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I would also like to thank Prof. dr. R. Schäfke (Strasbourg) and Prof. dr. J. P. Ramis
(Toulouse) for their kind hospitality during my visit at their universities. Having the
chance to work with them has inspired me a lot, and their remarks made it possible
to reduce the length of the proof of some of the results by a factor two.

I also would like to thank all colleagues who I enjoyed working with during these
years, and to all others who have supported me in this project.

My gratitude also extends to my family, and especially to my girlfriend Belinda, who
gave me great support. During the last months, she gave me the final impulse that
was necessary to complete my work.

Peter De Maesschalck,
June 2003





Preface

This thesis deals with singular perturbation problems in the plane, or more generally
on 2-manifolds. A differential system (or vector field) with a small parameter ε is
called singularly perturbed if the order of the differential system is lower for ε = 0
than for ε 6= 0. Roughly, the reduced set of differential equations (the equations
for ε = 0) are easier to study, while the addition of small perturbations causes a
significant increase in complexity.

The perturbation can—no matter how small—have a drastic effect on the solutions
of the differential equations. Small perturbations can accumulate and have an effect
on longer time scales. One says that the differential system exhibits different time
scales: a fast time scale, on which small perturbations have little or no effect, and a
slow time scale.

This kind of “slow–fast” systems have a large number of applications in both
sciences and industry. Applications of singular perturbation theory such as in the
study of chemical reactions, specific electric circuits, biological eco-models, . . . are
well-documented in the literature.

In this thesis, we are interested in the study of so-called “turning points”. On the
fast time scale the dynamics is determined by a fast attraction towards some stable
equilibrum state. The stability of this equilibrum can loose its strength on a slower
time scale, and can eventually become unstable at some (turning) point. One expects
that this instability will ensure that the solutions that were close to the equilibrum
state before the turning point will immediately be repelled from the equilibrum state
after passing near the turning point. However, it appears that sometimes the loss of
stability is delayed: solutions stay near the equilibrum state for some time before the
loss of stability becomes dominant.

The emphasis lies on a geometrical treatment of differential equations in the sense
of a dynamical systems approach. We will hence consisder solutions in a phase por-
trait, and we will refer to solutions of the differential equations as trajectories (or
orbits) in this phase plane. The equilibrum state will be seen as a singularity. In the
problems that are handled here, curves of singularities appear. Such a curve is called
a “critical curve”. The small perturbation parameter ε will be seen as a third phase
variable and induces a three-dimensional phase space, in which the two-dimensional
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phase portrait of the unperturbed system is found in the plane {ε = 0}.
This three-dimensional phase space will play an important role in our study. We

gather trajectories in this phase space together to manifolds. Inside the 3-dimensional
phase space, these manifolds are seen as curved surfaces, transverse to the plane
{ε = 0}.

We study the behaviour of orbits near the critical curve, and in particular near a
turning point. The turning points under consideration are very general and need not
be generic. Such a turning point stands for a transition between attracting dynamics
and repelling dynamics: before the passage near the turning point the dynamics is
governed by an attraction towards the critical curve; after the passage near the turning
point the dynamics is governed by a repulsion from the critical curve. In general, the
repulsion will be so strong that orbits are repelled from the critical curve immediately
after the turning point. However, restricting to small regions in parameter space it is
possible that orbits stay near the critical curve for a finite distance after passing near
the turning point. This is called a canard solution.

Our aim is to show the existence of these small regions in parameter space, and
to give a method on how to determine them. In a first step, we show how to con-
struct control manifolds in parameter space so that along this manifold a “prescibed
behaviour” of all orbits is found, i.e. we are able to solve boundary value problems,
restricting to parameters on this control manifold. The inverse problem, which is
to find out precisely how long orbits stay near the critical curve beyond the turning
point, along given control manifolds in parameter space, is also handled.

The study is two-fold. In a first part, turning point problems are approached in
a geometric way, with the traditional tools from the dynamical systems theory. The
main tools in the study are Ck-normal forms, center manifolds and blow up of families
of vector fields. These tools allow us to carry out a general study of so-called “canard
manifolds”. We also give a characterization of the transit time of orbits near the
turning point. The main benefit of this method is the generality in which it can be
applied. In this part of the thesis, a canard manifold is simply a union of two center
manifolds, restricting parameters to a control manifold in parameter space: we show
the existence (for the complete parameter space) of two classes of center manifolds:
center manifolds along the attracting branch of the critical curve and center manifolds
along the repelling branch. Both classes have an intersecting domain of existence, and
in this intersection they are compared. One creates a canard manifold by restricting
the parameter space to a manifold where both center manifolds are equal in this
intersecting domain.

In a second part, turning point problems are addressed in an asymptotic way.
Asymptotic turning point theory in two dimensions has been developed quite exten-
sively, and fairly complete results have been obtained before (both local and global
results) using complex analytic techniques. The extension we present is a study of
turning points where standard asymptotic methods fail to work, simply because the
corresponding canard manifolds lack an asymptotic expansion in terms of the original
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variables. We show how the geometric blow up tool can be used to find asymptotic
expansions in blown up variables, and apply the asymptotic theory to this new con-
text. The benefit over the traditional geometric method is a better characterization
of the control curve: in an analytic context we show that the control curve has an
asymptotic expansion of Gevrey order. The Gevrey-order of this control curve can be
readily obtained from the differential equations, whereas the Gevrey-type of the curve
is more difficult to obtain. In the thesis, we show how to give bounds on the Gevrey
type of the control curve, by calculating integrals of the divergence of the vector field
along well-chosen paths.

Using both tools, it is possible to examine vector fields without a control param-
eter, and give precise conditions under which canard manifolds exist. The geometric
method provides an infinite sequence of necessary conditions that have to be satis-
fied; this sequence can be calculated by means of Melnikov integrals. The sufficiency
of these conditions follows from the Gevrey estimates of the control curves, and the
length of the maximal canards is related to the Gevrey type of the control curve;
more precisely an upper estimate for the Gevrey type allows to give a lower estimate
on the length of the maximal canards. This last part is not done in full generality,
but the ideas are shown on an example.

In chapter 1, we give an outline of the main tools that are used in both parts of
the study. We give on one hand a review of the notion of “blow up”, and on the other
hand we state some general definitions of Gevrey-expansions.

In chapter 2, we treat the normally hyperbolic passage along the critical curve,
i.e. the passage before and after the turning point. This part is treated in full gener-
ality; some efforts have been made to handle non-smooth boundary conditions. The
normally hyperbolic passage has an analogue in the second part of the thesis, strongly
based on a result of Sibuya.

In chapter 3, we apply the geometric method to the turning point problem. We
show that the invariant manifolds that have been obtained in chapter 2 can be ex-
tended to the turning point, at least in blow up space. We show how these “center
manifolds” can be compared in a family rescaling chart of the blown up turning point,
and prove the existence of control curves along which attracting and repelling center
manifolds can be “matched”. We derive a mechanism to calculate the formal expan-
sion for this control curve. Finally, we provide a link to asymptotic theory, in the
sense that if a traditional asymptotic expansion exists for the canard manifolds, then
this asymptotic expansion correspond, after blow up, to the asymptotic expansion
of the canard manifolds. Under this condition, we show that the canard manifolds
can be blown down to a smooth manifold at the turning point (where in general, the
canard manifolds are only C0 at the turning point).

In chapter 4, we examine the transition time of orbits inside canard manifolds. We
aim on future applications to boundary value problems. More specifically, we study
the monotonicity of the transition time, which is important in determining unicity of
solutions to boundary value problems.
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In chapter 5, our aim is to derive an entry–exit relation along given control curves.
The main tool is a study of the divergence integral. We show that any two different
canard manifolds are exponentially close to each other, and determine precisely how
close.

In chapter 6, the analytic theory is presented. In an analytic framework, it is
examined at what steps the results of the previous chapters can be improved. We
show the analyticity of canard manifolds in complex sectors in C, and show the
analyticity of the control curve in complex sectors. Furthermore, for the control
curve Gevrey estimates will be derived, with an estimate for the Gevrey type as well.
The technique will be applied to the van der Pol equation, and is general enough to
be applied to other singularly perturbed equations.

iv



Contents

1 Prerequisites 1
1.1 Background on blow up . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Definition of Gevrey asymptotics . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Gevrey functions and sectorial coverings . . . . . . . . . . . . . 8
1.2.2 Gevrey implicit function theorem . . . . . . . . . . . . . . . . . 9

1.3 Divergence of vector fields . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Normally hyperbolic passage 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Fundamental notions and statement of results . . . . . . . . . . . . . . 15
2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Proof of theorem 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Some regularity properties . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Canards at non-generic turning points 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Fundamental notions and statement of results . . . . . . . . . . . . . . 28
3.3 Proof of theorem 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Extending manifolds in the blow up space . . . . . . . . . . . . 37
3.3.2 Connecting the center manifolds . . . . . . . . . . . . . . . . . 40

3.4 Proof of theorem 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.1 Reduction to (v, A) parameters . . . . . . . . . . . . . . . . . . 42
3.4.2 Canard solution manifold as a graph . . . . . . . . . . . . . . . 43
3.4.3 Perturbing the vector field . . . . . . . . . . . . . . . . . . . . . 44

3.5 Proof of theorem 3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5.1 The relation between angle and the control curve . . . . . . . . 46
3.5.2 Perturbations of regular orbits in the plane . . . . . . . . . . . 47
3.5.3 Heteroclinic connections on the blow up locus . . . . . . . . . . 51
3.5.4 Higher order angles . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Proof of theorem 3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.7 Proof of theorem 3.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

v



3.8.1 C1 canard solutions . . . . . . . . . . . . . . . . . . . . . . . . 65
3.8.2 Normal crossing of lines of singularities . . . . . . . . . . . . . 66

4 Study of the transition time 69
4.1 Normally hyperbolic passage . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.1 Non-monotonous transition time . . . . . . . . . . . . . . . . . 72
4.1.2 Proof of theorem 4.3 . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Passing through a turning point . . . . . . . . . . . . . . . . . . . . . . 74
4.2.1 Example: periodic orbits . . . . . . . . . . . . . . . . . . . . . . 76
4.2.2 Proof of theorem 4.6 . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Desingularizing the slow dynamics . . . . . . . . . . . . . . . . . . . . 82

5 Distance between canard manifolds 85
5.1 Definition of slow divergence . . . . . . . . . . . . . . . . . . . . . . . 86
5.2 Normally hyperbolic passage . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.1 Study of the divergence integral . . . . . . . . . . . . . . . . . . 88
5.2.2 Transition map . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Passage through a turning point . . . . . . . . . . . . . . . . . . . . . 94
5.3.1 Study of the divergence integral . . . . . . . . . . . . . . . . . . 96
5.3.2 The transition map . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4 Comparing manifolds of canard solutions . . . . . . . . . . . . . . . . . 102
5.5 Some notes on buffer points . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Gevrey-analysis 111
6.1 Gevrey properties of 1-dimensional center manifolds . . . . . . . . . . 111
6.2 Singular perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.1 General setting and results . . . . . . . . . . . . . . . . . . . . 115
6.2.2 The normally hyperbolic part . . . . . . . . . . . . . . . . . . . 119
6.2.3 Analytic normal forms at P± . . . . . . . . . . . . . . . . . . . 125
6.2.4 Uniform Gevrey estimates along γ . . . . . . . . . . . . . . . . 129
6.2.5 Analytic invariant manifolds near P± . . . . . . . . . . . . . . . 134
6.2.6 Manifolds over a covering of sectors . . . . . . . . . . . . . . . 139
6.2.7 Passage along the connection Γ . . . . . . . . . . . . . . . . . . 145
6.2.8 The Gevrey property of the control curve . . . . . . . . . . . . 145
6.2.9 Proof of theorem 6.6 . . . . . . . . . . . . . . . . . . . . . . . . 146

6.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.3.1 Van der Pol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.3.2 Initial example . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

vi



Chapter 1

Prerequisites

In this introductory chapter we have collected some known facts in the context of
vector fields and singular perturbations; those facts will be useful in further chapters.
A notion that is very important throughout my thesis is “family blow up”. This
technique of desingularizing degenerate singular points of vector fields will form a
corner stone in the proof of most results.

1.1 Background on blow up

In this section we recall the notion of “blow up” and “family blow up”. The digression
is kept short; for a complete reference on the subject, we suggest reading [D] and
[DR3].

At first, a blow up map can be thought of as a singular change of coordinates, like
the polar-coordinate mapping

(u, θ) 7→ (x, y) = (u cos θ, u sin θ).

Another way to denote this map is (u, (x, y)) 7→ (ux, uy), where x2 +y2 = 1. Now,
instead of using coordinates on the circle, we can use charts to rectify parts of the
circle. In the above example, near x = 1, we might as well use the coordinate change
(u, ỹ) 7→ (x, y) = (u, uỹ), with ỹ in a fixed domain. On this new chart, the point
ỹ = ±∞ corresponds to (x, y) = (0,±1). In order not to exaggerate in notations, one
often uses the symbol y for ỹ, and one says to work in the {x = 1} chart.

A vector field X can be pulled back under the blow up map, and if the origin is a
singularity of the original vector field X, then the locus {u = 0} will be an invariant
set of the pull-back vector field, often even a set of singularities. In the latter case,
we desingularize the new vector field by dividing out a positive factor uα.

Although desingularization by means of blow up, as the one above, is practical,
it can be made more useful by adapting the exponents to the problem under study.
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2 CHAPTER 1. PREREQUISITES

If instead of the homogeneous blow up we use for example (x, y) = (u2x, uy), with
x2+y2 = 1, or even with x2+y4 = 1 if advantageous, we sometimes get better results.
This generalization gives us the possibility of assigning weights to all the variables,
and the weights will in practice be chosen in a way to reach the best desingularization.

An extra possibility when blowing up singularly perturbed differential equations
is to include ε in the list of variables, coming to the notion of family blow up.

If we have a family of 3-dimensional vector fields Xε,λ +0 ∂
∂ε , and we want to blow

up the origin (x, y, ε) = (0, 0, 0), then we use:




x = upx
y = uqy
ε = umε

(1.1)

with (x, y, ε) ∈ S2, and u ∈ R+. The weights p, q and m are chosen differently for
different systems. The best choice can be evident and found without problem or can
be based on the use of Newton polyhedra—see e.g. [D].

On the 2-sphere, we have the relation x2 + y2 + ε2 = 1, often implying the need
of working in charts.

ε=1

y=−1

x=−1 x=+1

Figure 1.1: Different charts

The dynamics of the vector field can be studied in several regions separately. Keep-
ing x near −1 on the 2-sphere means that ε is kept small. In traditional coordinates,
one investigates the region where −εp/xm is small but positive. One uses the chart





x = −up

y = uqy
ε = umε

(1.2)

This chart is valid for (y, ε) small, and is called a phase-directional rescaling chart,
or simply the {x = −1} chart. Notice that the trivial invariant foliation dε = 0 is
replaced here by d(umε) = 0.

Orbits of vector fields in this space will respect the foliation d(umε) = 0, so as u
decreases, ε will increase. Continuing the orbits, we will eventually need to enter a
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region where ε is no longer small, and where we can bound |x| away from 1. This
part is visible in “the chart {ε = 1}”, commonly known as the family rescaling chart,
and the formulas to work in this chart are:





x = upx
y = uqy
ε = um

(1.3)

This chart is valid for (x, y) in a bounded set. In this chart, u is clearly the singular
parameter, and we again have a family of vector fields (since du = 0). This is the
traditional chart where people do “rescaling” in.

Observe that the y coordinate in (1.3) is not the same as y in (1.2), but intuitively
they serve a common purpose, in the sense that they are both a rescaled form of the
same y coordinate. It is of course easy to give formulas for the relation between the
two expressions of y.

As x gets closer to +1, ε gets closer to 0, so we will have to leave the ε = 1 chart.
Like in the first part, we study this section using the chart





x = +up

y = uqy
ε = umε

(1.4)

The whole process can be depending on the extra parameters λ, which we do not
blow up. If necessary, one can rescale the extra parameters prior to applying the blow
up maps as described above. For a concrete example, see below.

Important notice: The coordinate changes from one chart to another are analytic
in the intersection of their domains of validity!

Concrete example

Sometimes it is necessary to include extra parameters in the rescaling to get a good
desingularization. Using a simple example, we want to show that this can be done
in two ways: one can alter the blow up map to include extra parameters, or one can
rescale the extra parameters prior to applying the blow up map.

As a concrete example, that will be used as a reference later on as well, we present
a blow up of the family of vector fields

Xε,a :

{
ẋ = y − x2n

(2n)! (1 + xf(x, y, ε, a))
ẏ = ε(a− x2n−1)

(1.5)

Let us first consider the subfamily Xε,0 as a vector field on R2 × [0, ε0[ and use the
blow up map

Φ: S2 ×R+ → R3 : ((x, y, ε), u) 7→ (x, y, ε) = (ux, u2ny, u2nε).
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In the family rescaling chart {ε = 1} one finds





uẋ = u2n(y − x2n

(2n)! (1 + uxf(ux, u2ny, u2nε, 0))
u2nẏ = u2n(0− u2n−1x2n−1)

u̇ = 0

After a division by the common factor uα := u2n−1, one gets the blown-up family of
vector fields

Xu,0 :

{
ẋ = y − x2n

(2n)! + O(u)
ẏ = −x2n−1

When applying the same blow up map (and blow up division) to the complete family
Xε,a, the blown up vector field yields

Xu,a :

{
ẋ = y − x2n

(2n)! + O(u)
ẏ = a

u2n−1 − x2n−1

The lack of regularity at u = 0 is a problem that can be countered with two methods:
one can write a = u2n−1A = ε(2n−1)/2nA, keeping A in a compact set; in that way we
restrict parameter space {(ε, a)} to {(ε, ε(2n−1)/2nA) : A ∈ [−A0, A0]}. This essentially
comes down to altering the blow up map Φ to

Φ: S3 ×R+ → R4 : ((x, y, ε, a), u) 7→ (x, y, ε, a) = (ux, u2ny, u2nε, u2n−1a).

In the chart {ε = 1}, one again finds a = ε(2n−1)/2na.

Another way of getting a good desingularization is to perform a blow up of the
parameter plane prior to blowing up the vector field (this is the method that will be
pushed forward throughout the remainder of the thesis): consider again the initial
example (1.5), and write

(ε, a) = (v2n, v2n−1A). (1.6)

The vector field in terms of the parameters (v,A) yields

X̃v,A :

{
ẋ = y − x2n

(2n)! (1 + xf(x, y, v2n, v2n−1A))
ẏ = v2n(v2n−1 − x2n−1)

One can blow up this latter family using the blow up map

Φ̃: S2 ×R+ : ((x, y, v), u) 7→ (x, y, v) = (ux, u2ny, uv).

and it is clear that there is no longer a need to include A in this blow up. Note also
that in this last blow up, one can set the weight of the singular parameter v to 1,
because the rescaling of this parameter was in fact performed prior to applying the
blow up map.
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Let us finally remark that the rescaling (1.6) is in fact a blow up of parameter space
S1 ×R+ → R2 : ((E, A), v) 7→ (ε, a) = (v2nE, v2n−1A), where we have restricted to
the chart {E = 1}. To study the complete parameter plane, one also has to consider
the charts {A = ±1}. We refer to [DR], where the Van der Pol system is studied this
way.

1.2 Definition of Gevrey asymptotics

In chapter 6, we study the asymptotic expansions of one-dimensional center mani-
folds in the plane, and of two-dimensional center manifolds and canard manifolds. It
is by now well-known that such expansions satisfy Gevrey estimates, when working
with analytic vector fields. These Gevrey estimates reflect the fact that an asymp-
totic expansion defines the actual manifold up to exponentially small terms. In some
occasions, the asymptotic expansion is not only Gevrey, but also summable. To a
summable series a unique resummated manifold can be associated. In the plane, we
give some situations where we can expect the formal series to be summable. The
definitions of Gevrey series and summability are not uniform throughout the lit-
erature. We have inspired ourselves on the well written appendix in the thesis of
M. Canalis-Durand for these definitions, which in turn was based on works of Balser,
CandelPergher, Malgrange, Martinet, Ramis, Schäfke, Sibuya and Tougeron. We also
present a proof of an implicit function theorem for Gevrey functions, which can be
found in the literature as well but which we have included for the sake of convenience.

Definition 1.1 A formal power series â(ε) =
∑∞

n=0 anεn is Gevrey-1/σ in ε of type
A, if there exist positive constants C, α such that

|an| ≤ CAn/σΓ(α + n/σ),

where Γ is the well-known Gamma function. We define 1/σ as the Gevrey order of
such a series.

The set of formal power series satisfying Gevrey-1/σ type A estimates is closed
under addition, multiplication (Cauchy product) and derivation.

Similar estimates as for Gevrey formal power series can be put on analytic func-
tions in sectors, leading to the notion of a Gevrey function. We recall what is under-
stood under a complex sector:

Definition 1.2 A complex sector Sr,α,θ with vertex 0 is an open subset of C:

Sr,α,θ = {z ∈ C : Arg(z) ∈ (α− θ, α + θ), 0 < |z| < r}.
The opening angle of the sector is defined as 2θ.

A subsector Sr′,α′,θ′ of Sr,α,θ is a sector for which r′ < r and [α′ − θ′, α′ + θ′] ⊂
]α− θ, α + θ[.
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Definition 1.3 Let S be such a sector and a : S → C be an analytic function that is
continuously extendable to ∂S. The function a is Gevrey-1/σ in ε of type T , if there
exists a sequence (an)n∈N, if there exists a positive α, and if for every subsector S′

there exists a positive constant CS′ such that
∣∣∣∣∣a(ε)−

n−1∑

i=0

aiε
i

∣∣∣∣∣ ≤ CS′T
n/σΓ(α + n/σ)|ε|n, ∀n ∈ N1,∀ε ∈ S′,

As with formal power series, the set of functions on S that are Gevrey-1/σ of
type T is closed under addition, multiplication and derivation. Also with respect to
substitution of a Gevrey function inside an analytic function, some results can be
shown, see theorem 1.10.

Lemma 1.4 A Gevrey-1/σ function a(ε) is automatically C∞ extensible to the origin,
and its Taylor coefficients are equal to (an)n∈N.

Proof This follows from Cauchy’s estimate on complex functions. ¤

The following theorem is due to Malgrange and Ramis:

Theorem 1.5 (Borel-Ritt Gevrey) Let f̂ be a formal power series that is Gevrey-1/σ
of type A, and let S = Sr,α,θ be a complex sector with opening angle 2θ < π/σ. Then
there exists an analytic and bounded function

f : S → C

so that f̂ is Gevrey-1/σ asymptotic to f̂ of type T := A/ cosσ(σθ).

Remarks:

1. If the coefficients of f̂ are real, and if α = 0 (i.e. the sector is a sector containing
the positive real axis), then f can be chosen real analytic (because the function
can then be obtained as an integral over a compact real path).

2. It is clear that as θ → 0 the Gevrey type T will approximate the formal Gevrey
type A.

Lemma 1.6 Let a(ε) be a Gevrey-1/σ function of type T in ε in a sector S, and let
C 6= 0. Then, a(Cε) is a Gevrey-1/σ of type T ′ in ε, with T ′ = |C|σT . An equivalent
statement holds for Gevrey series.

Lemma 1.7 Let a(ε) be a Gevrey-1/σ function of type T in ε in a sector S. Let
ε = um for some m ∈ N1. Then, a(um) is Gevrey-1/mσ of type T in u in a sector
S′ = S1/m (the preimage of S under u 7→ um). An equivalent statement holds for
Gevrey series.
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Lemma 1.8 Let a(ε) be Gevrey-1/σ of type T in ε in a sector S with opening angle
less than 2π/m. Let u = εm for some m ∈ N1. If the Taylor coefficients of a only
contain powers of εm, then a(u1/m) is a Gevrey-m/σ function in u (of type T ) in a
sector S′ = Sm (image of S under ε 7→ εm). An equivalent statement holds for Gevrey
series.

Lemma 1.9 Let σ ∈ N1, and let a(ε) be a Gevrey-1/σ function of type T . Then
there exist functions a(0), . . ., a(σ−1) that are Gevrey-1 of type T in their arguments
and

a(ε) =
σ−1∑

i=0

a(i)(εσ)εi.

The formal expansions of a(i) are unique. An equivalent statement holds for Gevrey
series.

Theorem 1.10 [CRSS] (Gevrey substitution theorem) Consider a domain D ⊂ C,
an open set M ⊂ D × Cn and a sector S ⊂ C. Suppose that F : M × S → C` and
g : D × S → Cn are holomorphic functions such that (x, g(x, ε)) ∈ M for all x ∈ D,
ε ∈ S. Assume that F (x, z, ε) and g(x, ε) have asymptotic expansions of Gevrey order
1/σ and some type T < T ′ as ε → 0, ε ∈ S, uniformly for (x, z) ∈ M resp. x ∈ D.
Then, v : D × S → C` defined by

v(x, ε) = F (x, g(x, ε), ε)

has an asymptotic expansion of Gevrey order 1/σ and type T ′ as ε → 0, ε ∈ S,
uniformly for x in any compact subset of D.

Corollary 1.11 (Gevrey curves following real orbits) Let Xε be a real analytic family
of vector fields on R2, and let Γ be a real orbit of the unperturbed vector field X0.
Let (x0(ε), y0(ε)) ∈ R2 stand for a curve of initial conditions with (x0(0), y0(0)) ∈ Γ.
Consider now an analytic section E inside R2 × [0, ε0[ intersecting Γ× {0} transver-
sally. If x0(ε), y0(ε) are two Gevrey-1/σ functions in Sr,α,θ of type T < T ′, then
intersecting the orbits through (x0(ε), y0(ε)) with the section E gives a graph in ε that
is Gevrey-1/σ of type T ′ in a sector Sr′,α,θ, for some 0 < r′ < r.

Proof The transition map towards the plane E is an analytic mapping

F : (x0, y0, ε) 7→ F (x0, y0, ε),

that can be complexified in a neighbourhood of (x, y, ε) = (x0(0), y0(0), 0). Calcu-
lating the intersection of an orbit at “height” ε with the section E yields a point
F (x0(ε), y0(ε), ε), which defines a Gevrey-1/σ curve (in the sense that in analytic
coordinates of R2 it is a graph in ε, and the coefficient functions of this graph are
Gevrey-1/σ), due to the previous theorem. ¤
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The following proposition will be very useful:

Proposition 1.12 Let a(ε) be a Gevrey-1/σ function of type T in a complex sector
Sr,α,θ. Assume that a(ε) is asymptotic to 0, then there is a ρ ∈ Z so that for all
subsectors

|a(ε)| ≤ CS′ |ε|ρ exp(−1/T |ε|σ), ∀ε ∈ S′,

for some constant CS′ > 0. The converse is also true: if the above estimate is true
for all subsectors S′ of S, then a is Gevrey-1/σ asymptotic to 0 of type T .

1.2.1 Gevrey functions and sectorial coverings

When a function is Gevrey-1/σ, then this can be characterized using asymptotic
expansions, as above. However, there is another characterization, using sectorial
coverings and “function chains”. Roughly the idea is the following. Have in mind a
pinced neighbourhood B(0, r) \ {0} ⊂ C that is covered by a finite number of sectors,
and on top of each sector an analytic function. If the difference between any two
such functions (in the intersection of their domains) is exponentially small, then all
these functions are Gevrey (compare with the situation where the difference is 0, from
which would follow that these functions are analytic). Let us now make the idea more
explicit.

Definition 1.13 A good sectorial covering of the origin in C is a finite (ordered)
number of complex sectors Sj := Sr,αj ,θj , j = 1, . . . , n, so that the following holds:

(i) ∪n
j=1Sj = B(0, r) \ {0}

(ii) 2θj < π for all j = 1, . . . , n (i.e. no sector has an opening angle wider than π).

(iii) if |j − k| = 1 or (j, k) = (1, n) or (j, k) = (n, 1) then and only then is Sj ∩ Sk

nonempty. In that case, we call Sj and Sk adjacent sectors.

The following proposition makes it possible for a given Gevrey function f : S → C
on a sector S to analytically “extend” the definition on a full neighbourhood of the
origin, making a finite number of at most exponentially small jumps:

Proposition 1.14 Let S be a complex sector of the origin and f : S → C be analytic
and Gevrey-1/σ asymptotic (of type T ) to some formal power series f̂ . Let T̃ > T be
fixed. Then:

(i) There exists a good covering (Sj)j=1,...,n and a sequence of functions (fj)j with
fj : Sj → C analytic and bounded and (f1, S1) = (f, S), and all fj have the
following properties:

(ii) The functions fj are also Gevrey-1/σ asymptotic (of type T̃ ) to f̂ , and:
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(iii) There is a C > 0 so that for all two adjacent sectors (Sj , Sk) one has

|fj(ε)− fk(ε)| ≤ C exp
(
−1/T̃ |ε|σ

)
, ∀ε ∈ Sj ∩ Sk.

Of course, there is a formal series version of this proposition, by combining it with
the theorem of Borel-Ritt Gevrey (theorem 1.5).

The following is the inverse of this proposition, and is a key result in the proof of
many results, such as in the proof of a Gevrey implicit function theorem (see below):

Theorem 1.15 (Ramis-Sibuya) Let (Sj)j=1,...,n be a good sectorial covering and let
fj : Sj → C be analytic and bounded. Suppose that for all two adjacent sectors (Sj , Sk)
we have

|fj(ε)− fk(ε)| = O (exp (−1/T |ε|σ)) , ∀ε ∈ Sj ∩ Sk, as ε → 0

for some T > 0. Then, all functions fj are Gevrey-1/σ asymptotic of type T inside
Sj to a common formal power series f̂ .

A proof of this theorem can be found in [RA], [SI1] and [SI2].
It is important to notice that for the theorem of Ramis-Sibuya to apply one need

not prove that fj have an asymptotic expansion as ε → 0. Even if one is not interested
in Gevrey asymptotics, this theorem gives a method of proving the C∞ smoothness
of functions, by merely showing the boundedness and forming a chain of functions.

An application of this theorem is a proof of theorem 1.10, following a technique
that is basically similar to the one in the proof of theorem 1.16 below.

1.2.2 Gevrey implicit function theorem

Theorem 1.16 Let F (x, y, ε) be an analytic function M × S → C`, with S a sector
of the origin, M = Mx×My being a subset of Ck ×C` (My must be convex), and let
F have a continuous extension to M ×S. Assume that F is uniformly Gevrey-1/σ of
type T in ε. Assume furthermore that

F (x, y0, 0) = 0,

(
det

∂F

∂y

)
(x, y0, 0) 6= 0.

Then, there exists a unique function

y = g(x, ε)

that is analytic on Mx × S′ for some proper subsector S′ of S, and for which

g(x, 0) = y0, F (x, g(x, ε), ε) = 0, ∀(x, ε) ∈ Mx × S′.

The function g is Gevrey-1/σ asymptotic as ε → 0, ε ∈ S′ of type T̃ for any T̃ > T .
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Proof The existence of such a g and the analyticity inside S′ (it is possible that one
needs to decrease the radius r of S) follows from standard implicit function theorems.
We only prove here the properties regarding the asymptotic expansion. Let S1 = S,
. . ., SN be a good sectorial covering of the origin, and choose F1 = F , . . ., FN a
function chain so that Fi is analytic in M × Si and

Fi − Fi+1 = O(exp(−1/T̃ |ε|σ)), as ε → 0, ε ∈ Si ∩ Si+1

uniformly for (x, y) ∈ M (we have applied a parametric version of proposition 1.14
for this result). Apply in each Si the implicit function theorem to find a function
gi : Mx × S′i → C`, where S′i is a subsector of Si (reduced radius). We show that

gi − gi+1 = O(exp(−1/T̃ |ε|σ)), as ε → 0, ε ∈ S′i ∩ S′i+1,

uniformly for x ∈ Mx. Let us prove this for i = 1. We restrict ε to S1 ∩ S2. Because

0 = F1(x, g1(x, ε), ε)− F2(x, g2(x, ε), ε),

one finds

0 = (F1(x, g1(x, ε), ε)− F1(x, g2(x, ε), ε)) + (F1 − F2)(x, g2(x, ε), ε)

One uses the mean value theorem to obtain

F1(x, g1(x, ε), ε)− F1(x, g2(x, ε), ε) = H(x, ε)(g1(x, ε)− g2(x, ε)),

where

H(x, ε) :=
∫ 1

0

∂F1

∂y
(x, g2(x, ε) + s(g1(x, ε)− g2(x, ε)), ε)ds.

We know that gi(x, ε) = y0+O(ε), and hence H(x, ε) = ∂F1
∂y (x, y0, 0)+O(ε). Since the

righthand side is invertible one also has that H(x, ε) is invertible for |ε| small enough.
We conclude:

g1(x, ε)− g2(x, ε) =
1

H(x, ε)
(F2 − F1)(x, g2(x, ε), ε).

Bounding the norm of 1/H(x, ε) by a constant, one sees that g1 − g2 is exponentially
small because F2−F1 is exponentially small. Finish the proof by applying the theorem
of Ramis-Sibuya (theorem 1.15) on the function chain {gj}. ¤

Note that the resulting implicit solution is Gevrey-1/σ of type T̃ , for any T̃ > T .
This is not necessarily the same as being of type T , but the difference is subtle. In
any case, one could define a class of functions that are Gevrey-1/σ of any type strictly
larger than T . This new class will still be closed for addition, multiplication etc.
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1.3 Divergence of vector fields

In this section, we state some basic results regarding the divergence of a vector field.
We will use it in chapter 5 to study transition maps in singularly perturbed vector
fields.

Throughout this section, (M, g) is an n-dimensional Riemannian manifold (with
metric g), and associated to (M, g) there is a volume form Ω.

Definition 1.17 Let Ω be a volume form on M (associated to a metric g). The
divergence of Xλ with respect to Ω is the function M → R so that

d(XλyΩ) = div XλΩ.

In case M = Rn and the metric is the standard Euclidian metric, one has

Ω = dx1 ∧ · · · ∧ dxn,

and

div

(
n∑

i=1

fi(x)
∂

∂xi

)
=

n∑

i=1

∂fi

∂xi
(x).

All our results will depend on the chosen volume form, but this coordinate free
way of determining the divergence is a convenient way of showing that integrals of
divergence of vector fields depend on the chosen coordinates, but in a nice way:

Lemma 1.18 Let Ω and Ω′ be two equivalent volume forms, i.e. Ω′ = f(p, λ)Ω for
some smooth nonzero function f on M × Λ. Then,

divΩ′ Xλ = divΩ Xλ +
Xλ(f)

f
.

Furthermore, let J be an integral curve of Xλ parametrized by the time t ∈ [0, τ ], then
∫ τ

0

divΩ′ Xλ dt =
∫ τ

0

divΩ Xλ dt + log
(

f(q)
f(p)

)
,

where p resp. q is the point of J at time t = 0 resp. t = τ . (In particular, along a
periodic orbit the integral does not depend on the chosen volume form.)

Proof Elementary. ¤
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Lemma 1.19 Let Ω be a volume form, and let h(p, λ)Xλ be an equivalent vector field
(i.e. h is a strictly positive function). Then,

divΩ(hXλ) = h divΩ Xλ + Xλ(h).

Furthermore, let J be an integral curve of Xλ parametrized by the time t ∈ [0, τ ], then

∫ τ ′

0

divΩ(hXλ) dt′ =
∫ τ

0

divΩ Xλ dt + log
(

h(q)
h(p)

)
,

where p resp. q is the points of J at time t = 0 resp. t = τ , and where t′ = t/h.
(In particular, along a periodic orbit the integral does not depend on the chosen time
parametrization.)

Proof Elementary. ¤

Geometric significance of the divergence

The following proposition is well-known, but we repeat a proof for the sake of com-
pleteness:

Proposition 1.20 Let X be a vector field on an open set of Rn. Let S, S′ be two
open sections of Rn, transverse to the flow of X. Assume p ∈ S, q ∈ S′ and the orbit
through p reaches q in finite time (positive or negative). Let T : S0 ⊂ S → S′ be the
transition map defined in a neighbourhood of p. If ψi : Ui → Σi are coordinates for
Σi with Ui ⊂ Rn−1, then

det(D(ψ−1
2 ◦ T ◦ ψ1))(s1) =

det(Dψ1(s1)|X(p))
det(Dψ2(s2)|X(q))

exp

(∫

O(p,q)

div X dt

)
,

where s1 = ψ−1
1 (p), s2 = ψ−1

2 (q), and where (Dψ1(s1)|X(p)) is a matrix composed
of the n × (n − 1) matrix Dψ1(s1) and the column vector X(p), and similarly for
(Dψ2(s2)|X(q)). The integral is taken over the orbit O(p, q) from p to q parametrized
by t.

Proof Let ϕ(t, x) be the flow of X through x at t = 0. Define

θ(s, s′, t) = ϕ(t, ψ1(s))− ψ2(s′).

If τ is the transition time from p to q, then θ has a zero at (s1, s2, τ). Furthermore




Dsθ(s, s′, t) = Dxϕ(t, ψ1(s))Dψ1(s),
Ds′θ(s, s′, t) = −Dψ2(s′),
Dtθ(s, s′, t) = X(ϕ(t, ψ1(s))).
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At (s1, s2, τ) one finds




Dsθ(s1, s2, τ) = Dxϕ(τ, p)Dψ1(s1) =: A,
Ds′θ(s1, s2, τ) = −Dψ2(s2) =: −B,
Dtθ(s1, s2, τ) = X(q).

Because of the transversality, det(Dψ2(s2)|X(q)) is nonzero, we can apply the implicit
function theorem to find a ζ(s), τ(s) such that ζ2(s1) = s2, τ(s1) = τ , and

θ(s, ζ(s), τ(s) = 0, for all s near s1.

Notice that ζ = ψ−1
2 ◦ T ◦ ψ1, so we are interested in the derivative of ζ at s = s1.

Deriving the above expression at (s1, s2, T ) yields:

A−BDζ(s1) + X(q)Dτ(s1) = 0.

The n × (n − 1) matrix A − B̃, with B̃ = BDζ(s1) equals −X(q)Dτ(s1), which is a
matrix of rank 1 (all columns are a multiple of v := X(q)). Hence the n × n matrix
(A− B̃|v) has rank 1. A property from linear algebra then shows that

det(A|v) = det(B̃|v).

Furthermore, it is elementary to prove that det(B̃|v) = det(B|v) det Dζ(s1). This
allows us to extract det D(ζ(s1):

detDζ(s1) =
det(A|v)
det(B|v)

=
det(Dxϕ(τ, p)Dψ1(s1)|X(q))

det(Dψ2(s2)|X(q))

Write now

(v1, . . . , vn−1)(t) = Dxϕ(t, p)Dψ1(s1), vn = X(ϕ(t, p)).

We prove that det(v1| · · · |vn)(τ) = det(Dψ1(s1)|X(p)) exp(
∫

div X) (and by doing
that we finish the proof of the proposition). First, observe that

(v1, . . . , vn)(0) = (Dxϕ(0, p)Dψ1(s1)|X(p)) = (Dψ1(s1)|X(p)).

Then, observe that upon writing V = (v1, . . . , vn) we have

DtV (t) = DXϕ(t,p)V (t),

and so if J = det V , we find DtJ(t) = D(det)V (t)DXϕ(t,p)V (t). A last linear algebra
property is used to continue: D(det)ABA = det(A) trace B for all n × n matrices A
and B:

DtJ(t) = div X(ϕ(t, p))J(t).

Integrating this equation yields J(t) = J(0) exp(
∫ t

0
div X). ¤
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Proposition 1.21 (Manifold version of proposition 1.20.) Let X be a vector field
on an n-dimensional Riemannian manifold (M, g). Let S, S′ be two open sections
of M transverse to the flow of X. Assume p ∈ S, q ∈ S′ and the orbit through p
reaches q in finite time (positive or negative). Let T : S0 ⊂ S → S′ be the transition
map defined in a neighbourhood S0 of p. If ψi : Ui → Σi are coordinates for Σi with
Ui ⊂ Rn−1, then

det(D(ψ−1
2 ◦ T ◦ ψ1))(s1) =

〈Ω(p), Dψ1(s1)×X(p)〉
〈Ω(q), Dψ2(s2)×X(q)〉 exp

(∫

O(p,q)

divΩ X dt

)
,

where s1 = ψ−1
1 (p), s2 = ψ−1

2 (q), and Ω is the volume form associated to g, and where
Dψ1(s1) resp. Dψ2(s2) is regarded as a product of n− 1 vectors in TpM resp. TqM .
The integral is taken over the orbit O(p, q) from p to q parametrized by t.



