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The beauty of time...

Geswinde Grijsart die op wackre wiecken staech,

De dunne lucht doorsnijt, en sonder seil te strijcken,
Altijd vaert voor de windt, en ijder nae laet kijcken,
Doodtvijandt van de rust, die woelt bij nacht bij daech;

Onachterhaelbre Tijdt, wiens heten honger graech
Verslockt, verslint, verteert al watter sterck mach lijcken,
En keert, en wendt, en stort Staeten en Coninckrijken;
Voor ijder een te snel, hoe valdij mij soo traech?

Mijn lief, sint ick u mis, verdrijve” ick met mishaeghen
De schoorvoetighe Tijdt, en tob de lange daeghen
Met arbeidt avontwaerts; uw afzijn valt te bang.

En mijn verlangen can den Tijdtgod niet beweghen.

Maer ‘t schijnt verlangen daer sijn naem af heeft gecreghen,
Dat ick den Tijdt, die ick vercorten wil, verlang.

Pieter Corneliszoon Hooft (1581 - 1647)
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considerably from their critical review and constructive comments.
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Chapter 1 Introduction

1.1 The road safety problem

Thousands of pages have been written on the problem of road safety, but there is
not one word, even not one sentence, that can express the pain, the sorrow and
the irreparable loss caused by road accidents. Road safety is a worldwide
problem, with consequences for public health, social life and economic prosperity
of a country. One realizes the proportions of the problem when consulting the
statistics published by the World Health Organization (WHO, 2004). The number
of people killed in road traffic crashes each year is estimated to be around 1.2
million, and, without increased efforts, this number is expected to rise by 65%
between 2000 and 2020. The number of injured persons may be as high as 50
million. That is the population of 5 of the world’s largest cities.

Fatality rates per 100000 inhabitants (EU-25, 2002)
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FIGURE 1: Fatality rates for European countries

Road traffic crashes are among the most prominent death causes all over the
world. Deaths from road traffic injuries account for 25% of all injury deaths.
Especially children and young adults take a prominent position in road crash
statistics. Over 50% of the road traffic deaths are young adults (15-44 years
old). For children aged 5-14 years and young people aged 15-29 years, road
traffic injuries are the second leading cause of death worldwide. Apart from the




human suffering caused by road crashes, it has been calculated that the direct
economic costs of road crashes amount to $§ 518 billion. For European Union
countries, the estimated annual costs exceed € 180 billion.

On a European scale, the Belgian road safety performance is below average.
Compared to the rest of Europe, the Southern and Eastern EU countries, together
with France and Belgium, have relatively high fatality rates (ETSC, 2003).
Between 1997 and 2001, the fatality risk in Belgium hardly reduced. In FIGURE
1, fatality rates per 100 000 inhabitants are shown for the 25 European countries
(data for 2002, from EU-CARE and Statistics Belgium). The average fatality rate
is at 10.9, which is clearly below the figure registered for Belgium. The graph
also shows the fatality rates for Flanders and for the Walloon region. While
Flanders shows a record comparable to that for Belgium as a whole, the Walloon
region has a considerably higher fatality rate. Only Latvia and Lithuania show a
higher rate.

Fatalitiy rates per 100000 inhabitants for Belgium and the SUN countries
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FIGURE 2: Fatality rates for Belgium and the SUN countries

However, road safety is not a country-related issue that stops at the border.
From the graph, it is seen that 17 of the 25 countries listed are above average,
indicating that Belgium is not an isolated incident. Road safety is an issue that
should be dealt with on all policy levels, from the local government to the
European institutions and world organisations. This has been understood during
the last decennia, and many initiatives are taken by leading organisations.




Road accidents and victims are, in fact, a negative by-product of a transport
system that starts from (a demand for) activities and ends in a set of traffic
patterns and in a certain use of the available road infrastructure. The specific
properties of this process are driven by human choices and by the situational
opportunities and restrictions in terms of time and transport mode. In fact, the
transport system and the way in which it is used are determined completely by an
ongoing interplay between demand and supply. The fact that people travel is
not, in itself, problematic. On the contrary, it is an indication of a highly
developed economic, social and cultural life of the citizens of a country. People
have to travel to go to school, to go to work or to participate in any social or
cultural activities.

Fatality rates per 100000 inhabitants for Belgium and Flanders,
compared to EU-25 average
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FIGURE 3: Belgium and Flanders compared to EU-25 average

On the other hand, traffic also has negative consequences. As long as people
travel along public roads, there have been road accidents and victims. Although
the local and federal governments in Belgium and abroad put in a great effort to
increase traffic safety, also in the context of their sustainable transport policy,
road safety is still an issue on the political agenda. Traffic accidents restrict
people in their activities, and they limit other road users in their mobility.

FIGURE 1 also shows that some countries are able to reduce the level of road
accidents and victims to a much lower level. The best performing countries in
Europe are (apart from Malta) Sweden, United Kingdom and the Netherlands.




They are called the SUN countries, and they are known for their accident records
that are far below the European average.

FIGURE 2 compares the Belgian fatality rate to that of the best performing
countries over the last 14 years. The fatality rate in Belgium is, fortunately,
decreasing, but the same trend is present in the other countries. Reaching the
level of road safety of the best performing countries is, indeed, a difficult task.

FIGURE 3 shows the fatality rates per 100 000 inhabitants for Belgium and
Flanders, compared to the EU-25 average for the years 1991-2004. The graph
shows the overtaking manoeuvre in Flanders, resulting in a fatality rate that has
been below the Belgian rate for several years now. The decreasing trend during
the last years makes the EU-25 average fatality rate a realistic target for Belgium
and Flanders. However, one should realize that, the higher the level of road
safety, the harder it will be to obtain an additional road safety improvement.
Road safety therefore is not a project; it is an ongoing concern for every
government and every citizen worldwide.

1.2 Approaches towards the road safety problem

In the majority of the European countries, the number of injuries and deaths in
road traffic has been reduced over the last decennia, in spite of the increasing
amount of traffic. According to (OECD, 1997a), one reason for this promising
evolution is to be found in the fact that road safety strategies and
countermeasures are based on systematic research.

Many research programmes in road safety are developed around certain
components of the problem. An example of a systematic approach towards road
safety is the triad of E's: Engineering (making safer vehicles and roads),
Enforcement (reduce unacceptable risk taking behaviour) and Education
(changing attitudes and enhancing road skills). Later on, the triad became a
quatrain, by adding Evaluation (assess the quality and results of road safety
activities), which is getting more important when scarce resources are to be
divided over a set of road safety problems. Using these concepts as a starting
point for research ensures a complete overview of all aspects that are related to
road safety.

However, the approaches to road safety research can be described on a higher
level of abstraction. In (OECD, 1997a, 1997b), four approaches towards road
safety research are specified. A first approach is a purely descriptive one, where
the main task is to describe the magnitude of the road safety problem. Usually,




road safety problems are described in terms of exposure, accident risk and injury
consequence. This topic will be further discussed in section 1.3. Instead of
focusing exclusively on the number of accidents (consequence), it is necessary to
consider the activities that generate the road safety problems (exposure). The
accident risk dimension is then the relationship between the level of exposure
and the accidents. Due to the random character of the occurrence of accidents,
statistical methods are preferred to analyse road safety data.

A second approach is to explain and predict the level of road safety by means of
analytical macro models. In (OECD, 1997a), six categories of factors may
influence changes in the reported accident occurrence: external factors (like the
weather), socio-economic factors (for example, unemployment), transportation
(like the infrastructural properties), the data collection system, randomness
involved in accident occurrence and countermeasure interventions. The main
interest of a researcher usually lies in the assessment of the effectiveness of
countermeasures. This can be done by predictive modelling on cross-sectional or
time series data, or by effectiveness evaluations in before-after studies. While
cross-sectional models start from spatial variation, a time series model considers
temporal variation in the data. In other words, a cross-sectional model is
concerned with road safety at specific locations, while a time series study looks
at trends in road safety over time. For cross-sectional studies, it is obvious to
mention the eminent work of Ezra Hauer (Hauer, 1997) and Rune Elvik (Elvik &
Vaa, 2004). These authors provided road safety workers with a common
framework to analyse the effect of road safety interventions at specific locations
(road segments, intersections, etc.). A very popular application nowadays of the
cross-sectional approach is black spot analysis, which aims at ranking and
treating road sites with high potential for improvement. In the time series
approach, the work of Marc Gaudry (Gaudry & Lassarre, 2000) and Siem Oppe
(Oppe, 1989, 1991) can be mentioned as guiding examples for the research
community. Most of the analytical models, both cross-sectional and temporal,
are based on the application of advanced statistical techniques. However, (OECD,
1997a) warns against the blind application of statistics. Every model should be a
means to answer the research questions, and the data used in the model should
be based on theoretical arguments and professional knowledge.

A third approach includes risk factor models, or analytical models at the
individual level. These models start from the triad of road user, vehicle and
environment. Indeed, it is commonly assumed that the road safety problem is
caused by the continuous interaction between these traffic system components.




As this approach is working from the micro-level, risk factor modelling strongly
relates with psychology, sociology, engineering etc., emphasising the multi- and
interdisciplinary character of road safety research. Most of the models, however,
focus on one specific aspect of road safety. Within the risk factor models, a
distinction is made between human factor models and technical models. Human
factor models study the impact of individual variables (reaction time, personality,
etc.) on road safety, concentrate on the road user task analysis (driving skills,
suitability of road users, etc.) or study the attitude and behaviour of road users.
Technical models investigate the relationship between road safety and vehicle
characteristics (vehicular models), road design (infrastructural models) or traffic
characteristics (traffic models).

A fourth approach contains models that are related to the accident consequences.
This is, again, a very broad research field, that can roughly be divided in models
that consider the consequences of road traffic accidents as a road safety problem
from a public health perspective, or as an economic issue. Accident consequence
models try to answer the question how the injury consequences of accidents can
be reduced. In this context, topics as changes in the road design, vehicle
characteristics, active and passive safety, rescue speed, etc. are analysed.
Further, the models are concerned with the factors that influence the
consequences of accidents (the road user, the vehicle, the road situation, speed,
etc.). Also, various schemas have been developed to classify the different injury
levels in a unified way. Apart from the application of statistical methods on real
road safety data, accident consequence model often try to detect, understand
and prevent injuries by means of experiments and simulated collisions.

From this overview, it should be clear that many research efforts and road safety
models can hardly be classified in only one of these categories. In a sense, this
categorisation is experienced as an artificial framework. Roughly speaking, the
models developed in this manuscript are mainly considered as analytical macro
levels (which is the second approach), although some models involve road
characteristics, road user properties, and so on. The main message brought by
this classification is, of course, that every modelling approach towards road
safety should be taken from a scientific point of view. Road safety research
should not be done off the top of one's head. Whichever approach is followed,
the road safety problem should be taken seriously, based on fundamental theory,
sound modelling and expert knowledge.




1.3 General concepts: exposure, risk and loss

While the approaches presented in the previous section are all oriented towards a
specific part of the road transport system, it is generally accepted that road
safety can be described in three principal dimensions: exposure, risk and
consequence (OECD, 1997b). In other sources, this triad is called “Exposure /
Risk / Severity” (COST 329, 2004) or “Exposure / Frequency / Severity” (Gaudry &
Lassarre, 2000). The first dimension describes the magnitude of the activity
which results in accidents (the exposure), measured in terms of number of trips,
number of vehicle kilometres or trip duration. It accounts for the number of
potentially dangerous situations, or the exposure to risk. The second dimension
is the probability of an accident or the risk, given a certain level of exposure.
The third dimension is the accident consequence. Changes in one of these
dimensions will change the entire safety situation. The three dimensions are
naturally related to one another in a multiplicative way:

(1)

. Accidents Fatalities
Fatalities = (Exposure ) x x

Exposure Accidents
In (COST 329, 2004), the same relation between the road safety dimensions is
given, but is also applied to the number of accidents as follows:

(2)

Accidents = (Exposure ) x
Exposure

Accidents J

By definition, risk is thus the ratio of the expected number of accidents to the
level of exposure. However, in many studies, risk is also used to refer to the
number of fatalities divided by exposure (Lassarre, 2001; Oppe, 1991). Although
there is clearly no agreement on terminology in this respect, the underlying idea
of decomposing road safety outcomes is always present.

When the number of fatalities is studied directly, it is clear that the underlying
information on exposure, risk and consequences is lost. However, these
dimensions can provide useful explanations of the trends in the number of
fatalities. Indeed, an increase in the number of fatalities can be caused by a rise
in the level of exposure, an increase in the risk level, a change in the accident
consequences or a combination of some of these factors. As an example,
consider the introduction of airbags in cars. This safety measure will reduce the




number of fatalities in accidents, but if road users compensate for the higher
safety level by changing their driving habits, the number of accidents might
increase. Other measures may decrease the number of accidents, but at the same
time increase the severity of accident consequences. These opposite forces
remain hidden if risk and accident consequences are not studied explicitly. Also,
if a safety measure leads to a re-distribution of traffic over the different road
networks, the safety level may be directly influenced by the changes in exposure.
The quantification of these impacts provides useful information for road safety
policy makers.

1.4 Objectives and organisation of the manuscript

This manuscript contains a number of analyses of road safety, exposure and risk
applied to Belgian data. Road safety research is not new in Belgium, and many
efforts have been made to support the road safety policy by research results
obtained on Belgian data. However, this is not the case for the evolutionary
study of road safety. Most studies have been cross-sectional in nature, or
analysed only partly the relationship between road safety (e.g. accidents or
victims), exposure (e.g. kilometres driven) and a risk component.

Number of fatalities Number of vehicle kilometres
(Belgium, 1973-2004) (Belgium, 1973-2004)
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FIGURE 4: Number of fatalities and vehicle kilometres in Belgium

This document takes a time series approach towards exposure and risk, and offers
a thorough analysis of Belgian road safety from an evolutionary point of view.
That is, all variables used in the subsequent chapters are “time series”, which
means that they are gathered sequentially and with a reqular frequency over
time. For example, yearly data on the number of victims is related to the yearly




number of kilometres driven, as shown in FIGURE 4. Clearly, the number of
fatalities shows a decreasing trend since 1973, while the number of vehicle
kilometres has been increasing ever since.

The major objective of this work is to clarify, for the Belgian road safety
situation, the relations between the concepts of road safety, exposure and risk in
the time domain. After the introduction to the world of road safety research in
this chapter, Chapter 2 provides an overview of the field of time series road
safety models (Van den Bossche & Wets, 2003a). The chapter gives a motivation
for this type of modelling in road safety research, introduces a model typology
and reviews the most important results from the relevant literature. In Chapter
3, the nature of exposure measures is described, together with the problems that
are often encountered with this type of data. Apart from these introductory
chapters, the major contributions of this manuscript are organised as follows.

1. To start, in Chapter 4, an effort has been made to identify and gather
possible sources of exposure data for the Belgian road safety situation. An
overview is given of the available data for macroscopic road safety research
in Belgium, at all levels of aggregation. In particular, time series were
gathered to allow the kind of analysis that has been described above. Apart
from the description of data sources that were available from official
government statistics and transport authorities, a monthly measure of
exposure is developed. This variable measures the number of kilometres
driven on Belgian roads, based on fuel deliveries, fuel efficiency and the
vehicle park. Further, Belgian road safety data (number of crashes per time
period, number of fatalities, etc.) and various explanatory variables are
introduced in this chapter. The main objective of the research is now to
investigate the different ways in which the gathered data can be used in the
road safety - exposure - risk framework. That is, given the data that could
be found or derived to represent road safety, exposure and road risk, the
basic relationship between these components can be established in the
subsequent chapters.

2. Chapter 5 discusses possible modelling approaches to analyse the trends in
the number of fatalities on a highly aggregated level. By means of yearly
data, the relation between road safety, exposure and risk is modelled for the
Belgian situation. The objective of this exercise is to apply some basic and
more advanced statistical models and to compare their performance in terms
of model fit and forecasting accuracy. These models are also used for
aggregated road safety forecasting, and are therefore highly relevant for road
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safety policy makers. An example of a basic model for aggregated road safety
analysis was developed in (Van den Bossche et al., 2005b) and in (Van den
Bossche et al., 2005c).

3. In Chapter 6, road safety and exposure are analysed at a lower level of
aggregation in time, namely on monthly instead of yearly data. Using
monthly data has the advantage of a higher number of observations in time,
which allows the development of explanatory road safety models that can be
used to associate the trends in road safety with the developments of certain
factors over time. Also, monthly observations are less aggregated and are
therefore less fraught with aggregation bias than yearly observations.
Starting from descriptive ARIMA and state space models for Belgian data, the
analysis is gradually extended with explanatory variables. A first model only
uses calendar data as covariates, as was done in (Van den Bossche et al.,
2006), but this model is then further elaborated to end up with a full
explanatory road safety model for Belgium. Previous work on this topic is
published in (Hermans et al., 2006a, 2006b; Van den Bossche & Wets, 2003b;
Van den Bossche et al., 2004; Van den Bossche et al., 2005a).

4. As it is recognized that road safety programs are oriented towards specific
aspects of the road system, a number of disaggregated models is presented in
Chapter 7 to assess the relationship between road safety, exposure and risk.
These models are again developed on yearly data. Models will be presented
for categories of road users by age and gender and by type, for different
transport modes and for two-sided accidents.

5. As the reader will be able to conclude from the development of the various
chapters, certain types of analysis are not possible with the available
exposure data. More specifically, one cannot analyse the trends in road
safety for vulnerable road users, simply because their exposure to road risk
has not been measured over time. Therefore, some cross-sectional analyses
of Flemish road safety and travel survey data are shown in Chapter 8 (Van den
Bossche et al., 2005b).

Throughout the various chapters of this manuscript, the reader will get an idea of
the possibilities and limitations of the available road safety data sources in
Belgium. Actually, since all available time series data sources have been used in
this work, it gives an overview of state-of-the-art road safety and risk models
that can be applied to the Belgian data, at various levels of aggregation. The
global conclusions of the research presented in this manuscript are written down
in Chapter 9.
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Chapter 2 Time series road safety models

2.1 Introduction

Investigating time series of road safety data is, for various reasons, a rewarding
effort. As stated in the introduction, governments are more than ever concerned
with the negative consequences of road traffic. The loss of human lives and
economic capital due to road accidents forced governments to plan and execute
road safety actions (COST 329, 2004). In the early years, until the early
seventies, the planned actions were of a reactive nature. The main objective was
to stop or slow down the negative developments in road safety. Afterwards, the
focus changed to a more strategic reaction. It was commonly accepted that
strategic plans for future safety improvements had to be developed, based on the
knowledge of the past.

In (OECD, 1997a), the evolution in road safety research is described by means of
4 successive periods or paradigms. First, when the first cars appeared on the
roads, they were considered as a replacement for the horse-drawn carriages from
that time. Being new in the every day life of citizens, the cars were taken as the
main source of unsafety. Second, when more and more cars appeared on the
roads, together with more accidents and victims, the need to master the traffic
situation, consisting of a number of cars, became clear. It was recognised that it
was inadequate to consider cars as the unit of unsafety, and that the complicated
traffic situation should be controlled in order to reduce accidents. In a next
step, the scope of analysis was broadened from individual traffic situations to the
entire traffic system. That is, unsafety is now regarded as an unwanted side
effect in a large system. Around this time, the major road safety interventions
(safety belts, laws on impaired driving, speed limits, etc.) were introduced to
eliminate the risk factors from the road traffic system. To succeed in selling
these (sometimes unpopular) new measures, they were combined in programmes
that promised a higher level of road safety. Fourth, in the eighties, the scope of
road traffic as a system was again experienced as being too narrow. At this time,
it was recognised that an increasing mobility was inseparably related to the level
of road risk. Realising that the increasing motorized traffic does not only affect
road safety, the scope of analysis was enlarged, and traffic safety policy became
part of a transport policy. Other modes of transport than motorized traffic were
brought to the attention of both road users and policy makers, and the concept
of sustainable transport was introduced.

11



Roughly speaking, the first two periods in this overview can be classified as a
reactive approach to road safety, while the strategic issues were introduced little
by little starting from the third period. This change in policy is mainly
characterised by the introduction of strategic plans and programmes, together
with explicit road safety targets. It is clear that, by putting quantitative targets,
the noncommittal attitude towards the road safety problem is no longer accepted
and underlines the need for ambitious, yet realistic targets. In order to set these
targets and to specify or adapt safety programmes accordingly, it is necessary to
measure the developments in road safety and to understand the underlying
processes of exposure and risk. This is the main motivation for the use of time
series analysis techniques in road safety research. A sound analysis of the
evolution in time is needed to set future road safety targets and to assess the
efforts made to achieve them.

In this chapter, an introduction to the various aspects of time series road safety
models is given. First, the main areas of application of the models are described.
Next, an attempt is made to define a typology of time series road safety models.
In this context, a distinction is made between deterministic versus stochastic
models and descriptive versus explanatory models. These topics are discussed in
the next two sections. For the explanatory models, an overview is given of the
most reported effects of explanatory variables. Last, the special DRAG family of
explanatory road safety models is introduced. Given the extensiveness of the
field of time series road safety models, and the lack of structure among the
various models, the author does not pretend to give a complete and all-
embracing overview of the field. This chapter should be read as a conceptual
introduction to the subsequent chapters of this work.

2.2 Areas of application

Given the strategic importance of time series analysis, described in broad outline
above, four main areas of application can be distinguished (COST 329, 2004).
The first is a descriptive analysis of the road safety situation. The second
approach extends the descriptive models with explanatory variables in order to
understand the developments in road safety. The third application is to predict
the level of safety in the future. The latter can combined with both descriptive
and explanatory models. A fourth area of application is the (inter)national
comparison of the road safety improvements in different geographical regions.
The application areas will be shortly introduced here, and more details are
provided in the subsequent chapters.
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2.2.1 Describing road safety

The first use of time series analysis is to describe the trends in traffic safety by
means of descriptive models. Looking at the transport system as a whole, the
kind and the number of trips made by road users will determine the level of
exposure and the associated risk. Descriptive time series models can be roughly
divided in two categories. The first group of models considers the number of
accidents or fatalities as the result of the combined action of exposure and risk.
When the trend in road safety is studied, it is decomposed in these underlying
factors and estimated as the result of their movements. In the second group of
descriptive models, the road safety outcome is analysed directly without looking
at the underlying patterns in exposure and risk. In general, a descriptive model
will be used to assess whether or not the actual trends are in line with the
objectives. In the transport system, the number of trips made by road users and
initiated by their activities, can be considered as the input for the system. The
throughput is then the specific travel pattern that is generated by the combined
effect of the movements and choices made by the various road users
(characterised by traffic concentration on certain roads, congestion, speed,...).
This process, which determines whether the outcome is a success (a safe trip) or
a failure (an accident), is highly surrounded by random fluctuations. Therefore, a
statistical time series approach to studying road safety evolution might be
preferred to a year-to-year comparison of the number of crashes. Moreover, when
a certain effect is expected of a measure that was introduced to reduce the
number of fatalities or crashes, it might well be that this effect will not be visible
after one year. Deriving any value judgement from the comparison of two
consecutive years can thus result in a completely wrong assessment of that safety
measure. The analysis of a longer time series with the appropriate time series
analysis techniques will therefore lead to well-founded conclusions.

2.2.2 Explaining road safety

Instead of only looking at the evolution in time of the road safety indicators,
explanatory models also incorporate the trends in the factors that might
influence the level of road safety. In (COST 329, 2004), a distinction is made
between first order and second order accident factors. The first order factors are
the level of traffic, the demography and the level of economic activity. The level
and the structure of exposure (or traffic) and the distribution of exposure over
the various transport modes might influence the number and the kind of
accidents. Also demographic changes can have an effect on exposure and road
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safety. For example, the sharp rise in the ageing population increases the group
of vulnerable road users and undoubtedly influences the use of transport modes.
A last first-order factor is the economic activity. Changes in the level or the
structure of economic life (e.g. unemployment) may result in a different transport
pattern and road safety level.

Apart from these first order factors, there is a whole set of other variables that
may influence the road transport system. For example, in the DRAG model
(Gaudry, 1984, revised 2002) that will be introduced later in this text, various
categories of explanatory variables are considered: fuel prices, motorisation
quantity and characteristics, road network properties (transport modes, laws and
road safety measures, infrastructure, climate,...), road user properties (age and
gender, level of consumption, leisure activities, alcohol consumption,...) and
specific variables related to the calendar (number of weekends and working days
in a month, leap years,...). It is clear that, because of the large amount of
possible variables, modelling these issues is not an easy task. Explanatory
models will be discussed in more detail further in this text.

2.2.3 Predictive models

Both descriptive and explanatory models can, in the end, be used for predicting
the level of road safety in the future. However, depending on the kind of
prediction that is needed, one model will be better suited than another. For
example, if an explanatory model is used, then predictions for the road safety
outcomes can only be made if future values for the explanatory variables are
available. The frequency of the data used in the model will determine the kind of
prediction that can be made. According to (COST 329, 2004), models developed
on yearly data are less suited for predicting short-term road safety developments
or effects of special measures. Typically, the type of forecast and the forecasting
horizon will depend on the objective of the researcher and the characteristics of
the available data. If a modeller is interested in the recurring seasonal pattern
of a series, a too high level of aggregation (like one observation per year) will
not be sufficient to make monthly predictions. If on the other hand only highly
aggregated predictions are needed, yearly data are useful. Also the data at hand
determines the prediction possibilities. Obviously, the properties of the series
(seasonal pattern, volatility, trend, etc.) will influence the quality of the
predictions. The length of the available series is a determining factor in the
choice of the prediction horizon. Especially the ratio of the number of predicted
values to the number of observations in the sample cannot be too high. Usually,
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this issue, related to the frequency of the series, cannot be influenced, as it is
determined by the official institutions that gather the data. Typically, official
statistics are only available on a yearly basis, and every interpolation of these
series to another frequency will probably reduce the data quality.

Sometimes, explanatory models are used to predict future values of the series. At
first sight, one would expect that an explanatory model, explicitly taking
information on accident causes into account, should lead to better predictions
than a purely descriptive model and, as such, be more policy relevant. Although
prediction is indeed a possible and interesting application of explanatory models,
one can spare oneself the trouble of looking for explanatory factors if the model
will only be used for predicting road safety, as the prediction accuracy is often
comparable. Also, predicted values for the explanatory variables are needed,
which increases the uncertainty in the predictions for the dependent variable.

2.2.4 Road safety (inter)national comparison

On a policy level that goes beyond the country borders, there might be an
interest in a comparison of the road safety developments in various countries.
Looking at the current initiatives at these levels (COST 329, 2004; WHO, 2004),
this application of road safety models is highly appreciated. Also other authors
did some efforts in this respect, see for example (Commandeur, 2002; Lassarre,
2001; Oppe, 1991). However, the same philosophy can be followed within a
country. There might be good reasons to assume that road safety will not evolve
in the same manner in all regions (states, provinces, etc.) of a country.

If differences in trends are observed, then an explanatory model can provide
further insights into the similarities and differences in the explanatory factors
that can be associated with the given developments. It is clear that this
approach can also be very instructive for countries that do not present very good
results in terms of road safety. Of course, a comparison between different
countries goes with problems that transcend those encountered at a national
level. Apart from the difficulties, experienced by all countries, to gather the
relevant data, the differences in quality, the seemingly comparable content and
the varying availability and quality of the variables are serious issues in this
respect. These problems do not, however, detract from the potential benefits
offered by such an effort.
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2.3 Typologies of time series road safety models

In the literature, there is no common framework that can be used to classify the
existing time series road safety models. In (Cameron, 1997), reference is made
to a schema proposed by Hakkert and McGann (1996). They distinguish between
macro-models, meso-models and micro-models, as follows: “A macro-model
describes the development of the road safety situation on a highly aggregated level,
generally using national statistics. The models mostly present a description of the
trend over time without pretence of giving any explanation for details of change.
Meso-models try, still on an aggregated level, to include some explanatory variables.
Micro-models attempt to introduce more explanatory variables and generally treat
only a small segment of the overall safety picture”. This typology is shown in
TABLE 1.

Hakkert and McGann focus on two distinctive factors of road safety models. The
first is the level of aggregation. Some models consider highly aggregated data,
while other models are oriented towards specific segments of road safety.
Aggregated models are useful to monitor the total number of fatalities in road
crashes for a country or a well-defined (large) region, relating the number of
fatalities to the national level of exposure. Disaggregated models investigate
changes in parts of the transport system (like a specific type of road) or look at
the safety of subgroups of road users. Note that these models are still
aggregated in time, as they consider road safety outcomes for aggregated time
units (month, year,...). The second factor is the amount of explanatory power in
the model. Macro-models tend to be more descriptive, which means that they
focus on separating the trend and the random component in a series of
observations. Contrary to descriptive models, explanatory models try to explain
the developments in road safety by measuring the effects of a set of explanatory
variables. According to Hakkert and McGann, this is typical for meso-models and
micro-models.

TABLE 1: Typology of road safety models (Hakkert & McGann, 1996)

Descriptive Explanatory

Aggregated MESO

Disaggregated MACRO MICRO
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Although this typology is an interesting starting point to structure the
proliferation of road safety models, it offers only a partial representation of the
distinguishing model characteristics. The level of aggregation of a model is one
aspect of the kind of application for which the model is built. From the same
point of view, it is also interesting to distinguish between direct versus indirect
models and long term versus short term models. While direct models are directly
applied to final outcomes of road safety in terms of crashes or victims, an
indirect model will consider the number of fatalities as the combination of
exposure, risk and loss, as was discussed in Chapter 1. If a model is needed to
predict road crashes and fatalities without insight in the separate movements of
exposure and risk, a direct model is developed. If more details are required on
how exposure, risk and losses influence the level of road safety, an indirect model
is preferred. Another application-based distinction that can be made is between
short term and long term prediction models. Some models are suited to provide
forecasts for the next few months, while other models can be used to predict the
level of road safety in 2010. Depending on the kind of prediction that is
required, a specific modelling approach will be preferred.

The distinction between descriptive and explanatory models has a special
meaning in the statistical sense. That is, the statistical formulation of an
explanatory model may be quite different from a descriptive model. From a
statistical point of view, models may be further categorised as deterministic
versus stochastic models and univariate versus multivariate models. In a
deterministic model, it is assumed that the observations follow a deterministic
trend. For example, including a linear trend variable in a regression equation for
the (decreasing) number of fatalities implies that the dependent variable will
decrease at a fixed rate. A quadratic trend allows the number of fatalities to
decrease first and increase again after some time, or vice versa. If a
deterministic trend is not a realistic assumption or leads to autocorrelated
residuals, models with a stochastic trend may be used. In this case, it is
assumed that the trend itself is affected by random fluctuations. This may be a
more natural assumption, although studies have shown that some evolutions in
road safety are quite well estimated as exponential or logistic trend curves, as
will be shown later in this text. Another statistical distinction between models is
based on whether the road safety outcomes are modelled in a univariate or
multivariate way. In a univariate model, only one road safety outcome (or
dependent variable) is modelled at a time. In a multivariate model, a vector of
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dependent series is considered, which makes it possible to account for
correlations between the series.

It is clear that organising the existing models in separate categories will not be
an easy task. In TABLE 2, the various approaches from a statistical point of view
are shown, together with the common techniques used to estimate these models.
In the literature, examples of most of these techniques applied to road safety
problems can be found. Note that this schema is only valid for models based on
time series data.

TABLE 2: Typology of road safety models

Descriptive Explanatory

Deterministic (Non-) linear regression (Non-) linear regression

G(N)LM
SUR models
Stochastic Polynomial splines AR(I)MAX models
Moving averages VARMAX models
AR(I)MA models Transfer function models
VAR models Intervention analysis
(G)ARCH models Structural models

Structural models

In TABLE 2, the classical regression techniques are categorised as deterministic,
descriptive or explanatory. When a regression model includes only time as an
independent variable (i.e. a deterministic trend), it is considered as a descriptive
model. It becomes an explanatory model if more explanatory variables are
included. The Generalized (Non-)Linear Models (or G(N)LM) extend the classical
regression models to models with error terms that follow a distribution from the
exponential family. The Seemingly Unrelated Regression (SUR) model is in fact
the multivariate extension of the classical regression model. Polynomial splines
and moving average techniques are considered as stochastic models, although no
real parametric or distributional assumptions should be made. The Autoregressive
(Integrated) Moving Average models (or AR(I)MA models), and their multivariate
extensions (VAR models) are based on the famous methodology introduced by
Box and Jenkins (1976). When explanatory variables are introduced in this
model, they are called respectively AR(I)MAX and VARMAX models. Also the
transfer function models and the first models for intervention analysis are based
on this framework. The structural models, introduced by Harvey (1989), can be
used both as a descriptive and an explanatory approach. Even as a descriptive
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model, the structural models show the underlying components of a series which is
indeed, in itself, very descriptive.

In the past, many authors put in a great effort to structure the field of macro
models in road safety research and to provide a framework to highlight the main
differences and similarities between the various models. The eminent paper of
Hakim et al. (1991), published in Accident Analysis and Prevention (AAP), offers
an instructive review of macro models for road accidents. In the same issue of
AAP (Haight, 1991), various contributions in this field were published, among
them (Broughton, 1991; Fridstrem & Ingebrigtsen, 1991; Oppe, 1991). Another
basic document that offers a historical review of both aggregated and
disaggregated models for traffic and safety developments is written by the COST
329 research group of the European Commission (COST 329, 2004). In addition
to this, literature reviews can be found in (Christens, 2003) and in (Scuffham,
2001). An overview of a special class of models, based on the DRAG model that
was developed by Marc Gaudry (Gaudry, 1984, revised 2002) is given in (Gaudry &
Lassarre, 2000) and, in the larger context of macro models, in (Van den Bossche
& Wets, 2003a).

2.4 From deterministic to stochastic models

The typology presented above illustrates the high diversity in models and their
main distinguishing factors. The division into deterministic and stochastic
models is in the first place based on the statistical properties of the underlying
model, but at the same time largely corresponds to the historical developments
of these models. While the first examples of macroscopic road safety models
were deterministic in nature, a shift can be observed towards stochastic models
in the course of time. This section presents an overview of the milestones in the
development of deterministic and stochastic models.

2.4.1 Deterministic models

The first models that were developed to investigate the evolution in road safety
over time were deterministic in nature. The most famous deterministic,
univariate, descriptive time series models in road safety were introduced by Oppe
(Oppe, 1991) and developed on yearly road safety data for various countries.
These are indirect models, which can be used for long-term predictions. These
models were extended in various ways. For example, (Cameron, 1997) introduced
some (explanatory) intervention variables to explain major changes in the level
of road safety.
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Regression analysis has been commonly applied to relate the number of accidents
or fatalities to the level of exposure and to other explanatory factors. According
to (COST 329, 2004), the first application of classical linear regression techniques
to describe road safety developments can be found in (Recht, 1965). Several
authors argued afterwards that the underlying assumptions of the classical linear
regression model are quite easily violated when applied to road accident data.
Given the specific nature of road accident data, arguments can be found to
advance the proposition that accident counts follow a probability law. Indeed,
accidents are random and unpredictable as a unit. Moreover, each single
accident is, by definition, unpredictable.

As accident and fatality counts are discrete and non-negative numbers, the
Poisson distribution appears suitable. The Poisson regression model belongs to
the family of generalized linear models (GLM), in which the residuals are assumed
to follow a distribution from the exponential family. The classical regression
model with normal errors belongs to the GLM class of models, but also models
with Poisson, Binomial or Gamma distributed errors are possible. Very popular is
the log-linear model, which has been applied frequently in road safety research
(Christens, 2003; Fridstram & Ingebrigtsen, 1991; Greibe, 1999; Kulmala, 1995;
Michener & Tighe, 1992). However, as stated in (Jovanis & Chang, 1986), when a
long time period and a large study section are considered, it may be reasonable
to approximate the occurrence of accidents by a normal distribution. For large
means, the Poisson distribution converges to the normal. In this case, there is
only a very small probability of zero accidents in a time interval, and the large
mean together with a relatively small variance will make zero or negative values
unlikely. Applications can be found in (Abbas, 2004; Joshua & Garber, 1990;
Peltzman, 1975; Zlatoper, 1984). In (Peltzman, 1975), a traffic safety analysis is
performed in a multiple regression, using yearly data. Time is included as an
explanatory variable. For all variables except time, logarithmic values are
included. That is, the model assumes that risk changes exponentially over time,
which is the same assumption as in (Oppe, 1991). In (Abbas, 2004), the linear,
power, logarithmic, exponential and quadratic polynomial functional form were
used to predict the expected number of accidents, injuries and fatalities. In his
conclusion, he warns the reader that making forecasts entails extrapolating
outside the range of real observations, and that the models can be used for short
term forecasts of 1-3 years.

Although the normal distribution should not be a problem when the mean of the
dependent variable is large, still, working with log-linear models is in a sense a
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natural choice (Fridstrem et al., 1995), as it makes sure that the expected
outcome, be it the number of accidents or fatalities, is always a positive number.
Moreover, an additive model on the log-scale corresponds to a multiplicative
model on the original scale, implying that a road safety outcome is seen as the
product of an exposure measure and an indication of the risk.

2.4.2 Stochastic models

While most of the recent deterministic models for time series data explicitly take
time into account by including a trend variable, they do not correct for the
presence of serially correlated observations. In order to produce unbiased
parameter estimates of the residual variance and, consequently, meaningful
confidence intervals for the regression coefficients, models that explicitly treat
time dependencies are needed. Two main modelling approaches are used in this
respect. The first is the ARIMA approach, familiarised by Box & Jenkins (1976).
The second approach uses unobserved component models, introduced by Harvey
(1989).

In ARIMA models, autocorrelation is explicitly treated by including autoregressive
and moving average components. These components act as a filter, which
captures all relevant information in the series and results in a white noise
process. The modelling procedure requires stationary series, which means that,
in essence, trends and seasonal components should be removed before applying
the filter. This is mostly done by differencing the series. Once the model is
specified, the differencing operation is reversed, resulting in predicted values for
the original series. The model can be easily extended with explanatory variables,
leading to a model in which regression and time series properties are combined.
As in any other research domain, the ARIMA methodology is widely used in road
safety research. Atkins (1979) used Box-Jenkins time series analysis and
intervention analysis to determine the influence of compulsory car insurance,
company strikes and a change in the policies of insurance companies on the
number of traffic accidents on freeways in British Columbia. In (Wagenaar,
1984), the relationship between changes in economic conditions and motor
vehicle crash involvement, thereby taking into account the influence of exposure,
was identified using ARIMA and dynamic regression time series modelling
procedures. Scott (1986) analysed monthly series of British road accident data
with regression models for two-vehicle accidents and ARIMA models for single
vehicle accidents. According to Scott, because of the weak correlation in the
residuals, the ARIMA models did not appreciably better represent the series
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compared to the classical regression. Examples of ARIMA models for injury
accidents in Spain can be found in (COST 329, 2004). In (Bergel, 1992), ARIMA
models with explanatory variables were presented for France. Raeside & White
(2004) constructed pure ARIMA models for monthly time series data related to
road traffic and pedestrian casualties and fatalities in Great Britain. In (Lassarre,
1986), ARIMA models are estimated on monthly numbers of accidents and
fatalities in order to evaluate the effects of introduced speed limits and
compulsory seat belt wearing. Ledolter & Chan (1996) investigated the effect of
a change in the speed limit on the rural interstate highway system to 65 miles
per hour in Iowa. They developed a log-linear model with deterministic seasonal
terms for quarterly accident data and a first-order autoregressive model for the
noise term. More recently, Christens (2003) presented results of ARIMA models
that were developed for two accident series, related to changes in traffic, the
number of young people and speed. Regression models with an ARIMA structure
on the error term applied to Belgian data can be found in (Van den Bossche et
al., 2004; Van den Bossche et al., 2005a). Also, the DRAG family of models
(Gaudry & Lassarre, 2000) is essentially made up of regression equations with an
autoregressive structure on the error term, which can, simultaneously, be
corrected for heteroskedasticity. As will be explained further, the DRAG models
are explanatory models, including a relatively large number of explanatory
variables, whose effects on the exposure, the frequency and the severity of
accidents are estimated by econometric methods.

Instead of filtering the trend and seasonal component, as is done in ARIMA
models, state space time series models consider all distinct components of a
series as dynamic processes. Descriptive and explanatory models that are based
on the relationship between fatalities, exposure and risk were developed by
(Lassarre, 2001) and more recently by (Bijleveld & Commandeur, 2004; Bijleveld,
Commandeur, Gould et al., 2005). The latter authors use multivariate state space
models to estimate simultaneously the level of exposure and the number of
accidents and/or fatalities.  The first explanatory structural time series
application in road safety research can be found in (Harvey & Durbin, 1986). In
their study, monthly data on road casualties in Great Britain are analysed to
assess the effects of the seat belt law. Johansson (1996) tested the effect of a
lowered speed limit on the number of accidents on Swedish motorways, using
extended Poisson and Negative Binomial count data models. He incorporated a
large number of explanatory factors in a structural time series model. Scuffham
developed structural time series models to investigate the changes in the trends
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and seasonal patterns of fatal crashes in New Zealand in relation to changes in
economic conditions (Scuffham, 2003; Scuffham & Langley, 2002). Scuffham
included a relatively large set of explanatory variables, among them the
unemployment rate, the percentage young males, the volume of beer
consumption and several road safety laws. Similar models were developed by
Christens (2003). In a first model, he tested the significance of socio-economic
factors on three accident series. In another, a state space intervention analysis
was used to evaluate the Danish automatic mobile speed camera experiment. For
the Belgian data, a comparison was made between ARIMA and state space models
to investigate the frequency and severity of accidents (Hermans et al., 2006a,
2006b). For a given set of explanatory variables, very similar results were
obtained.

2.5 Descriptive and explanatory models

In the previous section, an overview of both deterministic and stochastic models
was given. Looking at the references, it is clear that the more advanced models
are also the most recent ones. One can certainly speak of a kind of evolution
from deterministic to stochastic models. When looking at descriptive versus
explanatory models, it is difficult to find a similar evolution. Both kinds of
models have been developed over the last decades, and the choice between them
was inspired by the objectives of the study. Therefore, to this very day,
descriptive and explanatory models are developed to increase the insight in road
safety evolutions and to provide forecasts. This section provides an overview of
the main streams of research in the field of both descriptive and explanatory
models, without the ambition of being exhaustive. Some of these models were
already mentioned in the previous section to highlight the statistical differences.
The discussion here is focussed on the families of models that will be developed
further in this text for the Belgian road safety situation.

2.5.1 Descriptive road safety models

The descriptive modelling efforts to predict the number of fatalities that can be
found in the literature are usually based on one of two theoretical schemas (COST
329, 2004). One approach is based on economic growth theory, the second on
learning theory. Both approaches are similar in the sense that no (or at most a
very small set of) explanatory variables are used and that nationwide
developments in road safety are modelled. They differ in the sense that the
second approach is derived from a priori argumentation from the macroscopic
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road safety theory. Also, the second approach is much more recent than the
first, and therefore is more in line with the current thinking about road safety.

The first approach is based on economic growth theory, and started in 1949 with
an equation proposed by Smeed (1949). According to Smeed, the number of
fatalities per inhabitant is related to car ownership and population. Using F as
the number of fatalities, V as the number of registered vehicles and P as the
population level, “Smeed’s Law” is formulated as:

F =0.00033/vP? =0.0003V"3P% (3)

This equation can be seen as a Cobb-Douglass production function, where the
number of fatalities is “produced” by the number of vehicles and the population,
with constant returns to scale. In this line of reasoning, other studies followed
(Peltzman, 1975; Zlatoper, 1989). However, this law has been the target of
criticism for many years. First, the time window of analysis changed. Compared
to the period of analysis in Smeed’s work, the level of exposure significantly
increased and significant progress in safety performance has been made over the
years. However, this argument was refuted in (Adams, 1987). According to
Adams, Smeed’s formula is still valid for more recent observations, and it is
considered as a useful generalisation of the relationship between death rates and
exposure. On the other hand, it is clear that the decrease in fatalities at the
beginning of the seventies is contrary to the expectations of Smeed’s formula.
Haight (1984) explained this decrease in the number of fatalities as the effect of
a saturation in the road traffic rather than an increase in the level of road safety.
Also, the Smeed model has no indicator of the progress in safety performance in
terms of road engineering, vehicle construction, driver training, traffic laws, etc.
Lassarre (2001) proposed an extension of the framework, taking safety progresses
into account. A second source of criticism is the fact that the formula is not
derived from a priori reasoning (Oppe, 1991). The model is the outcome of a
completely data-driven approach. As a consequence, it is hard to give an
interpretation to the results. This also raises the question of the general
applicability of the formula. It has, in the end, been accepted that Smeed’s
formula cannot be considered as a “law” (Broughton, 1991; Oppe, 1991).

