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Preface

I joined Janssen Pharmaceutica as a project statistician in 1990 and since 2004, I am
working at Tibotec, another J&J company specialized in developing anti-virological
drugs. During these interesting 18 years, I have mostly been involved in late stage
clinical development, in what is called the “Global Clinical Development” depart-
ment. This type of departments are sometimes also disrespectfully referred to as the
“production department”. Selected molecules that have stand the tests in pre-clinical
research and who have shown promise in the early clinical evaluation should have a
high probability of reaching the marking when pharmaceutical companies engage in
resource costly large scale phase 2B and phase 3 trials. While statisticians in the
earlier phases of development have to deal with smaller numbers and more creative
designs and analyses, the focus during the late stages is more on reaching the market
as soon as possible using more standardized analyses in larger numbers of subjects.
As a result, the analysis is focussed on proving the phase 3 confirmatory hypothe-
sis, did we reach the p-value to prove the primary objective and was the drug safe,
resulting in a positive risk benefit? The danger however is that we miss the chance
to learn more, and to improve efficiency in future clinical studies. There is indeed
an incredible wealth of information present in longitudinal clinical trial data. For in-
stance, instead of focusing on mean difference between treatments and its significance,
what can we learn about variability and correlation within and between the different
measurements? During the years I was confronted with questions from clinicians and
regulators related to this topic of correlation and variability. I remember for instance
a discussion with the Dutch Authorities related to a trial in demented subjects with
psychotic and aggressive behavior. The phase 3 trial showed that the experimental
drug was superior to control in terms of an aggregate score of a scale with multiple
items. The experimental arm had a larger decrease in the total score as compared to
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the control arm. But the scale was not so well known and established as compared
to for instance the Hamilton Depression Scale, and then the pertinent question from
the clinician was: How does this difference in a total score translate into clinical more
tangible difference, in other words is the difference clinically relevant. Another ob-
servation, especially in the CNS area, was that similar studies can result in different
conclusions: why is it that some studies reach highly significant difference and other
trials fail to show effect with the same drug and similar design?

These questions are of course related to the area of psychometric scale validation,
a field which I was confronted with while working in a drug development project in
schizophrenia. Indeed, the area of “psychiatric health sciences” has developed tools to
evaluate measurements properties because of the inherent subjectivity of the measures
employed in this field. These psychometric validation tools can be applied to all types
of measurements and can provide insight into the performance of measurements in
clinical trials.

Tony Vangeneugden



Contents

Preface i

1 Introduction 1

2 Motivating Case Studies 5

2.1 The Schizophrenia Data . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The Epilepsy Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 The Vorozole Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Concepts in Repeated Measures 13

3.1 Generalized Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Linear Mixed Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Generalized Linear Mixed Model . . . . . . . . . . . . . . . . . . . . . 18
3.4 Combined Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.1 Normal Random Effects: the Poisson-normal Model . . . . . . 20
3.4.2 Combining Overdispersion With Normal Random Effects . . . 21

3.5 Missing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5.1 Modeling Incompleteness . . . . . . . . . . . . . . . . . . . . . 21

3.5.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.3 Missing Data Frameworks . . . . . . . . . . . . . . . . . . . . . 26
3.5.4 Missing Data Mechanisms . . . . . . . . . . . . . . . . . . . . . 27
3.5.5 Ignorability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.6 Pattern-mixture Models . . . . . . . . . . . . . . . . . . . . . . 30

4 Concepts in Psychometric Methodology 35

4.1 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

iii



iv Contents

4.2 Generalizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Concepts in Surrogate Marker Evaluation 45

5.1 Trial-level Surrogacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Individual-level Surrogacy . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Validation Criteria in Case of Mixed Continuous-ordinal Endpoints . . 49

6 Reliability Estimation in Case of Interval Scaled Data 53

6.1 Estimation of Reliability in the Linear Mixed Models Framework . . . 53

6.2 Data Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7 Generalizibility Estimation in Case of Interval Scaled Data 67

7.1 Overall Reliability of PANSS Scale . . . . . . . . . . . . . . . . . . . . 68

7.2 Overall Reliability After Extracting Country Effects . . . . . . . . . . 68

7.3 Overall Reliability by Country . . . . . . . . . . . . . . . . . . . . . . 69

7.4 Impact on Overall Reliability by Leaving Out a Country . . . . . . . . 70
7.5 Estimating Impact of Country: Generalizability Theory . . . . . . . . 71

7.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8 Reliability Estimation in Case of Binary Data 77

8.1 Reliability Estimation in the General Linear Mixed Model Framework 78

8.2 ICC for a Random-intercept Model for Binary Data . . . . . . . . . . 80

8.3 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.4.1 Observed Response Rate and Correlation . . . . . . . . . . . . 84

8.4.2 Initial Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.4.3 Accounting for Time and Treatment . . . . . . . . . . . . . . . 88

8.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

9 Generalizibility Estimation in Case of Binary Data 93

9.1 Correlation Between Two Observations Using the GLMM Framework 94

9.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

9.2.1 Overall Reliability of CGI . . . . . . . . . . . . . . . . . . . . . 98

9.2.2 Reliability of CGI Response Adjusting for Country . . . . . . . 99



9.2.3 Reliability by Country and Impact by Leaving Out a Country . 101
9.2.4 Estimating Impact of Country via GT . . . . . . . . . . . . . . 102
9.2.5 Estimating Impact of Baseline PANSS Negative via GT . . . . 103

9.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

10 Marginal Correlation in Case of Count Data 105
10.1 Closed-form Derivation of the Correlation Function . . . . . . . . . . . 106
10.2 Taylor-series-based Derivation of the Correlation Function . . . . . . . 108

10.2.1 General Derivation . . . . . . . . . . . . . . . . . . . . . . . . . 109
10.2.2 ICC for a Random-intercept Model for Binary Data . . . . . . 109
10.2.3 ICC for a Random-intercept Model for Count Data . . . . . . . 110

10.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
10.4 Analysis of the Epilepsy Data . . . . . . . . . . . . . . . . . . . . . . . 113
10.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

11 Estimating Criterion Validity 119
11.1 Using the GLMM Framework to Study Criterion Validity . . . . . . . 120
11.2 Criterion Validity and Surrogate Maker Methodology . . . . . . . . . . 122

11.2.1 Relationship Between PANSS and BPRS . . . . . . . . . . . . 122
11.2.2 Relationship Between PANSS and CGI . . . . . . . . . . . . . 124
11.2.3 Relationship Between BPRS and CGI . . . . . . . . . . . . . . 126

12 Case Study in Incomplete Data 129
12.1 Exploratory Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
12.2 A Selection Model Formulation . . . . . . . . . . . . . . . . . . . . . . 132
12.3 A Pattern-mixture Model Formulation . . . . . . . . . . . . . . . . . . 137
12.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

13 Discussion and Further Research 147

Appendix A 151

Appendix B 152

References 157

Samenvating 167



vi List of Abbreviations



List of Abbreviations

ACMV Available-Case Missing Values
AIC Akaike’s Information Criterion
AR1 First-Order Autoregressive Process
BPRS Brief Psychiatric Rating Scale
CGI Clinician’s Global Impression
CT Classical Theory
FDA Food and Drug Administration
GEE Generalized Estimating Equations
GT Generalizability
GLM General Linear Model
GLMM General Linear Mixed Model
ICC Intraclass Correlation Coefficient
LMM Linear Mixed Model
MAR Missing At Random
MCAR Missing Completely At Random
NFMV Non-Future Missing Values
ML Maximum Likelihood
MLE Maximum Likelihood Estimator
MNAR Missing Not At Random
MNFD Missing Non-Future Dependence
PANSS Positive And Negative Syndrome Scale
PE Proportion Explained
PMM Pattern-Mixture Model
RB Relative Bias
RE Relative Effect
SD Standard Deviation
SE Standard Error
SEM Selection Model vii





List of Tables

2.1 Epilepsy Data. Number of measurements available over time. . . . . . 10

4.1 Classical Theory. ANOVA table to derive the reliability coefficient. . . 38

4.2 Classical Theory. ANOVA table for person by occasion design. . . . . 38
4.3 Generalizability Theory. Test-retest and interrater design. . . . . . . . 40
4.4 Generalizability Theory. ANOVA for Test-retest and interrater design. 41

6.1 Schizophrenia PANSS Data. Estimated test-retest reliabilities. . . . . . 62

6.2 Schizophrenia PANSS Data. Variance component from models 1–4. . . 64

7.1 Schizophrenia PANSS Data. Reliability per country–Summary table. . 74

8.1 Results of the Simulation Study. . . . . . . . . . . . . . . . . . . . . . . 83
8.2 Schizophrenia CGI Data. Reliability subgroup analysis. . . . . . . . . . 87

8.3 Schizophrenia CGI Data. Overall ICC matrix. . . . . . . . . . . . . . . 87
8.4 Schizophrenia CGI Data. ICC matrix derived from the full model. . . 90

9.1 Schizophrenia CGI Data. ICC matrices derived from the full model. . 100

9.2 Schizophrenia CGI Data. Reliability by country. . . . . . . . . . . . . . 101

10.1 Epilepsy Study. Parameter estimation results from different models. . 115
10.2 Epilepsy Study. Smallest and largest values for the correlation function. 116

11.1 Schizophrenia Data. Parameter estimates for joint GLMM analysis. . 121

11.2 Schizophrenia Data. Predictions on CGI based on the PANSS. . . . . 126

12.1 The Vorozole Study. Selection model parameter estimates. . . . . . . . 134
12.2 The Vorozole Study. Parameter estimates for the first PMM. . . . . . 140



x List of Tables

12.3 The Vorozole Study. Parameter estimates for the second PMM. . . . . 143



List of Figures

2.1 Schizophrenia Data. PANSS score and CGI response over time. . . . . 7

2.2 Epilepsy Data. Frequency plot, over all visits, over both treatment groups. 8

2.3 Epilepsy Data. Average and median evolutions over time. . . . . . . . 9

2.4 Vorozole study. Representation of dropout. . . . . . . . . . . . . . . . 11

3.1 Missing Data. Relationship between different missing data models. . . 34

6.1 Schizophrenia PANSS Data. Diagnostic plots for model 1. . . . . . . . 55

6.2 Schizophrenia PANSS Data. Variogram of the total PANSS. . . . . . 58

6.3 Schizophrenia PANSS Data. Reliability as a function of the time-lag. . 59

6.4 Schizophrenia PANSS Data. Diagnostic plots for model 2. . . . . . . . 60

6.5 Schizophrenia PANSS Data. Diagnostic plots for model 3. . . . . . . . 61

6.6 Schizophrenia PANSS Data. Diagnostic plots for model 4. . . . . . . . 63

7.1 Schizophrenia PANSS Data. Reliability per country. . . . . . . . . . . 69

7.2 Schizophrenia PANSS Data. Residuals profiles for Canada and Brazil. 70

7.3 Schizophrenia PANSS Data. Reliability omitting a specific country. . . 71

8.1 Schizophrenia CGI Data. Observed response over time. . . . . . . . . . 85

8.2 Schizophrenia CGI Data. Correlation of observed response over time. . 86

8.3 Schizophrenia CGI Data. Estimated ICC from full model. . . . . . . . 91

10.1 Quality of the Taylor-series Approximation. . . . . . . . . . . . . . . . 111

11.1 Schizophrenia Data. Correlation between BPRS, PANSS and CGI. . . 123

11.2 Schizophrenia Data. PANSS versus CGI. . . . . . . . . . . . . . . . . 125

11.3 Schizophrenia Data. BPRS versus CGI. . . . . . . . . . . . . . . . . . 127

xi



12.1 The Vorozole Study. Mean profiles. . . . . . . . . . . . . . . . . . . . . 130
12.2 The Vorozole Study. Variance function. . . . . . . . . . . . . . . . . . 131
12.3 The Vorozole Study. Scatter plot matrix for selected time points. . . . 132
12.4 The Vorozole Study. Fitted profiles from SEM. . . . . . . . . . . . . . 135
12.5 The Vorozole Study. Mean profiles per dropout pattern. . . . . . . . . . 139
12.6 The Vorozole Study. Fitted SEM and first PMM. . . . . . . . . . . . . 141
12.7 The Vorozole Study. Fitted SEM and second PMM. . . . . . . . . . . . 142



Main References for each

Chapter

Chapter Reference

3 Verbeke and Molenberghs (2000)
Molenberghs and Verbeke (2005)
Molenberghs and Kenward (2007)

4 Dunn (1989)
Streiner and Norman (1995)
Cronbach, Rajaratnam, and Gleser (1963)

5 Buyse, Molenberghs, Burzykowski, Renard, and Geys (2000)
Alonso, Geys, Molenberghs, and Vangeneugden (2002)

6 Vangeneugden, Laenen, Geys, Renard, and Molenberghs (2004)
7 Vangeneugden, Laenen, Geys, Renard, and Molenberghs (2005)
8 Vangeneugden, Molenberghs, Laenen, Geys, Beunckens, and Sotto (2008)
9 Vangeneugden, Molenberghs, Laenen, Alonso, and Geys (2008)
10 Vangeneugden, Molenberghs, Verbeke, and Demétrio (2008)
11 Vangeneugden, Molenberghs, Laenen, Geys, Beunckens, and Sotto (2008)

Alonso, Geys, Molenberghs, and Vangeneugden (2002)
12 Michiels, Molenberghs, Bijnens, Vangeneugden, and Thijs (2002)

xiii





Additional References by the

Author

Alonso, A., Geys, H. , Kenward, M., Molenberghs, G., and Vangeneugden, T. (2003)
Validation of surrogate markers in multiple randomized clinical trials with re-
peated measurements. Biometrical Journal, 45(8), 1–15.

Alonso, A., Geys, H., and Vangeneugden, T. (2005) Repeated measures and sur-
rogate endpoint validation. Published in The evaluation of surrogate endpoints,
Springer-Verlag, p. 231-251.

Alonso, A., Geys, H., Molenberghs, G., Kenward, M.G., and Vangeneugden, T.
(2004) Validation of surrogate markers in multiple randomized clinical trials with
repeated measurements: Canonical correlation approach. Biometrics, 60(4),
845–853.

Buyse, M., Vangeneugden, T., Bijnens, L., Renard, D., Burzykowski, T., Geys, H.,
and Molenberghs, G. (2003) Validation of biomarkers as surrogates for clinical
endpoints. Published in: Bloom, J. C. & Dean, R. A. (Ed.) Biomarkers in
Clinical Drug Development, New York : Marcel Dekker.

Carman, J., Peuskens, J., and Vangeneugden, T. (1995) Risperidone in the treat-
ment of negative symptoms of schizophrenia: a meta-analysis. International
Clinical Psychopharmacology, 10(4), 207–214.

Debruyne, F., Murray, R., Fradet, J., Johansson, J., Tyrrell, C., Boccardo, F. , De-
nis, L., Marberger, J., Brune, D., Rassweiler, J., Vangeneugden, T., Bruynseels,
J., Janssens, M., and De Porre, P. (1998) Liarozole-A novel treatment approach

xv



xvi Additional References

for advanced prostate cancer: results of a large randomized trial versus cypro-
terone acetate. Urology, 52(1), 72–81.

Katlama, C., Esposito, R., Gatell, J., Goffard, J.C., Grinsztejn, B., Pozniak, A.,
Rockstroh, J., Stoehr, A., Vetter, N., Yeni, P., Parys, W., and Vangeneug-
den, T., on behalf of the POWER 1 study group (2007) Efficacy and safety of
TMC114/ritonavir in treatment-experienced HIV patients: 24-week results of
POWER 1. AIDS, 21(4), 395–402.

Laenen, A., Vangeneugden, T., Geys, H., and Molenberghs, G. (2006). Generalized
reliability estimation using repeated measurements. British Journal Of Mathe-
matical and Statistical Psychology. 59, 113–131.

Madruga, J.V., Berger, D., McMurchie, M., Suter, F., Banhegyi, D., Ruxrungtham,
K., Norris,D., Lefebvre, E., de Bthune, M.P., Tomaka, F., De Pauw, M., Van-
geneugden, T., and Spinosa-Guzman, S., on behalf of the TITAN study group
(2007) Efficacy and safety of darunavir-ritonavir compared with that of lopinavir-
ritonavir at 48 weeks in treatment- experienced, HIV-infected patients in TITAN:
a randomised, controlled phase III trial. The Lancet, 370, 49–58.

Molina, J.M., Cohen, C., Katlama, C., Grinsztejn, B., Timerman, A., Rogerio de
Jesus, P., Vangeneugden, T., Miralles, D., De Meyer, S., Parys, W., and Lefeb-
vre, E., on Behalf of the TMC114-C208 and -C215 Study Groups (2007) Safety
and Efficacy of Darunavir (TMC114) With Low-Dose Ritonavir in Treatment-
Experienced Patients: 24-Week Results of POWER 3. Journal of Acquired Im-
mune Deficiency Syndromes, 46(1), 24-31.

Renard, D., Geys, H., Molenberghs, G., Burzykowski, T., Buyse, M., Vangeneugden,
T., and Bijnens, L. (2003). Validation of a longitudinally measured surrogate
marker for a time-to-event endpoint. Journal of Applied Statistics, 30, 235–247.

Sekar, V., Kestens, D., Spinosa-Guzman, G., De Pauw, M., De Paepe, E., Van-
geneugden, T., Lefebvre, E., and Hoetelmans, R. (2007) The effect of different
meal types on the pharmacokinetics of darunavir (TMC114)/ritonavir in HIV-
negative healthy volunteers. Journal of Clinical Pharmacology, 47, 479–484.

Sekar, V., Lefebvre, E., De Marez, T., Spinosa-Guzman, G., De Pauw, M., De
Paepe, E., Vangeneugden, T., and Hoetelmans, R. (2007) Pharmacokinetics of



xvii

darunavir (TMC114) and atazanavir during coadministration in HIV-negative,
healthy volunteers. Drugs R D, 8(4), 241–248.

Sekar, V., Lefebvre, E., Marien, K., De Pauw, M., Vangeneugden, T., and Hoetel-
mans, R. (2007) Pharmacokinetic interaction between darunavir and saquinavir
in HIV-negative volunteers Therapeutic Drug Monitoring, 29(6), 795–801.

Sekar, V., Spinosa-Guzman, S., De Paepe, E., De Pauw, M., Vangeneugden, T.,
Lefebvre, E., and Hoetelmans, R. (2008) Darunavir/ritonavir pharmacokinetics
following coadministration with clarithromycin in healthy volunteers. Journal of
Clinical Pharmacology, 48(1), 60–65.



Chapter 1

Introduction

Two important properties in psychometric validation are reliability and validity. Re-
liability consists in determining the extent to which the measurement is free from
random error. This can be performed through analyzing internal consistency and
reproducibility of the questionnaire. Internal consistency is the extent to which indi-
vidual items are consistent with each other and reflect a single underlying construct.
Intra-observer or test-retest reliability is the degree to which a measure yields stable
scores at different points in time for patients who are assumed not to have changed
clinical status on the domains being assessed. The calculation of intraclass correlation
coefficients is one of the most commonly used methods. For interviewer-administered
questionnaires, the inter-observer reliability is the degree to which a measurement
yields stable scores when administered by different interviewers, rating the same pa-
tients. The calculation of interclass correlation coefficients is also one of the most
commonly used methods. The validity of a questionnaire is defined as the degree to
which the questionnaire measures what it purports to measure. This can be performed
through the analysis of content, construct and criterion validity. Content validity can
be defined as the extent to which the instrument assesses all the relevant or impor-
tant content or domains. Also, the term face validity is used to indicate whether
the instrument appears to be assessing the desired qualities at face. This form of
validity consists of a judgment by experts in the field. Construct validity refers to
a wide range of approaches which are used when what we are trying to measure is
a “hypothetical construct” (e.g., anxiety, irritable bowel syndrome, . . . ) rather than
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2 Chapter 1. Introduction

something that can be readily observed. The most commonly used methods to explore
construct validity are: extreme groups (apply instrument for example to cases and
non-cases), convergent and discriminant validity testing (correlate with other mea-
sures of this construct and not correlate with dissimilar or unrelated constructs) and
multi-trait-multi method matrix. Criterion validity can be divided into two types:
concurrent validity and predictive validity. With concurrent validity we correlate the
measurement with a criterion measure (gold standard), both of which are given at the
same time. In predictive validity, the criterion will not be available until some time in
the future. The most commonly used method to assess the validity is by calculation
of the Pearson correlation coefficient.

Whenever a mental measurement scale is developed or translated or used in a
new population, its psychometric properties have to be assessed. This assessment is
usually done on a relatively small and separate sample of stable subjects. In this
thesis we want to show that these psychometric validation techniques can also be
applied to data resulting from longitudinal clinical data. This work aims to provide
a flexible framework to evaluate the actual performance of the scales in terms of
reliability and validity in the specific clinical trial, or meta analysis of multiple trials.
The goal is certainly not to replace up-front psychometric evaluation, but rather
offer methodology to evaluate reliability and validity in the specific trial population.
Indeed, these properties are relative, and linked to the population to which the scale
is measured. The population in the trial might not be the same as the population in
which the scale was evaluated. By looking at these properties, we can indeed learn
how certain scales are correlated with more clinical endpoint as posed in the question
above via the techniques offered in criterion validity. By study test-retest and inter-
rater reliability we can learn more about the performance of the scale in the studied
population. This is very important for the pharmaceutical industry because reliability
is related to reproducibility and measurement error. The higher the reliability, the
better patients and treatment groups can be discriminated, and the lower the sample
size needs to be. Reliability can be extended to generalizability. In essence, the aim
there is to investigate which factors do impact reliability. Are there subgroups with
poor reliability?

In 2006, the FDA issued a draft guidance on the use of PRO measurements in med-
ical product development to support labeling claims. This guidance will undoubtedly
lead to the emergence of more scales and measurement tools to measure the patients’
health status. If it is the intention to make labeling claims, then obviously the validity

TVANGENE
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3

of the scale must be clearly established and additional confirmation of reliability and
validity could support potential label claims.

It is important to emphasize that the concepts of psychometric validation can also
be applied to any measurements. Indeed, not only psychiatric scales can suffer form
measurement error and poor reliability, but also other clinical measurements

Structure of the Thesis

First, the we will introduce the longitudinal clinical data which will be used through-
out this thesis in Chapter 2. Next, in Chapter 3 we will briefly review the statisti-
cal modeling framework that will be employed in later chapters including the General
Linear Model, the Generalized Linear Mixed Model, combined models to deal with
count data and we finish with terminology, taxonomy and frameworks for missing data
analyses. Chapter 4 provides a summary of concepts of psychometric validation of
measurements and scales including reliability and its extension to generalizability and
also a brief discussion of the evaluation on validity. The subsequent Chapter 5 ends
the introductory part of this thesis by summarizing concepts in surrogate marker
evaluation such as individual- and trial-level surrogacy.

In Chapter 6 we derive a general formula for test-retest intraclass correlation
coefficient of reliability for interval scales longitudinal clinical data. This general for-
mula is worked out for four different models with different levels of complexity using
pooled data of 5 clinical trials in schizophrenia. Subsequently, in Chapter 7 we ex-
tent reliability testing to the evaluation of generalizability using the same continuous
longitudinal clinical data as in Chapter 6. The purpose here is to develop a frame-
work to evaluate if factors influence reliability and reproducibility. Chapter 8 is an
extension to Chapter 6, where we use the General Linear Mixed Model framework to
obtain an approximative formula to derive the intraclass correlation coefficient. The
derivations allow for any type of data is also flexible in terms of model complexity,
e.g. allowing for serial correlation or not. An example is worked out for the binary
response parameter CGI response using 4 of the clinical trials described in Chapter 2.
The following Chapter 9 again extends reliability testing to generalizability theory
using the same general framework. Chapter 10 addresses the special case of count
data. Similar as for Gaussian data, a closed form can be derived for the intraclass
correlation coefficient of reliability. Data from a clinical study in epilepsy will be used
to derive the reliability using the closed form and the approximate formula derived



4 Chapter 1. Introduction

in Chapter 7. Chapter 11 explores methods to investigate correlation between joint
longitudinal sequences of different measures. Similar as in criterion validity, we eval-
uate the correlation between the PANSS total score, the BPRS total score and CGI
response using schizophrenia data introduced in the Chapter 2. Finally, Chapter 12
presents a case study in incomplete data, exploring missing data analysis techniques
for a Quality of Life Questionnaire in a clinical study in breast cancer. While pre-
vious chapters focus on correlations between observations of the same measurement
or from different measurements within a patient, this chapter focuses on the evalu-
ation of treatment effects, accounting for incomplete data. We end this thesis with
Chapter 13 with discussion and topics for further research.
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Chapter 2

Motivating Case Studies

The following three sections briefly introduce the main data used in this thesis and
at the same time demonstrate the versatility of the type of data which can be used.
Indeed, the first case study in schizophrenia includes a pooling of 5 studies and focuses
on data resulting from psychiatric measurement scales, one interval scaled and one
binary response parameter derived from an ordinal scale. And the second case study
in epilepsy originates from a single randomized study and focuses on the number
of seizures which can be considered as a pure clinical endpoint. In Section 2.3 we
introduce the Vorozole data which was analyzed in Chapter 12, a case study in the
analysis of incomplete data.

2.1 The Schizophrenia Data

Individual patient data from five double-blind randomized clinical trials, comparing
the effects of risperidone to conventional anti psychotic agents for the treatment of
chronic schizophrenia. Schizophrenia has long been recognized as a heterogeneous dis-
order with patients suffering from both “negative” and “positive” symptoms. Negative
symptoms are characterized by deficits in social functions such as poverty of speech,
apathy and emotional withdrawal. Positive symptoms entail more florid symptoms
such as delusions and hallucinations, which are superimposed on the mental status.
Several measures can be considered to assess a patient’s global condition. The Pos-
itive and Negative Syndrome Scale (PANSS) consists of 30 items that provide an

5
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operationalized, drug-sensitive instrument, which is highly useful for both typological
and dimensional assessment of schizophrenia (Kay, Fiszbein, and Opler, 1987). Each
of the 30 items can be scored ordinal from 1 (symptom absent) to 7 (symptom ex-
treme). Classical reliability of the PANSS has been studied previously (Kay, Opler,
and Lindenmayer, 1988; Bell et al., 1992; Peralta and Cuesta, 1994). The PANSS is
actually an extension of the Brief Psychiatric Rating Scale (BPRS), an 18-item scale
(Overall and Gorham, 1962). Since the 18 items from the BPRS are also included in
the PANSS, and therefore, the BPRS can be derived when the PANSS is available.

The Clinical Global Impression (CGI) of overall change versus baseline is a 7-grade
scale used by the treating physician to characterize how well a subject has clinically
improved versus baseline. The levels are: “very much improved”, “much improved”,
“minimally improved”, “no change”, “minimally worse”, “much worse”, “very much
worse”. The binary CGI response is often defined as a CGI score of “very much
improved” or “much improved”. Figure 2.1 summarizes both CGI response and the
mean total PANSS score over time. Note that patients enter the study with an acute
worsening of symptoms, as witnessed by the higher (i.e., worse) mean total PANSS
score at baseline. This figure also graphically depicts the correlation between the
decreasing, improving trend in psychotic symptom score as measured by the PANSS
and the more clinical evaluation of improvement as measured by the CGI.

Since the label in most countries recommends doses ranging from 4-6 mg/day, we
include in our analysis only patients who received either these doses of risperidone
or an active control (haloperidol, perphenazine, or zuclopenthixol). Depending on
the trial, treatment was administered for a duration of 4-8 weeks. For example, in
the international trials by Peuskens et al. (1995), Marder and Meibach (1994), and
Hoyberg et al. (1993) patients received treatment for 8 weeks; in the study by Blin,
Azorin, and Bouhours (1996) patients received treatment for 4 weeks, while in the
study by Huttunen et al. (1995) patients were treated over a period of 6 weeks. The
sample sizes were 453, 176, 74, 49 and 71, respectively. Measurements were taken at
Week 1, 2, 4, 6, and 8.

2.2 The Epilepsy Data

In this section, we introduce data obtained from a single randomized, double-blind,
parallel group multi-center study for the comparison of placebo with a new anti-
epileptic drug (AED), in combination with one or two other AED’s. The study
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Figure 2.1: Schizophrenia Data. Proportion CGI response and mean total PANSS
score, over all visits.

is described in full detail in Faught et al. (1996). The randomization of epilepsy
patients took place after a 12-week baseline period that served as a stabilization
period for the use of AED’s, and during which the number of seizures were counted.
After that period, 45 patients were assigned to the placebo group, 44 to the active
(new) treatment group. Patients were then measured weekly. Patients were followed
(double-blind) during 16 weeks, after which they were entered into a long-term open-
extension study. Some patients were followed for up to 27 weeks. The outcome of
interest is the number of epileptic seizures experienced during the last week, i.e., since
the last time the outcome was measured. The key research question is whether or
not the additional new treatment reduces the number of epileptic seizures. Figure 2.2
shows a frequency plot, over all visits, over both treatment groups. We observe a very
skewed distribution, with largest observed value equal to 73 seizures in one week time.
Average and median evolutions are shown in Figure 2.3. The unstable behavior can
be explained by the presence of extreme values, but is also the result of the fact that
very little observations are available at some of the time-points, especially past week
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Figure 2.2: Epilepsy Data. Frequency plot, over all visits, over both treatment groups.

20. This is also reflected in Table 2.1, which shows the number of measurements at a
selection of time-points. Note the serious drop in number of measurements past the
end of the actual double-blind period, i.e., past week 16.

2.3 The Vorozole Data

This study was an open-label, multicenter, parallel group design conducted at 67
North American centers. Patients were randomized to either vorozole (2.5 mg taken
once daily) or megestrol acetate (40 mg four times daily). The patient population
consisted of post-menopausal patients with histologically confirmed estrogen-receptor
positive metastatic breast carcinoma. All 452 randomized patients were followed un-
til disease progression or death. The main objective was to compare the treatment
group with respect to response rate while secondary objectives included a compari-
son relative to duration of response, time to progression, survival, safety, pain relief,
performance status and quality of life. This paper focuses on overall quality of life,
measured by the total Functional Living Index: Cancer (Schipper et al., 1984). Pre-
cisely, a higher FLIC score is the more desirable outcome. Full details of the Vorozole
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Figure 2.3: Epilepsy Data. Average and median evolutions over time.

study are reported in Goss et al. (1999).
Patients underwent screening and for those deemed eligible a detailed examination

at baseline (occasion 0) took place. Further measurement occasions were month 1,
then from month 2 at bi-monthly intervals until month 44.

The median age was 66 years for vorozole, and 67 for megestrol acetate, and the
means were respectively 65.1 (SD 9.8) and 65.6 (SD 10.0) years. The mean duration
of breast cancer when entering the study was 6.8 (SD 5.4) years for vorozole, and 6.9
(SD 5.5) years for megestrol acetate. The average total FLIC score at baseline was
116.3 (SD 21.2) for vorozole, and 117.1 (SD 19.0) for megestrol acetate. These total
FLIC scores were calculated based on 199 and 213 patients, respectively.

Goss et al. (1999) analyzed the data and found no significant differences: the



10 Chapter 2. Motivating Case Studies

Table 2.1: Epilepsy Data. Number of measurements available at a selection of time-
points, for both treatment groups separately.

# Observations
Week Placebo Treatment Total

1 45 44 89
5 42 42 84
10 41 40 81
15 40 38 78
16 40 37 77
17 18 17 35
20 2 8 10
27 0 3 3

response rate was 9.7% for vorozole, versus 6.8% for megestrol acetate (p=0.24);
clinical benefit from treatment was demonstrated in 23.5% of vorozole-treated patients
versus 27.2% of megestrol acetate-treated patients (p=0.42). They also performed an
endpoint analysis of change in the total FLIC score using a two-way ANOVA model
with effects for treatment, disease status, as well as their interaction. Again, no
significant difference was found.

Dropout rates are displayed in Figure 2.4 Precisely, dropout is presented w.r.t.
total FLIC score. The main reasons for dropout are disease progression (152 patients
in the vorozole arm; 134 in the megestrol acetate arm), adverse events (5 and 13) and
death during treatment (5 in each arm). More detailed information on discontinuation
and dropout can be found in Goss et al. (1999).
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Figure 2.4: Vorozole study. Representation of dropout.





Chapter 3

Concepts in Repeated

Measures

First we will briefly review the well known exponential family for univariate data and
the general linear model (GLM) based on it in Section 3.1. Subsequently we will
provide a short review of the Linear Mixed Model (LMM) for continuous longitudinal
data in Section 3.2 and extend the GLM to the General Linear Mixed Model (GLMM)
for longitudinal data in Section 3.3. While the LMM will serve as a modeling tool
to derive estimates for the reliability and generalizability coefficients specifically for
normal distributed data (Chapter 6–7), the GLMM will be used to derive a general
modelling framework for any type of data including binary data (Chapter 8–9). In
Section 3.4 we introduce models for count data. These will serve as a modelling tool for
count data addressed in Chapter 10. Finally Section 3.5 is devoted to missing values.
This section provides an introduction to Chapter 12, a case study in incomplete data.

3.1 Generalized Linear Models

A random variable Y follows an exponential family distribution if the density is of
the form

f(y) ≡ f(y|θ, φ) = exp
{
φ−1[yθ − ψ(θ)] + c(y, φ)

}
, (3.1)

13
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for a specific set of unknown parameters θ and φ, and for known functions ψ(·)
and c(·, ·). Often, θ and φ are termed ‘natural (canonical) parameter’ and ‘scale
parameter,’ respectively. The mean and variance follow from ψ(·) as E(Y ) = µ =
ψ′(θ) and Var(Y ) = σ2 = φψ′′(θ), leading to the so-called mean-variance relationship
σ2 = φψ′′[ψ

′−1(µ)] = φv(µ), with v(·) the variance function. Conventionally, inference
is conducted through either quasi-likelihood, restricting model specification to the first
two moments, or through full likelihood, with (3.1) as its basis (McCullagh and Nelder,
1989, Molenberghs and Verbeke, 2005). In practice, a sample of N independent
outcomes Y1, . . . , YN is collected, together with x1, . . . ,xN p-dimensional vectors of
covariate values. It is assumed that all Yi have densities f(yi|θi, φ) which belong to
the exponential family, and with θi depending on the covariates. Specification of the
generalized linear model is completed by modeling the means µi as functions of the
covariate values: µi = h(θi) = h(x′

iβ), for a known inverse link function h(·), and
with β a vector of p fixed unknown regression coefficients. The so-called natural link
function is given by h(·) = ψ′(·).

