents modeled by extended context-free grammars which correspond more 
closely to the actual XML document type definitions (DTDs). A fundamental differ
ence is that now derivation trees are no longer ranked, which means that nodes need 
not have a fixed maximal number of children. This seemingly innocent difference 
greatly complicates the definition of attribute grammars. We give full account of the 
expressiveness of the query languages based on this formalism and obtain the exact 
complexity of various optimization questions. 

Next, we abandon attribute grammars and turn to another well-studied computa
tion model for trees: the tree automaton. In particular, we want to understand how 
such automata, on both ranked and unranked trees, can be used to express unary 
structured document queries. Concretely, we define a query automaton (QA) as a 
two-way deterministic finite automaton over trees that can select nodes depending 
on the state and the label at those nodes. We study the expressiveness of QAs and 
investigate the exact complexity of various optimization questions. 

ill 



iv Abstract 

Finally, we apply the techniques and results obtained in this work. We drastically 
improve the upper bound on the complexity of the equivalence test of Region Algebra 
expressions from iterated exponential to EXPTIME by essentially translating the 
latter into equivalent extended AGs. By employing the techniques used to obtain our 
expressiveness results, we establish the expressiveness as a pattern language of the 
actual XML transformation language XSLT. Further, we obtain that our languages 
are more expressive than most current query languages for structured documents and 
semi-structured data. 

As argued by Suciu [Suc98], dealing with the inherent order of children of nodes 
in documents is a major research issue in the design of query languages for s.emi
structured data and XML. An important contribution of this work is that all proposed 
query languages can take this ordering into account. 
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1 
Introduction 

1.1 Motivation and aim 

The increasing popularity of the Internet together with the use of markup languages 
like HTML or XML (Con], has lead to huge repositories of electronic structured doc
uments. Current database systems, however, are not suited to manage this new type 
of data. Therefore, the need for new database systems and associated query lan
guages capable of storing and manipulating such structured documents emerges. In 
this work, we focus on the design and analysis of such query languages. 

Perhaps the best known example of a document specification language is the ex
tensible Markup Language (XML), already referred to above. This language is the 
new standard adopted by the World Wide Web Consortium (W3C) for the specifica
tion of structured documents. The language quickly became immensely popular. In 
fact, many software vendors already bet on XML for becoming tomorrow's universal 
data exchange format and build tools for importing and exporting XML documents. 
Remarkably, the vigor and elegance of XML stems mainly from its simplicity: the 
basic component in XML is the element which is just a piece of text enclosed by 
matching tags such as <author> and </author>. Inside an element we may have 
'raw' text, other elements, or a mixture of the two. As an example consider the XML 
document of Figure 1.1 representing bibliographic information. XML documents are 
self-describing in the following way: the tags make out the structure of the document, 
while the raw text determines the content. Usually, however, it does not make sense 
to allow any string as a tag or allow any possible nesting of elements. To create order 
out of chaos, XML provides Document Type Definitions (DTDs) to constrain doc
uments. These are essentially context-free grammars that allow regular expressions 
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<bibliography> 
<book> 

<author> 
S. Abiteboul 

</author> 
<author> 

R. Hull 
</author> 
<author> 

V. Vianu 
</author> 
<title> 

Foundations of Databases 
</title> 
<publisher> 

Addison-Wesley 
</publisher> 
<year> 

1995 
</year> 

</book> 
<article> 

<author> 
E. Codd 

</author> 
<title> 

1. Introduction 

A Relational Model of Data for Large Shared Data Banks 
</title> 
<journal> 

Communications of the ACM 
</journal> 
<year> 

1970 
</year> 

</article> 
</bibliography> 

Figure 1.1: Example of an XML document describing bibliographic information. 



1.1. Motivation and aim 3 
-----· ------ --

<!ELEMENT bibliography (book I article)+> 

<!ELEMENT article (author+, title, journal, year)> 

<!ELEMENT book (author+, title, publisher, year)> 

<!ELEMENT author PCDATA> 

<!ELEMENT title PCDATA> 

<!ELEMENT journal PCDATA> 

<!ELEMENT year PCDATA> 

<!ELEMENT publisher PCDATA> 

Figure 1.2: A DTD for the XML document in Figure 1.1 

over non-terminals as right-hand sides of productions. The document in Figure 1.1, 
for instance, conforms to the DTD of Figure 1.2. This DTD says that a bibliography 
consists of a non-empty sequence of books and articles, and that an article should 
consist of a non-empty sequence of authors, followed by one title, one journal, and 
one year. For a book, the journal is replaced by a publisher. Finally, it specifies 
author, title, journal, year, and publisher as arbitrary string values. 

A more abstract view of XML documents is given by a natural tree representation 
obtained by omitting end-tags. The tree representation of the document in Figure 1.1, 
for instance, is depicted in Figure 1.3. In this work, we therefore abstract away from 
the many bells and whistles, like attributes, references, style information, and so 
on, provided by XML (or any other document specification language). We naturally 
model structured documents as labeled trees where the children of a node are ordered, 
and that, additionally, conform to some grammar. So, a structured document is one 
such tree. Information retrieval systems [FBY92] usually query a set of structured 
documents instead of only one document. However, as far as query language design is 
concerned, a set of documents can be considered as a single long structured document. 

This abstraction is in essence the same approach as adopted by the semi-structured 
data community [ABS99] with this difference that they do consider references and 
therefore have labeled graphs ( as opposed to trees) as the underlying data model. 
However, they disregard the ordering of nodes which is for example inherent in the 
document of Figure 1.1: neglecting the order of the authors could seriously affect the 
information content of the data. Moreover, it is far from obvious how the current 
query languages for semi-structured data can be adapted to take such ordering into 
account. In fact, as stressed by Suciu [Suc98], dealing with this inherent ordering is 
an important research topic. One of the contributions of this work, therefore, is that 
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bibliography 

book article 

author author author title publisher year author title journal year 

I I I I 
s • Abi tebou l R . Hull v. Vianu found, •• Addieon-Wea l ey 1995 E. Codd A re l ational. .. Comm ••• 1970 

Figure 1.3: Tree representation of the XML document in Figure 1.1. 

all studied query languages can deal with the inherent ordering of nodes without any 
difficulty. 

Computations on trees have been studied in depth for the last 20 years by the 
formal language theory community [RS97] and many formalisms have been proposed. 
Since trees are natural abstractions of structured documents, and since queries in this 
framework are computations on trees, it is natural to revisit some of these established 
formalisms but now approach them from a query language perspective. In fact, the 
main objective of this dissertation is to examine how such formalisms can be used as 
a query language. More concretely, we study in this respect the expressiveness and 
optimization of various kinds of attribute grammars (Chapter 3 and Chapter 4) and 
tree automata ( Chapter 5). Further, we apply the to this end developed techniques 
to ( i) drastically improve the known upperbounds of various optimization problems 
of the Region Algebra [CM98a]; and (ii) provide evidence for the robustness of the 
actual XML transformation language XSLT [Cla99] (Chapter 6). 

In this dissertation, we are mostly, but not exclusively, concerned with query 
languages expressing selection queries. By this we mean the retrieval of certain nodes 
in the tree corresponding to positions in the document or structural elements of the 
document. Such queries can also be seen as retrieving those subtrees in a document 
whose roots satisfy a certain pattern [BYN96, KM93, KM94, Mur98, NS98]. We refer 
to such queries as unary queries as they map a document to a set of its nodes. The 
interest in such queries is two-fold: 

( i) The selection of interesting subtrees occurring in large documents is precisely 
the simple query facility provided by most information retrieval systems and 
therefore constitutes the most simple and common form of document querying. 

( ii) Selection queries form the basis of more general query languages transforming 
documents into other documents. Indeed, most document query languages op
erating on trees or graphs, like, e.g., XML-QL, XSLT [DFr+99, Cla99], specif
ically for XML, and Lorel, StruQL, and UnQL [AQM+97, FFK+98, BDHD96], 
for the semi-structured data model, have some kind of pattern language at their 
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disposal for identifying the different parts of the document that have to be com
bined, possibly after some more manipulation, to obtain the output document. 
In all cases these pattern languages are based on regular path expressions. The 
query languages we propose are far more powerful than those, as we formally 
show in Chapter 6. 

We next give a detailed overview of the content and the structure of the thesis. 

1. 2 Detailed overview 

We start in Chapter 2, by recalling the necessary definitions concerning finite au
tomata and logic. In particular, we reprove Biichi's Theorem stating that a regular 
string language is definable in monadic second-order logic (MSO) if and only if it is 
regular. We give the proof of Ladner [Lad77] based on MSO-equivalence types. This 
technique is fundamental for the technical development of the dissertation as it will 
be employed (in suitably generalized forms) in all later chapters. 

In Chapter 3 we focus on documents modeled as derivation trees of (ordinary) 
context-free grammars ( CFGs) . This is the approach originally proposed by Gonnet 
and Tompa [GT87], and, in essence, is also the view taken by XML. 

The classical formalism of attribute grammars, introduced by Knuth [Knu68], has 
always been a prominent framework for expressing computations on derivation trees. 
Attribute grammars provide a mechanism for annotating the nodes of a tree with 
so-called "attributes", by means of so-called "semantic rules" which can work either 
bottom-up (for so-called "synthesized" attribute values) or top-down (for so-called 
"inherited" attribute values). Attribute grammars are applied in such diverse fields 
of computer science as compiler construction and software engineering (for a survey, 
see [DJL88]) . 

Hence, it is natural to consider attribute grammars as a basis for structured doc
ument database languages. For instance, this approach was chosen by Abiteboul, 
Cluet and Milo [ACM98] and Kilpelainen et al. [KLMN90]. None of them consider 
expressivity issues, though. Our goal in Chapter 3, therefore, is to understand the 
expressive power of attribute grammars as a structured document query language. 

Note that derivation trees of context-free grammars are ranked. That is, the 
maximal number of children of a node is bounded by some constant depending on the 
grammar. We discuss attribute grammars for unranked trees in the next chapter. 

We propose to use Boolean-valued attribute grammars (BAGs) to express the 
unary queries discussed in the previous section. BAGs are attribute grammars with 
Boolean attribute values, and with propositional logic formulas as semantic rules. A 
BAG indeed expresses a query in a natural way: the result of t he query expressed by 
a BAG consists of those nodes in the tree for which some designated attribute is true. 

We show that a unary query is expressible by a BAG if and only if it is definable 
in monadic second-order logic (MSO). We point out that this result was obtained 
independently by Bloem and Engelfriet [BE]. The only-if direction is easy to prove. 
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For the if direction, we show that BAGs can compute the MSO-equivalence type of a 
tree. As a corollary of the proof, we obtain that every BAG is equivalent to a BAG 
that consists of one bottom-up pass followed by one top-down pass. Additionally, 
one can use BAGs also to express Boolean queries. In this more restricted setting the 
equivalence between BAGs and MSO follows directly from the Doner-Thatcher-Wright 
Theorem which states that a tree language is regular if and only if it is definable be a 
tree automaton. From this equivalence then follows a bottom-up property for Boolean 
BAG queries: every Boolean query expressible by a BAG is already expressible by a 
BAG using synthesized attributes only. This bottom-up property does not hold for 
BAGs expressing unary queries. . 

Having understood the expressive power of BAGs, we then turn to queries that 
result in relations, of arbitrary fixed arity, among the nodes of the tree. These queries 
are for example used when one wants to define "wrappers" that map relevant parts of 
the document into a relational database (ACM98, MAM+98, PGMW95]. To this end, 
we introduce relation-valued attribute grammars (RAGs), which use first-order logic 
(FO) formulas as semantic rules. The query expressed by a RAG is naturally defined 
as the value (a relation) of some designated attribute of the root. We show that the 
queries expressible by RAGs are precisely those definable by first-order inductions of 
linear depth. Results by Immerman (Imm89] imply that these are precisely the queries 
computable in linear time on a parallel random access machine with polynomially 
many processors. 

We also investigate whether the above-mentioned bottom-up property for Boolean 
BAG queries carries over to Boolean RAG queries; using tools from finite model theory 
we prove that it does not. 

We complete the picture by showing that synthesized RAGs are strictly more 
powerful than monadic second-order logic, for queries of any arity. This implies in 
particular that even when restricting attention to unary queries, RAGs are more 
powerful than BAGs. Moreover, it turns out that each query defined by a monadic 
second-order logic formula can be expressed by a RAG that uses only synthesized 
attributes. 

We conclude Chapter 3 by considering Boolean-valued and relation-valued re
lational attribute grammars. Relational attribute grammars have been introduced 
by Courcelle and Deransart (CD88]. This concept is a generalization of standard 
attribute grammars, where the semantic rules do not specify functions, computing 
attributes in terms of other attributes, but rather specify relations among attributes. 
In this section we define relational extended AGs. To make a clear distinction be
tween these and the attribute grammars considered before, we refer to the latter as 
functional attribute grammars. The main difference with functional BAGs and RAGs 
is that we now associate one propositional formula (in the case ofBAGs) and one FO 
formula (in the case of RAGs) with each production, rather than with each position 
in a production and for each attribute. For one thing, this means that there is no 
longer a distinction between inherited and synthesized attributes. Further, attribute 
values are now defined implicitly. Hence, the result of a relational attribute grammar 
is no longer uniquely determined on every tree. We will show that relational BAGs 
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and RAGs can express queries in various ways. Although they are seemingly much 
less restrictive than functional attribute grammars, we prove that they remain just 
as expressive in the case of Boolean-valued attributes. For RAGs, however, the situa
tion is much less clear; under various semantics, relational RAGs capture complexity 
classes such as NP, coNP and UP n coUP, whose relationship to the linear parallel 
time complexity class of functional RAGs is unknown. 

The results obtained in this chapter are summarized graphically in Figure 1.4. An 
arrow from a class of queries C to a class of queries C', means C ~ C'. A negated 
arrow from C to C', means there is a Boolean query in C that is not in C' . 

Extended abstracts containing some of the results in this chapter are published as 
[NV98) and [Nev98]. 

:3-RAG = NP V-RAG = coNP IRAG = UP n coUP 

1 
RAG = PFP-LIN = CRAM(n) 

11 
synthesized RAG 

11 
BAG= :3-BAG = V-BAG = IBAG = MSO 

11 non-Boolean queries 

synthesized BAG 

Figure 1.4: Summary of results on BAGs and RAGs. 

In Chapter 4 we shift attention to documents defined by extended context-free 
grammars rather than context-free grammars. The former correspond more closely to 
the XML DTDs mentioned in the previous section. More precisely, extended context
free grammars (ECFG) are context-free grammars having regular expressions over 
grammar symbols on the right-hand side of productions. It is known that ECFGs 
generate the same class of string languages as CFGs. Hence, from a formal language 
point of view, ECFGs are nothing but shorthands for CFGs. However, when gram
mars are used to model documents, i.e., when also the derivation trees are taken into 
consideration, the difference between CFGs and ECFGs becomes apparent. Indeed, 
compare Figure 1.5 and Figure 1.6. They both model a list of poems, but the CFG 
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DB -+ PoemList 
PoemList -+ Poem PoemList 
PoemList -+ Poem 
Poem -+ VerseList 
VerseList -+ Verse VerseList 
VerseList -+ Verse 
Verse -+ WordList 
WordList -+ Word WordList 
WordList -+ Word 
Word-+ LetterList 
LetterList-+ Letter LetterList 
LetterList-+ Letter 
Letter -+ a I . . . I z 

Figure 1.5: A CFG modeling a list of poems. 

DB-+ Poem+ 
Poem-+ Verse+ 
Verse -+ Word+ 
Word-+ (a+···+ z)+ 

Figure 1.6: An ECFG modeling a list of poems. 

1. Introduction 

needs the extra non-terminals PoemList, VerseList, WordList, and Letter List to allow 
for an arbitrary number of poems, verses, words, and letters. These non-terminals, 
however, have no meaning at the level of the logical specification of the document. 

A fundamental difference between derivation trees of CFGs and derivation trees 
of ECFGs is that the former are ranked while the latter are not. In other words, 
nodes in a derivation tree of an ECFG need not have a fixed maximal number of 
children. While ranked trees have been studied in depth (GS97, Tho97b), unranked 
trees only recently received new attention in the context of SGML and XML. Based 
on work of Pair and Quere [PQ68) and Takahashi [Tak75), Murata defined a bot tom
up automaton model for unranked trees [Mur95]. This required describing transition 
functions for an arbitrary number of children. Murata's approach is the following: a 
node is assigned a state by checking the sequence of states assigned to its children 
for membership in a regular language. In this way, the "infinite" transition funct ion 
is represented in a finite way. We will extend this idea to attribute grammars. See 
the work of Briiggemann-Klein, Murata and Wood for an extensive study of tree 
automata over unranked trees [BKMW98). 

Inspired by the idea of representing transition functions for automata on unranked 
trees as regular string languages, we introduce extended attribute grammars (ex
tended AGs) working directly over ECFGs rather than over standard CFGs. They 
express unary queries much in the same way as BAGs do. The main obstacle in 
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defining attribute grammars for ECFGs is that the right-hand sides of productions 
contain regular expressions that, in general, specify infinite string languages. This 
gives rise to two problems for the definition of extended AGs that are not present for 
standard AGs: 

( i) in a production, there may be an unbounded number of grammar symbols for 
which attributes should be defined; and 

( ii) the definition of an attribute should take into account that the number of at-
tributes it depends on may be unbounded. 

We resolve these problems in the following way. For (i), we only consider unambiguous 
regular expressions in the right-hand sides of productions.1 Informally, this means 
that every child of a node derived by the production p = X --t r corresponds to 
exactly one position in r. We then define attributes uniformly for every position in r 
and for the left-hand side of p. For (ii), we only allow a finite set D as the semantic 
domain of the attributes and we represent semantic rules as regular languages over D 
much in the same way as tree automata over unranked trees are defined. By carefully 
tailoring the semantics of inherited attributes, extended AGs can take into account 
the inherent order of the children of a node in a document. 

Chapter 4 is further organized as follows. First, we introduce extended attribute 
grammars as a query language for structured document databases defined by ECFGs. 
Queries in this query language can be evaluated in time quadratic in the number of 
nodes of the tree. We further show that non-circularity, the property that an attribute 
grammar is well-defined for every tree, is in EXPTIME. Interestingly, the naive re
duction of the non-circularity problem of extended AGs to the same problem for 
standard AGs gives rise to a double exponential algorithm. We obtain an EXPTIME 
upper bound by reducing the problem to the problem of deciding whether a tree
walking automaton ( over unranked trees) cycles. We then show the latter problem 
to be complete for EXPTIME. The EXPTIME upper bound for the non-circularity 
test of extended AGs is also a lower bound since deciding non-circularity for standard 
attribute grammar is already known to be hard for EXPTIME [JOR75]. 

Next, we generalize our earlier results on BAGs by showing that extended AGs 
express precisely the unary queries definable in MSO. Like for BAGs, we show that 
extended AGs can compute the MSO-equivalence type of the input tree. The only 
complication arises from the fact that trees are now unranked. 

Hereafter, we obtain the exact complexity of some relevant optimization problems 
for extended A Gs. In particular, we establish the EXPTIME-completeness of the 
non-emptiness (given an extended AG, does there exist a tree of which a node is 
selected by this extended AG?) and of the equivalence problem of extended AGs. 
Interestingly, in obtaining this result and the previous complexity result, we make use 
of nondeterministic two-way automata with a pebble to succinctly describe regular 

1This is no loss of generality, as any regular language can be denoted by an unambiguous regular 
expression [BEG071]. SGML is even more restrictive as it allows only one-unambiguous regular 
languages [BKD98, Woo95]. 
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string languages. The crucial property of those, is that they can be transformed into 
nondeterministic one-way automata with only exponential size increase, as opposed to 
the expected double exponential size increase. The latter is a result due to Globerman 
and Harel [GH96] . Moreover, the thus obtained complexity results will be exploited in 
Chapter 6 to drastically improve the upper bound on the complexity of the equivalence 
problem of Region Algebra expressions obtained by Consens and Milo [CM98a). 

We conclude Chapter 4 by considering relational extended AGs which are a gen
eralization of the relational BAGs studied in Chapter 3. Specifically, we show that 
they remain just as expressive as extended AGs. 

An extended abstract containing the results in this chapter is published as [Nev99]. 

In Chapter 5, we abandon attribute grammars and turn to another well-studied 
computation model for trees: the tree automaton [GS97, Tho97b). In particular, we 
want to understand how such automata, on both ranked and unranked trees, can be 
used to express unary structured document queries. Concretely, we define a query 
automaton (QA) as a two-way deterministic finite automaton over trees that can 
select nodes depending on the state and the label at those nodes. In fact, a QA can 
express queries in a natural way: the result of a QA on a tree consists of all those 
nodes that are selected during the computation of the QA on that tree. 

We stress that the query automata we consider are quite different from the tree 
acceptors studied in formal language theory [GS97). For one thing, two-way tree 
automata are equivalent to one-way ones [Mor94), but it is not so difficult to see that 
query automata are not equivalent to bottom-up ones. Indeed, a bottom-up QA, 
for example, cannot express the query "select all leaves if the root is labeled with 
a", simply because it cannot know the label of the root when it starts at the leaves. 
More surprising, however, is that in the unranked case various QA formalisms accept 
the same class of tree languages,2 while not expressing the same class of queries. 
This indicates a substantial difference between looking at automata from a formal 
language point of view (i.e., for defining tree languages) and looking at automata 
from a database point of view (i.e. , for expressing queries). 

To warm up, we first consider query automata on strings which are simply two
way deterministic automata extended with a selection function. This approach allows 
us to introduce some important proof techniques in an easy setting which then later 
will be generalized to obtain our main results. These techniques can be summarized 
as follows: (i) capturing the behavior of two-way automata by means of behavior 
functions; and (ii) computing MSO-equivalence types relevant for expressing unary 
queries by automata. 

Recall that computation of MSO-equivalence types has been the main technique in 
obtaining our expressiveness results in the previous chapters. However, at least in the 
context of unary queries, the computation of MSO-equivalence types by automata 
is much more involved than in the case of attribute grammars. The main reason 
for this is that attribute grammars can store the MSO-equivalence types of subtrees 

2 A tree language is a set of trees. We say that a QA accepts a tree if the underlying tree automaton 
accepts it. 
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and envelopes3 needed to compute the MSG-equivalence type of the whole tree, in 
the attributes at the relevant nodes. Query automata, on the other hand, basically 
have to recompute the MSG-equivalence types of each of these components whenever 
they need it. This recomputation itself poses no problem: the major difficulty is the 
relocation of the starting point from where each subcomputation originated. To this 
end, we will make use of a powerful lemma on two-way string automata obtained by 
Hopcroft and Ullman [HU67]. 

Next, we consider query automata over ranked and unranked trees. A QAr(r 
stands for ranked) is a two-way deterministic tree automaton4 as defined by Mariya 
[Mor94] extended with a selection function. As hinted upon above, we show that these 
automata can express exactly the unary queries definable in MSG. Naturally, a first 
approach to define query automata for unranked trees, is to add a selection function to 
the two-way deterministic tree automata over unranked trees defined by Briiggemann
Klein, Murata and Wood [BKMW98]. We denote these automata with QA u (u stands 
for unranked). Surprisingly, although these automata can accept all recognizable tree 
languages, they cannot even express all unary queries definable in first-order logic. 
Intuitively, when the automaton makes a down transition at some node n, it assigns 
a state to every child of n; although every child knows its own state, it cannot know 
in general which states are assigned to its siblings (as there can be arbitrarily many 
of them). This means that in the unranked case not enough information can be 
passed from one sibling to another. To resolve this, we introduce generalized "stay
transitions" where a two-way string-automaton reads the string formed by the states 
at the children of a certain node, and then outputs a new state for each child. An 
automaton making at most one stay-transition (or, equivalently, a constant number 
of stay-transitions) for the children of each node is a strong QA u (SQA u). We show 
that these automata compute exactly all MSG-definable queries. Thus, while QA u 
and SQA u recognize the same tree languages, they do not compute the same queries. 
Moreover, the restriction on the number of stay-transitions is necessary: without any 
such restriction, SQA us could simulate linear space Turing Machines. 

While the general problem of deciding whether two queries are equivalent or the 
result of a query is always empty is usually undecidable, their language-theoretic 
counter parts, equivalence and emptiness of automata, are well-known to be decid
able. Therefore, we investigate in Section 5.4 the complexity of the following two 
problems: (i) Given a QA, does there exist a tree for which there is a node that 
is selected? (non-emptiness) (ii) Given two QAs, do they express the same query? 
(equivalence). One cannot hope to do better than EXP TIME for these decision prob
lems, as non-emptiness of two-way deterministic tree automata over ranked trees, i.e., 
even without selecting nodes, is already complete for EXPTIME. We show that the 
non-emptiness and the equivalence problem of all query automata studied in this pa
per are in EXPTIME. Interestingly, like in the previous chapter, we again make use 

3 The envelope of a tree t at a node n is the tree obtained from t by removing all the subtrees 
rooted at the children of n. 

4 These automata are very different from the (alternating) tree-walking automata used in , e.g., 
[Var89). 
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of nondeterministic string automata with one pebble to obtain the above result for 
query automata on unranked trees. 

We end the chapter by considering nondeterministic query automata which can 
express queries in various ways. We focus on two semantics: existential, a node is 
selected if it is selected in at least one accepting run of the automaton, and universal, 
a node is selected if it is selected in all accepting runs. We show that both semantics 
for nondeterministic bottom-up (top-down) automata capture precisely the queries 
definable in MSO. Hence, if nondeterminism is added, the automata need only to 
move in one direction to express all of MSO. 

An extended abstract containing some of the results of this chapter is published 
as [NS99]. 

We apply the techniques developed in this dissertation and discuss some related 
work in Chapter 6. 

First, we show that Region Algebra expressions (introduced by Consens and Milo 
[CM98a]) can be simulated by extended AGs. Stated as such, the result is hardly 
surprising, since the former essentially corresponds to a fragment of first-order logic 
over trees while the latter corresponds to full MSO. We, however, exhibit an efficient 
translation, which gives rise to a drastic improvement on the complexity of the equiv
alence problem of Region Algebra expressions. To be precise, the algorithm proposed 
by Consens and Milo first translates each Region Algebra expression into an equiva
lent first-order logic formula on trees and then invokes the known algorithm testing 
decidability of such formulas. Unfortunately, the latter algorithm has non-elementary 
complexity. That is, the complexity of this algorithm cannot be bounded by an ele
mentary function (i.e., an iterated exponential 2~(r ... (2n)) where n is the size of the 
input). This approach therefore conceals the real complexity of the equivalence test of 
Region Algebra expressions. Our efficient translation of Region Algebra expressions 
into extended AGs, however, gives an EXPTIME algorithm. The thus obtained upper 
bound more closely matches the coNP lower bound [CM98a]. This result is published 
in [Nev99] 

Next, we apply the techniques used to obtain our expressiveness results to the 
actual XML transformation language XSLT [Cla99]. Specifically, we show that XSLT 
has the ability to issue any MSO pattern at any node in the document. That is, 
when XSLT arrives at a node it can decide for any unary MSO formula <p(x) whether 
this formula holds at that node and use this information for further processing of the 
document. Stated as such the result is hardly surprising since full-fledged XSLT allows 
to call arbitrary Java programs and, therefore, can express all computable document 
transformations. Our aim, however, is to stress that the navigational mechanism 
of XSLT together with a restricted use of variables already suffices to capture the 
expressiveness of MSO. Hereby, on the one hand, we reveal that core XSLT has a very 
powerful pattern language at its disposal, and, on the other hand, provide evidence 
for the robustness of the language. 

Further, we compare MSO with other query languages for structured documents 
and semi-structured data. Most of the current query languages, like for example, 
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Lorel, UnQL, and XML-QL [ABS99], use regular path expressions to navigate through 
the input database. Since our extended AGs and our QAs can only express unary 
queries, they cannot be compared as such with the above mentioned query languages. 
Therefore, we use first-order logic with regular path expressions, denoted by Foreg, 
as an abstraction for the latter. To be precise, for each regular expression rover some 
alphabet, we have the binary predicate r(x,y) with the following meaning that xis 
an ancestor of y and the string consisting of the symbols on the path from x to y 
belongs to the language defined by r. Such a logic can, hence, only look along paths 
in trees, and not at the tree as a whole. We confirm this intuition by formally proving 
that MSO is strictly more expressive than Foreg with regular path expressions. In 
fact, we show that no Foreg formula can define the class of trees representing Boolean 
circuits evaluating to true. 

Next, we elaborate on the various ways in which unranked trees can be coded by 
ranked ones. 

We end the chapter by proposing a design to implement the BAGs and RAGs 
previously studied in Chapter 3. More specifically, we want to show that deductive 
databases offer a natural platform on top of which such an implementation becomes 
remarkably straightforward. Since BAGs can be seen as special cases of RAGs, we 
focus attention to the latter ones. 

Concretely, we represent a context-free grammar by a relational schema, so that 
structured documents can be stored as instances over this schema. We then translate 
a RAG into a set of deductive rules, which in general contain negation. We prove the 
somewhat surprising result that the naive bottom-up fixpoint procedure suffices to 
capture the semantics of the RAG. This procedure (the standard one for deductive 
programs without negation) is usually not considered in the presence of negation, 
as it is not even guaranteed to terminate; nevertheless, we show that it does on the 
programs generated by our translation. In fact, the programs resulting from the 
translation of RAGs become acyclic after removing the rules inconsistent with the ex
tensional database predicates. That is, the predicates encoding the derivation tree at 
hand. In particular, this means that these programs are modularly stratified [Ros94] 
which further implies that we can use any deductive database system supporting the 
well-founded semantics to implement RAGs. An extended abstract describing only 
the translation of BAGs to deductive rules is published as [NV97]. 

We present some concluding remarks in Chapter 7. 





2 
Basics of logic and automata 
on strings and trees 

Many of the formalisms we consider in later chapters will be compared with monadic 
second-order logic (MSO) . This logic is the well-known extension of first-order logic 
(FO) with set quantification. MSO has been laboriously used to characterize the 
expressiveness of various concepts in formal language theory like automata on strings, 
trees, and graphs [Tho97b]. 

In this chapter we recall some basic facts on MSO and use them to reprove Biichi's 
Theorem [Biic60] stating that a string language is regular if and only if it is definable 
in MSO. This approach allows us to introduce various techniques related to MSO 
and automata in an easy setting which we will generalize in later chapters to obtain 
expressiveness results for attribute grammars and query automata. Specifically, we 
recall in this chapter how Ehrenfeucht games facilitate reasoning on MSO-equivalence 
types. These types constitute the building blocks of all simulations of MSO formulas 
in later chapters. Along the way, we introduce another important concept: the two
way nondeterministic finite automaton with one pebble. Such an automaton is a 
powerful tool to define regular languages. We use it to obtain some of the complexity 
results in Chapter 4 and Chapter 5. Finally, we define bottom-up tree automata and 
reprove the generalization of Biichi's Theorem to trees obtained by Doner, Thatcher 
and Wright [Don70, TW68]. 

Before we start we make the following conventions. We denote by N the set of 
positive natural numbers. Further, if Sis a set then we denote by ISi its cardinality. 

15 
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2.1 Monadic second-order logic 

A vocabulary T is a finite nonempty set of constant symbols and relation names with 
associated arities. As usual, a r-structure A consists of a finite set A, the domain of 
A, together with 

• an interpretation R.A ~ Ar for each relation name R in r; here, r is the arity of 
R; and 

• an interpretation cA E A for each constant symbol in T. 

When T is clear from the context or is not important, we just say structure rather 
than r-structure. Sometimes, when the structure A is understood, we abuse notation 
and write R for the relation R.A. 

Example 2.1 Let T be the vocabulary consisting of a binary relation symbol E 
and two constants sand t. Let g be the r-structure with domain G = {1, ... ,n}, 
Eg := {(i,j) E G x GI i + 1 = j}, sg = 1, and t9 = n. Then g represents the graph 
that is a chain of n elements with the source and the target being the first and last 
element, respectively. • 

Monadic second-order logic (MSO) allows the use of set variables ranging over 
sets of domain elements, in addition to the individual variables ranging over the 
domain elements themselves as provided by first-order logic. We will assume some 
familiarity with this logic and refer the unfamiliar reader to the book of Ebbinghaus 
and Flum [EF95] or the chapter by Thomas [Tho97b]. 

Example 2.2 We give an example of an MSO formula. As usual we denote set 
variables by capital letters and first-order variables by small letters. Let cp( x, y) be 
the following MSO formula over the vocabulary of Example 2.1: 

This formula defines the transitive closure of E. Indeed, for each graph g with nodes 
n and m, we have that g p cp[n, m] iff there exists a set of nodes B of g containing 
both n and m, and which contains every element adjacent to an element of B via the 
edge relation E. In other words, g p cp[n, m] iff there exists a path in g from n to 
m. Hence, the MSO sentence cp(s, t) defines those graphs for which there is a path 
from the source to the target. • 

In the following we will make use of some basic facts about MSO. For a tuple 
a = a1, .. . , an of elements in A, we write (A, a) to denote the finite structure that 
consists of A with a1 , .. . , an as distinguished constants. Let A and B be two 
structures, let a and b be tuples of elements in A and B, respectively, and let k be a 
natural number. Then we write (A, a) =f80 (B, b) and say that (A, a) and (B, b) are 
=f 8° -equivalent, if for each MSO sentence cp of quantifier depth at most k it holds 

(A, a) F cp <=> (B, b) F cp. 
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That is, (A, a) and (B, b) cannot be distinguished by MSO sentences of quantifier 
depth (at most) k. It readily follows from the definition that =rso is an equivalence 
relation. Moreover, =rso_equivalence can be nicely characterized by Ehrenfeucht 
games. 

The k-round MSO game on two structures (A, a) and (B, b) , denoted by crso(A, a; 
B, b), is played by two players, the spoiler and the duplicator, in the following way. In 
each of the k rounds the spoiler decides to make a point move or a set move. If the 
i-th move is a point move, then the spoiler selects an element Ci E A or di EB and 
the duplicator answers by selecting one element of the other structure. When the i-th 
move is a set move, the spoiler chooses a set Pi <;; A or Qi <;; B and the duplicator 
chooses a set in the other structure. After k rounds there are elements c1 , .. . , Ct and 
d1, ... , dt that were chosen in the point moves in A and B respectively and there 
are sets P1, ... , Pn and Q1, ... , Q n that were chosen in the set moves in A and B, 
respectively. The duplicator now wins this play if the mapping which maps Ci to di 
is a partial isomorphism from (A,a,Pi, . .. ,Pn) to (B,b,Q1 , ••. ,Qn)- That is, for 
all i and j, Ci E Pi iff di E Qi, and for every atomic formula ip(x) containing no set 
variable, AF ip(c, a] iff BF ip(J, b]. 

We say that the duplicator has a winning strategy in arso(A, a; B, b), or shortly 
that he wins cr50 (A,a;B,b), if he can win each play no matter which choices the 
spoiler makes. 

The following fundamental proposition is well known (see, e.g., (EF95] for a proof). 

Proposition 2.3 The duplicator wins cr80 (A, a; B, b) if and only if 

- -MSO -(A, a) =k (B, b). 

It is well known that the relation = rso has only a finite number of equivalence 
classes. We denote the set of these classes by <) k and refer to the elements of <) k 

by = rso -types (here we fix some number of parameters added to structures as fixed 
constants). We denote by 7k'180(A, a) the =rso_type of a structure A with the 
elements in a as distinguished constants; thus, 7k'180(A, a) is the equivalence class 
of (A, a) w.r.t. =rso. By 7k'180 (A) we denote the = rs0 -type of the structure A 
without distinguished elements. It is often useful to think of 7k'180(A, a) as the set 
of MSO-sentences of quantifier depth k that hold in (A, a). That is, we also view 
7k'180(A, a) as the set { <p I (A, a) f= <p} of MSO sentences of quantifier depth k. It 
is well known that, upon logical equivalence, there are only a finite number of MSO 
sentences of quantifier depth k. Moreover, there exists a normal-form for all those 
non-equivalent formulas. From now on we tacitly assume that all MSO formulas are 
in this normal-form. In this way, we can simple say <p E 7rso (A, a) instead of 'there 
is a formula in 7rso (A, a) which is logically equivalent to ip'. 

Equivalence types will be the main tool to simulate MSO formulas by automata. 
To illustrate their usage, we will recall in the next section how they can be employed 
to prove Biichi's Theorem (Biic60]. 

First, we mention for later use the k-round FO game on two structures (A, a) 
and (B, b), denoted by G{0 (A, a; B, b), which is the restriction of cr80 (A, a, B, b) 
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to point moves only. We write (A, a) ={0 (B, b) and say that (A, a) and (B, b) are 
=f0 -equivalent, if for each FO sentence <p of quantifier depth at most k we have 

(A, a) F <p ¢:} (B, b) F <p. 

That is, (A, a) and (B, b) cannot be distinguished by FO sentences of quantifier depth 
(at most) k. Analogous to Proposition 2.3, we have the following (see, e.g., [EF95], 
for a proof): · 

Proposition 2.4 The duplicator wins Gf0 (A, a; B, b) if and only if 

(A, a) ={0 (B, b). 

2.2 Queries 

Definition 2.5 Let k be a natural number. A k-ary query is a function Q that maps 
each structure A to a k-ary relation over its domain. HQ is a nullary query, i.e., k is 
zero, then we also say that Q is a Boolean query. 

MSO can be used to define queries in a straightforward way: if <p(x1, . .. , Xk ) is 
an MSO-formula then <p(x1, ... , xk) defines the k-ary query Q defined by 

2.3 Regular string languages 

In the following :E denotes a finite alphabet. A string w = a1 ···an over :E is a 
sequence of :E-symbols. We denote the length of w by lwl and for each i E {1, ... , 
lwl}, we denote ai by Wi · We refer to {1, ... , lwl} as the set of positions of w. 

To define sets of strings by MSO formulas, we associate to each string w over 
:E, a finite structure with domain {1, ... , lwl}, denoted by dom(w), over the binary 
relation symbol <, and the unary relation symbols (Ou)uEE · The interpretation of 
< is the obvious one, and for each a E :E, Ou is the set of positions labeled with a 
a, i.e., 0 u = { i I Wi = a}. In the following, we will make no distinction between the 
string w and the relational structure that corresponds to it. 

A nondeterministic finite automaton M (NFA) over :E is a tuple (S, :E, 8, I, F) 
where S is finite set of states, 8 : S x :E --+ 28 is the transition function, I ~ S is 
the set of initial states, and F ~ S is the set of final states. We denote the canonical 
extension of the transition function to strings by 8*. A string w E :E* is accepted by 
M if 8*(s0 , w) E F for an so EI. The language accepted by M, denoted by L(M), is 
defined as the set of all strings accepted by M. The size of M is defined as ISi + l:EI. 
A string language is regular if it is accepted by an NFA. 

A state assignment p for a string w E :E* is a mapping from {1, . . . , lwl} to S. A 
state assignment p for w is valid if there exists an so EI such that p(l) E 8(so, w1), 
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p(lwl) E F, and for i = 1, ... , lwl -1, p(i + 1) E c5(p(i),wi+i)· Clearly, w is accepted 
by M if and only if there exists a valid state assignment for w. 

If III = 1 and lc5(s, cr)I ::; 1 for all s E S and er E ~' then M is a deterministic 
finite automaton (DFA) and we treat c5 as a function S x ~ --t S. Additionally, we 
write so in the definition of M when I = { s0 }. 

We will reprove Biichi's Theorem [Biic60] stating that a string language is regular 
if and only if it can be defined by an MSO sentence. Here, an MSO sentence <p defines 
the language {w E ~* I w p= cp}. The simulation of an MSO sentence by a DFA 
will be based on the computation of equivalence types. To this end we will use the 
following proposition which in particular says that rf:150(cr1 · · · CTn-icrn) only depends 
on rJ:150 (cr1 ···Un- I) and rf;150 (crn), This observation will be used in the proof of 
Theorem 2.7 to define the transition function of the DFA computing the =t150-type 
of input strings. 

By using the above Ehrenfeucht games and Proposition 2.3, we can easily show 
the following. 

Proposition 2.6 Let k ~ 0 and let w, v, w' and v' be strings. If w =rso w' and 
V =rso V

1
, then W • V =rso W 1 

• V 1
• 

Proof. By Proposition 2.3 it suffices to show that the duplicator wins GJ150(w·v; w'. 
v'). We already know that he wins the subgames arso(w;w') and er 0 (v;v') . The 
duplicator' therefore, plays in arso ( w . v; w' . v1

) according to his winning strategies 
in arso ( w; w') and arso ( v; v'). We make this strategy precise, but only consider 
moves of the spoiler on the string w · v. Responses to moves where the spoiler picks 
elements in w' · v ' can be treated similarly. If the spoiler chooses an element in w 
(v) then the duplicator answers according to his winning strategy in ar50 (w;w') 
( arso ( v; v 1

)). If the spoiler makes a set move and chooses P1 LJ P2 in W • V, where 
Pi and P2 contain the elements in w and v, respectively, then the duplicator chooses 
sets Q1 and Q2 in w' and v' according to his winning strategy in ar50 (w;w') and 
ar50(v; v'), respectively. 

This is indeed a winning strategy. Let c1, ... , Ct and d1, ... , dt be the elements 
chosen in point moves in w · v and w' · v', respectively, and let Pi, ... , Pr and 
Qi, ... , Qr be the sets of elements chosen in set moves in w·v and w' ·v', respectively. 
By construction, the mapping c f-+ d restricted to the different components ( w and 
w', and v and v') is a partial isomorphism between these corresponding components 
extended with the sets P and Q. Hence, it only remains to check that the relation < 
is preserved between elements coming from different components. This is always the 
case, as all elements of w (w') precede those of v (v'), the duplicator chooses elements 
in w' (v') whenever the spoiler chooses elements in w (v), and the duplicator chooses 
elements in w ( v) whenever the spoiler chooses elements in w' ( v'). • 

We are ready to prove Biichi's Theorem [Biic60]: 

Theorem 2. 7 A language L ~ ~· is regular if and only if it is definable in MSO. 



20 ____ 2. Basics of logic_ and automata on strings and trees 

Proof. Suppose L is defined by the DFA M = (S, :E, 8, so, F) with S = {O, .. . , n} 
and s0 = 0. We have to find an MSO sentence expressing for every string w E L(M) 
that M accepts w. On w, this sentence defines the run of M on w. Such a run is 
encoded by pairwise disjoint subsets Zo, ... , Zn of {1, ... , lwl} with the following 
intended meaning: i E Zj iff 8* (0, w1 · · · wi) = j. We say that Zj labels position i 
with state j . Clearly, the run is accepting if lwl is labeled with a final state. The 
sentence 'P is then of the form 

(3Zo) ... (3Zn) ( '¢(Z1, .. . , Zn) t\ (\t'x) ( ,(3y)(x < y) ~ i't Zi(x))) . 

Here, '¢ is the FO formula that defines Z0 , ••• , Zn as the encoding of the run of 
M on the string under consideration. That is, it says that the first position should 
be labeled with the state 8(0, w1 ) and that the other labelings should be consistent 
with the transition function. These are all local conditions and can, hence, readily be 
expressed in FO. The second part of <p expresses that the last element of the input 
string is labeled with a final state. A more computational view of <p is that, on input 
w, <p first guesses a state assignment and then verifies, by means of an FO formula, 
whether it has guessed correctly. That is, whether its guesses encode an accepting 
run of the automaton. 

For the other direction we make use of types. A similar presentation was given 
by Ladner [Lad77). The method presented here is also referred to as the composition 
method [Tho97a]. Let 'P be an MSO sentence of quantifier depth k. Clearly, it suffices 
to know T"f:180 (w) to determine whether w p= 'P· We will now show that an automaton 
on input w can in fact compute T"f:180 (w). The set of states is <}k, which is finite for 
every k. Proposition 2.6 says that for a string v and a :E-symbol a, T"f:180 (va) only 
depends on T"f:180(v) and T"f:180(a). Note that T"/;180 (a) only depends on (J", Hence, 
Trso(w) Can be computed from left to right: the initial state is r"f:180 (c), that is, the =r80-type of the empty string; and, if the =r80-type of the string seen so far is f) 

and the next symbol is a, then the automaton moves to state Trso ( V(J") for a string 
v with T"f:180 (v) = fJ. By Proposition 2.6, it does riot matter which member v of the =rso _equivalence class f) we take. Finally, the automaton accepts if <p E f) with fJ the 
state obtained after reading the last input symbol. 

Formally, the automaton M accepting the language defined by <p is defined as 
M = (<}k, :E, 8, so, F), where So = Tf:180(c), F = {fJ E <}k I 'PE fJ}, and for all fJ E <}k 

and a E :E, 8(fJ,a) = rf:180 (va) for a string V with T"/;180(v) = fJ. • 

In Section 5.1, we will make use of Lemma 2.9. We first provide a suitable gener
alization of Proposition 2.6. 

Proposition 2.8 Let k E N, let w and v be strings, let i E {1, .. . , lwl}, and 
letj E {l, ... ,lvl}. ff (wl"'Wi,i) =rso (v1 .. ·Vj,j) and (wi" "Wlwl,l) =rso 
(Vj" 'Vlvl,l), then (w,i) =rso (v,j). 

Proof. We just combine the winning strategies in the subgames ar80 (w1 · · · Wi, 
i;v1 · · · Vj,j) and atrn°(wi .. · w1w1, l; vi · · · V1v1, 1) to obtain a winning strategy in the 
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game ar80(w, i; v,j) , like in the proof of Proposition 2.6. We have to be a bit care
ful as position i and j in w1 · · · wlwl and v1 · · ·Vivi, respectively, occur in both sub
games arso(W1···Wi,iiV1···Vj,j) and arso(Wi···Wlwl,liVj···Vlvl ,1). However, 
the combined strategy is well defined on these positions: the duplicator picks position 
i (j) when the spoiler picks position j (i) as he does so in both subgames, simply 
because the common positions occur as distinguished constants in the subgames. 

The following example shows that i and j are really needed as distinguished con
stants. Consider the string aba and bab. Clearly, ab =t1so ba and ba =t1so ab. 
However, (aba, 2) tt'180 (bab, 2) as the distinguished constants do not even carry the 
same label. • 

Using the above proposition we obtain the following lemma: 

Lemma 2.9 Let k be a natural number. There exists a DFA M = (S, E, s0 , 15, F) 
Such that ()*(w) = Tf:1-SO(w, lwl), for every string W. 

Proof. The automaton M just works like the automaton in the proof of Theorem 2. 7. 
The only difference is that it has to take the distinguished constant into account. 
Therefore, M has cp k U {so} as set of states where so is the start state and where 
'Pk is the set of =r80-types with one distinguished position. By Proposition 2.8, 
rf:1-80 (wa, lwl + 1) only depends on rf:1-80(w, lwl) and rf:1-80 (a, 1). Note that the latter 
only depends on a. So, the transition function d is defined as follows: for each a E E, 
d(so, a) = rf:1-80 (<J', 1) and for each() E 'Pk, 6((), a) = rf:1-80 (w<J', lwl + 1) where Wis a 
string with rf:1-80 (w, lwl) = B. • 

We conclude this section by introducing the following important device. A two
way nondeterministic finite automaton with one pebble is an NFA that can move in 
two directions over the input string and that has one pebble which it can lay down on 
the input string and pick up later. We refrain from giving a formal definition of such 
automata as we will only use them informally to describe algorithmic computations. 
Blum and Hewitt [BH67] showed that such automata can only define regular lan
guages. To prove our complexity results in Chapter 4 and Chapter 5, we will need the 
following stronger result obtained by Globerman and Harel [GH96, Proposition 3.2]. 

Proposition 2.10 Every two-way nondeterministic finite automaton M with one 
pebble is equivalent to an NFA M' whose size is exponential in the size of M. In 
fact, the size of M' can be uniformly bounded by the function p(IEI) · 2q(ISI), where p 
and q are polynomials, E is the alphabet, and S is the set of states of M . Additionally, 
M' can be constructed in time exponential in the size of M. 

2.4 Regular tree languages 

In this work we are mainly concerned with trees where the children of a node are 
ordered and carry a label from some finite alphabet E. We refer to such trees as 
E-trees. We introduce some terminology. 
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Trees will be denoted by the boldface characters t, s, s1, ... , while nodes of trees 
are denoted by n, m, n 1 , . . . . We use the following convention: if n is a node of a tree 
t, then ni denotes the i-th child of n . We denote the set of nodes oft by Nodes(t) 
and the root oft by root(t). Further, the arity of a node n in a tree, denoted by 
arity(n), is the number of children of n. We say that a tree t has rank m, form EN, 
if arity(n) :=; m for every n E Nodes(t). For a node n in t, the set of its children is 
denoted by children(n). The subtree oft rooted at n is denoted by tn; the envelope 
of t at n , that is, the tree obtained from t by deleting the subtrees rooted at the 
children of n is denoted by tn;1 and, for each a E :E, the tree consisting of just one 
node that is labeled with a is denoted by t(a). The depth of a node n is the number 
of nodes on the path from n to the root (n included, root not included) . The height 
of n is the number of nodes on the longest path from n to a leaf (n included, leaf not 
included). Hence, the depth of the root and the height of a leaf are zero. We denote 
the label of n int by labt(n) . 

We end by introducing use the following notation. When a is a symbol in :E and 
t1 , ... , tn are :E-trees, then a(t1 , . . . , tn) is the :E-tree graphically represented by 

Note that in the above definitions there is no a priori bound on the number of 
children that a node may have. In the next chapter, we restrict attention to t rees of 
bounded rank (hereafter simply referred to as ranked trees). In the remaining chapters 
we consider trees without any bound on their rank. To make a clear distinction, we 
refer to them as unranked trees. 