Chapter 2

Normally hyperbolic passage

2.1 Introduction

Consider a singularly perturbed vector field on a 2-dimensional manifold, depending
on a small parameter ε. In this first chapter we will study the passage near normally
hyperbolic parts of a “critical curve”. Although a thorough study of an invariant
foliation was already done by Fenichel ([FE]), we have obtained some refinement in
our special case, making use of center manifolds near points of such a critical curve and
of Ck-normal forms, as in [DR] and [DR2]. We will focus on smoothness properties
of invariant manifolds. A study of the transition time inside invariant manifolds will
be done in chapter 4. Some results concerning the asymptotic expansion of such
invariant manifolds are recalled in chapter 6.

In section 2.5, we will also prove a regularity property on singular integrals, which
turns out to be useful in studying specific normal forms of vector fields.

2.2 Fundamental notions and statement of results

In this section, we will put some constraints on the vector fields under study. We
have tried to write these constraints as much as possible in a coordinate free manner.
Before stating precise conditions and results, we quickly review some relevant notions.

Definition 2.1 A critical curve of a singularly perturbed family of vector fields Xε

on a 2-manifold M is a curve of singularities of the reduced vector field X0. We
will regard the critical curve as a curve in the manifold M × {0} = {ε = 0} in a
3-dimensional manifold with boundary M × [0, ε0[ for some ε0 > 0. If the vector
field depends on other parameters λ we will still call it—with abuse of language—the
critical curve.

15
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If M is the plane R2 this would mean we consider smooth families of vector fields

Xε,λ :
{

ẋ = f(x, y, ε, λ)
ẏ = εg(x, y, ε, λ) (2.1)

with singular parameter ε ∈ R+, and where λ ∈ Λ (Λ ⊂ Rp). We assume that X0,0,λ

has a curve of singularities γ. This curve may depend on λ, but we will not keep this
dependence in the notation of γ.

Assumption N1 The critical curve γ is normally attracting at all points of γ. This
means that at any point p of γ the reduced vector field X0 has a one-dimensional
stable manifold (and a one-dimensional center manifold, namely γ). Of course,
the results in this chapter also extend to normally repelling critical curves.

To proceed we lift the family of vector fields Xε,λ on M to a family Xλ := Xε,λ+0 ∂
∂ε

on M × [0, ε0[. Because of the center manifold theorem we can find locally around p
(possibly parameter-dependent) 2-dimensional invariant center manifolds Wp (inside
M × [0, ε0[) that are at least C1. Let us consider such a center manifold. Although
actually being a manifold with boundary in M×[0, ε0[, let us—by abuse of language—
call it a manifold. Essentially, we want the dynamics on the center manifolds to be
topologically equivalent to the dynamics of a model differential equation

ε
∂

∂x
+ 0

∂

∂ε
. (2.2)

More precisely, we want the existence of a C1 embedding

ϕ : [0, 1]2 → Wp : (x, ε) 7→ ϕ(x, ε)

so that

(i) ϕ([0, 1]2) is a neighbourhood of p inside Wp;

(ii) ϕ([0, 1]× {0}) ⊂ {ε = 0};

(iii) ϕ|ε=0 is orientation-preserving for the standard orientation on the x-axis and
the chosen orientation on γ.

(iv) ϕ is a topological equivalence between X|Wp and the model vector field (2.2).

To ensure this model behaviour, it suffices to assume

Assumption N2 For any point p of γ, there exists a sufficiently small neighbourhood
V of p in M × [0, ε0[ so that in V there are no singularities for ε > 0. Further-
more, inside center manifolds in V , the orientation of the orbits for ε > 0 must
be compatible to a given orientation on γ.
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The compatibility of the orientation of orbits inside center manifolds with the
orientation of γ means the following: if we take two sections σ1 and σ2, transversally
cutting γ in points with parameter values r1 and r2, r1 < r2 (according to the
orientation), then the orbits for ε > 0 will also be oriented from σ1 to σ2. Assumption
N2 does not depend on the chosen center manifold inside V . A choice of orientation
will become important in the treatment of turning points, in order to distinguish
transitions from attracting to repelling and transitions from repelling to attracting
(see chapter 3).

Definition 2.2 The basin of attraction of γ is the set of points in the manifold M
for which the orbit in positive time under the unperturbed vector field X0,λ has its
ω-set in γ. (A similar definition holds for the basin of repulsion of a repelling curve
γ, using the α-set.)

Definition 2.3 Let Σ be a smooth curve in M × [0, ε0[, possibly depending on some
extra parameters. Assume that this curve is a graph in ε ≥ 0. The saturation of Σ is
defined as the topological closure of the union of all orbits in positive time (w.r.t. the
extended vector field Xε,λ +0 ∂

∂ε) of points of Σ. The need to take a topological closure
becomes clear if one considers the limit point of Σ as ε → 0: the orbits become singular
for this limit point.

The saturation of Σ contains the limit point in γ of the orbit of the base point
b := Σ ∩ {ε = 0}. We will call this limit point a corner point of the saturation of Σ
and denote it by c. We need one more definition.

Definition 2.4 An admissible entry boundary curve Σ is a curve in M × [0, ε0[-space
(possibly λ-dependent) that is a graph ε 7→ s(ε) ∈ M . We assume that s is C∞ for
ε > 0, and C0 at ε = 0. Furthermore, we assume

∀n ∈ N, ∃N ∈ N :
∂n

∂εn
s(ε) = O(ε−N ), as ε → 0.

This definition allows graphs that are C∞ at ε = 0, but also graphs like ε 7→ ε log ε,
graphs that are C∞ in ε1/r for some r > 0 etc. An example of what is not admissible
would be a curve like

ε 7→ sin(exp(1/ε)) exp(−K/ε),

with K ∈ N, which only satisfies the above condition for n = 0, . . . , K − 1, and even
for n = K, but not for n > K.

Remark One can characterize an admissible entry boundary curve also as follows:
for all n ∈ N there is an M ∈ N so that εMs(ε) is a Cn curve at ε = 0.

Theorem 2.5 Assume assumptions N1 and N2 are verified for the family of vector
fields Xε,λ on M . The saturation of an admissible entry boundary curve Σ is a smooth
invariant manifold with boundary along any compact piece of the critical curve γ,
except along the orbit of the base point (intersection with {ε = 0}) of Σ including its
ω-limit c. At the point c, the saturation of Σ is continuous.
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If the entry boundary curve is smooth at ε = 0, then the saturated manifold will
also be smooth at points of the orbit of the base point of Σ, but will still only be C0

at the corner point c.
The proof of the theorem will be given in section 2.4.

2.3 Examples

To see the extent in which theorem 2.5 holds, let us briefly discuss two examples

Xε :
{

ẋ = ε(x2 + ε2 + λ2)
ẏ = −y + εF (x, y, ε, λ),

where F is C∞. In that case, given an entry curve of the form {x = x0, y = s(ε, λ)},
the saturation is a manifold

y = ϕ(x, ε, λ)

that is C∞ for x > x0 and ε ≥ 0. Consider also the example

Xε :
{

ẋ = ε exp(−x2/ε)
ẏ = −y + εF (x, y, ε, λ).

The speed of the slow dynamics, being O(ε) at x = 0 or exponentially small at nonzero
x is certainly not uniform, nor is the vector field Lipschitz. Nevertheless, saturating
entry boundary curves will lead to smooth invariant manifolds.

2.4 Proof of theorem 2.5

Let L be a compact piece of the normally attracting critical curve γ of Xε,λ. In this
compact set, L is uniformly normally attracting, and at each point of L we can always
choose a local Ck center manifold W for the vector field Xε,λ in (x, y, ε)-space (see
[K] or [HPS]).

Lemma 2.6 Let k ∈ N1 be fixed. In points of L, choosing a Ck center manifold for
Xε,λ, the vector field Xε,λ is locally Ck-equivalent to

{
ẋ = −x
ẏ = g(y, ε, λ) (2.3)

where g is a positive Ck function for ε 6= 0 and g(y, 0, λ) = 0. The chosen center
manifold is mapped to {x = 0}, L is mapped to {x = ε = 0} under this equivalence,
and the slow dynamics is compatible with the chosen orientation on γ.

Note that often, one can consider that g(y, ε, λ) = εσ for some σ ≥ 1, but in
general this is not possible without extra blow ups (think for example of a situation
where g(y, ε, λ) = ε(ε2 +y2 +λ2)). We refer also to the example treated in section 4.3.
Before proving this lemma, let us recall a theorem, that we will not only use to prove
lemma 2.6, but also to prove more complicated statements later on.
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Theorem 2.7 [Bon] Let Xλ(x, y, z) be a C∞ family of vector fields on R3 having
the following properties:

(i) (0, 0, 0) is a singular point of Xλ.

(ii) Xλ is tangent to the foliation dF (y, z) = 0 where F (y, z) = ypzq for (p, q) =
(0, 1) or p, q ∈ N0 and relatively prime.

(iii) DXλ(0, 0, 0) has exactly one non-zero eigenvalue and the related eigenspace is
given by y = z = 0.

Let W be a Ck center manifold of Xλ at (0, 0, 0) with k ∈ N0.
Then there exists a local Ck change of coordinates ϕ of the form

(x, y, z) 7→ (ϕ1(x, y, z, λ), ϕ2(x, y, z, λ), ϕ3(x, y, z, λ))

with
F (ϕ2(x, y, z, λ), ϕ3(x, y, z, λ)) = F (y, z),

and a strictly positive Ck function hλ(x, y, z) such that

[hλ.ϕ∗X](x, y, z) = ±x
∂

∂x
+ Yλ(y, z),

with Yλ of class Ck, Y.F = 0 and ϕ(W ) = {x = 0}.

Proof (of lemma 2.6) We follow the techniques in [DR]. Take any point of L, then
a translation will take this point to the origin. Due to the normal hyperbolicity along
L, a linear change of coordinates will ensure that the linear part of the vector field for
ε = 0 looks like

(
0 0
0 ±1

)
. Apply the theorem now: the vector field ±x ∂

∂x + g(y, ε, λ) ∂
∂y

is Ck-equivalent to the original one. Due to assumption N2, g has no zeroes for ε > 0
in a neighbourhood of (y, ε) = (0, 0). By changing x → −x and t → −t if necessary,
we can make g positive, and get to the expression in the lemma. ¤

Proof (of theorem 2.5) For ε 6= 0 the saturation of Σ is clearly C∞, since we only
deal with regular C∞ vector fields. The only problem hence deals with the extension
for ε = 0. It is assumed that the endpoint of Σ lies in the basin of attraction of
the critical curve γ. This means that in a neighbourhood along the fast orbit of the
endpoint, no singularities appear. Hence, ε is a regular perturbation parameter in that
neighbourhood and the saturation of Σ will be smooth. We can extend this manifold
until we enter a neighbourhood of c where a normal form can be used. The normal
form specified in lemma 2.6 can be solved implicitely: given an boundary condition
curve {x = γ(ε, λ), y = y0} the saturation is a graph

x(y, ε, λ) = γ(ε, λ) exp
(
−

∫ y

y0

ds

g(s, ε, λ)

)
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where y0 is the y-coordinate of c. We prove the smoothness of this expression as
ε → 0 in proposition 2.8 (see the next section). (Note that admissible boundary
curve γ need not be Ck at ε → 0, but at least there is an N ∈ N so that εNγ
is Ck as ε → 0; see the definition of admissible boundary curves. This is a slight
obstruction, but it can be removed by applying proposition 2.14, where it is proved
that exp(− ∫ y

y0

ds
g(s,ε,λ) ) is O(εN ) for all N .) Since we can cover the compact L by a

finite number of neighbourhoods where a normal form as in lemma 2.6 is valid, the
required smoothness of the saturation of Σ along L (except in c) follows.

We recall that Ck-smoothness for all k is enough in our case to conclude C∞-
smoothness, because the domain in which Ck-smoothness is proved does not shrink
as k increases. ¤

2.5 Some regularity properties

The following properties are useful in the study of the behaviour of vector fields in
brought in normal form. It has applications in this chapter, but also in chapters 3
and 4.

Proposition 2.8 Let g be a positive (not necessarily strictly positive) Ck function
on V ×W ×Λ, where V is a compact interval in R, W is a set of singular parameters
(part of a finitely dimensional vector space), and Λ is an open set of regular parameters
(part of a finitely dimensional vector space). Define for a fixed y0 ∈ V , and for all
y > y0 for which g(s, ε, λ) 6= 0 on s ∈ [y0, y]:

w(y, ε, λ) := exp
(
−

∫ y

y0

ds

g(s, ε, λ)

)
, ε ∈ W,λ ∈ Λ.

Assume for y1 > y0 that (y1, ε0, λ) is in the closure of the domain of w. If

(a) g(s, ε0, λ) = 0,∀s ∈ [y0, y1],

(b) or if g(s, ε0, λ) is only zero in the end point s = y1 and not in [y0, y1[, and if
∂g
∂y (y1, ε0, λ) = 0.

Then the function w can be extended in a Ck way to (y1, ε0, λ), and in this point
w and all its derivatives (up to order k) are zero.

Remark The proposition is quite elementary if g = εN g̃ for some strictly positive
g̃. In general, the flatness of g can be more complicated, and in extremis writing for
example (as in section 4.1.1) something like

g(y, ε, λ) :=
(
1 + ε sin2(1/ε2)

)
exp(−1/ε),

one still gets a smooth function w.

Proof We will first treat case (a), and then tell how to adapt the proof for case (b).
We claim that it suffices to prove that
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(P1) for all N ∈ N : lim
(y,ε)→(y1,ε0)

w(y, ε, λ)
g(y, ε, λ)N

= 0;

(P2) for all K, M ∈ N :

lim
(y,ε)→(y1,ε0)

w(y, ε, λ)g(y, ε, λ)KM

(∫ y

y0

ds

g(s, ε, λ)K

)M

= 0,

and where the convergence is uniform in λ. Note that the limits can only be taken
in the closure of the set of points (y, ε, λ) where w(y, ε, λ) is defined properly. Note
also that we do not claim anything for y = y0; indeed this point is excluded in the
formulation of the proposition. In fact, w is in general not even C1 in the point
(y0, ε0, λ).

The proof of properties (P1) and (P2) will be carried out in two lemma’s, but here
we will show that those two properties are sufficient to prove the proposition.

To that end, calculate all first-order derivatives of w, in the points (y, ε, λ) where
w is defined:

∂w

∂y
(y, ε, λ) = w(y, ε, λ)

−1
g(y, ε, λ)

∂w

∂ε
(y, ε, λ) = w(y, ε, λ)

∫ y

y0

∂g
∂ε (s, ε, λ)
g(s, ε, λ)2

ds

∂w

∂λ`
(y, ε, λ) = w(y, ε, λ)

∫ y

y0

∂g
∂λ`

(s, ε, λ)

g(s, ε, λ)2
ds.

Observing these three equations, one finds that applying a general differential operator
D to w results in

Dw(y, ε, λ) =
∑

i

w(y, ε, λ)
∏

j

Fij(y, ε, λ)
g(y, ε, λ)Nij

∫ y

y0

Gij(s, ε, λ)
g(s, ε, λ)Kij

ds,

with Nij ,Kij ∈ N, Fij and Gij are functions of class Ck−|D| and where the sum and
products are finite. In order to prove that Dw(y, ε, λ) → 0 as ε → ε0, it is sufficient
to prove that each summand of the above expression tends to zero. By raising these
expressions to some power, we can distribute the effect of w(y, ε, λ) among all types
of factors, and we find the following two conditions:

(a) for all N ∈ N: lim
(y,ε)→(y1,ε0)

w(y, ε, λ)F (y, ε, λ)
g(y, ε, λ)N

= 0;

(b) for all K, M ∈ N:

lim
(y,ε)→(y1,ε0)

w(y, ε, λ)g(y, ε, λ)KM

(∫ y

y0

G(s, ε, λ)
g(s, ε, λ)K

ds

)M

= 0.
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(the factor gKM is included in (b) because we want to do so, and we can: we simply
need to increase the N in (a)). Since F and G are at least C0, these properties are
true once the two properties (P1) and (P2) are satisfied.

The remainder of the section involves the proof of (P1) and (P2). Let us start
with

Lemma 2.9 (Under condition (a) in proposition 2.8) For all K > 0 there exists a
neighbourhood V of ε = ε0 such that

∫ y

y0

ds

g(s, ε, λ)
≥ −K(y − y0) log g(y, ε, λ),

for all y ∈ [y0, y1], λ ∈ Λ and ε ∈ V (only for those ε where w is defined.)

Proof Let

F : (y, ε, λ) 7→
∫ y

y0

ds

g(s, ε, λ)
+ K(y − y0) log g(y, ε, λ).

then F (y0, ε, λ) = 0, so it remains to prove that ∂F
∂y (y, ε, λ) ≥ 0 for all y ∈ [y0, y1]. In

short notation, we have

∂F

∂y
=

1
g

+ K log g +
K(y − y0)

g

∂g

∂y

=
1
g

(
1 + Kg log g + K(y − y0)

∂g

∂y

)
.

The mapping u 7→ u log u tends to zero in the origin, so for ε small enough, we may
assume that g log g ≥ − 1

3K . Furthermore, since also ∂g
∂y tends to zero, we may assume

that for ε small enough, ∂g
∂y ≥ − 1

3K(y1−y0)
. Applying these inequalities to the equation

above, we find

∂F

∂y
(y, ε, λ) ≥ 1

g(y, ε, λ)

(
1 + K

−1
3K

+ (y − y0)K
−1

3K(y1 − y0)

)
.

As y − y0 ≤ y1 − y0, we have ∂F
∂y (y, ε, λ) ≥ 1

3g(y,ε,λ) ≥ 0. ¤

Corollary 2.10 For all N ∈ N and for all intervals [y0 + δ, y1] on the y-axis (with
δ > 0), there exists a neighbourhood V of ε = ε0 such that

w(y, ε, λ) ≤ g(y, ε, λ)N+1,

for all y ∈ [y0 + δ, y1], λ ∈ Λ and ε ∈ V (only for those ε where w is defined). This
proves property (P1) in case (a).
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Proof Apply lemma 2.9 with K = N+1
δ , and find

w(y, ε, λ) ≤ g(y, ε, λ)
N+1

δ y.

The corollary follows from the facts that N+1
δ y ≥ (N + 1) and, for ε small enough,

g(y, ε, λ) < 1. ¤
For the proof of (P2), define

F (y, ε, λ) = w(y, ε, λ)1/Mg(y, ε, λ)K

∫ y

y0

ds

g(s, ε, λ)K

Lemma 2.11 For all ν > 0, there exists a neighbourhood V of ε = ε0 such that

F (y, ε, λ) < ν,

for all y ∈ [y0, y1], λ ∈ Λ and ε ∈ V (only for those ε where w is defined). This proves
property (P2) in case (a).

Proof It is sufficient that we prove

F (y0, ε, λ) < ν and
(

F (y, ε, λ) ≥ ν =⇒ ∂F

∂y
(y, ε, λ) < 0

)
.

The first statement is obvious, since F (y0, ε, λ) = 0. To prove the second statement,
assume F (y, ε, λ) ≥ ν. Then (write g′ for ∂g

∂y ):

∂F

∂y
= w1/M

( −1
Mg

gK

∫
1

gK
+ KgK−1g′

∫
1

gK
+ gK 1

gK

)

= w1/M +
( −1

Mg
+

Kg′

g

)(
w1/MgK

∫
1gK

)

= w1/M − F

Mg
(1−KMg′).

Taking ε small enough, we may assume that g′ ≤ 1
2KM . Since we also know that w is

bounded by 1, we have

∂F

∂y
≤ 1− F

Mg

(
1− 1

2

)
≤ 1− ν

2Mg
.

As g gets smaller, ∂F
∂y will turn negative. ¤

These lemmas prove properties (P1) and (P2) in the case (a) of proposition 2.8,
and it was already pointed out that this is enough in view of proving proposition 2.8.
Let us now adapt the proof to the case (b). Key element in the proofs of the lemmas
was the fact that g and g′ becomes zero. In the case (b), we do not have this property
uniformly in [y0, y1], but only in the end point y1. We will need to be more careful:
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Lemma 2.12 If we define F (y, ε, λ) :=
∫ y

y0

ds
g(s,ε,λ) +K(y−y0) log g(y, ε, λ), then there

exists a δ ∈]y0, y1[ and a neighbourhood V of ε = ε0 such that for all y ∈ [δ, y1]:

F (y, ε, λ) ≥ F (δ, ε, λ).

for all λ ∈ Λ and ε ∈ V (only for those ε where w is defined.)

Proof Completely similar to the proof of lemma 2.9. ¤

Corollary 2.13 For all N ∈ N there exists a neighbourhood V of ε = ε0, a C > 0
and a δ ∈]y0, y1[ such that

w(y, ε, λ) ≤ Cg(y, ε, λ)N+1,

for all y ∈ [δ, y1[, for all λ ∈ Λ and ε ∈ V (only for those ε where w is defined). This
proves property (P1) in case (b).

Proof Apply the lemma to K = N+1
δ̃

, where δ̃ is an arbitrary small number. There
exists a δ ∈ [y0, y1[ such that for all y ∈ [δ, y1[:

w(y, ε, λ) ≤ g(y, ε, λ)K(y−y0)g(δ, ε, λ)−K(δ−y0)w(δ, ε, λ).

So for y ≥ max{δ, y0 + δ̃}:
w(y, ε, λ) ≤ g(y, ε, λ)N+1g(δ, ε, λ)−K(δ−y0)w(δ, ε, λ).

Since g(δ, 0, λ) 6= 0 we find that it can be bounded away from zero, which proves the
corollary. ¤

The proof of (P2) in case (b) goes completely similar as in case (a), by replacing
y0 by a δ close enough to y1.

¤
A slight generalization is needed. The results of proposition 2.8 remain true if not

g(y, ε, λ) but εNg(y, ε, λ) is a Ck function for some N > 0:

Proposition 2.14 Let g be a positive (not necessarily strictly positive) C0 function
on V ×W × Λ, where V is a compact interval in R, W = [0, ε0[ is a set of singular
parameters, and Λ is a set of regular parameters (part of a finitely dimensional vector
space). Assume that εNg is a Ck function for some N ≥ 0. Define for a fixed y0 ∈ V ,
and for all y > y0:

w(y, ε, λ) := exp
(
−

∫ y

y0

ds

g(s, ε, λ)

)
, ε ∈ W,λ ∈ Λ.

Assume for y1 > y0 that (y1, 0, λ) is in the closure of the domain of w. If g(s, 0, λ) =
0, ∀s ∈ [y0, y1], then the function w can be extended in a Ck way to (y1, 0, λ), and in
this point w and all its derivatives (up to order k) are zero.
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Proof The setting is similar to the setting in proposition 2.8, and the proof can be
copied after a slight change: next to the properties (P1) and (P2), we have to prove
additionally

(P3) w(y, ε, λ) = O(εÑ ), ∀Ñ > 0

Let us explain why: to show that the properties (P1) and (P2) are sufficient to prove
the smoothness in proposition 2.8, we replaced all differentials of g by constants—
this is possible since all differentials are C0. Here, we have to replace the differentials
by C/εÑ , hence (P3) is needed. The proof of (P3) is trivial since g ≤ Kε for some
constant K > 0, and thus w(y, ε, λ) ≤ exp(−y−y0

Kε ). ¤
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Chapter 3

Canards at non-generic
turning points

3.1 Introduction

Analysis of singularly perturbed vector fields becomes much more complicated when
so-called “contact points” appear. These are points on the critical curve where a
transition from normal attraction to normal repulsion appears. The competition
between slow and fast dynamics is most apparent in points like these. One might
expect that in situations where orbits follow the slow movement, the orbits will revert
to orbits following fast dynamics immediately after crossing such a contact point,
because of the repulsive behaviour after this point. On the contrary, sometimes the
orbits will keep on following the critical curve for some time, before the exchange of
dominance occurs. Contact points with that property could be called “turning points”
to make a distinction with the more common “jump point” which one encounters in
relaxation oscillations.

When the family of vector fields has other parameters, we can try—under rather
general conditions—to give a regular condition on ε and on the other parameters so
that the exchange of stability occurs at exactly the manifold in parameter space given
by the condition. This process will create what is commonly known as “overstable so-
lutions”, or “canard solutions”. In the literature, a clear distinction is made between
this two names: the term overstable solution is used in the complex setting, whereas
real solutions are referred to as canard solutions. In the literature, several successful
methods have been brought forward to handle the existence of both overstable solu-
tions and canard solutions. We mention the technique of matching inner and outer
solutions, non-standard analysis (Diener et al.) and also complex analytic techniques
(Sibuya, Schäfke, Ramis, Canalis-Durand and many others). Lately, serious progress
has been made in applying analytic techniques to singularly perturbed problems, and
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a number of the results that are proved in this work have already been proved using
these techniques. But the analytic study does not completely cover the dynamics on
the real axis. We present some examples where real canard solutions are created,
that cannot be complexified to canard solutions in full complex neighbourhoods (or
so called overstable solutions).

The method we use here is based on the construction of center manifolds and
the use of Ck normal forms, as in [DR] and [DR2]. The key element is the family
blow up—a technique of rescaling variables in a geometrical way. Because of this, the
constructed solutions will be smooth in the blow up space. We present conditions
under which a blow down of the center manifolds is possible. We extract some conse-
quences from it and relate these to treatments of a different nature like the traditional
matching between “inner” (inside the blow up locus) and outer solutions (in original
coordinates) or the resummation.

Our major contribution lies in the generality of our results. Where up to now the
geometric analysis of turning points (like in [DR]) was restricted to the generic case,
we consider here a generalization to non-generic turning points. A specific class of
more degenerate systems is precisely described in theorem 3.8. In theorem 3.7 we
show that our results can be applied to what we could call the generic turning point.
These examples are defined in the plane, but our results apply, as the description
shows, to systems on 2-manifolds. All results are valid for vector fields of class Cr, r
sufficiently large.

A second part of this chapter deals with the angle between center manifolds,
defined on different sides of the contact point. In fact, the entire canard phenomenom
can be explained geometrically by looking how those two different families of center
manifolds intersect. Orbits following the critical curve in positive time, gathered in
these invariant (center) manifolds, cross the contact point and intersect with orbits
following the critical curve in negative time. Any connection between these manifolds
results in canard solutions, so the intersection is crucial in our study. If the manifolds
intersect transversally, a straightforward adaption of the techniques in [DR] results
in a formula for the angle. We generalize these computations by providing recursive
formulas for calculating the first nonzero higher order angle, besides describing its
relation with the graph of the control curve.

3.2 Fundamental notions and statement of results

This section is a sequel of section 2.2; we hence assume that the notions critical curve,
entry boundary curve, saturation, corner point, basin of attraction etc. are known.

Specific in the study of canard solutions we will use a special parameter—denoted
by a—that will essentially be a parameter breaking the critical manifold in a regular
way. In a moment we will give a precise definition of it. If M is the plane R2 this
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would mean we consider smooth families of vector fields

Xε,a,λ :
{

ẋ = f(x, y, ε, a, λ)
ẏ = εg(x, y, ε, a, λ) (3.1)

with singular parameter ε ∈ R+, and where (a, λ) ∈]−a0, a0[×Λ (Λ ⊂ Rp). We could
also work with analytic Xε,a,λ; properties that are specific to analytic vector fields
will be handled in chapter 6. We assume that X0,0,λ has a curve of singularities γ.
This curve may depend on λ, but we will not keep this dependence in the notation
of γ. The dependence on λ is not entirely unconditional; obvious bifurcations in the
shape of the curve should be avoided. We in fact ask γ = γλ to be a trivial λ-family
of simple curves; for a precise statement we refer to a remark after assumption T3.

In this chapter we will deal with simple critical curves with a single contact point.
By “simple” we mean that the curve can be obtained as an image of a C∞ embedding
of [0, 1]. It is “critical” since it consists of singularities of the vector field under
consideration; γ contains a point p∗ not lying at its endpoint, with the property that
p∗ divides γ into two parts γ− and γ+ with both γ− ∪ {p∗} and γ+ ∪ {p∗} simple
critical curves. We orient γ in a way that γ+ comes after γ−. The fact that p∗ is
a simple contact point means that X0 is normally attracting at all points of γ− and
normally repelling at all points of γ+.

Assumption T1 (Admissible chart)
There exists a (possibly λ-dependent) chart of M in the neighbourhood of p∗
so that in this chart the contact point is the origin (x, y) = (0, 0). Writing
the vector field in this chart as in (3.1), the critical curve is given by γ =
{ (x, y) | f(x, y, 0, 0, λ) = 0 } (with f at least C1). The origin divides γ in two
pieces γ− and γ+. Along γ\{(0, 0)} we suppose that both ∂f

∂x and ∂f
∂y are nonzero.

A chart where these conditions are met is called an admissible chart.

Assumption T2 (Normal passage)
Keeping a = 0, assumptions N1 and N2 (see chapter 2) are verified for the
vector field Xε,0,λ in γ−, whereas the repulsive counterparts of assumptions N1
and N2 are verified in γ+.

Note 1: Assumption T2 gives the basis for a possible transition from attracting
to repelling regime. In other situations, where the transition is from repelling to
attracting, repelling to repelling or attracting to attracting regime, canard solutions
are more likely to occur, and the study is easier. Canard solutions occuring from
transitions like these are often called “faux canards”.

Note 2: In some results we will even allow singularities bifurcating out of γ−∪γ+,
for ε > 0, but we will limit us to results concerning invariant manifolds consisting
of orbits for which in the vicinity of γ− ∪ γ+ the orientation is compatible with the
orientation of γ.
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Assumption T3 will be a regularity condition, and will be described in terms of an
“admissible chart” near the contact point. We will assume that after a single (family)
blow up, the vector field will be desingularized in a nice way. In section 1.1 it is
recalled what a family blow up is. In the blow up we still keep a = 0 (for now).

Assumption T3 (Regularity condition)
After blowing up at (0, 0, 0) the (x, y, ε)-variables — in an admissible chart —
of Xε,0,λ, we get the following:

The preimages of γ− and γ+ in the blow up space (including the endpoints of
γ± on the blow up locus) are normally hyperbolic. Define P± = γ± ∩ Σ, where
Σ is the blow up locus, i.e. the preimage of (x, y, ε) = (0, 0, 0) under the blow up
map.

Important Remark: the regularity condition is restrictive in the following sense: the
blow up weights are chosen independent of λ, hence in order for the blow up procedure
to work for all choices of λ, the order of degeneracy of the critical curve must not
depend on λ. We have in mind for example quadratic contacts where the second order
angle changes:

γ : y = λx2 + O(x3), λ > λ0 > 0

or contacts of order ‘2n’, with a fixed n, i.e.

γ : y = λx2n + O(x2n+1), λ > λ0 > 0

Situations where the order of degeneracy of the critical curve undergoes a bifurcation
(for example γ : y = λx2+x4, where λ = 0 is inside the parameter space) will generally
not satisfy assumption T3. The way to proceed in these situations is to include λ in
the family blow up.

The next assumption is the sequel of assumption T2, but expressed in blow up
coordinates as we come to introduce. There must be a way to proceed along the
“corners” P±. We work in a phase-directional rescaling chart, as in (1.2). Choosing a
section {u = u0 > 0} means choosing a section in the neighbourhood of the normally
hyperbolic part of the critical curve, whereas choosing a section {ε = ε0 > 0} means
choosing a section transversally cutting the blow up locus. As in assumption T2, we
have in mind a model vector field to express the dynamics in center manifolds. First,
the existence of center manifolds near P− follows from assumption T3. Choosing a
manifold W near P−, then we essentially want the vector field on W to be topologically
equivalent to

−uε
∂

∂u
+ ε2 ∂

∂ε
(3.2)

More precisely:
Let p = P− be the end point of γ−, in a blown up admissible chart, and let Wp

be a center manifold of X at p. We require the existence of a C1 embedding

ϕ : [0, 1]2 → Wp : (u, ε) 7→ ϕ(u, ε)
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so that

(i) ϕ([0, 1]2) is a neighbourhood of P− inside Wp;

(ii) ϕ([0, 1]× {0}) ⊂ γ− ∪ {P−};

(iii) ϕ({0} × [0, 1]) is inside the blow up locus.

(iv) ϕ|[0,1]×{0} is orientation-preserving for the standard orientation on the u-axis
and the negative orientation on γ.

(v) ϕ is a topological equivalence between X|Wp
and the model vector field (3.2).

This model behaviour will be ensured by assumption T2 and the next assumption:

Assumption T4 (Regular corner passage) Let p = P− be the end point of γ− in
a blown up admissible chart, then there exists a sufficiently small neighbourhood
V of p so that in V there are no singularities for ε > 0. A similar requirement
is made for the end point P+ of γ+.

Assumption T5 (Connection condition)
Under the conditions of assumption T3, there is a heteroclinic connection Γ
(for a = 0) on the blow up locus Σ connecting P− to P+. We assume that this
connection consists of one orbit going from P− to P+.

Of course, it would be interesting to see what can happen if we let a parameter
tend to the boundary of the parameter set where assumption T5 is satisfied. Possibly,
a saddle-node may appear on the connection, or, the connection may be a curve
of singularities in the limit. At first, we will focus on the case where there is a
connection without singularities, but the techniques are general enough to be used
in more degenerate cases, see the examples for such a generalization in the normally
hyperbolic passage.

Let us now precisely describe the role of a, starting by describing the role of a regular
breaking parameter in the case that γ remains a critical manifold for the vector fields
Xε,a,λ with a 6= 0. To focus on the specificity of this case let us write a = A. In that
case the blow up in (x, y, ε)-space can not only be applied for A = 0 but also for the
fields with A 6= 0. Due to assumption T3 we recover, for A = 0, in the blow up the
points P±, that will persist as normally hyperbolic points for small values A 6= 0 (see
eg. [HPS]). Also the invariant manifolds of respectively P− and P+ inside the blow up
locus {ε = 0} will persist. We know from assumption T5 that they form a heteroclinic
connection for A = 0. In the family rescaling chart and inside {ε = 0} we can choose
a section σ transverse to the flow of the blown up vector field. We choose a regular
parameter z on σ and we denote by z±(A, λ) the intersection with σ of the invariant
manifolds of respectively P±. By assumption T5, we know that z−(0, λ) = z+(0, λ).
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Definition 3.1 We say that A is a regular breaking parameter if

ρ(λ) :=
∂

∂A
(z− − z+)(0, λ) 6= 0. (3.3)

This definition does not depend on the choice of the regular coordinate z, nor on the
transverse section σ.

Assumption T6 (Breaking parameter) In the family rescaling chart expressed in
(1.3), there exists some n ∈ N such that A := a/un (hence a = Aεn/m) is a
regular breaking parameter.

The idea is that the family Xε,a,λ is replaced by a family Xε,Aεn/m,λ with A ∈
]−A0, A0[, but in this ‘subfamily’ we know that the critical curve γ of Xε,0,λ persists
to a critical curve of Xε,Aεn/m,λ with A 6= 0.

The presentation in this chapter is adapted to the study of the so called canard
solutions. It means that we stay in a region in parameter space outside which no such
solutions can exist. This is reflected in the rescaling

(a, ε) = (unA, um),

as used to express assumption T6. In fact, if one wants to use family blow up to make
a study in a complete neighbourhood of (0, 0) in the (a, ε)-plane, the way to proceed
is first to make a blow up in the parameter plane by writing

(a, ε) = (vkA, v`E), (3.4)

for A2 +E2 = 1 (or equivalently working with charts E = +1 or A = ±1.) Thereafter
one continues with blow up in the (x, y, v)-space:

(x, y, v) = (upx, uqy, uv),

with x2 + y2 + v2 = 1 (or equivalently working with charts). It of course leads to
the same result under the condition E = 1. For a concrete example, we refer to
section 1.1.

In the sections 3.3.1, 3.4 and 3.5 we will hence write system (3.1) as

Xv,A,λ :
{

ẋ = f(x, y, v, A, λ)
ẏ = vg(x, y, v, A, λ) (3.5)

to emphasize that we might already have written the original (a, ε) as (a, ε) = (vkA, v`)
for some (k, `) ∈ N2. We can hence suppose that X0,A,λ has a curve of singularities
through the origin for all (A, λ) under consideration.

As an example, consider the Van der Pol system
{

ẋ = y − x2

2 − x3

3
ẏ = ε(a− x)

(3.6)
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In this example, a is not a regular breaking parameter, however in [DR] it is shown
that a/

√
ε is a regular breaking parameter. Hence, in (3.6) one can write

a = vA, ε = v2E,

with A2 + E2 = 1. Being interested in A ∼ 0, we can consider the chart E = 1, and
check the assumptions for the parameters (v, A) instead of (ε, a).

Important remark: assumption T2, the second part of assumption T5 and assump-
tion T4 are “open” assumptions, i.e. we could restrict the parameter set (A, λ) to an
open subset where these conditions are satisfied. It would be interesting to know what
happens if (A, λ) tends to the boundary of this set, i.e. a singularity could appear on
the slow dynamics, or on the heteroclinic connection, or even more degenerate phe-
nomena could occur. In extremis, the connection on the blow up locus could consist
out of singular points, with a certain loss of normal hyperbolicity at some point!

To formulate the results, we need some definitions.

Definition 3.2 A “simple passage” turning point is a contact point satisfying the
properties described in assumptions T1–T6 above.

The main result is theorem 3.4, but a first preliminary result is the existence of
canard solutions, with arbitrary boundary conditions. Two boundary conditions are
chosen as follows: take a smooth curve Σ−, transverse to the manifold {ε = 0} and
so that the end point b− in {ε = 0} is inside the basin of attraction of γ−, and take
a smooth curve Σ+ transverse to {ε = 0} so that the end point b+ is inside the basin
of repulsion of γ+. Theorem 3.3 states that we can write the parameter a in terms of
ε in a way that the saturation in forward time of Σ− coincides with the saturation in
backward time of Σ+, thereby creating a manifold of canard solutions for (3.1). The
canard solutions are global of nature in this approach.

Theorem 3.3 Let Xε,a,λ be a vector field on a 2-manifold with a simple passage
turning point. Let Σ± be admissible entry/exit boundary curves. Then for some
m ∈ N1 and for ε ∈ [0, ε0[ with ε0 > 0 sufficiently small, there exists a unique
smooth curve a = A(ε1/m, λ) so that A(0, λ) = 0 and so that the saturation of Σ−
along Xε,A(ε,λ),λ forms a manifold with boundary of canard solutions containing Σ+

as well. The manifold with boundary is smooth in the blow up space, everywhere
except1 at the two corner points c± defined above. The ∞-jet of A(u, λ) w.r.t. u is
independent of the chosen admissible entry/exit boundary curves.

1if the boundary curves are nonsmooth at their base points then the smoothness is of course also
lost along the orbits of these base points.
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Remark 1: A curve a = A(ε1/m, λ), like in the statement of theorem 3.3, is called a
control curve, or a canard line. It depends on the choice of Σ±. However, two different
control curves have an infinite contact at ε = 0, uniformly in λ.

Remark 2: The smoothness of the control curve and of the manifolds will be in terms
of the rescaled variables, due to the rescaling. This effect is most visible in the control
curve; this curve will in general only be smooth in ε1/m for some m ∈ N depending
on the blow up construction. In general, the index m is the product of weights in two
different rescaling: a first weight from a parameter rescaling as in (3.4), and a second
weight from a rescaling as in (1.1). In practice, one of those two weights can always
be chosen 1, i.e. one can choose to rescale ε through the first rescaling or through the
second rescaling, but one usually avoids rescaling ε twice. Refer also to the example
in section 1.1.

Remark 3: This theorem has strong implications on the orbits of points on Σ−, for
ε ∼ 0. The corner points are essentially the points where the change of dominance
takes place. Following the fast dynamics, a point of Σ− fastly moves towards a small
neighbourhood of the critical curve γ−, near the corner point c−, then staying close
to γ− slowly moves over the contact point towards the repelling part of the critical
curve, and near c+ again moves fastly away from γ+ finally reaching Σ+.

Remark 4: The manifolds with boundary in theorem 3.3, and other manifolds with
boundary will be referred to as manifolds.

Remark 5: If two different sets of boundary curves Σ± and Σ′± are taken, then the
two manifolds are infinitely tangent to each other between the corner point c− or c′−
(whichever is closer to the contact point) and the corner point c+ or c′+. Also the
control curves are infinitely tangent to each other.

