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Introduction

In 1927 Heisenberg discovered that uncertainties, or imprecisions, always turned
up if one tried to measure the position and the momentum of a particle at the same
time. His 14-page letter to Pauli evolved into a published paper [42] in which Heisen-
berg presented to the world what became known as the uncertainty principle. In
order to study this principle, Weyl introduced the algebra A1 = k〈x, y〉/(xy− yx− 1)
as the k-algebra generated by position and momentum operators x, y. For simplicity
k will be an algebraically closed field k of characteristic zero. The noncommutativity
of the generators reflects the Heisenberg uncertainty principle.

The algebra A1 is called the first Weyl algebra, it is the basic example of a non-
commutative noetherian domain and has been studied in various papers and books.
In particular A1 is simple i.e. there are no non-trivial two-sided ideals. However there
are plenty one-sided ideals of A1 and it is a natural question to describe them. In 1994
Cannings and Holland [22] classified right A1-ideals, by means of the adelic Grassma-
nian. A few years later Wilson [84] found a relation between the adelic Grassmanian
and the Calogero-Moser spaces. It turned out [17] that the orbits of the natural action
of the automorphism group Aut(A1) on the set of right A1-ideals are indexed by the
set of natural numbers N, and the orbit corresponding to n ∈ N is in natural bijection
with the n-th Calogero-Moser space

Cn = {(X,Y) ∈Mn(k) ×Mn(k) | rank(YX − XY − I) ≤ 1}/Gln(k),

a connected smooth affine variety of dimension 2n [84]. On the other hand, in 1995 Le
Bruyn [51] proposed an alternative classification method based on noncommutative
algebraic geometry. His idea was to consider the homogenized Weyl algebra H , the
algebra obtained by adding a third variable z of degree one to A1 which commutes
with x, y, making the relation xy − yx − 1 homogeneous. Then A1 is thought of as
the coordinate ring of an open affine part of a noncommutative space P2

q = ProjH
in the sense of Artin and Zhang [10] i.e. ProjH is the quotient of the abelian cate-
gory of finitely generated graded right H-modules by the Serre subcategory of finite
dimensional modules. The problem of describing A1-ideals then becomes equivalent
to describing certain objects on the noncommutative projective plane P2

q. They may
be used to describe moduli spaces, just as in the ordinary commutative case. In 2002
this idea of Le Bruyn was picked up and worked out by Berest and Wilson [16] to
prove directly the relation between A1-ideals and Calogero-Moser spaces Cn.

This work starts from the observation that the algebra H is a so-called three
dimensional Artin-Schelter regular algebra, see Chapter 1 for these preliminary def-
initions. This class of graded algebras was introduced by Artin and Schelter [5] in
1986 and classified a few years later by Artin, Tate and Van den Bergh [7, 8] and
Stephenson [72, 73]. They are all noetherian domains of Gelfand-Kirillov dimen-
sion three and may be considered as noncommutative analogues of the polynomial
ring k[x, y, z]. To each of them there is an associated noncommutative projective
surface ProjA. Let us further assume A is generated in degree one. It turns out

vi



INTRODUCTION vii

[5] there are two possibilities for such an algebra A. Either there are three gener-
ators x, y, z and three quadratic relations (we say A is quadratic) or two genera-
tors x, y and two cubic relations (A is cubic). If A is quadratic then A is Koszul
and has Hilbert series hA(t) = 1 + 3t + 6t2 + 10t3 + · · · = 1/(1 − t)3, and we may
think of P2

q = ProjA as a noncommutative projective plane. In case A is cubic then

hA(t) = 1+2t+4t2 +6t3 + · · · = 1/(1− t)2(1− t2), we then write (P1 ×P1)q = ProjA
which we think of as a noncommutative quadric surface.

The generic class of quadratic and cubic Artin-Schelter algebras are usually called
type A-algebras [5], in which case the relations are respectively given by





ayz + bzy + cx2 = 0
azx+ bxz + cy2 = 0
axy + byx+ cz2 = 0

and

{
ay2x+ byxy + axy2 + cx3 = 0
ax2y + bxyx+ ayx2 + cy3 = 0

(1)

where a, b, c ∈ k are generic scalars.
It was shown in [7] that a three dimensional Artin-Schelter regular algebra A

generated in degree one is completely determined by a triple (E, σ, j) where either

• j : E ∼= P2 if A is quadratic, resp. j : E ∼= P1 ×P1 if A is cubic; or

• j : E ↪→ P2 is an embedding of a divisor E of degree three if A is quadratic,
resp. j : E ↪→ P1 ×P1 where E is a divisor of bidegree (2, 2) if A is cubic

and σ ∈ Aut(E). In the first case we say A is linear, otherwise A is called elliptic. If
A is of type A and the divisor E is a smooth elliptic curve (this is the generic case)
then we say A is of generic type A. In that case σ is a translation on E. Quadratic
three dimensional Artin-Schelter regular algebras of generic type A are also called
three dimensional Sklyanin algebras.

For most of our results below we will assume A is elliptic and σ has infinite order.
In that case the degree zero part (Ag)0 of the localisation Ag of A at the powers of the
canonical normalizing element g ∈ A is a simple k-algebra [8], which means that the
critical modules of Gelfand-Kirillov dimension one are, up to shift of grading, exactly
the so-called point modules over A i.e. cyclic graded right A-modules with Hilbert
series 1/(1 − t) = 1 + t + t2 + . . . . The point modules over A are parameterized by
the closed points on E. This will, at least implicitly, be a key ingredient in most of
our proofs.

In Chapter 2 of this thesis we generalize the methods used in [51, 16] to obtain

Theorem 1 (Chapter 2). Assume k is uncountable. Let A be an elliptic quadratic
Artin-Schelter algebra for which σ has infinite order. There exist smooth locally closed
varieties Dn of dimension 2n such that the set R(A) of reflexive graded right A-ideals
considered up to isomorphism and shift of grading is in natural bijection with

∐
nDn.

In particular D0 is a point and D1 is the complement of E under P2.
In fact Dn is connected, see Theorem 5 below. In the generic case we have



viii INTRODUCTION

Theorem 2 (Chapter 2). Let A be a three dimensional Sklyanin algebra for which
σ has infinite order. Then the varieties Dn in Theorem 1 are affine.

Theorem 3 (Chapter 2). Assume k is uncountable. Let A be an elliptic quadratic
Artin-Schelter algebra for which σ has infinite order. Let I ∈ R(A). Then there exists
an m ∈ N together with a monomorphism I(−m) ↪→ A such that there is a filtration
of reflexive graded right A-modules of rank one

A = I0 ⊃ I1 ⊃ · · · ⊃ Iu = I(−m)

with the property that up to finite length modules the quotients are shifted line modules
i.e. modules of the form A/aA where a ∈ A has degree one.

In the generic case where A is a three dimensional Sklyanin algebra we do not
need the assumption k is uncountable in Theorem 1 and Theorem 3.

A result similar to Theorem 1 was proved by Nevins and Stafford [60] for all
quadratic three dimensional Artin-Schelter regular algebras. They showed that Dn

is an open subset in a projective variety Hilbn(P2
q) of dimension 2n, parameterizing

graded right A-ideals of projective dimension one up to isomorphism and shift of
grading. Thus Hilbn(P

2
q) is the analog of the classical Hilbert scheme of points on P2.

Our next objective is to determine the possible Hilbert functions of reflexive graded
right ideals, or more generally, graded right ideals of projective dimension one. In
Chapter 3 we prove that, as in the commutative case, they are related to so-called
Castelnuovo functions [26]. These are finitely supported functions s : N → C of the
form

s(0) = 1, s(1) = 2, . . . , s(σ − 1) = σ and s(σ − 1) ≥ s(σ) ≥ s(σ + 1) ≥ · · · ≥ 0

for some integer σ ≥ 0. We identify s with its generating function s(t) =
∑

i s(i)t
i.

Theorem 4 (Chapter 3). Let A be a quadratic Artin-Schelter algebra. There is a
bijective correspondence between Castelnuovo polynomials s(t) of weight

∑
i s(i) = n

and Hilbert series hI(t) of objects I in Hilbn(P
2
q), given by

hI(t) =
1

(1 − t)3
−

s(t)

1 − t
(2)

Moreover if A is elliptic for which σ has infinite order this correspondence restricts
to Hilbert series hI(t) of reflexive objects I in Hilbn(P

2
q).

The appearing formal power series (2) will be called admissible Hilbert series of
degree n. In particular we were able to prove intrinsically

Theorem 5 (Chapter 3). Let A be a quadratic Artin-Schelter algebra. Then
Hilbn(P2

q) is connected.
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This is done by showing that the admissible Hilbert series of degree n induce
a stratification of Hilbn(P

2
q) into connected locally closed subvarieties. In the com-

mutative case this was shown by Gotzmann [36]. Furthermore there is a dimension
formula for these strata, from which we deduce there is an unique stratum of maximal
dimension 2n, implying Hilbn(P

2
q) is connected. The connectedness of Hilbn(P

2
q) was

also proved by Nevins and Stafford [60] for almost all A using deformation-theoretic
methods and relying on the commutative case A = k[x, y, z]. For the Weyl algebra
the connectedness of the Calogero-Moser spaces Cn was shown by Wilson [84].

We may take this one step further by describing all possible minimal resolutions
for objects in Hilbn(P2

q). We prove a more general result which implies Theorem 4.

Theorem 6 (Chapter 3). Let A be a quadratic Artin-Schelter algebra. Let 0 6=
q(t) ∈ Z[t−1, t] be a Laurent polynomial such that qσt

σ is the lowest non-zero term of
q. Then there is a torsion free graded right A-moduleM with Hilbert series q(t)/(1−t)3

and a minimal resolution of the form

0 → ⊕iA(−i)bi → ⊕iA(−i)ai →M → 0

if and only if al = 0 for l < σ, aσ = qσ > 0 and max(ql, 0) ≤ al <
∑

i≤l qi for l > σ.

In Chapter 4 we proceed the study of the projective variety Hilbn(P2
q). This was

realized in collaboration with S. Paul Smith. An object I ∈ Hilbn(P
2
q) is a submod-

ule of its bidual I∗∗ ∈ R(A), and the quotient module I∗∗/I is Cohen-Macaulay of
Gelfand-Kirillov dimension one and multiplicity ≤ n. Thus it is natural to define the
subsets

Hilbdn(P
2
q) = {I ∈ Hilbn(P

2
q) | I

∗∗/I has multiplicity d}

and Hilb≥d
n (P2

q) =
⋃
d′≥dHilbd

′

n (P2
q). We prove

Theorem 7 (Chapter 4). Let A be an elliptic quadratic Artin-Schelter algebra for
which σ has infinite order. Let n ≥ 0 and 0 ≤ d ≤ n. We have

1. Hilbdn(P
2
q) is non-empty,

2. Hilb≥d
n (P2

q) ⊂ Hilbn(P
2
q) is a projective variety of dimension 2n− d.

In particular we observe that for elliptic A for which σ has infinite order the
projective variety Hilbnn(P

2
q) ⊂ Hilbn(P

2
q) of dimension n parameterizes the cyclic

Cohen-Macaulay modules of Gelfand-Kirillov dimension one, up to isomorphism and
shift of grading.

The first statement of Theorem 7 is shown by proving

Theorem 8 (Chapter 4). Let A be an elliptic quadratic Artin-Schelter algebra for
which σ has infinite order. Let n ≥ 0 and 0 ≤ d ≤ n. Then there is an object
I ∈ Hilbdn(P

2
q) with Hilbert series hI(t) = hA(t) − (1 + t+ · · · + tn−1)/(1 − t).
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In a next stage of this thesis we are interested in the precise inclusion relation
between the closures of the strata in Hilbn(P

2
q). It is therefore natural to study

the methods for the classical Hilbert scheme of points Hilbn(P
2). But even in this

situation the precise inclusion relation between the closures of the strata are still
unknown. And even in the special (and simplest) case where the Hilbert series are
as close as possible the inclusion relations were unclear, until in 2002 Guerimand [38]
found necessary and sufficient conditions for this special case, preimposing a technical
condition. Guerimand used geometrical methods to obtain his results. In Chapter 5
we present a new approach based on deformation theory. We were able to reprove
Guerimand’s results and furthermore we show that the technical condition is not
necessary.

Theorem 9 (Chapter 5). Assume ϕ, ψ are admissible Hilbert series of degree n for
which ϕ > ψ and such that there are no admissible Hilbert series τ of degree n for
which ϕ > τ > ψ. Write Hϕ resp. Hψ for the stratum of Hilbn(P

2) associated to
ϕ resp. ψ. Then there are (known) necessary and sufficient conditions on ϕ, ψ such
that Hϕ ⊂ Hψ.

In Chapter 5 we will use the stratification by the series hA(t)−ϕ(t) rather than the
admissible Hilbert series ϕ(t). Our methods seem to extend to the noncommutative
situation which we hope to describe in forthcoming work.

Chapter 6, the final chapter of this thesis, was recently accomplished in collabo-
ration with N. Marconnet. We show how the methods used in Chapter 2 also apply
for cubic three dimensional Artin-Schelter regular algebras. In particular we provide
the following analogons for Theorems 1, 2, 3.

Theorem 10 (Chapter 6). Assume k is uncountable. Let A be an elliptic cubic
Artin-Schelter algebra for which σ has infinite order. Define N = {(ne, no) ∈ N2 |
ne − (ne − no)

2 ≥ 0}. Then for any (ne, no) ∈ N there exists a smooth locally closed
variety D(ne,no) of dimension 2(ne − (ne − no)

2) such that the set R(A) of reflexive
graded right A-ideals, considered up to isomorphism and shift of grading is in natural
bijection with

∐
(ne,no)∈N D(ne,no).

In particular D(0,0) is a point and D(1,1) is the complement of E under P1 ×P1.
We also expect D(ne,no) to be connected, see below.

In the generic case we have

Theorem 11 (Chapter 6). Let A be a cubic Artin-Schelter algebra of generic type A
for which σ has infinite order. Then the varieties D(ne,no) in Theorem 10 are affine.

Theorem 12 (Chapter 6). Assume k is uncountable. Let A be an elliptic cubic
Artin-Schelter algebra and assume σ has infinite order. Let I ∈ R(A). Then there
exists an m ∈ N together with a filtration of reflexive graded right A-modules of rank
one

I0 ⊃ I1 ⊃ · · · ⊃ Iu = I(−m)
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with the property that up to finite length modules the quotients are shifted conic mod-
ules i.e. modules of the form A/bA where b ∈ A has degree two. Moreover I0 admits
a minimal resolution of the form 0 → A(−c − 1)c → A(−c)c+1 → I0 → 0 for some
integer c ≥ 0, and I0 is up to isomorphism uniquely determined by c.

In case A is a cubic Artin-Schelter algebra of generic type A we do not need the
assumption k is uncountable in Theorem 10 and Theorem 12.

One delicate step in the proof of Theorem 10 is to show that the varieties D(ne,no)

are actually nonempty. We do this by pointing out that Theorem 6 also holds for cubic
Artin-Schelter algebrasA. Further, to a graded right ideal of projective dimension one
we may associate (ne, no) ∈ N . Let Hilb(ne,no)((P

1 ×P1)q) denote the set of all such
objects, considered up to shift of grading. In case A is linear then this corresponds
to the usual Hilbert scheme of points on P1 ×P1. We have

Theorem 13 (Chapter 6). Let A be a cubic Artin-Schelter algebra. There is a bijec-
tive correspondence between Castelnuovo polynomials s(t) of even weight

∑
i s(2i) =

ne and odd weight
∑

i s(2i + 1) = no and Hilbert series hI(t) of objects I in
Hilb(ne,no)((P

1 ×P1)q) given by

hI(t) =
1

(1 − t)2(1 − t2)
−

s(t)

1 − t2

Moreover if A is elliptic for which σ has infinite order this correspondence restricts
to Hilbert series hI(t) of reflexive objects I in Hilb(ne,no)((P

1 ×P1)q).

For cubic Artin-Schelter algebrasA we expect a similar treatment as in [60] to show
that Hilb(ne,no)((P

1 ×P1)q) is a smooth projective variety of dimension
2(ne− (ne−no)

2). Furthermore we are quite convinced that using the same methods
as in the proof of Theorem 5 will lead to a proof that Hilb(ne,no)((P

1 ×P1)q) is con-
nected, hence also D(ne,no) (for elliptic A for which σ has infinite order). We hope to
come back on this in further research.

To end with, we may apply our results to the enveloping algebra of the Heisenberg-
Lie algebra Hc, the cubic Artin-Schelter algebra of type A for which (a, b, c) =

(1,−2, 0) in (1). By [8] the ring of invariants A
〈ϕ〉
1 of the first Weyl algebra A1

under the automorphism ϕ(x) = −x, ϕ(y) = −y is thought of as the coorinate ring
of an open affine part of ProjHc. As in [16] for the first Weyl algebra A1 we extract

Theorem 14 (Chapter 6). The set R(A
〈ϕ〉
1 ) of isomorphism classes of right A

〈ϕ〉
1 -

ideals is in natural bijection with the points of
∐

(ne,no)∈N D(ne,no) where

D(ne,no) = {(X,Y,X′,Y′) ∈Mne×no
(k)2 ×Mno×ne

(k)2 | Y′X − X′Y = I and

rank(YX′ − XY′ − I) ≤ 1}/Glne
(k) × Glno

(k)

is a smooth affine variety D(ne,no) of dimension 2(ne − (ne − no)
2).

It would be interesting to see if the orbits of R(A
〈ϕ〉
1 ) under the automorphism

group Aut(A
〈ϕ〉
1 ) are in bijection to the varieties D(ne,no).





Inleiding

In 1927 ontdekte Heisenberg [42] dat het niet mogelijk is om de plaats en de
snelheid (of impuls) van een deeltje tegelijkertijd met onbeperkte nauwkeurigheid te
meten. Dit principe is sindsdien bekend als de onzekerheidsrelatie van Heisenberg.
Om dit fenomeen nader te bestuderen voerde Weyl de algebra A1 = k〈x, y〉/(xy −
yx−1) in als de k-algebra voortgebracht door de plaats operator x en impuls operator
y. Gemakshalve nemen we aan dat k een algebraisch gesloten veld is van karakter-
istiek nul. Het niet-commutatief karakter van de relatie xy − yx − 1 reflecteert de
onzekerheidsrelatie van Heisenberg.

De algebra A1, de eerste Weyl algebra genoemd, is het standaard voorbeeld van
een niet-commutatief noethers domein. In het bijzonder is A1 een simpele ring i.e.
er zijn geen niet-triviale tweezijdige idealen. Er zijn daarintegen wel vele eenzijdige
idealen en het is een natuurlijke vraag om die te beschrijven. In 1994 classificeer-
den Cannings en Holland [22] de rechtse A1-idealen door middel van de adelische
Grassmaniaan. Enkele jaren later vond Wilson [84] een verband tussen de adelische
Grassmaniaan en de Calogero-Moser ruimten. Het bleek [17] dat de banen van de
natuurlijke actie van de automorfisme groep Aut(A1) op de verzameling van rechtse
A1-idealen gëındexeerd zijn door de verzameling van de natuurlijke getallen N, waarbij
de baan die overeenkomt met n ∈ N in natuurlijke bijectie is met de n-de Calogero-
Moser ruimte

Cn = {(X,Y) ∈Mn(k) ×Mn(k) | rang(YX − XY − I) ≤ 1}/Gln(k),

een samenhangende gladde affiene varieteit van dimensie 2n [84]. In 1995 stelde Le
Bruyn [51] een alternatieve classificatie methode voor gebaseerd op niet-commutatieve
algebräısche meetkunde. Zijn idee was om de gehomogeniseerde Weyl algebra H te
beschouwen, de algebra die men bekomt door aan A1 een derde voortbrenger z van
graad 1 toe te voegen die commuteert met x en y en de relatie xy− yx− 1 homogeen
maakt. De algebra A1 is dan beschouwd als de coordinaten ring van een open affien
deel van een niet-commutatieve ruimte P2

q = ProjH in de zin van Artin en Zhang
[10] i.e. ProjH is het quotient van de abelse categorie van eindig voortgebrachte
gegradeerde rechtse H-modulen met de Serre deelcategorie van de eindig dimension-
ale modulen. De classificatie van de rechtse A1-idealen wordt dan equivalent met het
beschrijven van zekere objecten op het niet-commutatief projectief vlak P2

q. Die ob-
jecten geven aanleiding tot moduli ruimten, net als in het commutatief geval. In 2002
werd dit idee van Le Bruyn verder uitgewerkt door Berest en Wilson [16] wat aanleid-
ing gaf tot een direct bewijs van het verband tussen de A1-idealen en Calogero-Moser
ruimten Cn.

Dit werk start met de vaststelling dat de algebra H een zogenaamde drie dimen-
sionale Artin-Schelter reguliere algebra is, zie Hoofdstuk 1 voor inleidende definities
en resultaten. Deze klasse van gegradeerde algebras werd ingevoerd door Artin en
Schelter [5] in 1986 en enkele jaren later geclassificeerd door Artin, Tate en Van den
Bergh [7, 8] en Stephenson [72, 73]. Deze algebras zijn allen noetherse domeinen van

xiii
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Gelfand-Kirillov dimensie drie en worden beschouwd als niet-commutatieve analogons
van de veeltermring k[x, y, z]. Bij elk van hen hoort een geassocieerd projectief opper-
vlak. Laat ons verder onderstellen dat A voortgebracht is in graad 1. Dan blijken [5]
er twee mogelijkheden te zijn voor zo’n algebra A. Ofwel heeft A drie voortbrengers
x, y, z en drie kwadratische relaties (dan zeggen we dat A kwadratisch is) ofwel heeft
A twee voortbrengers en twee kubische relaties (A is kubisch). Indien A kwadratisch
is dan is A Koszul met als Hilbert reeks hA(t) = 1 + 3t+ 6t2 + 10t3 + · · · = 1/(1− t)3

en we denken aan P2
q = ProjA als een niet-commutatief projectief vlak. In geval A

kubisch is dan is hA(t) = 1 + 2t + 4t2 + 6t3 + · · · = 1/(1 − t)2(1 − t2), we schrijven
(P1 ×P1)q = ProjA wat kan beschouwd worden als een niet-commutatief analogon
van een kwadriek in P3.

De generieke klasse van kwadratische en kubische Artin-Schelter reguliere algebras
worden type A-algebras genoemd [5] en in dat geval worden de relaties gegeven door
respectievelijk





ayz + bzy + cx2 = 0
azx+ bxz + cy2 = 0
axy + byx+ cz2 = 0

en

{
ay2x+ byxy + axy2 + cx3 = 0
ax2y + bxyx+ ayx2 + cy3 = 0

(1)

waarin a, b, c ∈ k generiek zijn.

In [7] werd aangetoond dat een drie dimensionale Artin-Schelter reguliere algebra
A voortgebracht in graad 1 volledig bepaald is door een drietal (E, σ, j) waarin ofwel

• j : E ∼= P2 als A kwadratisch is, resp. j : E ∼= P1 ×P1 als A kubisch is; of

• j : E ↪→ P2 is een inbedding van een divisor E van graad drie als A kwadratisch
is, resp. j : E ↪→ P1 ×P1 waar E een divisor van bigraad (2, 2) als A kubisch is

en σ ∈ Aut(E). In het eerste geval zeggen we dat A linear is, in het tweede geval
noemen we A elliptisch. Indien A van type A is en de divisorE is een gladde elliptische
kromme (dit is het generiek geval) dan zeggen we dat A van generiek type A is. In
dat geval is σ een translatie op E. Kwadratische drie dimensionale Artin-Schelter
reguliere algebras van generiek type A worden ook drie dimensionale Sklyanin algebras
genoemd.

Voor de meeste resultaten onderaan zullen we aannemen dat A elliptisch is waarbij
de orde van σ oneindig is. In dat geval is het deel van graad nul (Ag)0 van de localisatie
Ag van A in de machten van het canoniek normaliserend element g ∈ A een simpele
k-algebra [8], wat betekend dat op een shift na de kritische modulen van Gelfand-
Kirillov dimensie een precies de zogenaamde punt modulen zijn over A i.e. cyclische
gegradeerde rechtse A-modulen met Hilbert reeks 1/(1− t) = 1+ t+ t2 + . . . . De punt
modulen over A worden geparameteriseerd door de punten van E. Deze eigenschap
wordt in vele bewijzen impliciet gebruikt.

In Hoofdstuk 2 van deze thesis veralgemenen we de werkwijze gebruikt in [51, 16]
om het volgend resultaat te bekomen.
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Stelling 1 (Hoofdstuk 2). Onderstel dat k overaftelbaar is. Zij A een elliptische
kwadratische Artin-Schelter algebra waarbij de orde van σ oneindig is. Dan bestaan
er gladde lokaal gesloten varieteiten Dn van dimensie 2n zodat de verzameling R(A)
van reflexieve gegradeerde rechtse A-idealen, beschouwd op isomorfie en gegradeerde
shift na, in natuurlijke bijectie is met

∐
nDn.

In het bijzonder is D0 een punt en D1 het complement van E onder P2.
Uit Stelling 5 zal blijken dat Dn samenhangend is. In het generiek geval hebben

we

Stelling 2 (Hoofdstuk 2). Zij A een drie dimensionale Sklyanin algebra waarbij de
orde van σ oneindig is. Dan zijn de varieteiten Dn in Stelling 1 affien.

Stelling 3 (Hoofdstuk 2). Onderstel dat k overaftelbaar is. Zij A een elliptische
kwadratische Artin-Schelter reguliere algebra waarbij de orde van σ oneindig is. Zij
I ∈ R(A). Dan bestaat er een m ∈ N samen met een monomorfisme I(−m) ↪→ A
zodat er een filtratie is van reflexieve gegradeerde rechtse A-modulen van rang een

A = I0 ⊃ I1 ⊃ · · · ⊃ Iu = I(−m)

met de eigenschap dat op eindig dimensionale modulen na de quotienten op een
gegradeerde shift na allen lijn modulen zijn i.e. modulen van de gedaante A/aA waar-
bij a ∈ A graad een heeft.

In het generiek geval waarbij A een drie dimensionale Sklyanin algebra is, is de
onderstelling dat k overaftelbaar is overbodig in Stelling 1 en Stelling 3.

Een resultaat soortgelijk aan Stelling 1 werd bekomen door Nevins en Stafford
[60] voor alle kwadratische drie dimensionale Artin-Schelter algebras. Zij toonden
aan dat Dn een open deel is van een projectieve varieteit Hilbn(P

2
q) van dimensie 2n,

die de gegradeerde rechtse A-idealen van projectieve dimensie een parameteriseert, op
isomorfie en gegradeerde shift na. Dus Hilbn(P

2
q) is te zien als het analogon van het

klassieke Hilbert schema van punten op P2.
Onze volgende doelstelling is het bepalen van de mogelijke Hilbert functies van

reflexieve gegradeerde rechtse idealen, of meer algemeen, gegradeerde rechtse idealen
van projectieve dimensie een. In Hoofdstuk 3 tonen we aan dat, net als in het com-
mutatief geval, deze Hilbert functies gerelateerd zijn aan zogenaamde Castelnuovo
functies [26]. Dat zijn functies s : N → C met eindige support van de gedaante

s(0) = 1, s(1) = 2, . . . , s(σ − 1) = σ and s(σ − 1) ≥ s(σ) ≥ s(σ + 1) ≥ · · · ≥ 0

voor een natuurlijk getal σ ≥ 0. We identificeren s met zijn genererende functie
s(t) =

∑
i s(i)t

i.

Stelling 4 (Hoofdstuk 3). Zij A een kwadratische Artin-Schelter algebra. Dan is
er een bijectief verband tussen Castelnuovo polynomen s(t) van gewicht

∑
i s(i) = n

en Hilbert reeksen hI(t) van objecten I in Hilbn(P2
q), gegeven door

hI(t) =
1

(1 − t)3
−

s(t)

1 − t
(2)
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In geval A elliptisch is met de orde van σ oneindig dan restringeert dit bijectief verband
tot Hilbert reeksen hI(t) van reflexieve objecten I in Hilbn(P2

q).

Formele machtreeksen van de gedaante (2) worden toelaatbare Hilbert reeksen van
graad n genoemd. In het bijzonder konden we een intrinsiek bewijs geven van

Stelling 5 (Hoofdstuk 3). Zij A een kwadratische Artin-Schelter algebra. Dan is
Hilbn(P2

q) samenhangend.

Dit wordt bekomen door aan te tonen dat toelaatbare Hilbert reeksen van graad
n aanleiding geven tot een stratificatie van Hilbn(P

2
q) in samenhangende lokaal ges-

loten deelvarieteiten. In het commutatief geval werd dit aangetoond door Gotzmann
[36]. Verder is er een dimensie formule voor deze strata, waaruit we afleiden dat er
een uniek stratum is met maximale dimensie 2n hetgeen impliceert dat Hilbn(P

2
q)

samenhangend is. De samenhangendheid van Hilbn(P
2
q) werd ook aangetoont door

Nevins en Stafford [60] voor bijna alle A gebruik makend van deformatie-theoretische
technieken en steundend op het commutatief geval A = k[x, y, z]. Voor de Weyl alge-
bra werd de samenhangendheid van de Calogero-Moser ruimten Cn aangetoond door
Wilson [84].

We kunnen nu een stap verder gaan door de mogelijke minimale resoluties te
beschrijven voor objecten in Hilbn(P

2
q). We bewijzen een meer algemeen resultaat

waaruit Stelling 4 zal voortvloeien.

Stelling 6 (Hoofdstuk 3). Zij A een kwadratische Artin-Schelter algebra. Zij 0 6=
q(t) ∈ Z[t−1, t] een Laurent veelterm zodat qσt

σ de niet-nul term van minimale graad
is in q. Dan is er een torsie vrij gegradeerd rechts A-moduul M met Hilbert reeks
q(t)/(1 − t)3 en een minimale resolutie van de gedaante

0 → ⊕iA(−i)bi → ⊕iA(−i)ai →M → 0

als en slechts als al = 0 voor l < σ, aσ = qσ > 0 en max(ql, 0) ≤ al <
∑
i≤l qi voor

l > σ.

In Hoofdstuk 6 zetten we de studie van de projectieve varieteit Hilbn(P
2
q) verder.

Deze resultaten werden bekomen in samenwerking met S. Paul Smith. Een object
I ∈ Hilbn(P

2
q) is een deelmoduul van zijn biduale I∗∗ ∈ R(A), en het quotient I∗∗/I

is Cohen-Macaulay van Gelfand-Kirillov dimension een en multipliciteit ≤ n. Dus het
ligt voor de hand om de volgende deelverzamelingen te beschouwen

Hilbdn(P
2
q) = {I ∈ Hilbn(P

2
q) | I

∗∗/I heeft multipliciteit d}

en Hilb≥d
n (P2

q) =
⋃
d′≥dHilbd

′

n (P2
q). We bekomen

Stelling 7 (Hoofdstuk 4). Zij A een elliptische kwadratische Artin-Schelter algebra
waarbij de orde van σ oneindig is. Zij n ≥ 0 en 0 ≤ d ≤ n. Dan geldt

1. Hilbdn(P
2
q) is niet-ledig,
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2. Hilb≥d
n (P2

q) ⊂ Hilbn(P
2
q) is een projectieve varieteit van dimensie 2n− d.

In het bijzonder merken we op dat voor elliptische A waarbij σ oneindige orde heeft
de projectieve varieteit Hilbnn(P

2
q) ⊂ Hilbn(P2

q) van dimensie n de cyclische Cohen-
Macaulay modulen van Gelfand-Kirillov dimensie een parameteriseert, op isomorfie
en gegradeerde shift na.

Het eerste deel van Stelling 7 werd aangetoond door middel van

Stelling 8 (Hoofdstuk 4). Zij A een elliptische kwadratische Artin-Schelter algebra
waarbij de orde van σ oneindig is. Zij n ≥ 0 en 0 ≤ d ≤ n. Dan is er een object
I ∈ Hilbdn(P

2
q) met Hilbert reeks hI(t) = hA(t) − (1 + t+ · · · + tn−1)/(1 − t).

In een volgend stadium van deze thesis hebben we interesse in de preciese inclusie
relaties tussen de sluitingen van de strata in Hilbn(P2

q). Het is daarom aangewezen
om de gebruikte methoden te bestuderen voor het klassiek Hilbert schema van punten
Hilbn(P2). Maar zelfs in dit geval zijn de precieze inclusie relaties tussen de sluitin-
gen van de strata onbekend. En zelfs in het speciaal (en meest simpel) geval waarbij
de Hilbert reeksen zo dicht mogelijk tegen elkaar liggen waren de inclusie relaties
onduidelijk, tot in 2002 Guerimand [38] nodig en voldoende voorwaarden vond voor
dit speciaal geval, uitgaande van een technische onderstelling. Guerimand gebruikte
hiervoor meetkundige technieken. In Hoofdstuk 5 brengen we een nieuwe benadering
naar voor, gebaseerd op deformatie theorie. We waren in staat om Guerimand’s resul-
taten te herbewijzen en bovendien toonden we aan dat zijn technische onderstelling
overbodig is.

Stelling 9 (Hoofdstuk 5). Zij ϕ, ψ toelaatbare Hilbert reeksen van graad n waarbij
ϕ > ψ en zodat er geen toelaatbare Hilbert reeksen τ van graad n zijn waarvoor
ϕ > τ > ψ. Schrijf Hϕ resp. Hψ voor het stratum van Hilbn(P2) geassocieerd met
ϕ resp. ψ. Dan zijn er nodige en voldoende voorwaarden bekend op ϕ, ψ waarvoor
Hϕ ⊂ Hψ.

In Hoofdstuk 5 zullen we de stratificatie gëınduceerd door de reeksen hA(t)−ϕ(t)
gebruiken in plaats van de toelaatbare Hilbert reeksen ϕ(t). Onze methode lijkt uit
te breiden naar het niet-commutatief geval en we hopen dit in verder onderzoek uit
te kunnen werken.

Hoofdstuk 6, het laatste hoofdstuk van deze thesis, werd onlangs volbracht in
samenwerking met N. Marconnet. We tonen aan dat de werkwijze gebruikt in Hoofd-
stuk 2 ook toepasbaar is voor kubische drie dimensionale Artin-Schelter reguliere
algebras. In het bijzonder tonen we de volgende analogons aan van Stellingen 1, 2, 3.

Stelling 10 (Hoofdstuk 6). Onderstel dat k overaftelbaar is. Zij A een ellip-
tische kubische Artin-Schelter algebra waarbij de orde van σ oneindig is. Definieer
N = {(ne, no) ∈ N2 | ne− (ne−no)

2 ≥ 0}. Dan bestaat er voor elke (ne, no) ∈ N een
gladde lokaal gesloten varieteit D(ne,no) van dimensie 2(ne−(ne−no)2) zodat de verza-
meling R(A) van reflexieve gegradeerde rechtse A-idealen, beschouwd op isomorfie en
gegradeerde shift na, in natuurlijke bijectie is met

∐
(ne,no)∈N D(ne,no).
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In het bijzonder is D(0,0) een punt en D(1,1) het complement van E onder P1 ×P1.
We verwachten dat D(ne,no) samenhangend is, zie verder.

In het generiek geval hebben we

Stelling 11 (Hoofdstuk 6). Zij A een elliptische kubische Artin-Schelter algebra van
generiek type A waarbij de orde van σ oneindig is. Dan zijn de varieteiten D(ne,no)

in Stelling 10 affien.

Stelling 12 (Hoofdstuk 6). Onderstel dat k overaftelbaar is. Zij A een elliptische
kubische Artin-Schelter reguliere algebra waarbij de orde van σ oneindig is. Zij I ∈
R(A). Dan bestaat er een m ∈ N samen met een filtratie van reflexieve gegradeerde
rechtse A-modulen van rang 1

A = I0 ⊃ I1 ⊃ · · · ⊃ Iu = I(−m)

met de eigenschap dat op eindig dimensionale modulen na de quotienten op een
gegradeerde shift na allen kwadratische modulen zijn i.e. modulen van de gedaante
A/bA waarbij b ∈ A graad twee heeft. Verder is een minimale resolutie van I0 van de
gedaante 0 → A(−c− 1)c → A(−c)c+1 → I0 → 0 voor een zeker natuurlijk getal c, en
I0 is op isomorfie na uniek bepaald door c.

In het generiek geval waarbij A een elliptische kubische Artin-Schelter algebra is
van generiek type A, is de onderstelling dat k overaftelbaar is overbodig in Stelling
10 en Stelling 12.

Een delicate stap in het bewijs van Stelling 10 is aantonen dat de varieteiten
D(ne,no) niet ledig zijn. We doen dit door op te merken dat Stelling 6 ook geldt
voor kubische Artin-Schelter algebras A. Verder kunnen we aan elk gegradeerd
rechts ideaal van projectieve dimensie een paar (ne, no) ∈ N associeren. Schrijf
Hilb(ne,no)((P

1 ×P1)q) voor de verzameling van zo’n objecten, beschouwd op isomor-
fisme en gegradeerde shift na. In geval A linear is komt dit overeen met het klassiek
Hilbert schema van punten op P1 ×P1. We hebben

Stelling 13 (Hoofdstuk 6). Zij A een kubische Artin-Schelter algebra. Dan is er
een bijectief verband tussen enerzijds Castelnuovo veeltermen s(t) van even gewicht∑

i s(2i) = ne en oneven gewicht
∑

i s(2i+1) = no en anderzijds Hilbert reeksen hI(t)
van objecten in Hilb(ne,no)((P

1 ×P1)q), gegeven door

hI(t) =
1

(1 − t)2(1 − t2)
−

s(t)

1 − t2

In geval A elliptisch is met de orde van σ oneindig dan restringeert dit bijectief verband
tot Hilbert reeksen hI(t) van reflexieve objecten I in Hilb(ne,no)((P

1 ×P1)q).

Voor kubische Artin-Schelter algebras A verwachten we een analoge werkwijze als
in [60] om aan te tonen dat Hilb(ne,no)((P

1 ×P1)q) een gladde projectieve varieteit is
van dimensie 2(ne − (ne − no)

2). Verder zijn we overtuigd dat dezelfde methoden als
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in het bewijs van Stelling 5 zullen leiden tot een bewijs dat Hilb(ne,no)((P
1 ×P1)q)

samenhangend is, en dus ook D(ne,no) (voor elliptische A waarvoor σ oneindige orde
heeft). We hopen hierop terug te komen in verder onderzoek.

Tenslotte kunnen we onze resultaten toepassen op de enveloping algebra van de
Heisenberg-Lie algebra Hc, de kubische Artin-Schelter algebra van type A waarvoor

(a, b, c) = (1,−2, 0) in (1). Uit [8] volgt dat we de invarianten ring A
〈ϕ〉
1 van de eerste

Weyl algebra A1 onder het automorfisme ϕ(x) = −x, ϕ(y) = −y kunnen zien als de
coordinatenring van een open affien deel van ProjHc. Zoals in [16] voor de eerste
Weyl algebra bekomen we nu

Stelling 14 (Hoofdstuk 6). De verzameling R(A
〈ϕ〉
1 ) van rechtse idealen van A

〈ϕ〉
1

is in natuurlijke bijectie met
∐

(ne,no)∈N D(ne,no) waarbij

D(ne,no) = {(X,Y,X′,Y′) ∈Mne×no
(k)2 ×Mno×ne

(k)2 | Y′X − X′Y = I en

rang(YX′ − XY′ − I) ≤ 1}/Glne
(k) × Glno

(k)

gladde affiene varieteiten zijn van dimensie 2(ne − (ne − no)
2).

Het zou interessant zijn om te zien of de banen van R(A
〈ϕ〉
1 ) onder de automorfisme

groep Aut(A
〈ϕ〉
1 ) in bijectief verband staan met de varieteiten D(ne,no).





Chapter 1

Preliminaries and basic tools

In this first chapter we gather some basic tools and results used along the way. They
are collected from [5, 7, 8, 10, 56, 57, 59, 65, 66, 67, 68, 69, 72, 73, 78].

Throughout we work over an algebraically closed field k of characteristic zero.

1.1 Categories

We assume the reader is familiar with generalities on categories and derived categories.
The composition of morphisms f : A→ B, g : B → C in any category C will be written
as gf : A→ C. We will make the following convention:

Convention 1.1.1. Whenever XyUvw(· · · ) denotes an abelian category then
xyuvw(· · · ) denotes the full subcategory of XyUvw(· · · ) consisting of noetherian ob-
jects.