When Y is normally distributed with mean µ and variance σ2, the density can be
written as

f(y) = exp
{

1
σ2

[
yµ − µ2

2

]
+
[
ln(2πσ2)

2
− y2

2σ2

]}
, (3.2)

and hence the normal distribution belongs to the exponential family, with natural
parameter θ equal to µ, scale parameter φ equal to σ2 and variance function v(µ) = 1.
Hence the normal distribution is very particular in the sense that there is no mean-
variance relation. The natural link function equals the identity function, leading to
the classical linear regression model Y i ∼ N(µi, σ

2) with µi = xi
′β.

If Y is Bernoulli distributed with success probability P (Y = 1) = π, the density
can be written as

f(y) = exp
{
y ln

(
π

1 − π

)
+ ln(1 − π)

}
, (3.3)

which implies that the Bernoulli distribution belongs to the exponential family, with
natural parameter θ equal to the logit, i.e., ln[π/(1− π)] of π, scale parameter φ = 1,
with mean µ = π and variance function v(π) = π(1 − π). The natural link function
is the logit link, leading to the classical logistic regression model Y i ∼ Bernoulli(πi)
with ln[πi/(1− πi)] = xi

′β or equivalently

πi =
exp(xi

′β)
[1 + exp(xi

′β)]
.
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In case of a Poisson distribution with mean λ: Y ∼ Poi(λ). The density can be
written as

f(y) =
e−λλy

y!
= exp{y lnλ − λ − ln y!}, (3.4)

with natural parameter θ = lnλ, mean µ = λ, scale parameter φ = 1, and variance
function v(µ) = µ = λ. The logarithm is the natural link function, leading to the
classical Poisson regression model Yi ∼ Poisson(λi), with lnλi = x′

iβ.

3.2 Linear Mixed Models

Among the models for longitudinal data, methods for continuous data form the best
developed and most advanced body of research, while the same is true for software
implementation. This is natural, since the special status and the elegant properties
of the multivariate normal distribution simplify model building and ease software
development. It is in this area that the linear mixed model is situated (Laird and
Ware, 1982, Verbeke and Molenberghs, 2000). Gaussian data can be modeled en-
tirely in terms of their means, variances and covariances. The parameters of the
mean model are referred to as fixed-effects parameters, and the parameters of the
variance-covariance model as covariance parameters. The fixed-effects parameters
capture the influence of explanatory variables on the mean structure, exactly as in
the standard linear model. However, the occurrence of random effects and a struc-
tured covariance matrix distinguishes the linear mixed model from the standard linear
model. The need for covariance modeling arises quite frequently in applications such
as when repeated measurements are taken on the same experimental unit, with spa-
tially correlated data, or when experimental units can be grouped into clusters and
data from a cluster are correlated. One can distinguish between three components of
variability. Part of the covariance structure arises from so-called random effects, i.e.,
additional covariate effects with random parameters. These are effects which arise
from the characteristics of individual subjects. The variances of the random-effects
parameters are commonly referred to as variance components (Searle, Casella, and
McCullogh, 1992). Another component of the variability is the serial correlation which
captures that measurements taken close together in time are typically more strongly
correlated than those taken further apart in time. On a sufficiently small time-scale,
this kind of structure is almost inevitable. The last component is the measurement
error: when the measurement process involves fuzzy determinations, the results may
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show substantial variation even when two measurements are taken at the same time
from the same subject.

A linear mixed-effects model (LMM) with serial correlation can be written as

Y i = Xiβ + Zibi +W i + εi, (3.5)

where Y i is the ni dimensional response vector for subject i, 1 ≤ i ≤ N , N is the
number of subjects, Xi and Zi are (ni×p) and (ni×q) known design matrices, β is the
p dimensional vector containing the fixed effects, bi ∼ N(0, D) is the q dimensional
vector containing the random effects, εi ∼ N(0, σ2Ini) is a ni dimensional vector
of measurement error components, and b1, . . . , bN , ε1, . . . , εN are assumed to be
independent. Serial correlation is captured by the realization of a Gaussian stochastic
process, W i, which is assumed to follow a N(0, τ2Hi) law. The serial covariance
matrix Hi only depends on i through the number ni of observations and through the
time points tij at which measurements are taken. The structure of the matrix Hi

is determined through the autocorrelation function ρ(tij − tik). A first simplifying
assumption is that it depends only on the time interval between two measurements
Yij and Yik, i.e., ρ(tij −tik) = ρ(|tij −tik|), where u = |tij−tik| denotes time lag. This
function decreases such that ρ(0) = 1 and ρ(+∞) = 0. Finally, D is a general (q× q)
covariance matrix with (i, j) element dij = dji. Inference is based on the marginal
distribution of the response Yi which, after integrating over random effects, can be
expressed as

Y i ∼ N(Xiβ, ZiDZ
′
i + Σi). (3.6)

Here, Σi = σ2Ini + τ2Hi is a (ni × ni) covariance matrix grouping the measurement
error and serial components.

Fitting of mixed models described in (3.5) is based upon maximum likelihood
methods (maximum likelihood or restricted maximum likelihood). These methods can
be sensitive to peculiar observations that can have an unusually large influence on the
results of the analysis. Many diagnostic tools have been developed for linear regression
models but the generalization of these methods is far from obvious. First, several kinds
of residuals could be defined: the marginal residuals Y i−Xiβ̂, reflecting how a specific
profile deviates from the overall population mean, the subject-specific residuals Y i −
Xiβ̂−Zi b̂i, measuring how much the observed values deviate from the subject’s own
predicted regression line, and the estimated random effects b̂i reflecting how much
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specific profiles deviate from the population average profile. Further, the linear mixed
model involves two kinds of covariates. The matrix Xi represents the design matrix
for the fixed effects, and Zi is the design matrix for the random effects. Therefore, it
is not clear how leverages should be defined, partially because the matrices Xi and Zi

are not necessarily of the same dimension. A classification of influential subjects can
be based on Cook’s distance, which measures how much parameter estimates change
when a specific individual has been removed from the dataset. In classical regression,
closed-form expression exist, allowing easy calculation and also ascribing influence
to the specific characteristics of the subjects (leverage, outlying). Unfortunately,
this is no longer the case in linear mixed models. For exact Cook’s distances, the
iterative estimation procedure has to be used N + 1 times, which can be extremely
time-consuming. The local influence approach was first introduced by Cook (1986).
The general idea is to give every individual its own weight in the calculation of the
parameter estimates and to investigate how these estimates depend on the weights,
locally around the equal-weight case, which is the ordinary maximum likelihood case.
We restrict the discussion to models which assume conditional independence, hence
no serial correlation and Σi = σ2Ini . Denote θ̂ as the maximum likelihood estimate
for θ, obtained after maximizing 	(θ) and θ̂ω the estimate for θ after maximizing
	(θ|ω), any perturbed version of 	(θ). The weight vector ω is N dimensional and the
original log-likelihood corresponds to ω = ω0 = (1, 1, ..., 1)′. Cook (1986) proposed
to measure the distance between θ̂ and θ̂ω by the so-called likelihood displacement,
defined by

LD(ω) = 2[	(θ̂) − 	(θ̂ω)] (3.7)

LD(ω) will be large if 	(θ) is strongly curved at θ̂, which means that θ is estimated with
high precision and LD(ω) will be small if θ is estimated with high variability. From
this perspective, a graph of LD(ω) versus ω contains essential information. Ideally,
we would like a complete influence graph to assess influence for a particular model and
a particular data set. However, this is very difficult in high dimensional situations.
One method to extract the most relevant information from an influence graph is local
influence, which uses normal curvatures, see Verbeke and Molenberghs (2000) for
more detail. Denote Ch as the normal curvature at the surface of (ω, LD(ω)) at ω0,
in the direction h. Large values of Ch indicate sensitivity to the induced perturbations
in the direction h. There are several choices for h. One evident choice correspond to
the perturbation of the ithe weight only. This is obtained by taking h equal to the
vector hi which contains zeros everywhere except on the ithe position. One can prove
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that Ci can be approximated by

Ci = −2[θ̂− θ̂1(i)]
′
L̈(i)L̈

−1L̈(i)[θ̂ − θ̂1(i)],

where L̈ and L̈(i) are respectively the matrix of second-order derivatives of full log-
likelihood and of the log-likelihood calculated after deleting the i case and where
θ̂1(i) is the one-step approximation of θ̂(i) from a single Newton-Raphson step in the
maximization procedure of 	(i)(θ), using θ̂ as starting value. One can also show that
for sufficiently large N , Ci can be interpreted as an approximation to the global
case-deletion diagnostics. Lesaffre and Verbeke (1998) have shown that Ci can be
decomposed into five interpretable components: the “length” of the standardized
covariate in the mean structure, the overall measure for how well the observed data
for the ithe subject are predicted by the mean structure Xiβ, two similar components
for the covariance structure, and finally the size of the variability of the ithe subject.

3.3 Generalized Linear Mixed Model

The generalized linear mixed model (GLMM, Breslow and Clayton, 1993) is the most
frequently used random effects model for discrete outcomes and is a straightforward
extension of the general linear model introduced in Section 3.1. As before, Yij is
the jth outcome measured for subjects i, i = 1, . . . , N, j = 1, . . . , ni and Y i is the
ni-dimensional vector of all measurements available for cluster i. This model assumes
that, conditionally on q-dimensional random effects bi, assumed to be drawn inde-
pendently from the N(0,D), the outcomes Yij are independent with densities of the
form

fi(yij |bi,β, φ) = exp
[
yijθij − ψ(θij )

φ
+ c(yij, φ)

]
, (3.8)

where the mean µij is modeled through a linear predictor containing fixed regression
parameters β as well as subject-specific parameters bi, i.e., g(µij) = g(E(Yij |bi)) =
x′

ijβ + z′ijbi for a known link function g(.), with xij and zij p-dimensional and
q-dimensional vectors of known covariate values, with β a p-dimensional vector of
unknown fixed regression coefficients, and with φ a scale parameter. With a natural
link function this becomes θij = x′

ijβ + z′ijbi. The random effects bi are assumed
to be sampled from a (multivariate) normal distribution with mean 0 and covariance
matrix D.

In this GLMM setting, we can write the general model as follows: Y i = µi + εi,
where µi, the conditional mean, given the random effects, can be written as µi =
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µi(ηi) = h(X iβ + Zibi), X i and Zi are known design matrices, β are fixed-effect
parameters, bi are random effects, and h is a known link function. Finally, εi is the
residual error component.

3.4 Combined Model

It is clear from (3.4) that the standard Poisson model forces equality between mean
and variance. However, comparing the sample average with the sample variance
might already reveal that this assumption is not in line with a particular set of data.
Therefore, a number of extensions have been proposed (Breslow 1984, Lawless 1987).
A straightforward step is to allow the overdispersion parameter φ to differ from one,
so that the mean-variance relationship produces Var(Y ) = φµ. This is in line with
the moment-based approach mentioned in Section 3.1, although one can still think of
such moments as arising from a random sum of Poisson variables, a point made by
Hinde and Demétrio (1998ab).

An elegant way forward is through a two-stage, or random-effects, approach. A
commonly encountered instance is by assuming that Yi|λi ∼ Poi(λi) and then further
that λi is a random variable with E(Yi) = µi and Var(Yi) = σ2

i . Using iterated
expectations, it follows that E(Yi) = µi and Var(Yi) = µi + σ2

i . Note that we have
not assumed a particular distributional form for the random effects λi. A common
choice is the gamma distribution, leading to the so-called negative-binomial model.

This model is straightforward to extend to repeated measurements. We then
assume a hierarchical data structure, where now Yij denotes the jth outcome measured
for cluster (subject) i, (i = 1, . . . , N ; j = 1, . . . , ni) and Yi is the ni-dimensional vector
of all measurements available for cluster i. Then, the scalar λi becomes a vector
λi = (λi1, . . . , λini)′, with E(λi) = µi and Var(λi) = Σi. Similar logic as in the
univariate case produces E(Yi) = µi and Var(Yi) = Mi + Σi, where Mi is a diagonal
matrix with the vector µi along the diagonal, the diagonal structure of Mi reflecting
the conditional independence assumption, i.e., all dependence between measurements
on the same unit stem from the random effects. A versatile class of models results.
For example, assuming the components of λi are independent, a pure overdispersion
model follows, without correlation between the repeated measures. On the other
hand, assuming λij = λi, i.e., all components are equal, then Var(Yi) = Mi + σ2

i Jni,
where Jni is an ni ×ni dimensional matrix of ones, as a Poisson version of compound
symmetry. Of course, one can also combine general correlation structures between
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the components of λi.
Alternatively, this repeated version of the overdispersion model can be combined

with normal random effects in the linear predictor, as proposed by Molenberghs,
Verbeke, and Demétrio 2007 (MVD). We first review the GLMM (Section 3.4.1) and
then move on to the combined model (Section 3.4.2).

3.4.1 Normal Random Effects: the Poisson-normal Model

In general, the GLMM assumes that, conditionally on q-dimensional random effects
bi, commonly assumed to be drawn independently from the N(0, D), the outcomes
Yij to be independent with exponential-family densities of the form

fi(yij |bi,β, φ) = exp
{
φ−1[yijθij − ψ(θij)] + c(yij, φ)

}
, (3.9)

with h−1(µij) = h−1[E(Yij|bi)] = x′
ijβ + z′ijbi, and with xij and zij p-dimensional

and q-dimensional vectors of known covariate values, with β a p-dimensional vector
of unknown fixed regression coefficients, and with φ a scale parameter.

For the specific case of Poisson data, the assumptions are

Yij ∼ Poi(λij), (3.10)

ln(λij) = x′
ijβ + z′ijbi, (3.11)

bi ∼ N(0, D). (3.12)

When normality for the random effects is assumed, the mean vector and variance-
covariance matrix of Yi can be derived relatively easily, as shown by MVD; see also
Section 10.1. The mean vector µi = E(Yi) has components:

µij = exp
(
x′

ijβ +
1
2
zijDz

′
ij

)
, (3.13)

while the variance-covariance matrix equals

Var(Yi) = Mi +Mi

(
eZiDZ′

i − Jni

)
Mi, (3.14)

with Mi as in the previous section. In the special case of univariate data with a
single normal random intercept bi ∼ N(0, d) and zi = 1, expressions (3.13) and (3.14)
simplify to:

µi = exp
(
x′iβ +

1
2
d

)
, Var(Yi) = µi + µ2

i (e
d − 1),

the latter being of the well-known quadratic form (Hinde and Demétrio 1998ab).

TVANGENE
Highlight



21

3.4.2 Combining Overdispersion With Normal Random Ef-

fects

Combining ideas from the overdispersion models in Section 3.4 and the Poisson-normal
model of Section 3.4.1, MVD specified, in line with Booth et al. (2003), a model for
repeated Poisson data with overdispersion, by extending (3.10)–(3.12) to

Yij ∼ Poi(λij), (3.15)

λij = θij exp
(
x′

ijβ + z′ijbi

)
, (3.16)

bi ∼ N(0, D), (3.17)

E(θi) = E[(θi1, . . . , θini)
′] = Φi, (3.18)

Var(θi) = Σi. (3.19)

The mean vector µi = E(Yi) now has components:

µij = φij exp
(
x′

ijβ +
1
2
zijDz

′
ij

)
, (3.20)

and the variance-covariance matrix is given by

Var(Yi) = Mi +Mi (Pi − Jni)Mi, (3.21)

where Mi is still defined as before and the (j, k)th element of Pi equals

pi,jk = exp
(

1
2
zijDz

′
ik

)
· σi,jk + φijφik

φijφik
· exp

(
1
2
zikDz

′
ij

)
. (3.22)

An expression for the joint marginal probabilities is presented in Section 10.3.

3.5 Missing Data

In this section we briefly review concepts of missing data handling. The text follows
the development layed out in Chapter 3 form Molenberghs and Kenward (2007).

3.5.1 Modeling Incompleteness

It is very common for sets of quantitative data to be incomplete, in the sense that
not all planned observations are actually made This is especially true when studies
are conducted on human subjects. Often a distinction is made between missingness
patterns. Dropout or attrition refers to the specific situation, arising in longitudinal
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studies, where subjects are observed uninterruptedly from the beginning of the study
until a given point in time, perhaps prior to the scheduled end of the study, when
they drop out and do not return to the study. The general mechanism, where subjects
can be observed and missing on any partition of the set of planned measurement
occasions, is often called non-monotone missingness. In clinical trials, dropout is
not only a common occurrence, there are also specific procedures for reporting and
subsequently dealing with it. Patients who drop out of a clinical trial are usually listed
on a separate withdrawal sheet of the case record form with the reasons for withdrawal
entered by the authorised investigator. Reasons frequently encountered are adverse
events, illness not related to study medication, an uncooperative patient, protocol
violation, and ineffective study medication. Further specifications may include so-
called loss to follow-up. Based on this medically inspired typology, Gould (1980)
proposed specific methods to handle this type of incompleteness. Even though the
primary focus of such trials is often on a specific time of measurement, usually the last,
the outcome of interest is recorded in a longitudinal fashion, and dropout is a common
occurrence. While dropout, in contrast to non-monotone missingness, may simplify
model formulation and manipulation, the causes behind it can be more problematic.
For example, dropout may derive from lack of efficacy, or from potentially serious
and possible treatment-related side effects. In contrast, an intermittently missing
endpoint value may be due more plausibly to the patient skipping a visit for practical
or administrative reasons, to measurement equipment failure, and so on. In addition,
one often sees that incomplete sequences in clinical trials are, for the vast majority,
of a dropout type, with a relatively minor fraction of incompletely observed patients
producing non-monotone sequences.

To incorporate incompleteness into the modeling process, we need to reflect on the
nature of the missing value mechanism and its implications for statistical inference.
Rubin (1976) and Little and Rubin (2002, Chapter 6) distinguish between different
missing values processes. A process is termed missing completely at random (MCAR)
if missingness is independent of both unobserved and observed outcomes, and missing
at random (MAR) if, conditional on the observed data, missingness is independent
of the unobserved outcomes; otherwise, the process is termed missing not at random
(MNAR). A more formal definition of these concepts is given in Section 3.5.4.

Given MAR, a valid analysis can be obtained through a likelihood-based analysis
that ignores the missing value mechanism, provided the parameters describing the
measurement process are functionally independent of the parameters describing the
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missingness process, the so-called parameter distinctness condition. This situation is
termed ignorable by Rubin (1976) and Little and Rubin (2002) and leads to consid-
erable simplification in the analysis (Diggle, 1989, Verbeke and Molenberghs, 2000).
See also Section 3.5.5.

In practice, the reasons for missingness are likely to be manifold and it is therefore
difficult to justify solely on a priori grounds the assumption of missingness at random.
Arguably, under MNAR, a wholly satisfactory analysis of the data is not feasible, and
it should be noted that the data alone cannot distinguish between MAR and MNAR
mechanisms.

In the light of this one approach could be to estimate from the available data the
parameters of a model representing a MNAR mechanism. It is typically difficult to
justify the particular choice of missingness model, and it does not necessarily follow
that the data contain information on the parameters of the particular model chosen.
These points have been studied in Jansen et al. (2006b) and are discussed in Chap-
ter 20 of Molenberghs and Kenward (2007). Where such information exists (and as
we emphasize below this is normally derived from untestable modeling assumptions),
the fitted model can be seen as providing some insight into the fit of the missing at
random model to the observed data. Only through external assumptions can we use
this subsequently to make inferences about the missing value process. Consequently
the approach is potentially useful for assessing the sensitivity of the conclusions to
assumptions about the missing value process, but not for making definitive state-
ments about it. Several authors have used MNAR models that explicitly model the
dropout process, and attempted from these to draw conclusions about the missing
value mechanism. These included include Diggle and Kenward (1994) in the context
of continuous longitudinal data and by Molenberghs, Kenward, and Lesaffre (1997)
for ordinal outcomes. Overviews of and extensive discussion on this topic is found in
Little (1995), Diggle et al. (2002), Verbeke and Molenberghs (2000) and Molenberghs
and Verbeke (2005). Further early approaches for continuous data were proposed
by Laird, Lange, and Stram (1987), Wu and Bailey (1988, 1989), Wu and Carroll
(1988), and Greenlees, Reece, and Zieschang (1982). Proposals for categorical data
were made by Baker and Laird (1988), Stasny (1986), Baker, Rosenberger, and Der-
Simonian (1992), Conaway (1992, 1993), Park and Brown (1994).

A feature common to all complex (MNAR) modeling approaches is that they
rely on untestable assumptions about the relationship between the measurement and
missing value processes. An obvious consequence of this is that one should therefore
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avoid missing data as much as possible and, when the problem arises, ensure that
all practicable efforts are made to collect information on the reasons for this. As an
example, consider a clinical trial where outcome and missingness are both strongly
related to a specific covariateX and where, conditionally onX, the response Y and the
missing data process R are independent. In the selection framework (Section 3.5.4), we
then have that f(Y, R|X) = f(Y |X)f(R|X), implying MCAR, whereas omission of X
from the model may imply MAR or even MNAR, which has important consequences
for selecting valid statistical methods.

Different MNAR models may fit the observed data equally well, but have quite
different implications for the unobserved measurements, and hence for the conclusions
to be drawn from the respective analyses. Without additional information we can only
distinguish between such models using their fit to the observed data, and so goodness-
of-fit tools typically do not provide a relevant means of choosing between such models.
It follows that there is an important role for sensitivity analysis in assessing inferences
from incomplete data.

In Section 3.5.2 we introduce summarize terminology and in Section 3.5.3 we
sketch the broad frameworks for incomplete data modeling. Missing data patterns is
formalized in Section 3.5.4. Ignorability is the subject of Section 3.5.5. Section 3.5.6
sketches a general pattern-mixture model framework.

3.5.2 Terminology

The following terminology is based on the standard framework of Rubin (1976) and
Little and Rubin (2002). It allows us to place formal conditions on the missing value
mechanism which determine how the mechanism may influence subsequent inferences.
Assume that for each independent unit i = 1, . . . , N in the study, it is planned to col-
lect a set of measurements Yij (j = 1, . . . , ni). In a longitudinal study, i indicates
subject and j the measurement occasion. For multivariate studies, j refers to the par-
ticular outcome variable. In a hierarchical data setting, with more than two levels,
j can be taken to refer generically to all sub-levels, in which case it would become a
vector-valued indicator. The index i is always reserved for units (blocks) of indepen-
dent replication.

We group the outcomes into a vector Y i = (Yi1, . . . , Yini)′. In addition, for each
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occasion j we define

Rij =

{
1 if Yij is observed
0 otherwise.

These missing data indicators Rij are organized into a vector Ri of parallel structure
to Y i.

We then partition Y i into two subvectors such that Y o
i is the vector containing

those Yij for which Rij = 1, and Y m
i contains the remaining components. These

subvectors are referred to as the observed and missing components, respectively. The
following terminology is adopted. Complete data refers to the vector Y i of planned
measurements. This is the outcome vector that would have been recorded if no
data had been missing. The vector Ri and the process generating Ri is referred to
as the missing data process. The full data (Y i,Ri) consist of the complete data,
together with the missing data indicators. Note that, unless all components of Ri

equal one, the full data components are never jointly observed but rather one observes
the measurements Y o

i together with the dropout indicators Ri, which we refer to as
the observed data.

When missingness is restricted to dropout or attrition, we can replace the vector
Ri by a scalar variable Di, the dropout indicator. In this case, each vector Ri is of
the form (1, . . . , 1, 0, . . . , 0) and we can define the scalar dropout indicator

Di = 1 +
ni∑

j=1

Rij. (3.23)

For an incomplete sequence, Di denotes the occasion at which dropout occurs. For a
complete sequence, Di = ni+1. In both cases, Di is equal to one plus the length of the
measurement sequence, whether complete or incomplete. Sometimes, it is convenient
to define an alternative dropout indicator, Ti = Di − 1, that indicates the number
of measurements actually taken, rather then the first occasion at which the planned
measurement has not been taken.

Dropout, or attrition, is an example of a monotone pattern of missingness. Miss-
ingness is termed monotone when there exists a permutation of the measurement
occasions such that a measurement earlier in the permuted sequence is observed for
at least those subjects that are observed at later measurements. Note that, for this
definition to be meaningful, we need to have a balanced design in the sense of a com-
mon set of designed measurement occasions. Other patterns are called non-monotone.



26 Chapter 3. Concepts in Repeated Measures

3.5.3 Missing Data Frameworks

We now consider in turn the so-called selection, pattern-mixture, and shared-parameter
modeling frameworks.

When data are incomplete due to the operation of a random (missing value) mech-
anism the appropriate starting point for a model is the full data density

f(yi, ri|Xi,Wi, θ,ψ), (3.24)

where Xi and Wi denote design matrices for the measurement and missingness mech-
anism, respectively. The corresponding parameter vectors are θ and ψ, respectively.

The selection model factorization is based on

f(yi, ri|Xi,Wi, θ,ψ) = f(yi|Xi, θ)f(ri|yi,Wi,ψ), (3.25)

where the first factor is the marginal density of the measurement process and the
second one is the density of the missingness process, conditional on the outcomes.
The name is chosen because f(ri|yi,Wi,ψ) can be seen as describing a unit’s self-
selection mechanism to either continue or leave the study. The term originates from
the econometric literature (Heckman 1976) and it can be thought of that a subject’s
missing values are “selected” through the probability model, given their measure-
ments, whether observed or not.

An alternative family is based on so-called pattern-mixture models (Little 1993,
1994, 1995). These are based on the factorization

f(yi, ri|Xi,Wi, θ,ψ) = f(yi|ri, Xi, θ)f(ri|Wi,ψ). (3.26)

The pattern-mixture model allows for a different response model for each pattern of
missing values, the observed data being a mixture of these weighted by the probability
of each missing value or dropout pattern.

The third family is referred to as shared-parameter models:

f(yi, ri|Xi,Wi, θ,ψ, bi)

= f(yi|ri, Xi, θ, bi)f(ri|Wi,ψ, bi), (3.27)

where we explicitly include a vector of unit-specific latent (or random) effects bi of
which one or more components are shared between both factors in the joint distribu-
tion. Early references to such models are Wu and Carroll (1988) and Wu and Bailey
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(1988, 1989). A sensible assumption is that Y i and Ri are conditionally independent,
given the random effects bi. The random effects bi can be used to define an appro-
priate hierarchical model. The same vector can then be used to describe the missing
data process. The shared parameter bi can be thought of as referring to a latent trait
driving both the measurement and missingness processes.

The natural parameters of selection models, pattern-mixture models, and shared-
parameter models have different interpretations, and transforming one statistical
model from one of the frameworks to another is generally not straightforward, and
these three models can indeed lead to different results and conclusions.

3.5.4 Missing Data Mechanisms

Rubin’s taxonomy of missing value processes (Rubin 1976, Little and Rubin, 2002),
referred to in Section 3.5.1, is fundamental to the modeling of incomplete data. It is
perhaps most naturally expressed within the selection modeling framework for which
it is based on the second factor of (3.25):

f(ri|yi,Wi,ψ) = f(ri|yo
i , y

m
i ,Wi,ψ). (3.28)

Missing Completely at Random (MCAR). Under an MCAR mechanism,
the probability of an observation being missing is independent of the responses:

f(ri|yi,Wi,ψ) = f(ri|Wi,ψ) (3.29)

and therefore (3.25) simplifies to

f(yi, ri|Xi,Wi, θ,ψ) = f(yi|Xi, θ)f(ri|Wi,ψ), (3.30)

implying that both components are independent. The implication is that the joint
distribution of yo

i and ri becomes

f(yo
i , ri|Xi,Wi, θ,ψ) = f(yo

i |Xi, θ)f(ri|Wi,ψ). (3.31)

Under MCAR, the observed data can be analyzed as though the pattern of missing
values was predetermined. In whatever way the data are analyzed, whether using a
frequentist, likelihood, or Bayesian procedure, the process(es) generating the missing
values can be ignored. For example, in this situation simple averages of the observed
data at different occasions provide unbiased estimates of the corresponding population
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averages. The observed data can be regarded as a random sample of the complete
data.

Note that this definition and the ones to follow are made conditionally on the
covariates. When the covariates, assembled into Xi and Wi, are removed, the nature
of a mechanism may change. In defining these mechanisms some authors distinguish
between those made conditionally or not on the covariates.

Missing at Random (MAR). Under an MAR mechanism, the probability of an
observation being missing is conditionally independent of the unobserved outcome(s),
given the values of the observed outcome(s):

f(ri|yi,Wi,ψ) = f(ri|yo
i ,Wi,ψ). (3.32)

and again the joint distribution of the observed data can be partitioned:

f(yi, ri|Xi,Wi, θ,ψ) = f(yi|Xi, θ)f(ri|yo
i ,Wi,ψ), (3.33)

and hence at the observed data level:

f(yo
i , ri|Xi,Wi, θ,ψ) = f(yo

i |Xi, θ)f(ri|yo
i ,Wi,ψ). (3.34)

Given the simplicity of (3.34), handling of MAR processes is typically easier than
handling MNAR.

Although the MAR assumption is particularly convenient in that it leads to consid-
erable simplification in the issues surrounding the analysis of incomplete longitudinal
data, an investigator is rarely able to justify its adoption, and so in many situations
the final class of missing value mechanisms cannot be ruled out.

Missing Not at Random (MNAR). In this case, neither MCAR nor MAR
hold. Under MNAR, the probability of a measurement being missing depends on
unobserved outcome(s). No simplification of the joint distribution is possible and the
joint distribution of the observed measurements and the missingness process has to
be written as:

f(yo
i , ri|Xi,Wi, θ,ψ) =

∫
f(yi|Xi, θ)f(ri|yi,Wi,ψ)dym

i . (3.35)

Inferences can only be made by making further assumptions, about which the observed
data alone carry no information. Ideally, if such models are to be used, the choice of
such assumptions should be guided by external information, but the degree to which
this is possible varies greatly across application areas and applications. Such models
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can be formulated within each of the three main families: selection, pattern-mixture,
and shared-parameter models. The differences between the families are especially
important in the MNAR case, and lead to quite different, but complementary, views
of the missing value problem. Little (1995), Hogan and Laird (1997), and Kenward
and Molenberghs (1999) provide detailed reviews. See also Verbeke and Molenberghs
(2000) and Molenberghs and Verbeke (2005).

It has been shown, for dropout in longitudinal studies, how Rubin’s classification
can be applied in the pattern-mixture framework as well (Molenberghs et al., 1998,
Kenward, Molenberghs, and Thijs, 2003). We will discuss these points in Section 3.5.6.

The MCAR–MAR–MNAR terminology is independent of the inferential frame-
work chosen. This is different for the concept of ignorability , which depends crucially
on this framework (Rubin, 1976). We will turn to this issue in the next section.

3.5.5 Ignorability

In this section we focus on likelihood-based estimation. The full data likelihood
contribution for unit i takes the form

L∗(θ,ψ|Xi,Wi, yi, ri) ∝ f(yi, ri|Xi,Wi, θ,ψ).

Because inference has to be based on what is observed, the full data likelihood L∗

needs to be replaced by the observed data likelihood L:

L(θ,ψ|Xi,Wi, y
o
i , ri) ∝ f(yo

i , ri|Xi,Wi, θ,ψ) (3.36)

with

f(yo
i , ri|θ,ψ) =

∫
f(yi, ri|Xi,Wi, θ,ψ)dym

i

=
∫
f(yo

i , y
m
i |Xi, θ)f(ri|yo

i , y
m
i ,Wi,ψ)dym

i . (3.37)

Under an MAR process, we obtain

f(yo
i , ri|θ,ψ) =

∫
f(yo

i , y
m
i |Xi,Wi, θ)f(ri|yo

i ,Wi,ψ)dym
i

= f(yo
i |Xi,Wi, θ)f(ri|yo

i ,Wi,ψ). (3.38)

Thus, the likelihood factors into two components of the same functional form as the
general factorization (3.25) of the complete data. If, further, θ and ψ are disjoint
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in the sense that the parameter space of the full vector (θ′,ψ′)′ is the product of
the parameter spaces of θ and ψ, then inference can be based solely on the marginal
observed data density. This technical requirement is referred to as the separability
condition. However, still some caution should be used when constructing precision es-
timators. This point is discussed in detail in Chapter 12 of Molenberghs and Kenward
(2007).

In conclusion, when the separability condition is satisfied, within the likelihood
framework , ignorability is equivalent to the union of MAR and MCAR. A formal
derivation is given in Rubin (1976), where it is also shown that the same requirements
hold for Bayesian inference, but that for frequentist inference to be ignorable, MCAR
is the corresponding sufficient condition. Of course, it is possible that at least part
of the scientific interest is directed towards the missing data process. Then still,
ignorability is useful since the measurement model and missingness model questions
can be addressed through separate models, rather than jointly.

Classical examples of the more stringent condition with frequentist methods are
ordinary least squares and the generalized estimating equations (GEE) approach of
Liang and Zeger (1986). The latter produce unbiased estimators in general only
under MCAR. Robins, Rotnitzky, and Zhao (1995) and Rotnitzky and Robins (1995)
have established that some progress can be made under MAR and that, even under
MNAR processes, these methods can be applied (Rotnitzky and Robins, 1997, Robins,
Rotnitzky, and Scharfstein, 1998).

3.5.6 Pattern-mixture Models

Pattern-mixture models (PMM) were introduced in Section 3.5.3 as one of the three
major frameworks within which missing data models can be developed.

Little (1993, 1994, 1995) originally proposed the use of pattern-mixture models as
a viable alternative to selection models.

An important issue is that pattern-mixture models are by construction under-
identified, i.e., overspecified. Little (1993, 1994) solves this problem through the use
of identifying restrictions: inestimable parameters of the incomplete patterns are set
equal to (functions of) the parameters describing the distribution of the completers.
Identifying restrictions are not the only way to overcome under-identification alter-
native approaches are discussed in Chapter 17 of Molenberghs and Kenward (2007).
Although some authors perceive this under-identification as a drawback, it can be
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viewed as an asset because it forces one to reflect on the assumptions being made,
and the assumptions are necessarily transparent. This can serve as a useful starting
point for sensitivity analysis.