A second result concerns the possibility of blowing down the invariant manifold
and getting smoothness in the original phase space. When blowing down, it is a priori
possible to loose differentiability. (Written in polar coordinates, a cone for example is
differentiable w.r.t. (r, θ), but it is not a differentiable object in cartesian coordinates.)
In section 3.8.1 we will show an example of such a phenomenom for fields Xε,a,λ

satisfying all assumptions which we made. So let us ask ourselves the question when
the invariant manifolds blow down to differentiable objects. Obviously, a necessary
condition is the existence of a Taylor expansion in the origin. The following theorem
states that this is in fact also a sufficient condition.

Theorem 3.4 Let Xε,a,λ be a vector field on a 2-manifold with a simple passage
turning point. Because of this, we already know that the blow down of the invariant
manifolds from theorem 3.3 are in an admissible chart near the contact point graphs
y = Ψ(x, ε, λ). Assume that there exist formal power series

â =
∞∑

n=0

an(λ)εn, ŷ =
∞∑

n=0

yn(x, λ)εn
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so that yn is smooth in a uniform neighbourhood of x = 0, and so that ŷ is formally
invariant2 under X̂ε,â,λ, then Ψ will be smooth in a neighbourhood of the origin. The
infinite jet j∞(Ψ) will coincide with ŷ, and also j∞(A) will coincide with â.

By this theorem, it is also clear that the canard solutions constructed by means of
analytic techniques coincide with the invariant manifolds from theorem 3.3. It is well
known that such formal solutions are unique, if they exist, under the assumptions
that we made.

The above theorem remains valid if one starts with asymptotic series in terms of
ε1/m for some m ∈ N1; in that case, the blow down manifolds are infinitely smooth
w.r.t. ε1/m.

The invariant manifolds in theorem 3.3 are constructed by connecting “center
manifolds” along γ− to center manifolds along γ+. This concept is important in order
to understand the next theorem, so let us recall a few notions.

Definition 3.5 A “center manifold” for the system (3.1) is the saturation of a local
center manifold at a normally hyperbolic point on the critical curve. The saturation
may define an invariant manifold up to the contact point, or more specifically, up
to a part of the blow up locus. Thus, two classes of center manifolds exist: center
manifolds along γ− and along γ+. The quotes around center manifolds make it clear
that this is not a center manifold at the contact point. Important to notice is that
the center manifolds depend regularly on A, unlike the manifolds of canard solutions,
where A has already been expressed in terms of ε.

The idea is that the attracting center manifolds and the repelling center mani-
folds can be compared when intersecting both with a section transversally cutting
the blow up locus. More precisely, in the family rescaling chart we can e.g. take a
section T : {x = 0} and look at the intersection of the attracting and repelling center
manifolds with T . Choosing coordinates z on σ := T ∩ {u = 0}, we can use (z, u) as
coordinates on T . The intersection of the attracting and repelling center manifolds
with T are hence graphs

z = ζ±(u,A, λ). (3.7)

Notice that
ζ±(0, A, λ) = z±(A, λ),

where z± is the graph in (3.3).
Intuitively, the next theorem states that the angle between ζ− and ζ+ is propor-

tional to the angle of the control curve of the canard solutions:

2We say that y = ψ(x, ε) is formally invariant under Xε : {ẋ = f(x, y, ε), ẏ = g(x, y, ε)} if the
infinite jet of f(x, ψ(x, ε), ε)ψ′(x, ε)− g(x, ψ(x, ε), ε) w.r.t. ε is zero.



36

Theorem 3.6 Under the conditions of theorem 3.3, and with the notations introduced
above, we have:

1. The first nonzero coefficient of ε1/m in the expansion of A is related to the first
nonzero coefficient in the expansion of (ζ− − ζ+)(u, 0, λ). In fact, they are pro-
portional, and the ratio is precisely −ρ(λ), with ρ(λ) the nonzero coefficient in
(3.3).

2. The first nonzero coefficient of ζ−− ζ+ can be calculated, either using the previous
item if having a preexisting knowledge of A, or using a Melnikov integral along Γ
(the heteroclinic connection on the blow up locus from ζ− to ζ+). The integrands
can be obtained through a formal recursive process.

Finally, we present some classes of vector fields having expression (3.1) for which
the assumptions of this chapter are satisfied.

For h = f or g, we introduce the notation

h· := h(0, 0, 0, 0, λ), hx :=
∂h

∂x
(0, 0, 0, 0, λ),

and similar notations for other partial derivatives.

Theorem 3.7 If

(i) f· = 0, fy 6= 0 (existence of critical curve by means of implicit function theorem);

(ii) fx = 0, fxx 6= 0 (at the origin, normal hyperbolicity is lost in the most generic
way);

(iii) g· = 0, gx 6= 0 (connection condition);

(iv) gx

∣∣∣∣
fy fa

fxy fxa

∣∣∣∣− fxx

∣∣∣∣
fy fa

gy ga

∣∣∣∣ 6= 0 (breaking parameter condition);

(v) The product gxfy is negative (transition from attracting to repelling).

Then, near (x, y) = (0, 0) and for (a, ε) sufficiently small, assumptions T1–T6 are
verified for the vector field (3.1), using the blow up (x, y, ε) = (ux, u2y, u2ε) and
writing a = uA. Also, the conditions of theorem 3.4 are satisfied.

Remark: it may be appropiate to perform some coordinate changes to get the
conditions independent of λ, as required.
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The next theorem generalizes the previous one, however, in this case a formal power
series solution generally does not exist.

Theorem 3.8 If

(i) f· = 0, fy 6= 0 (existence of critical curve by means of implicit function theorem);

(ii) fx = 0, fxx = 0, . . ., fx2n−1 = 0, fx2n 6= 0 (at the origin, normal hyperbolicity is
lost);

(iii) g· = 0, gx = 0, . . ., gx2n−2 = 0, gx2n−1 6= 0 (connection condition);

(iv) gx2n−1

∣∣∣∣
fy fa

fxy fxa

∣∣∣∣− fx2n

∣∣∣∣
fy fa

gy ga

∣∣∣∣ 6= 0 (breaking parameter condition);

(v) The product gx2n−1fy is negative (transition from attracting to repelling).

Then, near (x, y) = (0, 0) and for (a, ε) sufficiently small, assumptions T1–T6 are
verified for the vector field (3.1), using the blow up (x, y, ε) = (ux, u2ny, u2nε) and
writing a = u2n−1A.

3.3 Proof of theorem 3.3

3.3.1 Extending manifolds in the blow up space

To extend the center manifolds from section 2.4, we need to blow up the origin. For
more information regarding family blow up, we refer to section 1.1. Recall that the
parameter plane (ε, a) might have already been rescaled, like in (3.4) with E = 1,
so that is why this section uses the vector field (3.5) with parameters (v, A). In any
case, v plays the role of singular parameter, while A is a regular breaking parameter.
We will not blow up A, nor λ. Let

Φ: R+ × S2 → R3 : (u, (x, y, v)) 7→ (x, y, v) = (upx, uqy, umv). (3.8)

where p, q and m are natural numbers representing weights for the variables x, y and
v. The number m will be especially important, since all objects will be smooth in u,
and hence smooth in v1/m—which might be ε1/mk if a preliminary scaling ε = vk has
taken place, like in (3.4) with E = 1 (see also the remark after theorem 3.3).

The preimage of γ− is a subset

γ− ⊂ {v = 0}.

So the first place to look at is in a chart v ∼ 0. In other words, we can look in the
chart (x, y) ∈ S1 (S1 seen as the circle {v = 0} inside S2). Let (x, y) be represented
by an angular value z in the neighbourhood of the endpoint of γ−, and assume z = 0
corresponds to this endpoint.
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Lemma 3.9 Near P−, and for any k ∈ N, the vector field Φ∗(X) is Ck equivalent to




u̇ = −uvh(u, v, A, λ)
v̇ = mv2h(u, v,A, λ)
ż = −z,

(3.9)

for some Ck function h. The function h is strictly positive for v > 0.

Proof Again, we follow the techniques in [DR], and apply theorem 2.7. The necessary
conditions can be readily checked: the existence of a Ck+2-center manifold follows
from the general theory in e.g. [HPS]; the presence of the foliation is a result of the
blow up: d(umv) = 0 and we also know dA = 0, while the partial hyperbolicity is
presumed in assumption T3 (normal hyperbolicity at the end point P−).

Hence, a normal form z ∂
∂z +Yλ(u, v, a) is obtained, with Y tangent to the foliation

dA = 0 and d(umv) = 0. Write

Yλ(u, v, a) = h1(u, v, A, λ)
∂

∂u
+ h2(u, v,A, λ)

∂

∂v
.

The set {uv = 0} is preserved under the normal form with {u = 0} as part of the
blow up locus, and {v = 0} outside the blow up locus (corresponding to the manifold
{ε = 0}). In any case, both spaces are invariant under Yλ. This invariance implies
that h1 = O(u), and hence

h1(u, v, A, λ) = −uh3(u, v,A, λ),

for some function h3. The tangency to d(umv) = 0 then yields

h2(u, v, A, λ) = mvh3(u, v, A, λ).

The center manifold {z = 0} has to include a line of singularities {z = 0, v = 0}. We
conclude that h3 = O(v) and

h3(u, v, A, λ) = vh(u, v,A, λ)

for some function h. Since we started with a Ck+2 normal form, h will at least be Ck.
The fact that h is nonzero for v > 0 follows from assumption T4; that it is positive
follows from assumption T2 (orbits are compatible to the chosen orientation on the
critical curve; hence as u̇ must be negative near γ−). ¤

The existence of Ck normal forms for any k enables us to prove C∞ smoothness
of invariant manifolds:

Proposition 3.10 The saturation of Σ− forms a smooth invariant manifold in the
blow up space, in a neighbourhood of the corner point P−.
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Proof We use the normal form in lemma 3.9 to prove the Ck-smoothness. We may
assume that Σ− is inside the neighbourhood where the normal form is valid, using
proposition 2.5 if necessary. We may suppose that the curve is a graph {z = γ(v), u =
u0 > 0}, and we suppose that u0 > 0 is chosen such that all (u, v) ∈ [0, u0]2 are in
the definition domain of the function h of lemma 3.9.

We can reduce to the case m = 1 by writing ũ = um:





˙̃u = −ũvh̃(ũ, v, A, λ)
v̇ = v2h̃(ũ, v, A, λ)
ż = −z,

with
h̃(ũ, v, A, λ) := mh(ũ1/m, v, A, λ)

It seems that we loose differentiability in terms of ũ, but for the remainder of the
proof, we just need that ũkh̃ is Ck, and this is still the case.

So assume now m = 1 (and drop the tildes). Observe that h is strictly positive
for v > 0, so in the domain uv > 0, (3.9) is equivalent to





u̇ = −uv
v̇ = v2

ż = −z/h(u, v, A, λ),

Fixing (u1, v1) the orbit in negative time of (u1, v1, z1), for any z1, crosses the
plane u = u0 at v = u1v1/u0. So, if we take (u0, u1v1/u0, γ(u1v1/u0)) as initial
conditions for (u, v, z), and if we follow the orbit for a time T (u1, v1) = u0−u1

u1v1
, then

we reach a point (u1, v1) of the saturation of the chosen curve. This yields a graph
z = z(u1, v1):

z(u1, v1) = γ(u1v1/u0) exp

(
−

∫ T (u1,v1)

0

dt

h(u0 − u1v1t,
u1v1

u0−u1v1t , A, λ)

)

Writing
t = T (u1, v1)s,

the above expression yields

z(u1, v1) = γ(u1v1/u0) exp
(
−

∫ 1

0

ds

g(s, u1, v1, A, λ)

)

with

g(s, u1, v1, A, λ) :=
u1v1

u0 − u1
h

(
u0 − (u0 − u1)s,

u1v1

u0 − (u0 − u1)s
,A, λ

)
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For u1 sufficiently small (let us say u1 < 1
2u0), and 0 ≤ s < 1 the function g is Ck if

u1v1 ≥ 0 and positive if u1v1 > 0. A problem could raise at s = 1: let us however
remark that, in the region under consideration (including s = 1)

0 <
u1

u0 − (u0 − u1)s
≤ 1,

while
∂n

∂un
1

(
u1

u0 − (u0 − u1)s

)
= (−1)n−1n!

u0s
n−1(1− s)

(u0 − (u0 − u1)s)n+1
,

such that un
1

∂n

∂un
1
( u1

u0−(u0−u1)s
) is bounded. It hence easily follows that

uk−1
1 g(s, u1, v1, A, λ)

is of class Ck. This observation will allow us to use proposition 2.14 in the appendix.
From this proposition follows

exp

(
−

∫ S

0

ds

g(s, u1, v1, A, λ)

)

is Ck for all 0 < S ≤ 1, u1v1 ≥ 0. Intersecting with the plane S = 1 gives us the
smoothness of z(u1, v1), and we also know that z(u1, v1) is Ck-flat at u1v1 = 0.

We have shown that the saturation is Ck in all points including the boundary
u1v1 = 0. The boundary consists of the critical curve up until its intersection with
the blow up locus, together with the invariant manifold on the blow up locus. Once we
have passed the corner point, no more singularities are expected in a neighbourhood
of A = 0, u = 0 (assumption T4). This means that we can saturate the curve beyond
the neighbourhood where the normal form is valid. This implies that the saturation
is Ck in a neighbourhood that does not depend on k. Since the result holds for all k,
this proves the C∞ smoothness in a neighbourhood of P−. ¤

3.3.2 Connecting the center manifolds

The saturation of the section Σ− forms a smooth invariant manifold W−, as above,
and by reversing time, so will the saturation of Σ+ along −Xv,A,λ. Along this work, we
had to reduce the neighbourhood in which v can vary, possibly it has been necessary
to restrict A to a small neighbourhood of the origin; on the compact set Λ we did not
put constraints.

To connect the two manifolds W− and W+ together (and hence construct canard
solutions), we consider a chart on the blow up locus where both manifolds are shown
to exist. This is the family rescaling chart, shortly denoted as the chart v = 1. Here,
the variables are rescaled as follows:




x = upx
y = uqy
v = um.
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In this chart, u becomes a regular perturbation parameter; we obtain a family of
vector fields

Xu,a,λ :
{

ẋ = f(x, y, u,A, λ)
ẏ = g(x, y, u,A, λ).

We have assumed in assumption T5 (connection condition) that a heteroclinic con-
nection Γ exists that connects γ− to γ+. Since X does not have any singularities
in the neighbourhood of any compact piece of Γ, we can extend the two manifolds
W− and W+ to meet in a transversal section T : choose a smooth transverse section
(transversally intersecting Γ, and hence locally transverse to the flow of X), then W−
intersects T in a smooth curve inside T , and so will W+. Denote these curves by ζ−
and ζ+.

Let σ be the intersection of T with the blow up locus {u = 0}. Choose a coordinate
system on σ, and denote the coordinate by z. Then, locally (z, u) is a coordinate
system in T , and ζ− and ζ+ are graphs in (u,A, λ). Let z±(u,A, λ) be such graph
representations (w.r.t. some fixed coordinate system of T ), then from assumptions T5
and T6 we know:

(i) z−(0, 0, λ) = z+(0, 0, λ)

(ii) ∂z−
∂A (0, 0, λ) 6= ∂z+

∂A (0, 0, λ).

The first condition is merely the existence of a heteroclinic connection Γ on the
blow up locus for A = 0. In proposition 3.19 we derive a formula that could be used
to check the above equations.

Anyway, under these assumptions, we can use the implicit function theorem to
solve

z−(u,A(u, λ), λ) = z+(u,A(u, λ), λ)

for A. This proves theorem 3.3.

3.4 Proof of theorem 3.4

The smoothness of manifolds in the blow up space does not necessarily imply the
smoothness in the standard phase space. But, we can recover a great deal. First,
outside the blow up locus the blow up map is a regular diffeomorphism, so outside
the origin we can prove the smoothness of the constructed invariant manifolds. To
show smoothness at the origin, extra arguments are needed.

A second observation is the necessity of the conditions in theorem 3.4. If a formal
expansion does not exist at the origin, then the manifolds can never be smooth there—
this is because the Taylor expansion of any smooth manifold would agree with these
conditions.

A third observation is relevant: sometimes, a formal expansion can be found to
be formally invariant under the vector field, up to order k. In that case, we are able
to prove the Ck-smoothness of the invariant manifolds in the origin.
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3.4.1 Reduction to (v,A) parameters

The formal expansions in theorem 3.4 are expressed in terms of (ε, a), but if necessary,
we can replace the expansions by expansions in terms of (v,A). Indeed, if

(a, ε) = (vkA, v`),

for some (k, `) (following the rescaling in (3.4)), we can translate the formal power
series â to a series in Â; this yields Â = v−kâ(v`, λ). In this section we will focus on
two results: on one hand that Â is a genuine power series in v and on the other hand
that smoothness in terms of (v, λ) of canard manifolds is equivalent to smoothness in
terms of (ε, λ).

Instead of continuing to work with the formal power series, we realize these series
as Taylor series of smooth functions; this is possible due to Borel’s theorem (see
e.g. [WA]). Choose

a = ã(ε, λ), y = ϕ̃(x, ε, λ).

We can consider y = ϕ̃(x, ε, λ) as a perturbation of a canard manifold W , but it is
advantageous to see it as a canard manifold of a perturbed vector field. We therefore
introduce an error function for (ϕ̃, Ã):

E(x, ε, λ) := f(x, ϕ̃(x, ε), ε, ã(ε, λ), λ)
∂ϕ̃

∂x
(x, ε)− vg(x, ϕ̃(x, ε), ε, ã(ε, λ), λ).

Due to the formal invariance of (â, ϕ̂), we know that E is flat in ε, uniformly in (x, λ).
Consider now a slightly altered vector field

X̃ε,a,λ :
{

ẋ = f(x, y, ε, a, λ)
ẏ = vg(x, y, ε, a, λ) + E(x, ε, λ) (3.10)

Clearly, for the family X̃ the same blow up procedure as for X leads to a good
desingularization. Hence, theorem 3.3 applies to X̃ and we can choose a control curve
a = A(ε, λ) as a blow down of a C∞ control curve expressed in (A, v)-coordinates.
Because the same blow up weights were used, it is clear that A(ε, λ) = εk/`A1(ε1/`, λ).
Because A is infinitely tangent to ã, it is clear that Â = Â1(v, λ), implying that it is
a genuine series in v.

We can now safely state that under the conditions of theorem 3.4, there exist

Â =
∞∑

n=0

An(λ)vn, ˆ̃y =
∞∑

n=0

ỹn(x, λ)vn,

with ˆ̃y being a formal canard “solution” of (3.5), and where ỹ is obtained using
Â = v−kâ. Assume for a moment that we can prove that the graph y = Ψ̃(x, v, λ) is
smooth in terms of (x, v, λ), then we can go back to the original parameters:

y = Ψ(x, ε, λ) := Ψ̃(x, ε1/`, λ),
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and because the formal expansion of Ψ only has terms in powers of v`, the above
function will still be smooth in ε. Similarly, the smoothness of a control curve in
terms of v will imply the smoothness of the control curve in terms of ε.

3.4.2 Canard solution manifold as a graph

Suppose a formal expansion as in theorem 3.4 exists. From now on, we will interpret
theorem 3.4 in terms of (v, A) instead of in terms of (ε, a). Reading this section, one
can treat (v, A) as being equal to (ε, a), but for the sake of generality we prefer to
make a distinction.

Take a control curve A(v, λ) and a manifold of canard solutions W as in theo-
rem 3.3. The blow down of this manifold W is, when restricted to v = 0, at least
continuous at the origin (because of the existence of a connection on the blow up
locus). Outside the origin, this restriction must coincide with the critical curve, and
this critical curve can be written as a graph in x (this is assumed in theorem 3.4).
Hence, locally around the origin, we can blow down W to a graph in (x, v, λ). Assume
now that

y = Ψ(x, v, λ)

is the blow down of W . We already know that it is smooth outside (x, v) = (0, 0), for
x close to 0. To prove theorem 3.4, it suffices now to prove:

Proposition 3.11 For all n, r ∈ N we have

lim
v→0

1
n!

∂n+rΨ
∂vn∂xr

(x, v, λ) =
∂ryn

∂xr
(x, λ),

where yn is defined in the statement of theorem 3.4.

As before we realize these series as Taylor series of smooth functions

A = Ã(v, λ), y = ϕ̃(x, v, λ).

so that the infinite jet of Ã resp. ϕ̃ coincides with the formal power series Â resp. ϕ̂.
In view of proving the proposition, we can now say that it is necessary to prove:





lim
v→0

∂n+rΨ
∂vn∂xr

(x, v, λ) =
∂n+rϕ̃

∂vn∂xr
(x, 0, λ).

lim
v→0

∂nA
∂vn

(v, λ) =
∂nÃ

∂vn
(0, λ),

uniformly in λ and for all (n, r). One can look at these expressions in blow up
coordinates, in the various charts. In the family rescaling chart (v = 1) it suffices to
check that 




lim
u→0

Ψ(upx, um, λ)− ϕ̃(upx, um, λ)
us

= 0,

lim
u→0

A(um, λ)− Ã(um, λ)
us

= 0,

(3.11)
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uniformly in λ and for all s ∈ N. We do not need to prove similar conditions on ∂n+r∆
∂vn∂xr

with ∆ = Ψ − ϕ̃, since the function ∆(u, x, λ) := ∆(upx, um, λ) is a C∞ function.
The existing relations between the derivatives w.r.t. (v, x) and the derivatives of H
w.r.t. (u, x) will imply the necessary conditions.

We must investigate these expressions in a full neighbourhood of (v, x) = (0, 0), so
it is necessary to look at the phase directional rescaling as well. There, the denomi-
nator will be of the form (urv`) for arbitrary (r, `). Supposing that one needs to look
in the directional chart {x = −1}, one finds sufficient conditions to be

lim
umv→0

Ψ(−up, umv, λ)− ϕ̃(−up, umv, λ)
urvs = 0. (3.12)

(If the above equation is true, then one has that the numerator is O(urvs), and, due
to the smoothness in terms of (u, v), that its n-th derivative w.r.t. u is O(ur−nvs).
Similarly, derivatives w.r.t. v and λ are treated.)

3.4.3 Perturbing the vector field

We can consider y = ϕ̃ as a perturbation of the manifold W , but we can also regard
it as a manifold of canard solution of a perturbed vector field. We therefore introduce
an error function for (ϕ̃, Ã) :

E(x, v, λ) := f(x, ϕ̃(x, v), v, Ã(v, λ), λ)
∂ϕ̃

∂x
(x, v)− vg(x, ϕ̃(x, v), v, Ã(v, λ), λ).

Due to the formal invariance of Â and ŷ, we know that E is flat in v, uniformly in
(x, λ). Consider now a slightly altered vector field

X̃v,A,λ :
{

ẋ = f(x, y, v, A, λ)
ẏ = vg(x, y, v, A, λ) + E(x, v, λ) (3.13)

Then, the graph y = ϕ̃(x, v, λ) defines a smooth manifold W̃ and (Ã, W̃ ) is a manifold
of canard solutions for X̃.

So, on one hand we have a family of vector fields (3.5), and on the other hand,
we have a family of vector fields (3.13) from which we know that it has an invariant
manifold {A = Ã(v, λ), y = ϕ̃(x, v, λ)}. Both families of vector fields are strongly
related to each other: the infinite jets with respect to v of both vector fields are the
same.

Consider the blow up map introduced for the vector field X. If we apply the same
blow up map on X̃, then we can compare X with X̃ in blow up coordinates. They
are everywhere infinitely tangent to each other along the blow up locus. Looking
in the phase directional rescaling charts, we used Ck-normal form coordinates as in
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lemma 3.9, so applying the same transformation to X̃, it is not hard to prove that
the perturbed vector field looks like

X̃ :





u̇ = −uvh̃(u, v, z, A, λ)
v̇ = mv2h̃(u, v, z, A, λ)
ż = −z + f̃(u, v, z, A, λ),

(3.14)

where h̃−h = O(urv`), f̃ = O(urv`) for (r, `) arbitrary high (provided that we choose
a Ck normal form with k ≥ r+` and shrink the neighbourhood of (u, v, z) = (0, 0, 0)).

The following lemma proves (3.12):

Lemma 3.12 Let z = ψ̃(u, v, A, λ) be invariant under the Ck vector field (3.14) in a
neighbourhood of (u, v, z) = (0, 0, 0). Then z = ψ̃(u, v, A, λ) is O(urv`) flat to z = 0,
with r + ` ≤ k. This asymptotic property is uniform in λ ∈ Λ and in A near the
origin.

Before proving this lemma, we show how this lemma can be used to prove (3.11),
finishing the proof of theorem 3.4. In the family rescaling chart, these invariant
manifolds can be extended until they intersect the section T , and we can do the same
thing in backward time for manifolds coming from the other side. The lemma states
that at some point (near infinity in the family rescaling chart) the invariant manifold
of X̃ is O(ur)-close to the invariant manifold of X.

Following the flow of X in the family rescaling map will not decrease the order of
separation between the two manifolds; this is due to the absence of singularities in a
tube around the heteroclinic connection Γ, and due to the fact that u̇ = 0 there.

If we apply the implicit function theorem to connect the center manifolds coming
from the attracting side and from the repelling side, then no difference is seen between
the perturbed invariant manifolds and the actual invariant manifolds up to order r.
So in the implicit solution we will see no difference between A and Ã up to order
r. This means that A and Ã are asymptotic of order O(ur) for any r. Hence, the
second part of (3.11) is shown. The first part easily follows now too, since from now
on, we can treat A and Ã to be the same, and the invariant manifold will then stay
O(ur)-close to the perturbed invariant manifold uniformly in any compact subset of
the family rescaling chart.

Remains to prove the lemma.
Proof (of lemma 3.12) The smoothness of such manifolds has already been proved.
So let us first consider the restriction to u = 0. This restriction is invariant under

v2h(0, v, A, λ)
∂

∂v
+ (−z)

∂

∂z
.

In the domain v ≥ 0, there is a unique invariant (center) manifold: z = 0. Hence
ψ̃ = O(u). Writing now z = uz1, we can pullback the vector field and write it in
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terms of (u, v, z1). This yields




u̇ = −uvh̃(u, v, uz1, A, λ)
v̇ = mv2h̃(u, v, uz1, A, λ)

ż1 = −(1− vh̃(u, v, uz1, A, λ))z1 + 1
u f̃(u, v, uz1, A, λ)

which leads to an equivalent vector field




u̇ = −uvh̃1(u, v, z, A, λ)
v̇ = mv2h̃1(u, v, z, A, λ)

ż1 = −z1 + f̃1(u, v, z1, A, λ),

but where f̃1 = O(ur−1v`) and is a Ck−1 function. This new vector field has an
invariant manifold z1 = ψ1(u, v,A, λ) := 1

u ψ̃(u, v, A, λ). Remains to prove that ψ1 is
O(ur−1v`). Continuing this process reduces to the case r = 0. So let us now assume
r = 0. Looking at v = 0, we find that zr = ψ̃r(u, 0, A, λ) is identically 0, since f̃ is
O(v`), with ` ≥ 1. Hence, we can proceed as before by writing z = vz1. ¤

3.5 Proof of theorem 3.6

In section 3.3, we have proved the existence of the “center manifolds” coming from
both sides of the blow up locus, and meeting somewhere on the blow up locus. In
fact, they only meet for ε = a = 0. So what happens when ε 6= 0, or a 6= 0? In these
cases, the manifolds are separated. We derive formulas for calculating the separation
of these manifolds.

Since the comparison between the attracting and repelling center manifolds is done
in the family rescaling charts, we will work most of the time in this chart.

In section 3.5.2 we state some facts on saddle connections in the plane using
Melnikov theory, which we will use to prove the second part of theorem 3.6.

3.5.1 The relation between angle and the control curve

We focus on the first part of theorem 3.6. We use the notations from theorem 3.6.
Let A(u, λ) be a control curve as in theorem 3.3, and define

∆(u,A, λ) = ζ−(u,A, λ)− ζ+(u,A, λ)

where ζ± hase been defined in (3.7). ∆ is the separation of the forward and backward
center manifolds. Of course, ∆ as well as A depend on the boundary curves Σ− and
Σ+ chosen in theorem 3.6, but the asymptotic expansion is unique. Suppose

A(u, λ) = ar(λ)ur + o(ur),
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for r ≥ 1 and with ar(λ) 6= 0, then,

∆(u,A(u, λ), λ) ≡ 0.

This has an effect on the asymptotic expansion:

∆(u, 0, λ) +A(u, λ)
∂∆
∂a

(u, 0, λ) = o(A(u, λ)).

Hence,

lim
u→0

(
∆(u, 0, λ)
A(u, λ)

+
∂∆
∂a

(0, 0, λ)
)

= 0. (3.15)

Notice that ∂∆
∂a (0, 0, λ) is the nonzero number ρ(λ) in (3.3). (An expression for this

number is calculated in proposition 3.19.) Conclusion:
{ A(u, λ) = ar(λ)ur + o(ur)

∆(u, 0, λ) = br(λ)ur + o(ur),
with

br(λ)
ar(λ)

= −ρ(λ) 6= 0. (3.16)

Note that (3.15) is slightly more general than (3.16), since it can also be used in
the case A(u, λ) is infinitely flat in u. But in such a case, we must add the assumption
that A(u, λ) 6= 0 for u 6= 0.

3.5.2 Perturbations of regular orbits in the plane

We intend to study the breaking of a heteroclinic connection on the plane, inducing
expressions that can be used in the specific problem that we want to investigate. We
will consider a 1-dimensional parameter µ, which will be the bifurcation parameter.
The whole setting may depend on other parameters λ, which are “trivial” in the sense
that they do not induce bifurcations. We hence will work with a family, depending on
λ, of 3-dimensional situations. We will keep µ a 1-dimensional parameter although it
is not necessary.

Consider a vector field

Xµ :
{

ẋ = f(x, y, µ)
ẏ = g(x, y, µ),

where f and g are smooth on R2×P . We will work most of the time with the extended
vector field Xµ+0 ∂

∂µ . Let ϕ(t, (x, y, µ)) be the flow for this vector field. Choose now a
(fibred) section T ⊂ R2×P transverse to the flow of Xµ, with a coordinate mapping

ψ : (h, µ) 7→ (ψ0(h, µ), µ).

We try to calculate intersections of heteroclinic connections passing through T in
these coordinates. In this section however, instead of a heteroclinic connection, a
perturbation of a regular orbit is considered. In the next section, we will see how the
results can be maintained if we let the orbit tend to a heteroclinic connection.
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Consider the projection on T along the orbits of Xµ:

P (x, y, µ) := ϕ(τ(x, y, µ), (x, y, µ)),

where τ is the transition time to go from (x, y, µ) to a point in T . Of course, P
is not defined everywhere, but is certainly defined in an open neighbourhood of the
chosen orbit, at least if the chosen orbit is cutting T just one time. One sees that P
is constant along orbits of Xµ and hence

H(x, y, µ) := 〈(1, 0), ψ−1(P (x, y, µ))〉

(the h coordinate of ψ−1(P (x, y, µ))) is a first integral for Xµ in some open neigh-
bourhood of the orbit.

Lemma 3.13 There is an integrating factor θ defined on the domain of P so that

Xµ :
{

ẋ = −θ(x, y, µ)−1 ∂H
∂y (x, y, µ)

ẏ = θ(x, y, µ)−1 ∂H
∂x (x, y, µ).

Proof Because H is invariant along orbits of Xµ, one has f ∂H
∂x + g ∂H

∂y = 0. So one
could define θ as a factor between 2 colinear nonzero vectors (f, g) and (−∂H

∂y , ∂H
∂x ).

¤

The key to finding the angle between the manifolds lies in the study of θ. But
first, we will show how to use the lemma to calculate the intersection.

Let γ be the chosen orbit for µ = 0, and assume γ cuts T transversally and just
one time. We study perturbations of γ as follows: we consider a vertical line segment
(segments of the form {(x, y, µ)|µ ∈ (R, 0)}, with (x, y) chosen on γ) and let points
of such a line segment flow. It is in a way unnatural to choose line pieces instead of
more general curves, but in view of proving the results in this chapter, vertical line
segments suffice. The flow of this line segment is intersected with T , and compared
to γ ∩ T .

The curve γ intersects T in a single point, but if we lift the curve vertically (π−1(γ)
if π is the projection onto {µ = 0}), then the intersection of π−1(γ) with T is some
curve, say parametrized as h = c(µ). Any point above γ meets this curve, if it follows
the flow of X0. So consider a point (p, µ) above γ (i.e. p ∈ γ), and let it flow along
X0 until it meets T . Elementary properties of line integrals gives us

c(µ)−H(p, µ) =
∫

X0(H)dt,

where the integration is along the curve γ (lifted to height µ) from (p, µ) to T ,
parametrized by the time of X0. (Indeed, one can see that the above integral is
equal to the line integral

∫
γ

grad H.)
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We could calculate c(µ), but this is not necessary: let (q, µ) be another point
above γ at the same height, then

H(p, µ)−H(q, µ) = −
∫

γ(p,q)

X0(H)dt, (3.17)

where γ(p, q) is the piece of γ from p to q.
In this section, we will only describe jµ

k H(p) − jµ
k H(q) (writing jµ

k for the k-jet
w.r.t. µ); only in a later section we will proceed to the limit (letting p and q tend to
infinity, or in other words, letting γ(p, q) tend to a heteroclinic connection).

For fixed p and q, we have

jµ
k H(p)− jµ

k H(q) = −
∫

γ(p,q)

jµ
k X0(H)dt,

Elaborating the integrand yields

X0(H) = f0
∂H

∂x
+ g0

∂H

∂y
= θ(f0g − g0f).

So, if we are able to calculate θ up to any order, then we can calculate the contact
between the invariant manifolds up to any order.

For calculating θ up to any order, observe that since d2 = 0 and dH = θωX , with
ωX the 1-form associated to Xµ one finds

dθ ∧ ωX + θdωX = 0

which amounts to saying that

Xµ(θ) = −θ div Xµ. (3.18)

This expression gives θ as a solution to a differential equation; if we have an initial
condition for θ, we can calculate θ explicitely. An appropiate initial condition is
obtained as follows:

Lemma 3.14 In points p ∈ T , we have

θ(p) := det (∂hψ0(h, µ) |Xµ(p))−1
,

with h = H(p). (We write ∂hψ0(h, µ) as the first column in a matrix, and Xµ(p) as
the second column.)

Proof There is a strong relation between H and ψ, since

H(ψ0(h, µ), µ) = h.

Derive this equation with respect to h:

D(x,y)H(ψ0(h, µ), µ)∂hψ0(h, µ) = 1.
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Let p = ψ0(h, µ), then the above equation becomes

D(x,y)H(p)∂hψ0(h, µ) = 1,

or differently written

det
(

∂hψ0(h, µ), (−∂H

∂y
(p),

∂H

∂x
(p))

)
= 1.

Since θf = −∂H
∂y and θg = ∂H

∂x it gives the result. ¤

The problem with this result is that the initial condition θ depends on µ. We will
see that this is a problem that we would like to avoid. First, notice that if θ0 = θ|µ=0

then
X0(θ0) = −θ0 div X0,

so

θ0(p) = θ0(P (p, 0)) exp

(∫

O(p,0)

div X0dt

)
,

where O(p, 0) is the orbit along X0 from p to the intersection point P (p, 0) of the
orbit with T . Assuming we can calculate this integral explicitely, then we can move
on to θ1 := ∂θ

∂µ |µ=0. However, plugging this into equation (3.18), we see that at some
point we need to calculate X1(θ0), with X1 = ∂X

∂µ |µ=0.
This means that we must be able to derive θ0 ◦ P as well as an integral along

orbits of X0. It is however possible to avoid deriving θ0 ◦ P , if we choose the section
T in such a way that θ0 does not depend on µ. Since the choice of the section will
not affect implicit results (such as the calculation of the control curve), we have some
freedom in the choice of the coordinate system on T .

Lemma 3.15 On T , there exists a coordinate system (and an associated integrat-
ing factor θ on the blow up locus) so that for all points p ∈ T close enough to the
intersection point γ ∩ T , we have

θ(p) = 1.

Proof Let h = α(k, µ) be a regular change of coordinates, so that

ψα(k, µ) := (ψ0(α(k, µ), µ), µ)

is a new coordinate function for T . We will put conditions on α so that θ with respect
to this new coordinate function has the required property. According to lemma 3.14,
we need to solve

g(p)
∂

∂k
(ψ0x(α(k, µ), µ))− f(p)

∂

∂k
(ψ0y(α(k, µ), µ)) = 1,
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where p = ψα(k, µ). Working out the above expression yields a differential equation
for α:

dα

dk
=

1

g(p)∂ψ0x

∂h (α, µ)− f(p)∂ψ0y

∂h (α, µ)

∣∣∣∣∣
p=(ψ0(α,µ),µ)

.

The local existence of solutions of differential equations implies the result. ¤

In these coordinates, we can calculate θ more easily. Writing

Xµ = X0 + µX1 + µ2X2 + · · · ,

and
θµ = θ0 + µθ1 + µ2θ2 + · · · ,

we can give recursive formulas for θi (always under the assumption that µ is 1-
dimensional): ∑

i,j

Xi(θj)µi+j =
∑

i,j

(−θj div Xi)µi+j (3.19)

At zero order:

θ0 = exp(
∫

O(p,0)

div X0dt),

with O(p, 0) the orbit from (p, 0) to the intersection point at T . For higher orders,
we have to solve differential equations at each point, but an integration along orbits
of X0 will always lead to solutions. This knowledge combined with the fact that the
initial conditions are trivial leads to a recursion only depending on the jets of Xµ

along µ = 0. Note that the integrands at higher order could contain Xi(θj), so a
way of deriving θj needs to be available to be able to calculate the integrals. All
these integrals only involve the unperturbed vector field, but still they can be quite
complicated.

Using (3.19), one finds

θn = θ0

∫

O(p,0)

n−1∑

k=0

(θk/θ0)(div Xn−k + Xn−k(log θ0) + Xn−k(θk/θ0))dt. (3.20)

3.5.3 Heteroclinic connections on the blow up locus

Let us apply the results of section 3.5.2 to the setting of this chapter. Take a section
T transverse to the flow of X on the blow up locus (in the family rescaling chart),
and assume T intersects the heteroclinic connection Γ which connects the points at
infinity P− and P+.

Write

θ(x, y) := exp

(∫

O(x,y)

div X
∣∣
u=A=0

dt

)
. (3.21)
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where O(x, y) denotes the orbit along the unperturbed vector field from (x, y) to the
intersection point in T . We have chosen a coordinate system on T so that θ = 1 for
points on T (see lemma 3.15).

Let ζ− be the intersection of an invariant manifold W− from section 3.3.2 with T ,
and let ζ+ be the intersection of W+ with T for some choices for the manifolds W−
and W+. In the chosen coordinate system, let z−(u,A, λ) be the graph representation
of ζ− and z+(u,A, λ) be the graph representation of ζ+.

Following the techniques of the previous section, we can calculate the k-jets jk(z+−
z−), with respect to µ, provided that we are able to calculate X0(H) for a first integral
H. The link between X0(H) and ζ± is stated in a limit version of formula (3.17):

Lemma 3.16 Consider the vector field X|A=0 with the perturbation parameter u.
Then, in (3.17),

lim
p→P−

ju
k H(p, u) = ju

k z−(0, λ), lim
q→P+

ju
k H(q, u) = ju

k z+(0, λ),

where ju
k is the k-jet w.r.t. u. Hence, also the k-jet of the right hand side of (3.17)

converges:

lim
p→P−,q→P+

∫

γ(p,q)

jµ
k X0(H) =

∫

Γ

jµ
k X0(H)dt,

where Γ is the heteroclinic connection from P− to P+.

Proof Let us focus on z−, and get a clear idea of what we have to prove. Given a
point p on the blow up locus, then the line segment {(p, u)|u ≥ 0} can be saturated
with respect to X. We have to prove that as p gets closer to the end point P−, the
intersection of this saturation with T is O(uk)-close to any choice of invariant manifold
W−, and this for any k > 0. Close enough to P− the straight line segment in Ck-
normal form coordinates is expressed by a Ck-curve (v(u), z(u)) with (v(0), z(0)) on
the center manifold of P− (the connection on the blow up locus). Choose a C with
0 < v(0) < C and saturate (in normal form coordinates) the Ck curve until the
section T ′ : {v = C} is met.

Take an initial point (u0, v0, z0), and let (u, v, z) be the coordinates of the inter-
section of the orbit through (u0, v0, z0) with T ′. In the light of these remarks, we
have to prove that z = O(uk).