1.1.1 Grothendieck group and Euler form

Let C be an abelian category. Write Cf for the full subcategory of C consisting of the
noetherian objects. We say C has finite global dimension if there exists an n such that
ExtiC(A,B) = 0 for all A,B ∈ C and for all i > n. The minimal such n is called the
global dimension of C, denoted by gldim C. Two objects A, B in C are perpendicular,
denoted by A ⊥ B, if HomC(A,B) = Ext1C(A,B) = 0. For an object B ∈ Cf we define
⊥B as the full subcategory of Cf which objects are

⊥B = {A ∈ Cf | A ⊥ B}

A k-linear abelian category C is said to be Ext-finite if for all objects A,B ∈ C and
i ≥ 0 the k-vector space ExtiC(A,B) is finite dimensional.

The Grothendieck group K0(C) of an abelian category C is the abelian group gen-
erated by all objects of C (we write [A] ∈ K0(C) for A ∈ C) and for which we define

1
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[A] − [B] + [C] = 0 whenever there is an exact sequence 0 → A→ B → C → 0 in C.
Assume furthermore C is k-linear and Ext-finite with finite global dimension. It is
easy to see the following map defines a bilinear form on the Grothendieck group

χ : K0(C) ×K0(C) → Z

([A], [B]) 7→ χ(A,B) =
∑

i

(−1)i dimk ExtiC(A,B)

which we call the Euler form for C. We write χ(A,B) = χ([A], [B]).

1.1.2 Derived categories

To simplify notations we often use implicitly the following result

Lemma 1.1.2. Assume C is a locally noetherian category. Then the natural map
Db(Cf ) → Db

Cf
(C) is an equivalence of categories.

Proof. This follows for example from the dual of [46, 1.7.11].

We will also need

Lemma 1.1.3. Let Y be a variety of finite type over k, and let M ∈ Db(coh(Y )). If
RHomY (M,Op) = k for all p ∈ Y then M ∈ coh(X) is a line bundle on X.

Proof. It is clear that for all p ∈ Y

RHomY (M,Op) = RHomOY,p
(Mp, k).

Replacing Mp by a minimal resolution P · we see the differentials in
HomOY,p

(P ·, k) are all zero. Therefore HomOY,p
(P ·, k) = k implies Mp = OY,p

for all p ∈ Y . This means M is locally free of rank one, proving what we want.

1.2 Algebras and modules

We will assume the reader is familiar with basic definitions and results on algebras.

Let A be a k-algebra. We write Mod(A) for the category of right A-modules, and
we set gldimA = gldimMod(A). For a rightA-moduleM its dualM∗ = HomA(M,A)
is a left A-module, and M is called reflexive if M∗∗ = M . Recall a right A-module M
is a-torsion free for some a ∈ A if a acts faithfully on M i.e. if no non-zero element
in M is annihilated by a. We say M is a-torsion if Ma = 0. We refer to [50] and [56,
8.1] for the definition of the Gelfand-Kirillov dimension (GK-dimension) of finitely
generated modules over A.
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1.3 Quivers

A quiver Q = (Q0, Q1, h, t) is a quadruple consisting of a set of vertices Q0, a set
of arrows Q1 between those vertices and maps t, h : Q1 → Q0 which assign to each
arrow its starting (tail) and terminating (head) vertex

r r

t(a) h(a)

a

We say Q is finite if both Q0 and Q1 are finite sets. A path in Q is a sequence of arrows
p = al . . . a1 where h(ai) = t(ai+1) for all i. We define t(p) = t(a1), h(p) = h(al). For
each v ∈ Q0 there is a trivial path at v, denoted by ev, with h(ev) = t(ev) = v. A
path p in Q is called an (oriented) cycle if it is not a trivial path ev and h(p) = t(p).
Given two paths p and q in Q their composition pq is defined if t(p) = h(q) in which
case it is obtained by concatenating the paths p and q. The path algebra kQ of Q is
defined to be the k-vector space with basis consisting of all paths in Q. The product
of two paths is defined to be their composition pq if it exists and 0 otherwise. It is
easy to see that the algebra kQ is finite dimensional over k if and only if Q has no
oriented cycles.

Let Q be a quiver. An element r =
∑

i λi pi ∈ kQ (where λi ∈ k and pi path
in Q) is called admissible if, for all i, h(pi) = v and t(pi) = w for some v, w ∈ Q0.
A quiver with relations is a couple (Q,R) where Q is a quiver and R is a subset of
kQ consisting of admissible elements. An admissible ideal of kQ is an ideal which is
generated by admissible elements of kQ. By a theorem of Gabriel [32] any basic finite
dimensional k-algebra A isomorphic to kQ/I where Q is a finite quiver and I is an
admissible ideal of the path algebra kQ.

A representation F of a quiver Q (with relations R) assigns to each vertex v ∈ Q0

a linear space Fv and to each arrow a ∈ Q1 a linear map F (a) : Ft(a) → Fh(a), such
that for all r =

∑
i λi pi ∈ R we have

∑
i λi F (pi) = 0. Here F (p) = F (al) . . . F (a1)

for any path p = al . . . a1 in Q. Thus representations of Q are always assumed
to satisfy the relations R of the quiver Q. If F and G are representations then
a morphism τ : F → G is a collection of linear maps τ(v) : Fv → Gv for each
v ∈ Q0 such that, for all a ∈ Q1, τ(h(a))F (a) = G(a)τ(t(a)). We write HomQ(F,G)
for all morphisms from F to G and Mod(Q) for the category of representations,
which is an abelian category. It is equivalent with Mod(kQ/(R)). We will identify
a representation with its corresponding kQ/(R)-module. The dimension vector of
F ∈ mod(Q) is dimF = (dimk Fv)v∈Q0 ∈ ZQ0 . A dimension vector of Q is an integer
sequence α ∈ ZQ0 .

Let Q be a quiver and α a dimension vector of Q. Define the affine space

Repα(Q) =
∏

a∈Q1

Mαh(a)×αt(a)
(k)
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where Mm×n(k) is the linear space of m× n matrices over k. If m = n we sometimes
write Mn(k). Also define Glα(k) =

∏
v∈Q0

Glαv
(k) where Gln(k) stands for the gen-

eral linear group of n×n matrices over k. A point of Repα(Q) defines a representation
of Q of dimension vector α in a natural way. The isomorphism class of representations
of Q of dimension vector α are in one-one correspondence with the orbits of the group
Glα(k) acting on Repα(Q) by conjugation.

Let Q be a quiver (with relations R). For v ∈ Q0 we write Sv for the associated
simple representation. Thus dimSv = (δvv′ )v′∈Q0 . Write K0(Q) for the Grothendieck
group K0(mod(Q)) of mod(Q). Since dim(−) is exact on short exact sequences, it
extends to a group morphism

ϕ : K0(Q) → ZQ0

The image of {Sv}v∈Q0 under ϕ is a Z-module basis of ZQ0 hence ϕ is an isomorphism
and {Sv}v∈Q0 is a Z-module basis for K0(Q). In what folows we will often identify
K0(Q) = ZQ0 and view the Euler form χ for mod(Q) as a bilinear form on ZQ0 .

For v ∈ Q0 we write Pv for the projective module evkQ/(R) in mod(Q). For
any representation F of Q we have HomQ(Pv, F ) = F (v) hence HomQ(Pv, Pw) =
ewkQ/(R)ev, the vector space spanned by the paths p in Q having h(p) = v and
t(p) = w. A basic result is that the category of finitely generated projective kQ/(R)-
modules is equivalent to the additive category generated by the (Pv)v∈Q0 .

Let Q be a quiver without oriented cycles and let θ ∈ ZQ0 be a dimension vector.
A representation F of Q is called θ-semistable (resp. stable) if θ · dimF = 0 and
θ · dimN ≥ 0 (resp. > 0) for every non-trivial subrepresentation N of F . Here we
denote “·” for the standard scalar product on ZQ0 : (αv)v · (βv)v =

∑
v αvβv.

The full subcategory of θ-semistable representations of Q forms an exact abelian
subcategory of mod(Q) in which the simple objects are precisely the stable represen-
tations. For more details we refer to [47].

It is a fundamental fact [65, Corollary 1.1] that F is semistable for some θ if and
only there exists G ∈ mod(Q) for which F ⊥ G. The relation between θ and dimG is
such that the forms −·θ and χ(−, dimG) are proportional. Associated to G ∈ mod(Q)
there is a semi-invariant function φG on Repα(Q) such that the set

{F ∈ Repα(Q) | F ⊥ G} (1.1)

coincides with {φG 6= 0}. In particular (1.1) is affine.

1.4 Graded algebras and modules

Let A = ⊕i∈ZAi be a Z-graded k-algebra. We say A is connected if in addition Ai = 0
for all i < 0 and A0 = k. Any graded connected noetherian k-algebra A is locally
finite, i.e. dimk Ai <∞, for all i ∈ Z.

We write GrMod(A) for the category of graded right A-modules with morphisms
the A-module homomorphisms of degree zero. Since GrMod(A) is an abelian category
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with enough injective objects we may define the functors ExtnA(M,−) on GrMod(A)
as the right derived functors of HomA(M,−). It is convenient to write (for n ≥ 0)

ExtnA(M,N) :=
⊕

d∈Z

ExtnA(M,N(d))

whence ExtnA(M,−) are the right derived functors of Ext0A(M,−) := HomA(M,−),
for n ≥ 1.

A graded right A-module M is a graded right ideal in A if M ⊂ A i.e. Mi ⊂ Ai
for all i. Let M be a graded right A-module. We use the notation (for all n ∈ Z)
M≥n = ⊕d≥nMd and M≤n = ⊕d≤nMd. We say M is left (resp. right) bounded if
M≤n = 0 (resp. M≥n = 0) for some n ∈ Z. For any integer n, define M(n) as
the graded A-module equal to M with its original A action, but which is graded by
M(n)i = Mn+i. We refer to the functor M 7→M(n) as the n-th shift functor. If A is
connected note that k = A/A≥1 is both a graded left and a graded right A-module,
concentrated in degree zero. We write Ak resp. kA if we want to stress the left resp.
right A-module structure of k.

The k-dual of a k-vector space V is V ′ = Homk(V, k). The graded dual of a graded
right A-module M is M∗ = HomA(M,A) and M is said to be reflexive if M∗∗ = M .
We also write (−)′ for the functor on graded k-vector spaces which sends M to its
Matlis dual

M ′ = Homk(M,k) = ⊕n(M−n)
′

1.5 Tails

Let A be a noetherian connected graded k-algebra. We denote by τ the functor which
sends a graded right A-module to the sum of all its finite dimensional submodules.
Denote by Tors(A) the full subcategory of GrMod(A) consisting of all modulesM such
that τM = M and write Tails(A) for the quotient category GrMod(A)/Tors(A). We
write π : GrMod(A) → Tails(A) for the (exact) quotient functor. By localization
theory [70] π has a right adjoint which we denote by ω. It is well-known that π ◦
ω = id. The object πA in Tails(A) will be denoted by O and it is easy to see
ω = HomTails(A)(O,−). Objects in Tails(A) will be denoted by script letters like M.

The shift functor induces an automorphism sh : M 7→ M(1) on Tails(A) which
we also call the shift functor (in analogy with algebraic geometry it should perhaps
be called the “twist” functor).

When there is no possible confusion we write Hom instead of HomA and
HomTails(A). The context will make clear in which category we work.

If M ∈ Tails(A) then Hom(M,−) is left exact and since Tails(A) has enough
injectives [10] we may define its right derived functors Extn(M,−). We also use the
notation

Extn(M,N ) :=
⊕

d∈Z

Extn(M,N (d))
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and we set Hom(M,N ) = Ext0(M,N ).
Convention 1.1.1 fixes the meaning of grmod(A), tors(A) and tails(A). It is easy

to see tors(A) consists of the finite dimensional graded A-modules. Furthermore
tails(A) = grmod(A)/ tors(A).

If M is finitely generated and N is arbitrary we have

Extn(πM, πN) ∼= lim
−→

ExtnA(M≥m, N). (1.2)

If M and N are both finitely generated, then (1.2) implies

πM ∼= πN in tails(A) ⇔ M≥n
∼= N≥n in grmod(A) for some n ∈ Z

explaining the word “tails”. The right derived functors of τ are given by

Riτ = lim
−→

ExtiA(A/A≥n,−)

and for M ∈ GrMod(A) there is an exact sequence (see [10], Proposition 7.2)

0 → τM →M → ωπM → R1τM → 0. (1.3)

We say A satisfies condition χ if dimk ExtjA(k,M) < ∞ for all j and all M ∈
grmod(A). In case A satisfies condition χ then for every M ∈ grmod(A) the cokernel
of the map M → ωπM in the exact sequence (1.3) is right bounded. In particular,
for M ∈ grmod(A) we have M≥d

∼= (ωπM)≥d for some d.
Every graded quotient of a polynomial ring satisfies condition χ and so do most

noncommutative algebras of importance. The condition is essential to get a theory
for noncommutative schemes which resembles the commutative theory.

Proposition 1.5.1. [10] Let A be a right noetherian connected k-algebra satisfying
condition χ. Then Extj(M,N ) is finite dimensional for all j and all M,N ∈ tails(A).

1.6 Projective schemes

Let A be a noetherian graded k-algebra. As suggested by Artin and Zhang [10] we
define the (polarized) projective scheme ProjA of A as the triple (Tails(A),O, sh). In
analogy with classical projetive schemes we shall refer to the objects of tails(A) (resp.
Tails(A)) as the coherent (resp. quasicoherent) sheaves on X = ProjA, even when A
is not commutative, and we shall use the notation coh(X) := tails(A), Qcoh(X) :=
Tails(A). By analogy we sometimes write OX = O = πA. We write ExtiX(M,N )
instead of ExtiTails(A)(M,N ).

The following definitions agree with the classical ones for projective schemes.
If M is be a quasicoherent sheaf on X = ProjA, we define the cohomology groups

of M by
Hn(X,M) := ExtnX(OX ,M).
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We refer to the graded right A-modules

Hn(X,M) :=
⊕

d∈Z

Hn(X,M(d))

as the full cohomology modules of M. Finally, we mention the cohomological dimen-
sion of τ

cd τ := max{n ∈ N | Rnτ(−) 6= 0}

and the cohomological dimension of X

cdX := max{n ∈ N | Hn(X,−) 6= 0}.

It is easy to prove
cdX = max(0, cd τ − 1).

1.7 Hilbert series

The Hilbert series of a graded k-vector space V having finite dimensional components
is the formal series

hV (t) =

+∞∑

i=−∞

(dimk Vi)t
i ∈ Z((t)).

Let A be a noetherian connected graded k-algebra. Then the Hilbert series hM (t) of
M ∈ grmod(A) makes sense since A is right noetherian. Note hk(t) = 1, hM(l)(t) =

t−lhM (t) and hM ′t = hM (t−1).
Assume further A has finite global dimension. We denote by pdM the projective

dimension of M . Given a projective resolution of M 6= 0

0 → P r → . . .→ P 1 → P 0 →M → 0

we have

hM (t) =

r∑

i=0

(−1)ihP i(t).

Since A is connected, left bounded graded right A-modules are projective if and only
if they are free hence isomorphic to a sum of shifts of A. So if we write

P i =

ri⊕

j=0

A(−lij)

we obtain

hM (t) =

r∑

i=0

(−1)ih⊕ri
j=0A(−lij)

(t) =

r∑

i=0

(−1)i
ri∑

j=0

tlij

︸ ︷︷ ︸
qM (t)

hA(t)
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where qM (t) is the so-called characteristic polynomial of M . Thus we have the formula

qM (t) = hM (t)hA(t)−1 (1.4)

Note qM(l) = t−lqM (t), qA(t) = 1 and qk(t) = hA(t)−1.
Put X = ProjA. We will write K0(X) for the Grothendieck group K0(coh(X))

of coh(X). The shift functor on coh(X) induces a group automorphism

sh : K0(X) → K0(X) : [M] 7→ [M(1)]

We may view K0(X) as a Z[t, t−1]-module with t acting as the shift functor sh−1. In
[57] it was shown how K0(X) may be described in terms of Hilbert series.

Theorem 1.7.1. [57, Theorem 2.3] Let A be a noetherian connected graded k-algebra
of finite global dimension and set X = ProjA. Then there is an isomorphism of
Z[t, t−1]-modules

θ : K0(X)
∼=
−→ Z[t, t−1] /(qk(t))

[M] 7→ qM (t) where M ∈ grmod(A), M = πM .
(1.5)

In particular, [O(n)] is sent to t−n.

1.8 Artin-Schelter regular algebras

Now we come to the definition of regular algebras, introduced by Artin and Schelter
[5] in 1986. They may be considered as noncommutative analogues of polynomial
rings.

Definition 1.8.1. [5] A connected graded k-algebra A is called an Artin-Schelter
regular algebra of dimension d if it has the following properties:

(i) A has finite global dimension d;

(ii) A has polynomial growth i.e. there are positive real numbers c, e such that
dimk An ≤ cne for all positive integers n;

(iii) A is Gorenstein, meaning there is an integer l such that

ExtiA(kA, A) ∼=

{
Ak(l) if i = d,
0 otherwise.

where l is called the Gorenstein parameter of A.

It is easy to see the Gorenstein parameter l is equal to the degree of qk(t).
If A is commutative then the condition (i) already implies A is isomorphic to a

polynomial ring k[x1, . . . , xn] with some positive grading, if the grading is standard
then n = l.

The Gorenstein property determines the full cohomology modules of O.
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Theorem 1.8.2. [10] Let A be a noetherian Artin-Schelter regular algebra of dimen-
sion d = n + 1, and let X = ProjA. Let l denote the Gorenstein parameter of A.
Then cdX = n, and the full cohomology modules of O = πA are given by

Hi(X,O) ∼=





A if i = 0
0 if i 6= 0, n
A′(l) if i = n

The following questions for an Artin-Schelter regular algebra A of dimension d are
still open in general.

1. Is e+1 = d, where e is the minimal choice in Definition 1.8.1(ii)? Or equivalently,
is GKdimA = gldimA?

2. Is A a domain?

3. Is A noetherian?

The ultimate objective is of course to classify all Artin-Schelter regular algebras of
dimension d. At this moment this is still unknown for d ≥ 4, but completely solved
for d ≤ 3

• If d = 1 then A ∼= k[x].

• If d = 2 then [71, Lemma 2.2.5] A is either isomorphic to

k〈x, y〉
/
(ax2 + byx+ cxy + dy2) where a, b, c, d ∈ k and ad− bc 6= 0

(in this case deg x = deg y > 0) or A is isomorphic to the skew polynomial
ring k[x][y;σ, δ] where σ is a graded algebra morphism of k[x] and δ is a graded
σ-derivation (then deg y > deg x > 0).
If we restrict to the case where A is generated in degree one then A is either
isomorphic to a so-called quantum plane

k〈x, y〉 /(yx− λxy) where λ ∈ k \ {0}

or to the Jordan quantum plane

k〈x, y〉
/
(x2 − yx+ xy)

and the category GrMod(A) is equivalent with GrMod(k[x, y]), see [87].

• If d = 3 then there also exists a complete classification for Artin-Schelter regular
algebras of dimension three [5, 7, 8, 72, 73]. They are all left and right noetherian
domains with Hilbert series of a weighted polynomial ring k[x, y, z].

The significance of conditions (i) and (ii) in Definition 1.8.1 is shown in the following
examples.
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Example 1.8.3. The algebra A = k〈x, y〉/(yx) is not an Artin-Schelter regular alge-
bra. Although it has global dimension two and polynomial growth (even GKdimA =
2), it does not satisfy the Gorenstein condition since Ext1A(kA, A) 6= 0. This algebra
is also the only graded algebra of global dimension two and GK-dimension two which
is not noetherian [5].

Example 1.8.4 ([74]). The algebra A = k〈x, y, z〉/(x2 + y2 + z2) is not an Artin-
Schelter regular algebra. It has global dimension two and satisfies the Gorenstein
condition, but it is not noetherian. By [74, Theorem 1.2] this implies A does not have
polynomial growth.

1.9 Three dimensional Artin-Schelter algebras

In this manuscript we will restrict ourselves to three dimensional Artin-Schelter reg-
ular algebras A which are generated in degree one. In this section A will be such an
algebra. As proved in [5] there are two possibilities.

• kA has a minimal resolution of the form

0 → A(−3) → A(−2)3 → A(−1)3 → A→ kA → 0

Thus A has three generators and three defining homogeneous relations in degree
two. Hence A is Koszul and the Gorenstein parameter is l = 3. The Hilbert
series of A is given by hA(t) = (1 − t)3, i.e.

dimk An =
(n+ 1)(n+ 2)

2
for n ≥ 0

which is the same as the Hilbert series of the commutative polynomial algebra
k[x, y, z] with standard grading. Such algebras A are called quantum polynomial
rings in three variables. Since the relations have degree two we also refer to these
algebras as quadratic Artin-Schelter algebras. The corresponding ProjA will be
called a quantum projective plane, denoted by P2

q.

• kA has a minimal resolution of the form

0 → A(−4) → A(−3)2 → A(−1)2 → A→ kA → 0 (1.6)

Now A has two generators and two defining homogeneous relations in degree
three. The Gorenstein parameter is l = 4. We deduce

hA(t) =
1

(1 − t)2(1 − t2)

which means

dimk An =

{
(n+ 2)2/4 if n ≥ 0 even
(n+ 1)(n+ 3)/4 if n ≥ 0 odd
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which is the same as the Hilbert series of the commutative polynomial algebra
k[x, y, z] with grading deg x = deg y = 1, deg z = 2. We refer to these algebras
as cubic Artin-Schelter algebras. The Hilbert series of the Veronese subalgebra
A(2) = k⊕A2⊕A4⊕. . . of A is the same as the Hilbert series of the commutative
ring

k[x0, x1, x2, x3] /(x0x1 − x2x3)

which is the homogeneous coordinate ring of a quadratic surface (quadric) in P3.
Since [81] Tails(A) ∼= Tails(A(2)) and ProjA has cohomological dimension two
we should think of ProjA as a quantum quadric, a noncommutative analogue
of the quadric surface P1 ×P1. We sometimes denote ProjA =

(
P1 ×P1

)
q
.

1.9.1 Examples

Example 1.9.1. The commutative polynomial ring in three variables k[x, y, z] with
standard grading is a quadratic Artin-Schelter algebra, and ProjA = P2. In contrast,
the weighted polynomial ring k[x, y, z] where deg x = deg y = 1, deg z = 2 is neither
a quadratic nor a cubic Artin-Schelter algebra since it is not generated in degree one.

Example 1.9.2. Other standard examples are provided from homogenizations of the
first Weyl algebra

A1 = k〈x, y〉/(xy − yx− 1).

• Introduce a third variable z which commutes with x and y, and for which
yx − xy − z2 = 0. Thus deg z = 1, and we obtain the quadratic Artin-Schelter
algebra

H = Hq = k〈x, y, z〉/(yz − zy, zx− xz, xy − yx− z2) (1.7)

to which we refer as the homogenized Weyl algebra. It is easy to seeH is the Rees
algebra with respect to the standard Bernstein filtration on A1, see Example
1.11.1 below.

• Introduce a third variable z which commutes with x and y and for which
xy − yx − z = 0. Thus deg z = 2 and we obtain the enveloping algebra of
the Heisenberg-Lie algebra, which is a cubic Artin-Schelter algebra

Hc = k〈x, y, z〉/(yz − zy, xz − zx, xy − yx− z)

= k〈x, y〉/(y2x− 2yxy + xy2, x2y − 2xyx+ yx2)

= k〈x, y〉/([y, [y, x]], [x, [x, y]])

(1.8)

We refer to Hc as the enveloping algebra for short.

Example 1.9.3. The generic three dimensional Artin-Schelter regular algebras gen-
erated in degree one are the so-called type A-algebras [5], they are of the form
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• quadratic:
A = k〈x, y, z〉/(f1, f2, f3)

where f1, f2, f3 are the quadratic equations




f1 = ayz + bzy + cx2

f2 = azx+ bxz + cy2

f3 = axy + byx+ cz2
(1.9)

• cubic:
k〈x, y〉/(f1, f2)

where f1, f2 are the cubic equations
{
f1 = ay2x+ byxy + axy2 + cx3

f2 = ax2y + bxyx+ ayx2 + cy3 (1.10)

where (a, b, c) ∈ P2 \F where F is some finite set. In order to describe F , we recall
from [7, Theorem 1] that the regular algebras of global dimension three generated
in degree one are exactly the nondegenerate standard algebras. The algebra A with
above relations is nondegenerate (and hence regular since A is already standard)
unless (a, b, c) ∈ F where

quadratic: F = {(a, b, c) ∈ P2 | a3 = b3 = c3} ∪ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

cubic: F = {(a, b, c) ∈ P2 | a2 = b2 = c2} ∪ {(0, 1, 0), (0, 0, 1)}

The generic subclass of three dimensional Artin-Schelter regular algebras of type A
are given by the more restrictive condition (a, b, c) ∈ P2 \F ′ where

quadratic: F ′ = {(a, b, c) ∈ P2 | abc = 0 or (3abc)3 = (a3 + b3 + c3)3}

cubic: F ′ = {(a, b, c) ∈ P2 | abc = 0 or b2 = c2 or (2bc)2 = (4a2 − b2 − c2)2}

We will refer to quadratic resp. cubic Artin-Schelter algebras A of type A for which
(a, b, c) ∈ P2 \F ′ as generic type A. Quadratic algebras of generic type A are also
called three dimensional Sklyanin algebras. The particular choice of F ′ will become
clear in Example 1.9.15 below.

Remark 1.9.4. The homogenized Weyl algebra H is not of type A. It is also clear the
enveloping algebra of the Heisenberg-Lie algebra Hc is a cubic Artin-Schelter algebra
of type A, where (a, b, c) = (1,−2, 0). However since abc = 0 we conclude Hc is not
of generic type A.

Example 1.9.5. Our final example is that of a cubic Artin-Schelter algebra [8]

A(0, 1) = k〈x, y〉/(f1, f2)

where f1, f2 are the cubic relations
{
f1 = xy2 + y2x
f2 = yx2 + x2y + y3

Note A(0, 1) is not of type A.
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1.9.2 Dimension, multiplicity and Hilbert series

Let 0 6= M ∈ grmod(A). As shown in [8] we may compute the Gelfand-Kirillov
dimension (or GK-dimension or dimension for short) GKdimM as the order of the
pole of hM (t) at t = 1. The GK-dimension is the only dimension for graded modules
we will use in this manuscript, and therefore there is no confusion by putting dimM =
GKdimM . From the Hilbert series of A we find GKdimA = 3. If GKdimM ≤ n
then we define en(M) as

en(M) = lim
t→1

(1 − t)nhM (t)

We have en(M) ≥ 0 and furthermore en(M) = 0 if and only if GKdimM < n. We
define the rank of M as rankM = e3(M)/e(A). If GKdimM = n we put e(M) =
en(M) and call this the multiplicity (or Bernstein number) of M . In other words
e(M) is the first nonvanishing coefficient of the expansion of hM (t) in powers of 1− t

e(M) = lim
t→1

(1 − t)GKdimMhM (t) (1.11)

and one computes

e(A) =

{
1 if A is quadratic,
1/2 if A is cubic.

It is more convenient to work with ε(M) := e(M)e(A)−1 rather than e(M). For
0 6= M ∈ tails(A) we put dimM = GKdimM − 1 and e(M) = e(M), ε(M) = ε(M)
where M ∈ grmod(A), πM = M. We will often need

Lemma 1.9.6. Consider a short exact sequence 0 → N ′ → N → N ′′ → 0 in
grmod(A) or tails(A) with dimension ≤ n. Then dimN = max{dimN ′, dimN ′′}
and en(N) = en(N

′) + en(N
′′).

Proof. Taking Hilbert series is additive on short exact sequences in grmod(A) i.e. if
0 → N ′ → N → N ′′ → 0 in grmod(A) then hM (t) = hM ′(t) + hM ′′ (t). This easily
proves what we want.

An object in grmod(A) or tails(A) is said to be pure if it contains no subobjects of
strictly smaller dimension. It is critical if every proper quotient has lower dimension,
or equivalently, if all nontrivial subobjects have the same multiplicity. Note A is
critical and for a critical A-module M we have HomA(M,M) = k, see [8, Proposition
2.30]. We say M ∈ grmod(A) is Cohen-Macaulay if pdM = 3 − GKdimM .

The following result is well-known. By lack of reference we have included a proof.

Lemma 1.9.7. 1. If M ∈ grmod(A) is pure (resp. critical) then πM ∈ tails(A)
is pure (resp. critical).

2. If M ∈ tails(A) is pure (resp. critical) then M = πM for some pure (resp.
critical) object in grmod(A).



14 CHAPTER 1. PRELIMINARIES AND BASIC TOOLS

3. Let M,N ∈ grmod(A) (resp. tails(A)) are of the same dimension and assume
M is critical and N is pure. Then every non-zero morphism in Hom(M,N) is
injective.

Proof. For the first statement, assume by contradicition πM ∈ tails(A) is not pure
and let 0 6= N ∈ tails(A) be a subobject of smaller dimension. Since M is pure we
have in particular τM = 0 hence (1.3) gives M ⊂ ωM. Also, W = ωN ∩M is a
submodule of M hence W ∈ grmod(A). If W would be non-zero then 0 6= πW ⊂ N
hence dimπW ≤ dimN < dimM. This implies GKdimW < GKdimM , which is
impossible by the pureness of M . Thus W = ωN ∩M = 0 and we may consider ωN
as a subobject of the quotient (ωM)/M . Since the cokernel of the map M → ωπM
is right bounded this implies ωN ∈ tors(A), which contradicts 0 6= N ∈ tails(A).
Analogous reasoning in case M is critical.

Second, let M ∈ tails(A) be pure. Let M ∈ grmod(A) such that πM = M. We
may assume M contains no subobject in tors(A). Assuming M has a non-zero sub-
object of lower GK-dimension then application of π shows πM = M has a subobject
of lower dimension which is impossible. Hence M is pure. Analogous for the critical
case.

For the final part of the lemma, assume by contradiction 0 6= f ∈ Hom(M,N) is
not injective. Since M is critical dim ker f = dimM and e(ker f) = e(M). From the
short exact sequence 0 → ker f → M → im f → 0 we find dim im f < dimN which
contradicts the pureness of N . Thus f is injective, completing the proof.

We also recall the following frequently used result on the dimensions of dual mod-
ules and the duality between left and right A-modules.

Theorem 1.9.8. [8, Theorem 4.1 and Corollary 4.2] Let M ∈ grmod(A), M 6= 0.
Write m = GKdimM and denote M∨ = Ext3−mA (M,A). Then

1. ExtjA(M,A) = 0 for j < 3 −m

2. GKdimM∨ = GKdimM and e(M∨) = e(M)

3. GKdimExtjA(M,A) ≤ 3 − j for all j, and moreover following conditions are
equivalent:

(a) GKdimExtjA(M,A) = 3 − j,

(b) ExtjA(ExtjA(M,A), A) 6= 0

(c) M contains a non-zero submodule of GK-dimension 3 − j

4. There is a canonical map µ : M → M∨∨ which is an isomorphism if M is
Cohen-Macaulay

5. If m < 3 then M∨ is Cohen-Macaulay

6. M∨ is pure m-dimensional
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7. kerµ is the maximal submodule of M which has GK-dimension < m, and
GKdim (cokerµ) ≤ m− 2

Remark 1.9.9. In [1, Proposition 1.4(iv)] it is stated that the converse of Theorem
1.9.8(4) also holds, however this is faulty. For example, Proposition 2.2.14 below
implies, under suitable hypotheses on A, there are modules of GK-dimension 3 and
of projective dimension 1 for which µ is an isomorphism.

We will now discuss an useful expansion of the Hilbert series hM (t) of M ∈
grmod(A), where we treat the quadratic case and the cubic case separately.

Quadratic Artin-Schelter algebras

Assume A is a quadratic Artin-Schelter algebra and let M ∈ grmod(A). We expand
the characteristic polynomial qM (t) ∈ Z[t, t−1] in powers of (1 − t)

qM (t) = r + a(1 − t) + b(1 − t)2 + f(t)(1 − t)3 (1.12)

where r, a, b ∈ Z and f(t) ∈ Z[t, t−1] is a Laurent polynomial. Needless to say

r = qM (1), a = −
q′M (1)

1!
, b =

q′′M (1)

2!

Multiplying both sides of (1.12) with hA(t), equation (1.4) implies

hM (t) =
r

(1 − t)3
+

a

(1 − t)2
+

b

(1 − t)
+ f(t)

Note r = rankM . By definition of GKdimM and e(M) we find 0 ≤ GKdimM ≤ 3
and e(M) > 0 for M 6= 0. We easily deduce

Lemma 1.9.10. Assume A is a quadratic Artin-Schelter algebra. Let M ∈ grmod(A).
Then there exist integers r, a, b and f(t) ∈ Z[t, t−1] such that the Hilbert series of M
is of the form

hM (t) =
r

(1 − t)3
+

a

(1 − t)2
+

b

(1 − t)
+ f(t) (1.13)

Furthermore, if M 6= 0 then one of the following possibilities occurs

1. GKdimM = 3 and ε(M) = e3(M) = r > 0,

2. GKdimM = 2 and r = 0, ε(M) = e2(M) = a > 0,

3. GKdimM = 1 and r = a = 0, ε(M) = e1(M) = b > 0,

4. GKdimM = 0 and r = a = b = 0, ε(M) = e0(M) = hM (1) = f(1) =∑
i dimkMi > 0.
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We would like to refer to (1.13) as the standard form of hM (t). It is not hard to
find the standard form of hM(l)(t). Indeed, from qM(l)(t) = t−lqM (t) we find

qM(l)(1) = r, −q′M(l)(1) = lr + a,
q′′M(l)(1)

2
=

1

2
l(l + 1)r + la+ b

and therefore

hM(l)(t) =
r

(1 − t)3
+

lr + a

(1 − t)2
+
l(l+ 1)r/2 + la+ b

(1 − t)
+ t−lf(t) (1.14)

In particular we have shown that the rank, multiplicity en Gelfand-Kirillov dimension
of M are invariant under shift of grading. We will see some special types of modules
in §1.9.3 below.

Cubic Artin-Schelter algebras

Assume A is a cubic Artin-Schelter algebra and let M ∈ grmod(A). Expand the
characteristic polynomial qM (t) ∈ Z[t, t−1] in powers of 1 − t

qM (t) = r + (1 − t)f ′(t)

where r ∈ Z and f ′(t) ∈ Z[t, t−1]. Now expand f ′(t) in powers of 1 + t

qM (t) = r + (1 − t)(a+ (1 + t)f ′′(t)) = r + a(1 − t) + (1 − t2)f ′′(t)

where a ∈ Z and f ′′(t) ∈ Z[t, t−1]. Finally, expand f ′′(t) in powers of 1 − t

qM (t) = r + a(1 − t) + (1 − t2)(b + c(1 − t) + f(t)(1 − t)2)

= r + a(1 − t) + b(1 − t2) + c(1 − t)(1 − t2) + f(t)(1 − t)2(1 − t2)
(1.15)

where b, c ∈ Z and f(t) ∈ Z[t, t−1]. Substituting this expansion in (1.4) yields

hM (t) =
r

(1 − t)2(1 − t2)
+

a

(1 − t)(1 − t2)
+

b

(1 − t)2
+

c

1 − t
+ f(t)

The specific choice of the expansion will become clear in Chapter 6. Again we find
r = rankM and 0 ≤ GKdimM ≤ 3 for M 6= 0. However in the cubic case the
expression of ε(M) in terms of r, a, b, c is more subtle.

Lemma 1.9.11. Assume A is a cubic Artin-Schelter algebra. Let M ∈ grmod(A).
Then there exist integers r, a, b, c and f(t) ∈ Z[t, t−1] such that the Hilbert series of
M is of the form

hM (t) =
r

(1 − t)2(1 − t2)
+

a

(1 − t)(1 − t2)
+

b

(1 − t)2
+

c

1 − t
+ f(t) (1.16)

Furthermore, if M 6= 0 then one of the following possibilities occurs
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1. GKdimM = 3 and ε(M) = 2e3(M) = r > 0,

2. GKdimM = 2 and r = 0, ε(M) = 2e2(M) = a+ 2b > 0,

3. GKdimM = 1 and r = 0, a+ 2b = 0, ε(M) = 2e1(M) = −b+ 2c > 0,

4. GKdimM = 0 and r = 0, a+2b = 0, −b+2c = 0, ε(M) = 2e0(M) = 2hM (1) =
−c+ 2f(1) = 2

∑
i dimkMi > 0. Thus c ≤ 0.

We refer to (1.16) as the standard form of hM (t). Analogous as in the quadratic
case one may may compute the standard form of hM(l)(t) for any l ∈ Z. This is left
as an exercise for the reader. Again rank, multiplicity en GK-dimension of M are
invariant under shift of grading.

1.9.3 Linear modules

A linear module of dimension d over A is a cyclic graded right A-module M generated
in degree zero with Hilbert series (1 − t)−d. Clearly 0 ≤ d ≤ 3, GKdimM = d,
e(M) = 1 and a linear module of dimension zero is isomorphic to kA. Concerning
d = 3 we note

Proposition 1.9.12. If A is quadratic then a linear module of dimension three is
isomorphic to A. If A is cubic then there exists no linear module of dimension three.

Proof. Assume M ∈ grmod(A) is a linear module of dimension three. Thus we have
a surjective map A→M . Let N be the kernel of that map. Then

hN (t) = hA(t) − hM (t) =

{
0 if A is quadratic
−t(1 − t)−3(1 + t)−1 if A is cubic

Thus if A is quadratic then N = 0 hence A ∼= M , while if A is cubic then hN(t) would
have strictly negative coefficients, which is absurd.

We now discuss linear modules of dimension one and two. A linear module of
dimension one is called a point module. They were classified in [7, 8]. Although the
methods used for quadratic and cubic Artin-Schelter algebras are similar, we prefer
to discuss this classification separately.

Quadratic Artin-Schelter algebras

Linear modules of dimension two are called a line modules, they are of the form
A/uA = S with u ∈ A1. Hence line modules correspond naturally to lines in P2. The
image under π of a point module P (resp. line module S) over A will be called a
point object on P2

q (resp. line object). In particular, dimO = 2, dimS = 1, dimP = 0
where S = πS and P = πP . A minimal resolution of a line module S and a point
module P over A is of the form [8]

0 → A(−1) → A→ S → 0, 0 → A(−2) → A(−1)2 → A→ P → 0 (1.17)
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Since line objects on P2
q are of the form π(A/uA) they are naturally parametrized by

points in P(A1).
We now show how point modules were classified in [7, 8]. Write the relations of A

as



f1
f2
f3


 = MA ·




x
y
z


 (1.18)

where MA = (mij) has entries mij ∈ A1. We introduce auxiliary (commuting)
variables x(l), y(l), z(l) (for l ∈ Z) and for a monomial m = a0 · · · an where ai ∈

{x, y, z} we define the multilinearization of m as m̃ as a
(0)
0 · · ·a

(n)
n . We extend this

operation linearly to homogeneous polynomials in the variables x, y, z.
Let Γ ⊂ P2 ×P2 denote the locus of common zeroes of the f̃i. It turns out

Γ is the graph of an automorphism σ of E = pr1(Γ), the locus of zeroes of the

multihomogenized polynomial det(M̃A) where M̃A is the matrix (m̃ij). If det(M̃A) is
not identically zero then E is a divisor of degree 3 in P2. We then say A is elliptic.
Otherwise, E is all of P2 and we call A linear in this case.

The connection between E and point modules is as follows. Let P be a point
module over A. Since dimk Pi = 1 for i ≥ 0 we may choose a basis ei for each k-
vector space Pi. Thus P =

∑
kei. Multiplication by the generators x, y, z ∈ A1 of A

induce linear maps Pi → Pi+1. Thus




eix = αiei+1

eiy = βiei+1 for some αi, βi, γi ∈ k
eiz = γiei+1

Now since P is generated in degree one (αi, βi, γi) determines a point on P2, which
is independent of the choice of our basis ei. From the relations fi = 0 we have
e0fi = 0 thus ((α0, β0, γ0), (α1, β1, γ1)) ∈ Γ thus (α0, β0, γ0) ∈ E. This construction
is reversible and defines a bijection between the closed points of E and the point
modules over A. If p ∈ E corresponds to the point module P then (P≥1) (1) is the
point module associated to σp.

Example 1.9.13. Consider the commutative polynomial ring A = k[x, y, z]. Then it
is easy to see E = P2 and σ = id. Thus k[x, y, z] is a linear quadratic Artin-Schelter
algebra.