A second approach to predicting the annual number of fatalities is based on
learning theory. According to (COST 329, 2004), this approach was introduced by
Minter (1987). He modelled the evolution of the number of fatalities by two
kinds of learning curves. Later, Oppe (1991) explained the evolution in fatality
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rates over time as the result of a collective learning process that is determined by
the evolution in exposure and risk. His reasoning is based on a theory that
assumes that societies learn to control the unsafety of the road transport system
in an exponential way. In the Oppe approach, it is assumed that exposure and
traffic safety can be described as growth processes in time. Exposure is seen as
the result of a production system, derived from economic and social
transportation demands. It is assumed, however, that the development of
exposure has an upper level, indicating the physical boundaries of the road
system. Because of practical reasons, there must be a sort of “maximum
capacity” for the traffic system. These assumptions correspond to an S-shaped
curve, like the logistic model. For the fatality rates, a (negative) exponential
trend is assumed. This may be seen as a collective learning process (COST 329,
2004), caused by the ever-increasing knowledge of the traffic safety problem and
the constant improvement of the safety performance of the road transport
system. In comparison with some decades ago, cars and roads are better
equipped, traffic safety education has improved and legislation and enforcement
have increased. Learning of individual road users results from this community
learning process. The number of fatalities is then, by definition, equal to the
product of the risk and exposure curves.

The “Oppe model” has been applied for many countries, Poland being one of the
most recent examples (Oppe, 2001). Also, the classical framework proposed by
Oppe has been extended by many authors. In (Cameron, 1997), the risk model is
enriched with dummy variables to account for the introduction of major road
safety measures. Their “Modified Oppe” model fits the data substantially better
than the original one. Broughton (1991) proposed a similar model, in which the
introduction of the compulsory seat belt wearing (in 1983) and the impact of
drink-drive legislation (in 1968) were tested. Bijleveld and Oppe (1996) propose
some functional form extensions, allowing for more flexible relationships between
fatalities and risk. In (Commandeur, 2002; Commandeur & Koornstra, 2001), the
analysis of aggregated road safety data is based on the same framework of
exposure and risk, but instead of the logistic function the asymmetric S-shaped
Gompertz curve is used.

All models that are inspired by the Oppe approach have the deterministic curve
fitting procedure in common. That is, these models assume underlying functional
relationships for fatalities, exposure and risk. Instead of using a deterministic
trend, Lassarre (2001) introduced a stochastic trend by means of structural
models. With this approach, other patterns of evolution than an exponential or
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logistic one are captured (COST 329, 2004). The measure of exposure is treated
as an explanatory variable in the fatalities equation, and can be tested on its
proportionality in relation with the number of fatalities. Although the models
developed by Lassarre are more flexible in nature than the Oppe models, it is still
based on the assumption that exposure can be considered as a deterministic and
faultlessly observed variable. As this is not the case in reality, it makes sense to
model the level of exposure as a second dependent variable. In recent work
(Bijleveld, Commandeur, Gould et al., 2005; Bijleveld, Commandeur, Koopman et
al., 2005), a multivariate framework is used to measure accident risk and
exposure simultaneously. Both risk and exposure are assumed to be unobserved,
which explicitly recognises the fact that these numbers are never measured
without error. This approach is called the multivariate unobserved components
time series framework, and models are indicated as LRT (Latent Risk Time series
models), as they focus on the developments in a latent risk variable.

2.5.2 Explanatory factors in aggregated road safety models

In (OECD, 1997hb), some broad categories of factors influencing traffic accident
counts are listed. First, the number of accidents depends on some autonomous
factors that cannot be influenced on a short-term and countrywide level (weather
and state of technology belong to this category). Second, economic conditions
like unemployment and income are part of the general climate in which accidents
occur. Although these issues are sometimes subjected to political intervention,
they are rarely oriented towards road safety improvement. A third category
covers the size and the structure of the transportation sector, which is often
closely related to exposure (infrastructure, vehicle park...). Fourth, the accident
countermeasures, formalized in laws and regulations, are explicitly brought into
being to reduce the risk of road accidents. Fifth, the accident counts also
depend on the data collection system. Changes in collection strategies may
produce fictitious increases or decreases in accident counts. A last influence is
the random variation in accident counts. Since accidents are, by definition,
unwanted events, they cannot be fully predicted. Therefore, part of this
phenomenon will always be inexplicable.

Although it is intuitively appealing to assume that these factors have an
influence on the number of accidents, it would be instructive to get a
confirmation of this influence. Given the large number of possible factors, it is
not easy to get a clear view on the reasons for the trends in traffic safety.
Because of the randomness involved in accident occurrence, the investigation of
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influential factors should be stochastic in nature. Econometric explanatory
models provide a means to test the impact of influential factors. The factors
summarized above can be combined in an explanatory model and tested for their
(positive or negative) contribution to traffic safety. This makes the models quite
appealing to practitioners, who are typically interested in actively increasing the
level of traffic safety.

In (OECD, 1997b), the importance of this kind of models in road safety has been
extensively described. The wide arsenal of econometric modelling techniques can
be very effective in taking into account various influences on aggregate accident
figures. This approach is especially useful when many factors are to be tested.
Moreover, since accidents are unwanted events, controlled (or “designed”)
experiments cannot be used. Accidents are, by definition, non-experimental.
Because of the random character, a probabilistic view on the accident process is
quite natural.

2.5.3 A class of explanatory road safety models: the DRAG family

Explanatory road safety models mainly show similarities and differences
concerning the statistical assumptions that are made. From the application point
of view, clearly there is no unifying framework that keeps all these models
together. It seems that possible close likeness between models is based on pure
coincidence. However, one exception that deserves to be mentioned in this
respect is the DRAG approach, developed by Marc Gaudry (Gaudry, 1984, revised
2002; Gaudry et al., 2000) and followed by many other road safety researchers.
The DRAG framework offers a structured, yet very specific methodology towards
the development of explanatory models.

In accordance with the classical decomposition of road safety in terms of
exposure, risk and consequences, that was presented in Chapter 1, the DRAG
models start from a layered structure in which each of these components can be
regressed on a set of relevant explanatory variables. DRAG is a family of models
that explain the Demand for Road use, Accidents and their Gravity. The DRAG
model constitutes a very ambitious attempt to explain the development of
aggregate exposure, accidents and their severity over time. DRAG models have a
well-defined structure, use flexible form regression analysis and are calibrated
with monthly time series data defined over a country or region.

In the DRAG models, the number of victims is decomposed into three elements,
namely exposure, frequency and severity, which themselves become the objects
to be explained. This means that an explanation of the number of victims is
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effectively derived from the separate explanation of the three terms of the
identity, as in:

Demand for road use (DR) <« [--,X, ]| Exposure
VICTIMS « | Accident Frequency (A)  « [DR, X, || Frequency  (4)
Accident Gravity (G) « [DR, X, ]| Severity

Here, X, X,, and X are three (possibly different) sets of explanatory variables.
This (at least) three-layer recursive structure of explanation, involving road use,
accident frequency and severity, is a common feature of all members of the DRAG
family (COST 329, 2004). In contrast to many other models, road use is not
considered as exogenous, but is explained by a set of variables. Moreover, each
dimension may be further split into various sub-categories: type of road use for
DR, (gasoline or diesel), category of accident for A (fatal, injury, etc.) and a
measure of severity (mortality, morbidity) for G. Categories of explanatory
variables include prices, vehicle availability and characteristics, network
characteristics (legal regimes, modal mix, weather, etc.), consumer
characteristics and activity levels or trip purposes (employment, shopping, etc.).

A structure as defined in equation 4 makes it possible to search for evidence of
risk substitution among exposure, frequency and severity risk dimensions. For
instance, if snow is included as an explanatory factor in the three groups of
explanatory variables X, X,, and X,, it might lead to less driving (DR decreases)
and, at the reduced exposure level, to more accidents (A increases) that are less
severe (G decreases): the net impact on the number of road victims results from
the relative strength of these potentially offsetting effects.

Beside the very large number of explanatory variable taken into account, another
distinguishing feature of the DRAG model is its use of Box-Cox transformations to
relax the linearity assumption usually embedded in a regression model. These
transformations are given by:

x¥ -1

fory =0
xW) v (5)

In(x) fory =0
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The parameter w is called the Box-Cox parameter. Different values of w
correspond to different curvatures or functional forms for the relation between
the dependent and independent variables. For example, the Box-Cox
transformation includes the cubic (w =3), quadratic (v =2), linear (v =1),
square root (y =0.5), logarithmic (w =0), and reciprocal (y =-1) functional
forms as special cases. In general, the Box-Cox regression model takes the
following form:

J
W= g v, ©

j=1

All parameters (w, y; and g, j=1,2,..., J) for a given equation are estimated
simultaneously. Thus, the data are allowed to determine, apart from the
regression coefficients, the optimal functional form (within the Box-Cox family of
monotonic functions). A log-linear model can be viewed as a special case of the
Box-Cox regression model, in which one sets w = 0 and all y; pre-specified and
(by assumption) known.

The BC-GAUHESEQ algorithm, developed by Liem, Gaudry, Dagenais & Blum
(2000) further allows general heteroskedasticity and autocorrelation structures,
that are defined on the residual term u;:

1

STOSAE
u, =|exp| d, +Z6mzm'tm v,

m=1

(7)

L
Vi = Zplvt—l W,
=1

In this expression, the z are heteroskedasticity factors and v, represent
homoskedastic yet possibly autocorrelated residuals. Therefore, an autoregressive
structure can be imposed for v, such that w, is white noise (that is, independent
and normally distributed homoskedastic residuals).

For the explanatory variables in the DRAG models, typically elasticities are
calculated. The elasticity of an explanatory variable measures the percentage
change in the dependent variable caused by a one percent change in the
independent variable of interest. The elasticities offer the advantage that they
are not measured in any particular unit and therefore have a clear and univocal
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interpretation. Assuming no heteroskedasticity variables z_ , the elasticity can

be written as:

m,t!

Vi
Wy Xjt Xt

nxj,t = :ﬂj @ (8)
aXj,t Y Vi

Several DRAG-type models have been developed, all based on the same framework
of a multi-layered structure, including several explanatory variables, with Box-Cox
transformations for both the dependent and the independent variables and
autocorrelation and heteroskedasticity corrections for the residuals. The models
developed up to now are (Gaudry & Lassarre, 2000):

1. DRAG (Demande Routiére, les Accidents et leur Gravité), covering the state of
Québec, Canada (Gaudry, 1984, revised 2002) and further developed as the
DRAG-2 model (Gaudry et al., 1995).

2. SNUS (StraBenverkehrs-Nachfrage, Unfélle und ihre Schwere), authored by
Gaudry and Blum (Gaudry & Blum, 1993), covering Germany.

3. DRAG-Stockholm (Demand for Road use, Accidents and their Gravity in
Stockholm), authored by Tegnér and Loncar-Lucassi (Tegnér & Loncar Lucassi,
1997), covering the Stockholm county of Sweden.

4. TAG (Transports routiers, Accidents et Gravité), authored by Jaeger and
Lassarre (Jaeger, 1999; Jaeger & Lassarre, 1997), covering France.

5. TRULS (TRafikk, ULykker og deres Skadegrad), by Fridstrgm (Fridstrgm, 1997,
1999), covering Norway .

6. TRACS-CA (Traffic Risk And Crash Severity - CAlifornia), authored by McCarthy
and covering California (McCarthy, 2000).

2.5.4 Review of selected empirical results

The number of models in which the effects of explanatory variables are tested
increased over the last 20 years. Reviews of empirical results of these models can
be found in (Gaudry & Lassarre, 2000; Hakim et al., 1991; Scuffham, 2001). In
this section, some of these results are summarized. The overview is directed
towards the variables that will also be tested in the subsequent chapters of this
work, and is by no means a complete overview of the existing models. Note that,
along with the effects of explanatory variables on accidents and victims, also
effects on exposure are reported.
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2.5.4.1 Economic factors

Economic factors appear to be related to the number of accidents, the number of
injuries and to the distance travelled. As in many social sciences, there is no
underlying economic theory that indicates which explanatory variables should be
considered in a model for road accidents (Scuffham, 2003). Unemployment rate
is often used as a proxy for economic conditions. Other possible economic
indices are disposable income, automobile production, gross national product,
manufacturing, consumption per capita, retail sales and interest rates (Hakim et
al., 1991). According to Scott (1986), economic indicators only have an indirect
influence on accident data, via changes of the characteristics of the traffic and
road environment. Other authors (Hakim et al., 1991; Scuffham, 2003) state that
economic factors can have both an indirect and a direct effect on the number of
fatalities and road crashes.

In many models, the effect of unemployment on distance travelled and road
safety is analysed, often resulting in a coefficient with a negative sign. As
mentioned in (Hakim et al., 1991), Hoxie & Skinner (1985) found that, in periods
of recession (with high unemployment rates), the number of fatalities with young
drivers is significantly lower, even without a significant reduction in miles driven.
This is explained by the fact that young drivers drive less in recessionary times
(thereby reducing the number of fatalities), but their impact on total mileage is
to be neglected. In the DRAG-2 model (Fournier & Simard, 2000), the ratio of
the number of unemployed to the number of people with driver's licences is
included. An increase in this ratio results in a decrease in the distance travelled
and in the number of accidents. Scuffham (2003) tested lagged effects of
unemployment and found that an increase in the unemployment rate lead to a
reduction in fatal crashes in the following period, whereas the level of the
unemployment rate in the current period was not significant. According to (Blum
& Gaudry, 2000), unemployment has a small and highly significant negative
effect on road use, but only a moderate effect on casualties, probably because of
institutional regulations. In (Tegnér et al., 2000), it is shown that an increase in
the number of employed persons results in larger distances travelled because of
higher income, higher rate of car ownership and consequently more private
consumption and leisure activities. In (Jaeger & Lassarre, 2000), the increase in
traffic risk caused by a rise in unemployment is negligible. This result is not in
accordance with most of the other models, and may indicate differences in the
variables measured and in social protection systems.
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A second key economic variable is income. This is related to the level of
unemployment, in the sense that a higher unemployment rate may affect the
traveller’s ability to pay for travel (Hakim et al., 1991). This income elasticity of
demand for travel is low for work trips, but is quite high for young drivers and
recreational trips (Hoxie et al., 1984; Partyka, 1984; Peltzman, 1975; Wagenaar,
1984). Peltzman (1975) uses a demand-oriented explanation for the negative
relationship between economic growth and the number of road accidents. As
income rises, the demand for safer cars increases, which leads to fewer accidents.
Also, a higher income on the supply side increases the budget for investment in
infrastructure and road maintenance. However, in (Blum & Gaudry, 2000), where
household income is used as an economic indicator, a rise in the income results
in an increased vehicle ownership, which in turn increases road use demand and
the number of accidents. In (Johansson, 1996), disposable income hardly
contributes to the explanation of the number of casualties. Further, it has no
significant effect on the number of fatal and minor injury accidents and a
positive significant effect on the number of severe injury accidents. For the
vehicle damage accidents, the significance depends on the statistical model
structure.

Apart from unemployment and income, some authors use GDP as an economic
indicator. Christens (2003) tested the effect of Gross National Product (GNP) and
found that an increasing GNP is associated with additional fatal accidents. On
the other hand, Scuffham (2003) reported a very strong negative effect (a
reduction in risk) of increases in Gross Domestic Product (GDP) on the number of
fatal crashes.

2.5.4.2 Gasoline prices

The general idea behind the effect of gasoline prices on road safety, as
formulated in (Harvey & Durbin, 1986), is that higher prices may induce drivers
to drive more slowly, which is then expected to reduce accident rates. The
authors found that a 1% rise in the petrol price leads to a 0.31% reduction in
casualties. Hoxie et al. (1984) reported an inverse relationship between gasoline
prices and accidents, as well as between gasoline prices and the number of non-
work-related trips. Scott (1986) also concluded that petrol prices are strongly
(negatively) related to many accident series, except for those where two-wheeled
vehicles were involved. Similar results are obtained in (Fournier & Simard, 2000).
In (Johansson, 1996), a petrol price index has no effect on the different types of
accidents considered. According to Jaeger & Lassarre (2000) and Tegnér et al.
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(2000), the number of kilometres driven decreases with a rise in gasoline prices.
McCarthy (2000), however, did not find any impact of the real gasoline price on
the demand for travel. This is explained by relating the gasoline price to the
opportunity cost of travel, which is a generalised cost, including monetary and
time costs. In the same model, the number of accidents decreases with a rise in
the gasoline price. Note that the effect of changes in gasoline prices on
accidents is not direct. The price of gasoline determines its demand, which in
turn affects the number of accidents.

2.5.4.3 Young drivers

Young drivers are considered as a high-risk group, having a higher probability of
involvement in car accidents with injuries. In (Fournier & Simard, 2000), an
increase in the number of young drivers, between 16 and 24 years old, results in
a rise in the number of road accidents. Quite often, the topic of young drivers
has been related to the effect of the minimum legal drinking age on accidents.
Wagenaar (1983) stated that approximately 20% of all alcohol-related crashes
involving young drivers can be prevented by removing legal access to alcoholic
beverages. Hoxie & Skinner (1987b) showed that raising the minimum drinking
age can save a considerable amount of young lives. Scuffham (2003) found that
the proportion of young males (aged 15-24 years) is directly related to the
number of fatal crashes, with a positive sign.

2.5.4.4 Weather

Many road safety models considered the effect of weather conditions on the
number of accidents and fatalities. As the weather is related to the geographic
properties of the area of concern, it is expected that the results will vary among
the models. Results may also vary according to the time period considered. A
climatologic variable studied on a daily level may provide completely different
insights than when studied on a monthly level. This is clearly illustrated in
(Eisenberg, 2004), where the relationship between precipitation and accidents is
investigated on a daily and a monthly basis. On a monthly basis, a negative
relationship is found between precipitation and accidents, while on a daily level
a strong positive effect is estimated. However, it is still instructive to study
weather effects on road safety over time, as part of a larger set of influential
variables. The most common weather variables are rainfall and temperature,
although snow and frost are also considered in some models.
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In (Scott, 1986), higher rainfall and cold temperatures are found to be associated
with more accidents. In the original DRAG model (Gaudry, 1984, revised 2002),
severe weather conditions reduce the number of deaths and have mixed effects
on the number of injuries. Cold weather increases the number of material
accidents, and reduces considerably the number of fatal accidents. According to
the DRAG-2 model, developed for Quebec (Gaudry et al., 1995), an increase in
temperature would result in a moderate increase in distance travelled. Higher
temperatures also significantly reduce the number of accidents with property
damage and the number of victims injured. On the other hand, the number of
fatal accidents and the number of victims killed increase with temperature. Also
a moderate decline is noticed in the number of bodily injured accidents and the
morbidity and mortality rates. In the SNUS-2.5 model for Germany (Blum &
Gaudry, 2000), an increase in temperature implies a strong decrease in material
damage accidents and an increase in the number of bodily injury accidents and in
morbidity and mortality rates. It also strongly increases the road demand. There
are strong effects of sunshine on the frequency and severity of accidents, and the
presence of rain has larger proportionate impacts than the amount of rain. In
California (McCarthy, 2000), average rainfall significantly affects the frequency
and severity of crashes, but the direction of the effect is negative for fatal
crashes and mortality and positive for non-fatal crashes and morbidity.

In Norway, injury accidents become less frequent when the ground is covered by
snow (Fridstrgm, 2000). The risk reduction is larger the deeper the snow is. This
“snowdrift effect” reduces the frequency of single vehicle injury accidents, but
increases the risk of head-on collisions. The number of injury accidents goes up
during days with snowfall, but at the same time the severity is reduced. This is a
“risk compensation effect”. The monthly number of days with temperatures
dropping below zero has a favourable effect on the number of accidents,
especially on the most severe injuries. This effect is much stronger for bicyclists
and motorcyclists than for pedestrians, suggesting a reduction in the two-wheeler
exposure. Similarly, higher rainfall reduces injury accident counts because of the
reduced exposure among unprotected road users.

Results on Belgian data (Van den Bossche et al., 2004) show that precipitation
increases the number of light injuries and the corresponding number of
accidents, but does not affect the serious injuries or fatalities. On the other
hand, the percentage number of rainy days in a month has a similar influence on
all dependent variables, resulting in an increase in accidents and victims.
Further, a higher number of days with thunderstorm significantly increases the
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light injury outcomes. More days with frost and less sunny hours in a month
decrease all road safety outcomes. The percentage number of days with snow or
sunlight was not significant.

2.5.4.5 Legislation

Most researchers are interested in analysing the possible long-term effects of
legislative intervention measures while statistically controlling for non-
intervention variables hypothesized to be associated with accidents. Sometimes,
however, one is interested in the effectiveness of a particular intervention. This
is done in partial (before-after or treatment-control) studies. Some of the
possible intervention variables are discussed below.

Speed limits and speed variance

Several authors, for example Partyka (1984), showed that reducing the speed
limits appears to be related to a reduction in fatalities. Also the severity of
injuries is positively related to the allowed speed. Blum & Gaudry (2000)
obtained similar results in their model for Germany. According to McCarthy
(2000), however, increased speed limits slightly reduce risk exposure. In his
model for California, higher speeds have no effects on fatal crashes, but a strong
positive impact on the frequency of non-fatal injury crashes. Keeping everything
else constant, there were fewer fatalities per fatal crash and fewer injuries per
non-fatal injury crash after the increased speed limits law. But if a crash occurs,
a higher speed results in more serious injuries. According to Christens (2003), a
reduction of the urban speed limit is associated with a decrease in the total
number of fatal accidents. In (Scuffham, 2003), it was found that a 1% increase
in the open road speed limit was associated with a 1.2% increase in fatal crashes.

Lave (1985) investigated the effect of speed variance rather than speed limit on
highway fatality rate. According to Lave, there is a strong statistical relationship
between fatality rate and speed variance. However, Levy & Asch (1989)
concluded that efforts should be directed to slowing down high-speed drivers
rather than speeding up slower drivers. The empirical studies of Fowles & Loeb
(1989) and Snyder (1989) reject the importance of speed variance; they report on
a positive and statistically significant effect of speed on fatalities. Later, Jaeger
& Lassarre (2000) consider speed as a description of the incidence of traffic risk
of an individual's behaviour in terms of control over the vehicle. They conclude
that speed limits have significant effects, but these effects are due more to a
reduction in the dispersion of speeds than to a drop in average speed.
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Drinking and driving

Several authors (Hoxie & Skinner, 1985; Loeb, 1987; Zlatoper, 1984) found that
the consumption of alcohol is positively related to accidents with fatalities.
Blum & Gaudry (2000) state that beer consumption is both a social variable
(thereby increasing road demand) and a factor changing the frequency and
severity mix of accidents. Increased beer consumption increases the number of
fatalities, but decreases the frequency of accidents. Most of those that drink and
drive, have only consumed little and compensate to prevent accidents, while
those who drink a lot may increase their risk. A similar conclusion for wine
consumption is obtained by (Jaeger & Lassarre, 2000). An increase in wine
consumption per adult implies, ceteris paribus, an increase in the demand for
road use for recreational purposes. Also the number of injuries and accidents
increases with higher wine consumption. In his model for Norway, Fridstrem
(2000) found positive relationships between alcohol consumption and accidents
of every degree of severity, thereby concluding that the restrictive Norwegian
alcohol policy has prevented road accidents and fatalities. Tegnér et al. (2000)
found that low consumption levels of alcohol seem to reduce the number of light
and severe injuries. At higher levels of consumption, the accident risk augments
rapidly. Also McCarthy (2000), investigated the effect of beer, distilled spirits
and wine consumption on traffic safety in his TRACS-CA model for California.
Only the beer consumption increased the demand for road use. A rise in
consumption of distilled spirits per capita leads to more fatal crashes and more
fatalities per fatal crash. The wine consumption per capita increases the
frequency of non-fatal injury and material only crashes.

Although it is clear that excessive alcohol consumption increases accident
occurrence and the risk of being killed or injured, Gaudry (2000) tested the
possibility of a J-shaped relation between alcohol consumption and road safety.
That is, the risk may at first be reduced by a small consumption of alcohol
(because of risk compensation or reduced aggressiveness), but will strongly
increase with higher blood alcohol concentration. In this case, the effect of
higher alcohol consumption will depend on its distribution among drivers
(Gaudry, 1993).

In several studies (Cook & Tauchen, 1984; Loeb, 1987), a negative relationship
was found between both the number of accidents and the severity of injuries and
the minimum age for purchasing alcohol. Hoxie et al. (1984) used the minimum
age for the legal drinking of alcohol as an intervention variable, and found it to
be statistically significant in explaining fatalities. Evans (1990) states that
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eliminating alcohol drinking may significantly reduce traffic fatalities. Also
McCarthy (2000) studied the impact of the availability of alcohol. An increase in
the number of alcohol licences per month generates an increase in non-fatal
injury and materials only crashes.

Mandatory seat belt use laws

Several empirical studies have shown that seatbelt legislation can significantly
reduce the number of fatalities and the severity of injuries (Campbell & Campbell,
1986, 1988; Friedland et al., 1987; Harvey & Durbin, 1986; Hoxie & Skinner,
1987a; Rutherford, 1987; Van den Bossche et al., 2004; Van den Bossche et al.,
2005a; Williams & Lund, 1988). Friedland et al. (1987) concluded that safety
belts provide full protection against fatalities in accidents that occurred at
speeds lower than 60 miles per hour. He also found that seatbelt use leads to
serious reductions in injuries to drivers and front-seat passengers. Moreover, it
reduces the number of brain injuries. Hoxie and Skinner (1987a) have shown
that many occupant fatalities can be avoided when seat belt use laws are
mandated. Harvey & Durbin (1986) developed an intervention analysis, using
structural time series models, for monthly data on road casualties in Great Britain
in order to assess the effects of the introduction of the seat belt law on casualty
rates. As far as the number of killed and seriously injured road users is
concerned, Harvey and Durbin found a reduction of 23% for car drivers and 30%
for front seat passengers.

Blum & Gaudry (2000) found that seat belt use reduces both the frequency and
the severity of bodily injury accidents, but increases the frequency of material
damage accidents. According to the results in (Fridstrgm, 2000), an increase in
the number of car drivers not wearing the seat belt will increase the number of
car occupant injuries and the number of fatalities. Seat belts seem to be more
effective in preventing less severe injuries than in saving lives. Results in
(Jaeger & Lassarre, 2000) show that there is a risk compensation effect, since the
use of seat belts leads to an increase in speed. This is known as driver behaviour
retroaction. In (McCarthy, 2000), seat belt use did not affect the frequency of
fatal crashes, but increased the incidence of non-fatal injury and material only
crashes. When a fatal crash occurs, more persons are killed, but when an injury
crash occurs, fewer individuals suffer an injury.
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2.6 Conclusion

This chapter offers an introductory overview of the field of time series road safety
models. The application of these models is in line with a strategic view towards
road safety management, and is highly useful in relation with the very difficult
task of setting realistic road safety targets for the future. Depending on its
specific properties, a model can be used to describe, explain, predict or compare
road safety developments on an aggregated level. Starting from a simple
typology developed by Hakkert & McGann (1996), an overview of the distinctive
properties of time series road safety models is given. In particular, models were
categorised based on their statistical (deterministic versus stochastic) and
application (descriptive versus explanatory) properties.

Although the statistical techniques used in this area of research are quite
common, it is clear that the research field of the models described in this chapter
is rather unstructured in some respects. First, the choice of a statistical
technique is not always straightforward. Many classical regression models were,
for some reason, developed on time series data. In the course of time, more and
more authors shifted to the models that were specifically developed for time
series problems. This aspect, therefore, is clearly related to the evolution in the
field.

Second, among the explanatory models, the choice of explanatory variables varies
considerably. Whereas some models are specifically oriented towards the analysis
of one category of variables (typically economic indicators or law interventions),
other models combine a large number of variables representing a variety of
categories of influential factors, as is typically the case in the DRAG models.
Related to this aspect, it is found that many authors are not clear about the
specific contents of the variables used in their models. This, in turn, affects the
way in which the results can be interpreted and compared, as was confirmed in
the overview of empirical results. This is especially true for the socio-economic
variables, and to a smaller extent for the interventions (laws and regulations).

Third, the models differ in the frequency of the observations. Clearly, in a
seasonal model (on monthly or quarterly data), different aspects should be
considered compared to a model developed on yearly data. Moreover, the effect
of many variables is related to the level of aggregation on which it is measured.
This is especially true for weather variables, but also the effect of other factors
like economic indicators might be concealed in the frequency structure of the
data. Therefore, the objective of the model and the frequency of the data are, in
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a sense, related. Fortunately, it is observed that most of the explanatory models
for various countries were developed on the basis of monthly data, while
descriptive models typically use yearly data. When predicting road safety is the
objective of the model, using explanatory variables can be experienced as a
burden, in the sense that this often limits the length of the prediction horizon
and that the data needs are much higher.

Examples of attempts to develop models that are based on a unified framework
were found in the studies made by (Oppe, 1989) and (Bijleveld, Commandeur,
Gould et al., 2005) for the descriptive models and by (Gaudry, 1984, revised
2002) for the explanatory models. These authors put a great effort to structure
the time series road safety models. Oppe created a very simple and
straightforward conceptual model that can be used to study developments in road
risk and exposure. The models developed by Gaudry are, in a sense, based on the
same concepts, but are highly demanding in terms of data and model complexity.

It is clear that, due to the complexity of the application, both in terms of data
needs and modelling approaches, the field of time series road safety models has
not yet attained its full development, and will continue to grow, hopefully in a
structured way.
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Chapter 3  Exposure in macro models

3.1 Introduction

As a further development of the previous chapter, this section gives attention to
the specific role of exposure in macro models. Sometimes, exposure is considered
as an endogenous variable, explained by other factors in the model, while in
other studies it is seen as an explanatory variable next to socio-demographic
variables, economic indicators or weather conditions. It is a driving variable in
almost all models, just because of its crucial role in the relation between
fatalities and road risk. However, it is, at the same time, one of the most
difficult variables to measure and is therefore rarely obtained in a format and
aggregation level that is useful for time series modelling. As a result, very
different exposure measures are found in macroscopic models.

In (WHO, 2004), exposure is defined as the amount of movement or travel within
the system by different users or a given population density. Exposure can thus
be seen as the number of potentially dangerous situations on which the number
of accidents and victims depend (COST 329, 2004). Because of the complex
relation between exposure and the multitude of activities by which it is initiated
(like travel for work, education or leisure), it is impossible to measure the level of
exposure without error. Theoretically, exposure is often expressed in terms of the
number of trips, the distance travelled or the duration of travel. Even these
definitions are only a partial representation of the real exposure, because
interactions between these terms can result in different transport patterns. In
practical studies, proxies like traffic counts, the number of vehicle kilometres,
the number of vehicles or fuel consumption are used. The multi-dimensional
concept of exposure cannot be measured in all its aspects, and therefore these
measures or indicators are commonly accepted as valid representations of the
level of exposure.

In this chapter, focus is on the way exposure measures are generally used in
macroscopic road safety models. First, a short review of the common ways of
getting exposure data is given and some typical problems of exposure data are
listed. Next, an overview is given of the exposure measures used in macroscopic
time series models, together with the results obtained for the exposure variable.
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3.2 Deriving measures of exposure

The literature on exposure measures is as large as that on road safety. This is
easily explained by the fact that exposure is also key information in mobility
studies that are not explicitly related to road safety, but rather to environment,
economics, travel behaviour, and so on. However, the treatment of exposure
measures in macroscopic road safety models is less widespread. Apart from a
special issue of Accident Analysis and Prevention, published in 1982 (Haight,
1982), most references were written in the nineties (COST 329, 2004; OECD,
1997b). One of the main reasons for the increased importance in the context of
road safety research is the attention given to road safety in an international
context. The European Government, the OECD and the WHO are increasingly
interested in comparisons of road safety among their member states. In order to
provide a common basis for comparison, road safety figures are usually scaled
using some measure of exposure. Especially when international comparisons are
to be made, it is essential that exposure measures are derived along common
principles.

Based on the available literature on road safety research, two basic methods for
the collection of exposure data can be found (Wolfe, 1982). The first is to obtain
data while trips are in progress, as is done with mechanical traffic counters. Also
human observations and automatic cameras can be used. Based on these data,
average annual daily traffic (AADT) is calculated, sometimes for different types or
periods of days (week or weekend, day or night, etc.). Obviously, only vehicle
types can be counted, but not the number of occupants. However, the number of
vehicle kilometres can be used as a measure of exposure in time series or cross-
sectional studies by extrapolating it into time and/or space. It is, indeed, the
most appropriate way of data gathering to obtain continuous measurements over
time. With the second method, data is gathered after the trips are completed,
using in-person interviews, telephone interviews or mail questionnaires. This is
usually done in travel habit surveys. People are surveyed about their travel
habits (time, route choice, transport mode) for selected time periods. From this
information, vehicle kilometres, but also person kilometres, travel time and
number of trips can be derived. However, this data is less easily extrapolated for
time series studies, as it has typically a registration period of a few days. Also,
depending on the type and size of the survey, it is often difficult to relate the
distance travelled to the route taken (OECD, 1997b). On the other hand, travel
surveys are often the only sources of information available for data on exposure
per type of road user, especially for non-motorized transport modes and
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vulnerable road users. In Chapter 8 of this manuscript, some examples are given
on the use of travel survey data in road safety research for Flanders.

In more recent work, and due to the lack of traffic counters on more regional
road networks, exposure measures are often derived from data on fuel sales, fuel
efficiency and vehicle park (COST 329, 2004). This estimation procedure is
possible for any type of motorised transport. Often, these procedures also use
the rough estimates of yearly distance travelled from periodic surveys. In some
of the DRAG models, a similar framework for the estimation of kilometres
travelled is developed (Fridstrem, 2000; Jaeger & Lassarre, 2000). In (Cardoso,
2005), a method is presented to estimate yearly national traffic volumes using
data on vehicle fleet and fuel sales of the studied country and mathematical
models fitted to existing data from other countries on fuel consumption, vehicle
fleet and traffic volume. The COST 329 report (2004) shows further examples for
Germany and France. When producing exposure data from fuel sales, it is
assumed that the distance travelled is related to fuel sales, which makes it
necessary to correct for the increasing engine efficiency of cars. However, it is
also interesting to note that the weight of the cars increased over the same time
period, again resulting in higher fuel consumption per kilometre driven. In
Chapter 4, a very simple procedure is proposed to obtain monthly kilometres
driven for Belgium, derived from fuel deliveries, average fuel economy and
vehicle park.

3.3 Problems with measures of exposure

Unfortunately, exposure measures are often the primary source of annoyance for
many traffic safety researchers. First, as mentioned by Wolfe (1982), the most
easily obtained exposure measures are rarely the most desirable ones. Total
population, the number of registered vehicles or the number of licensed drivers
are not always good proxies for exposure. Depending on the scope of the
analysis, some exposure measures may be more or less relevant. For example,
fuel consumption is meaningless as a measure of exposure for a black spot
analysis. Second, some measures of exposure are simply not available. In
Flanders (Belgium), before the first travel surveys were conducted in the late
nineties (Hajnal & Miermans, 1996), there was nothing else than the traffic
counts, transformed in a yearly index of distance travelled. Moreover, the
exposure data are rarely in a format that can be used in whatever type of
analysis. Often historical exposure measures are not available over a long time
period. For studies on specific groups of road users, the traffic counts are either
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not relevant or too aggregated. Third, typically in aggregated studies, it is not
easy to find a measure of exposure that matches the traffic accidents studied.
Traffic counts are usually available on a regular basis for highways, but not for
the whole road network. For local and provincial roads, exposure measures are
often based on an extrapolation of a sample of traffic counts on some predefined
locations. More aggregated measures of exposure are easier to find, but
sometimes too rough to analyse the relationship between accident occurrence
and exposure. Another problem is that road safety is generally not the primary
objective when gathering travel data. Traffic surveys are usually not designed for
the analysis of accident risk but for sustainable transport organisation or travel
behaviour studies.

Apart from the practical issues, the quality and reliability of exposure data is
often low. This limits the level of detail of road accident analysis (COST 329,
2004). First, since traffic data are often based on surveys, they are only
representative under restrictive assumptions. Second, they are mostly not
available for all kinds of traffic. In traffic counting systems, the distinction
between light and heavy motorised traffic is either not available or not reliable.
Third, whereas traffic counts for motorways are mostly known, counts for regional
and local roads are less frequently provided. Fourth, exposure data on a
sufficiently low level of aggregation are almost never available. Even if we have
data for a longer period of time, we are never sure that the data collection
method remained unchanged for the considered period.

3.4 Using exposure measures in road safety research

In almost every macro model for road safety, a measure of exposure is used.
However, there is a large variety in measures, and even if the measure is named
identically, there might be substantial difference in the way it is constructed.
Exposure measures vary considerably, and it is usually not possible to judge the
quality of these variables. In (Hakim et al., 1991), the authors state that “as
aggregate mileage increases, the overall number of accidents with injuries
increases as well”. According to the authors, this positive relationship is
confirmed in other studies. In this section, some results for the exposure
variable in various models is gathered.

In the DRAG-2 model for Quebec (Fournier & Simard, 2000), data on fuel sales of
gas and diesel, expressed in litres, are associated with energy efficiency of
vehicles (litres per 100 kilometres). Also, the efficiency reducing effect of cold
winters and changes in types of vehicles on the road are taken into account.
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According to the authors, the total distance travelled is the most important
variable for explaining changes in the number of accidents, the severity and the
number of victims. A 10% increase in distance travelled resulted in a 7.8%
increase in bodily-injury accidents and a 7.2% increase in victims injured.
However, the effect on morbidity was a 0.8% decrease, although less statistically
significant. For fatal accidents and victims killed, an inverted U-shaped
relationship was found, indicating that traffic safety can increase with exposure.
A plausible assumption is that the severity of accidents will at first increase with
exposure, but at a certain point it will decrease, as higher exposure will decrease
speed and reduce the severity. This results in an inverted U-shaped relationship
between exposure and severity (Gaudry & Lassarre, 2000). For mortality, the
relation was also inversely U-shaped, although not statistically significant.

Fridstrem et al. (1995) used data on gasoline sales as a proxy for exposure. For
injury accidents, a coefficient close to one was obtained, while for fatal accidents
and fatalities this value was significantly smaller than one, suggesting a less
than proportional relationship. These lower values were explained by the
hypotheses that average severity of accidents decreases with traffic volume due
to lower speeds and that learning effects come into play. In the TRULS-1 model
for Norway (Fridstrem, 2000), measures of exposure for various groups of road
users are used. These are derived in a complex econometric system in which,
among others, traffic counts, benchmark traffic volumes, fuel sales, weather
conditions and vehicle mix are combined. In the model, the injury accident
frequency had an elasticity of 0.494 with respect to motor vehicle kilometres.
This result is conditional on the assumption that the ratio of vehicle kilometres
to road kilometres remains unchanged. Also, a higher heavy vehicle share in the
traffic volume leads to a higher frequency of injury accidents. Motorcycle
exposure influences the motorcycle accidents, but has only a small effect on
overall accident frequency.

In the DRAG-Stockholm-2 Model (Tegnér et al., 2000), exposure (vehicle-
kilometres) for gasoline driven passenger cars was based on monthly gasoline
sales within the Stockholm County and on fuel efficiency. For the periods where
no data were available, estimates were obtained from a multiple regression on
total gasoline sales, Gross National and Regional Product and population. Also,
fuel efficiency of passenger cars and the fluctuations in efficiency due to
temperature differences between winter and summer are taken into account. In
the first models, the number of bodily injury accidents was not proportional to
exposure. The number of road accidents increased with the number of vehicle-
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kilometres, but was reduced in congested situations. At low levels of exposure,
the number of light and severe injuries and fatalities decreased at first, but in
congested situations the proportion of severe injuries and fatalities seemed to
increase. Since these results were not logical, a new model was formulated,
unfortunately resulting in a non-plausible U-shaped relationship for severe
accidents and fatalities. For the severity models, a concave inverted U-shape was
obtained. However, the overall performance of these new models was so poor
that the authors considered the first models as superior, even with the wrong U-
shaped structure for exposure.

In the TAG-1 Model (Jaeger, 1999; Jaeger & Lassarre, 2000) for France, the
number of kilometres travelled by all road vehicles was calculated on the basis of
petrol and diesel sales. The TAG-1 model is also an example of a rigorous
framework in which monthly exposure data are derived. Total mileage has a
significant positive impact on both injury and fatal accidents. Similar results are
found for the number of fatalities, serious injuries and light injuries. On the
other hand, the gravity rates for minor and serious severity were not significantly
linked with exposure. Exposure to risk was positively correlated with the number
of accidents and deaths.

The TRACS-CA Model for California (McCarthy, 2000) used the total number of
vehicle miles travelled on state highways as an index of risk exposure for traffic
on all roads in California, based on the assumption that traffic on state highways
is highly correlated with the total vehicle miles travelled. Risk exposure was an
important and statistically highly significant determinant of highway safety.
Fatal and materials only crashes had relatively high elasticities with respect to
exposure. Non-fatal injury crashes were less sensitive to risk exposure. Risk
exposure increased crash frequencies, as well as mortality and morbidity. Also
the fatality rate and the non-fatal injury rate were increased by exposure.

In the SNUS-2.5 model for Germany (Blum & Gaudry, 2000), road demand was
expressed by the kilometres driven with gasoline and diesel, based on monthly
gasoline and diesel consumption and the consumption rates. The number of
accidents clearly depended on exposure, with a positive sign. However, the
estimated parameters are less than one in every equation. In the equation for
accidents with light and severe material damage, the elasticities are 0.24% and
0.31% respectively, while it is 0.08% for the total of material damage accidents.
The elasticity is even lower for accidents with personal damage (0.2%) and 0.46%
for total accidents.
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Also other time series models in traffic safety include in some way an exposure
index. For example, Lassarre (1986) uses a monthly traffic volume index
estimated from a census in a predictive model of the severity of accidents
(number of deaths). He found a unitary elasticity for traffic volume. In his
comparison of ten European countries (Lassarre, 2001), the same author found a
less than proportional effect for West Germany (0.895), Italy (0.449) and the
Netherlands (0.544), while for France (1.640), Finland (1.959), the UK (1.194)
and Sweden (1.173) a more than proportional effect was reported. This is an
interesting result, as the best performing (or SUN) countries show quite different
elasticities for exposure (although no statistical results on the proportionality
were reported).

Other authors, for example Ledolter & Chan (1996), model the accident risk as
the ratio of accident counts and exposure level, thereby presuming a priori that
the coefficient of exposure is equal to 1. Another approach is presented in
(Johansson, 1996). He investigated the effect of a lowered speed limit on the
number of accidents with fatalities, injuries or vehicle damage. Because
exposure is not known, it is modelled as a latent variable instead of using proxies
like gas deliveries or the number of registered vehicles. The latent exposure
measure is determined by gasoline prices, disposable income and an error term.
The fact that exposure is a latent variable, next to other explanatory factors,
implies that the direct and indirect effects of variables are combined in one
parameter, making it impossible to separate exposure and other effects. Also, in
this model structure, the latent variable is identical to a model in which no
exposure measure is included. In (Scuffham, 2003), also unobserved components
are used, but the exposure variable is explicitly modelled. Using a general-to-
specific approach on current values and lagged differences of the dependent and
independent variables, a model was developed for the number of fatal crashes.
The current period exposure effect was highly significant with an elasticity higher
than 3%, and the negative significant lagged differences of exposure indicate
that as distance travelled increases, the risk of a crash increases but at a
decreasing rate. With the given model, a long-run multiplier of exposure can be
calculated, giving a value of 1.39, which is again a more than proportionate
effect. Also in the various (both deterministic and stochastic) models developed
by Christens (2003), elasticities higher than 1 are found.

Another solution to the low exposure data availability and quality in many
countries is offered by induced exposure and cancellation of exposure techniques
(COST 329, 2004). Induced exposure methods are based on the idea that a
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relative measurement of driver crash risks can be derived from accident counts.
With this method, exposure data are estimated by making a number of
assumptions about the relationships among the available accident data. For
example, one can assume that general driver's characteristics are proportional to
the characteristics of innocent drivers in the accident data (Li & Kim, 2000). The
advantage of the induced exposure method is that the same level of detail as the
casualty data used can be obtained. In Great Britain, for example, the method
was applied to get exposure data for large and small motorcycles on rural and
urban roads. A disadvantage is that there is a danger of circularity in the
method. Accident data are used to estimate exposure, which is subsequently
used to analyse the accident and fatalities data. Also, the assumptions made can
often hardly be verified.

The cancellation of exposure technique is based on taking the ratio of accident
risks for two groups of road users, such that the exposure part cancels out . By
taking for example severity ratios (fatalities per injury accident) for various types
of accidents, comparison of these ratios will reveal the circumstances that lead to
severe accidents. Also, the occurrence of accidents under two types of
conditions can be studied, always under the assumption that the level of
exposure in the different conditions is comparable. This is, of course, a very
strong assumption. On the other hand, the ratios are easily calculated from
accident databases and in itself often provide useful information.

Apparently, the effect of exposure and the way it should be constructed is not as
clear as one would expect from theory. In general, the exposure elasticities
obtained from various macro models for road safety are positive, but as for
proportionality, very different results are found. Also, the results of a (more
complex) inverse U-shaped relationship between exposure and accidents are not
necessarily in accordance with expectations. In some models, exposure even has
an illogical or unexpected sign.