It is easy to show that there is a κ > 0 so that the transition time τ to go from a
sufficiently small neighbourhood of (0, v(0), 0) to T ′ has a lower bound given by

τ ≥ κ

v0

Since z(t) = z0 exp(−t), we find |z| ≤ |z0| exp(−κ/v0). Finally, we have a first integral
umv, hence um

0 v0 = umC. We conclude

|z| ≤ |z0| exp(−κ̃/u1/m)

for some κ̃ > 0. This proves the k-flatness to z = 0 in the section T ′. ¤
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Lemma 3.17 Consider the vector field X|u=0 with the perturbation parameter A.
Then, in (3.17),

lim
p→P−

jA
k H(p,A) = jA

k z−(0, λ), lim
q→P+

jA
k H(p,A) = jA

k z+(0, λ),

where jA
k is the k-jet w.r.t. A.

Proof The technique of proving this lemma is slightly different. Let us again focus
at z−. Look at line segments {(p,A)|A ∼ 0}. Taking the union for all p on the
heteroclinic connection, we get a manifold (not necessarily invariant) U . As in the
previous lemma, we choose a section T ′ close to P−, and look in the phase directional
rescaling chart. Consider now the normal form of lemma 3.9, restricted to u = 0 and
look in the (v, z, A)-space:





Ȧ = 0
v̇ = mv2h(0, v, A, λ)
ż = −z,

In these coordinates, the manifold U is a graph z = ϕ(v, A), and any choice of
invariant manifold W is O(Ak)-close to z = 0 (in fact {z = 0} is the unique center
manifold for this system—all invariant manifolds W have a common intersection with
the blow up locus). The normal form is integrable: if an initial condition (v0, z0, A0)
inside U is taken, and we intersect with a section T ′ : {v = C}, then we get

A = A0, v = C, z = ϕ(v0, A) exp

(
−

∫ C

v0

ds

ms2h(0, s, A, λ)
dt

)
.

Letting v0 tend to zero, one can prove that the k-jet of the last expression tends to
zero as well (it is in fact a consequence of case (b) of proposition 2.8, if we apply the
transformation s = −s̃). We conclude that the saturation of line pieces are O(Ak)-
close to any choice of invariant manifold W if the line pieces tend to the line of
singularities. ¤

Remark that the preceding two lemma’s use techniques from the previous section,
with µ = u or µ = A one-dimensional. If we want to examine ju,A

k , then the previous
section needs to be formulated in a more-dimensional context.

Now, let us apply the results in the previous section, first on X|A=0, and on X|u=0.
An immediate consequence of the above lemmas, and (3.17) is:

(ju
k z−(0, λ)− ju

k z+(0, λ)) = ju
k

∫

Γ

θ(f |u=0g − g|u=0f)
∣∣∣∣
A=0

dt (3.22)

and (
jA
k z−(0, λ)− jA

k z+(0, λ)
)

= jA
k

∫

Γ

θ(f |A=0g − g|A=0f)
∣∣∣∣
u=0

dt
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where Γ is the heteroclinic connection for u = A = 0.
Define the separation function

∆(u, A, λ) := z−(u,A, λ)− z+(u,A, λ). (3.23)

Then, using the k-jet formulas from above, we can easily find expressions for the 1-jet:

Proposition 3.18

∆(u, 0, λ) = u

∫

Γ

(Fu + O(u2))dt

with

Fu := θ

(
f

∂g

∂u
− g

∂f

∂u

)∣∣∣∣
u=A=0

and with θ as in (3.21).

Proof Immediate from (3.22), if one calculates the 1-jet of θ(f |u=0g − g|u=0f) with
respect to u. ¤

Proposition 3.19

∆(0, A, λ) = A

∫

Γ

(FA + O(A2))dt,

with

FA := θ

(
f

∂g

∂A
− g

∂f

∂A

)∣∣∣∣
u=A=0

and with θ as in (3.21). The parameter A has the required regular breaking property
if and only if

ρ(λ) =
∫

Γ

FAdt 6= 0,

where ρ(λ) has been introduced in (3.3).

Combining these two propositions yields

Corollary 3.20 The first order term in A(u, λ) is

∂A
∂u

(0, λ) = −
∫
Γ

Fudt∫
Γ

Fadt
.

where Fu and Fa are defined above.
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3.5.4 Higher order angles

Assuming that the first order angle is zero, it may be interesting to find the first
order contact that is nonzero. Remark that even though the first order angle is zero,
the invariant manifolds can be tilted; the angle in the forward manifolds is then the
same as the angle in the backward manifolds. The appearance of a tilt will have an
effect on higher order terms, and that is the reason why the knowledge of z± up to
order uk−1 is necessary to calculate the angle of order uk. The method to work is
to calculate inductively the terms of order uk of the invariant manifolds, and stop
at the first order where the angle has a nonzero coefficient. The method consists in
expanding (3.22) in terms of u. This involves calculating the integrating factor θ up
to order uk−1, or at least θ|Γ. To that end, the recursive formule (3.20) can be used,
however, as one might expect, the formulas become quite cumbersome.

3.6 Proof of theorem 3.7

Under the conditions of theorem 3.7, we can explicitely calculate the optimal weights
for the blow up and check the conditions for theorems 3.3 and 3.4. Let us first rewrite
the vector field in some kind of standard form:

Lemma 3.21 Under the conditions of theorem 3.7, Xε,a,λ is locally C∞ conjugate to

X̃ε,a,λ :
{

ẋ = −y + 1
2x2 + x3F1(x, y, ε, a, λ) + xεF2(x, y, ε, a, λ)

ẏ = εG(x, y, ε, a, λ).

Furthermore,

(i) G(0, 0, 0, 0, λ) = −g·fxxfy;

(ii) ∂G
∂x (0, 0, 0, 0, λ) = −gxfy;

(iii)
∂G

∂a
(0, 0, 0, 0, λ) = gx

∣∣∣∣
fy fa

fxy fxa

∣∣∣∣− fxx

∣∣∣∣
fy fa

gy ga

∣∣∣∣ .

Proof Consider a transformation of the form

x = α(y, a, λ)x̃ + β(y, a, λ).

Since ẏ = O(ε), we have ẋ = α ˙̃x + O(ε), and hence

˙̃x =
1
α

f(αx̃ + β, y, 0, a, λ) + O(ε)

=
1
α

f(β, y, 0, a, λ) +
∂f

∂x
(β, y, 0, a, λ)x̃

+ α
∂2f

∂x2
(β, y, 0, a, λ)

x̃2

2
+ O(x̃3) + O(ε).
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Consider the mapping

I : (y, a, λ, α, β) 7→
(

∂f

∂x
(β, y, 0, a, λ), α

∂2f

∂x2
(β, y, 0, a, λ)

)
.

Defining α0 = 1/fxx, then I(0, 0, λ, α0, 0) = (0, 1). Furthermore,

Dα,β(I)(0, 0, λ, α0, 0) =
(

0 fxx

fxx ∗
)

This linear operator is invertible, hence the implicit function theorem gives us the
existence of (α, β) so that

˙̃x = F (x̃, y, ε, a, λ) :=
1

α(y, a, λ)
f(β(y, a, λ), y, 0, a, λ) +

x̃2

2
+ O(x̃3) + O(ε).

Because we need it for the second part, we will give the asymptotics of α and β
w.r.t. (y, a):

α(y, a, λ) =
(

1
fxx

)
+ O(‖(y, a)‖)

and

β(y, a, λ) =
(−fxy

fxx

)
y +

(−fxa

fxx

)
a + O(‖(y, a)‖2)

Define now

ỹ := −F (0, y, ε, a, λ) =
−1

α(y, a, λ)
f(β(y, a, λ), y, 0, a, λ) + O(ε). (3.24)

We can use ỹ as new y coordinate, locally near (y, ε, a) = (0, 0, 0). In this form, we
find

˙̃x = −ỹ +
1
2
x̃2 + O(x̃3) + εO(x).

This finishes the first part of the lemma. The second part is more elaborate. Let
y = ϕ(ỹ, ε, a, λ) be the implicit solution of (3.24), then

˙̃y = −ε
∂F

∂y
(0, y, ε, a, λ)g(x, y, ε, a, λ)

∣∣∣∣
y=ϕ(ỹ,ε,a,λ)

So,

G(x̃, ỹ, ε, a, λ) = −∂F

∂y
(0, ϕ, 0, a, λ)g(αx̃ + β, ϕ, 0, a, λ) + O(ε).

We can calculate ∂F
∂y (remembering that ∂f

∂x (β(y, a, λ), y, 0, a, λ) ≡ 0):

∂F

∂y
(0, y, 0, a, λ) =

−1
α(y, a, λ)2

f(β(y, a, λ), y, 0, a)
∂α

∂y
(y, a, λ)

+
1
α

∂f

∂y
(β(y, a, λ), y, 0, a, λ).
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So,
∂F

∂y
(0, 0, 0, 0, λ) = fxxfy.

From this last property easily follow the expressions for G(0, 0, 0, 0, λ) as claimed in
the lemma, and also for ∂G

∂x (0, 0, 0, 0, λ). Let us now focus on ∂G
∂a (0, 0, 0, 0, λ):

∂G

∂a
(0, 0, 0, 0, λ) = g·C(λ)

− fxxfy

(
gx

(
∂β

∂a
(0, 0, λ) +

∂β

∂y
(0, 0, λ)

∂ϕ

∂a
(0, 0, 0, λ)

)

+gy
∂ϕ

∂a
(0, 0, 0, λ) + ga

)
,

where C(λ) is some function of which the value is irrelevant in view of proving the
lemma, since under the assumptions of theorem 3.7, g· = 0). If we find the value of
∂ϕ
∂a we can put all pieces together. It can be readily checked from formula (3.24) that

∂ϕ

∂a
(0, 0, 0, λ) = −

∂F
∂a (0, 0, 0, 0, λ)
∂F
∂y (0, 0, 0, 0, λ)

= −fa

fy
.

We conclude:

∂G

∂a
(0, 0, 0, 0, λ) = g·C(λ)− fxxfy

(
gx(−fxa

fxx
+

fxy

fxx

fa

fy
)− gy

fa

fy
+ ga

)
.

Elaborating this expression yields a proof of the lemma. ¤

Corollary 3.22 Under the assumptions of theorem 3.7, the family of vector fields
Xε,a,λ is locally C∞-equivalent to

X̃ε,a,λ :
{

ẋ = −y + 1
2x2 + x3F1,λ(x, y, ε, a) + xεF2,λ(x, y, ε, a)

ẏ = ε(a + x + Gλ(x, y, ε, a)) (3.25)

with F1,λ, F2,λ and Gλ C∞ functions and

G(x, y, ε, a, λ) = O(ε, y, ‖(x, a)‖2),

and where the O notation is uniform in λ.

Proof Take the function G as in lemma 3.21. From the assumptions of theorem 3.7
we know that ∂G

∂x (0, 0, 0, 0, λ) > 0. By rescaling ε with a positive factor, we may
assume that ∂G

∂x = −1. We also know that ∂G
∂a (0, 0, 0, 0, λ) 6= 0. By rescaling the

a-space with a nonzero factor, we may assume that this derivative is 1. This proves
the corollary. ¤
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Let us now check all assumption T1–T6 for the normal form (3.25). The first
assumption—the existence of a critical curve—is guaranteed by the implicit function
theorem:

y − 1
2
x2 + x3F1,λ(x, y, 0, 0) = 0.

Clearly, there is a unique solution in the neighbourhood of (x, y) = (0, 0). Here, the
curve is a graph y = ϕ(x) = 1

2x2 + O(x3). Looking at the linear part of (3.25), we
find, for ε = 0: (

x + O(x2) −1 + O(x3)
0 0

)

The eigenspace transverse to the curve of singularities γ has eigenvalue x, so for x < 0
we have attraction, and for x > 0 there is repulsion.

Assumption T2 can be checked as follows: Substituting y = ϕ(x) in 1
ε ẏ leads to

the slow dynamics
ϕ′(x)x′ = x + Gλ(x, ϕ(x), 0, 0).

Since ϕ′(x) = x + O(x2), we find

x′ = 1 + O(x).

The slow dynamics ensures movement from the attracting to the repelling part of the
critical curve.

To look at assumption T3, we need to blow up the family of vector fields. We use
a rescaling in the parameter space:

a = vA, ε = v2.

The parameter A will serve as regular breaking parameter, but we come to that later.
In terms of these new parameters, the vector field yields

{
ẋ = −y + 1

2x2 + x3F̃1,λ(x, y, v, A) + xv2F̃2,λ(x, y, v, A)
ẏ = v2(vA + x + G̃λ(x, y, v, A)

(3.26)

The blow up formulas for blowing up the origin are

x = ux, y = u2y, v = uv.

In the phase directional rescaling chart, we look at the directional chart y = 1, and
find (after dividing through u) a family





u̇ = 1
2uv2 (vA + x + O(u))

v̇ = − 1
2v3 (vA + x + O(u))

ẋ = −1 + 1
2x2 − 1

2xv2(vA + x) + O(u)

The preimage of the attracting part γ− is represented by {x = −√2 + O(u), v = 0},
which is normally hyperbolically attracting with eigenvalue x < 0. Similarly, the
preimage of the repelling part will be normally hyperbolic up to the end point P+.
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To check the connection assumption (assumption T5), we look in the family rescal-
ing chart v = 1. Here, the family of vector fields is equivalent to

{
ẋ = −y + 1

2x2 + O(u)
ẏ = A + x + O(u).

The invariant line y = 1
2x2 − 1 is a curve without singularities, connecting P− to P+.

To verify that P± is indeed a part of this line, one needs to look at y = 1
2x2 − 1

in the phase directional rescaling coordinates; there, this curve is represented by
{x2 = 2(v2 + 1), u = 0}. In any case, assumption T5 is verified.

Assumption T6 can be checked easily in this case. This is because the unperturbed
vector field is Hamiltonian in the family rescaling chart, with integrating factor

θ(x, y) = exp(−y).

Using proposition 3.19, the parameter A is a regular breaking parameter if
∫

Γ

(−y +
1
2
x2)θ(x, y)dt 6= 0.

where Γ is the heteroclinic connection y = 1
2x2 − 1. The integral can be explicitely

evaluated.
This proves the first part of theorem 3.7. The next lemma deals with the second

part of the proof of theorem 3.7:

Lemma 3.23 There exist formal power series

â =
∞∑

n=0

an(λ)εn, ŷ =
∞∑

n=0

yn(x, λ)εn

so that yn is smooth in a uniform neighbourhood of x = 0, and so that ŷ is formally
invariant under (3.25).

Proof For the sake of readibility, we drop the dependence on λ in the notation. Let
us first start by making an observation. Let w(x, z, ε, a) be a smooth function in the
neighbourhood of the origin. Then we can define

ŵ(x, z, ε, a) :=
∞∑

|k|=0

wk(x)zk1εk2ak3

where k = (k1, k2, k3) is a multi-index and the functions wk are defined in a uniform
neighbourhood Ω of x = 0. If we have formal power series z = ẑ (w.r.t. ε) where
the coefficients are also defined in Ω, and if we have a formal power series a = â,
then we assert that ŵ(x, ẑ, ε, â) makes sense, and is a formal power series where the
coefficients are defined in the same neighbourhood Ω, i.e. the neighbourhood does not
shrink. This is true, provided that ẑ and â have no terms in ε0.
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Holding this property in mind, we write y = ϕ0(x, a) + z, where y = ϕ0(x, a) is
the graph of the curve of singularities of the unperturbed vector field (ε = 0) (the
existence of ϕ0 follows from the implicit function theorem). In the search of a formal
expansion of z, its constant term will be 0. The formula for ẋ yields

ẋ = −z + xO(ε).

As for ż, we get

ż = ẏ − ϕ′0(x)(z + xO(ε))

= ε
(
a + x + O(ε, z, ‖(x, a)‖2))− ϕ′0(x)(−z + xO(ε))

Knowing that ϕ′0(x) = x + O(x2), we find
{

ẋ = −z + xO(ε, a)
ż = ϕ′0(x)z + ε(a + x + O(ε, z, ‖(x, a)‖2))

Solutions satisfy the differential equation:

(−z + xO(ε, a))
dz

dx
= ϕ′0(x)z + ε(a + x + O(ε, z, ‖(x, a)‖2)) (3.27)

Assume that ẑ =
∑∞

n=1 zn(x)εn is known up to order εn and â is known up to order
εn−1. Look now at the coefficient of order εn+1 of the above equation. Remembering
that ẑ = O(ε) and â = O(ε), observe that the coefficient of order εn+1 of terms like
ẑ2, ẑ3, εẑ, ε2â etc. are functions in x, z1, . . . , zn, a1, . . . , an−1. Hence, the term in εn+1

in the lefthand side of (3.27) is a function

Fn(x, z1, . . . , zn,
dz1

dx
, . . . ,

dzn

dx
, a1, . . . , an−1) + xHn(x, an)

dz1

dx
.

Similarly, the right hand side of (3.27) is of the form

ϕ′0(x)zn+1 + an + Gn(x, z1, . . . , zn,
dz1

dx
, . . . ,

dzn

dx
, a1, . . . , an−1)

for some function Gn. Assuming that z1, . . ., zn and a1, . . ., an−1 are already known,
looking at the εn+1 level in (3.27) yields an equation

F̃n(x) + xHn(x, an)
dz1

dx
= ϕ′0(x)zn+1 + an + G̃n(x).

From the above equation, one can find a unique an, by reducing the equation to x = 0,
and once an is known, the equation becomes

ϕ′0(x)zn+1 = O(x).

From this equation, a smooth zn+1 can be found, since ϕ′0(x) = x + O(x2). This
process is a recursion to find unique â and ẑ as formal power series in ε. The final
step will define ŷ:

ŷ = ϕ(x, â) + ẑ.

which still will be a formal power series, with coefficients smooth in a uniform neigh-
bourhood of x = 0. ¤
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3.7 Proof of theorem 3.8

Under the conditions of theorem 3.8, we can explicitely calculate the optimal weights
for the blow up and check the conditions for theorem 3.3. Let us first rewrite the
vector field in some normal form:

Lemma 3.24 Under the conditions of theorem 3.8, Xε,a,λ is locally C∞ conjugate to

X̃ε,a,λ :
{

ẋ = −y + 1
2nx2n + xF (x, y, ε, a, λ)

ẏ = εG(x, y, ε, a, λ).

with F (x, 0, 0, 0, λ) = O(x2n). Furthermore,

(i) F (0, 0, 0, a, λ) =
(

1
fy

∣∣∣ fy fa

fxy fxa

∣∣∣
)

a + O(a2);

(ii) G(x, 0, 0, 0, λ) =
(

−1
α2n−2 fy

gx2n−1

(2n−1)!

)
x2n−1 + O(x2n)

(iii) G(0, 0, 0, a, λ) =
(−α

∣∣ fy fa
gy ga

∣∣) a + O(a2),

with α =
(

fx2n

(2n−1)!

)1/(2n−1)

.

Proof The proof is straightforward: apply the transformation

x̃ = αx, ỹ = −αf(0, y, ε, a, λ)

for some well chosen number α. If α is nonzero, then we can use (x̃, ỹ) locally as new
variables, since we know that fy 6= 0. Let’s calculate the new vector field:

˙̃x = αf(
1
α

x̃, y, ε, a, λ) = αf(0, y, ε, a, λ) + O(x̃) = −ỹ + F̃ (x̃, ỹ, ε, a).

for some function F̃ = O(x̃). The terms of O(x̃) can be specified a bit more: from the
conditions of theorem 3.8 follow (using the notations introduced in the announcement
of this theorem)

F̃ (x̃, 0, 0, 0, λ) =
1

α2n−1
fx2n

x̃2n

(2n)!
+ O(x̃2n+1).

Choose α =
(

fx2n

(2n−1)!

)1/(2n−1)

so that F̃ (x̃, 0, 0, 0, λ) = x̃2n

2n +O(x̃2n+1), and conclude:

˙̃x = −ỹ +
x2n

2n
+ x̃F (x̃, ỹ, ε, a, λ),
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with F (x̃, 0, 0, 0, λ) = O(x2n). This finishes the first part of the lemma. The sec-
ond part is more elborate. Let y = ϕ(ỹ, ε, a, λ) be the implicit solution of ỹ =
αf(0, y, ε, a, λ), then

∂F

∂a
(0, 0, 0, 0, λ) =

∂2F̃

∂x̃∂a
(0, 0, 0, 0, λ)

=
∂2f

∂x∂a
(0, 0, 0, 0, λ) +

∂2f

∂x∂y
(0, 0, 0, 0, λ)

∂ϕ

∂a
(0, 0, 0, λ)

= fxa + fxy
∂ϕ

∂a
(0, 0, 0, λ).

From ỹ = −αf(0, ϕ(ỹ, ε, a, λ), ε, a, λ), we obtain fa + fy
∂ϕ
∂a (0, 0, 0, λ) = 0, and hence

∂F

∂a
(0, 0, 0, 0, λ) =

1
fy

(fxafy − fxyfa).

Let us now concentrate on ˙̃y: ˙̃y = εG(x̃, ỹ, ε, a, λ), with

G(x̃, ỹ, ε, a, λ) = −α
∂f

∂y
(0, ϕ(ỹ, ε, a, λ), ε, a, λ)g(

1
α

x̃, ϕ(ỹ, ε, a, λ), ε, a, λ).

Hence,

G(x̃, 0, 0, 0, λ) = −αfyg(
1
α

x̃, 0, 0, 0, λ) =
−1

α2n−2
fygx2n−1

x2n−1

(2n− 1)!
+ O(x2n).

Finally it is easy to calculate that

∂G

∂a
(0, 0, 0, 0, λ) = −αfy

(
gy
−fa

fy
+ ga

)
= α(gyfa − gafy).

This finishes the proof. ¤

Corollary 3.25 Under the assumptions of theorem 3.8, the family of vector fields
Xε,a,λ is locally C∞-equivalent to

X̃ε,a,λ :
{

ẋ = −y + x2n

2n + xF1(x, y, ε, a, λ)
ẏ = ε(Ca + x2n−1 + G1(x, y, ε, a, λ))

(3.28)

with F1(x, 0, 0, 0, λ) = O(x2n), and G1(x, y, ε, a, λ) = O(x2n, a2, y, ε). The constant C
may depend on λ, and the regular breaking condition in theorem 3.8 is translated to

C 6= ∂F1

∂a
(0, 0, 0, 0, λ).
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Proof Take F and G as in lemma 3.24. From the assumptions of theorem 3.8, we
know that the coefficient

(
−1

α2n−2 fy
gx2n−1

(2n−1)!

)
is strictly positive hence by rescaling ε

with this the positive factor
(

−1
α2n−2 fy

gx2n−1

(2n−1)!

)
, we reduce the coefficient of x2n−1 in

G to +1. The coefficient of a in G will change to
(−α

∣∣ fy fa
gy ga

∣∣)

−
(

−1
α2n−2 fy

gx2n−1

(2n−1)!

) =
α2n−1(2n− 1)!

fygx2n−1

∣∣ fy fa
gy ga

∣∣

Since α2n−1 = fx2n/(2n− 1)!, the coefficient of a in G equals

C :=
fx2n

fygx2n−1

∣∣ fy fa
gy ga

∣∣ .

The regular breaking condition in theorem 3.8 states that this coefficient C cannot
be equal to 1

fy

∣∣∣ fy fa

fxy fxa

∣∣∣ which is exactly the coefficient in a of F1. ¤

Let us now check all assumption T1–T6 for the normal form (3.28). The first
assumption—the existence of a critical curve—is guaranteed by the implicit function
theorem: we search y in terms of x so that

y − 1
2n

x2n + xF1(x, y, 0, 0, λ) = 0.

Clearly, there is a unique graph solution in the neighbourhood of (x, y) = (0, 0). Here,
the curve is a graph y = ϕ(x) = 1

2nx2n + O(x2n+1) (to obtain this, remember that
F1(x, 0, 0, 0, λ) = O(x2n)). Looking at linear part of (3.28), we find, for ε = 0:

(
x2n−1 + O(x2n) −1 + O(x)

0 0

)

The eigenspace transverse to the curve of singularities γ has a negative eigenvalue for
x < 0, so there we have attraction, and for x > 0 there is repulsion.

To look at assumption T3, we need to blow up the family of vector fields. We use
a rescaling in the parameter space:

a = v2n−1A, ε = v2n.

The parameter A will serve as regular breaking parameter, but we come to that later.
We then blow the origin, as follows:

x = ux, y = u2ny, v = uv.

In the phase directional rescaling chart, we look at the directional chart y = 1, and
find (after dividing through u2n−1) a family





u̇ = 1
2nuv2n

(
Cv2n−1A + x2n−1 + O(u)

)
v̇ = − 1

2nv2n+1
(
Cv2n−1A + x2n−1 + O(u)

)
ẋ = −1 + 1

2nx2n + DAx− 1
2nxv2n(Cv2n−1A + x2n−1) + O(u)
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with
D =

∂F1

∂a
(0, 0, 0, 0, λ).

The preimage of the attracting part γ− is represented by {x = − 2n
√

2n+O(u), v = 0},
which is normally hyperbolically attracting, with eigenvalue −x2n−1. Similarly, the
preimage of the repelling part will be normally hyperbolicly repelling up to the end
point P+.

To check the connection assumption (assumption T5), we look in the family rescal-
ing chart v = 1. Here, the family of vector fields is equivalent to

{
ẋ = −y + 1

2nx2n + DxA + O(u)
ẏ = CA + x2n−1 + O(u).

The invariant line y = 1
2nx2n − 1 is a curve without singularities, connecting P− to

P+. To verify that P± is indeed a part of this line, one needs to look at y = 1
2nx2n−1

in the phase directional rescaling coordinates; there, this curve is represented by
{x2n = 2n(v2n + 1), u = 0}. In any case, assumption T5 is verified.

Assumption T6 can be easily checked in this case. This is because the unperturbed
vector field is Hamiltonian in the family rescaling chart, with integrating factor

θ(x, y) = exp(−y).

Using proposition 3.19, the parameter A is a regular breaking parameter if
∫

Γ

(
C(−y +

1
2n

x2n)−Dx2n

)
θ(x, y)dt 6= 0.

where Γ is the heteroclinic connection y = 1
2nx2n − 1. The integral can be explicitely

evaluated:
∫

Γ

(
C(−y +

1
2n

x2n)−Dx2n

)
θ(x, y)dt = (C −D)e

∫ ∞

−∞
exp(−s2n/2n)ds,

where e is the Euler number. Hence, the regular breaking condition is satisfied pro-
vided C 6= D.

This proves theorem 3.8.



CHAPTER 3. CANARDS AT NON-GENERIC TURNING POINTS 65

3.8 Examples

The examples in this section are not meant to describe general classes of vector fields,
but are aimed at illustrating in a rather unexpected way the theorems.

3.8.1 C1 canard solutions

Consider

Xε,a :
{

ẋ = y − x4

4 + εx2

ẏ = ε(a− x3)

According to theorem 3.8 and theorem 3.3, there exist manifolds of canard solutions
that are C∞ in the blow up space. Also the control curves, related to C∞ boundary
conditions Σ− and Σ+ are C∞ in ε1/4. We show here that these manifolds can be
blown down in a C1 way, but not in a C2 way, although the control curve itself will
be smooth. Indeed, first notice that

y =
x4

4
− (1 + x2)ε + O(ε2), a = O(ε)

is a graph that is formally invariant w.r.t. Xε,a, up to order O(ε). Let us try to extend
this to an expansion

y =
x4

4
− (1 + x2)ε + y2(x)ε2 + O(ε3), a = a1ε + O(ε2).

Expressing the formal invariance of this new expansion quickly yields

y2(x) =
a1 − 2x

x3
.

Hence, no choice of (a1, y2) exists so that the formal invariance is true up to order
O(ε2) and so that y2 is continuous at the origin.

But there is one more interesting observation to be made about this family of
vector fields: for a = 0, the vector field Xε,a has a symmetry {x 7→ −x, t 7→ −t}. This
means that if the two curves Σ− and Σ+ in theorem 3.3 are chosen symmetrically
with respect to the y-axis, then the control curve will be situated at {a = 0}! As a
consequence, all control curves will be flat to a = 0. Combine this with the knowledge
that the control curves are smooth in ε1/4, and we can conclude that each choice of
control curve a = A(ε) will be C∞ in ε!

Also, if the two boundary curves Σ− and Σ+ are not chosen “symmetrically” (Σ−
is not inside the backward saturation of Σ+ with respect to Xε,0, or equivalently Σ+ is
not inside the forward saturation of Σ− w.r.t. Xε,0), then the control curve cannot be
analytic, even if we know that the vector field and the boundary curves are analytic.
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3.8.2 Normal crossing of lines of singularities

Consider the scalar o.d.e.

ε
dy

dx
= a + x2n−1y + εF (x, y, ε, a, λ)

and the associated vector field

Xε,a,λ :
{

ẋ = ε
ẏ = a + x2n−1y + εF (x, y, ε, a, λ),

with F a C∞ function in the neighbourhood of (x, y, ε, a) = (0, 0, 0, 0). For ε = a = 0,
we have a crossing of the lines of singularities: x = 0 and y = 0. Along x = 0, it
would not be possible to satisfy the regular passage property, but along y = 0, it will
be, so we will define y = 0 as the critical curve.

Observe that along y = 0, for x < 0 the critical curve is attracting, and for x > 0
the critical curve is repelling. Given a point p on the attracting part of the critical
curve, then the regular passage assumption (assumption T2) is trivially satisfied, since
ẋ = ε > 0. To check the remaining assumptions, we blow up the origin:

ε = v4n, a = v4n−1A, x = u2x, y = uy, v = uv.

In the phase-directional rescaling chart x = +1, we find (after dividing by u4n−2)




u̇ = 1
2uε4n

v̇ = − 1
2v4n+1

ẏ = v4n−1A + y − 1
2v4ny + O(u).

Clearly, assumption T3 is satisfied, and due to the absence of singularities outside
uv = 0 assumption T4 also holds. Look now in the family rescaling chart v = 1:

{
ẋ = 1
ẏ = A + x2n−1y + O(u).

Clearly, for A = 0 there is a connection y = 0 connecting P− to P+, and on this con-
nection, no singularities appear. This shows that assumption T5 is satisfied. Finally,
in order to check assumption T6, one needs to calculate an integrating factor. One
readily checks that

θ(x, 0) = exp
(∫ 0

x

s2n−1ds

)
= exp

(−x2n/2n
)
.

Using proposition 3.19, A is regular breaking parameter because
∫

y=0

θdt 6= 0.
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The control curve A = A(u) in original coordinates is a curve

a(ε) = ε(4n−1)/4nA(ε1/4n).

where A is smooth in its argument. If n > 1, then generally, a(ε) will not be C∞ in
ε. If n = 1, then one can prove the existence of a formally invariant expansion, and
using theorem 3.4, the smoothness in ε can be shown.
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Chapter 4

Study of the transition time

We aim to study the transition time of orbits inside canard manifolds. The behaviour
of the transition time, more specifically the monotonicity of this transition time, can
be important in proving unicity in boundary value problems. We notice that for
singularly perturbed problems of the form

{
ẋ = εσ

ẏ = F (x, y, ε, a)

that are traditionally written down as an o.d.e. problem εσ dy
dx = F (x, y, ε, a), the

study of the transition time is trivial since

dt =
1
εσ

dx.

In general singularly perturbed vector fields, as in (3.1), the study becomes quite
more complicated. Inside canard manifolds, orbits can be divided into several parts.
A part of the orbit can be seen as an ε-perturbation of a regular orbit of the reduced
vector field for ε = 0 (this regular orbit is the regular passage towards a region near
the critical curve). This part is followed by a part that “follows” the critical curve.
The transition time in this part is studied in section 4.1. Finally, a part of the orbit is
close to the simple passage turning point, as introduced in chapter 3; the time study
of this part will be done in section 4.2.

4.1 Normally hyperbolic passage

When studying the transition time, assumptions N1 and N2 are too weak (see the
example in section 4.1.1). Our interest goes to proving monotonicity in the transition
time, and in that case we will need some kind of ÃLojasiewicz condition:
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Assumption N3 At points p of the critical curve γ, in any C∞ center manifold Wp

of Xε,λ + 0 ∂
∂ε in M × [0, ε0[, there is a C > 0 and an N ∈ N so that

|Xε,λ(q)| ≥ CεN , ∀q ∈ Wp

Using assumption N3 we can guarantee the existence of a largest σ ∈ N so that

|Xλ(q)| = O(εσ), ∀q ∈ Wp

We call σ the order of degeneracy of Xε,λ. Note that the smallest σ ≤ N for any N
satisfying N3.

Let p ∈ γ be fixed. There exists a Ck-center manifold W c of Xλ at p. The center
manifold W c is seen as a two-dimensional manifold inside M × [0, ε0[. Let Xc

λ be the
restriction of Xλ to W c (center-manifold reduction), and define the slow vector field

X0
λ(p) = lim

ε→0
ε−σXc

λ(p).

It is easily seen that this construction is independent of the choice of center manifold
W c (provided the smoothness is high enough of course), and hence a vector field along
γ is constructed:

Definition 4.1 The slow vector field X0
λ is a vector field along the critical curve γ

defined by the construction above. This construction desingularizes the dynamics on
the critical curve γ so that it is no longer a curve of singularities (although it may
still contain isolated singularities).

In practice, the slow vector field is easily derived from the original (fast) vector
field. As an example, consider

{
ẋ = y − F (x, λ)
ẏ = εG(x, λ). (4.1)

The critical curve is given by γ : y = F (x, λ), and at points (x, F (x, λ)) where
∂F
∂x (x, λ) < 0 the vector field is normally attracting. Starting with a center mani-
fold y = F (x, λ) + εF1(x, λ) + O(ε2), one easily finds that the reduced dynamics on
this center manifold is given by

Xc
λ : ẋ = εG(x, λ)

∂F

∂x
(x, λ)−1 + O(ε2).

The slow vector field thus yields

ẋ = (G/
∂F

∂x
)(x, λ).

This example shows however, that sometimes not all points are regular for the slow
vector field. Indeed, at individual zeroes of G, the slow vector field remains singular.
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Definition 4.2 With
T (ε, λ) :=

∫

Oε

dt

we denote the integral over a compact piece of an orbit of Xε. Which piece will be
clear from the context where T (ε, λ) appears. The orbit Oε limits to a piece of the
critical curve γ, which we denote O0. With

∫

O0

ds

we define the integral over this piece of the critical curve, parametrized by the time of
the slow vector field defined above.

Theorem 4.3 Assume assumptions N1 and N3 are verified for the family of vector
fields Xε,λ on M . Let Σ be a smooth admissible entry boundary curve and let W be
the saturated manifold.

Consider the passage from points on Σ to a section of M × [0, ε0[, intersecting γ
at a normally attracting point. Assume that the integral of the slow time converges.
The transition time T (ε, λ) from Σ to this section yields

T (ε, λ) =
1
εσ

(∫

O0

ds + ϕ(ε, λ)
)

where ϕ is C∞ and is o(1) as ε → 0 (uniformly in λ). The integral
∫

O0
ds integrates

the slow time over the piece of γ between the corner point of W and the intersection
of γ with the transverse section.

Note 1: In theorem 4.3 an important condition is added: the integral of the slow
time must converge. More specifically, this means that the slow vector field must not
contain singularities on the critical curve. It is however perfectly possible to treat
isolated singularities on the critical curve. We will come back to this later.
Note 2: We limit the theorem to the case of smooth admissible entry boundary
curves, merely for the sake of simplicity. If Σ is non-smooth at ε = 0, one can obtain
similar results.

Corollary 4.4 Under the conditions of theorem 4.3 the transition time T (ε, λ) is
monotonously increasing to +∞ as ε → 0, at least for ε > 0 small enough.

Let us show how this corollary follows from the theorem. One has

εσT (ε, λ) =
∫

O0

ds + ϕ(ε, λ).

Differentiating this equation w.r.t. ε yields

σεσ−1T (ε, λ) + εσ ∂T

∂ε
(ε, λ) =

∂ϕ

∂ε
(ε, λ);
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in other words:

∂T

∂ε
(ε, λ) =

1
εσ+1

(
ε
∂ϕ

∂ε
(ε, λ)− σ

(∫

O0

ds + ϕ(ε, λ)
))

.

We conclude that

∂T

∂ε
(ε, λ) =

1
εσ+1

(
−σ

∫

O0

ds + ϕ1(ε, λ)
)

,

for some C∞ function ϕ1 that is o(1) as ε → 0. For ε > 0 small enough, this expression
is negative, so T (ε, λ) will be monotonously increasing as ε → 0.

4.1.1 Non-monotonous transition time

The extra ÃLojasiewicz condition (assumption N3) is required to obtain the monotonic-
ity of the transition time. As a counterexample to the monotonicity if this condition
is not satisfied, consider for 0 ≤ ε < 1 the family of vector fields

Xε :
{

ẋ = −x
ẏ =

(
1 + ε sin2(1/ε2)

)
exp(−1/ε).

Notice that ẏ > 0 for all ε ∈]0, 1[, that the vector field has a C∞ extension at ε = 0,
and that assumptions N1 and N2 are verified. The saturation of the admissible entry
boundary curve Σ: {x = 0, y = 0, ε ≥ 0} is a C∞ manifold WΣ (theorem 2.5) outside
(x, y, ε) = (0, 0, 0). However, the transition time towards the section {y = 1} is given
by

T (ε) =
exp(1/ε)

1 + ε sin2(1/ε2)
,

which is certainly not monotonous as ε → 0. Indeed, one can check that its derivative
has the property

dT

dε
(ε) ∼ 1

ε2
exp(1/ε)(−1 + 2 sin(2/ε2) + o(1))

which changes sign infinitely many times as ε → 0.

4.1.2 Proof of theorem 4.3

We split the integration path in several parts: a passage of type I and several passages
of type II. To that end, we cover the compact piece O0 of γ by a finite number of
neighbourhoods {Ui}i=0,...,N where Ck-normal forms are valid: we assume that in
each Ui the vector field has the form of the vector field in lemma 2.6, at least for the
conjugacy version of this lemma. More specifically, because of assumption N3, we can
divide g by εσ and find that the vector field is Ck-conjugate to

{
ẋ = −xh(x, y, ε, λ)
ẏ = εσg(y, ε, λ)h(x, y, ε, λ), (4.2)
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for some strictly positive function h and some positive function g. Note that a priori g
may have individual zeros (refer to section 4.3 for the treatment of such an example).
The slow vector field is easily deduced from the above normal form:

dy

ds
= g(y, 0, λ)h(0, y, 0, λ).

The slow transition time hence yields
∫

O0

dy

g(y, 0, λ)h(0, y, 0, λ)
.

The assumption in the formulation of theorem 4.3 stating that the integral of the slow
time must converge will imply that g(y, 0, λ) cannot be zero along O0.

Let us describe now the passage types:

Type I. A passage between the curve Σ and a curve Σ0, where Σ0 is any boundary
curve inside W for which the end point on {ε = 0} is inside the neigh-
bourhood U0 and outside γ. A good choice for Σ0 could be an image of Σ
under the time-τ map of the vector field, for a well-chosen time τ . In that
case, Σ0 inherits the regularity properties of Σ, and will hence be C∞.

Type II. A passage between a curve Σi and Σi+1, where the end point of Σi is inside
Ui, and the end point of Σi+1 is inside Ui ∩ Ui+1. A good choice for Σi+1

would be the intersection of the manifold W with a C∞ transverse section
in Ui ∩Ui+1; for i ≥ 1 this yields C∞ curves. A special case is the passage
between Σ0 and Σ1, but below it will need no different treatment.

Clearly, the transition time T (ε, λ) is the sum of TI(ε, λ) and TII(ε, λ). Notice
already that

TI(ε, λ) = O(1), as ε → 0,

and that TI is C∞. Concerning TII , remember that the orbits Oε lie inside an invariant
manifold x = ψ(y, ε, λ), so the transition time for the passage from Σi to Σi+1 is given
by

TII(ε, λ) =
1
εσ

∫ yi+1(ε,λ)

yi(ε,λ)

dy

g(y, ε, λ)h(ψ(y, ε, λ), y, ε, λ)
.

whereas the integral of the slow time yields
∫

OII
0

ds =
∫ yi+1(0,λ)

yi(0,λ)

dy

g(y, 0, λ)h(0, y, 0, λ)
.