A :E-tree t can be naturally viewed as a finite structure over the binary relation 
symbols E and<, and the unary relation symbols (Ou)uEE· The edge relation Eis 
the obvious one. The relation < specifies the ordering on the children for every node 
n. Finally, for each a E :E, Ou is the set of nodes that are labeled with a a . 

We now define bottom-up deterministic tree automata and indicate how they can 
compute the =r50-types of trees. This will allow us to reprove the generalization of 
Biichi's Theorem for trees. The next definition is for :E-trees of rank at most m, for 
some fixed m. 

Definition 2 .11 A (bottom-up deterministic) tree automaton (BDTA) is a triple B = 
( Q, :E, 8, F), consisting of a finite set of states Q, a finite alphabet :E, a set F ~ Q of 
final states, and a transition function c5 : u:,0 Qi x :E ---+ Q. The semantics of B on 
a tree t, denoted by c5*(t), is inductively defined as follows: if t consists of only one 
node labeled with a then c5*(t) = c5(a); if tis of the form 

1 Note that tn and t 0 have n in common. 
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then o*(t) = 8(o*(t1), .. . , 8*(tn), a). A ~>tree tis accepted by B if 8*(t) E F. The 
set of E-trees accepted by Bis denoted by L(B). A set of E-trees Tis recognizable if 
there exists a tree automaton B, such that 7 = L(B). 

To prove Theorem 2.13, we need a suitable generalization of Proposition 2.6 to 
trees. The proof of the next proposition is similar to the proof of the latter, but is a 
bit more subtle due to the presence of the edge relation E. 

Proposition 2.12 Let k be a natural number, a E E, and let ti, ... , tn, s1, ... , Sn 

be E-trees. If ti =i;180 Si, for i = 1, ... 'n, then a(t1, ... 'tn) =rso a(s1, . .. , Sn) . 

Proof. Again, we just combine the winning strategies in the subgames ar80(ti; si) 
to obtain a winning strategy in arso(a(t1, ... , tn); a(s1, ... 

7 
Sn)) as explained in the 

proof of Proposition 2.6. Additionally, we require that the duplicator picks the root 
in u(s1, ... , sn) whenever the spoiler picks the root of u(t1, . . . , tn), and vice versa. 
We now show that this strategy is winning. Suppose that in a play in 

ar80(a(t1, . . . ,tn);u(s1, ... ,sn)) 

the elements c and dare chosen in the point moves in a(t1, .. . , tn) and a(s1 , •. . , 

sn), respectively, and the sets P and Q, are chosen in set moves in a(t1, ... , tn) and 
a(s1, ... , sn), respectively. Clearly, the mapping c ~ d restricted to the different com
ponents is a partial isomorphism between these corresponding components extended 
with the sets J5 and Q. Hence, it only remains to check that the relations < and E 
are preserved for elements coming from different components. We restrict attention 
to elements in a(t1, ... , tn). Denote the roots of a(t1, ... , tn) and a(s1, ... , sn) by 
n and m, respectively. 

Let Ci and c3 be elements coming from different components ta and tb, with Ci < c3 
and a, b E {1, ... , n }. Consequently, Ci and c3 are children of n and a < b. It, hence, 
suffices to show that di and d3 are the roots of Sa and sb, respectively. 

First note the following. ff the spoiler picks the root of ta in his l-th move, with 
[ < k, in arso(ta; Sa), then the duplicator is forced to answer with the root of Sa. 
Indeed, if he does not do so and picks another node, say e, then in the next round 
the spoiler just picks the parent of e to which the duplicator has no answer. 

Since Ci and c3 come from different components, the duplicator and the spoiler 
never play k rounds in the subgames ar80(ta; Sa) and ar80 (tb; Sb)• That is, in the 
Subgames arsO(taiSa) and arsO(tb;sb), the elements Ci and Cj are chosen before 
the k-th round. By the above argument, this means that di and d3 have to be the 
roots of Sa and sb, respectively. Therefore, di < d3 as required. 

Concerning E, we only have to consider the case where Ci= n and c3 is a child of 
n. By a similar argument as before it follows that d3 has to be a child of m. • 

By the previous proposition, the =r80-type of a tree only depends on the =rso _ 
types of the subtrees rooted at the children of the root. This suggests a mechanism to 
compute =r80-types of trees in a bottom-up way. Indeed, the set of states is 'Pk, and 
the transition function is defined as follows: for every a EE, o(a) = rk'180 (t(a)) and 
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for81 , .. . ,On E cpk, 8(01,- -· ,On,a) = Tf50(a(t1, . . . ,tn)) whenever there exist trees 
t1 , ... , tn such that Tk"150(t1) = 81, ... , Tk"150(tn) = On. By Proposition 2.12, it does 
not matter which members t 1, ... , tn of the =r50-equivalence classes 01 , ... , On we 
take. A tree automaton, in turn, can again be defined in MSO by guessing states and 
then verifying in FO the consistency with the transition function. This leads to the 
following theorem obtained by Doner, Thatcher and Wright [Don70, TW68]. 

Theorem 2.13 A tree language is recognizable if and only if it is definable in MSO. 

For later use, we show that a bottom-up tree automaton also can compute the type Tr50(t, root(t)) of each input tree t. Therefore, we need the following proposition. 
Actually, we only need the second item of Proposition 2.14, the other items will be 
used in Section 3.2. 

Proposition 2 .14 Let k be a natural number, t and s be two trees, n be a node of 
t and m be a node of s both of arity n. 

1. If (tn,n) =rso (sm,m) and (t0 ,n) =rso (sm,m) then (t,n) =rso (s, m). 

2. If labt(n) = lab8 (m) and (tni, ni) =rso (smi, mi) for i = 1, ... , n, then 
(tn,n) =rso (sm,m). 

3. Leti E {1, ... ,n}. If 

( - ) - MSO (- ) • t 0 ,n = k Sm,m, 

• labt(ni) = labt(mi), and 

• (tnj,nj) =rso (smj,mj), for j E {l, ... ,n}-{i}, 

then ( tni, ni) =rso ( Smi, mi). 

Proof. The proofs of all three cases are very similar. The basic idea is to combine the 
winning strategies of the duplicator on the respective subtrees into a winning strategy 
on the whole structures like in the case of strings in Proposition 2.6. We focus on the 
third case where there are altogether n + l subgames including the trivial game in 
which one structure consists only of ni and the other of mi. The winning strategy in 
the game on ( tni, ni) and ( Smi, mi) just combines the winning strategies in those n + l 
subgames. At the end of the game, the selected vertices define partial isomorphisms 
for all pairs of respective substructures. To ensure that they also define a partial 
isomorphism between the entire structures one only has to check the relations < and 
E between the chosen elements, and ni and mi. The preservation of< and E between 
chosen elements only can be verified as in the proof of P roposition 2.12. Additionally, 
we have to check that for every corresponding pair of chosen nodes c and d: c < ni iff 
d < mi, ni < c iff mi < d, and E(c, ni) iff E(d, mi). This follows immediately, as all 
siblings and the parents of ni and mi are distinguished constants, and only elements 
of corresponding substructures are chosen. • 

We will use the following lemma in Section 5.2. 
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Lemma 2.15 Let k be a natural number. There exists a DBTA B = (Q, :E, c5, F) 
such that c5* ( t) = 7f180 ( t, root ( t)), for every tree t. 

Proof. We apply the same bottom-up technique as in the proof of Theorem 2.13. 
Only now we make use of Proposition 2.14(2) rather than Proposition 2.12. Define 
Q as <l>k . Here we take <l>k as the set of =t180-types of trees with one distinguished 
node. Further, define the transition function as follows: for every u E :E, c5(u) = 
rk180(t(u),root(t(u))) and for fJ,()i, .. . ,On E <l>k, c5(01, ... ,On,u) = fJ iff there exists 
a tree t with a node n of arity n such that rk180(tn, n) = f) and rk180(tni, ni) = f)i , 

for i = 1, . .. , n. By Proposition 2.14(2) , it does not matter which members t0 1 , ... , 

tnn of the =t180-equivalence classes 01, ... , On we take. • 





3 
Expressiveness of structured 
document query languages 
based on attribute gram:mars 

In this chapter, we focus on structured documents described by context-free gram
mars. As mentioned before, the context-free grammar models the schema of the 
database, while a database instance is simply a derivation tree of this grammar. The 
latter approach was originally proposed by Gonnet and Tompa [GT87]. In this re
spect, we study query languages based on the standard attribute grammar formalism 
as introduced by Knuth [Knu68]. 

Concretely, we study the expressiveness of Boolean-valued (BAGs) and relation
valued attribute grammars (RA Gs) . BA Gs are an abstraction of the query facility 
provided by information retrieval systems and therefore express unary queries. RAGs, 
on the other hand, express relational queries and can be seen as abstractions of 
wrappers. 

Specifically, we link BAGs with monadic second-order logic, and RAGs with first
order inductions of linear depth, or, equivalently, the queries computable in linear 
time on a parallel machine with polynomially processors. Further, we show that 
RAGs that only use synthesized attributes are strictly weaker than RAGs that use 
both synthesized and inherited attributes and obtain that RAGs are more expressive 
than monadic second-order logic for queries of any arity. Finally, we discuss relational 
attribute grammars in the context of BAGs and RAGs. Specifically, we show that in 
the case of BAGs this does not increase the expressive power, while different semantics 
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for relational RAGs capture the complexity classes NP, coNP and UP n coUP. 

3.1 Attribute grammars as query languages 

For all what follows in this chapter, we fix a context-free grammar G = (N, T, P, 
U), where N is the set of non-terminals, T is the set of terminals, P is the set of 
productions, and U is the start symbol. We make the harmless technical assumption 
that the start symbol U does not appear on the right-hand side of any production. A 
derivation tree of G is defined in the standard way (see, e.g., [HU79]) . 

Lett be a derivation tree of G and let no, n1, .. . , nn be nodes oft such that no 
has exactly then children n1, ... , nn: 

no 
/ . . . '\i 

Let p = X 0 -+ X1 . .. Xn be a production. H the label of no is Xo, and ni is labeled 
by Xi for i = 1, ... , n, then we say that no is derived by p. 

3.1.1 Attribute grammar formalism 

We define the concepts common to both Boolean-valued and relation-valued attribute 
grammars. 

Definition 3.1 An attribute grammar vocabulary has the form 

(A, Syn, Inh, Att), 

where 

• A is a finite set of symbols called attributes; 

• Syn, Inh, and Att are functions from N U T to the powerset of A such that 
for every X E N, Syn(X) n Inh(X) = 0; for every X E T, Syn(X) = 0; and 
Inh(U) = 0. 

• for every X, Att(X) = Syn(X) U Inh(X) . 

Ha E Syn(X), we say that a is a synthesized attribute of X. Ha E Inh(X), we say 
that a is an inherited attribute of X . The above conditions express that an attribute 
cannot be a synthesized and an inherited attribute of the same symbol, that terminal 
symbols do not have synthesized attributes, and that the start symbol does not have 
inherited attributes. 

From now on we fix some attribute grammar vocabulary. 

Definition 3.2 Let p = X 0 -+ X1 ... Xn be a production in P, and a an attribute of 
Xi for some i E {O, .. . , n }. Then the triple (p, a, i) is called a context if a E Syn(Xi) 
implies i = 0, and a E Inh(Xi) implies i > 0. 
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U-+ S 
8-+ BS 

S-t B 

B-tx 
B-+y 

x _before(l) := false 
x _before(2) := is...x(l) V x _before(O) 
even(O) := ,even(2) 
result(O) := even(O) I\ x _before(O) 
even(O) := false 
result(O) := false 
is...x(O) := true 
is...x(O) := false 

Figure 3.1: Example of a BAG. 

3.1.2 Boolean-valued attribute grammars 
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Definition 3.3 A BAG-rule in the context (p, a, i), with p = X1 ... Xn, is an expres
sion of the form 

a(i) := cp, 

where cp is a propositional logic formula over the set of proposition symbols 

{b(j) I j E {O, . .. , n} and b E Att(Xj)}. 

A BAG is then defined as follows: 

Definition 3.4 A Boolean-valued attribute grammar (BAG) B consists of an at
tribute grammar vocabulary, together with a mapping assigning to each context a 
BAG-rule in that context. 

Example 3.5 In Figure 3.1 a simple example of a grammar and a BAG over this 
grammar are depicted. We have Syn(S) = {result, even}, Inh(S) = {x_before}, 
Syn(B) = {is...x}, and Att(U) = Att(x) = Att(y) = Inh(B) = 0. The semantics 
of this BAG will be explained below. • 

The semantics of a BAG is that it defines Boolean attributes of the nodes of 
derivation trees of the underlying grammar G. This is formalized next. 

Definition 3.6 Let t be a derivation tree of G. A valuation of t is a function that 
maps pairs (n, a), where n is a node in t and a is an attribute of the label of n, to 
truth values (0 or 1). 

In the sequel, for a pair (n, a) as above we will use the more intuitive notation a(n). 

Definition 3.7 Let B be a BAG, and let t be a derivation tree. Let a(i) := cp be 
the BAG-rule in context (p, a, i). Let n be a node of arity n derived by p. Then the 
formula obtained from cp by replacing each occurrence of a propositional symbol of 
the form b(j) by the new propositional symbol b(nj), is denoted by Li(B, t, a, ni). 
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Definition 3.8 Let 13 be a BAG and t a derivation tree. We define a sequence 
(131(t ))1>0 of partial valuations as follows: 

• 130 (t) is the empty valuation (130 (t) is nowhere defined). 

• 131(t), for l > 0, is defined as the following extension of 131-i(t). For every a(n), 
if 131-l (t) is defined on all propositional symbols that occur in 6.(13, t, a, n), then 
131(t) is defined on a(n) and gets the truth value taken by 6.(13,t,a,n) under 
the valuation 131-1(t). 

If for every t there is an l such that 131 ( t) is a totally defined valuation of t ( this 
implies that 131+1 = 131), then we say that 13 is non-circular. From now on, we will only 
consider BAGs that are non-circular. (Non-circularity is well known to be decidable 
[Knu68].) The valuation 13(t) is then defined as 131(t). 

It is well known that the evaluation of an attribute grammar takes linear time when 
counting the evaluation of a semantic rule as one unit of time (see, e.g., [DJL88]). 
This is simply because only a constant number of attributes should be defined for 
every node. Since a fixed propositional formula can indeed be evaluated in constant 
time, the valuation 13(t) of a BAG 13 on a tree t can thus be computed in time linear 
in the size of t. 

An arbitrary total valuation v oft is said to satisfy 13 if v(a(n)) equals the truth 
value taken by 6.(13, t, a, n) under v, for each attribute a and node n oft such that a 
is an attribute of the label of n. 

We shall make use of the following lemma: 

Lemma 3.9 For each BAG 13 and tree t, 13(t) is the only valuation that satisfies 13. 

Proof. It follows immediately from the definitions that 13(t) satisfies 13. 
Suppose that v satisfies 13. We now show by induction on l that if a(n) is defined 

in 131(t) then 131(t)(a(n)) = v(a(n)). This clearly holds for l = 0. Suppose l > 0 and 
a(n) is defined in 13,(t). If a(n) is already defined in 131- 1(t) then the claim holds by 
the inductive hypothesis. If a(n) is not defined in 131-1(t), then, by definition, the 
value 131(t)(a(n)) equals the truth value of 6.(13, t , a, n) under the valuation 131-1 (t). 
By assumption v(a(n)) equals the truth value of 6.(13, t, a, n) under the valuation v. 
By the inductive hypothesis we have that 131-1(t)(b(m)) = v(b(m)), for all b(m) that 
are defined in 131-1(t). Hence, 13j(t)(a(n)) = v(a(n)). 

By definition of 13(t) the lemma now holds. • 

A BAG 13 can be used in a simple way to express unary (i.e., 1-ary) queries. 
Among the attributes in the vocabulary of 13, we designate some attribute result, and 
define: 

Definition 3.10 A BAG 13 expresses the unary query Q defined by 

Q(t) = {n I 13(t)(result(n)) = 1}, 

for every tree t. 
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euen = 1 euen =0 euen= 1 euen= 0 
x _before = 0 

result = 0 
x _before = 0 x_before = 0 x _before = 1 

euen = 0 
x _before = 1 

result = 0 result = 0 result = 1 result = 0 
u --+ s --+ s --+ s --+ s --+ s 

.i .i .i .i .i 
B is.,x = 0 B is.,x = 0 B is.,x = 1 B is.,x = 0 B is..x = 1 
.i .i .i .i .i 
y y X y X 
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Figure 3.2: A derivation tree and its valuation defined by the BAG of Figure 3.1. 

Example 3.11 Recall the BAG of Figure 3.1. A derivation tree of the underlying 
grammar can be viewed naturally as a string over the alphabet { x, y}. Every node 
labeled S in the tree represents a position in the string. Now consider the semantic 
rules defining the synthesized attribute even. They can be evaluated bottom-up; 
for any node n, even(n) is true iff n is even-numbered when counting up from the 
bottom. The semantic rules defining the inherited attribute x _before can be evaluated 
top-down; x_before(n) is true iff the letter x occurs in the string somewhere before 
position n. Finally, the semantic rules for the attribute result simply define result(n) 
as x _before(n) A even(n). Hence, the BAG expresses the query retrieving those even
numbered positions that come after an x in the string. An illustration is given in 
Figure 3.2. • 

Example 3.12 A BAG can also be used to query content rather than just structure. 
The context-free grammar in Figure 3.3 models a list of authors where each author 
is a sequence of letters. Suppose we want to select all authors named John. For the 
non-terminal Letter, we use the synthesized attributes is-a, ... , is-z. These attributes 
indicate the symbol that expands this non-terminal: for each production Letter ~ x 
and each attribute is-y, the semantic rule for is-y is defined as true if x = y and 
as false otherwise. Further, for the non-terminal LetterList, we have the attributes 
is-john, is-ohn, is-hn, and is-n. Their meaning is the obvious one. For instance, is-hn 
is true for a LetterList-labeled node when its first child is expanded with hand when 
the first child of its second child is expanded with n. These attributes are defined as 
follows: 

LetterList ~ Letter LetterList is-john(O) := is-j(l) A is-ohn(2) 
is-ohn(O) := is-o(l) A is-hn(2) 
is-hn(O) := is-h(l) A is-n(2) 
is-n(O) := is-n(l) 

LetterList ~ Letter is-john(O) := false 
is-ohn(O) := false 
is-hn(O) := false 
is-n(O) := is-n(l). 
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AuthorList -t Author AuthorList 
AuthorList -t Author 
Author -t LetterList 
LetterList -t Letter LetterList 
LetterList -t Letter 
Letter-ta 

Letter -t z 

Figure 3.3: A context-free grammar modeling a list of authors. 

Finally, we define the result attribute: 

Author -t LetterList result(O) := is-john(l). 

From this simple example it should be clear how text searching can be done for 
derivation trees of more involved grammars. • 

A BAG can also be used to express Boolean (i.e., nullary) queries. Among the 
attributes of the start symbol, we designate some attribute result, and define: 

Definition 3.13 A BAG B expresses the Boolean query Q defined by 

Q(t) = { true if B(t)~result(r)) = 1; 
false otherwise, 

for every tree t. Here r denotes the root oft. 

3.1.3 Relation-valued attribute grammars 

In this section, we generalize BAGs to relation-valued attribute grammars (RAGs). 
We start by giving an example. 

Example 3.14 As a first example, consider the RAG shown in Figure 3.4. A deriva
tion tree of the underlying grammar models a set (S) of documents (D) . Each doc
ument is a list (L) of paragraphs (p). The synthesized attribute result of U and Sis 
relation-valued; on any tree, the value of result at the root will be the t ernary relation 
consisting of all triples (d, f, l) such that, intuitively, d is a document, f is the first 
paragraph of d, and l is the last paragraph of d. More precisely, d, f, and l are not 
actual parts of the derivation tree, but are just nodes corresponding to documents 
and paragraphs. The result relation is computed using the synthesized attributes first 
and last of D and L; for every document node n, first(n) contains the first paragraph 
of that document, and last(n) contains the last. These attributes are computed in 
turn using the inherited attribute begin and the synthesized attribute end of L , which 
are Boolean-valued; for any L-node n, begin (n) is true if n marks the beginning of a 
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U-tS 
S-tDS 
S-t 
D-tL 

L-t pL 

L-t 

result(O) := result(l) 
result(O) := ({(1)} x first(l) x last(l)) U result(2) 
result(O) := 0 
first(O) := first(l) 
last(O) := last(l) 
begin(l) := true 
.first(O) := if begin(O) then {(1)} else 0 
last(O) := if end(2) then {(1)} else last(2) 
begin(2) := false 
end(O) := false 
end(O) := true 
.first(O) := 0 
last(O) := 0 

Figure 3.4: Example of a RAG. 
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document, and end(n) is true if n marks the end. Note that we now use first-order 
expressions, rather than propositional ones, to define the values of the attributes. • 

Let us indicate the differences between BAGs and RAGs more formally. 

Definition 3.15 To each attribute a we associate an arity r 0 (a natural number). A 
RAG-rule in the context (p, a, i), with p = Xo -t X1 ... Xn is an expression of the 
form 

a(i) :=<p(x1 , ... ,xrJ, 

where <p is a first-order logic formula over the vocabulary 

n 

LJ {b(j) I b E Att(Xj)} U {O, 1, ... , n}, 
j=O 

where for each j = 0, ... , n, b(j) is a relation symbol of arity rb, and j is a constant 
symbol. A valuation of a derivation tree t is a function that maps each pair (n, a), 
where n is a node labeled X and a is an attribute of X, to an r 0 -ary relation over the 
nodes oft. A RAG n consists of an attribute grammar vocabulary together with a 
mapping assigning to each context a RAG-rule in that context. 

Definition 3.16 Let n be a RAG, and let t be a derivation tree. Let a(i) := <p be 
the RAG-rule in the context (p, a, i). Let n be a node of arity n derived by p. Then 
the formula obtained from <p by replacing each occurrence of a relation symbol b(j) 
by the relation symbol b(nj), and by replacing each constant symbol j by the node 
nj, is denoted by fl(n, t, a, ni). 

Definition 3.17 Let n be a RAG and t a derivation tree. We define a sequence 
('R1(t))l~O of partial valuations as follows: 
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U----+N 

N----tNN 

N----tx 

result(O) := order(l) U {(1, O)} U {(O, O)} 
U descendants(l) x {(O)} 

descendants(O) := {(O)} U descendants(l) U descendants(2) 
order(O) := descendants(O) x {(O)} 

U (descendants(l) x descendants(2)) 
U order(l) U order(2) 

descendants(O) := {(O), (1)} 
order(O) := {(1, 0), (0, 0), (1, 1)} 

Figure 3.5: Computing a linear order on the nodes using a RAG. 

• Ro(t) is the empty valuation (Ro(t) is nowhere defined). 

• R.1(t), for l > 0, is defined as the following extension of R1- 1(t). For every 
a(n), if R.1- 1 is defined on all relational symbols that occur in ti(R., t, a, n), 
then Rz(t) is defined on a(n) as the relation obtained by evaluating the FO
formula li(R., t, a, n) over the whole tree where each relation symbol b(m) in 
ti(R., t,a,n) is interpreted by R1-1(b(m)). 

The valuation R.(t) is then defined as Rz(t), where l is such that Rz is a total valuation. 

An arbitrary total valuation v of t is said to satisfy n if v(a(n)) equals the 
relation defined by the FO-formula ti(R., t, a, n), where each relation symbol b(ni) is 
interpreted by v(b(ni)). Analogous to Lemma 3.9, one can prove the following lemma: 

Lemma 3 .18 For each RAG n and tree t, R.(t) is the only valuation that satisfies 
n. 

A RAG can be used to express k-ary queries in a simple way. Among the attributes 
of the start symbol U we designate some k-ary attribute result, and define: 

Definition 3.19 A RAG n expresses the query Q defined as follows: for any tree t, 
Q(t) equals the value of result(root(t)) in R.(t). 

Example 3.20 Another example of a RAG is depicted in Figure 3.5. The binary 
(i.e., 2-ary) query expressed by the RAG results on each tree in a linear order on its 
nodes, corresponding to a postorder traversal (Knu82] of the tree. This example can 
easily be generalized to arbitrary grammars. • 

As mentioned in the introduction RAGs can be seen as an abstract model for 
wrappers. These are tools that map relevant parts of the document at hand into, for 
instance, a relational database (ACM98, MAM+98, PGMW95]. We give an example 
to illustrate this. 

Example 3.21 The grammar in Figure 3.6 models a list of publications. Each pub
lication consists of a list of authors and a title. We now want a wrapper generating a 
binary relation consisting of all pairs (a, t) such that a is the author of a publication 
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PubList --t Pub PubList 
PubList --t Pub 
Pub --t AuthorList Title 
AuthorList --t Author AuthorList 
AuthorList --t Author 

result(O) := result(I) U result(2) 
result(O) := result(I) 
result(O) := b(l) x {2} 
b(O) := {1} U b(2) 
b(O) := {1} 

Figure 3.6: RAGs as an abstraction of wrappers. 
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with title t. The RAG in Figure 3.6 expresses this transformation. Here, for every 
AuthorList node n, b(n) contains the set of authors in the author list associated ton. 
Further, for every Pub node n, result(n) contains all pairs (a, t) where a is an author 
and tis the title of the publication represented by n. 

Of course, the binary relation created by a real wrapper, as opposed to the ab
straction of it by RA Gs, would contain the actual string content ( that is, actual names 
of authors and titles) rather than just the nodes in the document corresponding to 
~~. . 
3.2 Expressive P(!Wer of BAGs 

In this section we characterize the expressive power of BAGs in terms MSO. As a 
corollary we obtain a bottom-up property for Boolean BAG queries. 

A derivation tree of G can be seen as a E-tree with E = NUT. We therefore 
use for such derivation trees the vocabulary associated to (NU T)-trees as defined 
in Section 2.4. Further, let m be the maximum number of symbols occurring on the 
right hand side of a production of G. All derivation trees then are of rank m and 
we will make use of the shorthand Si (x, y) indicating that y is the i-th child of x. 
Clearly, Si(x, y) is FO definable from < and E for each i. 

Proviso 3.22 In the following, unless explicitly specified otherwise, if we say 'tree' 
we always mean 'derivation tree of G'. 

3.2.1 Main Theorem 

We first show that every query expressible by a BAG is also definable in MSO. 

Lemma 3.23 Every unary query expressible by a BAG is definable in MSO. 

Proof. Let B be a BAG. We know from Lemma 3.9 that for each tree there exists 
only one valuation that satisfies B. In MSO we can easily define this valuation. For 
each attribute a we have a set variable Za. This variable will contain all the nodes 
for which the attribute a is true in B(t). To this end, we associate a formula to each 
semantic rule in the following way. Consider a rule a( i) := cp of B in the context 
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(p, a, i) for some production p = Xo --t X1 ... Xn of G. Define the formula pp,a,i(za) 
as 

Pp,a,i(Za, (Zb)bEA) := 

(3zo) (3z.) ... (3zn) (0, Ox, ( z;) A h, S; (zo, z;) A z. - z; A ? ), 

(*) 

where cp is obtained from <p by replacing each propositional symbol b(j) occurring in 
cp by Zb(zi). Intuitively, formula(*) states that 

Zo 
/ ·· . '\c 

is derived by the production p. Formula cp states that <p holds for zo, z1, ... , Zn, i.e., 
that a(zi) is true. We now define <()a as the following disjunction over all rules defining 
the attribute a: 

<()a(za, (Zb)bEA) := V {pp,a,i(Za, (Zb)bEA) I (p, a, i) is a context}. 

Define e((Za)aEA) as the formula 

A (Vz)(Za(z) B <()a(z, (Zb)bEA)). 
aEA 

Let t be a tree and for each a E A let Sa be a set of nodes oft such that t t= e[ ( sa) a EA]. 
Then define the valuation v as follows: 

( ( )) { 
1 if n E Sa, 

v a n := 0 otherwise. 

ff follows from the definition of e that v satisfies B. Since, according to Lemma 3.9, 
there exists only one valuation that satisfies B, it follows that for each t there exists 
only one sequence of sets (sa)aEA such that t t= e[(sa)aEA]- Hence, the following 
formula defines the query expressed by B: 

a(z) := (3Za)aEA (e((Za)aEA) I\ Zresult(z)). 

• 
The heart of the proof of the other direction consists of showing that a BAG can 

compute MSO-equivalence types. To this end we, make use of Proposition 2.14(1) 
which says that it suffices to Compute TrSO(tn, n) and Tr80(tn, n), where k is the 
quantifier depth of cp, to decide whether t t= cp[n]. Furthermore, it follows from 
Proposition 2.14(2,3) that the types Tr80(tn,n) can be computed in a bottom-up 
fashion for each node n, while the types Tr80 (tn, n) Can be computed in a top-down 
fashion when the =~80-types of the subtrees rooted at the children of n are already 
known. We use these ideas in the proof of our first main result. 
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Theorem 3.24 A unary query is expressible by a BAG if and only if it is definable 
in MSO. 

Proof. The only-if direction is given by Lemma 3.23. 
For the other direction, consider the unary query defined by the MSO-formula 

cp(z) with one free individual variable z. Furthermore, suppose the quantifier depth 
of <pis at most k. 

We construct a BAG B with attribute set A= {envo,subo I (J E cpk} U {result}, 
where each enve is inherited for all grammar symbols except for the start symbol for 
which it is synthesized, and each sube and result are synthesized for all non-terminals 
and inherited for all terminals. The intended meaning is the following: for each tree 
t, each node n oft, and each() E cpk, 

• B(t)(envo(n)) is true iff rf50 (tn,n) = 8; 

• B(t)(subo(n)) is true iff rf50(tn, n) = 8; and 

• B(t)(result(n)) is true iff t p= c,o[n]. 

By Proposition 2.14(1), t p= c,o[n) only depends on rf50 (tn,n) and rf50(tn,n). 
Hence, B(t)(result(n)) only depends on the values 

(B(t)(envo(n)))oE<h and (B(t)(subo(n)))eE<l>k · 

The BAG B works in two passes. In the first bottom-up pass all the subo attributes 
are computed, while in the subsequent top-down pass all the enve attributes are 
computed. To initiate the top-down pass we use our convention, mentioned at the 
beginning of Section 3.1, that the start symbol cannot appear in the left-hand side of 
a production.1 During this second pass, there is enough information at each node n 
to decide whether t F c,o[n]. 

We now define the semantic rules of B. To this end, we introduce the following 
functions. For convenience, we sometimes write rf90 (t,root) for rf90(t,root(t)). 
Define for eac~ grammar symbol X the functio~ ~x ~;J t-t cp k mapping each s~quence 
()1 ... ()n to() 1fthere are trees ti, ... , tn, with Tk (X(t1, ... ,tn),root) - (} and 
rf 5° (ti, root) = (Ji, for i = 1, . . . , n. Further, define for each natural number i and 
grammar symbol X the function x\ : cpk x cpk t-t cpk mapping each pair (80 , 81 · ··On), 
with n ~ i, to() if there exists a tree t with a node n with n children such that 

• labt(ni) = X; 

• rf90(tn, n) = Bo; 

• for each j E {1, ... ,n} - {i}, rf90(tnj,nj) = (Ji; and 

1This technicality can be dispensed with by adding so-called root rules to the attribute grammar 
formalism (see, e.g., Giegerich for a definition of attribute grammars with root rules [Gie88]). The 
formalism of attribute grammars becomes much less elegant then, however. Hence our harmless 
technical assumption concerning the start symbol. 
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• rrso ( tni, ni) = (). 

Note that the above definition does not depend on ()i· By Proposition 2.14(2,3) the 
above functions are well defined. To each production p = Xo -+ X1 ... Xn we assign 
the following semantic rules (as usual the empty disjunction is false): 

• For each() E <)k and for every j such that Xi is a terminal, add the rule 

sub ( ") ·= { true if rk1s0 (t(Xj),root) = 0, 
6 J · false otherwise. 

Further, add for each O E <) k the rule 

n 

sublJ(O) := V{/\ subo;(i) I 01, ... ,On E <)k and fa0 (01 ···On)= O}. 
i=l 

• H X0 is the start symbol U, then for each() E <Jk, add the semantic rule 

env (O) := { true if rk18
~(t(U), root) = 0, 

9 false otherwise. 

From our assumption that the start symbol U does not occur on the right-hand 
side of any production, we know that there is only one occurrence of U in t he 
tree and this is at the root. So the second, top-down, pass will start at the root. 

For j = 1, ... , n, and OE <Jk, add the rule 

n 

envlJ(j) := V { enVIJ0 A/\ sub/J, (i) I 
i=l 

• Finally, for j = 0, ... , n, add the rule 

result(j) := V{envlJ.(j) A subo.U) I Oe,Os E <)k and 

there exists a tree t with a node n such that rk180(t0 , n) = Oe, 

rk1S0 (tn, n) = Os, and t F <p[n]}. • 

As a corollary of our proof of Theorem 3.24 we obtain a normal form for BAGs. 
The BAG described in the proof is special in two ways. First, it needs only positive 
formulas (involving only the connectives V and A, without ,) in its semantic rules. 
Second, it can be evaluated on any tree by one bottom-up pass followed by one top
down pass. So we have the following: 
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U-+S 
S--tBS 

S-+B 

B-+ X 

B-+y 

x_before(I) := false 
x _before(2) := is...x(l) V x _before(O) 
even(O) := odd(2) 
odd(O) := even(2) 
result(O) := even(O) I\ x _before(O) 
even(O) := false 
odd(O) := true 
result(O) := false 
is...x(O) := true 
is...x(O) := false 

Figure 3. 7: Example of a BAG without negation. 
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Corollary 3.25 Every BAG is equivalent to one which uses only positive formulas in 
its semantic rules, and moreover which can be evaluated in two passes (more precisely, 
which is simply-2-pass [DJL88]). 

Actually, part of the above corollary, that one can always find an equivalent BAG 
which uses only positive rules, can also quite easily be seen directly. Let B be BAG 
over the attribute grammar vocabulary (A, Syn, Inh, Att). We construct an equivalent 
BAG B' over the attribute grammar vocabulary (A', Syn', Inh', Att') that does not use 
negation in its semantic rules in the following way. For each attribute a we add an 
attribute Na that becomes true if the attribute a is false. Formally, A' = A U {Na I 
a E A}, for each grammar symbol X, 

Syn'(X) = Syn(X) U {Na I a E Syn(X)}, 

and 
Inh'(X) = Inh(X) U {Na I a E Inh(X)}. 

For each rule a(i) := cp of B in context (p, a, i), add the rule a(i) := rp in context 
(p,a,i) and the rule Na(i) := , cp in context (p,Na,i) to B'. The formula'¢;, where 
1/J = cp or 1/J = , cp, is obtained from 1/J by transforming it into disjunctive normal form 
and then replacing each literal ,b(j) by Nb(j) . 

Example 3.26 The BAG in Example 3.5 uses negation to select all nodes on an 
even numbered position. In Figure 3. 7 a BAG is depicted that retrieves those nodes 
without using negation. For clarity we replaced the attribute Neven by odd. • 

3.2.2 Bottom-up property for Boolean BAG queries 

Another view of a BAG is that of a two-way version of finite bottom-up tree automata, 
alternative to the more classical two-way generalization of tree automata provided by 
Mariya [Mor94). The two-way generalization is provided by the two different types 
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of attributes in a BAG: intuitively, synthesized attributes provide the bottom-up 
direction, and inherited attributes provide the top-down direction. 

The following proposition relates BAGs and tree automata. 

Proposition 3.27 For each deterministic bottom-up tree automaton B there exists 
a BAG B such that for every derivation tree t, B accepts t if and only if B accepts 
t . This BAG uses only synthesized attributes. 

Proof. The execution of B = ( Q, N U T, F, t5) on t can easily be simulated by 
a BAG B having synthesized attributes q for all states q in Q. If n is a node of 
t, then the attribute value q(n) is true in B(t) iff tS*(t0 ) = q, that is, B assumes 
state q at n in its execution on t. Let p = Xo -t Xi ... Xn be a production of G, 
T(p) := {j E {1, ... ,n} I Xi is a terminal}, and N(p) := {1, ... ,n}-T(p). Add for 
each q E Q the semantic rule 

q(O) := V{ /\ qi(i) I ql,··· ,qn E Q,tS(qi, .. . ,qn,Xo) = q, 
iEN(p) 

and for each i E T(p), tS(Xi) = Qi }. 

Finally, the attribute result of U is defined by the rule result(O) := V qEF q(O). • 

It now follows from Theorem 2.13 and Proposition 3.27, that every MSO-definable 
Boolean query is expressible by a synthesized BAG. This then leads to the following 
bottom-up property for Boolean BAG queries: 

Corollary 3.28 For every BAG B there is a BAG B' having only synthesized at
tributes, such that B and B' express the same Boolean query. 

In the general case of arbitrary attribute grammars, where semantic rules can be 
arbitrary computable functions, it is well known that the use of inherited attributes 
can be simulated using synthesized attributes only [Knu68); we thus see that a similar 
phenomenon holds when semantic rules can only be propositional formulas . 

Corollary 3.28 does not hold for BAGs expressing unary queries, as illustrated in 
the following example. 

Example 3.29 Consider again the grammar in Example 3.5. A query that can only 
be expressed with synthesized and inherited attributes is the one that retrieves all 
nodes, if both the first and the last letter of the string are x's and retrieves no nodes 
otherwise. This query can not be expressed with only synthesized attributes. Indeed, 
every synthesized BAG already has to decide to select the last letter of the string 
without having visited the first letter, that is, without knowing whether the first letter 
carries an x. A same argument holds for BAGs having only inherited attributes. • 

3.3 Expressive power of RAGs 

In this section we characterize RAGs as the queries defined by first-order inductions 
of linear depth, or, equivalently those computable in linear time on a parallel machine 
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with polynomially many processors. We also show that, in contrast to BAGs, even 
for Boolean queries, synthesized RAGs are strictly less expressive than RAGs with 
both synthesized and inherited attributes. Hence, there is no bottom-up property for 
Boolean RAG queries. In the last subsection, we discuss the relationship between 
MSO and RAGs. First, we introduce the necessary logical definitions. 

3.3.1 Fixpoint logic 

See Ebbinghaus and Flum's book [EF95] for more background on the logics we are 
about to define. 

Partial and least fixpoint logic 

Fixpoint logic allows first-order logic formulas to be iterated. We will consider several 
kinds of fix.point logics. Let tp(z1, ... , zk, Z) be a first-order logic formula. The zi's 
are free individual variables, Z is a k-ary relation variable that can be used in tp in 
addition to the relation symbols provided by the vocabulary. On any tree t, cp defines 
the following relations obtained by iterating tp starting with the empty relation for 
Z. Define 

.- 0; 

.- {(n1, ... ,nk) It F cp[n1, ... ,nk,'Pi(t)]}. 

We say that tp converges to a fix.point on t if there exists an n such that tpn(t ) = 
tpn+1(t). We denote this fixpoint by tp00 (t). If tp does not reach a fix.point on t we 
define tp00 (t) as the empty set. We define partial fixpoint logic (PFP} as follows: for
mulas are constructed just as in first-order logic, with the addition t hat we also allow 
formulas of the form PFP[tp, Z](z1 , ... , zk ), where Z is k-ary and tp(z1, ... , zk, Z) is 
a first-order logic formula. The semantics is as follows: for any tree t, and nodes n1, 
... , nk oft, 

tFPFP[tp,Zl[n1, ... ,nk] ~ (n1, ... ,nk)Etp00 (t). 

The formula tp is called positive if every occurrence of the variable Z occurs under 
an even number of negations. For such formulas t he above described iteration process 
always reaches a fix.point after a finite number of stages. Moreover, this fixpoint is 
also the least fixpoint of the operator defined by tp: over a tree t, this operator maps 
k-ary relations R over the domain of t to k-ary relations and is defined by 

tp(R) := {(n1, . .. , nk) It F tp[n1, ... , nk , R]}. 

We now define least fixpoint logic (LFP), in the same way as PFP except that for 
each formula of t he form LFP[tp, Z](z1, . . . , zk), tp has to be positive. 

Note that our definitions of PFP and LFP differ from those in the literature: 
we do not allow nesting of fix.points and we do not allow parameters in the formula 
constituting the fix.point. However, since these can be dispensed with, our definitions 
are equivalent to the usual ones [EF95]. 
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Fixpoints of linear depth 

Consider a PFP-formula of the form PFP[<p, Z](z1, ... , Zk)- IT there exist natural 
numbers c and d such that for every tree t, <preaches its partial fixpoint after at most 
c · ltl + d iterations, where ltl denotes the number of nodes int, then we say that rp 
is linearly bounded by the partial fixpoint semantics. We define the logic PFP-LIN as 
the fragment of PFP where only partial fixpoints of linearly bounded formulas are 
allowed. 

LFP-LIN is then the fragment of PFP-LIN that only allows formulas under the 
fixpoint operator that are both positive and linearly bounded. 

Simultaneous fixpoint logic 

Let rp1(z1,Z1 , ,,. ,Zk), . . . ,'Pk(Zk,Z1, ... ,Zk) be a system of first-order formulas, 
where for j = 1, ... , k, Zj is an rrary relation variable. On a tree t, consider 
for j = 1, . . . , k, the stages defined by 

<p1(t) 

rp;H(t) 

0; 
{(n1, ... , nr;) I t I= <pj[n1, . . . , nr;, 'Pl (t), ... , 'Pi(t)]}. 

We say that this system reaches a simultaneous fixpoint on t if there exists an n such 
that for all j = 1, ... , k, <pJ ( t) = 'PJH ( t). We denote the relation defined by 'Pi in this 
fixpoint by <pJ°(t). If there does not exist a simultaneous fixpoint on t, then <pJ°(t) is 
defined as the empty set. We now define simultaneous partial fixpoint logic (S-PFP) 
as follows: formulas are constructed just as in first-order logic, with the addition that 
we also allow formulas of the form S-PFPj[<p1, ... , 'Pk, Z1, .. . , Zk](z1 , . .. , Zr), where 
Zj is r-ary and 'Pi is a first-order formula for i = 1, ... , k. The semantics is defined 
as follows: for any tree t, and nodes n1, ... , nr 

We say that the system of first-order formulas <p1, ... , 'Pk is linearly bounded by 
the simultaneous partial fixpoint semantics if there exist natural numbers c and d such 
that for every derivation tree t, the system of first-order formulas <p1, . . . , 'Pk reaches 
its simultaneous partial fixpoint after at most c - ltl + d iterations. We define the logic 
S-PFP-LIN as the fragment of S-PFP where only simultaneous partial fixpoints of 
linearly bounded systems of first-order formulas are allowed. 

The next proposition states that S-PFP-LIN is equivalent to PFP-LIN. In par
ticular this means that mutual recursion can be replaced by simple recursion while 
preserving linearly boundedness. The proof is exactly as the proof of the Simultane
ous Induction Lemma known from the theory of inductive definitions and finite model 
theory [Mos74, EF95]. 

Proposition 3.30 Every S-PFP-LIN-formula of the form 
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where j E {1, . .. , k}, is equivalent to a PFP-LIN-formula of the form 

(3u)(PFP(?/J, Z](zu)); 

3.3.2 Main Theorem 

We now relate RAGs to PFP-LIN. In particular, PFP-LIN-formulas can express k-ary 
queries in the following way: 

Definition 3 .31 Let cp(x1 , ... , Xk) be a PFP-LIN-formula. Then cp expresses the 
k-ary query Q defined by 

for every tree t. 

Theorem 3.32 A query is expressible by a RAG if and only if it is definable in 
PFP-LIN. 

Proof. Only if. Let n be a RAG. We assume w.l.o.g. that no semantic rule con
tains a variable of (za)aEA, zo, z1, z2, .... We define an S-PFP-LIN-formula that 
simulates n. As induction variables of this system we have an2 (ra + 1)-ary rela
tion variable Za for each attribute a; Za stands for the set of tuples (n, n1 , .. . , nrJ , 
where n is a node labeled X such that a E Att(X), and (n1 , ... ,nrJ is a tuple 
in the currently computed value of R(t)(a(n)). For each attribute a there is a for
mula <pa(za,X1, ... ,Xra, (Zb)bEA), defining the new value of Za from the old values 
of the Zb's, built up as follows. Consider a rule a(i) := cp(x1 , ... ,xrJ of n in 
the context (p, a, i) for some production p = Xo -+ Xi ... Xn of G. The formula 
Pp,a,i(Za , Xl,··· ,Xra,(ZbhEA) is defined as 

where <pis obtained from cp by replacing each occurrence of b(j)(d) by Zb(Zj , d), and 
by replacing each occurrence of the constant symbol k by Zk. The formula <pa then is 
the disjunction over all rules defining the attribute a: 

<pa(Za, X1 · • · , Xra, (Z b)bEA) := 

V {Pp,a,i (Za, X1 ... , Xra, (Zb)bEA) I (p, a, i) is a context}. 

Let a(z) be the formula 

(3z) (Ou (z ) I\ S-PFP1[cpresult, (cpa) aEA-{result} , (Za)(aEA)](z, z) ) · 

2Recall that ra is the arity of the attribute a. 
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Here lzl equals the arity of result. By an easy induction on i one can now show 
that for any node n and attribute a, if 'R.i(t) is defined on a(n) then for all nodes 

(n, m1, ... , mrJ E cp~ (t) {:} (m1, ... , mrJ E 'R.i (t)(a(n)) . ' 

This implies that 

(n, m1, . .. , mrJ E cp~(t) {:} (n, m1, ... , mrJ E n(t)(a(n)). 

Further, for each tree t, let lt be the smallest integer such that 'R.it = 'R.1t+1· Then, 
obviously, lt :=; IAI · It! . Hence, the S-PFP-formula in u reaches its fixpoint after at 
most IAI · ltl iterations. Proposition 3.30 now gives us the desired formula in PFP-LIN. 

If. The crux of the proof is the simple observation that there is a RAG that 
computes all the relations that make up a derivation tree, viewed as a relational 
structure, in one bottom-up pass over the tree. In a subsequent top-down pass, we 
can make these relations available at all nodes. A linearly-bounded iteration of a 
first-order formula can then be simulated in one preorder traversal of the tree, where 
the different stages are passed over as relational attribute values. 

We now formally describe the RAG 'R. that expresses the query defined by a PFP
LIN-formula. To compute the relations that make up a derivation tree we make use of 
the binary attributes Sf, ... , S~, where r is the maximum width of any production in 
P , and the unary attributes (O~)XENUT· These attributes are synthesized for non
terminals and inherited for terminals. They are defined by the following semantic 
rules. Consider the production p = X 0 -t X 1 ... Xn. For j =, 1 ... , r, define 

{ 
0 s;(i) U {(O,j)} 

s;(o) := · ~ 1 

LJ s;(i) 
i = l 

For each X E N U T, define 

{ 
0 Ox(i) U {(O)} 

Ox(O) := •; t 
LJ Ox(i) 
i=l 

if j ::; n, 

if j > n. 

if X = Xo, 

otherwise. 

For each i, such that Xi is a terminal, and for each j = 1, . .. , r, define 

s;(i) := 0, 

and for each X E N U T define 

Ox(i) := { ~(i)} if X = Xi, 
otherwise. 
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The values of the relations (Sjh$i$r and (OxhENUT at the root then form the 
relational structure that represents the derivation tree. These values are now made 
available to the other nodes in the attributes (Sih$i$r and (Ox)XENUT· These 
attributes are synthesized for the start symbol U and inherited for all other symbols, 
and are defined via the following rules. For every production of the form U -+ 
X1 . .. Xn, for every j = 1, ... ,r, and XE NUT, define 

and Ox(O) := Ox(O). 

For every production of the form Xo -+ X1 ... Xn, where X0 f:. U, and for every 
j = 1, ... ,r, i = 1, ... ,n, and XE NUT, define 

and Ox(i) := Ox(O). 

Let cp be a PFP-LIN-formula. Then cp is a first-order combination of formu
las of the form Sj(Z1,z2), Ox(z), and PFP['lj,,Z](z1 , .. . ,zk), Each relation Si and 
Ox is already available at the root. Hence, it suffices to compute each subformula 
PFP['lj,, Z](z) occurring in cp in some attribute and make it available at the root. 

Let c and d be numbers such that 'lj, reaches its fixpoint after at most c · ltl + d 
iterations on each tree t. For any i, there exists a first-order formula 'lj,i(z, Z) that 
defines i stages of 'lj, at once. Indeed, let y1 , ... , Yk be variables that do not occur in 
'lj,. Then, define 'lj,1 (z, Z) as 'lj,(z, Z), and for i > 1, 'lj,i(z, Z) as the formula obtained 
from 'lj, by replacing each atomic formula of the form Z ( d), by the formula (3y) (y = 
d I\ (3.z)(z = y I\ 'lj,i-1 (.z, Z))). 

The RAG n"' evaluates the formula PFP['lj,, Z](.z) in the following way: First, d 
stages of 'lj, are evaluated at the root of the tree; this is achieved by evaluating the 
formula 'lj,d(z, 0). Then R,t/J makes a preorder traversal of the tree while evaluating c 
stages of 'lj,, i.e., evaluating the formula 'lj,c, at each node. 

We now formally describe the RAG R,'P. It uses the k-ary attribute Z, which is 
synthesized for the start symbol and inherited for the other grammar symbols, and 
the k-ary attribute Z', which is synthesized for the non-terminals and inherited for 
the terminals. The attributes Z and Z' are defined by the following semantic rules. 
Consider a production of the form p = Xo-+ X1 . .. Xn. 

1. If Xo = U then add the rule 

Z(O) := {z I 1Pd+c(z, 0)}. 

2. Further, define 
Z(l) := {z I 'lj,f(.z)}, 

where 'lj,1 is obtained from 'lj,c by replacing each occurrence of Ox(z) or Sh(z1 , z2) 
by Ox(l)(z) or Sh(l)(z1, z2) respectively, and by replacing each occurrence of 
Z(d) by Z(O)(d). 