3.5 Conclusion

The fact that different results are obtained in different countries or on different
data sets is not difficult to accept. Indeed, each country has a different road
transport system and therefore the effect of the exposure to risk should not be
comparable as such. A more general problem, however, is the fact that the
definition of the exposure measure often varies considerably, making it very
difficult to compare the results, even in terms of elasticities. Sometimes huge
efforts are done to construct a valid exposure measure, while in other models
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only very simple indicators are used. All models use a variable named “exposure”,
but they are often constructed differently. As shown for example in (OECD,
1997b), different exposure measures can lead to diverging results.

In (Scuffram & Langley, 2002), the total number of fatal crashes was
standardised by three different proxies for exposure, namely the total population,
the number of registered vehicles and the distance travelled. By doing so, a
proportional relation between risk and crashes is again assumed. The results
show that a different exposure measure may lead to different results in the
effects of the other explanatory variables. It is therefore important to indicate
what kind of exposure is measured in the model. Obviously, road safety
researchers must make shift with the exposure data they got. This is perhaps
even more true for time series than for cross-sectional studies. Indeed, in this
domain, it is never possible to regain data of past periods.

Clearly, all this has some implications for the use of exposure data in time series
studies. First, if a variable is not measured in the past, it cannot be recovered
later. Experiments cannot be done in the past. In a black spot analysis, for
example, it is still possible, albeit not easy, to take a sample of exposure data at
the location of interest. Second, the aggregated approach to road safety makes
it difficult to set up a data gathering or sampling exercise. Not all series are
available for a long enough analysis period. Some data are available, but the
frequency might be wrong or useless. Third, the granularity of the measure can
be too high or low for the kind of road safety data that should be analysed, and
this is not always easily changed. Fourth, the analysis period is often determined
by the availability of exposure data. This may also be a reason for differing
results among studies. For example, while the first DRAG model considers data
from 1956 onwards, Belgian data on exposure can only be used for the years 1986
and later. Another time horizon or time series length can influence the results.
Also, it is not difficult to see that the road transport system, and maybe also the
relation between exposure and road safety, changed over time, which may lead to
different results for the same country in newer studies.

While it is commonly agreed that exposure data is highly important and
interesting in road safety studies, further details are often necessary to bring into
light the effect of the exposure measure used and to give a correct interpretation
to the results obtained from the model.
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Chapter 4 Data for macroscopic road safety models
in Belgium

4.1 Introduction

In this chapter, an overview is given of the data that is available in Belgium and
in Flanders for the development of macroscopic road safety models. Traffic safety
analysis usually starts from two main information sources (OECD, 1997b): crash
and casualty data on the one hand and exposure data on the other hand.
Although crash data is basic information in road safety analysis, exposure data is
considered as key information for every kind of road safety research. Therefore,
the first task of a road safety researcher is to list the possible variables related to
crashes and exposure. This effort is as important as it is difficult, and the
research possibilities are often limited by the data. Indeed, the level of detail
that can be achieved in a model depends to a large extent on the data
availability and quality.

In macroscopic models, road crashes and exposure are often seen as parts of a
larger road system. The level of exposure and the occurrence of crashes cannot
be seen as isolated concepts, but should be related to the environment in which
they evolve. In this environment, factors like the weather, the introduction of
road safety laws or the general economic climate might influence the level of
exposure or the number of crashes counted. Therefore, a macroscopic model also
contains “explanatory” variables that describe the larger system in which traffic
and crashes occur.

As an introduction to the models that will be developed in the subsequent
chapters, an overview is given of the available statistics in Belgium that are
useful in macroscopic modelling. The sources for data on exposure, road crashes
and explanatory factors will be described. Note that this overview is focused on
the application in macroscopic time series models. It is therefore by no means
an inventory of available data sources in Belgium. A more general description of
road safety data sources in Flanders can be found in (Van Hout et al., 2004).

4.2 Data on exposure

As explained in the previous chapters, exposure is a key variable in road safety
research. The kind of analysis that can be performed therefore depends to a large
extent on the availability of exposure data. In particular, a time series model
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needs observations of exposure over several years or months, while for a cross-
sectional model different observations of exposure at a certain point in time
might be more useful. It goes without saying that historical time series data are
harder to find, as the data cannot be gathered in an ad-hoc experiment. For the
models developed in this study, mainly time series data are needed. Therefore,
an overview is given of the different data sources that can be used in this
respect. If exposure data is not available for a certain type of analysis, a proxy
variable may be used.

4.2.1 Data per type of road

4.2.1.1 Vehicle kilometres per type of road

The first and most important measure of exposure in Belgium is the yearly
number of vehicle kilometres, published by the Belgian government (Federal
Government Service for Mobility and Transport). This statistic is calculated for
motorways, regional roads and local roads. The total distance travelled is based
on fuel consumption (De Borger & De Borger, 1987).

Vehicle kilometres per type of road
(Belgium, 1970-2004, billion kilometres per year)
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FIGURE 5: Vehicle kilometres by road type

The distribution of traffic over the different road networks is done by the “GcLR”
method (Labeeuw, 2005). This method determines the global traffic evolution,
based on an estimate of the traffic intensity on each road section and on traffic
counts in the (spatial) neighbourhood or in the (temporal) past. Each year, the
number of vehicle kilometres per type of (motorized) road user and per type of
road are calculated. The number of vehicle kilometres travelled per type of road
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is shown in FIGURE 5. The distances travelled on the different types of road are
all monotonically increasing. However, transport on local roads is quite constant,
while motorways and provincial roads show substantial increases.

4.2.1.2 Road network length

Apart from the number of vehicle kilometres for each road type, the length of the
different road networks is known (Labeeuw, 2005). Although these series could
be used as an indicator for exposure, it is certainly a less accurate measure
compared to the number of vehicle kilometres. The road network length does not
take into account the traffic density. This is especially important for motorways,
where the distance travelled is increasing faster than the length of the motorway
network leads to suspect. Moreover, the official time series for road length are
put together from different data sources. Among them, various inconsistencies
can be found.

Vehicle kilometres per road network length

320
280
240
;o Total
200 S ] | Motorway
/ ———= Provincial
160 —-—- Local
1204
80

1970 1975 1980 1985 1990 1995 2000

FIGURE 6: Vehicle kilometres per road network length (index)

Also, it is known that the definitions of the road networks changed over time,
leading to artificial shifts in the length of the road networks. However, it is
instructive to consider the evolution of the number of kilometres driven per km
road network. An index of ratio of the vehicle kilometres to the road network
length is shown in FIGURE 6. The ratio in 1970 is set equal to 100 and
subsequent values are calculated relatively to this first year. Note the steady
increase in the index for the motorway network. The density on local roads is
increasing much slower.
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4.2.1.3 Traffic counts on motorways

Next to the yearly official statistics on the vehicle kilometres per type of road,
monthly motorway traffic counts are available (Federal Government Service for
Mobility and Transport). Monthly averages have been calculated for the whole
territory of Belgium, giving an indication of the traffic flows on motorways.
These counts are shown in FIGURE 7.

Vehicle counts on motorways in Belgium
(x1000000 vehicles, 1990-2003)
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FIGURE 7: Vehicle counts on motorways in Belgium

However, these counts are not available for the road networks, and there is no
indication at all of the number of kilometres driven by the counted vehicles.
Moreover, the series shows a significant jump at the beginning of the nineties,
which has been caused by a change in the count registration system and has
nothing to do with increased exposure. The two vertical bars indicate sample
breaks. These values are missing in the original data set. It is therefore clear
that the series of vehicle counts on highways shows some properties that are not
related at all to the developments in exposure. Using these counts as a proxy for
exposure is not desirable.

4.2.2 Exposure data per type of road user

4.2.2.1 Vehicle kilometres per type of road user

The distance travelled by motorised road user type is shown in FIGURE 8. Data
are available for personal cars, trucks, busses and motorcycles. Cars and trucks
are read from the left axis, busses and motorcycles from the right axis.
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Vehicle kilometres per type of road user
(Belgium, 1970-2004)
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FIGURE 8: Vehicle kilometres by road user type

The same time series are shown in FIGURE 9 on separate graphs. Over the last 30
years, the distance travelled increased considerably for all types of road users.
Comparing the values in 1970 with those in 2004, an expansion factor can be
calculated for each type. The number of busses and trucks is respectively 1.67
and 2.88 times higher in 2004. Cars travel by far the largest distance from all
vehicle types, with an expansion of 3.29. From 1990 onwards, the motorcycles
show a steady increase in the distances travelled. Compared to 1970, the
distance travelled by motorcycles is 8.83 times higher in 2004.

4.2.2.2 Vehicle park per type of road user

In the context of exposure of different types of road users, also the data on the
vehicle park (available from the Federal Government Service for Mobility and
Transport) is interesting. The yearly statistics give an overview of the number of
registered cars, busses, motorcycles and trucks. The vehicle park data are shown
in FIGURE 10. The number of cars, trucks and motorcycles seem to follow the
corresponding number of kilometres driven, but this is not the case for the
busses. While the distance travelled increased over time, the park reached a
maximum in the late seventies, and decreased until the late nineties. The quality
of this variable might be doubtful. In general, it is expected that the vehicle
park will be a less accurate measure of exposure than the number of vehicle
kilometres, because it does not take into account the use of the vehicles.
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Vehicle kilometres per type of road user
(Belgium, 1970-2004, billions per year)
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FIGURE 9: Vehicle kilometres by road user type

It can be useful, however, to calculate the ratio of the number of vehicle
kilometres to the vehicle park. This is done in FIGURE 11. These graphs show
that the number of kilometres driven per vehicle increases over time for the cars
and the busses. The distances travelled by trucks and motorcycles are realized by
a decreasing number of vehicles since 1990 for trucks and since 1995 for
motorcycles. Because of the increasing park for these vehicles, each vehicle
travels less on average.

Sometimes, data on the vehicle park on a monthly basis are needed. These
statistics are not available, but a proxy for the monthly changes in the vehicle
park can be created using the monthly vehicle registrations. If it is assumed that
the deletions of vehicles is constant over time, then the seasonality in the
vehicle park will resemble that of the registrations (Jaeger, 1999).
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Vehicle park per type of vehicle
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FIGURE 10: Vehicle park per type of vehicle

For the personal cars, the lorries and the motorcycles, the yearly changes in the
vehicle park were distributed over the months according to the monthly
registrations. The yearly statistics on the vehicle park are created every year on
1 August. It is therefore assumed that the park statistics represent the situation
in July every year. The difference between two July values is proportionally
distributed over the remaining months according to the monthly percentage of
registrations.
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Ratio of vehicle kilometres to the vehicle park
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FIGURE 11: Ratio of vehicle kilometres to the vehicle park

In FIGURE 12, the created series are shown on the left graph. The vehicle park of
cars is projected on the right axis, while the number of trucks and motorcycles
are read from the left axis. All types of vehicles show an increase over time, and
the cars and lorries clearly outnumber the park of motorcycles. However, the
right graph shows an index of the evolution of the number of cars, lorries and
motorcycles. All observations in July 1973 are set equal to 100 and later values
are calculated proportional to this starting point. From this graph it is clear that
the increase in the number of motorcycles is strikingly larger than for cars and
lorries. Having a comparable growth rate until the early nineties, the number of
motorcycles completely diverges in comparison with the number of lorries and
cars. Itis not inconceivable that this evolution in the composition of the vehicle
park will have an effect on road safety.
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Vehicle park of cars, trucks and motorcycles Index of vehicle park of cars, trucks and motorcycles
(monthly data, 1973-2004) (monthly data, 1973-2004)
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FIGURE 12: Vehicle park of cars, lorries and motorcycles

4.2.3 Additional sources for exposure data

All official statistics presented up to now suffer from three important restrictions.
First, they do not report the distance travelled by non-motorized modes of
transport (pedestrians, bicyclists, etc.). The statistics are useful for aggregated
studies on road safety, but they are limited in the number of road user groups
that can be analysed. Especially in relation to road crashes, it is important to
have an indication of the exposure of vulnerable road users. Second, no
information is given on the special characteristics of the road users, although it
is known that road safety and exposure differ substantially over various age and
gender categories. Third, with the yearly data, there is no possibility of
measuring seasonal (monthly) variation in exposure and road safety. If the level
of exposure and the occurrence of crashes show a specific distribution over the
months of a year, this would never be seen with yearly data. To deal with these
restrictions, some other data sets will be introduced. First, the Flemish travel
survey data can be used to obtain exposure on vulnerable road users, albeit not
in a time series format. Second, population data offers insight in the age/gender
distribution of the road users. A solution to the absence of monthly exposure
data is given in the next section.

4.2.3.1 Flemish travel survey data

To measure the exposure of non-motorized transport, and to distinguish between
various groups of road users in terms of age and gender, studies are done on
travel survey data. In the Flemish travel survey for the year 2000 (Zwerts &
Nuyts, 2004), trips of road users (car drivers, car passengers, pedestrians, bike
and motorbike riders, public transport users) were registered for the period
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January 2000 - January 2001. It is based on a random sample of 2823
households, including 7638 people who were more than 6 years old. In total,
21031 trips were registered. People participating in the survey were given diaries
to record the trips made during two specified days in the survey period, but only
the data of the first day are retained because of the less accurate registrations on
the second day (Zwerts & Nuyts, 2004). Especially short trips, shopping activities
and the transport mode were less often reported than on the first day.

Since data was recorded on person level, also the age and gender of the
respondents are available. From the travel survey data, an exposure measure (the
number of kilometres travelled) is derived for various user groups based on the
average daily number of kilometres and available population statistics
(population density for each age-gender combination). As the travel survey has
been conducted in one year, no time series can be derived from it. For
investigations on this level of detail, a cross-sectional setting will be used (see
Chapter 8).

4.2.3.2 Population data

A useful data source that allows making a distinction between road user groups in
terms of age and gender is the official population database from the Belgian
government. The population is a key indicator of the Belgian economy,
maintained by the Belgian National Bank (Belgostat). Also from a road safety
point of view, it is not illogical to consider the risk according the age and gender
of the road users. It is known that young persons are often involved in road
crashes. Moreover, looking at the official statistics (D’Hondt, 2002), road crashes
are clearly one of the most important death causes for young persons. In 2001,
approximately 36% of the fatal road victims was between 10 and 29 years old
(CARE, 2004).

The official statistics show the number of inhabitants for each age/gender
category. Although it is not a perfect measure of exposure (nothing is said about
distances travelled), the population data provides an upper bound of the number
of road users. Given the assumption that not the whole population travels
(especially for older people), the risk of being killed will be underestimated.
However, current changes in the structure of the population might be reflected in
the data.
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FIGURE 13: Population data for various age/gender groups

As an illustration, the population number for five age categories are given in
FIGURE 13: 0-14, 15-24, 25-44, 45-64 and 65 and older. It can be seen that the
youngest group of road users has been decreasing for about 25 years, and seems
to be stabilising in the late nineties. The group of older people is growing. It is
also interesting to note that females are the smallest group among the younger
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people, and the largest group among the older. It is clear that these changes in
population might also be reflected in the level of exposure to road crashes.

Number of cars per "driving" population
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FIGURE 14: Number of cars per “driving” population

If monthly population data are needed, the SAS procedure EXPAND can be used to
change the data from yearly to monthly frequency. The procedure fits cubic
spline curves to the data to form continuous-time approximations of the series
(SAS Institute Inc., 2004a). In combination with the (created) monthly data on
the vehicle park, the number of vehicles per (part of the) population can be
calculated. For example, it might be interesting to know the number of cars per
person in the “driving” population. Given the available population statistics,
persons aged 15-74 may be roughly considered as the driving population. The
evolution of the ratio of the car park to the driving population is shown in
FIGURE 14.

4.2.4 Creation of monthly exposure based on fuel consumption

The overview of available exposure measures given above indicates that not all
variables are suited for every kind of road safety analysis. For an analysis on a
monthly basis, the traffic counts on motorways are the only available statistics.
Unfortunately, they offer a partial representation of traffic on the Belgian
motorway network and are erroneous for some periods. Therefore, an effort is
needed to develop a monthly exposure measure from another proxy variable that
is registered every month, namely the statistics on fuel deliveries for domestic
consumption in the transport sector, obtained from the Belgian Ministry of

62



Economics (Department of Energy). In combination with yearly exposure data
and using some common sense assumptions, a measure of exposure on a monthly
basis can be derived.

In this section, a method is presented to calculate an exposure measure (number
of kilometres driven) for Belgium, based on the monthly fuel deliveries, the
average fuel economy of cars and the vehicle park. In short, the procedure is as
follows.

1. The monthly fuel sales (in metric tons) per type of fuel are corrected for
extreme December values and transformed into litres.

2. Average fuel economy by fuel type is calculated based on a weighting
scheme that takes into account the vehicle park.

3. Based on the results of step 1 and step 2, the number of kilometres per
fuel type per month is calculated. The sum of these values is an initial
estimate of the number of kilometres driven per month. The sum over
the months per year is an initial estimate of the number of kilometres
driven per year.

4. A correction factor for each year is calculated by comparing the initial
estimate of the number of kilometres driven per year and the
corresponding official statistic.

5. A final estimate per month is obtained by multiplying the estimated
values with the correction factor.

The first three steps of the procedure result in a number of kilometres that is
basically derived as the quantity of fuel deliveries in litres divided by an average
fuel economy (litres consumed per 100 kilometres driven). As the fuel deliveries
are on a monthly basis, the resulting number will be an initial estimate of the
number of kilometres driven in each month. However, on a monthly basis, there
is no other quantity that can be used to assess the quality of this monthly
number. The only reference that one can think of is the officially reported yearly
number of kilometres driven. In order to bring the results in line with the official
yearly statistics, correction factors are calculated by comparing the sum of the
obtained values for each year with the corresponding official value. This is done
in the last two steps of the procedure. In the subsequent sections, the procedure
is applied to the Belgian data.

It is clear, however, that using fuel deliveries as a basis for exposure calculation
has some pitfalls, as mentioned for example in (COST 329, 2004). First, fuel
prices may lead to changes in fuel sales, especially at the border of the country.
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This may lead to the phenomenon that Belgian people buy their fuel in the
neighbouring countries and subsequently travel on Belgian roads. Also, it is
known that Belgium is a transit country, meaning that many kilometres on
Belgian roads are driven by foreigners with fuel that was bought elsewhere. Both
situations can result in an underestimation of the number of kilometres driven,
when calculated on the basis of fuel delivery data. Another problem is that there
might be a time lag between the fuel delivery and the consumption in a vehicle.
That is, fuel can be bought in one month and only effectively consumed in the
next month. These transitory effects in space and in time are typical of fuel
delivery data, and are not explicitly corrected for in the analysis. However, using
fuel deliveries as a proxy is still felt as a logical choice in the context of this
study, as there is, at the moment of writing, no other valid alternative.

4.2.4.1 Monthly fuel sales correction

From official statistics (Federal Government, Ministry of Economics, Department
of Energy), the monthly consumption of gasoline, diesel and LPG used for
transport by all kinds of vehicles is obtained. The data are available for the
period January 1986 - December 2004. For gasoline, the series consists of the
deliveries of various kinds: leaded or unleaded, high-octane or low-octane, and so
on. The time series are presented in FIGURE 15.

Some problems arise with these series. First, the data are in metric tons, instead
of litres. The fuel sales have to be transformed, taking into account the average
density of the fuel products. Second, some extreme values are observed in the
series.  Unexpected high or low values in December months are caused by
accounting principles. The last month of the year is often used to correct the
registration of deliveries of the year. These corrections also cause the negative
value for LPG in December 1993.
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FIGURE 15: Deliveries of gasoline, diesel and LPG in Belgium

To transform the series from metric tons into litres, average densities (at 15°C)
of 745 km/m3 for gasoline, 830 kg/m3 for diesel and 510 kg/m3 for LPG are used.
These values were communicated by the Department of Energy from the Ministry
of Economics. As an example, consider a delivery of 5000 metric tons of Diesel.
According to the densities in the table, this results in:

, 1000kg ,
5000 metrictons =5000x ———————— = 6711 409 litres (9)

[ 745 kg j
1000 Litres
To correct for the extreme values in the series, December observations in seven

years were given missing values (1989 and 2003 for gasoline, 2001 and 2002 for
diesel and 1993, 1999 and 2001 for LPG).
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FIGURE 16: Corrected deliveries of gasoline, diesel and LPG in Belgium

The SAS procedure EXPAND was used to interpolate the missing values. The
procedure fits cubic spline curves to the non-missing values to form continuous-
time approximations of the series (SAS Institute Inc., 2004a), including the
missing values. Because the changes made to the seven December months
affects the totals of the corresponding year, the correction of the December
month is divided over the other months of the year. The graphs for DIESEL, LPG
and GASOLINE with the corrected months now have less extreme values and only
positive deliveries, as can be seen in FIGURE 16. These series will now be used to
estimate the number of kilometres driven.

4.2.4.2 Calculation of average fuel economy

Data on the average fuel economy of various kinds of vehicles are not available in
Belgium, at least not in the form of time series. From the official statistics in
the Netherlands (Statistics Netherlands), data on the average fuel economy for
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personal cars per fuel type was obtained. Because there is no similar data set
available for Belgian cars, it is assumed that fuel consumption for Dutch and
Belgian cars is comparable. The Dutch data set starts in 1987 and ends in 1997,
and should therefore be extended by estimation back to 1986 and up to 2004 in
order to fit the available data on fuel deliveries. The estimated values are
obtained from three nonlinear (exponential) models to estimate the values of the
missing years. The model is of the form y, = ¢ + exp(ax, + b), where y, is the fuel
economy to be estimated and x, is an index for the year (1985 is set equal to 1).
The estimated equations are as follows:

Gasoline: 'y, =8.31+exp(—0.39x, +0.05)
Diesel: y, =6.29+exp(—0.07x, +0.19) (10)
LPG : ¥, =9.90 +exp(-0.19x, +1.25)

This estimation procedure results in a yearly average fuel economy per fuel type,
as shown in FIGURE 17. The models only give a rough fit to the data (not all
parameter estimates are significant), but they are useful to show the trend.

Estimated fuel economy (litres per 100 km)
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FIGURE 17: Estimated fuel economy curves

The obtained figures, however, are only valid for passenger cars. Data on fuel
economy for motorcycles and trucks for the period of analysis are not found. In a
Dutch publication (Transport en Logistiek Nederland, 2002), a comparison is
made between the average fuel economy of trucks in 1965 (49 litres per 100 km)
and 1998 (33 litres per 100 km). Also other sources mention fuel economies of
that order. Based on these few figures, we assume that trucks and busses have
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an average fuel consumption that is four times larger as the fuel consumption of
passenger cars. Further, it is assumed that motorcycle fuel consumption is
comparable to that of passenger cars.

Starting from the estimated values of the fuel economy of passenger cars and the
assumptions made for trucks, busses and motorcycles, an average fuel economy
for each type of fuel will be derived. Because the distribution of the fuel
consumption over the various kinds of vehicles is not available, the vehicle park
is used to calculate an average weighted fuel economy for each type of fuel.
Consider, as an example, the vehicle park for the year 2000 (statistics for August
1%, 2000). TABLE 3 contains the distribution of the vehicle park over the three
main kinds of fuel (column percentages). It can be seen that personal cars
represent the largest part of the vehicle park. Among the diesel vehicles, the
trucks account for about 26%.

TABLE 3: Vehicle park per vehicle and fuel type (2000)

Vehicle type  GASOLINE DIESEL LPG

Personal car 2732352 1867351 59059
89.03% 73.27% 86.14%

Bus 214 14 347 47
0.01% 0.56%  0.07%
Truck 68 905 666 796 9 453
2.25% 26.16% 13.79%
Motorcycle 267 529 34 0

8.72% 0.00% 0.00%

Total 3069 000 2548528 68 559

The fuel economy of the various vehicle types is subsequently weighted according
to the distribution of vehicle types over the various types of fuel in the vehicle
park. For gasoline, a fuel consumption for personal cars of 8.31 litres per 100 km
is noted, so the weighted average gasoline consumption equals 8.31*(97.75%) +
33.24*(2.25%) = 8.87 litres. For the year 2000, an average weighted gasoline
consumption of 8.87 litres per 100 km is therefore taken into account. In the
same way, averages of 12.07 litres for diesel and 14.23 litres for LPG are
obtained. For the other years, the calculation is similar. Average fuel
consumption values for the months between the obtained values are estimated
using linear interpolation. Note that interpolation is done between the July
months. Since the weighting schema is based on the vehicle park (measured on
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1 August each year), it is assumed that the weighted average fuel economy is
valid for the month of July each year, and interpolation is done for the other
months. The final weighted fuel economy curves are shown in FIGURE 18.
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FIGURE 18: Weighted fuel economy

4.2.4.3 Estimation of the number of kilometres

Using the data on fuel deliveries (in litres) and fuel economy (in litres per 100
km), a measure of kilometres driven per month for each fuel type can be
calculated by dividing the fuel deliveries by the fuel economy. The sum of these
values per month is an initial estimate of the number of kilometres driven.
However, to bring the estimated number of kilometres in line with the official
yearly statistics (Federal Government Service for Mobility and Transport), a
correction factor is calculated. This factor equals the ratio of the reported
number of kilometres to the sum of the estimated monthly numbers of the year.
In a sense, the correction factor can be seen as a measure of accuracy of the
proposed method. It is applied to all monthly figures to make sure that the
yearly number matches the official statistic, supposing the latter to be correct.

FIGURE 19 shows the correction factors for each year. These are scaled around
zero by subtracting the correction factor from one. A positive correction factor
means that the estimated number of kilometres is higher than the official
statistic for the given year. For example, the year 1986 shows a correction factor
of 2.1%, meaning that the estimated value was higher than the official statistic,
and a correction of (1-0.021) = 0.979 was needed to make them correspond.
That is, the official statistic for 1986 is 97.9% of the estimated value. It can be
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seen that in general only small corrections are needed (a maximum of 6% in
absolute value), indicating that the values obtained with the proposed procedure
are quite close to the official statistics.

Correction factors for the yearly number of kilometres driven
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FIGURE 19: Correction factors for the yearly number of kilometres driven

It is interesting to note that there seems to be a certain pattern in the correction
factors. Until the early nineties, the estimated values were systematically above
the official statistics, while the reverse is true for more recent years. This
indicates that the official statistics and the fuel deliveries are related in a
specific, yet unknown manner. Although this finding deserves further attention,
it will not be investigated here.
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FIGURE 20: Estimated number of kilometres driven
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Once the correction factors are applied to the monthly data, we obtain an
estimate for the monthly number of kilometres driven in Belgium. The result is
shown in FIGURE 20. This series can now be used as an input in road safety
models for monthly data. In Chapter 6, models are developed based on monthly
data. Although it is technically possible to include a yearly measure of exposure
in a model for the monthly number of fatalities, it is desirable to include
variables with the same frequency to capture possible seasonal effects in the
data. The measure of exposure that was derived here, will therefore be used in
these models to explain developments in road safety on a monthly basis.

4.3 Data on road crashes

Statistics on road crashes are always at the basis of road safety studies. If
research is expected to enhance the insights in road safety, then a consistent
framework for crash reporting is not an option but a necessity. Data on crashes
are, in principle, available from three sources (COST 329, 2004): police
registrations, hospitals and insurance companies. In Belgium, the main source of
information is the registration done by police officers when a crash occurs. The
data sets gathered by hospitals and insurance companies are not easily
accessible. They could, however, provide an added value to the existing data
sources, as the police registrations suffer some difficulties. The quality of the
data gathered by hospitals and insurance companies is usually high, because
these data are important for the correct settlement of medical or juridical
dossiers. A disadvantage of these sources is the partial representation of the
problem, as the data is generally not available for every crash. Also, the data
sources are mostly not accessible for research purposes, because of the presence
of personal information. The use of these data is considered as an intrusion on
the victim’'s privacy. Moreover, the data sets contain crucial information to
support the future business of these companies, and are therefore kept private.
In this section, the available Belgian crash data, the registration process of these
data and the known problems of erroneous registration and under-reporting are
discussed.

4.3.1 Definitions and registration procedure

In Belgium, traffic accidents are defined as accidents that occurred on a public
road, which are reported to the police and which lead to casualties (OECD, 1998).
Although not explicitly stated, this definition is more or less in line with the
definition of a traffic accident in the Geneva Convention: “an accident which

71



occurred or originated on a way or street open to public traffic; which resulted in
one or more persons being killed or injured and in which at least one moving
vehicle was involved” (COST 329, 2004). From 1973 onwards, material damage
only crashes are no longer included in the official Belgian statistics. An injury
accident is an accident occurring on a public road and involving at least one
moving vehicle, recorded by the police and leading to one or more persons being
injured (fatal or non-fatal). To define a fatal injury, Belgium follows the standard
definition given by UN/ECE (Economic Commission for Europe, 2005): any person
who was killed outright or who died within 30 days as a result of the accident.
For a serious injury, a hospitalisation of at least 24 hours is required. A slightly
injured is a person injured in an accident who is not fatally or seriously injured.

The majority of road crashes is settled by mutual agreement between the parties
involved. In this case, there is no police intervention. This is especially true for
crashes with material damage only, but one can assume that also part of the
injury crashes is never reported. If a police officer intervenes, an official report
of the crash is made. This report is an objective description, which serves as a
basis for further legal and administrative treatment of the crash.

For injury crashes, an analysis form (“Analyseformulier voor verkeersongevallen
met doden of gewonden”, abbreviated as VOF) is completed, based on the
information in the official report. This form is, in ideal circumstances, filled in at
the location of the crash. Especially the description of the manoeuvres and the
location is preferably recorded immediately. After the crash, the analysis form is
send to the National Institute for Statistics (NIS). The NIS is responsible for the
further treatment and publication of the crash data.

4.3.2 Data problems

Although the police forces are supposed to assess the scene of the crash, one has
to come to the conclusion that the corresponding statistics are not complete. It
is generally known that not all traffic accidents that should be reported to the
police are also actually reported. This phenomenon, called under-registration, is
a general problem in most countries, and its magnitude is hard to determine. In
the past, the partial registration of road crashes has not always been considered
as a major problem, as the registration was not entirely done for road safety
research (OECD, 1997b). In (COST 329, 2004), several causes for under-reporting
are given. First, the involved road users may not be aware of the fact that the
accident should be reported to the police. This may be the case when the injury
is so minor that it does not require any further attention. Second, it may be that
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the injuries are not apparent at the time of the crash, but only appear some time
later. Consequently, the victim is not regarded as “lightly injured”, and no
reporting is done. Third, it is possible that people forget reporting the accident
because they are rescuing victims, calling medical assistance or providing any
other kind of help at the scene of the accident. Often, everyone expects others
to report the accident. Fourth, the persons involved in the accident might have
their own reasons for not reporting it to the police. This may be because of fear
of prosecution, or an expected increase in the future insurance payments when
no-claims bonuses are missed. Fifth, the police files do not contain all accidents.
Depending on the kind of crash, the police will or will not intercede at the
location of the crash. This is especially true for damage only crashes, where
normally no police intervention is required. Also police work load issues may
lead to erroneous or incomplete reporting. Sometimes, there may even be a kind
of selectivity in the reporting, because of a special interest in particular crashes
or in non-reporting.

If a registration of a crash is done, also another form of under-reporting might be
present. With the current analysis form, some important variables are not
registered at all. Questions concerning the responsibility for the crash or the
efficiency of the emergency services are not asked. Of course it is not always
possible to determine the essential (causal) variables at the place and time of a
crash, but a well-considered analysis form should at least give an indication of all
major aspects known from previous research. As it is practically impossible to
register the crash circumstances in all details, it is necessary to make a profound
selection of the registered variables, in agreement with the police officers who do
the work. This should make it possible to balance the feasibility and the
desirability of the registration of certain information in the crash data base.

The under-reporting issue can lead to several problems in the road safety
statistics (COST 329, 2004). First, the modal split influences the average
reporting rate. If the level of reporting is very low for bicycle crashes, then the
completeness of the registration will depend on the distance travelled by
bicyclists and the corresponding number of crashes.

Second, the reporting rate can vary by the type of road users involved. In a
comparison of police and hospital statistics for Norway, Lereim (1984) found
differences in registration of about 50% for accidents with motor vehicles, and
30% for accidents without motorised road users. The level of reporting was
highest for four-wheel motorized road users and pedestrians, and very low for
bicycle-only accidents. In (De Mol & Boets, 2003), an overview is given of
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comparison between hospital data and police records for the SUN countries
(Sweden, United Kingdom and the Netherlands) and the United States. The
objective of the research was to obtain more complete and representative
accident statistics by linking and comparing hospital data with police records.
The research showed that not all countries analysed in the report are working in
the same manner. In the Netherlands only a periodic coupling of the data
sources is done, whereas in Great Britain the coupling is limited to specific
regions. In the United States, efforts are made to create a data warehouse
structure, while Sweden automated the coupling of medical reports and accident
data.

Third, the level of reporting may vary with the severity of accidents. There is a
clear relationship between the gravity of a crash and the percentage of crashes
reported. In a British study (James, 1991), crash data from police reports and
hospitals were compared. It turned out that crashes with fatalities were almost
completely reported, whereas registration was between 30% and 90% for crashes
with serious injuries and between 20% and 80% for crashes with light injuries. It
was also found that the reporting rate depends on the road user group involved.
The rate is highest for vehicle occupants and pedestrians, and lowest for
bicyclists. In (Alsop & Langley, 2001), under-reporting of seriously injured motor
vehicle traffic crash victims in New Zealand was investigated with respect to
crash, injury, demographic and geographic factors, by comparing police records
with hospital data. They found that in 1995, less then two thirds of all
hospitalised victims were recorded by the police. Also, the reporting rates varied
significantly by age, injury severity, length of stay in hospital, month of crash,
number of vehicles involved, whether or not a collision occurred, and geographic
region. In many other papers, hospital and police data are compared (Harris,
1990; Lopez et al., 2000; Rosman & Knuiman, 1994). From these studies, it is
clear that the more serious the injury, the higher the probability of being
registered.

Fourth, for the registered crashes, one is not always certain that the reported
data effectively describe the crash. Some characteristics may be registered
incorrectly, which makes it hard to recover the rights and the wrongs of the
crash. Examples are the exact location of the crash or the fact whether or not
seat belts were used. Other questions on the analysis form leave so much room
for subjective interpretation that two police officers might come up with a
completely different answer for the same question. This may lead to biased
results concerning the gravity of the crash, often based on the experience of the
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police officer. Some issues are so vaguely described or so complex to evaluate
that a correct answer is almost impossible. Also the length of the analysis form
and the number of questions may lead to incorrect or incomplete crash
registration.

These shortcomings in the registration of crash data show that the process might
be improved in various ways. A main issue is of course that registration should
be done shortly after and at the location of the crash. This may exclude
important registration errors or incomplete forms. A related issue is the once-
only registration of the data. If crash data is recorded partly at the accident,
partly in the office, in the hospital or at the insurance company, the probability
of errors and inconsistencies increases. Further, data sources at hospitals and
insurance companies should be made accessible for scientific research. Given the
state-of-the-art possibilities of database management, it should be possible to
extract tables that do not suffer from privacy issues. Researchers are not
interested in the private information on road victims (private address, number
plate, etc.), but try to find patterns in the data based on general characteristics.
It does not seem advisable to shield these data any longer from the research
community merely for privacy reasons. Lastly, given the multidisciplinary
character of road safety, it is desirable to have the possibility to link different
data sources. In particular, it would be interesting to connect crash information
with weather data, infrastructural properties or vehicle engineering. This allows
the investigation of road safety in all its aspects.

4.3.3 Improving data sources

The Belgian governments, both at the local and federal level, recognised the
problems related to the crash data. In the past 5 years, many initiatives were
started to improve the quality of data gathering and processing. First, the
information gathering process is more and more supported by information
systems. The registration of road crashes is made part of the ISLP system
(Integrated System for the Local Police). This is an integrated system that allows
the single registration of crashes in one location, minimizing the probability of
inconsistencies in the data. The system is gradually being introduced in the
various police zones of the country. Also the police officers are more and more
equipped with electronic devices that facilitate the registration of crashes, which
will considerably enhance the quality of the crash data in the future. Also the
National Institute of Statistics puts in great efforts to register the road safety
data as correctly as possible and to speed up the publication of the statistics.
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Second, in the research project “Innovative Spatial Analysis Techniques for Traffic
Safety” (Steenberghen et al., 2003), various universities worked together on the
localisation of road crashes by means of GIS-based applications. Starting from
the raw crash data from the National Institute of Statistics (NIS), the regional
road administrations in Flanders and the Walloon region check the location
attributes of crashes, and correct them if necessary. The localisation of crashes
starts from either information on the street name and house number (address
matching) or on the road number and hectometre number (dynamic
segmentation). The results from this project can be used to optimize the
investments in road infrastructure, directed by prioritization of the treatment of
hazardous roads and intersections.

Third, the State-General for Road Safety (Staten-Generaal voor de
Verkeersveiligheid, 2001) pointed out the necessity of having reliable and
complete sources of crash data. Subsequently, the research project “Exploitation
of Road Safety Data” was funded by the Federal Research Policy (Kinet et al.,
2004). In this project, the existing registration systems were analysed and
compared with European initiatives on standardising road crash information.
Next, the needs of the involved parties (police, government, road maintenance
authorities, researchers, etc.) were studied and translated into an IT format that
can be used as a basis for the development of new information systems for crash
data registration.

Fourth, initiatives on the European level demand attention for the data problems.
In the eighties, the “International Road Traffic and Accident Database” (IRTAD)
was set up as a tool for international comparisons and national road safety
development assessment. To date, the IRTAD database is an example of an
international collection of crash data, with detailed, up-to-date and consistent
time series data on road safety. It is currently managed by the joint OECD/ECMT
Transport Research Committee. Another European initiative is CARE (Community
database on Accidents on the Roads in Europe). This database started in the
nineties and contains information on road crashes resulting in death or injury.
Compared to other databases, CARE offers a high level of disaggregation, with
data on individual accidents. The purpose of the CARE system is to provide a
powerful tool which would make it possible to identify and quantify road safety
problems throughout the European roads, evaluate the efficiency of road safety
measures, determine the relevance of Community actions and facilitate the
exchange of experience in this field (CARE, 2004). The data of the CARE
database has extensively been used in various road safety studies, and is
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currently at the basis of the activities of the SafetyNet consortium . This is an
integrated project that serves as a “Road Safety Observatory”, as it was expressed
by the European Commission in its White Paper on road safety (European
Commission, 2001). The objective of SafetyNet is the creation of a co-ordinated
set of data resources that will support the Commission in its road safety policy.
These European initiatives clearly indicate the increasing international awareness
of the importance of road safety monitoring. More and more, national statistics
will be used for international comparison among (European) countries. It is
imperative to work on a coordinated policy with regard to standardisation,
definition and dissemination of crash data.

4.3.4 Motivation for the use of official statistics

In the subsequent chapters, data on road crashes will be used in a diversity of
formats. The data are, however, always derived from the official database on
road safety, published by the Belgian National Institute of Statistics. There are
some reasons for working with these data. The most obvious one is that this is
the only available database on road crashes. It is very probable that hospital
data and information from insurance companies are available as well, but at the
time of writing, these data sets are not publicly accessible and not linked with
the official crash database. Also, the official database, gathered from the police
registrations, is the only one that, at least theoretically, should be complete.
Every database from a hospital or an insurance company will only cover a subset
of crashes. A second reason is to be found in the type of analysis chosen for our
research. In (almost) all studies, time series data is used, either on yearly or
monthly data. To obtain a data set that is large enough for statistical treatment,
data on a considerable number of years should be available. This is the case for
the official statistics, and it is questionable that the same level of detail would
be available in hospital or insurance data. Third, as indicated in section 4.3.2
above, the quality of registration increases with the gravity of the crash. Data on
fatalities and, to a lesser degree, crashes with seriously injured road users are
assumed to be registered quite correctly. Therefore, focus will be on these
groups of crashes and fatalities (although some models for slightly injured
victims can be developed as well). Moreover, in the context of time series, it can
be assumed that the level of under-reporting might be consistent over time. This
has been investigated by Maas and Harris (1984) for the Netherlands. The
authors compared the incomplete police data on road victims with hospital data.
They found that the extent of under-reporting was constant in the late seventies,
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and that, in spite of some differences, a similar general data structure appeared
in both databases. The authors concluded that the police data is reliable for time
series studies, even for various transport mode / age group combinations.
Although we are aware of the drawbacks and the limitations of the official
statistics, they will be used throughout this document.

4.3.5 Description of the available data

Statistics on road safety in Belgium have been regularly published since the early
fifties. However, some major changes have been made in the reporting practices
throughout the years (BIVV, 2002). Until 1972, the number of fatalities was
derived from the statistics on death causes, based on the number of death
announcements. From 1973 onwards, these statistics are based on the number of
victims reported by the office of the public prosecutor to the National Institute
of Statistics. In 1971, the definition of a seriously injured victim was changed to
the one that is still used today. From 1973 onwards, a new registration system
was brought into use. In 1990 another change occurred in the registration
system, but no changes were made to the definitions. To make sure that enough
years of data can be used in the analyses, without major changes in definitions
or registration procedures, it is decided to use the data on road crashes from
1973 onwards.

At the time of writing, these statistics are available up to and including the year
2004. Aggregated statistics on a yearly or monthly basis are available for the
number of victims killed, seriously injured or lightly injured, and the
corresponding number of crashes. For each year, detailed statistics are available
on the specific circumstances of the crash. In particular, it is possible for these
years to analyse subgroups of crashes or road users.

In the introductory chapters, it was emphasised that the models developed here
are macroscopic in nature. Therefore, road crashes will not be investigated in all
detail. Also, it was mentioned that, whenever possible, road safety data will be
analysed in combination with a measure of exposure. The road safety data that
can be used and the level of detail of the analysis will therefore be determined by
the availability of exposure data. On a yearly basis, exposure data are available
in the form of the number of vehicle kilometres in total, per type of road and per
type of road user. Corresponding sets of crash data include the total number of
crashes and victims, the number of crashes and victims per type of road
(motorways, regional roads and local roads), the number of crashes and victims
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per type of road user (personal cars, motorcycles, buses and trucks) and the
number of crashes and victims per gender and age category.

Annual number of fatalities by age category
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FIGURE 21: Annual number of fatalities by age category

As an example, consider the evolution in time of the number of fatalities in 5
different age groups: 0-14, 15-24, 25-44, 45-64 and 65+. The data are extracted
from the official Belgian road safety statistics, and the curves are shown in
FIGURE 21. Young persons (15-44 years old) clearly have the largest share in
road fatalities for the last 30 years. Older and younger persons have a lower
number of fatalities. This presentation of road fatalities shows the added value
of analyses that make a distinction according to the properties of the road users.
Some examples of this kind of analysis will be shown in Chapter 7.
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FIGURE 22: Number of fatalities and persons seriously injured in Belgium
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On a monthly basis, there currently is no valid statistic available that can be used
as an exposure measure. However, as shown in section 4.2.4, a monthly
indicator of the number of kilometres driven can be derived for the whole of
Belgium from monthly fuel sales, vehicle park and average fuel consumption. As
this is an aggregated exposure measure, it can be used in the analysis of
aggregated road safety, namely the total monthly number of crashes and victims
in Belgium. The monthly time series for the number of persons killed or seriously
injured are shown in FIGURE 22.

4.4 Explanatory variables

When explanatory models for road safety are developed, a set of covariates is
needed that can be used to explain (part of) the variation in the number of road
crashes or victims. The use of explanatory variables is, however, not always
possible, for several reasons. If models are developed using yearly data, the
number of observations is usually small, which seriously restricts the number of
explanatory variables that can be used. If monthly data are used, the number of
variables that can be included is generally larger. However, monthly time series
on explanatory variables are often not available. When developing macro models,
the researcher typically has to decide on a trade-off between model frequency
and the number of variables in the model. In this section, an overview is given
of several classes of explanatory variables: economic variables, weather
conditions, laws and calendar variables. These variables are selected from various
official sources, based on their quality, availability and accessibility. Note that
in some models, exposure will be treated as an explanatory variable as well. The
exposure measures that are available were discussed in section 4.2.

4.4.1 Economic variables

4.4.1.1 Fuel price

A first economic variable that will be considered is the average fuel price per
kilometre. Data on fuel prices are available for many years (Ministry of Economic
Affairs, Department of Energy). The fuel price used in the analyses is an average
price calculated from the prices of the different kinds of fuel (medium, normal,
normal unleaded, super, super 95, super 98, diesel, LPG) and includes all taxes.
As prices are registered in nominal values, they partly reflect variations due to
inflation. To remove this effect, real prices are calculated by correcting the
prices for the changes in the consumer price index (with base year 2004). The
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real prices are then divided by the number of kilometres driven to obtain an
approximation of the fuel price per kilometre. The time series of the average real
fuel prices per kilometre is shown in FIGURE 23.
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FIGURE 23: Average fuel price

4.4.1.2 Unemployment

A second economic indicator is the degree of unemployment (data from Eurostat,
obtained from the Belgian National Bank, Belgostat). This variable is shown in
FIGURE 24 for the years 1983-2005.
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FIGURE 24: Degree of unemployment in Belgium
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The degree of unemployment expresses the number of unemployed persons as a
percentage of the active population. The unemployment variable is used as an
economic indicator as well as a measure of social development in a country. It
might have an influence on both the level of exposure and the level of road
safety. The graph shows that unemployment is oscillating in periods of about ten
years, together with smaller monthly (seasonal) fluctuations.