Example 1.9.14. Consider the homogenized Weyl algebra H from Example 1.9.2.
Then

M̃H =




0 −z0 y0
z0 0 −x0

−y0 x0 −z0


 (1.19)

hence det(M̃H) = −z3
0 , thus E is the “triple” line z = 0 in P2: The points (x, y, ε)

such that ε3 = 0. Since det(M̃H) is not identically zero, H is an elliptic quadratic
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Artin-Schelter algebra. Using the affine coordinates u = y/x, v = z/x in P2 it is easy
to check that the automorphism σ is given by σ(1, u, ε) = (1, u+ ε2, ε). Hence σ is an
infinitesimal translation. Note that in particular σ has infinite order.

Example 1.9.15. Consider a quadratic Artin-Schelter algebra of type A. Then E is
given by the equation

(a3 + b3 + c3)xyz = abc(x3 + y3 + z3).

A is elliptic and one checks A is of generic type A (i.e. A is a three dimensional
Sklyanin algebra) if and only if E is smooth curve. In that case E is an elliptic
curve in P2 and σ is given by translation by some point ξ ∈ E under the group law.
Choosing the rational point (1,−1, 0) on E as the origin we have ξ = (a, b, c).

Cubic Artin-Schelter algebras

We refer to a linear modules of dimension two as a conic modules. Conic modules
are are of the form A/vA with v ∈ A2. Hence they correspond naturally to conics in
P1 ×P1, the zero sets of quadratic forms. Further it is also natural to consider line
modules which are of the form A/uA = S with u ∈ A1. Line modules correspond
naturally to lines in P1 ×P1, where we use the convention that a line in P1 ×P1 will
mean a set of the form p× P1 where p : {u = 0} is a point of P1.

From the minimal resolutions for a line module S and a conic module Q

0 → A(−1) → A→ S → 0, 0 → A(−2) → A→ Q→ 0 (1.20)

one computes the Hilbert series

hS(t) =
1

(1 − t)(1 − t2)
, hQ(t) =

1

(1 − t)2

thus

dimk Sn =

{
n/2 + 1 if n is even
(n+ 1)/2 if n is odd

, dimkQn = n+ 1.

The image under π of a point module P (resp. line module S or a conic module Q)
over A will be called a point object on

(
P1 ×P1

)
q

(resp. line object or conic object).

In particular, dimO = 2, dimS = dimQ = 1, dimP = 0 where S = πS, Q = πQ and
P = πP . A minimal resolution for a point module P over A is of the form [8]

0 → A(−3) → A(−2) ⊕A(−1) → A→ P → 0

Let us show how point modules were classified [7, 8]. We write the relations of A as

(
f1
f2

)
= MA ·

(
x
y

)
(1.21)
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where MA = (mij) has entries mij ∈ A2. Again we introduce auxiliary (commuting)
variables x(l), y(l) (for l ∈ Z) and for a monomial m = a0 · · · an in A where ai ∈ {x, y}

we define the multilinearization of m as m̃ as a
(0)
0 · · ·a

(n)
n . We extend this operation

linearly to homogeneous polynomials in the variables x, y.
Let Γ ⊂ P1 ×P1 ×P1 denote the locus of common zeroes of the f̃i. Define the

projections

pr12 : P1 ×P1 ×P1 → P1 ×P1

(q1, q2, q3) 7→ (q1, q2) drop the last component

pr23 : P1 ×P1 ×P1 → P1 ×P1

(q1, q2, q3) 7→ (q2, q3) drop the first component

As in the quadratic case it turns out the images of Γ under these two projections are
the same (denoted by E), given by the zeroes of the multihomogenized polynomial

det(M̃A). Thus Γ is the graph of an automorphism σ : E → E. There are two
distinguished cases

• det(M̃A) is identically zero. Then E = P1 ×P1 and in this case we call A linear.
It follows that σ ∈ Aut(P1 ×P1) is of the form σ(q1, q2) = (q2, τ(q1)) where
τ ∈ Aut(P1).

• det(M̃A) is not identically zero. Then E is a divisor of bidegree (2, 2) in P1 ×P1.
We then say A is elliptic. We now have that σ ∈ Aut(E) is of the form
σ(q1, q2) = (q2, f(q1, q2)) for some map f : E → P1.

The connection between E and point modules is as follows. Let P be a point module
over A. Since dimk Pi = 1 for i ≥ 0 we may choose a basis ei for each k-vector space
Pi. Thus P =

∑
kei. Multiplication by the generators x, y ∈ A1 of A induce linear

maps Pi → Pi+1. Thus

{
eix = αiei+1

eiy = βiei+1
for some αi, βi ∈ k

Now since P is generated in degree one it is not hard to see qi = (αi, βi) ∈ P1.
Further, e0fi = 0 hence (q1, q2, q3) ∈ Γ and therefore (q1, q2) ∈ E. This construction
is reversible and defines a bijection between the closed points of E and the point
modules over A. If p ∈ E corresponds to the point module P then (P≥1) (1) is the
point module associated to σp.

For other properties of point modules and line modules over three dimensional
Artin-Schelter regular algebras we refer to [1, 7, 8].

Example 1.9.16. Consider the enveloping algebra Hc from Example 1.9.2. Then

M̃Hc
=

(
y1y2 x0y1 − 2y0x1

y0x1 − 2x0y1 x0x1

)
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hence det(M̃Hc
) = −2(x0y1 − x1y0)

2, thus E is the double diagonal on P1 ×P1 i.e.
the points ((x, y), (x + ε, y + ε)) ∈ P1 ×P1 such that ε2 = 0. As a consequence the
enveloping algebra Hc is elliptic. From the computation

(
y(y + ε) x(y + ε) − 2y(x+ ε)

y(x+ ε) − 2x(y + ε) x(x + ε)

)
·

(
x+ 2ε
y + 2ε

)
=

(
0
0

)

It follows that σ((x, y), (x+ ε, y+ ε)) = ((x+ ε, y+ ε), (x+2ε, y+2ε)). In other words,
σ is an infinitesimal translation by the point ((ε, ε), (ε, ε)) ∈ E. In particular σ has
infinite order on E.

Example 1.9.17. Consider a cubic Artin-Schelter algebra of type A. Then E is the
divisor of bidegree (2, 2) on P1 ×P1 given by all ((x0, y0), (x1, y1)) ∈ P1 ×P1 for which

(c2 − b2)x0y0x1y1 + ax2
0(cx

2
1 − by2

1) + ay2
0(cy

2
1 − bx2

1) = 0

and we deduce A is elliptic. Now E is smooth unless abc = 0 or b2 = c2 or (2bc)2 =
(4a2 − b2 − c2)2, i.e. E is smooth if and only if A is of generic type A. In this case σ
is given by translation under the group law of E.

1.9.4 Geometric data

Let A be a three dimensional Artin-Schelter regular algebra and put X = ProjA. As
previously we denote by E the locus of zeroes of det(M̃A). Let j be the inclusion
j : E ↪→ P2 (resp. j : E ↪→ P1 ×P1) if A is quadratic (resp. cubic).

Assume A is elliptic. Then [7, 41] the canonical sheaf ωE is isomorphic to OE

and E has arithmetic genus 1. We will use the notations det E := ∧rank EE and
deg E := deg(det E) for vector bundles E ∈ coh(E), and the Riemann-Roch theorem
and Serre duality are given by

χ(OE , E) = dimk HomE(OE , E) − dimk Ext1E(OE , E) = deg E

Ext1E(OE , E) ∼= HomE(E ,OE)′

Assume furthermore A is of generic type A (see Example 1.9.3). Thus E is a smooth
elliptic curve and σ is given by a translation on E. In particular E is a reduced and
irreducible scheme. According to [41, Ex II. 6.11] we have a group isomorphism

Pic(E) ⊕ Z → K0(E) : (O(D), r) 7→ r[OE ] + ψ(D)

where ψ is the group homomorphism

ψ : Cl(E) → K0(E) :
∑

i

nipi 7→
∑

i

ni[Opi
]

The projectionK0(E) → Z is given by the rank and the projectionK0(E) → Pic(E) is
given the first Chern class. If E is a vector bundle on E then c1(E) = det E = ∧rank EE .
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We also have for q ∈ E: c1(Oq) = OE(q). There is a homomorphism deg : Pic(E) → Z

which assigns to a line bundle its degree. For simplicity we will denote the composition
deg ◦ c1 also by deg. If U is a line bundle then deg[U ] := degU . If F ∈ coh(E) has
finite length then deg[F ] = lengthF [41, Ex. 6.12].

We now return to the general situation i.e. let A be a three dimensional Artin-
Schelter regular algebra. Put OE(1) = j∗OP2(1) (resp. j∗ pr∗1 OP1). Associated to
the geometric data (E, σ,OE(1)) is a so-called “twisted” homogeneous coordinate
ring B = B(E, σ,OE(1)). This is a special case of a general construction in [10].
See also [9], or the construction below. If A is linear then A ∼= B. If A is elliptic
there exists, up to a scalar in k, a canonical normal element g ∈ A3 (resp. g ∈ A4)
if A is quadratic (resp. cubic). The factor ring A/gA is isomorphic to the twisted
homogeneous coordinate ring B = B(E, σ,OE(1)), see [8, 9, 10]. All point modules
are B-modules. In other words g annihilates all point modules P i.e. P g = 0. If in
addition A is elliptic and the automorphism σ has infinite order then g turns out to
be central.

The fact that A may be linear or elliptic presents a notational problems and the
fact that E may be non-reduced also presents some challenges. We side step these
problems by defining C = Ered if A is elliptic and letting C be a σ invariant line
in P2 (resp. P1 ×P1). The geometric data (E, σ,OE(1)) then restricts to geometric
data (C, σC ,OC(1)). Note that in the elliptic case, writing E =

∑
i niCi where Ci

are the irreducible components of the support of E we have C = Ered =
∑

i Ci and
the irreducible components Ci of C form a single σ-orbit.

As the examples in §1.9.3 indicate it may occur that the order of σ is different
from the order of σC , being the restriction of σ to C. For example when A is the
homogenized Weyl algebra then σ has infinite order, C is the line in P2 given by
z = 0 and it follows that σC is the identity. Similar for the enveloping algebra of the
Heisenberg-Lie algebra.

Warning. To simplify further expressions we write (C, σ,OC(1)) for the triple
(C, σC ,OC(1)). Below we will often assume σ has infinite order. By this we will
always mean the automorphism σ in the geometric data (E, σ,OE(1)) has infinite
order and not the restriction of σ to C.

We will now recall the construction of the homogeneous coordinate ring
B(C, σ,OC (1)). To simplify notations we will write L = OC(1) and we denote the
auto-equivalence σ∗(−⊗C L) by −⊗ Lσ. It is easy to check [69, (3.1)] for n ≥ 0 one
has

M⊗ (Lσ)
⊗n = σn∗ (M⊗C L ⊗C σ

∗L ⊗C · · · ⊗C (σ∗)n−1L)

= σn∗M⊗C σ
n
∗L ⊗C σ

n−1
∗ L⊗C · · · ⊗C σ∗L

(1.22)

and since (−⊗ Lσ)−1 = σ∗(−) ⊗C L−1 we find for n ≥ 0

M⊗ (Lσ)
⊗−n = (σ∗)n(M⊗C σ∗L

−1 ⊗C σ
2
∗L

−1 ⊗C · · · ⊗C σ
n
∗L

−1)

= (σ∗)nM⊗C (σ∗)n−1L−1 ⊗C (σ∗)n−2L−1 ⊗C · · · ⊗C L−1
(1.23)
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For M ∈ Qcoh(X) put Γ∗(M) = ⊕n≥0Γ(C,M ⊗ (Lσ)⊗n) and D = B(C, σ,L)
def
=

Γ∗(OC). Now D has a natural ring structure and Γ∗(M) is a right D-module.

Notation. It will be convenient below to let the shift functors −(n) on coh(C) be
the ones obtained from the equivalence coh(C) ∼= tails(D) and not the ones coming
from the embedding j. Thus for all M ∈ coh(C) we write M(n) = M⊗ (Lσ)⊗n =
M⊗ (OC(1)σ)

⊗n.

In [8, §5] it is shown there is a surjective morphism A → D = B(C, σ,OC(1))
of graded k-algebras whose kernel is generated by a normalizing element h. In the
elliptic case h divides g and D is a prime ring. However D may not be a domain since
C may have multiple components Ci.

For a homogeneous element a ∈ A we denote by a its image in D = A/hA. For
homogeneous elements d1, d2 ∈ D of degrees m and n respectively the multiplication
d1d2 in D is by definition

d1d2 = d1 ⊗k σ
md2 ∈ H0(C,OC(m+ n))

where we have used the notation σmd2 = d2 ◦ σ
m.

For d ∈ Dn = H0(C,OC(n)) we denote d(p) for the evaluation of the global
section d in a point p ∈ C and div(d) for the divisor of d consisting of all points p of C
vanishing at d i.e. d(p) = 0. Thus for p ∈ C we obtain (d1d2)(p) = d1(p)d2(σ

mp) ∈ k
and

div(d1d2) = div(d1 ⊗k d
σm

2 ) = div(d1) + σ−m div(d2)

Example 1.9.18. Let A be quadratic and a = (λx+µy+ νz)(λ′x+µ′y+ ν′z) ∈ A2.
Let p ∈ E. Writing σip = (αi, βi, γi) we have a(p) = (λα0 +µβ0 + νγ0)(λ

′α1 +µ′β1 +
ν′γ1) ∈ k.

Let A be cubic and a = (λx + µy)(λ′x + µ′y) ∈ A2. Let p ∈ E. We may write
σip = ((αi, βi), (αi+1, βi+1) and it follows that a(p) = (λα0 + µβ0)(λ

′α1 + µ′β1) ∈ k.

By analogy with the commutative case we may say ProjA contains ProjD as a
“closed” subscheme. Though the structure of ProjA is somewhat obscure, that of
ProjD is well understood.

Indeed it follows from [10, 9] that the functor Γ∗ : Qcoh(C) → GrMod(D) de-
fines an equivalence Qcoh(C) ∼= Tails(D). The inverse of this equivalence and its

composition with π : GrMod(D) → Tails(D) are both denoted by (̃−).
In case A is elliptic the map p 7→ Γ∗(Op) defines the bijection from §1.9.3 between

the points of C (hence the closed points of E) and the point modules over A. We
will denote Np = Γ∗(Op) and Np = πNp. In particular all point modules over A are
D-modules i.e. Np h = 0. We will frequently use

(Np)≥m = Nσmp(−m), Np = Nσmp(−m) (1.24)

where p ∈ C and m ∈ Z. We will use the following observation.
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Lemma 1.9.19. Assume A is elliptic. Let M ∈ grmod(A) be such that M/Mh ∈
tors(A). Then GKdimM = 1. If σ has infinite order then M ∈ tors(A).

Proof. Let c = deg h. Multiplication by h induces an isomorphism Mn
∼= Mn+c for

large n. Hence GKdimM ≤ 1.
For the second part it suffices to proveMh = 0. Assume by contradictionMh 6= 0.

Write T ⊂ M for the submodule of h-torsion elements of M . Then N = M/T is a
non-zero h-torsion free module of GK-dimension ≤ 1. Write (Nh)0 for the degree
zero part of the localization of N at the powers of h. We find (Nh)0 is a finite
dimensional representation of (Ah)0. By [8, Proposition 5.18] it is not difficult to see
(Ah)0 = (Ag)0. If σ has infinite order then (Ag)0 is a simple ring [8]. In particular
it has no finite dimensional representations. Thus (Nh)0 = 0 i.e. there is a positive
integer i for which Nhi = 0. For such a minimal i this implies Nhi−1 is a non-
zero submodule of N which satisfies Nhi−1h = 0, a contradiction to the fact that
N = M/T is h-torsion free. This proves what we want.

In the sequel it will be useful to cast the relationship between the noncommutative
graded ring A and the commutative scheme C into the language of noncommutative
algebraic geometry exhibited in [67, 78] although we will use this language only in an
intuitive way.

We define a map of noncommutative schemes u : C → X by

u∗πM = (M ⊗A D)̃ for M ∈ GrMod(A),
u∗M = π(Γ∗(M)A) for M ∈ Qcoh(C)

We will call u∗(πM) the restriction of πM to C. The above functors are indicated
in the following commutative diagram

Tails(A) Tails(D) Qcoh(C)

GrMod(A) GrMod(D)

ωπ
ωπ

−⊗A D

(−)A

(̃−)

Γ∗

(̃−)

u∗

u∗

Γ∗

Note u∗ is an exact functor. For the left derived functor of u∗ we have
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Lemma 1.9.20. If M ∈ D−(GrMod(A)) then Lu∗(πM) = (M
L

⊗A D)̃

Proof. One shows first that the objects πF where F is a finitely generated graded free
A-module are acyclic for u∗ in the sense of [40]. Then the lemma follows by replacing
M by a resolution of finitely generated free A-modules.

We easily obtain the following consequence.

Lemma 1.9.21. Assume A is elliptic and let M ∈ D−(Tails(A)). Then there are
short exact sequences

0 → u∗Hj(M) → Hj(Lu∗M) → L1u
∗Hj+1(M) → 0

Proof. TakeM ∈ D−(GrMod(A)) for which M = πM . We may assumeM is given by
a right bounded complex of graded projective A-modules. The lemma now follows by
applying π to the long exact homology sequence associate to the short exact sequence
of complexes

0 →Mh→M → M/Mh→ 0

1.10 Serre duality

It was shown in [86] that under reasonable hypotheses on a graded connected algebra
A the category tails(A) satisfies a classical form of Serre duality. However we will
need a stronger form of Serre duality introduced by Bondal and Kapranov in [19].

Let A be a k-linear Ext-finite triangulated category. By this we mean that for all
M,N ∈ A we have

∑
n dimk HomA(M,N [n]) <∞. The category A is said to satisfy

Bondal-Kapranov-Serre (BKS) duality if there is an auto-equivalence F : A → A
together with for all M,N ∈ A natural isomorphisms

HomA(M,N ) → HomA(N , FM)′

We now assume A is a noetherian connected graded k-algebra. If we use notations
which refer to the left structure of A then we adorn them with a superscript “◦”.

We make the following additional assumptions on A

1. A satisfies χ and the functor τ has finite cohomological dimension.

2. A satisfies χ◦ and the functor τ◦ has finite cohomological dimension.

3. tails(A) has finite global dimension.

Note that if A has finite global dimension then so does tails(A) by (1.2).
Put R = Rτ(A)′. According to [77] R is a complex of bimodules with finitely gen-

erated cohomology on the left and on the right, which in addition has finite injective
dimension, also on the left and on the right. We now have the following result
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Theorem 1.10.1. The category Db(tails(A)) satisfies BKS-duality with Serre functor
defined by

F (πM) = π(M
L

⊗R)[−1]

We refer to Appendix A for a more general version of Theorem 1.10.1 and its
proof.

Now let A be an Artin-Schelter regular algebra of dimension d = n + 1. Let l
denote the Gorenstein parameter of A. It is easy to see A satisfies the hypotheses
for Theoreom 1.10.1. In this case the Serre functor has a particularly simple form.
Indeed in [10] it is shown that R = (Rn+1τA)′ ∼= A[n+ 1](−l) as left A-modules and
in [77] it is proved that RτA ∼= Rτ◦A as complexes of bimodules. Thus we also have
R = A[n + 1](−l) as right A-modules. In other words R = Aφ[n+ 1](−l) where φ is
some graded automorphism of A. The automorphism M 7→Mφ of GrMod(A) passes
to an automorphism Tails(A) for which we also use the notation (−)φ.

We find the the following formula for the Serre functor on tails(A).

FM = Mφ(−l)[n]

From this we easily obtain:

Proposition 1.10.2. One has gldim tails(A) = gldimA− 1.

Proof. As above put gldimA = n + 1. The inequality gldim tails(A) ≤ n follows
directly from BKS-duality and the above discussion. Indeed, for all M,N ∈ tails(A)
and i > n we have

Extitails(A)(M,N ) ∼= HomDb(tails(A))(M,N [i])

∼= HomDb(tails(A))(N [i],Mφ(−l)[n])′

∼= Extn−itails(A)(N ,Mφ(−l))
′

which is zero. The other inequality follows from Theorem 1.8.2.

We now assume A is an Artin-Schelter regular algebra of dimension 3. We will
look for an algebra Â for which GrMod(A) ∼= GrMod(Â) and for which Serre duality

for tails(Â) takes a particulary simple form.
In [87] Zhang found an elegant answer to the question when GrMod(A) ∼=

GrMod(Â) for two Z-graded connected k-algebras A, Â. A Zhang-system of A is
a set of graded isomorphisms τ = (τi)i∈Z for which τn(aτm(b)) = τn(a)τm+n(b) for all
n,m ∈ Z and all homogeneous elements a, b in A with a ∈ Am. The Zhang-twist of A
by τ , denoted by Aτ , is the graded k-algebra A with a new multiplication defined by
a·b = aτnb for a ∈ An, b ∈ A. It was shown in [87, Theorem 1.2] that for two Z-graded

connected k-algebras A, Â generated in degree one we have GrMod(A) ∼= GrMod(Â)

if and only if A is isomorphic to a Zhang-twist of Â. Furthermore Gelfand-Kirillov di-
mension, global dimension, noetherian, domain and Artin-Schelter are Zhang-twisting
invariant properties.
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Let A be an Artin-Schelter regular algebra of dimension 3 with Gorenstein param-
eter l. As in (1.18), (1.21) we write the relations f of A as f = MAx. With a suitable
choice of the relations f we have xtMA = (QAf)t for some invertible matrix QA with
scalar entries, see [5, Theorem 1.5]. It now turns out there exists a Zhang-twist Aτ of
A such that QAτ is the identity matrix. This was pointed out by M. Van den Bergh,
see also [79]. Note again GrMod(A) ∼= GrMod(Aτ ) and by [87, Theorem 1.4] also
Tails(A) ∼= Tails(Aτ ) where (πA)(n) is sent to (πAτ )(n).

If A is of type A then writing the relations as in (1.9), (1.10) yields QA = id
whence we may put A = Aτ . By (1.7) it is easy to check this is also true for the
homogenized Weyl algebra A = H .

Convention 1.10.3. From now on we will replace any quadratic or cubic Artin-
Schelter algebra A with a Zhang-twist Aτ for which QAτ is the identity matrix.

Remark 1.10.4. We are allowed to use Convention 1.10.3 in this thesis since

• we will only specify to elliptic algebras for which σ has infinite order (but these
are invariant properties under Zhang-twisting), the homogenized Weyl algebra
and algebras of (generic) type A,

• we will not rely on the relations of A except for specific relations (1.9), (1.10)
for algebras of type A, (1.7) for the homogenized Weyl algebra and (1.8) for the
enveloping algebra of the Heisenberg-Lie algebra.

Using this convention we see Serre duality for tails(A) takes a particulary simple
form.

Theorem 1.10.5. (Serre duality) Let A be a quadratic or cubic Artin-Schelter alge-
bra. Let l denote the Gorenstein parameter A. Let M,N ∈ Db(tails(A)). Then there
are natural isomorphisms

ExtiDb(tails(A))(M,N ) ∼= Extn−i
Db(tails(A))(N ,M(−l))′ for all i ∈ Z.

Proof. As pointed out above the balanced dualizing complex R of A is given by
R = Aϕ[3](−l) for some graded automorphism ϕ of A. By [77, Corollary 9.3] and an
extended version in the cubic case (also communicated by M. Van den Bergh) this
automorphism is given by x 7→ (Q−1)tx. By Convention 1.10.3 we have QA = id
whence R = A[3](−l). We conclude by Theorem 1.10.1.

Finally we will often need the special case where N is a point object on ProjA.
From the previous theorem we deduce

Corollary 1.10.6. Let A be a quadratic or cubic Artin-Schelter algebra. Let l denote
the Gorenstein parameter A. Let M ∈ Db(tails(A)) and p ∈ E a closed point. Then
there are natural isomorphisms

ExtiDb(tails(A))(M,Np) ∼= Ext2−i
Db(tails(A))(Nσlp,M)′
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Proof. By Theorem 1.10.5 we have

ExtiDb(tails(A))(M,Np) ∼= Ext2−i
Db(tails(A))(Np(l),M)′

Invoking (1.24) ends the proof.

1.11 Filtered algebras and modules

Let A be a three dimensional Artin-Schelter algebra generated in degree zero. Let h
be the corresponding normalizing element as defined in §1.9.4. We denote by Ah the
localisation of A at the multiplicative set {1, h, h2, . . . , hn, . . . }. It follows that Ah is a
strongly Z-graded k-algebra. Write (Ah)0 for the degree zero part of Ah. Recall from
[8] and the proof of Lemma 1.9.19 that in case σ has infinite order, (Ah)0 is a simple
hereditary ring of GK-dimension two. As a frequently used consequence all critical
graded right A-modules of GK-dimension one are shifted point modules, and any A-
module of GK-dimension one maps surjectively to a shifted point module. In order
to describe the correspondence between graded right A-modules and representations
of (Ah)0 we recall some facts about filtered algebras and modules [14, Appendix A.3].

Let A be any k-algebra. A filtration of A is an ascending chain of linear subspaces

· · · ⊂ Vi−1 ⊂ Vi ⊂ Vi+1 ⊂ . . .

such that 1 ∈ V0,
⋃
i∈Z

Vi = A and ViVj ⊂ Vi+j for all i, j ∈ Z. A filtration is positive
if in addition Vi = 0 for i < 0. The Rees algebra of such a filtered algebra A is

Rees(A) =
⊕

i∈Z

Vi

which is identified with the subring
⊕

i∈Z
Vit

i of the ring of Laurent polynomials
A[t, t−1]. The Rees algebra becomes a Z-graded k-algebra by setting deg t = 1 and
deg a = 0 for all a ∈ A. We denote gr(A) for the associated graded algebra of A

gr(A) =
⊕

i∈Z

Vi/Vi−1

We have Rees(A)/tRees(A) ∼= gr(A) and Rees(A)/(t − 1)Rees(A) ∼= A. Note that
Rees(A)t, the localisation of Rees(A) at the multiplicative set {1, t, . . . , tn, . . . }, is
isomorphic to A[t, t−1]. Thus (Rees(A)t)0, the degree zero part of Rees(A)t, is iso-
morphic to A.

A right A-module of a filtered k-algebra A is called a filtered A-module if there is
an ascending chain of linear subspaces

· · · ⊂Mi−1 ⊂Mi ⊂Mi+1 ⊂ . . .
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such that
⋃
i∈Z

Mi = M and MiAj ⊂ Mi+j for all i, j ∈ Z. We shall assume such a
filtration is separated, meaning

⋂
i∈Z

Mi = 0. For such a module M we have the Rees
module

Rees(M) =
⊕

i∈Z

Mi ∈ GrMod(Rees(A))

where we identify Rees(M) =
⊕

i∈Z
Mit

i ⊂ M [t, t−1] = M ⊗A A[t, t−1], and the
associated graded module

gr(M) =
⊕

i∈Z

Mi/Mi−1 ∈ GrMod(gr(A)).

We have gr(M) ∼= Rees(M)/tRees(M) ∼= Rees(M) ⊗Rees(A) gr(A). When A is com-
mutative, X = Proj(Rees(A)) is a projective scheme containing the affine scheme
Spec(A) as an open subset, and the sheaf M = πRees(M) is an extension of the

sheaf M̃ on Spec(A) corresponding to M . Furthermore Proj(gr(A)) is the hypersur-
face at infinity in X , and π gr(M) is the restriction of M to this hypersurface. This
justifies the similar language we used in the noncommutative case §1.9.4.

Example 1.11.1. Consider the homogenized Weyl algebra A = H from Example
1.9.2. Then h = z and (Ah)0 is the first Weyl algebra A1 = k〈x, y〉/(xy−yx−1). For
any positive integer l, let Vl be the k-linear space spanned by the set {xjyl | i+j ≤ l}.
Then k = V0 ⊂ V1 ⊂ . . . is a positive filtration of A1, called the standard Bernstein
filtration. It is then clear that Rees(A1) is isomorphic to the homogenized Weyl
algebra, identifying t with h, and gr(A1) ∼= k[x, y], the homogeneous coordinate ring
of the line C in P2 given by the equation h = 0.

Example 1.11.2. Consider the enveloping algebra A = Hc from Example 1.9.2.
Then h = z = xy − yx and it is shown in [8, Theorem 8.20] that (Ah)0 is the

ring of invariants A
〈ϕ〉
1 of the first Weyl algebra A1 = k〈u, v〉/(uv − vu − 1) under

the automorphism ϕ(u) = −u, ϕ(v) = −v. For any positive integer l, let Vl be
the k-linear space spanned by the set {xjyl | i + j even and (i + j)/2 ≤ l}. Then

k = V0 ⊂ V1 ⊂ . . . is a positive filtration of A
〈ϕ〉
1 and Rees(A

〈ϕ〉
1 ) ∼= A(2), the 2-

Veronese of A. Furthermore gr(A
〈ϕ〉
1 ) ∼= k[x, y](2).

Let A be a positively filtered k-algebra, and assume furthermore V0 = k and A
is generated by V1. Write Filt(A) for the category with as objects the filtered right
A-modules and as morphisms the A-module morphisms f : M → N which are strict,
i.e. Nn ∩ im(f) = f(Mn) for all n. Write GrMod(Rees(A))t for the full subcategory
of GrMod(Rees(A)) consisting of the t-torsion free modules. The exact functor

Rees(−) : Filt(A) → GrMod(Rees(A))t

is an equivalence, and (Rees(M)t)0
∼= M . Also, for M ∈ Filt(A) we have

GKdimRees(M) = GKdimM + 1. This shows the study of irreducible A-modules of
GK-dimension n ≥ 0 is equivalent to the study of the critical t-torsion free modules
of GK-dimension n+ 1.





Chapter 2

Ideals of quadratic

Artin-Schelter algebras

In this chapter we classify reflexive graded right ideals of generic quadratic Artin-
Schelter algebras, up to isomorphism and shift of grading. This leads to a classification
of graded right ideals, up to modules of GK-dimension ≤ 1. It is similar to the
classification of right ideals of the first Weyl algebra, a problem that was completely
settled recently. The situation we consider is substantially more complicated however.

Most of the material presented in this chapter has been published in [27, 28].
Some results were found independently by Nevins and Stafford [60], using different
methods.

2.1 Motivation, main results and analogy

We begin with a motivation of studying such modules by considering a “classical”
situation, namely the Hilbert scheme of points Hilb(A2) on the affine plane A2. This
survey is collected from [52, 58]. We then see what happens if we replace k[x, y],
the coordinate ring of A2, by the first Weyl algebra A1 which we consider as the
coordinate ring of an open affine part of a noncommutative space P2

q. It turns out
[51, 17, 16] there is an analoge for the Hilbert scheme of points. The right ideals of
A1 are now related to reflexive graded right ideals I in the homogenized Weyl algebra
H , a quadratic Artin-Schelter algebra. In this chapter our goal is to generalize these
results for (generic) quadratic Artin-Schelter algebras.

31
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2.1.1 Hilbert schemes on affine planes

The commutative polynomial algebra k[x, y]

Let A0 = k[x, y] denote the commutative polynomial algebra in two variables, which
we view as the coordinate ring of the (ordinary) affine plane A2. The Hilbert scheme
of points on A2 parametizes the cyclic finite dimensional A0-modules

Hilbn(A2) = {V ∈ mod(A0) | V cyclic and dimk V = n}/ iso (2.1)

For V ∈ Hilbn(A
2) its annihilator AnnA0(V ) = {a ∈ A0 | a · V = 0} is an ideal of A0

of finite codimension and this correspondence is reversible

Hilbn(A
2) = {I ⊂ A0 ideal | dimk A0/I = n}

For any ideal J of A0 there is a unique ideal of finite codimension I such that I ∼= J .
Since the ideals of A0 are exactly the finitely generated torsion free rank one A0-
modules we also have

Hilb(A2) = {M ∈ mod(A0) |M torsion free of rank one }/ iso (2.2)

where Hilb(A2) =
∐
n Hilbn(A

2).
We rephrase this into the language of quiver representations. Let V ∈ Hilbn(A

2)
be a cyclic A0-module of dimension n. Multiplication by x and y induces linear maps
on V represented by n× n matrices X,Y for which [X,Y] = 0. We also have a vector
v ∈ V for which v · A0 = V . Thus

V ∈ Hilbn(A2) 7→ data X,Y ∈Mn(k), v ∈ kn :

{
[X,Y] = 0
k〈X,Y〉 · v = kn

(2.3)

Note k〈X,Y〉 = k[X,Y] since [X,Y] = 0. Conversely such data on the right of (2.3) de-
termines an A0-module structure on kn which is cyclic, hence an object in Hilbn(A

2).
Furthermore, isomorphism classes on the left are in one-to-one correspondence with
the orbits of the group Gln(k) acting on the data on the right by (simultaneous)
conjugation.

Apparently, the conditions on the right of (2.3) may be replaced by - at first sight
weaker - conditions

V ∈ Hilbn(A
2) 7→ data X,Y ∈Mn(k), v ∈ kn :

{
im([X,Y]) ⊂ k · v
k〈X,Y〉 · v = kn

(2.4)

Indeed, by standard arguments in linear algebra one shows that such data on the
right of (2.4) imply [X,Y] = 0. See for example [58, §2.2]. Associated are the linear
maps

i : k → kn : 1 7→ v

j : kn → k : u 7→ j(u) such that [X,Y] · u = j(u) · v
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The quadruple (X,Y, i, j) may be visualized as

rr

i

j

X

Y

which determines a representation of the underlying quiver Q with dimension
vector (n, 1). We find

Hilbn(A
2) = {(X,Y, i, j) ∈ Rep(n,1)(Q) | [X,Y] = ij

and k〈X,Y〉 · i(1) = kn}/Gln(k) (2.5)

where the group Gln(k) acts by conjugation

∀g ∈ Gln(k) : (X,Y, i, j) 7→ (gXg−1, gYg−1, gi, jg−1)

Note again that in fact j = 0 in (2.5). Also, Hilb0(A
2) is a point and Hilb1(A

2) = A2.

The first Weyl algebra

Let A1 = k〈x, y〉/(xy − yx − 1) be the first Weyl algebra. It is well-known A1 is a
noetherian domain of global dimension one. Thinking of A1 as a noncommutative
deformation of A0 = k[x, y], we would like to have an analogue for the Hilbert scheme
of points on A2.

A first (naive) attempt based on (2.1) would be to consider cyclic finite dimensional
right A1-modules

{V ∈ mod(A1) | V cyclic and dimk V = n}

But in contrast with A0 this is the empty set for n > 0. Indeed, if there were such a
module V then multiplication by x and y induce linear maps on V = kn represented
by n × n matrices X,Y. The relation xy − yx − 1 = 0 in A1 implies [Y,X] − I = 0.
Taking the trace of both sides we get n = 0. Similarly,

{I ⊂ A1 right ideal | dimk A1/I = n} = ∅ for n > 0.

Thus there seems no reason to expect results for A1 similar to the ones for A0 as
indicated above. But amazingly enough there are such results. The idea is to consider
the alternative description (2.2) of Hilbn(A

2). Define the set of isomorphism classes

R(A1) = {right ideals of A1}/ iso

= {M ∈ mod(A1) |M torsion free of rank one}/ iso
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Since A1 has global dimension one [56], the quotient A/I of a right ideal I of A1

has projective dimension at most one hence I is projective. Note that this implies
I is reflexive. We recall the basic result on this, as it was formulated by Berest and
Wilson.

Theorem 2.1.1. [17] The orbits of the natural Aut(A1)-action on the set R(A1) are
indexed by N and the orbit corresponding to n ∈ N is in natural bijection with the n-th
Calogero-Moser space

Cn = {(X,Y, i, j) ∈ Rep(n,1)(Q) | [X,Y] + I = ij}/Gln(k) (2.6)

where Gln(k) acts by simultaneous conjugation (gXg−1, gY g−1). In particular Cn is
a smooth connected affine variety dimension 2n.

Remark 2.1.2. 1. The first proof of Theorem 2.1.1 used the fact that there is a de-
scription ofR(A1) in terms of the (infinite dimensional) adelic Grassmanian, due
to Cannings and Holland [22]. Using methods from integrable systems Wilson
[84] established a relation between the adelic Grassmanian and the Calogero-
Moser spaces. That R(A1)/Aut(A1) ∼= N has also been proved by Kouakou
[48, 49]. In [16] Berest and Wilson gave a new proof of Theorem 2.1.1 this using
noncommutative algebraic geometry. We will come back on this in §2.1.2.

2. At first sight the description of the varieties Cn is not quite analogous as the
commutative situation (2.5) since the stability condition k〈X,Y 〉 · i(1) = kn

is missing. But one may prove (see for example [52]) that the representations
in Cn automatically satisfy this condition. The fundamental reason for this
is gldimA1 = 1 while gldimA0 = 2, which implies all right ideals of A1 are
reflexive (which is a stability condition) while in the case of A0 they are not.

3. We may simplify the description of the n-th Caloger-Moser space Cn as

Cn = {(X,Y) ∈M2
n(k) | rank([Y,X] − I) ≤ 1}/Gln(k) (2.7)

where Gln(k) acts by simultaneous conjugation. Note C0 is a point and C1 = A2.

2.1.2 Hilbert schemes on projective planes

The commutative polynomial algebra k[x, y, z]

Let A = k[x, y, z] ∼= Rees(A0) denote the commutative polynomial algebra in three
variables, which we view as the homogeneous coordinate ring of the projective plane
P2. We now consider the affine plane as the open affine part A2 = P2 \l∞ of P2 where
the line l∞ given by the equation z = 0. The restriction functor u∗ : coh(P2) →
coh(P1) from §1.9.4 associates with each sheaf its restriction to the line at infinity.

Let V ∈ Hilbn(A
2) be a cyclic n-dimensional A0-module. Then V extends to a

subscheme X of P2 of dimension zero and degree n, denoted by X ∈ Hilbn(P
2) with
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the property that multiplication by z induces an isomorphisms H0(P2,OX(l − 1)) ∼=
H0(P2,OX(l)) for l � 0. This means u∗OX = 0. Writing IX for the ideal sheaf of
OX we have u∗IX = OP1 . These correspondences are reversible

Hilbn(A2) = {X ∈ Hilbn(P
2) | u∗OX = 0}

= {I ∈ coh(P2) | I torsion free, rank one and c2(I) = n, u∗I = OP1}/ iso

We will now recall how these objects may be described by their homology. We have
an equivalence of derived categories, known as Beilinson equivalence [15]

Db(coh(P2))

RHom
P2(E,–)-

�
–

L

⊗∆E

Db(mod(∆)) (2.8)

where E = OP2 ⊕OP2(−1) ⊕OP2(−2) and ∆ is the quiver

r

u-
v -
w-

r

u′

-
v′-
w′

-
r

with relations reflecting the relations in A = k[x, y, z]




v′u = u′v
w′v = v′w
u′w = w′u

Under the derived equivalence (2.8) an object X ∈ Hilbn(P
2) is determined by a

representation N of ∆

H0(P2,OX)

X-
Y-
Z-

H0(P2,OX(1))

X′

-
Y ′

-
Z′

-
H0(P2,OX(2))

where the linear map X is induced by multiplication by x, etc. and Y ′X = X ′Y etc.
(matrices will always be acting on the left). Shifting IX if necessary, this representa-
tion N has dimension vector (n, n, n). As pointed out above the linear maps Z and
Z ′ are isomorphisms. By an argument of Baer [12], N is actually determined by the
linear maps X,Y, Z on the left, which is a representation of the Kronecker quiver ∆0

r

u-
v -
w-

r

Furthermore, consideration of matrix multiplications

(
X ′ Y ′ Z ′

)
·




0 Z −Y
−Z 0 X
Y −X 0




︸ ︷︷ ︸
MA(X,Y,Z)t

= 0
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and Z ′ being an isomorphism yields rankMA(X,Y, Z) ≤ 2n. This leads to a descrip-
tion of Hilbn(A

2) in terms of Kronecker quiver representations

Hilbn(A
2) = {(X,Y, Z) ∈ Rep(n,n)(∆

0) | Z isomorphism , rankMA(X,Y, Z) ≤ 2n,

k〈Z−1X,Z−1Y 〉 · v = kn for some v ∈ kn}/Gln(k)

And indeed, putting X = Z−1X , Y = Z−1Y we recover (2.3)

Hilbn(A
2) = {(X,Y, I) ∈ Rep(n,n)(∆

0) | rankMA(X,Y, I) ≤ 2n,

k〈X,Y〉 · v = kn for some v ∈ kn}/Gln(k)

= {(X,Y, I) ∈ Rep(n,n)(∆
0) | [X,Y] = 0,

k〈X,Y〉 · v = kn for some v ∈ kn}/Gln(k)

where one uses




Z−1 0 0
0 Z−1 0
0 0 Z−1


 ·




0 Z −Y
−Z 0 X
Y −X 0




︸ ︷︷ ︸
MA(X,Y,Z)t

=




0 I −Y

−I 0 X

Y −X 0




︸ ︷︷ ︸
MA(X,Y,I)t




X Y I

0 I 0
I 0 0


 ·




0 I −Y

−I 0 X

Y −X 0




︸ ︷︷ ︸
MA(X,Y,I)t

=




0 0 [Y,X]
−I 0 X

0 I −Y




The homogenized Weyl algebra

In [16] Berest and Wilson gave a new proof of Theorem 2.1.1 using noncommutative
algebraic geometry [10, 80]. That such an approach should be possible was in fact
anticipated very early by Le Bruyn who in [51] already came very close to proving
Theorem 2.1.1. Let us indicate which methods are used.