Little (1993, 1994) advocated the use of identifying restrictions and presented a
number of examples. One of those, ACMV (available case missing values), is the
natural counterpart of MAR in the PMM framework, as was established by Molen-
berghs et al. (1998). Specific counterparts to MNAR selection models were studied
by Kenward, Molenberghs, and Thijs (2003). These will be discussed in what follows.

In line with Molenberghs et al. (1998), we restrict attention to monotone pat-
terns, dropping the unit index i from the notation, for simplicity. In general, let us
assume that there are t = 1, . . . , n = T dropout patterns where the dropout indicator,
introduced in (3.23), is d = t+ 1. The indices j for measurements occasions and t for
dropout patterns assume the same values, but using both simplifies notation.

For pattern t, the complete data density, is given by

ft(y1, . . . , yT ) = ft(y1 , . . . , yt)ft(yt+1, . . . , yT |y1, . . . , yt). (3.39)

The first factor is clearly identified from the observed data, while the second factor is
not. It is assumed that the first factor is known or, more realistically, modeled using
the observed data. Then, identifying restrictions are applied in order to identify the
second component.

Although, in principle, completely arbitrary restrictions can be used by means of
any valid density function over the appropriate support, strategies that imply links
back to the observed data are likely to have more practical relevance. One can base
identification on all patterns for which a given component, ys say, is identified. A
general expression for this is

ft(ys|y1, . . . ys−1) =
T∑

j=s

ωsjfj(ys|y1, . . . ys−1), s = t+ 1, . . . , T. (3.40)

We will use ωs as shorthand for the set of ωsj’s used, the components of which are
typically positive. Every ωs that sums to one provides a valid identification scheme.

Let us incorporate (3.40) into (3.39):

ft(y1, . . . , yT )

= ft(y1, . . . , yt)
T−t−1∏

s=0

⎡⎣ T∑
j=T−s

ωT−s,jfj(yT−s|y1, . . . , yT−s−1)

⎤⎦ . (3.41)
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We will consider three special but important cases, associated with such choices
of ωs in (3.40). Little (1993) proposes CCMV (complete case missing values) which
uses the following identification:

ft(ys|y1, . . . ys−1) = fT (ys|y1, . . . ys−1), s = t+ 1, . . . , T, (3.42)

corresponding to ωsT = 1 and all others zero. In other words, information which
is unavailable is always borrowed from the completers. Alternatively, the nearest
identified pattern can be used:

ft(ys|y1, . . . ys−1) = fs(ys|y1, . . . ys−1), s = t+ 1, . . . , T, (3.43)

corresponding to ωss = 1 and all others zero. We will refer to these restrictions as
neighboring case missing values or NCMV.

The third special case of (3.40) is ACMV. ACMV is reserved for the counterpart of
MAR in the PMM context. The corresponding ωs vectors can be shown (Molenberghs
et al. 1998) to have components:

ωsj =
αjfj(y1, ..., ys−1)∑′

�=s α�f�(y1, . . . , ys−1)
, (3.44)

(j = s, . . . , T ) where αj is the fraction of observations in pattern j (Molenberghs et
al. 1998).

This MAR–ACMV link connects the selection and pattern-mixture families. It
is of further interest to consider specific sub-families of the MNAR family. In the
context of selection models for longitudinal data, one typically restricts attention to a
class of mechanisms where dropout may depend on the current, possibly unobserved,
measurement, but not on future measurements. The entire class of such models will
be termed missing non-future dependent (MNFD). Although they are natural and
easy to consider in a selection model situation, there exist important examples of
mechanisms that do not satisfy MNFD, such as shared-parameter models (Wu and
Bailey, 1989, Little, 1995).

Kenward, Molenberghs, and Thijs (2003) have shown there is a counterpart to
MNFD in the pattern-mixture context. The conditional probability of pattern t in
the MNFD selection models obviously satisfies

f(r = t|y1, . . . , yT ) = f(r = t|y1, . . . , yt+1). (3.45)
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Within the PMM framework, we define non-future dependent missing value restric-
tions (NFMV) as follows:

∀t ≥ 2, ∀j < t− 1 :

f(yt|y1, . . . , yt−1, r = j) = f(yt|y1, . . . , yt−1, r ≥ t − 1). (3.46)

NFMV is not a single set of restrictions, but rather leaves one conditional distribution
per incomplete pattern unidentified:

f(yt+1|y1, . . . , yt, r = t). (3.47)

In other words, the distribution of the “current” unobserved measurement, given
the previous ones, is unconstrained. Note that (3.46) excludes such mechanisms as
CCMV and NCMV. Kenward, Molenberghs, and Thijs (2003) have shown that, for
longitudinal data with dropouts, MNFD and NFMV are equivalent.

For pattern t, the complete data density is given by

ft(y1, . . . , yT ) = ft(y1, . . . , yt)ft(yt+1 |y1, . . . , yt)

×ft(yt+2, . . . , yT |y1, . . . , yt+1). (3.48)

It is assumed that the first factor is known or, more realistically, modeled using the
observed data. Then, identifying restrictions are applied to identify the second and
third components. First, from the data, estimate ft(y1, . . . , yt). Second, the user has
full freedom to choose

ft(yt+1 |y1, . . . , yt). (3.49)

Substantive considerations could be used to identify this density. Alternatively, a
family of densities might be considered by way of sensitivity analysis. Third, using
(3.46), the densities ft(yj |y1, . . . , yj−1), (j ≥ t + 2) are identified. This identification
involves not only the patterns for which yj is observed, but also the pattern for which
yj is the current and hence the first unobserved measurement. An overview of the
connection between selection and pattern-mixture models is given in Figure 3.1.

Two obvious mechanisms, within the MNFD family but outside MAR, are NFD1
(NFD standing for ‘non-future dependent’), i.e., choose (3.49) according to CCMV,
and NFD2, i.e., choose (3.49) according to NCMV. NFD1 and NFD2 are strictly
different from CCMV and NCMV.
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SEM : MCAR ⊂ MAR ⊂ MNFD ⊂ general MNAR
	 	 	 	

PMM : MCAR ⊂ ACMV ⊂ NFMV ⊂ general MNAR
⊃ �= ⊂

interior

Figure 3.1: Relationship between nested families within the selection model (SEM)
and pattern-mixture model (PMM) families. MCAR: missing completely at random;
MAR: missing at random; MNAR: missing not at random; MNFD: missing non-
future dependence; ACMV: available-case missing values; NFMV: non-future missing
values; interior: restrictions based on a combination of the information available for
other patterns. The ‘⊂’ symbol here indicates ‘is a special case of.’ The ‘	’ symbol
indicates correspondence between a class of SEM models and a class of PMM models.



Chapter 4

Concepts in Psychometric

Methodology

In this Chapter we will introduce concepts in Psychometric Validation methodology.
First we will give a brief overview on the Classical Theory of Reliability. The ICC of
reliability, defined in Section 4.1, will be developed in Chapter 6, 8 and 10 using the
case studies decribed in Chapter 2. Subsequently, we will expand on Generalizability
Theory in Section 4.2 which is a natural extension of reliability. Similarly, the concepts
of Generalizability Theory will be developed and applied in Chapter 7 and 9. We will
end this Chapter with the concept of Validity testing in Section 4.3. This will serve
as a basis for Chapter 11 where we develop methods to evaluate criterion validity on
parallel measurements from the case studies.

4.1 Reliability

The terms observer reliability and agreement are often used interchangeably, but in
theory they are different concepts. Reliability coefficients express the ability to dif-
ferentiate among subjects. They are ratios of variances: in general, the variance
attributed to the difference among subjects divided by the total variance (Shrout and
Fleiss, 1979). Reliability concerns the consistency of repeated measures, whether the
same value is achieved if a measurement is performed twice. The repetitions might
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be repeated measures by the same rater, also referred to test-retest reliability, or al-
ternatively a subject might be measured by multiple raters, also referred to interrater
reliability. Also consistency between questions or measures within a subscale is a form
of reliability also called internal consistency

The parameters for assessment of observer reliability and agreement differ accord-
ing to the scale of measurement. For nominal and ordinal categorical measurements,
respectively the κ-coefficient and the weighted κ-coefficient (κW ) are measures of
agreement (Dunn, 1989, 2000 and Shoukri, 2004). In case of continuous data, the in-
traclass correlation coefficient (ICC) is used to measure observer reliability, although
the ICC also can be used for ordinal categorical data.

As stated by Fleiss: ‘The most elegant design of a clinical study will not overcome
the damage by unreliable or imprecise measurement’ (Fleiss, 1986). In clinical trials,
one typically wants to differentiate among treatments. If reliability is low, the ability
to differentiate between the different subjects in the different treatment arm decreases.
Fleiss describes a number of consequences of unreliability. He brings up attenuation
of correlation in studies designed to estimate correlation between variables with poor
reliability, biased sample selection in clinical studies where patients are selected with a
minimum level of a certain measurement with low reliability, and last but not least, an
increased sample size for trials with a primary parameter with low reliability. For the
latter, one can easily show that for a paired t-test, the required sample size becomes
n = n∗

R
where R denotes the reliability coefficient and n∗ is the required sample size

for the true score, i.e., the required sample size when responses are measured without
error. It is very clear that a high reliability is important to the clinical trialist.
Investigators in the mental disorders traditionally have been more concerned with the
reliability of their measures than have their colleagues in other medical specialties.

In the classical test theory, the outcome of an interval scaled test is modeled as

Y = τ + ε, (4.1)

where Y represents an observation or measurement, τ is the true score and ε the
corresponding measurement error. It is assumed that the measurement errors are
mutually uncorrelated as well as with the true scores. If this assumption is correct,
we obtain

Var(Y ) = Var(τ ) + Var(ε).

The reliability of a measuring instrument is defined as the ratio of the true score
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variance to the observed score variance, i.e.,

R =
Var(τ )
Var(Y )

=
Var(τ )

Var(τ ) + Var(ε)
. (4.2)

One can easily show that the reliability coefficient is in fact an intraclass correlation
coefficient. Suppose we have two measurements of the same patient, either from two
raters or from the same rater, taken at two instances not too far apart, Y1 = τ + ε1

and Y2 = τ + ε2, with Var(Y1) = Var(Y2) = Var(Y ) and Var(ε1) = Var(ε2) = Var(ε) ,
i.e., parallel measurements. Further, the covariance of the two measurements equals

Cov(Y1, Y2) = Cov(τ + ε1, τ + ε2) = Var(τ ),

and the correlation between the two measurements can be written as

Corr(Y1, Y2) =
Cov(Y1, Y2)√

Var(Y 1)
√

Var(Y 2)
=

Var(τ )
Var(τ ) + Var(ε)

= R. (4.3)

This shows that reliability is in fact an intraclass correlation coefficient with pa-
tient taken as the class. Stronger, as Bartko stated, a reliability coefficient defined as
a ratio of variances which are estimated by a linear model can only be correct when
it can be interpreted as a “correlation coefficient” (Bartko, 1966).

Note that the assumption of steady state behavior of the measurements, i.e., the
assumption that measurements are parallel (same mean and same variance), is crucial.
If for instance the patients are rated by the same investigator on two occasions which
are too far apart, the patient’s condition can have changed, translating into a low
intraclass correlation coefficient, even in the case of highly reliable measures.

In the classical approach, reliability is estimated by the intraclass correlation co-
efficient (Fleiss, 1986, Bartko, 1966, Dunn, 1989). For a simple replication study, this
can be derived from a one way analysis of variance with patient as factor (Table 4.1).

The estimate for the intraclass correlation coefficient of reliability in (Bartko, 1966)
then is:

R̂c =
σ̂2

p

σ̂2
p + σ̂2

e

=
BMS − WMS

BMS + (k − 1)WMS
.

4.2 Generalizability

The classical theory behind the estimation of reliability can be extended to Generaliz-
ability Theory by estimating the magnitude of multiple sources of measurement error
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Table 4.1: Classical Theory. ANOVA table to derive reliability coefficient from a
simple replication study.

Source of variation Df Mean sum of sq. Exp. sum of sq.

Between patient n− 1 BMS σ2
e + kσ2

p

Within patients (error) n(k − 1) WMS σ2
e

Total nk − 1

where k is the number of measurements per patient, n is the number of patients.

Table 4.2: Classical Theory. Analysis of variance table for Person by Occasion design.

Source of variation Df (*) Mean Sum of Sq. Exp. Sum of Sq.

Person nP − 1 MSP (BMS) σ2
E + nOσ2

P

Occasion nO − 1 MSO(WMS) σ2
E + nP σ2

O

Person x Occasion (err.) (nP − 1) × (nO − 1) MSE σ2
E

(*)nO is the number of measurements per patient, nP the number of persons

and providing reliability and generalizability coefficients tailored to the proposed use
of the measurement and isolating major sources of error so that a cost efficient mea-
surement design can be built (Shavelson, Webb, and Rowley, 1989). By investigating
other sources of error such as for instance country or sub category of diagnosis, the
clinical trialist could learn a lot about performance of scales or other measurements
in certain subgroups and what the impact of such factors is on reliability.

In a Person × Occasion design, where occasion could be two time points (test-
retest) or two raters (interrater), there are 3 sources of variation (Table 4.2), Person,
Occasion and Person × Occasion confounded with error. Model (4.1) could be written
as

YPO = µ+ µP + µO + ε. (4.4)

For the Person × Occasion design, the reliability coefficient is estimated with two
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of the three sources of variation, Person and Residual of the ANOVA model described
in Table 4.2:

R̂ =
σ̂2

P

σ̂2
P + σ̂2

E

=
BMS − WMS

BMS + (nO − 1)WMS
. (4.5)

The occasion effect should be zero because Classical Theory assumes strictly parallel
measurements. Only Person and Residual variation give rise to differences among
individuals; the occasion effect is constant for all individuals in the P × O design
(Shavelson, Webb, and Rowley, 1989). If we consider patient to be random in model
(4.4), one can also easily show that the reliability coefficient R is the correlation coeffi-
cient between measurements of the same patient, on different occasions, conditioning
for occasion, i.e., keeping occasion fixed:

R = Corr(YPO , YPO′ | O,O′). (4.6)

In classical test theory (4.1), an observation is assumed to be a combination of
an individual’s true score and random measurement error. The assumption that all
variance in scores can be divided into true and error variance is rather simplistic. Fur-
thermore, there are many approaches to estimate reliability, each of which generates a
different coefficient: inter-rater reliability, test-retest reliability, internal consistency.
This will lead to different estimates of the true scores for each study, with no logical
way to combine them. In addition to the true score of an individual, multiple po-
tential sources of error can exist. The goal is to obtain the most precise estimate of
the score that person should have if there were no sources of error contaminating our
results; each of the multiple forms of reliability we have mentioned above identifies
and quantifies only one source error variance at the time. What we really need is some
way of combining all the sources of variability in a single study, using all the data to
estimate the variance between subjects and the various components of error variance.
This can provide a lot of information on observer reliability and can determine the
relative importance of each component. This broad approach was originally devised
by Cronbach (1963) and his associates and is known as Generalizability Theory (GT).
The essence of the theory is the recognition that in any measurement situation, there
are multiple sources of error variance. The goal is to attempt to identify, measure,
and thereby possibly find strategies to reduce the influence of these sources on the
measurement in question. Imagine that we could identify the most likely sources of
error in a measurement of some characteristic of a person. We then have defined our
“universe” of possible observations. If we then proceed to average each person’s score
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over all of these possible conditions, this would be an unbiased estimate of that per-
son’s score over the universe as we have defined it. Note that there is no pretense that
this is the “true” score, since we may well have guessed wrong about the universe. If
we can reasonably identify possible sources of error, we can incorporate them into a
generalizability study or G-study. Consider the following design (Table 4.3) of a Gen-
eralizability study investigating both inter-rater and intra-rater variability, assuming
that rater and day of observation are the most important sources of error.

Table 4.3: Generalizability Theory. Test-retest and interrater design.

Observer 1 Observer 2

Patient Day 1 Day 7 Day 1 Day 7

1 Y111 Y112 Y121 Y122

2 Y211 Y212 Y221 Y222

3 Y311 Y312 Y321 Y322

. . . . .

. . . . .

10 Y1011 Y1012 Y1021 Y1022

Instead of the simple CT decomposition (4.1), GT decomposes the observed score
as follows

Yprd = µ Grand mean

+µP Person effect

+µR Rater effect

+µD Day effect

+µPR Person x Rater effect

+µPD Person x Day effect

+µRD Rater x Day effect

+ε Residual Error. (4.7)

The associated sources of variability are denoted by σ2
P for the person effect, σ2

R for
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the rater effect, etc. This approach will enable us to estimate the magnitude of the
variance in observed scores due to universe-score variance and to multiple sources of
error, rater and day in the example above. If the sources that we have identified are
trivial, and we have missed some important source of error, then there will be a large
amount of variance due to random error or residual. In terms of GT, Person is a facet
of differentiation and rater and day are called facets of generalization. The levels of
the facets of generalization are called conditions. ANOVA (Table 4.4) is mostly used
to study and estimate the various variance components, often ignoring intra subject
correlation. From these estimated variance components, a generalizability coefficient,
analogous to a reliability coefficient, can be calculated by dividing the estimated
person variance component by an estimated observed score variance. GT distinguishes
between decisions based on the relative standing of individuals and decisions based
on the absolute value of a score (Shavelson, Webb, and Rowley, 1989).

Table 4.4: Generalizability Theory. ANOVA model for Test-retest and inter-rater
design.

Source of variation Df. SS MSS Estimated variance component

Patient P 9 SSP MSP σ2
P = (MSP − MSPO − MSPD + MSE )/4

Observer O 1 SSO MSO σ2
O = (MSO − MSPO − MSOD + MSE)/20

Day D 1 SSD MSD σ2
D = (MSD − MSPD − MSOD + MSE)/20

P x O 9 SSPO MSPO σ2
PO = (MSPO − MSE)/2

P x D 9 SSPD MSPD σ2
PD = (MSPD − MSE )/2

O x D 1 SSOD MSOD σ2
OD = (MSOD − MSE )/10

P x O x D(Error) 9 SSE MSE σ2
E = MSE

Error in relative decisions arises from all nonzero variance components associated
with rank ordering of individuals, other than the component for the object of mea-
surement (persons). Specifically, variance components associated with the interaction
of person with each facet or combinations of facets define error. For the example
above we have σ2

PR, σ2
PD, σ2

PRD = σ2
E. So if one wishes to generalize from a rating by

one rater on one day to a rating by a different rater at another point in time, the fol-
lowing generalizability coefficient can be constructed as the ratio of the universe-score
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variance to the expected rater-score variance, i.e., an ICC :

Eρ2Rel = Corr(YPRD , YPR′D′ | R,R′, D,D′)

=
σ2

P

σ2
P + σ2

Rel.Error

=
σ2

P

σ2
P + σ2

PR + σ2
PD + σ2

PRD

. (4.8)

Indeed, it is easy to show that equation (4.8) can be derived as a conditional correla-
tion coefficient for model (4.7) where we condition on rater and day, but where rater
and day can be different. Alternatively, we can derive a test-retest or an interrater
reliability coefficient, by only generalizing over day of observation and fixing rater and
generalizing respectively over rater and fixing day of observation:

Rtest−retest,Rel = Corr(YPRD , YPRD′ | R,D,D′)

=
σ2

P + σ2
PR

σ2
P + σ2

PR + σ2
PD + σ2

PRD

(4.9)

Rinter−rater,Rel = corr(YPRD , YPR′D | R,R′, D)

=
σ2

P + σ2
PD

σ2
P + σ2

PR + σ2
PD + σ2

PRD

. (4.10)

Decisions based on the level of observed score, without regards to the performance
of others, are called absolute decisions. All variance components associated with this
score, except the component for the object of measurement are defined as error. Then
(4.8) becomes

Eρ2Abs = Corr(YPRD , YPR′D′ )

=
σ2

P

σ2
P + σ2

Abs.Error

=
σ2

P

σ2
P + σ2

R + σ2
D + σ2

PR + σ2
PD + σ2

RD + σ2
PRD

(4.11)

It is easy to show that equation (4.11) is indeed an ICC, this time conditioned neither
on rater nor on day. Similar to the above, we can derive an absolute test-retest or
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interrater reliability coefficient:

Rtest−retest,Abs = Corr(YPRD , YPRD′)

=
σ2

P + σ2
R + σ2

PR

σ2
P + σ2

R + σ2
D + σ2

PR + σ2
PD + σ2

RD + σ2
PRD

(4.12)

Rinter−rater,Abs = Corr(YPRD , YPR′D)

=
σ2

P + σ2
D + σ2

PD

σ2
P + σ2

R + σ2
D + σ2

PR + σ2
PD + σ2

RD + σ2
PRD

. (4.13)

The purpose of this example is to provide insight into the nature of generalizability
theory. First, significant sources of observational error are determined, and then
these are incorporated into an experiment and components of variance are derived.
Different coefficients can then be calculated depending on which facets will remain
fixed and which ones will vary.

The example we used was based on a simple crossed design, in which there were
two factors, each factor occurring at all levels of the other factors. This method
can be used with more complex designs as well as including more factors, and even
in nested designs, where the factor structure is more complex. As discussed in the
book of Streiner and Norman (1995), the general approach remains the same, i.e., to
begin by isolating the various sources of variance in the scores, and then generating
a family of coefficients that depend on the particular factors that are allowed to vary
and remain fixed.

A study (e.g., Table 4.3) that is designed to estimate variance components un-
derlying a measurement process is called a G-study. Having generated the variance
estimates, we can then determine the effect of changing the number of observations
for instance, or what will happen to the generalizability coefficient if we add a third
rater, or decrease the number of days of observations. Since these explore the impact
of certain decisions, they are called Decisions or D studies. These “studies” are done
using only paper and pencil (or a computer). In planning a D study, the decision
maker defines the universe of generalization and specifies the proposed interpretation
of the measurement. The goal is to identify important sources of variability in a
particular measurement situation from the outset, and then one attempts to quantify
these sources or error.
These developments made are already quite general. In the Chapter 7, we will show
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how this can be embedded in the flexible linear mixed model framework introduced
in Section 3.2, which, in turn, will allow for further extensions, such as, for example,
incorporating serial correlation.

4.3 Validity

The validity of a questionnaire is defined as the degree to which the questionnaire
measures what it purports to measure. This can be performed through the analysis
of content, construct , and criterion validity (Carmines and Zeller, 1979). Content va-
lidity can be defined as the extent to which the instrument assesses all the relevant or
important content or domains. Also the term face validity is used to indicate whether
the instrument appears to be assessing the desired qualities at face. This form of
validity consists of a judgment by experts in the field. Construct validity refers to
a wide range of approaches which are used when what we are trying to measure is
a “hypothetical construct” (e.g., anxiety, irritable bowel syndrome,. . . ) rather than
something that can be readily observed. The most commonly used methods to explore
construct validity are: extreme groups (apply instrument for example to cases and
non-cases), convergent and discriminant validity testing (correlate with other mea-
sures of this construct and not correlate with dissimilar or unrelated constructs) and
the multitrait-multimethod matrix. Criterion validity can be divided into two types:
concurrent validity and predictive validity. With concurrent validity we correlate the
measurement with a criterion measure (gold standard), both of which are given at the
same time. In predictive validity, the criterion will not be available until some time in
the future at which time the true endpoint is actually observed. This also clearly links
validity testing to surrogate marker validation as shown in Alonso et al. (2002). Of
course, while measures of correlation are an important aspect of surrogacy evaluation,
there is more to it than this (Baker and Kramer 2003, Burzykowski, Molenberghs, and
Buyse 2005). The most commonly used method to assess the validity is by calculation
of the Pearson correlation coefficient.



Chapter 5

Concepts in Surrogate

Marker Evaluation

In this last introductory Chapter we present recently developed criteria initially meant
to investigate the validity of using one endpoint as a “surrogate” for another (surrogate
endpoints can be referred to as endpoints that are used instead of other endpoints in
the evaluation of experimental treatments or interventions). This will provide a basis
for Chapter 11, where we will apply the concepts in surrogate marker evaluation to
study Criterion Validity.

Many attempts have been made in the literature to establish the validation of sur-
rogate endpoints (Prentice, 1989; Freedman, Graubard, and Schatzkin, 1992; Buyse
and Molenberghs, 1998). However, Molenberghs et al. (2002) point to the difficulties
accompanying all these approaches and note that a sensible validation strategy can
only be expressed in full in a multi-trial setting.

Therefore, Buyse et al. (2000) adopted an alternative approach based on a meta-
analysis of several trials which led to a definition of validity in terms of the quality
of both trial level and individual level association between the surrogate and the true
endpoint. These authors concentrated on continuous responses. We will summarize
their methodology below since we believe that it may be useful for the validation of
psychiatric symptom scales.

In cases where a gold standard scale can be assigned, we can almost directly
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apply their methodology for the validation of surrogate markers with the standard
scale playing the role of true endpoint. In many psychiatric situations however, a more
“symmetric” situation is encountered where different scales are in conjunction without
knowing their relationships. In that case we need to “symmetrize” the validation
technique.

Let us therefore present their hierarchical approach for two normally distributed
scales S1 and S2 and a binary indicator variable for treatment (Z=0 or 1). At the
first stage they consider

S1ij |Zij = µS1i + βiZij + εS1ij , (5.1)

S2ij |Zij = µS2i + αiZij + εS2ij , (5.2)

where αi and βi are trial-specific effects of treatment Z on the endpoints in a trial,
µS1i and µS2i are trial-specific intercepts, and εS1i and εS2i are correlated error terms,
assumed to be mean-zero normally distributed with covariance matrix

Σ =

⎛⎝ σS1S1 σS1S2

σS1S2 σS2S2

⎞⎠ .

Due to the replication at the trial level, they can impose a further model on the
trial-specific parameters. At the second stage, they then assume⎛⎜⎜⎜⎜⎜⎜⎝

µS1i

µS2i

βi

αi

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
µS1

µS2

β

α

⎞⎟⎟⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎜⎝
mS1i

mS2i

bi

ai

⎞⎟⎟⎟⎟⎟⎟⎠ (5.3)

where the second term on the right hand side of (5.3) is assumed to follow a zero-mean
normal distribution with dispersion matrix

D =

⎛⎜⎜⎜⎜⎜⎜⎝
dS1S1 dS1S2 dS1b dS1a

dS2S1 dS2S2 dS2b dS2a

dbS1 dbS2 dbb dba

daS1 daS2 dab daa

⎞⎟⎟⎟⎟⎟⎟⎠ .

Hence, a linear mixed model results. When the effects in (5.3) are assumed to be fixed,
then a so-called fixed-effects model follows. The setting described above naturally
lends itself for the validation of two scales at both the trial level as well as the
individual level.
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5.1 Trial-level Surrogacy

To investigate the trial-level concurrent and/or predictive validity of two psychiatric
scales, it is of interest to investigate how a change in treatment effect on one mea-
surement scale can be translated into the other psychiatric measurement instrument.
Therefore, it is essential to explore the quality of the prediction of the treatment ef-
fect on S1 in trial i by (a) information obtained in the validation process based on
trials i = 1, . . . , N , and (b) the estimate of the effect of Z on S2 in a new trial i = 0.
Whenever there is no clear standard but simply relationship are studied, as is often
the case with psychometric instruments, the reverse prediction (on S2 based on the
effect on S1) is also important.

To this end, observe that (β + b0|mS10, a0) follows a normal distribution with mean
and variance

E(β + b0|mS20, a0)

= β +

⎛⎝ dS2b

dab

⎞⎠T ⎛⎝ dS2S2 dS2a

dS2a daa

⎞⎠−1⎛⎝ µS20 − µS2

α0 − α

⎞⎠ , (5.4)

Var(β + b0|mS20, a0)

= dbb −
⎛⎝ dS2b

dab

⎞⎠T ⎛⎝ dS2S2 dS2a

dS2a daa

⎞⎠−1⎛⎝ dS2b

dab

⎞⎠ . (5.5)

Similarly, (α+ a0|mS0, α0) follows a normal distribution with mean and variance:

E(α+ a0|mS10, b0)

= α+

⎛⎝ dS1a

dab

⎞⎠T ⎛⎝ dS1S1 dS1b

dS1b dbb

⎞⎠−1⎛⎝ µS10 − µS1

β0 − β

⎞⎠ , (5.6)

Var(α+ a0|mS10, b0)

= daa −
⎛⎝ dS1a

dab

⎞⎠T ⎛⎝ dS1S1 dS1b

dS1b dbb

⎞⎠−1⎛⎝ dS1a

dab

⎞⎠ . (5.7)

To assess the validity of S2 with respect to S1 we propose to follow the suggestion
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of Buyse et al. (2000) and look at the coefficient of determination:

R2
trial(f)S2S1

= R2
bi|mS2i,ai

=
1
dbb

⎛⎝ dS2b

dab

⎞⎠T ⎛⎝ dS2S2 dS2a

dS2a daa

⎞⎠−1⎛⎝ dS2b

dab

⎞⎠ . (5.8)

Again, when none of the two scales can be assumed standard, we may also have to
look at the second coefficient of determination:

R2
trial(f)S1S2

= R2
ai|mS1i,bi

=
1
daa

⎛⎝ dS1a

dab

⎞⎠T ⎛⎝ dS1S1 dS1b

dS1b dbb

⎞⎠−1⎛⎝ dS1a

dab

⎞⎠ . (5.9)

These coefficients are unitless and range in the unit interval, two desirable features
for interpretation. Whenever these quantities are sufficiently close to 1, we can say
that scales are strongly correlated at trial level.

An attractive special case of (5.8) applies when the prediction of the treatment
effect can be done independently of the trial-specific random intercept mS0. In that
case formulas (5.4)–(5.7) respectively reduce to:

E(β + b0|a0) = β +
dab

daa
(α0 − α), (5.10)

Var(β + b0|a0) = dbb − d2
ab

daa
, (5.11)

E(α+ a0|b0) = α+
dab

dbb
(β0 − β), (5.12)

Var(α+ a0|b0) = daa − d2
ab

dbb
, (5.13)

leading to a simplified coefficient of determination

R2
trial(r) = R2

bi|ai
=

d2
ab

daadbb
, (5.14)

which is now symmetric on both scales. Clearly this is a very attractive property
when validating two psychometric scales for which in many cases no gold standard
can be assigned. A simple quantity suffices to assess the validity.
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5.2 Individual-level Surrogacy

To validate two scales at the individual level, we follow the suggestion by Buyse et
al. (2000) and consider the squared correlation between the two instruments after
adjustment for both the trial effects as well as the treatment effect:

R2
indiv = R2

εS1i
|εS2i

=
σ2

S1S2

σS1S1σS2S2

.

5.3 Validation Criteria in Case of Mixed Continuous-

ordinal Endpoints

The paper of Alonso et al. (2002) extended the methodology described above and used
in validation of surrogate markers to validate psychiatric scales. More specifically, they
assumed that S1 and S2 are random variables that represent two scales for which we
want to assess the criterion validity.

Traditional approaches investigate the concurrent validity by correlating one mea-
surement scale (S2) with the other, assumed to be a gold standard (S1).

In the previous section we described a method that is suitable for normally dis-
tributed endpoints. However, psychiatric scales are often ordinal in nature. Although
it may seem reasonable for the data described in Section 2 to assume a normal dis-
tribution for the PANSS scale, this might be unrealistic for the 7-response CGI scale.
Therefore, we propose an extension of the methodology by Buyse et al. (2000) to
the situation where one of the endpoints is continuous (say S1) and the other ordinal
(S2 ∈ {1, 2, . . . , k}).

To this end, we assume there exists, for each ordinal variable, an underlying latent
continuous variable S̃2 such that

S2 = r ⇔ θr−1 < S̃2 ≤ θr ,

where r = {1, 2 . . . , k}, θ0 = −∞ and θk = +∞.
Next, we propose the following joint model at the first stage:

S1ij |Zij = µS1i + βiZij + εS1ij ,

S̃2ij |Zij = µ
eS2i

+ αiZij + ε
eS2ij

,

where S̃2ij is a latent unobservable variable, µS1i and µ
eS2i

are trial specific intercepts
and βi, αi are trial specific treatment effects. Further εS1ij , εeS2ij

are correlated error
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terms, assumed to satisfy ⎛⎝ εS1ij

ε
eS2ij

⎞⎠ ∼ N

⎛⎝⎛⎝ 0

0

⎞⎠ ,Σ

⎞⎠ ,

where

Σ =

⎛⎜⎜⎜⎝
σ2 ρσ√

1 − ρ2

ρσ√
1 − ρ2

1
1 − ρ2

⎞⎟⎟⎟⎠ .

The variance of ε
eS2ij

is chosen for reasons that will be made clear. From this model
it is easily seen that the density of S1ij is univariate normal with mean (µS1i +βiZij)
and variance σ2, implying that the parameters µS1i , βi and σ2 can be determined
using linear regression software with response S1i and a single covariate Zi.

In addition, the conditional density of S̃2 given Zi and S1i is

S̃2i|S1i, Zi ∼ N (µi; 1) , (5.15)

where

µi =

(
µ

eS2i
− ρ

σ
√

1 − ρ2
µS1i

)
+

(
αi − ρ

σ
√

1 − ρ2
βi

)
Zi +

ρ

σ
√

1 − ρ2
Si1

From (5.15), it follows

P (S2i ≤ r) = Φ
(
λi

0r + λi
zZi + λi

S1
S1i

)
.

Using standard software we can fit this proportional odds probit model and obtain
estimates for

λi
0r = θir − µ

eS2i
+

ρ

σ
√

1 − ρ2
µS1i ,

λi
z =

ρ

σ
√

1 − ρ2
βi − αi ,

−λi
S1

=
ρ

σ
√

1 − ρ2
,

Note that also the logit and the complementary log-log link could be used here. Given
these parameters, together with the parameters from the linear regression on S1i, we
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obtain

αi =
ρ

σ
√

1 − ρ2
βi − λi

z ,

ρ2 =
λ̄2

S1
σ2√

1 + λ̄2
S1
σ2
.