4.4.2 Weather conditions

The climatologic conditions in a country will undeniably have an impact on both
the level of exposure and the level of road safety. Depending on the weather,
the traffic can have a different composition. A sunny weekend may result in
more recreational traffic than a normal weekend. Frost and snow may restrain
people from travelling. These decisions of road users may in turn affect the level
of road safety. But there is also a direct effect of the weather conditions on road
safety. Due to slippery roads, rainy days may be more risky than sunny days, and
road users may adapt their speed or driving behaviour accordingly.

To test for climatologic conditions in the models, four weather variables are
considered, all measured on a monthly basis: the average temperature (in degrees
Fahrenheit), the number of days with frost, the number of days with precipitation
and the number of days with snow. The variables are gathered by the Belgian
Royal Meteorological Institute and published by the National Institute of
Statistics. The first three variables are recorded in the climatologic centre in
Ukkel (in the centre of Belgium), while the number of days with snow is
measured for the whole of Belgium. The four time series of climatologic variables
are presented in FIGURE 25. Note that the climatologic variables are highly
seasonal and might therefore be related to the seasonality in road safety data.
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FIGURE 25: (limatologic variables for Belgium

4.4.3 Laws and regulations

Five dummy variables are used in the models to assess the impact of laws and
requlations that came into force at a certain date. It is not always possible to
isolate the effect of a single measure, because sometimes more regulations
become effective at the same moment in time. Nevertheless it makes sense to
test whether policy enforcement at a certain point in time is indeed effective.
The requlations considered are summarized below. The main focus of the laws
included in the models is on seat belt wearing, speed and impaired driving. For
each of the dummy law variables, the value is equal to zero before the law, and
switches to one as from its introduction.

— From June 1975 onwards, the use of seat belts is mandatory. In the
beginning, the law stated that car drivers and passengers should use the seat
belt if they are available. This means that the effect of this law has only
become gradually visible.
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— In January 1991, some regulations were introduced to improve the position
of vulnerable road users in traffic. Among the list of regulations, one can
find that (1) bicyclists of age less than 9 are allowed to cycle on pavements
or raised shoulders, (2) vehicles should be extremely careful in the
neighbourhood of crossings for pedestrians or bicyclists, (3) bicyclists are
allowed to drive side by side (except in some specified circumstances) and
(4) if a crossing for bicyclists is available, bicyclists should use it, taking
account of possibly approaching cars. Finally, apart from the measures for
vulnerable road users, rear seat passengers in cars are required to wear a seat
belt.

— One year later, in January 1992, some regulations were introduced on the
load of vehicles, cycling tourists and speed. A very important law is the speed
limit of 50 km per hour in urban areas, and other specific speed limits for
different user groups, like motorcycles and trucks. Also, 90 km per hour
became the new speed limit at road sections with at least 2x2 lanes without
a raised shoulder or any other separation of the opposing lanes.

— Starting from December 1994, the 0.05% maximum alcohol level was imposed
and higher fines were written out for a 0.08% or higher alcohol level.

— InJanuary 1998, the first speed cameras were installed at intersections.

4.4.4 Calendar variables

Calendar data offers the undeniable advantage of availability of the data. Some
of the road safety models discussed in the subsequent chapters include one or
more calendar variables.

4.4.4.1 Trend

In some models, a time variable can be used to reflect a linear trend. This
variable simply equals the year or the time point of the observation.

4.4.4.2 Seasonal

Seasonal dummy variables can be used to handle seasonality in monthly data
series. The seasonal pattern is represented by the variables JAN, FEB, ..., NOV,
where each of these equals 1 in the given month, and zero otherwise. As, in
general, k groups can be distinguished with k-1 dummies, no variable is included
for the month December. Thus, for monthly data, 11 dummy variables are
needed. The coefficients reflect the average difference in the dependent variable

between the given month and the omitted month. Note that by the use of

84



seasonal dummy variables, it is implicitly assumed that the seasonal component
is identical in each year.

4.4.4.3 Leap year

The seasonal dummy variables can take care of the length of the months.
However, the effect of a leap year is not taken into account, as it does not occur
every year. Therefore, an extra variable can be introduced, taking a value of one
in February of the leap year, and zero otherwise.

4.4.4.4 Trading day pattern

The number of road crashes and the corresponding number of victims may vary
according to the day of the week. To correctly forecast the number of road
crashes and victims, the number of Mondays, Tuesdays, etc. in each month is
taken into account. Trading day effects reflect variations in monthly time series
due to the changing composition of months with respect to the number of times
each day of the week occurs (Bell & Martin, 2004). In each month, there are four
weeks plus usually one, two or three more days. Each weekday occurs at least 4
times in a month, but some days will occur 5 times. The composition of the
calendar will affect the data for the month. If, for example, a shop is only open
on weekdays, then sales will be higher if some weekdays occur five times in a
month. Especially monthly time series that are totals of daily activities (like the
records of road crashes), are often influenced by the weekday composition of the
month. Details on the construction of trading day models are given in (Findley
et al., 1998), based on (Young, 1965), (Cleveland & Grupe, 1983) and (Bell &
Hillmer, 1983). Trading day patterns can be included in different forms, as is
shown in (Soukup & Findley, 2000). In this manuscript, a parsimonious form of
the trading day pattern is used, as provided by (Gémez & Maravall, 1996). This
form captures the trading day effect in one variable. Since we are primarily
interested in the difference between weekdays and weekends, we propose a
trading day variable 7D, that is defined as follows :

Fri 5 Sun
,=>D,-=>D,, (11)
j=Mon 2 j=Sat

where D, indicates the number of times the j-th day occurs in month t. This
formula forces the weights of the different days of the week to sum up to one. It
also requires that the weights for all weekdays and all weekend days are the
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same. For example, if the parameter for the trading day variable 7D, equals -
0.005, then each weekday is given a negative weight of -0.005, while each
weekend day is weighted as (-2.5)*(-0.005)=0.0125, which indicates that months
with more weekend days may be more dangerous than months with more
weekdays.

4.4.4.5 “Special day” measure

Some periods of the year are characterized by more or other traffic than other
periods. The traditional holiday periods often cause days of holiday rush,
especially on the highways to the tourist locations in Belgium and in the
neighbouring countries. Also holidays related to Christmas and Easter and the
public holidays cause very specific traffic patterns. It is to be expected that
periods with this “special” traffic have a different road safety profile than other
periods.

TABLE 4: Contents of the “Special day” measure

Celebration days Fixed Christian holy days
New Year 1Jan Assumption 15 Aug
Labour day 5 May All Saints' Day 1 Nov
Flemish holiday 11 Jul All Souls' Day 2 Nov
National holiday 21 Jul Evening of Christmas Eve 24 Dec
Walloon holiday 27 Sep Christmas Day 25 Dec
Cease-fire 11 Nov Second Christmas Day 26 Dec
New Year's Eve 31 Dec
Holiday periods Summer holidays
Autumn half-term WE 1: Fri, Sat First school day
WE 2: Sat, Sun Last school day
Christmas vacation WE 1: Fri, Sat First day of summer holiday
WE 2: Fri, Sat, Sun Last day of summer holiday
WE 3: Sat, Sun First summer holiday WE (Fri, Sat, Sun)
Spring half-term WE 1: Fri, Sat Last summer holiday WE (Sat, Sun)
WE 2: Sat, Sun Last July weekend (Fri, Sat, Sun)
Easter holidays WE 1: Fri, Sat First August weekend (Fri, Sat, Sun)
WE 2: Fri, Sat, Sun
WE 3: Sat, Sun

Easter Monday
Ascension holidays Wed, Thu, Fri, Sun

Whitsun(tide) holidays Fri, Sat, Mon

86



To account for these differences, a variable is developed based on the “density
indicator” from the Flemish Automobile Association (VAB). The measure
classifies each day of the month as either a “normal” or a “special” day, and then
sums up the number of special days over the month. These days are selected on
the basis of the experience of the VAB road experts and the spread of public
holidays, religious feasts and school holidays over the months. In TABLE 4, the
rules on which this variable is based are shown. The variable takes into account
the celebration days, Christian holidays, holiday periods and summer holidays.
Information on holidays is taken from the official holiday tables published by the
Ministries of Education. Especially for holiday periods, the special days can
change over the months. For example, Easter holiday is moving every year
between March and April. The corresponding number of special days therefore
also changes with the months and the years. As monthly data are analysed,
these shifts over the months may affect road safety.

The variable is constructed on a monthly basis for the years 1973-2008. In a
model with monthly road safety data, this variable can indicate the effect of an
additional special day in a month. The moving Easter period may lead to more
(or different) traffic in April of year T compared to the same month in year T+1.
Because these effects change from one year to another, they cannot be captured
by a deterministic seasonal pattern, and therefore should be accounted for by an
additional variable. This is the objective of the “special day” variable.

4.5 Conclusion

In this chapter, an overview is given of the data that are available in Belgium for
the development of macroscopic road safety models. This overview is by no
means a complete list of variables. It is at best an attempt to gather useful
information of various data sources. Every kind of research has specific data
needs, and this overview is entirely focused on data for macroscopic modelling.

From the list of variables considered in this section, it is clear that road safety is
a multidisciplinary issue. Not only information on road safety is needed, but also
data sources on population, legal issues, weather, etc. might provide useful
information for road safety research on an aggregated level. After all, road
crashes do not happen in a cocoon that is screened off from the environment.
On the contrary, road safety is an essential part in the combined action of road
demand and road supply, and should be analysed as such.

This line of reasoning is the underlying motive for the sometimes discouraging
quest for data. In Belgium, there is no tradition in the longitudinal analysis of

87



road safety. It must be said that many data sources do exist, but they all suffer
from two main drawbacks. First, the data is not always easily accessed.
Especially for older series, it is not clear where they can be found and who is
responsible. For more recent data, the government is working to make up lost
ground. Many electronic sources are set up, which increases data quality and
certainly improves the accessibility. Second, if the data are available, they are
mostly not gathered with the purpose of road safety research. Often the
frequency is not adapted, or the units are difficult to interpret in the context of
road safety. This is one of the reasons for creating a monthly measure for
exposure based on available fuel deliveries. The work of combining data is
therefore as hard as the gathering itself.

The data discussed here will be used in various analyses in the next chapters.
The choice of variables in a specific model is determined by the scale and the
objectives of the model. Often, these factors go hand in hand. For example, a
model developed on yearly data will usually be less explanatory than a model on
monthly data, simply because the frequency of observations is larger and thus
more explanatory variables can be included. This finding does not give a verdict
on the quality of any of these models. For example, it might be more meaningful
to test for certain aggregated effects on yearly data than on disaggregated
monthly data. The choice for a certain model therefore depends on the
objectives and the availability of data. The results of the models should then be
interpreted and used with these restrictions in mind.
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Chapter 5 Aggregated models for yearly exposure
and risk

5.1 Introduction

One of the main objectives in road safety is to describe and monitor the number
of fatalities in road crashes by looking at trends over the years. Many models
have been developed to explain the long-term evolution in the number of
fatalities (COST 329, 2004). Aggregated models, on a countrywide level, allow
gaining a better insight in the evolution of fatalities over time.

The annual number of fatalities is still an important indicator of the level of road
safety in a country. Policy makers use these statistics to indicate past trends and
to create rough indicators of the future evolution. In many countries, the
government formulated clear long-term quantitative objectives in terms of the
number of fatalities. In Belgium and in Flanders, as well as on the European
level, the goal is to half the number of fatalities by 2010. The Belgian States
General for road safety (Staten-Generaal voor de Verkeersveiligheid, 2001)
recommended the objective of halving the number of fatalities by 2010,
compared to the average number of fatalities for the years 1998 - 2000. This
boils down to a maximum of 750 fatalities in 2010. In Flanders, the government
expects making up arrears compared to the best performing countries in Europe
by 50%, taking into account the own ambitions of these leading countries in
terms of road safety. Broadly speaking, this implies a reduction in the number of
fatalities by 50% compared to 1999, or a maximum of 375 fatalities in 2010
(Ministerie van de Vlaamse Gemeenschap, 2001). In (Van Schagen, 2000), an
overview is given of the quantitative targets formulated in some OECD countries.
These targets are in terms of annual fatalities, and should therefore be supported
by models on the same level of aggregation.

The choice for annual data offers the advantage of having the data readily
available from the official government statistics. Data on road crashes and on
the annual level of exposure are published regularly. In comparison with a more
disaggregated analysis (on monthly data for example), the effort needed to
obtain the data is much smaller. However, the number of annual observations is
usually small. For Belgium, annual data that can be compared over time is
available from 1965 onwards, for both the number of fatalities and the number of
vehicle kilometres. A low number of observations implies that models should be
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kept simple, in the sense that number of estimated parameters should be
reasonable compared to the number of observations in the data set. Also,
introducing too many variables will lead to unstable predictions because of
multicollinearity problems. Therefore, models on annual data are often purely
descriptive, without the ambition of explaining the observed developments in the
model. Usually the models are assessed in terms of goodness-of-fit and
forecasting accuracy, but no explanatory power is expected.

In this chapter, some deterministic and stochastic models are introduced. The
proposed models are aggregated, both in time (yearly data) and in space
(Belgium as a whole). In the introductory chapters, these models have been
extensively described in a historical perspective.

5.2 Models to predict the annual number of fatalities

In this section, some of the deterministic and stochastic models described in
Chapter 2 will be developed for the Belgian accident and exposure data. The first
model is based on the pioneering work of Oppe (1989; 1991), and describes the
trends in the number of fatalities by a decomposition in risk and exposure.
Based on some extensions proposed in the literature, the Oppe model is then
adapted to allow for more general curves for risk and exposure. Various
functional forms are considered and interventions are added for the major road
safety measures (seatbelt use, speeding and impaired driving). Also, some
stochastic extensions of the model are shown. Structural models based on
(Lassarre, 2001) are presented and the LRT framework, developed in (Bijleveld,
Commandeur, Gould et al., 2005), is used to build models in which both fatalities
and exposure are treated as unobserved components.

Using the final models, predictions for the Belgian fatalities up to 2010 will
subsequently be derived and compared with the quantitative targets formulated
by the government. The objective of the study is to estimate a model that is
acceptable both in terms of statistical fit and prediction accuracy.

5.2.1 A starting point for Belgium: the Oppe approach

In a first attempt to model the relation between fatalities, exposure and risk, the
approach proposed by Oppe is followed. As explained before, the Oppe model
assumes that a learning process is behind the evolution in road safety. That is,
society learns to control the undesirable consequences of the traffic system in an
exponential way (Cameron, 1997). More formally, the number of fatalities (F)
can be seen as the product of the level of exposure (V,) and the level of risk (R),

90



or f,=V,x R, The following notation can be used to model an exponential curve
for the risk and a logistic curve for exposure:

R, =exp(at+B)+ep, (12)

%
Vv, = = +e (13)
" ltrexp(=(at+b)) "

In these equations, «, B, V, a and b are parameters to be estimated, while ¢,
and ¢,, are the residual terms. The years are indicated by t. In the risk function,
« indicates the learning rate of the country. In the exposure function, the
parameter g is the growth rate over time, with V_ being the upper bound. This
model will be applied to the Belgian road safety situation, using official statistics
on fatalities and exposure. The fatalities are the yearly number of persons killed
in road traffic. The measure of exposure on a yearly basis is the number of
vehicle kilometres, as explained in Chapter 4.

Number of vehicle kilometres Number of fatalities
(Belgium, 1973-2004) (Belgium, 1973-2004)
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FIGURE 26: Number of fatalities and number of vehicle kilometres

The observed number of fatalities and the number of vehicle kilometres are shown
in FIGURE 26. For each variable, three observations at the end of the series are
left out of the analysis to test the quality of the forecasts afterwards. Estimation
is done in EViews 5.1 (QMS, 2004). In TABLE 5, the parameter estimates are
shown.

A comparison between V_ and the latest available value for the amount of traffic
gives an indication of the increase in traffic that is still to be expected. In 2004,
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the number of vehicle kilometres is at 94.56. Compared to the value of 145.66, a
growth in traffic of more than 50% before saturation is expected. The parameter
a is the growth rate of exposure over time, and is around 6%. The larger a is, the
faster traffic volume grows over the years. In the risk function, a shows the
(negative) growth rate per year in risk, which is also around 6%.

TABLE 5: Parameter estimates for the Oppe model

Coefficient Std. Error t-Statistic  Prob.

-0.0629 0.0017  -37.1714 0.0000
128.4149 3.3494 38.3393 0.0000
145.6568  15.9784 9.1159 0.0000

0.0614 0.0057 10.7932 0.0000
-122.2090  11.0994  -11.0104 0.0000

s 8 Sw R

The estimates for the yearly number of fatalities are now derived by multiplying
exposure and risk. The results are shown in FIGURE 27. The dots are the
observed values, the full lines are the estimated outcomes from the models. The
dotted lines represent the 95% confidence intervals. Note that the confidence
interval for the number of fatalities is calculated as the product of the confidence
intervals for exposure and risk, and is therefore only approximately correct. The
curves show the decisive factors in the evolution of traffic safety. The level of
the number of fatalities depends on the increase in exposure and the decrease in
risk. It is clear that the number of fatalities will decrease only when the
decrease in risk is larger than the increase in exposure. However, the better the
traffic safety situation, the more efforts it will take to obtain a decrease in risk.

5.2.2 Extending the Oppe approach

In general, the models seem to fit the data fairly well. It is known that the Oppe
model is an interesting starting point for the analysis of risk and exposure on a
macro level. However, there is still room for improvement. We see that the
model for fatalities shows some deviances from the observed values for certain
years. Moreover, some of the assumptions that are at the basis of the model
might not be valid in practice (COST 329, 2004), as will now be investigated.
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FIGURE 27: Results from the Oppe model

5.2.2.1 Introducing serial correlation terms

First, the curves presented in FIGURE 27 show that the observed values for
exposure are systematically overestimated in some periods and underestimated in
others. This indicates a problem of autocorrelation in the models, which affects
the estimated confidence intervals and is not treated in the Oppe model. The
same issue was mentioned in (Broughton, 1991), where the Cochrane and Orcutt
method (Cochrane & Orcutt, 1949) was used to eliminate autocorrelation.
Another approach is to include autoregressive terms in the models, which are
estimated simultaneously with the other parameters in the model. For example,
consider the model y, = f(x,, f) + u,, where f is a general (nonlinear) function of
the covariates x, and the parameters 4. If it is assumed that the residuals v,
follow an autoregressive process of order 1, then the model is extended such that
u,=¢@u,+ ¢ can be estimated simultaneously with the parameters . To test for
serial correlation in the residuals, the Box-Ljung Q-statistic is used at different
lags. This statistic is given by:
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Qe =n(n+2)>"

1 n—k

K

(14)
Here, r, is the lag-k autocorrelation coefficient, n is the number of observations
and K is the maximum lag being considered. Under the null hypothesis of no
serial correlation, this test statistic is asymptotically distributed as x2(K-M),
where M equals the number of parameters estimated in the model. Large
autocorrelation coefficients lead to a high Q-statistic. A high value therefore
indicates significant autocorrelation and thus rejection of the null hypothesis.
More details on serial correlation will be given in section 6.2.1.3 on ARIMA model
diagnostics.

5.2.2.2 The Richards curve for exposure

Second, there are some functional form issues that should be mentioned. The
logistic exposure curve reflects an upper bound in traffic growth, but is restricted
in the sense that it assumes a perfect symmetric behaviour. This assumption may
be relaxed by testing a more general class of S-shaped curves. In (Commandeur,
2002; Commandeur & Koornstra, 2001), the Gompertz curve is used for exposure
instead of the logistic curve. The Gompertz as well as the logistic curve can be
seen as special cases of the Richards curve, which is a very general class of S-
shaped curves. In its most general form, this curve can be expressed as (Pereira
& Pernias-Cerrillo, 2005):

Vy =V, [1+ wexp(= (14 p)(t 7))V (15)

In this function, V , 4, y and r are parameters to be estimated. V_is the upper
limit (or saturation level) of the Richards curve. The time period at which the
curve has an inflection point is given by 7, and yis the relative growth rate at
time t = 7. The shape parameter u allows for an asymmetric curve. The logistic
curve is symmetric, that is the inflection point occurs at V, = V /2. As it does not
allow any asymmetry, the shape parameter of the logistic curve is equal to one,
resulting in:

V, =V, [1+exp(-2y(t-7))]" (16)
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The Gompertz curve can be asymmetric, with a value at the inflection point equal
to V, =V /exp(1). It is a special Richards curve in which the shape parameter is
approaching zero (in the limit), resulting in:

Ve =V, exp(-exp(-7(t-7))) (17)

As an example, consider the curves in FIGURE 28. The saturation level is V = 100
and the inflection point is 7= 1983. The relative growth rate equals y=0.25,
and for the Richards curve uis equal to 0.5.
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FIGURE 28: Richards, Gompertz and Logistic growth curves

As an extension to the Oppe model, the number of vehicle kilometres will be
modelled using a Richards curve. The parameter estimates are shown in TABLE 6.
The Richards curve estimates a maximum exposure level of 96, which is
considerably smaller than the prediction from the logistic curve. The inflection
point in the curve is around the end of 1990, with a relative growth rate of 3.5%
at that time. Note that two autoregressive terms are included to make the
residual series white noise. That is, the residuals are estimated simultaneously
with the other parameters as u, = gu,, + Qu,, + &, where g is assumed to be a
white noise process.

The logistic and Richards exposure curves can now be evaluated in terms of model
fit and forecasting accuracy. The model fit is assessed by the Akaike Information
Criterion or AIC (Akaike, 1973), calculated as (QMS, 2004; Quantitative Micro
Software, 2004):
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AIC=—2(%)+2(%) (18)

In this formula, n is the number of observations used in the model, [ is the value
of the log-likelihood function and k is the number of parameters estimated. A
lower AIC value implies a better fit of the model.

TABLE 6: Parameter estimates for the Richards exposure curve

Coefficient Std. Error t-Statistic  Prob.

v, 95.93135 6.990884  13.72235 0.0000
y7i 6.804093 4.114639  1.653631 0.1118
14 0.035229 0.001404  25.09038 0.0000
T 1990.819 1.327394  1499.796 0.0000
8, 0.656798 0.117889  5.571303 0.0000
8, -0.347229 0.111233 -3.121642 0.0048

The forecasting accuracy is given by the Mean Absolute Percentage Error (MAPE),
calculated as:

1 n

MAPEzlzn:\PEt\z—Z
n =1

n =1

Yt_Ft
Yt

(19)

Here, PE is the Percentage Error, based on the difference between the observed
value Y, of the series to be modelled and the corresponding estimated value F..
The lower the MAPE, the better are the forecasts of the model.

TABLE 7: Model fit and prediction accuracy for exposure models

AIC MAPE Q, 0,

Logistic exposure  4.12 3.56%  19.60  50.37
(0.000) (0.000)

Richards exposure 2.93 0.63% - 5251
(0.262)

To test both model fit and forecasting accuracy, the data set was split in two.
The first part, observations from 1973 up to 2001 were used in the modelling
stage. The second part, from 2002 up to 2004, was only used to evaluate the
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forecast accuracy. In TABLE 7, the AIC and MAPE values are given for both
exposure models, together with the Q-statistics for serial correlation at order 1
and 6 (also other orders were tested). The Richards model yields a better fit and
according to the MAPE values, has a much better prediction accuracy. The Q-
statistics indicate the presence of serial correlation for the logistic exposure, but
not for the Richards exposure.

5.2.2.3 Adding a constant to the risk curve

Another assumption that is often questioned is the fact that the exponential
curve for the risk, R, implies that risk will continue to decrease to zero (COST
329, 2004). This assumption can be relaxed by testing a constant term in the
risk function. On the Belgian data, the added constant was significant, slightly
improving the fit of the model. The Q-statistics indicate the absence of serial
correlation in both risk models. Also, the prediction accuracy on the most recent
years of the model with a constant was significantly higher, as can be seen in
TABLE 8. Although the exponential decrease in risk over time is in itself a rather
strict assumption, the risk curve in FIGURE 26 shows that an S-shaped curve
would not be appropriate for the Belgian data. The more general class of
(logistic) risk functions that has been suggested in the literature (COST 329,
2004) will therefore not be discussed here.

TABLE 8: Model fit and prediction accuracy for risk models

AIC  MAPE a, 0,

Exponential risk 4.60 13.10%  0.804  4.532
(0.370) (0.605)
Exponential risk + constant  4.43  6.06%  0.571  6.260
(0.450) (0.395)

5.2.2.4 The modified model

As a comparison with the Oppe model, FIGURE 29 shows the new estimates for
exposure, risk and fatalities, together with the observed values and the 95%
confidence intervals. The remark concerning the accuracy of the confidence
interval for the number of fatalities, made for the Oppe model, also applies here.
The estimated values in the figures are one-step ahead forecasts of the
dependent variable. For the out-of-sample periods (2002 - 2010), the ARMA
errors are assumed to be zero to allow one-step ahead forecasts for these periods.
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The graph for exposure illustrates that the possibility of having an asymmetric
curve especially improves the fit at the end of the series, as the Richards curve
clearly flattens off in line with the observed values.
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FIGURE 29: Modified Oppe model for exposure, risk and fatalities

The Richards curve is, at first sight, more realistic for short term predictions of
exposure than the logistic curve. The smaller growth in exposure results in a
more conservative prediction of the fatalities. For 2010, the original Oppe model
predicts 797 fatalities, while the modified model ends up with 1079 fatalities.
According to the Oppe model, the objective of at most 750 fatalities in 2010
(which is a 50% reduction compared to the average number of fatalities for the
years 1998, 1999 and 2000) will more or less be achieved, but clearly this is too
optimistic, as the modified model is felt to be more appropriate. More efforts are
needed to increase road safety by 2010. However, the most recent road safety
statistics for 2003 and 2004, which were not used to develop the model, are
hopeful and indicate an even stronger decrease in the number of fatalities.
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5.2.3 Alternative risk models

Although the modified model presented in the previous section is an
improvement over the original Oppe approach for the considered data, there is
still room for further improvement. In the literature, a new generation of risk
models has been presented (COST 329, 2004). Apart from the improvements
presented above, another set of topics will now be considered.

First, the Oppe model starts from the fundamental relationship F, = R, x V.. This
inherently assumes that risk and traffic growth are proportional to one another.
To test the validity of this assumption on the Belgian data, the relation is
extended with a power for V.. The more general relationship between exposure,
risk and fatalities can then be written as:

F, =V/R, (20)

If n # 1, then the risk function depends on the level of exposure. This is easily
seen when equation (20) is written as £, / V.=V, “? R. A value of 7 larger than
1 implies stronger increases in fatalities per increase in exposure compared to the
proportional relationship (COST 329, 2004).

In this section, some of these extended models will be presented. The logarithm
of the fatalities will be modelled directly, using the observed exposure and a
family of exponential curves for the risk. Logistic models were also tested, but
were felt to be unnatural as the observed risk is not S-shaped for the period
under consideration. This was confirmed by the tests; none of the logistic
models could outperform the exponential models and illogical parameters
estimates were obtained. They will therefore not be retained in the overview of
models.

The estimation is done in two steps, as was proposed in (COST 329, 2004). First,
an ordinary least squares model is fitted. Then, taking the results of this
estimation as starting values, a weighted least squares estimation is done, using
the number of fatalities as the weight. The quality of the models is again
evaluated by comparing the AIC values. To test for serial correlation in the
residuals, the Box-Ljung Q-statistic, introduced in Equation 14, is used. The
quality of the predictions is evaluated by looking at the MAPE. Models are
estimated on the years 1973-2001, and predictive tests are done on 2002-2004.

The family of risk models that will be considered can, in its most general form, be
written as:
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@, va,tras LAW 75+a ,LAW 92+a g LAW 95 )

logF, =(1—77)loth +log(c+e +&,  (21)
The parameter 77 is used to test the assumption that risk and traffic growth are
proportional, while ¢ is a constant added to allow for a nonzero minimal risk level
and ¢, is the residual term. The variable t is a measure of time (in years), and
LAW75, LAW92 and LAW95 are 0/1 level dummy variables testing respectively the
introduction of laws on seatbelt use, speed and alcohol consumption. In TABLE
9, the most simple model is referred to as EXP. This is the classical exponential
model, without a constant (c =0), without covariates (o, = @, =¢, = 0) and no
extra parameter for exposure (77 = 0).

TABLE 9: Diagnostics for alternative models

Parameter constraints AIC MAPE 2010

EXP c=a,=a,=a,=n=0 -2.70 8.38 758
EXP-C a,=a=a,=n1=0 -2.93  5.11 1032
EXP-V c=a,=a,=0,=0 -2.70 3.28 877
EXP-C-V a,=a,=a,=0 -2.87  4.97 1024
EXP-VAR c=7n=0 -2.91  4.98 807
EXP-C-VAR n=0 -3.51 16.87 1382
EXP-V-VAR c=0 -2.84 435 826
EXP-C-V-VAR - -3.47 16.13 1351

From the AIC values in TABLE 9, it can be seen that the models have a similar fit.
The best fitting model is EXP-C-VAR, including a constant term and explanatory
variables for the main interventions. In terms of forecasting accuracy, the more
parsimonious model EXP-V is ranked first. Note that the best fitting model is also
the one that gives the worst predictions, which gives a clear indication of the
danger of over-fitting in these models. Also, the most simple model, with the
exponential risk function as in the Oppe approach, gives a lower fit and only a
moderate forecasting accuracy. On the other hand, the most complex models,
especially those with a constant term in the risk function, perform quite well in
model fitting, but are clearly outperformed by the other models in terms of
forecasting accuracy. As for the correlation in the residuals, the Q-statistics
indicated for all models that the hypothesis of zero correlation could not be
rejected at different lags (tested up to lag 12). The absence of correlation might
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be explained by the fact that exposure, which is highly autocorrelated, is now
treated as an explanatory variable.

It is clear from these results that policy makers should be cautious when
analysing the results of the different models. This can also be seen in the
predictions of the number of fatalities in 2010 derived from the models. The
predicted number ranges from 758 (model EXP) to 1382 (model EXP-C-VAR). The
only prediction that comes in the neighbourhood of the 2010 objective (750
fatalities) is the EXP model. As this model was certainly not the most
appropriate in terms of model fit and forecasting accuracy, it is questionable
whether the target is indeed feasible. The best predictive model (EXP-V) shows a
value of 877, which seems to be a more realistic figure. It is also interesting to
note that the models with unrealistically high predictions for 2010 are those with
a constant term for risk. Apparently, the recent developments in road safety are
in disagreement with the assumption that road risk should level off at a nonzero
value. Although the constant significantly improves the model fit, its value will
be biased by the most recent observations. This effect is clearly present in the
Belgian data. Because of the significant drop in the number of fatalities in the
last years (2003-2004), all models with a constant predict very badly.

The last four models in the table include explanatory variables for the
introduction of important road safety laws. The estimated parameter values for
the different models are shown in TABLE 10, with the corresponding p-values
between brackets.

TABLE 10: Parameter estimates for road safety laws

Seatbelt Speed Alcohol

EXP-VAR -0.1169 (0.0026) -0.0533 (0.2497) 0.0228 (0.6260)
EXP-C-VAR  -0.0717 (0.0495) -0.2704 (0.0262) -0.4958 (0.1462)
EXP-V-VAR  -0.1144 (0.0058) -0.0530 (0.2618) 0.0176 (0.7459)
EXP-C-V-VAR  -0.0772 (0.0332) -0.2499 (0.0213) -0.3995 (0.1471)

In all models, the seatbelt law has a significant influence on the number of
fatalities. The speed law is significant in the models with a constant, but not in
the others. The introduction of the law on alcohol was not significant in any of
the models. The statistical test cannot reject the hypothesis that the alcohol law
is without effect at the aggregate level. This indicates that either the law is,
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indeed, ineffective, or the test applied did not have sufficient power to detect
any effect, even if this effect would be present. Note that, due to the nonlinear
functions in the models, the parameter estimates cannot be directly interpreted
in the models with a constant. In the two other models, the parameter estimates
can be seen as a percentage effect. According to the models EXP-VAR and EXP-V-
VAR, the introduction of the seatbelt law reduced the number of fatalities by
about 1-exp(-0.11)=0.1042 or 10.42%.

TABLE 11: Parameter estimates for exposure (1)

Coefficient Std. Error t-Statistic Prob.

EXP-V 0.3963 0.2849 1.3913 0.1759
EXP-C-V -0.0892 0.3238 -0.2754 0.7852
EXP-V-VAR 0.0669 0.3297 0.2028 0.8411
EXP-C-V-VAR -0.1958 0.2430 -0.8060 0.4289

Another aspect that is tested in some of the models is the proportionality
assumption of fatalities and exposure. That is, the constraint that the number of
fatalities is proportional to the level of exposure is relaxed by estimating a power
(1-n) for the level of exposure. TABLE 11 shows the estimated values for 7 in the
four relevant models. Because the model formulation includes a term (1-5), the
test statistic shown in the table is to test the hypothesis that # = 1. According
to these models, the hypothesis that exposure is proportionally related to the
number of fatalities could not be rejected. In a similar model, testing for # =0,
the null hypothesis was rejected in all models.

5.2.4 Stochastic trend models

Instead of imposing S-shaped curves for exposure and an exponential or more
general logistic curve for risk, Lassarre (2001) used a local linear trend approach.
This stochastic trend model belongs to the family of structural models introduced
by Harvey (1989), and can be written as a set of equations in which unobserved
components are used for the time-varying level y, and slope v,:
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lOQ(Ft ):ﬂt +(1_'7)l09(vt )+Zaiwi,t + &
My =MtV + &, (22)

Ve =V &,

In this structural model, ¢, & and (, are white noise processes with standard
deviations equal to o, 6: and o, To test the non-unitary elasticity of exposure,
the parameter 5 is included. The parameters @, measure the effect of the
interventions (i.e. in this model the laws on seatbelt use, speed and alcohol).
Note that this formulation is still linear, but the parameters for the level and the
slope are unobserved components that are now allowed to change over time. The
estimation of the variances will indicate whether these components are indeed
time-varying for the given dataset. A more detailed introduction to structural
models will be given in Chapter 6, section 6.2.2.

Four models are considered in this framework. In the first two models, no
parameter is estimated for exposure. This parameter is added in the third and
fourth model. The second and the fourth model include the intervention
variables for seatbelt, speed and alcohol laws. The fourth model is the most
complete one, as it includes both parameters for the intervention variables and a
parameter for exposure. The first model, STOCH, can be written as follows:

l09(”:1& )= My +l09(vt )+‘9t
My =My g HViq &,
v, =—0.0584

o? =0.000579 o¢ =0.002719

(23)

The variance of the slope component did not improve the model and was set
equal to zero. The trend declines at a rate of 5.6% per year. The second model,
STOCH-VAR, includes parameters for the intervention variables. In this case, the
level is fixed, but the slope is allowed to change over time. That is, according to
this model, the rate of decline in the trend is changing over time. The model
formulation is given in Equation 24.
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log(F, )= p, +log(V, )
—0.0893LAW75—0.1216LAW92 — 0.1483LAW95 + £,

(0.0417) (0.0930) (0.0438)
He = Hi g Vg (24)
Ve =Vig + &,

of =0.001152 o} =0.000046

As an illustration, FIGURE 30 shows the slope for the STOCH-VAR model. Starting
from a value of -6%, the slope becomes less negative over time, which is in line
with the exponential model.

Stochastic slope for the STOCH-VAR model
-.01

-.02

-.03]

-04 ]

-.05

-.06 |

-07

1 11 1111 T 1 1 T 1 T T T T T 7T
76 78 80 82 84 86 88 90 92 94 96 98 00

FIGURE 30: Stochastic slope for the STOCH-VAR model

The third model, STOCH-V, includes a proportionality parameter for the level of
exposure. Again, the level is treated deterministically and the slope can vary
over time:

log(F, )= u, +(1+0.5472)L09(Vt )+,

(0.4810)
He =Heqg TV

(25)
Ve =V + &,

o? =0.001600 ¢ =0.000240
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The last model, STOCH-V-VAR, includes both the parameter for exposure and the
road safety intervention variables. The best fitting model has a structure that is
comparable with the previous one. It is given in Equation 26.

log(F, )= u; +(1+ 0.1081jlog(vt )

(0.3943)

—0.0907LAW75—0.1192LAW92 — 0.1445LAW95 + ¢,

(0.0417) (0.0934) (0.0453)
He =Heq TV
Ve =V + G,

of =0.001141 o} =0.000047

(26)

For the stochastic models, TABLE 12 gives an overview of the Q-statistics for
serial correlation, the AIC and MAPE values, as well as the predictions for 2010,
based on the Richards prediction for exposure. As the Log-Likelihood is
calculated differently compared to the deterministic models, the AIC values are
not directly comparable. They can be used, however, to compare the stochastic
models with one another. The MAPE and the predictions for 2010 can be
compared with the deterministic models.

TABLE 12: Diagnostics for alternative stochastic models

AIC Q, 0, MAPE 2010
o=n=0 -1.21 0170 7.449 351 812
STOCH (0.680) (0.281)
i n=0 4156 0.121  3.430 10.05 886
STOCH-VAR (0.727) (0.765)
=0 118 0.016 8.060 8.01 762
STOCH-V (0.899) (0.234)
STOCH.VVAR 149 0.238 3544 9.79 876

(0.625) (0.738)

The best fitting stochastic model is STOCH-VAR. However, as in the case of the
deterministic models, the best fitting model is not the one with the most
predictive power. The simple stochastic model STOCH results in the lowest MAPE.
The range of forecasts produced by the stochastic models is much smaller than
for the deterministic models. The predictions are around the same values as for
the most sensible deterministic models.
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In the models STOCH-VAR and STOCH-V-VAR, the intervention variables were
tested. The results are shown in TABLE 13. For the seatbelt law, the results are
similar to those obtained in the deterministic models. The introduction of the
law resulted in a 9% decrease in fatalities. For speed, the intervention variables
are not significant, as was the case in the deterministic models without a
constant. Unlike the previous models, the alcohol law shows a significant
decrease in fatalities.

TABLE 13: Parameter estimates for road safety laws (stochastic models)

Seatbelt Speed Alcohol

STOCH-VAR  -0.0893 (0.0324) -0.1216 (0.1911) -0.1483 (0.0007)
STOCH-V-VAR  -0.0907 (0.0297) -0.1192 (0.2019) -0.1445 (0.0014)

For the proportionality assumption of exposure and fatalities, TABLE 14 shows
the results in the stochastic models. The negative sign indicates that a 1%
increase in exposure might result in a more than 1% increase in fatalities.
However, again the parameter estimates are not significant.

TABLE 14: Parameter estimates for exposure (stochastic models)

Coefficient Std. Error t-Statistic Prob.

STOCH-V -0.547240 0.480998 -1.137719 0.2552
STOCH-V-VAR -0.108085 0.394287 -0.274127 0.7840

An interesting result that can be derived from the structural models is the rate of
progress in safety, calculated as the ratio of the derivative of the form of the
trend and the elasticity of exposure. According to Lassarre (2001), this is the
rate that nullifies the effect on safety of an increase in exposure. This concept is
different from the rate of development of risk at constant exposure, which is
measured by the slope. Looking for example at the STOCH-V-VAR model, the
slope at the end of the analysis period (2001) equals -0.015. The parameter for
exposure was 1.1081, yielding a rate of progress of 1.36% which is reasonably
low. Given the evolution in the slope component, going from -6% in 1975 to -
1.5% in 2001, it is clear that the rate of progress is much lower now than it was
in the past. This confirms the hypothesis that much more progress could be
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gained at the time of major road safety interventions. This was especially the
case for the introduction of the seatbelt law in Belgium. Actually, the same
philosophy is behind an exponential risk function. The higher the level of road
safety, the more difficult it will be to improve it.

5.2.5 Stochastic latent risk models

In the models proposed by Lassarre and discussed in the previous section,
exposure is treated as an explanatory variable that is measured without error.
Multivariate state space models offer the possibility of treating both fatalities
and exposure as latent processes, while the relation between them is still
explicitly modelled. The model that will be presented below is a special case of
state space methods (Durbin & Koopman, 2001; Harvey, 1989). More specifically,
it is a bivariate local linear trend model, and was introduced in road safety
research in (Bijleveld & Commandeur, 2004). Using matrix algebra, a multivariate
linear state space model can, in its most general form, be written as:

vy, =2Z,a, +&, g, ~NID(0,H,)
agq, =Ta, +Rn, n, ~NID(0,0t) (27)
(t=1,2,...,n)

The first equation is called the observation or measurement equation. Here, y,
contains the observed time series at time point ¢, and ¢, is a vector with
observation errors. These errors have a zero mean and variances and covariances
that form the matrix H,. The second equation is the state equation, in which the
state vector «, is updated. The matrix T, is the transition matrix and #, are the
state errors, with variances and covariances gathered in the matrix Q.. Errors in
both equations are assumed to be NID or “Normally and Independently
Distributed”.

In the case of fatalities F, and exposure V, this model can be developed as
follows:
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log(V, )= pf*) +2l")

pl) = plt) v gV
vi) =vi) s gl 8)
log(F, )= p") + u{? +*)

ul? = ) el

o v g

The unobserved components 1 and 1” represent the trends for exposure and
risk. As the two observation equations are written in logs, the equation for
log(F,) can easily be considered as the sum of the log-trend of exposure and the
log-trend of risk. Clearly, taking exponentials gives a multiplicative form in
which fatalities can be seen as the product of exposure and risk. This model
formulation therefore is completely in line with the conceptual framework that is
at the basis of the Oppe models and the extensions presented above.

Trend exposure Slope exposure
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FIGURE 31: Estimated trend and slope for exposure and risk
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The multivariate approach of this problem in a state space setting has some nice
properties. First, as this approach is a logical extension of the Lassarre (2001)
models presented in the previous section, it takes over all advantages of the
structural framework presented there. In particular, the variables modelled in the
system are allowed to have changing trends and slopes over time. Second, the
measure of exposure is treated here as an endogenous variable, with an
associated error. Exposure is treated stochastically, as a separate equation in the
system. It is therefore recognised that the number of vehicle kilometres is only a
measure of exposure that, like any other measure, might be only partially correct.
Third, the structure of unobserved components as introduced in Equation 28 gives
an estimate of the unobserved risk, without introducing it as a deterministic
variable. Indeed, ,ut("') is a latent component that takes up the role of the risk.
Instead of treating risk as a deterministic component, it is calculated as a nice
by-product of the procedure.

The model structure in Equation 28 has been applied to the Belgian data. FIGURE
31 shows the estimated trend and slope of the log-exposure and the log-risk,
together with their 95% confidence intervals. It is no surprise that the trend in
exposure is upwards, but the slope gives some interesting insights that may not
be visible at first sight. In the early eighties, the slope decreases, but goes up
again to reach its original level in the early nineties. In 2001, the yearly
increase in exposure is estimated to be about 2%.

Although the trend in the risk is clearly decreasing, the slope indicates that the
rate of decline is getting smaller over time. It can also be seen from the slope
that the developments in risk came to a halt in the years 1988-1990. Also in
2000 and 2001 the risk seems to stagnate.

The estimates for exposure and risk are shown in FIGURE 32, together with
predictions up to 2010 for both variables. While estimated exposure results from
the development of one latent component, the fatalities are composed of a latent
variable that takes exposure into account and another one that represents the
risk.  Taking exponentials, the estimation of the number of fatalities is a
textbook example of how risk and exposure can determine the level of the
number of fatalities.
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FIGURE 32: Estimated exposure and number of fatalities

The Q-statistics (up to order 12) for this model, calculated for the standardised
one-step-ahead prediction residuals for the equations for exposure and fatalities,
indicate that the white noise hypothesis cannot be rejected. The model predicts
an exposure value of 103 billion vehicle kilometres in 2010, which is only slightly
higher than the outcome of the Richards curve. Fatalities are decreasing up to a
level of 911 in 2010. Compared to the other models, this is a reasonable
prediction. The MAPE value for the predictions on 2002-2004 equals 6.04%, a
reasonable value which is in line with the other models. The confidence interval
for the out-of-sample forecasts indicates the high uncertainty that goes together
with the predictions. The prediction horizon should therefore be not too long.

Although the latent risk model does not really outperform the more classical
approaches, it has the undeniable advantage of showing the underlying
components (trend and slope) of the series. Also, the fact that no deterministic
functional form is imposed feels quite natural and results in at least equally
sensible outcomes.

5.3 Conclusion

In this chapter, various models have been developed to determine the relation
between the number of fatalities and exposure on yearly data for Belgium. All
models are based on the classical assumption that fatalities can be seen as the
result of a certain level of exposure and risk. These are the basic concepts
behind the Oppe model, which was presented as an introduction. In subsequent
models, the various restrictions in the Oppe model were relaxed and tested.
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Starting from a range of deterministic models, the idea of stochastic models was
introduced and compared with the more traditional models.