Consider the homogenized Weyl algebra H ∼= Rees(A1) from Example 1.9.2 and
put P2

q = Proj(H). The relation A1 = H/(z − 1)H gives a close interaction be-
tween right A1-modules and graded right H-modules. Indeed, under the equivalence
Rees(−) : Filt(A1) → GrMod(H) of §1.11 the isoclasses of right ideals of A1 are in
bijection with the set R(H) of z-torsion free reflexive rank one modules. Under the
exact quotient functor π : GrMod(H) → Tails(H) we then obtain a bijection with
the set R(P2

q) of isoclasses of objects I on P2
q = Proj(H) for which its restriction to

C = Ered is trivial i.e. u∗I = OP1 . An object I ∈ R(P2
q) is now determined by a

representation M of the quiver ∆ which is the same as the earlier quiver ∆ except
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the relations now reflect the relations in H

H1(P2
q, I(−2))

X-
Y-
Z-

H1(P2
q, I(−1))

X′

-
Y ′

-
Z′

-
H1(P2

q, I)

where

(
X ′ Y ′ Z ′

)
·




0 Z −Y
−Z 0 X
Y −X −Z




︸ ︷︷ ︸
MH(X,Y,Z)t

= 0

In addition, dimM = (n, n, n − 1) and the map Z is an isomorphism and Z ′ is
surjective. As before the representation M is determined by the three linear maps on
the left. The result is that the right ideals of the first Weyl algebra are in bijection
with the objects of the category
∐

n

{(X,Y, Z) ∈ Rep(n,n)(∆
0) | Z isomorphism, rankMH(X,Y, Z) ≤ 2n+ 1}/Gln(k)

And indeed, putting X = Z−1X , Y = Z−1Y we recover (2.7)

=
∐

n

{(X,Y, I) ∈ Rep(n,n)(∆
0) | rankMH(X,Y, I) ≤ 2n+ 1}/Gln(k)

=
∐

n

{(X,Y, I) ∈ Rep(n,n)(∆
0) | rank([Y,X] − I) ≤ 1}/Gln(k) =

∐

n

Cn

where one uses



Z−1 0 0
0 Z−1 0
0 0 Z−1


 ·




0 Z −Y
−Z 0 X
Y −X −Z




︸ ︷︷ ︸
MH (X,Y,Z)

=




0 I −Y

−I 0 X

Y −X −I




︸ ︷︷ ︸
MH (X,Y,I)t




X Y I

0 I 0
I 0 0


 ·




0 I −Y

−I 0 X

Y −X −I




︸ ︷︷ ︸
MH (X,Y,I)t

=




0 0 [Y,X] − I

−I 0 X

0 I −Y




Quadratic Artin-Schelter algebras

Let A be a quadratic Artin-Schelter algebra with associated geometric data (C, σ,OC).
Let R(A) be the set of reflexive graded right A-modules of rank one, considered up
to isomorphism and shift of grading. In the linear case this set is trivially {A}, see
Proposition 2.2.13 below. In the elliptic case we will prove the following result in
§2.4.7.
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Theorem 1. Assume k is uncountable. Let A be an elliptic quadratic Artin-Schelter
algebra for which the associated automorphism σ has infinite order. There exist
smooth locally closed varieties Dn of dimension 2n such that the set R(A) is in natural
bijection with

∐
nDn.

Moreover Dn has the following description (for n > 1)

Dn = {F = (X,Y, Z) ∈ Rep(n,n)(∆
0) | F is θ-stable and

rankMA(X,Y, Z) ≤ 2n+ 1}/Gln(k) (2.9)

where θ = (−1, 1) and MA is the matrix as defined in §1.9.3. It follows Dn is
a closed set of the quasi-affine variety consisting of the θ-stable representations in
Rep(n,n)(∆

0). For a description of D1 we refer to Corollary 2.4.5. In particular D0 is

a point and D1 is the complement of C under a natural embedding in P2.

Remark 2.1.3. In [60] Nevins and Stafford proved a result similar to Theorem 1,
although without an explicit description of Dn. It turns out Dn is an open subset in
a projective variety Hilbn(P

2
q) of dimension 2n, which is an analogue of the classical

Hilbert scheme of points on the projective plane P2. We will come back on this in
Chapter 3.

Remark 2.1.4. In fact Dn is connected. This will follow from (the proof of) Theorem
5 and Proposition 3.3.6 in Chapter 3. See also [60].

Remark 2.1.5. Note Theorem 1 also applies for the homogenized Weyl algebra and
in that case it follows from the description of Dn above that Dn = Cn for all n.

In the Sklyanin case we have in addition (see Theorem 2.4.24)

Theorem 2. Let A be a three dimensional Sklyanin algebra for which σ has infinite
order. Then the varieties Dn in Theorem 1 are affine.

Our proof of Theorem 2 is as follows. We will show in Theorem 2.4.24 that Dn

has the alternative description

Dn = {F = (X,Y, Z) ∈ Rep(n,n)(∆
0) | F ⊥ V and

rankMA(X,Y, Z) ≤ 2n+ 1}/Gln(k) (2.10)

Here V is a fixed representation of ∆0 with dimension vector dimV = (6, 3), inde-
pendent of F ∈ Dn. In particular there is some freedom in choosing V . From the
description (2.10) it follows Dn is a closed subset of ϕV 6= 0 so it is affine.

Remark 2.1.6. Our proof of Theorems 1 is similar in spirit to the proof of Theorem
2.1.1. However it is substantially more involved. The reason for this is that the
proofs for the Weyl algebra rely heavily on the fact the homogenized Weyl algebra
H contains a central element in degree one (namely z) while for generic A the lowest
central element in A has degree three.
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Remark 2.1.7. The reader will notice Theorem 2 is weaker than Theorem 2.1.1 but
this is probably unavoidable. Although (2.10) is a fairly succinct description of the
varieties Dn it is not as explicit as (2.6), (2.7). And very likely Dn can also not be
viewed in a natural way as the orbit of a group. This is also motivated by the fact
that, in the notations of Theorem 2, Aut(A) is a finite group (see [60, Proposition
2.10]).

We also have a result in §2.4.9 below, that describes the elements of R(A) by
means of filtrations.

Theorem 3. Assume k is uncountable. Let A be an elliptic quadratic Artin-Schelter
algebra and assume σ has infinite order. Let I ∈ R(A). Then there exists an m ∈ N

together with a monomorphism I(−m) ↪→ A such that there exists a filtration of
reflexive graded right A-modules of rank one

A = M0 ⊃M1 ⊃ · · · ⊃Mu = I(−m)

with the property the Mi/Mi+1 are shifted line modules, up to finite length modules.

Remark 2.1.8. By Proposition 2.2.13 below this result is (trivially) true in case A is
a linear quadratic Artin-Schelter algebra.

Remark 2.1.9. Dropping the hypothesis k is uncountable, Theorems 1 and 3 remain
true for three dimensional Sklyanin algebras for which σ has infinite order. See Re-
mark 2.4.14 below for this.

2.1.3 Stable vectorbundles on the projective plane

Finally, we would like to point out another analogy.
Let A be a quadratic Artin-Schelter algebra. As we will see in §2.2 reflexive

modules over A give rise to certain objects on P2
q, which we will call “vector bundles”.

In the commutative case this terminology coincides with the classical notion of a vector
bundle. A vector bundle of rank one will be called a line bundle. Furthermore to any
object M on P2

q we can associate two integers c1(M), c2(M) which are the analogues
of the first and second Chern class in the commutative case. In this terminology
the variety Dn from Theorem 1 parameterizes the linebundles I on P2

q for which
c1(M) = 0, c2(M) = n.

As there are no nontrivial line bundles on the projective plane P2 it is difficult (and
perhaps even unreasonable) to see the analogy of Theorem 1 with the commutative
case. However there are plenty vector bundles of rank two on P2. It was shown by
Hulek [44] that (for n ≥ 2) the moduli space M(2, 0, n) of stable rank 2 vector bundles
on P2 with first Chern class zero and second Chern class n is given by

M(2, 0, n) = {F = (X,Y, Z) ∈ Rep(n,n)(∆
0) | F is θ-stable and

rankMA(X,Y, Z) ≤ 2n+ 2}/Gln(k)

As every line bundle is (trivially) stable, the analogy between M(2, 0, n) and the
description (2.9) of Dn is very clear.
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Remark 2.1.10. Hulek used an equivalent definition of a stable representation, namely
properly stable. That these two notions are equivalent is easily seen and is left as an
exercise for the reader.

2.2 From reflexive ideals to normalized line bundles

bundles

For the rest of this chapter, A will denote a quadratic Artin-Schelter algebra as defined
in §1.9. We will use the notations as discussed in Chapter 1, so we write P2

q = ProjA,
Qcoh(P2

q) = Tails(A), coh(P2
q) = tails(A), πA = O. We also write (E, σ,OE(1)) and

(C, σ,OC(1)) for the associated data.
Our first aim is to relate reflexive A-modules with certain objects on P2

q (so-called
vector bundles). Second, any shift of such a reflexive module remains reflexive and in
the rank one case we will normalize this shift. The corresponding objects in coh(P2

q)
will be called normalized line bundles on P2

q. Finally we will compute partially the
cohomology of these normalized line bundles.

2.2.1 Torsion free and reflexive objects

A non-zero object M in grmod(A) is called torsion if M has rank zero and M 6= 0 is
called torsion free if M contains no torsion subobject. This is the same as saying M
is pure of GK-dimension three. In particular M∗ = M∨ = HomA(M,A). We use the
same terminology for objects in coh(P2

q). It is easy to see torsion free rank one objects
in grmod(A) and coh(P2

q) are critical. The following lemma helps us to characterise
torsion free objects.

Lemma 2.2.1. For 0 6= M ∈ grmod(A) the following are equivalent

1. M is torsion free,

2. the canonical morphism M →M∗∗ is injective,

3. HomA(N,M) = 0 for all N ∈ grmod(A) of GK-dimension ≤ 2.

For 0 6= M ∈ coh(P2
q) the following are equivalent

1. M is torsion free,

2. HomP2
q
(N ,M) = 0 for all N ∈ coh(P2

q) of dimension ≤ 1.

Proof. The second part of the lemma (the part where M ∈ coh(P2
q)) follows from

Lemma 1.9.10. So assume 0 6= M ∈ grmod(A). The equivalence (1) ⇔ (3) is again
clear by definition and Lemma 1.9.10. Further from [8, Proposition 2.40] we recall
M →M∗∗ is injective if and only if M is a first syzygy i.e. there is an exact sequence
0 →M → P for some projective (hence free) P ∈ grmod(A). Applying HomA(N,−)
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to such an exact sequence and bearing in mind that P is torsion free proves implication
(2) ⇒ (3). Thus the lemma follows if we prove (3) ⇒ (2). Assuming HomA(N,M) = 0
for all N ∈ grmod(A) of GK-dimension ≤ 2 it is clear GKdimM = 3 (since M 6= 0).
Hence M∗ = M∨ and by Theorem 1.9.8(7) we conclude µ : M → M∗∗ is injective
which means we are done.

Next we point out the connection with graded right ideals of A. It is clear that
any graded right ideal of A is torsion free of rank one. Up to shift of grading, the
converse is also true.

Proposition 2.2.2. Let 0 6= I ∈ grmod(A) be a torsion free of rank one. Then there
is an integer m such that I(−m) is isomorphic to a graded right ideal of A.

Proof. By definition it is sufficient to prove there is an injective map I(−m) → A
for some integer m. Consider the graded dual I∗ = HomA(I, A). By the fact
GKdim I = 3, Theorem 1.9.8(2) implies I∗ 6= 0. Pick an integer m such that
(I∗)m = HomA(I(−m), A) 6= 0. By Lemma 1.9.7(3) we are done.

Remark 2.2.3. At this point we note the set of all graded right ideals of A is far too big
to describe, as for any such ideal I we may construct numerous other closely related
ideals by taking the kernel of any surjective map from I to a module of GK-dimension
zero. The standard example is A≥1, the kernel of the surjective map A → k. This
matter will be solved by considering to graded ideals of projective dimension one, or
more restrictively, reflexive rank one modules.

Recall a non-zero A-module M ∈ grmod(A) is said to be reflexive if M∗∗ = M
where M∗ = HomA(M,A) is the graded dual of M . An object M ∈ coh(P2

q) is
called reflexive (or a vector bundle on P2

q) if M = πM for some reflexive object
M ∈ grmod(A). Vector bundles on P2

q of rank one are called line bundles on P2
q. In

case A is commutative the definitions above are equivalent to the standard ones.

Lemma 2.2.4. For 0 6= M ∈ grmod(A) the following are equivalent

1. M is reflexive,

2. M is torsion free and Ext1A(N,M) = 0 for all N ∈ grmod(A) of GKdimN ≤ 1.

For 0 6= M ∈ coh(P2
q) the following are equivalent

1. M is a vector bundle on P2
q,

2. M is torsion free and Ext1P2
q
(N ,M) = 0 for all N ∈ coh(P2

q) of dimension 0.

Proof. For the first part assume M is reflexive i.e. the canonical morphism µ : M →
M∗∗ is an isomorphism. Then M is torsion free by Lemma 2.2.1. Assume by contra-
diction Ext1A(N,M) 6= 0 for some N ∈ grmod(A), GKdimN ≤ 1. This means there
is a non-split exact sequence

0 →M →M ′ → N → 0 (2.11)
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By Theorem 1.9.8(1) one has ExtiA(N,A) = 0 for i ≤ 1. Hence we obtain M ′∗ = M∗

and thus M = M∗∗ = M ′∗∗. Thus the composition of M → M ′ → M ′∗∗ is an
isomorphism, implying that the first map splits. This contradicts the non-triviality
of the extention (2.11).

For the other implication, let M ∈ grmod(A) be torsion free and Ext1A(N,M) = 0
for all N ∈ grmod(A) of GK-dimension ≤ 1. By Theorem 1.9.8(7) the canonical map
µ : M →M∗∗ is injective and we have an exact sequence

0 →M →M∗∗ → cokerµ→ 0 (2.12)

where GKdim(cokerµ) ≤ 1. By assumption Ext1A(cokerµ,M) = 0 hence (2.12) splits.
Theorem 1.9.8(5) implies M∗∗ is pure of GK-dimension three and therefore cokerµ =
0, proving M is reflexive.

For the second part of the lemma, the implication (1) ⇒ (2) follows from the first
part and Lemma 2.2.1 using (1.2). To prove (2) ⇒ (1) we choose M ∈ grmod(A)
such that πM = M. We may assume M is torsion free. As above we have an exact
sequence

0 →M →M∗∗ → cokerµ→ 0 (2.13)

where GKdim(cokerµ) ≤ 1, and applying π yields

0 → M → πM∗∗ → N → 0 (2.14)

where N = π(cokerµ). Now N must be zero, otherwise dimN = 0 and since
Ext1P2

q
(N ,M) = 0 the sequence (2.14) would split, which is impossible because M∗∗ is

pure three dimensional. Hence M = πM = πM∗∗ and thus M is reflexive completing
the proof.

Next we relate torsion free (and reflexive) objects in grmod(A) and coh(P2
q).

Proposition 2.2.5. Assume M ∈ coh(P2
q) is torsion free. Then ωM is finitely

generated torsion free and has projective dimension ≤ 1.
Assume M ∈ grmod(A) be torsion free. Then M has projective dimension ≤ 1

if and only if ωπM = M .

Proof. Assume M = πM . Without loss of generality we may assume M is finitely
generated and torsion free. It follows from localisation theory that ωπM is the largest
extention N of M such that N/M is a union of finite length modules. Thus we have
an exact sequence of the form

0 →M → ωM → F → 0 (2.15)

where F ∈ grmod(A) has GK-dimension zero. On the other hand since M is pure
it follows from Theorem 1.9.8 that µ : M → M∨∨ = M∗∗ is injective. Since M∗∗ is
reflexive, applying HomA(−,M∗∗) to (2.15) yields Hom(ωM,M∗∗) ∼= Hom(M,M∗∗).
Thus there is a map ψ ∈ HomA(ωM,M∗∗) such that the composition

M ⊂ ωM
ψ
−→M∗∗
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is equal to µ. We claim ψ is injective. Indeed, should this not be the case then
kerψ has GK-dimension three since ωM is pure. But since µ is injective, this means
kerψ ⊂ ωM/M = F , which is clearly a contradition. Thus ωM ⊂ M∗∗ and this
shows ωM is finitely generated and torsion free.

We now replace M by ωM. In particular Ext1A(k,M) = 0. Consider a minimal
resolution of M

· · · → F2 → F1 → F0 →M → 0

By applying to it the right exact functor Ext3A(k,−) we see Ext1A(k,M) = 0 implies
F2 = 0 and hence M has projective dimension ≤ 1. This proves the first statement.

Second, assume M has projective dimension one. Then it follows from a projective
resolution of M and the fact A is Gorenstein that Ext1A(k,M) = 0. Since coker(M →
ωπM) is a union of finite dimensional modules this implies ωπM = M .

Conversely, assume ωπM = M . Observe πM ∈ coh(P2
q) is torsion free, which

follows from the fact that M is torsion free and ω is left exact. It now follows from
the first part that M = ωπM has projective dimension ≤ 1.

Corollary 2.2.6. The functors π and ω define inverse equivalences between the full
subcategories of grmod(A) and coh(P2

q) with objects

{torsion free objects in grmod(A) of projective dimension ≤ 1}

and

{torsion free objects in coh(P2
q)}

which restricts to inverse equivalences π and ω between the full subcategories of
grmod(A) and coh(P2

q) with objects

{reflexive objects in grmod(A)}

and

{vector bundles on P2
q}

Proof. Follows from Lemma 1.9.7 and Proposition 2.2.5.

Remark 2.2.7. Let grmod(A)i be the full subcategory of grmod(A) consisting of mod-
ules of GK-dimension at most i. It is clear that grmod(A)i is a Serre subcategory
of grmod(A). Two modules in grmod(A) are called i-equivalent if they have the
same GK-dimension and their images in the quotient category grmod(A)/ grmod(A)i
are isomorphic. It follows that for every graded right ideal I of A there is, up to
isomorphism, a unique torsion free rank one A-module J ∈ grmod(A) of projective
dimension one (namely ωπI) for which I and J are 0-equivalent. Similarly, there is up
to isomorphism a unique reflexive rank one A-module J ′ ∈ grmod(A) (namely I∗∗)
for which I and J ′ are 1-equivalent.
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2.2.2 The Grothendieck group and the Euler form for quan-

tum planes

In this part we discuss a natural Z-module basis for the Grothendieck group K0(P
2
q)

and determine the matrix representation of the Euler form χ with respect to this
basis.

Let M ∈ coh(P2
q). Thus M = πM for some M ∈ grmod(A). According to Lemma

1.9.10 we may write hM (t) in the standard form

hM (t) =
r

(1 − t)3
+

a

(1 − t)2
+

b

1 − t
+ f(t) (2.16)

where r, a, b ∈ Z and f(t) ∈ Z[t−1, t] is a Laurent polynomial. The expansion of the
characteristic polynomial qM (t) ∈ Z[t, t−1] in powers of (1 − t) is then given by

qM (t) = r + a(1 − t) + b(1 − t)2 + f(t)(1 − t)3

Now let P be a point module and S a line module overA and denote the corresponding
objects in coh(P2

q) by P and S. Since qA(t) = 1, qS(t) = 1− t and qP (t) = (1 − t)2 it
follows from Theorem 1.7.1

[M] = r[O] + a[S] + b[P ]

hence {[O], [S], [P ]} is a Z-module basis for K0(P
2
q) (which does not depend on the

particular choice of P and S). By Lemma 1.9.10 the multiplicity e(M) = e(M) is
the first (leftmost) nonvanishing coordinate of [M] with respect to this basis. It also
follows from (1.14)

[M(l)] = r[O] + (lr + a)[S] +

(
1

2
l(l + 1)r + la+ b

)
[P ] (2.17)

for all integers l.
From now on we fix such a Z-module basis B = {[O], [S], [P ]} for K0(P

2
q). From

the full cohomology modules of O (see Theorem 1.8.2) we deduce χ(O,O(l)) = (l +
1)(l + 2)/2 and using minimal projective resolutions for S,P ∈ coh(P2

q) (apply π to
(1.17)) one verifies the matrix representation of the Euler form χ for coh(P2

q) with
respect to the basis B is given by

m(χ)B =




1 1 1
−2 −1 0

1 0 0


 (2.18)

2.2.3 Normalized rank one objects

Assume I ∈ grmod(A) has rank one. We say I is normalized if the coefficient a in
(2.16) is zero. In that case we call n = −b the invariant of I. For torsion free I we
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will prove later (Theorem 2.2.11) that this invariant n is actually positive. An object
I ∈ coh(P2

q) of rank one is called normalized if I = πI for some normalized rank one
module I ∈ grmod(A). Equation (2.17) shows that if I has rank one then there is
always a unique integer l for which I(l) is normalized. Note if A is commutative i.e.
A = k[x, y, z] then I ∈ coh(P2) of rank one is normalized if and only if the first Chern
class c1(I) = 0. In that case, the invariant of I is given by the second Chern class
c2(I).

Lemma 2.2.8. Let I ∈ grmod(A). Then the following are equivalent.

1. I has rank one and is normalized with invariant n.

2. The Hilbert series of I has the form

1

(1 − t)3
−

s(t)

1 − t
(2.19)

for a Laurent polynomial s(t) ∈ Z[t, t−1] with s(1) = n.

3. dimk Am − dimk Im = n for m� 0.

Proof. Easy.

It is easy to see Proposition 2.2.6 specializes to

Proposition 2.2.9. The functors π and ω define inverse equivalences between the
full subcategories of grmod(A) and coh(P2

q) with objects

Hilbn(P
2
q) := {normalized torsion free rank one objects in grmod(A)

of projective dimension one and invariant n}

and

{normalized torsion free rank one objects in coh(P2
q) with invariant n}

which for any integer n restricts to inverse equivalences π and ω between the full
subcategories of grmod(A) and coh(P2

q) with objects

Rn(A) := {normalized reflexive rank one objects in grmod(A) with invariant n}

and
Rn(P2

q) := {normalized line bundles on P2
q with invariant n}

Remark 2.2.10. 1. By Lemma 2.2.8 it is easy to see if A is commutative then
the objects in Hilbn(P

2
q) are precisely the graded A-modules which occur as

the graded ideals IX for X ∈ Hilbn(P
2). It turns out [60] that Hilbn(P

2
q) is

the correct generalization for the Hilbert scheme of points Hilbn(P2) on the
(commutative) projective plane P2. We will come back on this in Chapter 3.
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2. Observe every non-zero morphism in Rn(A) is an isomorphism. Thus Rn(A)
and Rn(P

2
q) are in fact groupoids. Indeed, ifM,N ∈ Rn(A) and 0 6= f : M → N

then f is injective by Lemma 1.9.7. Using the fact that M,N are normalized
we find that the cokernel of f has (if non-zero) GK-dimension zero. Since M
is reflexive, it has projective dimension one thus Ext1A(k,M) = 0 (see proof of
Lemma 2.2.4). Thus coker f = 0 and f is an isomorphism. Similarly a non-zero
morphism in Rn(P2

q) is necesseraly an isomorphism.

3. We obtain a natural bijection between the elements of the set

R(A) = {reflexive rank one graded right A-modules}/ iso, shift

and the isomorphism classes in the categories
∐
nRn(A) and

∐
nRn(P2

q).

2.2.4 Cohomology of line bundles on quantum planes

In the next theorem we partially compute the cohomology of normalized line bundles.

Theorem 2.2.11. Let I ∈ coh(P2
q) be torsion free of rank one and normalized i.e.

[I] = [O] − n[P ] for some integer n. Assume I � O. Then

1. H0(P2
q, I(l)) = 0 for l ≤ 0

H2(P2
q, I(l)) = 0 for l ≥ −2

Hj(P2
q, I(l)) = 0 for j ≥ 3 and for all integers l

2. χ(O, I(l)) = 1
2 (l + 1)(l + 2) − n for all integers l

3. dimkH
1(P2

q, I) = n− 1
dimkH

1(P2
q, I(−1)) = n

dimkH
1(P2

q, I(−2)) = n

As a consequence, n is positive and non-zero.
If I is a line bundle i.e. I ∈ Rn(P

2
q) then we have in addition

H2(P2
q, I(−3)) = 0 and dimkH

1(P2
q, I(−3)) = n− 1.

Proof. That Hj(P2
q, I) = 0 for j ≥ 3 follows from the fact that P2

q has cohomological
dimension two (see Theorem 1.8.2).

To prove the rest of the current theorem we first let l ≤ 0. Suppose f is a non-
zero morphism in HomP2

q
(O, I(l)). By Lemma 1.9.7 f is injective and from the exact

sequence

0 → O → I(l) → coker f → 0 (2.20)

we get [coker f ] = l[S] + (l(l + 1)/2 − n)[P ]. By I 6∼= O, coker f 6= 0. Hence l ≥ 0,
otherwise e(coker f) = l < 0 which is impossible. Thus l = 0 and [coker f ] = −n[P ].
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We obtain dim(coker f) = 0. By Lemma 2.2.4 the exact sequence (2.20) splits hence
I is not torsion free. A contradiction. We conclude HomP2

q
(O, I(l)) = 0 for l ≤ 0.

Second, let l ≥ −2. Serre duality (Theorem 1.10.5) yields

Ext2P2
q
(O, I(l))′ ∼= HomP2

q
(I(l + 3),O).

If g is a non-zero morphism in HomP2
q
(I(l + 3),O) then g is injective, and from the

exact sequence

0 → I(l + 3) → O → coker g → 0 (2.21)

we get [coker g] = u[S] + v[P ] where u = −(l + 3) and v = n − (l + 3)(l + 4)/2. By
Lemma 1.9.10 u ≥ 0 but l ≥ −2 implies u < 0. This yields a contradiction.

Assume now l ≥ −3 and I reflexive. By the same reasoning as above we obtain
l = −3 and thus the dimension of coker g is zero. By Lemma 2.2.4 it follows that
(2.21) splits. But this contradicts the fact that O is torsion free.

For the second part, using (2.17) and (2.18) we obtain

χ(O, I(l)) =
1

2
(l + 1)(l + 2) − n (2.22)

for all integers l.

Finally, we combine the first two results of the theorem. If −2 ≤ l ≤ 0 (or
−3 ≤ l ≤ 0 if I is reflexive) the first statement gives

χ(O, I(l)) = dimkH
0(P2

q, I(l)) − dimkH
1(P2

q, I(l)) + dimkH
2(P2

q, I(l))

= − dimkH
1(P2

q, I(l))

and comparing with the expression (2.22) completes the proof.

Using Theorem 2.2.11 the torsion free rank one graded right A-modules having
invariant zero are easy to determine.

Corollary 2.2.12. Let I ∈ grmod(A) be torsion free of rank one with invariant n.
Then

n = 0 ⇔ I ∼= A(d) for some integer d.

Proof. By Proposition 2.2.9 it is sufficient to prove the corresponding statement for
πI = I. If I ∼= O(d) then clearly n = 0. Assume conversely n = 0. We may assume
I is normalized. If I 6∼= O then by Theorem 2.2.11 n > 0. Since n = 0 we obtain
I ∼= O by contraposition.

As a consequence R0(A) = {A} and R0(P
2
q) = {O}.
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2.2.5 Nonemptyness of Rn(A) and Rn(P2
q)

It follows from Theorem 2.2.11 that Rn(P2
q) is empty for n < 0. However we do not

know yet if Rn(P2
q) 6= ∅ for n ≥ 0.

Let us restrict for a moment to the case where A is linear. Thus in the geometric
data (E, σ,OE(1)) we have E = P2 and σ ∈ Aut(P2). It is a well-known fact there
are no nontrivial line bundles on P2. By the category equivalence between Tails(A) ∼=
Tails(B) and Qcoh(P2) we obtain

Proposition 2.2.13. Assume A is linear and let I ∈ grmod(A) be reflexive or rank
one. Then I is free i.e. I = A(d) for some integer d. As a consequence Rn(A) = ∅ =
Rn(P

2
q) for n > 0.

In the elliptic case however we have

Proposition 2.2.14. Let A be elliptic and assume σ has infinite order. Then Rn(A)
and Rn(P2

q) are nonempty for n ≥ 0.

Proof. Let S = π(A/uA) be a line object on P2
q for which the line {u = 0} in P2 is

not a component of C. Writing S as the cokernel of a map O(−1) → O we find by
Theorem 1.8.2 that if n ≥ −1 then H0(P2

q,S(n)) has dimension n + 1. By [8] any
non-zero subobject of a line object is a shifted line object; there exist at most three
line objects S′ such that S′(−1) is a subobject of S and furthermore any non-trivial
subobject of S is a subobject of one of these three objects S′(−1). Hence if a non-zero
morphism f : O → S(n) is not surjective then f induces a morphism O → S′(n− 1)
for such a line object S′(−1) ⊂ S thus f ∈ H0(P2

q,S
′(n− 1)) which is n-dimensional.

Hence if n ≥ 0 then we may pick an epimorphism f : O → S(n) (a generic f will do).
Put I = (ker f)(1). We find [I(−1)] = [O]− ([S] + n[P ]) and hence [I] = [O]− n[P ].
It is easy to see I is reflexive. Thus I ∈ Rn(P2

q).

Below we will show that for elliptic A where σ has infinite order, Rn(P
2
q) is

parametrized by a variety of dimension 2n. The amount of freedom in the construction
exhibited in the proof of Proposition 2.2.14 is less than or equal to 2(choice of S) +
n(choice of f) parameters, hence for n > 2 this construction can not possibly yield
all elements of Rn(P

2
q). In §2.4.9 we will exhibit a related construction which works

for all n.

2.3 Restriction of line bundles to the divisor C

In this section A is an elliptic quadratic Artin-Schelter algebra, to which §1.9.4 we
associate the geometric data (C, σ,OC(1)), the homogeneous coordinate ring D =
B(C, σ,OC (1)) and the map of noncommutative schemes u : C → P2

q. The dimension
of objects in grmod(D) or tails(D) will be computed in grmod(A) or tails(A). The
dimension of objects in coh(C) is the dimension of their support.
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Lemma 2.3.1. Assume A is an elliptic quadratic Artin-Schelter algebra.

1. If M ∈ grmod(D) is pure two dimensional then M̃ ∈ coh(C) is pure one di-
mensional.

2. If N ∈ coh(C) is pure one dimensional then Γ∗(N ) is pure two dimensional.

Proof. The indecomposable objects in coh(C) are vector bundles and finite length ob-
jects. Using Riemann-Roch it is easy to see that if 0 6= U ∈ coh(C) then
GKdimΓ∗(U) = dimU + 1. From this we deduce that if V ∈ grmod(D) is not in

tors(D) then GKdimV = dim Ṽ + 1. The lemma now easily follows.

The following result was also proved in [60].

Proposition 2.3.2. Assume A is an elliptic quadratic Artin-Schelter algebra.

1. If M is a vector bundle on P2
q then Lju

∗M = 0 for j > 0 and u∗M is a vector
bundle on C.

2. Assume σ has infinite order and M ∈ Db(coh(P2
q)) is such that Lu∗M is a

vector bundle on C. Then M is a vector bundle on P2
q.

Proof. 1. We have M = πM where M is reflexive. In particular M is torsion free.
By Lemma 1.9.20 it follows Lju

∗M = 0 for j > 0 and u∗M = (M/Mh)̃ .

Write c = deg h. The torsionfreeness of M also implies that the multiplication

map M(−c)
·h
−→ M is injective. Hence M(−c) ∼= Mh thus Mh is reflexive and

rankM = rankMh which also gives GKdimM/Mh ≤ 2.

If M/Mh contains a non-zero submodule N/Mh of GK-dimension ≤ 1 then
it follows from the short exact sequence 0 → Mh → N → N/Mh → 0 that
N represents an element of Ext1A(N/Mh,Mh), which must be zero by Lemma
2.2.4. Thus N/Mh ⊂ N ⊂ M . This is impossible since M is torsion free.
Hence M/Mh is pure of GK-dimension two. By the previous lemma it follows
(M/Mh)̃ is a vector bundle.

2. It follows from Lemma 1.9.21 that u∗Hj(M) = 0 for j 6= 0. Then it follows
from Lemma 1.9.19 that M ∈ coh(P2

q) and L1u
∗M = 0, using Lemma 1.9.21

again.

Pick an objectM in grmod(A) such that πM = M. We may assumeM contains

no subobject in tors(A). By Lemma 1.9.20 we have L1u
∗M = ker(M(−c)

×h
−−→

M )̃ . Thus ker(M(−c)
×h
−−→ M) ∈ tors(A). Since M contains no subobject

in tors(A) it follows that M is h-torsion free. Furthermore by Lemma 2.3.1
Γ∗(u

∗M) = Γ∗((M/Mh)̃ ) is pure two dimensional. If T is the maximal sub-
module of M/Mh which is in tors(A) then since (M/Mh)/T ⊂ Γ∗((M/Mh)̃ )
we obtain (M/Mh)/T is pure two dimensional.
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We now claim M is pure three dimensional. Let N be the maximal submodule
of M of dimension ≤ 2. Then K = M/N is pure three dimensional and in
particular h-torsion-free. Hence we have a short exact sequence

0 → N/Nh→M/Mh→ K/Kh→ 0

By the purity of (M/Mh)/T it follows N/Nh ⊂ T and hence N/Nh ∈ tors(A).
It follows from Lemma 1.9.19 than N ∈ tors(A) and hence N = 0. This shows
M is pure.

Put Q = M∗∗/M . Thus we obtain an exact sequence

0 → TorA1 (Q,D)̃ → (M ⊗A D)̃ → (M∗∗ ⊗A D)̃ → (Q⊗A D)̃ → 0

By [8] we have GKdimQ ≤ 1. Thus we have GKdimTorA1 (Q,D) ≤ GKdimQ ≤
1. So by the proof of Lemma 2.3.1, dimTorA1 (Q,D)̃ ≤ 0. Since (M ⊗A D)̃
is a vector bundle by hypotheses it contains no finite dimensional subobjects
and we obtain TorA1 (Q,D)̃ = 0. Thus TorA1 (Q,D) ∈ tors(A). Thus, in high
degree, multiplication by h is an isomorphism on Q. But then by Lemma 1.9.19
Q ∈ tors(A). Hence M = πM = πM∗∗ and thus M is reflexive.

Although some of the following results may be generalized [60], for the rest of
this Section 2.3 we will restrict to the case where A is a three dimensional Sklyanin
algebra Skl3(a, b, c). Thus E is a smooth elliptic curve and fixing a group law on E the
automorphism σ is a translation by some element ξ ∈ C i.e. σp = p+ ξ for all p ∈ E.
Since E is reduced the geometric data (E, σ,OE(1)) and (C, σ,OC (1)) coincide and
g = h ∈ A3, D = B = B(E, σ,OE(1)).

The functor u∗ : coh(P2
q) → coh(C) induces a group homomorphism

u∗ : K0(P
2
q) → K0(C)

[M] 7→
∑

j

(−1)j[Lju
∗M] = [u∗M] − [L1u

∗M]

Recall the basis B = {[O], [S], [Q], [P ]} for K0(X) from §2.2.2. The image of B under
u∗ is computed in the following

Lemma 2.3.3. Assume A is a three dimensional Sklyanin algebra. We have

u∗[O] = [OC ]

u∗[S] = [Op] + [Oq] + [Or] p, q, r ∈ C arbitrary but collinear

u∗[P ] = [Op] − [Oσ−3p] p ∈ C arbitrary

Proof. Since A is h-torsion free it follows u∗[O] = [u∗O] = [OC ]. Similarly u∗[S] =
[u∗S]. Write S = π(A/aA) for some a ∈ A1. From [8] it follows that u∗S = OL where
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L is the scheme-theoretic intersection C ∩a. Since L consists of three collinear points
we obtain [OL] = [Op] + [Oq] + [Or] for some collinear points p, q, r ∈ C.

Finally, put P = Np where p ∈ C. Applying Np⊗A− to the short exact sequence
of A-bimodules

0 → A(−3)
·h
−→ A→ D → 0

we get the exact sequence

0 → TorA1 (Np, D) → Np(−3)
·h
−→ Np → Np ⊗A D → 0

Now Np ⊗A D ∼= Np/Nph = Np thus u∗Np = Ñp = Op. This also means Np(−3)
·h
−→

Np is the zero map. Thus TorA1 (Np, D) = Np(−3) =
(
Nσ−3p

)
≥3

by (1.24). We

conclude
L1u

∗Np = TorA1 (Np, D)̃ =
(
Nσ−3p

)
˜ = Oσ−3p

From Lemma 2.3.3 we deduce for M ∈ coh(P2
q) for which [M] = r[O]+a[S]+b[P ]

we have

ranku∗[M] = r = rankM and deg u∗[M] = 3a (2.23)

Proposition 2.3.4. Let A be a three dimensional Sklyanin algebra.

1. If I is a line bundle on P2
q then u∗I is a line bundle on C, and I is normalized

if and only if deg u∗I = 0.

2. If I is a normalized line bundle on P2
q with invariant n then

c1(u
∗I) = O((o) − (3nξ))

where “o” is the origin for the group law.

Proof. 1. This follows from Proposition 2.3.2 and (2.23).

2. We have [M] = [O]−n[P ]. By Lemma 2.3.3 we obtain [u∗M] = [OC ]−n[Op]+
n[Oσ−3p]. Hence c1(u

∗M) = O(n(σ−3p) − n(p)). From σp = p + ξ we deduce
σ−3p = p − 3ξ. Thus n(σ−3p) − n(p) and (o) − (3nξ) are both divisors of
degree zero which have the same sum for the group law. Hence they are linearly
equivalent by [41, IV Thm 4.13B]. This finishes the proof.

Corollary 2.3.5. Let A be a three dimensional Sklyanin algebra and assume σ has
infinite order. Then the category

R(P2
q) =

∐

n

Rn(P2
q) = {normalized line bundles on P2

q}

is equivalent to the full subcategory of coh(P2
q) with objects

{M ∈ coh(P2
q) | u

∗M is a line bundle on C of degree zero}
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Proof. Due to Proposition 2.3.4 it is sufficient to prove that if M ∈ coh(P2
q) for which

u∗M ∈ coh(C) is a line bundle of degree zero, then M is a normalized line bundle
on P2

q. Pick M ∈ grmod(A) for which πM = M. By Proposition 2.3.2 it suffices to
prove Lu∗M = u∗M i.e. L1u

∗M = 0.

It is sufficient to prove M is torsion free, since it then follows M is h-torsion free

whence L1u
∗M = ker(M(−3)

×h
−−→M )̃ = 0. So let us assume by contradiction M is

not torsion free. Let T ⊂ M the maximal torsion submodule of M . Thus 0 6= M/T
is torsion free. Applying u∗ to 0 → πT → M → π(M/T ) → 0 then gives the exact
sequence 0 → u∗πT → u∗M → u∗π(M/T ) → 0. Since u∗M is a line bundle on C, it
is pure hence either u∗πT is a line bundle or u∗πT = 0.

If u∗πT would be a line bundle then u∗π(M/T ) = (M/T ⊗A D)̃ has rank zero.
Thus M/T ⊗A D ∈ grmod(D) has GK-dimension ≤ 1. But then GKdimM/T ≤ 2,
a contradiction with the fact M/T ∈ grmod(A) is non-zero and torsion free. Thus
u∗πT = 0 i.e. (T/hT )̃ = 0. This means π(T/hT ) = 0 hence T/hT ∈ tors(A). By
Lemma 1.9.19 we deduce T ∈ tors(A) thus T = 0 since M contains no subobjects in
tors(A). This ends the proof.