Without loss of generality, we can assume that the cutpoints lie at equidistant intervals
symmetric around zero so that

∑k−1
r=1 θir = 0 implying

µ
eS2i

= −λ̄i
0 +

ρ

σ
√

1 − ρ2
µS1i ,

with λ̄i
0 = 1

k−1

∑k−1
r=1 λ

i
0r. For all of these parameters, bootstrap confidence intervals

can be calculated.
While the method described above could equally well be applied to investigate the

predictive validity (where one of the two criteria will not be available until some time
in the future), this falls beyond the scope of the data analyses presented here.
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Chapter 6

Reliability Estimation in Case

of Interval Scaled Data

In this Chapter we will derive a general and closed formula for test-retest intraclass
correlation coefficient of reliability for interval scales longitudinal clinical data result-
ing from clinical trials. The results of this chapter are published in the paper of
Vangeneugden et al. 2004).

6.1 Estimation of Reliability in the Linear Mixed

Models Framework

The general formula to calculate the intra-class correlation coefficient for model (3.5)
can be derived via (4.3). Denote Yit the observed measurement of subject i on time
point t; s will also be used to denote (a second) time point. Then

Var(Yis) = zsDz
′
s + τ2 + σ2,

Var(Yit) = ztDz
′
t + τ2 + σ2,

Cov(Yis, Yit) = zsDz
′
t + τ2(Hi)st, (6.1)

where zs and zt denote the design matrices for the random effects at time s and t

respectively, D the covariance matrix for the random effects, τ2(Hi) the covariance
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matrix for the serial effects for subject i, and σ2 the residual error variance. Therefore,
reliability in this general setting with multiple time points is time or lag dependent.
Denote the test-retest reliability between time point s and t by R(s, t). From (6.1)
we have

R(s, t) = Corr(Yis, Yit) =
zsDz

′
t + τ2(Hi)st√

zsDz′s + τ2 + σ2
√
ztDz ′t + τ2 + σ2

. (6.2)

In Section 6.2, in different settings, we will apply the formula (6.2) above and derive
the reliability of psychiatric symptom scales from such models, thereby generalizing
the classical developments as outlined previously.

6.2 Data Analyses

Let us now apply the previously developed methodology on the pooled Schizophrenia
data described in Section 2.1. We will assess the reliability for the PANSS, using
the SAS procedure MIXED. As mentioned earlier, the PANSS scale is a continuous
response aggregating 30 items scored from 1 to 7. For this response we considered in
turn four different models and calculated the corresponding reliability measures.

Model 1

First, we assume a linear mixed model with a random intercept and with time, treat-
ment and their interaction as fixed effects. Time is modeled as a factor with seven
levels such that we obtain a saturated cell means model for time and treatment. In
that case (3.5) becomes Yi = Xiβ+Zibi +εi, with Zi a ni dimensional vector of ones,
εi ∼ N(0, σ2I) and bi ∼ N(0, d). This can be rewritten as:

Yijk = µjk + bi + εijk,

where Yijk is the measure at time point j for subject i under treatment k; µjk groups
the fixed-effects structure, bi is still the random intercept and εijk is the measurement
error. The fitted variance components are d̂ = 311.00 and σ̂2 = 125.14. From (6.2) we
can easily derive the formula for the reliability for this simple model. Since τ equals
0 (no serial correlation) and since zs is 1 and D = d, the variability of the random
intercept model, we have:

R =
d

d+ σ2
. (6.3)

TVANGENE
Highlight



55

A: Individual stand. residuals versus time

Time (in Weeks)

st
an

da
rd

iz
ed

 r
es

id
ua

l

0 2 4 6 8

-6
-2

2
4

6

B: Individual stand. residuals versus fitted PANSS
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C: Distribution of Random Intercepts
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Figure 6.1: Schizophrenia PANSS Data. Diagnostic plots for model 1.

The reliability expresses the ratio of the variance explained by the model to the
total observed variance. The link of (6.3) with the intuitive definition of reliability
as we have expressed in (4.2) is obvious. For data containing two measurements
per subject, this value equals the test-retest reliability of the instrument. For any
series of repeated measurements, this value gives an overall measure of the intraclass
correlation between all the measurements within subjects. For the PANSS data this
global reliability measure yields a value of R̂ = 0.713 (SE 0.012). The standard error
is calculated using the delta method. If we first apply Fisher’s variance-stabilizing
transformation on R, Z = 0.5[ln(1 +R) − ln(1 −R)] and the delta method, the 95%
confidence interval is [0.688;0.736].

Fig. (6.1) displays the standardized subject-specific residuals (6.1A and B) for
this model to assess the model fit and also investigates the distribution of the random
intercept (6.1C and D) and identifies influential observations (6.1E and F).

The local influence method described above revealed five influential observations
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(6.1 E and F), two on the estimation of the fixed effects (81,86) and three on the
estimation of the variance components (240, 297 and 820). If we omit observations 81
and 86, this has little or no influence on estimation of variance components and the
reliability coefficient remains R = 0.71. If we omit 240, 297 and 820, the reliability
increases to R = 0.72, which shows that the most influential measurements have little
or no impact on the estimation of the overall reliability coefficient.

Note that the assumption of parallel measurements is not met. The mean PANSS
decreases from 92.4 at baseline to 68.8 at endpoint. Even though classical reliability
studies usually require the assumption of parallel measurements, our approach, due
to the flexibility of the linear mixed model, obviates the need for this, since the mean
and variability structures can be clearly separated. In particular, the linear mixed
model will account for time and treatment effects by including them into the fixed
effects component of the model. Although steady state is not taken care of by design
as it would be in classical test-retest designs in psychometrics, steady state is provided
through modeling at the analysis stage. A conceptually useful way to think about this
is through the two-stage approach as the mixed effects model has been introduced,
historically, by Laird and Ware (1982). If we derive the individual residuals for the
model above and subsequently apply a random intercept model on these residuals
without a fixed effect component(µjk = 1), the same estimates for d̂ and σ̂2 would
be obtained. Furthermore, there are three additional advantages: the mixed model
approach can be applied when (1) there are more than two measurement occasions,
(2) not all subjects have the same number of measurements (due to missingness or
irregularly spaced measurement times) and (3) more complicated variance-covariance
structures within subjects exist. To study these advantages further, we will consider
more elaborate models in subsequent sections.

Model 2

The use of random effects in the assessment of reliability dates back to Bartko (1966)
and has been described by Dunn (1989). Model 1 builds upon this work. In addition,
we will introduce serial correlation and then generalize the calculation of reliability
to this situation. Explicitly, the second model combines a random intercept with
serial correlation. Typical choices for such serial correlation structures are based on
exponentially or Gaussian decaying processes. These are standardly available in the
SAS procedure MIXED (Littell and Milliken, 1996). In order to choose the covariance
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structure that best fits the data, an empirical variogram was created which is shown
in Fig. 6.2. For a formal introduction to the variogram in the context of longitudinal
data, we refer to Diggle, Liang, and Zeger (1994) or Verbeke and Molenberghs (2000).
The value of the variogram at time lag zero is an indication for the relative importance
of the measurement error, the discrepancy between the variogram at the largest time
lag, and the process variance (represented as a level straight line at the top of the
plot) is an indication for the importance of the random intercept. The shape of the
variogram describes the serial correlation process. The strength of the process is
indicated by the amount of increase between zero and maximum time lags, while the
shape of the curve is indicative for the shape of the process of serial decay.

The variogram is essentially flat. This implies that the largest component of
variability is attributable to a random intercept, i.e., the within-unit correlation comes
from a subject-specific intercept rather than from a serial correlation. However, there
is a hint that a perhaps small serial component may be present; we opt for a Gaussian
serial process. Then Σi, the covariance matrix grouping the measurement error and
serial components in (3.5), is defined by the matrix with elements

Σss = σss = τ2 + σ2,

Σst = σst = τ2 exp(−u2
st/ρ

2), s �= t,

where σ2 denotes the measurement error variance and the remaining part is the serial
variance component with ust the time lag between measurements Yisk and Yitk for
subject i and treatment k. The estimated covariance parameters of this model, applied
to the PANSS data, are d̂ = 103.21, τ̂2 = 274.97, ρ̂ = 6.38, and σ̂2 = 65.21.

The reliability can again be derived from (6.2) and is a function of time lag ust

between two observations measured at time point s and t

R(ust) =
d+ τ2 exp

(−u2
st

ρ2

)
d+ τ2 + σ2

. (6.4)

After correction for the fixed-time and treatment effects, the covariance parameter
estimates show a considerable remaining serial component in the PANSS data. As
can be seen from formula (6.4), a strong serial effect will lead to a fast decreasing
reliability for increasing time lags. Fig. 6.3 shows that reliability is 0.80 or higher for
measurements no further apart than 2 weeks but declines rapidly thereafter. This is
consistent with the general consensus regarding the appropriate interval: generally
speaking a retest interval of 2 days to 2 weeks is appropriate (Streiner and Norman



58 Chapter 6. Reliability Estimation in Case of Interval Scaled Data

Lag

pa
ns

s.
vg

2 4 6 8

0
10

0
20

0
30

0
40

0

Figure 6.2: Schizophrenia PANSS Data. Empirical variogram of the total PANSS
data.

1995): if the interval is too short, the patients may remember their previous responses,
if the interval is too long, things may have changed. A big advantage of model 2 is
that this type of model allows to study the effect of lag time on the reliability.

The individual, subject-specific residuals of this model as well as the distribution
of the random effects are displayed in Fig. 6.4. Although the standardized residuals
are not as large as for model 1, Fig. 6.4 B shows that the standardized residuals tend
to increase with higher fitted PANSS values.

Influential observations determined by means of likelihood displacement instead
of local influence due to the presence of serial correlation. Fig. 6.4 E determines
five influential observations: 79, 80, 240, 297 and 775. Removing these influential
observations has little or no impact on estimation of reliability; the reliability does
not differ more than 0.014 with or without the five influential observations.
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Figure 6.3: Schizophrenia PANSS Data. Reliability of the total PANSS as a function
of the time-lag u between any two measurements.

Model 3

After adding serial correlation in model 2 to the random-intercept model 1, we now
add random slope in time as well. The random-effects variance then equals

D =

⎛⎝ d11 d12

d12 d22

⎞⎠ .

The estimated covariance parameters for the PANSS data are d̂11 = 47.24, d̂12 =
13.65, d̂22 = −0.10, τ̂2 = 247.39, ρ̂ = 5.82, and σ̂2 = 63.96. The residuals shown in
Fig. 6.5 display a clear trend, variance of the residuals increase for increasing PANSS
values and decrease in time, indicating an non optimal fit.

The model can now be written as follows:

Yijk = µjk +
(
bi0 bi1

)(1
j

)
+ wij + εijk. (6.5)
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A: Individual residuals versus time
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B: Individual residuals versus fitted PANSS
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Figure 6.4: Schizophrenia PANSS Data. Diagnostic plots for model 2.

From (6.2) we can derive, the test-retest reliability for observations at time point s
and time point t and lag time ust between them:

R(s, t) =
zsDz

′
t + τ2 exp(−u2

st

ρ2 )√
zsDz′s + τ2 + σ2

√
ztDz′t + τ2 + σ2

. (6.6)

Here, zs is the design row in Z corresponding to time s. Formula (6.6) can be used to
calculate the different reliabilities for any specific time point and for any given time
lag. Due to the questionable fit, that will not be presented here. Instead we will
investigate a simpler model, by omitting the serial component.

Model 4

Only the random intercept and the random slope are retained in (6.5). The estimated
covariance parameters for the PANSS data are d̂11 = 315.21, d̂12 = −8.01, d̂22 = 7.07,
σ̂2 = 79.63. Subsequently, the reliability of measurement observed on time s and



61

A: Individual residuals versus time
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Figure 6.5: Schizophrenia PANSS Data. Diagnostic plots for model 3.

time t:

R(s, t) =
zsDz

′
t√

zsDz′s + σ2
√
ztDz′t + σ2

. (6.7)

Table 6.1 displays the reliability coefficients estimated from model 4; only the upper
diagonal is shown for this symmetric test-retest reliability matrix. Again we can
observe that reliability is decreasing with increasing lag time. Another result that
occurs is a slight increase in the reliability measure as time goes by, but for a fixed
time lag.

Fig. 6.6 investigates the model diagnostics for this model and hints that the model
fit has improved versus model 3. There are three influential observations for the vari-
ance components (240, 297 and 331) and three influential observations for the estima-
tion of fixed effects (81, 86 and 88). After removing these influential measurements,
the covariance parameters were estimated as d̂11 = 310.22, d̂12 = −6.51, d̂22 = 6.49,
σ̂2 = 74.65. The effect on estimation of the reliability coefficients is minimal. The
largest difference is 0.03; e.g., test-retest reliability of observations on week 0 and
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Table 6.1: Schizophrenia PANSS Data. Estimated test-retest reliabilities using
model 4.

Time point

Time point 0 1 2 3 4 5 6 7 8

0 0.80 0.79 0.76 0.72 0.68 0.62 0.57 0.52 0.47

1 . 0.79 0.79 0.76 0.73 0.69 0.65 0.61 0.57

2 . . 0.80 0.79 0.78 0.75 0.72 0.69 0.66

3 . . . 0.81 0.81 0.80 0.78 0.75 0.73

4 . . . . 0.82 0.82 0.82 0.80 0.79

5 . . . . . 0.84 0.84 0.84 0.83

6 . . . . . . 0.86 0.86 0.86

7 . . . . . . . 0.87 0.88

8 . . . . . . . . 0.89

week 8 increases from 0.47 to 0.5 after removal of the six influential observations.

Summary of Various Models

Table 6.2 summarizes the parameter estimates and the log likelihood of the different
models described above. Model 3 is the model with the largest likelihood, and would
be the one of preference if one would rely purely on likelihood ratio testing. However,
the diagnostic plots indicate that model 4 fits the data better, which is in line with
the variogram where the random effect rather than the serial correlation dominates
the within-subject correlation.

Note that our research is ancillary to the assessment of treatment effect. Indeed, by
first considering an appropriate mean structure, one can concentrate on the variability
structure, thus enabling the use of clinical trial data to study reliability.

6.3 Concluding Remarks

A body of research exists on reliability, especially in psychology and educational
sciences. In the past decades the topic is also entered the field of health sciences
and especially the psychiatric health sciences because of the inherent subjectivity
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Figure 6.6: Schizophrenia PANSS Data. Diagnostic plots for model 4.

of the measures employed in this field. Test-retest reliability as one of the classical
approaches typically deals with the problem of time: how to disentangle the measure-
ment error from real fluctuations in what you are measuring ?

Wiley and Wiley (1970) were among the first authors to deal with this problem
by assuming a linear relationship between two adjacent measurements. In this way
also reliability will have different values at both moments of measurement. Tisak and
Tisak (1986) also stressed the fact that reliability is not a fixed property of an instru-
ment but changes with time. They proposed a method to calculate a time function of
reliability. Dunn (1989) describes a method that uses components of variance in the
calculation of reliability. He further extends this method to a mixed model to deal
with rater effects by taking the rater into the model as a random effect. The mixed
model methodology indeed allows a study of variance components and fixed effects
simultaneously. The variance-covariance structure is typically decomposed further
into three components: (1) measurement error (process with memory 0), (2) serial
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Table 6.2: Schizophrenia PANSS Data. Estimated variance component for models
1–4.

Estimates for various models

Component Par. 1 2 3 4

Var. rand. int. d11 311.00 103.21 47.24 315.21

Cov. (rand. int., rand. slope) d12 13.65 -8.01

Var. rand. slope d22 -0.10 7.07

Serial process variance τ2 274.97 247.39

Serial process corr. par. ρ 6.38 5.82

Measurement error var. σ2 125.14 65.21 63.96 79.63

−2 log likelihood 33870.7 33232.4 33192.2 33331.4

correlation (process with finite memory), and (3) random effects (accommodating
hierarchies, infinite memory process). Such hierarchies arise due to repeated mea-
surements over time. Other hierarchies could be accommodated as well. Indeed, even
in our current work, hierarchy arises due to the fact that data come from five trials.
A proper account of this calls for the incorporation of (meta-analytic and other) hi-
erarchies into our modeling strategies. Some work exists to this effect and is known
as generalizibility theory (Cronbach, 1963). The combination of this work with ours
is the subject of next chapter.

While, for this reliability study, we are primarily interested in the variance com-
ponents, mixed-model methodology provides an interesting opportunity to model the
fixed effects as well. We do not have to make the unrealistic assumption that there is
no change in a patients situation over time or with treatment. Instead, such changes
can be incorporated into the model.

When using repeated measurements a third source of variation can be taken into
account when calculating reliability, the so-called serial correlation. In this work,
a method has been proposed that allows for serial correlation in the calculation of
test-retest reliability, as well as random effects and measurement error.

The method was applied to the PANSS, a psychiatric rating scale for schizophrenia.
Several models were applied: model 1 resulted in an overall test-retest reliability
coefficient, averaging reliability across the 8 weeks, models 2-4 allowed us to study
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the test-retest reliability as a function of time. We observed a gradual decrease of
reliability with increasing time lag between measurements. As mentioned earlier,
there are different possible scenarios to explain such effects, such as memory effect
of the raters or other covariates that are not taken into account in the model. For
the PANSS scale we obtained reliability estimates from almost 0.90 to 0.50. Up to a
time interval of 5 weeks, the reliability does not go below 0.60, which is considerable.
Another result that occurs quite consistently is a slight increase in the reliability
measure as time goes by, but for a fixed time lag. The reason for this is most likely a
learning effect in the raters. In a different setting, one might also encounter learning
effects in the study subjects. Of course, other perhaps complementary explanations
cannot be excluded.

The present method stresses once again the fact that reliability should not be
perceived as a fixed quantity, but changes with circumstances and populations. Other
covariates can be incorporated into the model to study their effect on error variance
and on reliability. Modeling other sources of variation, like for example country or
rater, is therefore an interesting topic. In psychometric theory, this is referred to as
generalizability theory (Cronbach, 1963) as introduced in Section 4.2. In Chapter 7
we will explore generalizability using the same data set as in this Chapter.

A further important advantage of the present method is that it becomes possible
to estimate trial-specific or population-specific reliability in clinical studies. This is
especially true because, even in studies designed to assess reliability, it is difficult
to exclude fluctuations in the true scores and furthermore these studies are often
conducted with different populations and in different circumstances. Finally, when
measurement sequences on a subset of respondents are incomplete, these data can still
be used for analysis, unlike in the classical approaches. In our case, we have focused
on population-level reliability. Should we calculate them trial-specific via model 1,
we would obtain the values 0.72, 0.69, 0.72, 0.71, and 0.59.

While it seems variability in reliability over time could be ascribed to variability
in study duration, we are protected against such spurious effects by the use of a
likelihood framework, where shorter and longer sequences contribute to estimates at
any time point, as in the missing data literature (Little and Rubin, 1987). Further,
the strength of our methodology is that a proper time variable can be included into
the mean and variance model, allowing us to combine studies of variable length.

Of course, some of the fluctuation observed in reliability estimates may be due
purely to random noise, due to limited sample sizes. A clear perspective on this
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can be obtained by calculating interval estimates, which can also be used to assess
appropriate sample sizes.

When clinical trials are designed, only validated scales should be used. Therefore,
validation should always happen before clinical trials are started. This should not
prevent the statistician however from studying how well the scale actually performed
during the trial: was the test-retest reliability indeed as predicted? Most often,
the only focus is to estimating treatment effect, taking into account the observed
variance, without investigating the latter. This is also a missed opportunity to increase
knowledge about the scale: often the number of subjects and observations in studies
designed to validate scales are rather low while the information coming from clinical
trials can be very rich.

In this Chapter we focused on interval scaled Gaussian distributed data. In Chap-
ter 8 we will extend methodology to any type of data.



Chapter 7

Generalizibility Estimation in

Case of Interval Scaled

Biomedical Data

Let us now apply the concepts of generalizability methodology as introduced in Section
4.2 on the pooled data described in Section 2.1. To demonstrate the concept, we will
investigate impact of “country” on measurement error and reliability. First we will
repeat the overall reliability analysis for the PANSS, ignoring country effects, using
the framework derived in Section 6.1 and Equation (6.2). Subsequently we extract
country effects by including country as a fixed effect in the model. Next we will
investigate impact on reliability by country by applying the same model on each
country separately, and study impact of a single country on overall reliability by
omitting the country from the data. Finally we will assess overall impact of country
via generalizability theory. The results of this chapter are published in the paper of
Vangeneugden et al (2005).
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7.1 Overall Reliability of PANSS Scale

We first applied a linear mixed model with a random intercept to analyze the total
PANSS. Specializing notation in formula (3.5) to our particular setting:

YPDT = µ+ µD + µT + µDT + bP + εPDTC , (7.1)

where µD, µT and µDT denote the fixed effects for day, treatment and their inter-
action respectively, and bP denotes the random patient effect. The fitted variance
components are d̂ = 311.00 for the random intercept, and σ̂2 = 125.14 for measure-
ment error. Residuals show that the model fits the data reasonably well as shown in
Figure 6.1. The ICC of reliability can by derived via equation (6.2):

R = Corr(YPDT , YPD′T | T,D,D′) =
d

d+ σ2
. (7.2)

For data containing two measurements per subject, this value equals the test-retest
reliability of the instrument. For any series of repeated measurements, this value
gives a global measure of the correlation between the measurements within subjects.
For the PANSS data this global reliability measure yields a value of R̂ = 0.713 (SE
0.012). The standard error is calculated using the delta method. If we first apply
Fisher’s variance-stabilizing transformation on R, Z = 0.5[ln(1 + R) − ln(1 −R)] we
obtain the following 95% CI [0.688; 0.736].

7.2 Overall Reliability After Extracting Country Ef-

fects

Similar to the treatment and time effects as well as their interaction, the country
effect can be extracted and a corrected overall reliability over time can be calculated.
This can be done by including a fixed effect for country, and all second and third
order interactions with country in (7.1). Then the fitted variance components are:
d̂2 = 290.07 and σ̂2 = 122.99. The overall reliability can then be calculated from
(7.2): R̂ = 0.702. After applying Fisher’s variance-stabilizing transformation on R,
we obtain the following 95% CI [0.676; 0.727].
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Figure 7.1: Schizophrenia PANSS Data. Graphical representation of reliability of the
total PANSS per country.

7.3 Overall Reliability by Country

To study the impact of country, we apply the same model (7.1) to every subgroup
containing the data for a specific country only. Furthermore, the weighted average of
the reliability over all countries was calculated using the inverse of the variance of the
reliability estimate as weight. Table 7.1 summarizes results and Figure 7.1 provides a
graphical summary. The horizontal line represents the overall reliability (R = 0.713),
the vertical lines represent 95% CI of the country-specific reliability (after Fisher’s
transformation).

From Table 7.1 and Figure 7.1 we observe that reliability is not very different
between the countries: the highest reliability is observed in Brazil (R = 0.842) and
the lowest in Canada (R = 0.564). Another way of looking at what these reliabil-
ity coefficients represent is to look at the subject-specific residuals; the larger the
measurement error, the lower the reliability. Figure 7.2 displays the residual profiles
for full model (7.1), for the patients from Brazil and Canada separately. Residual
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Standardized residuals versus time (Canada)
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Standardized residuals versus time (Brazil)
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Figure 7.2: Schizophrenia PANSS Data. Residuals profiles for Canada and Brazil.

profiles from Brazil are more concentrated around 0 than the profiles from Canada.
Additionally, we calculated the weighted average reliability across countries, where
we used the inverse variance of the country specific reliability coefficient as weights
(using the delta method). The result was an overall reliability of 0.735, with 95% CI
[0.635, 0.834] which is slightly higher than the overall reliability calculated in previous
sections. If we apply Fisher’s transformation first, the weighted average resulted in
R = 0.702 with 95% CI [0.577, 0.794].

7.4 Impact on Overall Reliability by Leaving Out a

Country

Similar to what is often done in the calculation of Cronbach’s alpha coefficient (which
is also a reliability coefficient) to study internal consistency of a rating scale (Cron-
bach, 1951), we can study impact on overall reliability by leaving out the data of a
specific country, per country. If the overall reliability increases, this would indicate
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Figure 7.3: Schizophrenia PANSS Data. Graphical depiction of overall reliability of
the total PANSS omitting a specific country.

poor reliability in the specific country. Table 7.1 and Figure 7.3 summarize the re-
sults. The horizontal line represents the overall reliability (R = 0.713) and the dashed
lines represent upper and lower 95% CI of the overall reliability. We conclude that
the impact of country on the overall reliability coefficient is ignorable.

7.5 Estimating Impact of Country: Generalizability

Theory

Subgroup analysis by country as shown in the previous two sections can be elucida-
tory. Now, we want to quantify their effect on measurement error and calculate a
generalizability coefficient, generalizing results across countries. If we use the data
from the clinical trials as surrogate for a G-study, we could model time as either a
fixed effect, and/or a random effect, or include serial correlation for time into the
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model. We will start with the simpler model that considers time in days (D), treat-
ment (T ) and their interaction (DT ) as fixed effects, country (C) and patient (P ) as
random effect, where patient is nested in country (P (C)):

YPDTC = µ + µD + µT + µDT + bP(C) + bC + εPDTC . (7.3)

From this model we can calculate the overall test-retest reliability coefficient similar
to (4.9):

R = Corr(YPDTC , YPD′TC | T,D,D′) =
σ2

P + σ2
C

σ2
P + σ2

C + σ2
E

=
293.8 + 16.0

293.8 + 16.0 + 125.1

= 0.712 (7.4)

This test-retest reliability coefficient for any given country and time point follows
directly from analyzing the clinical trial, similar as generalizability coefficients that
are computed after design and analysis of a G-study. In the same spirit of D-studies,
we can also generalize across countries: Although patients are nested within country
in the trial setting, we assume (as a mind experiment) that patients can switch from
one country to another:

R = Corr(YPDTC , YPD′TC′ | C,C ′, T, D,D′)

=
σ2

P

σ2
P + σ2

C + σ2
E

=
293.8

293.8 + 16.0 + 125.1
= 0.676. (7.5)

Thus, generalizing across time points and countries, or taking account of impact of
variance of country reduces the overall test-retest reliability from 0.713 to 0.676 for
any given treatment. In this example, the price for setting up an international trial
instead of a single country is rather small. The methodology can be easily extended
to more complex situations including, for example, serial correlation or random time
effects but also additional variables (e.g. sex).

If we allow for serial correlation, then we need to add ωPD in (7.3), where ωPD

represent the serial effect for patient P on day D. To investigate the presence of se-
rial correlation, the variogram was created (not shown). The variogram is essentially
flat. This implies that the largest component of variability is attributable to a ran-
dom intercept, i.e., the within-unit correlation comes from a subject-specific intercept
rather than from a serial correlation. However, there is a hint that a perhaps small
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serial component may be present; we opt for a Gaussian serial process. Then Σi, the
covariance matrix grouping the measurement error and serial components in (3.5), is
defined by the matrix with elements:

ΣDD = σDD = τ2 + σ2
E ,

ΣDD′ = σDD′ = τ2 exp(−u2
DD′/ρ2), D �= D′,

where σ2
E denotes the measurement error variance and the exponential factor is the

serial variance component with uDD′ the time lag between measurements on days D
and D′. The estimated covariance parameters of this model, applied to the PANSS
data, are σ̂2

P = 85.6, σ̂2
C = 16.1, τ̂2 = 277.2, ρ̂ = 6.4, and σ̂2

E = 65.3. When we
calculate the overall test-retest reliability coefficient, only generalizing across time
points, similarly as we did in (7.4), we have:

Corr(YPDTC , YPD′TC | T,D,D′) =
σ2

P + σ2
C + τ2 exp

(−u2
DD′

ρ2

)
σ2

P + σ2
C + τ2 + σ2

E

. (7.6)

In analogy with (7.5), if we now generalize across time points and countries, we obtain:

Corr(YPDTC , YPD′TC′ | C,C ′, T, D,D′) =
σ2

P + τ2 exp
(−u2

DD′
ρ2

)
σ2

P + σ2
C + τ2 + σ2

E

, (7.7)

which is a function of the time lag uDD′ between two observations measured at time
points D and D′. For instance, the test-retest reliability (7.6) for two measurements
observed with a time lag of two weeks is 0.796 while the generalizability coefficient
(7.7) amounts to 0.759. For a time lag of 6 weeks we respectively have 0.491 and
0.454.

7.6 Concluding Remarks

The innovation this Chapter promotes is the introduction and implementation of
valuable ideas from psychometrics into the area of clinical trials. The tool we use is
the general linear mixed-effects model, including serial correlation. To our knowledge,
this model has not been used in the psychometric literature to establish reliability
or generalizability. Also, there seem to be no references discussing the calculation of
reliability-generalizability coefficient based upon data from clinical trials.
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Table 7.1: Schizophrenia PANSS Data. Reliability of the total PANSS per country
and impact of country on overall reliability - Summary table.

By country Omitting a country

Country # pat. d2 σ2 Reliability 95% CI Reliability 95% CI

ARG 31 162.0 49.0 0.768 [0.640 ; 0.854] 0.711 [0.685 ; 0.735]

AUT 29 476.9 267.0 0.641 [0.456 ; 0.773] 0.718 [0.693 ; 0.742]

BEL 26 229.0 140.7 0.619 [0.431 ; 0.756] 0.716 [0.690 ; 0.739]

BRA 44 383.9 72.0 0.842 [0.764 ; 0.896] 0.704 [0.677 ; 0.728]

CAN 44 264.8 205.0 0.564 [0.408 ; 0.688] 0.723 [0.698 ; 0.746]

DEN 47 301.7 99.0 0.753 [0.644 ; 0.832] 0.711 [0.685 ; 0.735]

ESP 32 143.4 98.6 0.593 [0.421 ; 0.723] 0.711 [0.685 ; 0.735]

FIN 71 147.5 103.2 0.588 [0.463 ; 0.691] 0.720 [0.694 ; 0.744]

FRA 92 354.4 183.3 0.659 [0.567 ; 0.735] 0.713 [0.686 ; 0.737]

GBR 21 263.0 56.9 0.822 [0.676 ; 0.906] 0.711 [0.685 ; 0.735]

GER 25 249.9 88.9 0.738 [0.566 ; 0.848] 0.713 [0.687 ; 0.737]

ITA 39 356.9 81.0 0.815 [0.719 ; 0.881] 0.707 [0.681 ; 0.732]

MEX 36 376.2 178.6 0.678 [0.534 ; 0.784] 0.716 [0.691 ; 0.740]

NED 17 276.3 68.1 0.802 [0.624 ; 0.901] 0.713 [0.687 ; 0.736]

NOR 37 146.4 111.5 0.568 [0.384 ; 0.708] 0.716 [0.690 ; 0.739]

RSA 79 338.8 107.5 0.759 [0.676 ; 0.823] 0.707 [0.681 ; 0.732]

SWE 30 202.6 135.9 0.598 [0.419 ; 0.733] 0.715 [0.690 ; 0.739]

USA 122 323.6 114.1 0.739 [0.676 ; 0.792] 0.711 [0.683 ; 0.736]

Analysis Reliability/generalizability coefficient

uncontrolled for country 0.713 [0.688; 0.736]

Adjusted for country as fixed effect 0.702 [0.676; 0.727]

Weighted average across countries 0.735 [0.635; 0.834]

Weighted average across countries (Fisher’s) 0.702 [0.577; 0.794]

Conditioning on country as random effect 0.712 [0.686; 0.737]

Generalizing for country and test-retest 0.676 [0.639; 0.709]



75

The methodology we propose unifies two strands of validation technology: (1) re-
liability in the classical psychometric sense, including test-retest reliability and inter-
rater agreement, and (2) generalizability theory used, for example, to assess the effect
of country. All of this is done by embedding the classical linear models, used in relia-
bility and generalizability theories, within a linear mixed-effects model framework. It
is further shown that commonly used reliability and generalizability measures can be
derived as (conditional) correlation coefficients. Apart from unification and resting
on simple principles, our approach has several additional advantages: (1) the often
strong and unrealistic assumption of steady state behavior, needed for classical re-
liability assessment, is not needed, thus allowing to use clinical trial data that have
not been gathered explicitly with validation assessment in mind; (2) data with more
than two measurements per patient can usefully be used irrespective of the particular
measure under consideration; (3) data sequences do not need to be of equal length
which is important, for example, when data are incomplete; (4) where applicable,
serial correlation can be incorporated within the framework.

As stated in the encyclopedia of biostatistics of Armitage and Colton (1998),
assessing observer reliability and agreement is essential for interpretation of clinical
observations both in research and in medical practice. In general, improvement of
observer reliability or agreement of clinical observations may have a lot of impact
on the quality of health care. Tracing the sources and types of disagreements is the
beginning of wisdom. Generalizability studies, which aim to determine the origin of
the variation and their relative contribution to measurement errors, are most valuable
in this respect. These studies can measure, among other things, the contribution of
intra-observer and inter-observer variation to the total of measurement errors. This
work has focused on the identification and on the measurement of factors that have an
impact on measurements in a clinical trial. Subsequently, knowledge about the origin
of the errors can help to improve the quality of the measurements. In the example
above, a relatively high generalizability coefficient as determined by (7.5) suggested
that country does not have a significant impact on the test-retest reliability and on
measurement error. Thus, there is no need to reduce the influence of country on the
PANSS for future trials. However, when we investigated the impact of baseline PANSS
negative subtotal on measurement error, conclusions were different. We divided the
baseline PANSS Negative subtotal in different categories. Subsequently, we derived
the variance components and calculate the generalizability coefficient for baseline
PANSS Negative subtotal similarly to the way it was done for country in (7.5). In this
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analysis, the generalizability coefficient reduced to 0.52. This indicates that baseline
PANSS Negative subtotal reduces the test-retest reliability. Subsequent analyses show
that reliability is lowest in patients with a high baseline PANSS Negative subtotal.
This means that patients with a higher deficit in social functions such as poverty
of speech, apathy and emotional withdrawal are more difficult to rate, resulting in
higher measurement error and lower test-retest reliability. In this case, the strategy
could result in either additional training to rate patients with a high baseline negative
subtotal, or in using a different scale in this type of patients.