Since we have assumed in the formulation theorem 4.3 that the integral of the slow
time converges, the segment [yi, yi+1] cannot exhibit zeros of g(y, 0, λ). We thus
can safely assume that g(y, ε, λ)h(ψ(y, ε, λ), y, ε, λ) is nonzero in this segment. As a
consequence, εσTII(ε, λ) − ∫

OII
0

ds is a function that is as smooth as the boundary
curve, and is o(1) as ε → 0.
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4.2 Passing through a turning point

We position ourselves in the framework of chapter 3, and assume now that the curve
of singularities γ has a “simple passage turning point”, dividing the curve γ in a
normally attracting part, γ−, and a normally repelling part γ+. Consider a pair of
admissible entry–exit boundary curves (Σ−,Σ+). These two curves are connected by
a “canard manifold” W , and this manifold is invariant under the flow of the vector
field, for one exceptional curve a = A(ε, λ) in parameter space—see theorem 3.3. It is
our goal to investigate the transition time from Σ− to Σ+, restricting the parameters
to this exceptional control manifold a = A(ε, λ).

The results in this section will be written down in terms of (v,A), which is a
rescaled version of (ε, a):

(a, ε) = (vkA, v`).

Once this blow up in parameter space has been performed, we assume that in an
admissible chart near the simple passage turning point, the vector field looks like
(3.5), which we repeat here for the sake of convenience:

Xv,A,λ :
{

ẋ = f(x, y, v, A, λ)
ẏ = vg(x, y, v, A, λ) (4.3)

Of course, when studying the transition time inside canard manifolds, we restrict
parameter space to a manifold A = A(v, λ), and study one specific invariant manifold
of the family

Xv,λ :
{

ẋ = f(x, y, v,A(v, λ), λ)
ẏ = vg(x, y, v,A(v, λ), λ) (4.4)

The vector field in (4.4) is blown up, using the blow up map

Φ: R+ × S2 → R3 : (u, (x, y, v)) 7→ (x, y, v) = (upx, uqy, umv).

We remind the reader that if ` 6= 1 in the first parameter rescaling, then in practice
m = 1 in the second rescaling, and conversely, if m 6= 1, then in practice ` = 1 in the
first rescaling. See section 1.1 for a clear example. The results in this section will be
written down in terms of the singular parameter v, but can easily be translated to
results in terms of ε.

Definition 4.5 Let Φ be the blow up map defined above, used for blowing up a sin-
gular point of a family of vector fields Xλ := Xv,λ + 0 ∂

∂v . Assume that the blown up
vector field yields

Xλ = u−αΦ∗(Xλ)

(letting α be the largest index i ∈ N so that Φ∗(Xλ) is divisible by ui). We define the
blow up constant b as the constant

b := σ − α

m
.
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The constant σ is chosen as the order of degeneracy along γ (the existence of such an
index is guaranteed under assumption N3; see section 4.1).

One can think of the blow up constant b as being strictly positive in the sequel.
An uninteresting and technical proof would indicate that in all successful blow up
constructions, the constant b is always positive. But there is really no need to do
this since it is easy to check once the blow up weights are identified. Instead, we will
impose this as a condition in all future results.

To pass through the turning point, a regularity condition as in assumption N3 is
needed. A priori, the “order of degeneracy” σ may be different for the limit point P±.
To give an example, consider the vector field

{
ẋ = v(x2 + v)
ẏ = xy + O(v2),

which after the directional blow up (x, y, v) = (−u, uy, uv) yields




u̇ = −uv(u + v)
v̇ = v2(u + v)
ẏ = −y + O(u).

where the order of degeneracy, σ, is 1 outside u = 0, but 2 at u = 0. This indicates a
problem, and extra blow ups are needed to completely desingularize the system. (In
this example, the problem can be bypassed by using the weights (2, 1, 2) instead of
(1, 1, 1) in the blow up.)

Assumption T7 (Corner Regularity)
In the normal form that is obtained in lemma 4.8, the function h is nonzero at
(u, v) = (0, 0).

This assumption expresses the fact that the order of degeneracy σ does not change
at the limit point P−.

We remind the reader that the saturation of a smooth entry boundary curve Σ−
under the flow of Xλ is smooth, except at a corner point c−, which is defined as the
ω-limit of the the base point Σ− ∩ {v = 0} of the entry boundary curve. Because
the base point of this boundary curve lies in the basin of attraction of γ−, the corner
point is a point on the critical curve.

Theorem 4.6 Assume that the conditions of theorem 3.3 are verified together with
assumption N3 and assumption T7 for the family of vector fields Xv,A,λ on M . Let Σ±
be a pair of smooth admissible entry-exit boundary curves, and let W be the canard
manifold connecting Σ− to Σ+ along the control curve A = A(v, λ) in parameter space
(so that W is an invariant manifold for the subfamily Xv,A(v,λ),λ).
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Assume also that the transition time of the slow vector field converges between the
corner points c− and c+ as defined above (see definitions 4.1 and 4.2), and denote
this transition time by ∫

O0

ds.

Let k ∈ N1 be arbitrary. The transition time T (v, λ) from Σ− to Σ+ along the
parameter manifold A = A(v, λ) is given by

T (v, λ) =
1
vσ

(∫

O0

ds + vbϕ(v, λ) + ϕ̃(v, λ)
)

,

where ϕ is Ck-smooth w.r.t. v1/m, and where ϕ̃ = O(v) as v → 0. The smoothness
of ϕ̃ is detailed in proposition 4.9. The index b is the blow up constant as defined in
definition 4.5, and is assumed to be strictly positive. The index m is the weight of the
v-variable in the family blow up.

Because the splitting between ϕ and ϕ̃ is nonunique (i.e. depends on k), one cannot
immediately assume that one can take ϕ to be C∞. On the other hand, due to the
low regularity of ϕ̃ there is really no need to in obtaining a smooth contribution in ϕ.

Corollary 4.7 For v > 0 small enough, the transition time in theorem 4.6 tends
monotonously to +∞.

The proof of theorem 4.6 and of this corollary is written down in section 4.2.2.

4.2.1 Example: periodic orbits

Consider the van der Pol equation

Xε,a :
{

ẋ = y − 1
2x2 − 1

3x3

ẏ = ε(a− x)

and the rescaled variant

Xv,A :
{

ẋ = y − 1
2x2 − 1

3x3

ẏ = v2(vA− x) .

Consider the boundary curve Σ: {x = 0, y = Y, v ≥ 0} with 0 < Y < 1
6 . The base

point (x, y) = (0, Y ) lies in the basin of attraction of γ− : {y = 1
2x2+ 1

3x3, x ∈]−1, 0[},
but it also lies in the basin of repulsion of γ+ : {y = 1

2x2 + 1
3x3, x > 0}. So we can

take Σ− = Σ+ = Σ and use theorem 3.3 to create a manifold W consisting of periodic
orbits for the family Xv,A(v). We demonstrate how the period can be characterized
with theorem 4.6.

The slow vector field along γ = γ− ∪ γ+ is defined as

ẋ =
−1

1 + x
,
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(the vector field is of the form (4.1) and the slow vector field can hence be similarly
deduced), so ∫

O0

ds =
∫ x1(Y )

x0(Y )

(1 + x)dx,

where x0(Y ) and x1(Y ) are respectively the largest negative and the unique positive
solutions of 1

2x2 + 1
2x3 = Y . We conclude using theorem 4.6 that the period of the

periodic orbits inside W is given by

T (v, Y ) =
1
v2

(∫ x1(Y )

x0(Y )

(1 + x)dx + O(v)

)
,

and furthermore that T (v, Y ) tends monotonously to infinity as v → 0, uniformly for
Y in compact subsets of ]0, 1/6[. Replacing v by

√
ε yields a characterization in terms

of ε instead of v.

4.2.2 Proof of theorem 4.6

The study of the transition time from Σ− to Σ+ can be divided into the study of
four types of transitions. A passage from Σ− along any compact piece of the critical
curve γ− is described by passages of types I and II as in section 4.1.2. Similarly, upon
reversing time, the passage from Σ+ along any compact piece of the critical curve γ+

can be studied using the techniques in section 4.1.2. To pass near the turning point,
we have to study two more types of passages:

Type III. In an admissible chart where the turning point is represented by the origin,
we blow up the origin, as in chapter 3. A type III passage will cover the
passage near P− in a phase-directional rescaling chart (where we can find
a normal form (for Ck-equivalence) for the family as in lemma 3.9. Also
the passage near P+ is, upon reversing time, to be studied as a type III
passage.

Type IV. A passage along compact pieces of the connection Γ in the family rescaling
chart of the blow up.

Before considering a passage of type III, let us first consider a type IV passage.
In the family rescaling, the blown up vector field is defined as

Xλ =
1
uα

Φ∗(Xλ),

where Xλ = Xv,λ +0 ∂
∂v is the extended family on M× [0, v0[, and where Φ is the blow

up map as defined in by the equations in (1.3). The factor uα is the common divisor
that is divided away when blowing up. In the family rescaling chart, the canard
manifold W is a perturbation of the heteroclinic connection Γ on the blow up locus.
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Because this connection is a regular orbit (assumption T5), we can assume that Xλ

does not have any singularities inside W . Hence, the transition time between two
sections cutting W transversally is a function ϕIV (u, λ) that is C∞ smooth in (u, λ)
and that is O(1) as u → 0. Hence,

TIV (v, λ) =
1

vα/m
ϕIV (v1/m, λ) =

1
vσ

vbϕIV (v1/m, λ),

with b = σ − α
m as in definition 4.5. Assuming b > 0 this shows that the time spent

in type IV passages is small with respect to the time spent in type II passages.

So let us now take care of type III passages.

Lemma 4.8 The vector field Xv,A,λ restricted to the canard manifold W is, restrict-
ing the parameters to the manifold A = A(v, λ), Ck-conjugate to the vector field

{
u̇ = −uα+1vσh(u, v, λ)
v̇ = muαvσ+1h(u, v, λ) (4.5)

in a region near P− where the phase-directional rescaling coordinates are valid. The
function h does not have any zeros at u = 0, except maybe at (u, v) = (0, 0). If
assumption T7 is satisfied, then also at (u, v) = (0, 0), h cannot be a zero.

Proof Starting point is the normal form for Ck+σ-equivalence in lemma 3.9. We
can transform it to a normal form for Ck+σ-equivalence, by multiplying the vector
field with a strictly positive Ck+σ function. This way, we get a vector field that is
Ck+σ-conjugate to the blown up vector field. By multiplying with a factor uα, we get
a vector field that is Ck+σ-conjugate to the original vector field, at least in the region
where the phase-directional rescaling coordinates are valid:





u̇ = −uα+1vh(u, v, A, λ)f(u, v, z, A, λ)
v̇ = muαv2h(u, v,A, λ)f(u, v, z, A, λ)
ż = −uαzf(u, v, z, A, λ),

where f is Ck+σ and strictly positive, and where h is Ck+σ and positive. Restricting
to the canard manifold W , which is a Ck+σ graph z = ψ(u, v, λ), and restricting the
parameter space to the manifold A = A(v, λ) we get a vector field on W :

{
u̇ = −uα+1vh̃(u, v, λ)
v̇ = muαv2h̃(u, v, λ)

where h̃ is Ck+σ and positive. The index σ is chosen so that h̃(u, v, λ) is divisible by
vσ for all u > 0. By continuity, this will be automatically true for u = 0 as well. Upon
writing h̃(u, v, λ) = vσh(u, v, λ) (so that h is a Ck function), and upon dropping the
bars, we obtain the equations in the statement of the lemma. Finally, we remark that
the absence of zeros at u = 0 follows from assumption T5, which states that at the
blow up locus there is a heteroclinic connection without any singular points. ¤
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Using the above lemma, one finds that the transition time from a section {u = u0}
to a section {v = v1} is the same as the transition time of the vector field in (4.5).
Remembering that v = umv, an orbit at “height” v is an orbit starting at (u, v) =
(u0, vu−m

0 ) and finishing at (u, v) = ((v/v1)1/m, v1). Using the normal form of the
above lemma, one finds

TIII(v, λ) =
∫ (v/v1)

1/m

u0

du

−uα+1vσh(u, v, λ)

∣∣∣∣
v=vu−m

.

The above can now be rewritten as

TIII(v, λ) =
1
vσ

∫ u0

(v/v1)1/m

du

uα+1−mσh(u, vu−m, λ)
=

1
vσ

∫ u0

(v/v1)1/m

umb−1du

h(u, vu−m, λ)
,

where b is the blow up constant as defined in definition 4.5. To guarantee the con-
tinuity of the righthand side, we need to assume b > 0 and h(u, 0, λ) 6= 0, which is
done in assumption T7.

Now that we have assumed b to be strictly positive, the continuity of the righthand
side is guaranteed, and tends to

−
∫ 0

u0

umb−1du

h(u, 0, λ)
,

which is an integral of the slow time along the part u ∈ [0, u0] of the critical curve
γ−. This shows that

TIII(v, λ) =
1
vσ

(∫

OIII
0

ds + ϕIII(v, λ)

)
,

where

ϕIII(v, λ) =
∫ u0

(v/v1)1/m

umb−1du

h(u, vu−m, λ)
−

∫ u0

0

umb−1du

h(u, 0, λ)
(4.6)

is a function that is at least C0 and o(1) as v → 0. We will investigate this function
more precisely in the following proposition, thereby finishing the proof of theorem 4.6:

Proposition 4.9 The function ϕ̃ from theorem 4.6 has the following properties: ϕ̃
is Ck for all v > 0. Furthermore:

(i) If b ∈]0, 1[, then ϕ̃(v, λ) = O(vb), ∂ϕ̃
∂v (v, λ) = O(vb−1) as v → 0.

(ii) If b = 1, then ϕ̃(v, λ) = O(v log v), ∂ϕ̃
∂v (v, λ) = O(log v) as v → 0.

(iii) If b > 1, then ϕ̃(v, λ) = O(v), ∂ϕ̃
∂v (v, λ) = O(1) as v → 0.
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Proof The smoothness outside v = 0 is trivial since it is assumed that the canard
manifolds do not have singularities outside v = 0. Let us focus on the smoothness at
v = 0, and to that end we use Ck-coordinates. The function ϕ̃ is explicitely written
down in Ck-coordinates in formula (4.6).

Implicitely it is assumed that
∫ u0

0

umb−1du

h(u, 0, λ)

converges (this is a part of the integral of the slow time, along the critical curve γ−).
Because of this, and because h is Ck-smooth (with k high enough), h cannot have
zeros in u ∈]0, 1], and, in extremis, h can have a zero of at most order mb − 1 at
u = 0, but the presence of a zero at u = 0 is disproved in lemma 4.8. This means
that for v small enough, also h(u, v, λ) does not have any zeros. Using the theorem
of dominated convergence, it follows that ϕ̃(v, λ) = o(1) as v → 0. Write now

f(u, v, λ) =
1

h(u, v, λ)
.

Then f is Ck in the region (u, ε, λ) ∈ [0, 1]2 × Λ. We find

ϕ̃(v, λ) =
∫ u0

(v/v1)1/m

umb−1
(
f(u, vu−m, λ)− f(u, 0, λ)

)
du

−
∫ (v/v1)

1/m

0

umb−1f(u, 0, λ)du

The second integral gives a contribution that is Ck in v1/m, and it is clearly O(vb)
as v → 0. To examine the first part, we write f(u, v, λ) = f(u, 0, λ) + vf1(u, v, λ) for
some Ck−1 function f1. The first part can now be rewritten as

ϕ̃1(v, λ) := v

∫ u0

(v/v1)1/m

umb−1−mf1(u, vu−m, λ)du,

Bound |f1| by a constant M to find

|ϕ̃1(v, λ)| ≤ Mv

∫ u0

(v/v1)1/m

umb−1−mdu.

If b > 1, this is simply O(v); if b = 1 the function is clearly O(v log v), and if b < 1,
one finds an O(vb) expression.

Let us now concentrate on the derivative. A function that is O(vb) and Ck in
terms of v1/m clearly has a derivative that is O(vb−1) as v → 0. So let us concentrate
on the first part ϕ̃1, which has a worse-behaving derivative:

∂ϕ̃1

∂v
(v, λ) =

1
v
ϕ̃1(v, λ)− 1

m
v1−b
1 vb−1f1((v/v1)1/m, v1, λ)

+ v

∫ u0

( v
v1

)1/m

umb−1−2m ∂f1

∂v
(u, vu−m, λ)du.
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This expression has three contributions: the middle contribution is O(vb−1); the left
contribution is O(v−1)O(ϕ̃1). Depending on the case (i), (ii) or (iii), this is respec-
tively O(vb−1), O(log v) or O(1), but in all cases the required statement regarding the
derivative is true. Let us now focus on the contribution of the third part:

v

∫ u0

(v/v1)1/m

umb−1−2m ∂f1

∂v
(u, vu−m, λ)du.

Bound |∂f1
∂v | by a constant M̃ to find that this contribution is in absolute value

bounded by

M̃v

∫ u0

(v/v1)1/m

umb−1−2mdu.

As before, this is O(v) if b > 2, O(v log v) if b = 2, or O(vb−1) if b < 2. ¤

Remains to proof corollary 4.7:
Proof Applying the theorem 4.6, one has

vσT (v, λ) =
∫

O0

ds + vbϕ(v, λ) + ϕ̃(v, λ),

so after derivation this yields

σvσ−1T + vσ ∂T

∂v
= bvb−1ϕ + vb ∂ϕ

∂v
+

∂ϕ̃

∂v
.

Replacing T in the above expression by the expression in theorem 4.6, and collecting
the terms gives us

vσ ∂T

∂v
= bvb−1ϕ + vb ∂ϕ

∂v
+

∂ϕ̃

∂v
− σ

v

(∫

O0

ds + vbϕ + ϕ̃

)

=
1
v

(
−σ

∫

O0

ds + bvbϕ + vb(v
∂ϕ

∂v
) + (v

∂ϕ̃

∂v
)− σvbϕ− σϕ̃

)
.

Examining all terms of this last expression (using proposition 4.9 and the fact that ϕ
is smooth w.r.t. v1/m, so v ∂ϕ

∂v = O(v1/m)) gives us

∂T

∂v
(v, λ) =

1
vσ+1

(
−σ

∫

O0

ds + ρ(v, λ)
)

,

where ρ(v, λ) = O(vb) as v → 0 if b ∈]0, 1[ or ρ(v, λ) = O(v log v) as v → 0 if b = 1 or
where ρ(v, λ) = O(v) as v → 0 if b > 1. In any case, it is o(1) as v → 0, meaning that
the ∂T

∂v becomes negative for v > 0 small enough, making the transition time tend
monotonously to +∞ as v → 0. ¤
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4.3 Desingularizing the slow dynamics

In theorem 4.3 an important condition is added: the integral of the slow time must
converge. More specifically, this means that the slow vector field must not contain
singularities on the critical curve. Here it is shown how to tackle a situation where an
isolated singularity appears on the critical manifold. The main tool is a family blow
up at this point.

Consider as an example the smooth family of vector fields

Xε :
{

ẋ = ε(x2 + ε2 + ε3f(x, y, ε, λ))
ẏ = −y + εg(x, y, ε, λ) (4.7)

and we want to study the transition time of orbits starting from an entry boundary
curve Σ: {x = x0, y = 0, ε ≥ 0} until the orbits reach the plane {x = x1}.

Apparently, the slow dynamics is given (after division by εσ := ε) by

X0 : ẋ = x2.

The slow vector field has a singularity at x = 0, and integrating the time over the
critical curve {y = 0} yields ∫ x1

x0

ds

s2
.

If 0 /∈ [x0, x1], then we can apply the results of this chapter and show that the
transition time is O(1/ε), and that the leading term in the asymptotic expansion is
given by the above integral. Some more analysis is needed if 0 ∈ (x0, x1), because the
above integral is then divergent.

We therefore blow up the vector field. In this specific situation we perform a
cylindrical blow up

x = ux, ε = uε

The resulting object is no longer a family of vector fields, but instead a foliated vector
field: at the chart {x = ±1} one finds:

X :





u̇ = ±u3ε(1 + ε2 + uε3f(±u, y, uε, λ))
ε̇ = ∓u2ε2(1 + ε2 + uε3f(±u, y, uε, λ))
ẏ = −y + uεg(±u, y, uε, λ)

When saturating the boundary curve Σ, an invariant manifold W is formed that in
our case can be written as a graph y = ψ(x, ε, λ), for x ∈ [x0, x1] and ε > 0. This
graph has a C∞ extension to ε = 0 (theorem 2.5) for all x 6= x0. Hence, after blow up
and for u small, the blown up manifold y = ψ(±u, uε, λ) is smooth in (u, ε, λ). The
restriction of X to this manifold yields

{
u̇ = ±u3ε(1 + ε2 + uε3h(u, ε, λ))
ε̇ = ∓u2ε2(1 + ε2 + uε3h(u, ε, λ))
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with h(u, ε, λ) := f(±u, ψ(±u, uε, λ), uε, λ) a C∞ function. Using ε̇ = dε/dt, one
calculates the transition time in the chart {x = −1} from a section {u = δ} to a
section {ε = δ} (corresponding to sections {x = −δ} and {x = −ε/δ}):

T1(ε, λ) =
∫ δ

ε/δ

dε

u2ε2(1 + ε2 + uε3h(u, ε, λ))

∣∣∣∣
u=ε/ε

.

In other words,

ε2T1(ε, λ) =
∫ δ

ε/δ

dε

1 + ε2 + εε2h(ε/ε, ε, λ)

Using the theorem on dominated convergence of Lebesgue, the above expression has
a well-defined limit as ε → 0:

ε2T1(ε, λ) =
∫ δ

0

dε

1 + ε2 + o(1), as ε → 0.

Similarly, in the chart {x = 1} a transition from {ε = δ} to {u = δ} (corresponding
to sections {x = ε/δ} and {x = δ}) is given by

ε2T3(ε, λ) =
∫ δ

0

dε

1 + ε2 + o(1), as ε → 0.

Remains to study the passage from {x = −ε/δ} to {x = +ε/δ}, which can be seen in
the family rescaling chart {ε = 1}. There, the blow up of the vector field yields

X :





ẋ = u2(x2 + 1 + uf(ux, y, u, λ))
ẏ = −y + ug(ux, y, u, λ)
u̇ = 0.

The passage in these coordinates is a passage from {x = −1/δ} to {x = +1/δ}. One
easily shows that

T2(ε, λ) =
1
ε2

(∫ +1/δ

−1/δ

dx

x2 + 1
+ o(1)

)
, as ε → 0.

We conclude that the passage from {x = −δ} to {x = +δ} has a transition time given
by

Tδ(ε, λ) =
3∑

i=1

Ti(ε, λ) =
1
ε2

(
2

∫ δ

0

ds

1 + s2
+

∫ 1/δ

−1/δ

ds

1 + s2
+ o(1)

)

as ε → 0. The leading term yields 2(arctan(δ) + arctan(1/δ)). Because transitions
from {x = δ1} to {x = δ2} are O(ε−1), one expects that the leading term cannot
depend on δ, and indeed it does not:

2(arctan(δ) + arctan(1/δ)) = π ∀δ > 0.
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(One can prove this geometrically.) Note also that as δ → 0, the leading term is given
by an integral over a single orbit in the family rescaling chart, from −∞ to +∞! We
conclude:

Proposition 4.10 The transition time of orbits of (4.7) from a boundary curve Σ in
the plane {x = x0} to a section {x = x1} (with x0 < x1) is given by

T (ε, λ) = ε−2(π + o(1))

if x0 < 0 < x1, or

T (ε, λ) = ε−1

(∫ x1

x0

ds

s2
+ o(1)

)

if 0 /∈ [x0, x1].

Using techniques similar to the ones in previous sections, one could calculate next
to the leading term also additional terms, and prove more precise results (such as
handling the case x0 = 0 or x1 = 0), but this would lead us to far.



Chapter 5

Distance between canard
manifolds

Our aim is to perform a study of the transition maps near the critical curve. A
key element in the study is the integral of the divergence of the vector field. For a
background on this divergence and the relation to transition maps, we refer to the
digression in section 1.3. In section 5.1, we define the notion “integral of the slow
divergence”, where a measure of the attraction along a part of the critical curve is
given. In the literature, one can find this notion as well; in particular in [BFSW], its
real part is called “le relief”.

In section 5.2, we determine how saturated manifolds along a normally hyperbolic
branch of the critical curve depend on the choice of the initial condition. This section
does not treat the passage through turning points.

In section 5.3 our aim is to study how canard manifolds depend on the choice of
the initial conditions. We will not operate directly on manifolds of canard solutions;
instead we will study these properties on center manifolds (as in definition 3.5). We
have a pair of such invariant manifolds: the saturation in positive time of an initial
entry boundary curve Σ− (this is the “attracting center manifold”) and a satura-
tion in negative time (“repelling center manifold”) of an initial exit boundary curve
Σ+. These two manifolds meet in a chart near the turning point, where the breaking
parameter a is resolved in terms of ε. It is important to realize that these center
manifolds depend regularly on (a, λ), whereas the manifold of canard solutions de-
pends regularly on λ; the parameter a is in the latter resolved in terms of the singular
parameter ε (and λ).

In section 5.4, we show how the estimates on center manifolds can be translated
to estimates on canard manifolds. This leads to a result regarding the exponential
closeness of control curves. From the results in this last section, one can deduce an
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entry–exit relationship for the vector field Xv,A,λ along individual curves A = A(v, λ)
in parameter space.

In the last section, we give some idea how the “maximum bifurcation delay” can
be estimated using complex techniques, and introduce the next chapter.

5.1 Definition of slow divergence

Let Xε,λ be a family of vector fields on a Riemannian manifold M , and let Ω be a
volume form on M . We assume that Xε,λ satisfies assumptions N1 and N3, putting
ourselves in the framework of chapter 4.

Definition 5.1 The slow divergence of the vector field Xλ is the divergence of X0,λ,
and will be denoted div X0

λ.

This notion is intrinsically associated to a volume form, in the sense that it can
be calculated in any chart (see section 1.3).

To give a quick example, look at the vector field

Xε :
{

ẋ = α(x, y, ε)x + εf(x, y, ε)
ẏ = ε3g(x, y, ε)

The critical curve is the curve {x = 0}. The slow divergence is given by α(x, y, 0) +
x∂α

∂x (x, y, 0), and restricting to the critical curve it yields α(0, y, 0). Associated to the
critical curve a “slow vector field” can be defined (reducing to a center manifold and
dividing away the factor εσ := ε3):

dy

ds
= g(0, y, 0)

We define the integral of the slow divergence as the integral along a part of the critical
curve γ of the slow divergence

∫
div X0 ds =

∫ y1

y0

α(0, y, 0)
g(0, y, 0)

dy.

Apparently, the divergence along orbits of Xε are related to the above expression.
Our aim is to relate the divergence integral (integral of the divergence of a vector

field along an orbit of this vector field) to the integral of the slow divergence along
an orbit of the slow vector field (for the definition of the slow vector field, we refer to
chapter 4), and first we show that such a relation can be searched using any coordinate
system, and any equivalent volume form:
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Lemma 5.2 Let J be a regular orbit of Xε,λ, and let I be a regular orbit of X0
λ, where

X0
λ is the slow vector field along γ. Define

HΩ(I, J) :=
∫

J

divΩ Xλdt− 1
εσ

∫

I

divΩ X0
λds

where I is parametrized by the slow time s. Then, if Ω′ = fΩ is an equivalent volume
form:

HΩ′(I, J) = HΩ(I, J) + log
f(qJ)f(pI)
f(qI)f(pJ)

,

where pI , pJ , qI and qJ are the begin points resp. end point of I resp. J . If in
particular J = Jε is an orbit that tends in Hausdorff sense to I, then HΩ′(I, Jε) =
HΩ(I, Jε) + o(1) as ε → 0.

Proof Using lemma 1.18, one has divΩ′ X
0
λ = divΩ X0

λ + X0,λ(f)/f . At points of I,
X0,λ = Xc

λ = εσX0
λ:

divΩ′ X
0
λ = divΩ X0

λ + εσ X0
λ(f)
f

.

One continues by saying that
∫

I

divΩ′ X
0
λds =

∫

I

divΩ X0
λds + εσ log(f(qI)/f(pI)).

Combine this with lemma 1.18 applied to the vector field Xλ and the orbit J , we get
the result. ¤

As such, if a normal form coordinate change is used, one need not worry about
transforming the volume form—simply take an easy volume form in the normal form
coordinates. The difference with respect to calculating divergence integrals is o(1).
Similarly, one can reparametrize time without any consequences:

Lemma 5.3 Let J be a regular orbit of Xλ, and let I be a regular orbit of X0
λ. Define

H(I, J) :=
∫

J

div Xλdt− 1
εσ

∫

I

div X0
λds

Let X̃ = hX be an equivalent vector field, and let H̃, X̃0 be analogously defined.
Then,

H̃(I, J) = H(I, J) + log
h(qJ)h(pI)
h(qI)h(pJ)

,

where pI , pJ , qI and qJ are the begin points resp. end point of I resp. J . If in particular
J = Jε is an orbit that tends in Hausdorff sense to I, then H̃(I, Jε) = H(I, Jε)+o(1),
as ε → 0.
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5.2 Normally hyperbolic passage

Our aim is to find out how individual invariant manifolds are related to each other.
The main result is theorem 5.5, from which follows that the saturation of two admis-
sible entry boundary curves are manifolds that are exponentially close to each other.
To give a quick example, consider the family

{
ẋ = f(x, y, ε)x + εg(x, y, ε)
ẏ = εσ,

where f and g are C∞ in appropiate domains, and f(0, y, 0) < 0 for all y (normal
attraction). We will consider sections

S1 = {x = a}, S2 = {y = y0}.
Provided S1∩{ε = 0} lies in the basin of attraction of the critical curve γ : {x = ε = 0},
the transition map S1 → S2 is well-defined. Let Σ(1) and Σ(2) be two smooth entry
boundary curves in S1 with base points (a, y(1), 0) and (a, y(2), 0) (both assumed to
be smaller than y0). The saturation of Σ(i) intersects S2 in a curve x = θ(i)(ε, y0).
From the next sections it will become clear that

(θ(2) − θ(1))(ε, y0) = exp

(
1
εσ

(∫ y0

max(y(1),y(2))

f(0, s, 0)ds + ϕ(ε, y0)

))

for some smooth function ϕ that is O(ε).

5.2.1 Study of the divergence integral

In this section, we calculate the integral of the divergence of a singularly perturbed
vector field along a normally hyperbolic curve of singularities, and relate this to the
“slow divergence”. We position ourselves in the framework of chapter 2, and consider
a 2-dimensional Riemannian manifold M with volume form Ω. We fix a family of
vector fields Xε,λ on M , and denote Xλ := Xε,λ + 0 ∂

∂ε the lift on M × [0, ε0[.

Proposition 5.4 Assume γ is a normally attracting critical curve for Xλ satisfying
assumptions T1 and N3. Let Σ be a smooth boundary curve, and let W be the satura-
tion of Σ. Let Σ′ be another smooth boundary curve inside W (that could be obtained
as the intersection of W with a transverse plane). Let p be the ω-limit of the end
point s(0, λ) of Σ, and assume the end point p′ of Σ′ lies on γ. Assuming the piece
[p, p′] ⊂ γ is a regular part of an orbit of the slow vector field X0

λ, we have

∫

Oε

div Xλdt =
1
εσ

(∫

[p,p′]
div X0

λ ds + ϕ(ε, λ)

)
(5.1)

where Oε is the orbit along Xε,λ from s(ε, λ) to s′(ε, λ), and where ϕ is C∞, with
ϕ(0, λ) = 0.
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Note 1: We have taken smooth boundary curves, although it is not necessary; if Σ
and Σ′ are nonsmooth at ε = 0 (but are still admissible), then the function ϕ will also
not be smooth, but its regularity is in a sense given by the regularity of Σ.
Note 2: Instead of a pair of boundary curves ε → s(ε, λ) one can consider families
ε → s(ε, λ, α), with α ∈ A, A being a compact index family. In that case, the limit
property in (5.1) is uniform in the parameter α. The proof is easy: one can replace
Λ by Λ×A in order to obtain uniformity in α.

Proof Define W as the saturation of the boundary curve Σ; its smoothness is already
described in earlier chapters. Keeping in mind lemma 5.2 and lemma 5.3, we can
show relation (5.1) using Ck normal form theory (normal forms for equivalence). As
in the transition time analysis, we cover the part [p, p′] of the critical curve γ by
a finite number of neighbourhoods (Ui) where Ck normal forms are valid (see also
section 4.1.2). The integration path can now be divided in a finite number of segments,
being of type I or type II; it clearly suffices to consider one segment of each type:

Type I. A passage between the curve Σ and a curve Σ0, where Σ0 is any boundary
curve inside W for which the end point on {ε = 0} is inside the neigh-
bourhood U0 and outside γ. A good choice for Σ0 could be an image of Σ
under the time-τ map of the vector field, for a well-chosen time τ . In that
case, Σ0 inherits the regularity properties of Σ, i.e. Σ0 is smooth.

Type II. A passage between a curve Σi and Σi+1, where the end point of Σi is inside
Ui, and the end point of Σi+1 is inside Ui ∩ Ui+1. A good choice for Σi+1

would be the intersection of the manifold W with a C∞ transverse section
in Ui ∩Ui+1; for i ≥ 1 this yields C∞ curves. A special case is the passage
between Σ0 and Σ1, but below it will need no different treatment.

Restricting to a segment of type I one can uniformly bound the transition time
and the divergence, meaning that there is a C∞ function ϕI so that

∫

OI
ε

div Xλdt = ϕI(ε, λ).

(To see this, notice that in this part, the vector field is equivalent to a divergence-free
flow box, hence the original divergence only consists of extra terms that appear as in
lemmas 5.2 and 5.3.)

Consider now a segment of type II inside Ui where a normal form for conjugacy is
given in (4.2). Unlike in chapter 4, we are not limited to normal forms for conjugacy,
and continue with the Ck-normal form for equivalence

{
ẋ = −x
ẏ = εσg(y, ε, λ),

where g is a Ck function. Because the slow vector field in these coordinates is given
by ẏ = g(y, 0, λ), and because it is assumed that the segment [p, p′] does not have
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singularities, we know that we can assume that g(y, ε, λ) is nonzero in the neighbour-
hood Ui. It is well-known that under these circumstances, one can use Ck normal
form theory to take g = 1:

Yε,λ :
{

ẋ = −x
ẏ = εσ.

Let Σi be given by the graph of (ε, λ) → (xi(ε, λ), yi(ε, λ)) in local coordinates,
and similarly for Σi+1. One finds

∫

OII
ε

div Xλdt =
∫ yi+1(ε,λ)

yi(ε,λ)

dx

εσ
=

1
εσ

(yi+1(ε, λ)− yi(ε, λ)).

On the other hand, the slow vector field is given by ẏ = 1; if pi is the ω-limit of
(xi(0, λ), yi(0, λ)) w.r.t. Y0,λ, then the y-coordinate of pi is given by yi(0, λ). We
conclude ∫

[pi,pi+1]

div Y 0
λ ds = (yi+1(0, λ)− yi(0, λ)).

Because the coordinate functions can be chosen Ck-smooth (in fact Ck for any k), we
find ∫

OII
ε

div Yλdt− 1
εσ

∫

[pi,pi+1]

div Y 0
λ ds =

1
εσ

ϕII(ε, λ)

with ϕII is a Ck function that is O(ε). A similar statement is now also true for the
equivalent vector field Xε,λ. We can repeat this proof to obtain Ck-smoothness for
any k. Because ϕ does not depend on k and because outside ε = 0 the resulting
objects are automatically C∞ (proving that the domain of Ck-smoothness does not
shrink as k increases), we obtain C∞ smoothness in the final result. ¤

5.2.2 Transition map

Let us now link the study of the divergence integral to transition maps. Define the
integral of the slow divergence along a compact piece [p, q] ⊂ γ as

I(p, q, λ) :=
∫

[p,q]⊂γ

div X0
λds.

Notice that if the orbit of the slow vector field goes from p to q along γ−, then I(p, q, λ)
is strictly negative, whereas if the orbit goes from p to q along γ+, then I(p, q, λ) is
strictly positive.
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Figure 5.1: Transition map in the normally hyperbolic case

Theorem 5.5 Let S1 be a smooth section of M × [0, ε0[×Λ that is a graph

ψ1 : (h, ε, λ) 7→ (s1(h, ε, λ), ε, λ).

Assume that S1 is transverse to the flow of Xε,λ. Let σ2 be a section of M transverse
to γ− that consists of an orbit and its ω-limit on γ− (one orbit on both sides of γ−),
and define S2 = σ2 × [0, ε0[. Let S2 be parametrized by

ψ2 : (z, ε, λ) 7→ (s2(z, λ), ε, λ)

(where s2(z, λ) is a parametrization for σ2) and let the transition map

P : S1 → S2

be well-defined (see the text below the theorem). The composition ψ−1
2 ◦P ◦ψ1 is then

of the form
(ψ−1

2 ◦ P ◦ ψ1)(h, ε, λ) = (θ(h, ε, λ), ε, λ),

where θ a C∞ function satisfying

εσ ∂θ

∂h
= ± exp

(
1
εσ

(I(p1(h), p2, λ) + ϕ(h, ε, λ))
)

(5.2)

for some C∞ function ϕ that is O(ε), and where p1(h) = p1(h, λ) is the ω-limit of
ψ1(h, 0, λ), and where p2 = p2(λ) is the ω-limit of the orbit σ2. The functions I and
ϕ depend on the chosen volume form Ω on M .

Note that the transition map P is well-defined provided that the section S2 is
chosen so that the ω-limits of S1 ∩ {ε = 0} are points of γ that “come before S2”, in
the sense that the orbit w.r.t. the slow vector fields through these ω-limitpoints reach
σ2 in finite positive time. In that case, it follows from the results in chapter 2 that P
is a C∞ map.

Proof The smoothness of θ follows from the smoothness of P . On the other hand,
it is a direct application of proposition 1.21 that

∂θ

∂h
(h, ε, λ) =

〈Ω(p), Dψ1(h, ε, λ)×X(p)〉
〈Ω(q), Dψ2(θ(h, ε, λ), ε, λ)×X(q)〉 exp

(∫

O(p,q)

divΩ Xε,λdt

)
,
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for any volume form Ω on M , and where the integration takes place along an orbit
starting at p = ψ1(h, ε, λ) until it meets S2 in a point q = ψ2(θ(h, ε, λ), ε, λ).

The transversality of S1 w.r.t. the flow of the vector field shows that the numerator
in the above expression is a smooth nonzero function.

The denominator will be calculated in Ck-normal form coordinates, and an equiv-
alent Ck-volume form. Near p2 the family has a Ck-normal form for equivalence given
by {

ẋ = −x
ẏ = εσ,

and in these coordinates S2 is a section for which the intersection with {ε = 0} is a
straight line {y = y2}. The coordinate function ψ2 has the expression

ψ2 : (z, ε, λ) 7→ (x, y, ε, λ) := (x2(z, ε, λ), y2(z, ε, λ), ε, λ).

with y2(z, 0, λ) = y2. Using Ω2 = dx ∧ dy on M , one can calculate that

〈Ω(q), Dψ2(θ(h, ε, λ), ε, λ)×X(q)〉 = εσ ∂x2

∂z
− x2

∂y2

∂z

∣∣∣∣
z=θ(h,ε,λ)

.

Now, notice first that ∂x2
∂z (z, 0, λ) 6= 0; this is because ∂y2

∂z (z, 0, λ) = 0, and be-
cause of the fact that ψ2 is a regular coordinate system for S2. Second, notice that
x2(θ(h, 0, λ), 0, λ) = 0; even more so: one has

x2(θ(h, ε, λ), ε, λ) = O(εN ), ∀N ≤ k

This is because the saturation of orbits of S2 form an invariant manifold that is Ck-
flat to {x = 0}, which is a Ck-center manifold in the chosen coordinate system. For
k high enough, this shows that

εσ ∂θ

∂h
(h, ε, λ) = f(h, ε, λ) exp

(∫

O(p,q)

divΩ Xε,λdt

)
,

for some nonzero Ck function f . Application of proposition 5.4 yields the existence
of a Ck-function ϕ as claimed in the formulation of the theorem. Because we can
increase k arbitrarily, and keeping in mind that ϕ is unique, we can conclude that ϕ
is C∞. The domain of smoothness does not shrink, since outside ε = 0 the function
ϕ is clearly C∞ because it is given by

ϕ(h, ε, λ) = εσ log
(
±εσ ∂θ

∂h
(h, ε, λ)

)
− I(p1(h), p2, λ).