This chapter shows that for the Belgian data, models other than the classical
Oppe approach may lead to better results. The Richards curve for exposure
significantly improved the model fit and the prediction accuracy. Inclusion of a
constant term resulted in an improvement of the exponential model for the risk.
On the other hand, as stated in (COST 329, 2004), the simple exponential model
has the advantage of a small number of parameters, which makes the model easy
to solve and less dependent on local deviations. Also, the model generally gives
a reasonable approximation of the road safety situation and is simple to
interpret. For the Belgian situation, the Oppe model underestimates the trend in
the number of fatalities compared with more complex models.

The addition of a constant term in the deterministic models was meant to
prevent a possible non-zero risk level in the future. It is interesting to note that
the constant is only significant in the models where no parameter for exposure is
included. The constant will influence the risk when it flattens off (that is, in the
long term), and this happens at the same time that the exposure reaches its
upper bound. When no parameter is estimated for exposure, the constant takes
up this effect. In all models, the inclusion of a constant significantly improved
the fit (compared to the same model without a constant). However, the apparent
effect of a constant may be biased by the most recent observations in the sample
(COST 329, 2004). This may influence the quality of the predictions when sudden
changes in the patterns occur. Indeed, given the significantly smaller number of
fatalities for the years 2003-2004, the projections for 2010 obtained from these
models are unrealistically high.

The proportionality of the level of exposure and the number of fatalities was
tested by comparing models with and without a parameter for the exposure
measure. In general, the elasticity of the number of fatalities to the level of
exposure is low. The inclusion of this parameter has no impact on the results and
it can be assumed to be equal to one. Also in (Lassarre, 2001), generally very
low elasticities were found for various countries, although it is not clear whether
they are significantly different from 1.

From the models with intervention variables, it was concluded that only the
seatbelt law has a clear and unambiguous effect on the number of fatalities. On
average, the introduction of this law was associated with a decrease of 9% in the
number of fatalities. For the other laws, the effect is less clear. Speed is only
significant in the models with a constant. These are also the models where
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exposure showed an elasticity to the number of fatalities greater than one
(although not significant). This indicates a possible relation between the form of
the exposure curve and speed limits. For example, the inflection point that was
estimated for the Richards exposure curve is not far away from the introduction
of the speed law. This does not, however, prove a causal relationship between
the two curves. Moreover, it is not unthinkable that, due to the diverse nature of
the speed law (50 km per hour in urban areas, speed limits for motorcycles and
trucks, 90 km per hour on provincial roads, etc.), it is difficult to measure the
effect on a highly aggregated level. A similar conclusion may be valid for the
laws on alcohol. This law is only significant in the stochastic models. This may
indicate a strong influence of the deterministic functional form on the
significance of the variables. However, whereas seatbelt use and speed are
directly related to the behaviour of all motorized road users, the law on alcohol
controls is of a different kind. The effect of an alcohol law might be strongly
related to the frequency and the spreading of tests for alcohol, more than it is
the case for seatbelt use and speed, which are obviously related to aspects of the
car and the road infrastructure. As the alcohol tests are known to be spread in
time, the alcohol law may be a more complex intervention to test than seatbelt
use or speed.

Another aspect that has been treated in this chapter is the difference between
deterministic and stochastic models. Whereas a deterministic model assumes a
fixed trend, the stochastic models allow for a more flexible evolution over time.
In general, the deterministic models produce acceptable results, both in terms of
model fit and forecasting accuracy. However, it became clear that the specifics
of the functional form can have a strong influence on the outcome of a model.
For example, it is undesirable that adding a constant to the exponential risk
specification inflates the predictions or change the significance of the
explanatory variables. Moreover, the stochastic trend models are more natural in
the sense that they do not presuppose a certain functional form as the
cornerstone of evolutions in road safety and exposure. Also, the stochastic
outcome is much more enriched than the deterministic one, as it provides
information on the dynamics of the curves (the level and the slope), which are
allowed to change over time. In addition, the bivariate extension of the Lassarre
models, proposed by (Bijleveld & Commandeur, 2004), are perfectly in line with
the basic idea of the multiplicative relation between fatalities, risk and exposure.
Although these models do not assume any functional relation in advance, the
outcomes are in line with common expectations.
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All models presented in this chapter were also used to make a test prediction for
three years and an out-of-sample prediction up to the year 2010. The quality of
the predictions fluctuate between the models. Especially the predictions made by
the deterministic models are quite sensitive to the functional form of the
underlying model. Although the addition of a constant results in an improved fit
for the models, it diminishes the quality of predictions. Also, the addition of
intervention variables did not generally improve the quality. In this context, the
stochastic form is interesting. All dynamics in the data are explicitly modelled,
without assuming a functional relation beforehand. As a consequence, the
predictions are not affected by the functional assumptions.

To conclude, the presented models are useful to make long term predictions in
road safety, but due to the different characteristics of the models it is necessary
to consider a series of models as a kind of sensitivity analysis. In combination
with expert knowledge, it is possible to come up with reasonable road safety
predictions.

113






Chapter 6 Aggregated models for monthly exposure
and risk

6.1 Introduction

In this chapter, various models are presented for the description, explanation and
prediction of monthly road safety outcomes in Belgium. Contrary to the models
in the previous chapter, all subsequent models in this chapter are built on
monthly time series data, obtained from the official statistics and described in
Chapter 4.

In this chapter, both descriptive and explanatory models are developed.
Descriptive models can be used to describe the trends and seasonal fluctuations
in the monthly road safety data and to predict future road safety outcomes.
Seasonality is an aspect that typically occurs in monthly (or quarterly) data,
providing insight into the within-year road safety fluctuations. When exposure
data and explanatory variables are available, more elaborate (explanatory) models
can be considered. First, it is possible to analyse road safety in terms of
exposure and risk. As has been shown in Chapter 5 on yearly data, splitting up
the road safety outcomes in terms of exposure and risk can enhance the insights
in the underlying processes that lead to a certain safety level. The same is true
for an analysis on monthly data. Second, explanatory variables allow measuring
the effects of certain macroscopic variables on the level of road safety. If effects
of explanatory variables are also measured for the level of exposure, one can
distinguish between direct and indirect effects of certain variables on road safety
outcomes (Gaudry et al., 2000). If the effect of a variable, such as snowfall, is
evaluated in a model for the number of fatalities, a direct effect is measured.
But it is not unthinkable that snowfall will also affect the level of exposure,
which, in turn, will influence road safety. That is, snowfall will influence the
number of fatalities indirectly by its impact on the level of exposure.

It is clear that, depending on the model that is developed, the data needs may
be quite high. For a descriptive model of road safety, it is sufficient to have a
database with accidents and victims, which is, at a high level of aggregation,
usually not too problematic. However, if explanatory models are developed or
indirect effects are to be calculated, data issues crop up. Especially with monthly
data, it is very hard to find the necessary data. Also, exposure data are not
always available in a ready-to-use format. From Chapter 3 it is clear that a
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diversity of exposure measures is used in macroscopic road safety models. The
monthly measure of exposure, which was developed for the Belgian situation in
Chapter 4, will be used here in various models.

Once a model is constructed, be it descriptive or explanatory, it can be used for
forecasting purposes. It is important to stress that models need not to be
complex if the final objective is forecasting. Even the relatively simple
descriptive models can be useful in predicting road safety. Moreover, an
explanatory model suffers from the drawback that future values are needed if
forecasts are to be made.

6.2 Descriptive road safety models

In this section, a variety of models is presented that can be used to describe the
evolution in road safety. Descriptive models aim at unravelling the properties of
a specific time series. They are useful for monitoring purposes as well as for
predicting road safety in the near future. On the other hand, they do not include
any explanatory factors related to road safety. Although the lack of explanatory
power may be felt as a limitation of descriptive models, it offers at the same time
the undeniable advantage of low data needs. No other variables than the series
itself are needed to perform the analysis. Especially in the area of road safety,
where data is often difficult to find, this is a interesting property.

The descriptive models in this section will be developed on monthly road safety
data for Belgium. When road safety data are available on a monthly basis, some
specific properties of the series are noted. First, as with yearly data, an
increasing or decreasing trend can be present. Second, contrary to the higher
frequency data, strong seasonal fluctuations are present.  The classical
descriptive models try to separate the trend and the seasonal in the data from
the irregular pattern. If the trend, seasonal and irreqular part of a series are
denoted respectively as T, S, and I, then a multiplicative decomposition is
written as:

Y, =T, xS, xI, (29)
Alternatively, an additive decomposition is written as:

Y, =T, +S5, +1, (30)
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For positive components, a multiplicative model can be transformed into an
additive model by the logarithmic transformation. A decomposition of a time
series in the underlying patterns enhances the insight in the level of the series
and the magnitude of the (recurring) fluctuations around it.  Classical
decomposition models can be useful for curve fitting purposes, but they are rarely
used for forecasting. Well-known approaches involve calculation moving averages
and polynomial splines. Moving averages of odd order k calculates averages of a
observation and (k-1)/2 points on either side of it (Makridakis et al., 1998). The
average is “moving”, because for each next observation the oldest observation is
dropped and a new one is included. The higher the order of the moving average,
the smoother the result will be. Moving averages are therefore useful to calculate
a trend of a series. Polynomial splines use a sequence of polynomials of a low
degree (quadratic or cubic) to describe changes in the curvature of the data.

In more advanced models, the random character of the data is taken into
account. In this case, a time series Y, is seen as a random process in the sense
that it is not possible to theoretically determine a value for Y, but instead a
probability distribution is introduced to describe the likelihood of an observed
value. Classical regression models with time as an independent variable include a
residual term to indicate the random variation in the data, but do not allow the
time to influence the series stochastically. That is, the effect of time is the same
for each period. A regression model can be used to describe the dependence
between a road safety variable and time. It is useful to get an idea of the overall
trend in the data, but is dangerous when the sample is extended into the future.
One is never sure that the chosen functional form remains valid for out-of-sample
observations. For example, when a linear regression is fitted through the
(declining) number of fatalities, one can end up with negative numbers in the
future.

A modelling approach that has properties of both moving average methods and
classical regression is local regression smoothing. Instead of taking averages of
a subgroup of points, partial straight lines are fitted and joined to estimate the
underlying trend in the data. Analogous to the order of a moving average, a
smoothing parameter is used to allow for more or less curvature in the data.

The most famous stochastic time series models are the ARIMA models, introduced
by Box and Jenkins. The merit of Box and Jenkins is that they provide a rigorous
methodology to time series modelling through identification, estimation and
diagnostic checking. ARIMA models consider a time series as a combination of
autoregressive and moving average components. The trend and the seasonal
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component are treated as “noise” in the series, and should be filtered away
before models are fit. In fact, the trend and the seasonal component render the
series non stationary, and as the ARIMA methodology requires stationary series,
they should be removed before estimation.

The separation of a trend and a seasonal from the irreqular part of a time series
was also at the basis of many seasonal adjustment programs. It is appropriate
here to mention the Census Bureau methods, which were developed by the U.S.
Bureau of the Census. Throughout the different versions of the methods (X-11,
X-11-ARIMA and X-12-ARIMA), the time series decomposition methodology
remained the same. In essence, the decomposition involves the application of
weighted moving averages. However, the more recent versions combine these
techniques with ARIMA models to prevent loss of data at the beginning of the
series and extend the series with forecasts to improve the quality of the
decomposition.  Contrary to the ARIMA methodology, the decomposition
techniques show the components of the series as outputs. Especially the
seasonal component is used to seasonally adjust the series. On the other hand,
the decomposition techniques are less suited for forecasting purposes.
Decomposition is a tool for understanding a time series rather than for
forecasting.

In the past, the ARIMA methodology has been frequently applied for describing
and forecasting many time series. For many years, it was the most outstanding
method in education, business and research. However, ARIMA methods suffer
from some drawbacks in terms of model specification and interpretation. As will
be shown in the subsequent sections, ARIMA models require stationary data,
which is a rather stringent assumption. As a consequence, information on the
trend and the seasonal component is filtered away. Also, interpretation of the
estimated parameters is not an easy task, and missing values or changes in the
frequency of the series are not allowed.

The state space methodology deals with most of the drawbacks of ARIMA models.
This approach, that originated in the field of control engineering, is extensively
described in (Harvey, 1989) and in (Durbin & Koopman, 2001). In the state
space approach, the trend, the seasonal component and the irregular are
considered as essential parts of the series. They are modelled as independent
parts of the series. State space models are very flexible and general. A very
large range of models, including the ARIMA models, can be represented as state
space models.
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From this introduction, it should be clear that the range of possible descriptive
models is large. In this section, focus is on the stochastic models. ARIMA and
State Space methods will be applied to the Belgian road safety data. A
theoretical background is given for both modelling approaches. Next, the models
are applied to the series of the number of fatalities, the number of serious
injuries and the corresponding number of accidents. All models are developed on
data from 1973 up to 2002. The last two years, 2003 and 2004 are used to assess
the prediction accuracy. These models will provide a first indication of the
underlying processes in road safety.

6.2.1 ARIMA Methodology

The framework of ARIMA processes is based on the work of Box and Jenkins
(1976). It is a class of time series models in which time series are modelled in
terms of their own past behaviour. This means that the current values of a
variable are related to past values (Verbeek, 2000). As prediction is often one of
the objectives of a time series analysis, information on the past values of a
variable will be used for forecasting the future.

6.2.1.1 ARIMA model components

Consider a time series of n observations of some variable, denoted as ¥, V,,..., V..
These observations are seen as realizations of random variables with a given joint
distribution. In the context of time series, this probability model is called a
stochastic process. It is the objective of a time series analysis to find a model

which captures the essential characteristics of the stochastic process.

A simple way to model dependence of observations over time would be to say
that ¥, is equal to a constant term plus a random variable and one or more (g)
lagged values of this variable (Verbeek, 2000). This is called a Moving Average
process of order g, denoted as MA(q):

Yo =u+e, +0,6,, +0,6,,+...+0,6,,, & ~IID(O,<72 ) (31)

In this expression, IID(0,o02) denotes independent drawings from an identical
distribution with zero mean and variance equal to o 2. The unobserved random
variables & therefore refer to a homoskedastic process with no autocorrelation.
Using a backshift operator B on Y, defined as BY, =Y, (i=1,2,...), this process
can be written as:
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V,=pu+(1+0,8+0,8° +..+0,87 )e,, ¢, ~1D(0,6°)  (32)

In this expression, the lag polynomial containing the moving average
components can be written more compactly as ®(B), leading to the following
formulation:

Y, =u+0(B)e,, & ~ID(0,5%) (33)

Likewise, Y, can be expressed as a regression in terms of a constant plus one or
more (p) weighted previous values of ¥, and an unpredictable component. This
process is called an autoregressive relation of order p, denoted as AR(p):

Ve =g+ diYon + Ve +ont 8V, +6., & ~1D(0,6°)  (34)
Again using the backshift operator B, this AR(p) process can be written as:
V,(1-¢,8-¢,B> —...~$,B” )=p+e., & ~I1D(0,5°) (35)

Introducing a second lag polynomial ®(B), now containing the autoregressive
terms, the expression can be written as:

®O(B), =u+e,, & ~1D(0,07) (36)

In a more general setting, it is possible to include both autoregressive and
moving average terms in one equation, leading to an ARMA(p, g) model:

®(B)Y, =u+0(B)z,, &, ~I1D(0,6°) (37)

6.2.1.2 The stationarity assumption

An ARMA model cannot, however, be applied in all circumstances. It is required
that the process be stationary. For practical purposes, it is sufficient to have
weak stationarity, i.e. that the means, variances and covariances of the process
are constant through time. It is therefore required that:

E(Yt):E(Yt+s) VS,t

Var (Y, )=Var(Y,,, ) Vs, t (38)
COV(Yt 'Yt+/< ): COV(Yt+$ 'Yt+k+s ) Vk'S't
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In other words, the series is in equilibrium around a finite mean, and the
variance around the mean remains constant over time. Furthermore, the
covariances of the series do not depend on the period, but only on the distance
in time between the two observations. In general, an ARMA(p,qg) model
D(B)Y, = u+ O(B)s, is stationary if and only if the solutions of the characteristic
equation ®(B)=0 are larger than 1 in absolute value. If a series is non-stationary
because the variance is not constant, it often helps to log-transform the data.
To obtain a series that is stationary in the mean, the series is differenced. That
is, instead of working with the original series, successive changes in the series
are modelled. When an ARMA model is built on differenced data, it is called an
ARIMA model, where “I” indicates the differencing. For example, if first order
differences are taken, then the series is called integrated of order 1.

When the series consists of quarterly or monthly observations, it is possible that
the departure from stationarity stems from the differences between the same
quarter or month in successive years, rather than from differences between
successive observations. In these cases, seasonal differencing of order 4 or 12
may be necessary. A combination of first order and seasonal differencing results
in a general ARIMA process, that is denoted as ARIMA(p,d,q)(P.D,Q).. In this
formulation, p and g are, respectively, the orders of the AR and MA terms, while d
indicates the order of regular differencing. The seasonal AR and MA terms are
denoted as P and Q, while D is the order of seasonal differencing and s is the
length of the seasonal. For monthly data, s = 12.

To decide whether differencing is necessary for a given time series, stationarity
tests can be performed. The most famous stationarity test is the Augmented
Dickey-Fuller (ADF) unit root test (Dickey & Fuller, 1979). This test adopts the
null hypothesis that the series is not stationary against the alternative that it is
stationary. Usually the test can take different forms, depending on whether
stationarity is tested around a mean or around a trend. Generally, the ADF
regression equation can be written as:

AY, =af, | +x, 8+ LAY, + BoAY, , +.ot BLAY,, + &, (39)
In this expression, AY,=VY, -V, , x, is a vector containing exogenous variables
which may consist of a constant or a constant and a trend (QMS, 2004),
depending on the form of the non-stationarity. The parameters to be estimated

are «, 6, B, ..., B. The number of lagged difference terms is an issue, as
sufficient lags should be included to remove serial correlation in the residuals,
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but statistical software packages like Eviews 5.1 (QMS, 2004) provide an
automatic lag length selection. The null and alternative hypotheses to test for a
unit root are:

Hy:a=0
H,:ax<0

a

(40)

The test statistic is the conventional t-ratio, which in this case does not follow a
classical Student's t-distribution. Recently, MacKinnon (1996) calculated critical
values for the test. When the null hypothesis cannot be rejected, the process is
assumed to be non stationary, and differencing is performed.

6.2.1.3 ARIMA model diagnostics

According to the ideas of Box and Jenkins, a time series model is constructed in
three separate steps: identification, estimation and diagnostic checking (Stewart,
1991). Identification is the process by which a theoretical model is selected that
corresponds to the characteristics of the observed time series. This is mainly
done by investigating the autocorrelation function (ACF) and the partial
autocorrelation function (PACF). It also involves the stationarity check and, if
necessary, the differencing of the series. After identification, the unknown
parameters of the selected model are estimated. During diagnostic checking,
some ex-post verification of the model is performed. Typically, the residuals are
checked against the basic assumptions of no correlation and homoskedasticity.
If the final model is acceptable, it can be used for forecasting purposes.

The most important tool in assessing the specific properties of a time series is
the autocorrelation function (ACF), denoted as p,. This function describes the
correlation between Y, and its lag Y,, as a function of k (Verbeek, 2000), and can
be defined as:

_ Cov(Y, .Yy )

Pk = (41)
Var(Yt )

It shows how values of the series are correlated with its past values. The ACF is a

measure of how much interdependency exists between neighbouring observations

(not necessarily next to one another) in a time series. If a variable is completely

random, the autocorrelations should be zero for all time lags. If the variable is
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not completely random, one or more of the autocorrelations will be significantly
different from zero.

The theoretical autocorrelation function p, has some interesting properties for
specific AR and MA processes. In general, p, equals zero for an MA process of
order g < k. That is, after g lags, the ACF is zero for an MA(g) model. For an
AR(1) process, the autocorrelation coefficients exponentially decline to zero. For
higher order AR processes, the ACF is more complex.

The sample autocorrelation function, denoted r, gives the estimated

autocorrelation coefficients as a function of k. It is estimated as:

Z(Yt _?)(Yt _Yt—k )
n—K ¢k
e = 1.0 - (42)
nZ(Yt _Y)t

To test whether a particular r, value is significantly different from zero, the

sampling distribution of the autocorrelations can be used. For a random series,

the distribution of the autocorrelation coefficients is approximately normal with

a zero mean and a standard error equal to n™’. Therefore, if a series is white

noise, about 95% of all sample autocorrelation coefficients are expected to be
-1/2

smaller in absolute value than 1.96*n". If this is not the case, the series is
probably not white noise.

Rather than testing one autocorrelation at a time based on the distribution of
the autocorrelation coefficient, one can also use the Ljung-Box Q-statistic,
introduced in Equation 14 (section 5.2.2), to test a set of autocorrelation
coefficients at different lags (Makridakis et al., 1998). The Ljung-Box Q-statistic
is used to assess whether or not the residuals are purely random,. Under the null
hypothesis of white noise residuals, all autocorrelations r, up to a given value K
should be equal to zero. The statistic is computed as:

2
Qe =n(n+2)>" L

k=1 N — k

K

(43)
where r, is the lag-k autocorrelation coefficient as defined before, n is the number
of observations, and K is the maximum lag being considered. If for an ARMA(p,q)

model the null hypothesis is true, then Q, is chi-square distributed with K-(p+q)
degrees of freedom.
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Apart from the autocorrelation function, a second useful graph is the Partial
Autocorrelation Function (PACF). Partial autocorrelations are used to measure
the degree of association between Y, and Y,, when the effects of other
(intervening) time lags are removed. The partial autocorrelation coefficient of
order k for a time series Y, (t =1, 2, ..., n) can be obtained by regressing Y, on its
own past values Y, , ..., ¥,,. The partial autocorrelation for lag k is the estimated
coefficient for Y,, in this autoregressive equation. As with the ACF, all partial
autocorrelations should be close to zero for uncorrelated data. If a series is
white noise, the estimated partial autocorrelations are approximately
independent and normally distributed with a standard error equal to n™.
Therefore, the same critical values of 1.96n™* can be used with the PACF to
assess whether the series is white noise. For an autoregressive process, the
values of the PACF give important information about the order of the process. If
the partial autocorrelation show a cut-off after lag p, then p can be chosen to be

the order of the autoregressive process of a time series.

The assumption ¢ ~ IID(0,02) also involves homoskedastic residuals. This is
tested by the ARCH LM test (Engle, 1982), which is a Lagrange Multiplier test for
autoregressive conditional heteroskedasticity in the residuals. This test is based
on the observation that for many time series in practice the magnitude of
residuals is related to the magnitude of recent residuals (QMS, 2004). The ARCH
LM test statistic is computed from a regression that relates the current squared
residuals to the squared residuals of previous periods. In general, to test the null
hypothesis that there is no ARCH up to order g in the residuals, a regression of
the squared residuals is run on a constant and lagged squared residuals up to
order g. The test statistic is then computed as the number of observations times
the R from the test regression and follows, under general conditions, a x°(q)
distribution (QMS, 2004). The null hypothesis of the test states that the
residuals are homoskedastic.

6.2.2 State space methodology

6.2.2.1 Introduction

In the previous chapter, the state space methodology has been applied to model
the level of exposure and the risk in a multivariate framework. In this section,
the state space methodology will be described in a more elaborate way, as an
introduction to the models that will be developed on the monthly data. Clearly,
as in the ARIMA models, the use of monthly data implies some complexity (like
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for example seasonality) that is not present in models on yearly data. The details
on the theory can be found in (Harvey, 1989) and in the more recent work of
Durbin & Koopman (2001).

Like ARIMA models, state space models can be considered as dedicated time
series models. That is, they are specifically developed to take the time
dependencies into account. An important difference with the ARIMA framework
is that the underlying components are explicitly modelled instead of filtered
away. State space models are typically handled with the Kalman filter, a method
of signal processing which provides optimal estimates of the current state of a
dynamic system. The univariate basic structural state space models are in fact
special cases of a more general class of models, which can be written in compact
matrix notation. An observation Y, of a series at time t is written in state space
notation as (Chatfield, 2004):

Y, =hl6, +n, (44)

The state vector 6, is usually unobservable and contains the state variables as
components. The state variables are typically model parameters, like regression
coefficients, or parameters describing the state of a system (such as the level or
the seasonal). The column vector h, is known, and n, is the observation error. It

is further assumed that the state 6, depends on the previous state 6,, and that
the changes of 6, through time follow the equation:
0, =6,0,_, +w, (45)

Here, G, is assumed known, and w, denotes a vector of white noise deviations.
Both equations together form the state space model. The first equation is called
the observation equation, while the second is the state equation. The errors are
generally assumed to be serially uncorrelated and normally distributed.

After formulating the model in terms of its components, the main objective
usually consists of estimating the signal, represented by 6#,. The Kalman filter can
be used to estimate this unobserved vector. The “Kalman recursion equations”
enable the calculation of the one-step forecast errors and the likelihood
(Makridakis et al., 1998). This is usually done in two stages, as described for
example in (Chatfield, 2004). In the prediction stage, 6, is forecasted from the
data up to time period (t-1). When subsequently the new observation at time t
has been observed, the estimator for #, can be modified to take account of this
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extra information. The prediction error of the forecast of X, is used to update the
estimate of 6. This is the updating stage of the Kalman filter. The advantage of
the recursive character of the Kalman filter is that every new estimate is based on
the previous estimate and the latest observation, while at the same time the
whole past of the series is taken into account.

6.2.2.2 Structural time series model

A structural time series model is one in which the trend, the seasonal and the
error terms are modelled explicitly (Durbin & Koopman, 2001). The Basic
Structural Model (BSM) was introduced by Harvey (1989). It consists of a
stochastic level, a stochastic slope, a trigonometric seasonal and an irregular. In
an extended version, also explanatory variables can be incorporated The models
that will be considered further in this section can, in its most general form, be
written as follows:

J
Yo =u, +y, +Z,BMX” +é&, & ~NID(0,0'§

j=1
ey =4y +v, +&, &, ~NID 0,0‘2)
Via =V &, - ~NID(0,0'2) (46)
s-1
Vi :_27t+1—j + o, w, ~NID Orgs))
j=1
ﬂj,t+1 :ﬂj,t j=1,..,J

In this expression, u, denotes the level and v, is the slope term. The slope
determines, as in classical regression, the rate of change in the state, but is now
allowed to change over time. The combination of the level and the slope
component determines the trend in the model. The term y, is the seasonal
component, which is made stochastic by adding an error term w, to the equation.
The effect of the explanatory variables X, is measured by the parameters £, . In
the equation above, it is assumed that the regression parameters do not change
over time, although the framework is easily extended to do so. The error terms in
the model are all assumed to be normally and independently distributed with zero
mean and a specific standard deviation, denoted o, for the observation equation
and o;, or and o, respectively for the level, the slope and the seasonal equations.
These standard deviations can be used to assess the assumption that a
component is indeed stochastic. If the estimation procedure shows that the
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standard deviation of a specific component is not significantly different from
zero, it can be decided to model it as a fixed component. In such a way, it is
clear that deterministic models, like the classical regression models, are special
cases of the stochastic state space model. Moreover, note that many of the
statistical tests that are frequently used in ARIMA modelling (like the Box-Ljung
Q-statistic), are equally useful in a state space setting.

6.2.2.3 State space versus ARIMA models

In this short introduction to state space models, it is not possible to give an
overview of the methodology in all details. However, it might be worthwhile to
point out here the major differences and advantages of the approach compared to
the classical ARIMA methodology. This overview of arguments is based on
(Durbin & Koopman, 2001). First, the state space approach is based on a
structural analysis of the problem. The components like a trend, seasonal, slope,
etc. are modelled separately, and the final model formulation is based on the
judgement of the modeller. In any case, the structure of the underlying process
remains clear. Second, state space models are flexible. Changes in the structure
of the series over time are easily accounted for. Third, state space models are
very general. As mentioned above, the include a wide range of existing models.
It can be shown that many types of time series models, like the classical
regression models and even ARIMA models, can be put into a state space form
(Chatfield, 2004). Fourth, the generality of the models makes them very useful in
analysing multivariate series, treating missing values and adding explanatory
variables. Fifth, state space models are more transparent. The possibility to
graph the underlying components for inspection may reveal more information on
the observed and analysed data.

On the other hand, one may argue that both methods also have some similarities.
Indeed, because of the fact that ARIMA models have a corresponding state space
representation, and can also be extended with explanatory variables, it might be
assumed that in practice the results of both approaches are (fortunately)
comparable. Also, when prediction is the major objective, ARIMA models will still
be very useful. However, the ARIMA models are put at a disadvantage when it
comes to transparency and flexibility. No information on the components can be
derived (as they are filtered away), and the requirement of stationarity, as well as
the assumption of difference-stationarity, are obvious weaknesses of the
approach.
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6.2.3 An ARIMA study on Belgian road accident data

Using the ARIMA methodology described above, descriptive models were
developed for the (log of the) following road safety indicators: the number of
persons killed, the number of persons seriously injured, the number of accidents
with persons killed and the number of accidents with persons seriously injured.

Accidents with fatalities Accidents with serious injuries
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FIGURE 33:Data on fatal and serious injury accidents

The original series are shown in FIGURE 33. The series show a seasonal pattern
and a decreasing trend, although the latter is not apparent for the accidents with
persons killed. The models will be developed on monthly data for the years 1973-
2002. The years 2003 and 2004 will be used to evaluate the forecast accuracy.

For the number of accidents with persons killed and the number of fatalities, the
analysis resulted in the following model:

ADADY, =(1-0,8-6,8° )(1-6,8" )z, (47)
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Here, A” and A" indicate respectively first and twelfth order differencing. In
general form, this model can be written as ARIMA(O, 1, 2)(0, 1, 1),,. For the
number of persons seriously injured and the corresponding number of accidents,
an order 3 instead of order 2 moving average was needed:

ADADY, = (1-0,8-6,8> )(1-6,8" )e, (48)

This is an ARIMA(0O, 1, 3)(0, 1, 1)
assumed to be zero.

where the parameter for the second lag is
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The model diagnostics are shown in TABLE 15. To obtain stationary series, first
order and seasonal (order 12) differences were taken. The differenced series did
not have a unit root, as was confirmed by the ADF tests. The series were then
analysed by looking at the ACF and PACF to assess whether the residuals were
white noise. According to the patterns found in the residuals, the appropriate
autoregressive and/or moving average terms were added. The statistics Q, and Q,,
are the Ljung-Box Q-statistics for respectively the first 6 and 12 residual
autocorrelations. For none of the models the null hypothesis of independent
residuals can be rejected. The residuals were also tested for heteroskedasticity by
the ARCH LM test. For all final models, the hypothesis of homoskedastic residuals
could not be rejected.

The AIC value was defined in Equation 18. The BIC or Schwarz's Bayesian
Information Criterion, is an alternative to the AIC, which tends to penalize the
model more for additional estimated parameters. It is defined as:

BIC:—2(%)+/<([°9(”%) (49)

where, as before, n is the number of observations used in the model, [ is the
value of the log likelihood function and k is the number of estimated parameters.

The MAPE was defined in Equation 19, and is used to assess the forecasting
accuracy of the models. An alternative measure for forecasting accuracy is the
Theil Inequality Coefficient or Theil IC (Theil, 1966). It is defined as:

\/ f(yt,md v, ) /h

t=n+1

n+h n+h
J Sve . Ih J Shye
t=n+1 t=n+1

Theil IC =

(50)
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In this expression, Y, is the predicted value of ¥, and h is the length of the
forecasting period. The Theil IC always has a value between 0 and 1, where 0
indicates a perfect fit. An additional property of the Theil IC is that it can be
decomposed in a bias proportion, a variance proportion and a covariance
proportion. The bias and variance proportion respectively indicate how the mean
and variation of the forecast are deviating from the mean and variation of the
actual series. The covariance proportion is the remaining percentage that is due
to the unsystematic forecasting error (QMS, 2004). It is clear that the covariance
proportion, shown in TABLE 15 between brackets, should be as large as possible.
Note that this statistic can only be calculated if observed values are available for
the forecasting period. The values for the Theil IC are reasonably low for all
models, while the covariance proportions are around 80%. The models should

therefore be able to produce reasonable forecasts for the safety outcomes.

TABLE 15: Diagnostic checking for ARIMA models

NACCKIL NPERKIL NACCSI NPERSI
Q, 3.078 (0.380) 2.128 (0.546)  1.774 (0.621)  2.666 (0.445)
Q, 7.500 (0.585) 8.681 (0.467) 10.214 (0.333) 11.565 (0.239)
ADF -4.400 (0.000) -4.707 (0.000) -5.235 (0.000) -4.526 (0.000)
ARCH-LM  0.238 (0.625) 0.003 (0.954)  0.000 (0.984)  0.000 (0.989)
AIC -1.283 -1.335 -2.327 -2.215
BIC -1.249 -1.301 -2.293 -2.182
MAPE 9.803 9.686 6.065 6.429

Theil IC 0.058 (0.828) 0.057 (0.835)  0.035 (0.805)  0.038 (0.836)

The parameter estimates are shown in TABLE 16. Note the high similarity
between the number of accidents and the corresponding number of victims, both
for the fatalities and serious injuries. One of the drawbacks of the ARIMA
approach is that it is not always easy to give a clear interpretation of the results.
A very general interpretation of ARIMA models is of course that each observation
of the series can be seen as a weighted average of past observations. For MA
models a more precise interpretation can be given. Each forecast from a MA
model is an exponentially weighted moving average of a portion of the available
data (Pankratz, 1991). For example, in a seasonal MA process ARIMA(0O, 0, 0)(0,
1, 1),,, an estimate for a variable x, (say January) gives a certain weight to the
same month one year ago (x,,), a smaller weight to x_,, and so on. In the case

t-12 t-247
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of an ARIMA(O, 1, 2)(0, 1, 1)

weights (x,

t-1/
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these weights for x, are combined with one period
X,,.-..) and two period weights (x.,, x_,...). Each observation is

therefore influenced by the value in the two previous periods and by the value in
the same month of the previous year.

TABLE 16: Parameter estimates for ARIMA models

Coefficient Std. Error t-Statistic

Prob.

Number of fatal accidents (NACCKIL)

o, -0.741704  0.051384 -14.43455
o, -0.122469 0.048219 -2.539880
0. -0.924447 0.017855 -51.77614

2
3

0.0000
0.0115
0.0000

Number of persons killed (NPERKIL)

o, -0.708261 0.049386 -14.34123
6, -0.151179  0.042474 -3.559301
0. -0.932571 0.015218 -61.28232

2
3

0.0000
0.0004
0.0000

Number of serious injury accidents (NACCSI)

0, -0.674511 0.043994 -15.33182
6, -0.155409 0.043488 -3.573624
0. -0.919993 0.017013 -54.07662

2
3

0.0000
0.0004
0.0000

Number of serious injuries (NPERSI)

0, -0.668746 0.043937 -15.22058
6, -0.143713  0.043780 -3.282623
o, -0.944164 0.007760 -121.6736

2
3

0.0000
0.0011
0.0000

FIGURE 34 shows the predictions for the four dependent variables. The ARIMA
predictions follow the seasonal pattern and, apart from the random fluctuations,

they seem to predict the data quite well.

However, the graphs give the

impression of overestimating the number of accidents and victims for the years
2003 and 2004, especially for the number of fatalities. This may be explained by
the significantly lower number of accidents in these years.
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FIGURE 34: ARIMA predictions for 2003 and 2004

6.2.4 State space model for Belgian road safety data

Apart from the fact that the models can be seen as exponentially weighted
moving averages of the available data, the ARIMA models do not provide any
insight in the underlying patterns of the data. Typically, an ARIMA model filters
away the trend and the seasonal component to obtain a series that can be
modelled as a combination of moving average and autoregressive terms. Given
the high degree of seasonality and the clear trends in accidents and victims, it
might be instructive to explicitly model these components. State space
methodology and unobserved components models are useful in this respect. This
approach explicitly models the trend and the seasonal instead of filtering them
away.

The four series that were modelled by means of ARIMA structures in the previous
section will now be analysed with a state space model. For every model, first a
stochastic level, slope and seasonal is assumed. If the variance of the
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corresponding component is zero, the component is fixed. If the component is
at the same time not statistically significant, it is dropped from the model. An
autoregressive component is also added. Further, the model residuals are
evaluated and tested for serial correlation and normality. For serial correlation,
the Box-Ljung Q-statistic is used (see for example equation 14 for the
specification). To test for normality, the Bowman-Shenton test is used. This test
takes into account the skewness and the kurtosis of the distribution of the
residuals and is tested against a y’(2) distribution (Koopman et al., 2000). If
necessary, intervention variables are defined to render the residuals normal. All
this is, of course, an iterative process, of which only the final results will be
shown here. Model estimation is done in STAMP 6.21.

TABLE 17: Diagnostic checking for state space models

NACCKIL NPERKIL NACCSI NPERSI
Q, 1.927 (0.382) 2.281 (0.320)  9.730 (0.008)  9.433 (0.009)
Q, 5.777 (0.672) 5.291 (0.726) 18.241 (0.020) 21.515 (0.006)
AIC -4.338 -4.363 -5.543 -5.396
AIC -1.257 -1.257 -2.363 -2.209
BIC -4.154 -4.169 -5.325 -5.167
BS-test  1.481 (0.477) 0.915 (0.633)  3.846 (0.146)  3.925 (0.141)
MAPE 9.969 9.450 7.159 7.642

Theil IC  0.059 (0.869) 0.057 (0.924)  0.044 (0.925)  0.045 (0.939)

* Calculated AIC value, to compare with TABLE 15

In TABLE 17, the model diagnostics are shown. The Q, and Q,, statistics test for
serial correlation up to order 6 and 12. For the models related to the fatalities,
there does not seem to be a problem, but this cannot be said for the serious
injury outcomes. Clearly, because of the correlation left in the residuals, the
state space model is not capturing all the dynamics of the series. The ACF for
these series (not shown here) indicate high correlation at order 4, 5 and 10.
Perhaps this is caused by some outliers. However, as can be seen from TABLE 18,
the serious injury series are already corrected by five distinct outliers. This
results in normally distributed residuals (see the BS normality test in TABLE 17),
but does not solve the correlation problem. A possible treatment would be to
include lags of the dependent variable as explanatory factors in the model,
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creating a distributed lag model with a state space structure. In this analysis,
however, the model is kept as such.

The AIC values in TABLE 17 are not completely comparable to those obtained for
the ARIMA models, because of differences in the calculations. To make both AIC
values comparable, the log-likelihood obtained in the STAMP software should be
corrected by a constant equal to (Durbin & Koopman, 2001):

—ﬁlog(Zﬁ)—n— (51)
2 2

Here, n is equal to the number of observation used in the log-likelihood
calculations. This new value is subsequently imputed in the AIC definition given
in Equation 18. The new AIC values (AIC) are now in the same order of
magnitude and can be used to compare the state space models with the ARIMA
models. Clearly, the differences among the models are small. The ARIMA models
for fatalities are slightly better than their state space counterparts, and for the
serious injuries the models have a comparable fit. Further, the MAPE and Theil IC
statistics show the quality of the predictions. The ARIMA and state space models
perform equally well for the fatality outcomes, but the ARIMA predictions for the
serious injury outcomes are slightly better.

TABLE 18: Intervention and AR variables

NACCKIL NPERKIL NACCSI NPERSI

JUN73 . - - -0.737 (0.000)
JAN79  _0.839 (0.000) -0.722 (0.000) -0.585 (0.000) -0.575 (0.000)

JAN85  _0.673 (0.000) -0.673 (0.000) -0.324 (0.000) -0.319 (0.000)
AUG99 - - -0.234 (0.000) -0.214 (0.001)
0cT02" - - -0.252 (0.000) -0.262 (0.000)
AR(1) -0.092 -0.096 -0.008 0.001

* The OCTO2 intervention variable corrects the level.

TABLE 19 shows the values taken by the levels and the slopes in the four models
at the end of the sample. These values are in logarithms. Note that the slope
component was not significantly different from zero, and was therefore dropped
from the model. Returning to the original scale, it is possible (for the models
with a significant slope component) to calculate a growth rate at the end of the
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sample. It can be seen that the yearly reduction in persons killed is smaller than
for the serious injury accidents and victims.

TABLE 19: Final state diagnostics

NACCKIL NPERKIL NACCSI NPERSI
Level 4.646 (0.000)  4.697 (0.000) 6.121 (0.000)  6.304 (0.000)
Slope n.a. -0.002 (0.003) -0.003 (0.000) -0.003 (0.000)
Growth rate n.a. -2.633% -3.141% -3.300%

All models in this study were estimated with a fixed seasonal component. This
was done so because the variance of the seasonal was estimated to be zero. The
fixed seasonal pattern for accidents (left) and for victims (right) is shown for two
years in FIGURE 35.
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FIGURE 35: Seasonal pattern for accidents and victims

As one can expect, there is a high similarity between the curves for accidents and
victims. The distribution over the months, however, depends on the outcome
modelled. That is, the pattern is different for fatalities compared to serious
injuries. For both outcomes, the month of February seems to be the least
dangerous. The number of fatalities is clearly highest in October, while the
number of serious injuries is high in June and in October.

Another interesting output from the state space model is the predicted trend for
the dependent variables. As explained before, the trend does not have to be
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deterministic, but can move over time stochastically. Also, it is not necessary to
filter the trend away. FIGURE 36 shows the estimated trends. As the seasonal
and random fluctuations are separated from the trend, the graphs show a smooth
picture of the evolution in road safety. The overall is much more visible from
these graphs compared to the original data in FIGURE 33.
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FIGURE 36: Trends for accidents and victims

To visually compare the predictions of the state space models with those
obtained with the ARIMA models, FIGURE 37 shows the predicted values for the
two out-of-sample periods. The graphs confirm the high similarity between the
models. However, the discussion showed that state space models allow more
insight in the descriptive components than the classical ARIMA models.
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FIGURE 37: State space predictions for 2003 and 2004

6.3 Explanatory models

Whereas the descriptive models are useful to predict the future level of road
safety and, in the case of state space models, to show the underlying trend and
seasonal pattern, explanatory models include some variables that, at an
aggregated level, might influence road safety. In this section, the ARIMA models
discussed above are extended with explanatory variables. First, some background
is given on how explanatory variables can be added to the ARIMA framework.
Second, an explanatory model is given with calendar variables. Third, the model
further extended by an exposure measure and other explanatory variables.

Note that the same procedure could be followed with state space models. This
framework is at least equally flexible in including explanatory variables as the
ARIMA models. The comparison of both approaches in terms of explanatory
power for road safety models is an interesting topic further research, for which a
start was already given in (Hermans et al., 2006b).

137



6.3.1 Extending ARIMA models with explanatory variables

An ARIMA model can be used in combination with classical regression. In this
case, the regression model is fitted to capture the relation between the
dependent and one or more independent variables, while an ARIMA structure is
imposed on the residuals of the regression model. The multiple regression model
can be written as:

Ve =B+ Xy + P2 Xop 4t B X + N, (52)
Here, Y, is the t-th observation of the dependent variable and X, , ..., X, are the
corresponding observations of the explanatory variables. The parameters
B B, B, ..., B are fixed but unknown, and N, is the unknown error term, which
is assumed to be normally distributed. Using classical optimisation techniques,
estimates for the unknown parameters are obtained. If the estimated values for
B, B, B, .... B, are given by b, b, b,, ..., b, then the dependent variable is
estimated as:

Yot ¢ =bg +0, X, +b, X, +...+b, X, (53)

The estimate N, for the error term N, is calculated as the difference between the
observed and predicted value of the dependent variable: N, =Y, -V

est,t estt*

In the classical regression model, assumptions are made about heteroskedasticity,
autocorrelation and normality. Typically, the autocorrelation assumption is likely
to be violated in regression models with time series data. In a regression with
autocorrelated errors, the errors will probably contain information that is not
captured by the explanatory variables, and it is necessary to extract this
information to finally end up with uncorrelated (“white noise”) residuals.
Autocorrelation can be taken into account by including an ARIMA model for the
residuals of the regression equation.

As an example, assume a regression model with one explanatory variable,
denoted as:

Yo =By + B, X1 +N; (54)

Suppose further that the error terms are autocorrelated, and that they can be
appropriately described by an ARMA(1,1) process. This model can then be written
as:
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Yo =Bo+ P, X1 +N, (55)
(1-¢.B)N, +(1-6,8)a,

and g, is assumed to be white noise. Substituting the correction for the error
term into the regression equation gives:

(1_913)

Yt zﬂo +ﬂ1X1,t +
(1_¢1B)

a; (56)

When the residuals of the regression equation are not stationary, then, as in the
case of the classical ARMA models, they should be differenced to make them
stationary. In this case, according to (Pankratz, 1991), all corresponding series
(both the dependent and the explanatory variables) should be differenced. This
can be seen from the small regression example. Differencing the error terms
twice results in the following expression, with the ARMA(1,1) model for the
differenced error terms:

(1_‘918) (1_‘918)

VoVWN, =g, &N, =———"—a, (57)
(1_¢1B) V12V(1—¢1B)

Substituting back this expression into the regression equation gives:

1-6,B
Yy =B, +ﬂ1X1,t +¥ t (58)
V12V(1_¢1B)
or, equivalently,
. (1-6,8)
VoV =8 + B VL,VX  +———a, (59)
(1_¢1B)

The intercept is now possibly different, but the (theoretical) regression
coefficient f, is not affected by the differencing operation. However, its
estimated value may differ slightly, since the estimation is done on different
(although related) time series.