Our approach is based on assessing generalizability after correcting for fixed effects,
the most prominent one being treatment effect. When the treatments present in a
trial are considered representative for a wider class of treatments, exactly as country
or investigator do, treatment could be handled similarly.

Shavelson, Webb, and Rowley (1989) and Dunn (1989) have noticed that GT is
not widely applied in psychological research and they both make a plea for a more
extensive use. Shavelson surmises that the mathematical-technical development might
be the main reason. Another reason might be that the cost to set-up G-studies for
scale developers can be large. In this Chapter we have shown that the richness of
clinical trial data can be used for this purpose.

Current Chapter focused on interval scaled measurements. In principle, the method-
ology can be extended to categorical data. In that case, the linear mixed model
could be replaced by a generalized linear mixed model, allowing for instance for non-
Gaussian data. This will be worked out in Chapter 8 and 9 respectively for reliability
and generalizability.



Chapter 8

Reliability Estimation in Case

of Binary Biomedical Data

In applied sciences, one is often confronted with the collection of hierarchical data
or repeated measures, in particular longitudinal or clustered data. Methods for con-
tinuous such data are centered around the well-developed linear mixed effects model
(LMM, Verbeke and Molenberghs, 2000); the same is true for software implementa-
tion. Drawing from the normal distribution, the LMM allows one to obtain marginal
characteristics, such as marginal means, marginal covariate effects, and marginal cor-
relation coefficients, in a very straightforward way. This is because the natural pa-
rameters in an LMM have a hierarchical and a marginal interpretation at the same
time. Hence, deriving the intraclass correlation (ICC) from a random-intercept LMM
is particularly straightforward as shown in (6.2) and coincides with the correlation
from a compound-symmetric structure, the latter being the marginalization of the
former. This makes the LMM is a flexible tool to study psychometric reliability based
on longitudinal data, as in Chapter 6 and in Vangeneugden et al. (2004). Reliability
reflects the amount of error inherent in any measurement and hence, in a general
sense, how replication of the administration would give a different result (Streiner
and Norman, 1995).

While also non-Gaussian outcomes are prominent, model formulation is less straight-
forward. One distinguishes between marginal and random-effects model families with
now no easy relationship between both. An example of the marginal family is general-
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ized estimating equations (GEE, Liang and Zeger, 1986), whereas the generalized lin-
ear mixed model (GLMM, Breslow and Clayton, 1993) is a well-known random-effects
model. Whereas GEE is convenient and frequently used, it models the marginal re-
gression function, treating the second and higher-order moments as nuisance. When
the correlation is of primary scientific interest, e.g., when determining the ICC or
studying reliability, a non-likelihood method like GEE has clear limitations. The
GLMM has a full likelihood basis, but fails to produce the marginal correlations in
an easy fashion, owing to a non-linear link function, as well as the mean-variance link
(Molenberghs and Verbeke, 2005, Chapter 16). Due to the flexibility of the GLMM, it
is a viable modeling candidate, even when the marginal correlation is of interest. We
will show that the derivation of such correlations is generally feasible and derive the
intra-class correlation coefficient of reliability. Note that, in classical terms, reliability
is defined as the variance attributed to the difference among subjects divided by the
total variance (Shrout and Fleiss, 1979) and therefore takes the form of the intra-class
correlation coefficient as described in (4.3).

In this Chapter we will show how correlations can be derived by means of a GLMM,
with particular attention to the reliability functions, operationalized by means of the
ICC. It will be clear in what follows that, in the non-Gaussian case, reliability will no
longer be constant, excepting special cases.

The work in this Chapter is described in Vangeneugden et al. (2008b), and partly
in Molenberghs, Vangeneugden, and Laenen (2008).

8.1 Reliability Estimation in the General Linear

Mixed Model Framework

In the GLMM setting introduced in Section 3.3, we can write the general model as
follows: Y i = µi + εi, where µi, the conditional mean, given the random effects, can
be written as µi = µi(ηi) = h(X iβ +Zibi), Xi and Zi are known design matrices,
β are fixed-effect parameters, bi are random effects, and h is a known link function.
Finally, εi is the residual error component. We will now derive a general formula
for the variance-covariance matrix of Y i without any restriction on the distribution
of the outcome variable nor on the complexity of the model, e.g., allowing for serial
correlation or not. This maximizes the similarity with the case of continuous, normally
distributed outcomes. However, a key distinction is that in the linear case there is
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no mean-variance link, whereas here the residual variance will follow from the mean.
The variance covariance matrix can be derived as follows:

V i = Var(Y i) = Var(µi + εi) = Var(µi) + Var(εi) + 2Cov(µi, εi). (8.1)

It is easy to show that Cov(µi, εi) = Cov[E(µi|bi),E(εi|bi)] + E[Cov(µi, εi|bi)] = 0
since the first term is 0 and the second term equals E{E[µi − E(µi)](εi)|bi} = 0 as
µi is a constant when conditioning on bi. For the first term in (8.1) we have, using a
first-order Taylor series expansion around bi = 0:

Var[µi] = Var[µi(ηi)] = Var[µi(X iβ +Zibi)]

∼=
(
∂µi

∂bi

∣∣∣∣
bi=0

)
Var(bi)

(
∂µi

∂bi

∣∣∣∣
bi=0

)′

∼=
(
∂µi

∂ηi

∂ηi

∂bi

∣∣∣∣
bi=0

)
D

(
∂µi

∂ηi

∂ηi

∂bi

∣∣∣∣
bi=0

)′

∼= ∆iZiDZ
′
i∆

′
i, (8.2)

where ∆i = ∂µi

∂ηi

∣∣∣∣
bi=0

. For the second term in (8.1), we have:

Var(εi) = Var[E(εi|bi)] +E[Var(εi|bi)] = E[Var(εi|bi)] = Φ
1
2 ΣiΦ

1
2 , (8.3)

where Φ is a diagonal matrix with the overdispersion parameters along the diagonal.
In case there are no overdispersion parameters, Φ is set equal to the identity matrix.
We can expand the variance function Σi so that

Var(εi) = Φ
1
2Ai

1
2RiAi

1
2 Φ

1
2 , (8.4)

where Ri is the correlation matrix and Ai is a diagonal matrix containing the vari-
ances following from the generalized linear model specification of Y ij given the ran-
dom effects bi = 0, i.e., with diagonal elements v(µij |bi = 0). Using (8.2) and (8.4),
we have the following expression for the variance-covariance matrix (8.1):

V i
∼= ∆iZiDZ

′
i∆

′
i + Φ

1
2Ai

1
2RiAi

1
2 Φ

1
2 . (8.5)

If the canonical link is used, we have Ai = ∆i and (8.5) can be written as: V i
∼=

∆iZiDZ
′
i∆

′
i + Φ

1
2 ∆

1
2
i Ri∆

1
2
i Φ

1
2 . If in addition, conditional independence (no serial
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correlation) is assumed, then (8.5) simplifies to: V i
∼= ∆iZiDZ

′
i∆

′
i + Φ

1
2 ∆iΦ

1
2 .

Further, if we reduce the random-effects part to a random-intercept model, i.e.,Zi = 1
and D = d, and (8.5) then reduces to V i

∼= ∆i(dJ)∆′
i + Φ

1
2 ∆iΦ

1
2 . Note that, if we

have a normal distribution with the canonical identity link, ∆i reduces to the identity
matrix I and Φ = σ2I , in which case it follows that V i reduces to dJ+σ2I , with J a
square ni dimensional matrix of ones, which is consistent with (6.3). Moreover, when
we have a normal distribution with a general random-effects structure but without
serial correlation, it is easy to show that V i

∼= ZiDZ
′
i + σ2I and that subsequently

ρ equals (6.2) when we leave out the serial correlation (τ ). This shows that (8.5) can
be seen as a generalization of (6.2). While the above derivation is referred to as a
first-order Taylor series expansion, the exact same expression follows if a second-order
expansion is considered, owing to terms vanishing. Therefore, we are authorized to
refer to it as a second-order Taylor series expansion, too. In the following section we
will derive the marginal correlation in case of binary data when applying a random
intercept model.

8.2 ICC for a Random-intercept Model for Binary

Data

In this section, we will derive the formula for the ICC in case of a random in-
tercept model for binomial data with a logit link and assuming no overdispersion.
In this case, V i reduces to V i

∼= ∆i(dJ)∆′
i + ∆i = ∆i(dJ + ∆−1

i )∆′
i. Further-

more, ∆i is a diagonal matrix with Vij(0) as diagonal elements, where the variance
function Vij(0) = µij

∣∣
bi=0

(1 − µij

∣∣
bi=0

), and therefore V i
∼= diag(Vij(0))[dJ +

diag(Vij(0))−1]diag(Vij(0)). In other words, the variance-covariance matrix for sub-
ject i is specified by the matrix with elements: vijj = Vij(0)[1 + Vij(0)d], vijk =
dVij(0)Vik(0), (j �= k). Based on these, we can determine a first-order approxima-
tion of the marginal correlation between time point j and k, which is the intra class
correlation coefficient of reliability:

ρijk = Corr(Yij , Yik) =
Vij(0)Vik(0)d√{Vij(0)[1 + Vij(0)d]}{Vik(0)[1 + Vik(0)d]} . (8.6)

This expression allows us to make a few simple but important observations. For any
value of Vij(0) and Vik(0), ρijk = 0 whenever d = 0, while ρijk tends to 1 when d

tends to +∞. Even though this may seem obvious at first sight, especially because
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it is similar to the behavior of the intraclass correlation in the classical linear model
for continuous data, one must give proper reflection to the impact of the binary
nature of our outcomes, since certain correlation coefficients in certain models are
highly constrained. For example, the correlation coefficients in the Bahadur (1961)
model, being of the Pearson type, are highly constrained (Aerts et al. 2002). These
authors showed that in some realistic settings only a tiny interval around zero of
allowable correlations remains. It is useful to realize such constraints already apply
to the Pearson correlation in a simple two by two contingency table. A mild form
of the Bahadur constraints survives in generalized estimating equations, especially
those of the second order. The multivariate probit model (Molenberghs and Verbeke,
2005), on the other hand, is constrained only by the requirement that the tetrachoric
correlations form a positive definite matrix. This advantage of the probit model is
counterbalanced by its heavy computational burden. Also, the beta-binomial model
(Molenberghs and Verbeke, 2005) allows for all non-negative correlations as well as
moderate negative values (see also Molenberghs and Verbeke, 2005). The problem
suffers from its inability to accommodate within-cluster covariates, such as time in
longitudinal studies. Thus, the proposed modeling framework is at the same time
flexible, relatively easy from a numerical point of view, and does not face the strong
constraints like in, for example, the Bahadur (1961) model.

One might wonder why no negative correlations are allowed. Also this aspect is
similar to the linear mixed model, where the random-intercepts model, when its full
hierarchical interpretation is adopted, does not allow for negative correlations. Once
attention is restricted to the marginal model, some negative correlation can occur as
well. Indeed, the compound-symmetry model can produce negative correlations, as
long as the overall correlation matrix, of the form σ2I+dJ , remains positive-definite.
Note that, while this article focuses on the correlation coefficient, also in line with
classical reliability approaches, other measures of association between the outcomes,
such as the odds ratio model (Molenberghs and Verbeke, 2005) could be entertained.
Arguably, this would require a fundamentally different approach, and is beyond the
scope of this article.

8.3 Simulation Study

A reason for concern is the quality of approximation (8.6) since, unlike in the linear
case, here a Taylor series expansion needs to be used. To provide a perspective on the
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impact of this issue, we conducted a limited but insightful set of simulations. Precisely,
we generated data from the Bahadur (1961) model, and then estimated the correlation
coefficient using both generalized estimating equations (GEE, Liang and Zeger, 1986)
and our proposed approach. While it ought to be noted that a correlation coefficient
for non-continuous data is a model-dependent concept, the relative agreement between
the coefficients resulting from the various models still sheds some light on the quality
of the approximation.

The Bahadur model is defined in terms of the marginal probability πij = E(Yij) =
P (Yij = 1) and standardized deviations εij = (Yij − πij)/

√
πij(1 − πij) and eij =

(yij −πij)/
√
πij(1 − πij), where yij is an actual value of the binary response variable

Yij . Further, letting ρij1j2 = E(εij1εij2), ρij1j2j3 = E(εij1εij2εij3 ), . . ., ρi12...ni =
E(εi1εi2 . . . εini), the general Bahadur model can be represented by the expression
f(yi) = f1(yi)c(yi), where f1(yi) =

∏ni

j=1 π
yij

ij (1 − πij)1−yij and

c(yi) = 1+
∑

j1<j2

ρij1j2eij1eij2 +
∑

j1<j2<j3

ρij1j2j3eij1eij2eij3 + . . .+ρi12...niei1ei2 . . . eini.

For the purpose of our simulations, we will restrict this model to 2 and 3 mea-
surements per subject, respectively. In the latter case, the three pairwise correlation
will be set equal, while the third-order correlation will be set to zero. GEE can be
viewed as a version of the Bahadur model where the higher-order correlations are left
unspecified, and the pairwise correlation structure is considered a nuisance character-
istic.

For the number of measurements equal to ni = n = 2, the true correlations
ρ = 0.25, 0.50, and 0.75 were considered, while for ni = n = 3 we focused on
ρ = 0.20, 0.40, and 0.60. For all six settings, 1000 datasets of size 200 patients were
generated. For each such dataset, the pairwise correlation was estimated using both
GEE and the proposed GLMM-based expression (8.6). Table 8.1 presents the results
in terms of the simulation-averaged correlation together with its standard deviation.
Not surprising, the agreement between GEE and the generating Bahadur model is
excellent, since GEE can be viewed as a restricted-moment version of the Bahadur
model. Importantly for our purposes, the behavior of the GLMM-based expression
(8.6) is quite acceptable. While, as stated earlier, the correlation is model-dependent,
it falls everywhere within the same range as the one of the generating model. Note
that, for our approach when n = 3, we have three coefficients, one for each pair of
measurements. It would, in principle, be possible to replace the three estimates with a
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Table 8.1: Results of the simulation study. n refers to the number of measurements
per subject. ‘True’ is the correlation used in the generating Bahadur model. For both
GEE and GLMM, the simulation-averaged correlation coefficients and their simulation
standard deviations are reported.

GEE GLMM

n = ni True ρ Est.(SD) Coeff Est.(SD)

2 0.25 0.248 (0.07) ρ 0.270 (0.08)

2 0.50 0.499 (0.06) ρ 0.554 (0.07)

2 0.75 0.753 (0.05) ρ 0.568 (0.30)

ρ12 0.225 (0.06)

3 0.20 0.199 (0.05) ρ13 0.228 (0.06)

ρ23 0.237 (0.06)

ρ12 0.467 (0.06)

3 0.40 0.398 (0.05) ρ13 0.474 (0.06)

ρ23 0.497 (0.06)

ρ12 0.666 (0.05)

3 0.60 0.598 (0.04) ρ13 0.678 (0.05)

ρ23 0.723 (0.04)

common one. Since this would come down in averaging the three correlations, it would
further enhance stability. This is why we have chosen this somewhat more variable
and therefore conservative presentation in terms of three separate coefficients.

Additionally, a simulation based on an actual GLMM was performed, using a
simple random-effects model withXiβ = β0. In this simulation, 10,000 datasets with
200 subjects were generated, each subject having 5 measurements as in the application
of Section 8.4. Here, β0 = −1.61 and the variance of the random intercept, d = 6.57,
was taken as observed in the application. Also here, the pairwise correlation was
estimated using both GEE as well as the proposed GLMM-based expression (8.6).
For the GEE, the mean correlation and its standard deviation was observed to be
0.465 (s.d. 0.04) and for GLMM the results were very similar, leading to a mean
correlation of 0.473 (s.d. 0.05). Note that the GLMM based correlation of the real
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data was estimated to be 0.48.

Thus, we conclude that the correlation, based on GLMM, is a practically accept-
able indication for association. In principle, it would be possible to further enhance
performance using Monte-Carlo Markov Chain based methods, including the boot-
strap. While such an approach would increase the computational burden somewhat,
it certainly falls within the realm of practical feasibility.

8.4 Data Analysis

Let us now apply the concepts described above to the pooled schizophrenia data de-
scribed in Section 2.1. We will calculate the ICC for response defined as obtaining
either very much improved or much improved on the CGI of overall change versus
baseline. The focus of this analysis is not to study treatment differences, but rather
to investigate correlation between longitudinal binary data. To do so, we will calculate
the ICC under different assumptions, with gradually increasing modeling complexity.
For simplicity, we will focus on models with random intercepts and no serial corre-
lation. Of course, as stated in Section 8.1, the extension to the more general case is
straightforward but algebraically a bit more tedious.

8.4.1 Observed Response Rate and Correlation

Figure 8.1 displays the response rate of both treatment groups combined across time.
We can see that the observed response rate increases over time from 0.15 at week 1 to
0.47 at week 8. Also note that only 490 from the 774 subjects who started treatment
have an observed CGI score at week 8 due to attrition. Figure 8.2 illustrates the
correlation of the different responses over time. Circles are drawn at different response
level combinations (no, yes) in this matrix plot, exhibiting the correlation between
the observed responses at different pairs of time points. The diameter of the circle is
proportional to the number of subjects at each response combination, e.g., the large
circle for response=No at Week 1 and response=No at Week 2 indicates that many
subjects who did not respond at Week 1 also did not respond at Week 2. The larger
the diameter of the circles are at the bisector line (y = x), the larger the correlation
is between the same level of response at time point j versus time point j′. From the
first 2 rows of the plot, we can see that correlation is high if we compare Week 1
and 2, but that this correlation decreases slightly in time, when the lag time between
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Figure 8.1: Schizophrenia CGI Data. Graphical representation of observed response
over time.

observations is increased. On the other hand, the correlation between Week 6 and 8 is
noticeably higher, as the diameter of the circles on the bisector line (same response at
Week 6 and 8) are large and almost zero for circles not on the bisector line (different
response on Week 6 and 8).

8.4.2 Initial Analysis

To exemplify computations, let us assume there are no covariates. Then, Xisβ = β

is constant and (8.6) simplifies to: Vij(0) = V (0) = exp(β)/(1 + exp(β))2 and ρijk =
ρ = V (0)d/(1+V (0)d). When using this expression for a variety of subgroups and/or
combination of times, a detailed picture can emerge but, as we will illustrate in what
follows, it is possible and more elegant to incorporate the ICC into a fully specified
model.

We can use the SAS procedure NLMIXED to fit this random-effects model, using
adaptive Gaussian quadrature. Table 8.2 summarizes the results for a selection of
subgroups. Before discussing these, let us note that subgroup analyses can rightfully
be considered unsatisfactory by some. Therefore, we will revisit the concept of sub-
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Figure 8.2: Schizophrenia CGI Data. Graphical representation of the correlation of
observed response over time.

groups, but then in a more principled modeling approach, in Section 8.4.3. An added
advantage of this approach is that the quality of the fit will be enhanced, owing to the
high-quality approximation to the integration, required for likelihood evaluation. This
is important, not only for the determination of the correlation coefficient, but also
for other assessments, such as whether there is a significant treatment difference. Of
course, one should be aware that reaching convergence with the NLMIXED procedure
or related software for non-linear models is not straightforward. Tools exploiting lin-
earity of the predictor are somewhat easier, but often based on poor approximations
such as first-order PQL or MQL (Molenberghs and Verbeke, 2005). Such alternative
procedures may be used, however, to obtain good starting values, upon which the use
of the non-linear procedures becomes easier.

One observes that the ICC is somewhat larger in the risperidone treatment group.
Additionally, we see that the ICC for observations measured at Week 1 and Week 8
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Table 8.2: Schizophrenia CGI Data. Summary of different subgroup analysis investi-
gating impact time and treatment effect on reliability. Standard errors are calculated
from the delta method.

Intraclass correlation ρ (SE)

time points included combined treatments risperidone active control

all time points 0.48 (0.026) 0.55 (0.038) 0.40 (0.035)

Week 1 and Week 8 0.11 (0.045) 0.11 (0.066) 0.10 (0.060)

Week 6 and Week 8 0.85 (0.026) 0.87 (0.032) 0.82 (0.043)

Table 8.3: Schizophrenia CGI Data. Overall ICC (SE) matrix, marginal over treat-
ment. Standard errors are calculated from the delta method.

time

Week 2 4 6 8

1 0.29 (0.029) 0.33 (0.030) 0.35 (0.029) 0.35 (0.029)

2 1 0.53 (0.032) 0.57 (0.030) 0.57 (0.029)

4 1 0.64 (0.027) 0.65 (0.026)

6 1 0.70 (0.024)

is much smaller than the ICC measured from observations at Week 6 and Week 8.
Here we should note that the ICC between Week 6 and 8 can truly be interpreted as
an ICC of reliability in the psychometric sense. Indeed, the psychiatric condition of
the patients was rather stable and did not change between Week 6 and 8: the mean
total PANSS was 69.2 at Week 6 and 68.8 at Week 8. Also CGI response remained
stable between Week 6 and 8: 412 (86%) out of the 477 subjects had the same
response level as can be observed in Figure 8.2. It is in such stable conditions that
test-retest reliability of scale is evaluated, and often with a two-week time interval
(Streiner and Norman 1995, Chapter 8). The same is not true when comparing
Week 1 (mean PANSS of 80.8) and Week 8; that is, the ICC between Week 1 and 8
cannot be interpreted as an ICC of reliability but merely a correlation between two
time points. As discussed in Vangeneugden et al. (2004), appropriate models can
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be used to model and extract time and treatment effects, which avoids the need to
assume that there is no change in a patient’s situation over time. Thus, by using
an appropriate model with well chosen covariate effects, a trial population is, in a
broad sense, standardized towards a general population. By correcting for covariates,
it is assumed that the correlation structure of the residuals can be approximated
by an exchangeable structure, captured via a random intercept. While this may
be perceived as somewhat more subjective than when a dedicated reliability study
is undertaken, the important advantage is that data already collected can be used,
which may have important practical, economic, and even ethical advantages. It is
important to note that, in case a random intercept is deemed insufficient to capture
the correlation structure, more versatile random-effects structures can be used, whilst
maintaining the idea behind the calculations for the marginal correlation coefficients.
We will gradually take account of this, by first extracting time and then subsequently
treatment effects. Of course, one ought not to forget that important but potentially
complicated issues, such as dropout and non-compliance, may intervene. Since the
method is likelihood-based, it is valid under the broad assumption of missingness
at random, whereby missingness depends on observed outcomes and covariates but,
given these, not further on unobserved outcomes. Likewise, when compliance issues
intervene, it is important the covariates are chosen such that the causal interpretation
of the resulting model be maintained. With good to perfect compliance, this is taken
care of by virtue of randomization.

8.4.3 Accounting for Time and Treatment

If we adjust for time and ignore treatment, then ρ can be derived via (8.6) and it is easy
to show that Vij(0) = exp(βj)/(1 + exp(βj))2, where βj is the estimated coefficient of
the indicator variable representing time j, when we use a model without an intercept
in the fixed effects. The variation of the random effect was estimated to be d̂ = 10.04
and this time we had β̂W1 = −3.79, β̂W2 = −2.25, β̂W4 = −1.50, β̂W6 = −3.79
and β̂W8 = −0.41. Table 8.3 provides the estimated intra-class correlation coeffi-
cient matrix. This is in line with the well-known relationship between marginal and
random-effects regression parameters (Verbeke and Molenberghs, 2005), the correla-
tions are determined by the random-intercept variance, together with the marginal
probabilities factoring into the variance function: βj

∼= √
1 + 0.346 d·logit(pj). Hence,

these correlations are constant only in the simple case of a constant mean. Otherwise,
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they are functions of the covariates. Note that, in case a random-intercepts model is
deemed too simple, a more elaborate random-effects structure can be assumed, whilst
maintaining the essence of the proposed calculations.

When exploring Table 8.3, correlations clearly vary considerably. This indicates
that pairs of measurements early in the sequence are less reliable for one another than
pairs later in the sequence. Indeed, one can realistically assume that measurements
earlier in the sequence are more prone to variability than later on, when subjects
are more adapted to the study protocol and/or learning effects have taken place. If
we repeat this for each treatment group separately, we consistently have a higher
correlation coefficient in the risperidone treated subjects. Note that the ICC between
observations from Week 6 and Week 8 (ρ = 0.70) is lower as estimated in the previous
section (ρ = 0.85). In the latter, however, only the subgroup of subjects with Week 6
and 8 was used, and if we apply the same model, accounting for time in this subgroup,
then we have ρ = 0.80 instead of 0.70.

Jointly accounting for time and treatment produces a different ICC for each treat-
ment group separately and also for each pair of time points. We allowed for interac-
tions in the model. Table 8.4 and Figure 8.3 summarizes the results. Apart from the
estimated ICC, also the empirical Pearson (product-moment) correlation coefficients
are added. The agreement between both is reasonable, especially when it is taken
into account that the ICC does, but the Pearson correlation does not take the effect
of covariates into account. After adjusting for time and treatment, the ICC between
observations at Week 1 and 8 increased from 0.11 (8.2) to 0.40 in the risperidone
group.

8.5 Concluding Remarks

We proposed an approximation to calculate correlations from longitudinal data from
generalized linear mixed models. Whilst for continuous, interval scaled data, deriva-
tion of correlations, such as the ICC of reliability is rather straightforward as derived
in (6.2), it is more complex for other types of data. A general formula was derived
using the GLMM. This formula could be used for interval, binary or other types of
data, such as counts. For our case study, the reliability coefficient was derived for a
binary response parameter, using a random-intercepts model. We observed that the
correlation was higher between Week 6 and 8 as compared to Week 1 and Week 8.
The slightly decreasing correlation, however, from Week 1 and Week 2 to Week 1 and
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Table 8.4: Schizophrenia CGI Data. The first entries represent the overall ICC of
reliability (SE) matrix, accounting for treatment, time and their interaction. Standard
errors are calculated from the delta method. The second entries are the ordinary
Pearson correlation coefficients between the pairs of measurements.

Week 2 4 6 8

risperidone

1 0.36 (.045) 0.39 (.044) 0.40 (.042) 0.40 (.042)

0.52 0.41 0.33 0.27

2 1 0.62 (.036) 0.64 (.033) 0.64 (.032)

0.65 0.52 0.53

4 1 0.69 (.026) 0.69 (.026)

0.70 0.61

6 1 0.71 (.023)

0.75

active control

1 0.22 (.036) 0.27 (.038) 0.31 (.038) 0.31 (.038)

0.52 0.34 0.33 0.27

2 1 0.42 (.046) 0.48 (.043) 0.49 (.041)

0.59 0.49 0.43

4 1 0.57 (.039) 0.59 (.037)

0.66 0.57

6 1 0.67 (.029)

0.70

Week 8 was not observed in the estimates. It should be noted that the random-effects
model does also properly account for missing values due to attrition, provided the
missing data are missing at random, which is not the case for the conventional ad hoc
analyses. In contrast, classical methods such as the kappa statistics, can only include
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Figure 8.3: Schizophrenia CGI Data. Estimated ICC using a random-intercept model
including time, treatment and their interaction.

paired observations. Another important advantage of the present method is that it
becomes possible to estimate trial-specific or population-specific reliability. This is
especially true because, even in studies designed to assess reliability, it is difficult
to exclude fluctuations in the true scores and furthermore these studies are often
conducted with different populations and in different circumstances. After extracting
time and treatment effect and their interaction, clinical trial data can be used to make
progress when studying test-retest reliability as a function of time. Indeed, reliability
should not be perceived as a fixed quantity but changes with circumstances. Other
covariates can be incorporated into the model to study their effect on error variance
and on reliability. Modeling other sources of variation, like for example country or
rater, is therefore an interesting topic for further research. In psychometric theory,
this is referred to as generalizability theory and will be discussed in the next chapter.

Subgroup analyses using a simple model and more versatile models accounting for
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time and treatment and their interaction suggested a higher ICC among subjects in
the risperidone group than in subjects in the active control group, indicating that
responses over time within the same subject were more consistent within the risperi-
done treatment group than in the active control group. The methodology can be
used to derive population or trial-specific ICC of reliability in case of binary data.
In particular, it extends the random intercepts model proposed in Chapter 6 and in
Vangeneugden et al. (2004) to binary data.

The next step is to extend reliability testing to generalizability testing similar as
was done in Chapter 7 versus Chapter 6 for interval scaled data, but this time using
the GLMM framework.



Chapter 9

Generalizibility Estimation in

Case of Binary Data

In this Chapter we extend generalizability to non-Gaussian outcomes; in particu-
lar, our focus will be on binary data. The results of this chapter are accepted for
publication (Vangeneugden et al., 2008a). Even in the univariate case, there are
fundamental differences between Gaussian and non-Gaussian outcomes, since the lat-
ter usually require non-linear models, also exhibiting important differences in the
relationship between mean and variance. Furthermore, repeated binary data are
frequently encountered in clinical trials but pose challenges for model formulation.
One distinguishes between marginal and random-effects model families and, unlike
in the Gaussian situation, there is no easy relationship between both. An example
of the marginal family is generalized estimating equations (GEE, Liang and Zeger,
1986), whereas the generalized linear mixed model (GLMM, Breslow and Clayton,
1993) introduced in Section 3.3 is likely the most prominent random-effects model
(Molenberghs and Verbeke, 2005). Whereas GEE is convenient and frequently used,
it models the marginal regression function, treating the second and higher-order mo-
ments as nuisance parameters, which limits its use when the correlation is of scientific
interest, e.g., in view of the ICC. The GLMM, on the other hand, has a full likelihood
basis, but fails to produce the marginal correlations in an easy fashion, owing to the
presence of a non-linear link function, combined with a non-trivial mean-variance re-
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lationship, forcing the variance to change with the mean and hence with the regressors
(Molenberghs and Verbeke, 2005, Chapter 16). In spite of these considerations, we
will show the GLMM provides a viable framework when correlations are of interest,
with particular emphasis on the use of generalizability theory.

To fix ideas, let us give an example as to how the observed clinical trial data are
typically decomposed, similarly as was done in Section 7.2:

YPDT = h(µ+ bP + µD + µT + µDT ) + εPDT , (9.1)

where h(.) is a known link function. Further, bp denotes the random effect for patient
p = 1, . . . , N , µD the fixed time effect at day d = 1, . . . , np, µT the fixed effect of
treatment t = 1, . . . , T , µDT their interaction. Finally, εPDT refers to the residual
error, the distribution of which is chosen in accordance with the outcome type. For
example, when YPDT is a binary indicator, it is customary to adopt for h(·) the
antilogit function and for εPDT the Bernoulli distribution with success probability
h(µ + bP + µD + µT + µDT ). When other design levels are present, e.g., country or
center, Model (9.1) can be extended in a straightforward fashion and various instances
will be given in subsequent sections.

9.1 Correlation Between Two Observations Using

the GLMM Framework

We will now derive a general formula for the correlation between two observations,
within the GLMM framework. In the spirit of (9.1), and with notation consistent
with Section 3.3, we can write the general model as:

YPDT = µPDT + εPDT , (9.2)

where

µPDT = µPDT (ηPDT ) = h(x′
PDTβ + z′PDT bPDT ). (9.3)

We group the errors εPDT into a vector εP , with variance-covariance matrix ΣP .
Further, consistent with earlier notation, x′

PDT and z′PDT are vectors of fixed-effects
and random-effects covariates, respectively; β is a vector of fixed-effects parameters
and bPDT is a vector of random effects, assumed to be zero-mean normally distributed
with variance-covariance matrix H .
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It is useful in what follows to decompose ΣP as:

ΣP = Φ
1
2A

1
2
PRPA

1
2
P Φ

1
2 ,

where Φ is a diagonal matrix with the overdispersion parameters along the diagonal.
In case there are no overdispersion parameters, Φ is set equal to the identity matrix.
Further, RP is the correlation matrix, and AP is a diagonal matrix containing the
variances following from the generalized linear model specification of YPDT given the
random effects bPDT = 0, i.e., with diagonal elements v(µPDT |bPDT = 0).