¤
Using this theorem, one can measure the difference between two invariant mani-

folds:

θ(h(2), ε, λ)− θ(h(1), ε, λ) =
∫ h(1)

h(2)

∂θ

∂h
dh.
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It is now easily shown that (using the lemma below), provided d
dh (p1(h)) 6= 0 one has

θ(h(2))− θ(h(1)) = ± exp
(

1
εσ

(I(p1(h), p2, λ) + ϕ12(h, ε, λ))
)

,

for some C0 function ϕ12, and where p1(h) is the ω-limit of either ψ1(h(2), 0, λ) or
ψ1(h(1), 0, λ), whichever lies closer to p2 w.r.t. the slow motion on the critical curve
γ−.

Lemma 5.6 Let α(h) be a C1 function, and let R(h, v) be continuous in (h, v) and
continuously differentiable w.r.t. h, so that R(h, 0) = 0. Assume dα

dh is strictly negative
along [a, b] (with a < b) and α(a) < 0. Then,

∫ b

a

1
vσ

exp
(

α(h) + R(h, v)
vσ

)
dh = exp

(
α(a) + R̃(v)

vσ

)
,

for some continuous function R̃(v) with R̃(0) = 0.

Proof Define
β(h, v) = α(h) + R(h, v)− α(a)−R(a, v)

Then, β(a, v) = 0 and ∂β
∂h (h, v) is strictly negative along h ∈ [a, b], for v small enough.

Consider

F (v) :=
∫ b

a

1
vσ

exp
(

β(h, v)
vσ

)
dh.

It suffices now to show that this forms a strictly positive continuous function. We
write β(h, v) = η(h, v)(h − a) for some C0-function η. One can rewrite the above
integral as

F (v) :=
∫ (b−a)/vσ

0

exp (η(a + uvσ, v)u) du.

For v > 0 small enough, the above integral is bounded (use η < −r for some r > 0 to
find that the integral is less than 1/r. By the theorem of dominated convergence of
Lebesgue, the above expression tends continuously to

∫ ∞

0

exp((η(a, 0)u) du =
−1

η(a, 0)
=

−1
∂β
∂h (a, 0)

=
−1

α′(a)
.

So, F (v) tends to a value that is strictly positive as v → 0, meaning that we can write

F (v) = exp
(

vσ log F (v)
vσ

)
= exp((R1(v)/vσ) ,

with R1 a continuous function. One concludes:
∫ b

a

1
vσ

exp
(

α(h) + R(h, v)
vσ

)
dh = exp

(
α(a) + R̃(v)

vσ

)
,
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with
R̃(v) = R(a, v) + R1(v) = R(a, v) + vσ log F (v).

This proves the lemma. ¤
Similar techniques would allow one to prove additional regularity properties on R̃.

In fact one can see immediately that R̃ retains the smoothness that R has w.r.t. ad-
ditional (non-essential) parameters λ.

5.3 Passage through a turning point

At a point p∗ where the normal hyperbolicity of the reduced vector field X0,λ is lost,
one can try to desingularize the vector field by means of a weighted family blow up.
As we position ourselves in the framework of chapter 3, we assume that the family of
vector fields on M is already in the form (3.5), i.e. we assume that a rescaling

(a, ε) = (vkA, v`)

has already taken place, so that the “breaking parameter” A is brought in a form
that is required to prove the existence of canard manifolds. From this moment, we
assume that v is the singular parameter.

Consider hence a family of vector fields Xv,A,λ on a 2-manifold M with a volume
form Ω. We will assume all conditions imposed on Xv,A,λ in chapter 3.

Our aim is to treat the behaviour of a transition map from a section S1, just as in
section 5.2, to a section T . This time, the section T is a section positioned on top of
the blow up locus, i.e. it is a section cutting the critical curve γ transversally at the
turning point.

The treatment will be based on a study of the divergence integral. Since the
divergence is dependent on the volume form, we first ask ourselves how the volume
form undergoes a blow up transformation:

Lemma 5.7 Consider a blow up map

Φ: R+ × S2 → R3 : (u, (x, y, v)) → (x, y, v) = (upx, uqy, umv), (5.3)

where (x, y, v) ∈ S2, i.e. x2 + y2 + v2 = 1. In the family rescaling chart {v = 1}, this
map is diffeomorphic to the map

Φ1 : R+ × U1 → R3 : (u, (x, y)) → (upx, uqy, um),

The standard volume form Ω = dx ∧ dy ∧ dv in R3 is equivalent to up+q+m−1dx ∧
dy ∧ du in the family rescaling chart. Similarly, in any phase-directional rescaling
chart, Ω is equivalent to up+q+m−1du ∧ dv ∧ dz, where z is an angular coordinate on
S1 (representing (x, y)).
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Proof Using Φ1, one simply has to calculate the jacobian determinant. For the
phase-directional rescaling charts, they are locally diffeomorphic to any of the charts
x = 1, x = −1, y = 1, or y = −1. For symmetry reasons, it suffices to check the chart
x = 1, where the blow up map is given by

Φ2 : R+ × U2 → R3 : (u, (y, v)) → (up, uqy, umv),

The jacobian determinant is equivalent to up+q+m−1. ¤

The treatment of the divergence integral along orbits of Xλ will be done in several
parts; the parts may be divided into four types, the already-existing types I and II
(see the proof in the normally hyperbolic passage), and two additional types:

Type III A type III passage will cover the passage in a phase-directional rescaling
chart in the neighbourhood of the intersection point of the critical curve γ
with the blow up locus.

Type IV A type IV passage will cover the passage in a compact piece of the family
rescaling chart.

We assume that there exist Ck-coordinates and a phase-directional rescaling chart
so that Xλ has the following form (in fact this is a version of the result in lemma 3.9):

XA,λ :





u̇ = −uα+1vσh(u, v,A, λ)
v̇ = muαvσ+1h(u, v, A, λ)
ż = −uαz

(5.4)

where h is a strictly positive Ck function. The critical curve γ appears in these
coordinates as the line z = v = 0, whereas the intersection point P− of γ with the
blow up locus {u = 0} is the origin. The factor uα appears as a common factor which
is divided out in the blown up vector field, i.e. the blow up of Xλ is defined as

XA,λ = u−αXA,λ (5.5)

for a well-chosen α ∈ N. To study the passage of type IV in the family rescaling
chart, we assume that there exist Ck-coordinates so that Xλ has the following form:

XA,λ :





ẋ = uαf(x, y, u, A, λ)
ẏ = 0
u̇ = 0

(5.6)

The function f is strictly positive; the connection Γ connecting P− to P+ is in these
coordinates given by {y = u = 0}. (These coordinates could be referred to as degen-
erate flow-box coordinates.)
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5.3.1 Study of the divergence integral

The next proposition is a continuation of proposition 5.4; here the divergence inside
invariant manifolds is calculated up to the turning point.

Proposition 5.8 Let p∗ be the limit of γ−, where the normal hyperbolicity is lost,
and assume that p∗ is a simple passage turning point (so that assumptions T1–T6
are satisfied for the vector field Xv,A,λ). Assume that the vector field Xv,A,λ satisfies
assumptions N1 and T7, and let σ be the “order of degeneracy” as introduced in
chapter 4.

Let Σ be a smooth boundary curve, and let W be the saturation of Σ. Let Σ′ be
another smooth boundary curve inside W , so that the end point of Σ′ coincides with
p∗ and so that Σ′ has a smooth blow up (Σ′ could be obtained as the intersection of
W with a transverse plane T in the family rescaling chart). Let p = p(A, λ) be the
ω-limit of the end point of Σ. Assume the piece [p, p∗[⊂ γ is a regular orbit of the
slow vector field X0

A,λ so that

I(p, p∗, A, λ) :=
∫

[p,p∗]
div X0

A,λ ds

is convergent. Let k ∈ N1 be fixed. Then,
∫

Ov

div XA,λdt = C log v +
I(p, p∗, A, λ) + ϕ̃(v, A, λ) + vσϕ(v, A, λ)

vσ
(5.7)

where Ov is the orbit from Σ to Σ′ at height v (i.e. Ov1 = W ∩ {v = v1}), where
ϕ̃ is a continuous o(1) function (detailed regularity properties of ϕ̃ are explained in
proposition 5.9), where ϕ is a function that is Ck in terms of v1/m. The constant C
is given by

C =
p + q

m
− b; b :=

mσ − α

m
.

The “blow up constant” b is assumed to be strictly positive.

Note: the function ϕ̃ + vσϕ is unique (i.e. does not depend on k), and can therefore
be proved to be C∞ outside v = 0; this is not necessarily true for the individual
functions ϕ̃ and ϕ, since the splitting does depend on k.

Proof We divide the passage inside the manifold W into several parts; parts of type
I and type II are studied in the proof of proposition 5.4. During passages of type I
and II, the divergence has no contribution in log v; it only contributes to a part of ϕ
in the statement of the proposition. Remains to study the passages of types III and
IV. Consider Ck-coordinates so that the vector field is given by (5.4) near the end
point P− of the critical curve on the blow up locus {u = 0}. Let Σ0 = {u = u0} ∩W
and let Σ1 = {v = v1} ∩W . Both curves are Ck, at all points up to and including
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their end points. The study of the type III passage from Σ0 to Σ1 will be performed
using an equivalent vector field

YA,λ :





u̇ = −uα+1vσ

v̇ = muαvσ+1

ż = −uαz/h(u, v, A, λ)
(5.8)

Define Y A,λ to be the blow up of the vector field YA,λ, i.e. Y A,λ = u−αYA,λ. Let
Ω = up+q+m−1Ω0, with Ω0 = du ∧ dv ∧ dz, in accordance to lemma 5.7. We are
interested in the divergence of XA,λ with respect to Ω, and notice that this is related
to divΩ YA,λ (see lemma 1.19). So concentrate first on divΩ YA,λ:

divΩ YA,λ = divΩ0 YA,λ + YA,λ(up+q+m−1)/up+q+m−1

= divΩ0 YA,λ − (p + q + m− 1)uαvσ

= divΩ0(u
αY A,λ)− (p + q + m− 1)uαvσ

= uα divΩ0 Y A,λ + Y A,λ(uα)− (p + q + m− 1)uαvσ.

In other words, letting C1 = (p + q + m− 1 + α):

divΩ YA,λ = uα
(
divΩ0 Y A,λ − C1v

σ
)
.

We find
∫

OIII
v

divΩ YA,λdt =
∫

OIII
v

(
divΩ0 Y A,λ − C1v

σ
)
(uαdt)

= −
∫

OIII
v

divΩ0 Y A,λ − C1v
σ

uvσ du

The orbit OIII
v goes through the point (u, v, z) = (u0, v, ζ0(v, A, λ)) for some Ck

function ζ0 determined by Σ0 = W ∩ {u = u0}. We stop integrating the orbit OIII
v

at the point (u, v, z) = (u1, v1, ζ1(u1)) for some u1 > 0. Since v = umv is a constant
of the flow, one has um

1 = v
v1

:

∫

OIII
v

divΩ YA,λdt = −
∫ (v/v1)

1/m

u0

divΩ0 Y A,λ

uvσ

∣∣∣∣
v=vu−m

du+C1[log u]u=(v/v1)
1/m

u=u0
(5.9)

One can calculate divΩ0 Y A,λ easily:

divΩ0 Y A,λ = (mσ + m− 1)vσ − 1/h(u, v,A, λ).

Replacing this expression in the integral formula yields

∫

OIII
v

divΩ YA,λdt =
∫ (v/v1)

1/m

u0

1
uvσh(u, v, A, λ)

∣∣∣∣
v=vu−m

du + C log
v

um
0 v1

,
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with C = (α−mσ + p + q)/m. Define now

ϕ̃III(v, A, λ) = vσ

∫ (v/v1)
1/m

u0

1
uvσh(u, v,A, λ)

∣∣∣∣
v=vu−m

du−
∫ 0

u0

du

u1−mσh(u, 0, A, λ)

Then,

vσ

∫

OIII
v

div XA,λdt =
∫

OIII
0

div X0
A,λds + Cvσ log v

+ϕ̃III(v, A, λ) + vσ log ϕIII(v1/m, A, λ),

for some strictly positive Ck function ϕIII (defined by the equivalence h between
XA,λ and YA,λ), where OIII

0 is the piece of the critical curve between u = u0 and
u = 0, parametrized by the slow time of the vector field X0

A,λ. Remains to prove
regularity properties of ϕ̃III . One has

ϕ̃III(v,A, λ) =
∫ (v/v1)

1/m

u0

umσ−1du

h(u, vu−m, A, λ)
−

∫ 0

u0

umσ−1du

h(u, 0, A, λ)
. (5.10)

The regularity properties are shown in proposition 5.9. Let us now consider a passage
of type IV, using normal form (5.6). First, since the volume forms Ω and Ω0 only
differ by a power of u, and since u̇ = 0 along orbits of XA,λ, we can—keeping in mind
lemma 5.2—immediately proceed with the volume form Ω0 instead of Ω. Similarly,
one can continue with the blown up vector field {ẋ = f(x, y, u,A, λ), ẏ = 0, u̇ = 0}
for the same reason. For this regular vector field however, integrals of the divergence
along compact pieces of orbits are Ck, so

vσ

∫

OIV
v

div XA,λdt = vσϕIV (v,A, λ)

for some function ϕIV that is Ck in terms of u = v1/m. ¤

Proposition 5.9 The function ϕ̃ from proposition 5.8 has the following properties:
ϕ̃ is Ck for all v > 0. Furthermore:

(i) If σ = 1, then ϕ̃(v, λ) = O(v log v), ∂ϕ̃
∂v (v, λ) = O(log v) as v → 0.

(ii) If σ ≥ 2, then ϕ̃(v, λ) = O(v), ∂ϕ̃
∂v (v, λ) = O(1) as v → 0.

Proof See the proof of proposition 4.9—we only have to replace b by σ. ¤
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Figure 5.2: Transition map towards sections in the blow up locus

5.3.2 The transition map

As before, the previous subsection will be used to study the dependence of attracting
and repelling center manifolds on the initial boundary curves. Define the integral of
the slow divergence along a compact piece [p, p∗] ⊂ γ− as

I(p, p∗, λ) :=
∫

[p,p∗[⊂γ−
div X0

A,λds.

Note that this integral does not depend on A (remember that A is a rescaled version
of a, making the critical curve independent of A). For p ∈ γ+, we define

I(p, p∗, λ) := −
∫

]p∗,p]⊂γ+

div X0
A,λds.

In all circumstances, I(p, p∗, λ) will be strictly negative! For example, for the family
of vector fields {

ẋ = εσ

ẏ = f(x, y, ε)y + εg(x, y, ε)

The integral of the slow divergence is given by

I(x, 0) :=
∫ 0

x

f(x, 0, 0)dx = −
∫ x

0

f(x, 0, 0)dx

For a generic turning point one can take f(x, 0, 0) = x and hence

I(x, 0) = −x2

2
< 0, ∀(x, 0) ∈ γ.

Theorem 5.10 Let S1 be a smooth section of M × [0, v0[×] − A0, A0[×Λ that is a
graph

ψ1 : (h, v,A, λ) 7→ (s1(h, v, λ), v, A, λ).

Assume that S1 is transverse to the flow of Xv,A,λ. Let σ2 be a section of the blow
up locus in the family rescaling chart, transverse to the heteroclinic connection Γ and
define S2 = σ2 × [0, v1/m

0 [. Let S2 be parametrized by

ψ2 : (z, v, A, λ) 7→ ((x, y), u, A, λ) = (s2(z, A, λ), v1/m, A, λ)
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and let the transition map
P : S1 → S2

be well-defined (see the text below the theorem). The composition ψ−1
2 ◦P ◦ψ1 is then

of the form
(ψ−1

2 ◦ P ◦ ψ1)(h, v, A, λ) = (θ(h, v,A, λ), v1/m, A, λ),

where θ a C∞ function w.r.t. v1/m satisfying

vσ ∂θ

∂h
= ± exp

(
1
vσ

(I(p1(h), p∗, λ) + ϕ̃(h, v, A, λ))
)

(5.11)

for some function ϕ̃ with the properties explained in proposition 5.9, where p1(h) =
p1(h,A, λ) is the ω-limit of ψ1(h, 0, A, λ). The functions I and ϕ depend on the chosen
volume form Ω on M .

Note that the transition map P is well-defined provided that the section S2 is
chosen so that the ω-limits of S1 ∩ {ε = 0} are in the basin of attraction of γ−. In
that case, it follows from the results in chapter 3 that P is a C∞ map w.r.t. u = v1/m.

Note also that the front factor vσ in formula (5.11) can be removed, upon changing
ϕ; this does not decrease the continuity properties of ϕ any further.

Proof The smoothness of θ follows from the smoothness of P . As in the normally
hyperbolic situation, we directly apply proposition 1.21 to show that

∂θ

∂h
=

〈Ω(p), Dψ1(h, v, A, λ)×X(p)〉
〈Ω(q), Dψ2(θ(h, v, A, λ), v, A, λ)×X(q)〉 exp

(∫

O(p,q)

divΩ Xv,A,λdt

)
,

for any volume form Ω on M , and where the integration takes place along an orbit
starting at p = ψ1(h, v, A, λ) until it meets S2 in a point q = ψ2(θ(h, v,A, λ), v, A, λ).

The numerator in the above formula is nonzero (see the proof in the normally
hyperbolic case); the denominator needs to be studied more in detail. To that end
we use Ck-coordinates in the family rescaling chart, where the vector field is given by
(5.6). The volume form in these coordinates is equivalent to

up+q+m−1dx ∧ dy ∧ du,

and the section S2 is in these coordinates a graph

ψ2 : (z, v, A, λ) 7→ (x, y, v, A, λ) = (x2(z, v, A, λ), y2(z, v, A, λ), v1/m, A, λ)

Using these components, one shows that

〈Ω(q), Dψ2(θ(h, v, A, λ), v, A, λ)×X(q)〉 =

v(p+q+m−1)/mg(h, v, A, λ)

∣∣∣∣∣∣∣

∂x2
∂z

∂x2
∂v vα/mf ◦ ψ2

∂y2
∂z

∂y2
∂v 0

0 mv1/m−1 0

∣∣∣∣∣∣∣
z=θ(h,v,A,λ)
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where g expresses the equivalence of two volume forms (and is hence a nonzero Ck

function). Noticing that ∂y2
∂z is nonzero (transversality argument) we conclude that

∂θ

∂h
(h, v, A, λ) =

F (h, v,A, λ)
v(p+q+α)/m

exp

(∫

O(p,q)

divΩ Xv,A,λdt

)
,

for some nonzero function F that is Ck w.r.t. v1/m. In combination with proposi-
tion 5.8, this yields the result. ¤

Using this theorem and lemma 5.6, one can measure the difference between two
center manifolds:

θ(h(2), v, A, λ)− θ(h(1), v, A, λ) =
∫ h(1)

h(2)

∂θ

∂h
dh.

It is now easily shown that (provided d
dh (p(h)) 6= 0):

θ(h(2))− θ(h(1)) = exp
(

1
vσ

(I(p(h), p∗, λ) + ϕ12(h, v, A, λ))
)

, (5.12)

for some continuous function ϕ12 (o(1) as v → 0), and where p(h) is either p(h(1), A, λ)
or p(h(2), A, λ), whichever is closer to the turning point p∗ (closer according to the
slow dynamics on γ).

Corollary 5.11 Let σ1 be a compact curve transversally intersecting γ− at a point
p−, and assume σ1 is the union of two orbits towards γ− of X0,A,λ. Define S1 =
σ1 × [0, v1], and consider the transition map towards a section S2 as in theorem 5.10
on top of the blow up locus. The image of S1 under the transition map P is a wedge.
In coordinates, this yields

P (S1) = {(z, v) : v ∈ [0, v1], ϕ1(v, A, λ) ≤ z ≤ ϕ2(v,A, λ)},

and the wedge is exponentially small, i.e.

(ϕ1 − ϕ2)(v, A, λ) = exp(
1
vσ

(Ip−, p∗, λ) + o(1))).

Proof It is easily seen that the border of P (K) is formed by the image of the border
of K. (In fact this follows from the topological equivalences to what could be called
degenerate flow boxes in assumptions N2 and T4.) This last border is a union of three
pieces: two admissible entry boundary curves, and a level curve {v = v0}. ¤

In vague terms, this corollary states that the saturation of a curve with entry point
farther from p∗ than p− is a curve inside an exponentially small wedge.
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5.4 Comparing manifolds of canard solutions

One can use theorems 5.5 and 5.10 to compare different manifolds of canard solutions,
simply because the estimates in this theorems depend regularly on A. Just replacing
A by the control curve A is enough to show that both theorems are applicable to the
manifolds of canard solutions as well. Let us work it out in more detail.

Consider two sections S± as in theorems 5.5 and 5.10: the section S− is chosen
so that S− ∩ {v = 0} lies in the basin of attraction of γ−, whereas S+ is chosen so
that S+ ∩ {v = 0} lies in the basin of repulsion of γ+. Choose a common section
T on the blow up locus, transverse to the heteroclinic connection Γ. We can apply
theorem 5.10 for the sections S− and S+ separately. In the notations of this theorem,
we can define

∆(h−, h+, v, A, λ) := θ−(h−, v, A, λ)− θ+(h+, v, A, λ),

where h− is a parameter for S−, h+ is a parameter for S+, where z is a regular
coordinate for the section T . Under the assumption T1–T6, we know that

∆|v=A=0 = 0,
∂∆
∂A

∣∣∣∣
v=A=0

6= 0.

Hence, we can use the implicit function theorem to find A = A(h−, h+, v, λ). We see
that A depends regularly on the parameters h±. Before stating the main result of
this section, we give a definition:

Definition 5.12 Let p, q ∈ γ. We say that p is closer to p∗ than q if

|I(p, p∗, λ)| ≤ |I(q, p∗, λ)|.
which is equivalent to saying that

I(p, p∗, λ) ≥ I(q, p∗, λ).

(We remind the reader that I(p, p∗, λ) is negative for all p on the attracting branch
as well as on the repelling branch of the critical curve.)

Theorem 5.13 Let the sections S± of M × [0, v0[ be chosen as above, and let these
sections be parametrized by (h±, v). We define p(h±, λ) ∈ γ± to be the ω-limit
(resp. α-limit) of a point in S± with parameter value (h±, 0), and assume

d

dh±
p(h±) 6= 0.

Given a pair of entry–exit points (h(1)
− , h

(1)
+ ) corresponding to two boundary curves

in S±, there is a control curve
A = A(1)(v, λ)
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along which the two boundary curves are connected by a manifold of canard solutions
W (1). Given a second pair of entry–exit points (h(2)

− , h
(2)
+ ) and associated control curve

A(2), and manifold of canard solutions W (2). Assume finally that the closest of the
points p(h(1)

− , λ), p(h(1)
+ , λ), p(h(2)

− , λ), p(h(2)
+ , λ) to p∗ (according to definition 5.12),

which we will denote p, is strictly closer to p∗ than the three others. Then one has

(A(2) −A(1))(v, λ) = exp
(

1
vσ

(I(p, p∗, λ) + o(1))
)

as v → 0.

Define also p± ∈ γ± to be equal to p(h(1)
± , λ) or p(h(2)

± , λ), whichever is closest to p∗.
Let S2 be a section of M × [0, v0[ intersecting γ transversally at a point q 6= p∗,

and let q ∈ γ− resp. γ+. Then, the intersection of W (i) with S2 are two graphs
z = ϕ(i)(v, λ) (given a coordinate system (z, v) on S2) and writing ∆12 = ϕ(1) − ϕ(2)

one has

∆12(v, λ) = exp
(

1
vσ

(I(p±, p∗, λ)− I(q, p∗, λ) + o(1))
)

+ f(v, λ) exp
(

1
vσ

(I(p, p∗, λ) + o(1))
)

,

as v → 0, for some smooth function f (depending on q) and this for all q strictly
closer to p∗ than p± (as in definition 5.12).

Proof Continuing with the notations above one has

∆(h−, h+, v,A(h−, h+, v, λ), λ) = 0,

so after derivation, one finds

0 =
∂∆
∂h±

(h−, h+, v,A(h−, h+, v, λ), λ)

+
∂∆
∂A

(h−, h+,A(h−, h+, v, λ), λ)
∂A
∂h±

(h−, h+, v, λ).

Write −1/f(h−, h+, v, λ) = ∂∆
∂A (h−, h+,A(h−, h+, v, λ), λ). Shortening the notations

this yields
∂A
∂h±

= f · ∂∆
∂h±

.

Using theorem 5.10, we get a differential equation for A:

vσ ∂A
∂h±

= exp
(

1
vσ

(I(p(h±), p∗, λ) + o(1))
)
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Now,

A(h(1)
− , h

(1)
+ , v, λ)−A(h(2)

− , h
(2)
+ , v, λ) =(A(h(1)

− , h
(1)
+ , v, λ)−A(h(1)

− , h
(2)
+ , v, λ))

+ (A(h(1)
− , h

(2)
+ , v, λ)−A(h(2)

− , h
(2)
+ , v, λ))

=
∫ h

(2)
+

h
(1)
+

∂A
∂h+

(h(1)
− , h+, v, λ)dh+

−
∫ h

(2)
−

h
(1)
−

∂A
∂h−

(h−, h
(2)
+ , v, λ)dh−

Let us concentrate on the first integral; the second is treated in an analogous manner:

∫ h
(2)
+

h
(1)
+

∂A
∂h+

(h(1)
− , h+, v, λ)dh+ = ±

∫ h
(2)
+

h
(1)
+

1
vσ

exp
(

1
vσ

(I(h+) + o(1))
)

dh+,

with I(h+) := I(p(h+), p∗, λ). Both integrals can be rewritten as exponentials in one
of the end points of these integrals (see lemma 5.6), and a sum of two exponentials,
can be reduced to one exponential: if a1 = max(a1, a2) (with ai < 0), then

2∑

i=1

exp
(

1
vσ

(ai + o(1))
)

= exp
(

1
vσ

(a1 + o(1))
)

.

This proves the statement regarding the exponential closeness of control curves.
For the second part of the theorem, notice

∆12 := θ(h(2), v,A(2)(v, λ), λ)− θ(h(1), v,A(1)(v, λ), λ),

where θ is obtained from theorem 5.5. Apparently, one can decompose this difference
in two parts: in a part

∆a
12 := θ(h(2), v,A(2)(v, λ), λ)− θ(h(1), v,A(2)(v, λ), λ),

and in a part

∆b
12 := θ(h(1), v,A(2)(v, λ), λ)− θ(h(1), v,A(1)(v, λ), λ).

The part ∆a
12 has been investigated at the end of the previous section—one simply

has to substitute A = A(2) in (5.12). Define

H(v, A, λ) =
∫ 1

0

∂θ

∂A
(h(1), v, sA +A(1)(v, λ), λ)ds,

then one can see that

∆b
12 = (A(2) −A(1))H(v,A(2), λ).
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Using the first part of the theorem suffices to conclude the proof. ¤

Notice the strong resemblence between the above theorem and theorem F in
[BFSW], where the same result is obtained in an analytic framework (and—for our
specific situation—under stronger transversality hypothesis).

This theorem gives the basis for an entry–exit relation for a vector field Xv,A(v,λ),λ.
In particular, it gives an expression for the distance of two control curves associated
to two different entry–exit relations, meaning that if this distance is “too large”, then
both entry–exit relations cannot co-exist. The specification “too large” can be made
explicit: if (h−, h+) defines a pair of entry–exit points, with associated control curve
A, then this exit point is preserved along parameter curves A(v, λ) for which

|A(v, λ)−A(v, λ)| ≤ exp
(

1
vσ

(I + o(1))
)

,

where
I = I(p(h+, λ), p∗, λ).

Let us combine this fact with the results of the previous theorem. Given a fixed
pair (h−, h+) and associated to this pair a control curve A(v, λ). Consider the reduced
family

Xv,λ := Xv,A(v,λ),λ,

and we ask ourselves the following question: given a fixed entry point h̃− what is the
corresponding exit point, i.e. what is the unique point h̃+ before which the saturation
of the entry boundary curve at h̃− stays o(1)-close to the critical curve, and beyond
which point the orbits in the saturated manifold are repelled away from this critical
curve in an exponentially fast way? We assume that

p(h+, λ) is closer to p∗ than p(h−, λ).

(The other case can be treated similarly, upon reversing time.) We define the following
set:

F = {h̃− : p(h+, λ) is closer to p∗ than p(h̃−, λ)}.
Clearly, h− ∈ F and for any h̃− ∈ F , assume that there is an exit point specified by
h̃+. There are a priori three possibilities:

1. The exit point p(h̃+, λ) lies closer to p∗ than p(h+, λ).

2. The exit point coincides with p(h+, λ).

3. The exit point lies further away from p∗ than p(h+, λ).
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One can exclude the first case as follows: any control curve connecting h̃− to h̃+ in
that configuration must lie on a distance with the given control curve (due to the
preceding theorem), and this distance is given by

exp
(

1
vσ

(I(p(h̃+, λ), p∗, λ) + o(1))
)

(the point p(h̃+, λ) is the closest to p∗ of the four relevant entry–exit points). Hence,
the regions in parameter space where an entry–exit pair (h−, h+) and (h̃−, h̃+) are
possible do not intersect, and lie relatively far apart from each other. Similarly one
excludes the third case. In the second case, we cannot apply the preceding theorem,
and the two entry–exit pairs can co-exist. We conclude that the saturation of all entry
boundary curves specified with parameter values in F leave the critical curve at the
same point p(h+, λ). This phenomenom is called a funneling effect (and F is called a
funnel).

A natural question appears now: what happens outside the funnel? Consider the
set

T = {h̃− : p(h̃−, λ) is closer to p∗ than p(h+, λ)}.
It should be observed that

γ− = F ∪ {pi} ∪ T,

for a unique point pi for which

I(pi, p∗, λ) = I(p(h+, λ), p∗, λ).

With similar arguments, it can be seen that the corresponding exit point of an entry
point h̃− in T is given by the symmetric point h̃+ for which

I(p(h̃−, λ), p∗, λ) = I(p(h̃+, λ), p∗, λ),

in other words: the saturation of an entry boundary curve specified with a parameter
value in T leaves the critical curve at an exit point that is given by the above integral
relation. This is a one-to-one correspondence between entry and exit point. This
phenomenom is called bifurcation delay.

Remains to find out what happens to initial boundary curves that have an entry
point specified by pi. It is clear that there is no unique exit point attached to this
entry point, i.e. initial conditions are in a sense much more sensitive around this
point. The reason is that when considering an exit point p(h̃+, λ) for which p(h+, λ)
lies closer to p∗, then upon reversing time one can show that the corresponding entry
point must coincide with pi. We conclude: the saturation of an entry boundary curve
with entry point pi can leave the critical curve at an exit point that is either equal to
p(h+, λ) or it can be any point farther away from p∗. We summarize these results in
the following
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Theorem 5.14 (Entry–exit relation) Let (h−, h+) be a pair of entry–exit points
so that

I(p(h−, λ), p∗, λ) < I(p(h+, λ), p∗, λ)

(the other case can be treated similarly, upon reversing time). Define pi to be point
on γ− symmetric to p(h+, λ), i.e.

I(pi, p∗, λ) = I(p(h+, λ), p∗, λ).

Let
A = A(v, λ)

be the unique control curve connecting the curve defined by the coordinate equation
{h = h−} in S− to the curve defined by the coordinate equation {h = h+} in S+.

Then, restricting to this control curve in parameter space, the saturation of any
curve in S− specified by the equation {h = h̃−} leaves the critical curve at a point po,
that is defined by:

1. If p(h̃−, λ) lies (strictly) closer to p∗ than pi, then po is the unique point on γ+

for which I(po, p∗, λ) = I(p(h̃−, λ), p∗, λ).

2. If pi lies (strictly) closer to p∗ than p(h̃−, λ), then po = p(h+, λ) (funneling: the
exit point does not depend on the entry point inside the funneling region).

3. If p(h̃−, λ) is equal to pi, then the exit point is unknown, but at least is equal to
or lies farther way from p∗ than p(h̃+, λ).

In these circumstances, one says that p(h̃+, λ) is a point of maximum bifurcation delay
(it is a buffer point).

5.5 Some notes on buffer points

The above proposition makes it clear that the calculation of the “buffer point” is
very sensitive to perturbations. Indeed, one can put the buffer point anywhere upon
changing the control curve A = A(v, λ). The inverse question, i.e. finding the buffer
point for a given family Xv,λ without control parameter is hence not obvious.

Throughout the literature, one can find several results on calculating the buffer
point. Most of them however are concerned about 3-dimensional slow-fast systems,
with one fast dimension and a 2-dimensional critical manifold. A famous example is
described by the complex vector field

{
ẋ = ε
ẏ = (x + i)y + ε.

By writing y = u + iv, and keeping (x, ε) real, one reduces to the 3-dimensional real
situation. In any case, what is typical about this family is that the eigenvalue along
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the critical manifold crosses the imaginary axis outside the origin. This kind of vector
fields always possess a formal expansion, and always exhibit a canard phenomenom.

The determination of the buffer point (or equivalently, the maximum size of a
canard) is done using the fact that the points on the attracting branch of the critical
manifold are in a sense connected to the points on the repelling branch of the critical
manifold (see [N1], [N2]). To roughly illustrate the idea using the above example,
allow us to be a bit vague; there is really no need to be very precise since it will serve
only as an introduction to our case. The divergence in this example is given by x + i,
whereas the slow dynamics is simply ẋ = 1. The integral of the divergence can be
complexified and it equals

I(x) =
∫ 0

x

(s + i)ds = −1
2
x2 − ix.

Whereas in real dynamics, the attraction is governed by this integral, in complex
dynamics one should only consider its real part R(x) = <(I(x)). Notice now that

R(a + ib) := <(I(a + ib)) = −1
2
(a2 − b2 + 2b)

The real point (−x, 0) on the attracting side of the critical curve is connected to the
real point (x, 0) on the repelling side of this curve, by means of the complex path

S1 := {(a+ ib) ∈ C : b ≥ 0, a2−b2 +2b = x2} = {(a+ ib) ∈ C : b = 1−
√

1− x2 + a2},
which is connected provided x < 1. An extension of the results in this chapter would
allow us to parametrize S1 by a, and consider initial entry boundary curves in S1, just
as in theorem 5.10. The transition map towards a section in a family rescaling chart
on top of the blow up locus of the turning point would be parametrized regularly by
a, and its derivative w.r.t. a is an expression of the form

exp((R(a + ib) + o(1))/ε).

The exponent however is constant due to the definition of S1, allowing us to prove that
the angle between the attracting center manifold through (−x, 0) and the repelling
center manifold through (+x, 0) is of the order exp(R(x)/ε), and this suffices to show
that the attracting center manifold will stay o(1)-close to the critical curve along the
path [0, x[, i.e. one proves the existence of canard manifolds of length 1.

This technique does not directly apply to our 2-dimensional real situation, where
the eigenvalue passes the origin. In that case, there is no way to connect the points
of the attracting side to the points on the repelling side by means of paths having
a constant divergence integral. In the language of [BFSW], one would say that the
complex plane is divided into valleys and mountains, and R(x) would be the relief
function giving at each point the “height”. Let us illustrate this again with a basic
example: {

ẋ = ε
ẏ = xy + ε2f(x, y, ε).
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In this example, the integral of the divergence is simply a function I(x) = − 1
2x2, with

real part R(a + ib) := <(I(a + ib)) = − 1
2 (a2 − b2). The locus

{a2 − b2 = x2} = {b =
√

a2 − x2}

is not a connected path from (−x, 0) to (x, 0).
In the next chapter, this problem is bypassed, using the theory of Gevrey functions

in combination with the geometric tool ‘family blow up’. Instead of considering x ∈ C
and ε ∈ R+, we will consider x ∈ C, but keeping ε/x2 real. This is best viewed in
charts of the blow up.
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Chapter 6

Gevrey-analysis

Part of my work relates to the study of Gevrey properties of center manifolds in dy-
namical systems. A great amount of work has already been done for one-dimensional
center manifolds in the plane. We recall a theorem that is most relevant to us. In the
context of slow-fast vector fields with one slow variable, the study of two-dimensional
center manifolds becomes important. In that case, we study the divergence properties
with respect to the small parameter ε. Also in this area, a lot is known by now. The
work that is presented below is devoted to real analytic vector fields, and although
the techniques may require some complex notions, the results will still be formulated
in a real language.

We will limit ourselves to an open set M ⊂ R2, and we will refer to it as an
analytic manifold, meaning that we impose analyticity on local charts.

6.1 Gevrey properties of 1-dimensional center ma-
nifolds

Consider a real analytic vector field X on R2, with a singularity in (x0, y0):

X :
{

ẋ = f(x, y)
ẏ = g(x, y) (6.1)

It is well known that if a singularity (x0, y0) is an hyperbolic saddle, then the stable
and unstable manifolds are unique and real analytic in the origin. In that case,
both eigenvalues of DX(x0,y0) are nonzero. It becomes interesting if one eigenvalue is
zero and there locally exist one-dimensional Ck center manifolds. It follows already
from the results in [WA] (and many others) that in the analytic setting those center
manifolds can be taken to be C∞. Still, more can be said about this center manifold.
It was shown by Braaksma and by Ramis and Sibuya that center manifolds are σ-
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summable for some σ ∈ N \ {0}. We remind the reader that one possible definition
of summability can be given in the following terms:

Definition 6.1 A formal power series f̂(x) is called σ-summable in the complex di-
rection d ∈ [0, 2π] in x if there exists a good sectorial covering (Sj)j=1,...,n and a
sequence of functions (fj)j with fj : Sj → C analytic and bounded such that all fj

are Gevrey-1/σ asymptotic to f̂ in the sector Sj and such that S1 = Sr0,d,θ0 for some
r0 > 0 and θ0 > π/2σ (i.e. for the sector containing the direction d, we can choose
an opening angle > π/σ). A formal power series f̂(x) is called σ-summable if it is
σ-summable in all but at most a finite number of complex directions.

I have found [Ba] to be a good reference for a (Braaksma-style) proof of the summa-
bility of center manifolds. There, ordinary differential equations of the form

xσ+1 dy

dx
= F (x, y) (6.2)

(and higher-dimensional variants) are considered, with F analytic near (0, 0) ∈ C2,
F (0, 0) = 0 and λ := ∂F

∂y (0, 0) 6= 0. The index σ is called the Poincaré index of the
differential equation. The conclusion is the following:

Proposition 6.2 There is a unique formal power series y = ϕ̂(x) that solves (6.2).
This series is Gevrey-1/σ in x of type 1/|λ|. The series is σ-summable in all direc-
tions, except in the directions d ∈ S1 ⊂ C for which Arg(λdσ) = 0 (i.e. λdσ lies on
the positive real axis).

Our interest goes to the cases λ ∈ R. We distinguish four cases, and relate to the
corresponding topological pictures of the corresponding vector field

X :
{

ẋ = xσ+1

ẏ = F (x, y)

(a) λ < 0 and σ is even. The series ŷ is σ-summable in the direction x < 0 and x > 0.
The origin is a topological saddle, and the center manifolds for both x < 0 as
x > 0 separate two saddle sectors and are therefore unique.

(b) λ < 0 and σ is odd. The series ŷ is σ-summable in the positive real direction,
but not in the negative real direction. The origin is a saddle-node in this case;
in the direction x > 0 it divides two saddle sectors and is unique while in the
direction x < 0 the center manifold is not unique (the center manifold is an orbit
in a parabolic sector of the origin).

(c) λ > 0 and σ is even. The series ŷ is not σ-summable in the two real directions.
The origin is a topological source. In this case, the center manifold is not unique,
not for x < 0 and not for x > 0.
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(d) λ > 0 and σ is odd. The series ŷ is σ-summable in the negative real direction, but
not in the positive real direction. The origin is again a saddle-node, and in the
half-plane x < 0 the center manifold is unique since it divides two saddle sectors.
The half-plane x > 0 is parabolic, and there the center manifold is nonunique.