3. For each j, such that X 3 is a terminal, define 

Z'(j) := Z(j). 
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4. For each j = 2, ... , n, we have 

Z(j) := {z 11/JJ(z)}, 

where 1/JJ is obtained from ?/Jc by replacing each occurrence of Ox(z) or Sh(z1, z2) 
by Ox (j)(z) or Sh(j)(z1, z2) respectively, and by replacing each occurrence of 
Z(d) by Z'(j - l)(J). 

5. Finally, define 
Z'(O) := Z'(n). 

Note that on every tree t, the evaluation of 'R,'P performs exactly 2 · !ti iterations. 
In each iteration exactly one attribute Z or exactly one attribute Z' is defined. For a 
tree t, let for i ~ 1, ai(t) (,Bi(t)) be the number of Z (Z') attributes that are defined 
in 'R,i ( t). The correctness of this construction now follows from the following lemma: 

Lemma 3.33 Let t be a derivation tree, let n be a node of t and let a E { Z, Z'}. If 
a(n) is defined in Rf(t) but not in Rf_1 (t), then 

Rf (t)(a(n)) = {ii It F 1/Jc·a,(t)+d[ii, 0]}. 

This lemma can be proved by induction on the pair ( ai ( t), .Bi ( t)). 
Hence, R,t,(t)(Z'(r)) equals the relation defined by PFP[?/1, Z](z), where r is the 

root oft. • 

The logic PFP-LIN has a rather bizarre syntax, as it allows the iteration of a 
formula only when that formula is linearly bounded, which is not an obvious syntactic 
property. Actually, we do not know whether linear boundedness of first-order formulas 
over derivation trees of some fixed grammar is decidable. Over graphs the property 
can be shown undecidable by a reduction from validity; but over derivation trees ( or 
equivalently ~-trees, for some ranked alphabet ~), satisfiability and validity of first
order logic (even monadic second-order logic) is decidable [Don70, TW68, Tho97b]. 

This problem of bizarre syntax can be avoided, however, by defining PFP-LIN in 
an alternative manner. Under this alternative, the iteration of any formula is allowed 
(so that the syntax is now trivially decidable). We then build into the semantics that 
the iteration is performed exactly n times, where n is the cardinality of the domain. 
To this end, one could also employ first-order logic extended with for-loops [NOTV98] 
where head formulas of for-loops are only allowed to define the domain of the structure 
at hand. It is not difficult to adapt the proof of Theorem 3.32 for this alternative 
view of PFP-LIN. 

3.3.3 Complexity of RAGs 

Immerman [Imm89] showed that LFP-LIN captures the complexity class CRAM[n] 
consisting of all queries computable in time O(n) by a parallel machine with polyno
mially many processors. 
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Theorem 3.34 [Imm89) LFP-LIN = CRAM[n] on the class of all ordered finite 
structures. 

Using Theorem 3.32 and Theorem 3.34, we show the following: 

Corollary 3.35 A query is expressible by a RAG if and only if it is computable in 
linear parallel time with polynomially many processors. 

Proof. In Lemma 3.36(ii) we show that PFP-LIN = LFP-LIN on the class of all 
trees. Hence, by Theorem 3.34, we have that PFP-LIN = CRAM[n) on the class of 
all ordered trees. By Theorem 3.32, it then suffices to show that PFP-LIN = CRAM[n) 
on the class of all trees without a linear order. The order requirement in Theorem 3.34 
is only needed to show that every CRAM[n) program can indeed be simulated by an 
LFP-LIN formula. Hence, it readily follows that PFP-LIN ~ CRAM[n) on the class 
of all trees without a linear order. It remains to show the converse inclusion. Let P be 
a CRAM[n) program over trees with a linear order and let~ be the PFP-LIN formula 
simulating P. For expository purposes assume~ is of the form PFP[cp,X](x). By 
Lemma 3.36(i), there exists a PFP-LIN formula PFP['!j,, Y)(y1, y2) computing a linear 
order. We can not simply plug in the formula PFP['!j,, Y](y1 , Y2) for each occurrence 
of Y1 < Y2 in ~ because we do not allow nesting of fixpoints. However, we can use 
the following composition trick: we first compute the ordering and only then start 
iterating cp. That is, we just use the formula 

S-PFP1 [cp', tj,, X, Y](x), ( *) 

where cp' is the formula Plin. ord. (Y) I\ rj;. Here, Plin. ord. (Y) is the first-order logic 
formula defining Y as a total linear order, and ,j; is the formula obtained from cp by 
replacing each occurrence of Y1 < Y2 by Y (Y1, Y2) . By definition of cp', the iteration of 
cp only starts when Y is indeed a linear order. Further, cp' is linearly bounded since 
both cp and tp are. By Proposition 3.30, (*) is equivalent to a PFP-LIN formula. • 

It remains to prove the following lemma. 

Lemma 3.36 (i) There exists a PPP-LIN-formula that uniformly defines a total 
order on all trees. 

(ii) PFP-LIN = LFP-LIN on the class of all trees. 

Proof. ( i) Example 3.20 shows how an ordering of a binary tree can be obtained using 
a RAG. It is straightforward to generalize this construction to arbitrary derivation 
trees. By Theorem 3.32, this RAG is equivalent to a PFP-LIN-formula. 

(ii) In Example 3.20, we saw how we can compute an ordering of a tree using a 
RAG. We can also compute this ordering directly in LFP-LIN. Hence, the equivalence 
of LFP-LIN and PFP-LIN on trees reduces to their equivalence on ordered trees (we 
can compose the computation of the ordering with other PFP constructs like in the 
proof of the previous theorem). The proof of the latter equivalence is similar to the 
proof of the known fact that LFP equals PFPIPTIME on ordered structures [EF95, 
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Thm 7.4.14] (see also (AV95]). Here PFPIPTIME denotes the fragment of PFP, where 
every fixpoint is reached after at most a polynomial number of iterations. • 

3.3.4 No bottom-up property for RAGs 

In this section we prove that synthesized RAGs, i.e., RAGs that only use synthesized 
attributes, are strictly less expressive than RAGs that can use both synthesized and 
inherited attributes. 

For the rest of this section, let G be the grammar {U -+ LL, L -+ L, L -+ f}. 
Derivation trees of this grammar consists simply of two monadic trees concatenated 
at the root: 

u 
/ '\, 

L L 
.j, .j, 

.j, .j, 
L L 

Let equaLsubtree be the query that is true on t when the left subtree has the 
same number of nodes as the right subtree. We show that this query cannot be 
expressed by a synthesized RAG. However, it can be expressed by a RAG. 

Proposition 3.37 The query equal..subtree is expressible by a RAG. 

Proof. By Theorem 3.32, it suffices to show that equal..subtree is definable in 
PFP-LIN: 

cp := (:lx)(:ly)(x -I y /\ 01(x) /\ 01(Y) /\ PFP[a,X] (x,y)), 

where 
a(x,y,X) := (3z)(Ou(z) /\ S1(z,x) /\ S2(z,y)) 

V (3x')(3y')(X(x',y') /\ S1(x',x) /\ S1(Y', y)) . 

This formula maintains a binary relation X. In the first iteration of a, the first node of 
the left subtree and the first node of the right subtree are put in X. In the following 
iterations, the next pair of corresponding nodes is added to X, provided it exists. 
Hence, a iterates at most ltl/2 times on a tree t, and thus belongs t o PFP-LIN. The 
formula cp then becomes true if both the last node of the left subtree and the last 
node of the right subtree belong to X. • 

In the rest of this section we prove that equal..subtree cannot be expressed by a 
synthesized RAG. 

Definition 3 .38 A simple RAG is a synthesized RAG over the attribute grammar 
vocabulary that has only the attribute c for L and only the attribute result for U . 
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We focus attention on simple RAGs and show later that any synthesized RAG can 
be transformed into an equivalent simple one. 

For any integers n1 and n2 greater than 1, let t(n1, n2) denote the tree which has a 
left subtree of length n1 and a right subtree of length n2. Let R be a simple RAG. In 
Lemma 3.40 we show that the values ofR(t(n1 , n2))(c(n1)) and R(t(n1,n2))(c(n2)), 
where n1 is the first child and n2 is the second child of the root, can be uniformly 
defined in PFP over a structure that, essentially, only contains an ordering of part of 
the domain of t ( n1, n2). First, we need some definitions. 

Definition 3.39 Let r < = {O, 1, 2, <} be the vocabulary consisting of the constant 
symbols 0, 1 and 2, and the binary relation symbol<. Let n1 and n2 be two integers 
greater than 1. 

1. Define N1(n1,n2) as the r<-structure with domain {1, ... , n1 + n 2 + 1}, where 
0 = n1 + n2 + 1, 1 = n1, 2 = n1 + n2, and where< is interpreted as the total 
order on {1, . . . , ni}; 

2. Define N2(n1,n2) similarly as N1(n1,n2), except that now< is interpreted as 
the total order on { n1 + 1, ... , n1 + n2}. 

Let ~(xi, ... ,xi) be a PFP-formula over the vocabulary r<. We define, for i E 

{1, 2}, ~(M(n1, n2)) as the relation defined by~ on M(n1, n2), i.e., by 

Lemma 3.40 Let n be a simple RAG. There exists a PFP formula 

such that for all n1, n2 > 1 

and 

R(t(n1,n2))(c(n2)) = ~(N2(n1,n2)), 

where n1 is the first child and n2 is the second child of the root of t(n1, n2). 

Proof. Let c(O) := <p(x) be the rule in the context (L -t f, c, 0), and let c(O) := 1/J(x) 
be the rule in the context (L -t L,c,0). Let Y1, Y2, Y3, z1, z2, Z3, V1, ... , Vrc be 
variables not occurring in <p or 1/J. Then define ~ ( x) as the formula 

Here root(y1) is an FO-formula that defines the root of the tree, and 
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is the formula 

(Y1 = First A (Y2 = y3 -Hp' ( i))) 
V (3z1)(Succ(z1) = Yt A (3z2)(3z3)(3v)(X(z1,z2,z3,v) A (Y2 = y3-+ 1P'(x))), 

where First is the first element of< and Succ is the successor function obtained from 
<; cp' is obtained from cp by replacing each occurrence of 1 by y1 and each occurrence 
of O by Succ(y1); 1P' is obtained from 1P by replacing each occurrence of c(l)(d) by 
X(z1,z1,z1 ,d), each occurrence of Oby Yt, and each occurrence of 1 by z1. The 
variables y2 and y3 make sure that the relation X is never empty. It might happen 
that cp defines an empty relation; then the :fixpoint would be empty. • 

The next lemma is an immediate observation. 

Lemma 3.41 Let {(x1, .. . , XL) be a PFP-formula over r <. For any n1 and n2 greater 
than 1, and i E {1, ... , l}: 

(i) If N1(n1 , n2) F {[nt,··. ,nL] and 

then for all m E {n1 + 1, ... ,n1 + n2 --1} -- {n1, ... ,nt}, 

N1 (n1, n2) F {[n1, . . . , lli- 1, m, ni+t, ... , nt] . 

ni E {1, ... , n1 -- 1} -- {n1, ... , ni-1,ni, ... ni} 

then for all m E {1, .. . , n1 -- 1} -- {n1, . . . , nt}, 

N2(n1, n2) F {[n1, ... , ni-1, m, lli+i, . . . , nt]. 

Proof. This follows from the fact that PFP cannot distinguish between elements 
that are automorphic. Clearly, the transposition of any two elements n, n' E { n1 + 
1, ... , n1 + n2 -- 1} is an automorphism of N1 ( n1, n2), and the transposition of any 
two elements n, n' E { 1, ... , n1 -- 1} is an automorphism of N2 ( n1, n2). • 

D efinition 3.42 Let {(x1, .. . ,xL) be a PFP-formula over the vocabulary r< · Let 
n1 and n2 be two integers·greater than 1. Let Tc,l be the vocabulary {O, 1, 2, ci, c2}, 
consisting of the constant symbols 0, 1, 2 and the l -ary relation symbols c1 and c2. 
Define t( e' n1, n2) as the Tc,L-Structure with domain { 1, ... ' n1 + n2 + 1}, where O = 
n1 +n2 + 1, 1 = n1, 2 = n1 + n2, Ct= {(N1(n1,n2)), and c2 = t(N2(n1,n2)). 

We now show that, under certain assumptions, on the structures t({, n1, n2) every 
FO-formula can be split into formulas that essentially speak only about the relation 
c1 or only about the relation c2, but not about both. 
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Lemma 3.43 Let~ be a PFP-formula with£ free variables. Assume there are FD
formulas P1 ( x) and P2 ( x) such that for all n 1, n2 > 1, 

t(~,n1,n2) F P1[n) {:} n E {1, . .. ,n1 -1}, 

and 

t(~,n1,n2) F P2[n) {:} n E {n1 + 1, .. . ,n1 +n2 -1}. 

For every FD-formula c,o(x1, ... , Xk) over the vocabulary Tc, t expanded with the unary 
relational symbols Pi and P2, there exists a disjunction 'l/J(x1, ... , Xk) of FD-formulas 
of the form 

k 

a(x1, ... ,xk)l\f3(x1, ... ,xk)I\ f\w3(x3), 
j=l 

where a does neither contain P2 nor c2 , f3 does neither contain Pi nor c1 , and each 
w3(x3) is oftheformx3 = 0, x3 = 1, x3 = 2, Pi(x3) orP2(x3). For everyn1,n2 > 1, 
and for every n1, ... , nk E {1, ... , n1 + n2 + 1} it holds that 

t(~, n1, n2) F cp[n1, ... , nk) {:} t(~, n1, n2) F '!/J[n1, .. . , nk)· 

Proof. The proof goes by induction on the structure of c,o. We can assume w.l.o.g. 
that constants only appear in atomic formulas that are equalities. 

1. If c,o equals c = c', where c, c' E {O, 1, 2} and c -::/- c', then '1/J is the empty 
disjunction. 

2. If c,o equals c = c, where c E {O, 1, 2}, then 'ljJ is 

( true /\ true). 

3. Suppose c,o(x) is x = c or c = x, where c E {O, 1, 2} . Then 'ljJ is 

(true/\ true/\ x = c). 

4. Suppose c,o(x1, x2) is x1 = x2. We first introduce some notation. Define D 
as the set of symbols {O, 1, 2, Pi, A}. Let p be a natural number. For any 
d = d1, ... , dp E DP, and variables 'fl = Y1, ... , Yv, define for j = 1, ... , p, the 
formula w d,j ('fl) as 

Now define 

I 
y3 = 0 if d3 = O, 
y3 = 1 if d3 = 1, 

WJ,j(Y) := Yj = 2 ~f dj : 2, 
Pi(yj) 1f dj - Pi, 
P2(y3) if d3 = P2. 

'lj)(xi, x2) := V (x1 = x2 /\ x1 = x2 I\ A wd,d,3(x1,x2)) . 
dED j = l 
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5. Suppose <p(x1, ... ,xt) is c1(x1, . . . ,xt)· Then define 

1/1 := V (c1(x1, .. . ,xt) I\ true/\/\ WJ,j(x)) . 
dEDt j=l 

6. Suppose <p(x1, .. . ,xt) is c2(x1, ... ,xt). This is symmetric to (5) . 

7. Suppose <p(x1, ... , xk) is <p1 (Y1, ... , YkJ V <p2(z1, . .. , Zk2 ), Here, 

{Yt,··· ,Yk1 }U{z1, ... ,zki} = {xi, ... ,xk}. 

Let 

and let 
{vi, .. . ,vp} = {z1, ... ,zki}-{y1, ... ,y,1:i}. 

By the inductive hypothesis, there exists a 1/11 equivalent to <p1 of the form 

and a 1/12 equivalent to <p2 of the form 

The formula 1j; is obtained from 1j;1 and ¢ 2 , by replacing every disjunct o:} /\ 
,Bf I\ /\}::1 wl,j in 1/11 by 

and by replacing every disjunct o:; /\ ,B; I\ /\J!1 w;,j in 1/12 by 

8. Suppose <p(x1, ... ,xk) is -.<p1(x1, ... ,xk). By the inductive hypothesis, there is 
a 'lj;1 equivalent to <p1 of the form 
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Then ,'1// is equivalent to 

A (·a~ V ,/ji V \/ ,wL) . 
i=l j =l 

We now transform this formula to an equivalent one in the right form. Replace 
each ,wi,j of the form 

(a) ,(Xj = 0) by Xj = 1 V Xj = 2 V Pi(xj) V P2(Xj); 

(b) ,(x1 = 1) by Xj = 0 V Xj = 2 V Pi(x1) V P2(x1); 

(c) •(Xj = 2) by Xj = 0 V Xj = 1 V Pi (xj) V P2(Xj); 

(d) •Pi(xj) by Xj = 0 V Xj = 1 V Xj = 2 V P2(xj); 

(e) ,P2(xj) by Xj = 0 V Xj = 1 V Xj = 2 V Pi(xj)-

Put the resulting formula in disjunctive normal form (here the literals are the 
formulas ,ai, ,/1;, z = 0, z = 1, z = 2, Pi (z) and P2(z)). Each disjunct now 
looks like 

where each 6 is of the form z = 0, z = 1, z = 2, Pi(z) or P2 (z). The disjunct is 
discarded if there are two different 6' s for the same variable (e.g., one is z = O 
and the other is Pi ( z)). Otherwise, define a as the formula , ai

1 
/\ • • • /\ ,ai, , 

and define /1 as the formula •/1i1 /\ ••• /\ •/1ir . Let Y1, ... , y9 be the variables in 
{x1, ... ,xk} for which there is no 6 in the disjunct. Then replace this disjunct 
by 

9. Supposecp(x1, ... ,xk)is(3xk+1)cp'(x1, . .. ,xk,Xk+i)- By the inductive hypoth
esis, there is a '1/J' equivalent to cp' of the form 

Then cp is equivalent to 
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This is then equivalent to 

(3.1) 

(3.2) 

Here o:~,P is false if wi,p t= wi,k+I > otherwise it equals the formula that is obtained 
from o:i by replacing each occurrence of the variable Xk+l by Xp . 

The subformula (3.1) is already in the right form. For each disjunct i of (3.2), 

(a) if wi,k+I is Xk+1 = c then define O:i as 

k 

(3xk+1)( /\ (xp =fi Xk+1) I\ Xk+i = c I\ o:D, 
p=l 

k 

(3Xk+1)( I\ (xp =fi Xk+1) I\ Xk+l = c I\ /3D, 
p=l 

and for j = 1, ... , k, define Wi,i as wi,j· 

(b) if wi, k+l is A ( x k+ 1) then define O:i as 

k 

(3xk+1)( /\ (xp =fi Xk+1) I\ Pi (xk+i) I\ o:D, 
p=l 

k 

(3xk+1)( /\ (xp =fi Xk+1) 
p= l 

I\ ,P2 (xk+1) I\ Xk+i =fi O /\ Xk+i =fi 1 /\ Xk+l =fi 2 /\ J3D, 

(the correctness follows from Lemma 3.4l(ii)), and for j = 1, ... , k, define 
I 

Wi,J as wi,i" 

(c) if wi,k+l = P2(Xk+1) then define O:i as 

k 

(3xk+i)( /\ (xp =fi xk+1) 
p= l 

/\ ,A (Xk+1) I\ Xk+l =fi O /\ Xk+i =fi 1 /\ Xk+i =fi 2 /\ o:D, 
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(the correctness follows from Lemma 3.41(i)), /3i as 

k 

(3xk+1)( I\ Xp # Xk+i A P2(xk+1) A 13;), 
p=l 

and for j = 1, . .. , k, define Wi,j as wtj· 

55 

• 
In the next lemma we prove that if an FO-formula can only speak about c1 (re

spectively c2) then this formula in general cannot distinguish between e(N1 (n1,n1 ) ) 

and e(N1(n1,n2)) (respectively e(N2(n1,n1)) and e(N2(n1,n2))), where n1 # n2. 

Lemma 3.44 Let ((xi, ... ,xt) be a PFP-formula over the vocabulary r<. Suppose 
e contains only m distinct variables. 

{i) Let '¢ be an FD-sentence over the vocabulary rc,l that contains only m 1 distinct 
variables and that does not contain the relation symbol c2 . Let n1 ~ m + m 1

• 

Then for all n2, n2 ~ m + m 1
, 

{ii) Let 'lj) be an FD-sentence over the vocabulary Tc,l that contains only m 1 distinct 
variables and that does not contain the relation symbol c1 . Let n2 ~ m + m 1

• 

Then for all n1 , n~ ~ m + m 1
, 

Proof. We only prove (i), (ii) is symmetric. We can assume w.l.o.g. that e and'¢ 
have no variables in common. Let t(e,n1,n2)C2 be the structure t(e,n1 ,n2) restricted 
to O, 1, 2 and c1 . Since 'lj; does not speak about c2, it suffices to prove that for all 
n1,n2,n2 ~ m+m1

: 

Suppose there exist n2, n2 ~ m + m 1 such that 

t(e,n1,n2)C2 F 'Ip and t(e,n1,n;)c,, ~ 'lj). 

Let ¢ 1 be the formula. obtained from 'lj; by replacing each atomic subformula c1 (z1 , .. . , 

zt) by e ( z1, . . . , zt). Hence, N1 ( n1, n2) I= ¢ 1 and N1 ( n1, n2) ~ ¢ 1
• Thus, there exists a 

sentence with m + m1 variables that distinguishes between N1 ( n1, n2) and N1 ( n1, n2). 
However, for n1 , n2, n2 ~ m + m 1

, using pebble games [KV92, EF95] it is easy to show 
that N1(n1,n2) and N1(n1,n2) are indistinguishable in PFP with m + m 1 variables. 
This leads to the desired contradiction. • 

By putting all the pieces together we obtain the following theorem: 

Theorem 3.45 The query equaLsubtree is not expressible by a synthesized RAG. 
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Proof. Towards a contradiction suppose equal....subtree is expressible by a synthe
sized RAG. Suppose R has attributes a1, . .. , ak for the grammar symbol L, and 
attributes result, b1, ... , bt for the start symbol U. W.l.o.g., we can assume that a1 
is a set-valued attribute that contains for each node all its descendants: for production 
L-+ i define a1(0) := {O, 1}, and for production L-+ L define a1(0) := {O} U a1(l). 

We first show that R is equivalent to a simple RAG R'. Let r c = k + l + 
max{ra1 , •• . , ra,. }. Assume, w.l.o.g., that none of the variables Y1, ... , Yrc occurs in 
a semantic rule of R. For i = 1, .. . , k, let 'i'i(Y1, ... , Yk+i) be the formula 

'Yi(Y1, ... ,Yk+i ) := Yi = Yk+l I\ /\{Yi-:/- Yk+l I j E {1, ... ,k} Aj-:/- i}. 

For i = 1, ... , k, let ai(O) := 'Pi be the rule in the context (L -+ f, ai, 0). In R', define 
c in context (L -+ j, c, 0) as 

k 

c(O) := {(yl,··· ,YrJ IV 'i'i(Yl,··· ,YH1)Acpi(Yk+2,··· ,Yk+l+ra)}. 
i=l 

For i = 1, . . . , k, let ai ( 0) : = 'I/Ji be the rule in context ( L -+ L, ai, 0) . In R', define c 
in context (L-+ L, c, 0) as 

k 

c(O) := {(yl,··· ,YrJ IV 'i'i(Yl,··· ,Yk+l) A'I/J~(Yk+2,··· ,Yk+l+ra)}, 
i=l 

where 'If;~ is obtained from 1Pi by replacing each occurrence of ai(l)(x) by 

(3y)(3z)('Yi(Y) A c(l)(y, x,z)), 

where z and x have no variables in common. 
Finally, let result(O) := a be the rule in context (U -+ LL, result, 0), and let for 

i = 1, ... ,£, bi(O) := ai be the rule in context (U -+ LL,bi,O). Assume, w.l.o.g., that 
a, a 1, ... , at have no variables in common. Let a' be the formula obtained from 
a by replacing each occurrence of bi(O)(y) by ai(y). Then define result in R' by the 
formula obtained from a' by replacing each occurrence of ai(j)(x) by (3y)(3z )(-yi(Y) A 
c(j)(y,x,z)), where z and x have no variables in common. 

It follows that for any tree t with root r, R(t)(result(r) ) is true if and only if 
R'(t)(result(r)) is true. Hence, if R expresses equal....subtree then so does R'. We 
will now show that R' cannot express equal...subtree. 

According to Lemma 3.40, there exists a PFP-formula e(x1, ... 'XrJ such that for 
all n1,n2 > 1 

and 
R'(t(n1,n2))(c(n2)) = e(N2(n1,n2)), 

where n1 is the first child and n2 is the second child of the root. Let 1/J be the sentence 
that defines result in R' . Then for all n1, n2 > 1, 

R'(t(n1,n2))(result(r)) is true {::> t(e,n1,n2) F 'If;' , (3.3) 
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where 1/J' is obtained from 1/J by replacing each occurrence of c(l) (x) by c1 (x) and each 
occurrence of c(2)(x) by c2 (x), and where r is the root of t((,n1,n2). Now, define 
Pi(x) as 

Pi (x) := (3y)(3z)(,1 (y) I\ C1 (y, x, z) I\ X =/:- 0 /\ X =/:- 1 /\ X 'I 2), 

P2(x) := (3y)(3z)('Y1 (y) I\ c2(Y, x, z) I\ x 'IO/\ x =J. 1 /\ x 'I 2). 

Then for all n1, n2 > 1, 

and 

Hence, by Lemma 3.43, 1/J' is equivalent to a sentence of the form V~=l o:i I\ /Ji, where 
the O:i 's are sentences that do not contain c2 , and the /3i 's are sentences that do not 
contain c1 (since there are no free variables, there are no w's). W.l.o.g., we can assume 
that ( and V~=l o:i /\f3i have no variables in common. Let m be the number of variables 
in (, and let m' be the number of variables in V~=l o:i I\ /Ji· By a simple counting 
argument, there have to exist ni > n1 ~ m + m' such that for all i = 1, .. . , n: 

Hence, by applying Lemma 3.44(i) twice, for i = 1, ... , n: 

From Lemma 3.44(ii), it follows that for i = 1, ... , n: 

Hence, 
n n 

t((,n1,n1) F V O:i/\/Ji {::} t((,ni , n1) F V O:i /\/Ji· 
i=l i=l 

But then by (3.3), we have that 

R.1(t(n1,ni))(result(r)) is true {::} R.1(t(n1,nD)(result(r)) is true, 

and n1 =/:- ni. Hence, R.' does not express equal...subtree. • 
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3.3.5 RAGs versus MSO 

We have characterized BAGs as the unary queries definable in MSO (Theorem 3.24), 
and RAGs as the queries (of arbitrary arity) definable in PFP-LIN (Theorem 3.32). 
It remains to compare these two formalisms with each other. We will show that 
synthesized RAGs are actually strictly more powerful than MSO. 

Theorem 3.46 Every k-ary query definable in MSO is expressible by a RAG using 
only synthesized attributes. 

Proof. Consider an MSG-formula cp(z1, .. . ,zk)· For any tree t and nodes n1, . . . , 
nk oft, we can view the tuple (t,n1, .. . ,nk) as a labeling oft with elements of 
{O, 1 Jk by labeling a node n with u1 ... Uk such that for i = 1, ... , k, 

{ 
1 if n = ni, 

Ui = 0 otherwise. 

So (t, n1, ... , nk) is a :Ek-tree where :E =NUT and :Ek= {au I a E :E, u E {O, l}k}. 
It is easy to write an MSO sentence 'I/; over the vocabulary induced by :Ek such 

that for every derivation tree t and nodes n1, ... , nk oft: 

Indeed, for i = 1, . . . , k, define Ji as the set of grammar symbols for which the i-th 
component is 1, i.e., 

Ji:= {Xu IX E NuT,u E {O,l}k and ui = 1}. 

Then 'I/; is defined as 

where cp' is the formula obtained by replacing each atomic formula Ox(z) in <p by 

V uE{o,1}" Oxu(z). 
By Theorem 2.13 there exists a deterministic bottom-up tree automaton B = 

(Q,Lk,8,F) that accepts only those (t,n1, ... ,nk) such that (t,n1, ... ,nk) ~ 'I/;, 
where t is a derivation tree. Hence, the theorem is proved if we can construct a RAG 
R which, on each derivation tree t, simulates B in parallel on all possible labelings 
oft, returning those labelings (n1, ... , nk) such that (t, n1, ... , nk) is accepted by 
B. To this end, we use a k-ary relation-valued synthesized attributes q for each state 
q of B . The semantic rules are such that for each node n, (n1, ... , nk) E q(n) iff B 
assumes state q on node n in its execution on (t, n1, ... , nk)- The attribute result at 
the root is then defined as uqEF q, where Fis the set of final states of B. 
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The formula matchu ( z1, ... , Zk, y) defines the labelings ( z1, .. . , Zk) of the tree t 
such that node y is labeled with u: 

matchu(z1, ... ,zk,Y):= /\ Zi=y/1. /\ Zi=f-Y· 
u,=l u,=0 

Let p = Xo-+ X1 ... Xn be a production of G. Let T(p) := {i E {l, ... ,n} I 
Xi is a terminal}, and N(p) := {1, ... , n} - T(p). For each q E Q, add the semantic 
rule 

q(O) := V{matchu0 (,z,O) /\ /\ qi(i)(z) /1. /\ af''q'(z,i) I 
iEN(p) iET(p) 

iio, ... , Un E {O, 1}\ q1 , ... , qn E Q, and 8(q1, . .. , qn, Xou) = q}, 

where af'q(z,y) is the formula matchu(z,y) when 8(Xiu) = q and is false otherwise. 
The correctness of this construction now follows from the following lemma, which 

is easily proven by induction on the height of n. 

Lemma 3.47 Lett be a tree. For each internal node n of t, (m1, .. . , mk) E q(n) 
iff B assumes state q on node n in its execution on the labeled tree ( t, m 1 , ... , mk). 

This concludes the proof. • 
While Theorem 3.46 states that synthesized attributes are enough for a RAG to 

express all of MSO, this is not the case for BAGs. Indeed as explained at the end of 
Section 3.2.2, BAGs with only synthesized attributes are weaker than MSO. 

We finally show that synthesized RAGs are strictly more powerful than MSO. 
However, this only holds under the assumption that the underlying grammar can 
generate an infinite number of derivation trees. 

Definition 3 .48 A grammar is unbounded if the number of its derivation trees is 
infinite. 

Clearly, if the grammar is not unbounded, i.e., the number of derivation trees is finite, 
then RAGs and MSO are equally powerful because a query simply reduces to a case 
analysis. We next show: 

Theorem 3.49 Over any unbounded grammar, synthesized RAGs can express Bool
ean queries not definable in MSO. 

Proof. Consider an unbounded grammar G. There exists a sequence of productions 
j5 = Pl, ... , Pm, a sequence of numbers k = k1, ... , km, and a non-terminal X, such 
that (i) Xis the left-hand side of p1 and occurs in position km of the right-hand side 
of Pm; (ii) for i = 1, . . . , m - 1 the symbol in position ki of the right-hand side of 
Pi equals the non-terminal on the left-hand side of Pi+1 ; (iii) the left-hand sides of 
P1, ... , Pm are mutually distinct; and (iv) X is reachable from the start symbol. 
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Consider a derivation tree t of G. We say that a node n1 is an occurrence of (p, k) 
int if there exists a sequence of nodes n2 , ... , nm, nm+1 such that for i = 1, ... , m, 
ni is derived with Pi and ni+1 is the ki-th child of ni. We say that nm+1 is the 
tail of the occurrence n1. Note that nm+i is labeled with X. We call a sequence of 
nodes n1, ... , n 8 a chain of occurrences of (p, k) if for each i = 1, .. . , s - l, ni is an 
occurrence, ni+l is the tail of the occurrence ni, and n 8 is not derived with Pl· The 
length of the chain of occurrences n 1 , . .. , n 8 is s. 

Let Q be the Boolean query defined as follows: on every derivation tree t, Q(t) 
is true if there is a chain of occurrences starting on the first X-labeled node in the 
preorder traversal of the tree and its length is a power of two. Note that Q is true on 
any tree where there is no X-labeled node. 

The query Q is not definable in MSO. We now show that Q is not expressible 
in MSO. Let <p be an MSO-sentence. By Theorem 2.13 there exists a deterministic 
bottom-up tree automaton B = (Q, NUT, 8, F) accepting precisely the trees satisfying 
cp. Consider a tree t such that the length, which we denote by c, of the chain of 
occurrences of (p, k) starting in the first X-labeled node in the preorder traversal of 
the tree is a power of two and is bigger than IQ I + 1. There have to be two nodes 
n and n' oft, such that n' is a descendant of n, both are occurrences of (p, k) in 
the chain, and 8*(tn) = 8*(tn' ). Let n be the 01-th occurrence and n' be the 02-th 
occurrence in the chain. Let t' be the tree obtained from t by replacing the subtree 
t(n') by the subtree t(n). Then the chain of occurrences of (p, k) starting in the first 
X-labeled node in the preorder traversal oft' has length c + 02 - 01. This is not a 
power of two because c < c + 02 - o1 < 2c. However, 8* ( t) = 8* ( t'), and thus t' F <p 

if and only if t F <p. Hence, <p does not define Q . 

The query Q is expressible by a synthesized RAG. The RAG uses the fol
lowing synthesized attributes for all non-terminals: 

1. Xis a Boolean attribute: X(n) is true if there is a node labeled X among the 
descendants of n (note that X is a non-terminal); 

2. chain is a Boolean attribute: 

(a) chain(n) is false if there is no X-labeled node among the descendants of 
n, or if there is no chain of occurrences starting on the the first X-labeled 
node in the preorder traversal of the subtree with root n; 

(b) chain(n) is true if the length of the chain of occurrences of (p, k) starting 
at the first X-labeled node in the preorder traversal of the subtree with 
root n is a power of two. Note that if this node is not derived by Pt, then 
the length of the chain of occurrences starting at that node is 1, which is 
a power of two. 

3. D is a set-valued attribute: D(n) contains n and all descendants of n. 
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4. < is a binary attribute: <(n) is a total order on D(n). 

5. occ is a Boolean attribute: occ is true if n is derived with Pi, for some i E 

{ 1, ... , m}, and there exist nodes ni+i , ... , llm+i, such that a chain of occur-
rences starts at nm+l, and for j = i + 1, ... , m, n; is derived with P;, and n;+1 
is the k;-th child of n;. 

6. is-p1 is a Boolean attribute: is-p1 (n) is true if n is derived with p1. 

7. a is a set-valued attribute: a(n) is a subset of D(n). 

(a) H occ is false, then a(n) is empty; 

(b) If occis true and n is not derived by P1, then the nodes in a(n) encode, w.r.t. 
<(n), in binary the length of the chain of occurrences of (j5, k) starting at 
llm+i, where nm+l is as defined in 5: if a(n) contains the nodes n1 , ... , 

nr, and these occur respectively in the i1-th, ... , ik-th position in the 
ordering <(n), then a(n) encodes the number 1:;=12iP-1. 

(c) H occ is true and n is derived by p1 , then the nodes in a(n) encode, w.r.t. 
<(n), in binary the length of the chain of occurrences of (j5, k) starting at 
n. 

The RAG is now defined as follows: 

1. Consider the production p = Xo -+ X1 ... Xn not in p. Define T(p) = {i E 
{l, ... ,n} I Xi is a terminal}. We write i </. T(p) as a shorthand for i E 
{l, ... ,n} -T(p). Define 

X(O) := { true . if X0 ~ X; 
Vif/.T(p) X(i) otherwise; 

and 

h . (O) { true if Xo = X; c ain := . 
'Y otherwise, 

where "f is an FO-sentence whose truth value equals that of chain(i), where i is 
the smallest such that X ( i) is true; if such an i does not exists, 'Y is false. For 
i = 1, ... , n, let E(i) be D(i) if i </. T(p), and {(i)} when i E T(p). Then define 

n 

D(O) := LJ E(i) U {(O)}; 
i=l 

<(0) ·- LJ <(i)U(D(O)x{(O)})u LJ {(i,i)} 
iiT(p) iET(p) 

uLJ{E(i) x E(j) I i,j E {l, ... ,n}/\i <j}; 
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and 

occ(O) := false; 

is-p1 (0) .- false; 

a(O) := 0. 

If Xo = U then define 

result(O) := X(O) -4 chain(O) . 

2. For Pl = Xo -4 X1 . .. Xn1 , define 

X(O) := true; 

and 

chain(O) := occ(O) I\ (3x)(a(O)(x) I\ (\ly)(a(O)(y) -4 x = y)). 

The attribute chain becomes true if occ(O) is true and if a(O) contains exactly 
one element, i.e., a(O) encodes a number which is a power of two. Define, 

n1 

D(O) := LJ E(i) U {(O)}; 
i=l 

< (0) := u <(i) u u (D(k1) x E(i)) 
iltT(p1) iE{l, ... ,n1}-{ki} 

U (D(O) x {(0)}) U U {(i, i)} 
iET(p1) 

u LJ{E(i) X E(i') I 
i, i' E {1, ... , ni}, i < i', i :f. k1 I\ i' -f:. ki}; 

The reason for this definition is that, in order to correctly represent the number 
in a(kj), we have to make sure that all elements not in D(kj) come after the 
elements in D(kj) in the ordering <(0). Finally, define 

and 

occ(O) := occ(k1); 

is-p1 (0) .- true; 

a(O) := occ(O) I\ <p(z, a(k1), <(0)) , 

where <p(z, Z , <) is the formula 

(3z')(Z(z') I\ ,Z(Succ(z')) I\ (Vz")(z" < z' -4 Z(z")) 
I\ (z = Succ(z') V (z' < z I\ Z(z)))) 

V (3z')(First(z') I\ , Z(z') I\ (z = z' V Z(z))), 

with Succ the successor function, and First is the first element in the ordering <. 
This formula augments the number in a(k1 ) with 1. 
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3. For j = 2, ... , m - 1, define for Pi = Xo --+ X1 ... Xn;, 

and 

X(O) := V X(i) 
i~T(p;) 

chain(O) := "/, 

where"/ is defined as in (1). Further, define 

and 

n; 

D(O) := LJ E(i) U {(O)}; 
i=l 

<(0) := u <(i) U U (D(kj) x E(i)) 
i~T(p;) iE{l, ... ,n;}-{k;} 

U (D(O) x {(O)}) U U { (i, i)} 
iET(p;) 

u LJ{E(i) X E(i') I 

occ(O) := occ(kj); 

is-p1 (0) := false; 

i,i' E {1, ... ,nj}, i < i', i 1' ki /\i 1 f= kj}; 

a(O) := occ(O) I\ a(kj)(z). 

4. For Pm = Xo-+ X1 ... Xn,,., define 

X(O) := true; 

and 

chain(O) := "/· 

Here "I is defined as in (1). Define, 

n,,. 

D(O) := LJ E(i) U {(O)}; 
i=l 

< (0) := LJ <(i) U u (D(km) x E(i)) 
i ~T(p1) iE{l, ... ,n,,.}- {k,,.} 

U (D(O) x {(O)}) U U {(i, i)} 
iET(p1) 

u LJ{E(i) X E(i') I 
• •' E {1 n } • < •' • ...J. k I\ ., ...J. k } •, • , · • · , m , • • , • -r m i -r m j 

63 
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occ(O) := ,is-pi (km) V occ(km); 

is-pi (0) .- false; 

and define 

a(O) := (1. 

Here, C1 is an FO-sentence that expresses the following: a(O) contains the sin
gleton consisting of the first element in <(0) if is-pi(km) is false; a(O) equals 
a(km) if occ(km) is true; and a(O) = 0 otherwise. • 

As a corollary, we note: 

Corollary 3.50 RAGs can express more unary queries than BAGs. 

3.4 Relational attribute grammars 

Relational attribute grammars3 are a generalization of standard attribute grammars 
introduced by Courcelle and Deransart [CD88]. In relational attribute grammars, 
the semantic rules no longer specify functions, computing attributes in terms of other 
attributes, but rather relations among attributes. Also there is no longer a distinction 
between synthesized and inherited attributes, and the values of the attributes are no 
longer uniquely determined for every tree. We consider relational attribute grammars 
in the context of BAGs and RAGs, and discuss how they can express queries. We 
show that for BAGs this does not increase the expressive power, while in the case of 
RAGs the complexity classes NP, coNP and UP n co UP are captured. 

3.4.1 Relational BAGs 

An attribute grammar vocabulary is now just a tuple (A, Att), where A is a finite set 
of attributes and Att is a function from A to the powerset of N U T. A relational 
BAG B assigns to each production, p = Xo -t Xi ... Xn a propositional formula <.pp 

over the set of propositional symbols 

{a(j) Ii E {O, ... ,n},a E Att(Xj)}. 

A valuation of a derivation tree tis a mapping that assigns a truth value to each a(n), 
where a E A, n is a node oft, and a is an attribute of the label of n. Let n be a node 
oft of arity n derived by production p. Let <.pp be the formula associated to p. Then 
define ~(B, t, n) as the formula obtained from <.pp by replacing each propositional 
symbol of the form b(j) by the new propositional symbol b(nj). An arbitrary total 

3 Relational attribute grammars are not to be confused with the relation-valued standard attribute 
grammars (RAGs) of the previous section. In fact, in t he present section, we will indeed consider 
relational versions of RAGs. 
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U-+ S 
S-tBS 

S-+B 
B-+ X 

B-+ y 

,x_before(l) 
(x_before(2) tt is...x(l) V x _before(O)) 
/\ ( even(O) tt ,even(2)) 
I\ (result(O) tt even(O) I\ x_before(O)) 
,even(O) I\ ,result(O) 
is...x(O) 
,is...x(O) 

Figure 3.8: Example of a relational BAG. 

valuation v oft is said to satisfy B if 6.(B, t, n) is true under v, for every internal 
node n. 

A relational BAG can express unary queries in various ways. Let Q be a unary 
query and let B be a relational BAG. Designate among the attributes of A an attribute 
result. 

(i) Q is expressed existentially by B iff for every t 

Q(t) = {n I there exists a valuation v oft that satisfies B, 
and v(result(n)) is true}; 

(ii) Q is expressed universally by B iff for every t 

Q( t) = { n I for every valuation v of t that satisfies B, 
v(result(n)) is true}; 

(iii) Q is expressed implicitly by B iff for every t there exists exactly one valuation 
v oft that satisfies B, and n E Q(t) iff v(result(n)) is true. 

We denote the class of unary queries existentially (respectively, universally and im
plicitly) expressible by relational BAGs by 3-BAG (respectively, V-BAG and IBAG). 

Example 3.51 In Figure 3.8 an example of a relational BAG is depicted. It expresses 
existentially, universally and implicitly the same query expressed by the BAG in 
Example 3.5. • 

The following theorem says that going from BAGs to relational BAGs does not 
increase the expressive power. 

Theorem 3.52 BAG = 3-BAG = \I-BAG = !BAG. 

P roof. Clearly, by Lemma 3.9, BAG ~ 3-BAG, BAG ~ V-BAG and BAG ~ IBAG. 
By using Theorem 3.24, we then only have to prove that every query in 3-BAG, 
V-BAG and IBAG is definable in MSO. 
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1. Let Q be a query that is existentially expressed by the relational BAG B. Then 
Q is defined by the MSO-formula 'ljJ(x) := 

(3Za)aEA ( ( A (Vxo) ... (Vxn)(p(xo, ... , Xn) --+ '{)p)) 

I\ Zresult(X)) 

where A is the set of attributes of B, p(xo, ... , Xn) is the FO-formula that ex
presses that nodes xo, ... , Xn are derived by production p, and '{)pis the formula 
obtained from cpp by replacing each occurrence of b(j) by Zb(xj)- Intuitively, 
the Za's define valuations that satisfy B. 

2. Let Q be a query that is universally expressed by the relational BAG B. Then 
Q is defined by the MSO-formula 1/J(x) := 

(Vxo) ... (Vxn)(p(xo , ... , Xn)--+ '{)p) ) 

--+ Zresult ( X)) · 
Here p(xo, ... , Xn) and '{)p are defined as in (1). 

3. Let Q be a query that is implicitly expressed by the relational BAG B. Then 
the MSG-formula that defines Q is the same as in (1). • 

3.4.2 Relational RAGs 

Each attribute a has an associated arity Ta- A relational RAG n associates to each 
production p = Xo --+ X 1 ... Xn an FO-sentence cpp over the vocabulary 

n 

LJ {a(j) I a E Att(Xi)} U {O, 1, ... , n}, 
j = O 

where for each j = 0, ... , n, j is a constant symbol and a(j) is a relation symbol of 
arity Ta- A valuation of a derivation t ree t is a mapping that assigns to each a(n) an 
Ta-ary relation over the nodes oft, where a E A, n is a node oft and a is an attribute 
of the label of n. Let n be a node of t of arity n derived by production p. Let 
cpp be the FO-sentence associated top. Then define l:i(R, t, n) as the FO-sentence 
obtained from cpp by replacing each occurrence of the relation symbol b(j) by the 
relation symbol b(nj) and by replacing each constant symbol j by the node nj. A 
valuation v oft is said to satisfy n if !:i('R, t , n) evaluates to true for all n when each 
relation symbol b(m) in /:i(R, t, n) is interpreted by v. 

A relational RAG can express k-ary queries in various ways. Let Q be a k-query 
and let 'R, be a relational RAG. Designate among the attributes of A a k-ary attribute 
result. 
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U-tLL 

L-+ L 
L-+ f 

(\fx)(3!y)(C(l)(x) -+ (C(2)(y) A R(O)(x, y))) 
A ('v'y)(3!x)(C(2)(y) -+ (C(l)(x) A R(O)(x, y))) 
I\ result( 0) 
('v'x)(C(O)(x) ++ x = 0 V C(l)(x)) 
('v'x)(C(O)(x) ++ x = 0 V x = 1) 

Figure 3.9: Example of a relational RAG. 

(i) Q is expressed existentially by n iff for every t 

Q(t) = {(n1, .. . , nk) I there exists a valuation v oft satisfying n 
with (n1, . .. , nk) E v( result(root(t)) )} . 

(ii) Q is expressed universally by n if£ for every t 

Q(t) = {(n1, ... , nk) I for every valuation v that satisfies n, 
(n1, ... ,nk) E v(result(root(t)))} 
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(iii) Q is expressed implicitly by n iff for every t there exists exactly one val
uation v of t that satisfies n, and (n1, .. . , nk) E Q(t) if£ (n1, ... , nk) E 
v ( result ( root ( t))). 

We denote the class of unary queries existentially (respectively, universally and im
plicitly) expressible by relational RAGs by 3-RAG (respectively, 'v'-RAG and IRAG). 

Example 3.53 In Figure 3.9 an example of a relational RAG n is depicted. This 
RAG expresses existentially the Boolean query which is true for a tree if the number 
of nodes in its left subtree equals the number of nodes in its right subtree. Let t be 
a tree, r the root oft, r 1 the left child and let r 2 be the right child of the root. For 
any valuation v oft that satisfies n, v(C(r1)) contains the nodes of the left subtree, 
and v(C(r2) contains the nodes of the right subtree. The sentence associated to the 
root can only be true under v if v(R(r)) contains a bijection between v(C(r1)) and 
v(C(r2)). • 

Clearly, any query expressible by a RAG is in 3-RAG, 'v'-RAG and IRAG. Indeed, let 
a1(i1) := 'Pl, .. . , an(in) := 'Pn be all the semantic rules in a RAG n associated to 
a production p. In the corresponding relational RAG, we just replace these by the 
single rule 

This is indeed a correct translation for all three discussed semantics as, by Lemma3.18, 
there is only one valuation for each tree that satisfies n. 

In the following theorem, we characterize the 3 classes of relational RAG queried 
in terms of the complexity classes NP and UP (and their complements). NP is well 
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known; UP is the class of problems decidable by a polynomial time non-deterministic 
Turing machine that is unambiguous, i.e., that has at most one accepting computation 
for every input [Val76, Pap94).4 We obtain the following: 

Theorem 3.54 1. 3-RAG equals the class of queries in NP; 

2. \/-RAG equals the class of queries in coNP; and 

3. !RAG equals the class of queries in UP n co UP. 

Proof. 

l. The containment 3-RAG ~ NP is clear. For the converse, we make use of 
Fagin's Theorem [Fag74, EF95], which states that the queries expressible in 
NP are exactly those that are definable in existential second-order logic (ESO). 
Every ESO-formula is of the form 

where the Zi are relation variables and 'I/; is an FO-formula over the vocabulary 
expanded with the relation symbols {Z1, .. . , Zn} -

Consider the ESQ-formula: (3Z1) .. . (3Zn)'I/J(x, Z) . Like in the proof of Theo
rem 3.32, we can construct a RAG that computes all the relations that make 
up a derivation tree viewed as a relational structure. Add to this RAG the rule 
for the start symbol 

(Vx)(result(O)(x) ++ '1/;'(x)), 

where '1/J' is obtained from 'l/J by replacing each Zi(iJ) by Zi(O)(y), and by replac
ing each relation of the vocabulary of the relational structure by its correspond
ing attribute. It then follows that this relational RAG expresses existentially 
the query defined by (3Z1) ... (3Zn)'l/J(x, Z). 

2. To prove that V-RAG are the queries computable in coNP, we make use of the 
complement of Fagin's Theorem: coNP = Universal second-order logic. The 
proof is then analogous to (1) . 

3. Clearly, IRAG ~ UP n coUP. 

Let ( Q1, .. . , Qn) be a sequence of queries. We say that the sequence 

is implicitly definable in FO if there is an FO-sentence 'l/;(Z1, ... , Zn) over the 
vocabulary of derivation trees augmented with {Z1, . . . , Zn} such that for ev
ery tree t the sequence (Q1 (t), . . . , Qn(t)) is the only sequence of relations 
(R1 , .. . , Rn) overt such that t F 1P[R1 , ... , Rn]· 

4 A k-ary query Q belongs to a complexity class C if the decision problem {(t, n1, ... , n k) 
(n1, ... , nk) E Q(t)} is in C. 
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We write IMP(FO) to denote the collection of all queries Q such that Q = Q1 
for some sequence (Q1 , ... , Qn) of queries which is implicitly definable in FO. 