Model (9.3) allows for a variety of distributions for the outcome variable and a
wide range of link functions, while the modeler has the freedom to include or leave
out serial correlation. To calculate correlation Corr(YPDT , YP ′D′T ′), we repeat the
general derivation of a general expression for the variance as in Section 8.1:

Var(YPDT ) = Var(µPDT + εPDT )

= Var(µPDT ) + Var(εPDT ) + 2Cov(µPDT , εPDT ). (9.4)

It can be shown that (Molenberghs and Verbeke, 2005)

Cov(µPDT , εPDT )

= Cov[E(µPDT |bPDT ),E(εPDT |bPDT )] + E[Cov(µPDT , εPDT |bPDT )] = 0,

since the first term is zero and the second term equals

E{E[µPDT − E(µPDT )](εPDT )|bPDT } = 0

as µPDT is constant when conditioning on bPDT . For the first term in (9.4), we have:

Var(µPDT ) = Var[µPDT (ηPDT )] = Var[µPDT (x′
PDTβ + z′PDTbPDT )]

∼=
(
∂µPDT

∂bPDT

∣∣∣∣
bP DT =0

)
Var(bPDT )

(
∂µPDT

∂bPDT

∣∣∣∣
bP DT =0

)′

∼=
(
∂µPDT

∂ηPDT

∂ηPDT

∂bPDT

∣∣∣∣
bP DT =0

)
H

(
∂µPDT

∂ηPDT

∂ηPDT

∂bPDT

∣∣∣∣
bP DT =0

)′

∼= ∆PDT z
′
PDTHzPDT ∆′

PDT ,



96 Chapter 9. Generalizibility Estimation in Case of Biomedical Data

where ∆PDT = ∂µPDT

∂ηPDT

∣∣∣∣
bP DT =0

. Note that the above derivation is based on the delta

method (Welsh 1996). For the second term in (9.4), we have:

Var(εPDT ) = Var[E(εPDT |bPDT )] + E[Var(εPDT |bPDT )]

= E[Var(εPDT |bPDT )] =
(
Φ

1
2 ΣΦ

1
2

)
PDT

,

If the canonical link is used, we have AP = ∆P and then (9.4) becomes

Var(Y P ) ∼= ∆PZPHZ
′
P ∆′

P + Φ
1
2 ∆

1
2
PRP ∆

1
2
P Φ

1
2 . (9.5)

To determine Corr(YPDT , YP ′D′T ′ ), we still need to calculate Cov(YPDT , YP ′D′T ′).
Similar to the above, we have that Cov(µPDT , εP ′D′T ′ ) = Cov(εPDT , µP ′D′T ′ ) = 0.
Therefore, we only need to derive Cov(µPDT , µP ′D′T ′ ):

Cov(YPDT , YP ′D′T ′)

= Cov(µPDT , µP ′D′T ′ )

= Cov[µPDT (x′
PDTβ + z′PDTbPDT ), µP ′D′T ′(x′

P ′D′T ′β + z′P ′D′T ′bP ′D′T ′ )]

∼=
(
∂µPDT

∂bPDT

∣∣∣∣
bP DT =0

)
Cov(bPDT , bP ′D′T ′)

(
∂µP ′D′T ′

∂bP ′D′T ′

∣∣∣∣
bP ′D′T ′=0

)′

∼=
(
∂µPDT

∂ηPDT

∂ηPDT

∂bPDT

∣∣∣∣
bP DT =0

)
Cov(bPDT , bP ′D′T ′ )

×
(
∂µP ′D′T ′

∂ηP ′D′T ′

∂ηP ′D′T ′

∂bP ′D′T ′

∣∣∣∣
bP ′D′T ′=0

)′

∼= ∆PDT z
′
PDT Cov(bPDT , bP ′D′T ′ )zP ′D′T ′∆′

P ′D′T ′ . (9.6)

The covariances Cov(bPDT , bP ′D′T ′ ) depend on which of the random effects are com-
mon when correlating YPDT and YP ′D′T ′ . Using (9.5) and (9.6), we can calculate the
correlation for any given situation, for any give GLMM. In the next section, we will
derive the correlation for the case of binary data with random effects and without
serial correlation. Note that, in the special case of Gaussian outcomes, (9.5) simply
reduces to Var(Y P ) = ZPHZ

′
P +RP .
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The above calculations are general, in the sense that the variances in (9.5) and
covariances in (9.6) allow for the flexible calculation of correlation coefficients, with
(1) certain facets the same or different; (2) certain facets fixed (conditioned upon)
or random; (3) correction for the presence of such fixed effects as treatment, time,
country, baseline value, etc.; (4) for normally distributed outcomes based on linear
mixed models or for binary data, count data, and other non-Gaussian data, using
generalized linear mixed models. The price to pay is twofold. First, expressions (9.5)
and (9.6) are approximate, except in the normal case and (2), related to the previ-
ous point, these expressions do not have the intuitive variance-component structure,
or even ‘averaging’ structure, of classical reliability and generalizability coefficients.
However, all classical expressions follow as special cases. In this sense, our framework
allows for the calculation of conventional reliability and generalizability coefficients,
their extensions to the non-normal case based on data from clinical trials or other
data with measurements that are a priori not parallel, and even correlation coeffi-
cients that do not have a generalizability interpretation, but may be useful for other
purposes.

9.2 Data Analysis

Let us now apply the concepts of reliability and generalizability to the pooled data
described in Section 2.1. We will investigate the impact of ‘country’ on measurement
error. Note that country can be seen as either a facet or an object of measurement.
The generality of our approach allows for both views. Evidently, ‘country’ is of interest
for this particular study, but the reader can easily substitute it with other variables,
subject to his/her study of interest.

To illustrate the methods and underscore generality, we will consider country in
five different roles, the analysis of which is all within reach by way of the modeling
ideas developed in this manuscript. First, we will assess the overall reliability for
a dichotomized version of CGI response, ignoring country effects. Second, country
effects will be extracted by including country as a fixed effect into the model. Third,
we will investigate the impact of country on reliability through application of the same
model to each country separately. Fourth, we will also study the impact of a single
country on overall reliability by leave-one-out ideas, i.e., by omitting one country
at a time. Fifth, we will assess the overall impact of country via generalizability
theory. Note that ‘country’ did not feature explicitly in previous Section. However,
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the methodology is general and the facets generic. They can be replaced with those
relevant in a particular case study.

9.2.1 Overall Reliability of CGI

First, we apply a simple random-intercept model, combined with fixed effects for
treatment, time and their interaction. Hence, country does play a role in this analysis.
With the logit link, (9.2) becomes:

YPDT =
exp(µ + bP + µD + µT + µDT )

1 + exp(µ+ bP + µD + µT + µDT )
+ εPDT , (9.7)

where µD, µT , and µDT denote the fixed effects for day, treatment, and their inter-
action, respectively, and bP represents the random patient effect.

The overall correlation of observations within the same subject, on the same treat-
ment, but on different time points, and conditioning on treatment and time points,
can be expressed as Corr(YPDT , YPD′T | T,D,D′). In this model, we have Z = 1 and
H = σ2

P , a scalar representing the variance of the random intercept, and since (9.7)
does not include serial correlation we have that RP = I. It is therefore possible to
show that the variance covariance matrix (9.5) reduces to

Var(YP ) ∼= ∆P (σ2
PJ)∆′

P + Φ∆P = ∆P (σ2
PJ + Φ∆−1

P )∆′
P ,

where J is a rectangular matrix of ones. Furthermore, ∆P is a diagonal matrix with
VPDT (0) as diagonal elements, where the variance function VPDT (0) = µPDT

∣∣
bPDT =0

(1 − µPDT

∣∣
bP DT =0

), and therefore we have

Var(YPDT )

∼= diag(VPDT(0))[σ2
PJ + Φdiag(VPDT(0))−1]diag(VPDT(0)), (9.8)

Cov(YPDT , YPD′T )

∼= diag(VPDT(0))[σ2
PJ]diag(VPD′T(0)). (9.9)

Based on (9.8) and (9.9), we can determine a first-order approximation of the
marginal correlation between time point d and d′, which is the intraclass correlation
coefficient of reliability:

ρ = Corr(YPDT , YPD′T ) =
σ2

1

√
VPDT (0)VPD′T (0)√

[ΦPDT + VPDT (0)σ2
2 ] · [ΦPD′T + VPD′T (0)σ2

2 ]
, (9.10)
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where σ2
1 represents the covariance between the random effects and σ2

2 is the variance
resulting from the random effects. In this model, σ2

1 = σ2
2 = σ2

P since all other
covariates are fixed effects. The delta method can be usefully applied to estimate the
standard error:

∂ρ

∂(β,λ)
=

(
∂(η,σ2)
∂(β,λ)

)(
∂(VPDT (0), VPD′T (0), σ2

1 , σ
2
2, φ)

∂(η,σ2)

)

×
(

∂ρ

∂(VPDT (0), VPD′T (0), σ2
1 , σ

2
2, φ)

)
. (9.11)

Explicit expressions for the various components follow from straightforward linear
algebra, as sketched in Appendix A. The SAS V9.1 procedure GLIMMIX was used
to estimate Φ, σ2

P , and VPDT . Details on the SAS implementations are provided in
Appendix B. The reader interested in more ample details on the SAS implementations
and output, can obtain such from the authors, upon simple request. Table 9.1(a)
summarizes the results.

In case of continuous data, a single-measure overall intraclass correlation coefficient
reliability would have been obtained (Chapter 7, Vangeneugden et al., 2005). Here,
for the binary data case, a separate intraclass coefficient of reliability is produced
for each treatment group and each time point. From Table 9.1(a), we observe that
the correlation is somewhat higher in the risperidone arm and that the correlation
between week 1 and other time points is lower than the correlation between any two
other time points that do not involve week 1. This non-constancy is, of course, not
particular to this example but results from the non-Gaussian nature of the outcome.

9.2.2 Reliability of CGI Response Adjusting for Country

In Section 9.2.1, only treatment, time, and their interaction were included. Now,
we will include countries as fixed effects, which will result in intraclass coefficients
of reliability per treatment, time point, and country combination. Hence, country-
specific analyses result. We will not present all coefficients but merely present the
coefficients for one country, the U.S.A., in Table 9.1(b). Additionally, we list the
ICC of reliability between weeks 6 and 8 in the risperidone group for all countries in
Table 9.2. The results for the U.S.A. are consistent with the overall results, and when
we investigate the correlation between weeks 6 and 8 in the risperidone group, we
observe from column 3 in Table 9.2 that the ICC is rather stable across countries, the
lowest correlation being for Austria (0.65, SE 0.09) and the highest for the U.S.A.,

TVANGENE
Highlight

TVANGENE
Highlight
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Table 9.1: Schizophrenia CGI Data. ICC matrices (SE), accounting for treatment,
time and their interaction. Standard errors are calculated from the delta method. Five
different situations are reported.

risperidone active control
Week 2 4 6 8 2 4 6 8

(a) Overall
1 .52(.04) .55(.04) .55(.04) .55(.04) .42(.04) .47(.04) .50(.04) .50(.04)
2 1 .74(.02) .74(.02) .74(.02) 1 .61(.04) .65(.03) .66(.03)
4 1 .78(.02) .78(.02) 1 .72(.03) .73(.02)
6 1 .79(.01) 1 .78(.02)

(b) By country: U.S.A.
1 .52(.06) .54(.06) .54(.05) .54(.05) .38(.07) .42(.07) .46(.06) .46(.06)
2 1 .73(.03) .74(.03) .74(.02) 1 .57(.06) .62(.05) .63(.05)
4 1 .77(.02) .77(.02) 1 .69(.04) .70(.04)
6 1 .78(.02) 1 .76(.02)

(c) Country as random effect: U.S.A.
1 .53(.05) .55(.05) .56(.05) .56(.05) .40(.06) .45(.06) .48(.05) .48(.05)
2 1 .74(.03) .75(.02) .75(.02) 1 .59(.05) .64(.04) .65(.04)
4 1 .78(.02) .78(.02) 1 .71(.03) .72(.03)
6 1 .79(.02) 1 .77(.02)

(d) Generalized across countries: U.S.A.
1 .49(.05) .51(.05) .51(.05) .51(.04) .37(.05) .41(.05) .44(.05) .45(.05)
2 1 .68(.03) .69(.03) .69(.03) 1 .55(.05) .59(.04) .60(.04)
4 1 .72(.03) .72(.03) 1 .65(.04) .66(.03)
6 1 .72(.03) 1 .71(.03)

(e) Generalized across baseline negative symptoms
1 .37(.13) .38(.13) .39(.13) .39(.13) .29(.10) .32(.11) .35(.12) .35(.12)
2 1 .51(.18) .52(.18) .52(.18) 1 .43(.15) .46(.16) .46(.16)
4 1 .54(.18) .54(.18) 1 .50(.17) .51(.17)
6 1 .55(.19) 1 .54(.18)

Sweden, and Spain (0.78, SE 0.02).
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Table 9.2: Schizophrenia CGI Data. Reliability by country and impact of country on
overall reliability table. ICC ρ (SE) between week 6 and 8 in risperidone, with (1)
country as fixed effect, (2) country-specific analyzes, and (3) a given country omitted.
(NA: not available by lack of data.)

Number of Country as By Omitting a
Country patients fixed effect country given country
Argentina 31 0.76 (0.04) NA 0.78 (0.02)
Austria 29 0.65 (0.09) 0.02 (0.04) 0.78 (0.01)
Belgium 26 0.76 (0.04) NA 0.78 (0.01)
Brazil 44 0.73 (0.05) 0.54 (0.14) 0.79 (0.01)
Canada 44 0.77 (0.02) 0.76 (0.10) 0.79 (0.01)
Denmark 47 0.77 (0.02) 0.65 (0.09) 0.80 (0.01)
Spain 32 0.78 (0.02) 0.88 (0.07) 0.79 (0.01)
Finland 71 0.66 (0.07) NA 0.79 (0.01)
France 92 0.77 (0.02) 0.40 (0.11) 0.81 (0.01)
Great Britain 21 0.77 (0.03) 0.91 (0.05) 0.78 (0.01)
Germany 25 0.73 (0.06) NA 0.78 (0.01)
Italy 39 0.70 (0.07) NA 0.77 (0.02)
Mexico 36 0.76 (0.03) 0.92 (0.06) 0.78 (0.02)
Netherlands 17 0.74 (0.06) 0.71 (0.37) 0.78 (0.01)
Norway 37 0.71 (0.06) 0.91 (0.04) 0.78 (0.01)
South Africa 79 0.71 (0.05) 0.80 (0.09) 0.78 (0.02)
Sweden 30 0.78 (0.02) 0.94 (0.03) 0.78 (0.01)
U.S.A. 122 0.78 (0.02) 0.75 (0.04) 0.79 (0.02)

9.2.3 Reliability of CGI by Country and Impact on Overall

Reliability by Leaving Out a Country

When we apply the model to each country separately, we observe that the model did
not always converge and estimates were less stable, especially and not surprisingly, in
countries with few patients. Patients included in Finland had data up to week 6 only
(Hoyberg et al., 1993). The results are summarized in the third column of Table 9.2.
A different way of investigating impact of country on reliability is by leaving out one
country at a time. This is slightly less conventional from a classical generalizability



102 Chapter 9. Generalizibility Estimation in Case of Biomedical Data

standpoint, but it is a useful analysis to assess how much a given country can weigh
in on the analyses. If the overall reliability increases, this would provide evidence
for a poor reliability in this specific country. The results are summarized in the fifth
column of Table 9.2. Note that the impact was low for all countries, again suggesting
that reliability is relatively consistent across countries.

9.2.4 Estimating Impact of Country via Generalizability The-

ory

Subgroup analysis by country as shown in the previous two sections can be enlight-
ening. Now, we want to quantify their effect on measurement error and calculate a
generalizability coefficient, thereby generalizing results across countries. We will add
a random effect for country to the previous model, so that we have a model with time,
treatment, and their interaction as fixed effects, and further country, indexed by c,
and patient as random effects:

YPDTC =
exp(µ + bP + µD + µT + µDT + bc)

1 + exp(µ + bP + µD + µT + µDT + bc)
+ εPDTC . (9.12)

From (9.12) we can calculate the overall test-retest reliability coefficient as in Sec-
tion 9.2.1, but this time accounting for country as a random effect instead of extracting
it as a fixed effect. Then, σ2

1 = σ2
2 = σ2

P + σ2
C in (9.10). Table 9.1(c) shows that the

results are consistent with the overall reliability coefficients.
This test-retest reliability coefficient for any given country and time point follows

directly from analyzing the clinical trial, similar to generalizability coefficients that
are computed after design and analysis of a G-study. In the spirit of D-studies, we
can also generalize across countries. Indeed, although patients are nested within
country in a clinical-trial setting, we assume, by way of a thought experiment, that
patients could switch from one country to another, with the aim to evaluate the
impact of country. We then have that σ2

1 = σ2
P and σ2

2 = σ2
P + σ2

C , needed to
calculate Corr(YPDTC , YPD′TC′) as in (9.10). Table 9.1(d) provides the ensuing ICC
coefficients.

Thus, generalizing across time points and countries, or taking account of impact
of variance of country, reduces the overall test-retest reliability approximately by
5%: for risperidone the decrease in reliability amounted to between 4–7% and for
active control this was between 3–6%. In this situation, the price for setting up an
international trial instead of a single country is rather small. This insight is relevant
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and underscores the usefulness of the thought experiment. While, again, the ‘country’
aspect will be less relevant, or even irrelevant, to the reader’s own study, our results
indicate that it is possible to study the impact of generalizing over a given variable.

Evidently, the methodology can easily be extended to more complex situations
including, for example, serial correlation or random time effects but also additional
variables, such as, for example, age and sex of the patient.

9.2.5 Estimating Impact of Baseline PANSS Negative Subto-

tal on Reliability of CGI Response

In the computations reported above, a relatively high generalizability coefficient sug-
gested that country does not have an important impact on the test-retest reliability
and on measurement error. We now investigate the impact of baseline PANSS Neg-
ative subtotal on measurement error. We included a random intercept for baseline
PANSS Negative subtotal instead of country in Model (9.12). Subsequently, we de-
rived the variance components and calculated the generalizability coefficient for base-
line PANSS Negative subtotal, similar to how it was done for country. In this analysis,
the reduction in generalizability coefficient was more substantial: in the risperidone
group between week 6 and 8, we have that the ICC reduces from 0.55 (SE 0.13) to 0.39
(SE 0.13) when generalizing across baseline negative subtotal. Full details are given in
Table 9.1(e). This indicates that baseline PANSS Negative subtotal reduces the test-
retest reliability. A clinical explanation for this phenomenon could be that patients
with a higher deficit in negative symptoms at baseline, such as poverty of speech,
apathy, or emotional withdrawal, are more difficult to evaluate, resulting in higher
measurement error and lower test-retest reliability. A practical conclusion would be
that additional training is needed for professionals having to rate patients with a high
baseline negative subtotal or, even more invasive, in the recommendation to use a
different scale in this type of patients. Such conclusions usefully illustrate how the
methodology can be used, not only to assess the qualitative level of generalizability,
but also how such results can impact the design of future studies.

9.3 Concluding Remarks

In this paper, we have extended classical reliability measures and associated estima-
tion procedures in four important ways. First, fully longitudinal data can be used,
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rather than paired measurements. Second, clinical trial data can be employed or,
more generally data from other studies not expressly designed for the investigation
of reliability, through adopting a modeling framework, obviating the need for par-
allel measurements. Third, the broad generalizability theory framework is invoked,
encompassing the various classical reliability versions, such as inter-rater and test-
retest reliability, and allowing for the study of such important factors’ impact as day
of measurement, rater, country, investigator, etc. Fourth, all calculations are con-
ducted within the generalized linear mixed model paradigm, allowing one not only
to accommodate all aforementioned aspects, but also to deal with Gaussian and non-
Gaussian data alike. Specific emphasis was put on binary outcomes, but analogous
computations for nominal, ordinal, or count data can be done as well. Unlike in the
Gaussian case, the reliability and generalizability coefficients depend on the days,
raters, countries, or whatever levels studied. This is due to the mean-variance link
and the nonlinear nature of the model.

Of course, our calculations are based on a first-order approximation, the accuracy
of which could be a cause of concern. Vangeneugden et al., (2008b) have studied this
issue and their results are surprisingly encouraging.

We would like to emphasize that we have focused on generalizability, with reliabil-
ity as a special case. This implies that we have been less concerned with agreement.
While the latter concept is also very important, it falls outside the scope of the current
work.

This work was motivated by and applied to data from multi-country trial data
collected in patients with chronic schizophrenia. Using the generalizability frame-
work, we were able to establish that the reliability measures are rather stable across
countries, and no single country has an undue effect on the overall reliability. Country-
specific reliabilities varied in a usefully narrow range.

An important conclusion, never reached before, is that the price to pay for a multi-
country study, rather than a single-country one, is a mere 5% in test-retest reliability.
The ability to conduct multi-country studies is important in view of the availability of
a larger pool of available patients, thereby reducing the length of the accrual period
and/or increasing the sample size, and hence power.



Chapter 10

Marginal Correlation in Case

of Count Data

In Chapter 8 we showed that the derivation of correlations based on GLMM is gen-
erally feasible if one is prepared to accept a Taylor-series based approximation. The
results are general, not only across data types, such as continuous outcomes, binary or
ordinal outcomes, and counts, but it applies also to multivariate repeated measures,
where more than one sequence per subject is measured repeatedly, even with different
data types for the various sequences.

One obvious though important case where the approximate results of Chapter 8
become exact (6.2) is for normally distributed outcomes, since then the GLMM re-
duces to the LMM. In this chapter, we will deal with another, somewhat less broadly
studied special case: count data. To this effect, we will start from the modeling
framework proposed by Molenberghs, Verbeke, and Demétrio (2008; henceforth ab-
breviated as MVD). These authors presented a model for longitudinal or otherwise
hierarchical count data that simultaneously incorporates normal random effects in the
linear predictor, as in any GLMM, as well as conventional overdispersion parameters.
Overdispersion arises when the mean-variance relationship stemming from the posited
generalized linear model (McCullagh and Nelder, 1989) is too restrictive. As such and
especially with count data, it is a phenomenon that can occur even with univariate,
cross-sectional data. One convenient way to incorporate overdispersion is through

105
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gamma random effects, giving rise in the univariate case to the so-called negative
binomial model (Breslow, 1984). Thus, whereas the normal random effects capture
correlation between repeated measures and a portion of the overdispersion, the ad-
ditional gamma random effects allow a more flexible incorporation of overdispersion,
and hence potentially a better fitting model. Thus, the proposal by MVD, referred to
as the combined model, generalizes at once the GLMM and negative-binomial models
and therefore, a fortiori , the univariate Poisson model.

MVD also showed that, unlike the general GLMM case, the Poisson case allows for
closed-form expressions for the mean vector, variance-covariance matrix, and even for
the full joint probability vectors. This is true for the combined model and hence also
for all of the aforementioned special cases, providing the opportunity to derive closed-
form expressions for the within-unit correlation functions since it implies that there is
no practical need for the Taylor-series based approximations mentioned earlier. Nev-
ertheless, to provide additional insight, the closed-form expressions will be contrasted
with their Taylor-series-based counterparts of various orders. The combined model
and its submodels will be fitted to repeated epileptic-seizures data, which are known
to exhibit considerable amounts of overdispersion, in addition to within-subject cor-
relation.

10.1 Closed-form Derivation of the Correlation Func-

tion

As stated in the Section 3.4, MVD derived closed-form mean (3.20) and variance (3.21)
for the combined model in the general, longitudinal context. These produce, as special
cases, expressions for the negative binomial and the Poisson-normal models. Variance-
covariance expression (3.21) renders straightforward the derivation of a closed-form
correlation function expression.

In the general case of the combined model for longitudinal data with arbitrary
fixed- and random-effects structures, the variance, deriving from (3.21) equals:

Var(Yij) = φije
x′

ijβ+ 1
2zijDz′

ij + σi,jje
2x′

ijβ+2zijDz′
ij

+ φ2
ije

2x′
ijβ+zijDz′

ij

(
ezijDz′

ij − 1
)
. (10.1)
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Likewise, the covariance can be written as:

Cov(Yij , Yik) = φije
x′

ijβ+ 1
2zijDz′

ij

[(
σi,jk

φijφik
+ 1
)
e

1
2 (zijDz′

ik+zikDz′
ij) − 1

]
×

×φike
x′

ikβ+ 1
2zikDz′

ik . (10.2)

The correlation between two measurements j and k on the same experimental unit i
then is:

Corr(Yij, Yik) =
Cov(Yij , Yik)√

Var(Yij) · Var(Yik)
. (10.3)

Because of its generality, it is hard to simplify (10.3), unless in specific cases. Of
course, (10.1) and (10.2) simplify when we zoom in on the Poisson-normal case:

Var(Yij) = ex
′
ijβ+ 1

2zijDz′
ij + e2x

′
ijβ+zijDz′

ij

(
ezijDz′

ij − 1
)
, (10.4)

Cov(Yij , Yik) = ex
′
ijβ+ 1

2zijDz′
ij

(
ezijDz′

ik − 1
)
ex

′
ikβ+ 1

2zikDz′
ik . (10.5)

Likewise, they do for the negative-binomial case. There are two ways to approach
this case. First, one can absorb the fixed effects into θij and hence the conventional
expression follows. However, let us opt for the second route, where (3.16) is main-
tained, only with bi removed or, equivalently, D = 0. Equivalently, we can start from
(10.1) and (10.2), of course. At any rate, the variance and covariance can be written
as:

Var(Yij) = φijµij + σi,jjµ
2
ij, (10.6)

Cov(Yij , Yik) = µijµikσi,jk. (10.7)

Here, µij = exp(x′
ijβ). Evidently, (10.3) can be written in a convenient form as:

Corr(Yij , Yik) =
µijµikσi,jk√

(φijµij + µ2
ijσi,jj) · (φikµik + µ2

ikσi,kk)
. (10.8)

Note that, when the fixed effects are subsumed into θij , the variance is written as
µij +σi,jj with covariance σi,jk, in which case the alternative, simple and conventional
form for the correlation results:

Corr(Yij, Yik) =
σi,jk√

(µij + σi,jj) · (µik + σi,kk)
. (10.9)

Additional insight can be obtained for special but important cases resulting from
simplifying the mean and variance structures of the models. Let us show this for an
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exchangeable structure, where x′
ijβ = β, zij = 1, and D = d. It is then sensible to

also set φij = φ, σi,jj = σ2, and σi,jk = σ2τ , for j �= k. For the combined model, we
obtain the following simplifications of (10.1) and (10.2):

Var(Yij) = φeβ+ 1
2d + φ2

(
eβ+ 1

2d
)2

·
[(

σ2

φ2
+ 1
)
ed − 1

]
,

Cov(Yij , Yik) = φ2
(
eβ+ 1

2d
)2

·
[(

τσ2

φ2
+ 1
)
ed − 1

]
.

As a result, the correlation becomes:

Corr(Yij, Yik) =
φeβ+ 1

2d
[(

τσ2

φ2 + 1
)
ed − 1

]
1 + φeβ+ 1

2d ·
[(

σ2

φ2 + 1
)
ed − 1

] .
Considering the special case with only normally distributed random-effects, i.e., an
exchangeable version of the conventional Poisson-normal model (φij ≡ 1 and σ2 ≡ 0),
simple algebra leads to:

Corr(Yij , Yik) =
eβ+ 1

2d
(
ed − 1

)
1 + eβ+ 1

2d (ed − 1)
. (10.10)

On the other hand, assuming that only the gamma-type random effects are present
(d = 0), we derive:

Corr(Yij, Yik) =
µ2τσ2

φµ+ σ2µ2
=

τVar(λ)
E(λ) + Var(λ)

,

where λ = φµ = φeβ .

10.2 Taylor-series-based Derivation of the Correla-

tion Function

Chapter 8 derived approximate expressions for the correlation function in the GLMM,
including when multiple sequences on the same subject are observed. Given the
absence, for the entirely general case, of closed-form expressions for the moments and
hence,a fortiori , for the joint distribution, this is pragmatically a sensible way forward.
In the Poisson case considered here, it is strictly speaking unnecessary to resort to such
approximations. Nevertheless, we will derive the corresponding expressions for the
Poisson-normal and the combined models. Here, not only a first-order but a general-
order approximation will be derived. It is instructive to compare the various orders of
approximations to the closed-form expressions, to study the quality of approximation.
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10.2.1 General Derivation

We can usefully write the general model as Y i = µi + εi, where µi, the conditional
mean, given the random effects, can be written as µi = h(Xiβ + Zibi), X i and Zi

are known design matrices, β are fixed-effect parameters, bi are random effects, and
h is a known link function. Finally, εi is the residual error component. As shown in
Section 8.1 we have the following expression for the variance-covariance matrix:

V i
∼= ∆iZiDZ

′
i∆

′
i + Φ

1
2Ai

1
2RiAi

1
2 Φ

1
2 . (10.11)

When the canonical link is used, we have Ai = ∆i and (10.11) can be written
as: V i

∼= ∆iZiDZ
′
i∆

′
i + Φ

1
2 ∆

1
2
i Ri∆

1
2
i Φ

1
2 . If in addition, conditional independence

(no serial correlation) is assumed, then (10.11) simplifies to: V i
∼= ∆iZiDZ

′
i∆

′
i +

Φ
1
2 ∆iΦ

1
2 . Further, if we reduce the random-effects part to a random-intercept model,

i.e., Zi = 1 and D = d, then (10.11) reduces to V i
∼= ∆i(dJ)∆′

i + Φ
1
2 ∆iΦ

1
2 . The

result is particularly simple to use in the case of normal outcomes of course. Chapter
8 applied the result to binary data and zoomed in on the random-intercept setting.
This will be reviewed in Section 10.2.2, after which we turn to the count-data case in
Section 10.2.3.

10.2.2 ICC for a Random-intercept Model for Binary Data

As a basis for comparison with the Poisson case to be dealt with next, let us first review
the derivation in Chapter 8 of the ICC for a random-intercept model for binomial
data with a logit link and assuming no overdispersion. In this case, V i reduces to
V i

∼= ∆i(dJ)∆′
i + ∆i = ∆i(dJ + ∆−1

i )∆′
i. Furthermore, ∆i is a diagonal matrix

with Vij(0) as diagonal elements, where the variance function Vij(0) = µij

∣∣
bi=0

(1 − µij

∣∣
bi=0

), and therefore V i
∼= diag(Vij(0))[dJ + diag(Vij(0))−1]diag(Vij(0)). In

other words, the variance-covariance matrix for subject i is specified by the matrix
with elements: vijj = Vij(0)[1 + Vij(0)d], vijk = dVij(0)Vik(0), (j �= k). Based
on these, we can determine a first-order approximation of the marginal correlation
between time point j and k, which is the intraclass correlation coefficient of reliability:

ρijk = Corr(Yij, Yik) =
Vij(0)Vik(0)d√{Vij(0)[1 + Vij(0)d]}{Vik(0)[1 + Vik(0)d]} . (10.12)

Note that, when d = 0, then ρijk = 0, and when d → ∞, then ρijk → 1. Thus,
the full positive correlation range is attainable, quite unlike marginal models for
correlated binary data, that experience restrictions on the correlation parameter space
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to certain degrees. For a discussion, see Molenberghs and Verbeke (2005). No negative
correlations can occur, which is entirely in line with the model’s hierarchical nature,
i.e., where d is and remains interpretable as a variance. The related discussion for the
case of linear mixed models can be consulted in Verbeke and Molenberghs (2000).

10.2.3 ICC for a Random-intercept Model for Count Data

Following similar logic as in the previous section, with a random intercept only, we
can write for the count-data case:

Y i = µi + εi = eXiβ+J ibi + εi,

where J i is an ni-dimensional vector of ones, and further assuming that there is no
overdispersion, i.e., Φ = I, it follows that

vijj = ex
′
ijβ
(
dex

′
ijβ + 1

)
,

vijk = dex
′
ijβex

′
ikβ, (j �= k),

producing the correlation-approximation:

ρijk � dex
′
ijβex

′
ikβ√

ex
′
ijβ
(
dex

′
ijβ + 1

)
· ex′

ikβ
(
dex

′
ikβ + 1

) . (10.13)

Note that, also here, (10.13) reduces to zero correlation for d = 0, and that ρijk → 1
when d→ ∞. Further assuming exchangeability, i.e., x′

ijβ = β, (10.13) simplifies to

ρ � deβ

1 + deβ
. (10.14)

Evidently, we could also start from the explicit expression (10.10) and derive, by
Taylor-series expansions for numerator and denominator separately:

ρ =

[
eβ

+∞∑
n=1

(
3n − 1
n! 2n

)
dn

] / [
1 + eβ

+∞∑
n=1

(
3n − 1
n! 2n

)
dn

]
(10.15)

Obviously, (10.14) immediately follows from (10.15) by restricting the Taylor series
to the first order. To get a rough idea of the approximations’ quality, assume β =
0.6236 and d = 1.1792, then ρ = ρ[∞] = 0.8834. The first order approximation is
ρ[1] = 0.6875, with subsequent values ρ[2] = 0.8274 and ρ[3] = 0.8658. The eighth
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Figure 10.1: Quality of Taylor-series approximations for the correlation function in
the clustered exchangeable case.

order is accurate to four decimal places while, if eight correct decimals are required,
one has to go up to order 13. Figure 10.1 presents the quality of the first- to third-
order approximations, for β = −1, 0, and 1, and for the range [0, 10] for d. Apart
from the obvious increase in quality with increasing order, it is also clear that all
orders converge rather quickly to the correct value with increasing random-intercept
variance. Given that the numerator and denominator of (10.15) differ only in the
constant term, this is not surprising, since for increasing d the leading terms, will
rapidly dominate.

Switching to the combined model for the exchangeable case, the explicit form for
the correlation becomes:

ρ =
φ
(
eβ+ 1

2d
) [(

τσ2

φ2 + 1
)
ed − 1

]
1 + φ

(
eβ+ 1

2d
) [(

σ2

φ2 + 1
)
ed − 1

] .
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Similarly, a Taylor series expansion is:

ρ =

[
φeβ

+∞∑
n=1

(
3nτσ2 + (3n − 1)φ2

n! 2nφ2

)
dn

] / [
1 + φeβ

+∞∑
n=1

(
3nσ2 + (3n − 1)φ2

n! 2nφ2

)
dn

]
.

10.3 Estimation

In the classical univariate overdispersion model, a common choice for the distribution
of the parameter is (dropping the index i) λ ∼ Gamma(α1, α2), with density

f(λ) =
1

αα1
2 Γ(α1)

λα1−1e−λ/α2 ,

where Γ(·) is the gamma function. Straightforward algebra produces

P(Y = y) =

(
α1 + y − 1
α1 − 1

)(
α1

α2 + 1

)y ( 1
α2

)α1

.

The corresponding mean and variance are then given by α1α2 and α1α2(α2 + 1),
respectively.

Turning to the models with normal random effects, they can be fitted by maxi-
mization of the marginal likelihood, obtained by integrating out the random effects
from conditional densities of the form (3.9), in particular from their Poisson-normal
form as specified by (3.10)–(3.12). The likelihood for β, D, and φ takes the form

L(β, D, φ) =
N∏

i=1

∫ ni∏
j=1

fij(yij |bi,β, φ) f(bi|D) dbi. (10.16)

The key problem in maximizing (10.16) is the presence of N integrals over the q-
dimensional random effects bi. Generally, no closed-form solution exists, in which
case one resorts to such methods as numerical integration or expansion techniques
(Molenberghs and Verbeke, 2005).

In some special cases, these integrals can be resolved analytically. The best known
example is the linear mixed effects model (Verbeke and Molenberghs, 2000). Fortu-
nately, also the combined model, and hence the Poisson-normal as a special case,
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lends itself to such analytic calculations. MVD derived the joint probability of Yi:

P(Yi = yi) =
∑
t

⎡⎣ ni∏
j=1

(
yij + tj

yij

)(
α1j + yij + tj − 1

α1j − 1

)
(−1)tjα

yij+tj

2j

⎤⎦

× exp

⎛⎝ ni∑
j=1

(yij + tj)x′
ijβ

⎞⎠ exp

⎧⎨⎩1
2

⎡⎣ ni∑
j=1

(yij + tj)z′ij

⎤⎦D
⎡⎣ ni∑

j=1

(yij + tj)zij

⎤⎦⎫⎬⎭ ,

where the vector-valued index t = (t1, . . . , tni) ranges over all non-negative integer
vectors and αj1 and αj2 are the gamma-distribution parameters for occasion j.