Remark 2.3.6. As pointed out before, some of the results above may be generalized
to other elliptic quadratic Artin-Schelter algebras. See also [60]. For example, if we
consider the situation where A = H is the homogenized Weyl algebra then one obtains
as stated in [16]

• If I is a line bundle on P2
q then u∗I is a line bundle on C = P1, and I is

normalized if and only if u∗I has degree zero, i.e. if and only if u∗I ∼= OP1

(since Pic(P1) = Z).

• The category R(P2
q) =

∐
nRn(P2

q) is equivalent to the full subcategory of
coh(P2

q) with objects {M ∈ coh(P2
q) | u

∗M ∼= OP1}.

2.4 From line bundles to quiver representations

Throughout this Section 2.4, A is a quadratic Artin-Schelter algebra. From §2.4.3
onwards we will furthermore assume A is elliptic (and for most results σ has infinite
order). As usual we write (C, σ,OC (1)) for the geometric data associated to A and
u : C → P2

q for the map of noncommutative schemes as defined in §1.9.4.

2.4.1 Generalized Beilinson equivalence

We set E = O(2) ⊕O(1) ⊕O and

U = HomP2
q
(E , E) =

2⊕

i,j=0

HomP2
q
(O(i),O(j))
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the algebra of endomorphisms of E . We consider the left exact functor HomP2
q
(E ,−)

which takes coherent sheaves on P2
q to right U -modules.

Now HomP2
q
(E ,−) extends to a functor RHomP2

q
(E ,−) on bounded derived cate-

gories
RHomP2

q
(E ,−) : Db(coh(P2

q)) → Db(mod(U)). (2.24)

This is done as follows: Qcoh(P2
q) has enough injectives and this yields a func-

tor RHomP2
q
(E ,−) : Db

coh(P2
q)(Qcoh(P2

q)) → Db
mod(U)(Mod(U)). Now coh(P2

q) and

mod(U) are noetherian abelian categories and this yields equivalences Db(coh(P2
q))

∼=

Db
coh(P2

q)(Qcoh(P2
q)) and Db(mod(U)) ∼= Db

mod(U)(Mod(U)) (Lemma 1.1.2). The func-

tor (2.24) is obtained by composing with these equivalences.
In a similar way as in [18, Theorem 6.2] one shows RHomP2

q
(E ,−) is an equivalence

of derived categories. The inverse functor is given by −
L

⊗U E

Db(coh(P2
q))

RHom
P2q

(E,–)
-

�
–

L

⊗UE

Db(mod(U)) (2.25)

For the commutative case A = k[x, y, z] this derived equivalence is known as Beilinson
equivalence [15]. Therefore we sometimes refer to (2.25) as generalized Beilinson
equivalence.

For a non-negative integer i generalized Beilinson equivalence restricts to an equiv-
alence between Xi and Yi where Xi ⊂ coh(P2

q) is the full subcategory with objects

Xi = {M ∈ coh(P2
q) | Extj

P2
q
(E ,M) = 0 for j 6= i}

and Yi ⊂ mod(U) the full subcategory with objects

Yi = {M ∈ mod(U) | TorUj (M, E) = 0 for j 6= i}.

The inverse equivalences between these categories are given by Exti
P2
q
(E ,−) and

TorUi (−, E) (see for example [12, Theorem 3.2.1])

Xi

Ext1
P2q

(E,–)
-

�
TorU

i (−,E)

Yi

It is easy to see U ∼= k∆/(R) where (∆, R) is the quiver

−2

X−2-
Y−2-
Z−2-

−1

X−1-
Y−1-
Z−1-

0 (2.26)
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with relations R reflecting the relations of A. If we write the relations of A as (1.18)
then the relations R are given by

(
X−1 Y−1 Z−1

)
·MA(X−2, Y−2, Z−2)

t = 0 (2.27)

where MA(X−2, Y−2, Z−2) is obtained from the matrix MA by replacing x, y, z by
X−2, Y−2, Z−2. For example, if A = H is the homogenized Weyl algebra then R is
given by





Z−1Y−2 = Y−1Z−2

X−1Z−2 = Z−1X−2

Y−1X−2 −X−1Y−2 = Z−1Z−2

and case A is of type A the relations are given by




aZ−1Y−2 + bY−1Z−2 + cX−1X−2 = 0
aX−1Z−2 + bZ−1X−2 + cY−1Y−2 = 0
aY−1Z−2 + bX−1Y−2 + cZ−1Z−2 = 0

Recall from §1.3 that representations of quivers are always assumed to satisfy the re-
lations of the quiver. Since the category Mod(∆) of representations of ∆ is equivalent
to the category of right k∆/(R)-modules we deduce Mod(∆) ∼= Mod(U). From now
on we write Mod(∆) instead of Mod(U).

One verifies the matrix representation of the Euler form χ : K0(∆) ×K0(∆) → Z

with respect to the basis {S−2, S−1, S0} of K0(∆) is given by




1 −3 3
0 1 −3
0 0 1


 (2.28)

Under the isomorphism K0(∆) ∼= Z3 we identify χ with the associated bilinear form
on Z3.

2.4.2 Point and line representations

For further use we need to determine the representations of ∆ corresponding to point
and line objects on P2

q. Recall for any point p ∈ C we write Np for the corresponding
point module over A, and Np = πNp for the point module on P2

q.

Lemma 2.4.1. Let p = (α, β, γ) ∈ C and put (αi, βi, γi) = σip.

1. Hj(P2
q,Np(m)) = 0 for all integers m and j > 0. In particular Np ∈ X0.

2. dimk (ωNp)m = 1 for all m and (ωNp)≥m is a shifted point module for all

integers m. In particular (ωNp)≥0 = Np.

3. H0(P2
q,Np(m)) = (ωNp)m.
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4. Write RHomP2
q
(E ,Np) = p. Then dimp = (1, 1, 1) and p ∈ mod(∆) corresponds

to

k

α−2-
β−2-
γ−2-

k

α−1-
β−1-
γ−1-

k

Proof. 1. By Equation (1.24) it is sufficient to treat the case m = 0. We use
Lemma 1.9.20 and the discussion before that. We have Np = u∗Op and hence

Extj
P2
q
(O,Np) = ExtjC(Lu∗O,Op) = ExtjC(OC ,Op) = 0 for j > 0.

2. This is easy to check.

3. Use ω = HomTails(O,−).

4. This follows from the previous step.

Lemma 2.4.2. Let S = π(A/uA) be a line object on P2
q (where u ∈ A1).

1. H1(P2
q,S(m)) ∼= (A/Au)′−m−2 for m ≤ −1

2. Hj(P2
q,S(m)) = 0 for m ≤ −1 and j 6= 1. In particular S(−1) ∈ X1.

3. If η ∈ A1 then the induced linear map H1(P2
q,S(m))

·η
−→ H1(P2

q,S(m + 1))
corresponds to (η·)′ on (A/Au)′.

4. Write RHomP2
q
(E ,S(−1)) = S[−1]. Then dimS = (2, 1, 0) and S ∈ mod(∆)

corresponds to

(A/Au)′1

(x·)′-
(y·)′-
(z·)′-

k

-
-
-

0 (2.29)

Proof. ThatH0(P2
q,S(m)) = 0 follows by writing S as the cokernel of a map O(−1) →

O and invoking Theorem 1.8.2. That H2(P2
q,S(m)) = 0 follows by Serre duality

(Theorem 1.10.5). Using Theorem 1.8.2 we find

H1(P2
q,S(m)) = ker(Ext2

P2
q
(O(−m),O(−1))

(−,u·)
−−−−→ Ext2

P2
q
(O(−m),O))

By Serre duality this translates into

H1(P2
q,S(m)) = ker(HomP2

q
(O(−1),O(−m− 3))′

(u·,−)′

−−−−→ HomP2
q
(O,O(−m− 3))′)

Dualizing yields indeed H1(P2
q,S(m)) ∼= (A/Au)′−m−2. That η acts in the indicated

way follows by inspecting the appropriate commutative diagram. The final statement
follows immediately.
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2.4.3 First description of Rn(P2
q)

Recall from §2.2.3 that Rn(P2
q) is by definition the full subcategory of coh(P2

q) which
objects are given by

Rn(P2
q) = {normalized line bundles on P2

q with invariant n}

= {M ∈ coh(P2
q) | M reflexive and [M] = [O] − n[P ]}

By the discussion in §2.2.5 and Corollary 2.2.12 we may (and will) assume for the
rest of §2.4 that A is elliptic and n ≥ 0. Where needed we will furthermore assume σ
has infinite order.

We would like to understand the image of Rn(P
2
q) under the generalized Beilinson

equivalence (2.25). Let M be an object of Rn(P2
q) and consider M as a complex in

Db(coh(P2
q)) of degree zero. Theorem 2.2.11 implies M ∈ X1 thus the image of this

complex is concentrated in degree one

RHomP2
q
(E ,M) = M [−1]

where M = Ext1
P2
q
(E ,M). Hence M is a representation of ∆. By functoriality,

multiplication by x ∈ A induces linear maps

H1(P2
q,M(−2))

M(X−2)·- H1(P2
q,M(−1))

M(X−1)·- H1(P2
q,M)

and similar for multiplication with y, z hence M is determined by the following rep-
resentation of ∆

H1(P2
q,M(−2))

M(X−2)·-
M(Y−2)·-
M(Z−2)·-

H1(P2
q,M(−1))

M(X−1)·-
M(Y−1)·-
M(Z−1)·-

H1(P2
q,M)

We denote Cn(∆) for the image of Rn(P2
q) under the equivalence X1

∼= Y1.

Theorem 2.4.3. Let A be an elliptic quadratic Artin-Schelter algebra where σ has
infinite order. Let n > 0. Then there is an equivalence of categories

Rn(P2
q)

Ext1
P2q

(E,–)
-

�
Tor∆1 (–,E)

Cn(∆)

where

Cn(∆) = {M ∈ mod(∆) | dimM = (n, n, n− 1) and

Hom∆(M,p) = 0,Hom∆(p,M) = 0 for all p ∈ C}.
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Proof. First, let I be an object of Rn(P
2
q) and write I = Ext1

P2
q
(E , I). That dimI =

(n, n, n− 1) follows from Theorem 2.2.11. Further, let p ∈ C and as in Lemma 2.4.1
we denote p = HomP2

q
(E ,Np). Lemma 2.2.4 implies Exti

P2
q
(I,Np) = 0 for i ≥ 1 hence

χ(I,Np) = 1 yields

k = RHomP2
q
(I,Np) ∼= RHom∆(I[−1], p)

In particular Hom∆(I, p) = H1(RHom∆(I[−1], p)) = 0.
Further we compute χ(Np, I) = 1 and again by Lemma 2.2.4

k[−2] = RHomP2
q
(Np, I) ∼= RHom∆(p, I[−1])

and in particular Hom∆(p, I) = 0.
Conversely let M ∈ mod(∆) such that dimM = (n, n, n− 1) and Hom∆(M,p) =

Hom∆(p,M) = 0 for all p ∈ C. By Corollary 1.10.6

H2(RHom∆(M,p)) = H2(RHomP2
q
(M

L

⊗∆ E ,Np))

∼= H0(RHomP2
q
(Nσ3p,M

L

⊗∆ E)) = H0(RHom∆(σ3p,M))

Thus Hom∆(M,p) = Ext2∆(M,p) = 0 for all p ∈ C. Now gldimmod(∆) = 2 so
we may compute dimk Ext1∆(M,p) using the Euler form on mod(∆). We obtain
χ(p,M) = −1 hence Ext1∆(M,p) = k. In other words RHom∆(M [−1], p) = k.

Put M = M [−1]
L

⊗∆ E . By the generalized Beilinson equivalence (2.25) we obtain
RHomP2

q
(M,Np) = k, giving (by adjointness) RHomC(Lu∗M,Op) = k. By Lemma

1.1.3 this implies Lu∗M is a line bundle on C. Hence by Proposition 2.3.2 M is a vec-
tor bundle on P2

q. In particular M ∈ Y1. What is left to check is that M is normalized
of rank one. The derived equivalence (2.25) gives rise to group isomorphisms

µ : K0(P
2
q) → K0(∆) :[N ] 7→

∑

i

(−1)i[ExtiP2
q
(E ,N )]

ν : K0(∆) → K0(P
2
q) :[N ] 7→

∑

i

(−1)i[Tor∆i (N, E)]

inverse of each other, see for example [12, Proposition 3.2.3]. Using Lemmas 2.4.1
and 2.4.2 it is checked that the image of the basis {[O], [S], [P ]} for P2

q under µ is the
Z-basis {[S0],−2[S−2]− [S−1], [S−2] + [S−1] + [S0]} for K0(∆). And since M ∈ Y1 we
have ν[M ] = −[M]. It is then easy to check [M] = [O] − n[P ]. We conclude M is a
normalized line bundle on P2

q i.e. M ∈ Rn(P2
q).

Remark 2.4.4. For the homogenized Weyl algebra it was shown in [16]

Cn(∆) = {M ∈ mod(∆) | dimM = (n, n, n− 1) and

M(Z−2) isomorphism and M(Z−1) surjective } (2.30)

and in fact, one may now show directly this is equivalent with the desciption given in
Theorem 2.4.3.
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2.4.4 Line bundles on P2
q with invariant one

It is now easy to parametrize the line bundles on P2
q with invariant one. For the

homogenized Weyl algebra this result can also be deduced from [16].

Corollary 2.4.5. Let A be an elliptic quadratic Artin-Schelter algebra where σ has
infinite order. The normalized line bundles of invariant one R1(P

2
q) correspond to the

objects in C1(∆) which are the representations of the form

k

α-
β-
γ-

k

0-
0-
0-

0 (2.31)

for some (α, β, γ) ∈ P2 −C

Proof. First let F ∈ C1(∆). By Theorem 2.4.3 F is given by a representation as
in (2.31) for some scalars α, β, γ ∈ k. The condition Hom∆(p, F ) = 0 for p ∈ C
implies (α, β, γ) 6∈ C. With a little more thought we also have (α, β, γ) 6= (0, 0, 0).
Conversely let F be as in (2.31) with (α, β, γ) ∈ P2 −C. Then we immediately have
Hom∆(p, F ) = Hom∆(F, p) = 0 for p ∈ C.

2.4.5 Induced Kronecker quiver representations

Although the category Cn(∆) has a fairly elementary description in Theorem 2.4.3 it
is not so easy to handle. One may ask if one can simplify the description of Cn(∆)
in the Sklyanin case as done in for the homogenized Weyl algebra, see (2.30), (2.6),
(2.7). At this point we mention the insight of Le Bruyn [51] that the representations
M ∈ Cn(∆) in the Weyl case are determined by the three most left maps, using an
argument of Baer [12]. We will mimic this idea.

Below, A is an elliptic quadratic Artin-Schelter algebra. Let ∆0 be the full sub-
quiver of ∆ consisting of the vertices −2,−1 and let Res : Mod(∆) → Mod(∆0) be
the obvious restriction functor. Res has a left adjoint which we denote by Ind. If e
is the sum of the vertices of ∆0 then Ind = − ⊗k∆0 ek∆. Note Res ◦ Ind = id. If
M ∈ Mod(∆) we will denote ResM by M0. We have

Lemma 2.4.6. Let M ∈ mod(∆). Then M = Ind ResM if and only if M ⊥ S0.

Proof. First assume M = Ind ResM . Put M0 = ResM and take a projective resolu-
tion

0 → F 0
1 → F 0

0 →M0 → 0

Applying Ind we get a projective resolution of M of the form

0 → Sa0 → F1 → F0 →M → 0

for some a ∈ N where Fi = IndF 0
i . By adjointness we have for all integers j

Extj∆(Fi, S0) = Extj∆(IndF 0
i , S0) = Extj∆0(F

0
i ,ResS0) = Extj∆0(F

0
i , 0) = 0
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which implies Hom∆(M,S0) = 0 and Ext1∆(M,S0) = 0 which means M ⊥ S0.
To prove the converse let N = Ind ResM . By adjointness we have a map f : N →

M whose kernel K and cokernel C′ are direct sums of S0. We have Hom∆(M,S0) =
0 and hence Hom∆(C′, S0) = 0. Thus C′ = 0 and f is surjective. Applying
Hom∆(−, S0) to the short exact sequence

0 → K → N
f
−→M → 0

and using Hom∆(N,S0) = 0 (by adjointness) yields Hom∆(K,S0) = 0 and hence
K = 0. Thus f is an isomorphism and we are done.

Recall from §1.1.1 the notation

⊥S0 = {M ∈ mod(∆) |M ⊥ S0}

It is clear that ⊥S0 is an abelian subcategory of mod(∆). Lemma 2.4.6 implies that
the functors Res and Ind define inverse equivalences

mod(∆) ⊃ ⊥S0

Res-

�
Ind

mod(∆0) (2.32)

This means any M ∈ ⊥S0 is totally determined by ResM .
The following lemma was already observed by Le Bruyn [51] in the case of the

homogenized Weyl algebra.

Lemma 2.4.7. Cn(∆) ⊂ ⊥S0 for n > 0.

Proof. It is sufficient to prove that if M 6= O is a normalized line bundle on P2
q

and M = Ext1P2
q
(E ,M) then M ∈ ⊥S0. We have RHomP2

q
(E ,M) = M [−1] and

RHomP2
q
(E ,O) = S0. Thus for all integers j

Extj
P2
q
(M,O) = Extj∆(M [−1], S0) = Extj+1

∆ (M,S0)

In particular Hom∆(M,S0) = 0 and

Ext1∆(M,S0) = HomP2
q
(M,O) ∼= H2(P2

q,M(−3))′ = 0

where we have used Serre duality (Theorem 1.10.5) and Theorem 2.2.11.

We also mention

Lemma 2.4.8. Let p ∈ C and let S a line object on P2
q.

1. S = Ext1
P2
q
(E ,S(−1)) ∈ ⊥S0,

2. p = HomP2
q
(E ,Np) ∈ ⊥S0,
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3. Res p is θ-stable for θ = (−1, 1).

Proof. The first two statements easy to verify. For the final part we have (dimRes p) ·
θ = (1, 1) · (−1, 1) = 0, so what remains to verify is dimN · θ > 0 for all nontrivial
subrepresentations N ⊂ Res p. For such N ⊂ Res p we either have dimN = (1, 0) or
dimN = (0, 1). That dimN = (1, 0) is impossible is seen by inspecting the appropriate
commutative diagram. This finishes the proof.

2.4.6 Stable representations

Let A be an elliptic quadratic Artin-Schelter algebra. We have seen M ∈ Cn(∆) is
completely determined by its restriction M0 = ResM ∈ mod(∆0). In case A = H is
the homogenized Weyl algebra we furthermore have M0(Z−2) is an isomorphism (see
Remark 2.4.4). This is best understood by considering line objects on P2

q. We first
note the following

Proposition 2.4.9. Let S = π(A/uA) be a line object on P2
q where u = αx+βy+γz ∈

A1 and write S = Ext1P2
q
(E ,S(−1)) ∈ mod(∆). Let n > 0, M ∈ Rn(P2

q) and write

M = Ext1P2
q
(E ,M) ∈ mod(∆). Then the following are equivalent:

1. M0 ⊥ S0

2. Hom∆0(M0, S0) = 0

3. HomP2
q
(M,S(−1)) = 0

4. M ⊥ S(−1)

5. The following linear map is an isomorphism

f = αM0(X−2) + βM0(Y−2) + γM0(Z−2) : M−2 →M−1

Proof. Equivalence of (1) and (2): M0 ⊥ S0 implies Hom∆0(M0, S0) = 0. Con-
versely, if Hom∆0(M0, S0) = 0 then by computing χ(M0, S0) = 0 we also have
Ext1∆0(M0, S0) = 0.

Equivalence of (2) and (3): By

Hom∆0(M0, S0) = Hom∆(IndM0, S) = Hom∆(M,S) = H0(RHom∆(M,S))

∼= H0(RHomP2
q
(M,S(−1))) = HomP2

q
(M,S(−1))

Equivalence of (3) and (4): We have [M] = [O]−n[P ] and [S(−1)] = [S]− [P ]. An
easy computation shows χ(M,S(−1)) = 0. And by Serre duality Ext2P2

q
(M,S(−1)) ∼=

HomP2
q
(S(2),M)′ = 0 since M is reflexive hence torsion free. We conclude M ⊥

S(−1) if and only if HomP2
q
(M,S(−1)) = 0.
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Equivalence of (4) and (5): Applying HomP2
q
(−,M) to a minimal resolution of

S(2)

0 → O(1) → O(2) → S(2) → 0

gives

0 → Ext1
P2
q
(S(2),M) →M−2

f
−→M−1 → Ext2

P2
q
(S(2),M) → 0

where we have used Theorem 2.2.11. It is clear that the linear map f is given by
αM0(X−2) + βM0(Y−2) + γM0(Z−2). Thus f is an isomorphism if and only if
Ext1P2

q
(S(2),M) = 0 and Ext2P2

q
(S(2),M) = 0. Again using Serre duality this is

equivalent with M ⊥ S(−1).

Remark 2.4.10. In case A = H is the homogenized Weyl algebra we recover the
argument M0(Z−2) is an isomorphism (see Remark 2.4.4), as it was found in [16].
For the line object S = π(H/zH) we deduce

RHomP2
q
(M,S(−1)) = RHomP2

q
(M, u∗OP1(−1)) ∼= RHomP1(Lu∗M,OP1(−1))

and since Lu∗M = OP1 we obtain

HomP2
q
(M,S(−1)) ∼= HomP1(OP1 ,OP1(−1)) = 0

As a consequence the representations in Cn(∆) are θ-semistable for some θ ∈ Z2.
Since χ(−, dimS0) = − · (−1, 1)we may take θ = (−1, 1).

Inspired by the previous remark one might try to find, for general elliptic A, a
particular line object S on P2

q for which HomP2(M,S(−1)) is zero for all M ∈ Rn(P
2
q).

We did not manage to find such a line object which is independent of M. However
we were able to prove that for a fixed normalized line bundle M on P2

q there is a line
object (which depends on M) such that HomP2

q
(M,S(−1)) = 0.

Proposition 2.4.11. Assume k is uncountable and σ has infinite order. Let n > 0
and I ∈ Rn(P2

q). Then the set of line objects S such that HomP2
q
(I,S(−1)) 6= 0 is a

curve of degree n in P(A1). In particular this set is non-empty.

Proof. It follows from Proposition 2.4.9 that HomP2
q
(I,S(−1)) 6= 0 if and only if

det f = 0. This is a homogeneous equation in (α, β, γ) and we have to show it
is not identically zero, i.e. we have to show there is at least one S such that
HomP2

q
(I,S(−1)) = 0. This follows from Lemma 2.4.12 and Lemma 2.4.13 below.

Lemma 2.4.12. Assume k is uncountable and σ has infinite order. Let n ≥ 0
and I ∈ Rn(P2

q). Let p ∈ C. Then, modulo zero dimensional objects, there exist
at most n different line objects S such that HomP2

q
(I,S(−1)) 6= 0 and such that

HomP2
q
(S,Np) 6= 0.
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Proof. We use induction on n. Writing S as the cokernel of a map O(−1) → O we
deduce by Theorem 1.8.2 that HomP2

q
(O,S(−1)) = 0. So the case n = 0 is clear by

Corollary 2.2.12. Assume n > 0. Let (Si)i=1,...,m be the different line objects (modulo
zero dimensional objects) satisfying HomP2

q
(I,Si(−1)) 6= 0 and HomP2

q
(Si,Np) 6= 0. If

m = 0 then we are done. So assume m > 0. Let S′
i(−1) be the kernel of a non-trivial

map Si → Np. It is proved in [8, Proposition 6.24] there is some point object Np′

such that HomP2
q
(S′
i,Np′) 6= 0 for all i. Let I ′(−1) be the kernel of a non-trivial map

I → S1(−1). The subobjects of line objects are shifted line objects and hence the
image of I in S1(−1) is a shifted line object. We find [I ′] = [O] − (n − b)[P ] with
b ≥ 1 and Lemma 2.2.4 implies I ′ is a normalized line bundle with invariant ≤ n− 1.

By Serre duality, Lemma 2.2.4 and Lemma 2.2.1 we find

Ext1
P2
q
(I,Np(−1)) = Ext1

P2
q
(Np(−1), I(−3))′ = 0

Ext2
P2
q
(I,Np(−1)) = HomP2

q
(Np(−1), I(−3))′ = 0

and since χ(I,Np(−1)) = 1 we deduce dimk HomP2
q
(I,Np(−1)) = 1. Hence for all

i the composition I → Si(−1) → Np(−1) is a scalar multiple of the composition
I → S1(−1) → Np(−1). Therefore the composition I ′(−1) → I → Si(−1) maps
I ′(−1) to S′

i(−2). We claim for i > 1 this map must be non-zero. If not then there is
a non-trivial map I/I ′(−1) → Si(−1) and since I/I ′(−1) is also subobject of S1(−1)
it follows that S1 and Si have a common subobject. But this is impossible since S1

and Si are different modulo zero dimensional objects.
Hence HomP2

q
(I ′,S′

i(−1)) 6= 0 for i = 2, . . . ,m. Since the S′
i are still different

modulo zero dimensional objects, we obtain m− 1 ≤ n− 1 and hence m ≤ n.

The next lemma is easily proved for generic A. For general A one needs a more
subtle treatment.

Lemma 2.4.13. Assume k is uncountable and σ has infinite order. Let p ∈ C. Then,
modulo zero dimensional objects, there exist infinitely many line objects S such that
HomP2

q
(S,Np) 6= 0.

Proof. Let p = (α, β, γ) ∈ C. We will prove the lemma in six steps.

Step 1. Let d ∈ N and let S,S′ be two line objects for which S′(−d) ⊂ S. Then
there is a filtration

S′(−d) = Sd(−d) ⊂ Sd−1(−d+ 1) ⊂ · · · ⊂ S1(−1) ⊂ S0 = S

where Si are line objects and the successive quotients are point objects on P2
q. This is

proved by observing that the zero dimensional object N = S/S′(−d) of multiplicity
d maps surjectively to a point object (by the fact that σ has infinite order, see [8]).

Step 2. Let A denote the set of isoclasses of line objects S on P2
q such that

HomP2
q
(S,Np) 6= 0. Then A is an uncountable set. Indeed, for any S = π(A/uA)
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for which u = λx + µy + νz ∈ A1 it is easy to see HomP2
q
(S,Np) 6= 0 if and only if

u(p) = 0 i.e. if and only if λα + µβ + νγ = 0. Moreover two line objects π(A/uA)
and π(A/u′A) are isomorphic if and only if u = ρu′ for some ρ ∈ k. Since we assume
k is an uncountable field we derive A is uncountable.

Step 3. Let B ⊂ A consist of the isoclasses of line objects S = π(A/uA) such that
the line {u = 0} in P2 is not a component of C. This means A/uA is h-torsion free
i.e. u does not divide h. Then B is uncountable since we only exclude at most three
line objects.

Step 4. For any S ∈ B there are, up to isomorphism, only finitely many points p ∈ C
for which HomP2

q
(S,Np) 6= 0 or Ext1P2

q
(Np,S(−1)) 6= 0. Indeed, it follows from [8]

there are at most three different point objects Np on P2
q for which HomP2

q
(S,Np) 6= 0.

In that case HomP2
q
(S,Np) = k which is seen by applying HomP2

q
(−,Np) to a standard

resolution of S. For the second part, Serre duality implies

Ext1P2
q
(Np,S(−1)) = Ext1P2

q
(S,Np′)

′, 0 = HomP2
q
(Np,S(−1)) = Ext2P2

q
(S,Np′)

′

for a suitable point p′ ∈ C. By χ(S,Np′) = 0 and the first part of Step 4 we deduce
there are only finitely many points p′ ∈ C for which Ext1

P2
q
(S,Np′) 6= 0. Hence there

are only finitely many points p ∈ C for which Ext1
P2
q
(Np,S(−1)) 6= 0.

Step 5. For any Si ∈ B and d ∈ N the following subset of B is finite

Vd(Si) = {S ∈ B | S′(−d) ⊂ S for a line object S′ for which S′(−d) ⊂ Si}.

We will prove this for d = 1, for general d the same arguments may be used combined
with Step 1. Let S′(−1) ⊂ Si. Note S′ ∈ B. Clearly any line object S on P2

q for which

S′(−1) ⊂ S holds is represented by an element of Ext1P2
q
(P ,S′(−1)) for some point

object Np, and two such line objects S are isomorphic if and only if the corresponding
extentions only differ by a scalar. By Step 4 and its proof there are only finitely many
such S, up to isomorphism.

Step 6. There exist infinitely many line objects S0,S1,S2, . . . such that
HomP2

q
(Si,Np) 6= 0 and Si, Sj do not have a common subobject for all j < i. Indeed,

choose S0 ∈ B arbitrary and having S0,S1, . . . ,Si−1 we pick Si as an element of B
which does not appear in the countable subset

⋃

d∈N,j<i

Vd(Sj)

Subobjects of line objects are shifted line objects hence Step 6 follows.

As saying that two line objects are different modulo zero dimensional objects is
saying that they do not have a common subobject, this means we have proved the
lemma.
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Remark 2.4.14. The proof of Lemma 2.4.13 requires k to be uncountable, and this is
the only place in Chapter 2 where we need this hypothesis on k. However in case A is
a three dimensional Sklyanin algebra Lemma 2.4.13 may be proved much simpler by
observing [8] that for any line object S = π(A/uA) containing a shifted line object
S′ = π(A/u′A) we have

div(u′) = σap+ σbq + σ−a−br for some a, b ∈ Z

where we have written div(u) = p + q + r. Therefore if A is a three dimensional
Sklyanin algebra we may drop the hypothesis k is uncountable.

Before we come to the main result of this part we need some more lemmas.

Lemma 2.4.15. Assume 0 6= F,G ∈ mod(∆0) are θ-semistable for θ = (−1, 1).

1. If G is θ-stable then every non-zero map in Hom∆0(F,G) is surjective.

2. If F is θ-stable then every non-zero map in Hom∆0(F,G) is injective.

Proof. Since F and G are both θ-semistable and non-zero we may write dimF =
(m,m) 6= 0, dimG = (n, n) 6= 0 for some non-negative integers m,n.

First, let G be θ-stable and let 0 6= f ∈ Hom∆0(F,G) be such a non-zero map.
Assume by contradiction im f 6= G. Write dim im f = (a, b). Since im f ⊂ G is a
non-trivial subrepresentation (since f 6= 0), it follows from the θ-stability of G

0 < θ · dim im f = (−1, 1) · (a, b) = b− a

On the other hand, ker f 6= 0, otherwise (a, b) = (m,m) which contradicts 0 < b− a.
Also ker f 6= F , since f 6= 0. Therefore, by the θ-semistability of F , we obtain

0 ≤ θ · dimker f = (−1, 1) · (m− a,m− b) = a− b

yielding the desired contradiction. Hence f is surjective, which proves the first part
of the lemma. The second statement is is shown in an analogous way.

Lemma 2.4.16. Put θ = (−1, 1). Let V ∈ mod(∆0) and assume the forms − · θ and
χ(−, dimV ) are proportional. For any F ∈ mod(∆0) for which F ⊥ V we have

1. If F ′ ⊂ F such that dimF ′ · θ = 0 then F ′ ⊥ V and F/F ′ ⊥ V

2. Hom∆0(F,Res p) = Hom∆0(Res p, F ) = 0 for all p ∈ C for which Res p is not
perpendicular to V .

Proof. Using the Euler form on ∆ it is easy to see dimV = (2l, l) for some l ∈ N. We
may assume V 6= 0. Let F ⊥ V . This implies F is θ-semistable and dimF = (n, n)
for some n ∈ N. Since result trivially holds for F = 0 we may assume n > 0.
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1. Let F ′ ⊂ F such that dimF ′ · θ = 0. Thus dimF ′ = (m,m) and dimF/F ′ =
(n − m,n − m) for some m ≤ n. Applying Hom∆0(−, V ) to the short exact
sequence 0 → F ′ → F → F/F ′ → 0 in mod(∆0) gives the long exact sequence

0 → Hom∆0(F/F ′, V ) → Hom∆0(F, V ) → Hom∆0(F ′, V )

→ Ext1∆0(F/F ′, V ) → Ext1∆0(F, V ) → Ext1∆0(F ′, V ) → 0

Since F ⊥ V we deduce Hom∆0(F/F ′, V ) = 0 and Ext1∆0(F ′, V ) = 0. Compu-
tations show χ(F ′, V ) = χ(F/F ′, V ) = 0 which yield Ext1∆0(F/F ′, V ) = 0 and
Hom∆0(F ′, V ) = 0. We conclude F ′ ⊥ V and F/F ′ ⊥ V .

2. Let p ∈ C for which Res p is not perpendicular to V . Recall from Lemma 2.4.8
that Res p is θ-stable.

First, if Hom∆0(F,Res p) 6= 0 then by Lemma 2.4.15 there is an epimorphism
F → Res p. By part 1 we obtain Res p ⊥ V , contradiction.

Second, if Hom∆0(Res p, F ) 6= 0 then by Lemma 2.4.15 there is an injective
map Res p→ F . By part 1 of the current lemma we obtain Res p ⊥ V , again a
contradiction. This finishes the proof.

Lemma 2.4.17. Assume σ has infinite order. Let N ∈ mod(∆0) with dimension
vector (n, n) where n > 0. If Hom∆0(N,Res p) = Hom∆0(Res p,N) = 0 for all p ∈ C
then dimk(IndN)0 ≤ n− 1.

Proof. Assume the lemma is false. Thus dim(IndN)0 = d ≥ n. In case d = n we put
W = IndN . Otherwise we have Sd−n0 ⊂ IndN where

Sd−n0 = S0 ⊕ · · · ⊕ S0︸ ︷︷ ︸
d−n times

and we let W = (IndN)/Sd−n0 be the quotient. In either case we have a surjective
map IndN → W where dimW = (n, n, n). Note ResW = N . We will consider

W
L

⊗Γ E ∈ Db(coh(P2
q)) and Li∗(W

L

⊗Γ E) ∈ Db(coh(C)). We have for p ∈ C

ExtjC(Lu∗(W
L

⊗∆ E),Op) = Extj
P2
q
(W

L

⊗∆ E , u∗Op) = Extj∆(W, p) (2.33)

By applying Hom∆(−, p) to IndN →W → 0 we have

Hom∆(W, p) ⊂ Hom∆(IndN, p) = Hom∆0(N,Res p) = 0

and by Serre duality on P2
q and adjointness

Ext2∆(W, p) = Hom∆(p̃,W )′ = Hom∆0(Res p̃, N)′ = 0

for some p̃ ∈ C. Since χ(W, p) = 0 we conclude also Ext1∆(W, p) = 0. It follows from

(2.33) that Lu∗(W
L

⊗∆ E) = 0. It is easy to see this implies W
L

⊗∆ E = 0 where we
have used Lemma 1.9.19. By the derived equivalence Db(coh(P2

q))
∼= Db(mod(∆)) we

obtain W = 0 which is a contradiction.
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We now come to the main result of this section.

Theorem 2.4.18. Assume k is uncountable. Let A be an elliptic quadratic Artin-
Schelter algebra for which σ has infinite order. Let n > 0. If M ∈ Cn(∆) then M0 is
θ-stable for θ = (−1, 1).

Proof. Pick M ∈ Cn(∆). Thus there is an object M ∈ Rn(P2
q) for which M [−1] =

RHomP2
q
(E ,M). We write F = M0.

It follows from Propositions 2.4.9 and 2.4.11 that there exists a line object S on P2
q

such that F ⊥ S0, where S[−1] = RHomP2
q
(E ,S(−1)). This shows F is θ-semistable

and as in Remark 2.4.10 it is checked we may take θ = (−1, 1).
Since F is θ-semistable there is a subrepresentation F ′ ( F such that F/F ′ is

θ-stable. We will prove F ′ is necessarily zero, from which the result will follow. So
assume by contradiction F ′ 6= 0. Since F/F ′ is θ-stable we have θ · dimF/F ′ = 0
thus we may put dimF/F ′ = (n − m,n − m) where 0 < m < n. It follows that
dimF ′ = (m,m). Note F ′ is θ-semistable.

We now claim that for all p ∈ C we have

Hom∆0(F ′,Res p) = Hom∆0(Res p, F ′) = 0

Hom∆0(F/F ′,Res p) = Hom∆0(Res p, F/F ′) = 0

To prove this, pick any p ∈ C. Recall Np(−2) = Nσ2p. It follows from Lemmas
2.4.12 and 2.4.13 there exists a line object S′ on P2

q such that HomP2
q
(S′,Nσ2p) 6= 0

and HomP2
q
(M,S′(−1)) = 0. Writing S′[−1] = RHomP2

q
(E ,S′(−1)) and using Serre

duality on P2
q this becomes Ext1∆(p, S′) 6= 0 and F ⊥ S′ by Proposition 2.4.9. In

particular Res p is not perpendicular to ResS′. The claim above now follows from
Lemma 2.4.16.

Combining the above with Lemma 2.4.17 we see dimk(IndF/F ′)0 ≤ n −m − 1
and dimk(IndF ′)0 ≤ m− 1. Application of the right exact functor Ind on

0 → F ′ → F → F/F ′ → 0

yields
. . .→ IndF ′ → IndF → IndF/F ′ → 0

hence

n− 1 = dimk(IndF )0 ≤ dimk(IndF ′)0 + dimk(IndF/F ′)0

≤ (m− 1) + (n−m− 1) = n− 2

which is absurd. Thus F ′ = 0 and we conclude F is θ-stable.

Remark 2.4.19. In case A is a three dimensional Sklyanin algebra and σ has infinite
order we do not need the hypothesis k is uncountable in Theorem 2.4.18. This is
because we may prove Proposition 2.4.11 without the additional hypothesis on k,
using the proof of Lemma 2.4.12 and Remark 2.4.14.
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2.4.7 Second description of Rn(P2
q) and proof of Theorem 1

Recall from Lemma 2.4.7 that Cn(∆) ⊂ ⊥S0 for n > 0. We denote Dn(∆0) for the
image of Cn(∆) under the equivalence ⊥S0

∼= mod(∆0) of (2.32).

Theorem 2.4.20. Assumee k is uncountable. Let A be an elliptic quadratic Artin-
Schelter algebra for which σ has infinite order. Let θ = (−1, 1) and n > 1. Then
there is an equivalence of categories

Cn(∆)

Res-

�
Ind

Dn(∆
0)

where

Dn(∆
0) = {F ∈ mod(∆0) | dimF = (n, n), F is θ-stable, dimk(IndF )0 ≥ n−1}.

Proof. Below we use often implicitly the equivalence Cn(∆) ∼= Rn(P
2
q) from Theorem

2.4.3. We break the proof into five steps.

Step 1. Res(Cn(∆)) ⊂ Dn(∆0). This follows from Theorem 2.4.18, Lemma 2.4.6 and
Theorem 2.2.11.

Step 2. If F ∈ Dn(∆0) then Hom∆0(F,Res p) = Hom∆0(Res p, F ) = 0 for all p ∈ C.
Indeed, by Lemma 2.4.8 and Lemma 2.4.15 any non-zero morphism would yield an
isomorphism F ∼= Res p hence n = 1, contradicting the assumption n > 1.

Step 3. If F ∈ Dn(∆0) then Hom∆(IndF, p) = Hom∆(p, IndF ) = 0 for all p ∈ E.
This follows 0 = Hom∆0(F,Res p) = Hom∆(IndF, p) and

0 = Hom∆0(Res p, F ) = Hom∆0(Res p,Res IndF ) = Hom∆(Ind Res p, IndF )

where we have used Step 2 and Ind Res p = p by Lemma 2.4.8.

Step 4. Ind(Dn(∆0)) ⊂ Cn(∆). Let F ∈ Dn(∆0). Combining Step 2 with Lemma
2.4.17 it follows that dim IndF = (n, n, n− 1). Now Step 3 shows IndF ∈ Cn(∆).

Step 5. Ind and Res are inverses to each other. To prove this we only need to show
Ind ResF = F for F ∈ Cn(∆). This follows from Lemmas 2.4.6 and 2.4.7.