It is an easy exercise to reduce the study of the partially hyperbolic fixed point
of (6.1) to a study of an ordinary differential equation like (6.2) (except if the center
manifold is a curve of singularities, but then this curve is analytic):

Proposition 6.3 Let 0 be an isolated singularity of a vector field X on (R2, 0), and
assume X is analytic near the origin. Assume also that DX0 has one zero and
one nonzero eigenvalue. Then X is locally near 0 analytically conjugated (a precise
definition of analytic conjugation is given in definition 6.8) to

{
ẋ = xσ+1α1(x, y) + xyα2(x, y)
ẏ = β1(x, y)y + xσ+1β2(x, y)

for some σ ∈ N \ {0, 1}, and where α1, α2, β1, β2 are analytic near the origin.
Futhermore both α1(0, 0) and β1(0, 0) are nonzero. The number σ is unique and
is called the “Poincaré index of X at 0”. After performing the singular change of
coordinates y = xσY , the vector field is given by

{
ẋ = xσ+1α(x, Y )
Ẏ = β(x, Y )Y + xg(x, Y )

with α, β and g analytic near 0, and where α(0, 0) 6= 0 and β(0, 0) 6= 0.

6.2 Singular perturbations

The theory of Gevrey asymptotics has proved to be very successful in applying it to
singular perturbation problems. As our attention goes to planar singular perturbation
problems, the results of Canalis-Durand, Ramis, Schäfke, Sibuya, Benöıt, Fruchard,
Wallet ([CRSS], [BFSW], [FS], . . . ) and many others are important to us. More
specifically, both local as more global results have been obtained in describing the
normally hyperbolic passage as well as passages through nongeneric turning points.

Here, we present an addition to this set of results in the following way. By re-
stricting ourselves to results inside the set of reals, we are able to prove the existence
of “canard manifolds” that are not visible through asymptotic theory. Indeed, in
general these canard manifolds do not have an asymptotic power series in terms of
the traditional variables (see also [FS2]).

As a motivating example, consider the equation

ε
dy

dx
= a + x3y + εNx + εN+1F (x, y, ε, a),
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where F is real analytic and all variables are one-dimensional. Associated to this
o.d.e. is the vector field

Xε,a :
{

ẋ = ε
ẏ = a + x3y + εNx + εN+1F (x, y, ε, a) (6.3)

One can check that this vector field has a curve of singularities with one turning point,
and that it satisfies the conditions of theorem 3.3, proving the presence of smooth
canard manifolds (such equations were also examined in [PA]). The smoothness of
such canard manifolds is everywhere except at the turning point, where in general the
smoothness is at most C0. The lack of smoothness at the turning point is reflected in
the absence of a formal power series satisfying the above o.d.e. For a formal canard
manifold ŷ(x, ε) and canard curve â(ε) to satisfy the above o.d.e., it is easily shown
that â = O(εN ) and ŷ = O(εN ). For the coefficients (aN , yN (x)) one needs to solve

0 = aN + x3yN (x),

which is impossible without introducing a pole at the origin.

In this chapter, we will show that the canard manifolds satisfy some Gevrey esti-
mates with respect to blown up variables, and, which may be more important, that
the control curve a = A(ε) also is Gevrey in terms of ε1/m for some m. Indeed, al-
though the canard manifolds are in general only C0 at the turning point, the control
curve is smooth and has an asymptotic expansion.

Although we focus on obtaining results in the reals, we are automatically lead to
use features in the rich domain of complex analysis. Our result will strongly depend
on a theorem of Ramis-Sibuya, relating Gevrey expansions to chains of complex func-
tions. Also the technique of majorating series will come in handy in proving Gevrey
estimates. The main obstacle in transposing all these techniques to our situation is
the fact that the blow up transformation replaces the trivial foliation dε = 0 by the
foliation d(upεq) = 0, with p, q ∈ N1. As a consequence, both u and v play the role
of a singular parameter and expansions with respect to u will have to be investigated
independently of the expansions with respect to ε.

Beside on turning point problems, some work will be done on normally hyperbolic
singular perturbation problems. As a motivating example, consider the o.d.e.

ε(ε + x)
dx

dy
= −x + εF (x, y, ε), x(y0) = x0(ε)

with F analytic. We will attach to this kind of equation the order of degeneracy
σ = 2, and will prove that the solution to this boundary value problem ϕ(y, ε) is
Gevrey-1/2 w.r.t. ε uniformly for y in compact subsets inside ]y0, y1[.
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6.2.1 General setting and results

We again position ourselves in the framework of chapter 3, this time assuming that
the manifold M is a subset of R2, that the family Xε,a,λ is real analytic (although the
analyticity w.r.t. the “nonessential” parameters λ is not necessary and can be replaced
by Ck-smoothness). Further assumptions on the vector field are briefly recalled below.

As in preceding chapters, we consider families like in (3.5), where the parameters
(ε, a) have already been rescaled to make a a “regular breaking parameter”. In the
new family Xv,A,λ the singular parameter is v and (A, λ) are regular parameters. For
the sake of convenience, the family Xv,A,λ is repeated here:

{
ẋ = f(x, y, v, A, λ)
ẏ = vg(x, y, v, A, λ). (6.4)

Let us recall the definition of “order of degeneracy” (from section 4.1). Assume γ
is a curve of singularities of X0,A,λ, and let p ∈ γ be normally hyperbolic for X0,A,λ.
Then there exists Ck-center manifolds Wp for Xv,A,λ at p. The reduction of Xv,A,λ to
the center manifold Wp is a vector field that is O(vσ). We define σ to be the largest
number i for which this vector field is divisible by vi. For vector fields associated to
ordinary differential equations like vσ dy

dx = F (x, y, v, A, λ), the vector field reduced to
any center manifold is equivalent to ẋ = vσ, and one trivially finds σ to be the order
of degeneracy. In fact, the class of vector fields

{
ẋ = ε
ẏ = F (x, y, ε, a) (6.5)

is treated entirely in [PA]: Panazzolo carefully examined under what circumstances
such vector fields can be blown up and have a breaking parameter.

We refer to section 4.1 for the definition of the slow vector field, and also recall
the definition of slow divergence: the slow divergence is defined as the divergence of
the reduced vector field X|v=0, and reduced to the critical manifold γ:

div X0
v,A,λ := div X0,A,λ.

Letting ϕ(s; s0) be the flow under the slow vector field X0, then one can integrate
the slow divergence along compact pieces of the critical curve. This construction is
demonstrated in chapter 5. Such integrals will be important in the specification of
the Gevrey type of the control curve. The integral is well-known in the literature;
in [BFSW] its real part is called “le relief”. To clarify, let us assume y = ϕ0(x) is a
curve of singularities for ε = a = 0 in (6.5), then the integral of the slow divergence
yields ∫

[x0,x1]

div X0 ds :=
∫ x1

x0

∂F

∂y
(x, ϕ0(x), 0, 0)dx.
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Finally, we briefly recall assumptions T1–T6 (as in chapter 3) and assumption T7
(as in chapter 4).

Assumption A1 (Analytic version of assumption T1) There exists a real analytic
chart of the manifold M where the family of vector fields takes the form of (6.4),
and where the critical curve γ is defined as a solution of f(x, y, 0, A, λ) = 0. The
curve γ is a union of two curves γ− ∪γ+ divided by a point p∗. We assume that
the point p∗ has coordinates (0, 0) in this chart. Some extra properties on γ are
required to ensure that we can write γ as a graph (see chapter 3 for details).

Important remark: because we work with the parameters (v,A) instead of (ε, a),
the critical curve will not depend on A; indeed X0,A = X0,A′ for all A,A′ if the
family is obtained by a parametric blow up (a, ε) = (vkA, v`).

Assumption A2 We assume that N1 and N2 are verified (chapter 2), hereby choos-
ing an orientation on γ so that γ+ comes after γ−. The analyticity of the vector
field allows one to assume N3 (chapter 4) without loss of generality. We assume
that the slow vector field (as introduced in chapter 4) has no singularities on γ.
Roughly this states that along the critical curve γ− we have hyperbolic attrac-
tion, along γ+ we have hyperbolic repulsion, and the slow dynamics is oriented
from γ− to γ+ (leading to a situation that is known as a dynamic bifurcation).

These two assumptions will already suffice to prove theorem 6.12, roughly stating
that near the real branch of the normally attracting critical curve γ− the saturation
of admissible entry boundary curves forms an invariant manifold that satisfies some
Gevrey estimates. We refer to theorem 6.12 for more information.
To pass through a turning point, we need additionally

Assumption A3 We blow up (in the reals) the family of vector fields XA,λ :=
Xv,A,λ + 0 ∂

∂v in R3 by a weighted family blow up (x, y, v) = (upx, uqy, umv),
with u ≥ 0 and (x, y, v) ∈ S2. After blowing up at (0, 0, 0) the (x, y, v)-variables
— in an admissible real analytic chart — of Xv,A,λ, we get the following:

The preimages of γ− and γ+ in the blow up space (including the endpoints of
γ± on the blow up locus) are normally hyperbolic. Define P± = γ± ∩ Σ, where
Σ is the blow up locus, i.e. the preimage of (x, y, v) = (0, 0, 0) under the blow
up map.

Assumption A4 Let p = P− be the end point of γ− in a blown up admissible (real
analytic) chart, then there exists a sufficiently small neighbourhood V of p so
that in V there are no singularities for v > 0. A similar requirement is made
for the end point P+ of γ+. Up to this point, this coincides with assumption
T4. Here, we also assume that in this blown up chart the vector field can be
complexified in a neighbourhood of P− ∈ C3. We assume that there are no
singularities for v 6= 0, and not just on the real axis.
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Assumption A5 Under the conditions of assumption A3, there is a heteroclinic
connection Γ (for A = 0) on the blow up locus Σ connecting P− to P+. We
assume that this connection consists of one orbit going from P− to P+. This is
the same as assumption T5 from chapter 3.

Assumption A6 Using the family rescaling chart expressed in (1.3) A is a regular
breaking parameter. Let us explain briefly: if, in extremis, Xv,A,λ would not
depend on A, we cannot expect to find a control curve A = A(v, λ) to match
center manifolds. This assumption guarantees that the family of vector fields
does depend on A, and in a way that is regular enough for the matching to
take place. In other words, the connection Γ breaks as A 6= 0 with a nonzero
breaking speed w.r.t. A. This condition is explained in full detail as assumption
T6 in chapter 3.

We need one more extra condition in order to be able to proceed. The heteroclinic
connection near P− (as in condition A5) is locally a center manifold at P− for the
vector field reduced to the blow up locus. This analytic vector field is of the form
(6.1), and we assume that the Poincaré index of the equation is equal to σ, the order
of degeneracy of our vector field. In other words, the order of degeneracy at points of
the normally hyperbolic branch γ− does not change when passing to the limit point
P− on the blow up locus. Essentially, we want to avoid situations like

{
ẋ = yx + O(ε)
ẏ = εσ(ε2 + y2),

where the order of degeneracy changes from σ to σ + 2 at the turning point (x, y) =
(0, 0). It is in fact a restatement of assumption T7:

Assumption A7 The Poincaré index of the blown up vector field at P±, reduced to
the blow up locus {u = 0} is equal to σ.

Theorem 6.4 Let Xv,A,λ be a real analytic family of vector fields on a (real) analytic
2-manifold M ⊂ R2, and let assumptions A1–A7 be verified. Let Σ± be real analytic
admissible entry/exit boundary curves. Denote by c± ∈ γ± the two corner points (c−
resp. c+ is the ω-limit resp. α-limit of the base point of Σ− resp. Σ+ on {v = 0}).
(These corner points could also be called entry–exit points.) Then

1. For some m ∈ N1 and for v ∈ [0, v0[ with v0 > 0 sufficiently small, there exists a
unique smooth curve A = A(v1/m, λ) so that A(0, λ) = 0 and so that the saturation
of Σ− along Xv,A(v,λ),λ forms a manifold with boundary W of canard solutions
containing Σ+ as well. The manifold with boundary is smooth in the blow up
space, everywhere except at the two corner points c± defined above.

2. There exists a T > 0 such that the Taylor series of A w.r.t. u := v1/m is unique,
and is Gevrey-1/mσ of type T ′, for all T ′ > T . The function A is real analytic in
]0, u0[ and can be continued analytically to a sector Su0,0,θ (for any opening angle
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2θ < π/mσ), where it is Gevrey-1/mσ of type T ′ asymptotic to its Taylor series
at the origin (w.r.t. the variable v). An upperbound for the type T is given in
proposition 6.28, and is given in terms of the opening angle.

Remark: The manifold W itself satisfies Gevrey estimates as well. This is made
more precise in the theorems 6.12, 6.22 and 6.25.

Corollary 6.5 If the Taylor series of A only contains powers of um, then A is
Gevrey-1/σ of type T ′ in v = um, for all T ′ > T . (The Gevrey type is the same
as the type in the theorem.)

Theorem 6.6 Under the assumptions of theorem 3.4 (i.e. if a unique asymptotic ex-
pansion for the canard solutions exist in original coordinates), then the unique formal
expansion for the canard solutions satisfies Gevrey-1/σ estimates.

The proofs of these results are spread over the next sections. A sketch of the contents:

1. In section 6.2.2, we saturate entry boundary curves along normally hyperbolic parts
of the critical curve; in particular we show in extension to the results of chapter
2 that the saturation is analytically continuable to complex sectors. A cylindrical
blow up along γ is needed to find good analytic normal forms.

2. In section 6.2.3, we find analytic normal forms at the limit points P± of the critical
curves γ± on the blow up locus.

3. In the same section, we show that the formal expansions that exist over the nor-
mally hyperbolic part can be extended to the limit point P−.

4. In section 6.2.4, we show that this expansion too is Gevrey-1/σ; this result will
only serve to prove theorem 6.6 in section 6.2.9.

5. We show in section 6.2.5 that there exist invariant manifolds near P± in complex
sectors.

6. We make a covering of such sectors in section 6.2.6 and prove the exponential
closeness between the manifolds over these sectors in the intersection of their do-
mains, and apply the theorem 1.15 to obtain the Gevrey property of the invariant
manifolds.

7. We proceed and saturate the manifolds along the heteroclinic connection Γ in
section 6.2.7, and apply the implicit function theorem to find the Gevrey property
of the control curve A, thereby finishing the proof of theorem 6.4.

8. The proof of theorem 6.6 is outlined in section 6.2.9.
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6.2.2 The normally hyperbolic part

The Ck-normal form theory cannot be applied to derive the required results. We need
some kind of analytic normal forms, near points p of the normally hyperbolic parts
of the curve, but also near the limit points P− and P+ on the blow up locus and near
points p of the connection Γ in the family rescaling chart. Let us focus in this section
on points of γ−.

Analytic normal forms

Definition 6.7 A Gevrey-chart of M is a (v, A, λ)-dependent analytic chart of M
for which the coordinate functions are uniformly Gevrey-1/σ w.r.t. v in a complex
sector Sv0,0,θ.

Definition 6.8 Two local vector fields X1 and X2 on (C2, 0) are called Cω-conjugate
if there exists an analytic transformation ϕ : (C2, 0) → C with ϕ(0) = 0 and ϕ∗X1 =
X2. This definition can be trivially extended to families of vector fields.

Definition 6.9 Two local vector fields X1 and X2 on (C2, 0) are called Cω-equivalent
if there exists a strictly nonzero analytic function h : (C2, 0) → C so that X1 is Cω-
conjugate to hX2. This definition can be trivially extended to families of vector fields.

In (6.6), a normal form is given near normally hyperbolic points of the critical
curve. Compare this to the Ck-normal forms under equivalent conditions in (4.2),
essentially stating that in Ck-normal forms one can drop the h1-contribution in (6.6).
One can do the same in analytic terms, using a singular coordinate change; this yields
the normal forms in (6.7) and (6.8).

Note that the singular change of coordinates is sometimes not required, but in
general it is; consider for example the vector field

{
ẋ = −x + ε3

ẏ = ε(ε2 + x2),

which does not have singularities outside {x = ε = 0} (in a sufficiently small neigh-
bourhood), and for which the order of degeneracy is 3, but still without rescaling x
one cannot factor out ε3 in ẏ.

Proposition 6.10 (Analytic normal forms) Let assumptions A1 and A2 be verified.
Given a point p ∈ γ−, and an angle 0 < θ < π/2σ, then there exists an Gevrey-chart
of M near p having the following properties:

i) In (x, y)-coordinates, the plane {x = 0} inside M × [0, v0[ is locally invariant
under the flow of the vector field, and the point p is located at (x, y) = (0, 0).
Locally, the vector field (6.4) can be written in these coordinates:

Xv,A,λ :
{

ẋ = α1(x, y, v, A, λ)x
ẏ = vσg1(y, v, A, λ) + xh1(x, y, v, A, λ), (6.6)
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where α1, g1 and h1 are functions that are real analytic in all its variables except
in v; in v these functions are uniformly Gevrey-1/σ. Furthermore, we have
α1(0, y, 0, A, λ) < 0 and g1(y, 0, A, λ) 6= 0. The function h1 vanishes at v = 0.

ii) Upon performing the singular change of coordinates {x = vσX} in this chart, the
vector field yields

X̃v,A,λ :
{

Ẋ = α(X, y, v, A, λ)X
ẏ = vσg(X, y, v, A, λ)

(6.7)

where α(0, y, 0, A, λ) < 0 and g(0, y, 0, A, λ) is nonzero. The functions α and g
are real analytic in all variables except v, and uniformly Gevrey-1/σ w.r.t. v in
the sector Sv0,0,θ (and real-analytic for v ∈]0, v0[).

iii) After this singular change of coordinates the vector field X̃v,A,λ is Cω-equivalent
(as in definition 6.9) to a vector field

{
Ẋ = β(X, y, v,A, λ)X
ẏ = vσ (6.8)

where β is real analytic in all its variables, except w.r.t. v, and it is Gevrey-1/σ
w.r.t. v. Furthermore, β(0, y, 0, A, λ) < 0.

Proof Our starting point is a chart where the vector field is given by (6.4), where
p = (0, 0), and where the critical curve is given by {x = 0}. It is well-known that
upon an analytic change of coordinates, one can ensure that C∞ center manifolds are
O(vN )-close to {x = 0} (because the center manifolds x = ψ(y, v, A, λ) have a unique
asymptotic expansion w.r.t. v). This immediately yields that the vector field takes
the form {

ẋ = α0(x, y, v, A, λ)x + O(vN )
ẏ = vg0(y, v, A, λ) + xh0(x, y, v, A, λ).

In this form, the order of degeneracy σ is the highest index i for which vg0(y, v, A, λ)+
xh0(y, v, A, λ), restricted to the center manifold x = O(vN ) is divisible by vi. Taking
N high enough, this means that g0 is divisible by vσ−1, i.e.

{
ẋ = α0(x, y, v, A, λ)x + O(vN )
ẏ = vσ g̃0(y, v, A, λ) + xh0(x, y, v, A, λ).

Let us now show that this analytic vector field has a local center manifold that Gevrey-
1/σ w.r.t. v. In fact, this follows from a result of Sibuya: the center manifold is given
by x = vN−1ψ(y, v, A, λ), where {X = ψ(y, v, A, λ)} is a solution to

vσ
(
g̃0(y, v, A, λ) + vN−σ−1Xh0(vN−1X, y, v,A, λ)

) dX

dy

= α0(vN−1X, y, v, A, λ)X + O(v),

and this latter o.d.e. is treated in:
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Theorem 6.11 (Sibuya) Let y0 be fixed, and choose an opening angle 2θ < π/σ.
There exists an r > 0, δ > 0 and a function X = ψ(y, v, A, λ) that solves the above
o.d.e. and that is analytic for y ∈ B(y0, δ) and v ∈ Sr,0,θ. This function is Gevrey-1/σ
w.r.t. v in this chosen sector.

In any case, by means of a Gevrey-translation x 7→ x − vN−1ψ(y, v, A, λ) one
obtains the normal form (6.6). The two remaining statements of the proposition
follow easily now. ¤

Saturating boundary curves

Theorem 6.12 Let Σ− be an analytic admissible entry boundary curve for an ana-
lytic family of vector fields satisfying assumptions A1, A2 and assume that the ω-limit
of the base point of Σ− is a point c on the critical curve γ− (this is known as the “cor-
ner point”, or equivalently the “entry-point”). Let ]c, d[⊂ γ be a bounded part of γ−.
Choose an opening angle 0 < 2θ < π/σ. There exists a v0 > 0 so that

1. The saturation of Σ− is an invariant manifold W inside M × [0, r[, that is smooth
for all v ∈]0, v0[ and also smooth for v = 0 along ]c, d[.

2. In any analytic chart of M near a point p on ]c, d[ where the critical curve is
written as a graph x = ϕ0(y, A, λ), the invariant manifold can be locally written as
a graph x = ϕ(y, v, A, λ) (with ϕ0 = ϕ|v=0); the function ϕ is real analytic w.r.t. v
in ]0, v0[, and can be analytically continued w.r.t. y to a complex neighbourhood
Up ⊂ C, and w.r.t. v to a complex sector Sv0,0,θ.

3. The complexified invariant manifold satisfies Gevrey-1/σ estimates w.r.t. v in the
complex sector Sv0,0,θ, uniformly for y in compact sets inside ]yc, yd], where yc

resp. yd is the local y-coordinate of the point c resp. d.

The uniformity of the Gevrey estimates is lost as one approaches the corner point
c. To see this, consider the trivial example

Xv :
{

ẋ = xy
ẏ = v

with an admissible entry boundary curve {x = 1, y = −1}. The saturated manifold
is given by

x = exp((y2 − 1)/2v).

The above function is Gevrey-1 asymptotic to 0 in complex sectors S∞,0,θ, with type
Ty := 2/(y2−1) cos θ. Apparently, the type diverges to +∞ as one approaches y = −1.
In compact sets inside ] − 1, 0[ one can give an upper bound on the type though, as
stated in the theorem.
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Proof of theorem 6.12

The first statement is shown in theorem 2.5. This proof is devoted to the complexifi-
cation. By allowing v to take complex values in a sector Sr,0,θ, we are automatically
led to consider complex phase variables as well. However, we will restrict ourselves
to regions near the real component of γ−.

Let us cover the segment [c, d] by a finite number of neighbourhoods where normal
forms as in (6.6) are valid, and where after the singular change of coordinates {x =
vσX} the normal forms as in (6.7) and (6.8) are valid. After complexifying (6.8) we
will also assume that in each neighbourhood the normal form (6.8) has the additional
property

<
(

y − yc

vσ
β(X, y, v, A, λ)

)
≤ −ν|y − yc|

|v|σ < 0 (6.9)

for X in a complex neighbourhood of 0 and v in the sector Sv0,0,θ (with ν small
but fixed) and for y in a complex neighbourhood of the segment ]yc, yd]. This can
be demanded upon restricting X and v to sufficiently small neighbourhoods (since
β(0, y, 0, A, λ) < 0), and upon restricting the neighbourhood for y to a complex sector
with vertex yc (so that Arg(y − yc) is small).

We claim that we may assume that the admissible boundary curve is bounded
and analytic for v in the sector Sv0,0,θ after application of the singular change of
coordinates x = vσX. This is clearly non-trivial (as can be seen in the example below
this proof), for the entry boundary curve {x = 1} is mapped to the singular boundary
curve {x = 1/vσ}. Let us first assume this to be true, i.e. we continue with the normal
form (6.8), and a boundary curve

{y = ϕ0y(v, A, λ), X = ϕ0x(v,A, λ)},
so that both component functions are bounded analytic for v in the sector Sv0,0,θ.
Let

(X̃(t), ỹ(t)) := (X̃(t; X0, y0), ỹ(t;X0, y0))

be the flow w.r.t. (6.8) through (X0, y0) at t = 0 (we have made the dependence on
the initial conditions silent for the sake of readibility). Given a fixed point (X, y)
on the saturated manifold, we want to express the fact that this point lies on this
manifold through the chosen initial boundary curve.

One has
ỹ(t) = ϕ0y(v,A, λ) + vσt,

so the transition time to go from ϕ0y(v,A, λ) to some fixed y yields

T := T (y, v, A, λ) =
y − ϕ0y(v, A, λ)

vσ
.

The saturation of the initial boundary curve is hence a graph of the form

ψ : (y, v, A, λ) 7→ X̃(T (y, v, A, λ); ϕ0x(v,A, λ), ϕ0y(v, A, λ)) (6.10)
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Below, we prove that X̃(T ) remains bounded as v → 0 so that the above graph
expression is bounded analytic for v in a sector Sv0,0,θ.

To that end, consider complex times t on the segment [0, T ], by writing t = sT :

d

ds
X̃(sT ) = Tβ(X̃(sT ), ỹ(sT ), v, A, λ)X̃(sT ).

Keeping s ∈ [0, 1], and letting X̃ take complex values, notice that

X̃(sT )|s=1 = X̃(0) exp
(∫ 1

0

Tβ(X̃(sT ), ỹ(sT ), v, A, λ)ds

)
.

We hence have a bound

|X̃(T )| ≤ |ϕ0x(v, A, λ)| exp
(∫ 1

0

<(Tβ(X̃(sT ), ỹ(sT ), v, A, λ))ds

)
.

Using (6.9), it follows that

|X̃(T )| ≤ |ϕ0x(v,A, λ)| exp
(
− ν

|v|σ
∫ 1

0

|ỹ(sT )− yc|ds

)

= |ϕ0x(v,A, λ)| exp
(
− ν

|v|σ
∫ 1

0

|y − yc|sds

)

The expression X̃(T ) depends on the point T = T (y, v, A, λ) of course, and hence
defines a graph X = ψ(y, v, A, λ) as in (6.10) and this graph is invariant under the flow
of the vector field (because it is a union of orbits through Σ−). Not only does it follow
now that ψ is a bounded analytic function, but one can even apply proposition 1.12 to
conclude that ψ is Gevrey-1/σ-asymptotic to 0 in the chosen sector Sv0,0,θ, uniformly
for y in compact subsets in the chosen sectorial neighbourhood of [yc, yd].

We remark that any analytic change of coordinates preserves this Gevrey property;
this is a consequence of the Gevrey substitution theorem and Gevrey implicit function
theorem (to write the manifold as a graph in a different set of coordinates).

Let us now return to our initial claim regarding the admissible boundary curve.
To that end, we consider the singular change of coordinates x = vσX as part of a
cylindrical blow up (along the curve of singularities)

(x, v) = (uσx, uv).

Indeed, in the chart {v = 1}, one gets back the singular rescaling x = vσX. Our
initial claim regarding Σ comes down to proving that the saturation of Σ can be done
until we meet a section that is visible in the chart {v = 1}. In fact, we only have to
consider the other chart {x = 1}:

(x, v) = (uσ, uv),
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and show that we can saturate Σ until the saturation intersects the plane {v = 1}.
The blow up of the normal form (6.6) using this transformation yields





u̇ = 1
σ α1(uσ, y, uv, A, λ)u

v̇ = − 1
σ α1(uσ, y, uv,A, λ)v

ẏ = uσ(g1(uv, y,A, λ)vσ + h1(uσ, uv, y, A, λ)).

After division by the positive function − 1
σ α1, we get an analytic normal form for

equivalence: 



u̇ = −u
v̇ = v
ẏ = uσF (u, v, y, A, λ).

The passage from the entry boundary curve Σ to the section u = u0 > 0 is a regular
passage, and can be treated using proposition 1.11, i.e. we assume now that Σ is a
boundary curve in this section:

Σ: {u = u0, y = s(v, A, λ)}.

Without loss of generality, we impose s(v,A, λ) = 0 (after all, this can be forced, by
performing the translation y 7→ y − s(v,A, λ)). Consider the orbit through (u0, v0, 0)
(with u0 ∈ R+ fixed, and v0 in a complex sector S∞,0,θ. We have

u(t) = u0e
−t, v(t) = v0e

t.

The section {v = 1} is reached after a complex time

T = − log v0 = −(log |v0|+ i Arg v0)

Hence, we have to prove that

dy

dt
= u(t)σF (u(t), v(t), y, A, λ), y(0) = 0

has a bounded solution on the ray t ∈ [0, T ]. It is easily shown that if |F | ≤ C for all
y ∈ B(0, δ), then for s ∈ [0, 1] ⊂ R+:

|y(sT )| ≤ C

σ
uσ

0

|T |
− log |v0| , ∀s ∈ [0, 1],

which is still smaller than δ, provided one takes u0 small enough. This means that
the saturation of the entry boundary curve Σ has an intersection (u0v0, 1, y(v0)) with
the plane {v = 1}. In other words, it is a curve {v = 1, y = y(u/u0)}. After blow
down, it forms a curve {x = vσ, y = y(v/u0)}. Finally, the application of the singular
rescaling x = vσX to this curve yields a boundary curve {X = 1, y = y(v/u0)}. This
proves our claim, and finishes the proof of the theorem. ¤
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Example

This example shows that when saturating a Gevrey boundary curve Σ, the Gevrey
character is lost near the corner point (eg. entry point) on the critical curve, but
is regained after this point. It also shows that, changing to the normal form after
rescaling (6.7), one cannot limit to Gevrey boundary curves, but one needs to consider
more general bounded curves.

Consider the simple equation
{

ẋ = −x
ẏ = ε(ε + x2)

with the entry boundary curve {x = 1, y = 0}. Clearly, one has

x(t) = e−t, y(t) = ε2t +
1
2
ε(1− e−2t).

The order of degeneracy is 2, and upon performing the singular change of coordinates
x = ε2X, we determine the intersecting curve with the plane {X = 1}:

ε2 = e−t, y(t) = ε2t +
1
2
ε(1− e−2t)

In other words, for the rescaled equation
{

Ẋ = −X
ẏ = ε2(1 + εX2),

one has to consider the entry boundary curve

{X = 1, Y = −2ε2 log ε +
1
2
ε(1− ε4)},

which is certainly not a Gevrey curve but is still bounded in the sector ε ∈ S1,0,π/4.
Nevertheless, its saturation towards sections {y = y0} with y0 > 0 form Gevrey-1/2
curves in ε!

6.2.3 Analytic normal forms at P±
In the previous section, the passage along compact pieces of the critical curve γ is
studied, provided the compact piece does not contain the turning point. Here, we will
study a passage along a compact piece of the critical curve containing the limit point
P±. This is the first step in the proof of theorem 6.4.

We remind the reader that we have blown up (6.4), using blow up formulas

(x, y, v) = (upx, uqy, umv).

Near v = 0, we can assume that (x, y) ∈ S1, and we define a local chart near P− by
considering an angular coordinate z on S1 (for example, near (x, y) = (1, 0), we can
set z = y, near (x, y) = (0, 1) we can set z = x). The blow up space near P− is then
parametrized by (u, v, z).
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Lemma 6.13 Assume that in an (analytic) admissible chart near the turning point
p∗, this point is positioned at the origin, and after blow up of (6.4) in a phase-
directional rescaling chart, the point P− is situated at the origin and near P− the
blow up space is parametrized by (u, v, z) (see the reminder above this lemma). Then,
for all N ∈ N there is a Cω normal form (for conjugacy) at P− for the family (in
blow up coordinates, after division by a common factor uα for some α ∈ N):





u̇ = −u (vσh1(u, v,A, λ) + zf1(u, v, z, A, λ))
v̇ = mv (vσh1(u, v,A, λ) + zf1(u, v, z, A, λ))
ż = β1(u, v, z, A, λ)z + vNg1(u, v,A, λ),

(6.11)

with β1, h1, f1 and g1 real analytic, β1(u, 0, 0, A, λ) < 0. Furthermore, h1(u, 0, A, λ)
is strictly positive. If, after blow up, one performs the singular change of coordinates

z = vσZ,

then w.r.t. the new variables the vector field yields, after division by a nonzero function




u̇ = −uvσ

v̇ = mvσ+1

Ż = β(u, v, Z, A, λ)Z + vN−σg(u, v,A, λ),
(6.12)

with β and g real analytic. Furthermore, β(u, 0, 0, A, λ) < 0.

Proof The blown up vector field is, after division by uα, still analytic. The existence
of P− as limit point on u = 0 of the blown up critical curve γ is assumed in A3.
Furthermore, we know that there is an invariant foliation dv = d(umv) = 0. Hence,
we can write the blown up vector field yields





u̇ = −uh1(u, v, z, A, λ)
v̇ = mvh1(u, v, z, A, λ)
ż = F1(u, v, z, A, λ)

The blow up of the critical curve is an analytic curve in the plane {v = 0}; assume
that we can write this critical curve as

z = ϕ(u, λ)

(remember that A is a rescaled version of a making the critical curve independent of
A). By a simple translation, we may assume ϕ(u, λ) = 0. This means that

F1(u, 0, 0, A, λ) = 0, h1(u, 0, 0, A, λ) = 0.

Furthermore, the hyperbolicity along the critical curve states that

∂F1

∂z
(u, 0, 0, A, λ) < 0.



CHAPTER 6. GEVREY-ANALYSIS 127

We can now rewrite the blown up vector field as




u̇ = −u(vh11(u, v,A, λ) + zh12(u, v, z, A, λ))
v̇ = mv(vh11(u, v, A, λ) + zh12(u, v, z, A, λ))
ż = F11(u, v, z, A, λ)z + vF12(u, v,A, λ)

(6.13)

Assume now there exists a formal expansion

z = ϕ̂(u, v) :=
∞∑

n=0

ϕn(u,A, λ)vn

that is formally invariant under the above vector field (this is shown in lemma 6.14).
Then, upon an analytic translation we may assume that this series is O(vN ). In other
words,

ż = F11(u, v, z, A, λ)z + vN F̃12(u, v, A, λ).

In this form, we want to introduce σ as the order of degeneracy. To that end, notice
that near u = u0 6= 0 the original vector field is Cω-conjugate (as in definition 6.8) to





u̇ = −u((v/um)h11(u, v/um, A, λ) + zh12(u, v/um, z, A, λ))
ż = F11(u, v/um, z, A, λ)z + vN F̃12(u, v/um, A, λ)
v̇ = 0

The restriction to a center manifold z = O(vN ) yields
{

u̇ = −u((v/um)h11(u, v/um, A, λ) + O(vN ))
v̇ = 0

This restriction must be O(vσ) and not O(vσ+1) as v → 0 (σ is defined as the highest
index i so that the reduction of the vector field to any center manifold is O(vi)). This
means that for N high enough:

−u((v/um)h11(u, v/um, A, λ) = O(vσ).

Since σ is the largest number with this property, we can write

vh11(u, v/um, A, λ) = vσh̃(u, v, A, λ),

for some nonzero function h̃, locally near u = u0. By means of analytic continuation,
it follows

vh11(u, v,A, λ) = vσh(u, v, A, λ)

for some analytic function h. This finally leads to the vector field




u̇ = −u(vσh(u, v, A, λ) + zf(u, v, z, A, λ))
v̇ = mv(vσh(u, v,A, λ) + zf(u, v, z, A, λ))
ż = α(u, v, z, A, λ)z + vNg(u, v, A, λ)
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with α(u, 0, 0, A, λ) < 0. The fact that h is nonzero for u > 0 follows from assumption
A2; for u = 0 it follows from assumption A7. ¤

We intend to study formal power series

z = ϕ̂(u, v,A, λ) :=
∞∑

n=0

ϕn(u,A, λ)vn

that define formally invariant manifolds of (6.11) near u = 0:

Lemma 6.14 Let the blown up vector field in (u, v, z)-coordinates be analytic for
u ∈ Ω1 ⊃ B(0, δ1), v ∈ Ω2 ⊃ B(0, δ2), z ∈ Ω3 ⊃ B(0, δ3), A ∈]− A0, A0[, λ ∈ Λ. Let
Ω be the subset of Ω1 for which the curve of singularities is given by

{z = ϕ0(u,A, λ), v = 0}, (u,A, λ) ∈ Ω1×]−A0, A0[×Λ

and so that along this curve inside Ω the divergence of the vector field (w.r.t. the
volume form du ∧ dv ∧ dz) has a strictly negative real part.
Then there exists unique functions

ϕn : Ω×]−A0, A0[×Λ → C

that are real analytic, and so that the formal power series

z =
∞∑

n=0

ϕn(u,A, λ)vn (6.14)

is formally invariant under the vector field (6.11).

Proof As required in the proof of the proposition above, we have to show the exis-
tence of a formal power series of the slightly more general vector field (6.13), where
the curve of singularities z = ϕ0 has already been transformed to z = 0 (i.e. ϕ0 = 0
in these coordinates).

Expressing the formal invariance amounts to solving

(−u
∂ϕ̂

∂u
+ mv

∂ϕ̂

∂v
)(vh11 + ϕ̂h12|z=ϕ̂) = F11|z=ϕ̂ϕ̂ + vF12,

which we rewrite as

ϕ̂ = G|z=ϕ̂

(
(−u

∂ϕ̂

∂u
+ mv

∂ϕ̂

∂v
)(vh11 + ϕ̂h12|z=ϕ̂)− vF12

)

where we have defined G = 1/F11. Notice now that the righthand side is a formal
power series in v, and the term of order vn is determined completely by the coefficient
functions ϕ1, . . ., ϕn−1. (The first coefficient, ϕ0, is 0.) Hence, the above equation
is a recurrence relation making it possible to solve for all ϕn. It should be clear that
the domain of analyticity is only bounded by the zero set of F11 (and the domain of
analyticity of the vector field). ¤
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6.2.4 Uniform Gevrey estimates along γ

Proposition 6.15 The series (6.14) is Gevrey-1/σ w.r.t. v, uniformly for (u,A, λ)
in compact subsets of Ω×]−A0, A0[×Λ.

The proof is based on the majorant method. It is well-known that this majorant
method is an excellent tool in proving the Gevrey property, but fails to provide good
estimates for the Gevrey type. Also in the proof below, an upper bound for the Gevrey
type will be absent. Nevertheless, in later sections we will find a relevant upper bound
for the Gevrey type, when considering formal expansions w.r.t. u instead of w.r.t. v.
We also mention that although the coefficient functions in this series are analytic
w.r.t. u, this does not form a guarantee that this analyticity has any immediate
relevance; indeed consider the simple blown up vector field





u̇ = −uv
v̇ = v2

ż = −z + e−1/v

The saturation of the boundary curve {u = 1, z = 0} is a manifold

z =
1
2
e−1/v − 1

2
e(u−2)/uv;

and its intersection with {v = 1} is a curve z = 1
2e−1− e

2e−1/u, which is certainly not
analytic in w.r.t. u in the origin!

Proof of proposition 6.15

The proof is based on an idea of R. Schäfke in the proof of Sibuya’s theorem (the
majorant method), but is different in the sense that we are developing w.r.t. v and v
is a variable, not a parameter.

Clearly, the proof of the Gevrey estimates may be performed after the singular
rescaling z = vσZ, making it possible to use the normal form (6.12). As before, we
express the formal invariance w.r.t. this vector field and rewrite it as a recurrence
relation:

ϕ̂ = f(u, v, ϕ̂, A, λ)
(
−uvσ ∂ϕ̂

∂u
+ mvσ+1 ∂ϕ̂

∂v
− vNg(u, v, A, λ)

)
, (6.15)

where f = 1/β.
As in the proof of the above lemma, this equation induces a recurrence relation

on the coefficients of ϕ̂. If for the determination of ϕn, the righthand side of this
equation, which in its turn is polynomial in ϕ1, . . ., ϕn−1, is replaced by a majorant
equation, and where all coefficients ϕ1, . . ., ϕn−1 are replaced by majorants, then the
outcome is a majorant for ϕn. This method is called the majorant method. Remains
to find a good way of majorating the coefficients. The basis for this is the use of
Nagumo norms.
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Let K ⊂ Ω be a compact set, and let K1 = B(K, ν) be the set of points with
distance < ν to K, for some small ν > 0 so that K1 ⊂ Ω. We define

d(u) = dist(u, ∂K1) ∀u ∈ K1

the distance to the border of K1. Because K1 is compact inside Ω, all coefficient
functions are bounded and analytic on K1, so that it makes sense to define

‖f‖k := sup
u∈K1

∣∣∣f(u)d(u)k/σ
∣∣∣

Such norms are called “Nagumo norms”. see e.g. [CRSS]. Immediate properties:

Lemma 6.16 1. ‖f + g‖k ≤ ‖f‖k + ‖g‖k

2. ‖f.g‖k+` ≤ ‖f‖k‖g‖`

3. ‖∂f
∂u‖k+σ ≤ e1/σ(k + 1)‖f‖k (Nagumo’s lemma) (e is the Euler number.)