As one way forward for parameter estimation, MVD proceeded by what they
termed partial marginalization, i.e., by integrating (3.15)–(3.19) over the gamma ran-
dom effects only. The corresponding probability is:

P(Yij = yij |bi)

=

(
α1j + yij − 1
α1j − 1

)
·
(

α2j

1 + κijα2j

)yij

·
(

1
1 + κijα2j

)α1j

κ
yij

ij , (10.17)

where κij = exp(x′
ijβ + zijbi). Note that, with this approach, we assume that the

gamma random effects are independent within a subject. Hence, all correlation stems
from the normal random effects. Recall that the general model does not force this
restriction to hold. Now, it is easy to obtain the fully marginalized probability by
numerically integrating the normal random effects out of (10.17) using tools, such
as the SAS procedure NLMIXED, that allow for normal random effects in arbitrary,
user-specified models.

It is important to realize that not all parameters may be simultaneously identifi-
able. For example, the gamma-distribution parameters α1j and α2j are not simulta-
neously identifiable when the linear-predictor part is also present, owing to aliasing
with the intercept term. In the next section, when analyzing the epilepsy data, we
will first assume that these parameters are independent of measurement occasion j

and further that α1 · α2 = 1.

10.4 Analysis of the Epilepsy Data

MVD analyzed the data, introduced in Section 2.2. We will re-analyze the data
but with different constraints on the gamma parameters, and in addition calculating
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the within-subject correlations, using the results of Section 10.1. Let Yij represent
the number of epileptic seizures patient i experiences during week j of the follow-up
period. Also, let tij be the time point at which Yij has been measured, tij = 1, 2, . . .
until at most 27. Let us consider the combined model (3.15)–(3.19), with specific
choices

ln(λij) =

{
(β00 + bi) + β01tij if placebo,
(β10 + bi) + β11tij if treated,

(10.18)

where the random intercept bi is assumed to be zero-mean normally distributed with
variance d. We consider special cases (1) the ordinary Poisson model, (2) the negative-
binomial model, (3) the Poisson-normal model, together with (4) the combined model.
The SAS implementation is presented in MVD. Estimates (standard errors) are dis-
played in Table 10.1. The negative-binomial model and the Poisson-normal model
both provide improved fits relative to the standard Poisson model, with the combined
model providing a further, strong improvement. MVD showed that the effects of
choosing the combined model was clearly seen in such key inferential parameters as
the difference and the ratio of the slopes (not reproduced here). In particular, they
established that, whereas the conventionally used and broadly implemented Poisson-
normal model would suggest a significant effect of treatment, this is no longer true
with the combined model.

Let us now turn to the correlation functions. Since the gamma random effects are
assumed independent, we only need consider the Poisson-normal and combined cases.
Obviously, since the fixed-effects structure is not constant but rather depends on time,
we have to apply the general correlation function (10.3). In the Poisson-normal case,
and for the placebo group, based on the parameter estimates in Table 10.1, we obtain:

Corr(Y (t), Y (s)) =
35.58 · 0.99t+s√

(4.04 · 0.99t + 35.58 · 0.97t) · (4.04 · 0.99s + 35.58 · 0.97s)
,

where Y (t) represents the outcome for an arbitrary subject at time t. The smallest
and largest values for the correlation functions, for both arms, and for both the
Poisson-normal and combined models, are given in Table 10.2.

Within each model, there is relatively little difference between the placebo and
treated groups, although the difference is a bit more pronounced in the combined
model. Further, the correlation range within every group is relatively narrow. The
most noteworthy feature, unquestionably, is the large discrepancy between both mod-
els. This is because the Poisson-normal model forces the correlation and overdisper-
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Table 10.1: Epilepsy Study. Parameter estimates and standard errors for the regres-
sion coefficients in (1) the Poisson model, (2) the negative-binomial model, (3) the
Poisson-normal model, and (4) the combined model. Estimation was done by maxi-
mum likelihood using numerical integration over the normal random effect, if present.

Poisson Negative-binomial
Effect Parameter Estimate (SE) Estimate (SE)

Intercept placebo β00 1.2662 (0.0424) 1.2594 (0.1119)
Slope placebo β01 −0.0134 (0.0043) −0.0126 (0.0111)
Intercept treatment β10 1.4531 (0.0383) 1.4750 (0.1093)
Slope treatment β11 −0.0328 (0.0038) −0.0352 (0.0101)
Negative-binomial parameter α1 — 0.5274 (0.0255)
Negative-binomial parameter α2 = 1/α1 — 1.8961 (0.0918)
Variance of random intercepts d — —

−2 log-likelihood 11,590→ −1492 −6755

Poisson-normal Combined
Effect Parameter Estimate (SE) Estimate (SE)

Intercept placebo β0 0.8179 (0.1677) 0.9112 (0.1755)
Slope placebo β1 −0.0143 (0.0044) −0.0248 (0.0077)
Intercept treatment β0 0.6475 (0.1701) 0.6555 (0.1782)
Slope treatment β2 −0.0120 (0.0043) −0.0118 (0.0074)
Negative-binomial parameter α1 — 2.4640 (0.2113)
Negative-binomial parameter α2 = 1/α1 — 0.4059 (0.0348)
Variance of random intercepts d 1.1568 (0.1844) 1.1289 (0.1850)

−2 log-likelihood 6272= −6810(g.l.) −7664

sion effects to stem from a single additional parameter, the random-intercept vari-
ance d. Thus, considerable overdispersion also forces the correlation to increase,
arguably beyond what is consistent with the data. In the combined model, in con-
trast, there are two additional parameters, giving proper justice to both correlation
and overdispersion effects. It was already clear from the above discussion and that
in MVD that the combined model is an important improvement. This now clearly
manifests itself in the correlation function, too.
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Table 10.2: Epilepsy Study. Observed smallest and largest values for the correlation
function, for the Poisson-normal and combined models, and for both treatment arms.
The time pair for which the values are observed is shown too.

Smallest value Largest value
Model Arm ρ time pair ρ time pair

Poisson-normal placebo 0.8577 26 & 27 0.8960 1 & 2
Poisson-normal treatment 0.8438 26 & 27 0.8794 1 & 2

Combined placebo 0.3041 26 & 27 0.3134 1 & 2
Combined treatment 0.2234 1 & 2 0.3410 26 & 27

10.5 Concluding Remarks

Many inferential questions can be framed in terms of correlations between repeated
or otherwise hierarchical measures taken on the same experimental unit. Such data
can be conveniently modeled using random effects models, like linear and generalized
linear mixed models. In contrast with the LMM case, the GLMM renders more
difficult the derivation of such correlations. Chapter 8 derived approximate correlation
expressions in a broad GLMM framework, where not only a single one but several
repeated-measures sequences per unit may be recorded, perhaps of a different data
type.

In this chapter, we considered the specific case of repeated Poisson data. Two
aspects set our approach apart from the binary one. First, we considered an ex-
tended GLMM, where conventional normally distributed random effects in the linear
predictor are supplemented with overdispersion effects, conveniently captured by, for
example, gamma random effects. This model, owing to MVD, generalizes at once the
Poisson-normal and negative-binomial models for count data. Second, as shown in
MVD, the combined model, and hence its special cases, allows for explicit expressions,
not only for the mean and variance functions, but also for the entire joint probability
mass function. This is a major difference between the Poisson and other non-Gaussian
cases, since it does allow for closed form derivations of the correlation function. As
a consequence, the quality of the Taylor-series expansion based correlation functions,
derived in Chapter 8, can be assessed by comparison with the closed-form expression.
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We applied the methodology to data from a case study in patients with epileptic
seizures. In synchrony with MVD, we have shown that the combined method improves
the fit over its special cases. In addition, in this paper, we have shown that the
correlations derived from the more conventional but also more restricted Poisson-
normal model can be highly misleading. For this particular example, the Poisson-
normal model suggests a high within-patient correlation among any two time points
within any of the two treatment arms. However, the correlations stemming from the
combined model are small to moderate.

One may wonder why a mixed-model approach is used when marginal correla-
tion is of interest, since marginal models may produce correlation parameters more
straightforwardly, perhaps even for the special case of Poisson data, in spite of the
closed-form expressions derived here. However, marginal models come with their own
issues. First, non-likelihood based methods such as GEE treat correlation as nui-
sance parameters only, whence they cannot be used for inferential purposes. Second,
full likelihood methods may be highly prohibitive in terms of computational require-
ments. Third, the correlation ranges attainable in marginal models may be highly
restricted, whereas we have seen here in a number of special but important cases,
such as exchangeable clustered data, that the entire range of positive correlations
can be reached. For a discussion of these and related matters, see Molenberghs and
Verbeke (2005) and Molenberghs and Kenward (2007). Finally, fitting these models
and hence deriving the correlations in practical terms is quite feasible, using what is
termed by MVD partial marginalization. To this end, for example, the SAS procedure
NLMIXED can be used.





Chapter 11

Estimating Criterion Validity

Using the GLMM Framework

and Concepts from Surrogate

Marker Evaluation

In Chapters 6 to 10 we focused on correlation of repeated measures within a subject.
The goal was to estimate reliability and also to study which factors influence relia-
bility though generalizability theory. Often, one is confronted with the situation that
multiple response variables are measured over time, sometimes referred to as a family
of responses. These different response variables can but do not have to be of the same
type. Sometimes, the goal is to estimate treatment effects in a multivariate way, i.e.,
jointly estimate treatment effects on the binary and the continuous responses. In
that case, one not only needs to take account of the correlation within a subject for a
specific single response, but also take account of the correlation between the different
responses for a specific subject. One application in the psychometric literature is the
situation where one wants to estimate the correlation of a certain response variable
with a gold standard to establish criterion validity, as introduced in Section 4.3. In
this chapter we want to provide tools to study criterion validity. In Section 11.1 we
will extend the GLMM framework of Chapter 8 to derive correlation measures be-
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tween 2 sequences of scales, and in Section 11.2 we will borrow techniques developed
in the area of surrogate marker methodology to derive correlation measures.

11.1 Using the GLMM Framework to Study Crite-

rion Validity

Suppose we want to study the correlation between a continuous interval scaled param-
eter Yi1 and a binary response Yi2, then a GLMM can be extended too, as described
in Molenberghs and Verbeke (2005):(

Yi1

Yi2

)
=

⎛⎝ µ1 + λbi + α1Xi

exp[µ2 + bi + α2Xi]
1 + exp[µ2 + bi + α2Xi]

⎞⎠+

(
εi1

εi2

)
.

Here, εi1 and εi2 are the error terms for the continuous and binary outcomes, re-
spectively. Obviously, the first one will be normally distributed while the second one
follows a Bernoulli distribution. We have included a scale parameter λ in the con-
tinuous component of an otherwise random-intercept model, because the continuous
and binary outcome are measured on a different scale. In this case, we have

Zi =

(
λ

1

)
,∆i =

(
1 0
0 vi2(0)

)
,φ =

(
σ2 0
0 1

)
,

with vi2(0) = µi

∣∣
bi=0

(1−µi

∣∣
bi=0

). Note that Zi is not a design matrix in the strict
sense, since it contains an unknown parameter. Nevertheless, it is useful to consider
this decomposition, implying that (8.5) becomes

V i =

(
λ2 vi2(0)λ

vi2(0)λ vi2(0)2

)
τ2 +

(
σ2 0
0 vi2(0)

)
=

(
λ2τ2 + σ2 vi2(0)λτ2

vi2(0)λτ2 vi2(0)2τ2 + vi2(0)

)
.

Here, τ2 is the random-intercept variance. As a result, we have the following ap-
proximation for the marginal correlation: ρ(β) = vi2λτ

2/
√
λ2τ2 + σ2

√
v2

i2τ
2 + vi2,

which we can now apply to the same data set described in Section 2.1 to estimate the
correlation at Week 8 between the binary CGI response variable and the continuous
response parameter defined as the total PANSS. Table 11.1 summarizes the results.
We can conclude that there was a high correlation between the response variable
defined by the CGI and the total PANSS indicating criterion validity of the derived
CGI response and the total PANSS. This correlation was similar in both treatment
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Table 11.1: Schizophrenia Data. Parameter estimates (standard errors) for a bivari-
ate joint GLMM analysis to estimate criterion validity between response and total
PANSS at Week 8. The SAS procedure NLMIXED has been used. Standard errors
are calculated using the delta method.

Endpoint Effect Parameter Estimate (SE)

Total PANSS Intercept µ1 68.98 (1.59)
Treatment α1 -0.41 (2.06)
Standard deviation σ1 13.83 (0.43)
Variation σ2

1 191.37 (11.90)
Inflation λ -0.97 (0.61)

Response (CGI) Intercept µ2 -2.56 (3.25)
Treatment α2 0.96 (2.44)

Common parameters R.I. st.dev. τ 16.84 (10.73)
R.I. var. τ2 283.74 (361.40)
Corr. (control) ρcont -0.74 (0.026)
Corr. (risperidone) ρris -0.75 (0.022)

groups. Note that the correlation (−0.75 in the risperidone group and −0.74 in the
control group) is negative because higher PANSS values indicate a more psychotic
condition and response was coded 1 if the CGI was equal to “very much improved”
or “much improved”. In the classical approach, often the Pearson or the Spearman
correlation is calculated, including only data observed at Week 8 for both the binary
response and the continuous PANSS score. Here, this resulted in −0.59 and −0.61,
for Pearson’s and Spearman’s correlation, respectively.

While in this section we have considered two outcomes of a different type, hence
restricting attention to a cross-sectional setting, it is perfectly possible to combine
the longitudinal ideas of previous sections with the multivariate setting considered
here, thus producing a flexible method that can handle multivariate longitudinal
data. One can then distinguish between various types of correlations, e.g., within-
sequence (referring to the reliability concept), between two different measurements
taken at the same time (of relevance in marker evaluation), and even between different
measurements at different times. Details on how such models can be built and fitted
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are given in Molenberghs and Verbeke (2005, Chapter 24).

11.2 Criterion Validity and Surrogate Maker

Methodology

In this section we will apply the methods of Sections (5.2) and (5.3) to the data de-
scribed in Section 2.1. We will show how these methods can be used to investigate the
criterion validity between the three scales of interest: PANSS, BPRS and CGI. We will
successively consider the relationships between (i) PANSS and BPRS (Section 11.2.1),
(ii) PANSS and CGI (Section 11.2.2) and (iii) BPRS and CGI (Section 11.2.3). The
binary indicator for treatment (Zij) will be set to 0 for the conventional antipsychotic
agents and to 1 for risperidone.

11.2.1 Relationship Between PANSS and BPRS

The relationship between PANSS and BPRS was studied first. Since the BPRS is
derived from the PANSS by selecting some of its items, there is a natural link between
these two scales. However, even though one could expect correlation due to one scale
being a subset of the other, it remains to determine how large such association is.
With our notation we assume PANSS plays the role of S1 and BPRS plays the role
of S2 . Figure 11.1 (a) shows a scatter plot of BPRS versus PANSS. Clearly, both
scales are highly correlated. The Pearson’s correlation coefficient equals ρ = 0.96.
Throughout, the sample sizes of the units were used to weight the observations in the
calculation of the R2 values. Figure 11.1 (b) shows a plot of the treatment effects on
the PANSS versus the treatment effects on the BPRS for the different units. These
seem to be highly correlated.

Indeed, using the multi-trial method with country as unit of analysis we found
highly conclusive values for the coefficients of determination at the trial and individual
level. Since no clear “true endpoint” can be assigned, we calculated both R2

bi|ai,mS2i
=

0.94 (95% confidence interval: [0.82,0.97]) and R2
ai|bi,mS1i

= 0.93 (95% confidence
interval: [0.83,0.97]). However, calculating the estimate (5.14) based on the reduced
model we found R2

bi|ai
= 0.93 with 95% confidence interval [0.86, 0.97], which is

very close to the previous values but has the advantage of being symmetric in both
scales. Its value indicates that not much would be gained in the precision of the
prediction if instead of the full model the reduced model were used to predict the
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Figure 11.1: Schizophrenia Data. (a) Scatter Plot of BPRS versus PANSS;(b) Treat-
ment Effects on PANSS by Treatment Effects on BPRS. The size of each point is
proportional to the number of patients examined by the corresponding investigator;
(c) Plot of the residuals of BPRS versus PANSS.

treatment effect. While in this case study, as well as in extensive simulations by
Tibaldi et al. (2002), there is close agreement between full and reduced coefficients, it
is very important not to take this for granted in different applications. When fitting
the full model would turn out to be computationally intensive, then it is advisable
to conduct an appropriate, perhaps even limited, simulation study. The individual
coefficient of determination was calculated as R2

indiv = 0.92 with 95% confidence
interval [0.90, 0.93]. Note that this quantity is symmetric in both scales. Graphically
this correlation is represented by the residual plot shown in Figure 11.1 (c).
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11.2.2 Relationship Between PANSS and CGI

In this section we will study the symmetric relationship between PANSS (S1) and CGI
(S2). The meta-analytic approach yielded R2

bi|mS2i
,ai

= 0.81 (95% confidence interval
[0.56, 0.93]), R2

ai|mS1i
,bi

= 0.83 (95% confidence interval [0.63, 0.96]) at the trial level
and R2

indiv = 0.78 with 95% confidence interval [0.68, 0.92] at the individual level.
Clearly, these quantities indicate that the agreement between PANSS and CGI, is
acceptably high. However it is important to notice that this value of R2

indiv is the
squared correlation between the latent unobservable variable S̃2 and the observable
scale S1.

At the trial level, the situation is totally different. Marginally

S̃2i|Zi ∼ N

(
µ

eS2i
+ αiZi,

1
1 − ρ2

)
implying that P (S2i ≤ r) = Φ

(
γi
0r + γi

ZZi

)
where γi

Z = −√1 − ρ2αi. This formula
shows the linear relationship between the treatment effect on the latent variable S̃2

and the treatment effect on the observable scale S2 confirming the validity of our
conclusions at the trial level.

Figure 11.2(a) shows boxplots for PANSS at the different categories of CGI. It is
clear from the graph that it seems to be a positive correlation between both scales,
the small decrease of the PANSS median at the end of the graph can be explained
by the small sample size available at this point (only 6 patients). The Spearman
correlation coefficient was 0.77 confirming our previous idea of a high positive corre-
lation. Figure 11.2(b) plots the treatment effects on CGI versus the treatment effects
on PANSS.

In addition, we calculated the R2 measure at the trial level for the “reduced”
model. This yielded R2

bi|ai
= R2

ai|bi
= 0.81 with 95% confidence interval [0.56, 0.94]

which coincides with the trial-level values obtained from the “full” model. Apart from
the attractive feature that this quantity is symmetric in both scales, the result again
indicates that not much would be gained in the precision of the treatment prediction
if instead of the full model, the reduced model were used.

Based on the results of the above meta-analytic method, we are able to predict, for
example, the treatment effect on the CGI response based on the observed treatment
effect on PANSS (or vice versa). Each time the ith unit was removed from the
validation process that was based only on the other 18. First, a linear model was
fitted for PANSS at the ith unit and βi was estimated. Later, using formula (5.12)
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Figure 11.2: Schizophrenia Data. a) Boxplots of PANSS by CGI; (b) Treatment
Effects on PANSS by Treatment Effects on CGI. The size of each point is proportional
to the number of patients.

and the information available from the validation process αi, was estimated as well.
Finally, treatment effect on CGI was predicted as γ̂i

Z = −
√

1 − ρ̂2α̂i. Table 11.2
reports prediction intervals for the 19 units together with the number of patients per
unit. In this table, β̂0 and γ̂i

Z0 are values estimated from the data; γ̂i
Z is the predicted

treatment effect on CGI, given its effect on PANSS. Clearly, in all cases, the predicted
values for γ̂i

Z0 agree reasonably well with the effects estimated from the data taking
into account the standard deviation of this estimate.
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Table 11.2: Schizophrenia Data. Predictions for the treatment effects on CGI based
on the observed treatment effects on PANSS. Estimates (standard errors) are shown.
Here β̂0 is the treatment effects on PANSS estimated from the data, γ̂i

Z0 is the treat-
ment effects on CGI estimated from the data and γ̂i

Z is the prediction for the treatment
effects on CGI.

Unit # patients β̂0 γ̂i
Z0 γ̂i

Z

1 31 3.47 ( 8.00) -0.76 (0.40) -0.24 (0.34)

2 29 -5.74 ( 8.27) 0.76 (0.41) 0.27 (0.78)

3 26 -9.14 ( 8.76) 0.50 (0.41) 0.50 (0.57)

4 44 -1.90 ( 6.72) 0.06 (0.32) 0.05 (0.25)

5 44 -15.19 ( 6.72) 0.87 (0.33) 0.88 (0.52)

6 37 1.72 ( 7.82) -0.18 (0.36) -0.18 (0.37)

7 32 6.00 ( 7.87) -0.33 (0.38) -0.46 (0.47)

8 68 -4.85 ( 5.92) 0.44 (0.28) 0.22 (0.28)

9 49 -23.37 ( 8.68) 1.22 (0.47) 1.40 (0.81)

10 43 -8.88 ( 6.79) 0.49 (0.32) 0.48 (0.46)

11 21 -4.66 ( 9.73) 0.94 (0.49) 0.19 (0.32)

12 25 -10.07 ( 9.12) 1.00 (0.46) 0.53 (0.38)

13 39 -8.84 ( 7.15) 0.06 (0.33) 0.50 (0.45)

14 36 2.22 ( 7.42) -0.28 (0.35) -0.20 (0.54)

15 17 -10.81 (10.97) 0.99 (0.58) 0.66 (0.51)

16 33 3.11 ( 9.48) -0.10 (0.44) -0.27 (0.32)

17 69 -2.50 ( 5.40) 0.002 (0.25) 0.09 (0.28)

18 30 -1.42 ( 8.20) -0.24 (0.39) 0.03 (0.49)

19 128 -11.41 ( 3.94) 0.40 (0.18) 0.65 (0.38)

11.2.3 Relationship Between BPRS and CGI

When studying the relationship between CGI (S1) and BPRS (S2), we found similar
results to the ones obtained in Section 11.2.2. This is not so surprising given the
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Figure 11.3: Schizophrenia Data. a) Boxplots of BPRS by CGI; (b)Treatment Effects
on CGI by Treatment Effects on BPRS. The size of each point is proportional to the
number of patients examined by the corresponding investigator.

strong relationship between BPRS and PANSS. Since results for the full and reduced
models almost coincide, we only present the values for the reduced model here.

Using the meta-analytic approach we find a value of 0.78 for R2
trial with 95% confi-

dence interval [0.48, 0.93] and R2
indiv = 0.73 with 95% confidence interval [0.64, 0.84].

Here, the same remarks of the previous section would be valid; hence it is possible
that R2

indiv could be overestimating the real correlation between BPRS and CGI.
Figure 11.3 (a)–(b), as before, show respectively the scatter plot of boxplots of BPRS
for the different categories of CGI and the treatment effects on CGI by the treatment
effects on BPRS, respectively.





Chapter 12

Case Study in Incomplete

Data

This Chapter follows the development of Michiels et al. (2002). We will focus on two
aspects of the modelling process: the exploratory phase (and likewise assessment of
model fit), and the handling of incomplete sequences. We show how a suite of well-
chosen plots can support the modelling task and how a simple sensitivity analysis can
be conducted to assess the influence of dropout. While previous chapters focussed on
reliability, generalizability and validity, here the focus is on estimation of treatment
effects in presence of incomplete data.

12.1 Exploratory Analysis

Most books on longitudinal data discuss exploratory analysis. See, for example, Dig-
gle, Liang, and Zeger (1994). However, most effort is spent to model building and
formal aspects of inference. In this section, we present a selected set of plots to under-
pin the model building. We distinguish between two modes of display: (1) averaged
over (sub)populations and (2) individual profiles. Both ways can be used to present
three fundamental aspects of the longitudinal structure: (1) the average evolution;
(2) the variance function, (3) the correlation structure. We will discuss some of the
less frequently used displays in what follows.
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Figure 12.1: The Vorozole Study. Mean profiles.

The average evolution describes how the profile for a number of relevant sub-
populations (or the population as a whole), evolves over time. The results of this
exploration will be useful in order to choose a fixed-effects structure for the linear
mixed model.

The mean profiles per treatment arm, as well as their 95% confidence intervals, are
plotted in Figure 12.1. The average profiles indicate an increase over time which is
slightly stronger for the vorozole group until month 14, and afterwards, the megestrol
acetate group shows a slightly higher FLIC score. As can be seen from the confidence
intervals, these differences are clearly not significant.

Owing to thinning of information with elapsing time, we decided to restrict at-
tention to the first 2 years. This leads to a maximum of 13 observations per subject
(month 1, 2, 4, 6, . . . , 24).
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Figure 12.2: The Vorozole Study. Variance function.

In addition to the average evolution, the evolution of the variance is important to
build an appropriate longitudinal model. Clearly, one has to correct the measurements
for the fixed-effects structure and hence detrended values have to be used. These
detrended values are merely the outcome values (change in FLIC-score), subtracted
by the mean change, calculated at each time point separately. Again, two plots are
of interest. The variance function is plotted in Figure 12.2. It seems to be relatively
stable, except for a sharp decline near the end (at which point there are large dropout
rates), and hence a constant variance model is a plausible starting point.

The correlation structure describes how measurements within a subject correlate.
The correlation function depends on a pair of times and only under the assumption
of stationarity does this pair of times simplify to the time lag only. This is important
since many exploratory and modelling tools are based on this assumption.

A scatter plot matrix is given in Figure 12.3. The off-diagonal elements picture
scatter plots of standardized residuals obtained from pairs of measurement occasions.
The decay of correlation with time is studied by considering the evolution of the
scatters with increasing distance to the main diagonal. Stationarity on the other hand
implies that the scatter plots remain similar within diagonal bands if measurement
occasions are approximately equally spaced. In addition to the scatter plots, we place
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Figure 12.3: The Vorozole Study. Scatter plot matrix for selected time points. The
same vertical scale is used along the diagonal to display the attrition rate as well.

histograms on the diagonal, capturing the variance structure including such features
as skewness. If the axes are given the same scales, it is very easy to capture the
attrition rate as well.

12.2 A Selection Model Formulation

First, a linear mixed model for the measurements of the form (3.5) is assumed. Sec-
ondly, we will model the dropout mechanism. We assume that incompleteness is due
to dropout only, and that the first measurement Yi1 is obtained for everyone. We refer
to Section 3.5 for the general formulation and notation. For each subject i, denote Di

to be the dropout indicator, one higher than the occasion of the last obtained mea-
surement (3.23). The model for the dropout process is based on a logistic regression
for the probability of dropout at occasion j, given the subject is still in the study. We
denote this probability by g(hij, yij) in which hij is a vector containing all responses
observed up to but not including occasion j, as well as relevant covariates wik. We
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then assume that g(hij, yij) satisfies

logit[g(hij, yij)] = logit [pr(Di = j|Di ≥ j, yi,Wi)] = hijψ0 + yijψd i = 1, . . . , N,
(12.1)

where ψ = (ψ′
0, ψd)′. When ψd equals zero, the dropout model is random, and all

parameters can be estimated using standard software since the measurement model
for which we use a linear mixed model and the dropout model, assumed to follow a
logistic regression, can then be fitted separately. If ψd �= 0, the dropout process is
assumed to be non-random.

Model (12.1) is now used to construct the dropout process:

f(di|yi,Wi,ψ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ni∏
j=2

[1 − g(hij , yij)] for a completer (di = ni + 1),

d−1∏
j=2

[1 − g(hij, yij)]g(hid, yid) for a dropout (di = d ≤ ni).

(12.2)
Several authors point to the sensitivity of this model to assumptions about the

dropout process which are fundamentally not verifiable. See the discussion to Diggle
and Kenward (1994) and Verbeke et al. (2001).

However, in the framework of a sensitivity analysis, it is useful to compare both
MAR and MNAR versions of a selection model with pattern-mixture model counter-
parts. In the next section, we will indicate that, for the case of the Vorozole study, the
substantive conclusions under both modelling frameworks are essentially the same.

Application to the Vorozole Study

It is convenient to start under MAR, since then the measurement model and the
dropout model can be fitted separately. Thereafter, the MNAR version will be con-
sidered.

Since we are modelling change versus baseline, all models are forced to pass
through the origin. This is done by allowing the main covariate effects, but only
through their interactions with time. The following covariates were considered for the
measurement model: baseline value, treatment, dominant site, and time in months
(up to a cubic time trend). Second order interactions were considered as well. Then, a
backwards selection procedure was performed. For design reasons, treatment was kept
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Table 12.1: The Vorozole Study. Selection model parameter estimates (standard er-
rors).

Effect Parameter Estimate (SE)

Fixed-Effect Parameters:

Time β0 7.78 (1.05)

Time∗baseline β1 −0.065 (0.009)

Time∗treatment β2 0.086 (0.157)

Time2 β3 −0.30 (0.06)

Time2∗baseline β4 0.0024 (0.0005)

Variance Parameters:

Random intercept d 105.42

Serial variance τ2 77.96

Serial association λ 7.22

Measurement error σ2 77.83

in the model in spite of its non-significance. An F test for treatment effect produces a
p value of 0.5822. Apart from baseline, no other time-stationary covariates were kept.
A quadratic time effect provided an adequate description of the time trend. Based
on Figures 12.1, 12.2, 12.3 we have selected a covariance structure including random
intercepts, a spatial Gaussian process and measurement error. The final model is
presented in Table 12.1.

The total correlation between two measurements, one month apart, equals 0.696.
The residual correlation, which remains after accounting for the random effects, is still
equal to 0.491. The serial correlation, obtained by further ignoring the measurement
error, equals ρ = exp(−1/7.222) = 0.981. Fitted profiles are displayed in Figure 12.4.

For each treatment group, we obtain three sets of profiles. The fitted complete
profile is the average curve that would be obtained, had all individuals been completely
observed. If we use only those predicted values that correspond to occasions at which
an observation was made, then the fitted incomplete profiles are obtained. The latter
are somewhat above the former when the random effects are included, and somewhat
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Figure 12.4: The Vorozole Study. Fitted profiles (averaging the predicted means for
the incomplete and complete measurement sequences, without the random effects).

below when they are not, suggesting that individuals with lower measurements are
more likely to disappear from the study. In addition, while the fitted complete curves
are very close (the treatment effect was not significant), the fitted incomplete curves
are not, suggesting that there is more dropout in the megestrol acetate arm than in
the vorozole arm. This is in agreement with the dropout rate, displayed in Figure 2.4,
and should not be seen as evidence of a bad fit. Finally, the observed curves, based on
the measurements available at each time point, are displayed. These are higher than
the fitted ones, but this should be viewed with the standard errors of the observed
means in mind (see Figure 12.1).

Next, we will study factors which influence dropout. A logistic regression model,
described by (12.1) and (12.2) is used. To start, we restrict attention to MAR pro-
cesses, whence ψd = 0. The first model includes treatment, dominant site, baseline
value, and the previous measurement but only the last two are significant, producing
(estimate (SE)):

logit[g(hij)] = 0.080(0.341)− 0.014(0.003)basei − 0.033(0.004)yi,j−1. (12.3)
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Diggle and Kenward (1994) and Molenberghs, Kenward, and, Lesaffre (1997) consid-
ered non-random versions of this model by including the current, possible unobserved
measurement, such as in (12.1). This requires more elaborate fitting algorithms, since
the missing data process is then non-ignorable, and hence (3.36) and (3.37) needs to
be used. Diggle and Kenward (1994) used the simplex algorithm (Nelder and Mead,
1965), while Molenberghs, Kenward, and Lesaffre (1997) fitted their models with the
EM algorithm (Dempster, Laird, and Rubin, 1977). The algorithm of Diggle and Ken-
ward is implemented in Oswald (Smith, Robertson, and Diggle, 1996). With larger
datasets such as this one, convergence can be painstakingly difficult and one has to
worry about apparent convergence. Therefore, we first proceed in an alternative way.
Both Diggle and Kenward (1994) and Molenberghs et al. (1994) observed that in
informative models, dropout tends to depend on the increment, i.e., the difference
between the current and previous measurements yij − yi,j−1. Clearly, a very similar
quantity is obtained as yi,j−1 − yi,j−2, but a major advantage of such a model is that
it fits within the MAR framework. In our case, we obtain (estimate (SE)):

logit[g(hij)]

= 0.033(0.401)− 0.013(0.003)basei + 0.012(0.006)yi,j−2 − 0.035(0.005)yi,j−1

= 0.033(0.401)− 0.013(0.003)basei − 0.023(0.005)
yi,j−2 + yi,j−1

2

−0.047(0.010)
yi,j−1 − yi,j−2

2
(12.4)

indicating that both size and increment are significant predictors for dropout. We
conclude that dropout increases with a decrease in baseline, in overall level of the
outcome variable, as well as with a decreasing evolution in the outcome. In the next
section, we will see that these conclusions can also be obtained from the pattern-
mixture model building exercise. However, before we proceed, we will first consider
the MNAR versions of the selection model.

Using Oswald, both dropout models (12.3) and (12.4) can be compared with their
non-random counterparts, where yij is added to the linear predictor. The first one
becomes

logit[g(hij, yij)] = 0.53− 0.015basei − 0.076yi,j−1 + 0.057yij (12.5)

while the second one becomes

logit[g(hij, yij)] = 1.38− 0.021basei − 0.0027yi,j−2 − 0.064yi,j−1 + 0.035yij. (12.6)

TVANGENE
Highlight
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Note that formal testing of dropout models (12.5) versus (12.3) and for (12.6) versus
(12.4) should be approached with caution, see Molenberghs, Kenward, and Lesaffre
(1997) and discussions to Diggle and Kenward (1994) by Rubin, by Little, and by
Laird. Therefore, apart from the message that in this particular example, the MAR
version of the selection model is sufficient to describe the data, it is a useful idea to
compare the conclusions with the ones obtained from a pattern-mixture model, as
was also suggested by Hogan and Laird (1997).