6.3.2 A model with calendar variables

In a first explanatory model, only variables related to the calendar are
considered. Given the large number of possible explanatory factors in road safety
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models, the gathering of data requires a huge effort. The main condition to
develop explanatory models is the availability of data. Moreover, if the
dependent variables should be predicted with an explanatory model, future values
of the explanatory factors are necessary. This implies another set of predictions
that must be made beforehand. This is certainly an advantage of the descriptive
models that were developed in the previous section. These models describe a
time series in terms of the general trend and a possible seasonal pattern or
autoregressive and moving average components, without providing any
explanatory power.

On the other hand, some simple variables can be found that provide insight in
the series and that are always available, for the past, the present and the future.
These are variables that are related to the seasons and the calendar. It is not
unrealistic to assume that these variables can help in understanding road safety
time series. First, there is a seasonal pattern present in accident data. Some
months always have a higher number of road crashes and victims than others.
This is also related to the length of the month. It is to be expected that a 28-
day month (February) will have a lower number of road crashes than a 31-day
month, given the almost 10% difference in the length of the time period.
Indicator variables for the months can capture these patterns. Also, it is known
that the exposure to crashes is higher in some months compared to others, like
for example during holidays. These peak moments in traffic can explain the
number of crashes and victims during a given month. By including variables that
reflect peak exposure, these effects can partly be accounted for. Second, given
the problem of weekend crashes in Belgium, it is to be expected that crash
counts are higher in months with more weekend days. Third, the planning of
official holiday periods can influence the exposure in a month, and thus the
number of crashes. Easter holiday can shift between March and April, and
starting weekends of holiday periods always lead to a different kind of traffic.
Based on the planning of official holiday periods, it is possible to foresee the
weekends with special travel in a year. Fourth, the calendar variables (like the
number of weekdays and weekend days in a month) are known for every year in
the future. These properties of calendar variables make them quite appealing to
practitioners, because they enrich the model and allow predictions without a
heavy effort of data collection and cleaning.

In this section, some explanatory models are developed in which all independent
variables are based on the calendar. This offers the undeniable advantage of
availability of the data. Because an ARIMA model filters away the trend and the
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seasonal pattern, these components are not explicitly included. Including
seasonal dummies would introduce a fixed seasonal, which is not a bad choice as
such, but might unnecessarily increase the number of parameters in the model.
In the model, the trading day and special day variables are included, together
with an indicator for February months in leap years and level shift variables for
the laws of June 1975 (seatbelt law), January 1991 (mandatory seat belt use in
the rear seats), January 1992 (new speed limits), December 1994 (higher alcohol
fines) and January 1998 (automatic speed cameras at intersections). These
variables were introduced in Chapter 4. Also, in order to obtain normally
distributed residuals, correction variables (0/1) are added to the models.
Typically, these “interventions” can be related to severe weather conditions like
in January 1979 and January 1985. For the serious injury outcomes, also August
1999, October 2002 and November 2002 were added, however without a clear
interpretation. Fact is that these periods show a residual that is clearly smaller
or larger than average. The diagnostic results of the models are shown in TABLE
20.

TABLE 20: Diagnostic checking for Regression-ARIMA models

NACCKIL NPERKIL NACCSI NPERSI
Q, 1.930 (0.587) 1.622 (0.654) 3.666 (0.160) 2.824 (0.244)
Q, 8.514 (0.483) 7.745 (0.560) 9.713 (0.286) 7.276 (0.507)
ARCH-LM 0,033 (0.856) 1.342 (0.247) 1.765 (0.184) 2.180 (0.140)
JB 1.604 (0.448) 0.457 (0.796) 3.892 (0.143) 2.330 (0.312)
AIC -1.580 -1.636 -2.742 -2.655
BIC -1.436 -1.491 -2.553 -2.464
MAPE 9.410 9.821 6.504 7.352

Theil IC 0,055 (0.788) 0.055 (0.801) 0.035 (0.887) 0.041 (0.900)

Like the ARIMA models (see TABLE 15) and some of the state space models (see
TABLE 17), also the regression models with ARIMA errors are valid in a statistical
sense, as can be seen from the Q-statistics in TABLE 20. Based on the AIC
values, the regression models are slightly better in terms of model fit. For the
prediction accuracy, however, the results are not so different. According to the
MAPE, the ARIMA models are best for the number of serious injuries and the
corresponding number of crashes. For the number of fatalities, the state space
model has the lowest MAPE. The Theil IC is lower for all regression models,
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except for the seriously injured persons. The differences are, however, rather
small. Note that the highest values for the covariance proportions of the Theil IC
values are obtained for the state space models. The ARCH-LM test for
heteroskedastic residuals in TABLE 20 is the same as was introduced before, and
shows satisfactory results. To test for normality, the Jarque-Bera (JB) statistic is
used, which has a y°(2) distribution under the null hypothesis of normally
distributed errors. For none of the models, the normality assumption can be
rejected.

The advantage of the regression models lies in the information provided by the
calendar variables. TABLE 21 shows the most important results (p-values between
brackets). Only the variables related to the calendar and the laws are shown.
The autoregressive and moving average results are similar to those obtained in
the pure ARIMA models.

TABLE 21: Parameter estimates for Regression-ARIMA models

NACCKIL NPERKIL NACCSI NPERSI
Trading Day  -0.0028 (0.130) -0.0020 (0.269) -0.0034 (0.001) -0.0051 (0.000)
Special Day  -0.0006 (0.887) 0.0018 (0.636) -0.0043 (0.0407) -0.0039 (0.072)
Leap Year 0.0809 (0.058) 0.1173 (0.005)  0.0406 (0.079) 0.0429 (0.075)
Law0675 -0.1771 (0.003) -0.1770 (0.002)  -0.0858 (0.028) -0.1372 (0.001)
Law0191 -0.0153 (0.792) -0.0265 (0.639)  -0.0214 (0.583) -0.0221 (0.593)
Law0192 -0.0888 (0.122) -0.1247 (0.028)  -0.0495 (0.199) -0.0744 (0.071)
Law1294 -0.2024 (0.001) -0.1931 (0.001)  -0.0803 (0.037) -0.0699 (0.091)
Law0198 0.1050 (0.070)  0.1103 (0.053)  0.0086 (0.823)  0.0084 (0.839)

The trading day variable is significant for the serious injury outcomes. Since the
sign of the variable is negative, months with more weekend days may be more
dangerous than months with more weekdays. This shows the influence of the
calendar composition in terms of weekdays and weekend days on the number of
persons seriously injured, which confirms the expectations for Belgium. Weekend
crashes are frequently observed, mostly with serious consequences. The trading
day variable can be used to quantify the number of fatalities expected from an
extra weekend day in the month. As an example, compare the months of August
in the years 1997 and 2000. In 1997, 21 weekdays and 10 weekend days are
observed. For this month, the trading day variable 7D, equals -4. The same

AUG9T
month in 2000 has 23 weekdays and only 8 weekend days. Therefore, D, .,
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equals 3. Given a parameter estimate of -0.0051 for the model NPERSI, the effect
on the dependent variable is 0.0205 for August 1997, and -0.0154 for August
2000. Applying the exponential function results in an increase of persons
seriously injured of exp(0.0205)-1=0.0207 or 2.07% for August 1997, and a
decrease of 1-exp(-0.0154)=0.0153 or 1.53% for August 2000. A similar
reasoning applies to the number of serious injury accidents. Note that this is
only the effect attributable to the trading day pattern. In general, comparing
two months with 9 and 10 weekend days respectively, results in a global increase
in serious injuries of 1.8% for the additional weekend day, all other things being
equal. Given the high monthly number of victims in Belgium, this percentage is
quite considerable. The trading day variable is an interesting instrument for
policy makers. The models allow measuring the number of injuries that can be
expected based on the calendar structure. In a month with more weekend days,
safety campaigns can be directed towards the group of people that is likely to be
on the road during weekends and involved in a crash. According to the statistics,
mainly young drivers die in fatal weekend accidents. In 2002, 65% of the
Belgian drivers killed in a weekend crash were between 18 and 34 years old
(Jolly, 2005). This group of road users is obviously the first target for weekend-
related road safety campaigns.

The special day variable is significant for the serious injury outcomes, with a
negative sign. For example, if a month counts one extra special day, as defined
in Chapter 4, the number of serious injuries decreases by 1-exp(-0.0039)=0.39%,
all other things being equal. This may seem counterintuitive at first sight, but
can easily be explained. In periods of special traffic, caused by public or national
holidays and Christian holy days, on the one hand large concentrations of traffic
can be found, leading to reduced speed, and on the other hand the overall level
of traffic is lower on these days.

The leap year is significant for all models, with a positive sign. For example, the
number of fatalities is, on average, exp(0.1173)-1=0.1245 or 12.45% higher
compared to other (February) months. Note that this is a separate effect of the
leap month, because the seasonal variation already has been removed from the
data. It is expected that adding a leap variable corrects for a pattern that is not
captured by the seasonal.

The major traffic laws of the last thirty years show mixed effects on road safety.
First, the law of June 1975 on seat belt use in the front seats significantly
reduces all road safety outcomes, and can be seen as a major step forward in road
safety. Contrary to this law, the introduction of mandatory seat belt use in the
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rear seats (January 1991), together with laws to improve the safety of vulnerable
road users, is not significant. This may be explained in several ways. First, the
number of persons travelling on rear seats is smaller compared to the front seats.
Second, and perhaps more important, according to attitude measurements in
2003 and 2004 (Silverans et al., 2005), the level of seat belt wearing in the rear
seats is significantly lower than in the front seats. According to the study, only
40.9% of the rear seat passengers report systematic seat belt use, compared to
62.7% and 67.8% as a driver or front seat passenger respectively. Also, 42.5% of
the surveyed rear seat passengers rarely if ever used a seat belt. Given the fact
that self-reported attitude measurements usually overestimate the observations,
it is expected that the true level of seat belt wearing is even lower. Third, due to
the fact that 5 different measures were introduced at the same time (see Chapter
4 for more details), this law is not easily tested in an aggregated model. The
introduction of higher alcohol fines (in December 1994) was successful in
reducing the level of accidents and victims. The law on new speed limits did not
decrease the number of accidents, but resulted in a reduction in the number of
persons killed and the number of serious injuries. The installation of automatic
speed cameras is significant for the fatal accidents and the number of fatalities,
but has an unexpected sign, leading to more accidents and victims. Perhaps this
law is different in nature, in the sense that it is a local measure, not generally
applicable to all types of roads. Moreover, the introduction of the cameras was
not uniformly distributed over the country, with a high density in Flanders and
almost no cameras in the Walloon region. Also, the cameras were introduced
gradually, which may hamper the measurement of the effect by means of a level
shift dummy variable. Finally, note that the introduction of the law is almost at
the end of the test data set, leaving a rather short after-law period.

The models developed in this section illustrate some interesting aspects of
explanatory model building. First, they provide a road safety researcher with
useful insights on the tested variables. Second, an explanatory model is not
necessarily better in terms of prediction. Even a simple model can provide
acceptable forecasts, without the effort of gathering data. Using calendar
variables, however, offers the opportunity of getting (limited) insights in the
evolutions created by the calendar constitution, without the need for gathering
explanatory data and creating models with them.
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6.3.3 Adding variables and the multicollinearity issue

In the previous models, the number of explanatory variables was deliberately kept
quite low. This parsimonious approach towards model building has the advantage
of keeping the level of multicollinearity reasonably low. On the other hand,
these models are also limited from the explanatory point of view. If more
variables are introduced in the model, the multicollinearity issue may rise. This
section provides some background on the issue of multicollinearity, as an
introduction to the explanatory models that will follow.

6.3.3.1 The nature of the multicollinearity problem

In almost all classical regression models, and variants thereof, the inclusion of
too many (correlated) variables can create multicollinearity. In the presence of
perfect multicollinearity, at least one of the columns in the matrix of
independent X variables can be expressed as a linear combination of (some of)
the other columns. In this case, the matrix XX is singular and cannot be
inverted, hence the model is not identified and the parameters cannot be
estimated. Similar problems can arise when some of the X variables are near-
collinear. In these situations, the degree of multicollinearity is so high that,
although XX is not strictly singular, numerical problems are encountered when
one tries to invert it. In data sets with non-experimental data, often situations
are found where (linear combinations of) the independent variables are to some
extent correlated, although the correlations are not nearly 100 % and the XX
matrix is perfectly invertible.

Multicollinearity among the predictor variables does not inhibit the ability to
obtain a good model fit or to make inferences about mean responses (Neter et
al., 1996). In fact, multicollinearity does not lead to bias, but to a reduced
precision for certain (linear combinations of) parameter estimates. When
variables are collinear, the estimated regression coefficients tend to have large
sampling variability and certain standard errors will become large. As a result,
only imprecise information is available in the model about the true regression
coefficients. Because of the large variability in the coefficients, estimated
parameters may be insignificant, even though a statistical relation exists between
the response variable and the predictors. Further, due to the fact that collinear
predictors typically move together, the common interpretation of a regression
coefficient measuring the change in the expected value of the dependent variable
when the predictor variable is increased by one unit, ceteris paribus, is not fully
applicable. In the case of collinear explanatory variables, the regression
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coefficient of any variable in the model depends on the other variables that are
in the model and those that are left out. The regression coefficients then only
measure a partial effect, given the other (correlated) variables in the model.
Moreover, in these cases adding or deleting a predictor variable will change the
regression coefficients.

Multicollinearity is an intrinsic property of non-experimental data (OECD, 1997b),
like road safety, economic or socio-demographic series, for which controlled
experiments are not possible. However, one should realise that econometric
techniques are brought into play precisely to analyse this type of data. As
multicollinearity is an inescapable aspect of non-experimental data, using
econometric models to analyse them is a logical choice. Multiple regression
techniques are used because non-experimental data are collinear. Regression
techniques are able to estimate partial effects of the independent variables and
at the same time provide an estimate of its precision (variance and covariance
estimates). Each single parameter estimate is then interpretable as the marginal
change in the dependent variable following a marginal change in that particular
independent variable, given that all other variables in the model remain
constant. Of course, this is not possible in cases of perfect multicollinearity and,
in all other cases, only with a precision determined by the (less than perfect)
multicollinearity among the predictors.

Given the “natural” presence of multicollinearity in non-experimental studies, the
data selection process and the model specification should in the first place be
guided by theoretical insights in the research domain. Then, the researcher can
formulate a set of hypothetical experiments, the outcome of which he would like
to measure within the model (such as, for example, the effect on the number of
accidents of a 10 % higher fuel price). These two starting points define, in
principle, the variables that will be part of the model.

Of course, the researcher is not always free in choosing the data for the model, as
he is often restricted to the available or easily accessible data sources. Also, this
approach towards data selection does not mean, that multicollinearity is not
important or should not be detected. It is not always straightforward to get a
complete view on the multicollinearity structures in the data by only looking at
the larger standard errors. In the next section, some techniques are presented to
check for multicollinearity among the variables.
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6.3.3.2 Checking for multicollinearity

Several techniques can be used to assess the level of multicollinearity. In
general, the following phenomena typically may arise when multicollinearity is
present:

- The simple correlation coefficients between pairs of predictor variables
are high;

- The regression coefficients of important variables turn out to have an
unexpected sign or to be insignificant;

- The regression coefficients have wide confidence intervals due to their
large standard deviations;

- Insignificant results may arise for the estimated regression coefficients of
important predictor variables;

- Adding or deleting an explanatory variable or an observation changes the
estimated regression coefficients, in magnitude and even in sign.

Apart from these informal diagnostics, formal methods exist to detect the
presence of multicollinearity. Contrary to the informal detection methods, they
identify the nature of the multicollinearity and provide a quantitative tool to
measure its impact. Also, the behaviour observed with the informal diagnostics
may sometimes be present without multicollinearity. In this text, the method of
variance components, based on a decomposition of the matrix product XX of
explanatory variables, is used to detect the multicollinearity problem and to
point out the independent variables that are linearly dependent (Liem et al.,
2000). This procedure is especially useful in the case where XX turns out not to
be invertible.

To set up the variance decomposition, the columns of the matrix X are scaled to
unit length (denoted X,), but not centred around their sample means, because
centring obscures dependencies that involve the constant term. The sum of the
eigenvalues, denoted k, is equal to the trace and each diagonal element of X ,'X
is 1:

k
D7 =tr(X X ) =k (60)
=

where y are the eigenvalues of X ,’X,. Small eigenvalues y indicate the presence
of multicollinearity. To judge what “small” is, their magnitude can be compared
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with k. Another possibility is to compare them to

max”

eigenvalue. Therefore, a condition index 7, is defined as:

n; :'\/7max/7j (61)

To determine the variables that are involved in the dependency, a decomposition
of the variance of the estimated regression coefficients b, is performed. To this
end, the matrix with variances and covariances of the parameters, using the
scaled data, is written as:

which is the largest

Var(b(u)):52 (X('u)X(u))A (62)

Since X ,'X, is symmetric, it can be written as:

X)Xy =PD,P (63)
where D, = diag(y,, ..., y,) and
P11 P P1k
p_ Par Pz - Pax (64)
Pei Prz o Prk

The matrix P is an orthogonal matrix with elements p, (= 1,....k; j=1,...,k), and
the columns of P are the eigenvectors for the corresponding eigenvalues. Given
these components, one can rewrite the estimated variance of b, as follows:

52 (b )= 57 (X{u)X(0) )" =s2PD; P’ (65)

and for one parameter b, the estimated variance is written as:
k
2 2 -1 .2
s2 by )=5" 27 0% (66)
i=1

This expression allows considering the variance of b, as being composed of k
components. Each y,.'lpﬁ2 (1=1, ..., k) is a variance component of the variance of

b, The variance proportions are then defined as:
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-1 .2
Vi P
Py = (67)

k-1

-1,2
Z?’ i Pji
i=1

To determine the variables that are involved in the dependencies, one can look at
the eigenvectors of X,'X, corresponding to small eigenvalues y. Then, the
variance components of b, - indicate the factors that cause the high variance. A
table of variance-decomposition proportions can be constructed, with increasing
values of the eigenvalues in the first column.

TABLE 22: Condition Index and Variance Decomposition Proportions

Condition Variance Decomposition Proportions

Eigenvalue Index Var(b,) Var(b,) . Var(b)
% (7min) UA Pn P, i Puc
7 , P P ot P
% (7max) up P Do ot Dic

From this table, the number of interdependencies appears. A value for the
condition index 7, of more than 30 is considered as an indicator of strong
multicollinearity, while associated values for ¢, in excess of 0.5 indicate the
variables X, involved in the collinear relations (Liem et al., 2000). Note that in
each column the variance proportions add up to 1. To infer multicollinearity, one
has to identify the rows with small eigenvalues. In these rows, the small
eigenvalue is caused by the relationship between at least two independent
variables.

6.3.3.3 Remedial Measures

As mentioned before, the presence of multicollinearity is not affecting the
usefulness of a fitted model to make predictions. However, if the main purpose
of the model is to assess the impact of various explanatory factors on the
dependent variable, one should at least be aware of the level of multicollinearity
in the data.

1. A first remedial measure might be to centre the predictor variables around
their means. This typically reduces the multicollinearity among first-order
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(linear) and higher order (quadratic,...) terms in a polynomial regression.
Also other transformations of predictor variables (like the Box-Cox
transformations proposed in the DRAG models) can sometimes be useful in
reducing multicollinearity.

2. One or more explanatory variables may be dropped from the model. As a
consequence, no direct information will be obtained for some of the predictor
variables. Moreover, it is possible that the remaining regression coefficients
in the model are affected by the correlated variable that is dropped from the
model (this is called “omitted variable bias”).

3. Sometimes, adding new or other cases may break down the pattern of
multicollinearity. However, this option is typically not available in time
series, because the added cases will probably show the same correlation
patterns as the original cases in the model.

4. Another possibility is to construct composite indexes based on highly
correlated variables. The method of principal components allows one to
construct completely uncorrelated indexes that can be used as predictors in a
regression model. It may be difficult, however, to interpret the created
indexes, which limits the usefulness of this strategy in the construction of
explanatory models. In a road safety context, principal components are for
example used in (Christens, 2003).

5. Ridge regression is a modification of the method of least squares to overcome
serious multicollinearity problems. The idea is that by allowing a certain
level of bias in the estimators, a more precise estimator may be obtained.
This (slightly biased) estimator may have a higher probability of being close
to the true parameter value. An example of ridge regression on accident data
is presented in (Christens, 2003).

Whatever procedure is used to deal with (extreme) multicollinearity, one has to
keep in mind that a certain level of multicollinearity is inevitable and at the
same time acceptable. As pointed out before, the important issue is that the
selection of variables should be based on theoretical arguments and research
objectives. In the studies presented in the subsequent section, classes of
possible explanatory variables (laws, economic, climatologic,...) were selected to
determine the variables that will be included in the models. Within these
categories, a selection of variables should be made. If the dataset is reasonably
large, the selection should be done carefully to make sure that the model can be
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estimated and to obtain stable parameter estimates. If the addition or deletion
of another variable does not change the other estimates in the model, then one
can be confident that the level of multicollinearity does not harm the estimation
process. This involves a manually stepwise selection of variables. However, also
the condition index procedure presented above can provide insights in the nature
of possible collinear relations. In a more classical approach, the multicollinearity
among a set of variables is assessed by selecting those variables for which the
condition indices stay at an acceptable level. This procedure may imply a larger
omitted variable bias, but gives a stronger indication that multicollinearity will
not too heavily influence the parameter estimates. This approach towards the
problem is used in the next section.

6.3.4 An explanatory model for Belgium

6.3.4.1 Introduction

While the approach with calendar variables, presented in the previous section, is
appealing because of the low data needs and the instructive effects obtained
from the results, there are compelling arguments to introduce a measure of
exposure and other explanatory variables in a road safety model. In this section,
an explanatory model for road safety in Belgium is developed. In particular, this
model extends the examples with calendar variables to full models containing an
exposure measure, economic indicators, weather variables, road safety laws and
calendar variables. If necessary, a set of correction variables is included in the
model to account for outliers and to obtain normally distributed residuals that
satisfy the model assumptions. The exposure variable is the monthly indicator
that has been created in Chapter 4, based on fuel deliveries, average fuel
economy and the structure of the vehicle park. Because of the shorter time
window for the exposure variable, the models in this section are developed for
the period January 1986 up to December 2002. The predictive power is again
assessed for the 24 observations in 2003 and 2004. The dependent variables are
the number of injury accidents, the number of fatalities, the number of serious
injuries and, notwithstanding the remarks made in Chapter 4, the number of light
injuries.

TABLE 23 contains a description of the variables used in the models. For a full
description of the variables, the reader is referred to Chapter 4. A correction
variable for outliers is always indicated as the month followed by the year. For
example, an outlier in August 1999 is indicated as AUG99. Autoregressive and
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moving average terms are written as AR or MA, followed by the order of the term,
like AR1 for a first-order autoregressive term.

TABLE 23: Variable overview

Variable Explanation

LNACC Total number of injury accidents (log)

LNPERKIL Number of persons killed (log)

LNPERSI Number of persons serious injured (log)

LNPERLI Number of persons lightly injured (log)

LVEHKM Number of kilometres driven (exposure measure, log)
LCARSDRP Number of cars per driving population (log)
LPFUELKM Average fuel price per kilometre driven (log)
LUNEMDEGR Degree of unemployment (log)

LTEMPF Average temperature, expressed in Fahrenheit (log)
LQUAPREC Quantity of precipitation, in millimetres (log)
NDAYSFROST Number of days with frost

NDAYSSNOW  Number of days with snow

NDAYSPREC  Number of days with precipitation

LAWO0191 Introduction of seatbelt law in back seats
LAW0192 Introduction of new speed limits (50 and 90 km/h)
LAW1294 Lower alcohol level allowed + higher fines
LAW0198 Installation of speed cameras at intersections
SPECIALDAY Variable indicating special days in a month
TRADINGDAY Composite trading day variable

After checking for multicollinearity among the explanatory variables by means of
the condition index procedure described in section 6.3.3 of this chapter, the set
of variables in TABLE 23 was retained. Because a table of condition indices
would not be very informative, it is just mentioned that the highest condition
index is 6.5 for the variables used in the road safety equations (the same
variables are used in all equations) and 5.6 for the variables used in the exposure
equation, meaning that there is no indication of severe multicollinearity.
Knowing that autoregressive terms usually reduce the level of multicollinearity in
a model (Dagenais et al., 1987), the problem is hereby assumed to be treated. In
the next sections, some details on the model selection and testing procedures are
given and the results of the models are presented.
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6.3.4.2 Model formulation and assumptions

Contrary to the models developed in the previous sections, no differencing was
needed to get stationary residuals. By adding more variables to the model, there
is less information remaining in the residuals, and the stationarity assumption is
often satisfied without any modification of the dependent and independent
variables. The model residuals were tested on this property using the ADF test
and the hypothesis of a unit root was rejected in favour of the stationarity
assumption. The properties of the residuals were further assessed by testing for
serial correlation, normality and heteroskedasticity. Deviances from normality are
often caused by extreme values in the data. If this is the case, dummy correction
variables are added to the model. Serial correlation is treated by including an AR
and/or MA structure on the residuals. Heteroskedasticity is explicitly modelled in
a GARCH (Generalised Autoregressive Conditional Heteroskedasticity) structure for
the residuals. In general, the models have the following form:

k
lOQ(.Vt )ZZﬂj,th,t +a,
=1

®(B)a, =©(B)e, (68)

2 2 2
o =w+aa; , + Ao,

In the first equation, y, indicates the variable that is modelled: the number of
injury accidents, the fatalities, the serious injuries, the light injuries or the level
of exposure. The right-hand side of the expression contains the explanatory
variables with their associated parameter to be estimated. The residual term in
this equation, a, may be autocorrelated and/or heteroskedastic. The second
equation formulates an ARMA model for this residual term to reduce the level of
serial correlation, and is similar to the structures that have been estimated earlier
in this chapter. The third equation, used to model heteroskedasticity, is called a
GARCH structure. It specifies that the variance of the dependent variable, o7, is
modelled as a function of the lag of the squared residual and lag of the variance.
The GARCH structure helps in obtaining more accurate confidence intervals and
more efficient estimators, and is therefore added to the models.

In TABLE 24, an overview is given of the variables that are included in each of
the models. Most explanatory variables are tested in every model, but this is not
the case for the proportion of cars (only tested for exposure), the laws (not
tested for exposure) and the correction variables. Also, seasonal dummies for
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February (FEB) and October (OCT) were tested for all models, but they were
dropped whenever they turned out to be insignificant.

TABLE 24: Variable overview per model

Variable LVEHKM  LNACC LNPERKIL LNPERSI LNPERLI
LVEHKM X X X X
LCARSDRP X

LPFUELKM X X X X X
LUNEMDEGR X X X X X
LTEMPF X X X X X
LQUAPREC X X X X X
NDAYSFROST X X X X X
NDAYSSNOW X X X X X
NDAYSPREC X X X X X
LAW0191 X X X X
LAW0192 X X X X
LAW1294 X X X X
LAW0198 X X X X
SPECIALDAY X X X X X
TRADINGDAY X X X X X
FEB97 X X X
NOV02 X

uLe3 X

FEB X X X
ocT X X
AR(1) X X X
AR(2) X X

AR(5) X

AR(6) X

AR(12) X X X

To verify the assumptions, some statistical tests are introduced. Apart from the
Box-Ljung Q-statistic to test for serial correlation, the ARCH-LM test is again used
to test for autoregressive conditional heteroskedasticity in the residuals (Engle,
1982). To test for normality, the Jarque-Bera (JB) statistic is used. The
diagnostics are shown in TABLE 25. It seems that the crucial assumptions are
met in all models. Serial correlation is at an acceptable level (other lags than 6
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and 12 were also tested), the normality assumption cannot be rejected and due
to the GARCH structure, it can be assumed that the residuals are homoskedastic.

TABLE 25: Model diagnostics

LNACC LNPERKIL LNPERSI LNPERLI LVEHKM

Q, 4.189 (0.242)  8.484 (0.205)  7.753 (0.101) 6.012 (0.198)  3.008 (0.390)

Q, 7.279 (0.608) 12.276 (0.424) 13.352 (0.205) 6.702 (0.753) 12.202 (0.202)

ARCH-LM  0.096 (0.757)  0.258 (0.612)  0.242 (0.623) 0.021 (0.884)  0.123 (0.725)
( (

)
B 0.871 (0.647)  2.390 (0.303)  1.127 (0.569) 0.863 (0.650)  1.301 (0.522)
MAPE 6.252 22.915 18.085 5.324 5.297
TheilIC  0.035 (0.711)  0.103 (0.082)  0.092 (0.313) 0.033 (0.696) 0.031 (0.597)

The table also shows the predictive performance of the models. Because of some
differences in the dependent variables in comparison with the descriptive ARIMA
and state space models developed before, the quality of the predictions cannot
be assessed in all detail. However, for the number of fatalities and serious
injuries, the comparison can be made. Clearly, the explanatory models have a
much higher MAPE value than the descriptive models. For the other models, the
MAPE seems reasonable. From the Theil IC values, it can be seen that, although
the values in itself are quite low, the covariance proportion is much lower for the
explanatory models. This is partly explained by the uncertainty that is
introduced by the use of explanatory variables. Therefore, it is strongly advised
against using explanatory models unless the parameter estimates of the
covariates are at interest.

TABLE 26 shows the extra estimated parameters that are introduced to satisfy
some of the model assumptions, like normality. Two outliers recurring in the
accidents and victims models are FEB97 and NOV02, while JUL93 is a correction
variable for the measure of exposure. Unfortunately, it cannot be readily
explained why these periods exhibit an exceptional value. Of course, there is
always the possibility of a registration error, and then it would indeed be logical
that for the number of persons killed no correction is necessary, as one can
assume the most complete and accurate registration for this road safety outcome.
Further, the parameter for the months of February and October are significant in
the equations for the victims. These months are known to have the lowest and
highest number of victims, respectively. The effect is stronger for the persons
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killed, were on average, 8% less fatalities are counted in February and almost
10% more in October.

TABLE 26: Correction parameters

LNACC LNPERKIL LNPERSI LNPERLI LVEHKM
FEB97  -0.355 (0.012) - -0.262 (0.005) -0.327 (0.000) -
NOVO2  -0.236 (0.013) - - - -
JuLo3 - - - - 0.272 (0.000)
FEB - -0.083 (0.012) -0.066 (0.002) -0.050 (0.054) -
ocT - 0.099 (0.007) - 0.061 (0.002) -

TABLE 27 shows the parameter estimates needed to achieve independence of the
residuals. As can be seen, autoregressive corrections were sufficient to obtain
uncorrelated residuals.

TABLE 27: Autoregressive parameters

LNACC LNPERKIL LNPERSI LNPERLI LVEHKM

AR(1)  0.454 (0.000) 0.527 (0.000) 0.465 (0.000) -

AR(2) - - 0.232 (0.002) - 0.180 (0.003)
AR(5)  0.290 (0.000) - - - -
AR(6) 0.113 (0.066)
AR(12)  0.398 (0.000) - - 0.297 (0.000) 0.613 (0.000)

Note that typically an order 1 or 12 coefficient is needed, and for some models
also other orders are added. While first and twelfth order corrections can be
explained by the nature of the monthly data, this is less straightforward for the
orders in between. Often, these orders are initiated by outliers in the data.
However, the GARCH structure will also partly take into account the possible
outliers. In any case, it is assumed that, even when the extra orders are caused
by outliers, a correction is preferred to large residuals that do not satisfy the
assumptions.

Finally, TABLE 28 shows the GARCH structure estimated for the models. For the
number of persons killed and seriously injured, only the GARCH parameter 1 is
significant. This indicates that the current period’s variance is mainly determined
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by the last period’s variance. For the number of accidents and the number of
persons lightly injured, also the parameter a is significant, meaning that the
information about the volatility of the series in the previous period influences
the variance in the current period. Also for the number of kilometres, all GARCH
terms are highly significant.

TABLE 28: GARCH parameters

LNACC LNPERKIL LNPERSI LNPERLI LVEHKM

0.000 (0.085)  0.002 (0.478)  0.000 (0.952)  0.007 (0.000)  0.000 (0.000)
-0.079 (0.012) -0.063 (0.402) -0.025 (0.334) 0.301 (0.011) -0.128 (0.000)
4 1.032 (0.000) 0.830 (0.006) 1.030 (0.000) -0.591 (0.015) 1.018 (0.000)

|

6.3.4.3 Parameter estimates for explanatory variables

TABLE 29 contains the parameter estimates of the models. Parameter estimates
are grouped according to their meaning: the laws, weather variables, economic
indicators, calendar structure and vehicle variables. For all variables, the
estimated parameter is given, with the p-value between brackets. For the
variables in the log space, also the indirect effect is given (in italics). This is the
effect of an explanatory variable on the dependent variable that is incurred via
the exposure measure. When both dependent and independent variables are in
the log space, then the parameter estimate equals the (constant) elasticity. The
indirect effect of a variable x on y, denoted 8*y,x’ is then equal to the elasticity of
y with respect to changes in exposure, ¢, , multiplied by the elasticity of the
exposure variable with respect to changes in x, or ¢ More formally, this can
be written as follows:

vehkm,x*

*
& =&

VX y vehkm * € (69)

vehkm ,x

Note that also for the other variables, one could calculate a similar concept, as is
for example shown in (Gaudry, 1984, revised 2002). To keep the model
interpretation clear in the given context, this is not done here.

Law variables

In the table, first the results for the law variables (not tested for LVEHKM) are
shown. The mandatory seat belt law in the back seat is significant for the serious
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injuries, and only moderately significant for the number of accidents in general.
These results are in line with those obtained in the model with calendar
variables. The speed laws are significant, leading to a 13% (LNPERLI) to 19%
(LNPERSI) reduction in accidents and victims. Another favourable effect can be
noted for the laws and fines on alcohol. This law seems to be very useful in
reducing both accidents and victims. Note, however, that the percentage
reduction is about 50% smaller for the light injuries. This underlines the
hypothesis that drunken drivers do frequently provoke serious or fatal accidents.

Finally, the law on automatic speed cameras at intersections has a significant
negative sign in the serious injury equation. The absence of further effects may
be attributed to the reasons that were already given before in section 6.3.2.
Also, it is still assumed that probably a compound effect of different laws is
measured by the dummy variable and that a disaggregated approach towards this
law might give more detailed results. An example of such a disaggregated
analysis can be found in (Nuyts, 2004). In this study, the effect of automatic
cameras is investigated for various locations in Antwerp. For the number of
accidents (including crashes with material damage only), the parameter estimate
had a negative sign, although the effect was not significant. A significant
decrease was further found for accidents with persons killed or injured.
According to the author, this underlines the hypothesis that the cameras will
mainly reduce severe crashes. Therefore, although the results are not fully
comparable with the study at hand (no effects on the number of victims were
estimated, and the study is local and cross-sectional), some parallel results are
found. The change in significance for the number of fatalities, compared to the
regression-ARIMA model, may partly be due to the different time horizon in
combination with the rather limited after-period. Obviously, a negative sign for
the parameter estimates, as obtained for the seriously injured persons, is more in
line with common expectations, but still this issue needs further clarification.

It is assumed that the introduction of a law results in a sudden and permanent
increase or decrease in the dependent variable. For example, the introduction of
the new speed limits resulted in a 1-exp(-0.160)=0.1479 or 14.79% reduction of
the number of fatalities, ceteris paribus. This assumption of a "step-based
intervention” is not always a natural one. Moreover, it is not possible to isolate
the effect of a single measure when several regulations are put into practice at
the same or at a nearby moment in time. The significant impact of laws and
regulations may be better described as “something changed at that time”,
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instead of attributing the whole effect to the law itself. Nevertheless it makes
sense to test whether these changes are indeed substantial.

TABLE 29: Parameter estimates for the explanatory variables

LNACC LNPERKIL LNPERSI LNPERLI LVEHKM
Law variables
LAWO0191 -0.056 (0.126) -0.053 (0.244) -0.084 (0.037) -0.039 (0.301) -
LAW0192 -0.154 (0.000) -0.160 (0.001) -0.188 (0.000) -0.131 (0.002) -
LAW1294 -0.081 (0.025) -0.229 (0.000) -0.248 (0.000) -0.123 (0.001) -
LAW0198 0.044 (0.450) 0.020 (0.462) -0.191 (0.000) -0.031 (0.342) -

Weather variables

LTEMPF 0.462 (0.000) 0.342 (0.000) 0.410 (0.000) 0.388 (0.000) 0.153 (0.001)
0.080 0.052 0.055 0.090

LQUAPREC 0.019 (0.037) 0.021 (0.226) 0.014 (0.213)  0.034 (0.001)  0.012 (0.169)
0.006 0.004 0.004 0.007

NDAYSFROST ~ 0.001 (0.764) 0.003 (0.251) -0.001 (0.709) 0.001 (0.677)  0.000 (0.783)

NDAYSSNOW  0.003 (0.017) 0.001 (0.651)  0.000 (0.794)  0.002 (0.233)  0.004 (0.002)

NDAYSPREC  0.001 (0.439) -0.001 (0.633) -0.001 (0.494) 0.001 (0.717) -0.003 (0.038)

Economic variables

LPFUELKM 0.871 (0.000) 0.269 (0.034) 1.354 (0.000) 0.786 (0.000) -0.178 (0.019)
-0.093 -0.061 -0.064 -0.105

LUNEMDEGR  0.479 (0.000) 0.178 (0.003)  0.396 (0.002)  0.406 (0.000) 0.028 (0.604)
0.015 0.010 0.010 0.016

Calendar variables

SPECIALDAY
TRADINGDAY

-0.006 (0.020)
-0.004 (0.008)

0.003 (0.380)
-0.004 (0.259)

-0.002 (0.389)
-0.007 (0.000)

-0.002 (0.514)
-0.005 (0.010)

-0.002 (0.515)
0.006 (0.001)

Vehicle variables

LCARSDRP
LVEHKM

0.520 (0.000)

0.341 (0.000)

0.357 (0.000)

0.590 (0.000)

2.079 (0.000)

Weather variables

The weather variables seem to influence the number of accidents and victims in
quite different ways. A higher temperature increases the number of all types of
victims and the number of accidents, as well as the level of exposure. A 1%
increase in average temperature may lead to increases of 0.34% (persons killed)
to 0.46% (number of accidents). This positive sign is in line with results
obtained in (Gaudry et al., 1995) and (Blum & Gaudry, 2000). Also note that the
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indirect effects are positive, increasing the total effect of the variable on the
road safety outcomes. The quantity of precipitation increases the number of
accidents and the persons lightly injured. This may indicate a limited level of
risk compensation. The number of accidents increases, but due to lower speeds
they lead only to minor injuries. Also, a month with more rainy days has less
vehicle kilometres, on average, but the effect of this variable on the road safety
outcomes is not significant.

The number of days with frost has no impact whatsoever on the number of
accidents and victims or the level of exposure. The number of days with snow
has an effect on the total number of accidents, probably most related to the
number of light injuries. Perhaps the winter conditions in Belgium are not that
severe that an increase in accidents should be expected. In countries where
snow is more prevalent, the effect on traffic safety is comparable to that of frost.
Moreover, the government invests a lot of money each year to scatter salt on icy
roads, probably reducing possible effects. Also, because heavy snow is quite rare
in Belgium, it might be that road users compensate for the higher risk. They
probably adjust their driving habits more than in normal weather conditions. A
strange result is obtained, however, for the level of exposure, as snow seems to
increase the number of kilometres driven. This may be related to the
construction of the variable, in which the fuel deliveries play an important role.
It might be interesting to investigate the relation between weather conditions
and the delivery and consumption of fuel.

Economic variables

The next lines in the table show the estimated parameters for the fuel price per
kilometre and the degree of unemployment. The results for unemployment are
not in line with the literature. In the current models, the effect has a positive
sign and is strongly significant for the road safety outcomes, while there is no
effect on exposure. In many other models, the effect is either not found or
strongly negative. It might well be that differences in the economic systems
between countries result in diverging results.

Also, fuel prices are usually expected to reduce the level of accidents and victims,
because of a reduced demand for travel and possibly lower (less energy
consuming) speed. However, it is possible that a rise in fuel prices reduces the
transport demand, thereby also reducing traffic problems and increasing speeds.
The reduction in traffic is supported by the negative sign obtained in the
equation for the level of exposure. A 1% increase in the price per kilometre
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reduces the number of kilometres driven by 0.18%. This, in turn, results in
negative indirect effects for the number of accidents and victims, but these are
not strong enough to turn the strong direct impacts.

Calendar variables

As for the calendar variables, the special day variable has only an effect on the
number of accidents, and not on the number of victims or the level of exposure.
Perhaps this variable is too general to measure any specific effect. However, the
sign is in line with expectation, in the sense that special days are usually
synonymous with less traffic, leading to fewer accidents.

The estimated parameters for the trading day variable are comparable to those
obtained earlier. In particular, the number of fatalities is not influenced,
contrary to the number of persons with serious or light injuries. This variable is a
clear illustration of the problem of weekend accidents in Belgium. Further, the
trading day pattern increases the level of exposure. That is, more kilometres are
driven in months with more weekdays, which is an acceptable assumption.

Vehicle variables

The vehicle variables in the table are the number of personal cars per capita of
the population at driving age (LCARSDRP) and the exposure variable itself
(LVEHKM). The variable LCARSDRP is only used to explain the level of exposure,
and is highly significant in this equation. More specifically, a 1% increase in cars
per driving population leads to a 2% increase in kilometres driven. Clearly, the
cars are responsible for the largest part of transport.

TABLE 30: Parameter estimates for exposure

Coefficient Std. Error t-Statistic  Prob. Wald stat.
LNACC 0.5200 0.0506  10.2816 0.0000  90.0475 (0.0000)
LNPERKIL 0.3406 0.0433 7.8641 0.0000 231.8504 (0.0000)
LNPERSI 0.3573 0.0526 6.7882 0.0000 149.0907 (0.0000)
LNPERLI 0.5904 0.0514  11.4847 0.0000 63.4597 (0.0000)

The estimated parameters for exposure are shown in TABLE 29, and are reprinted
in TABLE 30 in more detail. As can be seen, exposure is highly significant in all
models, with a positive sign. Compared to most macro-models in the literature,
however, the magnitude of the parameters is low. Although the parameters are
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significantly different from zero, it is instructive to test whether they are
different from one. The Wald statistics (see TABLE 30), used to test the
hypothesis that the exposure parameters are equal to one, show that, for each
road safety outcome, the effect of exposure is less than proportional.

On the one hand, the significance of the parameters is reassuring, because it is in
line with expectations and previous research. On the other hand, one might
wonder why the values are so small. There are some possible explanations for
this result. First, as the level of exposure increases, it is not illogical to assume
that also its effect on road safety will alter. If the parameter estimates are far
below one, then a 1% increase in exposure will result in a less than 1% increase
in accidents and victims. Increases in exposure are nowadays slower than in the
past, in line with the sigmoid trends that can usually be seen in exposure data.
Second, the learning effect in road safety might also be present in the context of
exposure. That is, people get used to higher levels of traffic. Per extra kilometre
driven, the marginal increase in accidents will become smaller. Similar results are
found in (Elvik, 2006). Here, the author introduces some “laws of accident
causation, one of them being the “universal law of learning”. Road user accident
rate per kilometre travelled declines as the number of kilometres travelled
increases. Also, driving long annual distances is associated with more success in
avoiding accidents. Clearly, it might be interesting to further investigate Elvik's
law in a time series context, as the results of the models at hand support his
hypothesis. Third, the level of congestion is quite high in Belgium. Especially
the last years, this problem is even larger than ever. A higher level of congestion
is expected to increase the level of road safety. This would imply an inverse U-
shaped relationship between exposure and road safety. That is, at lower levels of
exposure, an increase in kilometres driven will more than proportionally increase
the number of accidents and victims, up to a certain saturation level. Then,
additional cars may slow down traffic to such an extent that the number of
fatalities will start to decrease. In other words, at low levels of traffic, exposure
surely increases the number of accidents, while at high levels the marginal effect
is getting smaller. Introducing congestion in road safety modelling is, in
essence, recognising the fact that possible turning points are present in the
relation between exposure and road safety.

To verify this assumption, a small stylised exercise is performed. Instead of
modelling a linear relation between the logarithms of the exposure measure and
the road safety outcomes, as was done before, a quadratic effect is assumed.
Parabolas are the most simple examples of turning point curves. They are, of
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course, completely symmetric around the optimum, and therefore probably not
very well suited to show the real relationship, but they are useful to get the idea.
When a quadratic term is added in the previous models, the results shown in
TABLE 31 are obtained (using x as an indication of the exposure variable).