Proof The first two properties are elementary. The third property is known as
Nagumo’s lemma, and the key element in the proof of this property is Cauchy’s
estimate for analytic functions:

|f ′(u)| ≤ sup|t−u|≤δ |f(t)|
δ

,

(for the sake of convenience, we drop the dependence on λ) for all small δ > 0. By
varying δ with respect to u, we can obtain the result: use δ = 1

k+1d(u). Then,

|f ′(u)| ≤ k + 1
d(u)

sup
|t−u|=δ

|f(t)|

≤ k + 1
d(u)

‖f‖k sup
|t−u|=δ

1
d(t)k/σ

Now, d(t)
(∗)
≥ d(u)− |t− u| = d(u)− δ = d(u)(1− 1

k+1 ), so

|f ′(u)| ≤ k + 1
d(u)

‖f‖k
1

d(u)k/σ

(
k + 1

k

)k/σ

We find that ‖f ′‖k+σ ≤ (k + 1)e1/σ‖f‖k. The relation (∗) follows from the triangle
inequality

d(u) ≤ d(t) + |t− u|
(which is easily shown, by noticing that |u− q| ≤ |t− q|+ |t− u| for all q ∈ ∂K1 and
taking infimum on both sides of the equation). ¤
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Definition 6.17 We say that a formal series

f̂(u, v,A, λ) :=
∞∑

n=0

fn(u,A, λ)vn

is majorated by the series

F (V, A, λ) :=
∞∑

n=0

Fn(A, λ)V n

if
‖fn‖n ≤ (n!)1/σFn, ∀(A, λ).

(V is just a formal variable.) We denote this property by f̂(u, v, λ) ¿ F (V ).

Lemma 6.18 We define r as a number larger than supu∈K1
d(u) and larger than

supu∈K1
|u|. If f̂(u, v,A, λ) ¿ F (V,A, λ) and ĝ(u, v,A, λ) ¿ G(V, A, λ), then

1. f̂(u, v, A, λ)ĝ(u, v, A, λ) ¿ F (V, A, λ)G(V, A, λ) (according to the Cauchy product
of series)

2. f̂(u, v, A, λ) + ĝ(u, v,A, λ) ¿ F (V, A, λ) + G(V,A, λ)

3. u ¿ r, v ¿ r1/σV .

4. Associated to every analytic function Φ(u, v, y, A, λ) there is an analytic function
Φ+(V, y, A, λ) (not depending on f̂) such that

Φ(u, v, f̂(u, v,A, λ), A, λ) ¿ Φ+(V, F (V,A, λ), A, λ).

5. vσ ∂f̂
∂u (u, v, λ) ¿ e1/σV σF (V ).

6. vσ+1 ∂f̂
∂v (u, v, λ) ¿ rV σF (V ).

Proof Write [f̂ ]n for the n-th coefficient of the power series f̂ . For the sake of
convenience, we drop the dependence on (A, λ).

1. Using the Cauchy product, we have

∥∥∥[f̂ .ĝ]n
∥∥∥

n
=

∥∥∥∥∥
n∑

i=0

fign−i

∥∥∥∥∥
n

≤
n∑

i=0

‖fi‖i ‖gn−i‖n−i
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Using the bounds on fi and gn−i we continue:

∥∥∥[f̂ .ĝ]n
∥∥∥

n
≤

n∑

i=0

i!1/σ(n− i)!1/σFiGn−i

≤ n!1/σ
n∑

i=0

(
n

i

)−1/σ

FiGn−i

≤ n!1/σ
n∑

i=0

FiGn−i = n!1/σ [F.G]n .

2. This property is easier to prove.

3. To prove that u ¿ r, one looks at the coefficients with index 0, and observe that
‖u‖0 = r. For the second inequality, look at the coefficients with index 1, and
observe that ‖1‖1 = r1/σ.

4. Let Φ(u, v, y) =
∑∞

k=0,`=0 Φk`(u)vky`, then define

Φ+(V, y) :=
∑

k=0,`=0

sup |Φk`(u)|rk/σV ky`.

If one substitutes y by f̂ in the expression of Φ, then one may substitute y by F in
Φ+ and the result is still a majorant (taking into account the first three properties
of this lemma). Furthermore, Φ+ defines an analytic function, due to the absolute
convergence of the Taylor series of Φ.

5. Take a look at the power series vσ ∂f̂
∂u . Since the coefficients start at order σ, we

majorate the (n + σ)-th coefficient, for n ≥ 0:

∥∥∥∥∥

[
vσ ∂f̂

∂u

]

n+σ

∥∥∥∥∥
n+σ

=
∥∥∥∥

∂fn

∂u

∥∥∥∥
n+σ

≤ (n + 1)e1/σ‖fn‖n

≤ (n + 1)e1/σn!1/σFn

= e1/σ(n + σ)!1/σFn

(
(n + 1)σn!
(n + σ)!

)1/σ

≤ (n + σ)!1/σ
[
e1/σF (V )V σ

]
n+σ

.

Hence, vσ ∂f̂
∂u ¿ e1/σV σF (V ).
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6. The proof is analogous:
∥∥∥∥∥

[
vσ+1 ∂f̂

∂v

]

n+σ

∥∥∥∥∥
n+σ

=

∥∥∥∥∥[v
∂f̂

∂v
]n

∥∥∥∥∥
n+σ

= ‖nfn‖n+σ

= n sup
|u|≤r

|fn(u)|(r − |u|)(n+σ)/σ

≤ nr‖fn‖n ≤ nr(n!)1/σFn

≤ (n + σ)!1/σrFn

= (n + σ)!1/σ[rvσF (V )]n+σ.

¤
With this technique, we go back to our recurrence relation (6.15). Let f ¿ f+,

and g ¿ g+ as in the previous lemma. Then, ϕ ¿ Φ, where Φ is a solution of the
equation

Φ = f+(V, Φ, A, λ)
(
re1/σV σΦ + mrV σΦ + rN/σV Ng+(V, A, λ)

)
, Φ(0) = 0.

(6.16)
Clearly the above expression has an analytic solution Φ(V, A, λ), and therefore the
coefficients of Φ are majorated by a geometric sequence, implying that there exist
constants C0, C1 so that

‖ϕn(u,A, λ)‖n ≤ C0C
n
1 (n!)1/σ.

One can replace the Nagumo norm by a traditional norm, upon restricting u to
K ⊂ K1, and noticing that for all functions f one has

sup
u∈K

|f(u)| ≤ ‖f‖n

(
1
ν

)n/σ

where ν was introduced as the distance between K and K1. One obtains

sup
u∈K

|ϕn(u, A, λ)| ≤ C0(Cσ
1 /ν)n/σ(n!)1/σ.

Hence, ϕ̂ is uniformly Gevrey-1/σ, of type at most Cσ
1 /ν, but obviously this is not

the optimal Gevrey type. In any case, it finishes the proof of proposition 6.15.
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Corollary 6.19 There is a coordinate transformation

Z = ∆ + ϕ(u, v, A, λ),

transforming (6.12) into




u̇ = −uvσ

v̇ = mvσ+1

∆̇ = β̃(u, v,∆, A, λ)∆ + g̃(u, v,A, λ)
(6.17)

with ϕ, β̃ and g̃ real analytic w.r.t. all variables, except w.r.t. v. The functions
are uniformly Gevrey-1/σ w.r.t. v in a sector Sv0,0,θ, with opening angle 0 < θ <
2π/σ. The function ϕ is Gevrey-1/σ asymptotic to the series (6.14). The function
β̃(u, 0, 0, A, λ) has strictly negative real part for u ∈ Ω, and for all (A, λ) (where Ω is
defined in lemma 6.14). The function g̃ is Gevrey-1/σ asymptotic to 0:

g̃(u, v, ∆, A, λ) = O(exp(−1/T |v|σ)),

as v → 0, for some T > 0 (uniformly in the other variables).

Proof Define ϕ using theorem 1.5. By making the translation z = ∆ + ϕ, it is clear
that the new vector field has the analyticity properties as stated in the formulation
of the corollary, and it is clear that the formal expansion (6.14) is identically 0 in the
new coordinates. Expressing this property using (6.17) yields that g̃ is formally 0, in
other words exponentially small (proposition 1.12). ¤

6.2.5 Analytic invariant manifolds near P±
Here, we want to prove that we can saturate entry boundary curves beyond the point
P± on the blow up locus. The saturation up to a section close to this turning point is
treated by theorem 6.12. Close to P±, we can use normal form (6.11), and consider
an entry boundary curve

{u = u0, z = s−(v,A, λ)},
with s− Gevrey-1/σ w.r.t. v in a sector Sv0,0,θ, 0 < θ < π/2σ. Since the center
manifold in (6.11) is given by z = O(vN ), we may assume that also s− = O(vN ). The
reason is that the above curve is the saturation of Σ− inside the plane {u = u0}, and
the saturation of any boundary curve is infinitely flat to any center manifold. In any
case, it is possible to define

{u = u0, Z =
1
vσ

s−(v, A, λ)}

as Gevrey-1/σ entry boundary curve after the rescaling

z = vσZ.
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We can hence work with the simpler normal form (6.12), which we have repeated here
for the sake of convenience:





u̇ = −uvσ

v̇ = mvσ+1

Ż = β(u, v, Z, A, λ)Z + vNg(u, v, A, λ).
(6.18)

Proposition 6.20 Let u0 ∈ Ω ∩R+ so that the segment [0, u0] ⊂ C does not leave
Ω. Let Σ− be an admissible entry boundary curve in the plane {u = u0}, with u0 ∈ Ω
(in a chart where the vector field is as in (6.11)) that is Gevrey-1/σ in v in a sector
Sr,0,θ with 0 < 2θ < π/σ.

Choose θ1, θ2 > 0 so that
mθ1 + θ2 ≤ θ

There exists a θ3 > 0 with
mσθ1 + σθ2 + θ3 <

π

2

and for which there exists an r > 0 and an analytic and bounded graph

z = ϕ(u, v, A, λ),

with u ∈ Ω(u0; θ1, θ3), v ∈ Sr,0,θ2 , A ∈] − A0, A0[, λ ∈ Λ that is invariant under the
flow of (6.11) and so that

{z = ϕ(u0, v, A, λ)} ⊂ Σ−

The domain Ω(u0; θ1, θ3) is defined as

Ω(u0; θ1, θ3) := {u ∈ C : Arg(u) < θ1, Arg(umσ
0 − umσ) < θ3}.

The angle θ3 should be chosen small enough so that Ω(u0; θ1, θ3) ⊂ Ω (note that
Ω(u0; θ1; θ3) →]0, u0[ as θ3 → 0 in a Hausdorff sense).

Proof The proof is based on the normal form in (6.12), and we will rely on the lemma
below. Fixing u0, the saturation of a point (u0, v0, s−(v0, A, λ)) on the boundary
curve Σ− reaches a point with coordinates (u, v, Z) if we choose v0 = (u/u0)mv. If
u ∈ Ω(u0; θ1, θ3) and v ∈ Sr,0,θ2 , then

v0 := (u/u0)mv ∈ Sr,0,mθ1+θ2 ⊂ Sr,0,θ.

This shows that s−(v0, A, λ) is defined. Furthermore, from the results of the lemma
below follows that the orbit O through (u0, v0) at t = 0 reaches (u, v) at a time

T =
1

mσ

umσ
0 − umσ

(umv)σ
∈ S∞,0,mσθ1+σθ2+θ3 ;
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Figure 6.1: Specification of Ω(u0) := Ω(u0; θ1, θ3) (in case σ = 1)

in other words T ∈ S∞,0,θT with 0 < θT < π/2. Finally, it is also clear that, by taking
r small enough, the orbit O stays inside sufficiently small sectorial neighbourhoods
for t ∈ [0, T ], ensuring that (6.12) is defined along this time interval. Let now

(ũ(t), ṽ(t), Z̃(t, A, λ))

be the flow through (u0, v0, s−(v0, A, λ)), and define

S = sup{s ∈ [0, 1] : |z̃(sT )| ≤ R},
where R is yet to be defined. We show that S = 1, hereby proving the boundedness
of the saturation of the initial boundary curve to a point (u, v, ϕ(u, v, A, λ)). The
analyticity follows from the analytic dependence on initial conditions of regular flows.
Now, let us prove that S = 1. Define

ζ(s, A, λ) := Z̃(sT,A, λ), s ∈ R+.

One has
dζ

ds
= T · (β(ũ(sT ), ṽ(sT ), ζ, A, λ)ζ + ṽ(sT )Ng(ũ(sT ), ṽ(sT ), A, λ)

)

= T β̃(s, ζ, A, λ)ζ + TG̃(s,A, λ).

We prove that |ζ| is bounded by some M < R by proving

|ζ| ≥ M =⇒ d

ds
|ζ(s)| < 0.

It is easily seen that d
ds |ζ| < 0 provided <(ζ dζ

ds ) < 0:

<(ζ
dζ

ds
) = <(T β̃)|ζ|2 + <(ζT G̃) < |T |

(
<

(
T

|T | β̃
)
|ζ|2 + R|G̃|

)
.
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Assume for a moment that we know that <(β̃T/|T |) < −µ < 0, then the above
expression is negative provided

|ζ| ≥
(

R

µ
|G̃(s,A, λ)|

)1/2

Since G̃ = O(ṽ
N

) it is easily bounded by some M < R, provided one chooses the
sectorial neighbourhood for v sufficiently small (i.e. one chooses r sufficiently small).

We still have to show that <(β̃T/|T |) < −µ < 0 for some µ > 0. For u ∈ [0, u0]
one has β(u, 0, 0, A, λ) is strictly negative and lies hence on a segment ]−∞,−K] ⊂ C,
for some K > 0. Multiplication with T/|T | of this value rotates the segment over an
angle that is given by the argument of T , which is less than θT < π/2. This means
that <(β̃T/|T |) can be bounded by −K cos θT . For u not on the reals, and for nonzero
v, Z one shows by continuity that for sufficiently small neighbourhoods, <(β̃T/|T |)
is still less than − 1

2K cos θT =: −µ. ¤

Lemma 6.21 Consider the planar vector field on C2

R :
{

u̇ = −uvσ

v̇ = mvσ+1

Let (u0, v0) and (u1, v1) be two points in C2 with um
0 v0 = um

1 v1. The orbit O :=
{(ũ(t), ṽ(t)) : t ∈ C} through (u0, v0) at t = 0 reaches (u1, v1) at a complex time

T =
1

mσ

umσ
0 − umσ

1

(um
1 v1)σ

.

Furthermore, let r1 > 0, r2 > 0 and choose θ1, θ2 be positive angles, so that

0 < mθ1 + θ2 <
π

2σ
.

Consider the domain
V (r2) := Sr1,0,θ1 × Sr2,0,θ2 ⊂ C2

Then, the orbit O, restricted to complex times on the segment [0, T ], has the property
that O ⊂ V (r2/ cos1/mσ(mσθ1)) provided both (u0, v0) and (u1, v1) lie in V (r2).

Proof For the sake of readability, let us restrict to m = σ = 1; after all one can
always reduce to this case by writing u1 = umσ, v1 = vσ. Let

ũ(sT ) = u0(1− s) + u1s, ṽ(sT ) =
u0v0

u0(1− s) + u1s
,

and restrict s to the real interval [0, 1]. It is readily verified that (ũ(t), ṽ(t)) defines
a regular orbit of R going through (u0, v0) at t = 0 (s = 0) and through (u1, v1) at
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t = T (s = 1). If (u0, u1) ∈ Sr1,0,θ1 , then (u0(1 − s) + u1s) defines in C a straight
segment from u0 to u1, and hence stays inside the sector Sr1,0,θ1 . On the other hand,
one has

1
ṽ(sT )

=
1
v0

(1− s) +
1
v1

s.

Because 1/v0 and 1/v1 lie in a complex sector S∞,0,θ2 , also 1
ṽ(sT )

lies in this complex
sector (because it is a straight segment connecting 1/v0 to 1/v1). Remains to prove
that |ṽ(t)| remains bounded. This is done by bounding |ũ(sT )| away from 0. It is an
elementary trigoniometric exercise to show that

|u0(1− s) + u1s| ≥ min{|u0|, |u1|} cos θ1, ∀s ∈ [0, 1].

Suppose that the minimum is reached at |u0|, then

|ṽ(sT )| ≤ |u0||v0|
|u0| cos θ1

<
|v0|

cos θ1
;

if on the other hand the minimum is reached at |u1|, then

|ṽ(sT )| ≤ |u0||v0|
|u1| cos θ1

=
|u1||v1|
|u1| cos θ1

<
|v1|

cos θ1
.

In both cases, we find that ṽ(sT ) ∈ Sr/ cos θ1,0,θ provided v0, v1 ∈ Sr,0,θ. ¤
The next theorem is a reformulation of proposition 6.20, adding the Gevrey prop-

erty of the constructed invariant manifolds:

Theorem 6.22 Let u0 ∈ Ω ∩R+. Let Σ− be an admissible entry boundary curve in
the plane {u = u0} (in a chart where the vector field is as in (6.11)) that is Gevrey-1/σ
in v in a sector Sr,0,θ with 0 < 2θ < π/σ. Choose θ1, θ2 > 0 so that

mσθ1 + σθ2 <
π

2
, mθ1 + θ2 ≤ θ

Assume also that

Ω(u0; θ1, θ3) := {u ∈ C : Arg(u) < θ1,Arg(umσ
0 − umσ) < θ3} ⊂ Ω

There exists a θ3 > 0, an r > 0 and an analytic and bounded graph

z = ϕ(u, v, A, λ),

with u ∈ Ω(u0; θ1, θ3), v ∈ Sr,0,θ2 , A ∈] − A0, A0[, λ ∈ Λ that is invariant under the
flow of (6.11) and so that

{z = ϕ(u0, v, A, λ)} ⊂ Σ−

The function is Gevrey-1/σ asymptotic w.r.t. v to the series (6.14), uniformly for u
in compact subsets of Ω(u0; θ1, θ3).
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Proof As said above the formulation of the theorem, everything except for the
Gevrey statement is already shown in proposition 6.20. To continue, we use the
normal form (6.17) obtained in corollary 6.19. We first show how we can reduce to
the case where the entry boundary curve is exponentially close to {∆ = 0}. Near
u = u0 6= 0, the blow up map is a diffeomorphism, so there we can write v = v/um,
and write 




u̇ = −u1−mσvσ

∆̇ = β̃(u, v/um,∆, A, λ)∆ + g̃(u, v/um, A, λ)
v̇ = 0

Because g̃ is exponentially small w.r.t. v, the unique formal expansion near u = u0

of the invariant manifolds along γ is given by ∆̂ = 0; in other words, saturating Σ−
gives in these coordinates, locally near u = u0 a manifold that is exponentially close
to ∆ = 0 (this follows from theorem 6.12). Hence, by taking a plane u = u1, the
intersection gives a new entry boundary curve that is exponentially close to ∆ = 0.

Let now ν > 0 be small, consider again the vector field (6.17) and consider the
coordinate transformation

∆ = Z exp(−ν/vσ).

In these new coordinates, the entry boundary curve is still admissible (taking ν small
enough), and the vector field yields





u̇ = −uvσ

v̇ = mvσ+1

Ż = (mν + β̃(u, v, Z exp(−ν/vσ), A, λ))Z + exp(ν/vσ)g̃(u, v,A, λ).

Taking ν small enough (and keeping in mind that g̃ is exponentially small), this vector
field is again of the form specified in corollary 6.19. By the previous proposition,
saturations are bounded analytic, and hence going back to (u, v, ∆) coordinates, we
have a saturated manifold that is exponentially close to {∆ = 0}. This proves the
theorem. ¤

6.2.6 Manifolds over a covering of sectors

In the previous theorem, there is absolutely no reason to restrict to u0 ∈ R+. Indeed,
one can introduce the change of coordinates u 7→ eiαu and see that (6.11) and (6.12)
will be of exactly the same form.

Proposition 6.23 Let u0 ∈ Ω so that the segment [0, u0] ⊂ C does not leave Ω. Let

θ(u0) := sup
u∈[0,u0]

|Arg(−β(u, 0, 0, A, λ))| ∈ ]0,
π

2
[,

where β is the function in (6.12). Ensuring that

mσθ1 + σθ2 + θ3 + θ(u0) <
π

2
, mθ1 + θ2 ≤ θ
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Figure 6.2: Specification of Ω(u0) := Ω(u0; θ1, θ3) (in case σ = 1)

then the same conclusions can be drawn as in theorem 6.22; in that case the domain
Ω(u0; θ1, θ3) is given by

Ω(u0; θ1, θ3) := {u ∈ C : Arg(u/u0) < θ1, Arg(1− (u/u0)σ) < θ3} ⊂ Ω.

Note: the domain Ω is defined in lemma 6.14 as the set of points u for which
<(β(u, 0, 0, A, λ)) < 0. This ensures that θ(u0) < π

2 .
Proof Only the last part of the proof of theorem 6.22 needs to be altered, where
we show that <(β̃T/|T |) < −µ < 0 for some µ > 0. For u ∈ [0, u0] one has
|Arg(−β(u, 0, 0, A, λ))| < θ(u0). Multiplication with T/|T | of this value gives a com-
plex argument of at most θ(u0) + θT , which is still less than π/2. We find

<
(

T

|T |β(u, 0, 0, A, λ)
)

< −|β(u, 0, 0, A, λ)| cos(θ(u0) + θT ) < −K cos(θ(u0) + θT ),

for some K > 0. For u not on [0, u0], and for nonzero v, Z, one shows by continuity
that for sufficiently small neighbourhoods,

<(β̃T/|T |) < −1
2
K cos(θ(u0) + θT ) =: −µ.

This finishes the proof. ¤
For the vector field XA,λ in (6.11), we define

R(u, λ) := <
( −1

umσ

∫ 0

u

smσ−1 β1(s, 0, 0, 0, λ)
h1(s, 0, 0, 0, λ)

ds

)

For u, v ∈ R+, this can be related to the integral of the slow divergence along a piece
of the critical curve (see chapter 5). More precisely, let p ∈ γ− be a point on the
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critical curve that corresponds to u = up in the coordinate system where (6.11) is
valid. Then,

1
vσ

(∫

[p,p∗]
div X0

A,λds

)∣∣∣∣∣
v=umv

=
1

umσvσ (umσ
p R(up, λ) + o(1))

as v → 0.
Define now for T > 0

CT = {u0 ∈ Ω: Ω(u0; θ1, θ3) ⊂ Ω, |u0|mσR(u0, λ) = −T}.

Assume that this is a connected subset of C, so that along each ray from 0 ∈ C there
is exactly one intersection point (we will say that CT is angle-parametrizable). We
will use points of CT as locations where the entry boundary curve is chosen. In view
of theorem 1.15, we will choose a finite number of them and create a sectorial covering
of invariant manifolds. The exponential closeness between them will be the subject
in this section, inducing the Gevrey property of these individual manifolds. It will
follow that T becomes an upperbound for the Gevrey type of these manifolds (and
will later form an upperbound for the Gevrey type of the control curve A).

Proposition 6.24 Let u1, u2 ∈ CT , and let for i = 1, 2

ϕi(u, v, A, λ)

be two bounded analytic functions that are invariant under the flow of (6.11), on the
domains

Ω(ui; θ1, θ3)× Sr,0,θ2×]−A0, A0[×Λ.

Define
∆(u, v, A, λ) = (ϕ2 − ϕ1)(u, v, A, λ)

on the intersecting domain (Ω(u1) ∩ Ω(u2)) × Sr,0,θ2×] − A0, A0[×Λ. Then, for any
u0 ∈ Ω(u1) ∩ Ω(u2), and for any θ0 so that

{u ∈ C : Arg(u/u0) < θ0, |u| < |u0|} ⊂ Ω(u1) ∩ Ω(u2)

one has

∆(u, v, A, λ) = O

(
exp

(
R(u0, λ) + ν + o(1)

|umv|σ
))

,

as u → 0, with ν an expression that is O(ϕ0), where ϕ0 = mσθ0 +σθ2. (In particular,
as the intersecting domain shrinks in opening angle, ϕ0 → σθ2.)

Proof We can safely use (6.12) instead of (6.11). Then, we have

−uvσ ∂∆
∂u

+ mvσ+1 ∂∆
∂v

= β(u, v, ϕ2, A, λ)ϕ2 − β(u, v, ϕ1, A, λ)ϕ1.
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This means that {w = ∆} is an invariant manifold for the vector field




u̇ = −uvσ

v̇ = mvσ+1

ẇ = b(u, v, A, λ)w

with

b(u, v, A, λ) :=
∫ 1

0

∂(zβ(u, v, z, A, λ))
∂z

|z=ϕ1+s(ϕ2−ϕ1)ds

In particular, observe that b(u, 0, A, λ) = β(u, 0, 0, A, λ). Since u0 is in the intersecting
domain, we can say that the invariant manifold is a saturated manifold of a boundary
curve located in the plane u = u0. One easily sees that one has

w = w0(umv/um
0 , A, λ) exp

(
1

umσvσ

∫ u0

u

smσ−1b(s, umv/sm, A, λ)ds

)

First notice that
∫ u0

u

smσ−1b(s, umv/sm, A, λ)ds =
∫ u0

0

smσ−1b(s, 0, A, λ)ds + o(1), (6.19)

as u → 0. (We postpone a proof until the end of the proof of this proposition.) We
hence write

w = w0(umv/um
0 , A, λ) exp

(∫ u0

0
smσ−1b(s, 0, A, λ)ds + o(1)

umσvσ

)
;

in other words

w = O

(
exp

(
<

(∫ u0

0
smσ−1b(s, 0, A, λ)ds + o(1)

umσvσ

)))

Remains to study the expression

<
(

umσ
0 F (u0)
umσvσ

)
,

with

F (u0) :=
1

umσ
0

∫ u0

0

smσ−1b(s, 0, A, λ)ds.

We have

<
(

umσ
0 F (u0)
umσvσ

)
=

|u0|mσ

|u|mσ|v|σ |F (u0)| cosArg
(

umσ
0

umσvσ F (u0)
)

.
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The complex argument of umσ
0 /umσvσ is bounded by ϕ0 := mσθ0 + σθ2, for u ∈

Ω(u0; θ1, θ3) and v ∈ Sr,0,θ2 . We hence find

<
(

umσ
0 F (u0)
umσvσ

)
=

|u0|mσ

|u|mσ|v|σ |F (u0)| (cos(Arg F (u0)) + O(ϕ0))

=
|u0|mσ<(F (u0))

|u|mσ|v|σ (1 + O(ϕ0))

We conclude that

w = O

(
exp

( |u0|mσR(u0, λ) + o(1)
|u|mσ|v|σ (1 + O(ϕ0))

))
,

as u → 0. Let us now show that (6.19) is true. The difference between lefthand side
and righthand side is decomposed in two parts:

∫ u0

u

smσ−1(b(s, umv/sm, A, λ)− b(s, 0, A, λ))ds−
∫ u

0

smσ−1b(s, 0, A, λ)ds.

The second term is clearly O(u) as u → 0. The first term can be rewritten as
∫ u0

u

smσ−1H(s, umv,A, λ)umv/smds, (6.20)

with

H(s, umv, A, λ) :=
∫ 1

0

∂b

∂v
(s, rumv/sm, A, λ)dr.

The function H is bounded along the integration path; this implies that in the worst
case (remember that m ≥ 1, σ ≥ 1), expression (6.20) is O(u log u) as u → 0. In any
case it is o(1) as u → 0. ¤

We say that a set inside C is angle-parametrizable if it is a graph {r(θ)eiθ} for
some strictly positive continuous 2π-periodic function r.

Theorem 6.25 Let u0 ∈ CT , and assume that CT is a connected set that is angle-
paramatrizable. (It has a point along each ray through the origin in C.) Then, the
saturation (as in theorem 6.22) of an analytic entry boundary curve from the plane
{u = u0} w.r.t. to flow of (6.11) is Gevrey-1/mσ w.r.t. u of type T ′|v|σ for any
T ′ > T , and

T =
−1

|u0|mσR(u0, λ) + O(θ2)
,

uniformly for v ∈ Sv0,0,θ2 . In particular, as θ2 → 0, T → −1/|u0|mσR(u0, λ). The
opening angle of the sector for u in which the Gevrey asymptotics is guaranteed de-
pends on T ′ (as T ′ → T , the opening angle tends to 0).



144

C

Im(u)

Re(u)

u u

u

uu

u1

2 3

4

56

TC

T’

Figure 6.3: Points ui on CT lead to domains Ω(ui; θ1, θ3) that have intersection points
on CT ′ , for well chosen angles θ1, θ3

Proof The proof is quite delicate. Let us first take a closer look on the shape of
Ω(u0; θ1, θ3). Notice that as θ1 → 0 and θ3 → 0 the domain Ω(u0; θ1, θ3) tends to the
line piece [u0, 0]. Choose now T ′′ > T ′ > T arbitrarily, then the interior of CT ′ is a
relatively compact, connected domain of C containing the origin. Since this interior
is covered by rays {[u0, 0]} with u0 ∈ CT ′ , it will also be covered a finite number of
sectors Si := S|u0i|,Arg(u0i),θ1 for any nonzero opening angle θ1.

We claim now that, for θ1 small enough, Si can be chosen inside a domain
Ω(ui; θ1, θ3), with ui ∈ CT , and so that on Ω(ui; θ1, θ3) × Sv0,0,θ2 there is defined
an invariant manifold Wi for the vector field. Let us first assume that this is true.
Then, {Ω(ui; θ1, θ3)}i is a sectorial covering of the origin, and for two adjacent do-
mains, the intersection Ω(ui)∩Ω(uj) contains a point of CT ′ ; indeed, the intersection
is larger than Si ∩ Sj and because {Si} covers the interior of CT ′ , there must be a
point of CT ′ inside this intersection. The difference between the two manifold Wi

and Wj can hence be measured using the previous proposition, and the difference
is O(exp((−1/T ′ + ν + o(1))/|umv|σ)), which is O(exp((−1/T ′′ + O(θ2))/|umv|σ)),
by choosing the opening angle θ1 small enough. Upon applying theorem 1.15, one
obtains the required Gevrey property.

Remains now to prove the claim that we have posed. The ray through 0 and u0i

intersects CT in a point ui. Furthermore, as θ1 → 0, one has Si∩CT ′ → {u0} in Hauss-
dorf manner. Hence, for θ1 small enough, we can find a θ3 so that Ω(ui; θ1, θ3) ⊃ Si.
By furthermore diminishing θ1 we can ensure that Ω(ui; θ1, θ3) satisfies the conditions
of proposition 6.24 in order to ensure the existence of an invariant manifold over this
domain. ¤
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6.2.7 Passage along the connection Γ

To proceed along the heteroclinic connection between P− and P+, we need to pass to
the family rescaling chart. The next lemma shows that changing charts preserves the
Gevrey property of saturated manifolds.

Lemma 6.26 Let
{y = ϕ(u, A, λ), v = v0}

be a curve in the phase-directional rescaling chart (with v0 > 0). Then this curve is
also visible in the family-rescaling chart as a curve

{x = −v
−p/m
0 , y = ψ(u,A, λ) := ϕ(uv

−1/m
0 , A, λ)}

If the original function ϕ is Gevrey-1/mσ of type Tvσ
0 w.r.t. u, then the function ψ

is Gevrey-1/mσ of type T .

Proof Elementary. ¤
It is assumed that along Γ no singularities appear. Hence, one can apply corol-

lary 1.11 to show that the Gevrey-property is preserved upon following the connection
Γ (over compact pieces).

In particular, this shows that the intersection with a section T (such that σ :=
T ∩ {u = 0} is transverse to the flow of the vector field on the blow up locus) is a
Gevrey-1/mσ curve.

If the connection Γ is a graph y = ϕ(x, λ), then this shows that the saturation of
a Gevrey-1/σ curve of type T ′ for all T ′ > T is a manifold

y = ϕ(x, u,A, λ)

that is uniformly Gevrey-1/σ of type T ′ for all T ′ > T .

6.2.8 The Gevrey property of the control curve

The intersection with the plane T (in the family rescaling chart) of forward and
backward manifolds are thus Gevrey-1/mσ curves w.r.t. u. As in chapter 3, one
obtains the control curve as an implicit solution of the equation describing the splitting
of forward and backward center manifolds. A Gevrey implicit function theorem shows
that the control curve inherits the Gevrey estimates of the intersecting curves. We
refer to section 3.3.2 for a discussion on how the control curve A is found in a C∞-
context. This text can however be repeated in the analytic setting, keeping in mind
theorem 1.16.

Definition 6.27 We define TA as the supremum of numbers T > 0 for which CT is
a connected subset of C, angle-parametrizable. The set CT is defined as the set

CT = {u0 ∈ Ω: Ω(u0; θ1, θ3) ⊂ Ω, |u0|mσR(u0, λ) = −T};
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the function R is defined as

R(u0, λ) = <
(

1
umσ

0

∫ u0

0

smσ−1β1(s, 0, 0, 0, λ)ds

)
,

where β1 is the divergence along the critical curve of the family of vector fields after
blow up (see the normal form in (6.11)). Finally, the set Ω is defined as

Ω = {u ∈ C : <(β1(u, 0, 0, 0, λ)) < 0},

and so that for u inside Ω the curve of singularities of (6.11) is an analytic graph in
(u,A, λ).

Proposition 6.28 Let T ′ > T with

T = max(Tc− , Tc+ , TA);

−1/Tc± being the value of the slow divergence from the corner point c± on the critical
curve γ± up to the turning point p∗:

−1
Tc±

= |u±|mσR(u±, λ),

where R and TA are defined in the above definition.
There exists an opening angle θ1 ∈]0, π/mσ[ so that the control curve A = A(u, λ)

is Gevrey-1/mσ w.r.t. u in a sector Su0,0,θ1 and of type T ′.

Proof The attracting center manifold through Σ− intersects any transverse section
(in the family rescaling chart) in a curve that is Gevrey-1/mσ of type T ′1 in u, for all
T ′1 > T1, and where

T1 = max(Tc− , TA).

Similarly, the repelling center manifold through Σ+ intersects this section in a Gevrey-
1/mσ curve of type T ′2 in u, for all T ′2 > T2, where

T2 = max(Tc+ , TA).

Now apply the Gevrey implicit function theorem, to show that we can annihilate the
distance between attracting and repelling center manifolds upon choosing a Gevrey
control curve A = A(u, λ). ¤

6.2.9 Proof of theorem 6.6

Consider a chart where the curve of singularities is given by y = 0, and consider a
directional rescaling {x = 1}, i.e.

x = up, y = uqy, v = umv.
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Near x = 1, we define z := y to be the angular coordinate, making (u, v, y) a local
coordinate system for the blow up space near P−. By proposition 6.15 there exists a
unique formal power series

y =
∞∑

n=0

ϕn(u,A, λ)vn (6.21)

that is formally invariant w.r.t. the flow of the blown up vector field, and this series is
Gevrey-1/σ w.r.t. v. On the other hand, under the assumption of theorem 6.6, there
is a unique formal power series

y =
∞∑

n=0

ψn(x, λ)vn, A =
∞∑

n=0

anvn. (6.22)

We have already shown in theorem 3.4 that this formal power series coincides with
the series in corollary 6.5, so A is Gevrey-1/σ. By restricting (6.21) to this formal
series for A, we find a power series

y =
∞∑

n=0

ϕ̃n(u, λ)vn, (6.23)

which is still Gevrey-1/σ (Gevrey substitution theorem). After blow up, the series
for y in (6.22 should coincide with the series for y in (6.23, i.e.

u−q
∞∑

n=0

ψn(up, λ)umnvn =
∞∑

n=0

ϕ̃n(u, λ)vn.

In other words,
ψn(up, λ)umn−q = ϕ̃n(u, λ)

One easily finds, using the maximum principle that also the sequence (ψn)n is of
Gevrey-1/σ growth because (ϕ̃n)n it is.
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6.3 Examples

6.3.1 Van der Pol

Consider the traditional van der pol
{

ẋ = y − x2/2− x3/3
ẏ = ε(a− x).

(In the literature, the equivalent vector field
{

ẋ1 = y1 −
(

x3
1
3 − x1

)

ẏ1 = ε1(a1 − x1)

is often encountered; one has (x1, y1, ε1, a1) = (2x + 1, 8y − 2
3 , 16ε, 2a + 1)).

We first perform a blow up of the parameter space: (ε, a) = (v2, vA). In this form,
v is the singular parameter, and A is the parameter having the required rotational
property. The kind of blow up formulas used in [DR] are {x = ux, y = u2y, v = uv}.
In the chart {x = 1}, one has

XA :





u̇ = u(y − 1
2 − 1

3u)
v̇ = −v(y − 1

2 − 1
3u)

ẏ = −2y(y − 1
2 − 1

3u) + v2(vA− 1)

Write now

y =
1
2

+
1
3
u− v2

1 + u
+ z

Replacing (u, v, y) by the coordinate system (u, v, z) (so that in the new coordinates
the curve of singularities is given by {z = O(v3)}) the vector field yields

XA :





u̇ = −u
(

v2

1+u − z
)

v̇ = v
(

v2

1+u − z
)

ż = −2
(

1
2 + 1

3u− v2

1+u + z
)(
− v2

1+u + z
)

+v2(vA− 1)− 1
3 u̇ + 2vv̇

1+u − v
(1+u)2 u̇

One easily checks that this gives

XA :





u̇ = −u
(

v2

1+u − z
)

v̇ = v
(

v2

1+u − z
)

ż =
(
−1− 2z − u + v2(2+u)

(1+u)2

)
z + Av3 + u v4

(1+u)3
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Figure 6.4: The domain Ω for the Van der Pol equation in grey, and CT for T = 24,
T = 12.96, T = 12. Observe that CT is not angle-parametrizable for T < 12.96. The
locus C12 in the above picture is the curve that is diffeomorphic to a circle; C12.96 is
no longer angle-parametrizable, because it hits the boundary of Ω at two angles; the
curve defining C12 crosses the boundary of Ω.

This brings the blown up vector field in the form (6.11), and after applying the singular
change of coordinates z = v2Z, one finds back the normal form (6.12):





u̇ = −uv2

v̇ = v3

Ż =

(
−(1 + u)2 − uv2

(1+u)

)
Z + Av(1 + u) + uv2

(1+u)2

1− Z(1 + u)

In this form, we have

β(u, v, Z, A) =
−(1 + u)2 − uv2

(1+u)

1− Z(1 + u)

and
β(u, 0, 0, A) = −(1 + u)2.

The set Ω, for which <(β) < 0 is defined as

Ω = {a + ib ∈ C : |b| ≤ |1 + a|}.
In this form, m = 1 and σ = 2, so we have to consider

R(u0) := <
( −1

umσ
0

∫ 0

u0

umσ−1β(u, 0, 0, 0)du

)
= <

(
1
u2

0

∫ 0

u0

u(1 + u)2du

)
.
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One calculates that R(u0) = − 1
2 − 2

3<(u0)− 1
4<(u2

0). Consider

CT := {u0 ∈ Ω: |u0|2R(u0) = −1/T}
One proves (it is a somewhat lengthy, straightforward calculation) that this is a
connected set, angle-parametrizable, provided T > 324/25 = 12.96. This is the
estimate for the type of the control curve that can be obtained through this work.
However, numerical evidence indicates that the optimal type is 12, and it is also
shown in [FS] that 12 is the optimal type (in other words for the equivalent result in
(x1, y1, ε1, a1)-variables, the type is 3/4 w.r.t. ε1).

6.3.2 Initial example

Let us return to (6.3), which we repeat here for the sake of convenience:

Xε,a :
{

ẋ = ε
ẏ = a + x3y + εNx + εN+1F (x, y, ε, a)

First, according to the technique explained in the chapter, we need a preliminary
rescaling of the parameters:

(a, ε) = (vA, v).
This will allow us to treat A as a parameter during the family rescaling: write

(x, y, ṽ, A) = (ux, uy, u4v, A).

In the chart x = ±1, we find (after dividing through a positive time factor) the
rescaled vector field: 




u̇ = ±uv
v̇ = ∓4v2

ẏ = ±y + vF (u, v, y, A),

where F (u, v, y, A) = A∓y∓u4N−3vN−1 +u4NvNF (±u, uy, u4v, u4vA). On the blow
up locus {u = 0}, we have a connection for A = 0, namely the orbit y = 0. It is not
hard to prove that this connection is broken for A 6= 0 with a nonzero speed. As a
consequence of the results in this chapter, we find a smooth control curve A = A(u),
and this curve is Gevrey-1/4 (m = 4, σ = 1). Note that from the formulas above,
one can see that A(u) = o(u4N−4). Write A1(u) := A(u)/u4N−4. This formula is
expressed in coordinates of the family rescaling chart, so when going back to the
initial coordinates, we find

a(ε) = εNA1(ε1/4).
Similarly, associated to this control curve, there is an overstable solution in the family
rescaling chart

y = ϕ(x, u),
also Gevrey-1/4 in the second argument. We can blow down this manifold to form a
continuous manifold in the original phase space, and glue this together with the blow
down of the manifold in other charts. But the blown down manifold can never be C∞

in the origin (because of the remarks made in the introduction of this chapter).
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