Analogously to (1) it can be shown that every query in IMP(FO) is expressible 
by a RAG. Kolaitis [Kol90] proved that on every class of ordered structures, a 
query is definable in IMP(FO) if and only if it is computable in UP n coUP. The 
trees we consider are not ordered. However, they can be ordered by a RAG, as 
we already saw in Lemma 3.36. • 

The results obtained in this chapter are summarized in Figure 3.10. An arrow 
from a class of queries C to a class of queries C1

, means C ~ C'. A negated arrow 
from C to C', means there is a Boolean query in C that is not in C1

• 

:3-RAG = NP \I-RAG = coNP IRAG = UP n coUP 

1 
RAG = PFP-LIN = CRAM[n] 

11 
synthesized RAG 

11 
BAG= :3-BAG =\I-BAG= IBAG = MSO 

I 1 non-Boolean queries 

synthesized BAG 

Figure 3.10: Summary of results on BAGs and RAGs. 





4 
Attribute grammars for 
extended context-free 
grammars 

In this chapter we define extended AGs, a new formalism of attribute grammars 
suited to query derivation trees of extended context-free grammars. We examine the 
expressiveness of the formalism and study the complexity of some relevant optimiza
tion problems. The latter results will be used in Chapter 6 to drastically improve the 
known upperbound on the equivalence problem of Region Algebra expressions intro
duced by Consens and Milo [CM98a). We conclude by examining relational extended 
AGs. 

We start by introducing the necessary notions to define extended AGs. More 
concretely, we recall the definition of unambiguous regular expressions and define 
tree automata over unranked trees on which extended AGs are inspired. 

4.1 Basic definitions 

4.1.1 Unambiguous regular expressions 

As is customary, we denote by L(r) the language defined by the regular expression 
r. Further, we denote by Sym(r) the set of ~-symbols occurring in r. The marking 
r of r is obtained by subscripting in r the first occurrence of a symbol of Sym(r) 
by 1, the second by 2, and so on. For example, a1 (a2 + b3)*a4 is the marking of 

71 
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a(a+b*)*a. We let lrl denote the number of occurrences of :E-symbols in r, while r(i) 
denotes the :E-symbol at the i-th occurrence in r for each i E {1, ... , Ir!}. Let E be 
the alphabet obtained from :E by subscribing every symbol by all natural numbers, 
i.e., E := { ai I a E :E, i E N}. If w E E* then w# denotes the string obtained from w 
by dropping the subscripts. 

In the definition of extended AGs we shall restrict ourselves to unambiguous reg
ular expressions defined as follows: 

Definition 4.1 A regular expression r over :E is unambiguous if for all v, w E L(f), 
v# = w# implies v = w. 

That is, a regular expression r is unambiguous if every string in L(r) can be 
matched tor in only one way. For example, the regular expression (a+ b)* is unam
biguous while (aa + a)* is not. Indeed, it is easily checked that the string aa can be 
matched to (aa + a)* in two different ways. 

The following proposition, obtained by Book et al. [BEG071], says that the re
striction to unambiguous regular expressions is no loss of generality. 

Proposition 4.2 For every regular language R there exists an unambiguous regular 
expression r such that L(r) = R. 

Now, for every unambiguous regular expression r there exists an NFA Mr with 
the property that can be informally stated as follows: if w E L(r) then there exists 
only one path in Mr that accepts w. That is, Mr can accept w only in one manner. 
We introduce some more notation to define this automaton Mr. 

If w is a string and r is an unambiguous regular expression with w E L(r), then 
Wr denotes the unique string over E such that w;! = w and Wr E L(f). For i = 
1, ... , lwl, define posr(i,w) as the subscript of the i-th letter in Wr· Intuitively, 
posr(i, w) indicates the position in r matching the i-th letter of w. For example, if 
r = a(b + a)* and w = abba, then f = a1(b2 + a3)* and Wr = a1b2b2a3. Hence, 

posr(l,w) = 1, posr(2,w) = 2, posr(3,w) = 2, and posr(4,w) = 3. 

The following lemma is obtained by Book et al. [BEG071]. 

Lemma 4.3 For every unambiguous regular expression r there exists an NFA Mr 
over the states {O, ... , lrl} with start state O such that 

1. L(r) = L(Mr); 

2. for every string w E L(r) there exists only one valid state assignment Pw for w; 
and 

3. for i = 1, ... , n, Pw(i) = posr(i, w). 

Moreover, Mr can be constructed in time polynomial in the size of r . 

Proviso 4.4 In the remaining of this chapter, when we say regular expression, we 
always mean unambiguous regular expression. 
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4.1.2 Extended context-free grammars 

Extended AGs are defined over extended context-free grammars which are defined as 
follows: 

Definition 4.5 An extended context-free grammar (ECFG) is a tuple G = (N, T, P, 
U), where 

• T and N are disjoint finite non-empty sets, called the set of terminals and 
non-terminals, respectively; 

• U E N is the start symbol; and 

• P is a set of productions consisting of rules of the form X ---+ r where X E N 
and r is a regular expression over NUT such that c (/. L(r) and L (r ) =I 0. 
Additionally, if X---+ r 1 and X ---+ r2 belong to P then L(ri) n L(r2 ) =/; 0. 

A derivation tree t over an ECFG G is a tree labeled with symbols from N U T 
such that 

• the root of t is labeled with U; 

• for every interior node n with children n1 , ... , nm there exists a production 
X ---+ r such that n is labeled with X, for i = 1, . .. , m, ni is labeled with Xi, 
and X1 · · · Xm E L(r); we say that n is derived by X---+ r; and 

• every leaf node is labeled with a terminal. 

Note that derivation trees of ECFGs are unranked in the sense that the number 
of children of a node need not be bounded by any constant and does not depend on 
the label of that node. 

Throughout this chapter we make the harmless technical assumption that the start 
symbol does not occur on the right-hand side of a production. 

4.1.3 Tree automata over unranked trees 

We continue with the definition of nondeterministic bottom-up tree automata over 
unranked trees (BKMW98] by which the mechanism of extended AGs is inspired. 
Interestingly, these automata will also be used to obtain the exact complexity of 
testing non-emptiness and equivalence of extended AGs in Section 4.5. 

Definition 4.6 A nondeterministic bottom-up tree automaton (NBTA) is a tuple 
B = ( Q, E, F, 8), where Q is a finite set of states, F ~ Q is the set of final states, and 
t5 is a function Q x E ---+ 2Q· such that t5(q, a) is a regular language for every a E E 
and q E Q. The semantics of B on a tree t, denoted by t5*(t), is defined inductively 
as follows: if t consists of only one node labeled with a then t5*(t) = { q I c E t5(q, a)}; 
if t is of the form 

a 
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then 
6*(t) = {q I 3q1 E 6*(t1), ... , 3qn E 6*(tn) and q1 · · · qn E 6(q, a)}. 

A tree t over :Eis accepted by the automaton B if 6*(t) n F-:/= 0. The tree language 
defined by B, denoted by L(B), consists of the trees accepted by B. A tree language 
Tis recognizable if there exists an NBTA B such that T = L(B). 

Further, we say that B is deterministic when 6 ( q, a) n 6 ( q', a) = 0 for every a E :E 
and q, q' E Q with q -:/= q'. We again use the abbreviation DBTA to refer to such 
automata. It will always be clear from the context whether we are considering ranked 
or unranked trees. 

We represent the string languages 6(q, a) by NFAs. The size of B then is the sum 
of the sizes of Q, :E, and the NFAs defining the transition function. 

Proviso 4. 7 In this chapter, all tree automata will work over unranked trees. Sim
ilarly, when we say recognizable language in this chapter, we always talk about un
ranked trees. 

A detailed study of tree automata over unranked trees has been initiated by 
Briiggemann-Klein, Murata and Wood [BKMW98, Mur95]. Among many things, 
they show that DBTAs are as expressive as NBTAs and that the recognizable lan
guages are closed under the Boolean operations. 

Tree automata are defined over an arbitrary alphabet, but we consider derivation 
trees of ECFGs in this chapter. This seeming distinction can be dispensed with since 
we can always restrict an NBTA to the derivation trees of an ECFG as illustrated 
next. We point out that this lemma is well known for the ranked case with respect 
to CFGs [GS97] . 

Lemma 4.8 Let G = (N, T, P, U) be an ECFG and let B be an NTBA over :E ~ 
NUT. Then there exists an NETA B 0 such that L(BG) = L (G) n L(B). 

Proof. We define an NBTA M such that L(M) = L(G). Since recognizable tree 
languages are closed under the Boolean operations, we can then define BG as an 
automaton accepting L(M) n L(B). 

Define M = (Q,N U T,F,6), where Q = TU P, F = {U --+ r I U--+ r E P}, and 
6 is defined as follows: for every u1 E T and u2 E T U N, 

if u1 = u2; 
otherwise, 

and for every X --+ r E P and Y E N U T 

6(X --+ r, Y) := { ~(r) if X = Y; 
otherwise. 

• 
The proof of the following lemma is a straightforward generalization of t he ranked 

case (see, e.g., t he survey paper by Vardi [Var89]). 
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Lemma 4.9 Deciding whether the tree language accepted by an NBTA is non-empty 
is in PTIME. 

Proof. Let B = ( Q, :E, F, <>) be an NBTA. We inductively compute the set of reachable 
states R defined as follows: q ER iff there exists a tree t with q E <>*(t). Obviously, 
L(B) =/:- 0 if and only if Rn F =/:- 0. Define for all n > 0, 

R1 .- {qEQj3aE:E:.sE<>(q,a)}; 

Rn+i .- {q E Q j 3a E :E: <>(q,a) nR~ =/:- 0}. 

Note that for all n, Rn~ Rn+i ~ Q. Hence, RIQI = RIQl+l· Thus, define Ras R/QI· 
Clearly, R1 can be computed in time linear in the size of B. Since testing non

emptiness of <>(q, a) n R~ can be done in time polynomial in the sum of the sizes of 
these (see, e.g., [HU79]), each Rn+l can be computed in time polynomial in the size 
of B. This concludes the proof of the lemma. • 

We end this section by generalizing Theorem 2.13 to unranked trees by showing 
that an unranked tree language is recognizable if and only if it is definable in MSO. 
The ideas involved in this proof will be generalized in Section 4.4 to characterize the 
expressiveness of extended AGs. 

A DBTA B can be defined in MSO in the usual manner: the MSO sentence defining 
the behavior of B just guesses states and verifies the consistency of its guesses with 
the transition function. The latter can now no longer be done in FO, as was the 
case for ranked trees, because the transition functions are now determined by regular 
languages. However, by Theorem 2.7 this check can be readily done in MSO. 

For the other direction, we again show that the =rso_type of a tree can be 
computed by a DBTA B = (q,k, :E, <>, F), for some fixed k. The idea is the same 
as for the ranked case. Again, the type of the children of a node n of a tree t plus the 
label of n determine T_r

80(tn)- The problem is that now, as there is no bound on the 
number of children of a vertex, the correspondence between the children's types and 
the type of the whole subtree is no longer given by a finite function, as was the case 
for ranked trees. Instead, this correspondence is controlled by a regular language. 
Therefore, for each a E :E and () E q>k, we define 8(8, a) as the set of strings 81 · · · ()n 

where for i = 1, ... , n, (Ji E q>k, and whenever for a tree t and a node n labeled with 
a with n children, 7k(tni) = (Ji, for each i = 1, ... , n, then Tk(tn) = 8. We now 
show that <>(8, a) is indeed a regular language. To this end we state the following 
proposition. 

Proposition 4.10 Let k be a natural number, a E :E, and let t 1 , ... , tn, s1 , 

, , , , Sm, t, S be trees. If a(t1, ... , tn) =rso a(s1, ... , Sm) and t =rso s, then 
a(t1, ,, , , tn, t) =rso a(s1,,., , Sm, s). 

Proof. The proof is almost identical to the proof of Proposition 2.12. We just 
combine the winning strategies in the subgames 

cr80(a(t1, ... ,tn);a(si, .. , ,sm)) 
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and cr80(t; s) to obtain a winning strategy in 

ar80 (a(t1, ... ,tn,t);a(s1, ... ,sm,s)). 

At the end of the game, the selected nodes define partial isomorphisms for all pairs 
of respective substructures. To ensure that they also define a partial isomorphism 
between the entire structures one only has to check the relations E and < between 
selected nodes coming from different substructures. There is only one technicality in 
showing this. To this end, we note the following. If the spoiler picks the root of a ta 
(a E {1, . .. ,n}) in his l-th move with l <kin ar80(a(t1 , ... ,tn);a(s1,··· ,sm)), 
then the duplicator is forced to answer with the root of an sb (b E {1, ... , m} ). Indeed, 
if he does not do so and picks another node, say e, then in the next round the spoiler 
just picks the parent of e to which the duplicator has no answer. The same holds 
when the spoiler picks the root of t, then the duplicator is forced to pick the root of 
s. 

Suppose in a play elements Ci and Cj are chosen such that Ci < Cj, Ci is the root 
of a ta, and Cj is the root oft, then the above discussion implies that di is the root 
of a sb and di is the root of s simply because they are picked before the k-th move in 
their subgames. Hence, di < dj, as had to be shown. 

Suppose in a play Ci and Cj are chosen such that Ci is the root of a(t1, . .. , tn) and 
Cj is the root oft. Then, E(Ci, Cj). By a similar argument as above, it can be shown 
that di has to be the root of u(s1, ... ,sm) and dj has to be the root of s. Hence, 
E(di, di). • 

The above proposition implies that we can compute the =r80-type of a tree 
a(t1, ... , tn), by incrementally reading the =r80-types of the ti, starting from the 
state Tk1-80(u). Indeed, define Mo,u = (i)k, i)k, SM, 8M, FM) where SM= {Tk1-80(u)}, 
FM= {8}, and for each 81,82 E i)k, 8M(81,82) = Tk1-80(u(t1 ,·· · ,tn,t)) where t1, 
.. . 'tn, and tare trees such that Tk1'80(u(t1, ... 'tn)) = 81 and Tk1'80(t) = 82. Now 
clearly, L(Mo,u) = 8(8,u). 

From the above the following theorem readily follows. 

Theorem 4.11 An unranked tree language is recognizable if and only if it is definable 
in MSO. 

In the next chapter we will be needing a tree automaton computing the type 
Trso ( t, root( t)) for each input tree. Such an automaton is just a slight extension 
of the automaton discussed above. To show this we have the following proposition. 
To be precise, we only need item 2, the other items are used in Section 4.4. We 
abbreviate Tr-SO(t,root(t)) by Tr-SO(t,root). 

Proposition 4.12 Let k be a natural number, u be a label, t ands be two trees, n be 
a node of t with children n1, ... , nn, and m be a node of s with children mi, .. . , mm. 

1. If (tn,n) =rso (sm,m) and (t0 ,n) =rso (sm,m), then (t, n ) =rso (s,m). 
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2. If (a(tn1 , ... ,tnn_1 ),root) =rso (a(smu"· ,smm_1 ),root) and (tnn,nn) =rso 
(smm,mm), then (tn,n) =rs (sm,m). 

3. Let the label of n and m be a. For i E {1, .. . ,n} and j E {1, .. . ,m}, if 

( - ) -MSO (- ) • tn,n =k Sm,m, 

• (a(tni, .. . , tn;_i), root) =rso (a(smi, .. , , Sm;_1 ), root), 

• (a(tn;+i," ' ,tnJ,root) =rso (a(smHl>"' ,smm),root), and 

• the label of ni equals the label of mi, 

(- ) -MSO ( - ) then tn;, ni =k Sm;, mi . 

Proof. We focus on the third case where there are altogether 4 subgames including 
the trivial game in which one structure consists only of ni and the other of mj. The 
winning strategy in the game on (tni,ni) and (smj,mj) just combines the winning 
strategies in those 4 subgames. At the end of the game, the selected vertices define 
partial isomorphisms for all pairs of respective substructures. To ensure that they also 
define a partial isomorphism between the entire structures one only has to check the 
relations < and E between the chosen elements, and the distinguished constants ni 
and mi. This immediately follows from the following observation. The distinguished 
constants in the subgames make sure that (i) whenever in the game on (tni,ni) and 
(smj, mj) a child of n (m) is chosen, the duplicator has to reply with a child of m 
(n); and, (ii) whenever n (m) is chosen, the duplicator has to reply with m (n). • 

We will need the following lemma in Section 5.3 and Section 6.2. 

Lemma 4.13 Let k be a natural number. There exists a DBTA B = (Q, E, c5, F) 
such that c5*(t) = rt80 (t,root(t)), for every unranked tree t. 

Proof. Define Q as the set <l>k. Here we take cI>k as the set of of =r80-types of trees 
with one distinguished node. For each(} E cI>k and a EE, define 8((), a) as the regular 
language defined by the automaton Mo,u = (cI>k,cI>k,sM,c5M,FM), This automaton 
is defined as follows: SM = {rt180 (t(a),root)}; FM={(}}; and for each 01,e2 E cI>k, 

c5 M ( 01, 02) = rrso ( a( t1, ... , tn, t), root) where t1, ... , tn, and t are trees such that 
rk'180(a(t1, ... ,tn),root) = 01 and rk'180(t,root) = 02. By Proposition 4.12(2), it 
does not matter which members of the classes 01 and 02 we choose. • 

4.2 Attribute grammars over extended context-free 
grammars 

Before defining extended attribute grammars formally, we give an example illustrating 
the basic ideas. 

Consider the ECFG consisting of the sole rule U -+ (A+ B)*. We now want 
to construct an attribute grammar selecting those A's that are preceded by an even 
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number of A's and succeeded by an odd number of B's. As for BAGs, we will use 
semantic rules defining an attribute select. This gives rise to two problems not present 
for BAGs: 

(i) U can have an unbounded number of children labeled with A which implies that 
an unbounded number of attributes should be defined; 

(ii) the definition of the select attribute of an A depends on its siblings, whose 
number is again unbounded. 

We resolve this in the following way. For (i), we just define select uniformly for ~ach 
node that corresponds to the first position in the regular expression (A+ B)*. For 
(ii), we use regular languages as semantic rules rather than propositional formulas. 
The following extended AG now expresses the above query: 

U-+ (A+B)* select(l) := (a1 = lab,a2 = lab; 
Rtrue = (B*AB*AB*)*#A*BA*(A*BA*BA*)*, 
RJalse = (A+ B + #)* - Rtrue}. 

The 1 in select(l) indicates that the attribute select is defined uniformly for every 
node corresponding to the first position in (A+ B)*. In the first part of the semantic 
rule, each ai lists the attributes of position i that will be used. Here, both for position 
1 and 2 this is only the attribute lab which is a special attribute containing the label 
of the node. Consider the input tree U(AAABBB). Then to check whether the third 
A is selected we enumerate the attributes mentioned in the first part of the rule and 
insert the symbol # before the node under consideration. This is just the string 

1 1 1 2 2 2 
A A #ABB B 
1 2 3 4 5 6 

position in (A+ B)• 

position in AAABBB 

The attribute select of the third child, for instance, will now be assigned the value 
true since the above string belongs to Rtrue· Note that 

(B* AB* AB*)* and A* BA*(A* BA* BA*)* 

define the set of strings with an even number of A's and with an odd number of B's, 
respectively. The above will now be defined formally. 

We now define extended attribute grammars (extended AGs) over ECFGs whose 
attributes can take only values from a finite set D. 

Proviso 4.14 Unless explicitly stated otherwise, we always assume an ECFG G = 
(N, T, P, U). When we say tree we always mean derivation tree of G. 

Definition 4.15 An attribute grammar vocabulary is a tuple (D, A, Syn, Inh) , where 

• D is a finite set of values called the semantic domain. We assume that D always 
contains the Boolean values O and 1; 
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• A is a finite set of symbols called attributes; we always assume that A contains 
the attribute lab; 

• Syn and Inh are functions from N U T to the powerset of A - {lab} such that 
for every X E N, Syn(X) n Inh(X) = 0; for every X E T, Syn(X) = 0; and 
Inh(U) = 0. 

If a E Syn(X), we say that a is a synthesized attribute of X. If a E Inh(X), we 
say that a is an inherited attribute of X. We also agree that lab is an attribute of 
every X (this is a predefined attribute; for each node its value will be the label of 
that node). The above conditions express that an attribute cannot be a synthesized 
and an inherited attribute of the same grammar symbol, that terminal symbols do 
not have synthesized attributes, and that the start symbol does not have inherited 
attributes. 

We now formally define the semantic rules of extended AGs. For a production 
p = X-+ r, define p(O) = X, and for i E {1, ... , Jrl}, define p(i) = r(i). We fix some 
attribute grammar vocabulary (A, D, Syn, Inh) in the following definitions. 

Definition 4.16 l. Let p = X-+ r be a production of G and let a be an attribute 
of p(i) for some i E {O, ... , JrJ}. The triple (p, a, i) is called a context if a E 
Syn(p(i)) implies i = 0, and a E Inh(p(i)) implies i > 0. 

2. A rule in the context (p, a, i) is an expression of the form 

where 

• for j = {O, ... , Jrl}, a3 is a sequence of attributes of p(j); 

• if i = 0, then, for each d E D, Rd is a regular language over the alphabet 
D;and 

• if i > 0, then, for each d ED, Rd is a regular language over the alphabet 
DU{#}. 

For all d, d' E D, if d-:/ d1 then Rd n Rd, = 0. Further, if i = 0 then LJdED Rd = 
D*. If i > 0 then udED Rd should contain all strings over D with exactly one 
occurrence of the symbol #. Note that a Rd is allowed to contain strings with 
several occurrences of #. We always assume that # (/. D. 

An extended AG is then defined as follows: 

Definition 4.17 An extended attribute grammar ( extended AG) :F consists of an 
attribute grammar vocabulary, together with a mapping assigning to each context a 
rule in that context. 

It will always be understood which rule is associated to which context. We illustrate 
the above definitions with an example. 
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Example 4.18 In Figure 4.1 an example of an extended AG :Fis depicted over the 
ECFG of Figure 1.6. Recall that every grammar symbol has the attribute lab; for 
each node this attribute has the label of that node as value. We have Syn(Word) = 
{king, lord}, Syn(Verse) = {king _lord}, Syn(Poem) = {result}, and Inh(Poem) = 
{.first}. The grammar symbols DB, a, ... , z, Verse, and Word have no attributes 
apart from lab. The semantics of this extended AG will be explained below. Here, 
D = {O, 1, a, ... , z, DB, Poem, Verse, Word}. We use regular expressions to define the 
languages R1; for the first rule, Ro is defined as (DU { #} )* - R1; for all other rules, 
Ro is defined as D* - R1; those Rd that are not specified are empty; c stands for the 
empty sequence of attributes. • 

DB-+ Poem+ 
Poem-+ Verse+ 

Verse -+ Word+ 

Word-+ (a+ . . . + z)+ 

first(l) := (a0 = lab , a1 = lab; R1 = DB#Poem+) 
result(O) := (ao = first, a1 = king_lord; 

R1 = 1(1 + O)* + 0(1(1 + O))*(l + c)} 
king_lord(O) := (ao = c, a1 = (king, lord); 

R1 = (0 + l)* + 1 + (0 + l)*) 
king(O) := (ao = c, a1 =lab, ... , a2a = lab; R1 = {king}) 
lord(O) := (ao =c, a1 = lab, .. . ,a2a = lab;R1 = {lord}) 

Figure 4.1: Example of an extended AG. 

The semantics of an extended AG is that it defines attributes of the nodes of 
derivation trees of the underlying grammar G. This is formalized next. 

Definition 4.19 Ht is a derivation tree of G then a valuation v of t is a funct ion 
that maps each pair (n, a), where n is a node in t and a is an attribute of the label 
of n, to an element of D, and that maps for every n, v((lab, n)) to the label of n . 

In the sequel, for a pair (n, a) as above we will use the more intuitive notation a(n). 
To define the semantics of :F we first need the following definition. H a = a1 · · · ak 
is a sequence of attributes and n is a node oft, then define a(n) as the sequence of 
attribute-node pairs a(n) = a1 (n) · · · ak(n). 

Definition 4.20 Lett be a derivation tree, n a node oft, and a an attribute of the 
label of n. 

Synthesized Let n1, ... , nm be the children of n derived by p = X -+ r, and let 
(ao, .. . , alrl ; (Rd)dED) be the rule associated to the context (p, a, 0). Define for 
l E {l, .. . ,m}, Ji = posr(l,w), where w is the string formed by the labels of 
the children of n. Then define W(a(n)) as the sequence 

ao(n) · CTj1 (n1) · · · CTj,,. (nm) . 

For each d, we denote the language Rd associated to a(n) by R:(n). 
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Inherited Let n1 , ... , nk-1 be the left siblings, nk+l, ... , nm be the right siblings, 
and no be the parent of n. Let no be derived by p = X -+ r, and define for 
l E {1, ... , m }, i1 = posr(l, w), where w is the string formed by the labels of the 
children of no. Let (ao, ... , UJrJ; (Rd)dED) be the rule associated to the context 
(p,a,jk)- Now define W(a(n)) as the sequence 

ao(no) · aii (n1) · · · aj,._1 (nk-1) · # · aj,. (n) · · · aii.+i (nk+i)aim (nm)-

For each d, we denote the language Rd associated to a(n) by R:(n). 

If v is a valuation then define v(W(a(n))) as the string obtained from W(a(n)) by 
replacing each b(m) in W(a(n)) by v(b(m)). Note that the empty sequence is just 
replaced by the empty string. 

We are now ready to define the semantics of an extended AG :F on a derivation 
tree. 

Definition 4.21 Given an extended AG :F and a derivation tree t, we define a se
quence of partial valuations (:Fi )j?_O as follows: 

1. Fo(t) is the valuation that maps, for every node n, lab(n) to the label of n and 
is undefined everywhere else; 

2. for j > 0, if :Fj- i(t) is defined on all b(m) occurring in W(a(n)) then 

:Fj(t)(a(n)) = d, 

where .Fj-i(W(a(n))) E R:(n)_ Note that this is well defined. 

If for every t there is an l such that :F1(t) is totally defined (this implies that 
.rj(t) = F1-1(t)) then we say that :Fis non-circular. Obviously, non-circularity is 
an important property. In the next section we show that it is decidable whether an 
extended AG is non-circular. Therefore, we can state the following proviso. 

Proviso 4.22 In the sequel we always assume an extended AG to be non-circular. 

Definition 4.23 The valuation :F(t) equals :F1(t) with l such that :Fi(t) = .1i+1 (t). 

Proviso 4.24 In this chapter, whenever we say query, we always mean unary query. 

An extended AG :F can be used in a simple way to express queries. Among the 
attributes in the vocabulary of :F, we designate some attribute result, and define: 

Definition 4.25 An extended AG :F expresses the query Q defined by 

Q(t) = {n I F(t)(result(n)) = 1}, 

for every tree t. 
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DB 

Poem Poem 

W(fust) = DB#PoemPoemPoem W(first) = DBPoem#PoemPoem 

first = I result = 1 first = 0 result = 0 

W(result) = 11 W(result) = 001 

Verse Verse Verse 

W(k_l) = 000001 W(k_ l) = 00 W(k _l) = 1000 

k_l = 1 k_l =0 k_l = 1 

~ A 
Word Word Word Word Word Word 

k=O k =O k = O k=O k=l k = O 

I = 0 I = 0 I = 1 I = 0 1=0 1 = 0 

horse kingdom lord queen king dagger 

Poem 

W(first) = DBPoemPocm#Poem 

first = 0 result = I 

W(result) = 0111 

Verse Verse 

W(k_l) = 01 W(k_l) = 10 

k_l = I k_l = t 

Word Word 

k=O k=l 

I= I I = 0 

lord king 

Verse 

W(k_l) = 0010 

k_l = 1 

I\ 
Word Word 

k =O k=I 

1=0 I= 0 

witch king 

Figure 4.2: A derivation tree and its valuation as defined by the extended AG in 
Figure 4.1. 

Example 4.26 Recall the extended AG :F of Figure 4.1. This extended AG selects 
the first poem and every poem that has the strings king or lord in every other verse 
starting from the first one. In Figure 4.2 an illustration is given of the result of :F on 
a derivation tree t. At each node n, we show the values :F(W(a(n))) and :F(t)(a(n)). 
We abbreviate a(n) by a, king by k, lord by l, and king_lord by k_l. 

The definition of the inherited attribute first indicates how the use of # can 
distinguish in a uniform way between different occurrences of the grammar symbol 
Poem. This is only a simple example. In the next section we show that extended AGs 
can express all queries definable in MSO. Hence, they can also specify all relationships 
between siblings definable in MSO. 

The language R1 associated to result (cf. Figure 4.1), contains those strings rep
resenting that the current Poem is the first one, or representing that for every other 
verse starting at the first one the value of the attribute king_lord is 1. • 

The size of an extended AG is the sum of the sizes of the attribute grammar 
vocabulary, the ECFG and the size of the semantic rules where we represent the 
regular languages Rd by NFAs. 
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4.3 Non-circularity 

In this section we show that it is decidable whether an extended AG is non-circular. 
More concretely, we show that deciding non-circularity is in EXPTIME. As it is 
well known that deciding non-circularity of standard AGs is complete for EXP
TIME [JOR75], going from ranked to unranked does not increase the complexity 
of the non-circularity problem. 

We first make the following remark indicating that testing non-circularity for ex
tended AGs is slightly more subtle than for standard AGs. 

Remark 4.27 Not all the specified attributes in a semantic rule are always used. 
Indeed, consider the grammar with productions C --+ A + B, A --+ c and B --+ c. Let 
F be an extended AG where the inherited attribute a of A and B is defined in the 
context (C--+ A+ B, a, 1) a.s 

a(l) := (ao = c, a1 = c, a2 = a; R1), 

and in the context (C--+ A+ B , a, 2) as 

a(2) := (ao = c, a1 = a, a2 = c; R1), 

At first sight F seems circular. This is, however, not the case since A and B never 
occur simultaneously in a derivation tree. Consider for example the tree graphically 
represented a.s 

C 
.i 
A 
.i 
c. 

If the label ofn is A then W(a(n)) is the empty sequence and consequently F(a(n)) = 
1 if and only if the empty string belongs to R1 . • 

A naive approach to testing non-circularity is to transform an extended AG Finto 
a standard AG F' such that Fis non-circular if and only if F' is non-circular and then 
use the known exponential algorithm on F'. We can namely always find an integer 
N (polynomially depending on F) such that we only have to test non-circularity of 
Fon trees of rank N. Unfortunately, this approach exponentially increa.ses the size 
of the AG. Indeed, a production X--+ (a+ b) ···(a+ b) (n times), for example, ha.s 
to be translated to the set of productions {X--+ w I w E {a,b}* /\ lwl = N}. So, the 
complexity of the above algorithm is double exponential time. Therefore, we abandon 
this approach and give a different algorithm whose complexity is in EXPTIME. 

To this end, we first generalize the tree walking automata of Bloem and Engel
friet [BE97] to unranked trees. In particular, we show that for each extended AG F, 
there exists a tree walking automata W F such that F is non-circular if and only if 
W F does not cycle. Moreover, the size of W F is polynomial in the size of F. We thus 
obtain our result by showing that testing whether a tree walking automaton cycles is 
in EXPTIME. 
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Definition 4.28 A nondeterministic tree walking automaton is a tuple W = (Q, E, 8, 
Qo,F) where 

• Q is a finite set of states, 

• E is an alphabet, 

• Qo E Q is the start state, 

• F ~ Q is the set of final states, and 

• 8 ~ Q x E x Q x {..I-first, ..l-1ast, -+, +-, t, stay} is the transition relation. 

Intuitively, a tree walking automaton walks over the tree starting at the root. To 
make sure that the automaton cannot fall off the tree, we augment input trees with 
the boundary symbols+-,-+, ..j.., and t. For example, the tree a(b, c) augmented with 
boundary symbols looks like ..j.. (-+, a(-+, b( t), c( t), +-), +-), or more graphically: 

..j.. 

-+a+-
-t b Cf-

t t 

When we refer to the root of a tree we mean the root of the tree without the boundary 
symbols. 

A perhaps more elegant solution is to have a separate transition function for 
the root node, internal nodes and leaf nodes. But since this last approach terribly 
complicates the proof of the next lemma we just stick to the tree representation with 
boundary symbols. 

Depending on the current state and on the label at the current node, the transition 
relation determines in which direction the automaton can move and into which states 
it can change. The possible directions w.r.t. the current node are: go to the first child, 
the last child, the left sibling, the right sibling, or the parent, or stay at the current 
node. Of course, we have the obvious restrictions that W can only move to the left, 
right, down and up, when it reads the symbols+-, -+, ..j.., and t, respectively. 

The automaton accepts an input tree when there exists a walk started at the root 
in the start state that again reaches the root node in a final state. We make this 
more precise. A configuration of W on a tree t is a pair (n, q) where n is a node 
oft and q E Q. The start configuration is (root(t), qo), and each (root(t),q) with 
q E Fis an accepting configuration. A walk of Wont is a (possibly infinite) sequence 
of configurations c 1c2 c3 · · · where c1 is the start configuration and each Ci+l can be 
reached from Ci by making one transition. The latter is defined in the obvious way. 
A walk is accepting when it is finite and the last configuration is a final one. Finally, 
W accepts t when there exists an accepting walk of W on t. However, we will not 
need this definition further on as we will concentrate on infinite walks. 

We need the following definition to state the next lemma. 
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Definition 4.29 A nondeterministic tree walking automaton cycles if there is a tree 
on which it has an infinite walk. 

Lemma 4.30 Deciding whether a nondeterministic walking tree automaton is cycling 
is in EXPTIME. 

Proof. Let W = ( Q, ~. c5, qo, F) be a nondeterministic tree walking automaton. For 
a tree t define the behavior relation of W on t as the relation ltw ~ Q x ( Q U { #}) 
as follows . For each q, q' E Q, 

l. ltw (q, q') if there exists a walk of W starting at the root of t in state q that 
again returns at the root in state q' with the additional requirement that W 
is not allowed to move to the left sibling, the right sibling or the parent of the 
root (recall these are labeled with -+, +-, and -1-, respectively) during this walk; 

2. I tw ( q, #) if there is an infinite walk of W starting at the root in state q, again 
with the additional requirement that W is not allowed to move to the left sinling, 
the right sibling or the parent of the root during this walk. 

The additional requirement mentioned in both of the above cases is needed because 
we want to compute behavior relations of nodes in a tree, in terms of the behavior 
relations at the children of those nodes. Therefore, the behavior relations of the 
subtrees should only be defined by computations that do not leave those subtrees. 

Let I~ Q x (Q U {#}) be a relation and let a EE. Then, we say that (!,a ) is 
satisfiable whenever there exists a tree t with ltw = I and the label of root(t) is a. 
We refer to the tuples (!, a) as behavior tuples. It now suffices to compute the set of 
all satisfiable behavior tuples to decide whether W is cycling. To see this, we first 
introduce the following relations that determine the behavior of W when it encounters 
the boundary of the tree. Define the relations c5~, o;, and c5f .i., as follows: for each 
q,q' E Q, 

• c5':+ (q, q') iff there exists a q" such that c5(q, a, q",-+) and c5(q", +-, q', +-); 
f-

• c5~ (q , q') iff there exists a q" such that c5(q, a, q", +-) and c5(q" , -+, q',-+ ); 
---t 

• c5f.i. (q, q') iff there exists a q" such that o(q, a, q" , t) and o(q"' -1-, q', -I-first); 

We define States(/1, ... , In, q) ~ Q U { #} as the set of states reachable from q by 
applying relations in /i, ... , In· Further, if one of the relations introduces cycling 
then # also belongs to States(fi, ... , In, q). Formally, States(/1, .. . , In, q) is the 
smallest set of states containing q such that if q' E States(/1, ... , In, q) and l i(q', q") 
then q" E States(/1, ... ,ln,q). Additionally, if ql,··· ,qm+l E States(/1, ... ,ln,q), 
q1 = qm+l, and for i = 1, ... ,m, there is a ji with f;;(qi,qi+i), then# E States(/1, 
· · · ,ln,q). 

So Wis cycling whenever there exists a satisfiable behavior tuple (!, a) such that 
# E States(!, c5~, <>S, c5f.i., qo). This just says that an infinite walk can be reached 
from the start state qo. 
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Input: W 
% Initialization 
for each behavior tuple (!, a) do 

construct MJ,u 
G := {Ut%),a) I a EE} 
% Main loop 
repeat 

for each(!, a) </. G do 
if L(M1,u) nG* -1- 0 
then G :=GU {(!,a)} 

until no more changes occur 

Figure 4.3: An algorithm computing the set S of weakly satisfiable behavior tuples. 

To reduce the complexity of our algorithm we make use of a weaker notion of 
satisfiability. We say that a behavior tuple (!,a) is weakly satisfiable whenever there 
exists a satisfiable behavior tuple (g,a) such that/~ g. Note that every satisfiable 
tuple is also weakly satisfiable. 

If g is witnessed by t then we say that / is weakly witnessed by t. Let S be the 
set of all weakly satisfiable behavior tuples. Then W is cycling whenever there exists 
a behavior tuple (!, a) ES such that# E States(!, 8~, &;, 8.f.i , qo). 

In Figure 4.3, we give an algorithm computing S. In this algorithm, G is initialized 
by the set of behavior tuples for all 1-vertex trees. Hereafter, the algorithm tests for 
each behavior tuple (!, a) whether it can be obtained by combining behavior tuples 
in G and adds (!, a) to G if this is the case. To this end, we use an automaton 
Mf,u over the alphabet consisting of all behavior tuples. In particular, if (/1 ,a1), 

... , Un, an) are weakly satisfiable and (!1, a1) ···Un, an) E L(MJ,u) then (/, a) is 
weakly satisfiable. Moreover, if each (Ii, ai) is weakly witnessed by ti, then (/, a) 
is weakly witnessed by a(t1 , ... , tn). From this it follows that all tuples in Gare 
weakly satisfiable. The converse can be shown by induction on the minimal height of 
the trees weakly witnessing the weakly satisfiable behavior tuples. It follows that after 
completion of the algorithm G = S. Since the size of each MJ,u will be exponential in 
the size of W, the test L(M1,u) n G* -1- 0 can be done in exponential time. As there 
are only exponentially many behavior tuples, the REPEAT loop will iterate at most 
an exponential number of times. Thus, the total execution time of the algorithm will 
be exponential in the size of W . 

We explain the construction of MJ,u· First, we define a nondeterministic two-way 
string automaton Mf,u with one pebble whose size is polynomial in the size of W. 
By Proposition 2.10, M1,u is equivalent to a one-way nondeterministic automaton 
whose size is only exponential in the size of MJ,u· We then define MJ,u as the latter 
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automaton. On input (/1,u1) ··· Un,un), M't,u works as follows. Let each (/i,ui) be 
weakly witnessed by ti. 

1. For each q, q' E Q for which J(q, q'), the automaton M't,u has to check whether 
there exists a walk starting at the root of u(t1, ... , tn) in state q that again 
reaches the root in state q'. However, M't,u does not need to know the tree 
u(t1, . .. , tn): M1,u just guesses this path using the fi's. That is, M1,u starts 
in state q at the root. H W, for example, decides to move to the last child in 
state Qi, then M't,u walks to the last position of the string (/1, ui) ···Un, Un) 
arriving there in state qi. Further, if M't,u arrives at a position labeled with 
(Ji, ui) and W decides to enter the subtree below this position, then M't,u just 
examines the relation Ji to see in which states it can return. If W makes a move 
to, say, the right sibling in state q2, then M1 ,u just makes a right move to state 
q2 • If M1 ,u succeeds in reaching the root in state q', then it considers the next 
pair of states qi and q~ for which J(qi, qD. Clearly, M't,u only needs a number 
of states that is polynomial in the size of W. 

2. For every q E Q such that J(q, #), M't,u has to verify the existence of an 
infinite walk on a(t1, ... , tn) starting from state q at the root. This can happen 
in two ways. The first possibility is that W gets into a cycle in one of the 
subtrees t 1 , ... , tn, say ti. This can be detected, like in the previous case, by 
simply guessing a walk reaching position i of the input string (/1, ai) ···Un, un) 
in a state q' such that /i ( q', #). The second possibility is that W can walk 
forever on the children of the root. We use the pebble to detect this: M1,u now 
just guesses a walk of W using the relations Ji, ... , J n as explained above and 
nondeterministically puts down its pebble on a position of (Ji, a 1 ) ···Un, an), 
memorizes the current state, and proceeds its walk. It then accepts when it 
reaches the pebble again in the memorized state, which means that W indeed 
has reached a cycle and hence can walk forever. H this succeeds then M1 ,u 

checks the next state q' E Q for which J(q', #). • 

Next, we define a tree walking automaton W .r for an extended AG :F such that 
W .r cycles if and only if :F is circular. The idea is that on input t, W .r follows all 
possible paths in the dependency graph1 of :F fort. Hence, W.r will terminate on t if 
and only if this dependency graph is acyclic. This idea is similar in spirit to a result 
by Maneth and the present author [MN99] where a standard attribute grammar is 
transformed to a D7£ program such that the latter terminates on every input if and 
only if the former is non-circular. Here, the complication arises from the fact that we 
have to deal with extended AGs rather than with standard AGs. 

1The dependency graph 'D.r(t) of :F for a derivation tree t is defined as follows. Its nodes are all 
a(n), such that n is a node oft and a is an attribute of the label of n. Further, there is an edge 
from a(n) to b(m) if and only if a(n) E W(b(m)) (cf. Definition 4.20). Clearly, :Fis well-defined on 
t if and only if 'D(t) contains no cycle. Hence, :F is non-circular if and only if there does not exist a 
t such that 'D.r(t) is cyclic. 
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Theorem 4.31 Deciding non-circularity of extended AGs is in EXPTIME. 

Proof. Let F be an extended AG with attribute set A and semantic domain D. For 
ease of exposition we assume that all grammar symbols have all attributes, i.e., for 
every XE NUT, Inh(X) U Syn(X) = A. 

We now construct a tree walking automaton W F such that W F cycles if and only 
if Fis circular. Rather than letting W F work over derivation trees of G, we let it work 
on the set of all trees over the alphabet (NUT) x (PUT) x (PU {U}) x {1, . . . , m} 
where m = max{lrl I X -+ r E P}. That is, m denotes the maximal number of 
positions of a regular expression in a production of P. . 

The automaton W F first checks the following. For each node n of the input tree 
labeled with (a,p1,P2,i), 

1. if P1 E T then a = P1 and n should be a leaf; if Pl = X -+ r E P then a = X 
and n should be derived by P1; 

2. if P2 = U then n should be the root; if p2 E P then the parent of n should be 
derived with P2; and 

3. if the parent p of n is derived by X-+ r, w is the string formed by the children 
of p, and n is the j-th child of p, then posr(j, w) = i. 

The automaton checks this in the following way. It makes a depth first traversal of 
the tree. At each node n labeled with ( a, Pt, P2, i) it can check (1) by first checking 
whether the current node is a leaf, and if not, by simulating the NFA for r on the 
children of n where Pt = X -+ r . Only when the NFA accepts it moves to the next 
node in the depth first traversal. To check (2), W F makes another depth first traversal 
of the tree. It first checks whether the root is labeled with (U, p, U, 1). Next, for each 
internal node n labeled with · ( a, p1 , P2, i) it checks whether every child of n has P1. in 
the third component of its label. Finally, (3) is checked by making a third depth first 
traversal through the tree simulating the automaton Mr of Lemma 4.3. 

If all this succeeds then W F nondeterministically walks to a node and chooses an 
attribute a which it keeps in its state. Now, suppose W.r arrives at a node n labeled 
with ( X, P1, P2, j) with the attribute a in its state. We distinguish two cases. 

l. a is a synthesized attribute of X: Let a(O) := (ao, ... ,a1r1.; (Rd)dED) be the rule 
in the context (pt, a, 0). Then W F nondeterministically chooses an attribute b 
in a ai and replaces a in its state with b. If i = 0 then W F just stays at the 
current node. If i > 0 then W F walks nondeterministically to a child of the 
current node having i as the last component of its label. 

2. a is a synthesized attribute of X: Let a(j) := (ao, ... , a lr l; (Rd)dED) be the rule 
in the context (P2,a,j). Then W.r nondeterministically chooses an attribute b 
in a ai and replaces a in its state with b. If i = 0 then W F walks to the parent 
of n. If i > 0 then W F walks nondeterministically to a sibling of n having i as 
the last component of its label (or possibly stays at n if i = j). 
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Clearly, W .r is cycling if and only if :Fis circular. • 
Since deciding non-circularity for standard attribute grammars is also hard for EX

PTIME, we obtain that testing whether a nondeterministic tree walking automaton 
cycles is EXPTIME-complete. 

4.4 Expressiveness of extended AGs 

In this section we generalize Theorem 3.24 to extended AGs. We start with the easy 
direction. 

Lemma 4.32 Every query expressible by an extended AG is definable in MSO. 

Proof. Let :F be an extended AG. We say that an arbitrary total valuation v oft 
satisfies :F if for every node n oft and attribute a of the label of n, v(W(a(n))) E 

R~f:in))· It follows immediately from the definitions that :F(t) satisfies :F. Moreover, 
:F(t) is the only valuation that satisfies :F. Indeed, suppose that v satisfies :F. An 
easy induction on l , using non-circularity, then shows that if a(n) is defined in J=i(t) 
then J=i(t)(a(n)) = v(a(n)). 

In MSO we just guess the values of the attributes, verify our guesses and select 
those nodes for which the result attribute is true. For ease of exposition we assume 
that all grammar symbols have all attributes, i.e., for every X E NUT, lnh(X) U 
Syn(X) = A. We use set variables to represent the assignment of values: for each 
function o: : A -+ D, Z0 will contain those nodes n such that for every attribute 
a E A, :F(t)(a(n)) = o:(a). We then only have to verify that all semantic rules are 
satisfied under this assignment. This can easily be done since by Lemma 2.7 every 
regular language can be defined in MSO. The result of the query expressed by F then 
consists of the nodes in all the Z 0 where a(result) = 1. Since for every tree there is 
only one assignment that satisfies :F we can just existentially quantify over the Z

0
• 

We omit the formal construction of the MSO formula simulating :F which is 
straightforward but tedious. • 

To prove the other direction, we show that extended AGs can compute the MSO
equivalence type of the input tree. This computation is similar to the one in the 
proof of Theorem 3.24. The only complication arises from the fact that trees are now 
unranked. 

Theorem 4.33 A query is expressible by an extended AG if and only if it is definable 
in MSO. 

Proof. The only-if direction was already given in Lemma 4.32. 
Let cp(x) be an MSO formula of quantifier depth k. We will define an extended AG 

:F expressing the query defined by c,o. Define D = <l>kU{O, 1} and A = { env, sub, result, 
lab}, where env is inherited for all grammar symbols except for the start symbol for 
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which it is synthesized, and sub and result are synthesized for all non-terminals and 
inherited for all terminals. The intended meaning is the following: for a node n of a 
tree t, 

• .r(t)(sub(n)) = Tk(tn,n), 

• .r(t)(env(n)) = Tk(tn,n), and 

• .r(t)(result(n)) = 1 if and only if t F <p[n] . 

By Proposition 4.12(1), t F <p[n] only depends on Tk(tn,n) and Tk(tn,n). Hence, 
F(t)(result(n)) only depends on the attribute values .r(t)(env(n)) and .r(t)(sub(n)). 

The extended AG we will construct works in two passes. In the first bottom-up 
pass all the sub attributes are computed (using the regular languages SUB, defined 
below); in the subsequent top-down pass all the env attributes are computed (using 
the regular languages ENV, defined below). To initiate the top-down pass we use our 
convention, that the start symbol cannot appear in the left-hand side of a production. 
After this second pass, there is enough information at each node n to decide whether 
t F cp[nJ. 

We now define the regular languages SUB, which we will use to compute Trso_ 
types of subtrees in a bottom-up fashion. We again abbreviate Trso ( t, root( t)) by 
Trso(t, root). Define for () E <I>k and X E N the language SUB(X, ()) over <I>k as 
follows: 

()1 · · · ()n E SUB(X, ()) 

if there exist trees t1, ... , tn such that for i = 1, . . . , n , Trso (ti, root) = ()i and 
Trs0 (X(t1, . .. , tn), root) = e. Similar to the proof of Lemma 4.13 we show that 
SUB(X, ()) is a regular language. 

Lemma 4.34 Let XE N and() E <I>k . There exists a DFA M = (S , <I>k , 8,so,F) 
accepting SUB(X, e). 

Proof. Define M = (S,<I>k,t5,s0 ,F) as the DFA where S = <I>k U {so} and F = 
{()}; define the transition function as follows: for all (),()1,()2 E <I>k, t5(so,()) = 
Tr80(X(t),root) with Tr80 (t,root) =(),and 8(()1 , e) = ()2, whenever there exists 
a tree t with an X-labeled node n of arity n (for some n) such that Tr80(X(tn1, ... , 
tnn- 1), root) = e1, Tr80(tnn, nn) =(),and Tr80 (tn, n) = e2. By Proposition 4.12(2), 
it does not matter which elements in the equivalence classes (), e1, and ()2 we take . 

• 
Note that, t5*(s0 , ()1 · · · ()n) = ()' if and only if there exist trees ti , ... , tn such that 

for i = 1, ... ,n, Tr80(ti,root) = ()i and Tr 80(X(t1, . .. , tn),root) = ()'. 
Now, define for () E <I> k the language ENV ( ()) over <I> k U { #} as follows: 

{j = ()0()1 · · · ()i-1 #()i()i+l · · · ()n E ENV(()) 

iff 
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• ()i E !J>k for j = 0, ... ,n, and 

• there exists a tree t with anode ll of arity n (for some n) such that TfSO (tn, n) = 
Bo, rf80(tni,ni) = (),and rf80 (tnj,nj) = Bj for j = 1, . .. ,n. 