TABLE 31: Quadratic exposure: stylised exercise

Equation  Solutions Maximum

LNACC -0.0979x2 + 1.6803x  0; 17.1634 8.5817
LNPERKIL  -0.0522x2 + 0.9020x  0; 17.2797 8.6398
LNPERSI -0.1023x2 + 1.6757x  0; 16.3803 8.1901
LNPERLI -0.0968x2 + 1.7590x  0; 18.1715 9.0857

From the signs of the coefficients, it is seen that the curves have indeed a
maximum. That is, it starts from zero, then increases and finally decreases to the
second solution. Because no intercept is estimated in the model, zero is always a
solution, which is the road safety outcome associated with no traffic. The other
solution is the theoretical level of traffic that would imply zero accidents and
victims, that is, in an extreme congestion situation. From the data set used in
the full models (1986-2002), it is derived that the minimal exposure level (in
logs) is 8.3372, while the maximum is 9.0497. These values are at the borders of
the exposure values in the study. Then, it is interesting to compare the range of
exposure values with the maximum of the stylised curves. This is done in FIGURE
38. 0On the horizontal axis, the level of exposure is shown, while the vertical axes
show the road safety outcomes analysed above. The bold lines on the parabolas
indicate the exposure range in the data set. For the number of accidents and the
number of persons killed, the maximum of the parabola lies in the range of
observed exposure values. For the serious injuries, the observed values are to be
found in the decreasing part of the curve, while for the lightly injured victims the
exposure values are in the increasing part.
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FIGURE 38: Stylised parabolas

This observation is completely in line with the congestion assumption: the
number of serious injuries and victims will be lower because of lower speeds, but
the number of persons lightly injured is not expected to decrease. Indeed, a
congestion situation may lead to more light injuries, but it probably reduces the
number of fatalities and severe injuries. Although not completely comparable,
this result is also reflected in the parameter estimates in the previous models.
Recall that the values were all positive, and that the estimates were 0.34 for
fatalities, 0.36 for serious injuries and 0.59 for light injuries. Clearly, the largest
positive effect is obtained for the number of light injuries, which are also
completely in the increasing part of the parabola. Although this is a stylised
study (the real relation will probably not be parabolic in nature and perhaps the
functional approach can be questioned), these results are a plea for further
investigation of the true nature of the relationship between exposure and risk.
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6.4 Conclusion

This chapter has shown some applications of regression and time series modelling
on monthly road safety data. Apart from the classical ARIMA and state space
models, used to describe and forecast road safety outcomes, the framework is
easily extended to include explanatory variables. Although the calendar
variables, tested in a first small explanatory model, are instructive and provide
interesting results, they are of course limited in their explanatory power. Clearly,
a calendar composition cannot “explain” road safety, it can only point out
patterns related to how time evolves. Therefore, they can better be considered as
descriptive models than as explanatory models.

The introduction of explanatory variables widens the possibilities of the models,
but at the same time increases the complexity of the modelling process. In the
first place, explanatory models are quite time consuming at the data pre-
processing stage. In particular, getting data that is suited for road safety macro
modelling is not an easy task. For example, no exposure measure was available
on a monthly basis and it had to be constructed from other available data
sources. The availability of monthly data of fuel sales was decisive in the choice
of the analysis period. These data were available from 1986 onwards, so older
road safety data could not be used. This is probably a problem that is faced in
every country when explanatory road safety models are developed. Second,
models with explanatory variables are also less suited for prediction because of
the necessity of having estimates of future values of the explanatory variables
and the related problems of increased observation error when predicting with
uncertain independent variables. Third, the results obtained from the models
may differ from country to country. On the one hand, this pinpoints the
differences between countries, but on the other hand, it shows the problem of
comparing variables over countries that are developed in a completely different
way. Also, the analysis periods of different models can differ considerably,
leading to different results because of fundamental changes in the road system
over time.

Because of these difficulties, it is very important to develop models that are
statistically sound and in line with the model assumptions. Therefore, model
diagnostics were presented regularly in this chapter. Also, it highlights the need
for a unified framework on road safety modelling. The DRAG family of models is
an example of a proposed structure that is followed by several countries. The
interpretation in terms of elasticities and a recurring model structure facilitate
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the comparison of results. This approach, however, is quite complex and
demanding in terms of development.

Another interesting point discussed in this chapter is the special role of exposure
in road safety models. In the presented models, exposure was measured by the
created variable for the number of kilometres driven. The variable was
significant, with a positive sign, but with a less than proportional effect on road
safety. Clearly, the effect of exposure is determined by a number of choices.
First, the time window and the length of the series will show the relations in that
period. A 30 years period of monthly observations from 1951 to 1980 will
probably show other relations than a 20 years period from 1981 to 2000. It is to
be expected that the relation between exposure and the number of accidents and
victims changed over time. This is easily seen from the basic models developed
by Oppe and his successors (see for example Chapter 5). If a logistic curve is
fitted for exposure, then the marginal changes in exposure over time are getting
smaller and smaller. A longer series may capture more patterns than a shorter
one, and the pattern that is found depends on the period considered. This might
explain the differences between the models in this chapter and previous models
found in the literature. However, the signs are in the expected direction, and
there are compelling reasons to assume that the road system and exposure are
changing over time.

It goes without saying that the effect of exposure also depends on the measure
used. Exposure in terms of population yields different relations than the number
of kilometres driven. Also the quality of the measure is of primary importance.
Often, this can only be assessed by checking the results obtained with
expectations. However, as pointed out before, these expectations will change
over time, and models will not be comparable in every respect. This is, of course,
also true for the exposure measure used in this chapter. The results are
reasonable, but further research should indicate if the variable indeed measures
the exposure to the risk.

In the light of these remarks, it might be tempting to drop the exposure variable
from the models. If the parameter estimate is getting closer and closer to zero,
one can question its added value for the model. This is a difficult question, with
both theoretical and practical implications. First, theoretically, it is interesting
to show how the relation between road safety and exposure is evolving. This is a
strong argument for keeping the variable in the model, even when it is not
significant.  Then, the question of importance of the variable shifts from
“significant or not” to “proportional or not”. Therefore, the exposure variable
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was often tested for a significant deviation from one instead of from zero. A
parameter estimate that is significantly different from one means that the
proportionality assumption is not satisfied, in either direction. A parameter that
is not significantly different from zero indicates a less than proportional
relationship. Dropping the variable therefore means that the relation between
risk and fatalities, as determined by exposure, cannot be established. It is
instructive to know the nature of this relation, even when the parameter is close
to zero. Also, given the basic relationship between the variables, stating that
the road safety trend is the result of changes in exposure and risk, the theoretical
framework requires an exposure variable. Therefore, it is actually undesirable to
fix the parameter at a particular value or drop the variable from the equation
(which amounts to fixing it at zero).

Practically, there may be circumstances where dropping (or not including) the
exposure measure will not invalidate the results of an explanatory model.
Consider, in the given context, a small model. Starting from the “extended”
relationship between fatalities and risk, namely F, = V" x R, and further assuming
a log-linear relationship, such that log(F,) = # log(V) + log(R,), it can be seen
that the explanatory variables in the models developed in this chapter are used
to explain the risk part of this expression, while the parameter of exposure
measures the proportionality of the relation between risk and fatalities. A
parameter estimate for exposure that is not significantly different from zero is in
fact an indication of a relation that is not proportional. That is, the hypothesis
that # equals one is probably rejected. In that case, statistical theory normally
implies that the variable can be dropped from the model. By dropping the
exposure variable, it is assumed that # = 0, or, in other words, that the relation
is not proportional. If the proportionality is indeed not present, dropping the
exposure variable from the model would not harm the results. Along the same
lines of reasoning, if the exposure parameter is set equal to 1, the proportionality
is explicitly assumed. In short, there are situations in which the absence of an
exposure variable (that is, when exposure data are not available) will not
invalidate the results, but if exposure data is available, it is instructive to test it.
Rather than estimating the model without an exposure variable, one should strive
to improve and extend the data sources so as to enhance the efficiency of
statistical inference in these models. Removing the crucial variable of exposure
will not contribute to new insights in the safety-exposure-risk relation.

Furthermore, it becomes increasingly interesting to investigate other kinds of
relations between exposure and road safety, as was demonstrated with the
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stylised parabola example. This topic, introduced by Gaudry & Lassarre (2000),
certainly needs further research, as it is both an opportunity to explore the true
relations as well as a risk of over-fitting the data. Indeed, adding turning points
to a relation inevitably leads to a higher number of parameters to be estimated,
which should be balanced against the number of observations. Moreover, over-
fitted relations are known to provide a seemingly perfect fit to the sample data,
but they often produce less accurate predictions. In any case, given the
changing patterns in road safety and the importance of exposure in this story,
further research on this topic is crucial. It is a critical success factor for future
road safety research.
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Chapter 7 Disaggregated models for yearly
exposure and risk

7.1 Introduction

This chapter introduces some models developed for Belgian disaggregated road
safety data. In (COST 329, 2004), disaggregated models are defined as “models
in which the response (dependent) variable comprises a sub-group of the total,
aggregated number of accidents or their consequences”. Sometimes, the term
“disaggregated” is used for models in which data pertaining to individual units or
decision makers (cars, travellers, households, firms, etc.) are analysed. The
models presented here could therefore rather be named “accident or casualty
subset models”. Although they are clearly less aggregated than the models in the
previous chapters, they still consider total numbers of accidents or victims,
aggregated in time (per year), but now for a subset of the whole road safety
system. Typically, roads are divided into highways, rural roads and urban roads,
road users are analysed according to their age or gender, or crashes are studied
in terms of the vehicle types involved. Disaggregated models are useful in
addition to the aggregated models presented in the previous chapters. In the
first place, road safety models are meant to support decision- and policy makers
in their analysis of road safety developments, especially when setting road safety
targets and developing road safety programmes. While an aggregate model will
typically be used for the description and forecasting of general trends in road
safety on a high level, they are less suited for analysing parts of the transport
system or subgroups of road users. For example, changes in the proportion of
young and old road users may affect the evolution in road safety. It is not
possible to derive the effects of these changes from an aggregated model.
Therefore, it is necessary to analyse the trends in road safety at a lower level of
aggregation.

Studies at a lower aggregation level should enhance the insights in the road
safety trends for parts of the road system. However, the lower the level of
aggregation, the more difficult it becomes to obtain the data needed for the
analysis. While aggregated statistics on road safety and exposure are generally
available, they are mostly not easily found for subgroups of road users. Also, due
to the smaller counts on a lower aggregation level, the data might be less
accurate and more advanced statistical techniques are needed to adequately
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model the problem. The higher data requirements, especially in a time series
context, can probably explain the relatively low number of disaggregated time
series studies.

The major levels of disaggregation that are considered in a time series context
are transport mode, road type and road user characteristics (age and gender).
Depending on the data available, these subgroups can be crossed-over, by
looking for example at the fatalities of female road users on highways or children
injured in the urban area. It is clear that with more restricted groups of road
users, one runs faster into data problems.

In (COST 329, 2004), an overview of several modelling approaches towards
disaggregated road safety modelling is given. Broughton (1994) computed
trends for casualty rates per type of road user. On the basis of population
forecasts, these trends are further disaggregated according to age and gender.
In (Bijleveld & Oppe, 1999), the number of fatalities and rates for combinations
of transport mode and age, and separately for types of road, are analysed. They
introduced the unobserved components model in this type of analysis. Later,
(Bijleveld, Commandeur, Koopman et al., 2005) developed a multivariate
nonlinear time series model for the analysis of traffic volumes and road casualties
inside and outside urban areas.

Greibe (1999) gives a description of the number of killed and seriously injured
cyclists on urban roads using a log-linear model including variables on bicycle
and motor vehicle traffic and variables on general safety improvements. Pedersen
(1998) uses log-linear splines to detect abrupt changes in the development of
casualties. According to the author, this approach can be applied on every level
of aggregation. This model, however, is based on accident data only, which is
not unusual as disaggregated exposure data are often unavailable. Also some of
the DRAG models, introduced in Chapter 2, can be seen as disaggregated models,
in the sense that they consider aspects of specific groups of road users, like for
example in (Fridstrem, 2000). Note that these applications are different from the
classical black-spot analysis or the before-after studies popularized by Hauer
(1997), in the sense that they always include a trend component. That is,
interest is mainly in the trends over time and, if the data allows it, in explaining
certain developments.

This chapter shows four possible analyses of disaggregated Belgian road safety
data. The numbers are always yearly totals, which means that no seasonal effects
are included. All applications are concerned with the relation between the
number of fatalities and the level of exposure. In a first study, an ARMA
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regression model is presented to analyse the risk of road users depending on their
age and gender. In a second study, the road risk per type of road is investigated.
This is done by means of a state space model that allows extracting a trend of
the risk over time for each type of road. Next, the road risk per type of
motorised road user is studied. Finally, the number of fatalities in 2-by-2 crashes
with cars, trucks and motorcycles is modelled.

7.2 Analysis of road risk for age and gender categories

In the literature, it is often found that the risk of road users varies with their age
and gender. According to Evans (2004), the number of fatalities per driver age in
the US shows a peak at the age of 19 years old. The number of fatalities then
steadily decreases with age. However, one of the reasons for this decline is that
there are (still) fewer people of older age in the population. Correcting for the
population rate shows the typical groups of vulnerable road users, namely the
youngsters and the elderly.

For Belgium, data are available on the number of fatalities per age and gender
category, as well as on the magnitude of the population for these groups. In
FIGURE 39, the number of fatalities is shown for each age-gender category. Data
are available for the period 1973-2001. For the age variable, five groups are
made according to the availability of the data: (1) 0-14 years, (2) 15-24 years,
(3) 25-44 years, (4) 45-64 years and (5) 65 years and more.

It is clear from the graphs that the evolution in time of the fatalities per age and
gender category shows some very specific properties. First, the number of
fatalities is higher for males in every age category. This is true for the complete
time window of the study. However, the differences get smaller for all
categories, except for the 25-44 years old victims. Second, the number of
fatalities is decreasing over time, except for the 25-44 years old victims. For the
latter group, the level of fatalities hardly changed. It is clear that the number of
fatalities changes with age and gender. In this section, these relations will be
quantified in classical exponential risk models, corrected for serial correlation.

The models that will be used to analyse the number of fatalities for each age and
gender combination can be written as:

log(F, )=log(P, )+ (e, +a,t)+u,
(D(B)ut =& (70)
£, ~NID(0,0% )
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The dependent variable is the log of the number of fatalities (F,) for each age-
gender combination (5 age categories and 2 gender categories). The index t
specifies the year of the observation (t = 1973,..., 2001).
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FIGURE 39: Annual number of fatalities by age and gender
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The log of the population (P,) is used as an offset to correct for exposure. As
discussed in Chapter 4, there is no other exposure data available for age-gender
combinations of road users. Therefore, population data will be used instead. For
the risk, an exponential curve is assumed. The residuals u, in the first equation
are possibly autocorrelated. The second equation defines an autoregressive
structure for the error term, whenever this is necessary to obtain normally
distributed white noise residuals ¢, (see the third equation). Usually 0, 1 or 2
autoregressive terms are needed, but these are not reported here. The Q-
statistics for the final models did not indicate any problem of autocorrelation.
The model is estimated for each age-gender combination, leading to 10 separate
equations. The results are shown in TABLE 32.

TABLE 32: Results for the age-gender models

AGE GENDER Param. Coefficient Std. Error t-Statistic Prob.

0-14 Male a, 95.9226 3.3651 28.5048 0.0000
a, -0.0496 0.0017  -29.3155 0.0000

Female «, 90.9531 8.7076 10.4452 0.0000

a, -0.0473 0.0044  -10.7961 0.0000

15-24 Male a, 46.1213 6.8046 6.7779 0.0000
a, -0.0235 0.0034 -6.8690 0.0000

Female ¢, 26.9087 5.2746 5.1016 0.0000

a, -0.0145 0.0027 -5.4720 0.0000

25-44 Male a, 18.5408 4.6687 3.9713 0.0005
a, -0.0099 0.0023 -4.2275 0.0003

Female «, 20.6615 3.7985 5.4394 0.0000

a, -0.0117 0.0019 -6.1035 0.0000

45-64 Male a, 61.2717 3.4335 17.8453 0.0000
a, -0.0316 0.0017  -18.2765 0.0000

Female «, 58.7781 5.4830 10.7201  0.0000

a, -0.0308 0.0028 -11.1715 0.0000

65+ Male a, 73.7008 7.5462 9.7666 0.0000
a, -0.0376 0.0038 -9.9061 0.0000

Female ¢, 82.2240 4.3730 18.8028 0.0000

a -0.0423 0.0022  -19.2321 0.0000

-

It is seen from the table that both the intercept (risk level for ¢t =0) and the
parameter for the trend are significant in all models. For each gender category,
the intercepts show a U-shaped curve over the age categories, with the highest
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values for the younger and older road users. The same shape is found by (Evans,
2004) for population fatality rates of drivers between 20 and 80 years old,
although his analysis was not over time. This is further illustrated in FIGURE 40.

Risk for males Risk for females

—— 1980 —+— 1990 —~— 2000] [—— 1980 —~— 1990 —~— 2000

FIGURE 40: Risk comparison over time

The graphs show the estimated risk for male and female road users for each age
category for the years 1980, 1990 and 2000, calculated from the 10 models. As
the age of 20 years old belongs to the second category, a U-shaped relation,
comparable to that found by Evans (2004), appears again. It is also seen that
the risk is generally lower for females than for males, although the difference is
quite small in the first age category. Further, the three curves in each graph
indicate the reduction in risk over time. Clearly, the decrease is not equally large
for every age-gender combination, which underlines the importance of targeted
road safety programs and campaigns.

The yearly reduction in risk for the different age-gender combination can be read
from the a, parameters (see TABLE 32). This parameter learns that, for example
in the group of male road users between 15 and 24 years old, the average
decrease in risk equals 1-exp(-0.0235) or 2.32%. The parameter estimates for all
groups are shown in absolute values in FIGURE 41. A high value indicates a
higher reduction in risk over time. Again, a U-shaped relation is found, which
starts from the first age category, indicating a higher risk reduction per year for
younger and older people. Clearly, the second age group has a high risk (see
FIGURE 40), with a relatively low yearly reduction compared to the other groups.
Also note the difference in reduction between males and females. The reduction
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is larger for males in the first two categories, but is smaller for the oldest road
users.
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FIGURE 41: Yearly reduction in risk for males and females

Although the models presented here are quite simple, they offer the possibility of
describing the differences in fatalities and risk between various age-gender
categories, together with their trend over time. Of course, using population data
as a measure of exposure will certainly not give the same results as when the
number of kilometres driven is used. Typically, one can expect that older people
drive less than younger ones, although their share in the total population is
rising. However, (Evans, 2004) found U-shaped curves for driver fatalities per
billion kilometre, which are comparable to the shapes in the population fatality
rates. This confirms the fact that it is useful to include population data as an
offset, to correct for the differences between the age groups over time.

7.3 Analysis of road risk per type of road user

One of the basic distinctions that can be made in disaggregated road safety
research is according to the type of road user. In this section, an analysis is
presented of the developments in time of the number of persons killed or
seriously injured for three types of motorised road users, namely the cars, the
trucks and the motorcycles. The car is by far the most popular means of
transport in Belgium. During the last decennium, however, motorcycles gained
popularity and there has been a steady increase in the number of motorcycles on
the road. Also, the transportation sector has been growing, resulting in more

175



freight transport on the road. FIGURE 42 shows the number of killed or seriously
injured victims for these means of transport for the years 1973-2001, together
with the number of vehicle kilometres, introduced in Chapter 4. Each observation
contains the number of killed or seriously injured persons counted in the given
mode of transport. For example, if a crash leads to three victims, say two in a
car and one on a motorcycle, then these numbers are added to the counts for the
respective groups of road users (namely two car victims and one motorcycle
victim). This also means that victims of other transport modes (bicyclists,
pedestrians, etc.) are not considered here.

While the number of victims decreased clearly for the cars and the motorcycles,
this is not the case for the trucks. For this transport mode, no decreasing trend
can be observed. Also, the decrease in motorcycle victims seems to stop in the
early nineties, which is exactly the period where the number of vehicle kilometres
for this group starts increasing at a much faster rate.

The data will be analysed in a multivariate state space model. The number of
kilometres driven is considered as an explanatory variable, and is therefore
assumed to be known without error. Moreover, a parameter is estimated for this
variable, such that the proportionality assumption of exposure and the number of
victims can be verified. Also, the data are analysed in logs, as this follows the
rationale of a multiplicative model for exposure and risk on the original scale.

The estimation is done in the STAMP 6.21 software (Koopman et al., 2000). The
multivariate model can be written as:

Ve =l +Bexe +E0, & NNID(O'Zs)
Hey =He g TV ¥0c0 e ™ NID(O'EU ) (71)
v, =v, . +C,, &, ~N(0,3, )

In this formulation, y, is a vector containing the observed values for the number
of victims for the three types of road users and x, contains the three series of
kilometres driven. Because each series is concerned with one road user type, the
explanatory matrix is diagonal, such that the number of victims of each road user
type is related to its own number of kilometres driven. The unobserved
components vectors x, and v, contain the levels and the slopes, respectively.
Finally, 2,, 2, and X are the variance matrices for the observation equation and
the two state equations, while ¢, #», and {, are multivariate, normally and
independently distributed (NID) disturbances.
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FIGURE 42: Road safety data per type of motorised road user

A first model includes a separate level and slope component for each transport
mode. The AIC values for this model are -4.2259 for cars, -3.2052 for trucks and
-4.0479 for motorcycles. After inspecting the covariance matrices of the level
and slope components, it turns out that a common factor model might give a
better fit. Setting the rank of the variance matrix for the slope component equal
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to 1 reduces the AIC values to -4.4405, -3.4692 and -4.2845, respectively.
Further, the Q-statistics did not indicate any problem of autocorrelation. The
common factor model was therefore retained.
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FIGURE 43: Fitted values, trends and slopes for transport modes

FIGURE 43 shows the fitted curves for the three series of victims (first column),
together with an estimate of the trend (second column) and the slope curves
(third column). As can be seen from the first column, the model seems to fit the
data fairly well, although the fluctuations in the truck victims are quite irregular.
The trend curves in the middle column in FIGURE 43 are corrected for the vehicle
kilometres and are, as such, an indication of the risk for each type of road user.
The risk is decreasing almost linearly for the cars, but shows some stagnation for
the trucks and the motorcycles. At the end of the eighties, the risk curve is
almost flat for the trucks, and the same occurs for the motorcycles in the early
nineties. As for the slopes, it is seen that the rate of decrease in risk is getting
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smaller near the end for all types of road users. At the end of the sample period,
there is a decrease in risk of 9% for cars and 4.5% for trucks, but only 0.59% for
motorcycles. In fact, as can be seen from the estimations of the final state
coefficients in TABLE 33, at the end of the series the slope is only significantly
different from zero for the cars. This means that the reduction in risk for trucks
and motorcycles is almost zero around the year 2000.

TABLE 33: Estimated coefficients

Transport mode  Coefficient R.m.s.e. t-value p-value

Level  Cars 2.8329  1.4841 1.9089 0.0670
Trucks 43891 1.2888 3.4055 0.0021
Motorcycles 6.8703  0.0209 329.39  0.0000

Slope  Cars -0.0922  0.0356 -2.5895 0.0153
Trucks -0.0452  0.0322 -1.4024 0.1722
Motorcycles -0.0059  0.0330 -0.1788 0.8595

Veh-km Cars 1.3508  0.3410 3.9618 0.0005
Trucks 0.7025  0.5031 1.3965 0.1739
Motorcycles 0.1290  0.0660 1.9538 0.0612

TABLE 33 also shows the estimated coefficients for the exposure measures in each
equation. Note that the cars exposure only occurs in the cars equation, the
trucks exposure in the trucks equation, and so on. For the cars and the
motorcycles, a significant value (compared to zero) is found. For cars, the
increase in the number of victims is more than proportional (1.34%), while it is
less than proportional for trucks and motorcycles. A 1% increase in kilometres
driven by motorcycles results in a 0.13% increase in the number of killed or
seriously injured motorcyclists.

Given the risk functions obtained from the model, it is interesting to look at the
relative risks of the three modes of transport. As the risk levels are modelled in
logs, the difference between, for example, the car risk and the truck risk is equal
to the log of the ratio of both risk curves:
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Log Relative Risk, . = log(Risk,, )—log(Risk s )

RiSkCars (72)
=log| ——
Risk

Trucks

This is shown in FIGURE 44 on the left graph. Since the risk components of cars
and motorcycles are compared to the risk component of trucks, the latter is equal
to zero for all time periods. Compared to the risk of trucks, the risk of
motorcycles has been much higher since the early seventies, while the risk of cars
is lower ever since. Also, compared to trucks, the risk of motorcycles seems not
to be declining, as the risk of cars does. It is striking that, after a decrease in
relative risk for motorcycles in the eighties, it is increasing again in the nineties,
that is, together with the strong increase in kilometres driven by motorcycles.
Although they travel the lowest number of vehicle kilometres, the motorcyclists
have a risk that is between 2 and 3 times the risk of trucks.

Relative risks Risk indices

1975 1980 1985 1990 1995 2000 1975 1980 1985 1990 1995 2000

Cars - Trucks ———- Motorcycles‘ l Cars -—-- Trucks ———- Motorcycles

FIGURE 44: Relative risk and risk indices

An alternative view is given in the right graph of FIGURE 44. Here, a risk index is
calculated by putting the risk component for the year 1973 equal to 1 for all
transport modes. The curves then show how the trends change over time,
relative to one another. It is seen that cars have indeed the strongest reduction
in risk compared to 1973, while the decrease is less pronounced for trucks and
motorcycles.

This type of analysis shows the importance of a disaggregated time series
analysis, next to the aggregated models. The example focuses on three
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motorized transport modes, because for these an exposure measure was available.
However, it should be clear that this analysis is easily extended to other types of
transport, provided that an exposure measure can be included. One drawback of
the data used in this study is the fact that it does not take into account the
parties that are involved in an accident. The number of car victims contains the
victims in car-car accidents, but also car-truck accidents, car-cyclists accidents
and so on. The next section extends this topic by an analysis of two-sided
crashes with motorised modes of transport.

7.4 Analysis of road risk in two-sided crashes

In the official Belgian road safety statistics, some matrices can be found with
data on the number of accidents and victims in two-sided accidents. They
represent the victims that are counted among the main parties involved in the
crash. This section investigates the evolution over time of the number of
fatalities and serious injuries in crashes where the main road users involved are
cars, trucks or motorcycles. More specifically, time series of victims in collisions
of a car with a car (C-C), a car with a motorcycle (C-M), a car with a truck (C-T)
and a truck with a motorcycle (T-M) are studied. Again, the choice is determined
by the availability of both crash and exposure data. For non-motorised modes of
transport, the exposure data is not available over time. Also, the crashes of two
motorcycles and two trucks are not studied. The objective is to gain insight in
the risk functions of the analysed crash types.

The data that is available for this analysis is, unfortunately, not complete. That
is, data were found for the years 1973-1989 and 1994-2001, with four missing
values in each series of victims. The series of vehicle kilometres are complete.
To deal with the missing value problem, state space models are used. Indeed, as
will become clear below, the Kalman filter, that is used to provide optimal
estimates of the current state of a dynamic system (Chatfield, 2004), is well
suited to estimate missing values in a series. Details can be found in (Harvey,
1989) and in (Durbin & Koopman, 2001). More specifically, the models presented
here are based on the multivariate latent risk models discussed in (Bijleveld,
Commandeur, Gould et al., 2005). However, whereas these models assume a
proportional relation between fatalities and risk, extra parameters are estimated
here to test this assumption. For example, for the case of car-truck victims, one
can write the model as:
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lOg (Vcars t ) = /ucars St + gcars St

zucars St = rucars ;gt=-1 + Vcars ;gt-1 + ﬂcars St
Vcars 't = Vcars ;-1 + gcars ,t

lOg (Vtrucks b ) = /utrucks Jt + gtrucks gt

Hitrucks ¢t = Htrucks t-1 TV trucks -1 7 trucks it (73)
Viucks t =V trucks t—1 + é/trucks it

LOg (Ft ) = cars M ars ,t + A trycks M trucks ;€ + :ufat ,t + ‘9fat St

Megpt S Hpr e TV e T

Viate =Vt T é/fat t

The first three equations are respectively, the observation equation, the level and
the slope for the car exposure, V. The same structure is then repeated for the
truck exposure, V, .. The last three equations are for the fatalities and serious
injuries in crashes between cars and trucks, denoted F,. The victims are modelled
as a function of the unobserved levels of car and truck kilometres and the level of
the risk, denoted . The parameters o and o, measure the effect of the
exposure levels in the equation. Note that all quantities are in logs, which
means that, again, the multiplicative structure between exposure and risk is
respected. The last term in each equation is the mutually uncorrelated, normally
distributed disturbance term, denoted ¢,, for the observation equations, #,, for the
level equations and (;, for the slope equations (7= cars, trucks), each with a
mean zero and a specific variance. When studying crashes between cars and cars,
the second measure of exposure is dropped, leaving six instead of nine equations
to be estimated. Also, if the variance of the level or slope equation is estimated
to be equal to zero, the corresponding component is assumed to be fixed. The
series are shown in FIGURE 45. The number of vehicle kilometres for the three
transport modes were already shown in FIGURE 9 (Chapter 4).

The models were estimated in Eviews 5.1 (QMS, 2004). The Q-statistics for the
first 12 orders did not indicate the presence of autocorrelation. In the model for
car-car crashes, the level of the crashes was fixed. This was also the case for the
slope of the crashes in the other models (C-M, C-T, T-M). These slopes are
interesting, as they show the yearly decrease in risk for each group of crashes.
The results are shown in TABLE 34.
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FIGURE 45: Fatalities and serious injuries in two-sided crashes

For the car-car crashes, a yearly decrease of about 12% is registered, while this is
much lower for the other types. The risk of crashes between cars and motorcycles
and cars and trucks is estimated to decrease at a rate of 3% and 6% respectively.
A remarkable result is found for the truck-motorcycle victims. Here, the slope is
fixed and not significantly different from zero. Therefore, it could be dropped
from the model. This indicates that the rate of reduction in the number of these
fatalities is to be neglected.

A second output from the model is the estimation of the exposure parameters.
These are shown in TABLE 35. Again some interesting findings should be
highlighted.  First, apart from the exposure for motorcycles, all parameter
estimates are highly significant. For example, the car exposure shows a more
than proportional effect on the number of victims in model C-C.
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TABLE 34: Estimated slopes for the risk in two-sided crashes

Model Coefficient R.m.s.e. z-statistic Prob.

c-C -0.1204  0.0477  -2.5254 0.0116
C-M -0.0332  0.0049  -6.8111 0.0000
T -0.0622  0.0100  -6.2520 0.0000
T-M 0.0063  0.0103 0.6151 0.5385

Second, when the two parties in the crash are different, one exposure parameter
is positive, while the other is negative. This is, at first sight, a strange result.
However, the measures in the model are on the log scale, so that, on the original
(multiplicative) scale, the exposure measures are raised to a power equal to their
respective parameter estimates. If one of the two parameters is negative, it
indicates a difference in logs, or the log of a ratio of the exposure levels. The
number of victims is therefore determined by the ratio of the (trend of the) two
exposure measures, rather than by their separate levels. For example, in the case
of the C-T model, the number of victims would be determined by the ratio of
truck kilometres divided by car kilometres (each raised to a specific power). If
the ratio is higher (more truck kilometres for a given number of car kilometres),
then the number of victims will rise. If the number of car kilometres is higher,
then the ratio is lower (less truck kilometres for a given number of car
kilometres) and the number of victims will fall. The way in which the ratio
behaves is determined by the magnitude of the parameter estimates. The same
can be said for the C-M and T-M models.

Given the importance of the parameters, it might be instructive to investigate
them further. In particular, one can test the proportionality assumption of the
exposure measures relative to the number of victims. Also, for the models with
two exposure measures, the hypothesis can be tested whether the two parameters
are equal with opposite sign, meaning that the relation between the number of
victims and the risk is determined by the ratio of the two exposure measures
raised to only one power.
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TABLE 35: Estimated coefficients for the exposure parameters

Model Parameter Coefficient Std. Error z-statistic Prob.

c-C a 2.2631 0.2150 10.5264 0.0000

C-M a -0.3451 0.0911 -3.7869 0.0002
0.4282 0.3230 1.3257 0.1849

amatarcy:les

C-T a -2.3658 0.4456 -5.3097 0.0000
3.8120 0.5061 7.5324 0.0000

trucks

™  a,, -1.3859  0.2343  -5.9140 0.0000
0.3601  0.2539 1.4184 0.1561

‘motorcycles

To test these hypotheses, the Wald test for coefficient restrictions is used (QMS,
2004). TABLE 36 shows the results for the four models.

TABLE 36: Wald statistics for exposure measures

Model Test Chi-square  Prob.
¢C a,=1 34.5164 0.0000
M g, =1 217.8743 0.0000
Boorgets = 1 3.1333 0.0767
a 0.0610 0.8049

cars -amatorcydes

T a,=1 57.0633 0.0000
Gy = 1 30.8735 0.0000
@, =Gy, 4.0204 0.0450
™ = 103.6590 0.0000

=1 6.3519 0.0117
7.7086 0.0055

amatorcycles

@ rveks = " Frnotoreyctes

It is clear that none of the parameter estimates indicate proportionality. Also,
for the models in which trucks are involved (C-T and C-M), the hypothesis of only
one parameter for the ratio is rejected. This is not true for the C-M model. Here,

185



the hypothesis that the car and motorcycle exposure have the same coefficient in
absolute value is not rejected.

Each model further estimates a risk component for the number of victims. In
FIGURE 46, the risk indices, showing the risk for each time period, scaled to the
first year of observation are plotted.

0.84 1
3 T T T T T T 0.80 T T T T T T >
1975 1980 1985 1990 1995 2000 1975 1980 1985 1990 1995 2000
—— Car-Motorcycle

777777 Car-Truck
———- Truck-Motorcycle

FIGURE 46: Risk indices for two-sided accidents

The left graph separately shows the index for car-car accidents, as this value is
decreasing much faster than for the other two-sided accidents. The latter are
shown in the right graph. Here, the decrease is less strong. The number of
victims in car-trucks accidents shows the fastest decline, while the truck-
motorcycle risk index is still close to one, even after a period of almost 30 years.
From the late eighties onwards, the risk is increasing. Clearly, motorcycles
should be counted as vulnerable road users. In fact, the risk curves nicely
confirm the trends in Belgian road safety policy, where attention is given to
these modes of transport in terms of road safety. Campaigns are organised to
make the motorcycle visible in traffic, blind spot mirrors are introduced to reduce
the number of fatalities in crashes between trucks and vulnerable road users, and
proposals for lower speed limits for trucks have been formulated. These models
show that the extra attention is indeed necessary.

The last interesting outputs from the models are the curves fitted to the observed
values. These are shown in FIGURE 47. The full lines are the fitted values,
together with the (dashed) 95% confidence interval. The irregular dashed lines
show the observed series. Note how the Kalman filter fits the missing values of
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the series in a way that is, at least with the naked eye, quite reasonable. Also,
the missing values are surrounded by confidence bounds that are slightly larger,
although this is only visible for the car-truck victims. This is also the most
fluctuating curve, and since the smoothed estimates take into account all
observed values, a higher uncertainty is found. For the motorcycle graphs (right
column), the missing values are in the period where the number of kilometres
driven by motorcycles shows a steady increase. This evolution is nicely picked up
in the number of victims, which is also increasing from 1990 onwards.
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FIGURE 47: Fitted values for victims in two-sided accidents

It might be argued that some extreme values can be accounted for in the analysis
by including intervention variables. However, there is no real explanation for
these values and, given the low level of aggregation, they are quite probably
caused by mere statistical fluctuations. Including interventions would in that
case over-fit the model and unnecessarily reduce the number of degrees of
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freedom. This is not desirable, given the limited number of observations used in
the study.

This section clearly illustrates the merits of a disaggregated approach towards
different modes of transport in two-sided accidents. The higher risk of trucks and
motorcycles was found in the data and the results were quantified by means of
the very flexible state space models. However, the large fluctuations in the
disaggregated series make it less easy to model the trends in the data, but
nevertheless interesting insights are obtained. An extension would be to model
the curves all together in a multivariate framework. This approach, however, is
computationally very demanding, but would allow for a fine-tuning in the way in
which the variances of the equations are related to one another. Also, other
modes of transport could be added, provided, of course, that the appropriate data
is available.

7.5 Analysis of road risk per type of road

Apart from the distinction that can be made between several types of road users,
as demonstrated in the previous sections, one can also disaggregate road safety
figures according to the type of the underlying road network. In the subsequent
analysis, three types of roads are distinguished: highways, provincial roads
(national and regional) and local roads. For these types of roads, official
statistics are available on the number of accidents and victims as well as on the
number of vehicle kilometres. Because of the differences between the roads
(physical characteristics, number of lanes, speed limits, etc.), it is expected that
the risk curves will behave differently. This aspect will be investigated in this
section by means of a multivariate state space analysis, comparable to the one
that has been used in section 7.3.

Apart from the exposure measure, however, this section also tests the
significance of two major road safety interventions that are related to different
types of road. The first variable, LAW0192, tests the introduction of the law on
speed limits in January 1992. The law is concerned with the speed limits of 50
km/h in urban areas and 90 km/h on provincial roads. The second intervention,
called LAW0198, measures the effect of the installation of speed cameras starting
from January 1998. These two laws are expected to influence road safety on
urban and provincial roads. Note, however, that speed cameras were installed
shortly after the introduction of new right-of-way rules for roundabouts (October
1997). Probably this variable will measure a compound effect, which is inevitable
with dummy intervention variables for yearly data.
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FIGURE 48: Fatalities and serious injuries per type of road

Data are used for the years 1973-2002. The statistics for 2003 and 2004 are also
available, but they show a very unlikely pattern, probably caused by changes in
the registration procedure and by shifting some roads from one category to
another. FIGURE 48 shows the data on the number of persons killed or seriously
injured for each type of road. It is immediately clear that the number of victims
for motorways follows a different pattern from that observed for the provincial
and local roads. From the eighties onwards, the trend on motorways is upwards,
and turns only in the late nineties. However, the number of fatalities and serious
injuries on motorways is, in absolute values, much lower than for the other two
types of road.

For the model formulation, reference is made to Equation 71. The model tested
here is identical, except for the explanatory variables. Here, the number of
vehicle kilometres per type of road is used, together with the two tested laws.
Note again that, as in the study per type of road user, the number of vehicle
kilometres is only included in the equation for the corresponding type of road.

189




That is, the number of kilometres driven on motorways is included in the
equation for motorways, and so on.

First, a full model in STAMP 6.21 (Koopman et al., 2000) was estimated, with a
separate level and slope for each type of road. After inspection of the
correlations between the level and slope disturbances respectively, it was decided
to reduce the rank of the variance matrix for the level to 1 and for the slope to 2.
The Q-statistics were satisfactory for the motorways and provincial roads, but
indicated some serial correlation for the local roads. Inspecting the residuals
shows an outlying value for the year 1989. Therefore, an intervention variable
(Y1989) was added to the observation equation of the local road fatalities, which
reduced significantly the level of autocorrelation. The values of the final state
vector are shown in TABLE 37. The slope estimates represent the growth rates of
the risk at the end of the estimation period. The model shows a reduction in the
risk of 18% per year for the motorways, 13.5% for provincial roads and about 6%
for local roads. For the motorways, the high value is probably caused by the
enormous drop in victims in the last two years of the analysis period.

TABLE 37: Estimated coefficients for the final state parameters

Road type Coefficient R.m.s.e. t-value p-value
Level Motorways 6.5638 0.7692 8.5337 0.0000
Provincial roads 7.1863 0.8267 8.6923  0.0000
Local roads 6.9534 0.5348 13.002 0.0000
Slope Motorways -0.1808 0.0769 -2.3532 0.0259
Provincial roads -0.1349 0.0369 -3.6502 0.0011
Local roads -0.0607 0.0117 -5.2043 0.0000

The parameter estimates for the exposure measure and the intervention variables
are shown in TABLE 38. For the exposure measure, the number of vehicle
kilometres per type of road, it can be seen from the table that all parameter
estimates are positive. The coefficient is not significant for motorways, while it
is slightly significant for provincial roads and highly significant for local roads. A
1% increase in kilometres driven on motorways will result in a 0.13% increase in
fatalities and serious injuries. On provincial roads, the increase is about 0.36%
and for local roads it is 0.43%. This indicates that the effect of exposure is
larger for more local roads compared to motorways.
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TABLE 38: Estimated coefficients for the explanatory parameters

Road type Coefficient R.m.s.e. t-value p-value
Veh-km Motorways 0.1269 0.2227 0.5700 0.5733
Provincial roads 0.3654 0.2240 1.6315 0.1140
Local roads 0.4268 0.1752 2.4362 0.0215
LAW0192 Motorways 0.0323 0.0614 0.5258 0.6032
Provincial roads -0.0662 0.0419 -1.5814 0.1250
Local roads -0.0851 0.0306 -2.7789 0.0096
LAW0198 Motorways -0.0448 0.0618  -0.7254 0.4742
Provincial roads 0.0142 0.0422 0.3363 0.7392
Local roads -0.0115 0.0308 -0.3746 0.7108
Y1989 Local roads 0.1102 0.0308 3.5811 0.0013

An instructive result is obtained for the interventions. As expected, the law on
speed limits is significant for local roads and, to a lesser degree, for provincial
roads, but not on motorways. Indeed, this law only regulates the speed limits for
these categories of roads. Also, the effect is larger for local roads compared to
provincial roads. The introduction of the new speed limits resulted, on average,
in a decrease of victims of 6.6% on provincial roads and 8.5% on local roads. On
the other hand, the installation of speed cameras and the introduction of the
new right-of-way rules for roundabouts are not significant for any of the road
types. Probably, these measures, compared to the speed limits, have a very
concentrated influence, with high variability from one location to another. It is
then very difficult to assess the effect of a measure on data that are aggregated
in time. Perhaps a before-and-after study on certain locations might shed a
different light on these results.
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FIGURE 49: Fitted values plus trends and slopes for road types

The graphs for the fitted values plus trends and slopes are shown in FIGURE 49.
The slopes show a very irregular pattern. For motorways and provincial roads, the
slope is around zero for many periods, indicating stagnation in the trend of the
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number of victims. However, the final absolute values of these slopes are large.
For the local roads, the slope values are smaller in absolute values, but they are
always negative, indicating a systematic reduction in the number of victims.
Around the year 1991, the changes in the trend and the slope, caused by the
speed law, are visible, but the slope curves indicate a smaller decrease already
some years later.
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FIGURE 50: Relative risks for motorways and provincial roads

In FIGURE 50, the relative risks for motorways and provincial roads compared to
local roads are shown. The relative risk is the evolution of the risk of motorways
and provincial roads compared to the risk of local roads. A negative value
indicates a lower risk than the reference type of road (in this graph the local
roads). For example, at its lowest point, the relative risk for motorways is -1.60,
indicating a risk that is 1-exp(-1.60)=0.7981 or almost 80% lower than the risk
on local roads. The risk of motorways is always lower than the reference line, but
the difference gets smaller over time. In 2000, the difference with local roads is
reduced to 20%. The risk of provincial roads is higher for the whole analysis
period, and the difference between this type of road and the local roads
fluctuates in almost the same way as the motorways until the early nineties.

The risk index (FIGURE 51) shows the evolution of the risk for each type of road,
rescaled to one in the first year of analysis. It indicates again the comparable
behaviour of the risk curves for provincial and local roads, and the deviating
pattern for motorways. Although the relative risk points out that motorways may
be considered safer than the other types of road, the risk index does not show a
monotonically decreasing risk pattern.
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FIGURE 51: Risk index for motorways, provincial roads and local roads

The three types of road have their own characteristics, but it seems that the
decrease in victims and risks during the last decennia can be attributed more to
the local and provincial roads rather than to the motorways. The latter road type
does not show the decreasing pattern that is also present in the global number of
victims.

7.6 Conclusion

This chapter presented some possible models that can be developed on Belgian
disaggregated road safety data. The number of victims was disaggregated
according to road user properties (age and gender), motorised road user type and
road type. The results show that the various groups in the studies often have
very specific characteristics, which are worth investigating separately. Various
road safety measures are only oriented towards one or more subsections of the
transport system, and testing these measures on a highly aggregated level might
obscure the nature of the effects.

The field of disaggregated time series models in road safety research seems to be
scarcely out of the egg. However, the merits of this approach are clear. A
disaggregated analysis is complementary to the aggregated models in the sense
that the trends for specific parts of the transport system can be analysed
separately, and the specific countermeasures, introduced to enhance road safety
for a specific group of road users, can be benchmarked. The main problem,
however, is the availability of relevant data. The lower the level of aggregation,
the more difficult it is to find valid exposure data. For Belgium, exposure data
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per road (user) type are only available on a yearly basis for motorised means of
transport. For age and gender categories, population data seemed to be a valid
alternative to correct for exposure, but it has disadvantages. For example,
changes in population will, for some age and gender categories (especially for
older and younger persons), diverge from the number of kilometres driven by
these groups of road users. Moreover, it is currently completely impossible to
derive data on combinations of disaggregated characteristics, like for example
the kilometres driven by female bicyclists on local roads. It goes without saying
that the data determines the possibilities and limitations of the models.