12.3 A Pattern-mixture Model Formulation

This family is based on the factorization defined in 3.26, where the conditional density
of the measurements given the dropout pattern is combined with the marginal density
describing the dropout mechanism. After initial mention of these models (Little and
Rubin, 1987, Glynn, Laird, and Rubin, 1986) they are receiving more attention lately.
It is generally believed that fitting pattern-mixture models is more honest in the sense
that no implicit untestable assumptions are made and that they are computationally
advantageous as well.

The dropout process (12.2) simplifies to f(di|Wi,ψ) which is a, possibly covariate-
corrected, model for the probability to belong to a particular pattern. Its components,
g(hij), containing only covariates now, describe the dropout rate at each occasion.

The measurement model has to reflect dependence on dropout. In its most general
form, this implies that (3.5) is replaced by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Yi = Xiβ(di) + Zibi + εi

bi ∼ N(0, D(di)),

εi ∼ N(0,Σi(di)).

(12.7)

Thus, the fixed effects as well as the covariance parameters are allowed to change
with dropout pattern and a priori no restrictions are placed on the structure of this
change.

Model family (12.7) contains under identified members since it describes the full set
of measurements in pattern di, even though there are not measurements after occasion
di − 1. Little (1993, 1994) advocated the use of identifying restrictions which works
well in relatively simple settings. Molenberghs et al. (1998) proposed a particular
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set of restrictions for the monotone case which correspond to MAR. To avoid this
problem, simplified (identified) models can be considered. The advantage is that the
number of parameters decreases, which is generally an issue with pattern-mixture
models. Hogan and Laird (1997) noted that in order to estimate the large number
of parameters in general models, one has to make the awkward requirement that
each dropout pattern is sufficiently “filled”, in other words one has to require large
numbers of dropouts. Note however that simplified models, qualified as “assumption
rich” by Sheiner, Beale, and Dunne (1997), are also making untestable assumptions
and therefore illustrate that even pattern-mixture models do not provide a free lunch.
A main advantage however is that the need of assumptions and their implications
are more obvious. For example, it is not possible to assume an unstructured time
trend in incomplete patterns, except if one restricts attention to the time range from
onset until dropout. In contrast, assuming a linear time trend allows estimation in
all patterns containing at least two measurements.

In general, we distinguish between two types of simplifications to identify pattern-
mixture models. First, trends can be restricted to functional forms supported by the
information available within a pattern. The linear time trend discussed earlier is an
example. Secondly, one can let the parameters vary across patterns in a parametric
way. Thus, rather than estimating a separate time trend in each pattern, one could
assume that the time evolution is unstructured in each pattern, but parallel across
patterns. The available data can be used to assess whether such simplifications are
supported within the time ranges for which there is information. Using the so-obtained
profiles past the time of dropout still requires extrapolation.

Application to Vorozole Study

In analogy with the exploration in the selection model context, it is natural to explore
the data from a pattern-mixture point of view. To this end, plots per dropout pattern
can be constructed. Figure 12.5 displays the averaged profiles per pattern.

Figure 12.5 clearly shows that pattern-specific profiles are of a quadratic nature
with in most cases a sharp decline prior to dropout. Note that this is in line with
the fitted dropout mechanism (12.4). Therefore, this feature needs to be reflected
in the pattern-mixture model. In analogy with our selection model, the profiles are
forced to pass through the origin. This is done by allowing only time main effect and
interactions of other covariables with time in the model.
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Figure 12.5: The Vorozole Study. Mean profiles, per dropout pattern, grouped per
treatment arm.

The most complex pattern-mixture model we consider includes a different param-
eter vector for each of the observed patterns. This is done by including the interaction
of all effects in the model with pattern, a factor variable calculated as 2+ the number
of observations after baseline. We then proceed by backward selection in order to
simplify the model. First, we found that the covariance structure is common to all
patterns, encompassing random intercept, a serial exponential process, and measure-
ment error.

For the fixed effects we proceeded as follows. A backward selection procedure,
starting from a model that includes a main effect of time and time2, as well as inter-
actions of time with baseline value, treatment effect, dominant site and pattern, and
the interaction of pattern with time2. This procedure revealed main effects of time
and time2, as well as interactions of time with baseline value, treatment effect, and
pattern, and the interaction of pattern with time2. This reduced model can be found
in Table 12.2. Note the sign difference of the time by treatment interaction between
Tables 12.1 and 12.2. Of course, these models are drastically different and moreover
the effects are not significant.
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Table 12.2: The Vorozole Study. Parameter estimates and standard errors for the
first pattern-mixture model.

Effect Estimate (SE) Effect Estimate (SE)

Fixed-effect Parameters:

Time 4.671 (0.844) Time2 −0.034 (0.029)

Time∗Pattern 1 −8.856 (2.739) Time2∗Pattern 1

Time∗Pattern 2 −0.796 (2.958) Time2∗Pattern 2 −1.918 (1.269)

Time∗Pattern 3 −1.959 (1.794) Time2∗Pattern 3 −0.145 (0.365)

Time∗Pattern 4 1.600 (1.441) Time2∗Pattern 4 −0.541 (0.197)

Time∗Pattern 5 0.292 (1.295) Time2∗Pattern 5 −0.107 (0.133)

Time∗Pattern 6 1.366 (1.035) Time2∗Pattern 6 −0.181 (0.080)

Time∗Pattern 7 1.430 (1.045) Time2∗Pattern 7 −0.132 (0.071)

Time∗Pattern 8 1.176 (1.025) Time2∗Pattern 8 −0.118 (0.061)

Time∗Pattern 9 0.735 (0.934) Time2∗Pattern 9 −0.083 (0.049)

Time∗Pattern 10 0.797 (1.078) Time2∗Pattern 10 −0.078 (0.055)

Time∗Pattern 11 0.274 (0.989) Time2∗Pattern 11 −0.023 (0.046)

Time∗Pattern 12 0.544 (1.087) Time2∗Pattern 12 −0.026 (0.049)

Time∗Baseline −0.031 (0.004) Time∗Treatment −0.067 (0.166)

Variance Parameters:

Random intercept 78.45

Serial variance 95.38

Serial association 8.85

Measurement error 73.77

As was the case with the selection model in Table 12.1, treatment effect is non-
significant. Indeed, a single degree of freedom F test yields a p value of 0.69. Note
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Figure 12.6: The Vorozole Study. Fitted selection (solid line) and first pattern-mixture
models (dashed lines).

that such a test is possible since treatment effect does not interact with pattern, in
contrast to the model which we will describe later. The fitted profiles are displayed in
Figure 12.6. We observe that the profiles for both arms are very similar. This is due
to the fact that treatment effect is not significant but perhaps also because we did not
allow a more complex treatment effect. For example, we might consider an interaction
of treatment with the square of time and, more importantly, an treatment effect which
is pattern-specific. Some evidence for such an interaction is seen in Figure 12.5.

Our second, expanded model, allowed for up to cubic time effects, the interac-
tion of time with dropout pattern, dominant site, baseline value and treatment, as
well as their two- and three-way interactions. After a backward selection procedure,
the effects included are time and time2, the two-way interaction of time and dropout
pattern, as well as three factor interactions of time and dropout pattern with (1) base-
line, (2) group, and (3) dominant site. Finally, time2 interacts with dropout pattern
and with the interaction of baseline and dropout pattern. No cubic time effects were
necessary, which is in agreement with the observed profiles in Figure 12.5. The pa-
rameter estimates of this model are displayed in Table 12.3. The model is graphically
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Figure 12.7: The Vorozole Study. Fitted selection (solid line) and second pattern-
mixture models (dashed lines).

represented in Figure 12.7.

Because a pattern-specific parameter has been included, we have several options
for the assessment of treatment. Since there are 13 patterns (remember we cut off
the patterns at 2 years), one can test the global hypothesis, based on 13 degrees of
freedom, of no treatment effect. We obtain F = 1.25, producing p = 0.24, indicating
that there is no overall treatment effect. Each of the treatment effects separately is at a
non-significant level. Alternatively, the marginal effect of treatment can be calculated,
which is the weighted average of the pattern-specific treatment effects, with weights
given by the probability of occurrence of the various patterns. Its standard error is
calculated using a straightforward application of the delta method. This effect(SE)
is equal to −0.286(0.288) producing a p value of 0.32, which is still non-significant.

While the 13 d.f. test is useful and appealing from a stratification point of view,
it should be realized that one stratifies for a post-randomization variable and that
therefore caution should be used. Such a test can play a role in a sensitivity assess-
ment, but the marginal treatment effect, even under a PMM model, should not be
omitted.
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Table 12.3: The Vorozole Study. Parameter estimates and standard errors for the
second pattern-mixture model (part I). Each column represents an effect, for which a
main effect is given, as well as interactions with the dropout patterns.

Fixed-effect parameters [estimate (SE)]

Effect Time Time∗Baseline Time2

Main 5.468 (5.089) −0.034 (0.040) −0.271 (0.206)

Pattern 1 7.616 (21.908) −0.119 (0.175)

Pattern 2 44.097 (17.489) −0.440 (0.148) −18.632 (7.491)

Pattern 3 22.471 (10.907) −0.218 (0.089) −5.871 (2.143)

Pattern 4 10.578 (9.833) −0.055 (0.079) −1.429 (1.276)

Pattern 5 14.691 (8.424) −0.123 (0.069) −1.571 (0.814)

Pattern 6 7.527 (6.401) −0.061 (0.052) −0.827 (0.431)

Pattern 7 −12.631 (7.367) 0.086 (0.058) 0.653 (0.454)

Pattern 8 14.827 (6.467) −0.126 (0.053) −0.697 (0.343)

Pattern 9 5.667 (6.050) −0.049 (0.049) −0.315 (0.288)

Pattern 10 12.418 (6.473) −0.093 (0.051) −0.273 (0.296)

Pattern 11 1.934 (6.551) −0.022 (0.053) −0.049 (0.289)

Pattern 12 6.303 (6.426) −0.052 (0.050) −0.182 (0.259)

Effect Time2∗Baseline Time∗Treatment

Main 0.002 (0.002)

Pattern 1 0.445 (5.095)

Pattern 2 0.1458 (0.0644) 0.867 (1.552)

Pattern 3 0.0484 (0.0178) −1.312 (0.808)

Pattern 4 0.0080 (0.0107) −0.249 (0.686)

Pattern 5 0.0127 (0.0069) −0.184 (0.678)

Pattern 6 0.0058 (0.0036) 0.527 (0.448)

Pattern 7 −0.0065 (0.0038) 0.782 (0.502)

Pattern 8 0.0052 (0.0029) −0.809 (0.464)

Pattern 9 0.0021 (0.0023) −0.080 (0.443)

Pattern 10 0.0016 (0.0024) 0.331 (0.579)

Pattern 11 0.0003 (00024) −0.679 (0.492)

Pattern 12 0.0015 (0.0021) 0.433 (0.688)

Pattern 13 −1.323 (0.706)
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In summary, we obtain a non-significant treatment effect from all our different
models, which gives more weight to this conclusion.

Given the fact that all patients are followed up until death or progression, dropout
is an important concern. Since there is an intimate link between death/progression
(seen as dropout) and quality of life (our response of interest), a careful assessment of
the relation between both is important. Since quality of life is largely a consequence
of the evolution of the disease, it is not unnatural to condition on an important aspect
of it, i.e., death/progression which in our case is done by conditioning on the response
pattern. This provides extra motivation to consider the PMM model in addition to
the SEM model. Within such an homogenous group, the behavior is completely in line
with intuition: profiles rise, reach a plateau, and then start decreasing, whereafter
they drop out, as clearly seen in Figure 12.4. It can be seen as an advantage of
PMM models that such representations, which are very insightful for the clinical
researcher, are easily obtained. The SEM model on the other hand, concentrates
more on the question which is of direct interest to the clinical trialist: the comparison
of the treatment effect between the two groups, averaged over, or corrected for other
covariates. In general, such an approach might help assess which risk factors are
associated with dropout or dropout-pattern specific profiles. In this case, apart from
treatment arm, mainly dominant tumor site is retained as a predictor variable.

12.4 Concluding Remarks

In this Chapter we have concentrated on total FLIC (i.e., change of the score ver-
sus baseline), a quality of life score measured in a multi-centric two arm study in
postmenopausal women suffering from metastatic breast cancer. Since virtually all
patients were followed up until disease progression or death, the amount of dropout
is large. A very large group of patients drops out after just a couple of months.

While classically only selection models are fitted, pattern-mixture models can be
seen as a viable alternative. We analyzed the data using both, leading to a sensitivity
analysis. More confidence in the results can be gained if both models lead to similar
conclusions.

The average profile in the selection model depends on the baseline value, as well
as on time. The latter effect is mildly quadratic. There is no evidence for a treatment
difference. However, it should be noted that the average profile found is the one that
would have been observed, had no subjects dropped out, and under the additional as-
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sumption that the MAR assumption is correct. Fitting non-random dropout models,
in the sense of Diggle and Kenward (1994) is possible, but computationally difficult
for a fairly large trial like this one. A separate study of the dropout mechanism re-
vealed that dropout increases with three elements: (1) an unfavorable baseline score,
(2) an unfavorable value at the previous month, as well as (3) an unfavorable change
in value from the penultimate to the last obtained value.

A pattern-mixture model is fitted by allowing at first a completely separate pa-
rameter vector for each observed dropout pattern, which is then simplified by using
standard model selection procedures, by considering whether effects are common to
all patterns. A first pattern-mixture model features a common treatment effect, of
which the assessment is then straightforward. A second model includes a separate
treatment effect for each dropout pattern. This leads to two distinct test. The first
one tests for equality of the whole treatment vector to be zero. The second one first
calculates the marginal treatment effect from the vector of effects, by composing a
weighted sum, where the weights are the multinomially estimated probabilities of the
various patterns. In all cases, there is no treatment effect. However, a graphical
display of the fitted profiles per pattern is enlightening, since it clearly confirms the
trend detected in the selection models, that patients tend to drop out when their
quality of life score is declining. Since this feature is usually coupled to an imminent
progression or death, it should not come as a surprise. An important advantage of
pattern-mixture models is that fitting them is more straightforward than non-random
selection models. The additional calculations needed for the marginal treatment effect
and its associated precision can be done straightforwardly using the delta method.





Chapter 13

Discussion and Further

Research

When the biostatistician and the clinician are designing a new clinical study, they
should have good information on the psychometric properties of the measurements
that are planned to be done in clinical studies. Indeed, performing clinical studies
is resource demanding and therefore it would irresponsible to built upon unreliable
measurements. The strategy must be to use a scale, or measurements in general,
which has been validated before and for which reliability (test-retest, inter-rater and
internal consistency) and validity (content, construct and criterion) are established.
The psychometric validation is usually done on a selected small sample from the
population for which the scale is intended to be used. If the population of the trial is
different, a new battery of reliability and validity testing might be warranted.

In this thesis, most of the focus was on quantifying reliability. Reliability reflects
on the amount or measurement error which is inherent in any measurement, and
therefore, reliability also reflects the extent to which a measurement instrument can
differentiate among individuals. As differentiation between subjects randomized to
different treatments is core business in clinical trials, it is obvious that reliability is
of utmost importance! Generalizability Theory, as natural extension of reliability
and Classical Theory can therefore be an extremely valuable tool to assess which
factors influence reliability. As noted by Shalvelson, Webb, and Rowley (1989), “GT
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is not widely applied in psychological research because of its formidable mathematical
development”. As noted by Dunn (1989), there is also a need for larger sample sizes,
otherwise, many of the estimates of variance components will be practically worthless.

In this work, we proposed a framework to study trial or population specific re-
liability and generalizability based on longitudinal biomedical trial data. The goal
is to use clinical trial data at hand and to evaluate psychometric properties of the
measurement. The intention is certainly not to replace up-front validity and reliabil-
ity testing but to stimulate post hoc evaluation on the performance of the scale or
any other measurement of interest. The advantage is that clinical trialists can learn
before embarking on new trials in a similar population whether they feel comfort-
able using the same scale again. These methods can also deliver a population-trial
specific measure for reliability in case there is a need to confirm earlier reliability
testing results; regulatory authorities might question reliability of the scale in the
specific trial population. The measurements in clinical trials are often ‘unstable’, in
a psychometric sense, due to present treatment and time effect. In contrast, in the
classical theory setting, reliability testing is always done on patients in a steady state
condition, resulting in ‘parallel measurements’ within the patients. Therefore, one
of the biggest challenges was to find a way to extract these effects and to make the
bridge to the classical reliability coefficient, a well known and established concept in
psychometrics. This must not stop us however of trying to improve and learn for the
future. We should indeed look beyond just merely the treatment difference and its
holly p-value, but also look into variance and correlation. One big advantage that
pharmaceutical companies have is that they often are sitting on a gold mine of clinical
data as each regulatory submission requires at least 1000 patients. Here, the sample
size is not an issue to study generalizability.

Investigators in the mental disorders traditionally have been more concerned with
the psychometric properties of their measures than have their colleagues in other
medical specialities. It is obvious however that also other types of measurements can
benefit from studying its psychometric properties. For instance, are there subgroups
of subjects for which the plasma RNA viral load for HIV is less reliable?

While the thesis focused on test-retest reliability, interrater reliability was not
directly studied. This is natural as patients tend to be evaluated by only one investi-
gator in the clinical trial setting. In GT however, we showed that impact of country
can be evaluated using clinical trial data, similarly, also the impact of investigator
could be assessed. Internal consistency was not addressed in this thesis. In my expe-
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rience, internal consistency is assessed more regularly in clinical trials. This is done
by the calculation of Cronbach’s alpha coefficient using baseline measurements. It
would be interesting however to study how this correlation between the items of a
subscale evolves over time in future research.

The study of construct and content validity is difficult in the context of clinical
trials. This requires a more fundamental evaluation to evaluate whether the scale
measures what it purports to measure. The principles of criterion validity however
can be applied to the clinical trial setting. Joint modelling in the GLMM framework
and the techniques developed in surrogate maker validation offer more elaborate tech-
niques and can give more insight then the simple evaluation of the Pearson correlation
coefficient. This can be valuable to assess correlations between measurements and to
evaluate whether changes in certain scales are correlated with more clinical tangi-
ble measurements. Again, as for reliability, this is not something we should only do
to evaluate a new scale and its correlation with a more established golden standard.
These techniques could also be used to investigate for instance the correlation between
the emergence of mutations and plasma RNA viral load in clinical trials in HIV.

The common theme of this thesis was psychometric validation. The essence actu-
ally is the study of correlation, the correlation within a patient and between patients.
It was clear that in case of Gaussian distributed data it was easy to obtain marginal
correlation coefficients in a straightforward way via the LMM. This is related to the
conjugacy between the normal distribution of random effects and the normal distri-
bution of the measurements and the natural identity link. For count data, based on
the work of Molenberghs, Verbeke, and Demétrio (2008), a closed formula was derived
to calculate the correlation coefficient. Also here, there is conjugacy between Pois-
son distributed outcomes and gamma distributed random effects, even when normal
random effects are additionally present; these, together with the natural link, the
logarithmic one, produce the negative binomial model. In the binary case, however,
in spite of conjugacy between binomial and beta distributions, leading to the well-
known beta-binomial model, this property is destroyed when normal random effects
are additionally present. This partly explains why there is no closed form for the
variance-covariance functions, thus necessitating approximate correlation calculation.
This provides motivation for further research for the binary case and to derive closed
formulas for correlation based on the probit model, where there is conjugacy through
the probit link. One more route for further research is to evaluate whether another
approximation can provide an alternative to the Taylor-expansion employed in current
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thesis.
The models used to estimate reliability, generalizability and validity are similar

to the models used to estimate treatment effects. Fully longitudinal data were used
instead of paired data to calculate the ICC. Since the methods are likelihood-based,
they are valid under the broad assumption of missingness at random, whereby miss-
ingness depends on observed outcomes and covariates but, given these, not further on
unobserved outcomes. As discussed in Chapter 12, different approaches and sensitiv-
ities should be done in case of incomplete data when longitudinal models are used to
evaluate treatment effects. The same is true when we use these longitudinal models
to estimate reliability, generalizability and validity. Further research is necessary on
this topic.
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Appendix A

Explicit Expressions for Components of (9.11)
For notational simplicity, write π0 ≡ Vpdt(0) and π′

0 ≡ Vpd′t(0). Further, note that
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SAS Implementation

All data analyses have been conducted using the SAS procedure GLIMMIX to
obtain parameter estimates and measures of precision. The correlation quantities
derived have been obtained using user-defined code written in the SAS procedure
IML. Here, we will provide some example code and a brief discussion. A full set of
programs and output can be obtained from the authors’ web pages.

First, a SAS program, using the procedure GLIMMIX, for the model of Sec-
tion 9.2.1, with a random intercept and a scale parameter Φ, taking into account
treatment, time, as well as their interaction, is as follows:

ods output ParameterEstimates=datagen.model1estimates

covparms=datagen.model1covparms

covb=datagen.model1covb

asycov=datagen.model1asycov;

proc glimmix data=cgi3 noclprint=26 asycov;

class treat id xtime_c;

title ’Overall model with random patient to estimate

overall reliability with scale parameter’;

model cgi_resp(event=’1’) = xtime_c|treat

/ covb dist=binary link=logit solution;

random intercept / subject=id;

random _residual_;

run;

The coding is self-explanatory, in the sense that the fixed-effects structure involves
time, treatment, and their interaction, and a random intercept is then added. The
RANDOM _residual_ statement ensures the scale, or overdispersion, parameter is
included.

Second, to estimate the correlation and its associated standard error, SAS IML
can be used. Let us exemplify this for the correlation between the first and second
occasions, within the risperidone group.

proc iml;

use datagen.model1estimates;
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read all var {estimate} into beta;

use datagen.model1covparms;

read all var {estimate} into sigma;

use datagen.model1asycov;

read all var {CovP1,CovP2} into asycov;

close datagen.model1asycov;

use datagen.model1covb;

read all var {Col1,Col2,Col3,Col4,Col5,Col6,Col7,Col8,Col9,Col10,Col11,

Col12,Col13,Col14,Col15,Col16,Col17,Col18} into covb;

close datagen.model1covb;

varint=sigma[1];

scale=sigma[2];

covarmatrix=block(covb,asycov);

zero=J(18,1,0);

* Time RX Contr*Time Ris*time;

* I 1 2 4 6 8 C R 1 2 4 6 8 1 2 4 6 8;

bw1ris=T({1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0});

bw2ris=T({1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0});

bw4ris=T({1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0});

bw6ris=T({1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0});

bw8ris=T({1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1});

bw1con=T({1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0});

bw2con=T({1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0});

bw4con=T({1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0});

bw6con=T({1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0});

bw8con=T({1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0});

pi1ris=exp(T(bw1ris)*beta)/(1+exp(T(bw1ris)*beta));

pi2ris=exp(T(bw2ris)*beta)/(1+exp(T(bw2ris)*beta));

k0_1_2_ris=(pi1ris*(1-pi1ris)*pi2ris*(1-pi2ris));

k1_1_2_ris=pi1ris*(1-pi1ris)*varint+scale;

k2_1_2_ris=pi2ris*(1-pi2ris)*varint+scale;

* correlation following equation (23)

r1_2_ris=(sqrt(k0_1_2_ris)*varint)/(sqrt(k1_1_2_ris)*sqrt(k2_1_2_ris));
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D_rho_sigma_1_1_2_ris=sqrt(k0_1_2_ris)/(sqrt(k1_1_2_ris)*sqrt(k2_1_2_ris));

D_rho_sigma_2_1_2_ris=-0.5*varint*sqrt(k0_1_2_ris)*(k1_1_2_ris*k2_1_2_ris)**(-1.5)

*(2*k0_1_2_ris*varint

+scale*(pi1ris*(1-pi1ris)+pi2ris*(1-pi2ris)));

D_rho_po_1_2_ris=0.5*varint*(k0_1_2_ris*k2_1_2_ris)**(-0.5)

*(k1_1_2_ris)**(-1.5)*(scale*pi2ris*(1-pi2ris)*(1-2*pi1ris));

D_rho_poa_1_2_ris=0.5*varint*(k0_1_2_ris*k1_1_2_ris)**(-0.5)

*(k2_1_2_ris)**(-1.5)*(scale*pi1ris*(1-pi1ris)*(1-2*pi2ris));

D_rho_phi_1_2_ris=-0.5*varint*sqrt(k0_1_2_ris)

*(k1_1_2_ris*k2_1_2_ris)**(-1.5)*(k1_1_2_ris+k2_1_2_ris);

F_ris_1_2=D_rho_po_1_2_ris*pi1ris*(1-pi1ris)*T(bw1ris)+D_rho_poa_1_2_ris*pi2ris

*(1-pi2ris)*T(bw2ris) ||

D_rho_sigma_1_1_2_ris+D_rho_sigma_2_1_2_ris||D_rho_phi_1_2_ris ;

se_ris_1_2=sqrt(F_ris_1_2*covarmatrix*T(F_ris_1_2));

print "Estimated Correlation matix-Risperdal" cor_ris[format=8.2];

print "Standard error correlations-Risperdal" se_ris[format=8.2];

print "Estimated Correlation matix Control" cor_con[format=8.2];

print "Standard error correlations-Control" se_con[format=8.2];

quit;

The IML code is a little tedious, but otherwise reasonably straightforward. Dif-
ferent models require slightly modified coding of the GLIMMIX procedure, while the
IML code needs adaptation as well.

The model of Section 9.2.2 requires replacement of two statement in the GLIMMIX
code:

class treat id xtime_c country;

model cgi_resp(event=’1’) = xtime_c|treat country

/ covb dist=bin link=logit solution;

The IML code is more extensive, since a specific contribution for each country is
calculated.

The analyses of Section 9.2.3, by country on the one hand and using leave-on-
country-out on the other hand, are done by applying macros:

%bycountry(inds=cgi3,land=’ARG’);
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%countryout(land="ARG");

The program for Section 9.2.4, with country as random effect, is the same as the
program for Section 9.2.1, i.e., the first one presented in this appendix, with simply
the following statement added:

random intercept / subject=country;

in addition to the two RANDOM statements already present.
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Samenvatting

In klinische studies wordt vaak gebruik gemaakt van schalen en vragenlijsten.
Vooraleer schalen in gebruik worden genomen worden ze echter eerst gevalideerd
in een test steekproef. De bedoeling van deze validatie is om de psychometrische
eigenschappen van een schaal of meting te evalueren. Meer bepaald evalueert men
de betrouwbaarheid (“reliability”) van een schaal en de validiteit (“validity”). Meer
specifiek, voor de betrouwbaarheid (Shrout en Fleiss, 1979) wordt nagegaan of de
schaal reproduceerbare resultaten geeft als ze meerdere keren gemeten wordt door
verschillende onderzoekers (“interrater reliability”) of herhaaldelijk binnen éénzelfde
persoon (“test-retest reliability”). Deze eigenschappen worden geëvalueerd via de zo-
genaamde “Intraclass Correlation Coefficient” (ICC, Bartko, 1966). Om de validiteit
van een schaal te evalueren gaat men na of de schaal effectief meet wat de intentie is
dat ze zou moeten meten, meer bepaald gaat het dan over inhoudelijke -, constructie-
en criteriumvaliditeit (Carmines en Zeller, 1979). Al deze psychometrische evaluaties
gebeuren op een aparte en vaak relatief kleine steekproef. Betrouwbaarheid en va-
liditeit zijn echter geen vaste grootheden die gekoppeld zijn aan een meting of schaal,
deze eigenschappen zijn afhankelijk van de populatie waarin ze gemeten wordt.

In deze thesis hebben we een kader ontwikkeld waarin we betrouwbaarheid en
validiteit, meer specifiek criteriumvaliditeit, bijkomend evalueren op basis van longi-
tudinale gegevens resulterende uit klinische studies. De bedoeling is te evalueren hoe
betrouwbaar de schaal werkelijk was in de populatie, ingesloten in de klinische studie.
Zijn er factoren die deze betrouwbaarheid verlagen? Dit laatste is het onderwerp
van “Generalizability Theory” (GT, Cronbach, 1963). Met deze informatie zouden
we bijvoorbeeld de schaal kunnen verbeteren of extra training geven daar waar de
reproduceerbaarheid minder goed was. Via criteriumvaliditeit kunnen we nagaan hoe
een schaal is gecorreleerd met andere metingen of schalen. Dit laatste kan helpen
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om een beeld te vormen of bepaalde veranderingen in een schaal al dan niet klinisch
relevant zijn door ze te correleren met klinische parameters.

Na de inleiding in Hoofdstuk 1 en de beschrijving van de gebruikte data doorheen
de thesis in Hoofdstuk 2, hebben we eerst een overzicht gegeven van de klassieke
modellen voor longitudinale gegevens (Hoofdstuk 3). Hierin introduceerden we onder
meer het Linear Mixed Model (LMM, Verbeke en Molenberghs, 2000), het General
Linear Mixed Model (GLMM, Molenberghs en Verbeke, 2000), enkele gecombineerde
modellen voor het modelleren van telgegevens, en verder ook een introductie in de tax-
onomy en analyse van de data met ontbrekende gegevens (Molenberghs and Kenward,
2007). In Hoofdstuk 4 introduceerden we psychometrische concepten die doorheen de
thesis geëvalueerd werden op longitudinale klinische gegevens, en tenslotte in Hoofd-
stuk 5 laten we bestaande concepten in de evaluatie van surrogaat parameters de
revue passeren.

In Hoofdstuk 6 hebben we een algemene formule voorgesteld om de test-retest
ICC af te leiden voor longitudinale normaal verdeelde gegevens resulterende uit klin-
ische studies in schizofrene patiënten. Deze formule is vervolgens toegepast op de
totale PANSS, een schaal die de beladenheid van psychotische symptomen meet. Hi-
erbij werden een 4-tal specifieke modellen met variërende complexiteit aangepast. De
toepassing toonde aan dat het mogelijk was om een studiepopulatie specifiek ICC
te berekenen. Deze variëerde van 0.80 tot ongeveer 0.5 afhankelijk van de tijdsduur
tussen 2 metingen en afhankelijk van het model. In Hoofdstuk 7 hebben dit uitgebreid
tot GT voor continue normaal verdeelde gegevens. De bedoeling hier was om na te
gaan welke factoren een invloed hadden op betrouwbaarheid en meetfout. Zo hebben
we ondermeer aangetoond dat het feit dat studies in meerdere landen worden uitgevo-
erd, geen of nauwelijks invloed heeft op de betrouwbaarheid van de PANSS schaal.
Andere factoren zoals de beladenheid van negatieve psychotische symptomen bij de
start van de studie, hebben dan weer een negatieve invloed op de betrouwbaarheid.

In Hoofdstuk 8 hebben we een algemeen kader uitgewerkt waarin betrouwbaarheid
kan afgeleid worden op basis van het GLMM. Dit laat toe om betrouwbaarheid be-
naderend te berekenen voor elk type data (continue, binair en telgegevens) en voor
verschillende niveaus van complexiteit (bijvoorbeeld met en zonder seriële correlatie).
Concreet hebben we dan via een Taylorreeksbenadering de betrouwbaarheid geme-
ten voor binaire respons parameter (klinische verbetering ja/neen op de CGI) vanuit
dezelfde gegevens resulterende uit klinische studies in de schizofrenie. Analoog aan
Hoofdstuk 7 hebben we betrouwbaarheid uitgebreid tot GT in Hoofdstuk 9, maar dit
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maal gebruik makend van het bredere kader dat GLMM aanreikt. Opnieuw hebben
we dit voor het specifieke geval van binaire respons parameters uitgewerkt op concrete
schizofrenie gegevens. Dit leidde tot dezelfde conclusies, met name dat de factor land
geen invloed, en de negatieve psychotische beladenheid wel een invloed heeft op de
betrouwbaarheid van de binaire parameter klinische respons.

In een volgende stap hebben we de ICC afgeleid voor telgegevens. Dank zij het
werk van Molenberghs, Verbeke, en Demetrio (2008) was het mogelijk om naast de
benaderende formule op basis het GLMM model uit Hoofdstuk 7, een gesloten formule
af te leiden van de test-retest ICC. Dit is vervolgens toegepast op klinische gegevens
van een studie in epilepsie, meer bepaald op de parameter “aantal epilepsie aanvallen”.
Dit toonde aan dat de benadering vrij vlug convergeerde naar het resultaat van de
gesloten formule. Een andere vastelling was dat het gecombineerde model een beter
model fit gaf dan het Poisson-normale model. Hierdoor kunnen de schattingen voor
de ICC resulterende uit dit laatste model misleidend zijn.

Vervolgens hebben we de aandacht gericht op criterium validiteit, met andere
woorden op de correlaties tussen simultaan gemeten parameters. Eerst hebben we
het GLMM kader (Molenberghs en Verbeke, 2005) gebruikt om de correlatie tussen
binaire klinische respons parameter en de continue totale PANSS te schatten. En
vervolgens hebben we technieken gebruikt uit de validatie van surrogaat parameters
(Alonso et al.) om de correlatie te schatten via R2

trial en R2
indiv tussen de continue

PANSS schaal en de BPRS schaal enerzijds en de correlatie tussen PANSS en CGI en
BPRS en CGI respons anderzijds, dit maal als ordinale schaal. Uit al deze analyses
bleek een sterke correlatie tussen alle drie de metingen, met bijvoorbeeld een correlatie
van 0.75 tot 0.81, afhankelijk van de methode en de parameterisatie van de CGI (binair
of ordinaal).

In voorgaande hoofdtukken hebben we gebruik gemaakt van klassieke longitudi-
nale modellen. Deze modellen veronderstellen Missing at Random (MAR) waarbij
onvolledigheid kan afhangen van geobserveerde respons waarden. In Hoofdstuk 12
hebben we een toepassing uitgewerkt van een analyse van een dataset met ontbrek-
ende gegevens van de FLIC, een schaal die de levenskwaliteit in borstkanker meet. In
deze studie werden patiënten gevolgd tot aan progressie (Michiels et al., 2002). Het
gevolg is dat er veel uitval was met als resultaat een groot aantal missende waarden.
Hier hebben we zowel een SEM als een PMM uitgewerkt met als doel een sensitiviteit-
sanalyse aan te reiken die de robuustheid van de conclusies evalueert.