By Proposition 4.12(3), 0 E ENV(O) only depends on rf80(tn, n), Tf80 (X(tn1, ... , 
tni-1), root), rtso ( X ( tni+ 1 · · · tnn), root) , and the label of ni which i~ turn only 
depends on rf O ( tni, ni). In terms of the automaton M of Lemma 4.34, () E ENV ( 0) 
only depends on Bo, 8*(so,B1 · · .()i-1), 8*(so , Bi+1 ···On), and ()i · It is, hence, not 
difficult to construct an automaton accepting ENV(O). Indeed, such an automaton 
stores Bo in its state; then simulates M until it reaches the symbol #; this gives 
the state 8* (so, 81 · · · ()i-1); hereafter M stores ()i in its state and again simulates M 
until the end of the string which gives the state 8* ( s0 , ()i+1 · · ·On); M then accepts if 
ex(Oo, 8*(so, 81 · · · Bi-1), Bi, 8*(so, ()i+l ···On)) = 0. Here the function ex is defined as 
follows. For (Ji, 82, (h, 84, () E !J>k and XE N, lx(01 ,82,83, ()4) =()if there exists a 
tree t with an X -labeled node n of arity n ( for some n) and an i E { 1, ... , n}, such 
that 

• TMSO(t n) - 81· k n, - , 

• rf80 (X(tn1 ... tni-1), root) = 82; 

• Tf80 (tni,ni) = 83j 

• Tf80(X(tni+l · .. tnn), root) = 84; and 

MSO - ·) • Tk (tni, ni = 0. 

By Proposition 4.12, for all XE N and 01, 82 E !J>k, if 81 =/:- 82 then SUB(X,('1) n 
SUB(X, 82) = 0 and ENV(01)nENV(02) = 0. Also, for all XE N, LJoE<1>1o SUB(X, O) = 
'1>Z and UoE<1>1o ENV(O) = '1>Z#'1>Z. 

We now define the semantic rules of :F. For every production X --+ r, define in 
the context (X --+ r, sub, 0) the rule 

sub(O) := (ao =c, 0-1 = sub, ... ,alrl = sub;(Re = SUB(X,8))8E<I>1o,Ro = {0,1}*) . 

As before, the Rd's that are not mentioned are defined as the empty set. For every i 
such that r(i) = a is a terminal define in the context (X--+ r, sub, i) the rule 

sub(i) := (ao = c, a1 = c, ... , alrl = c; Ro,, = {c }, Ro= D* - Ro,,)). 

The above rule just assigns the type () u = rf 8° ( t (a), root) to every non-terminal a. 
For i = 1, ... , lrl , define in the context (X --+ r, env, i) the rule 

env(i) := (ao = env, a1 = sub, ... , alr l = sub; (Ro = ENV(O))oE<1>1o, Ro = {O, 1, #} *). 

For the start symbol, define in the context (U --+ r, env, 0) the rule 

env(O) := (cro =c, a1 = c, ... ,alrl = c;Ro(u) = {c:},Ro =DD*)), 
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where O(U) = rt180 (t(U),root(t(U))). Finally, add in the context (X -t r,result,0) 
the rule 

result(O) := (a0 = ( env, sub), a1 = c:, ... , O'lrl = t:; R1, R.o = D* - R1), 

and for every i such that r(i) is a terminal, add in the context (X -t r, result, i) the 
rule 

result(i) := (ao = t:,a1 = c:, ... ,O'i-1 = c:,ai = (env,sub), 

ai+l = t:, . . - , alrl = t:; R1, R.o = (DU { #} )* - R1), . 

where R1 consists of those two letter strings 01 02 E <I>% for which there exists a tree t 
with a node n, with rt180 (tn, n) = 01, rt180 (tn, root)= 02 , and t F rp[nJ. • 

4.5 Optimization 

An important research topic in the theory of query languages is that of optimization 
of queries. This comprises, for example, the detection and elimination of subqueries 
that always return the empty relation, or more general, the rewriting of queries, 
stated in a certain formalism, into equivalent ones that can be evaluated more effi
ciently. The central problem in the case of the latter is, hence, to decide whether the 
rewritten queries are indeed equivalent to the original ones. In this section we study 
the complexity of the emptiness and equivalence test of extended AGs. Interestingly, 
these results will be applied in Chapter 6 to obtain a new upper bound for deciding 
equivalence of Region Algebra expressions introduced by Consens and Milo [CM98a]. 

We consider the following problems: 

• Non-emptiness: Given an extended AG F , does there exists a tree t and a 
node n oft such that F(t)(result(n)) = 1? 

• Equivalence: Given two extended A Gs F 1 and F2 over the same grammar, do 
F1 and F2 express the same query? 

To show the EXPTIME-hardness for the above decision problems we use a reduc
tion from TWO PERSON CORRIDOR TILING which is known to be complete for 
EXPTIME (see Chlebus [Chl86]). 

For natural numbers n and m we view {1, ... , n} x {1, ... , m} as a rectangle 
consisting of m rows of width n. Let T be a finite set of tiles, let H, V ~ T x T 
be horizontal and vertical constraints, and let b = b1 , ... , bn,t = t 1 , ... , tn E Tn 
be the bottom and the top row. A corridor tiling from b to f is a mapping A 
{1, ... ,n} x {1, ... ,m} -t T, for some natural number m , such that 

• the first row is b, that is, A(l, 1) = b1, ... , A(l,n) = bn; 

•them-th row is t, that is, A(m, 1) =ti, ... , A(m,n) = tn; 
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• for i = 1, ... , n - 1 and j = 1, ... , m, (>..(i,j), >..(i + l,j)) EH; and 

• for i = 1, ... ,n andj = 1, . .. ,m - 1, (>..(i,j),>..(i,j + 1)) EV. 

In a two person corridor tiling game from b to t, two players, on turn, place tiles row 
wise from bottom to top, and from left to right in each row. The first player starts 
and each newly placed tile should be consistent with the tiles already placed. The 
first player tries to make a corridor tiling from b to t, whereas the second player tries 
to prevent this. If the first player always can achieve such a tiling no matter how the 
second player plays, then we say that player one wins the corridor game. A player 
that puts down a tile not consistent with the tiles already placed, immediately looses. 

TWO PERSON CORRIDOR TILING is the problem to decide, given a set of tiles 
T, H, V ~ T x T, a sequence of tiles b = b1 , . .' . , bn and f = t1 , .. . , tn E rn, whether 
player one wins the corridor game. 

Lemma 4.35 Deciding non-emptiness of extended AGs is hard for EXPTIME. 

Proof. The proof is a reduction from TWO PERSON CORRIDOR TILING to non
emptiness of extended AGs. A strategy for player one can be represented by a tree 
where the nodes are labeled with tiles. Indeed, if we put the rows of a tiling next 
to each other rather than on top of each other, then every branch, i.e., the sequence 
of labels from the root to a leaf, of a tree represents a possible tiling. If we forget 
about the start row b for a moment, then the odd depth nodes have no siblings and 
represent moves of player one and the even depth nodes do have siblings and represent 
all the choices of player two. A strategy is then winning when every branch is either 
a corridor tiling or is a tiling where player two made a false move. 

The extended AG we construct will only accept trees that correspond to winning 
strategies for player one. The AG essentially only has to check the horizontal and 
vertical constraints. Since n, the width of the corridor, is constant, the vertical 
constraints can be checked by storing at each node the tile carried by its n-th ancestor. 
The horizontal constraints can be checked for each node by looking at the tile carried 
by its parent. 

Let (T, H, V, b1, ... , bn , ti, . .. , tn) be an instance of TWO PERSON CORRIDOR 
TILING where T = { C1, ... , ck}• Define Gcorr = (Ncorr, Tcorr, Pcorr, Ucorr) as the 
ECFG, where the set of terminals Tcorr contains only the symbol 3, and the set of 
non-terminals Ncorr consists of all triples {(c, i,j) I c E T, i E {l, 2},j E {1, ... , n}} 
together with the set {b1 , .. . ,bn,tl,··· ,tn}. If a node is labeled with (c,i,j) then 
this means that player i has put tile c on the j-th square of the current row. The 
terminal 3 functions as an end delimiter, indicating that either the end row t has 
been reached or that player two has put a tile on the board that is inconsistent with 
the tiles already present. The set of productions of Gcorr now consists of the following 
rules: 

2. bn -+ ( C1 , 1, 1) + · · · + ( Ck , 1, 1) + t 1 and bi -+ bi+I for i = 1, . . . , n - 1; 
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3. tn --+ 3 and ti --+ ti+l for i = 1, ... , n - 1; 

4. 
(c, 1,j)--+ (c1 , 2,j + 1) ···(ck, 2,j + 1), 

and 
(c, 2,j)--+ (c1, 1,j + 1) +···+(ck, 1,j + 1) + 3, 

for each c E P and j E {1, ... , n - 1 }; and 

5. 
(c, 1, n) --+ (c1, 2, 1) ···(ck, 2, 1) + t1, 

and 
(c, 2, n) --+ (c1 , 1, 1) +·· · +(ck, 1, 1) + 3 + t1, 

for each c E P. 

ff t is a derivation tree and n is a node oft, then we call the j-th node on the path 
from the parent of n to the root, the j -th ancestor of n. If n is labeled with (c, i, j) 
then we say that n is admissible if (c', c) E V where the n-th ancestor of n contains 
the tile c' in its label, and, additionally, if j > 1, then (c", c) EH where (c", i 11

, j-1) is 
the label of the parent of n. Similarly, we say that a node labeled with Ci is admissible 
if ( c', Ci) E V where the n-th ancestor of n is labeled with c'. 

The extended AG F has attributes A= {1, . . . , n, local, result, lab} and semantic 
domain {O, 1, c1 , . . . , ck}, and works in three passes. In the first top-down pass it 
defines the inherited attributes 1, ... , n such that for j = 1, ... ,n, F(t)(j(n)) equals 
the tile in the label of the j -th ancestor of n for each node n oft. Next, F uses these 
attributes to check local consistency of the tiling. More precisely, t he attribute local 
is defined true for a node n labeled with (c, 1,j) iff n is admissible; and the attribute 
local is defined true for a node n labeled with (c, 2, j) iff n is admissible or n is not 
admissible and the only child of n is labeled with 3 (the latter captures the intuit ion 
that player one wins when player two uses a wrong tile). Finally, F checks whether 
all attributes local are true by making a bottom-up pass through the tree. If the latter 
is the case then F selects the root. Clearly, F can be constructed in polynomial time 
and is non-empty if and only if player one wins the corridor tiling game. We omit t he 
formal description of F. • 

Non-emptiness of extended AGs can in fact also be decided in EXPTIME. The 
proof essentially works as follows. For each extended AG F we construct an NBTA T:F 
guessing the attribute values at each node; it then accepts when the result attribute 
of at least one node is true. Since the size of T:F will be exponential in the size of F 
and non-emptiness of NBTAs can be checked in polynomial time (see Lemma 4.9), 
we obtain an EXPTIME algorithm for testing non-emptiness of extended AGs. 

Bloem and Engelfriet [BE] already showed that tree automata can guess attribute 
values of nodes defined by standard Boolean-valued attribute grammars on ranked 
trees. We must extend this technique to unranked trees and automata, and must 
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control the sizes of the NFAs involved in the transition function of the automaton. 
In particular, we control these sizes by first describing the transition function by 
nondeterministic two-way automata with a pebble which can be transformed into 
equivalent one-way nondeterministic automata with only an exponential size increase. 

Theorem 4.36 Deciding non-emptiness of extended AGs is EXPTIME-complete. 

Proof. EXPTIME-hardness has just been shown in Lemma 4.35, so it remains to 
show that non-emptiness is in EXPTIME. 

Let F be an extended AG over the grammar G = (N, T , P, U). Recall that all 
regular languages Rd are represented by NFAs. W.l.o.g., we assume that every gram
mar symbol has all attributes, i.e., for all X E NUT, Inh(X) U Syn(X) = A. As 
mentioned above, we construct an NBTA T;:: such that L(T;::) "I 0 if and only if F is 
non-empty. The size of T:F will be exponential in the size of :F. That is, the set of 
states of T:F and the NFAs representing transition functions will be exponential in the 
size of F. By Lemma 4.9, non-emptiness of T;:: can be checked in time exponential in 
the size of :F. Hence, the theorem follows. 

The automaton T:F essentially guesses the values of the attributes and then verifies 
whether they satisfy all semantic rules. Therefore, we use as states tuples ( a, o, p, i) 
where a : A-+ Dis a function, o E {O, l}, p E PUT and i E {l, . . . , s}, where 
s = max{Jrl I X -+ r E P}. 

Before explaining the meaning of the states, we introduce the following notions. 
A state assignment for a tree t is a mapping p from the nodes of t to Q. A state 
assignment is valid if for every node n of t of arity n with children n1, ... , nn, 
p(n1) · · · p(nn) E <5(p(n), X), where n is labeled with X, and p(root(t)) E F. Clearly, 
a tree t is accepted by T;:: if and only if there exists a valid state assignment fort. 

If in a valid state assignment T;:: assigns the state q = (a, o,p, i) to a node n of 
an input tree, then 

• a represents the values of the attributes of n; i.e., for all a E A, F(t)(a(n)) = 
a(a); 

• o = 1 if and only if a node in the subtree rooted at n has been selected; 

• if n is an internal node then p E P and n is derived by p; if n is a leaf then 
p E T and n is labeled by p; and 

• if n is the root then i = l; otherwise, if the parent p of n is derived by p'-+ r, 
n is the j-th child of p , and w is the string formed by the children of p, then 
posr(j, w) = i. 

For a tuple q = (a, o,p, i) E Q, we denote o by q.o, a by q.a, p by q.p, and i by q.i. If 
p = X -+ r E P then we denote X by p.X and r by p.r, and if p E T then we denote 
p also by p.X. 

The set of final stat es F is defined as 

{ q E Q I q.o = 1, q.p.X = U and q.i = 1 }. 
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As before, if a : A -+ D is a function and a- = a1 · · · an is a sequence of attributes 
then we denote the string a(a1) · · · a(an) by a(a-). 

We define the transition function. For all a EA-+ D, a-1,a-2 ET, o E {O, 1}, and 
i E {1, ... , s }, define 

) { 
{c} ifa-1 = a-2ando=o:(result); 

i5( (o:, o, a-i, i), a-2 := 0 otherwise. 

For all XE N and q E Q, if q.X -:f. X then 8(q,X) = 0; otherwise, if q.X = X then 
q1 · · · qn E 8(q, X) iff 

l. q1.X · · ·qn.X E L(q.r); 

2. for all j = 1, ... , n, posq.r(j, q1.X · · · qn.X) = q3.i; 

3. for every synthesized attribute a of X, defined by the rule 

we must have: 

4. for all j = 1, ... , n, for every inherited attribute a of q3 .X, defined by the rule 

we must have: 

q.o:( Uo) · ql .o:( U q1 .i) · ' · qj- 1.0:( U q;-1-i)#qj .o:( U q; .i) 

q3+i.a(a-q;+i,i) · · · qn.a(a-qn.i) E Rq.a(a) ; 

and 

5. q.o = 1 if and only if q.a( result) = 1 or there exists a j E {1, ... , n} such that 
qj,O = l. 

We now show that conditions (1- 5) are regular. Moreover, they can be defined by 
NFAs whose size is exponential in the size of F. The result then follows since the size 
of the NFA computing the intersection of a constant number of NFAs is polynomial 
in the sizes of those NFAs. 

• (1) and (2) are checked by the the NFA Mq.r obtained from q.r as described in 
Lemma 4.3 whose size is linear in r. 
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• For (3), we describe a two-way nondeterministic automaton M1. By Lemma 2.10, 
M1 can be transformed into an equivalent one-way NFA whose size is exponen
tial in M1. M1 makes one pass through the input string for every synthesized 
attribute a of X simulating the NFA for Rq.a(a). If the latter accepts then M1 

walks back to the beginning of the input string and treats the next synthesized 
attribute or accepts if all synthesized attributes have been accounted for; M1 re
jects if the NFA for Rq.a(a) rejects. This needs only a linear number of states in 
the sizes of the NFAs representing transition functions and the set of attributes. 

• For (4), we describe a two-way nondeterministic automaton M2 with a pebble. 
By Lemma 2.10, M2 can be transformed into an equivalent one-way NFA whose 
size is exponential in M2. M2 now successively puts its pebble on each position 
of the input string. Suppose M2 has just put the pebble on position j, then, for 
every inherited attribute a of qi .X, M2 walks back to the beginning of the input 
string and simulates the NFA for Rq;.a(a), pretending to read# the moment it 
encounters the pebble. If the NFA for Rq,.a(a) accepts, then M2 walks back to 
the beginning of the input string and treats the next inherited attribute of qi.X, 
or, if all inherited attributes of qi .X have been considered, moves the pebble to 
position j + 1 and repeats the same procedure. If M2 has put its pebble on all 
positions it accepts. This needs only a number of states linear in the size of the 
NFAs representing transition functions and the set of attributes. 

• (5) is clearly regular. 

This concludes the proof of the theorem. • 
Let us now turn to the equivalence problem. This problem is actually polynomial

time equivalent to the complement of the non-emptiness problem (i.e., the emptiness 
problem), and hence it is also EXPTIME-complete. Indeed, :F expresses the constant 
empty query if and only if it is equivalent to a trivial extended AG that expresses 
this query, and conversely, we can easily test if :F1 and :F2 express the same query 
by constructing an extended AG that first runs :F1 and :F2 independently, and then 
defines the value of result of a node to be O iff the values of result for :F1 and :F2 on 
that node agree. This gives the following theorem. 

Theorem 4 .37 Deciding equivalence of extended A Gs is EXPTIME-complete. 

In Chapter 6 we use the above result to drastically improve the known upper 
bound on the complexity of the equivalence problem of Region Algebra expressions. 

4.6 Relational extended AGs 

In this section we define relational extended AGs which can be viewed as extensions 
of the relational BAGs studied in Chapter 3. The main difference with the extended 
AGs studied before (to which we refer by functional extended AGs) is that we now 
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associate one regular language R with each production, rather than with each position 
in a production and for each attribute. Specifically, we show that relational extended 
AGs express the same class of unary queries as extended AGs. 

An attribute grammar vocabulary is now just a tuple (D, A, Att), where D is a 
finite semantic domain, A is a finite set of attributes, and Att is a function from 
NUT to the powerset of A assigning to each grammar symbol a set of attributes. A 
relational extended AG :F now associates to each production p = X ~ r a semantic 
rule (ao, . . . , alrl; Rv), where for i E {O, ... , lrl}, ai is a sequence of attributes of p(i) 
and Rp is a regular language over D. Let t be a derivation tree, n a node oft with 
children n1 , ... ,nm derived by p, and let for l E {1, ... ,m}, Jl = posr(l,w), where 
w is the string formed by the labels of the children of n. Then define W(n) as the 
sequence a0 (n) · a;i (n1) · · · O"j.,,. (nm)- A valuation of t is again a function that maps 
each pair (n, a), where n is a node int and a is an attribute of the label of n, to an 
element of D, and that maps for every n, v((lab, n)) to the label of n. A valuation v 
oft is said to satisfy :F if v(W(n)) E Rp for every p E P and every internal node n 
derived by p. 

A relational extended AG :F can express queries in various ways. We consider two 
natural ones. 

Definition 4.38 (i) A query Q is expressed existentially by a relational extended 
AG :F if for every t 

Q(t) = {n I there exists a valuation v that satisfies :F such that 

v(result(n)) = 1}; 

(ii) A query Q is expressed universally by a relational extended AG :F if for every t 

Q(t) = {n I for every valuation v that satisfies :F, v(result(n)) = l}. 

We give an example of the just introduced notions. 

Example 4.39 Consider the ECFG of Example 4.18. Let Q be the query that selects 
every other poem. The following relational extended AG expresses Q existentially and 
universally. IT pis the production DB ~Poem+, then define its associated rule as 

(ao =t:,a1 = result;Rp = (lO)*(l+e)), 

here A = { result, lab}, D = {O, 1} and result is an attribute of Poem. 
Note that this query Q is also expressed by a functional extended AG with A = 

{result,lab}, D = {0,1,Poem,DB}, Inh(Poem) = {result}, and Syn(Poem) = 0. 
Define in the context (p, result, 1) the semantic rule 

result(!) := (a0 = e , a 1 = lab; R1 = (PoemPoem)*#Poem*). 

• 
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Functional and relational extended AGs are equally expressive as is shown in the 
next theorem. We just show that every query expressed existentially or universally 
by a relational extended AG can be defined in MSO and that every MSO definable 
query can be expressed both by an existential and a universal AG. The result then 
follows from Theorem 4.33. 

Theorem 4.40 The class of queries expressed existentially (universally) by relational 
extended AGs coincides with the class of queries expressed by extended AGs. 

Proof. The semantics of a relational extended AG can readily be defined in MSO. 
For ease of exposition we assume that all grammar symbols have all attributes, i.e., 
for every X E NUT, lnh(X) U Syn(X) = A. We again use set variables Z

0
, with a 

a function from A to D , to represent assignments of values to attributes. As in the 
proof of Lemma 4.32, we can construct an MSO formula '1/;((Zo:)aEA-tD) such that 
whenever t F '1/;((Za)aEA-tD) then 

• the sets (Za) aEA-tD are pairwise disjoint, 

• U0 Za = dom(t), and 

• the valuation v defined as, v(a(n)) = a(a) with n E Z 0 , satisfies :F. 

The formula 'I/; just verifies the semantic rules of :F; and, since these are regular 
languages, this can be easily done in MSO. The following formulas then define the 
query expressed existentially respectively universally by :F 

(3Za)aE.4.-tD ( '1/;((Za)aEA-tD) AV {Za(x) j a(result) = 1}), 

('v'Za)aEA-tD ( '1/;((Za)aEA-tD)-+ V {Za(x) I a(result) = 1}). 

By Theorem 4.33, these MSO formulas can be transformed into an equivalent extended 
AG. 

For the other direction, by Theorem 4.33, it suffices to show that any MSO defin
able query can be expressed by a relational extended AG under both the existential 
and the universal semantics. Let ip(x) be an MSO formula of quantifier depth k. We 
now define a relational extended AG :F that expresses <p under both the existential 
and the universal semantics. Again this relational extended AG just computes the 
= rso_type of the input tree. We write Trso(t,root) for Tf80(t,root(t)). 

Define A = { env, sub, result, lab} and D = <I>k U {O, 1 }. To every production 
p = X -+ r we associate the rule 

(cro = (env,sub,result,lab), ... ,crlrl = (env ,sub,result);Rp), 

where the string language Rp is defined as follows: 80800ofo · · · 8n8nonfn E Rp if 

1. (Ji ,(Ji E <l>k, Oi E {O, 1}, and ei EN U T for i = 1, ... ,n; 

2. for i = 1, ... ,n, if fi E T t hen (Ji = Tf80(t(£i), root); 
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3. if X = U then Oo = rk'°180 (t(U),root); 

4. there exists a tree t With a node Il with children n1, ... , Iln SUCh that rk"180(tn, 
root)= Oo, rk'°180 (tn,n) = Oo, and for i = 1, ... ,n, rk'°180(tn.,root) = Oi and 
T MSO (t- n) _ (} .. k n,, - i, 

5. for i = 0, ... , n, Oi = 1 if and only if there exists a tree t with a node n such 
that rk"180 (tn, n) = (Ji, rk"180 (tn, root) = (Ji, and t F <p[n); 

We now construct a two-way deterministic string automaton B with one pebble ac
cepting Rp- By Proposition 2.10, Rp is regular. For steps (1-3,5), B just makes 
one pass through the input string. For step (4), B first simulates the automaton 
M = (Q, 'Pk, 8, s0 , F) for SUB(lo, Oo) of Lemma 4.34 on 01 ···On. Hereafter it checks 
the consistency of Oo, and 01, ... ,On. Note that for every i = 1, .. . ,n, by Proposi
tion 4.12(3), ()i depends only on Oo, ()i, 8* (so, 81 · · · ()i-1) and 8*(so, ()i+l ···On), where 
8 is the transition function of M. Hence, B remembers Oo in its state and then succes
sively puts its pebble on each input tuple. ff the pebble lays on the i-th tuple then M 
computes 8*(s0 ,01 · .. ()i- 1) and 8*(so,Oi+1 ···0n), whereafter it returns to the peb
ble and checks whether eto (Oo, 8*(so, 01 · · · Oi-1), ()i, 8*(so, Oi+1 ···On)) = Oi (eto is the 
function defined in the proof of Theorem 4.33). 

It remains to show that for each tree only one valuation exists satisfying F . Using 
Proposition 4.12(2), a simple induction on the height of nodes in the tree shows that 
rk"180(tn,n) = (}whenever v(sub(n)) =()for a valuation V satisfying F. An induction 
on the depth of nodes in the tree, using the above and Proposition 4.12 (3), then shows 
that rk"180(t0 ,n) ={)whenever v(env(n)) ={)for a valuation V satisfying F. 

This concludes the proof of the theorem. • 



5 
Query Automata 

In this chapter we focus on the natural and well-studied computation model of tree 
automata to compute unary queries. Specifically, we define a query automaton (QA) 
as a deterministic two-way finite automaton over trees that has the ability to select 
nodes depending on the state and the label at those nodes. We study QAs over 
ranked as well as over unranked trees. First, we characterize the expressiveness of the 
different formalisms as the unary MSO definable queries. Surprisingly, in contrast to 
the ranked case, special stay transitions have to be added to QAs over unranked trees 
to capture MSO. 

More concretely, we show that query automata can compute, for some fixed k, the 
type r"f:150(t, n) for each node n of the input tree. In Chapter 3, we constructed a 
BAG B computing the =r:so _types in the following way. In the first bottom-up pass 
B computes for every node n the type r"f:150(tn, n) and stores it in the attributes at n. 
In the next top-down pass, Buses this information to compute rk150(tn, n) for each 
n, whereby B has enough information to compute r"f:150 (t, n). A query automaton, 
unfortunately, cannot mimic this procedure directly as it cannot store information at 
specific nodes. Nevertheless, by employing some kind of pebbling technique and a 
surprising lemma on two-way string automata due to Hopcroft and Ullman, we show 
that query automata in fact can compute all unary queries defined by MSO formulas. 

Next, we establish the complexity of the non-emptiness and equivalence prob
lem of query automata to be complete for EXPTIME. We conclude this chapter by 
considering nondeterministic one-way query automata which can express queries in 
an existentially and a universally manner. In particular, we show that both these 
semantics capture exactly the queries definable in MSO. 

Proviso 5.1 In this chapter, whenever we say query we always mean "unary query". 

101 
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5.1 Query automata on strings 

To warm up, we start with query automata on strings. These are simply two-way 
deterministic automata extended with a selection function. This approach allows us 
to introduce some important proof techniques in an easy setting which then later 
will be generalized to obtain our main results. In particular, we recall the important 
notion of behavior functions and reprove a surprising lemma on two-way automata 
by Hopcroft and Ullman. 

We next define two-way automata over strings with begin- and endmarkers. Even 
though we already informally used their nondeterministic counterparts ( even with 
a pebble) in previous chapters, we need a concrete definition in this chapter as we 
want to show that their behavior can be defined in MSO. In the rest of this section, 
when we feed a string w E E* to a two-way automaton, and only then, we always 
assume the first symbol is the beginmarker b and the last symbol is the endmarker e. 
Moreover, these symbols do not occur in E. Hence, no intermediate position of any 
string carries a b or an e. 

Definition 5.2 A two-way deterministic finite automaton (2DFA) is a tuple M = 
(S, E, so, 8, F, L, R), where 

• S is a finite set of states; 

• s0 is the initial state; 

• F is the set of final states, 

• Land Rare disjoint subsets of S x (:EU {b, e}) (left and right moves), such that 
for alls ES, (s, b) ¢Land (s, e) ¢ R; and 

• 8 consists of the transition functions 8t- and 8--+ ; in particular, 8t- : L -+ S is 
the transition function for left-moves and 8--+ : R -+ S is the transition function 
for right-moves. 

The conditions (s, b) ¢Land (s, e) ¢ R merely state that the automaton cannot fall 
off the input string. In the following we will no longer mention explicitly the sets L 
and R in the definition of M. 

A configuration of Mis a member of S x N, i.e., a pair consisting of a state and 
a position. A run is a sequence of configurations, i.e., an element of (S x N)*. For 
a string w, the run of M on w is the sequence (s1 , j1) ... (sm,im) such that for all 
i = 1, ... ,m, 

• ji E {l, . .. , jwj}; 

• if (si, wi.) EL then si+1 = 8t-(si, wi.) and j i+l = ji - 1; and 

• if (si , wiJ E R then Si+i = 8--+ (si, wi.) and iH1 = ji + 1. 

The run is accepting if ji = 1, s1 is the initial state, sm E F and there is no transition 
possible from (Sm, wim). 
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We will only consider 2DFAs that always halt. This is a decidable property. 
Indeed, as we will show in the proof of Theorem 5.8, the behavior of a 2DFA M 
can be defined in MSO. It is then not difficult to write an MSO sentence that is 
satisfiable iff M does not terminate on at least one input string. It is well known that 
satisfiability of MSO is decidable (Tho97b]. Clearly, any 2DFA can be modified such 
that it always halts at the endmarker. For convenience, we will assume each 2DFA is 
as such. A query automaton is now just a 2DFA extended with a selection function: 

Definition 5.3 A query automaton M on strings (QA string) is a tuple (S, E, s0 , c5, F, 
>.), where (S, E, s0 , &, F) is a 2DFA, and >. is a mapping>.: S x E -+ {O, 1 }. 

We say that M selects position i E {1, .. . , lwJ} if the run (so,io), . . . , (sm,im) 
of Mon w is accepting and >.(s1,w31 ) = 1 for an l E {O, ... ,m} with ji = l . That 
is, i is selected by M if M selects i at least once; M does not need to select i every 
time it visits this position. In particular, when the run is not accepting, no position 
is selected. The query expressed by Mon w is defined as M(w) := {i E {1, ... , lwl} I 
M selects i}. 

Remark 5.4 Although 2DFAs are equivalent to one-way DFAs (see, e.g., Shepherd
son ~She59] or Hopcroft and Ullman [HU79]), not all QAstrings are equivalent to a 
QA 8 

ring that can move in only one direction. Consider for example queries of the 
following kind: select the first and last symbol if the string contains the letter a. This 
query is not expressible by a QA string that only moves in one direction. Indeed, 
when started on the beginmarker, the one-way query automaton already has to de
cide whether it should select without having seen the input. The same holds when it 
is started on t he endmarker and it only can move from right to left. • 

We illustrate the previous definitions with an example. 

Example 5.5 We give an example of a QA string expressing the query: select every 
position labeled with a occurring on an odd position when counting from right to left 
starting at the right end of the input string. Define M = (S, E, s0 , c5, F, >.) with 

• E = {a,a'}; 

• S = {so,s1,s2}; 

• R = {so} x (Eu {b}); 

• L={s1,s2}x(EU{e}); 

• c5-+(so,b) = c5-+(so,a) = c5-+ (so,a') = so; 

• c5+--(so,e) = s1; c5+-- (s1,a) = c5+--(s1,a') = s2; c5+-- (s2,a) = c5+--(s2,a') = s1; and 

• for alls ES and a EE, >.(s, a) = 1 iff s = s1 and a = a. 
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The automaton operates as follows. First it walks to the endmarker using state 
so. Hereafter, it returns to the beginmarker alternating between the states s1 and 
s2. A position is assigned the state s1 (s2) if it occurs on an odd (even) position 
when counting from the endmarker (endmarker not included). The run on input 
w = ba' aaa' e is the sequence 

(so, 1) (so, 2)(so, 3) (so, 4)(so, 5)(so, 6) (s1, 5)(s2, 4)(s1, 3)(s2, 2)(s1, 1). 

Hence, only position 3 is selected. 
This query automaton does not end at the endmarker. However, it can easily be 

modified to do so. • 

Before generalizing Biichi's Theorem to query automata, we define two-way deter
ministic finite automata that output at each position one symbol of a fixed alphabet 
rather than just O or 1 as is the case for query automata. Such automata will turn 
out useful in the proof of Theorem 5.8 and will be essential for the capturing of MSO 
by query automata on unranked trees in Section 5.3. 

Definition 5.6 A generalized string query automaton (GSQA) Mis a tuple 

(S, E, so, 8, F, .X, I'), 

where (S, E, so, 8, F) is a 2DFA, r is a finite output alphabet, and .X is a function from 
S x E to r U {O}. We always assume O ¢ r. 

We will only consider GSQA that output at each position of the input string 
exactly one r-symbol different from O and which always halt. Therefore, for each 
position i of a string w, we denote by M(w, i) the unique symbol output by M at 
position i. By M(w) we denote the string M(w, 1) · · · M(w, lwl). Let f be a length 
preserving function from E* to r*. We say that f is computed by a GSQA M if 
M(w) = J(w) for all strings w. 

The condition that a GSQA outputs exactly one r -symbol different from O at 
each position is not essential for the results in this paper. We could also just have 
taken M(w,i) as the last r-symbol different from O output at position i . The former 
automata are just easier to work with. 

Example 5. 7 We modify the QA string of Example 5.5 into a generalized query au
tomaton. To this end, we redefine .X as the function .X : S x E -+ { a, a',*, O} as 
follows: 

.X(so, a) = O; 

.X(s1,a) = *; 

.X(s2, a) = a; and 

.X(so, a') = O; 

.X(s1, a') = a'; 

.X(s2, a') = a'. 

This automaton just copies the input string, but replaces every symbol a with * when 
it occurs on an odd position when counting from right to left from the endmarker. 
Thus, M (ba' <1<1<1

1 e) = ba' * aa' e. • 
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We generalize Biichi's Theorem to query automata. In this proof we will introduce 
the concept of behavior function1 which will play a major role in Sections 5.2, 5.3, and 
5.4. Additionally, we use a remarkable lemma due to Hopcroft and Ullman (HU67] 
on two way automata which will turn out to be crucial in Sections 5.2 and 5.3. 

Theorem 5.8 A query is computable by a QA string if and only it is definable in MSO. 

Proof. Let M = ( S, 'E, s0 , 8, F, A) be a QA string. We will now construct an MSO 
formula rp(x) that defines the query computed by M. 

In the case of a one-way DFA M', the state assumed by M' at each position of the 
input string completely determined the behavior of M'. Accordingly, we simulated 
M' in the proof of Theorem 2.7, by simply guessing this state assignment. Now, we 
do not only have to describe the behavior of a two-way automaton, but we also have 
to know which positions it selects. Therefore, we define the following partial functions 
for Mon a string w. If i E {I, ... , lwl} then the behavior function J:;;;, ... w; : S-+ S 
is defined as 

J:;; ... wJs) ,= { :, 
if (s, wi) E R; 
if (s, wi) EL and whenever M starts 
its computation on w at position i 
in state s then s' is the first state in 
which it returns at i. 

We need one more notion. For each i = 1, . .. , lwl, the set of states assumed by 
Mat i is defined as Assumed(w, i) := {s, I l E {I, ... ,m} and j, = i} with 
(s1 ,i1) ... (sm,im) the run of Mon w. 

For each position i of the input string w the formula rp now guesses the function 
J:;;;, ... w;, the set Assumed(w, i), and the first state in which M reaches i, denoted by 
first( w, i). Formally, the formula guesses sets Z f ,B ,s for all partial functions l : S -+ S, 
sets B ~ S, and s E S, with the intended meaning: i E Z f,B ,s iff l = l:;;;, .. ·w; , B = 
Assumed(w, i) and s = first(w, i). Note that the number of sets ZJ,B,s is bounded, 
independently of w. The correctness of these guesses is easily verified in FO since 
they are determined by local consistency checks only. To see this we introduce the 
following definitions. For each partial function f : S-+ Sand states E S, States(/, s) 
is the smallest set containing sand ifs' E States(f,s) then /(s') E States(f,s). That 
is, if M has reached position i in state s then States(!:;;;, ... w,, s) is the set of states 
in which M visits position i before making a right move at i. There are now two 
possibilities. Either there exists a state s' E States(!:;;;, ···w,, s) with l:;;;, ... w, ( s') = s' 
or there does not. The second case indicates that M starts to cycle, while the first 
case means that M makes its next right move at position i in state s'. Hence, we 
define right(!, s) = s' with s' E States(!, s) and l(s') = s' if such an s' exists. 
Otherwise, right(!, s) is undefined. We now have enough terminology to show that 
the consistency checks only depend on local information. 

1 We note that Shepherdson (She59) already used behavior functions to simulate two-way automata 
by one-way ones. 
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1. first ( w, l) = s0 and J:;;;_ ( s) = s for all s E S ( recall that w1 is the beginmarker); 

2. for i = 1, ... , lwl - 1, J:;;;_ ... w;+i only depends on J:;;;_ ... 111;, Wi and WH1, and 
first(w,i + 1) only depends on first(w,i), Wiand J:;;;_ ... w;· Specifically, for i = 
1, ... , lwl - 1, for alls ES, 

r- ( ) = { s if (s, Wi+1) E R 
w1 .. ·w;+1 8 8-t (right (f:;;;_ ... w;,8+--(s,wi+1 )) ,wi) otherwise. 

We use the convention that J:;;;_ ... w,+i ( s) is undefined whenever right(!:;;;_ ... w; , 

8+-- ( s, Wi+i)) or 8-t is undefined. Further, . 

first(w,i + 1) = 8-t(right(/~ ... w;,first(w,i),wi); 

3. Assumed(w, lwl) only depends on first(w, lwl) and J:;;;_ ... w
1
w

1
• Specifically, 

Assumed(w, lwl) = States(/~·· ·wtwt ,first(w, lwl)); 

and 

4. for i = 1, . .. , lwl - 1, Assumed(w, i) only depends on J:;;;_ ... w;> Wi+I, first(w, i), 
and Assumed(w, i + 1). Specifically, for i = 1, ... , lwl - 1, 

Assumed(w, i) = States(/~ ... w;, first(w, i)) 

U LJ{States(/~ .. ·w; , s) I 3s1 E Assumed(w, i + 1) /\ 8+-- (s', Wi+1) = s }. 

The above conditions uniquely determine first(w, i), J:;;;_ ... w;, and Assumed(w, i), for 
each i. In particular, the states first and the functions J+-- are fixed from left to right, 
whereafter the sets Assumed are fixed from right to left. Clearly, these conditions can 
be checked in FO. Finally, <p verifies whether M halts in an accepting state (this only 
depends on Assumed(w, lwl)) and, if so, selects those positions i that are selected by 
M which now only depend on the Bs. 

Conversely, let rp(x) be an MSO formula of quantifier depth k. We will describe 
an automaton N computing the query defined by rp. In particular, N computes 
rf:180 ( w, i) for every position i of the input string w, which, by Proposition 2.8, only 
depends on rf:180 ( w1 · · · Wi, i) and rf;180 ( wi · · · wlwl, 1). 

We start with the (one-way) DFA M1 of Lemma 2.9 to compute rf;180(w1 · · · wi, i) 
and its right-to-left variant M2 to compute rf;180 (wi · · · w1w1, 1). A powerful and 
surprising lemma by Hopcroft and Ullman [HU67, AHU69] allows us to combine M1 
and M 2 into an automaton N that does exactly what we want. Adapted to our 
setting, the lemma says the following: 

Lemma 5.9 Let M1 = (P, :E, 81 , p0 , Fi) be a left-to-right deterministic automaton on 
strings and let M2 = (Q, :E, 82, qo, F2) be a right-to-left one. There exists a generalized 
query automaton A that outputs, at each position of the input string, the pair (p, q) 
of states that M1 and M 2 take at this position, respectively. That is, on input w, A 
outputs for position i the pair (8t(po, W1 · .. wi), 82 (qo, Wlwl .. · w;)). 
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The result now readily follows since N can first simulate M1 and M 2 as stated in 
Lemma 5.9 and then selects every position i for which it would output the pair 
( 01, 02) such that there exists a string V and a position j with T"f:1SO ( V1 · • • Vj, j) = 01, 
T"f:1

80 (vj .. ·V1-v1, 1) = 02, and VF r,o[j]. 
For the sake of completeness and since Lemma 5.9 will be used again later on, we 

sketch a proof of it based on the survey paper of Engelfriet [Eng79]. 
The automaton A first computes c5i (po, w) by walking to the right end of w while 

simulating M1 . When it reaches the endmarker it outputs the pair 

reverses direction and starts to walk back to the left endmarker of w while simulating 
M2. The difficulty, however, is to maintain c5i(po, w1 · · · wi), for each position i. We 
will describe a general method for doing this. Therefore, let p = c5i (po, w1 · · · wi) and 
assume that A has output the pair (p, q) at the i-th position of w. We now show how 
A computes c5i(po, w1 · · · Wi-1) from p. Suppose, {p' I c51(p', wi) = p} = {p1, ... ,Pk}
That is, {P1, ... , Pk} is the set of states from which A could have reached p by 
reading Wi· If k = 1 then there is no problem. Hence, assume k ~ 2. Then A 
simulates M1 backwards from each state in {P1, ... ,pk} simultaneously. That is, 
when it arrives at position j it knows for each Pl E {P1, ... ,pk} the set of states 
,(p1,Wj+1 · · ·Wi-1) = {p' I c5i(p',wi+1 · · ·Wi-1) = P1}. Note that these , -sets are 
pairwise disjoint. 

This computation continues until one of the two following conditions occurs. 

1. If at position j all ,-sets become empty except one (say ,(pt,Wj+i · · ·Wi-1)), 
then Pl is the state we were looking for. 

2. If A arrives at the beginmarker then the required state is the one whose , -set 
contains the start state. 

Now A "knows" the correct state Pl of M1 at position i. The only remaining 
problem is that it is now at some position j and has to find its way back to position 
i. By the construction above, one step before A found out about Pl (at position 
j + 1) there had been at least 2 different sets of states from which M1 reaches pat 
position i (after reading wi). The key idea is that i is exactly the position where two 
computations of M1 that start at position j + 1 in two states from two of these sets 
flow together into the same state (in this case the state p). Hence, on its way to the 
left, A always remembers two states from different I sets from the position before 
(right) and starts its way back to position i by simulating the behavior of M1 from 
position j + 1 beginning with these two states. • 

We note that Lemma 5.9 is also used extensively by Engelfriet and Hoogeboom 
[EH99] to prove connections between MSO definable string transductions and deter
ministic two-way finite state transducers. 
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5.2 Query automata on ranked trees 

After the excursion on strings, we turn to ranked trees. Specifically, we define query 
automata for ranked trees (QAr) simply as two-way deterministic tree automata ex
tended with a selection function. We will show that such automata express exactly 
the queries definable in MSO. 

Before we start we make the following proviso. 

Proviso 5.10 All definitions in this section are for E-trees with rank at most m, for 
some fixed natural number m. 

We borrow some notation from Briiggemann-Klein, Murata and Wood [BKMW98] 
for the following definitions. 

5.2.1 Two-way tree automata 

We use the definition of a two-way tree automaton by Moriya [Mor94]. 

Definition 5.11 A two-way deterministic tree automaton (2DTAr) is a tuple 

A= (Q,E,F,s,8), 

where Q is a finite set of states, F ~ Q is the set of final states and s E Q is the initial 
state. There are disjoint subsets U and D of Q x E (U corresponds to up transitions 
and D to down transitions) such that 81eaf : D -t Q is the transition function for 
leaves,2 8root : U -t Q is the transition function for the root, 8t : U* -t Q is the 
transition function for up transitions, and 8.i : D x {1, ... , m} -t Q* is the transition 
function for down-transitions. For each i ~ m, 8.i(q, a, i) is a string of length i. 

We introduced the disjoint sets U and D to avoid collision between up and down 
transitions. We come back to this after having defined the computation of 2DTArs. 
To this end, we introduce the following notions. A cut oft is a subset of Nodes(t), 
that contains exactly one node of each path from the root to a leaf. A configuration 
of A on t is a mapping c : C -t Q from a cut C of t to the set of states of A. 

If n is a node oft, then children(n) denotes the set of children of n. Let c : C -t Q 
be a configuration. If children(n) ~ C, then formally c(children(n)) is a subset of Q. 
We overload this notation so that c(children(n)) also denotes the sequence of states 
in Q which arises from the order of n's children in t. If children(n) = n1, ... , nn (in 
order) then define 1r(c,n) as the sequence (c(ni),labt(n1)) · · · (c(nn),labt(nn)) . 

The automaton A operating on t makes a transition between two configurations 
c1 : C1 -t Q and c2 : C2 -t Q, denoted by c1 -t c2, ifI it makes an up transition, a 
down transition, a leaf transition or a root transition: 

1. A makes an up transition from c1 to c2 if there is a node n such that 

(i) children(n) ~ Ci, 

2Note that leaves can also take part in up transitions. 
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(ii) C2 = (Ci - children(n)) U {n}, 

(iii) 8t(1r(ci,n)) = c2(n), and 

(iv) ci is identical to c2 on Ci n C2. 

2. A makes a down transition from ci to c2 if there is a node n such that 

(i) n E Ci, 

(ii) C2 = (Ci - {n}) Uchildren(n), 

(iii) 8,1.(ci(n),labt(n), arity(n)) = c2(children(n)) , and 

(iv) ci is identical to c2 on Ci n C2. 

3. A makes a leaf transition from c1 to c2 if there is a leaf node n such that 

(i) n E C1, 

(ii) C2 = Ci, 

(iii) 81ear(c1(n),labt(n)) = c2(n), and 

(iv) c1 is identical to c2 on Ci - { v }. 

4. A makes a root transition from c1 to c2 if 

(i) C1 = {root(t)}, 

(ii) C2 = C1, and 

(iii) 8,oot(c1(root(t)),labt(root(t))) = c2(root(t)) . 
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The configuration c: C --t Q with c(root(t)) = s (and hence C = {root(t)}) is the 
start configuration. Any configuration with c(root(t)) E Fis an accepting configura
tion. This means that a 2DTAr starts at the root and returns there to accept the tree. 
A run is a sequence of configurations ci, ... ,en, n ~ 1, such that c1 --t · · · --t Cn and 
c1 is the start configuration. A run is maximal if there does not exist a c such that 
Cn --t c. A run is accepting if it is maximal and if Cn is an accepting configuration. 

It should be noted that, although there are usually many different runs for the 
same tree, for all nodes the sequence of states in which they are visited is the same 
in all these runs. Indeed, the disjointness of Q x ~ into U and D makes sure that 
a node labeled with a certain state cannot make an up transition in one run and a 
down transition in another run. Therefore it is justified to consider the behavior of 
these automata as deterministic. For this reason, we will also refer to the run of A 
on a tree rather then the more correct a run of A. 

A 2DTAr A now accepts a tree t if the run of A on t is accepting; A accepts a 
tree language T if it accepts exactly every tree in T. 

Note that A can run forever on an input tree t. In this case the run of A on 
t is infinite and therefore not accepting. We, however, will only consider automata 
that always terminate on every input. This is a decidable subclass. Indeed, later 
we show that the behavior of A can be defined in MSO. One then can construct an 
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MSO sentence that is satisfiable iff A does not terminate on at least one tree. Since 
satisfiability of MSO sentences is decidable [Tho97b], it follows that deciding whether 
a 2DTAr halts on every input is also decidable. 

We illustrate the above definitions with an example. 

Example 5.12 Consider trees that represent Boolean circuits consisting of AND and 
OR gates having two inputs and one output. The represented Boolean function is 
evaluated from the leaves to the root. We now define a 2DTAr accepting all trees 
that evaluate to a l. For ease of exposition, we only consider full binary trees that 
indeed represent Boolean circuits. That is, internal nodes are labeled with AND and 
OR, and leaves are labeled with O and l. Define the 2DTAr · 

A= (Q, E = {AND,OR,O, 1},F,s,8), 

with Q = {s, u}U{O, 1}2; D = {s }xE; U = {u, (0, 0), (0, 1), (1, 0), (1, l)}xE; F = {1}; 
and for a E E,i,j,i1,ii,h,h E {0,1}, and op,op1,op2 E {AND,OR}, define 

l. 8.i(s,a,2) = (s,s); 

2. 81eaf(s,a) = u; 

3. 8t((u,i),(u,j)) = (i,j); 

4. 8t(((i1,i1),op1), ((i2,h),OP2)) = (i1 OP1 ji,i2 OP2 h); and 

5. 8root((i,j),op) = i op j. 

Here, i AND j and i OR j define the standard Boolean functions. The automaton 
first walks to the leaves (1); at the leaves it changes states into state u (2) ; hereafter, 
A assigns the state (i,j) to nodes of height 1 where i is the label of their first child 
and j is the label of their second child (3); from then on, A assigns to each inner node 
the pair (i,j) E {O, 1 }2, where i and j are the result of the evaluation of the left and 
right subtree of this node (4); finally, the root is assigned the value of the tree (5) . 

• 
To obtain a more uniform two-way tree automaton we have let all transitions 

depend on the state and the label of the nodes from where this transition originates. 
That is, up transitions depend on the labels and the states of the children of the node 
the automaton heads to, while a down transition depends on the state and the label 
of the parent node. Up transitions of the one-way tree automata defined in Chapter 2 
differ from these in that they depend on the states at the children and the label of the 
parent. Each two-way tree automaton can readily simulate a one-way one. Indeed, 
let B = (QB, E, 8B, FB) be a bottom-up deterministic tree automaton. For ease of 
exposition assume all transitions of B are defined. Then define the two-way automaton 
A simulating B as follows. First, A runs to the leaves of the input tree t. From thereon 
it uses functions f : E -+ QB as states with the following intended meaning: A assigns 
f to a node n such that 88(tn) = f(a) whenever labt(n) = a . Thus to each leaf A 
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assigns the state f with f(a) = 8B(a) for each a E :E, and up transitions are defined 
as follows: 8(/1, a1, ... , f n, an) = f with / (a) = 8B(/1 (a1), ... , fn(an), a) for every 
a E :E. Furthermore, A accepts when /(labt(root(t))) E FB where f is the state 
assigned to the root. 