Let α = (n, n) and put (for n > 1)

D̃n = {F ∈ Repα(∆0) | F ∈ Dn(∆
0)}

= {F ∈ Repα(∆0) | F is θ-stable, dim(IndF )0 ≥ n− 1}.
(2.34)

Clearly D̃n is a closed subset of the dense open subset of Repα(∆0) consisting of all

θ-stable representations. Hence D̃n is locally closed.
Put Dn = D̃n//Glα(k).
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Theorem 2.4.21. Assume k is uncountable. Let A be an elliptic quadratic Artin-
Schelter algebra for which σ has infinite order. Then for n ∈ N there exists a smooth
locally closed variety Dn of dimension 2n such that the isomorphism classes in Dn(∆0)
(and hence in Rn(P2

q)) are in natural bijection with the points in Dn.

Proof. For n = 0 or 1 we refer to Corollaries 2.2.12, 2.4.5 to see that we may take a
point for D0 and P2 −C for D1. So we may assume n > 1 throughout this proof.

Since all representations in D̃n are stable, all Glα(k)-orbits on D̃n are closed and so

Dn is really the orbit space for the Glα(k) action on D̃n. This proves the isomorphism
classes in Dn(∆

0) are in natural bijection with the points in Dn.

To prove Dn is smooth it suffices to prove D̃n is smooth (this follows for example
using the Luna slice theorem [54]).

We first estimate the dimension of D̃n. We write the equations of A in the usual
form MA(xyz)t. Given n × n-matrices X , Y , Z let MA(X,Y, Z) be obtained from
MA by replacing (x, y, z) by X,Y, Z (thus MA(X,Y, Z) is a 3n × 3n-matrix). Then

D̃n has the following alternative description:

D̃n = {(X,Y, Z) ∈Mn(k)
3 | (X,Y, Z) is θ-stable and rankMA(X,Y, Z) ≤ 2n+ 1}.

By Proposition 2.2.14 D̃n is non-empty. The triples (X,Y, Z) for which the associated
respresentation is stable are a dense open subset of Mn(k)

3 and hence they represent
a quasi-variety of dimension 3n2. Imposing MA(X,Y, Z) should have corank ≥ n− 1

represents (n−1)2 independent conditions. So the irreducible components of D̃n have
dimension ≥ 3n2 − (n− 1)2.

Define C̃n by

{G ∈ Repα̃(∆) | G ∼= Ind ResG,ResG ∈ D̃n}

where α̃ = (n, n, n − 1) (as usual we assume the points of Repα̃(∆) to satisfy the
relation imposed on ∆).

To extend F ∈ D̃n to a point in C̃n we need to choose a basis in (IndF )0.

Thus C̃n is a principal Gln−1(k) fiber bundle over D̃n. In particular C̃n is smooth

if and only D̃n is smooth and the irreducible components of C̃n have dimension
≥ 3n2− (n−1)2 +(n−1)2 = 3n2. Note by the description of Cn(∆) in Theorem 2.4.3

it follows that C̃n is an open subset of Rep(∆, α̃).

Let x ∈ C̃n. The stabilizer of x consists of scalars thus if we put G = Gl(α̃)/k∗

then we have inclusions Lie(G) ⊂ Tx(C̃n) = Tx(Rep(∆, α̃)). Voigt in [82, Ch. 2, §3.4]
has shown there is a natural inclusion Tx(Rep(∆, α̃))/Lie(G) ↪→ Ext1∆(x, x) (Voigt
actually obtains an isomorphism since he is not assuming his representation spaces to
be reduced). Now x corresponds to some normalized line bundle H on P2

q and we have

Ext1∆(x, x) = Ext1P2
q
(H,H). An easy computation shows χ(H,H) = χ(x, x) = 1 − 2n.

We have HomP2
q
(H,H) = k and by Serre duality Ext2P2

q
(H,H) = HomP2

q
(H,H(−3))′ =

0. Thus dimk Ext1P2
q
(H,H) = 2n.
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Hence we obtain 3n2 ≤ dimTx(C̃n) ≤ 2n + dimG = 2n + 2n2 + (n − 1)2 − 1 =

3n2. Thus dimTx(C̃n) = 3n2 is constant and hence C̃n is smooth. We also obtain

dim D̃n = 3n2 − (n− 1)2.

The dimension ofDn is equal to dim D̃n−dimGlα(k)+1 = 3n2−(n−1)2−2n2+1 =
2n. This finishes the proof.

Proof of Theorem 1. By Theorem 2.4.21. For n ≤ 1 Theorem 1 follows from Corollary
2.2.12 and Corollary 2.4.5.

2.4.8 Description of the varieties Dn for Sklyanin algebras and

proof of Theorem 2

In §2.4.6 we have tried to generalize the results of the homogenized Weyl algebra [16]
by looking for a line object S on P2

q for which M0 ⊥ S0 for all M ∈ Cn(∆). Although
we did not succeed in doing this, there is another interpretation. For the homogenized
Weyl algebra the restriction u∗M = OP1 translated into M0 ⊥ S0, see Remark 2.4.10.
For the Sklyanin case we now have

Lemma 2.4.22. Let A be a three dimensional Sklyanin algebra for which σ has
infinite order. There exists V ∈ mod(∆0) with dimV = (6, 3) such that

1. for all M ∈ Cn(P2
q) we have M0 ⊥ V , and

2. if p ∈ C then Res p is not perpendicular to V .

Proof. 1. Pick a degree zero line bundle U on C which is not of the form O((o) −
(3nξ)) for n ∈ N (where o, ξ are as in Proposition 2.3.4). Let M ∈ Rn(P

2
q).

Then we have by adjointness RHomP2
q
(M, u∗U) = RHomC(Lu∗M,U). By

Proposition 2.3.4 we have Lu∗M = O((o) − (3nξ)). We conclude by Serre
duality for C that RHomP2

q
(M, u∗U) = 0. Now put M = Ext1P2

q
(E ,M) and

U ′ = RHomP2
q
(E , u∗U). We obtain RHom∆(M [−1], U ′) = 0.

What is U ′? By adjointness we have RHomP2
q
(E , u∗U) = RHomC(Lu∗E ,U).

Since restriction to C commutes with the shift functor, it follows from (1.22)

Lu∗E = OC(2) ⊕OC(1) ⊕OC =
(
σ2
∗(L) ⊗C σ∗(L)

)
⊕ σ∗L ⊕OC

By Riemann-Roch and Serre duality U ′ = U [−1] where dimU = (6, 3, 0).
Put V = ResU . Thus dimV = (6, 3). Replacing M with a projective res-
olution it is easy to see RHom∆(M,U) = RHom∆0(M0, V ). It follows that
Hom∆0(M0, V ) = 0 and Ext1∆0(M0, V ) = 0.

2. Put Q = Res p for p ∈ C. Then

RHom∆0(Q, V ) = RHom∆(p, U) = RHom∆(p[−1], U ′)

= RHomP2
q
(u∗Op[−1], u∗U) = RHomC(Lu∗u∗Op[−1],U)
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Now Lu∗u∗Op[−1] is a non-zero complex whose homology has finite length. It is
easy to deduce from this RHomC(Lu∗u∗Op[−1],U) 6= 0. Hence we are done.

Remark 2.4.23. Note the choice U = OC in the previous proof would fail since
HomP2

q
(E , u∗OC) 6= 0, Ext1P2

q
(E , u∗OC) 6= 0 hence RHomP2

q
(E , u∗OC) is not concen-

trated in a single degree. Thus the image of u∗OC under the generalized Beilinson
equivalence cannot be identified with an object in mod(∆).

Theorem 2.4.24. Let A be a three dimensional Sklyanin algebra for which σ has
infinite order. Let V ∈ mod(∆0) be as in Lemma 2.4.22. Let n ∈ N. The isomorphism
classes in Rn(A) are in natural bijection with the points in the smooth affine variety
Dn of dimension 2n where

Dn = {F = (X,Y, Z) ∈Mn(k)
3 | F ⊥ V,

rank




cX aZ bY
bZ cY aX
aY bX cZ


 ≤ 2n+ 1}/Glα(k)

Proof. For n = 0 or 1 we refer to Corollaries 2.2.12, 2.4.5 to see that Dn has the
description as in the statement of the current theorem. So we may assume n > 1
throughout this proof.

It is sufficient to show Dn(∆0) has the alternative description

D′
n(∆

0) := {F ∈ mod(∆0) | dimF = (n, n), F ⊥ V, dimk(IndF )0 ≥ n − 1}.

Indeed, if Dn(∆0) = D′
n(∆

0) we then have

D̃n = {F ∈ Repα(∆0) | F ∈ Dn(∆0)}

= {F ∈ Repα(∆0) | φV (F ) 6= 0, dimk(IndF )0 ≥ n− 1}

from which we see D̃n is a closed subset of {φV 6= 0} so in particular D̃n is affine.

This means Dn = D̃n/Gl(α) is an affine variety. Theorem 2.4.21 further implies Dn

is smooth of dimension 2n which points are in natural bijection with the isomorphism
classes in Rn(P

2
q) whence in Rn(A) by §2.2.3. Moreover, as in the proof of Theorem

2.4.21, D̃n has the alternative description

D̃n = {F = (X,Y, Z) ∈ Repα(∆0) | F ⊥ V and rankMA(X,Y, Z) ≤ 2n + 1}.

Explicitely writing down MA by (1.9), (1.18) yields the desired description of Dn.
So to prove the current theorem it remains to prove Dn(∆0) = D′

n(∆
0). We will

do this by showing that the functors Res and Ind define inverse equivalences between
Cn(∆) and D′

n(∆
0).

Step 1. Res(Cn(∆)) ⊂ D′
n(∆

0). This follows from Lemmas 2.4.7 and 2.4.22.
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Step 2. Ind(D′
n(∆0)) ⊂ Cn(∆). Let F ∈ D′

n(∆0). Combining the Lemmas 2.4.22,
2.4.16 and 2.4.17 we obtain dim(IndF )0 = n−1. It remains to show that for p ∈ C we
have Hom∆(IndF, p) = Hom∆(p, IndF ) = 0. By Lemma 2.4.8 we have p = Ind Res p.
Thus Hom∆(IndF, p) = Hom∆0(F,Res p) = 0 and similarly

Hom∆(p, IndF ) = Hom∆0(Res p,Res IndF ) = Hom∆0(Res p, F ) = 0

where we have used Lemma 2.4.16 again.

Step 3. Ind and Res are inverses to each other. This follows from Lemma 2.4.6 and
Lemma 2.4.7.

We conclude with

Proof of Theorem 2. Follows from Theorem 2.4.24.

2.4.9 Filtrations of line bundles and proof of Theorem 3

Let A be an elliptic quadratic Artin-Schelter algebra for which σ has infinite order.
The following lemma shows how to reduce the invariant of a line bundle.

Lemma 2.4.25. Assume k is uncountable and σ has infinite order. Let n > 0 and
I ∈ Rn(P

2
q). Then there exists a line object S on P2

q such that Ext1P2
q
(S(1), I(−1)) 6= 0.

If J = πJ is the middle term of a corresponding non-trivial extension and J ∗∗ = πJ∗∗

then J ∗∗ ∈ Rm(P2
q) with m < n. Furthermore J ∗∗/I(−1) is a shifted line object.

Proof. Serre duality gives

Ext1P2
q
(S(1), I(−1)) = Ext1P2

q
(I(−1),S(−2))′ = Ext1P2

q
(I,S(−1))′

Also using Serre duality we deduce Ext2
P2
q
(I,S(−1)) = 0. Then a simple computation

using the Euler form shows dimk HomP2
q
(I,S(−1)) = dimk Ext1P2

q
(I,S(−1)). Hence it

follows from Proposition 2.4.11 there exist S such that
Ext1

P2
q
(S(1), I(−1)) 6= 0.

Now let J = πJ be the middle term of a non-trivial extension of I(−1) by S(1).
Then we have [J ] = [O] − [S] − n[P ] + [S] + [P ] = [O] − (n− 1)[P ].

We claim J is torsion free. Assume this is not the case and let F ⊂ J be a
maximal subobject of J of dimension ≤ 1. So F 6= 0. Since I is torsion free we have
F ∩ I(−1) = 0. So we may consider F as a subobject of S(1). Hence we obtain an
extention

0 → I(−1) → J /F → S(1)/F → 0 (2.35)

According to Lemma 2.2.4 this extension is split. But this means S(1)/F is a subob-
ject of J /F of dimension ≤ 1, contradicting the maximality of F .

It follows from [8] that GKdimJ∗∗/J ≤ 1. Thus J ∗∗/J = b[P ] for some b ≥ 0 by
Lemma 1.9.10. Hence [J ∗∗] = [O] − (n− 1 − b)[P ].
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Let S′ = J ∗∗/I(−1). Then by Lemma 2.2.4 S′ is pure and furthermore we have
e(S′) = 1. We now claim this implies S′ is a shifted line object on P2

q. By Lemma
1.9.7(2) we may pick an object S′ ∈ grmod(A) which is pure of GK-dimension two
and for which πS′ = S′. By Theorem 1.9.8 the canonical map µ : S′ → S′∨∨ is
injective with cokernel of GK-dimension zero (if non-zero). Hence πS′ = πS′∨∨ = S′.
It now follows from [8, Proposition 6.2] that S′ is a shifted line object on P2

q. This
ends the proof.

We can now prove another main result.

Theorem 2.4.26. Let A be an elliptic quadratic Artin-Schelter algebra and assume
σ has infinite order. Let n ≥ 0 and I ∈ Rn(P2

q). Then there exists an integer m,
0 ≤ m ≤ n together with a monomorphism I(−m) ↪→ O such that there exists a
filtration of line bundles on P2

q

O = M0 ⊃ M1 ⊃ · · · ⊃ Mu = I(−m)

with the property the Mi/Mi+1 are shifted line objects.

Proof. This follows easily from Lemma 2.4.25 and Corollary 2.2.12.

Proof of Theorem 3. By Theorem 2.4.26 and the equivalence R(A) =
∐
n∈N Rn from

§2.2.3.



Chapter 3

Hilbert series of ideals of

quadratic Artin-Schelter

algebras

All results in this chapter are published in [28]. We determine the possible Hilbert
functions of graded rank one torsion free modules over quadratic three dimensional
Artin-Schelter regular algebras. It turns out that, as in the commutative case, they
are related to Castelnuovo functions. From this we obtain an intrinsic proof that the
space of torsion free rank one modules on a quantum projective plane P2

q is connected.
A different proof of this fact, based on deformation theoretic methods and the known
commutative case has recently been given by Nevins and Stafford [60]. For the Weyl
algebra it was proved by Wilson [84].

3.1 Introduction and main results

Put A = k[x, y, z]. We view A as the homogeneous coordinate ring of P2. Let
Hilbn(P2) be the Hilbert scheme of zero-dimensional subschemes of degree n in P2.
It is well-known that this is a smooth connected projective variety of dimension 2n.

Let X ∈ Hilbn(P
2) and let IX ⊂ OP2 be the ideal sheaf of X . Let IX be the

graded ideal associated to X

IX = Γ∗(P
2, IX) = ⊕lΓ(P2, IX(l))

The graded ring A(X) = A/IX is the homogeneous coordinate ring of X . Let hX be
its Hilbert function:

hX : N → N : m 7→ dimk A(X)m

The function hX is of considerable interest in classical algebraic geometry as hX(m)
gives the number of conditions for a plane curve of degree m to contain X . It is easy
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to see that hX(m) = n for m � 0, but for small values of m the situation is more
complicated (see Example 3.1.2 below).

A characterization of all possible Hilbert functions of graded ideals of k[x1, . . . , xn]
was given by Macaulay in [55]. Apparently it was Castelnuovo who first recognized
the utility of the difference function (see [26])

sX(m) = hX(m) − hX(m− 1)

Since hX is constant in high degree one has sX(m) = 0 for m � 0. It turns out sX
is a so-called Castelnuovo function [26] which by definition has the form

s(0) = 1, s(1) = 2, . . . , s(σ − 1) = σ and s(σ − 1) ≥ s(σ) ≥ s(σ + 1) ≥ · · · ≥ 0 (3.1)

for some integer σ ≥ 0. The height of s(t) is defined as max{si}.
It is convenient to visualize a Castelnuovo function using the graph of the staircase

function

Fs : R → N : x 7→ s(bxc)

and to divide the area under this graph in unit cases. We will call the result a
Castelnuovo diagram. The weight of a Castelnuovo function is the sum of its values,
i.e. the number of cases in the diagram.

In the sequel we identify a function f : Z → C with its generating function
f(t) =

∑
n f(n)tn. We refer to f(t) as a polynomial or a series depending on whether

the support of f is finite or not.

Example 3.1.1. s(t) = 1 + 2t+ 3t2 + 4t3 + 5t4 + 5t5 + 3t6 + 2t7 + t8 + t9 + t10 + t11

is a Castelnuovo polynomial of weight 29. The corresponding diagram is

It is known [26, 34, 37] that a function h is of the form hX for X ∈ Hilbn(P
2) if

and only of h(m) = 0 for m < 0 and h(m) − h(m − 1) is a Castelnuovo function of
weight n.

Example 3.1.2. Assume n = 3. In that case there are two Castelnuovo diagrams
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These distinguish whether the points in X are collinear or not. The corresponding
Hilbert functions are

1, 2, 3, 3, 3, 3, . . . and 1, 3, 3, 3, 3, 3, . . .

where, as expected, a difference occurs in degree one.

Our aim in this chapter is to generalize the above results to quadratic Artin-
Schelter algebras. The Hilbert scheme Hilbn(P

2
q) was constructed in [60]. The defi-

nition of Hilbn(P
2
q) is not entirely straightforward since in general P2

q will have very
few zero-dimensional noncommutative subschemes (see [67]), so a different approach
is needed. It turns out that the correct generalization is to define Hilbn(P

2
q) as in

Proposition 2.2.9, i.e. as the scheme parametrizing the torsion free graded A-modules
I of projective dimension one which are normalized

hA(m) − hI(m) = dimk Am − dimk Im = n for m� 0

(in particular I has rank one as A-module, see Lemma 2.2.8). It is easy to see that
if A is commutative then this condition singles out precisely the graded A-modules
which occur as IX for X ∈ Hilbn(P

2).
The following theorem is the main result of this chapter.

Theorem 4. Let A be a quadratic Artin-Schelter algebra. There is a bijective corre-
spondence between Castelnuovo polynomials s(t) of weight n and Hilbert series hI(t)
of objects in Hilbn(P

2
q), given by

hI(t) =
1

(1 − t)3
−

s(t)

1 − t
(3.2)

Remark 3.1.3. By shifting the rows in a Castelnuovo diagram in such a way they are
left aligned one sees that the number of diagrams of a given weight is equal to the
number of partitions of n with distinct parts. It is well-known that this is also equal
to the number of partitions of n with odd parts [4].

Remark 3.1.4. For the benefit of the reader we have included in Appendix C the list
of Castelnuovo diagrams of weight up to six, as well as some associated data. See also
Appendix E.

From Theorem 4 one easily deduces there is a unique maximal Hilbert series
hmax(t) and a unique minimal Hilbert series hmin(t) for objects in Hilbn(P

2
q). These

correspond to the Castelnuovo diagrams

. . . and

. . .

We will also prove:
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Theorem 5. Hilbn(P
2
q) is connected.

This result was recently proved for almost all A by Nevins and Stafford [60], using
deformation theoretic methods and the known commutative case. In the case where A
is the homogenization of the first Weyl algebra this result was also proved by Wilson
in [84].

We now outline our proof of Theorem 5. For a Hilbert series h(t) as in (3.2) define

Hilbh(P
2
q) = {I ∈ Hilbn(P

2
q) | hI(t) = h(t)}

Clearly

Hilbn(P
2
q) =

⋃

h

Hilbh(P
2
q) (3.3)

We show below (Theorem 3.5.1) that (3.3) yields a stratification of Hilbn(P
2) into

non-empty smooth connected locally closed subvarieties. In the commutative case
this was shown by Gotzmann [36]. Our proof however is entirely different and seems
easier.

Furthermore there is a formula for dimHilbh(P
2
q) in terms of h (see Corollary 3.5.12

below). From that formula it follows there is a unique stratum of maximal dimension
in (3.3), (which corresponds to h = hmin). In other words Hilbn(P

2
q) contains a dense

open connected subvariety. This clearly implies that it is connected.
To finish this introduction let us indicate how we prove Theorem 4. Let M be a

torsion free graded A-module of projective dimension one (so we do not require M to
have rank one). Thus M has a minimal resolution of the form

0 → ⊕iA(−i)bi → ⊕iA(−i)ai →M → 0 (3.4)

where (ai), (bi) are finite supported sequences of non-negative integers. These num-
bers are called the Betti numbers of M . It follows the characteristic polynomial qM (t)
is is given by

∑
i(ai−bi)t

i and equation (1.4) now gives a relation between the Hilbert
series and the Betti numbers of M

hM (t) =

∑
i(ai − bi)t

i

(1 − t)3
(3.5)

So the Betti numbers determine the Hilbert series of M but the converse is not true
as some ai and bi may be both non-zero at the same time (see e.g. Example 3.1.7
below).

Theorem 4 is an easy corollary of the following more refined result.

Theorem 6. Let A be a quadratic Artin-Schelter algebra. Let 0 6= q(t) ∈ Z[t−1, t]
be a Laurent polynomial such that qσt

σ is the lowest non-zero term of q. Then a
finitely supported sequence (ai) of integers occurs among the Betti numbers (ai), (bi)
of a torsion free graded A-module of projective dimension one with Hilbert series
q(t)/(1 − t)3 if and only if
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1. al = 0 for l < σ.

2. aσ = qσ > 0.

3. max(ql, 0) ≤ al <
∑

i≤l qi for l > σ.

This theorem is a natural complement to (3.5) as it bounds the Betti numbers in
terms of the Hilbert series.

In Proposition 3.3.6 below we show that if A is elliptic and σ has infinite order,
the graded A-module whose existence is asserted in Theorem 6 can actually be chosen
to be reflexive. This means it corresponds to a vector bundle on P2

q.

Corollary 3.1.5. A Laurent series h(t) = q(t)/(1− t)3 ∈ Z((t)) occurs as the Hilbert
series of a graded torsion free A-module of projective dimension one if and only if for
some σ ∈ Z

∑

i≤l

qi

{
> 0 for l ≥ σ

0 for l < σ
(3.6)

I.e. if and only if

q(t)/(1 − t) = (1 − t)2h(t) =
∑

l≥σ

plt
l (3.7)

with pl > 0 for all l ≥ σ.

In the rank one case Theorem 6 has the following

Corollary 3.1.6. Let h(t) = 1/(1 − t)3 − s(t)/(1 − t) where s(t) is a Castelnuovo
polynomial and let σ = maxi si (this is the same σ as in (G.2)). Then the number of
minimal resolutions for an object in Hilbh(P

2
q) is equal to

∏

l>σ

[1 + min(sl−1 − sl, sl−2 − sl−1)]

This number is bigger than one if and only if there are two consecutive downward
jumps in the coefficients of s(t).

Example 3.1.7. Assume I ∈ Hilbn(P
2
q) has Castelnuovo diagram

By Corollary 3.1.6 we expect two different minimal resolutions for I. It follows
from Theorem 6 these are given by

0 → A(−4) → A(−2)2 → I → 0 (3.8)

0 → A(−3) ⊕A(−4) → A(−2)2 ⊕A(−3) → I → 0 (3.9)

In the commutative case (3.8) corresponds to 4 point in general position and (3.9)
corresponds to a configuration of 4 points among which exactly 3 are collinear.
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Remark 3.1.8. Let M be a torsion free graded A-module of projective dimension
one and let its Hilbert series be equal to q(t)/(1 − t)3. Then Theorem 6 yields the
constraint 0 ≤ al < q(1) for l � 0 and it is easy to see q(1) is equal to the rank of
M . Hence if M has rank one then there are only a finite number of possibilities for
its Betti numbers but this is never the case for higher rank.

It follows that in the case of rank > 1 the torsion free modules M of projective
dimension one with fixed Hilbert series are not parametrized by a finite number of
algebraic varieties. This is to be expected as we have not imposed any stability
conditions on M .

3.2 Notations and conventions

Except for §3.5.1 which is about moduli spaces, a point of a reduced scheme of finite
type over k is a closed point and we confuse such schemes with their set of k-points.

Some results in this chapter are for rank one modules and others are for arbitrary
rank. To make the distinction clear we usually denote rank one modules by the letter
I and arbitrary rank modules by the letter M .

Recall from Lemma 2.2.8 that for I ∈ grmod(A) has rank one and is normalized
with invariant n if and only if the Hilbert series of I has the form

hI(t) =
1

(1 − t)3
−

s(t)

1 − t

for a Laurent polynomial s(t) ∈ Z[t, t−1] with s(1) = n. In that case we write
sI(t) = s(t). We also put sI(t) = sωI(t).

3.3 Proof of Theorem 6

3.3.1 Preliminaries

Throughout the rest of this chapter, A will be a quadratic Artin-Schelter algebra and
P2

q = ProjA is the associated quantum projective plane.
We will need several equivalent versions of the conditions (1-3) in the statement

of Theorem 6. One of those versions is in terms of “ladders”.
For positive integers m,n consider the rectangle

Rm,n = [1,m] × [1, n] = {(α, β) | 1 ≤ α ≤ m, 1 ≤ β ≤ n} ⊂ Z2

A subset L ⊂ Rm,n is called a ladder if

∀(α, β) ∈ Rm,n : (α, β) 6∈ L⇒ (α+ 1, β), (α, β − 1) 6∈ L

Example 3.3.1. The ladder below is indicated with a dotted line.
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Let (ai), (bi) be finitely supported sequences of non-negative integers. We associate
a sequence S(c) of length

∑
i ci to a finitely supported sequence (ci) as follows

. . . , i− 1, . . . , i− 1︸ ︷︷ ︸
ci−1 times

, i, . . . , i︸ ︷︷ ︸
ci times

, i+ 1, . . . , i+ 1︸ ︷︷ ︸
ci+1 times

, . . .

where by convention the left most non-zero entry of S(c) has index one.
Let m =

∑
i ai, n =

∑
i bi and put R = [1,m] × [1, n]. We associate a ladder to

(ai), (bi) as follows
La,b = {(α, β) ∈ R | S(a)α < S(b)β} (3.10)

Lemma 3.3.2. Let (ai), (bi) be finitely supported sequences of integers and put qi =
ai − bi. The following sets of conditions are equivalent.

1. Let qσ be the lowest non-zero qi.

(a) al = 0 for l < σ.

(b) aσ = qσ > 0.

(c) max(ql, 0) ≤ al <
∑

i≤l qi for l > σ.

2. Let aσ be the lowest non-zero ai.

(a) The (ai), (bi) are non-negative.

(b) bi = 0 for i ≤ σ

(c)
∑

i≤l bi <
∑

i<l ai for l > σ

3. Put m =
∑

i ai, n =
∑
i bi.

(a) The (ai), (bi) are non-negative.

(b) n < m.
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(c) ∀(α, β) ∈ R : β ≥ α− 1 ⇒ (α, β) ∈ La,b.

Proof. The equivalence between (1) and (2) as well as the equivalence between (2)
and (3) is easy to see. We leave the details to the reader.

3.3.2 Proof that the conditions in Theorem 6 are necessary

We will show the equivalent conditions given in Lemma 3.3.2(2) are necessary. The
method for the proof has already been used in [8] and also by Ajitabh in [1]. Assume
M ∈ grmod(A) is torsion free of projective dimension one and consider the minimal
projective resolution of M .

0 → ⊕iA(−i)bi → ⊕iA(−i)ai →M → 0 (3.11)

There is nothing to prove for (2a) so we discuss (2b)(2c). Since (3.11) is a minimal
resolution, it contains for all integers l a subcomplex of the form

⊕i≤lA(−i)bi
φl−→ ⊕i<lA(−i)ai

The fact φl must be injective implies

∑

i≤l

bi ≤
∑

i<l

ai

In particular, if we take l = σ this already shows bi = 0 for i ≤ σ which proves (2b).
Finally, to prove (2c), assume there is some l > σ such that

∑
i≤l bi =

∑
i<l ai. This

means cokerφl is torsion and different from zero. Note that ⊕i<lA(−i)ai is not zero
since l > σ. We have a map

cokerφl →M

which must be zero since M is assumed to be torsion free. But this implies that
⊕i<lA(−i)ai →M is the zero map, which is obviously impossible given the minimality
of our chosen resolution (3.11). Thus we obtain

∑

i≤l

bi <
∑

i<l

ai

which completes the proof.

3.3.3 Proof that the conditions in Theorem 6 are sufficient

We will assume the equivalent conditions given in Lemma 3.3.2(3) hold. Thus we fix
finitely supported sequences (ai), (bi) of non-negative integers such that n =

∑
i bi <

m =
∑

i ai and we assume in addition the ladder condition (3c) is true.
Our proof of the converse of Theorem 6 is a suitably adapted version of [23, p468].

It is based on a series of observations, the first one of which is the next lemma.
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Lemma 3.3.3. If M ∈ grmod(A) has a resolution (not necessarily minimal)

0 → ⊕iA(−i)bi
φ
−→ ⊕iA(−i)ai →M → 0

such that the restriction

u∗(πφ) : ⊕iOC(−i)bi → ⊕iOC(−i)ai

has maximal rank at every point in C then M is torsion free.

Proof. Assume M is not torsion free and u∗(πφ) has the stated property. This means
u∗(πφ) is an injective map whose cokernel u∗πM is a vector bundle on C.

Let T be the torsion submodule of M . Note first that M cannot have a submodule
of GK-dimension ≤ 1 as Ext1A(−, A) is zero on modules of GK-dimension ≤ 1 [8].
Hence T has pure GK-dimension two.

If T contains h-torsion then TorA1 (D,M) is not zero and in fact has GK-dimension
two. Thus u∗(πφ) is not injective, yielding a contradiction.

Assume now T is h-torsion free. In that case T/Th is a submodule of GK-
dimension one of M/Mh. And hence u∗πT is a submodule of dimension zero of
u∗πM which is again a contradiction.

Now note that the map

HomA(⊕iA(−i)bi ,⊕iA(−i)ai) →

HomC(⊕iOC(−i)bi ,⊕iOC(−i)ai) : φ 7→ u∗(πφ) (3.12)

is surjective. Let H be the linear subspace of HomC(⊕iOC(−i)bi ,⊕iOC(−i)ai) whose
elements are such that the projections on HomC(OC(−i)bi ,OC(−i)ai) are zero for all
i. If we can find N ∈ H of maximal rank in every point then an arbitrary lifting of
N under (3.12) yields a torsion free A-module with Betti numbers (ai), (bi).

The elements of H are given by matrices (hαβ)αβ for (α, β) ∈ La,b where La,b is as
in (3.10) and where the hαβ are elements of suitable non-zero HomC(OC(−i),OC(−j)).
We will look for N in the linear subspace 0H of H given by those matrices where
hαβ = 0 for β 6= α, α− 1.

To find N we use the next observation.

Lemma 3.3.4. For p ∈ C and N ∈ 0H let Np be the restriction of N to p and write

0Hp = {N ∈ 0H | Np has non-maximal rank}

If

codim0H
0Hp ≥ 2 for all p ∈ C (3.13)

then there exists an N in 0H which has maximal rank everywhere.
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Proof. Assume (3.13) holds. Since (0Hp)p is a one-dimensional family of subvarieties
of codimension ≥ 2 in 0H it is intuitively clear their union cannot be the whole of 0H ,
proving the lemma.

To make this idea precise let E1, E0 be the pullbacks of the vector bundles
⊕iOC(−i)bi , ⊕iOC(−i)ai to 0H × C and let N : E1 → E0 be the vector bundle
map which is equal to Np in the point (N, p) ∈ 0H ×C. Let 0H ⊂ H ×C be the locus
of points x in 0H ×C where Nx has non-maximal rank. It is well-known and easy to
see that 0H is closed in 0H × C. A more down to earth description of 0H is

0H = {(N, p) ∈ 0H × C | Np has non-maximal rank}

By considering the fibers of the projection 0H × C → C we see 0H has codimension
≤ 2 in 0H×C. Hence its projection on 0H , which is

⋃
p

0Hp, has codimension ≥ 1.

Fix a point p ∈ C and fix basis elements for the one-dimensional vector spaces
OC(−i)p. Let L be the vector space associated to the ladder La,b (see (3.10)) as
follows

L = {A ∈Mm×n(k) | Aαβ = 0 for (α, β) 6∈ L}

and let 0L be the subspace defined by Aαβ = 0 for β 6= α, α − 1. Then there is a
surjective linear map

φp : 0H → 0L : N 7→ Np

Let V be the matrices of non-maximal rank in 0L. We have

0Hp = φ−1
p (V )

Now by looking at the two topmost n× n-submatrices we see that for a matrix in 0L

to not have maximal rank both the diagonals β = α and β = α − 1 must contain a
zero (this is not sufficient). Using condition 3.3.2(3c) we see V has codimension ≥ 2
and so the same holds for 0Hp. This means we are done.

Remark 3.3.5. It is easy to see that the actual torsion free module constructed in this
section is the direct sum of a free module and a module of rank one.

3.3.4 A refinement

Proposition 3.3.6. Assume A is a elliptic and that in the geometric data (E,OE(1), σ)
associated to A, σ has infinite order. Then the graded A-module whose existence is
asserted in Theorem 6 can be chosen to be reflexive.

Proof. The modules that are constructed in the proof of Theorem 6 satisfy the crite-
rion given in Proposition 2.3.2, hence they are reflexive.
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3.4 Proof of other properties of Hilbert series

Proof of Corollary 3.1.5. It is easy to see that the conditions (1-3) in Theorem 6 have
a solution for (ai) if and only if (3.6) is true. The equivalence of (3.6) and (3.7) is
clear.

Proof of Theorem 4. Let h(t) is a Hilbert series of the form (2.19). Thus h(t) =
q(t)/(1−t)3 where q(t) = 1−(1−t)2s(t) and hence q(t)/(1−t) = 1/(1−t)−(1−t)s(t).
Thus (3.7) is equivalent to (1 − t)s(t) being of the form

(1 − t)s(t) = 1 + t+ t2 + · · · + tσ−1 + dσt
σ + · · ·

where di ≤ 0 for i ≥ σ. Multiplying by 1/(1 − t) = 1 + t + t2 + · · · shows this is
equivalent to s(t) being a Castelnuovo polynomial.

Proof of Corollary 3.1.6. The number of solutions to the conditions (1-3) in the state-
ment of Theorem 6 is

∏

l>σ



(∑

i≤l

qi

)
− max(ql, 0)


 =

∏

l>σ

min

(∑

i<l

qi,
∑

i≤l

qi

)

Noting
∑

i≤l qi = 1 + sl−1 − sl finishes the proof.

Convention 3.4.1. Below we will call a formal power series of the form

1

(1 − t)3
−

s(t)

1 − t

where s(t) is a Castelnuovo polynomial of weight n an admissible Hilbert series of
weight n.

3.5 The stratification by Hilbert series

In this section we will prove the following result.

Theorem 3.5.1. There is a (weak) stratification into smooth, non-empty connected
locally closed sets

Hilbn(P
2
q) =

⋃

h

Hilbh(P
2
q) (3.14)

where the union runs over the (finite set) of admissible Hilbert series of weight n
and where the points in Hilbh(P

2
q) represents the points in Hilbn(P

2
q) corresponding to

objects with Hilbert series h.
Furthermore we have

Hilbh(P
2
q) ⊂

⋃

h′≥h

Hilbh′(P2
q) (3.15)
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In the decomposition (3.14) there is a unique stratum of maximal dimension 2n which
corresponds to the Hilbert series hmin(t) (see §3.1).

That the strata are non-empty is Theorem 4. The rest of Theorem 3.5.1 will be a
consequence of Lemma 3.5.5, Corollary 3.5.12 and Proposition 3.5.15 below.

We refer to (3.14) as a “weak” stratification (for an ordinary stratification one
would require the inclusions in (3.15) to be equalities, which is generally not the
case).

In the commutative case Theorem 3.15 was proved by Gotzmann [36]. It is not
clear to us that Gotzmann’s method can be generalized to the noncommutative case.
In any case, the reader will notice that our proof is substantially different.

Proof of Theorem 5. This is now clear from Theorem 3.5.1.

It follows from Theorem 6 that given a Hilbert series h(t) = q(t)/(1 − t)3 there is
a unique legal choice of Betti numbers (ai)i, (bi)i such that ai and bi are not both
non-zero for all i. Namely

(ai, bi) =

{
(qi, 0) if qi ≥ 0

(0,−qi) otherwise
(3.16)

We call this the minimal Betti numbers associated to h.
We have some extra information on the strata Hilbh(P

2
q). Define Hilbh(P

2
q)

min as

the subset of Hilbh(P
2
q) consisting of objects with minimal Betti numbers.

Proposition 3.5.2. Hilbh(P
2
q)

min is open in Hilbh(P
2
q)

This is proved in §3.5.1 below.
Assume A is elliptic and that in the geometric data (E,OE(1), σ) associated to

A, σ has infinite order. Let Hilbn(P
2
q)

inv be the reflexive objects in Hilbn(P
2
q). This

is an open subset (see [60, Theorem 8.11] or Theorem 7 in Chapter 4 below).

Proposition 3.5.3. For all admissible Hilbert series h with weight n we have

Hilbh(P
2
q) ∩ Hilbn(P

2
q)

inv 6= ∅

Proof. This is a special case of Proposition 3.3.6.

Remark 3.5.4. Consider the Hilbert scheme of points Hilbn(P
2) in the projective plane

P2. The inclusion relation between the closures of the strata of Hilbn(P
2) has been a

subject of interest in [21, 24, 25, 43]. Although in general the precise inclusion relation
is still unknown, the special case where the Hilbert series of the strata are as close
as possible is completely settled (see [38] and Chapter 5 below). It is a natural to
consider the same question for the varieties Hilbn(P

2
q), where one may use the same

techniques as in Chapter 5.
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3.5.1 Moduli spaces

In this section “points” of schemes will be not necessarily closed. We will consider
functors from the category of noetherian k-algebras Noeth /k to the category of sets.
For R ∈ Noeth /k we write (−)R for the base extension −⊗R. If x is a (not necessarily
closed) point in SpecR then we write (−)x for the base extension −⊗R k(x). We put
P2
q,R = ProjAR.

It follows from [6, Prop. 4.9(1) and 4.13] that A is strongly noetherian so AR
is still noetherian. Furthermore it follows from [11, Prop. C6] that AR satisfies the
χ-condition and finally by [11, Cor. C7] Γ(P2

q,R,−) has cohomological dimension two.

An R-family of objects in coh(P2
q) or grmod(A) is by definition an R-flat object

[11] in these categories.
For n ∈ N let Hilbn(P

2
q)(R) be the R-families of objects I in coh(P2

q), modulo
Zariski local isomorphism on SpecR, with the property that for any map x ∈ SpecR,
Ix is torsion free normalized of rank one in coh(P2

q,k(x)).

The main result of [60] is that Hilbn(P
2
q) is represented by a smooth scheme

Hilbn(P2
q) of dimension 2n (see also Chapter 2 for a special case, treated with a

different method which yields some extra information).

Warning. The reader will now notice that the set Hilbn(P
2
q) = Hilbn(P

2
q)(k)

parametrizes objects in coh(P2
q) rather than in grmod(A) as was the case in Proposi-

tion 2.2.9. However by Corollary 2.2.6 the new point of view is equivalent to the old
one.

If h(t) is a admissible Hilbert series of weight n then Hilbh(P
2
q)(R) is the set of R-

families of torsion free graded A-modules which have Hilbert series h and which have
projective dimension one, modulo local isomorphism on SpecR. The map π defines a
map

π(R) : Hilbh(P
2
q)(R) → Hilbn(P2

q)(R) : I 7→ πI

Below we will write Iu for a universal family on Hilbn(P2
q). This is a sheaf of graded

OHilbn(P2
q) ⊗A-modules on Hilbn(P2

q).

Lemma 3.5.5. The map π(k) is an injection which identifies Hilbh(P
2
q)(k) with

{x ∈ Hilbn(P
2
q)(k) | hIu

x
= h}

This is a locally closed subset of Hilbn(P
2
q)(k). Furthermore

Hilbh(P
2
q)(k) ⊂

⋃

h′≥h

Hilbh′(P2
q)(k) (3.17)

Proof. The fact that π(k) is an injection and does the required identification follows
from Corollary 2.2.6.
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For any N ≥ 0 we have by Corollary B.3

Hilbh,N(P2
q)(k) = {x ∈ Hilbn(P

2
q)(k) | hIu

x
(n) = h(n) for n ≤ N}

is locally closed in Hilbn(P
2
q)(k). By Theorem 4 we know that only a finite number of

Hilbert series occur for objects in Hilbn(P
2
q)(k). Thus Hilbh,N(P2

q)(k) = Hilbh(P
2
q)(k)

for N � 0. (3.17) also follows easily from semi-continuity.