This chapter can therefore be seen as a strong plea in favour of the collection of
disaggregated time series data in road safety. The analyses in this chapter
demonstrate the possibilities of this approach, but they show, at the same time
and equally obvious, their limitations. The models are, both deliberately and out
of (sheer) necessity, kept very simple. Although there are, consequently,
restrictions to the applicability of the results, they make optimal use of the
available data. Moreover, it is clear that disaggregated series are related to one
another in many ways, and it is probably more important here than for
disaggregated models to analyse them together. For example, if more people use
their bike, less people will drive and vice versa. These changes in the transport
system will probably not affect the aggregated time series, but they have an
influence on the disaggregated results. Consequently, more advanced statistical
techniques are needed to analyse the available data.

There are two other remarks that should be made in the context of disaggregated
models. First, although the models presented here are disaggregated in terms of
road user characteristics (age and gender), road user type or road type, the
observations are still aggregated in time. That is, all models use yearly
aggregations of disaggregated road safety figures. For example, one considers
the number of fatalities on local roads per year, taking together all the fatalities
on all local roads at that time. The high level of aggregation in time may imply
that certain effects are difficult to assess. Therefore, these models are
complementary to other, mostly cross-sectional models, and the results should be
taken for what they are worth. Second, the studies in this chapter contain only
disaggregated data series for motorised transport. The reason is that these series
are all based on the official traffic counts from the Ministry of Mobility and
Transport. For other means of transport (bicyclists, pedestrians, etc.), no such
series are available and, consequently, no time series analyses can be carried out.
However, given the attempts of the government to promote sustainable means of
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transport, it would be instructive to analyse road risk and measures of exposure
for these groups of road users as well. The next chapter presents some cross-
sectional descriptive studies for other modes of transport.
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Chapter 8 Disaggregated analysis in Flanders

8.1 Introduction

In the previous chapters, the relation between exposure and road safety was
extensively analysed with a number of models. Aggregated models were
developed on yearly data to obtain predictions for road safety and to assess the
long run objectives that were set by the government. Also, disaggregated models
were applied to each type of road and to various types of road users. Using
monthly data, descriptive and explanatory models were built to make short term
predictions that take into account the seasonal fluctuation in the data. It is
clear that the combination of exposure data and road safety outcomes can lead to
interesting conclusions.

However, the main difficulty when studying the relationship between mobility
and traffic safety is the availability of appropriate data. If more disaggregated
data on road safety and exposure were available, it would be possible to analyse
other types of road users (like pedestrians or bicyclists), or various kinds of
accidents. The data for this kind of models is, unfortunately, not available in
Belgium to analyse in a time series setting. In Flanders, a travel survey is the
only source of cross-sectional data on disaggregated exposure. Therefore, in this
chapter, a relatively simple approach is introduced to enhance the insight in the
relation between road safety and mobility on a cross-sectional basis. More
specifically, some exploratory analyses are presented in which mobility and traffic
safety data are combined, using Flemish travel survey data (Zwerts & Nuyts,
2004) and accident data for the year 2000 to study the factors of mobility that
determine traffic safety. As was done in the previous chapters, the analysis
starts from the basic relation between the number of accidents, the number of
victims and a measure of exposure.

The main issue, compared to the previous chapters, is that results can be derived
for non-motorized means of transport in a cross-sectional setting. In particular,
the relationship between exposure and risk can be analysed for vulnerable road
users. It is well-known that different user groups (in terms of transport mode,
age and gender) can have different patterns of traffic and a corresponding level
of risk and exposure. In a time series context, this was already shown in Chapter
7. When sustainable transport modes are promoted, policy makers have to make
sure that these are safe and useful for the target group. It is important to find
out whether a transport means is unsafe for a given user group because of a high
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level of exposure, or rather because of a higher level of risk. A decomposition
using travel survey data will be presented. Note, however, that other methods
for deriving a risk indicator are available, as demonstrated for example in (de
Leur & Sayed, 2003).

For the studies in this chapter, various sources of data are needed. First, the
Flemish accident data for the year 2000 will be used, containing all information
from the crash report, including gender and age of the victims. Second, data on
the mobility of road users are needed. As detailed mobility data are desirable for
this study, the Flemish travel survey 2000-2001 (Zwerts & Nuyts, 2004),
introduced in Chapter 4, will be used. Given the accident statistics and exposure
measures, it seems that all necessary ingredients for a traffic safety analysis are
at hand. However, there are still some remarks. First, mobility and accident
information are two different data sources. Usually there are no mobility data
available related to the exact place and time of an accident. Therefore it is not
always possible to find a clear link between both. Second, travel surveys consist
of samples of road users, while accident counts are observed statistics. Both
sources have their own problems and limitations. For surveys, it is sometimes
difficult to guarantee that all groups of road users are present in the same
proportions as in the population. Accident counts are subject to problems of
under-registration and wrong or incomplete accident information. Third, travel
surveys are conducted with the objective of gaining insight in the travel habits of
citizens, and rarely if ever to increase (the knowledge on) traffic safety. Some
questions are irrelevant for traffic safety research, and other important questions
are not asked.

8.2 Travel surveys and road crashes

In this section, the decomposition of fatalities in exposure and risk is applied on
cross-sectional data for the year 2000. For example, if one is interested in the
distribution of fatalities over age and gender, it is possible to calculate a
measure of exposure and an indicator of risk for each age-gender category. The
product of exposure and risk will again provide an estimate of the fatalities.
Note that a similar analysis was presented in Chapter 7, section 7.2. This
approach can be useful to extend the insight in the accident generating process
for a given age category. A similar study was presented in (de Leur & Sayed,
2003) and in (Toomath & White, 1982), where information on driving patterns is
used in association with reported injury crashes to determine exposure-adjusted
accident rates by age and gender group.
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FIGURE 52: Decomposition of fatalities in risk and exposure

Using the data of travel surveys for Flanders (Zwerts & Nuyts, 2004), a measure of
exposure can be created for different age and gender groups for the year 2000.
This measure is based on the reported average amount of travel, which has been
extrapolated using official statistics on the segmentation of the age and gender
groups in the population. Together with the road accident records for the same
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period, a risk indicator is constructed as the ratio of the number of fatalities and
serious injuries and the level of exposure. By doing so, a decomposition of
fatalities in exposure and risk is obtained. For example, the product of risk and
exposure for male persons of 25 years old should result in a corresponding
number of victims. In comparison with a decomposition over time, the curve-
fitting exercise is more complex. It is expected that exposure will be higher for
the working category of people, and lower for younger and older persons. Also
the risk will not be continuously decreasing, but will be higher for younger and
older people and for vulnerable road users in general.  Therefore, the
nonparametric LOESS method for estimating regression surfaces is used (Cleveland
et al., 1988; Cleveland & Grosse, 1991). This method can be used for situations
in which no suitable parametric form of the regression surface can be found.

Assume that a dependent variable y and an independent variable x are related by
v =g(x) +& where g is the regression function and ¢ is the random error, then for
a given value x, of the independent variable, g can be locally approximated by
fitting a regression surface to the data points within a chosen neighbourhood of
the point x. The method of weighted least squares is used to fit linear or
quadratic functions at the centres of the neighbourhoods. Each neighbourhood
contains a fraction of the data, which is determined by the smoothing parameter.
Data points in a given local neighbourhood are weighted by a smooth decreasing
function of their distance from the centre of the neighbourhood (Cohen, 1999).
The selection of the smoothing parameter determines the fit of the model. If
this parameter is too low, the data is over-fitted. If it is too high, an overly
smooth fit is obtained, loosing essential features of the data.

TABLE 39: Model characteristics for exposure and risk

Group Equation AIC Smooth

Male Exposure 11.1995 0.5250

Risk -5.1154  0.1417
Female Exposure 10.6536  0.2750
Risk -4.9823  0.2250

In the study, the smoothing parameter is chosen to minimize AICC, a bias
corrected AIC criterion (Hurvich et al., 1998), which is a trade-off between
smoothness of the fit and complexity of the model. The LOESS model fitting is
done in SAS (SAS Institute Inc., 2004b). The dependent variables are exposure
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and risk, for male and female road users respectively. The independent variable
is the age of the road users, starting at 10 and ending at 69 (due to data
restrictions in the travel survey). TABLE 39 contains the parameter estimates for
exposure and risk, for both male and female road users.

FIGURE 52 shows a decomposition of the number of fatalities in risk and
exposure, for each age and gender combination. The curves give an acceptable
mental fit to the data, due to the optimal choice of the smoothing parameter.
For exposure, it is reasonable to assume that both younger and older people are
less exposed to risk, because of their lower frequency of travel. The estimate for
the victims is again the product of the estimates for exposure and risk. Some
interesting insights can be gained from this decomposition.
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FIGURE 53: Ratio of male versus female risk

First, persons between 15 and 25 years old are high risk road users. The risk
stays at more or less the same level from age 40 up to age 60 and then starts
going up for the elderly. Even if their exposure is lower, they have a higher
probability of being killed or seriously injured. These risk pictures clearly show
how vulnerable the younger and older road users are. It is easily seen that these
results are more or less in line with what was found in Chapter 7, where a similar
study was done in a time series context. However, whereas the previous model
used population data as a proxy for exposure, an estimated number of kilometres
travelled for the year 2000 is used here. Second, the highest exposure is found
for people between 30 and 50 years old. This is the class of the working people,
who are at the same time socially active. Their activities result in a higher
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number of kilometres driven. For this group of persons, the number of victims is
more determined by exposure than by risk.

Third, the risk and exposure for female road users is lower than for male road
users of the same age. This indicates that women are less frequent road users,
and if they are, their probability of being killed or seriously injured in an
accident is lower. However, this difference is getting smaller with age. In
FIGURE 53, the ratio of male to female risk is shown. On the reference line, the
ratio equals one, indicating an equal risk for males and females. It seems that
male road users have a higher risk up to an age between 40 and 50, and
afterwards risks seem to be quite similar.

8.3 Modal split and road crashes

Another advantage of travel surveys is that detailed information on travelling
choices is available, like for example the modal split, for each age category. It is
expected that younger people will travel more as a car passenger, while at a later
age they will go by bike or drive a car themselves. This information can also be
linked with the number of victims of the various modes of transport. In FIGURE
54, the risk, the exposure and the number of victims for car drivers, car
passengers, bicyclists and pedestrians are shown, categorised by age. Because of
the higher level of detail, and in order to reduce sampling errors, categories of
ages instead of the ages themselves are used. The victims are again the number
of persons killed or seriously injured, while exposure is the number of kilometres
travelled using a specific mode of transport.

Some interesting results are found. First, car drivers have the highest number of
victims. Exposure is largest for drivers between 25 and 54 years old. The risk is
higher for young drivers, but decreases with age. This is perhaps a kind of
learning effect, showing that older drivers are more experienced than younger
ones. On the other hand, elderly people show a higher risk. Although studies
have shown that specific driver performance skills decline with increasing age
(Warshawsky-Livne & Shinar, 2002), indicating that they become less proficient
in driving a car, it is reasonable to assume that the higher risk of the elderly
drivers stems from their reduced ability to survive injury crashes. As explained in
(Evans, 2004), the risk of being killed in a crash is higher for older than for
younger drivers. Older drivers involved in a crash are more likely than younger
drivers to suffer serious injury or death. The number of victims is higher for
younger people, mainly because of the higher risk. For the working category, the
number of victims is more determined by the higher level of exposure.
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Second, car passengers show high exposure in the youngest age category. Very
young children are mostly taken by car to their social or educational activities.
The children of age 13-15 are less often car passengers. They probably prefer the
bike or go on foot. From the next age category on, car passengers are again
more frequent, but their level decreases with age. The risk for car passengers is
highest for young (16-24 years old) and elderly people. Many young people
travel together and passengers of this age category are probably accompanied
(and driven) by peers. The highest number of car passenger victims is found
among the youngsters between 16 and 24, mainly because of the higher risk.
Third, bicyclists and pedestrians show a relatively low level of exposure over all
ages. The number of victims is especially high for older bicyclists and
pedestrians. Their number is still relatively low compared to car users, but the
risk of vulnerable road users is remarkably high. Evans (2004) showed that, after
the age of 60, the risk of pedestrian death per person increases steeply, and then
again declines, likely reflecting reduced walking. The increasing involvement of
elderly people in pedestrian crashes may reflect the decreasing perceptual skills
and agility.

These findings are interesting for policy makers who should promote bicycle use
and walking as examples of sustainable means of transport. As long as the risk of
these road users is high, these modes of transport may be less attractive than any
other alternative.

8.4 Conclusion

For many traffic safety researchers, the main problem is finding the right data
sources. The indicators needed for traffic safety analysis are exposure, risk and
the number of victims or crashes. In many countries, these data are not always
available in a format that is needed for specific modelling purposes. Especially
exposure data is mostly not gathered with the objective of analyzing traffic
safety. In Flanders, the same problems arise. In this chapter, some examples of
the use of travel survey data for the analysis of traffic safety were presented.

A decomposition into exposure and risk, by age and gender category, shows the
impact of the main traffic safety indicators for road users of different age-gender
combinations. For each combination, the number of victims can be explained as
the result of exposure to risk and the risk itself. The models also show which
factor is most important. Typically for age categories, it is possible to detect the
high-risk groups. Also, exposure measures based on travel surveys are mostly
more detailed than the exposure measures based on traffic counts. They allow
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splitting up the analysis by socio-demographic characteristics like age and
gender. As shown in this chapter, they are better suited to point out the safety
differences in the various modes of transport.

On the other hand, the approach has some limitations. First, the travel survey
data are based on a sample of road users, who registered their travel behaviour
for a few days. Sampling errors may influence the results, and for some
subcategories by age and gender, the number of respondents may be too low to
allow valid extrapolations. Second, the sample of the travel survey is by no
means in accordance with the observed crashes and victims. It is quite possible
that there were no crashes registered among the road users in the travel survey
sample. Instead, we can only match the extrapolated sample data of the travel
surveys with the observed accident counts. It is then implicitly assumed that the
exposure, calculated from the travel surveys, is also representative for the
exposure that (partly) causes road crashes. Third, the availability of travel survey
data determines the possibilities for analysis of the traffic safety situation. If
trends in the number of victims are to be studied over a long period of time, we
have to make sure that the travel survey is conducted on a regular basis. In
Flanders, travel surveys are only available for 2 separate years, namely 1995
(Hajnal & Miermans, 1996) and 2000 (Zwerts & Nuyts, 2004), which excludes the
possibility of a reliable evolutionary study. For Belgium, only one travel survey
study is known (Hubert & Toint, 2002). Given the interesting conclusions that
can be drawn on the basis of this kind of analysis, there is a clear incentive to
extend the frequency of conducting travel surveys in Flanders, as it is done in
other countries.

The use of travel survey data, which are typically mobility-related, can greatly
improve the knowledge of the relationship between mobility and traffic safety.
Given the importance of exposure in traffic safety studies, this does not come as
a surprise. If mobility data are gathered on a regular basis, and directed towards
traffic safety, these data can provide useful insights that would remain hidden if
only less detailed information is used. For policy makers, this information can
steer their campaigns, and determine which kind of transport mode should be
made more safe or more attractive for specific groups of road users.
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Chapter 9 Final conclusions

9.1 Looking back...

Probably every fundamental research effort that comes to an end is, in several
ways, restricted in its practical use. Typically a large amount of knowledge on a
very specific problem is generated and gathered. Too often, the relevance of
such a piece of work is obscured by the lack of a larger context in which the
scientific progress gets its meaning. In road safety research, the relevance and
the final objectives are obvious. Given the demand for a transport system,
initiated by economic, social and cultural activities that are to be accomplished,
road safety research should contribute to the reduction of the number of
accidents and victims, which are the negative by-products of the system. This is
a huge task, but it is hoped that every piece of work in this domain will enhance
the knowledge on road safety and reduce the magnitude of the problem. This is
a never-ending story, because the level of road safety does not remain constant
until the research is done.

In this manuscript, yet another contribution to the field of road safety research is
presented. The purpose was to provide an insight in the relation between road
safety, exposure and risk in Belgium, using data at various aggregation levels.
With this topic, the author takes a bird's-eye view to the problem. Instead of
investigating accidents and victims on a one-per-one basis, road safety data are
aggregated per time unit (per month and per year), and groups of subjects are
analysed. As a consequence, the models developed in this work should be
considered as strategic devices to get insight in the way road safety evolves.

In Chapter 1, a motivating introduction to the topic was given. Belgium is still a
poor student as it comes to road safety. Governments and road safety institutes
are concerned with the problem and try to introduce measures that eventually
lead to a reduction in the number of victims and accidents. Clearly, at a
strategic level, a policy maker needs high-level information that shows general
trends in road safety. The models presented in this work are very well suited for
this task. A time series approach is taken, such that trends can become clear and
interventions can be evaluated. Chapter 2 provided an overview of this kind of
models. Time series road safety models are not new, but they have never been
applied in a structured way to the Belgian road safety situation.

In very general terms, the connecting thread between the various chapters in this
work is the basic relation that decomposes road safety (in terms of accidents or
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victims) in a risk component and a corresponding measure of exposure to the
risk. The two basic sources of information that are needed for this kind of
analysis are the accident data and information on the level of exposure. While
the governments of several countries significantly improved upon the quality of
their accident databases, it is found that exposure measures are far less available
in a format and with a content that is useful in road safety research. Therefore,
Chapter 3 offered an overview of possible measures of exposure, and indicated
how they can be obtained and used. Because monthly exposure data were not
available for Belgium, an exposure measure was created in Chapter 4, on the
basis of fuel sales, average fuel efficiency and the vehicle park. Also other
sources of data were introduced in the same chapter, including an in-depth
discussion of Belgian accident data, an overview of the available exposure data
(on a yearly basis) and a set of possible explanatory variables.

Next, in Chapter 5 some highly aggregated road safety models were developed for
Belgium. On the basis of the yearly number of fatalities and the number of
kilometres driven, the models provided an insight in the interaction between road
safety, risk and exposure. Starting from the famous Oppe models, some
extensions were demonstrated. First, the logistic curve for exposure was replaced
by the more flexible Richards curve, and a constant was added to the exponential
risk curve. Second, using alternative risk models, the basic relationship was
extended with a parameter that allows for non-proportionality in the exposure-
risk relation, and some road safety interventions were tested. Globally, the
models did not show any reason to reject the proportionality for the yearly data.
Further, depending on the model considered, the road safety interventions
concerning seat belt use, speeding and alcohol indicated significant reductions in
the number of victims. In this chapter, also the flexible state space models were
introduced. This approach is based on the idea that several components in the
classical exposure-risk relation are stochastic and unobserved, recognising that
these variables are measured with uncertainty. In a first setting, where exposure
was treated as an explanatory variable, the proportionality assumption could
again not be rejected. In a second state space model, a latent risk time series
model, exposure was introduced as a latent variable. In general, the stochastic
approach did not lead to very different results compared to the previous models,
but it provided a framework that is more naturally related to the basic idea
behind the relation between exposure and risk. The different models tested in
this chapter resulted in very diverging predictions of the number of fatalities in
2010, although the more elaborated models lead to quite sensible trends.
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Chapter 6 introduced models on monthly data. The difference in frequency
(monthly compared to yearly data) offers the advantage of a larger data set,
which makes it possible to include more explanatory variables in the models.
Also, monthly data show specific seasonal patterns, which are interesting from a
descriptive point of view. Both ARIMA and state space descriptive models were
developed, leading to quite comparable results in terms of predictions. However,
the state space approach is more “descriptive” than ARIMA models, in the sense
that trends and seasonal components can be easily extracted. The explanatory
model with calendar variables slightly improved the fit, but resulted in a
forecasting accuracy that can be compared with the ARIMA models. However,
even the simple calendar variables like a trading day pattern or the leap years can
give an added value to the models. The laws on seat belt use, speed and alcohol
gave significant and reassuring results. This was not the case for the law on seat
belt use in the rear seats and the installation of automatic speed cameras.
Probably these laws are different in nature and are therefore hard to test in an
aggregated model.

In a second explanatory model, apart from the laws and the calendar variables,
also the effect of the weather, economic conditions and exposure were tested.
Further, a model for the number of light injuries was added and exposure was
modelled in a separate equation. This allows measuring both the direct and
indirect (via exposure) effects of some explanatory variables. Again, the model is
a regression-ARIMA model, extended with a GARCH structure on the residuals to
account for possibly unequal error variances. The results for the laws on seat belt
use in the rear seats, alcohol and automatic cameras were comparable with those
obtained earlier. As for the weather, higher temperatures and more precipitation
seem to reduce safety, while no effects for frost are found. The number of days
with snow increases the number of accidents. Further, the relation between the
weather and exposure is not according to expectations, and probably indicates an
influence of the way the exposure measure was developed. For the economic
conditions, both a higher fuel price and a higher level of unemployment reduce
road safety. This is not in line with literature, but it is not unthinkable that
these relations are influenced by the economic structure of a country (especially
for unemployment) or by the complex role of exposure (especially for fuel price).
Indeed, some effects seem to reflect the changes in the relation between
exposure and road safety. When comparing the outcomes of these models with
the previous ones, it is important to note that the series in the last models are
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shorter (because of the availability of exposure data), which can undoubtedly
influence the results.

The most important results in these models were again obtained for exposure.
The relation between exposure and road safety deviated from proportionality.
Also, there is a difference between the results for the number of fatalities
compared to serious or light injuries. This was further investigated in a stylised
parabolic experiment. For each kind of victims a quadratic relation with exposure
was fitted. Whereas the number of light injuries is still increasing with traffic, it
seems that a higher level of exposure may lead to reductions in the number of
fatalities and serious injuries. The insights from this chapter bring up the topic
of a turning point in the relation between exposure and road safety, which is
closely related to the congestion problem. Further, if the relation between
exposure and road safety is less than proportional, the effect of modelling road
safety without this key variable will probably not harm the other results obtained
in the model. However, it is always preferred to keep this variable in the model,
provided that it is available.

Apart from the very general models that were developed in Chapter 5 and Chapter
6, a more disaggregated or “subset” approach was presented in Chapter 7. That
is, instead of looking at road safety for the whole country, types of roads and
groups of road users are considered. Note that these models remain highly
aggregated in time, as they are developed on yearly data. Disaggregation was
done by age and gender and by type of road user (car, truck, motorcycle).
Further, models were developed according to road type (motorways, provincial
roads and local roads) and for two-sided accidents.

In the analysis of fatalities per age and gender category, it was found that road
risk is changing over the age groups according to a U-shaped curve, and that men
generally have higher risk than women. Further, the risk is decreasing over time,
but not at the same rate for all age-gender groups. The highest yearly reduction
in risk is found for the oldest and youngest road users.

In the analysis per type of road user, the relative risk curves and the risk indices
clearly show that trucks and motorcycles have higher risks than cars. This
information is useful for policy makers, as it helps them to recognize that road
safety policies are not equally effective for all groups of road users. It is
especially striking that almost no reduction in risk is observed for motorcycles
over time.

210



The less than proportional effects found for the truck and motorcycle exposure
are further clarified in the analysis of two-sided accidents. These analyses
showed that two-sided accidents are more determined by the ratio of the
exposure measures of the different transport modes involved than by the levels of
these exposure measures. This result strongly suggests an integrated approach
towards road safety, in which the safety of various transport modes can be jointly
considered and evaluated. Also, the flexibility of state space models in treating
incomplete series of data was nicely illustrated.

The analysis per type of road showed that provincial and local roads decreased
together over time in risk, while the risk on motorways is highly irregular and
does not show a clear risk-reducing pattern.

Chapter 8, finally, introduced some examples of disaggregated analyses, based on
Flemish travel survey data, which are not yet possible in a time series context for
Belgium. First, the decomposition of the number of victims in exposure and risk
was developed in a cross-sectional setting, per age and gender for the year 2000.
In a second study, the risk, the exposure and the number of victims for car
drivers, car passengers, bicyclists and pedestrians were analysed per age
category. Although the models in this chapter are more qualitative in nature
compared to the previous applications, they show some nice examples of highly
disaggregated analyses. Moreover, they prove the potential of the use of travel
survey data in road safety research, especially for the analysis of vulnerable road
users.

9.2 Looking forward...

The analysis of road safety in Belgium, in relation with exposure measures at
various levels of aggregation, revealed some useful insights for policy makers and
clearly illustrated the added value of macro models in road safety research. Many
of these models can be seen as triggers for further research in this area. Of
course, apart from the insights obtained from the models developed in this
manuscript, the results should also be seen as a plea for a more structured and
consistent road safety data gathering in Belgium. Data on road safety, exposure
and, if applicable, explanatory variables should be gathered in a consistent way
and at various levels of aggregation in time and space.

The main challenges that were found in this text are at the core of the relation
between exposure, risk and road safety. This relation is not unambiguous, shows
different patterns for subparts of the road system and seems to be changing over
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time. The (more than) proportionality property, that used to be found in this
relation, is not always present anymore.

First, the results of the analysis of road safety and exposure may depend on the
length of the time series that is analysed and, perhaps more important, on the
period or time window that is considered. The changes in the relation between
exposure and road safety introduce the issue of turning points or, more generally,
of flexible form relationships. Indeed, depending on the series that is analysed
in a specific time window, the effects on road safety of exposure (and even other
variables in the model) may change. Also, a change of the level of aggregation
in time (yearly versus monthly data) can shed another light on the problem. This
topic needs further clarification.

Second, it is clear that the accepted properties of the relation between exposure
and risk are changing. As traffic continues to grow over time, it is expected that
in the future increasing traffic will reduce the number of accidents and victims.
It will be very hard, then, to find an equilibrium between transport demand and
supply in which the number of accidents and victims can be controlled. The
results from previous research will probably not be valid anymore and models
should be adapted or re-fitted in order to take these changes and new dimensions
into account.

Third, the relation between road safety, exposure and risk depends on the level of
aggregation. Indeed, the disaggregation of road safety according to age and
gender of the road users, transport modes, types of roads and types of accidents
provided useful insights that can improve road safety policies. Such an analysis
would also point out very diverging results over different countries. In Belgium,
for example, two types of accidents are frequently observed: one-sided fatal
accidents (typically at night) and accidents in which many road users, especially
trucks, are involved. Both situations can result in the same number and kind of
victims, although the crucial role of exposure in both types of accidents can be
very different. This topic includes modelling and data gathering challenges.

Fourth, given the importance of exposure in road safety research, continuous
attention should be given to the quality and the meaning of the various exposure
measures available. Every result concerning the road risk or its proportionality
towards the number of accidents or victims depends on the exposure measure
used. Although the approaches with unobserved components explicitly recognise
the (lack of) quality of the exposure measure, this does not protect the results
from the influence of invalid data. Fortunately, many countries and
governmental institutions are spending time and money on the construction of
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valid exposure measures. Better exposure measures will also improve the
knowledge about the true impact on road safety.

Fifth, when using explanatory models, it is expected that the changing relation
between exposure and risk will also affect the parameter estimates obtained for
the other covariates in the model. Typically for the variables that have an impact
on both the level of exposure and the level of road safety (the weather, economic
conditions, etc.), different results might be obtained, changing at the same time
the elasticities of direct and indirect effects.

Sixth, in line with the previous comments and also in relation with explanatory
models, it might be interesting to consider the combination of established model
structures like the DRAG approach and the flexibility of state space modelling. In
particular, the flexibility of stochastic trend modelling may be an added value in
the context of the changing impact of exposure on road safety. For example, if
the effect of exposure is changing from “more than proportional” to “less than
proportional”, it is natural to ask how this transition took place over time and to
test whether this is also present in disaggregated time series. Also, the layered
structure of the DRAG approach (exposure, frequency, severity) can be quite
naturally modelled in a state space formulation. This would open up the
possibility of a new reference class of models that is at the same time
statistically sound and flexible enough to allow turning points or changing
patterns in the relation between exposure and road safety, without assuming
fixed functional form relationships.

The models developed in this manuscript serve two distinct higher purposes.
First, an attempt is made to unearth the properties of the Belgian road safety
situation. A similar approach has never been followed in this country. Therefore,
it is believed that the results have an added value for road safety research and
policy in Belgium. In the second place, the approaches followed in this text join
a movement in international research on the topic of macroscopic road safety
models. It is hoped that the combination of descriptive and explanatory time
series models, the development of studies at various levels of aggregation and
the results obtained in this context for the Belgian situation also contribute to
the state-of-the-art of this type of road safety research. Of course, it is still an
unpretentious attempt to sharpen the questions for future research in this
domain and to raise a corner of the veil of the complex issue of road safety
modelling.
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Samenvatting

Decennia lang werden duizenden pagina’s geschreven over het
verkeersveiligheidsprobleem, maar daarvan kan geen enkel woord, zelf geen
enkele zin, de pijn, de zorgen en het onherstelbare verlies uitdrukken dat met
verkeersongevallen gepaard gaat. Verkeersveiligheid is een wereldwijd probleem,
met gevolgen voor de volksgezondheid, het sociale leven en de economische
voorspoed van een land. Met wereldwijd 1.2 miljoen doden per jaar behoort de
verkeersdrukte tot de belangrijkste doodsoorzaken, niet in het minst voor
kinderen.  Daarnaast zorgt de onveiligheid op de wegen voor enorme
economische kosten. Belgié is op het vlak van verkeersveiligheid zeker geen
koploper, en noteert al meerdere jaren een aantal verkeersdoden boven het
Europese gemiddelde. Verkeersveiligheid stopt niet aan de landsgrenzen, en
wordt momenteel op alle beleidsniveaus aangepakt. Dit resulteerde de laatste
jaren in een daling van het aantal ongevallen en slachtoffers. Belgié zal echter
nog heel wat inspanningen moeten leveren om de Europese koplopers in te halen.
Hoe beter de verkeersveiligheid, des te meer inspanningen er nodig zijn om een
bijkomende daling in het aantal slachtoffers te realiseren.

Er zijn verschillende benaderingen om het verkeersveiligheidsprobleem aan te
pakken. In dit proefschrift wordt de verkeersveiligheid vanuit een macroscopisch
perspectief bekeken. In plaats van naar individuele ongevallen of locaties te
kijken, worden maandelijkse of jaarlijkse statistieken van ongevallen
geanalyseerd. Dit houdt niet alleen het totale aantal doden per tijdseenheid in,
maar bijvoorbeeld ook het aantal slachtoffers per leeftijd, per type weg of per
type weggebruiker (en dit telkens per tijdseenheid). In elk geval is de analyse
gebaseerd op een decompositie van het probleem in drie dimensies, namelijk
blootstelling, risico en gevolg. Veranderingen in een van deze dimensies kan de
volledige verkeersveiligheidssituatie wijzigen. Elke analyse in deze tekst zal van
deze (of een gelijkaardige) assumptie vertrekken om de Belgische
verkeersveiligheid in kaart te brengen. Terwijl de meeste studies voor Belgié op
vandaag gebruik maken van cross-sectionele data, worden in dit werk tijdreeksen
van ongevallen en slachtoffers geanalyseerd. Dit betekent dat alle data
sequentieel en met een regelmatige frequentie in de tijd werden verzameld, en
dat trends in verkeersveiligheid en blootstelling kunnen geanalyseerd worden.

De belangrijkste doelstelling van dit werk bestaat erin de relaties tussen
verkeersveiligheid, blootstelling en risico in een tijdsperspectief te beschrijven,
te verklaren en te voorspellen voor de Belgische situatie. De overheden en
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verkeersveiligheidsinstellingen zijn begaan met het probleem en voeren
maatregelen in die uiteindelijk zouden moeten leiden tot een daling van het
aantal slachtoffers. Op een strategisch niveau hebben de beleidsmakers dus
geaggregeerde informatie nodig over de algemene evolutie in de
verkeersveiligheid. De modellen die in deze tekst worden gebruikt, en die in
hoofdstuk 2 worden toegelicht, zijn hiervoor geschikt. Naast een motivatie voor
dit type van onderzoek wordt ook een typologie van de meest gangbare modellen
voorgesteld en worden de belangrijkste resultaten uit de literatuur bestudeerd.
In een derde hoofdstuk worden maten voor blootstelling in detail toegelicht. De
blootstelling is immers een cruciale variabele in de analyses, en kent heel wat
problemen die typisch in de context van verkeersveiligheidsonderzoek kunnen
opduiken. Deze hoofdstukken vormen de inleiding tot het onderzoek in de
volgende hoofdstukken.

In hoofdstuk 4 wordt een inspanning geleverd om de mogelijke bronnen van
informatie (blootstelling, ongevallen en mogelijke verklarende factoren) voor het
besproken type van onderzoek te identificeren en in kaart te brengen. Het gaat
hier steeds om (officiéle) Belgische of Vlaamse data, in de vorm van tijdreeksen.
Daarnaast wordt in dit hoofdstuk een maandelijkse maat voor de blootstelling (in
aantal gereden kilometers) opgesteld voor Belgié, gebaseerd op cijfers van de
leveringen van brandstof, het voertuigenpark en de verbruiksefficiéntie van
voertuigen. De data die in dit hoofdstuk worden verzameld zullen in de volgende
hoofdstukken geanalyseerd worden.

In hoofdstuk 5 worden trends in de Belgische verkeersveiligheid geanalyseerd op
een zeer sterk geaggregeerd niveau. Aan de hand van de jaarlijkse statistieken
van ongevallen en voertuigkilometers wordt de relatie tussen het aantal
slachtoffers, de blootstelling en het risico onderzocht. Hiertoe worden een
aantal basis- en meer geavanceerde statistische modellen toegepast, en worden
de fit en het voorspellende karakter van de modellen vergeleken. Als basis wordt
het klassieke “Oppe-model” toegepast op de Belgische data, waarin het aantal
slachtoffers (F) wordt beschouwd als het product van een logistische
blootstelling (V,) en een exponentieel risico (R,), of F,=V, x R. Hiervoor worden
vervolgens een aantal uitbreidingen getest. Eerst wordt de logistische curve voor
blootstelling vervangen door de meer flexibele Richards curve, en wordt aan de
klassieke exponentiéle risicocurve een constante toegevoegd. Vervolgens worden
alternatieve risicomodellen voorgesteld, die een niet-proportionele relatie tussen
het aantal slachtoffers en het risico toelaten door een parameter voor de
blootstelling te schatten, zodat F =V"xR, en worden een aantal
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verkeersveiligheidswetten (gordeldracht, snelheid en alcohol) getest. Verder
worden in dit hoofdstuk ook state space modellen gebruikt. Deze benadering is
gebaseerd op de veronderstelling dat bepaalde componenten in het klassieke
Oppe-model niet observeerbaar zijn. De proportionele relatie kan op de jaarlijkse
data niet worden verworpen, en de wetten voor gordeldracht, snelheid en alcohol
realiseren (afhankelijk van het model) een significante daling in het aantal
slachtoffers. Vervolgens worden in een multivariaat state space model zowel het
risico als de blootstelling als niet geobserveerde componenten beschouwd. Deze
geavanceerde modellen geven geen afwijkende resultaten ten opzichte van de
eerdere modellen, maar zijn wel op een heel natuurlijke manier verbonden met de
basisrelatie tussen slachtoffers, blootstelling en risico. Alle modellen worden
verder ook gebruikt om een voorspelling te maken van het aantal slachtoffers in
2010. Heel uiteenlopende voorspellingen worden opgetekend, maar algemeen
kan men stellen dat de geavanceerde modellen tot zeer redelijke en aanvaardbare
voorspellingen leiden. Vergelijking is evenwel noodzakelijk.

In hoofdstuk 6 wordt de relatie tussen verkeersveiligheid en blootstelling
geanalyseerd op een lager frequentieniveau, namelijk voor maandelijkse data. Dit
heeft het voordeel dat meer observaties beschikbaar zijn, waardoor ook meer
uitgebreide (verklarende) modellen kunnen worden opgesteld. Verder tonen
maandelijkse data de seizoensschommelingen die typisch zijn voor
verkeersongevallen en voor een aantal gerelateerde grootheden. Voor de
beschrijvende modellen worden zowel ARIMA als state space technieken gebruikt,
en de voorspellingen van deze modellen zijn in grote lijnen vergelijkbaar. In alle
geval kan men stellen dat een state space model meer “beschrijvend” is dan een
ARIMA  model, omdat de onderliggende dimensies (trends en
seizoenschommelingen) expliciet kunnen worden weergegeven. Een eerste
verklarend regressiemodel met ARMA foutentermen model maakt enkel gebruik
van kalenderdata (trading days, schrikkeljaar, invoering van wetten,...), en is dus
niet veeleisend op het vlak van dataverzameling. Hoewel het verklarende
karakter van deze modellen dan ook eerder beperkt is, kunnen interessante
inzichten worden verworven, zoals over het fenomeen van de weekendongevallen.
Ook de wetten in verband met gordeldracht, snelheid en alcohol geven hier
significante en geruststellende resultaten. Dit is niet het geval voor de wetten in
verband met de gordeldracht achter in de wagen en de introductie van
onbemande camera’s. Vermoedelijk zijn deze wetten van dusdanige aard dat ze
moeilijk in een geaggregeerd model kunnen getest worden. Het voorspellend
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karakter van het model met kalendervariabelen is ongeveer vergelijkbaar met dat
van de pure ARIMA of state space modellen.

In een tweede verklarende model worden naast de wetten en de
kalendervariabelen ook de impact van het weer, de economie en de blootstelling
getest. Verder wordt een model toegevoegd voor het aantal lichtwonde
slachtoffers en wordt ook de blootstelling in een aparte vergelijking
gemodelleerd. Dit laat toe om zowel de directe als de indirecte (via de
blootstelling) effecten van een aantal verklarende variabelen te meten. Het
model is opnieuw een regressiemodel met ARMA foutentermen, maar laat tevens
een GARCH structuur toe om eventuele ongelijke varianties op te vangen. De
resultaten voor de wetten in verband met gordeldracht achter in de wagen,
snelheid, alcohol en onbemande camera’s zijn vergelijkbaar met eerdere
resultaten. Wat het weer betreft blijken een hogere temperatuur en meer
neerslag te leiden tot meer onveiligheid, terwijl de vrieskou geen enkel effect
heeft. Het aantal sneeuwdagen in een maand doet het aantal ongevallen stijgen.
De relatie tussen het weer en de blootstelling in het model is niet altijd volgens
verwachting, en wijst vermoedelijk op een invloed van de manier waarop de
variabele voor blootstelling werd opgesteld. Bij de economische variabelen geven
zowel een hogere brandstofprijs als een hogere werkloosheid aanleiding tot meer
onveiligheid. Deze resultaten zijn niet volledig in overeenstemming met de
literatuur, maar het is niet ondenkbaar dat ze mede worden beinvloed door de
economische structuur van een land of door de complexe impact van de
blootstelling. Wanneer men deze modellen vergelijkt met eerdere modellen, dan
is het tevens van belang te noteren dat de tijdreeksen in het laatste verklarende
model korter zijn dan in de vorige modellen; dit kan ongetwijfeld de uitkomsten
beinvloeden.

De belangrijkste resultaten van dit model zijn die voor de bloostelling. De relatie
tussen de blootstelling en de verkeersveiligheid is in deze modellen niet meer
proportioneel te noemen (de parameterschatting voor blootstelling is significant
kleiner dan 1). Verder is er een duidelijk verschil tussen de ernst van de afloop
(doden, zwaargewonden, lichtgewonden) en het effect van blootstelling. Dit
werd verder onderzocht in een gestileerd parabolisch experiment. Voor elke ernst
van ongevallen werd een kwadratisch verband met de blootstelling gezocht.
Hieruit blijkt enerzijds dat het aantal lichtgewonden nog steeds stijgt met de
blootstelling, maar dat anderzijds de blootstelling al zodanig hoog is dat een
verdere stijging op termijn wel kan leiden tot een daling in het aantal doden of
zwaargewonden. Dit verwijst naar mogelijk “keerpunten” in de relatie tussen
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verkeersveiligheid en blootstelling, wat uiteraard sterk gerelateerd is aan het
probleem van congestie. Een ander aspect van de minder dan proportionele
verhouding is het belang van de blootstelling in een model voor de
verkeersveiligheid. Met een aan nul grenzende elasticiteit zal het niet opnemen
van de blootstelling de resultaten van een model vermoedelijk niet schaden.
Uiteraard is dit enkel een optie wanneer de blootstelling niet beschikbaar is, en
zelfs in die gevallen kan het moeilijk gelden als een argument om deze variabele
niet te bekomen. Blootstelling is immers een sleutelvariabele in de basisrelatie
tussen verkeersveiligheid, blootstelling en risico, en is op die manier onmishaar
vanuit een conceptueel standpunt.

Vermits het algemeen gekend is dat maatregelen vaak gericht zijn op de reductie
van het aantal slachtoffers in een welbepaald segment van het verkeerssysteem,
worden in hoofdstuk 7 een aantal “subset” modellen ontwikkeld die de relatie
tussen verkeersveiligheid, blootstelling en risico analyseren voor een bepaalde
groep van weggebruikers, wegen, of ongevallen. Uit de analyse van het aantal
slachtoffers per leeftijd en geslacht kan men afleiden dat de risico’s over de
leeftijden heen een U-vormig verloop kennen, en dat mannen over het algemeen
een hoger risico vertonen dan vrouwen. Het risico blijkt te dalen in de tijd, maar
deze daling is niet voor elke groep gelijk. De hoogste jaarlijkse reductie in risico
werd opgetekend voor de oudste en de jongste weggebruikers.

De relatieve risico’s en de risico-indices die werden afgeleid in de analyse per
type weggebruiker (wagen, vrachtwagen, motorfiets) tonen aan dat vrachtwagens
en bromfietsen een hoger risico dan wagens vertonen. Het is ook opvallend dat
het risico van motorfietsers doorheen de tijd bijna niet gedaald is. Dergelijke
kennis is nuttig voor de beleidsmakers, want =ze toont aan dat
verkeersveiligheidsmaatregelen niet tot dezelfde resultaten leiden voor elk type
weggebruiker. De minder dan proportionele effecten die werden gevonden voor
de blootstelling van vrachtwagens en motorfietsen worden verder verduidelijkt in
de analyse van de tweezijdige ongevallen tussen deze types van weggebruikers.
Hieruit blijkt dat het aantal slachtoffers in deze ongevallen in feite wordt bepaald
door een ratio van de blootstellingen (voertuigkilometer) van de respectievelijke
groepen van weggebruikers.  Verder illustreert deze analyse heel mooi de
flexibiliteit van de state space modellen bij de analyse van onvolledige
tijdreeksen. De analyse per type weg, tenslotte, toont aan dat de rijkswegen en
gemeentewegen een duidelijke reductie in risico vertonen over de tijd heen, wat
niet kan gezegd worden van de autosnelwegen. Hoewel het risico hier over het
algemeen lager ligt, is het patroon heel grillig en zeker niet monotoon dalend.
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Uit de vorige hoofdstukken is gebleken dat bepaalde types van tijdreeksanalyse
niet mogelijk zijn in Belgi€ omwille van het gebrek aan goede data over de
blootstelling.  Zo is het niet mogelijk om de risico’s van zwakke (niet-
gemotoriseerde) weggebruikers te analyseren, omdat hun blootstelling niet over
de tijd heen werd gemeten. Daarom toont hoofdstuk 8 een aantal eenvoudige
cross-sectionele studies waarin gebruik wordt gemaakt van het Vlaamse
“Onderzoek Verplaatsingsgedrag” (OVG). Een eerste studie toont een
decompositie van het aantal slachtoffers in blootstelling en risico voor het jaar
2000, per leeftijd en geslacht. In een tweede studie werden deze gegevens, per
leeftijdscategorie, geanalyseerd voor autobestuurders, autopassagiers, fietsers en
voetgangers. Hoewel deze modellen, in vergelijking met de vorige hoofdstukken,
eerder kwalitatief zijn van aard, tonen ze welke interessante resultaten op een
laag niveau van aggregatie kunnen worden bekomen. Ze geven overigens ook het
potentieel aan van onderzoek naar verplaatsingsgedrag in studies voor de
verkeersveiligheid, in het bijzonder voor de zwakke weggebruikers.

De modellen die in deze tekst worden voorgesteld geven de lezer een idee van de
mogelijkheden en de beperkingen van de beschikbare data voor onderzoek naar
verkeersveiligheid in Belgié. Vermits quasi alle bestaande tijdreeksen over de
Belgische blootstelling in dit werk aan bod komen, geeft het bovendien een stand
van zaken van de tijdreeksmodellen die kunnen worden aangewend om de
Belgische verkeersveiligheid in kaart te brengen, op verschillende niveaus van
aggregatie. Met de ontwikkeling van deze modellen wil de auteur dan ook twee
hogere doelen dienen. Eerst en vooral moeten de resultaten van de modellen
bijdragen tot het ontrafelen van de karakteristiecken van de Belgische
verkeersveiligheid, ter ondersteuning van het onderzoek en het beleid in dit
domein. In de tweede plaats maken de modellen, die in deze tekst werden
voorgesteld, deel uit  van een internationale stroming in
verkeersveiligheidsonderzoek. De combinatie van beschrijvende en verklarende
modellen, de ontwikkeling van studies op verschillende aggregatieniveaus en de
resultaten hiervan voor de Belgische context zouden moeten bijdragen tot de
state-of-the-art van dit type onderzoek. Het blijft uiteraard een pretentieloze
poging om de uitdagingen in het betrokken onderzoeksdomein scherper te
stellen, en zo een bescheiden bijdrage te leveren aan de vooruitgang van de
verkeersveiligheid.
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