5.2.2 Query automata 

A ranked query automaton is simply a two-way deterministic tree automaton over 
ranked trees extended with a selection function. 

Definition 5.13 A query automaton (QAr) is a tuple A = (Q, :E, F, s, 8, A), where 
(Q, :E, F, s, 8) is a 2DTAr and A is a function from Q x :E to {O, 1}; A is the selection 
function. 

We define the semantics of a QAr A. Ht is a tree and n is a node oft, then A 
selects n in configuration c : C -+ Q, if n E C and A ( c( n), labt ( n)) = 1. A selects 
n if the run c1, . .. , Cn of A on t is accepting and if there is an i E {1, ... , n} such 
that n is selected by A in e;. The query expressed by A is defined as A(t) := {n E 
Nodes(t) I A selects n}. A accepts the tree language that is accepted by the underlying 
tree automaton. 

Example 5.14 An automaton selecting all nodes evaluating to 1 in a Boolean circuit, 
is obtained from the automaton of Example 5.12 by changing F to Q and adding the 
selection function A defined by, for i,j E {O, 1} and op E {AND, OR}, A((i, j), op):= 1 
iff i op j = l. • 

Remark 5.15 Although two-way deterministic tree automata are equivalent to de
terministic bottom-up tree automata (see, e.g., Moriya [Mor94]), not all query au
tomata are equivalent to deterministic query automata that are only top-down or 
only bottom-up. Consider for example queries of the following kind: select the root 
if there is a leaf labeled with a and select all leaves if the root is labeled with a. In 
Section 5.5, we show that adding nondeterminism to bottom-up or top-down query 
automata suffices to capture the expressiveness of two-way query automata. 

In other words: two-way and one-way query automata are equivalent with respect 
to defining tree languages but not with respect to expressing queries. • 

In preparation of the proof of Lemma 5.17, we extend the notion of a behavior 
function used in the proof of Theorem 5.8 to two-way tree automata. 

Definition 5.16 Let A be a QAr with state set Q. The behavior function f;:: Q-+ 
Q of A on a tree t is the partial function defined as follows 

J('(q) := 
q' 

{ 

q if (q, labt (root(t))) is in U 
if (q,labt(root(t))) is in D and 
whenever A starts its computation 
on t in state q then q' is the first 
state in which it returns at root(t). 
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ff c1 , . . . , en is the run of A on t, then the set of states A assumes at a node n is 
defined as AssumedA(t,n) := {ci(n) Ii E {l, ... ,n} and n belongs to the cut of Ci} -

Sometimes, when A is clear from the context we just write ft and Assumed(t, n) 
rather than ff and AssumedA(t, n). 

We introduce some more notation. If Ji, . . . , f n are partial functions from Q to Q 
and q E Q, then the set of states reachable from q by using the functions Ji, ... , f n, 

denoted by States(/1 , .. . , f n, q), is the smallest set of states containing q and closed 
under applications of every k We define up(!, q) as the unique state q' in States(!, q) 
for which f(q') = q'. If there is no such state, then up(f,q) is undefined. Intuitively, 
when f corresponds to the behavior function JC, then up(!, q) is the state in which 
A makes an up transition at n when started at n in state q. 

5.2.3 Expressiveness 

We characterize the expressiveness of ranked query automata in terms of MSO. First, 
we show how the query computed by a ranked query automaton can be defined in 
MSO. 

Lemma 5.17 Every query computed by a ranked query automaton can be defined in 
MSO. 

Proof. Let A = (Q, E, F, s , 8, )I.) be a QAr. Like in the proof of Theorem 5.8, we 
will construct an MSO formula that guesses sets and then verifies the consistency of 
these sets. We make use of the sets Z f,B, where f is a partial mapping f : Q --+ Q 
and B ~ Q. On input t they have the following intended meaning: a node n E ZJ,B 
iff f = JC, and B = AssumedA(t,n). Again, like in the proof of Theorem 5.8, the 
correctness of these guesses is easily verified in FO since they are determined by local 
conditions only. Indeed, 

1. the behavior function of every leaf node only depends on its label; 

2. the behavior function of every non-leaf node n with n children only depends 
on Jt;,

1
, •• • , JC.,., labt(nl), . .. , labt(nn), and labt(n). Specifically, let n be a 

node of t of arity n. Then, for every q E Q, 

JC (q) := q' if (q, labt(n)) ¢ U, <>,1.(q, labt(n)) = (qi, ... , qn) and ( *) 
{ 

q if (q,labt(n)) EU 

8t (up(f t;,1 , Q1), labt(nl), ... , up(ft;,.,., Qn), labt (nn)) = q'; 

We use the convention that JC (q) is undefined whenever in ( * ), 8,1. , 8t, or one 
of the up(ft;,,, Qi) is undefined; 

3. AssumedA(t, root(t)) only depends on ff , the label of the root, and the start 
state. Specifically, Assumed A (t, root(t)) = States(!(, 8root(·, labt (root(t))), s );3 

3Here, for each u EE, 5root(·,u) is the function mapping each q to 5root(q,u). 
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4. for every non-root node ni, AssumedA(t, ni) only depends on AssumedA(t, n), 
the label of n , and the behavior function of ni. Specifically, let n be a node 
with n children. Then4 

AssumedA(t , ni) = LJ{States(Ji!,, q) I 
3q' E AssumedA(t, n) /\ 8.i.(q, labt(n)).i = q}. 

The above conditions uniquely determine the behavior functions and the sets Assumed. 
In particular, the behavior functions are fixed bottom-up, whereafter the sets Assumed 
are fixed top-down. Furthermore, the above conditions can clearly be expressed in 
FO. Together with the verification of these conditions, the formula verifies whether A 
halts in an accepting state (this only depends on ff) and, if so, selects those nodes 
that are visited in a selecting state, which now only depends on the B's. • 

For the proof of the other direction we construct an automaton computing, for 
some fixed k, the type rk180 

( t, n) for each node n of the input tree. Recall that, in 
Chapter 3, we constructed a BAG B computing the =t180-types in the following way. 
In the first bottom-up pass B computes for every node n the type rk180(tn, n) and 
stores it in the attributes at n. In the next top-down pass, B uses this information 
to compute rk180(tn, n) for each n, whereby B has enough information to compute 
rk180 (t, n). A query automaton, unfortunately, cannot mimic this procedure directly 
as it cannot store information at specific nodes. Nevertheless, by employing some 
kind of pebbling technique and Lemma 5.9, we will show in the next theorem that 
query automata in fact can compute each query expressed by an MSO formula. 

Theorem 5.18 A query is expressible by a QAr if and only if it is definable in MSO. 

Proof. The only-if direction is given in Lemma 5.17. 
For notational simplicity we describe the proof of the other direction only for trees 

of rank 2. The proof of the general case is a straightforward generalization. 
Let cp(x) be an MSO-formula of quantifier depth k. We describe a QAr that 

computes the query which is defined by cp. The automaton has to find out, for 
each vertex n of a tree t, whether t I= cp(n). This depends only on rk180(t,n), the =r80-type of the structure (t, n). By Proposition 2.14(1) , rk180(t, n) is uniquely 
determined by rk180(tn, n) and rk180 (tn, n). Hence, the QAr only has to compute 
rk180(tn, n) and rk180(tn, n) to decide whether n should be selected. We first describe 
an algorithm that computes these =r80-types for every node of a complete binary 
tree. Next we explain how this algorithm can be translated to a QAr. Finally, we 
sketch how the QAr has to be modified to deal also with possibly non-complete trees. 

( i) The underlying algorithm of the QAr for complete binary trees is outlined in 
Figure 5.1. 

(ii) All objects computed by the algorithm in Figure 5.1 are of bounded size, 
depending only on cp and not on the size of t. Hence, a QAr can store them in its 

4We denote by 1\(q,labt(n)).i the i-th entry of 6i(q,labt(n)). 
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Input: t 
Compute rk180 ( troot(t) , root( t)) and rk180 ( t, root( t)), 
for i := 0 to depth oft do 
begin 

for all vertices n of level i do 
begin 

% the root is level 0 
% rk180 (tn, n) has already been computed 
% now compute rk180(tn,n) 
l. Compute rk180 (tn1, nl) 

Compute rk'180 (tn2, n2) 
2. Compute rk180 (tn, n) from labt(n), rk180(tn1, nl), 

and rk180(tn2, n2) 
3. Compute rk180 (t,n) from rk180(t0 ,n) and rk180 (t0 ,n) 
4. Deduce from rk180 (t,n) whether t F ip(n) holds 

If so, select n 
5. Compute rk180 (tn1, nl) and rk180(tn2, n2) from 

rk180(tn, n), rk180 (tn1, nl) and rk180 (tn2, n2) 
end 

end 

5. Query Automata 
--- ---

Figure 5.1: The algorithm for computing the query defined by ip(x) over complete 
binary trees. 
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state. To simulate the outer loop of the algorithm a QAr can proceed in cuts that 
consist of all vertices of level i.5 It follows from Proposition 2.14 that steps 2, 3 
and 5 only involve the application of fixed finite functions. Hence steps 2- 5 can be 
performed in parallel at all vertices of the same depth i. Step 1 is the only one that 
involves non-local computation. We next discuss this step. 

The type Tk180 (tm,m) can be computed in a bottom-up fashion for a subtree tm 
oft. Indeed, we just use the automaton of Lemma 2.15. As discussed at the end of 
Section 5.2 this automaton can be readily simulated by a two-way automaton that 
now starts at m . The problem, however, is to detect when the root of the subtree 
tm, i.e., the starting point, is reached. 

Our QAr remembers this starting point by a kind of pebbling trick. To com
pute TrSO(tn1,nl) and TrSO(tn2,n2) it first makes a down transition; to n2 the 
automaton assigns a U-state which keeps Tk180(tn,n) in mind and waits until the 
computation in the left subtree has finished. The QAr then goes down to the leaves 
of tnl and Computes Trso(tnl, nl) in one bottom-up traversal as described above. 
It "recognizes" that the subtree-evaluation is finished by meeting the U-state at v2. 
Next it makes an up transition, followed by a down transition. Hereafter, vl has a 
U-state which contains Trso ( tn, ll) and Trso ( tn1, nl), and waits for the termination 
of the evaluation of the right subtree which is done analogously to the case of the 
left subtree. This finishes the description of the QAr for the case of complete binary 
trees. 

(iii) We now explain how a QAr can deal with non-complete binary trees. We 
cannot use the above described pebbling trick when a node n has only one child. To 
remedy this we make use of Lemma 5.9. If a node n has only one child (while its 
parent node p has at least two children), then we view the part of the tree between 
n and the first descendant m of n with more than one child ( or no child) as a string, 
where p and m play the role of begin and endmarker, respectively. Since m has more 
than One child Or is a leaf, we Can compute TrSO(tm, m) as described in (ii). 

Consider the deterministic string automata M1 and M2, where, for all vertices 
C between p and m, M1 computes Tk180 (tc, c) starting from Tk180(tn, n) and M2 
computes Tk'180(tc,c) starting from Tk180(tm,m). On the string between p and 
m the QAr then behaves as the two-way string automaton that combines the two 
automata M1 and M2 as specified in Lemma 5.9. 

Hereafter, the automaton walks to m arriving there in state Tk180(tm, m) and 
continues. 

If we Consider m-ary trees, then in step (1) we just need to compute TrSO(tni), 
.. . , Tk180 (tnn), where n is the arity of n. Because n :::; m and m is fixed, we can 
compute these one after the other. Steps (2- 5) again consist of the application of 
fixed finite functions. • 

5It should be noted that we are describing here only one special run of the automaton. But, as 
mentioned before, all possible runs are equivalent. 
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5.3 Query automata on unranked trees 

We next turn to query automata over unranked trees. Surprisingly, the equivalence 
with MSO obtained in the previous section does not generalize smoothly to unranked 
trees. Indeed, to obtain the expressiveness of MSO we have to add so-called "stay 
transitions" to our model. We start with the obvious generalization of query automata 
to unranked trees. 

5.3.1 First approach 

A first approach to define query automata for unranked trees is to add a selection 
function to the two-way deterministic automata for unranked trees as defined by 
Briiggemann-Klein, Murata and Wood [BKMW98]. However, it will turn out that 
these automata cannot even express all first-order logic definable queries. 

Definition 5.19 [BKMW98] A two-way deterministic tree automaton over unranked 
trees (2DTA'") is a tuple A = (Q, ~, F, s, 8), where Q, F, s, U, D, c51eaf and Oroot 

are as in Definition 5.11. The transition function for up transitions is now of the 
form c5t : U* --+ Q, and the transition function for down transitions is of the form 
c5.i: D x N--+ Q*. For each (q, a) ED, L.i(q,a) := {c5.i(q,a, i) I i EN} is regular; for 
each j E N, c5.i(q, a,j) must be a string of length j; and for each q E Q the language 
Lt(q) := {w EU* I 8t(w) = q} must be regular. To assure determinism, we require 
that Lt(q) n Lt(q') = 0 for all q =I q'. 

The definitions of configuration, leaf, root, up and down transitions,6 run, and 
accepting run carry over from QAr s. 

We argue that each transition in a run of the automaton takes linear time. To 
this end we elaborate on the structure of the regular languages L.i(q, a) . Each such 
language contains for each n E N, at most one string of length n. Shallit [Sha92] has 
shown that such languages can be described by finite unions of regular expressions 
of the form xy*z, where x, y , and z are strings. Hence, we can assume all languages 
L.i(q,a) are represented by such languages. Suppose the automaton makes a down 
transition in state q at a node n with label a and arity n. Then all we have to do 
is look up in L.i(q, a) the string of length n, if it exists. This can clearly be done in 
time linear in the size of the input tree when L.i(q, a) is represented by finite unions 
of regular expressions of the above simple form. We represent all regular languages 
Lt(q) by deterministic finite acceptors. Suppose in a configuration c the automaton 
makes an up transition at the children of a node n. Then we just have to check for 
each q whether n(c,n) (cf. Section 5.2.1) belongs to Lt(q). This can also be done in 
time linear in the size of the input tree. 

Each two-way tree automaton can readily simulate a one-way one. Indeed, let 
B = (QB,~,8B,FB) be a bottom-up deterministic tree automaton over unranked 
trees. For ease of exposition assume all transitions of B are defined, that is, for each 

6 Note that 0.1, is uniquely determined by the regular languages L.1,(q, a). 
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qi··· qn E QB there exists q E QB and a E :E such that qi··· qn E t5B(q, a). Then 
define the two-way automaton A = (Q, E, F, s, 8) simulating B as follows. First, A 
runs to the leaves of the input tree t. From thereon it uses functions f : :E -+ Q 8 
as states with the following intended meaning: A assigns f to a node n such that 
t5_Mtn) = f(a) whenever labt(n) = a. Thus to each leaf A assigns the state f with 
f (a) = q such that c E 6B(q, a) for each a E :E. Up transitions are defined as follows: 
(!1, a1) ···Un, an) E Lt(!) whenever for every a E :Ewe have that Ji (ai) · · · f n(un) E 
t5 B ( q, a), where f (a) = q. Clearly, each Lt(!) is regular. Furthermore, A accepts when 
f(labt(root(t))) E FB where f is the state assigned to the root. 

Definition 5.20 A query automaton (QA u) is a tuple A = (Q, :E, F, s, 6, .X), where 
(Q, :E, F, s, 6) is a 2DTA u and). is a mapping).: Q x :E-+ {O, 1}. 

The query expressed by a QA u and the tree language defined by a QA u are defined 
analogously to QAr s. 

Example 5 .21 Consider Boolean circuits consisting of AND and OR gates that have 
one output but can have an arbitrary number of inputs. The following query automa
ton selects all nodes of the input tree that evaluate to a 1. Again, we only consider 
trees as inputs that represent Boolean circuits. 

Define the QAuA = (Q,:E = {AND,OR,0,1},F,s,6), with Q = {s,u,all_one, 
alLzero,mixed}, D = {s} x :E, U = {u,all_one,alLzero,mixed} x :E, and F = Q. 
Define 

1. for any natural number n and a E :E, 6-1-(s, a, n) = s · · · s (n times); 

2. for all a E :E, 61ear(s, a) = u; 

3. (qi, ai) · · · (qn, O"n) E Lt( all_one) iff for all i E {1, . .. , n} 

• if qi = u then ai = 1; 

• if O"i = AND then qi = all_one; and 

• if ai = OR then qi = mixed or qi= all_one. 

4. (qi,ai)···(qn,O"n) E Lt(all_zero) ifffor all i E {1, . .. ,n} 

• if qi = u then O"i = O; 

• if ai = AND then qi= all_zero or qi = mixed; and 

• if O"i = OR then qi = alLzero. 

5. Lt(mixed) := U* - (Lt(all_one) U Lt(alLzero)). 

The automaton first walks to the leaves (1) and then changes state s into state u 
(2). Hereafter, it walks back up again assigning to each inner node the state alLone, 
alLzero or mixed, depending on whether the evaluation of the subtrees of this node 
returns only ones, only zeros, or both ones and zeros, respectively (3- 5). Consider for 
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example (3): an internal node is assigned alLone if all the trees rooted at its children 
evaluate to 1. That is, first, if a child is a leaf then it should be labeled with a 1. 
Next, if a child is labeled with AND then it should be assigned the state alLone, as 
all his children in turn should evaluate to 1. Finally, if a child is labeled with OR 
then it should be assigned the state all_one or mixed, as at least one of this node's 
children should evaluate to 1. 

The selection function is now defined as follows: for all q E Q and op E E, 
A(q,op) = 1 if and only if q = alLone and op E {AND,OR}, or q = mixed and 
op= OR. • 

Even though QA "s can accept all recognizable tree languages, they cannot even 
express all first-order logic definable queries. 

Proposition 5.22 QA" s cannot express all queries definable in first-order logic. 

Proof. Let Ebe the alphabet {O, l}. Consider the query "select all I-labeled leaves 
for which there is no node among their left siblings that is labeled with a 1". Towards 
a contradiction, suppose there exists a QA" A that expresses the above query. Let Q 
be the set of states of A and let m = IQI. The crucial observation is that there exist 
at most m! different sequences of states that A can take at the root of a tree. We 
set n := m!. Define for i = 0, ... , n, ti as the tree consisting of a root (say, labeled 
0) with n + I children, where the first i children are labeled with O and the others 
are labeled with 1. There now exist j , j' E {O, ... , n} such that j < j' and A goes 
through the same sequence of root states for tj and tj,. Since for each state and for 
each arity there is only one string of states that can be assigned to the children, the 
set of states assumed by A at the (j' + 1)-th leaf of tj is the same as the set of states 
assumed by A at the (j' + 1)-th leaf of tj'. Since both leaves carry a 1, A selects them 
both or does not select them at all. This leads to the desired contradiction. • 

QA "s cannot express the query in the proof of Proposition 5.22 because they 
cannot pass enough information from one sibling to another. Indeed, when the au
tomaton makes a down transition at some node n, it assigns a state to every child 
of n; even though every child knows its own state, it cannot know in general which 
states are assigned to its siblings. To resolve this, we introduce in the next section 
query automata with "stay transitions". Such a transition consists of a two-way 
string-automaton which processes the string formed by the states and the labels of 
the children of a certain node, and then outputs for each child a new state. 

5.3.2 Strong query automata 

Tree automata with stay transitions are defined next. 

Definition 5.23 A generalized two-way deterministic tree automaton (G2DTA ") is 
a tuple A= (Q, E, F, s, 8), where Q, F, s, U, D, 81eaf, 8root and 8,1. are defined as in 
Definition 5.19. Let Uup and Ustay be two disjoint regular subsets of U*. Then 8t is 
a function 8t : Uup ~ Q (here the same conditions apply as in Definition 5.2), and 
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cL : Ustay -+ Q* is the transition function for stay transitions. We require that this 
function is computed by a generalized string query automaton (cf. Definition 5.6). 

Most definitions remain the same as for QA us. Only, we now also have stay tran
sitions: A makes a stay transition from a configuration c1 : C1 -+ Q to a configuration 
c2 : C2 -+ Q if there is a node n in t such that 

( i) children(n) ~ C1 , 

(ii) C2 = C1, 

(iii) cL(1r(c1,n)) = c2(children(n)), and 

(iv) c1 is identical to c2 on C1 n C2. 

The above defined automata are much more expressive than MSO. Indeed, they 
can for instance simulate linear space Turing Machines on trees of depth one. There
fore, we restrict them in the following way: 

Definition 5.24 A strong two-way deterministic tree automaton (S2DTA u) is a 
G2DTA u that makes at most one stay transition for the children of each node. 

In Lemma 5.28 we show that the behavior of a S2DTA u can be defined in MSO. It 
is then not difficult to construct an MSO sentence asserting that a particular G2DTA u 
makes two stay transitions at the children of a particular node. Since satisfiability of 
MSO sentences on graphs of bounded tree-width, and consequently also on unranked 
trees, is decidable (Cou90], it is decidable whether a G2DTAu is a S2DTAu. 

A strong query automaton is an S2DTA u extended with a selection function. 

Definition 5.25 A strong query automaton (SQAu) is a tuple A= (Q, E , F,s,8, .:\), 
where (Q, E, F, s, 8) is a S2DTA u and .A is a function from Q x E to {O, 1}. 

We illustrate the above with an example. 

Example 5.26 Recall the query of the proof of Proposition 5.22, select all 1-labeled 
leaves for which there is no node among their left siblings labeled with a 1. This query 
can be expressed by a SQA u. Indeed, let A = ( Q, E, F, s, 8, .:\) be the SQA u with 
Q = F = {s, stay, up, 1}, D = {s} x E, U = {stay, up, 1} x E , and where 

• Uup={up}xE, 

• Ustay = U* - Uup , 

• for each natural number n and u EE, 8-1-(s, u, n) = s · · · s (n times), 

• for each u E E, 81ear(s, u) = stay; 

• cL is computed by the GSQA that assigns 1 to the first I-labeled node and up 
to the others, and 



120 5. Query Automata 
·------------

• Lt(up) = up*lup* + up*. 

The automaton walks to the leaves, makes one stay transition, and then walks back 
to the root. The selection function is defined as follows: for each a E :E and q E Q, 
A(q,a) = 1 iff q = 1. • 

5.3.3 Expressiveness 

We next prove that a query is expressible by a SQA" if and only if it is definable in 
MSO. But first, we emphasize the remarkable difference between tree automata and 
query automata over unranked trees. Indeed, as shown in the next proposition, stay 
transitions do not increase the expressiveness with respect to defining tree languages. 
However, stay transitions do make a difference with respect to expressing queries, as 
was shown by Proposition 5.22 and Example 5.26. 

Proposition 5 .27 Every S2DTA" is equivalent to a 2DTA" accepting the same tree 
language. 

Proof. This follows directly from the proof of Theorem 5.29, below, as the automaton 
that evaluates an MSO formula does not need any stay transitions before it decides 
whether to select the root of the tree. • 

We first generalize Lemma 5.17 to query automata over unranked trees. 

Lemma 5.28 Every query computed by an unranked query automaton can be defined 
in MSO. 

Proof. The proof is similar to the proof of Lemma 5.17. We use some of the notation 
introduced there. Given an SQA" A = (Q, :E, F, s, 8), we again guess sets Zf,B and 
check their consistency. On input t these sets have the following intended meaning: 
a node n E Zf,B iff f = ff.. and B = AssumedA(t, n). As opposed to the proof 
of Lemma 5 .1 7, the consistency check can no longer be specified in first-order logic 
because the correctness of the guesses depends on the transition functions c5t, c5.j. 
and c5_ which are no longer finite functions, but are given by regular languages and 
by a GSQA. However, the correctness can easily be verified in MSO because, by 
Theorem 2.6 and Theorem 2.12, regular languages and GSQAs can be defined in 
MSO. Further, the correctness of the behavior functions crucially depends on our 
assumption that at most one stay transition can occur at the children of each node. 
Indeed, suppose a node n is labeled with transition function f and its n children are 
labeled with Ji, ... , fn· Then we have to check for all states q and q' with f(q) = q' 
that 

1. q = q' if (q, labt(n)) E U; 

2. if (q,labt(n)) ED then there exist states Ql,·· · ,Qn such that 8.J.(q,a,n) 
Q1 · · • Qn; there are now two possibilities: 
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(a) for each i E {l, ... ,n}, up(Ji,Qi) EU: in this case we should have 

Jt((up(J1, Q1), ai) · · · (up(Jn,Qn),an)) = Q1
; 

or 
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(b) for each i E {l, ... , n }, up(fi, Qi) E Ustay: in this case there should exist 
QL ... , Q~ with 

and 
Jt(up(J1, QD, a1) .. · (up(Jn, Q~), an)) = Q1

• 

Finally, if f(Q) is undefined then J,1.(Q, a, n) should be undefined; or in case (2a) 
Jt((up(J1 , Q1),u1)·· · (up(Jn,Qn),an)) or one of the up(/i,Qi) should be unde
fined; in case (2b) 

L ((up(/1, Qi), a1) · · · (up(Jn, Qn), an)), 

Jt(up(/1 , QD, ai) .. · (up(Jn, Q~), an)), or one of the up(fi, Qi) or up(Ji, QD should 
be undefined. 

From our assumption that an SQA u can make at most one stay transition at the 
children of each node, it follows that the case distinctions (2a) and (2b) suffice. • 

We are now ready to prove the main result of this section. 

Theorem 5.29 A query is expressible by a SQA u if and only if it is definable in 
MSO. 

Proof. The only-if direction is given in Lemma 5.28. 
Let cp(x) be an MSO-formula of quantifier depth k. We describe an SQAu that 

computes the query which is defined by cp. This automaton has to find out, for each 
node n of a tree t, whether t F cp[n]. This depends only on rk180(t, n), which in 
turn, by Proposition 4.12(1), depends only on rt180(tn,n) and rt180 (tn,n). The 
case where trees can also have nodes with one child can be treated as in the proof of 
Theorem 5.18; hence, we can assume that all inner nodes have more than one child. 
In Figure 5.2, we describe an algorithm that evaluates cp. 

The =r80-type of a subtree (tm, m) can be computed in a bottom-up manner by 
the automaton of Lemma 4.13. This automaton can be transformed to an equivalent 
two-way automaton as discussed at the end of Section 5.3.1. Note that the two-way 
automaton starts at m. 

Step 1 is now done in two phases. We re-use the pebbling idea from the proof 
of Theorem 5.18. First, the automaton makes a down transition. All children of n, 
besides nl enter a U-state which remembers rk180(tn, n) and waits until the com
putation in the subtree tn1 has finished. The =r80-type of this subtree is com
puted bottom-up. The automaton "recognizes" that the subtree-evaluation is fin
ished by meeting the U-states at the siblings of nl. Next it makes an up transi
tion, followed by a down transition. After this, nl has a U-state which remembers 
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Input: t 
Compute rr80 (troot(t), root(t)), rr80 (t, root(t)) 
for i := 0 to depth of t do 
begin 

for all vertices n of level i do 
begin 

% the root is level 0 
% the type of (tn, n) has already been computed 
% now compute the type of (tn, n) 
1. for j = 1, ... , arity(n) do compute rr80(tnj, nj) 

5. Query Automata 

2. Compute rr80 (tn,n) from labt(n) and the rr80(tnj,nj) 
3. Compute rr80(t, n) from rr80(tn, n) and rr80(tn, n) 
4. Deduce from rr80(t, n) whether cp(n) holds 

IT so, select n 
5. for j = 1, .. . , arity(n) do 

Compute rr80(tnj, nj) from rr80 (tn, n) and the rr80(tni' , nj') 
end 

end 

Figure 5.2: The algorithm for computing the query defined by cp(x) over unranked 
trees. 

rrso(tn,n) and rk"180(tn1,nl) and waits for the termination of the evaluation of 
the other subtrees which are computed in parallel. This evaluation simultaneously 
computes rk"180(tnj, nj), for each j > l. 

Step 2 is just a special case of step 1. Indeed, since the types of the subtrees of tn 
are present at the children of n, they can be combined to the type of tn by making 
an up transition. Step 3 and 4 only involve information that is available at vertex n. 

It then only remains to show how step 5 can be done by an SQA u. It should be 
noted that after the up transition of step 2 the information about the types of the sub
trees of n is lost. Therefore the SQA u first recomputes the =r80-types rk"180(tnj, nj), 
as described above (also keeping rr80(tn, n) in mind). 

We now show that there is a GSQA B computing the sequence rk"180 ( tn1, nl) · · · 
MSO - ) 'Tk (tnn, nn on input 

(rr80(tn, n), rk"180(tn1, nl)) · · · (rk"180(tn, n), rr80 (tnn, nn)), 

for a tree t and n a node of t of arity n. Let u be the label of n. Then, by Propo
sition 4.12(3), for each i = 1, ... , n, rk"180(tni, ni) only depends on rr80(tn, n), 
rk"180(u(tnl,··· ,tn(i-1)),n), labt(ni) (which depends only on rk"180(tni,ni)), and 
rk"180(u(tn(i+l)' .. . ' tnn), n). 

Now, B is defined as the automaton combining, as specified in Lemma 5.9, the 
automata B1 and B2, where B1 computes rk"180(u(tn1 ... tn(i- i)), n) and B2 com
putes rk"180(u(tn(i+l) ... tnn), n). So, at each position i the automaton B has enough 
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information to output rf'180 ( tni, ni). 
Hence, step 5 can be done by recomputing the :::=r80-types TJ.(t0 ;, n) (in the same 

way as in step 2) and making one stay transition. • 

Remark 5.30 Allowing an SQA" to make any constant number of stay transitions 
at the children of each node does not increase the expressiveness of the formalism. 
Indeed, like in the proof of Theorem 5.29 such an automaton can be simulated in 
MSO. 

5.4 Optimization 

In this section we establish the complexity of the non-emptiness and the equivalence 
problem for the query automata defined in the previous sections. These problems are 
defined as follows: 

Non-emptiness: Given a query automaton A, does there exist a tree t such that 
A(t) ;:/ 0? 

Equivalence: Given two query automata A1 and A2, do they express the same 
query? That is, is A1(t) = A2(t) for all trees t? 

We show that these problems are EXPTIME-complete for QAr s, QA "s and SQA "s. 
EXPTIME-hardness of all these problems follows from EXPTIME-hardness of the 
non-emptiness problem for QAr s. EXPTIME-membership follows from EXPTIME
membership of the non-emptiness problem for SQA "s, since we will show that equiv
alence can be reduced to non-emptiness in polynomial time and query automata on 
ranked trees are special cases of query automata on unranked trees. 

The size of an SQA" is the sum of the sizes of the DFAs representing the up 
transitions, the sizes of the automata for the stay transitions, the sizes of the regular 
expressions representing the down transitions, and the size of the set of states of the 
SQA". We point out in the proof of Theorem 5.32, why we need DFAs, as opposed 
to NFAs, for the representation of up transitions. 

We start by observing that deciding whether the tree language defined by a 2DTAr 
is non-empty is EXPTIME-hard. We use a reduction from the problem TWO PER
SON CORRIDOR TILING which is defined in Section 4.5. 

Proposition 5.31 Deciding whether a 2DTAr accepts any tree is EXPTIME-hard. 

Proof. We reduce TWO PERSON CORRIDOR TILING to non-emptiness of 2DTAr. 
Recall that this is the problem to decide, given a set of tiles T, H, V ~ T x T, two 
sequences of tiles b = b1 , ... , bn and t = t1 , ... , tn E Tn, whether player one wins the 
corridor game. 

A strategy for player one can be represented by a tree where the nodes are labeled 
with tiles. Indeed, if we put the rows of a tiling next to each other rather than on top 
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of each other, then every branch, i.e., the sequence of labels from the root to a leaf, 
of a tree represents a possible tiling. If we forget about the start row b for a moment, 
then the odd depth nodes have no siblings and represent moves of player one and 
the even depth nodes do have siblings and represent all the choices of player two. A 
strategy is then winning when every branch is either a corridor tiling or is a tiling 
where player two made a false move. The 2DTAr A we construct will only accept 
trees that correspond to winning strategies for player one. The automaton essentially 
only has to check the horizontal and vertical constraints. The vertical constraints 
at a node n of the input tree can be checked by moving up n nodes (the width of 
the corridor), while the horizontal constraints can be checked by looking at the tile 
carried by the parent of n. 

We now formally define when a tree represents a winning strategy. Take :E as 
{O, 1, 2} x {1, ... , n} x T. If a node is labeled with (i, j, t) and if:. 0, then this means 
that player i places tile t on the j-th position of the current row. The case i = 0 
is just to define the first n nodes which are labeled with b1, . . . , bn. We say that a 
:E-tree t represents a winning strategy for the first player if the following holds: 

1. t starts with a monadic tree labeled with b. That is, the root carries the label 
(0, 1, b1 ), the only child of the root carries the label (0, 2, b2), and so on. 

2. If there exists a node of depth n (recall that the root has depth 0) then there 
exists only one such node (say n) and additionally laht(n) = (1, 1, t) for some 
t E T: player one places the tile on the first column of the second row whenever 
there is a second row; indeed, b and t can already form a corridor tiling. 

3. For every internal node n oft, if labt(P) = (i,j, t) with i E {1, 2} and p the 
parent of n, then labt(n) = ((i mod 2) + 1, (j + 1) mod n, t') for some t' E T; 
this means that players one and two place tiles on turn. 

4. No two siblings are labeled with the same label; and, nodes corresponding to 
moves of player one have no siblings. 

5. Every alternative of player two should be present: for every node n with 
labt(n) = (1,j,t) and for every t' E T there is a child m of n labeled with 
(2, (j + 1) mod n,t'). 

6. Each branch extended with t corresponds to a corridor tiling from b to t or 
should contain a false move by player two. 

The 2DTAr A works on trees of rank n. Let N be JTJ + JHJ + JVJ + n. Clearly (1)-(5) 
can be checked by A by using a number of states linear in N. We now consider (6). 
Suppose A arrives at n. In order to check the horizontal constraints at n, A already 
remembered the tile of the parent of n in its state when it moved down. To check 
the vertical constraints, A just has to move up n nodes to get the tile that is placed 
immediately below the square corresponding to n. However, moving up requires the 
cooperation of all siblings. To this end, A moves through the tree level by level, and 
for each level makes n up transitions to get the required tile. Again, only a number 
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of states that is linear in N is needed. Moreover, A can clearly be computed in 
LOGSPACE. • 

We next show how to test non-emptiness for SQA us in EXPTIME. 

Theorem 5.32 Non-emptiness of SQA us is in EXPTIME. 

Proof. We describe an EXPTIME algorithm which decides whether the SQA u A is 
non-empty. The proof consists of two parts. First, we define a two-way deterministic 
tree automaton A' such that A is non-empty if£ A' accepts at least one tree (we 
then also say that A' is non-empty) . Moreover, the size of A' is linear in the size 
of A. Subsequently, we show that testing non-emptiness of two-way deterministic 
tree automata is in EXPTIME. This then implies that non-emptiness of SQA us is in 
EXPTIME. 

Construction of A'. The two-way deterministic automaton A' works over the al
phabet :EU (Ex {l}). On input t, it first checks whether there is exactly one node 
with a label in E x { 1}. This can be done by one traversal of the tree from the root 
to the leaves. If there is more than one such node or none at all, then A' rejects. 
Otherwise, A' walks back to the root and starts simulating A, that is, it just behaves 
like A would but without actually selecting nodes. Let n be the unique node with a 
label in E x {l }. Then A' accepts when A does and when, additionally, A selects n. 
The latter can be achieved by keeping a flag in the state of A' from the moment A 
selects n. Clearly, the size of A' is linear in the size of A. 

Testing non-emptiness of two-way deterministic tree automata on un
ranked trees is in EXPTIME. Let A'= (Q,I',F,so,t5) be such an automaton. 
We construct a nondeterministic bottom-up automaton (NBTA) B = (QB, r, FB, t5B) 
(cf. Section 4.1.3) whose size is exponential in the size of A' with the additional prop
erty that B is non-empty iff A' is non-empty. By Lemma 4.9 we know that testing 
non-emptiness of NBTAs is in PTIME. Hence, testing non-emptiness of two-way de
terministic automata is in EXPTIME. 

The set of states QB consists of all tuples of the form (!, d, s, a) where 

• f : Q ---+ Q is a partial function; 

• d : Q ---+ Q and s : Q ---+ Q are total functions; and 

• a E f. 

To describe the intuition behind the components in the states of Q 8 we introduce 
the following notion. A state assignment for a tree t is a mapping p : Nodes(t) ---+ 
Q. A state assignment p for t is semi-valid if for every node n of t of arity n, 
p(nl) .. · p(nn) E t5(p(n), labt(n)), and for every leaf node n, c E t5(p(n), labt(n)). We 
say that a state assignment p for a tree tis valid iffit is semi-valid and p(root(t)) E F. 
Clearly, a tree t is accepted by T if there exists a valid state assignment for it. 
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The intuition behind the states in QB is that for each semi-valid state assignment 
p for a tree t, if p(n) = (f, d, s, <1) then f/;. = f and labt(n) = <1 . The functions d and 
s are just to facilitate the definition of the transition function of A' which we define 
next. 

iff 

For all n 2::: 1, <1 E r, and every state (f, d, s, <11
) E QB, 

1. <T' = <1; 

2. J(q) = q for each q E Q with (q,<1) EU; 

3. 8,1.(q, <1, n) = d1 (q) · · · dn(q) for each q E Q with (q, <1) E D and for which f(q) is 
defined; there are now two possibilities: 

(a) for each i E {1, .. . ,n}, (/i(di(q)),<Ti) EU: in this case we should have 

or 

(b) for each i E {1, . .. ,n}, (h(di(q)),ai) E Ustay: in this case we should have 

and 

If /(q) is undefined then 8,1.(q,<1,n) should be undefined; or in case (3a) one of 
the /i(di(q)) or c5t(f1(d1(q)) · · · fn(dn(q))) should be undefined; or in case (3b) 
L(f1(d1(q)) · · · fn(dn(q))), c5t((fi(s1(q)),<11) · · · Un(sn(q)),an)), or one of the 
/i(di(q)) or fi(si(q)) should be undefined. 

From our assumption that an SQA u can make at most one stay transition at the 
children of each node, it follows that the case distinctions (3a) and (3b) suffice. 

Further,£ E c5B((J,d,s,<11),<1) iff f = f~u) and <1 = <11
• Finally, define FB = 

{(J,d,s,<1) I States(f,c5root(·,<1),so) n F =/- 0}.7 It is now readily checked that for 
each semi-valid state assignment p for a tree t, p(n) = (f,d,s , <1) iff ff = J and 
labt(n) = <1. By definition of FB, we have that A' accepts t iff there exists a valid 
state assignment fort. Consequently, A' is non-empty iff B is non-empty. 

It remains to show that each c5 ( (!, d, s, <11
), <1) can be accepted by an NFA whose 

size is exponential in the size of A'. We will define a two-way deterministic automaton 
M whose size is polynomial in A' that accepts c5 ( (!, d, s, <11

), <1). By Lemma 2.10, M 
is equivalent to an NFA whose size is at most exponential in A' . 

7Here, for each u Er, Oroot(·,u) is the function mapping each q to Oroot(q,u). 



5.4. Optimization 
·---

(1) does not depend on the input; 

(2) does not depend on the input; 
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(3) For each q E Q with (q, a) ED, we do the following. We only describe the case 
where f (q) is defined, the converse case is similar. To test whether 

8.i.(q, a, n) = d1 (q) · · · dn(q); 

we just simulate the finite union of regular expressions representing L.i.(q, a) on 
the string d1 (q) · · · dn(iJ). This can be done by subsequently trying to match 
each regular expression in this union. Due to the very simple form of these 
regular expressions ( namely xy* z) this only needs a number of states linear in 
the size of the expressions. Hereafter, M tests whether (/i(di(q)) ,ui ) EU for 
each i E {l, ... , n}, or whether (!i(di(q)),ai) E Ustay for each i E {l, ... ,n}. 
This test is performed by another sweep through the input string w. Depending 
on this test M does the following. 

(a) M simply simulates the DFA for Lt(q); that is, M tests by another sweep 
through w whether 

This only needs a number of states linear in the size of the automaton for 
Lt(q). 

(b) In the second case, M verifies that 

L((/1(d1(q)), at)··· Un(dn(q)),an)) = s1(q) · · · sn(q), 

and that 

The former can be done by simulating the GSQA for L. Recall our con
vention that each GSQA only outputs one symbol at each position. The 
latter can be done by one sweep through the input string simulating the 
DFA for Lt(q). Again only a linear number of states in the size of A is 
needed. 

We briefly come back to why we need DFAs rather than NFAs: in the case 
where f (q) is undefined we must check t hat an up transition is undefined for a 
certain sequence of states. When up transitions are represented by DFAs this 
is easy: we just simulate the automaton and see whether it gets stuck. For an 
NFA, however, this is much harder as we have to check that all computations 
are undefined. 

• 
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We conclude this section by showing how to reduce equivalence to non-emptiness. 
Let A1 and A2 be two SQA us working over ~>trees. Define the SQA u B working over 
trees labeled with symbols from the alphabet EU (Ex {1}), as follows. On input t, 
B first checks whether there is exactly one node with a label in Ex {1}. This can be 
done by one traversal of the tree from the root to the leaves. If there is more than one 
such node or none at all, then B rejects. Otherwise, let n be the unique node with a 
label in Ex {l}. Then B walks back to the root, first simulates A1 and then A2, and 
remembers which automaton selects n. Recall our convention that we only consider 
automata that terminate on every input. If A1 and A2 both select n or both do not 
select n, then B rejects. Otherwise, B selects the root. Hence, B is non-empty iff A1 
and A2 are not equivalent. As the size of B is linear in the sizes of A1 and A2, and 
non-emptiness is in EXPTIME, it follows that equivalence is in EXPTIME. Hence, 
we have the following theorem. 

Theorem 5.33 Equivalence of QAr s, QA us, and SQA us is in EXPTIME. 

5.5 Nondeterministic query automata 

In classical automata theory on strings and trees, determinism, nondeterminism, and 
two-wayness are equally powerful w.r.t. defining languages.8 In the previous sections, 
we restricted ourselves to deterministic query automata only and pointed out the 
difference between the one and two-way ones. In the last section of this chapter, we 
want to complete the picture and therefore shift attention to nondeterministic query 
automata. First of all it is not clear how such automata can express queries. As we will 
see, this can happen in various ways. Further, in strong contrast to the deterministic 
case, bottom-up nondeterministic query automata already suffice to capture all unary 
queries definable in MSO. This means, in particular, that no stay transitions or down 
transitions are needed. 

We will restrict attention to unranked trees only, because there will be no funda
mental difference between the ranked and the unranked ones. 

Let B = ( Q, E, F, t5) be a nond(lterministic bottom-up automaton as defined in 
Definition 4.6. A state assignment for a tree t is a mapping p : Nodes(t) --t Q. A 
state assignment p fort is valid if p(root(t)) E F; p(nl) · · · p(nn) E t5(p(n), labt(n)), 
for every node n oft of arity n; and, c E t5(p(n),labt(n)), for every leaf node n. A 
tree t is accepted by T if there exists a valid state assignment for it. 

Definition 5.34 A nondeterministic bottom-up query automaton (NBQA) is a tuple 
T = (Q, E, F, t5, ,\), where (Q, E, F, t5) is an NBTA and,\: Q x E-+ {O, 1} is a function. 

There are various possibilities to define the query expressed by a nondeterministic 
query automaton. We consider two of them. In the existential semantics a node 
is selected if it selected by at least one accepting computation. In the universal 

8 Aithough, they may be more succinct then one another [GH96]. 
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semantics, on the other hand, a node is selected if it is selected by every accepting 
computation. We define this formally: 

The query expressed existentially by T on a tree t is defined as 

T(t)3 
:= {n I there exists a valid state assignment p fort such that 

A(p(n),labt(n)) = 1}. 

The query expressed universally by T on a tree t is defined as 

T(t)v := {n I for every valid state assignment p fort , A(p(n),labt(n)) = 1}. 

As already indicated above, we show that nondeterministic query automata cap
ture MSO: 

Theorem 5.35 Both under the existential and the universal semantics, nondeter
ministic query automata express exactly the queries definable in MSO. 

Proof. Let T be an NBQA. The query expressed existentially (universally) by T can 
be defined in MSO by quantifying existentially (universally) over all valid state as
signments. Checking whether a state assignment is valid only depends on membership 
of strings in regular languages and can, hence, be done in MSO. 

For the proof of the other direction, let <p( x) be an MSO formula of quantifier depth 
k. We now define an NBQA T = (Q, :E, F, <>) that expresses both existentially and uni
versally the query defined by <p. We construct Tin such a way that for any node n of a 
tree t and for any valid state assignment p we have p(n) = (rf80(tn, n), rf80 (tn, n)). 
This clearly allows to deduce whether t F <p[n]. The nondeterministic nature of T 
allows it to compute <p(x) in a bottom-up way. Indeed, the equivalence types of the 
subtrees can be computed in a bottom-up fashion like before, while the equivalence 
types of the envelopes can be simply guessed. The deterministic query automata con
sidered in the previous sections did not have this ability and therefore needed two-way 
movements to simulate all of MSO. 

There will be exactly one valid state assignment for every tree. Hence, the exis
tential and universal semantics of T coincide. 

Define Q = lf>k x if>k; 

F = {(O, 0) • MSO( -there exists a tree t such that Tk troot(t),root(t)) = 0, 
and rf80(t,root(t)) = O}; 

and for every (0, 0) E Q and a E :E, 

(01,81) · · · (On,On) E <5((0,0),a) 

whenever there exists a tree t with a node n of arity n such that 

£ · _ 1 MSO ( ") _ (J d MSO (-t ·) _ -0 • • Or Z - , •.. ,n, Tk tni,llZ - i an Tk n i ,llZ - i , 

• TMSO (t n) - ()· k n, - , 
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• rMSO(t n) - O· and k n , - ' 

• labt(n) = CT. 

Note that the last requirement only depends on () and 0. 
Further, define >. ( ( (), 0), CT) = 1 if there exists a tree t and a node n such that 

rk'180(tn, n) = (), rk'180(tn, n) = 0, and t I= cp[n]. 
A simple induction on the height of the nodes of an input tree t, using Propo

sition 2.14(2), shows that if p(n) = (On, On), then On = rk150(tn, n) . An induction 
on the depth of nodes, using Proposition 2.14(3) , then shows that for every node n, 
On = rk180 (tn,n). We can conclude that T expresses the query defined by cp. 

It remains to show that '5 ( ( () , 0), CT) is regular. This is indeed the case. as () is 
uniquely determined by 81 · · · On and this can be checked by an automaton like in the 
proof of Lemma 4.13. Further, for each i, Oi is uniquely determined by 0, 81 · · · ()i-1, 

(Ji, and (}i+i ···On. These dependencies can be checked by an automaton similar to 
the GSQA B in the proof of Theorem 5.29. • 



6 
Applications and related work 

In this chapter we apply the techniques developed in this dissertation and discuss 
some related work. First, we drastically improve the upper bound on the complexity 
of the equivalence test of Region Algebra expressions from iterated exponential to 
EXPTIME. The Region Algebra is a query language for manipulating text regions 
introduced by Consens and Milo [CM98a] as a formal model for the PAT algebra. 
We obtain our result by an efficient translation of Region Algebra expressions into 
extended A Gs and by then applying our algorithm for testing equivalence of the latter. 
Further, we apply the techniques used to obtain the expressiveness results in previous 
chapters to the actual XML transformation language XSLT [Cla99]. Specifically, we 
show that already a very restricted subset of XSLT has the ability to issue any MSO 
pattern at any node in the document. That is, when XSLT arrives at a node it can 
decide for any unary MSO formula rp(x) whether this formula holds at that node and 
use this information for further processing of the document. Hereby, on the one hand, 
we reveal that core XSLT has a very powerful pattern language at its disposal, and, 
on the other hand, provide evidence for the robustness of the language. Next, we 
compare MSO, and therefore query automata and extended AGs, with the selective 
power of languages for semi-structured data and XML. The navigational mechanism 
of such languages is usually based on regular path expressions [ ABS99]. It is thus 
justified to model the selective power of these languages by first-order logic extended 
with regular path expressions. That is, for each regular expression r we add the 
predicate r(x, y) expressing that x is an ancestor of y and that the string consisting 
of the symbols on the path from x toy belongs to the language defined by r. We then 
show that this logic, and therefore the current query languages for semi-structured 
data, in strong contrast with MSO, lack the ability to perceive the input tree as a 
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whole. In particular, we formally prove that the above logic cannot define the class 
of trees representing Boolean circuits evaluating to true. Finally, we elaborate on the 
connection between ranked and unranked trees. 

6.1 Optimization of Region Algebra expressions 

The region algebra introduced by Consens and Milo [CM98a, CM94] is a set-at-a
time algebra, based on t he PAT algebra [ST92], for manipulating text regions. In 
this section we show that any Region Algebra expression can be simulated by an 
extended AG of polynomial size. This then leads to an EXPTIME algorithm for 
the equivalence and emptiness test of Region Algebra expressions. The algorithm of 
Consens and Milo is based on the equivalence test for first-order logic formulas over 
trees which has a non-elementary lower bound. Our algorithm therefore drastically 
improves the complexity of the equivalence test for the Region Algebra and matches 
more closely the coNP lower bound [ CM98a]. 