Now let Hilbh(P
2
q) be the reduced locally closed subscheme of Hilbn(P

2
q) whose

closed points are given by Hilbh(P
2
q)(k). We then have the following result.

Proposition 3.5.6. Hilbh(P
2
q) represents the functor Hilbh(P

2
q).

Before proving this proposition we need some technical results. The following is
proved in [60]. For the convenience of the reader we put the proof here.

Lemma 3.5.7. Assume I, J are R-families of objects in coh(P2
q) with the property

that for any map x ∈ SpecR, Ix is torsion free of rank one in coh(P2
q,k(x)). Then

I, J represent the same object in Hilbn(P
2
q)(R) if and only if there is an invertible

module l in Mod(R) such that
J = l ⊗R I

Proof. Let I be as in the statement of the lemma. We first claim that the natural
map

R→ End(I) (3.18)

is an isomorphism. Assume first f 6= 0 is in the kernel of (3.18). Then the flatness of
I implies I ⊗R Rf = 0. This implies Ix = I ⊗R k(x) = 0 for some x ∈ SpecR and
this is a contradiction since by definition Ix 6= 0.

It is easy to see (3.18) is surjective (in fact an isomorphism) when R is a field. It
follows that for all x ∈ SpecR

End(I) ⊗R k(x) → End(I ⊗R k(x))

is surjective. Then it follows from base change (see [60, Thm 4.3(1)(4)]) that End(I)⊗R
k(x) is one dimensional and hence (3.18) is surjective by Nakayama’s lemma.

Now let I, J be as in the statement of the lemma and assume they represent the
same element of Hilbn(P

2
q)(R), i.e. they are locally isomorphic. Put

l = Hom(I,J )

It is easy to see l has the required properties since this may be checked locally on
SpecR and then we may invoke the isomorphism 3.18.

Lemma 3.5.8. Assume R is finitely generated and let P0, P1 be finitely generated
graded free AR-modules. Let N ∈ HomA(P1, P0). Then

V = {x ∈ SpecR | Nx is injective with torsion free cokernel}

is open. Furthermore the restriction of cokerN to V is R-flat.
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Proof. We first note that the formation of V is compatible with base change. It is
sufficient to prove this for an extension of fields. The key point is that if K ⊂ L is an
extension of fields and M ∈ grmod(AK) then M is torsion free if and only if ML is
torsion free. This follows from the fact that if D is the graded quotient field of AK
then M is torsion free if and only if the map M → M ⊗AK

D is injective.

To prove openness of V we may now assume by [6, Theorem 0.5] that R is a
Dedekind domain (not necessarily finitely generated).

Assume K = kerN 6= 0. Since gldimR = 1 we deduce that the map K → P1 is
degree wise split. Hence Nx is never injective and the set V is empty.

So we assume K = 0 and we let C = cokerN . Let T0 be the R-torsion part of C.
Since AR is noetherian T0 is finitely generated. We may decompose T0 degree wise
according to the maximal ideals of R. Since it is clear this yields a decomposition of
T0 as AR-module it follows there can be only a finite number of points in the support
of T0 as R-module.

If x ∈ SpecR is in the support of T0 as R-module then TorR1 (C, k(x)) 6= 0 and
hence Nx is not injective. Therefore x /∈ V . By considering an affine covering of
the complement of the support of T0 as R-module we reduce to the case where C is
torsion free as R-module.

Let η be the generic point of SpecR and assume Cη has a non-zero torsion sub-
module Tη. Put T = Tη ∩ C. Since R is Dedekind the map T → C is degree wise
split. Hence Tk(x) ⊂ Ck(x) and so Ck(x) will always have torsion. Thus V is empty.

Assume Tη = 0. It is now sufficient to construct an non-empty open U in SpecR
such that U ⊂ V . We have an embedding C ⊂ C∗∗. Let Q be the maximal AR
submodule of C∗∗ containing C such that Q/C is R-torsion. Since Q/C is finitely
generated it is supported on a finite number of closed points of SpecR and we can
get rid of those by considering an affine open of the complement of those points.

Thus we may assume C∗∗/C is R-torsion free. Under this hypothesis we will prove
Cx is torsion free for all closed points x ∈ SpecR. Since we now have an injection
Cx → (C∗∗)x it is sufficient to prove (C∗∗)x is torsion free. To this end we way assume
R is a discrete valuation ring and x is the closed point of SpecR.

Let Π be the uniformizing element of R and let T1 be the torsion submodule of
(C∗∗)x. Assume T1 6= 0 and let Q be its inverse image in C∗∗. Thus we have an exact
sequence

0 → ΠC∗∗ → Q→ T1 → 0 (3.19)

which is cannot be split since otherwise T1 ⊂ C∗∗ which is impossible.

We now apply (−)∗ to (3.19). Using Ext1AR
(T1, AR) = HomAx

(T1, Ax) = 0 we
deduce Q∗ = C∗∗∗ = C∗. Applying (−)∗ again we deduce Q∗∗ = C∗∗ and hence
the map Q → Q∗∗ ∼= C∗∗ gives a splitting of (3.19), which is a contradiction. This
finishes the proof of the openness of V .

The flatness assertion may be checked locally. So we may assume R is a local
ring with closed point x and x ∈ V . Thus for any m we have a map between free
R-modules (P1)m → (P0)m which remains injective when tensored with k(x). A
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standard application of Nakayama’s lemma then yields the map is split, and hence
its cokernel is projective.

Lemma 3.5.9. Assume I ∈ Hilbh(P
2
q)(R) and x ∈ SpecR. Then there exist:

1. an element r ∈ R with r(x) 6= 0;

2. a polynomial ring S = k[x1, . . . , xn];

3. a point y ∈ SpecS;

4. an element s ∈ S with s(y) 6= 0;

5. a homomorphism of rings φ : Ss → Rr such that φ(x) = y (where we also have
written φ for the dual map SpecRr → SpecSs);

6. an object I(0) in Hilbh(P
2
q)(Ss)

such that I(0) ⊗Ss
Rr = I ⊗S Ss.

Proof. By hypotheses I has a presentation

0 → P1 → P0 → I → 0

where P0, P1 are finitely graded projective AR-modules. It is classical that we have
P0

∼= p0 ⊗R A, P1
∼= p1 ⊗R A where p0, p1 are finitely generated graded projective

R-modules. By localizing R at an element which is non-zero in x we may assume P0,
P1 are graded free AR-modules. After doing this N is given by a p × q-matrix with
coefficients in AR for certain p, q.

Then by choosing a k-basis for A and writing out the entries of N in terms of
this basis with coefficients in R we may construct a polynomial ring S = k[x1, . . . , xn]
together with a morphism S → R and a p × q-matrix N (0) over AS such that N is
obtained by base-extension from N (0). Thus I is obtained by base-extension from the
cokernel I(0) of a map

N (0) : P
(0)
1 −→ P

(0)
0

where P
(0)
1 , P

(0)
0 are graded free AS-modules. Let y be the image of x in SpecS.

By construction we have Ix = I
(0)
y ⊗k(y) k(x). From this it easily follows that I

(0)
y ∈

Hilbh(k(y)).
The module I(0) will not in general satisfy the requirements of the lemma but it

follows from Lemma 3.5.8 that this will be the case after inverting a suitable element
in S non-zero in y. This finishes the proof.

Proof of Proposition 3.5.6. Let R ∈ Noeth /k. We will construct inverse bijections

Φ(R) : Hilbh(P
2
q)(R) → Hom(SpecR,Hilbh(P

2
q))

Ψ(R) : Hom(SpecR,Hilbh(P
2
q)) → Hilbh(P

2
q)(R)
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We start with Ψ. For w ∈ Hom(SpecR,Hilbh(P
2
q)) we put

Ψ(R)(w) = ω(IuR) =
⊕

m

Γ(P2
q,R, I

u
R(m))

We need to show ω(IuR) ∈ Hilbh(P
2
q)(R). It is clear this can be done Zariski locally

on SpecR. Therefore we may assume w factors as

SpecR → SpecS → Hilbh(P
2
q)

where SpecS is an affine open subset of Hilbh(P
2
q).

Now by Lemma 3.5.5

SpecS → N : x 7→ dimk Γ(P2
q,x, I

u
x (m))

has constant value h(m) and hence by Corollary B.4 below Γ(P2
q,S , I

u
S(m)) is a pro-

jective S-module and furthermore by [11, Lemma C6.6]

Γ(P2
q,x, I

u
x (m)) = Γ(P2

q,S , I
u
S(m)) ⊗S k(x)

Γ(P2
q,R, I

u(m)R) = Γ(P2
q,S , I

u
S(m)) ⊗S R

for x ∈ SpecS. We deduce ω(IuS) is flat and furthermore

ω(IuS)x = ω(Iux ), ω(IuS)R = ω(IuR)

Using the first equation we deduce from Corollary 2.2.6 and Nakayama’s lemma that
ω(IuS) has projective dimension one. Thus ω(IuS) ∈ Hilbh(P

2
q)(S). From the second

equation we then deduce ω(IuR) ∈ Hilbh(P
2
q)(R).

Now we define Φ. Let I ∈ Hilbh(R). We define Φ(R)(I) as the map w : SpecR →
Hilbn(P2

q) corresponding to πI. I.e. formally

πI = Iuw ⊗R l

where l is an invertible R module and where this time we have made the base change
map w explicit in the notation. We need to show imw lies in Hilbh(P

2
q). Again we

may do this locally on SpecR. Thus by Lemma 3.5.9 we may assume there is a
map θ : S → R where S is integral and finitely generated over k and I is obtained
from I(0) ∈ Hilbh(S) by base change. Let v : SpecS → Hilbn(P

2
q) be the map

corresponding to I(0). An elementary computation shows vθ = w. In other words it
is sufficient to check im v ⊂ Hilbh(P

2
q). But since S is integral of finite type over k it

suffices to check this for k-points. But then it follows from Lemma 3.5.5.
We leave to the reader the purely formal computation that Φ and Ψ are each

others inverse.

Proof of Proposition 3.5.2. Let (ai)i, (bi)i be minimal Betti numbers corresponding
to h. Let Iu be the universal family on Hilbh(P

2
q). Then it is easy to see

Hilbh(P
2
q)

min = {x ∈ Hilbh(P
2
q) | ∀i : dimk(x)(I

u
x ⊗Ax

k(x))i = ai}.

It follows from Lemma B.1 below that this defines an open subset.
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3.5.2 Dimensions

Below a point will again be be closed point.

Lemma 3.5.10. Let I ∈ Hilbh(P
2
q). Then canonically

TI(Hilbh(P
2
q))

∼= Ext1A(I, I)

Proof. If F is a functor from (certain) rings to sets and x ∈ F(k) then the tangent
space Tx(F) is by definition the inverse image of x under the map

F(k[ε]/(ε2)) → F(k)

which as usual is canonically a k-vector space. If F is represented by a scheme F
then of course Tx(F) = Tx(F ).

The proposition follows from the fact that if I ∈ Hilbh(P
2
q)(k) then the tangent

space TI(Hilbh(P
2
q)) is canonically identified with Ext1A(I, I) (see [11, Prop. E1.1]).

We now express dimk Ext1A(I, I) in terms of sI(t).

Proposition 3.5.11. Let I ∈ Hilbh(P
2) and assume I 6= A. Let sI(t) be the Castel-

nuovo polynomial of I. Then we have

dimk Ext1A(I, I) = 1 + n+ c

where n is the invariant of I and c is the constant term of

(t−1 − t−2)sI(t
−1)sI(t) (3.20)

In particular this dimension is independent of I.

Corollary 3.5.12. Hilbh(P
2
q) is smooth of dimension 1 + n+ c where c is as in the

previous theorem.

Proof. This follows from the fact that the tangent spaces of Hilbh(P
2
q) have constant

dimension 1 + n+ c.

Proof of Proposition 3.5.11. We start with the following observation.

∑

i

(−1)ihExti
A(M,N)(t) = hM (t−1)hN (t)(1 − t−1)3

for M,N ∈ grmod(A). This follows from the fact that both sides a additive on short
exact sequences, and they are equal for M = A(−i), N = A(−j). Alternatively, see
[74, Lemma 2.3].
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Applying this with M = N = I and using pd I = 1, HomA(I, I) = k we obtain
dimk Ext1A(I, I) is the constant term of

1 − h(t−1)h(t)(1 − t−1)3 = 1 − (1 − t−1)3
(

1

(1 − t−1)3
−

s(t−1)

1 − t−1

)(
1

(1 − t)3
−

s(t)

1 − t

)

= 1 −
1

(1 − t)3
+

s(t)

1 − t
+
t−2s(t−1)

1 − t
− t−2(1 − t)s(t−1)s(t)

(where we dropped the index “I”). Introducing the known constant terms finishes
the proof.

Corollary 3.5.13. Let I ∈ Hilbn(P
2
q) and I = ωI. Then

min(n+ 2, 2n) ≤ dimk Ext1A(I, I) ≤ 2n (3.21)

with equality on the left if and only if hI(t) = hmax(t) and equality on the right if and
only if hI(t) = hmin(t).

Proof. Since the case n = 0 is obvious we assume below n ≥ 1. We compute the
constant term of (3.20). Put s(t) = sI(t) =

∑
sit

i. Thus the sought constant term is
the difference between the coefficient of t and the coefficient of t2 in s(t−1)s(t). This
difference is ∑

j−i=1

sisj −
∑

j−i=2

sisj

which may be rewritten as
∑

j

sj+1sj −
∑

j

sj+2sj =
∑

j

sjsj−1 −
∑

j

sjsj−2 =
∑

j

sj(sj−1 − sj−2)

Now we always have sj−1 − sj−2 ≤ 1 and s−1 − s−2 = 0. Thus

∑

j

sj(sj−1 − sj−2) ≤ −1 +
∑

j

sj = n− 1

which implies dimk Ext1A(I, I) ≤ 2n by Proposition 3.5.11, and we will clearly have
equality if and only if sj−1 − sj−2 = 1 for j > 0 and sj 6= 0. This is equivalent to s(t)
being of the form

1 + 2t+ 3t2 + · · · + (u − 1)tu + vtu+1

for some integers u > 0 and v ≥ 0. This in turn is equivalent with hI(t) being equal
to hmin(t). This proves the upper bound of (3.21).

Now we prove the lower bound. Since sI(t) is a Castelnuovo polynomial it has the
form

s(t) = 1 + 2t+ 3t2 + . . .+ σtσ−1 + sσt
σ + sσ+1t

σ+1 + . . .

where
σ ≥ sσ ≥ sσ+1 ≥ . . .
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We obtain

c =
∑

j

sj(sj+1 − sj+2)

= −(1 + 2 + 3 + . . .+ (σ − 2)) +
∑

j≥σ−2

sj(sj+1 − sj+2)

We denote the subsequence obtained by dropping the zeroes from the sequence of
non-negative integers (sj+1 − sj+2)j≥σ−2 by e1, e2, . . . , er. Note

∑
i ei = σ. We get

c ≥− (1 + 2 + 3 + . . .+ (σ − 2))

+ (σ − δ)e1 + (σ − e1)e2 + . . .+ (σ − e1 − . . .− er−1)er

where δ = 1 if sσ < σ and 0 otherwise. Now we have

(σ − e1 − · · · − er−1)er = erer ≥ 1 + · · · + er

(σ − e1 − · · · − er−2)er−1 = (er−1 + er)er−1 ≥ (1 + er) + · · · + (er−1 + er)

...

(σ − e1)e2 = (e2 + · · · + er)e2 ≥ (1 + e3 + · · · + er) + · · · + (e2 + · · · + er)

σe1 = (e1 + · · · + er)e1 ≥ (1 + e2 + · · · + er) + · · · + (e1 + · · · + er)

hence

c ≥ 2σ − 1 − δe1

Hence c ≥ 0 and c = 0 if and only if σ = 1, r = 1 and δ = 1, so if and only if sI(t) = 1.
In that case, the invariant n of I is 1. If n > 1 then c ≥ 1 which proves the lower
bound of (3.21) by Proposition 3.5.11. Clearly c = 1 if and only if σ = 1 and r = 1,
which is equivalent with hI(t) being equal to hmax(t).

Remark 3.5.14. The fact dimk Ext1A(I, I) ≤ 2n can be shown directly. Indeed from
the formula (1.2)

Ext1Tails(A)(I, I) ∼= lim
−→

Ext1A(I≥n, I)

and from Ext1A(k, I) = 0 we obtain an injection

Ext1A(I, I) ↪→ Ext1Tails(A)(I, I)

and the right hand side is the tangent space I in the smooth variety Hilbn(P
2
q) which

has dimension 2n.
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3.5.3 Connectedness

In this section we prove

Proposition 3.5.15. Assume h is an admissible Hilbert polynomial. Then any two
points in Hilbh(P

2
q) can be connected using an open subset of an affine line.

Proof. Let I, J ∈ Hilbh(P
2
q). Then I, J have resolutions

0 → ⊕iA(−i)bi → ⊕iA(−i)ai → I → 0

0 → ⊕iA(−i)di → ⊕iA(−i)ci → J → 0

where ai − bi = ci − di. Adding terms of the form A(−j)
id
−→ A(−j) we may change

these resolutions to have the following form

0 → ⊕iA(−i)fi
M
−→ ⊕iA(−i)ei → I → 0

0 → ⊕iA(−i)fi
N
−→ ⊕iA(−i)ei → J → 0

for matrices M,N ∈ H = HomA(⊕iA(−i)ei ,⊕iA(−i)fi). Let L ⊂ H be the line
throughM and N . Then by Lemma 3.5.8 an open set of L defines points in Hilbh(P

2
q).

This finishes the proof.





Chapter 4

Modules of GK-dimension

one over quadratic

Artin-Schelter algebras

In this short chapter we would like to point out a connection between the previous two
chapters and the study of graded right modules of GK-dimension one over quadratic
Artin-Schelter algebras. Up to finite length, such a module is presented by a Cohen-
Macaulay module of GK-dimension one. It turns out there is a natural correspondence
between such cyclic modules and the boundary Hilbn(P2) \ Hilbn(P

2)inv.
These results were found in collaboration with S.P. Smith.

4.1 Introduction

Let A be a quadratic Artin-Schelter algebra, and write P2
q = ProjA. We begin

this introduction by pointing out a correspondence between certain modules of GK-
dimension three and certain modules of GK-dimension one.

In the previous chapters we have discussed the Hilbert scheme of points Hilbn(P
2
q)

and its subset Rn(P
2
q) = Hilbn(P

2
q)

inv consisting of the reflexive objects. We have
seen there are two distinguished situations (see Proposition 2.2.13 and Theorem 1)

• A is linear. Then Hilbn(P
2
q)

inv = ∅ for all n > 0.

• A is elliptic and σ has infinite order. Then Hilbn(P
2
q)

inv is a locally closed variety

of dimension 2n. It was shown in [60] that Hilbn(P
2
q)

inv is a dense open subset
of Hilbn(P

2
q).

First, assume A is linear. Let n > 0. From Proposition 2.2.13 we deduce I∗∗ = A
for any I ∈ Hilbn(P

2
q), implying I ⊂ A. By considering A/I it easily follows that
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Hilbn(P2
q) parameterizes the objects N ∈ grmod(A) for which

1. N has GK-dimension one

2. N is cyclic and generated in degree zero

3. N is Cohen-Macaulay

In particular the Hilbert series of N is of the form hN (t) = s(t)(1 − t)−1 where s(t)
Castelnuovo polynomial of weight n, see for §3.1. A minimal resolution of N is of the
form

0 → ⊕iA(−i)bi → ⊕iA(−i)ai → A→ N → 0

In the commutative case i.e. A = k[x, y, z] these objects N are exactly the coordinate
rings A(X) of zero dimensional subschemes of degree n on P2, parameterized by the
classical Hilbert scheme of points Hilbn(P

2) on P2.

Let us assume for the rest of this introduction A is elliptic and σ has infinite
order. It is a natural question to describe the boundary Hilbn(P

2
q) \ Hilbn(P

2
q)

inv. In
particular one could ask to describe the objects I ∈ Hilbn(P

2
q) for which I∗∗ = A.

i.e. the objects which are “as far as reflexive as possible”. Similar as in the linear
case, this question is equivalent to the description of the objects N ∈ grmod(A) of
has GK-dimension one, cyclic, generated in degree zero and Cohen-Macaulay. See
Corollary 4.2.5 below for a more exact statement.

Under the assumptions on A, the critical GK-1 modules of multiplicity one are
exactly the shifted point modules [8]. We will show in next section this leads to

Proposition 4.1.1. Let I ∈ Hilbn(P
2
q). There is a filtration

I = I0 ⊂ I1 ⊂ · · · ⊂ Id = I∗∗

such that each Ii ∈ Hilbn−i(P
2
q) and each quotient Ii/Ii−1 is a shifted point module.

The integer d appearing in Proposition 4.1.1 is uniquely determined by I. We will
write d(I) = d and refer to it as the defect of I. It is natural to define for 0 ≤ d ≤ n
the following subsets in Hilbn(P

2
q)

Hilbdn(P
2
q) = {I ∈ Hilbn(P

2
q) | d(I) = d},

Hilb≥d
n (P2

q) = {I ∈ Hilbn(P
2
q) | d(I) ≥ d}.

Clearly

Hilbn(P
2
q) =

⋃

0≤d≤n

Hilbdn(P
2
q),

Hilbnn(P
2
q) = Hilb≥n

n (P2
q) ⊂ Hilb≥n−1

n (P2
q) ⊂ · · · ⊂ Hilb≥0

n (P2
q) = Hilbn(P

2
q).
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Example 4.1.2. Let n = 1. By Theorem 6 of Chapter 3, an object I ∈ Hilb1(P
2
q)

has a minimal resolution of the form

0 −−−−→ A(−2)


 l
l′


 ·

−−−−−−→ A(−1)2 −−−−→ I −−−−→ 0

where l, l′ ∈ A1. Conversely, any choice of two linearly independent forms l, l′ defines
an object I ∈ Hilb1(P

2
q). There are two distinguished cases.

Case 1. There is no p ∈ C such that l(p) = l(p) = 0. By Proposition 2.3.2 and
Lemma 3.3.3 the module I is reflexive.

Case 2. There exists a p ∈ C such that l(p) = l(p) = 0. Then I is not reflexive,
hence I∗∗ = A. By [1] the quotient A/I is the point module Nσ2p.

We obtain Hilb1(P
2
q) = P2, Hilb1

1(P
2
q) = Hilb≥1

1 (P2
q) = C and Hilbinv

1 (P2
q) = P2 \C.

See also Corollary 2.4.5.

In general, Hilbdn(P
2
q) is more difficult to understand. As a first step, we provide

Theorem 7. Assume A is elliptic and σ has infinite order. Let n ≥ 0 and 0 ≤ d ≤ n.
We have

1. Hilbdn(P
2
q) is non-empty,

2. Hilb≥d
n (P2

q) ⊂ Hilbn(P
2
q) is a projective variety of dimension 2n− d.

The first part of Theorem 7 will be a consequence of Theorem 8 below. The second
statement in Theorem 7 will be proved in §4.4. Theorem 7 implies the boundary
Hilbn(P2

q) \Hilbn(P
2
q)

inv = Hilb≥1
n (P2

q) is a projective variety of dimension 2n− 1. In

particular Hilbn(P
2
q)

inv is open, which was already proved in [60].

The next feature might be to determine all possible Hilbert series of objects in
Hilbdn(P2

q). Theorem 4 from Chapter 3 implies

Proposition 4.1.3. Assume A is elliptic and σ has infinite order. Let n ≥ 0 and
0 ≤ d ≤ n.

1. If I ∈ Hilbdn(P
2
q) then there is a Castelnuovo polynomial s(t) of weight n such

that

hI(t) =
1

(1 − t)3
−

s(t)

1 − t
(4.1)

2. If d = 0 then (4.1) gives a bijective correspondence between Castelnuovo poly-
nomials s(t) of weight n and Hilbert series hI(t) of objects in I ∈ Hilb0

n(P
2
q).



98

CHAPTER 4. MODULES OF GK-DIMENSION ONE OVER QUADRATIC

ARTIN-SCHELTER ALGEBRAS

It is natural to wonder if the correspondence in Proposition 4.1.3 is bijective for
all d. We were only able to answer this question very partially. Recall from §3.1 there
is a unique maximal Hilbert series hmax(t) for objects in Hilbn(P2

q). This correspond
to the Castelnuovo diagram

. . .

An object I ∈ Hilbhmax(P
2
q) has a minimal projective resolution of the form

0 → A(−n− 1) ⊕A(−n) ⊕A(−1) → I → 0

In the commutative case, i.e. A = k[x, y, z] then this corresponds to the case where
all n points in P2 are collinear. Also recall from Proposition 3.5.11 the stratum
Hilbhmax(P

2
q) in Hilbn(P

2
q) has (minimal) dimension n + 1. In Section §4.3 we will

prove

Theorem 8. Assume A is elliptic and σ has infinite order. Let n ≥ 0 and 0 ≤ d ≤ n.
Then there is an object I ∈ Hilbdn(P

2
q) with Hilbert series hI(t) = hmax(t).

Our proof of Theorem 8 is based on the observation that for n, d ≥ 1 and for an
object J ∈ Hilbd−1

n−1(P
2
q) for which hJ (t) = hmax(t) there is a point module Np over A

for which I maps surjectively to Np(1 − n). Taking the kernel of such a map yields

an object I ∈ Hilbdn(P
2
q) with hI(t) = hmax(t).

Remark 4.1.4. Consider the stratification Hilbn(P
2
q) =

⋃
h Hilbh(P

2
q) of Chapter 3.

Theorem 8 assures that of all strata, the stratum with minimal dimension passes
through all Hilbdn(P

2
q). The author is quite convinced that in fact all possible mini-

mal resolutions for objects in Hilb0
n(P2

q) occur for objects in Hilbdn(P
2
q). It would be

interesting to do a more extensive investigation.

4.2 Filtrations

In this part A will be an elliptic quadratic Artin-Schelter algebra.

Lemma 4.2.1. Let n > 0 and I ∈ Hilbn(P
2
q). Then the following are equivalent:

1. HomA(I, A) 6= 0,

2. There is a (non-split) exact sequence 0 → I → A → N → 0 where N ∈
grmod(A) is Cohen-Macaulay of GK-dimension one,

3. I∗ = A,

4. I∗∗ = A.
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Proof. Recall I ∈ grmod(A) is an object in Hilbn(P
2
q) if I is torsion free, pd I = 1

and the Hilbert series of I is of the form

hI(t) =
1

(1 − t)3
−

n

1 − t
+ f(t)

for some f(t) ∈ Z[t, t−1]. From this it is easy to see (1) implies (2). Note we have
used n > 0.

To prove (2) ⇒ (3), applying HomA(−, A) to the exact sequence

0 → I → A→ N → 0

gives the long exact sequence of graded left A-modules

0 → N∗ → A∗ → I∗ → Ext1A(N,A) → . . .

Since GKdimN = 1 we have ExtiA(N,A) = 0 for i ≤ 1 and using A∗ = A we obtain
I∗ = A, as required.

It is trivial that (3) implies (4), so in order to finish the proof we assume (4) holds
and prove (1). But this follows directly from Lemma 2.2.1.

Remark 4.2.2. As discussed in §2.2, for any graded right ideal I of projective dimen-
sion one there is an unique integer l such that I(l) ∈ Hilbn(P

2
q), and I is normalized

if and only if l = 0. As a consequence of the previous lemma, the normalized graded
right ideals I of A of projective dimension one are exactly the objects in Hilbn(P

2
q)

for which I∗∗ = A.

Before we come to the proof of Proposition 4.1.1 we need two more lemmas.

Lemma 4.2.3. Let I ∈ Hilbn(P
2
q), J ∈ Hilbm(P2

q) such that I ( J . Then J/I is
Cohen-Macaulay of GK-dimension one and multiplicity n−m.

Proof. The fact that I and J are normalized implies GKdim(I/J) ≤ 1. Since I
has projective dimension one, Ext1A(k, I) = 0. From this we deduce J/I is pure of
GK-dimension one. Taking Hilbert series shows e(J/I) = n−m.

The following result is well-known.

Lemma 4.2.4. Let N ∈ grmod(A) be pure of GK-dimension one. Then there is a
filtration 0 = N0 ⊂ N1 ⊂ · · · ⊂ Nr = N such that the quotients Ni+1/Ni are critical
of GK-dimension one.

Proof. Choose a submodule D ⊂ N maximal such that GKdim(N/D) = 1. Then
N/D is critical of GK-dimension one. By repeating the arguments we find a chain of
submodules for which the successive quotiens are critical of GK-dimension one. Since
N has finite multiplicity this chain is finite.
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Proof of Proposition 4.1.1. Recall from [8] that since σ has infinite order, the critical
modules of GK-dimension one are exactly the shifted point modules over A.

Let r = e(I∗∗/I) and put Ir = I∗∗. By Theorem 1.9.8(7) it follows Ir is normalized
with invariant n− r hence Ir ∈ Hilbn−r(P

2
q).

By Lemma 4.2.3 and Lemma 4.2.4 there is a filtration 0 = N0 ⊂ N1 ⊂ · · · ⊂
Nr = Ir/I where each quotient is a critical module of GK-dimension one, hence a
shifted point module. Let Ir−1 be the kernel of the surjective composition Ir → Nr →
Nr/Nr−1. Then I ⊂ Ir−1 and by taking Hilbert series it follows Ir−1 ∈ Hilbn−r+1(P

2
q).

Moreover e(Ir−1/I) = r − 1. The statement is then shown by downwards induction
on r.

Corollary 4.2.5. Assume A is elliptic and σ has infinite order. Let n ≥ 0 and
0 ≤ d ≤ n. Then Hilb≥d

n (P2
q) ⊂ Hilbn(P

2
q) is closed.

The points of the projective variety Hilbnn(P2
q) are in natural bijection with the

isomorphism classes of the full subcategory of grmod(A) which objects are of GK-
dimension one, cyclic, generated in degree zero and Cohen-Macaulay.

Proof. Introduce the subsets

Hilb≤d
n (P2

q) = {I ∈ Hilbn(P
2
q) | d(I) ≤ d}

By Proposition 4.1.1 it is easy to see for d < n we have the alternative description

Hilb≤d
n (P2

q) = {I ∈ Hilbn(P
2
q) | HomA(I, J) = 0 for all J ∈ Hilbn−d−1(P

2
q)}

from which we deduce Hilb≤d
n (P2

q) is open in Hilbn(P
2
q). Thus Hilb≥d

n (P2
q) ⊂ Hilbn(P

2
q)

is closed. Thus Hilb≥d
n (P2

q) is a projective variety. The rest of the statement follows
from Lemma 4.2.1.

Remark 4.2.6. Note that Lemma 4.2.1 provides the alternative description

Hilbnn(P
2
q) = Hilbn(P

2
q) \ Hilb≤n−1

n (P2
q) = {I ∈ Hilbn(P

2
q) | HomA(I, A) 6= 0}

from which we immediately deduce Hilbnn(P
2
q) is closed.

Remark 4.2.7. It would be interesting to see if the previous corollary relates to [76]
in which the authors classified graded right A-modules of GK-dimension one, up to
modules of finite length.

4.3 Proof of Theorem 8

We now come to the proof of Theorem 8. Recall from the introduction

hmax(t) = hA(t) −
s(t)

1 − t
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where s(t) = 1 + t + t2 + · · · + tn−1 for n > 0 and s(t) = 0 for n = 0. We need to
show that for n ≥ 0 and 0 ≤ d ≤ n there exists an object I ∈ Hilbdn(P

2
q) for which

hI(t) = hmax(t). The statement is trivially true for n = 0 (take I = A) and by
Proposition 4.1.1 the assertion is true for d = 0. So we will assume d > 0 for the rest
of the proof. We present the proof by induction on n.

For n = 1 the result follows from Example 4.1.2.
Let n > 1 and 1 ≤ d ≤ n. By the induction hypothesis we may choose an object

J ∈ Hilbd−1
n−1(P

2
q) for which hJ = hmax. It follows from (3.5) and Theorem 6 that J

has a minimal resolution of the form

0 −−−−→ A(−n)


 u
v


 ·

−−−−−−→ A(−1) ⊕A(1 − n) −−−−→ J −−−−→ 0

where u ∈ An−1 and v ∈ A1. Observe neither u nor v are be zero due to the torsion
freeness of J . Applying HomA(−, Nq(l)) for any q ∈ C and l ∈ Z yields an exact
sequence of k-vector spaces

0 → HomA(J,Nq)l → Nq(1)l ⊕Nq(n− 1)l

(
u(σl+1q) v(σn+l−1q)

)
·

−−−−−−−−−−−−−−−−−−−−−→ Nq(n)l
(4.2)

where we identify (Nq)m = k for m ≥ 0. Now we pick a point p ∈ C such that
v(p) = 0. By putting q = σ1−n−lp in (4.2) we obtain

dimk HomA(J,Nσ1−n−lp)l =

{
0 if l < 1 − n
1 if 1 − n ≤ l ≤ −2

(4.3)

In particular we may pick a non-zero map f : J → Np(1 − n). Now f is surjective,
since otherwise im f is contained in the unique maximal submodule of Np, namely
Nσp(−1). But then HomA(J,Nσp(−1)) 6= 0, a contradiction to (4.3).

Let I be kernel of f . Thus

0 → I → J → Np(1 − n) → 0 (4.4)

We now claim I ∈ Hilbn(P
2
q). It is clear I is torsion free of rank one. Application

of HomA(k,−) shows Ext1A(k, I) ⊂ Ext1A(k, J) = 0 hence I has projective dimension
one (see the proof of Proposition 2.2.5). And Lemma 2.2.8(3) implies I is normalized
with invariant n.

Taking the dual of (4.4) we obtain I∗ = J∗ and it is easy to see e(J∗∗/I) =
e(J∗∗/J) + 1. Hence d(I) = d(J) + 1 and we obtain I ∈ Hilbdn(P

2
q). Finally we take

Hilbert series of (4.4), giving

hI(t) = hJ (t) − hNp(1−n)(t)

= hA(t) −
1 + t+ · · · + tn−2

1 − t
−
tn−1

1 − t

= hA(t) −
1 + t+ · · · + tn−1

1 − t

We conclude I ∈ Hilbdn(P
2
q) and hI(t) = hmax(t). This ends the proof of Theorem 8.
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4.4 Proof of Theorem 7

By Theorem 8 and Corollary 4.2.5 it remains to prove that the projective variety
Hilb≥d

n (P2
q) has dimension 2n− d.

Define
H = {(I, p) | Ext1P2

q
(Np, I) = 0} ⊂ Hilb≥d

n ×C

where we write I = πI. It follows that H is closed in Hilb≥d
n ×C. Computation of

the Euler form shows that for such (I, p) ∈ H we have HomP2
q
(I,Np) = k. Moreover

such a non-zero map I → Np is surjective, and its kernel J is up to isomorphism
uniquely determined by I and p. Further, it is easy to see J determines an object in
Hilb≥d+1

n . Thus we have a well-defined map

φ : H → Hilb≥d+1
n+1 : (I, p) 7→ ker(I → Np)

which is onto. Since for an object J ∈ Hilbn+1(P
2
q) there are only finitely many points

p ∈ C for which Ext1
P2
q
(Np,J ) 6= 0 it follows that all fibres of φ are finite. Hence

dimHilb≥d+1
n+1 = dimHilb≥d

n + dimC. By induction and the fact dim Hilb≥0
n = 2n this

means we are done.



Chapter 5

Incidence between strata on

the Hilbert scheme of points

on the projective plane

The Hilbert scheme Hilbn(P
2) of n points in the projective plane P2 has a natural

stratification obtained from the associated Hilbert series (see Chapter 3). In general,
the precise inclusion relation between the closures of the strata is still unknown.

In [38] Guerimand studied this problem for strata whose Hilbert series are as close
as possible. Preimposing a certain technical condition he obtained necessary and
sufficient conditions for the incidence of such strata.

In this chapter we present a new approach, based on deformation theory, to Gue-
rimand’s result. This allows us to show the technical condition is not necessary.

Presented results in this chapter are submitted [29].

5.1 Introduction and main result

Throughout this chapter A = k[x, y, z] is the commutative polynomial ring in three
variables. We will use the notations as in §3.1 of Chapter 3. In particular Hilbn(P

2)
will be the Hilbert scheme parametrizing zero-dimensional subschemes of length n in
P2. Recall this is a smooth connected projective variety of dimension 2n.

Associated to X ∈ Hilbn(P
2) is its Hilbert function hX and its Castelnuovo func-

tion sX of weight n. The corresponding Castelnuovo diagram FsX
will also be refered

to as sX .

We refer to a series ϕ ∈ Z((t)) for which ϕ = hX for some X ∈ Hilbn(P
2)

as a Hilbert function of degree n. The set of all Hilbert functions of degree n (or
equivalently the set of all Castelnuovo diagrams of weight n) will be denoted by Γn.
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For ϕ, ψ ∈ Γn we have ψ(t) − ϕ(t) is a polynomial, and we write ϕ ≤ ψ if its
coefficients are non-negative. In this way ≤ becomes a partial ordering on Γn and we
call the associated directed graph the Hilbert graph, also denoted by Γn.

If s, s′ ∈ Γn are Castelnuovo diagrams such that s ≤ s′ then it is easy to see s′

is obtained from s by making a number of squares “jump to the left” while, at each
step, preserving the Castelnuovo property.

Example 5.1.1. There are two Castelnuovo diagrams of weight 3.

≤

These distinguish whether three points are collinear or not. The corresponding
Hilbert functions are 1, 2, 3, 3, 3, 3, . . . and 1, 3, 3, 3, 3, 3, . . ..

Remark 5.1.2. The number of Castelnuovo diagrams with weight n is equal to the
number of partitions of n with distinct parts (or equivalently the number of partitions
of n with odd parts), see Remark 3.1.3. In Appendix C there is a table of Castelnuovo
diagrams of weight up to 6 as well as some associated data. The Hilbert graph is rather
trivial for low values of n. The case n = 17 is more typical, see Appendix F, where
we discuss Hilbert graphs in more detail.

Hilbert functions provide a natural stratification of the Hilbert scheme. For any
Hilbert function ψ of degree n one defines a smooth connected subscheme [36] Hψ of
Hilbn(P2) by

Hψ = {X ∈ Hilbn(P
2) | hX = ψ}.

(see also Chapter 3). The family {Hψ}ψ∈Γn
forms a stratification of Hilbn(P

2) in the
sense

Hψ ⊂
⋃

ϕ≤ψ

Hϕ = {X ∈ Hilbn(P
2
q) | hX ≤ ψ}.

It follows that if Hϕ ⊂ Hψ then ϕ ≤ ψ. The converse implication is in general
false and it is still an open problem to find necessary and sufficient conditions for
the existence of an inclusion Hϕ ⊂ Hψ [21, 24, 25, 43]. This problem is sometimes
referred to as the incidence problem.

Guerimand in his PhD-thesis [38] introduced two additional necessary conditions
for incidence of strata which we now discuss.

The dimension condition: dimHϕ < dimHψ (5.1)

This criterion can be used effectively since there are formulas for dimHψ, see [36] and
Chapter 3.
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The tangent function tϕ of a Hilbert function ϕ ∈ Γn is defined as the Hilbert
function of IX ⊗P2 TP2 , where X ∈ Hϕ is generic. Semi-continuity yields:

The tangent condition: tϕ ≥ tψ (5.2)

Again it is possible to compute tψ from ψ (see [38, Lemme 2.2.4] and also Proposition
5.3.4 below).

Let us say a pair of Hilbert functions (ϕ, ψ) of degree n has length zero if ϕ < ψ
and there are no Hilbert functions τ of degree n such that ϕ < τ < ψ.1 It is easy
to see (ϕ, ψ) has length zero if and only if the Castelnuovo diagram of ψ can be
obtained from that of ϕ by making a minimal movevement to the left of one square
[38, Proposition 2.1.7].

Example 5.1.3. Although in the following pair sψ is obtained from sϕ by moving
one square, it is not length zero since sϕ may be obtained from sψ by first doing
movement 1 and then 2.

ϕ ψ

1

2

In general a movement of a square by one column is always length zero. A move-
ment by more than one column is length zero if and only if it is of the form

(5.3)

The dotted lines represent zero or more squares.
The following theorem is the main result of this chapter.

Theorem 9. Assume (ϕ, ψ) has length zero. Then Hϕ ⊂ Hψ if and only if the
dimension condition and the tangent condition hold.

1This is a minor deviation of Guerimand’s definition.
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This result may be translated into a purely combinatorial (albeit technical) crite-
rion for the existence of an inclusion Hϕ ⊂ Hψ (see Appendix D).