It should be pointed out that our definition differs slightly from the one in [CM98a]. 
Indeed, we restrict ourselves to regular languages as patterns, while Consens and Milo 
do not use a particular pattern language. This is no loss of generality since 

• on the one hand, regular languages are the most commonly used pattern lan
guage in the context of document databases; and, 

• on the other hand, the huge complexity of the algorithm of [CM98a] is not due 
to the pattern language at hand, but is due to quantifier alternation of the 
resulting first-order logic formula, induced by combinations of the operators ' - ' 
(difference) and <, >, C, and ::) . 

Definition 6.1 A region index schema I = (S1 , ... , Sn, E) consists of a set of region 
names S1 , .. . , Sn and a finite alphabet E. 

If N is a natural number, then a region over N is a pair (i,j) with i ~ j and 
i,j E {1, ... ,N}. 

An instance I of a region index schema I consists of a string I(w) = a1 . .. aNr E E* 
with Nr > 0, and a mapping associating to each region name Sa set of regions over 
N1. 

We abbreviate r E LJ~=l I(Si) by r E J. We use the notation L(r) (respectively 
R(r)) to denote the location of the left (respectively right) endpoint of a region rand 
denote by w(r) the string aL(r) ... aR(r). 

Example 6.2 Consider the region index schema I = (Proc, Fune, Var, E) . In 
Figure 6.1 an example of an instance over I is depicted. Here, Nr = 16, I(w) = 
abcdefghijklmnop, J(Proc) = {(1, 16), (6, 10)}, J(Func) = {(12, 16)} and !(Var) = 
{(2,3),(6, 7),(12,13)}. • 

For two regions r and s in I define: 
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Proc 

Proc Fune 

Var Var Var 

a b IC d I e f lg h Ii I j k I Im n Io Ip 
Figure 6.1: An instance I over the region index schema of Example 6.2 

• r < s if R(r) < L(s) (r precedes s); and 

• r Cs if L(s) < L(r) and R(r) ~ R(s), or L(s) ~ L(r) and R(r) < R(s) (r is 
included in s). 

We also allow the dual operators r > s and r :J s which have the obvious meaning. 

Definition 6.3 An instance I is hierarchical if 

• I(S) n I(S') = 0 for all region names Sand S' in I, and 

• for all r, s E I , one of the following holds: r < s, s < r, r C s ors Cr. 

The last condition simply says that if two regions overlap then one is strictly contained 
in the other. 

The instance in Figure 6.1 is hierarchical. Like in [CM98a], we only consider 
hierarchical instances. We now define the Region Algebra. 

Definition 6.4 Region Algebra expressions over I= (S1 , ... , Sn, E) are inductively 
defined as follows: 

• every region name of I is a Region Algebra expression; 

• if e1 and e2 are Region Algebra expressions then e1 Ue2, e1 -e2, e1 C e2, e1 < e2, 
e1 :J e2, and e1 > e2 are also Region Algebra expressions; 

• if e is a Region Algebra expression and R is a regular language then aR(e) is a 
Region Algebra expression. 

The semantics of a Region Algebra expression on an instance I is defined as follows: 

[S]1 
[aR(e)f 
[e1 U e2]1 
[e1 - e2f 

{r I r E J(S)}; 
{r I r E [ef and w(r) E R}; 
[ei]1 U [e2]1; 
[e1]1 - [e2]1; 
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Figure 6.2: The tree t1 corresponding to the instance I of Figure 6.1. 

and for* E { <, >, C, => }: 

[e1 * e2f := {r I r E [e1f and 3s E [e2f such that r * s }. 

Example 6.5 The Region Algebra expression Proc => CTE•atartE• (Proc) defines all 
the Proc regions which contain a Proc region that contains the string start. • 

The important observation is that for any region index schema I= (S1 , .. . , Sn, E) 
there exists an ECFG Gz such that any hierarchical instance of I 'corresponds' to a 
derivation tree of Gz. This ECFG is now defined as follows: Gz = (N, T, P, U), with 
N = {S1 , ... , Sn}, T = E, and where P consists of the rules 

Po·- u 
P1 S1 

Pn := Sn 

-+ (S1 + ... + Sn + E)+; 
-+ (S1 + ... + Sn + E)+; 

For example, the derivation tree t 1 of Gz representing the instance I of Figure 6.1 is 
depicted in Figure 6.2. Regions in I then correspond to nodes in t1 in the obvious 
way. We denote the node in t1 that corresponds to the region r by nr. 

Since extended AGs can store results of subcomputations in their attributes, they 
are naturally closed under composition. It is, hence, no surprise that the translation of 
Region Algebra expressions into extended AGs proceeds by induction on the structure 
of the former. 

Theorem 6.6 For every Region Algebra expression e over I there exists an extended 
AG Fe over Gz such that for every hierarchical instance I and region r E I, r E [ef 
if and only if Fe(t1)(resulte(nr)) = 1. Moreover, Fe can be constructed in time 
polynomial in the size of e . 
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Proof. The proof proceeds by induction on the structure of Region Algebra expres
sions. We represent the regular languages occurring as patterns in Region Algebra 
expressions by DFAs. The extended AG :Fe will always contain the attribute resulte 
which is synthesized for all region names. As before the Rd's that are not specified are 
assumed to be empty. Region Algebra expressions can only select regions, therefore, 
no attributes are defined for terminals. 

1. e = Si: Ae = {resulte, lab}; De = {O, 1, Si, .. . , Sn} U E; for i = 1, ... , n, define 
in the context (pi, resulte, 0) the rule 

resulte(O) := (uo = lab, <T1 = £, ... , <Tn+1 = e; RI = {Si}, Ro = D; - R1). 

2. e = <TR(eI): Let M = (S, E, 6, so, F) be the DFA accepting R with S 
{so, ... ,sm}. Define Ae = Ae1 US and De= De1 US. W.l.o.g, we assume 
Sn Ae1 = 0 and Sn De1 = 0. We now define the semantic rules of :Fe as the 
semantic rules of :Fe1 extended with the ones we describe next. 

Each non-terminal has the synthesized attributes so, ... , Sm. They are defined 
in :Fe such that for a region instance I and region r E J, :Fe ( t 1) ( s (Dr)) = s1 if 
and only if <5* (s, w(r)) = s1. So, for i = 1, .. . , n and j = 1, ... , m, define in the 
context (pi, s j , 0) the rule 

Sj(O) := (ao =£,<TI =(so, ... , Sm), ... , <Tn =(so, ... , Sm), <Tn+i = lab; 

(Rt)sEs). 

Note that the input strings for each R~ are of the form w = WI · · ·Wk, where for 
l = 1, ... , k, w1 E sm+i or Wt E E*. The DFA Ms,j accepting R~ now works as 
follows: it starts in state Bj, if WI E sm+i then Ms,j continues in state s1 where 
s1 occurs on the (j + 1)-th position ofwI (this is the value of the attribute Sj); 
otherwise; if W1 E :E* then Ms,j continues in state 6*(sj,w1 ). Formally, Ms,j 
accepts w if there exists JI, ... ,jk E {O, . .. , m} such that 

• if W1 E sm+i then s Ji = WI (j + 1); if WI E :E * then s j1 = <5* ( 8 j ' WI); 

• for l = 2, ... , k, if Wt E sm+I then Sj, = wzUt- 1 + 1); if W/ E :E* then 
si, = <5*(si,-i, wt); and 

• Sj~ = S. 

Clearly, Ms,j can be defined using a number of states polynomial in the size of 
S. The attribute resulte then becomes true for a node n, when :Fe(t1)(s0 (n)) E 

Fand:Fe(t1)(resulte1 (n)) = 1. So,fori = l, ... ,n, define in the context 
(pi, resulte, 0) the rule 

resulte(O) := (uo = (so, resulte1 ),uI = £, ... , <Tn+I = e; 

R1 = {sl / SE F}, Ro= D; - R1). 
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In the following e will always depend on subexpressions e1 and e2, Hence, :Fe always 
consist of :Fe1 and :Fe2 extended with rules for the new attributes. We will always 
assume that ( apart from the attribute lab) Aei, Ae2 and the set of new attributes are 
disjoint. 

3. e = e1 U e2: A node n is now selected when 

Define Ae = Ae1 U Ae2 U { resulte} and De = De1 U De2 • So, for i = 1, .. . , n, 
define in the context (pi, resulte, 0) the rule 

resulte(O) := (ao = (resulte1 , resulte2 ), a1 = £, .. . , an+I = c:; 
R1 = {01, 10},Ro = D; - R1). 

4. e = e1 - e2: A node n is now selected when 

Define Ae = Ae1 U Ae2 U {resulte} and De= De1 U De2 , So, for i = 1, .. . ,n, 
define in the context (pi, resulte, 0) the rule 

resulte(O) := (ao = (resultei, resulte2 ),a1 = £, ... ,an+l = c:; 
R1 = {10}, Ro= D; - R1) -

5. e = e1 < e2: Define Ae = Ae1 UAe2 U{right, resulte} and De= De1 UDe2 , Each 
non-terminal has the inherited attribute right such that for a region instance I 
and a region r, Fe ( t 1) ( right (Dr)) = 1 if there exists a region s such that r < s 

ands E [e2]1. Thus, for j = 1, . .. , n, define in the context (po, right,j) the rule 

right(j) := (ao = £, a1 = resulte2 , ••• , an = resulte2 , an+l = c:; 
Ri,Ro = (De U {#})* - R1), 

where R1 is the regular language that contains a string w1 #aw2, with w1 , w2 E 
{0,1}* and a E {0, 1}, ifw2 contains a 1. For i = 1, ... ,n and j = 1, . . . ,n, 
define in the context (pi, right , j) the rule 

right(j) := (ao = right,a1 = resulte2 , ••• ,an = resulte2 ,an+I = c:; 
Ri,Ro = (De U {#})* - R1), 

where R1 is the regular language that contains a string aw1 #bw2, with w1, w2 E 

{O, 1 }* and a, b E {O, 1 }, if w2 contains a 1 or a = 1. A node n is then selected 
when Fe(t1){resulte1 (n)) = 1 and Fe(t1)(right(n)) = 1. So, for i = 1, ... ,n, 
define in the context (pi, resulte, 0) the rule 

resulte(O) := (ao = (resulte1 , right), a1 = £, .. . , an+l = c:; 
R1 = {11},Ro = D; - R1 ). 



6.1_: Opti~ization of Region Algebra expressions 137 
-·------

6. e = e1 > e2: Similar to the previous case; 

7. e = e1 :::) e2: Define Ae = Ae1 UAe2 U{down, resulte} and De= De
1 

UDe
2

• Each 
region name has the synthesized attribute down such that for a region instance 
J and a region r, Fe (tr) ( down ( nr)) = 1 if there exists a region s such that r :::) s 
and s E [e2]1. So, for i = 1, ... , n, define in the context (pi, down, 0) the rule 

down(O) := (ao =t:,a1 = (resulte2 ,down), ... ,an= (resulte
2
,down), 

O"n+i = c:;R1,Ro = D; - R1}, 

where R1 is the regular language that contains all strings containing at least 
one 1. A node n is then selected when 

and 
Fe(tr)(down(n)) = 1. 

So, for j = 1, ... , n, define in the context (pi , resulte, 0) the rule 

resulte(O) := (ao = (resultei, down) , a1 = c:, ... , O'n+1 = c:; 

R1 = {11}, Ro= D; - R1 }. 

8. e = e1 C e2: Define Ae = Ae1 U Ae2 U {up, resulte} and De = De1 U De2 - Each 
region name has the inherited attribute up such that for a region instance I and 
a region r, Fe (tr) ( up ( nr)) = 1 if there exists a region s such that r C s and 
s E [e2]1. So, for j = 1, ... ,n, define in the context (p0 ,up,j) the rule 

up(j) := (ao = c, 0'1 = c:, ... , O'n+l = c:; R1 = 0, Ro = (De U { #} )*}. 

For i = 1, ... , n and j ~ 1, ... , n, define in the context (pi, up , j) the rule 

up(j) := (ao = ( up, resulte2 ), 0'1 = c:, .. . , O'n+i = c:; 

R1 = {11#, 10#,01#},Ro = (De U {#})* - R1}. 

A node n is then selected when Fe(tr )(resulte1 (n)) = 1 and Fe(tr )( up(n)) = 1. 
So, for i = 1, ... , n, define in the context (pi, resulte, 0) the rule 

resulte(O) := (ao = (resultei, up), 0'1 = c:, ... , O'n+i = c:; 

R1 = {11}, Ro= D; - R1} . 

• 
We need the following definit ion to state the main result of this section. 
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Definition 6. 7 A Region Algebra expression e over I is empty if for every hierar
chical instance I over I, [e]1 = 0. Two Region Algebra expressions e1 and e2 over I 
are equivalent if for every hierarchical instance I over I, [ei]

1 = [e2]1. 

Theorem 6.8 Testing emptiness and equivalence of Region Algebra expressions is in 
EXPTIME. 

Proof. Although every hierarchical instance of I = (S1, ... , Sn, E) can be repre
sented as a derivation tree of Gr, not every derivation tree of Gr is an hierarchical 
instance. Indeed, if an internal node has no siblings then it represents the same region 
as it parent. For example, the instance corresponding to the derivation tree 

u 
+ 

Proe 

+ 
Fune 

+ 
a 

is not hierarchical because Proe and Fune represent the same region. An extended 
AG can easily check this condition by making one bottom-up pass through the tree. 
Another top-down pass then informs all nodes in the tree whether the tree represents 
an hierarchical instance. 

If e is a Region Algebra expression, then we define F(e) as the extension of the 
extended AG F e, given by Theorem 6.6, that simulates eon all hierarchical instances 
and assigns false to the result attribute of any node of a non-hierarchical instance. 
Hence, F(e) is empty if and only if e is empty. Further, if e1 and e2 are Region 
Algebra expressions, then, obviously, F(e1) and F (e2) are equivalent if and only if e1 
and e2 are equivalent. Hence, the result follows by Theorem 4.36. 

We now describe the construction of F(e) in more detail. Define A = Ae U 
{ subhier, hier, result} and D = De, where Ae and De are the attribute set and the 
semantic domain of F e, respectively. The semantic rules of F(e) consists of those of 
Fe extended with the rules defining subhier, hier, and result. 

Each region name has the synthesized attribute subhier such that for a region 
instance I and a region r, Fe ( t 1) ( subhier ( nr)) = 1 if tnr represents an hierarchical 
instance. So, for i = 1, ... , n, define in the context (p., subhier , 0) the rule 

subhier(O) := (e10 = c , CT1 = (lab, subhier ), ... , CTn = (lab, subhier) , CTn+i = lab; 

Ro,Ri =D*- Ro,}, 

where Ro is the regular language consisting of all strings containing at least one 0 
and all the strings {S11, ... , Snl}. This rule is correct, since t 0 r does not represent 
an hierarchical instance only when at least one of its subtrees does not represent an 
hierarchical instance, or when n r has just one child that, addit ionally, is labeled with 
a region name. 
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Each region name has the inherited attribute hier such that for a region instance 
I and a region r, Fe(t1)(hier(nr)) = 1 if t1 represents an hierarchical instance. So, 
for j = 1, . . . , n, define in the context (p0 , hier, j) the rule 

hier(j) := (ao = £, a1 = subhier, ... , an = subhier, CTn+i = £j 

R1 = 1*,Ro =(DU{#})* -R1). 

For i = 1, ... ,n andj = 1, ... ,n, define in the context (pi,hier,j) the rule 

hier(j) := (ao = hier, CT1 = £, ... , CTn+i = £; R1 = {1# }, Ro = (DU { #} )* - R1). 

A node n is then selected when Fe(t1)(resulte(n)) = 1 and Fe(t1)(hier(n)) = 1. So, 
for j = 1, ... , n, define in the context (pi, result, O) the rule 

result(O) := (ao = (resulte,hier) ,a1 =£, .. . ,an= &;R1 = {11}, Ro = D* -R1) . 

• 

6.2 Expressiveness of XSLT as a pattern language 

In this section we apply the techniques developed to study the expressiveness of 
query automata and extended AGs to the actual document transformation language 
XSLT [Cla99]. In particular, we show that XSLT has the ability to issue any MSO 
pattern at any node in the document. That is, when XSLT arrives at a node it can 
decide for any unary MSO formula cp(x) whether this formula holds at that node and 
use this information for further processing of the document. Stated as such the result 
is hardly surprising since full-fledged XSLT allows to call arbitrary Java programs and, 
therefore, can express all computable document transformations. Our aim, however, 
is to stress that the navigational mechanism together with a restricted use of variables 
already suffices to capture the expressiveness of MSO. Hereby, on the one hand, we 
reveal that core XSLT has a very powerful pattern language at its disposal, and, on 
the other hand, provide evidence for the robustness of the language. 

6.2.1 XSLT 

XSL [CD] is a current W3C [Con] proposal for an XML transformation language. Its 
original primary role was to allow users to write transformations from XML to HTML, 
thus describing the presentation of the XML document. However, recently, a new 
working draft emerged, describing XSLT as an extension of XSL for transformation of 
XML documents into other XML documents [Cla99]. Although XSLT is not intended 
as a general purpose query language for XML and its definition is still unstable, the 
variety of questions on the XML newsgroups indicate that already many people use the 
lotusxsl implementation of XSLT by IBM (IBM99) for their day to day manipulation 
of XML documents. 
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Specifically, an XSLT program is a collection of template rules where each such 
rule consist of a pattern and a template (see, for example, the program in Figure 6.4). 
An important concept regarding the actual computation of XSLT programs is the 
current node list. This list contains all the nodes that still have to be processed by 
the XSLT program. Hence, at the start of the computation the current node list only 
contains the root element of the document. The computation proceeds as follows. 
XSLT removes the first node from the current node list, to which we refer as the 
current node, and tries to apply a pattern to that node ( usually such a pattern only 
refers to the label of the current node) . If it succeeds it executes the corresponding 
template. The latter usually instructs XSLT to produce some XML result and to 
select a list of nodes for further processing. This list is then prepended to the current 
node list and the computation proceeds in the same manner with the new list. An 
XSLT transformation, hence, is a recursive process guided by the structure of the 
input document. 

Next, we introduce by means of an example the important programming constructs 
of XSLT needed to obtain our main result in the next section. That is, we start by 
giving an XSLT program simulating a deterministic bottom-up tree automaton T that 
works on binary trees. For convenience, we restrict T to complete binary trees only. 
We define T = (Q, :E, <5, 0, F) as follows: Q = {O, 1}, :E = {a, b} , F = {O}, and 

<5(a) = 0 
<5(0, 0, a) = 0 
<5(0, 1, a) = 1 
<5(1, 0, a) = 1 
<5(1, 1, a) = 0 

<5(b) = 1 
<5(0,0,b) = 1 
<5(0, 1, b) = 0 
<5(1, 0, b) = 0 
<5(1, 1, b) = l. 

Here, a represents the logical XOR function and b represents the operator tt. We use 
the DTD in Figure 6.3 for representing trees. This figure also displays an XML doc
ument corresponding to the tree a(a(b, b), b(b, a)) . Here, <b/> is the usual shorthand 
for <b> </b>. Note that we do not consider the element mytree as part of the tree 
a(a(b,b),b(b,a)) that it models. 

Consider the XSLT program in Figure 6.4. On input t , this program simply 
outputs the state T assumes at the root oft, that is, the state <5*(t). We describe this 
program in some more detail. The first statement just defines the xsl namespace. It is 
an obligatory statement and we do not discuss it any further. The XSLT program uses 
various patterns which we discuss next. The pattern '.' stands for the current node, 
while'/' means child of; in particular, ' . I*' stands for all children of the current node 
and, for each natural number i, ' . f * [i]' means the i-th child of the current node. The 
total program consists of three template rules, even though we omitted the template 
rule 

<xsl:template match="b" mode="A"> </xsl:template> 

in Figure 6.4. This rule takes care of the b-labeled nodes and is completely similar 
to the template rule for the a-labeled nodes, as will become clear after the following 
discussion. 
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<tree> 
<a> 

<a> 

<!ELEMENT tree Ca I b)> <b/> 
<b/> 

<!ELEMENT a ((a b)(a I b)) c> 
</a> 
<b> 

<!ELEMENT b ((a b)(a I b)) c> <b/> 
<a/> 

</b> 
</a> 

</tree> 

Figure 6.3: A DTD for trees over { a, b} and an XML document conform to it. 

The first template just starts up the process. That is, the pattern mytree matches 
the <mytree> node of the input tree; the template itself then outputs the XML tree 
obtained by applying the template rules in mode A on all children of <mytree>. Since 
each <mytree> node has only one child, we could also have used the pattern'. f* [1] '. 
In this example program, modes play no particular role. In brief, modes are the 
analogue of states in formal language theory: they allow to handle same nodes in 
different ways. Their importance will become apparent later on when we have to 
combine different XSLT subprograms. 

The second template rule in our program encodes the transition function of T 
when the current node carries the label a. More precisely, the first part of the first 
choose statement returns the state O when the current node happens to be a leaf 
(recall that 8(a) = 0). Outputting the value O is accomplished by the statement 
<xsl: text>O</xsl: text>; testing for a leaf is done by checking whether the current 
node has no children. When the current node n is an internal node, and thus has 
exactly two children, the program first computes 8*(tn1) in the variable subtree! 
by invoking the template rules on nl in mode A. That is, the output generated by 
application of the template rules to the first child of n is assigned to the variable 
subtree1. We point out that all output in this program is restricted to the values 
0 and 1. Hereafter, in the same manner, the program computes 8*(tn2) in variable 
subtree2. Depending on the values of subtree1 and subtree2 the program outputs 
the correct state for n. For example, when 8*(tn1) = 0 and 8*(tn2) = 0 then the 
program outputs the state 8(0, 0, a) = 0. By outputting the correct state, the program 
either defines the required state 8*(t) if the current node is the child of the mytree 
node, or defines the value of a higher level variable otherwise. From this discussion it 
should be clear to the reader how to define the template rule for b.-labeled nodes and 
how to simulate tree automata with an arbitrary number of states. 

Before continuing, we elaborate on the use of variables in XSLT. In general, the 



142 6. Applications and related work 
----------- -·--·-· --------·--

<xsl :stylesheet xmlns:xsl="http://www . w3.org/XSL/Transform/1.0"> 

" <xsl:template match="mytree" mode="A"> 
<xsl:apply-templates select="./*" mode="A"/> 

</xsl:template> 

<xsl:template match="a" mode="A"> 
<xsl:choose> 

<xsl:when test="countC./*) = 0"> 
<xsl:text>O</xsl:text> 

</xsl:when> 
<xsl :otherwise> 

<xsl:variable name="subtree1"> 
<xsl: apply-templates select=" . f * [1]" mode=" A"/> 

</xsl:variable> 
<xsl:variable name="subtree2"> 

<xsl:apply-templates select="./*[2]" mode="A"/> 
</xsl:variable> 
<xsl :choose> 

<xsl:when test="$subtree1 = 0 and $subtree2 = 0"> 
<xsl:text>O</xsl:text> 

</xsl:when> 
<xsl:when test="$subtree1 = 0 and $subtree2 = 1"> 

<xsl:text>1</xsl:text> 
</xsl:when> 
<xsl:when test="$subtree1 = 1 and $subtree2 = 0"> 

<xsl:text>1</xsl:text> 
</xsl:when> 
<xsl:when test="$subtree1 = 0 and $subtree2 = 1"> 

<xsl:text>1</xsl:text> 
</xsl:when> 

</xsl : choose> 
</xsl:otherwise> 

</xsl:choose> 
</xsl:template> 

</xsl:stylesheet> 

Figure 6.4: An example of an XSLT program simulating T. 
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value of an XSLT variable can be an arbitrary string.1 However, in our programs, we 
use variables in a very restricted way: the values of the variables always come from 
a fixed finite set (in this particular program they are O or 1). Therefore, we prefer 
to see our restricted use of variables as the analogue of the finite state look-ahead as 
often used in formal language theory [RS97] and not as a dirty programming trick. 

In summary, the most important features of the XSLT program in Figure 6.4 are 
the following: easy navigation through the input document and the use of variables 
to simulate bottom-up computations. 

6.2.2 Main result 

In the present section we study the expressiveness of a core subset of the XSLT 
language that only uses the following features: 

1. modes; 

2. testing whether the current node is a leaf, the root, the left most or the right 
most child of its parent; 

3. restricted navigation: only moves to direct neighbors (parent, child, sibling); 
and 

4. variables that can only be instantiated by values coming from a fixed finite set. 

We refer to this subset as core XSLT. Specifically, we will show the following. 

Theorem 6.9 For each MSO formula <p(x), there exists a core XSLT program that, 
for any tree t and node n, when applied at n, outputs true if t F <p[n] and outputs 
false otherwise. 

Of course, each above XSLT program can be used as a subroutine by any other XSLT 
program by capturing the output of the former in some variable. Hence, the pattern 
language of core XSLT is as expressive as MSO. As an immediate consequence, we 
can allow XSLT templates of the form 

<xsl : template match="<p(x)" mode=" . .. "> ... </xsl:template>, 

where <p(x) is an arbitrary MSO formula. We stress that the simulation we are about 
to describe is by no means an efficient one and is infeasible in practice due to the 
high complexity of transforming MSO formulas into automata. The only aim of our 
result is to demonstrate the surprising expressiveness of a small core subset of XSLT. 
Actually, in addition to formalize a core fragment of XSL corresponding to the working 
draft of December 1998, Maneth and the present author [MN99] already proposed to 
extend the pattern language of XSL with MSO formulas. 2 

1 The XSLT working draft (Cla99) explicitly stresses the conversion of each XML document to a 
string when they are passed through as values of a variable. 

2We still like to think they read our paper and only then decided to add those variables. 
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To prove the above theorem, we could try to simulate query automata or extended 
AGs in XSLT. However, this is not so straightforward. Indeed, query automata 
constitute a parallel computation device where different parallel processes have to 
be combined when making up and down transitions. XSLT can also invoke parallel 
processes but it is not obvious how they can exchange the information needed for the 
up and down transitions required to simulate query automata. Extended AGs, on the 
other hand, have a distributed memory in terms of the attributes. Similarly, it is not 
clear how this can be simulated directly in XSLT. 

Therefore, we proceed as follows. Let cp(x) be an MSO formula of quantifier depth 
k. Then, by Proposition 4.12(1), for any tree t and node n, t I= cp[n] only depends on 
rk150(t0 , n) and rk150(t0 , n). By Lemma 4.13, there exists a deterministic bottom-up 
tree automata (DBTA) computing rk150(t0 , n) on input t 0 • We invite the reader to 
check the existence of a DBTA computing rk150(t0 , n) on input (tn, n), where (tn, n) 
is the tree t 0 with n as a distinguished node. We could for example distinguish a 
node by the symbol *· That is, let t be the tree a(b(b), a) and let n be the first child 
of the root. Then (t0 , n) is represented by a(b*, a). In outline, the construction of the 
DBTA computing rk150(tn, n) on input (tn, n) is a modification of the construction 
preceding Theorem 4.11. Only, here, when the automaton reads a leaf labeled a* 
it assigns the state rk150(t(a),root(t(a))) rather than just rk150 (t(a)) as for non
distinguished nodes. 

It, thus, suffices to show that upon arriving at a node n, XSLT can compute the 
states 8i(t0 ) and 8H(t0 , n)), for DBTAs B1 = (Q1, E, 81, F1) and B2 = (Q2, E, 82, F2) 
working over unranked trees. In the following we will outline an XSLT program for 
computing this subtree type and envelope type with respect to a node n. In particular, 
the statements 

<xsl: apply-templates select="." mode="subtree"> 

and 

<xsl: apply-templates select="." mode="envelope">, 

issued at a node n will return the states 8i(t0 ) and 82((t0 , n)), respectively. Depend
ing on these values the XSLT program knows whether the current node satisfies the 
pattern cp(x) and can output true or false accordingly. For expository purposes, we 
blur the distinction between B1 and B2 and talk about an automaton B. 

We will use the following small DBTA B = (Q, E, 8, F) over unranked trees defined 
as follows: Q = {0,1}, E = {a,b}, F = {O}, 8(0,a) = L(M), 8(1,a) = {0,1}* -
L(M), 8(0,b) = {O, l}* - L(M), and 8(1,b) = L(M). Where Mis the DFA (S = 
{so, ... ,sn},{O,l},8M,so,FM), Note that Bis special in the sense that all regular 
sets 8(0, a), 8(1, a), 8(0, b), and 8(1, b) are determined by the DFA M. We chose this 
DBTA to keep the resulting XSLT program simple. At the end, we indicate how the 
construction can be generalized for arbitrary DBTAs. 
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Subtree 

To compute 8* ( t 0 ) at some node n, we cannot use the same idea as in the simulation 
of Tin Section 6.2.1 , for the simple reason that trees are now unranked and we do 
not have an unbounded number of variables at our disposal ( one for each possible 
subtree). However, the solution to this is quite simple. Suppose the XSLT program 
arrives at a node n that has n children and is labeled with an a. Basically, all the 
XSLT program has to do is simulate M on the string 8* ( t 0 1) · · · 8* ( t 0 n). When this 
string is accepted the program has to output 0, otherwise it has to output 1. To this 
end, the XSLT program at n starts up a subproces to define the value of the variable 
endstate as the state 8M(so, 8*(t0 1) · · · 8*(t0 n)). Depending whether this state is a 
final state the program knows whether to output O or 1. The value of endstate is 
computed by first jumping to the first child of n in mode s0 (recall that s0 is the start 
state of M). And then, whenever the program arrives at a node nj in modes, it first 
computes q = 8*(t0 j) by applying the template rules on itself in mode subtree. If 
nj is the last child, then it outputs the state 8M(s, q) (which will become the value 
of endstate) . Conversely, if nj is not the last child, then the XSLT program jumps 
to n(j + 1) in mode 8M(s, q). 

The XSLT program outlined above is depicted in Figure 6.5 and Figure 6.6. We 
only give a fragment of the needed template rules. The construction of the remaining 
template rules is similar. We elaborate on some of the details. The test position() 
= last O determines whether the current node is the last child of its parent. The 
meaning of the functions position() and last() are the obvious ones. Further, the 
pattern following-sibling: : * [1] selects the first right sibling of the current node; 
* indicates that this node may have any label. 

We briefly discuss how this construction can be extended to more general DBTAs. 
Therefore, let B 1 be a DBTA over the alphabet :E with state set Q, and let for each 
a E :E, 8(q, a) be defined by the automaton Mq,o-· W.l.o.g., we can assume that 
the state sets of all the DFAs are mutually disjoint. If the XSLT program arrives 
at a node n that has n children and is labeled with an a, then it has to simulate 
every automaton Mq,a on the string 8*(t0 1) · · · 8*(t0 n). This can easily be achieved 
by defining a variable endstateq, for every q, that starts up a subproces computing 
the state 8M•," (sg•a, 8* (t0 1) · · · 8*(t0 n)), where 8M•," is the transition function of Mq,a 
and sg•0 is the start state of Mq,a· In the end, only one endstateq can be assigned 
a state that is a final state of its automaton Mq,a· The XSLT program then outputs 
this q. 

Envelope 

It now remains to show that an XSLT program arriving at a node n can compute 
8*((t0 , n)). For ease of reading, from now on we write t 0 for (t0 , n). The program 
starts by selecting n in mode envelope-8(labt;(n)). Suppose during its computation 
it arrives at some node m on the path from n to the root in mode envelope-£ where 
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<xsl:template match="a" mode="subtree"> 
<xsl:variable name="endstate"> 

<xsl:apply-templates select="./*[1]" mode="so"> 
</xsl:variable> 

<xsl:choose> 
<xsl:when test="$endstate = so"> 

<xsl:text>out</xsl:text> 
% here out is O if s0 E FM, and is 1 otherwise 
% as 8(a,O) = L(M) and 8(a, 1) = {O, 1}* - L(M) 

</xsl:when> 

<xsl:when test="$endstate = sn"> 
<xsl:text>out</xsl:text> 
% here out is O if Sn E FM, and is 1 otherwise 
% as 8(a,O) = L(M) and 8(a, 1) = {O, 1}* - L(M) 

</xsl:when> 
</xsl:template> 

Figure 6.5: An illustrating fragment of an XSLT program computing 8*(tn)-

l is O or 1. The intention is that 8*((Qrn) = £.3 Note that this holds form= n. If 
m is the root then 8* (Q = e and the XSLT program just outputs l. If not, then it 
computes 8*((Qp) where pis the parent of m. We next show how to do this. First, 
let p have n children, let a be the label of p, and let m be t he i-th child of p. To 
obtain the state 8*((Qp), the XSLT program just simulates the automaton Mon 
the string 

8*(tp1) · · · 8*(tp(i-1)) · f · 8*(tp(i+I)) · · · 8*(tpn), 

Recall that the XSLT program starts from m and that l = 8*((Qrn), So, it first 
has to determine the state 8M(so,8*(tp1) · · ·8*(tp(i-t))). However, it cannot simply 
jump to the first child of p and from there on process the string 5*(tp1) · · · 8*(tp(i- i )), 
since it cannot remember that mis the i-th child of p. 4 Therefore, the XSLT program 
simulates M reversely from 8*(tp(i-t)) till 8*(tp1) computing the sets 

Ss = {s' I 8M(s', 8*(tp1) · · ·8*(tp(i- 1))) = s}, 

for each s E S. Since M is deterministic only one of those sets can contain the start 
state s0 • If the set S8 contains s0 then we know that 

3 Here, (t;")m denotes the subtree of tn rooted at m. 
40f course, this could easily be done by employing XSLT parameters (not discussed anywhere in 

this section). We, however, want a core XSLT program. 
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<xsl:template match="a" mode="s"> 
<xsl:variable name="state"> 

<xsl:apply-templates select="." mode="subtree"> 
</xsl:variable> 
<xsl:choose> 

<xsl:when test="position() = last()"> 
<xsl:choose> 

<xsl:when test="$state = 0"> 
<xsl: text>b'M(s, 0)</xsl: text> 

</xsl:when> 
<xsl:when test="$state = 1"> 

<xsl:text>8M(s, 1)</xsl:text> 
</xsl:when> 

</xsl:choose> 
</xsl:when> 
<xsl:otherwise> 

<xsl : choose> 
<xsl:when test="$state = 0"> 

<xsl:apply-templates select= 
"following- sibling: :* [1]" mode="8M(s, 0) "> 

</xsl:when> 
<xsl:when test="$state = 1"> 

<xsl :apply-templates select= 
"following-sibling: :* [1]" mode="8M(s, 1)"> 

</xsl:when> 
</xsl:choose> 

</xsl:otherwise> 
</xsl:choose> 

</xsl: template> 

147 

Figure 6.6: An illustrating fragment of an XSLT program computing 8*(tn) (contin
ued) . 
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Specifically, the XSLT program uses the variables left-s, for each s E S, such that 
left-sis assigned ok (not_ok) whenever s0 E S 8 (so f/. S 8 ). Concretely, this happens 
as follows. The program uses all subsets of S as modes and starts with selecting 
p(i -1) in mode {s}, for each s ES, to compute the value of left-s. Suppose a pj 
is selected in mode Si. If pj is the first child then the XSLT program outputs ok if 
OM(so, o*(tpJ)) nSi =f 0 and outputs not_ok otherwise. If pj is not the first child then 
the program selects p(j - 1) in mode SJ- 1 where Sj- 1 = {s' I oM(s' , o*(tpj))nSi =f 0}, 
i.e., all the states in which M can reach a state in Si by reading the symbol o*(tpJ)· 

Let Sk be the state such that s0 E S8 ,.. Then the XSLT program computes the 
state '5M(sk,.e · '5*(t p(i+l)) · · ·'5*(tpn)) by jumping from one sibling to another in the 
same way as the XSLT program of the previous subsection, but now using the modes 
env-s for each s E S. The XSLT program acts differently when it reaches the last 
node: it jumps top in mode endstate-s' where s' = '51r(sk, o*(tp1) · · · o*(tp(i-1)) · 
.e · o*(tp(i+l)) · · ·o*(tpn)). The XSLT program then changes to mode envelope-0 or 
envelope-! depending on the label of p and on whether s' is a final state. That is, 
the program changes to mode envelope-0 if the label of p is a and s' E FM, or the 
label of p is b and s' f/. FM; conversely, it changes to mode envelope-! if the label 
of p is a and s' f/. FM, or the label of p is b and s' E FM. The computation then 
proceeds from thereon in a similar way until the root is reached. 

The strategy outlined above is implemented in Figures 6.7-6.10. Figure 6.7 con
tains the controlling template rules. The computation is started by selecting a node 
n in mode envelope, indicating that the envelope of this node should be computed. 
Suppose m , a node occurring on the path from n to the root , is selected in mode 
envelope-£. If m is the root node then the program outputs £. Testing whether the 
current node the root of the modeled tree, is done by checking whether its parent 
node is labeled by mytree. Otherwise, we start by assuming that m is always a mid
dle node: that is, m is never the first or the last child of its parent. This is just a 
convenient restriction to simplify the presentation of the XSLT program. 

The program first determines the state '5M ( s0 , o* ( tp1) · · · 8* ( tp( i-l))) by the re
verse computation mentioned above. An example template rule for mode S', with 
S' ~ S, is given in Figure 6.8. Hereafter, it computes 81r(s,.e · o*(tp(i+i)) · · · o* (tpn)) 
as explained above. An example of a template rule accomplishing the latter is given 
in Figure 6.9. Here, . . is the pattern that selects the parent of the current node. 
Finally, an example template rule for the mode endstate-s is given in Figure 6.10. 

The cases where m can be the first or the last child are straightforward modifi
cations of the presented program. Indeed, only the template rule in Figure 6. 7 has 
to be extended with some consistency checks: ( i) if the current node is the left most 
sibling then the part selecting the first left sibling in the modes {so}, ... , {sn}, can 
be skipped; and ( ii) if the current node is the right most sibling then its parent should 
be selected as in the first part of the t emplate rule in Figure 6.9. 

We briefly discuss how this construction can be extended for more general DBTAs. 
Therefore, let B' be a DBTA over the alphabet E with state set Q, and let for each 
a E E, o(q, a) be defined by the automaton Mq,<T · W.l.o.g., we can assume t hat the 
state sets of all the DFAs are mutually disjoint. Suppose the XSLT program arrives 
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<xsl:template match="a" mode="envelope"> 
<xsl:apply:templates select="." mode="envelope-«5*(a)"> 

</xsl:template> 

<xsl:template match="a" mode="envelope-£"> 
<xsl:choose> 

<xsl:when test="count(parent : :mytree) > 0"> 
<xsl:text>f</xsl:text> 

</xsl:when> 
<xsl:otherwise> 

<xsl:variable name="left-s0 "> 
<xsl :apply-templates select= 

"preceding-sibling:=* [1]" mode="{so}"> 
</xsl:variable> 

<xsl:variable name="left-sn"> 
<xsl:apply-templates select= 

"preceding-sibling: :*[1]" mode="{sn}"> 
</xsl:variable> 
<xsl:choose> 

<xsl:when test="$left-s0 = ok"> 
<xsl:apply-templates select= 

"following-sibling::* [1]" mode="c5M(s0 , £)"> 
</xsl:when> 

<xsl:when test="$left-sn = ok"> 
<xsl:apply-templates select= 

"following-sibling: : * [1]" mode="5M(sn, £) "> 
</xsl:when> 

</xsl:choose> 
</xsl:otherwise> 

</xsl:choose> 
</xsl:template> 

Figure 6.7: Template rules computing 5*(Q. 



150 6. Applications and related work 

<xsl:template match="a" mode= 11S 111 > 
<xsl:variable name="state"> 

<xsl:apply-templates select=" . " mode=subtree> 
</xsl:variable> 
<xsl:choose> 

<xsl:when test="position() = 1"> 
<xsl:choose> 

<xsl:when test=11$state=0 11> 
<xsl:text>out</xsl:text> 
% here out is ok if 8M(s0 , 0) n 8 1 =/; 0 
% not _ok otherwise 

</xsl:when> 
<xsl:when test="$state=1"> 

<xsl:text>out</xsl:text> 
% here out is ok if 8M(so, 1) n S' =/; 0 
% not _ok otherwise 

</xsl:when> 
</xsl:choose> 

</xsl:when> 
<xsl:otherwise> 

<xsl:choose> 
<xsl:when test= 11$state=011 > 

<xsl:apply-templates select= 
"preceding-sibling::*[1]" 

mode="{s' I 8M(s', 0) n S' =/; 0}"> 
</xsl:when> 
<xsl:when test=11$state=l 11 > 

<xsl:apply-templates select= 
"preceding- sibling::*[1]" 

mode="{s' I 8M(s', 1) nS' =/; 0}"> 
</xsl:when> 

</xsl:choose> 
</xsl:otherwise> 

</xsl:choose> 
</xsl:template> 

Figure 6.8: Template rules computing 8*(Q (continued). 
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<xsl:template match="a" mode="env-s"> 
<xsl:variable name="state"> 

<xsl:apply-templates select="." mode="subtree"> 
</xsl:variable> 
<xsl:choose> 

<xsl:when test="position() = last()"> 
<xsl:choose> 

<xsl:when test="$state = 0"> 
<xsl:apply-templates select=" .. " 

mode="endstate-c5M(s, 0)" /> 
</xsl:when> 
<xsl:when test="$state = 1"> 

<xsl: apply-templates select=" . . " 
mode="endstate-c5M(s, 1)"/> 

</xsl:when> 
</xsl : choose> 

</xsl:when> 
<xsl:otherwise> 

<xsl:choose> 
<xsl:when test="$state = 0"> 

<xsl:apply-templates select= 
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"following-sibling: :*[1]" mode="env-c5M(s,0)"> 
</xsl:when> 
<xsl:when test="$state = 1"> 

<xsl:apply-templates select= 
"following-sibling::* [1]" mode="env-c5M(s, 1)"> 

</xsl:when> 
</xsl:choose> 

</xsl:otherwise> 
</xsl:choose> 

</xsl : template> 

Figure 6.9: Template rules computing c5*(Q (continued). 

<xsl:template match="a" mode="endstate-s"> 
<xsl:apply:templates select=" . " mode="envelope-1!"> 
% £ = 0 iff s E FM , as c5(a, 0) = L(M) and <>(a, 1) = {O, 1 }* - L(M) 

</xsl:template> 

Figure 6.10: Template rules computing c5*(Q (continued). 
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in state e at a node m that is the i-th child of its parent p. Let p have n children. 
Then we have to compute the state 

for each q and a. Here, 8M .... is the transition function of Mq,<T and sg,u is the start 
state of Mq,u · For each a there is only one q.,. such that Mq,, ,u will accept this string. 
Remember that our goal is to reach p in mode Qlab. ( q) . So we are done if we can 
compute all these q.,. 's, gather them in a mode, and jump to p. Indeed, upon arriving 
at p, the program can then determine the state q1ab.(q) from this mode. For each 
automaton Mq,u the XSLT program finds out the state 

Sq,u = 8M .... (sg,u, 8* (tp1) · · · 8* (tp(i- 1))) 

by a reverse computation guided by variables like in the previous case. Note that by 
this reverse computation all started subcomputations end again at m. Hereafter, for 
each q and a, the program starts up a subproces computing the state 8M ( sq,u , e · 

q ,<r 

8*(tp(i+1)) · · · 8*(tpn)) in a variable endstateq,u· It then can verify which ones are 
final states, and, hence, can obtain all states Qu· 

6.3 A comparison with other query languages 

We now compare the expressiveness of MSO, or query automata and extended AGs 
for that matter, with FO extended with regular path expressions (denoted by FOreg). 
As mentioned in the introduction, we use the latter as an abstraction of the selective 
power embodied by most of the current query languages for structured documents 
and semi-structured data [ABS99]. In fact, we show that no Foreg sentence can 
define the class of all trees representing Boolean circuits evaluating to true. This 
class can be computed by query automata as is shown in Example 5.21. We chose 
this query in the first place to facilitate the inexpressibility proof. Nevertheless, this 
and such like queries can be relevant when considering queries themselves as docu
ments [VVV96, NVVV98]. Then, for optimization purposes, one might be interest ed 
in those queries containing a sub query that always evaluates to true independent of 
the input database. 

We define Foreg in the following way. For each regular expression r we add the 
predicate r(x, y) to FO with the following semantics. For each t and nodes n and m 
oft, t F r[n, m] iff n is an ancestor of m and the string formed by concatenating the 
labels on the path from n to m (labels of n and m included) belongs to the language 
defined by r. We denote the latter string by patht(n,m). 

We start by adding the ancestor relation -< to the logical structure representing 
trees. Note that this relation is readily definable in Foreg. Indeed, x -< y is equivalent 
to r(x, y) where r is a regular expression denoting the set of all strings. 

Proviso 6.10 In the rest of this section we always assume the relation -< to be 
available in the logical structures representing trees. 
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We define a pebble game for the logic Foreg. The k-round FOreg game on trees 
(t, c1 , ... , cn) and (s, di, ... , dn) is played exactly as the k-round FO game with the 
addition that, if after k rounds the nodes n 1 , .. . , Ilk and m1, ... , mk are chosen in 
t and s, respectively, then not only should ii --t m be a partial isomorphism between 
(t,c) and (s,d) (also taking-< into account), but also for all j,l E {l, ... ,k}, and 
i E {1, ... , n }, the following should hold: 

• if n1 -< n3 then patht(nz, n3) = path9 (m1, m3); 

• if ci -< n3 then patht (Ci, n3) = paths (di, m 3); and 

• if n3 -< ci then patht(n3,ci) = path8 (m3,di)-

By adapting the proof of Proposition 2.4, it readily follows that if the duplicator 
wins the k-round Foreg game on (t, c) and (s, d), then for all Foreg formulas cp of 
quantifier depth k, t I= cp[c] iff s I= cp[d] . We denote the latter by: (t, c) =;eg (s, d). 
Note that the pebble game is much too strong for Foreg since (t, c) t;eg (s, d) does 
not imply that the spoiler has a winning strategy. Nevertheless, the game will serve 
our purpose. 

We will show that no Foreg formula defines the set of trees representing Boolean 
circuits that evaluate to true. Assume towards a contradiction that there exists such 
a formula cp of quantifier depth k. We play the Foreg game on the trees AND(O,c, h) 
and AND(l, c, h), and OR(O, c, h) and OR(l, c, h) defined as follows. For all c 2:: I 
and i E {O, I}, define AND(i, c, 0) = OR(i, c, 0) = i. For all c, h 2:: 1, define 

AND(O,c,h) .-
OR(O,c,h) .-
AND(l,c,h) -
OR(I,c, h) -

AND(OR(l, c, h - l)xc, OR(O, c, h - I), OR(l, c, h - l)xc), 
OR(AND(O,c, h - l)x2c+1), 
AND(OR(l,c,h- l)x2c+l), and 
OR(AND(O, c, h - l) xc, AND(l, c, h - l), 

AND(O,c,h - l)xc). 

Here, for a tree t, txi denotes the sequence t, ... , t (i times). See Figure 6.11 for 
a graphical representation. We start with some observations concerning these trees. 
Each of the above trees is of height h (cf. definition of height in Section 2.4), and all 
internal nodes have exactly 2c + I children. Further, all nodes occurring on the same 
height are labeled with the same label and the labels of the levels alternate between 
AND and OR. The root of each AND(i,c,h) is labeled with AND, while the root 
of each OR(i, c, h) is labeled with OR. We invite the reader to verify that all trees 
AND(O, c, h) and OR(O, c, h) evaluate to 0, while all trees AND(l, c, h) and OR(l, c, h) 
evaluate to 1. We refer to the former as 0-trees and to the latter as I-trees. 

We will show that for a E {AND,OR}, a(O,c,h) =;eg cr(l,c,h) for sufficiently 
large values c and h. However, rather than playing the k-round Foreg game on these 
structures, we just play the ordinary k-round FO game, but require the duplicator 
to make depth preserving moves. That is, whenever the spoiler picks a node, the 
duplicator is required to pick a node of the same depth ( cf. definition of depth in 
Section 2.4). Due to the structure of the above defined trees it readily follows that, 
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OR(O,c,h) 
OR 

~ 
AND(O,c,h-1) · · · · · AND(O,c,h-1) 

...... - ... -· ----------
2c+l copies 

OR(l,c,h) 
OR 

AND(O,c,h-1) ···· · AND(O,c,h-1) AND(l,c,h-1) AND(O,c,h-1) -· -· · AND(O,c,h-1) 

--- --~ ---------- -... ... --. --------
c copies c copies 

AND(l ,c,h) 
AND 

~ 
OR(l,c,h-1) · · ·· · · OR(l,c,h-1) 

---------------
2c+l copies 

AND(O,c,h) 
AND 

OR(l,c,h-1) ·· -·· - OR(l,c,h-1) OR(O,c,h-1) OR(l,c,h-1) · · · · · · OR(l,c,h-1) 
...... ____ _______ _ 

-------- ----
c copies c copies 

Figure 6.11: The trees OR(O, c, h), OR(l, c, h), AND(l, c, h), and AND(O, c, h). 
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if n1 and n2 are nodes in a(O, c, h) with n1 -< n2 and m 1 and m 2 are nodes in 
a(l, c, h) with m1 -< m2, such that the depth of n1 equals the depth of m 1 and the 
depth of n2 equals the depth of m2, then path,,.{o,c,h) (n1, n2) = path,,.{l,c,h)(m1, m2). 
Consequently, if the duplicator has a depth preserving winning strategy in the k
round FO game on (a(O, c, h), c) and (a(l, c, h), d) then he also wins the k-round 
Foreg game on those structures (recall that the relation -< is added to the logical 
structures representing trees). 

We note that we could also have adopted height preserving moves rather than 
depth preserving ones. The latter ones just make the statement of Lemma 6.11 
easier. Before we prove this lemma, we introduce some more notation. If t is a tree 
with nodes ii, then tii denotes t without the subtrees rooted at the nodes in ii (but 
keeping the nodes in ii). Further, if c is a node, then c + 1 and c - 1 denote its right 
and left sibling, respectively. 

The following lemma allows us to reduce an FO game on two trees to several FO 
games on different parts of those trees. 

Lemma 6.11 Lett ands be two trees with nodes c 1 , ... ,en and di, ... ,dn, such 
that no Ci is an ancestor of a Cj, and no di is an ancestor of a di for i f:. j, and 
for each i = 1, . .. , n, the depth of Ci equals the depth of di. Further, let n be a 
node in t and let m be a node in s such that the depth of n equals the depth of 
m, and for i = 1, ... , n, n occurs in tc; if! m occurs in sd;. Let k ~ 0. If the 
duplicator has a depth preserving winning strategy in G{0 (tc, c, n; sa, d, m) , and in 
G{0 (tc;, Ci, n; sd;, di, m), for i = 1, ... , n, then the duplicator has a depth preserving 
winning strategy in G{0 (t, n; s, m).5 

Proof. The basic idea is to combine the winning strategies of the duplicator on the 
respective subtrees into a winning strategy on the whole structures like, for instance, 
in the case of strings in Proposition 2.6. That is, whenever the spoiler chooses a 
node in one of the substructures the duplicator chooses a node in the corresponding 
substructure, according to his strategy in the game on these substructures. As the 
substructures have nodes in common, we have to argue that our strategy is well 
defined. To this end, it suffices to note that whenever the spoiler picks Ci ( di) in a 
game on a substructure, the duplicator is forced to pick di (ci) as both ci and d; are 
distinguished constants in all substructures where they appear. 

At the end of a game on the whole structure, the selected nodes define partial 
isomorphisms for all pairs of respective substructures. To ensure that they also define 
a partial isomorphism between the entire structures, we only have to note that the 
ancestor relation is always preserved between components since we only pick nodes 
from corresponding substructures. • 

In the rest of this section we will prove the following lemma. From this lemma it 
readily follows that <p cannot define the class of all trees representing Boolean circuits 
evaluating to true. We abbreviate rr80 (t,root(t)) by rr80(t,root) for each tree t. 

5We abuse notation here. When we write, for example, GfO(tc;, n; sd;, m), then we mean the 
game afO (tc; ; sd;) if n and m do not occur in tc, and sd;, respectively. 
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Lemma 6.12 For all k ~ 1, r ~ 2k-l + 1, and i > 2k, 

(OR(O,r,i),root) =ko (OR(l,r,i),root) 

and 
(AND(O, r, l), root) ={0 (AND(l, r, £), root) . 

Proof. Clearly, the trees AND(O, c, h) and AND(l, c, h), and the trees OR(O, c, h) 
and OR(l, c, h) are isomorphic if the labels of nodes are not taken into account. 
Let 1r denote this isomorphism (it will always be clear from the context whether we 
consider AND or OR trees and what the values of c and hare). We can say even more: 
the trees OR(O, c, h) and OR(l, c, h), and AND(O, c, h) and AND(l, c, h) are identical 
apart from the label of one leaf. That is, there is only one node that distinguishes 
these trees. We introduce a special name for the nodes on the path from the root to 
this leaf: we call them d-nodes. The reader is invited to check that subtrees rooted at 
d-nodes in OR(O, c, h) and AND(O, c, h) are 0-trees while they are 1-trees in OR(l, c, h) 
and AND(l, c, h). 

The proof proceeds by induction on k and clearly holds for k = 0. We only give the 
argument for the trees t = OR(O,r,i) ands= OR(l,r,i). The case of AND(O, r,i) 
and AND(l,r,i) is similar. 

Suppose the spoiler picks his first node n in t. It then suffices to provide a node 
m of s of the same depth such that the duplicator has a depth preserving winning 
strategy in Gf~1 (t, n; s, m). 

Let c be the d-node of height 2k - 1. If n is not in tc then the duplicator chooses 
the node m = 1r(n) ins and the game continues on (tc,c) and (s1r(c) ,7r(c)), and on 
(tc,c,n) and (s1r(c),1r(c),m). In both games the duplicator has a depth preserving 
winning strategy for the remaining k - 1 rounds. Indeed, in the first case this follows 
by induction (note that 2k- 1 > 2(k-1)) and in the second case because the two trees 
are isomorphic (recall that c and 1r(c) are d-nodes). By Lemma 6.11, the duplicator 
has a depth preserving winning strategy in GI.~\ (t, n; t, m). This concludes the proof 
of this case. 

We now turn to the harder case. Suppose the spoiler picks n in tc. We refrain 
from choosing min S1r(c), as tc = AND(O, r, 2k - 1) and S1r(c) = AND(l, r, 2k - 1), 
and the spoiler might distinguish (tc, c, n) and (s1r(c), 1r(c), m) in the remaining k -1 
moves. Observe that the tree rooted at the right sibling of c is AND(O, r, 2k - 1) 
and the tree rooted at the left sibling of 1r(c) is also AND(O, r, 2k - 1). We are going 
to fool the spoiler by mapping tc to S1r(c) -l and tc+l to S1r(c) . The duplicator thus 
chooses min S1r(c)- l on exact the same position as n occurs in tc. The game now 
continues on (tc,c,n) and (s1r(c)-i,1r(c) - l,m), on (tc+i,c+l) and (s1r(c),1r(c)), 
and on (tc,c+1,c,c + 1) and (t1r(c) -l,1r(c),1r(c) - l,1r(c)). We will argue that in all 
three cases the duplicator has a depth preserving winning strategy for the remaining 
k - 1 moves. Then, by Lemma 6.11, the duplicator has a depth preserving winning 
strategy in Gf~1 (t, n; s, m). In the first two cases it is immediate that the duplicator 
wins. Indeed, in the first case both trees are isomorphic and in the second case the 
winning strategy follows by induction. The reason for the third case is that there are 
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so many children that the spoiler cannot possibly distinguish the pair ( c, c + 1) from 
the pair (1r(c) - l,1r(c)) in the remaining k -1 moves. We elaborate on this. Let p 
be the parent of c. Clearly, (tp,P) and (s1r(p),1r(p)) are isomorphic. Thus, whenever 
the spoiler picks a node in tp or Srr(p) , the duplicator responds with the same one 
from S1r(p) or tp, respectively. Hence, it suffices to restrict attention to moves of the 
spoiler in (tc,c+i)p and (srr(c)-1,rr(c))p-

We first recall a helpful proposition on strings (see for example [EF95, Imm98]): 

Proposition 6.13 Let w and v be strings of length at least 2k- I over the unary 
alphabet {er}. Then the duplicator wins G[~1 (w;v) . 

From this proposition one easily obtains the following: the duplicator wins G[~ 1 ( w, r+ 
1, r + 2; v, r, r + 1), for all strings w and v of length 2r + 1 over the unary alphabet 
{a}. 

We use the winning strategy of the duplicator in the game Gt?1 (w, r + 1, r + 
2; v, r, r+ 1) to answer moves of the spoiler in the trees (tc,c+1)p and (s1r(c)- l,rr (c) )rr(p). 
We focus on moves of the spoiler in the former tree. Clearly, the duplicator answers 
with 1r(c)-l and 1r(c), whenever the spoiler picks c and c+ I , respectively. Recall that 
p and 1r(p) have only trees AND(O, r, 2k - I) rooted at their children (forgetting about 
the children c, c+ 1, 1r(c) - l, and 1r(c)). Suppose the spoiler picks an element in one 
subtree tpi , with pi different from c and c+l. Then the duplicator chooses exactly 
the same element in some subtree srr(p)j which the duplicator chooses according to 
his winning strategy in the game on the strings. That is, we examine the game on 
(w,r + I,r + 2) and (v,r,r + 1) where the spoiler picks the i-th element. If, in this 
game, the duplicator replies with the j-th element, then the duplicator uses the subtree 
Srr(p)j· The same strategy holds when the spoiler picks elements in (srr(c)- l ,1r(c))ir(p)· 
This concludes the proof of the lemma. • 

We thus obtain: 

Theorem 6 .14 MSO is strictly more expressive than Foreg. 

6.4 The encoding of ranked into unranked trees 

There are several ways to encode unranked trees by, for example, binary ones. To make 
a clear distinction between binary and unranked trees, for the logical representation 
of trees, we will make use of the successor relations S1 and S2 ( defining the first child 
and the second child of a node) in the former case and stick to the relations E and 
< in the latter case. Using these successor relations it is possible to define trees with 
nodes that have a second child but have no first child. We will exploit this in the 
encoding described next. 

For an unranked tree t, we define the binary tree enc(t) as follows: 

• the set of nodes of enc(t) consists of the the set of nodes oft; 

• all nodes in enc(t) have the same label as int; 
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Figure 6.12: Example of enc and dee applied to a tree. 

• the root of enc(t) is the root oft; 

• for all nodes n and m oft: 

- n is the first child of min enc(t) iff n is the first child of ID in t; and 

- n is the second child of ID in enc( t) iff n is the first right sibling of m in t. 

To define the decoding, we introduce the following notion. We say that a node n is 
a right descendant of ID in a binary tree if the path from m ton (m excluded) only 
contains nodes that are the second child of their parent. For a binary tree t, we define 
the unranked tree dec(t) as follows: 

• the set of nodes of dee( t) is the set of nodes of t; 

• a node in dec(t) has the same label as int; 

• the root of dec(t) is the root oft; 

• for all nodes n and m of t: 

- n is a child of min dec(t) iff n is the first child of mint, that is n = ml, 
or n is a right descendant of ml; and 

- n is a left sibling of min dec(t) iff mis right descendant of m. 

We depicted in Figure 6.12 an example of the above described encoding and decoding. 

It is not so difficult, but rather tedious, to prove that for every unranked tree 
language T, enc(T) is recognizable iff T is recognizable. Of course, our automaton 
model for binary trees is not defined for trees with nodes that can have a second 
child without having a first child. However, such tree can readily be encoded by using 
a special symbol, say #, to denote the absence of the first child. The binary tree 
in Figure 6.12, would then be represented by a(b(e(#,f),c(g,d))). In one direction 
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the proof consists of a simulation of an unranked tree automaton by a ranked one 
working on the encoding of unranked trees. The crux lies in the simulation of the 
DFAs, encoding the transition function of the unranked tree automaton, on paths 
consisting solemnly of nodes that are right children of their parent (as these nodes 
are siblings in the unranked tree) . The proof of the other direction consists of the 
reverse simulation. Rather than going into the details of this tedious simulation we 
employ our results obtained in the previous chapters to prove a much more general 
result. 

First we note that both enc and dee are MSO definable in terms of each other. 
Before we illustrate this, we formally define how MSO formulas can encode and decode 
trees. In the ranked case we focus on trees of rank m, for some m. Hence, we make 
use of the successor relations S1 , . .. , Sm. 

An MSO definable encoding and decoding are tuples e = ('I/J1 (x,y), . .. ,'I/Jm(x,y)) 
and d = ('I/JE(X, y), 1P< (x, y)) of MSO formulas over the vocabulary {E, <, (Ou )uEE} 
and {81, ... ,Sm,(Oo)uEI:}, respectively. For an unranked tree t, e(t) is the ranked 
tree with domain Nodes(t), where Si := {(n, m) I t I= 'I/Ji[n, ml}, for i = 1, ... , m. 
For a ranked tree t, d(t) is the unranked tree with domain Nodes(t), where E := 
{(n,m) It I= 'I/JE[n,m]} and<:= {(n,m) It F 'I/Jdn,m]}. We will only consider 
encodings and decodings such that e(t) and d(s) are in fact trees for all tree t ands. 

Now, clearly, enc and dee are MSO definable: 

'I/Ji (x, y) := E(x, y) I\ ,(:lz)(z < y), 

'I/J2(x,y) := x < y /\ ,(:lz)(x < z I\ z < y), 

1PE(x, y) := 81 (x, y) V (:lz)(S1 (x, z) I\ TC[S2(z, y)](z, y)), 

and 

'I/Jdx,y) := TC[S2(x,y)](x,y). 

Here TC denotes the (monadic) transitive closure operator which can readily be ex
pressed in MSO (cf. Example 2.2). 

For a tree language 7, we write e(T) for {e(t) It E 7} and d(T) for {d(t) It E 7}. 
Further, we say that e and dare each others inverses when for every unranked tree t 
and ranked trees, d(e(t)) = t and e(d(s)) = s. Note that enc and dee are each others 
inverses. 

However, by Theorem 2.13 and Theorem 4.11, we can state the following general 
theorem which can be proved by simply substituting 'I/Ji(x, y) for Si(x, y) , 'I/JE(x, y) for 
E(x, y), and 'I/Jdx, y) for x < y: 

Corollary 6.15 For every MSO definable encoding e and decoding d: 

• for every unranked tree language T,,, if e(T,,) is recognizable then T,, is recog
nizable, and 

• for every ranked tree language T,.., if d(T,..) is recognizable then T,.. is recognizable. 
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Hence, if e and d are each others inverses then for every unranked tree language 7u 
and every ranked tree language Ir, e(1u.) is recognizable iff 'Tu is recognizable, and 
d(Tr) is recognizable iff Tr is recognizable. 

Let Tu be the set of all ~>trees and let 7r.m C Ty~ be the set of all t rees of rank m. 
Theorem 5.18 and Theorem 5.29 again allow to state a general theorem: 

Corollary 6.16 Let e and d be an MSO definable encoding and decoding which are 
each others inverses. Then, a query is is expressible by an SQA u iff it is expressible 
by a QAr on e(Tu); and, a query is expressible by a QAr iff it is expressible by a QA" 
on d(Tr,m). 

In conclusion, we point out that the above correspondence between ranked and 
unranked trees does not always apply. For instance, Maneth and the present author 
defined a generalization of the top-down tree transducer model for unranked trees as 
a formal model for XSL (MN99]. This tree transducer model is much more powerful 
than the standard tree transducer model on the encoding enc of unranked trees. 

We point out that several researchers have used the encoding of unranked trees 
into ranked once (MN99, MSV99, PQ68]. 

6.5 Implementing RAGs on top of a deductive da-
tabase system 

To conclude this chapter, we propose a design to implement the BAGs and RAGs 
studied in Chapter 3. Specifically, we want to show that deductive databases offer 
a natural platform on top of which such an implementation becomes remarkably 
straightforward. Since BAGs can be seen as special cases of RAGs, we focus attention 
on the latter ones. Note that this section concerns ranked trees only. The presentation 
of this section will be rather terse. 

6.5.1 Datalog., 

In the present section, we define datalog.,. We refer to the book by Abiteboul, 
Hull, and Vianu [AHV95] for more background. We start by fixing a vocabulary T 

containing only relation names. A datalog., rule r is an expression of the form 

where 

• Q0 is an atomic formula of the form R( · · · ) with R E T; and 

• for each i = 1, ... , n, Qi(ii\) is an atomic formula or negation of an atomic 
formula. That is, each Qi(xi) is either R(xi ) or , R(xi) where R E T, or is of 
the form x = y or ,(x = y). 
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We refer to atomic formulas or negations of atomic formulas as literals. In particular, 
we call atomic formulas positive literals and negations of atomic formulas ne9ative 
literals. A datalog ~ program is a finite set of datalog ~ rules. 

We introduce some useful notions next. The head of r, denoted by head(r), is the 
expression Qo(x0 ); and the body of r, denoted by body(r), is the expressions Q1 (x1), 

. .. , Qm(xm)- Let P be a datalog~ program. We make a distinction between so
called extensional and intensional relation names. An extensional relation name of P 
is a relation name occurring only in the body of rules of P. An intensional relation 
name is a relation name occurring in the head of some rule in P . The extensional 
vocabulary of P, denoted by edb(P), is the set of all extensional relation names of 
P. The intensional vocabulary of P, denoted by idb(P), is the set of all intensional 
relation names of P. The semantics of a datalog~ program is a mapping from the 
set of all edb(P)-structures to the set of all idb(P)-structures as defined next. 

A domain instantiation of a ruler = Qo(xo) t- Q1 (xi), ... , Qm(xm) with respect 
to an edb(P)-structure A, is a rule Qo(p(xo)) t- Q1(p(x1)), ... ,Qm(p(xm)) where 
p is a valuation that maps each variable in r to an element of A. We denote this 
instantiated rule by p(r) and call each instantiated literal Qi(p(xi)) a ground literal. 

The reduced 9round version of P with respect to A, denoted by red9round(P,A), 
is the set of rules obtained from the set 

{r' Ir' is a domain instantiation w.r.t. A of some r E P}, 

by removing all the rules r' satisfying one of the following criteria: 

• there is a ground literal R(a) in body(r) with RE edb(P) but a ft RA;6 

• there is a ground literal ,R(a) in body(r) with R E edb(P) but a ERA; 

• there is a ground literal a = bin body(r) but a=/ b; or 

• there is a ground literal , (a = b) in body(r) but a= b. 

We keep all the remaining rules but from them we remove all ground literals of the 
form a = a, ,(a= b), and R(a) and , R(a) where R is an extensional relation name. 
Note that redground(P, A) only contains literals referring to idb(P)-predicates. The 
above treatment is not the standard one. However, it allows us to forget about the 
edb(P)-structure when defining the semantics of P. 

In the definition of the semantics of a datalog ~ programs we use the following 
shorthand. We say that a ground literal L belongs to A, denoted L E A, when L is 
of the form R(a) and a ERA or when Lis of the form , R(a) and a ft RA 

Each program P and edb(P)-structure A determine an immediate consequence 
operator, denoted by Tp, mapping each idb(P)-structure B whose domain equals the 
domain of A, to an idb(P)-structure Tf(B) whose domain equals the domain of A. 
Specifically, the idb(P)-structure Tf(B) is defined as follows: for each R E idb(P) 
and each tuple a of A, R(a) E Tf (B) if there exists a rule R(a) t- L1, ... , Ln in 

6Recall from Section 2.1, that RA denotes the interpretation in A of the relation name R. 
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redground(P, A) such that for i = 1, .. . , n, Li E B. This operator forms the basis for 
the partial fixpoint semantics defined next. 

The partial fixpoint procedure (the standard one for deductive programs without 
negation) is usually not considered in the presence of negation, as it is not even 
guaranteed to terminate; nevertheless, we will show soon that it always does on the 
programs that are generated by a certain translation from RAGs. Concretely, the 
stages induced by a datalog • program P on an instance A are inductively defined 
as follows: rtp,{o) (A) is the idb(P)-structure where all relations are interpreted by 
the empty set; and, for i > 0, 

Ttp,(i) (A) := Tp(Ttp,(i-i) (A)). 

If there exists an n such that rtp,{n) (A) = r;rp,(n+l) (A), then we say that the partial 

fixpoint of P on A exists and define TtP(A) := r;fp,(n\A). Otherwise TtP(A) is 
undefined. If R(a) E r;fp,{i) (A), then we say that R(a) is derived by the i-th iteration 
of Pon A. 

6.5.2 Acyclic datalog • programs 

The notion of acyclic datalog • programs will play an important role in the following. 
To define this notion, we recall the definition of a precedence graph. The precedence 
graph a: of a datalog· program P w.r.t. an edb(P)-structure A is a directed graph 
whose nodes are the positive ground literals occurring in redground(P, A) . There is 
an edge from R(a) to S(b) in a: iff there is a rule having S(b) as head and containing 
R(a) or ,R(b) in its body. We say that Pis acyclic w.r.t. A whenever a: is acyclic. 
We refer to the nodes without incoming edged as sources and to the nodes without 
outgoing edges as sinks. For an acyclic program, the height of a node L in Gft, 
denoted by heightp,A(L), is defined as the number of nodes on the longest path in a: 
from a source to L (the source and L included) . In particular, sources have height 1. 
We say that a positive ground literal L not occurring in Gft has height 1, as it can 
be seen to be defined by the rule L +-- false. 

We point out that our notion of acyclic programs is equivalent to the same notion 
defined by Apt and Bezem [AB91] in terms of level mappings. That is, a datalog· 
program P is acyclic when for every instance A there is a function f, called a level 
mapping, from the ground literals in redground(P, A) to the natural numbers such 
that 

1. f(L) = J(,L) for each positive literal Lin redground(P,A); and 

2. for every rule L +-- L1 , ... , Ln in redground(P,A), we have f(L) > J(Li) for 
i = 1, . .. ,n. 

Our definition of acyclicity is just more convenient for our purpose as it much more 
resembles the corresponding notion of non-circularity of attribute grammars. 
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We stress that the partial fixpoint procedure on acyclic programs differs from the 
evaluation described by Apt and Bezem [AB91]. Indeed, they define the evaluation 
of the rules levelwise. That is, in the i-th application of the immediate consequence 
operator only the rules with heads of level i w.r.t. f can be applied. Consequently, 
a literal that is derived cannot be retracted again. The partial fixpoint procedure 
we consider is much more naive and can at any time derive literals of any height. 
Surprisingly, we will show that this naive approach leads to the desired result. More
over, as opposed to the evaluation proposed by Apt and Bezem, this naive evaluation 
is trivially implementable. In particular, it does not require the computation of the 
actual level mapping. 

6.5.3 Properties of T~fp for acyclic programs 

The following lemma says that the partial fixpoint of a program P on an instance 
A over edb(P) always exists when the reduced ground version of P with respect to 
A is acyclic. Specifically, it states that the correct value of any literal of height i is 
reached after i iterations. In particular, this means that the partial fixpoint semantics 
coincides with the levelwise semantics of Apt and Bezem [AB91]. 

Lemma 6.17 Let P be a datalog-, program and let A be an instance. If G~ is 
acyclic, then for every i ~ 0 and every positive literal L with heightP,A(L) ~ i, 

• if LE Ttp,(i)(A) then Vj ~ i: LE TtP,U\A); and 

• if L ff. Tf,fp,(i) (A) then Vj ~ i: L ff. Tf,fp,(j) (A). 

Proof. The proof proceeds by induction on i. The case i = 0 is trivial as there are 
no literals of height 0. Therefore, let i > 0 and let L be a positive literal of height i. 
If LE Ttfp,(i) then there exists a rule 

in redground(P, A) such that Lt E r;fp,(i- l) and Kk ff. Ttp,(i-l), for f = 1, ... , n 
and k = 1, ... , m. As the height of L is smaller or equal to i, 

heightP,A(Lt) ~ i - 1 

and 
heightp,A(Kk) ~ i - 1, 

for all f = 1, ... , n and k = l, ... , m, simply because every path from a source to an 
Lt or a Kk can be extended to a strictly larger path from this source to L. Hence, 
we have, by the inductive hypothesis, that 

Lt E Ttfp,(j) 

and 
K d Tpfp,(j) 

k 'I' p ' 
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for all j 2 i - 1. In particular this means that LE Tf,fp,(j), for all j 2 i. 

Now suppose Lr/. Tf,fp,(i). Then, for every rule 

r = L +- Li, ... , Ln, ,K 1, ... , ,Km 

in redground(P, A) at least, one of the following holds: 

1. there exists an fr E {1, ... , n} such that Ltr r/. r;tp,(i-l); or 

2. there exists a kr E {l, ... ,m} such that Kkr E Ttp,(i-l). 

Since, for each such fr and kr , heightP,A(LtJ :=:; i - 1 and heightP,A(KkJ :'S i - 1, 
we have, by the inductive hypothesis, that Ltr r/. Tf,fp,(j) and Kkr E T;tp,(j), for all 

j 2 i-1. Hence, the rule r can never be applied and we can conclude that L r/. T;tP, (j), 

for all j 2 i. • 

We say that a datalog~ program Pis modularly stratified w.r:t. an instance A, 
when redground(P, A) is locally stratified, that is, there is an assignment of natural 
numbers to ground literals occurring in redground(P, A) such that whenever a ground 
literal appears negatively in the body of a rule of redground(P, E), the head of that 
rule is of a strictly higher level, and whenever a ground literal appears positively in 
the body of an instantiated rule, the ground literal in the head has at least that level. 
Ross defined modularly stratified program more generally than we do here [Ros94]. 
Among many things, Ross proved that every modularly stratified program has a 
total well-founded model [VRS91] that coincides with the one given by the stratified 
semantics. 

Clearly, redground(P, A) is locally stratified whenever it is acyclic. Therefore, we 
can state the following corollary of Lemma 6.17. In particular, this will imply that 
the reduction of RAGs to be presented in the next section also works for deductive 
systems based on the well-founded semantics. 

Corollary 6.18 For any datalog~ program P and instance A, if redground(P, A) 
is acyclic then its partial fixpoint coincides with the total well-! ounded model. 

Since the semantic rules of RAGs consist of FO formulas, we end this section by 
considering the translation of these into acyclic datalog~ programs. However, we 
will use a more uniform notion of acyclicity. For a datalog~ program P, define its 
precedence graph, denoted by GP, as the graph whose nodes consist of the relation 
names in idb(P) and where there is an edge from R to R' if there is a rule having 
R' as head and containing R or its negation in its body. We say that P is acyclic 
when Gp is. We define the height of an acyclic program P, denoted by height(P), 
as the number of nodes on the longest path from a source to a sink (source and sink 
included) . In particular, as source has height 1. 
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For an FO formula cp(x), define the program Pl() inductively as follows: 

cp(x,y) x=y => Qrp(x,y) f- X = y. 
r,o(x) R(x), RET => Qrp(x) +- R(x). 
r,o(x) - r,o1 (x) v r,o2 (x) => Qrp(x) +- Ql()1 (x); 

Qrp(x) +- Ql()2(x); 
Prp1i 

r,o(x) ·1/J(x) 
Prp2 · 

=> Qrp(x) +- ,Q"'(x); 
P,µ. 

r,o(x) (3y)¢(x, y) => Qrp(x) +- Q"'(x,y); 
P,µ. 

In the case of a disjunction we can assume w.l.o.g. that cp1 (x) and cp2 (x) have the 
same free variables. Clearly, each Prp is acyclic. 

Proposition 6.19 For every FO f ormula cp and structure A: 

1. Tt!P(A) exists and Tt!P(A) = r;:p,(n)(A) for all n 2:'. height(Prp); and 

2. Va E A: AF r,o[a] ¢} Qrp(a) E rtP(A). <p 

Proof. The proof proceeds by induction on the structure of FO formulas. The 
proposition clearly holds in case cp is an atomic formula. Let cp be of the form cp1 (x) V 
cp2(x). Then, clearly, rifp(A) = TJ}P (A) u rtP (A). Consequently, (1) and (2) hold 

'P 'Pl 'P2 

by induction. Let cp be of the form , ¢. Then, by induction, for every n ~ height(P,µ) 
and every a E A, we have A p= cp[a] iff Q,µ(a) ft r;rp,(n\A). Hence, by definition, <p 
for every n 2:'. height(P,µ) + l = height(PI()) and every a E A we have, A p= cp[a] iff 
Qrp(a) E r;fp,(n+l)(A). Since r;fp,(height(P<p))(A) = r;fp,(height(P<p)+I\A), (1) and (2) 

<p <p <p 
hold. The case where cp is of the form (3x)¢ is similar. • 

6.5.4 Translation of RA Gs to datalog.., 

We discuss the translation of a RAG R to a datalog.., program (cf. Section 3.1.3 for 
the definition of a RAG). Let G be the context-free grammar over which the RAGs 
are defined and let r be the maximum length of the right-hand sides of productions 
in G. Consequently, all derivation trees will be of arity at most r. To facilitate our 
translation, we will replace in the vocabulary of trees, the ordering < on the children 
of each node (cf. Section 2.4), by r successor relations 8 1 , ... , Sr, These have the 
following meaning: for each i = 1, ... , n, 8i(n, m) expresses that mis the i-th child 
of n. So, the extensional vocabulary will contain the binary relations 81, ... , Sn and 
a unary relation Ox for each grammar symbol X of G. 

For each RAG R we construct a datalog.., program P(R) containing a (k+ 1)-ary 
relation name a for each k-ary attribute a of R such that for a tree t , a node n, and 
a tuple of nodes m, a(n,m) E r;i~)(t) if and only if m E R(t)(a(n)). 
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More concretely, the datalog~ program P(R) is the set of datalog~ rules ob
tained as follows. We assume, w .l.o.g., that no variable zo, z1, z2, . . . occurs in a 
semantic rule of n. For each rule a(i)(x) := cp(x) in the context (p, a, i), with 
p = X o -+ X1 ... Xn, we define the program P11,a,i as the rule 

a(zi, x) f- S1 (zo, z1),,, , , Sn(Zo , Zn), Oxo (zo),, , , , Oxn (zn), Q,j,(Zo, , , , , Zn, x) 

together with the program 
P,j,, 

where, cp is the FO formula obtained from cp by replacing each occurrence of j by Zj 

and each occurrence of b(j)(y) by b(zi, y), for each j = 0, ... , n and each attribute b. 
We refer to the relation names a coming from attributes as attribute names. 

The program P(R) is defined as the union of the programs P11,a,i for each context 
(p, a, i). We illustrate the above described translation with an example. 

Example 6 .20 Consider the following RAG n which computes the set of S-labeled 
nodes occurring on an odd position when counting upwards: 

U-+ S odd(O)(x) := odd(l)(x); 
S-+ S odd(O)(x) := odd(l)(x) V (x = 0 /\ ,odd(l)(l)); 
S-+ s odd(O)(x) := x = 0. 

Then P(R) is defined as the program consisting of the following rules: 

odd(zo, x) t- S1 (zo, z1) , Ou(zo), Os(z1), Q1 (zo, z1, x); 
Q1(zo,z1,x) t- odd(z1,x); 
odd(zo, x) t- S1 (zo , z1 ), Os(zo) , Os(z1), Q2(zo, z1, x); 
Q2(zo, z1, x) t- odd(z1, x); 
Q2(zo,z1,x) t- x = zo, ,odd(z1,z1); 
odd(zo, x) t- S1 (zo , z1), Os(zo), Os(z1), Q3(zo, z1, x); 
Q3(zo, z1, x) t- X = Zo-

Clearly, redground(P(R), t) is acyclic for every derivation tree t. • 
Below, we will show that for each attribute-node pair a(n) and each tuple of nodes 

ii1 of a tree t, 
n' E R(t)(a(n)) {:} a(n,n') E r;~)(t). 

First, we state some easy but helpful lemma's and introduce some more notation. 
The dependency graph Dn ( t) of a RAG n with respect to t consists of all attribute 

node pairs a(n) such that a is an attribute of the label of n. Further, there is an edge 
from a(n) to b(m) iff a(n) occurs in Ll(R, t,b,m) (cf. Definition 3.16). It is well 
known that n is non-circular iff Dn(t) is acyclic for every derivation tree [DJL88]. 
The next lemma can be shown by induction on i. 

Lemma 6 .21 Let f = max{height(P,j,) I cp a semantic rule ofR}+l andt be a tree. 
If a(n) is defined in Ri(t), then heightp(n),t(a(n,m.))::; i · f for all m. 



6.5. Implementing RAGs on top of a deductive database system 167 
------

By the following lemma and Lemma 6.17, r;~~)(t) exists for each RAG n and 
each derivation tree t . Recall from Chapter 3 that we only consider non-circular 
RAGs. In the remaining we show that this program indeed captures the semantics of 
n. 
Lemma 6.22 If n is a RAG, then redground(P(n), t) is acyclic for every derivation 
tree t. 

Proof. Note that there can be no cycle in a G~., since each Pi/> is acyclic. Hence, 
"' a cycle in redground(P(n), t) should at least involve two attribute names. By con-

struction, for all nodes n and m, sequences of nodes ii' and m', and attributes a and 
b, there is a path from a(n, n') to b(m, m') in atP(n) that passes no other attribute 
name if and only if there is an edge from a(n) to b(m) in Dn(t). Hence, GhR.) is 
acyclic, since Dn ( t) is acyclic. • 

We introduce some notation to state the following lemma which is the final step 
towards Theorem 6.24. Specifically, it says that the evaluation of the semantic rule 
cp in context (p, a, i) is captured by the program Pp,a,i· Let t be a derivation tree, 
let v be a valuation for the attribute-node pairs in ll(n, t, a, n), and let cp be the 
formula defining the attribute a for the node n in context (p, a, i) with p = X0 ---+ 
X 1 ... Xn, Define A" as the structure where for each b, m, and m', (m, m') E bN 
iff m' E v(b(m)). By Proposition 6.19 and the construction of P, the next lemma is 
immediate. 

Lemma 6.23 For any context (p, a, i), n ~ height(Pp,a,i) , and any sequence of nodes 
n' of a derivation tree t, we have that fi' belongs to the relation defined by the formula 
t:i.(n, t, a, n) where each b(m) is interpreted by the relation v(b(m)) iff a(n, ii') E 
Tpfp,(~\A11 u t).7 

P1>1a,1. 

We now prove that the program P(n) captures the semantics of n. 

Theorem 6.24 Lete = max{height(Pij,) I 'Pa semantic rule ofn}+l. Foralli ~ 0, 
if a(n) is defined in ni(t) then for all sequences of nodes ii' oft, 

ii' E ni(t)(a(n)) a(n ii') E Tpfp,(H) (t) 
' P('R.) . 

Proof. The proof proceeds by induction on i. The case i = 0 clearly holds. Suppose 
i > 0 and a(n) is defined in ni(a(n)). By the inductive hypothesis, for every relation 
symbol b(m) in 6.(n, t, a, n) we have that for every m.' 

m' E ni-1 (t)(b(m)) b(m m') E Tpfp,((i- l)·L)(t) 
' P('R.) . 

By Lemma 6.21, the height of b(m, m') is less or equal to (i - 1) · f.. Hence, by 
Lemma 6.17, for all j ~ (i - 1). f., b(m,m') E r;~;yi(t) iff m' E ni- i(t)(b(m)). 

7Here, A" U t denotes the structure consisting of the relations in A" and int. 
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Thus, by Lemma 6.23 it follows that for every ii' 

ii' E Ri(t)(a(n)) ( I - ) ETpfp,(i·l)(t) an ,n P(n) . 

• 



7 
Discussion 

7.1 Main results 

In this work we studied various languages to query structured documents. 
First we addressed attribute grammars as a query language for structured docu

ments modeled as derivation trees of context-free grammars. In this respect, BAGs as 
a language for expressing simple retrieval queries strike a reasonable balance between 
expressive power and complexity; on the one hand, they are as powerful as monadic 
second-order logic; on the other hand, they can be evaluated in linear time. Further, 
RAGs as a language for expressing general relational queries on structured documents 
offer more expressive power than BAGs, while remaining within polynomial-time com
plexity. Moreover, both formalisms can be readily implemented on top of a deductive 
database system. 

Inspired by the definition of tree automata on unranked trees by Briiggemann
Klein, Murata and Wood [BKMW98, Mur95], we introduced extended AGs as gen
eralizations of BAGs expressing selection queries on documents modeled by extended 
context-free grammars. This formalism captures the selection queries definable MSO. 
We also established the complexity of the non-emptiness and the equivalence problem, 
relevant for optimization purposes, to be complete for EXPTIME. On the negative 
side, extended AGs can only express queries that retrieve nodes from a document. 
It would be interesting to see an extension of the present formalism for actual re
structuring of documents. A related paper in this respect is that of Crescenzi and 
Mecca [CM98b]. They define an interesting formalism for the definition of wrappers 
that map derivation trees of regular grammars to relational databases. Their formal
ism, however, is only defined for regular grammars and the correspondence between 

169 
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actions (i.e., semantic rules) and grammar symbols occurring in regular expressions 
is not so flexible as for extended AGs. 

Hereafter, we studied the expressiveness of query automata computing selection 
queries on both ranked and unranked trees. fu both cases they capture MSO. How
ever, to achieve this expressivity, we had to add special stay transitions to the com
putation model in the unranked case. futerestingly, these strong query automata and 
the ordinary query automata do accept the same class of unranked tree languages. 
This indicates a substantial difference between looking at automata from a formal 
language point of view (i.e., for defining tree languages) and looking at automata 
from a database point of view (i.e., for expressing queries). Further, we established 
the complexity of the non-emptiness and the equivalence problem to be complete for 
EXPTIME. 

We stress that even though extended AGs and query automata are equally expres
sive, they are very different in nature. fudeed, query automata constitute a procedural 
formalism that has only local memory (in the state of the automaton), but which can 
visit each node more than a constant number of times. Attribute grammars, on the 
other hand, are a declarative formalism, whose evaluation visits each node of the 
input tree only a constant number of times (once for each attribute). fu addition, 
they have a distributed memory (in the attributes at each node). It is precisely this 
distributed memory which makes extended AGs particularly well-suited for an effi
cient simulation of Region Algebra expressions. It is, therefore, not clear whether an 
efficient translation from Region Algebra expressions into query automata exists. 

Further, we discussed some meaningful applications of our results and techniques. 
fu brief, 

1. we improved the upper bound on the complexity of the equivalence test of 
Region Algebra expressions from iterated exponential to EXPTIME; 

2. we showed that already a very restricted subset of t he actual XML transfor
mation language XSLT has the ability to issue any MSO pattern at any node 
in the document. Hereby, on the one hand, we reveal that core XSLT has a 
very powerful pattern language at its disposal, and, on the other hand, provide 
evidence for the robustness of the language; and 

3. we proved MSO, and therefore query automata and extended AGs, to be more 
expressive than the selective power of most current languages for semi-structured 
data and XML. 

A further contribution of this work is that all proposed query languages can take 
the inherent order of the children of a node into account. As argued by Suciu [Suc98], 
this is a major research issue in the design of query languages for semi-structured 
data and XML. 

The majority of the formalism studied in this work are especially tailored for 
expressing selection queries. These are particularly relevant since they ( i) constitute 
the most simple and common form of document querying; and ( ii) form the basis 
of more general transformation languages: such language have to identify (that is, 
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select) the relevant parts of the input document that have to be combined (possible 
after some additional transformation) to comprise the output document. 

Two related papers in the context of selection queries are those of Murata [Mur98] 
and Neumann and Seidl [NS98] who used pointed tree representations and a µ
calculus, respectively, to express unary queries over unranked trees. These can readily 
be expressed in MSO, and thus also by QAs and extended AGs. 

7.2 Epilogue 

As mentioned before, the result linking BAGs with MSO is shown independently by 
Bloem and Engelfriet [BE].1 Especially since they did not intend to model a query 
language, it is striking that they considered exactly the same problem. Moreover, 
in my view, the research for the foundations of query languages and data models 
for structured documents, semi-structured data, or XML, could benefit from more 
interaction between the database and the formal language theory community, for the 
simple reason that the latter community has been studying computations on trees 
(and graphs) for the last three decades. 

This interest is bilateral: 

( i) the formal language theory community has developed paradigms and formalisms 
that might be applied in or converted to concrete query languages as was the ap
proach adopted in this dissertation; further, they might provide us with suitable 
techniques for studying already existing transformation languages; 

( ii) this renewed interest in formal language theory motivated by applications in 
database theory, might generate new relevant questions not addressed by the 
formal language theory community. 

1 To be precise, Bloem and Engelfriet studied finite-valued attribute grammars, but t hese are 
essentially equivalent to BAGs. 
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Samenvatting 

De steeds toenemende populariteit van het Internet samen met de opkomst van mar
kup talen zoals HTML en XML hebben bijgedragen tot de wijde verspreiding van 
elektronische gestructureerde documenten. De huidige databasesystemen zijn echter 
niet geschikt om dergelijke nieuwe vormen van data te behandelen. Om deze reden is 
er nood aan nieuwe databasesystemen en bijhorende query- of ondervragingstalen die 
op een adequate manier elektronische gestructureerde documenten kunnen opslaan en 
manipuleren. In dit werk concentreren we ons op het ontwikkelen en analyseren van 
dergelijke querytalen. 

XML is de de nieuwe standaard ontwikkeld door het World Wide Web Consortium 
(W3C) voor het specifieren van gestructureerde documenten. Dit formaat is in korte 
tijd immens populair geworden voor het uitwisselen van allerhande gegevens via het 
Internet. Meer nog, veel softwaregiganten gokken erop dat XML het universele data
uitwisselingsformaat zal worden en bouwen nu reeds tools voor het importeren en 
exporteren van XML documenten. Merkwaardig genoeg ligt de kracht en elegantie 
van XML in zijn eenvoud. De bouwstenen van een XML document zijn de elementen. 
Een element is tekst omsloten door begin- en eind-tags zoals bijvoorbeeld <author> en 
</author>. Binnenin een element kunnen zich andere elementen bevinden, pure tekst, 
of een combinatie van de twee. Figuur 1.1 toont een voorbeeld van een XML document 
dat bibliografische informatie weergeeft. In het algemeen is het echter niet zinvol om 
elke willekeurige combinatie van elementen toe te laten in een XML document, en 
willen we alleen deze die voldoen aan een bepaalde beschrijving. In ons voorbeeld 
zou zo een beschrijving onder ander kunnen inhouden dat elke publicatie minstens 
een auteur moet hebben. In XML worden dergelijke restricties aangegeven door een 
Document Type Definitie (DTD). Figuur 1.2 toont een DTD voor het document in 
Figuur 1.1. We stellen vast dat een DTD eigenlijk een soort grammatica is. Op 
een meer abstract niveau kunnen we XML documenten modelleren met behulp van 
bomen door essentieel enkel de eind-tags weg te laten. De boomvoorstelling van het 
document in Figuur 1.1, bijvoorbeeld, is gegeven in Figuur 1.3. 

De bovenstaande vaststellingen laten ons toe gestructureerde documenten op een 
natuurlijke wijze te modelleren als gelabelde geordende bomen gedefinieerd door mid
del van een grammatica. Een database is dus een zo een boom. Informationretrie
valsystemen ondervragen echter gewoonlijk een hele verzameling documenten. Maar 
met betrekking tot het ontwerpen van querytalen kan een verzameling van documen-
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ten warden beschouwd als een lang gestructureerd document. 
Het voorgaande boommodel is essentieel hetzelfde datamodel als voor semi-ge

structureerde data met dit verschil dat daar gebruik gemaakt wordt van gelabelde 
grafen (in plaats van bomen). Langs de andere kant wordt in dit laast genoemde 
model de ordening van de knopen totaal genegeerd. In ons model is deze ordening 
echter wel van belang, bijvoorbeeld in het document in Figuur 1.1 waar de volgorde 
van de auteurs wel degelijk relevant is. Daarenboven is het helemaal niet duidelijk 
hoe de huidige ondervragingstalen voor semi-gestructureerde data kunnen warden 
aangepast om met deze ordening om te gaan. Meer nog, zoals aangestipt door Suciu, 
is het omgaan met deze ordening een van de belangrijkste onderzoeksonderwerpen 
voor het semi-gestructureerd datamodel. Een van de bijdragen van dit werk is dan 
ook dat alle onderzochte querytalen zonder problemen de ordening van knopen in 
rekening kunnen brengen. 

Berekeningen op bomen zijn de laatste twintig jaar nauwgezet onderzocht in het 
gebied van formele talen. Aangezien documenten kunnen warden gemodelleerd als 
bomen en de queries die wij beschouwen berekeningen op bomen zijn, ligt het voor 
de hand dat onderzoek terug te bekijken, maar nu vanuit het oogpunt van databases. 
Het doel van dit werk is dan ook na te gaan hoe dergelijke formalismen kunnen warden 
aangewend als querytalen. In het bijzonder zullen we de expressieve kracht en opti
malisatiemogelijkheden van verscheidene attribuutgrammatica's en boomautomaten 
onderzoeken. We passen de ontwikkelde technieken als volgt toe: ( i) we verbeteren 
drastisch de complexiteit van verscheidene optimalisatieproblemen voor de Region 
Algebra [CM98a), en ( ii) we tonen de robuustheid aan van de XML transformatietaal 
XSLT [Cla99]. 

In deze thesis zijn we hoofdzakelijk gei:nteresseerd in querytalen voor het uitdruk
ken van selectievragen. Hiermee bedoelen we het opvragen van knopen in de boom die 
corresponderen met posities of structurele elementen van het document. Zulke vragen 
kunnen ook bekeken warden als vragen naar die deelbomen wier wortel voldoet aan 
een bepaald patroon. We refereren naar zulke vragen als unaire vragen, vermits ze 
eigenlijk documenten afbeelden op een verzameling van hun knopen. De interesse in 
unaire vragen is tweeledig: 

(i) De selectie van deelbomen (of knopen) in grote documenten is precies de query
vorm die ondersteund wordt door de meeste informat ionretrievalsystemen en 
omvat daarom de meest eenvoudige en meest voorkomende vorm van querying. 

( ii) Selectiequeries vormen de basis van querytalen voor meer algemene transforma
ties van documenten. Inderdaad, het merendeel van de document-querytalen 
over grafen of bomen hebben een zekere patroontaal ter hunner beschikking om 
de gewenste delen van het inputdocument te identificeren en daarna te com
bineren (eventueel na verdere manipulatie) tot het outputdocument. Deze pa
troontalen zijn meestal gebaseerd op reguliere padexpressies. De patroontalen 
die wij voorstellen zijn echter heel wat krachtiger dan deze, zoals we formeel 
zullen aantonen in het laatste hoofdstuk. 

We geven een kort overzicht van de inhoud van de thesis. 
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We beginnen met de expressiviteit van standaard attribuutgrarnmatica's over 
context-vrije grarnmatica's te onderzoeken. Meer bepaald beschouwen we Booleaanse 
(BAGs) en relationele attribuutgrammatica's (RAGs). BAGs drukken unaire queries 
uit en vormen een abstractie van de queryfaciliteit voorzien door informationretrie
valsystemen. RAGs drukken relationale queries uit en kunnen worden beschouwd als 
abstracties van "wrappers". 

In bet bijzonder linken we BAGs met monadische tweede-orde logica (MSO), en 
RAGs met eerste-orde-inducties van lineaire diepte, of, equivalent hiermee, de queries 
berekenbaar in lineaire parallelle tijd op een machine met een polynomiaal aantal pro
cessoren. Verder tonen we aan dat RAGs die alleen synthesized attributen gebruiken 
strict zwakker zijn dan RAGs die zowel synthesized als inherited attributen gebruiken 
en dat RAGs meer expressief zijn dan monadische tweede-orde-logica voor queries van 
willekeurige dimensie. We besluiten met een discussie van relationele attribuutgram
matica's in de context van BAGs en RAGs. In bet bijzonder tonen we aan dat in bet 
geval van BAGs deze extensie de expressive kracht niet verhoogt, terwijl de verschil
lende semantieken voor relationele RAGs in staat zijn om de complexiteitsklassen NP, 
coNP, en UP n coUP uit te drukken. 

De bekomen resultaten zijn grafisch voorgesteld in Figuur 1.4. Een pijl van een 
klasse van queries C naar een klasse van queries C' wil zeggen dat C ~ C'. Een 
doorstreepte pijl van C naar C' wil zeggen dat er een Booleaanse query in C is die 
niet in C' is. 

We leggen ons nu strikt toe op formalismen voor bet uitdrukken van unaire que
ries. We definieren een extensie van attribuutgrammatica's (extended AGs) geschikt 
voor bet ondervragen van documenten gemodelleerd door uitgebreide context-vrije 
grammatica's. Zulke grarnmatica's zijn betere benaderingen van XML DTDs dan de 
hiervoor bestudeerde context-vrije grammatica's. Helaas zijn afleidingsbomen nu niet 
langer begrensd, in de zin dat knopen niet langer een vast maximaal aantal kinderen 
hebben. Dit op het eerste gezicht onschuldig verschil bemoeilijkt enorm de definitie 
van extended AGs. We geven een volledig overzicht van de expressieve kracht van dit 
formalisme en verkrijgen de exacte complexiteit van verscheidene optimalisatiepro
blemen. In bet bijzonder tonen we aan dat extended AGs precies overeenkomen met 
MSO en dat de uitbreiding naar relationele extended AGs de expressieve kracht niet 
verhoogt. Verder tonen we aan dat testen of een extended AG de lege query uitdrukt 
en testen of twee extended AGs equivalent zijn compleet zijn voor EXPTIME. 

Hierna verlaten we attribuutgrammatica's en leggen we ons toe op een antler 
berekeningsmodel voor bomen: de boomautomaat. We willen begrijpen hoe zulke 
automaten, zowel over begrensde als onbegrensde bomen, kunnen worden aangewend 
om selectiequeries uit te drukken over gestructureerde documenten. We definieren een 
queryautomaat als een deterministische boomautomaat die in twee richtingen over de 
inputboom kan lopen uitgebreid met een selectiefunctie. Eerst karakteriseren we de 
expressiviteit van het formalisme als de unaire queries uitdrukbaar in MSO. Verras
send genoeg moeten we speciale "stay-transities" toevoegen aan de query automaat 
in het geval van onbegrensde bomen om volledig MSO te bereiken. Dit was niet nodig 
voor de queryautomaten over begrensde bomen. Verder bestuderen we de optimali-
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satieproblemen reeds behandeld bij extended AGs. Ook hier tonen we aan dat beide 
problemen compleet zijn voor EXPTIME. 

We beeindigen deze thesis met het toepassen van de bekomen resultaten. Eerst 
verbeteren we drastisch de complexiteit van de equivalentietest voor Region Algebra 
expressies van hyperexponentieel naar EXPTIME. Ons algoritme benadert veel meer 
de reeds gekende coNP-ondergrens. Hierna tonen we aan, gebruik makende van de 
technieken ontwikkeld in deze thesis, dat reeds een zeer gerestricteerd deel van de XML 
transformatietaal XSLT in staat is om alle unaire queries definieerbaar in MSO uit 
te drukken. Dit misschien wel verrassende resultaat geeft een idee van de expressieve 
kracht van XSLT en toont de robuustheid van de taal aan. Verder bewijzen we 
formeel dat de talen onderzocht in deze thesis expressiever zijn dan de meeste talen 
ontwikkeld voor het semi-gestructureerd datamodel. We eindigen met een voorstel 
om BAGs en RAGs effectief te implementeren. Meer in het bijzonder tonen we aan 
<lat BAGs en RAGs op een zeer eenvoudige manier vertaald kunnen worden naar da
talogprogramma's met negatie. Dit geeft aan dat deductieve databases een natuurlijk 
platform zijn waarop deze talen kunnen worden ge'implementeerd. 
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