Guerimand proved Theorem 9 under the additional hypothesis (ϕ, ψ) is not of
“type zero”. A pair of Hilbert series (ϕ, ψ) has type zero if it is obtained by moving
the indicated square in the diagram below.2

The dotted lines represent zero or more squares.
From the results in Appendix D one immediately deduces

Proposition 5.1.4. Let ϕ, ψ be Hilbert functions of degree n such that (ϕ, ψ) has
type zero. Then Hϕ ⊂ Hψ.

Remark 5.1.5. The smallest, previously open, incidence problem of type zero seems
to be

ϕ = 1, 3, 6, 10, 14, 15, 16, 17, 17, . . . ψ = 1, 3, 6, 10, 14, 16, 17, 17, . . .

(see [38, Exemple A.4.2]).

Remark 5.1.6. Theorem 9 if false without the condition of (ϕ, ψ) being of length zero.
See [38, Exemple A.2.1].

We became interested in the incidence problem while they were studying the de-
formations of the Hilbert schemes of P2 which come from noncommutative geometry,
see [60] and Chapter 2 and 3 above.

It seems that the geometric methods of Guerimand do not apply in a noncommu-
tative context and therefore we developed an alternative approach to the incidence
problem based on deformation theory (see §5.2). In this approach the type zero con-
dition turned out to be unnecessary. For this reason we have decided to write down
our results first in a purely commutative setting. In forthcoming work we hope to
describe the corresponding noncommutative theory.

2It is easy to see that this definition of type zero is equivalent to the one in [38].
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5.2 Outline of the proof of the main theorem

5.2.1 Generic Betti numbers

Let X ∈ Hilbn(P
2). The graded ideal IX associated to X admits a minimal free

resolution of the form

0 → ⊕iA(−i)bi → ⊕iA(−i)ai → IX → 0 (5.4)

where (ai), (bi) are sequences of non-negative integers which have finite support, called
the graded Betti numbers of IX (and X). They are related to the Hilbert series of IX
as

hIX
(t) = hA(t)

∑

i

(ai − bi)t
i =

∑
i(ai − bi)t

i

(1 − t)3
(5.5)

So the Betti numbers determine the Hilbert series of IX . For generic X (in a stratum
Hψ) the converse is true since in that case ai and bi are not both non-zero. We will
call such (ai)i, (bi)i generic Betti numbers.

5.2.2 Four sets of conditions

We fix a pair of Hilbert series (ϕ, ψ) of length zero. Thus for the associated Casteln-
uovo functions we have

sψ(t) = sϕ(t) + tu − tv+1 (5.6)

for some integers 0 < u ≤ v. To prove Theorem 9 we will show that 4 sets of conditions
on (ϕ, ψ) are equivalent.

Condition A. Hϕ ⊂ Hψ.

Condition B. The dimension and the tangent condition hold for (ϕ, ψ).

Let (ai)i and (bi)i be the generic Betti numbers associated to ϕ. The next technical
condition restricts the values of the Betti numbers for i = u, u+ 1, v + 2, v + 3.

Condition C. au 6= 0, bv+3 6= 0 and




bu+1 ≤ au ≤ bu+1 + 1 and bv+3 = av+2

or if v = u+ 1

au = bu+1 + 1 and bv+3 = av+2 − 1

au = bu+1 + 1 and bv+3 = av+2 if v ≥ u+ 2

The last condition is of homological nature. Let I ⊂ A be a graded ideal corre-
sponding to a generic point of Hϕ. Put

Â =

(
A A
0 A

)
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For an ideal J ⊂ I put
Ĵ =

(
J I

)

This is a right Â-module.

Condition D. There exists an ideal J ⊂ I, hJ = hA − ψ such that

dimk Ext1
Â
(Ĵ , Ĵ) < dimk Ext1A(J, J)

In the sequel we will verify the implications

A⇒ B ⇒ C ⇒ D ⇒ A

Here the implication A ⇒ B is clear and the implication B ⇒ C is purely combina-
torial.

The implication C ⇒ D is based on the observation that I/J must be a so-called
truncated point module (see §5.4.1 below). This allows us to construct the projective
resolution of J from that of I and in this way we can compute dimk Ext1A(J, J). To
compute Ext1

Â
(Ĵ , Ĵ) we view it as the tangent space to the moduli-space of pairs

(J, I).
The implication D ⇒ A uses elementary deformation theory. Assume D holds.

Starting from some ζ ∈ Ext1A(J, J) (which we view as a first order deformation of J),
not in the image of Ext1

Â
(Ĵ , Ĵ) we construct a one-parameter family of ideals Jθ such

that J0 = J and pdJθ = 1 for θ 6= 0. Since I and J = J0 have the same image in
Hilbn(P2), this shows Hϕ is indeed in the closure of Hψ.

5.3 The implication B ⇒ C

In this section we translate the length zero condition, the dimension condition and the
tangent condition in terms of Betti numbers. As a result we obtain that Condition B
implies Condition C.

To make the connection between Betti numbers and Castelnuovo diagrams we
frequently use the identities

∑

i≤l

(ai − bi) = 1 + sl−1 − sl if l ≥ 0 (5.7)

al − bl = −sl + 2sl−1 − sl−2 if l > 0 (5.8)

Throughout we fix a pair of Hilbert functions (ϕ, ψ) of degree n and length zero and
we let s = sϕ, s̃ = sψ be the corresponding Castelnuovo diagrams. Thus we have

ψ(t) = ϕ(t) + tu + tu+1 + · · · + tv (5.9)

and
s̃ = s+ tu − tv+1 (5.10)
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for some 0 < u ≤ v.
The corresponding generic Betti numbers (cfr §5.2.1) are written as (ai), (bi) resp.

(ãi), (b̃i). We also write

σ = min{i | si ≥ si+1} = min{i | ai > 0}

σ̃ = min{i | s̃i ≥ s̃i+1} = min{i | ãi > 0}

5.3.1 Translation of the length zero condition

The proof of the following result is left to the reader.

Proposition 5.3.1. If v ≥ u+ 1 then we have

i . . . u u+ 1 u+ 2 . . . v + 1 v + 2 v + 3 . . .

ai . . . ∗ 0 0 . . . 0 ∗ ∗ . . .
bi . . . ∗ ∗ 0 . . . 0 0 ∗ . . .

where
au ≤ bu+1 + 1, av+2 > 0, bv+3 ≤ av+2.

This result is based on the identity (5.8). The zeroes among the Betti numbers
are caused by the “plateau” in s between the u’th and the v+1’th column (see (5.3)).

5.3.2 Translation of the dimension condition

The following result allows us to compare the dimensions of the strata Hϕ and Hψ.

Proposition 5.3.2. One has

dimHψ = dimHϕ +
v∑

i=u

(ai − bi) −
v+3∑

i=u+3

(ai − bi) + e (5.11)

and

dimHψ = dimHϕ − su−2 + su−1 + su+1 − su+2

+ sv−1 − sv − sv+2 + sv+3 + e
(5.12)

where

e =





−1 if v = u
1 if v = u+ 1
0 if v ≥ u+ 2

Proof. The proof uses only (5.10). One has the formula from Proposition 3.5.11

dimHϕ = 1 + n+ cϕ
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where cϕ is the constant term of

fϕ(t) = (t−1 − t−2)sϕ(t−1)sϕ(t)

We find

fψ(t) = (t−1 − t−2)sψ(t−1)sψ(t)

= (t−1 − t−2)(sϕ(t−1) + t−u − t−v−1)(sϕ(t) + tu − tv+1)

= (t−1 − t−2)

(∑

i

sit
−i + t−u − t−v−1

)(∑

j

sjt
j + tu − tv+1

)

= fϕ(t) + (t−1 − t−2)

(∑

i

sit
u−i −

∑

i

sit
v+1−i

+
∑

j

sjt
j−u −

∑

j

sjt
j−v−1 − tv+1−u − tu−v−1 + 2

)

Taking constant terms we obtain (5.12). Applying (5.7) finishes the proof.

We obtain the following rather strong consequence of the dimension condition.

Corollary 5.3.3. If v ≥ u+ 2 then

dimHϕ < dimHψ ⇔ au = bu+1 + 1 and av+2 = bv+3

and if this is the case then we have in addition

dimHψ = dimHϕ + 1 and u = σ, au > 0 av+2 = bv+3 > 0

Proof. Due to Proposition 5.3.1 we have su+1 = su+2 and sv−1 = sv so (5.12) becomes

dimHϕ < dimHψ ⇔ (su−2 − su−1) + (sv+2 − sv+3) < 0

We have 1 ≤ σ ≤ u, which implies sv+2 ≥ sv+3, and either su−2 ≥ su−1 or su−1 =
su−2 + 1. From this it is easy to see we have (su−2 − su−1)+ (sv+2 − sv+3) < 0 if and
only if su−1 = su−2 + 1 and sv+2 = sv+3.

First assume this is the case. Then it follows from (5.7) and Proposition 5.3.1
that σ = u hence au > 0, bu = 0. Equation (5.7) together with su = su+1 gives∑

i≤u+1(ai−bi) = 1 and since au+1 = 0 (see Proposition 5.3.1) we have au = bu+1+1.
Further, (5.7) together with sv+2 = sv+3 gives

∑
i≤v+3(ai − bi) = 1. Combined with∑

i≤u+1(ai − bi) = 1 and Proposition 5.3.1 we get av+2 + (av+3 − bv+3) = 0 where
av+2 > 0. This gives av+2 = bv+3 > 0.

Conversely, assume au = bu+1 + 1 and av+2 = bv+3. Observe Proposition 5.3.1
implies su = su+1 and au+1 = 0, so using (5.7) yields

1 =
∑

i≤u+1

(ai − bi) =
∑

i≤u−1

(ai − bi) + au − bu+1
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Since we assumed au = bu+1 + 1, we find
∑
i≤u−1(ai − bi) = 0 and using (5.7) again

we get su−2+1 = su−1. Next, the fact sv = sv+1 (see Proposition 5.3.1) together with
(5.7) yields

∑
i≤v+1(ai−bi) = 1. In combination with equation (5.7) for l = v+3 and

Proposition 5.3.1 we get sv+2 − sv+3 = av+2 + (av+3 − bv+3) = 0. Since we assumed
av+2 = bv+3 this implies sv+2 − sv+3 = av+3. Further, since bv+3 = av+2 > 0 (see
Proposition 5.3.1) we have av+3 = 0. We conclude su−2 + 1 = su−1 and sv+2 = sv+3

which finishes the proof.

5.3.3 Translation of the tangent condition

Recall from §5.1 that the tangent function tϕ is the Hilbert function of IX ⊗P2 TP2

for X ∈ Hϕ generic.

Proposition 5.3.4. (See also [38, Lemme 2.2.24]) We have

tϕ(t) = hT
P2

(t) − (3t−1 − 1)ϕ(t) +
∑

i

bi+3t
i (5.13)

Proof. From the exact sequence

0 → TP2 → O(2)3 → O(3) → 0

we deduce

H1(P2, TP2(n)) =

{
k if n = −3

0 otherwise
(5.14)

Let I = IX (X generic) and consider the associated resolution.

0 → ⊕jO(−j)bj → ⊕iO(−i)ai → I → 0

Tensoring with TP2(n) and applying the long exact sequence for H∗(P2,−) we obtain
an exact sequence

0 → ⊕jΓ(P2, TP2(n− j)bj ) → ⊕iΓ(P2, TP2(n− i)ai) → Γ(P2, I ⊗P2 TP2(n)) →

⊕j H
1(P2, TP2(n− j)bj ) → ⊕iH

1(P2, TP2(n− i)ai)

It follows from (5.14) that the rightmost arrow is zero. This easily yields the required
formula.

Remark 5.3.5. The previous proposition has an easy generalization which is perhaps
useful and which is proved in the same way. Let M be the second syzygy of a finite
dimensional graded A-module F and let M be the associated coherent sheaf. Write
hM (t) = qM (t)/(1 − t)3. Then the Hilbert series of IX ⊗P2 M is given by

qM (t)hIX
(t) + hTorA

1 (F,IX)(t)

The case where M is the tangent bundle corresponds to F = k(3).
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Proposition 5.3.6. We have

1. tψ(l) ≤ tϕ(l) for l 6= u− 3, v

2. tψ ≤ tϕ ⇔ au 6= 0 and bv+3 6= 0

Proof. The proof uses only (5.10). Comparing (5.13) for ϕ and ψ gives

tϕ(t) − tψ(t) = 3tu−1 + 2(tu + tu+1 + . . .+ tv−1) − tv +
∑

i

(bi+3 − b̃i+3)t
i (5.15)

where we have used (5.9). In order to prove the statements, we have to estimate the
polynomial

∑
i(bi+3 − b̃i+3)t

i. For this, substituting (5.5) for ϕ and ψ in (5.9) gives

∑

i

(ãi − b̃i)t
i =

∑

i

(ai − bi)t
i − (tu − tv+1)(1 − t)2

=
∑

i

(ai − bi)t
i − tu + 2tu+1 − tu+2 + tv+1 − 2tv+2 + tv+3

hence

ãu − b̃u = au − bu − 1

ãu+1 − b̃u+1 = au+1 − bu+1 +

{
3 if v = u
2 if v ≥ u+ 1

ãu+2 − b̃u+2 = au+2 − bu+2 +





−3 if v = u
0 if v = u+ 1
−1 if v ≥ u+ 2

ãv+1 − b̃v+1 = av+1 − bv+1 +





3 if v = u
0 if v = u+ 1
1 if v ≥ u+ 2

ãv+2 − b̃v+2 = av+2 − bv+2 +

{
−3 if v = u
−2 if v ≥ u+ 1

ãv+3 − b̃v+3 = av+3 − bv+3 + 1

ãl − b̃l = al − bl if l 6∈ {u, u+ 1, u+ 2, v + 1, v + 2, v + 3}

(5.16)

To obtain information about the differences bi+3 − b̃i+3, we observe that for c ≥ 0
and for all integers l we have

ãl − b̃l = al − bl + c⇒ b̃l ≤ bl

ãl − b̃l = al − bl − c⇒ b̃l ≤ bl + c
(5.17)

Indeed, first let ãl − b̃l = al − bl + c. In case 0 ≤ bl ≤ c then 0 = b̃l ≤ bl. And in case
c < bl then b̃l = bl − c ≤ bl.
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Second, let ãl− b̃l = al− bl− c. In case 0 ≤ al ≤ c then ãl = 0 hence b̃l = bl+ c−al ≤
bl + c. And in case c < al then 0 = b̃l ≤ c = bl + c. So this proves (5.17). Applying
(5.17) to (5.16) yields

b̃u ≤ bu + 1

b̃u+1 ≤ bu+1

b̃u+2 ≤ bu+2 +





3 if v = u
0 if v = u+ 1
1 if v ≥ u+ 2

b̃v+1 ≤ bv+1

b̃v+2 ≤ bv+2 +

{
3 if v = u
2 if v ≥ u+ 1

b̃v+3 ≤ bv+3

b̃l ≤ bl if l 6∈ {u, u+ 1, u+ 2, v + 1, v + 2, v + 3}

(5.18)

Now we are able to prove the first statement. Combining (5.18) and (5.15) gives

tϕ(t) − tψ(t) ≥





−tu−3 − tv if v = u
−tu−3 + 3tu−1 − tv if v = u+ 1
−tu−3 + 2(tu−1 + tu + . . .+ tv−2) − tv if v ≥ u+ 2

(5.19)

and therefore tϕ(t) − tψ(t) ≥ −tu−3 − tv which concludes the proof of the first state-
ment.

For the second part, assume tψ ≤ tϕ. Equation (5.15) implies

b̃u ≤ bu

b̃v+3 ≤ bv+3 − 1
(5.20)

Since b̃v+3 ≥ 0 we clearly have bv+3 > 0. Assume, by contradiction, au = 0. From
(5.16) we have ãu − b̃u = au − bu − 1 hence ãu = 0 and b̃u = bu + 1. But this gives a
contradiction with (5.20). Therefore

tψ ≤ tϕ ⇒ au > 0 and bv+3 > 0

To prove the converse let au > 0 and bv+3 > 0. Due to the first part we only need to
prove tψ(u− 3) ≤ tϕ(u− 3) and tψ(v) ≤ tϕ(v). Equation (5.15) gives us

tϕ(u− 3) − tψ(u− 3) = bu − b̃u

tϕ(v) − tψ(v) = bv+3 − b̃v+3 − 1
(5.21)

while from (5.16) we have

ãu − b̃u = au − bu − 1

ãv+3 − b̃v+3 = av+3 − bv+3 + 1
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Since au > 0, bv+3 > 0 we have bu = 0, av+3 = 0 hence

ãu − b̃u = au − 1

ãv+3 − b̃v+3 = −bv+3 + 1

which implies ãu− b̃u ≥ 0, ãv+3− b̃v+3 ≤ 0 hence b̃u = 0, ãv+3 = 0. Thus bu = b̃u = 0
and b̃v+3 = bv+3 − 1. Combining with (5.21) this proves tϕ(u − 3) = tψ(u − 3) and
tϕ(v) = tψ(v), finishing the proof.

5.3.4 Combining everything

In this section we prove Condition B implies Condition C. So assume Condition B
holds.

Since the tangent condition holds we have by Proposition 5.3.6

au 6= 0 and bv+3 6= 0

This means there is nothing to prove if u = v. We discuss the two remaining cases.

Case 3. v = u+ 1

The fact au 6= 0, bv+3 6= 0 implies bu = 0, av+3 = 0. Proposition 5.3.2 combined
with Proposition 5.3.1 now gives

dimHψ = dimHϕ + au − bu+1 − av+2 + bv+3 + 1

Hence 0 ≤ (au−bu+1)+(bv+3−av+2). But Proposition 5.3.1 also states au ≤ bu+1+1,
av+2 > 0 and bv+3 ≤ av+2. Therefore either we have

bu+1 ≤ au ≤ bu+1 + 1 and bv+3 = av+2

or
au = bu+1 + 1 and bv+3 = av+2 − 1

Case 4. v ≥ u+ 2

It follows from Corollary 5.3.3

au = bu+1 + 1 and av+2 = bv+3

This finishes the proof.

Remark 5.3.7. The reader will have noticed that our proof of the implication B ⇒ C
is rather involved. being purely combinatorial it can be checked directly for individual
n. Using a computer we have verified the equivalence of B and C for n ≤ 70, see
Appendix E Remark E.2.1. As another independent verification we have a direct
proof of the implication C ⇒ B (i.e. without going through the other conditions).
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Remark 5.3.8. The reader may observe that in case v = u we have

tψ ≤ tϕ ⇒ dimHϕ < dimHψ (5.22)

while if v ≥ u+ 2 we have

dimHϕ < dimHψ ⇒ tψ ≤ tϕ (5.23)

It is easy to construct counter examples which show that the reverse implications do
not hold, and neither (5.22) nor (5.23) is valid in case v = u+ 1.

5.4 The implication C ⇒ D

In this section (ϕ, ψ) will have the same meaning as in §5.3 and we also keep the
associated notations.

5.4.1 Truncated point modules

A truncated point module of length m is a graded A-module generated in degree zero
with Hilbert series 1 + t+ · · · + tm−1.

If F is a truncated point module of length > 1 then there are two independent
homogeneous linear forms l1, l2 vanishing on F and their intersection defines a point
p ∈ P2. Similarly as in §1.9.3 we may choose basis vectors ei ∈ Fi such that

xei = xpei+1, yei = ypei+1, zei = zpei+1

where (xp, yp, zp) is a set of homogeneous coordinates of p. It follows that if f ∈ A is
homogeneous of degree d and i+ d ≤ m− 1 then

fei = fpei+d

where (−)p stands for evaluation in p (with respect to the homogeneous coordinates
(xp, yp, zp)).

If G = ⊕iA(−i)ci then we have

HomA(G,F ) = ⊕0≤i≤m−1F
ci

i
∼= k

∑
0≤i≤m−1 ci (5.24)

where the last identification is made using the basis (ei)i introduced above.
In the sequel we will need the minimal projective resolution of a truncated point

module F of length m. It is easy to see it is given by

0 → A(−m − 2)




l1
l2
ρ


·

−−−−−→
f3

A(−m − 1)
2

⊕ A(−2)




0 −ρ l2
ρ 0 −l1

−l2 l1 0


·

−−−−−−−−−−−−−−−−−→
f2

A(−1)
2

⊕ A(−m)

(
l1 l2 ρ

)
·

−−−−−−−−−−−−→
f1

A → F → 0

(5.25)

where l1, l2 are the linear forms vanishing on F and ρ is a form of degree m such
that ρp 6= 0 for the point p corresponding to F . Without loss of generality we may
and we will assume ρp = 1.



116

CHAPTER 5. INCIDENCE BETWEEN STRATA ON THE HILBERT SCHEME

OF POINTS ON THE PROJECTIVE PLANE

5.4.2 A complex whose homology is J

In this section I is a graded ideal corresponding to a generic point inHϕ. The following
lemma gives the connection between truncated point modules and Condition D.

Lemma 5.4.1. If an ideal J ⊂ I has Hilbert series hA − ψ then I/J is a (shifted by
grading) truncated point module of length v + 1 − u.

Proof. Since F = I/J has the correct (shifted) Hilbert function, it is sufficient to
show F is generated in degree u.

If v = u then there is nothing to prove. If v ≥ u+ 1 then by Proposition 5.3.1 the
generators of I are in degrees ≤ u and ≥ v + 2. Since F lives in degrees u, . . . , v this
proves what we want.

Let J, F be as in the previous lemma. Below we will need a complex whose
homology is J . We write the minimal resolution of F as

0 → G3
f3
−→ G2

f2
−→ G1

f1
−→ G0 −→ F → 0

where the maps fi are as in (5.25), and the minimal resolution of I as

0 → F1 → F0 → I → 0

The map I → F induces a map of projective resolutions

0 −−−−−→ F1
M

−−−−−→ F0 −−−−−→ I −−−−−→ 0

γ1

y γ0

y
y

0 −−−−−→ G3

f3
−−−−−→ G2

f2
−−−−−→ G1

f1
−−−−−→ G0

f0
−−−−−→ F −−−−−→ 0

(5.26)

Taking cones yields that J is the homology at G1 ⊕ F0 of the following complex

0 → G3


f3

0




−−−−→ G2 ⊕ F1


f2 γ1

0 −M




−−−−−−−−−→ G1 ⊕ F0

(
f1 γ0

)

−−−−−−−→ G0 → 0 (5.27)

Note the rightmost map is split here. By selecting an explicit splitting we may
construct a free resolution of J , but it will be convenient not to do this.

For use below we note the map J → I is obtained from taking homology of the
following map of complexes.

0
�� G3


f3

0




�� G2 ⊕ F1

(
0 −1

)
��


f2 γ1

0 −M




�� G1 ⊕ F0

(
0 1

)
��

(
f1 γ0

)

�� G0
��

0

0
�� F1

M

�� F0
��

0

(5.28)
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5.4.3 The Hilbert scheme of an ideal

In this section I is a graded ideal corresponding to a generic point in Hϕ.

Let V be the Hilbert scheme of graded quotients F of I with Hilbert series tu +
· · · + tv. To see that V exists one may realize it as a closed subscheme of

ProjS(Iu ⊕ · · · ⊕ Iv)

where SV is the symmetric algebra of a vector space V . Alternatively see [11].

We will give an explicit description of V by equations. Here and below we use
the following convention: if N is a matrix with coefficients in A representing a map
⊕jA(−j)dj → ⊕iA(−i)ci then N(p, q) stands for the submatrix of N representing the
induced map A(−q)dq → A(−p)cp .

We now distinguish two cases.

• v = u. In this case clearly V ∼= Pau−1.

• v ≥ u + 1. Let F ∈ V and let p ∈ P2 be the associated point. Let (ei)i be a
basis for F as in §5.4.1. The map I → F defines a map

λ : A(−u)au → F

such that the composition

A(−u− 1)bu+1
M(u,u+1)·
−−−−−−−→ A(−u)au → F (5.29)

is zero. We may view λ as a scalar row vector as in (5.24). The fact that (5.29)
has zero composition then translates into the condition

λ ·M(u, u+ 1)p = 0 (5.30)

It is easy to see this procedure is reversible and the equations (5.30) define V as
a subscheme of Pau−1 ×P2.

Proposition 5.4.2. Assume Condition C holds. Then V is smooth and

dimV =

{
au − 1 if v = u

au + 1 − bu+1 if v ≥ u+ 1

Proof. The case v = u is clear so assume v ≥ u + 1. If we look carefully at (5.30)
then we see it describes V as the zeroes of bu+1 generic sections in the very ample
line bundle OPau−1(1) � OP2(1) on Pau−1 ×P2. It follows from Condition C that
bu+1 ≤ dim(P2 ×Pau−1) = au+1. Hence by Bertini (see [41]) we deduce V is smooth
of dimension au + 1 − bu+1.
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5.4.4 Estimating the dimension of Ext1
A(J, J)

In this section I is a graded ideal corresponding to a generic point of Hϕ. We prove
the following result

Proposition 5.4.3. Assume Condition C holds. Then there exists F ∈ V such that
for J = ker(I → F ) we have

dimk Ext1A(J, J) ≥





dimHψ + av+3 = dimHψ if v = u

dimHψ + av+2 − bv+3 + 1 if v = u+ 1

dimHψ + av+2 − bv+3 + 2 = dimHψ + 2 if v ≥ u+ 2

(5.31)

It will become clear from the proof below that in case v ≥ u + 1 the righthand
side of (5.31) is one higher than the expected dimension.

Below let J ⊂ I be an arbitrary ideal such that hJ = hA − ψ. Put F = I/J .

Proposition 5.4.4. We have

dimk Ext1A(J, J) = dimHψ + dimk HomA(J, F (−3))

Proof. For M,N ∈ grA write

χ(M,N) =
∑

i

(−1)i dimk ExtiA(M,N)

Clearly χ(M,N) only depends on the Hilbert series of M , N . Hence, taking J ′ to be
an arbitrary point in Hψ we have

χ(J, J) = χ(J ′, J ′) = 1 − dimk Ext1A(J ′, J ′) = 1 − dimHψ

where in the third equality we have used Ext1A(J ′, J ′) is the tangent space to Hψ, see
Lemma 3.5.10.

Since J has no socle we have pd J ≤ 2. Therefore ExtiA(J, J) = 0 for i ≥ 3. It
follows that

dimk Ext1A(J, J) = −χ(J, J) + 1 + dimk Ext2A(J, J)

= dimHψ + dimk Ext3A(F, J)

By the approriate version of Serre duality we have

Ext3A(F, J) = HomA(J, F ⊗ ωA)′ = HomA(J, F (−3))′

This finishes the proof.

Proof of Proposition 5.4.3. It follows from the previous result that we need to control
dimk HomA(J, F (−3)). Of course we assume throughout Condition C holds and we
also use Proposition 5.3.1.
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Case 1. Assume v = u. For degree reasons any extension between F and F (−3)
must be split. Thus we have HomA(F, F (−3)) = Ext1A(F, F (−3)) = 0. Applying
HomA(−, F (−3)) to

0 → J → I → F → 0

we find
HomA(J, F (−3)) = HomA(I, F (−3))

Hence
dimk HomA(J, F (−3)) = av+3 = 0

Case 2. Assume v = u + 1. As in the previous case we find HomA(J, F (−3)) =
HomA(I, F (−3)).

Thus a map J → F (−3) is now given (using Proposition 5.3.1) by a map

β : A(−v − 2)av+2 → F (−3)

(identified with a scalar vector as in (5.24)) such that the composition

A(−v − 3)bv+3
M(v+2,v+3)
−−−−−−−−→ A(−v − 2)av+2

β
−→ F (−3)

is zero. This translates into the condition

β ·M(v + 2, v + 3)p = 0 (5.32)

where p is the point corresponding to F . Now M(v+2, v+3) is a av+2× bv+3 matrix.
Since bv+3 ≤ av+2 (by Proposition 5.3.1) we would expect (5.32) to have av+2 − bv+3

independent solutions. To have more, M(v+2, v+3) has to have non-maximal rank.
I.e. there should be a non-zero solution to the equation

M(v + 2, v + 3)p · δ = 0 (5.33)

This should be combined with (see (5.30))

λ ·M(u, u+ 1)p = 0 (5.34)

We view (5.33) and (5.34) as a system of av+2+bu+1 equations in Pau−1 ×P2 ×Pbv+3−1.
Since (Condition C)

av+2 + bu+1 ≤ dim(Pau−1 ×P2 ×Pbv+3−1) = au + bv+3

the system (5.33)(5.34) has a solution provided the divisors in Pau−1 ×P2 ×Pbv+3−1

determined by the equations of the system have non-zero intersection product.
Let r, s, t be the hyperplane sections in Pau−1, P2 and Pbv+3−1 respectively. The

Chow ring of Pau−1 ×P2 ×Pbv+3−1 is given by

Z[r, s, t]/(rau , s3, tbv+3) (5.35)
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The intersection product we have to compute is

(s+ t)av+2(r + s)bu+1

This product contains the terms

tav+2−2s2rbu+1

tav+2−1s2rbu+1−1

tav+2s2rbu+1−2

at least one of which is non-zero in (5.35) (using Condition C).

Case 3. Now assume v ≥ u + 2. We compute HomA(J, F (−3)) as the homology
of HomA((eq.5.27), F (−3)). Since G0 = A(−u) we have HomA(G0, F (−3)) = 0 and
hence a map J → F (−3) is given by a map

G1 ⊕ F0 → F (−3)

such that the composition

G2 ⊕ F1


f2 γ1

0 −M




−−−−−−−−−→ G1 ⊕ F0 → F (−3)

is zero.
Introducing the explicit form of (Gi)i, (fi)i given by (5.25), and using Proposition

5.3.1 we find that a map J → F (−3) is given by a pair of maps

µ : A(−v − 1) → F (−3)

β : A(−v − 2)av+2 → F (−3)

(identified with scalar vectors as in (5.24)) such that the composition

A(−v − 2)2 ⊕ A(−v − 3)bv+3


−l2 l1 γ1(v + 1, v + 3)

0 0 −M(v + 2, v + 3)




−−−−−−−−−−−−−−−−−−−−−−−−→ A(−v − 1) ⊕ A(−v − 2)av+2

(
µ β

)

−−−−−−→ F

is zero.
Let p be the point associated to F . Since (l1)p = (l2)p = 0 we obtain the conditions

(
µ β

)(γ1(v + 1, v + 3)p
M(v + 2, v + 3)p

)
= 0 (5.36)

To use this we have to know what γ1(v+ 1, v+ 3) is. From the commutative diagram
(5.26) we obtain the identity

ρ · γ1(v + 1, v + 3) = λ ·M(u, v + 3)
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where λ = γ0(u, u). Evaluation in p yields

γ1(v + 1, v + 3)p = λ ·M(u, v + 3)p

so (5.36) is equivalent to

(
µ β

)( λ ·M(u, v + 3)p
M(v + 2, v + 3)p

)
= 0

Now

(
λ ·M(u, v + 3)p
M(v + 2, v + 3)p

)
is a (av+2 + 1) × bv+3 matrix. Since bv+3 < av+2 + 1

(Proposition 5.3.1) we would expect (5.36) to have av+2 + 1 − bv+3 independent

solutions. To have more,

(
λ ·M(u, v + 3)p
M(v + 2, v + 3)p

)
has to have non-maximal rank. I.e.

there should be a non-zero solution to the equation

(
λ ·M(u, v + 3)p
M(v + 2, v + 3)p

)
· δ = 0

which may be broken up into two sets of equations

λ ·M(u, v + 3)p · δ = 0 (5.37)

M(v + 2, v + 3)p · δ = 0 (5.38)

and we also still have

λ ·M(u, u+ 1)p = 0 (5.39)

We view (5.37)(5.38) and (5.39) as a system of 1+av+2+bu+1 equations in the variety
Pau−1 ×P2 ×Pbv+3−1. Since (Condition C)

1 + av+2 + bu+1 = dim(Pau−1 ×P2 ×Pbv+3−1) = au + bv+3

the existence of a solution can be decided numerically. The intersection product we
have to compute is

(r + s+ t)(s+ t)av+2(r + s)bu+1

This product contains the term

s2tav+2−1rbu+1

which is non-zero in the Chow ring (using Condition C).

5.4.5 Estimating the dimension of Ext1
Â
(Ĵ , Ĵ)

In this section we prove the following result.
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Proposition 5.4.5. Assume Condition C holds. Let I ∈ Hϕ be generic and let J be
as in Condition D. Then

dimk Ext1
Â
(Ĵ , Ĵ) ≤

{
dimHϕ + au − 1 if v = u

dimHϕ + au + 1 − bu+1 if v ≥ u+ 1
(5.40)

Proof. It has been shown in Chapter 3 that Hϕ is the moduli-space of ideals of

A of projective dimension one which have Hilbert series ϕ. Let Ĩ ⊂ AHϕ
be the

corresponding universal bundle. Let M be the moduli space of pairs (J, I) such that
I ∈ Hϕ and hJ = hA − ψ. To show that M exists on may realize it as a closed
subscheme of

ProjSHϕ
(Ĩu ⊕ · · · ⊕ Ĩv)

Sending (J, I) to I defines a map q : M → Hϕ. We have an exact sequence

0 → T(J,I)q
−1I → T(J,I)M → TIHϕ (5.41)

Assume now I is generic and put V = q−1I as above. By Proposition 5.4.2 we know
V is smooth. Hence

dimT(J,I)M ≤ dimV + dimHϕ

Applying Proposition 5.4.2 again, it follows that for I generic the dimension of T(J,I)M
is bounded by the right hand side of (5.40).

Since Ext1
Â
(Ĵ , Ĵ) is the tangent space of M at (J, I) for Ĵ = (J I) this finishes

the proof.

Remark 5.4.6. It is not hard to see that (5.40) is actually an equality. This follows
from the easily proved fact that the map q is generically smooth.

5.4.6 Tying things together

Combining the results of the previous two sections we see that if Condition C holds
we have for a suitable choice of J

dimk Ext1A(J, J) − dimk Ext1
Â
(Ĵ , Ĵ)

≥





dimHψ − dimHϕ + av+3 − au + 1 if v = u

dimHψ − dimHϕ + av+2 − bv+3 − au + bu+1 if v = u+ 1

dimHψ − dimHϕ + av+2 − bv+3 − au + bu+1 + 1 if v ≥ u+ 2

We may combine this with Proposition 5.3.2 which works out as (using Proposition
5.3.1)

dimHψ − dimHϕ =





au + bv+3 − 1 if v = u

au − bu+1 − av+2 + bv+3 + 1 if v = u+ 1

au − bu+1 − av+2 + bv+3 if v ≥ u+ 2
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We then obtain

dimk Ext1A(J, J) − dimk Ext1
Â
(Ĵ , Ĵ) ≥

{
bv+3 if v = u

1 if v ≥ u+ 1

Hence in all cases we obtain a strictly positive result. This finishes the proof that
Condition C implies Condition D.

Remark 5.4.7. As in Remark 5.3.7 it is possible to prove directly the converse impli-
cation D ⇒ C.

5.5 The implication D ⇒ A

In this section (ϕ, ψ) will have the same meaning as in §5.3 and we also keep the
associated notations. We assume Condition D holds. Let I be a graded ideal corre-
sponding to a generic point in Hϕ. According to Condition D there exists an ideal
J ⊂ I with hJ = hA − ψ such that there is an η ∈ Ext1A(J, J) which is not in the
image of Ext1

Â
(Ĵ , Ĵ).

We identify η with a one parameter deformation J ′ of J . I.e. J ′ is a flat A[ε]-
module where ε2 = 0 such that J ′ ⊗k[ε] k ∼= J and such that the short exact sequence

0 → J
ε·
−→ J ′ → J → 0

corresponds to η.

In §5.4.2 we have written J as the homology of a complex. It follows for example
from (the dual version of) [53, Thm 3.9], or directly, that J ′ is the homology of a
complex of the form

0 → G3[ε]


 f

′
3

Pε




−−−−−→ G2[ε] ⊕ F1[ε]


 f

′
2 γ′1
Qε −M ′




−−−−−−−−−−→ G1[ε] ⊕ F0[ε]

(
f ′
1 γ′0

)

−−−−−−−→ G0[ε] → 0
(5.42)

where for a matrix U over A, U ′ means a lift of U to A[ε]. Recall G3 = A(−v − 3).

Lemma 5.5.1. We have P (v + 3, v + 3) 6= 0.

Proof. Assume on the contrary P (v+3, v+3) = 0. Using Proposition 5.3.1 it follows
that P has its image in F11 = ⊕j≤u+1A(−j)bj .

The fact that (5.42) is a complex implies Qf3 = MP . Thus we have a commutative
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diagram

0 −−−−→ G3
f3

−−−−→ G2
f2

−−−−→ G1
f1

−−−−→ G0

P1

y
yQ

F11
M11−−−−→ F0

P2

y
∥∥∥

F1 −−−−→
M

F0

where P2 is the inclusion and M11 = MP2, P = P2P1. Put

D = coker(F11 → F1)

Then (P1, Q) represents an element of Ext2A(F,D) = Ext1A(D,F (−3))′ = 0, where
the last equality is for degree reasons.

It follows that there exist maps

R : G1 → F0

T1 : G2 → F11

such that

Q = Rf2 +M11T1

P1 = T1f3

Putting T = P2T1 we obtain

Q = Rf2 +MT

P = Tf3

We can now construct the following lifting of the commutative diagram (5.28):

0
�� G3[ε]


 f ′

3

Pε




�� G2[ε] ⊕ F1[ε]

(
Tε −1

)

��


 f ′

2 γ′

1

Qε −M ′




�� G1[ε] ⊕ F0[ε]

(
−Rε 1

)

��

(
f ′

1 γ′

0

)

�� G0[ε]
��

0

0
�� F1[ε]

M′
+Rγ1ε

�� F0[ε]
��

0

Taking homology we see there is a first order deformation I ′ of I together with a lift
of the inclusion J → I to a map J ′ → I ′. But this contradicts the assumption that η
is not in the image of Ext1

Â
(Ĵ , Ĵ).
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In particular, Lemmma 5.5.1 implies bv + 3 6= 0. It will now be convenient to
rearrange (5.42). Using the previous lemma and the fact that the rightmost map in
(5.42) is split it follows that J ′ has a free resolution of the form

0 → G3[ε]


 ε
α0 + α1ε




−−−−−−−−−→ G3[ε] ⊕H1[ε]

(
β0 + β1ε δ0 + δ1ε

)

−−−−−−−−−−−−−−−−→ H0[ε] → J ′ → 0

which leads to the following equations

δ0α0 = 0

β0 + δ1α0 + δ0α1 = 0

Using these equations we can construct the following complex Ct over A[t]

0 → G3[t]


 t
α0 + α1t




−−−−−−−−−→ G3[t] ⊕H1[t]

(
β0 − δ1α1t δ0 + δ1t

)

−−−−−−−−−−−−−−−−−−→ H0[t]

For θ ∈ k put Cθ = C ⊗k[t] k[t]/(t − θ). Clearly C0 is a resolution of J . By semi-
continuity we find that for all but a finite number of θ, Cθ is the resolution of a rank
one A-module Jθ. Furthermore we have J0 = J and pdJθ = 1 for θ 6= 0.

Let Jθ be the rank one OP2 -module corresponding to Jθ. Jθ represents a point of
Hψ. Since I/J has finite length, J0 = J and I define the same object in Hilbn(P

2).
Hence we have constructed a one parameter family of objects in Hilbn(P

2) connecting
a generic object in Hϕ to an object in Hψ. This shows that indeed Hϕ is in the closure
of Hψ . This completes the proof of the implication D ⇒ A.





Chapter 6

Ideals of cubic Artin-Schelter

algebras

Let A be a three dimensional Artin-Schelter regular algebra, which is generated in
degree one. As discussed in Chapter 1 there are two possibilities, either A is quadratic
i.e. A has three generators and three defining homogeneous relations in degree two,
or A is cubic i.e. it has two generators and two defining relations in degree three.

In Chapters 2 and 3 we have classified reflexive rank one graded right modules
over (generic) quadratic Artin-Schelter algebras, and described their Hilbert series. It
is a natural question to do the same for cubic Artin-Schelter algebras. In this chapter
we do so. The ideas we use are quite the same, and therefore we will omit some of
the proofs.

The results in Chapter 6 were obtained in collaboration with N. Marconnet and
will appear in a submitted paper [30].

6.1 Introduction and main results

Let A be a cubic Artin-Schelter algebra. Similar as in the quadratic case it turns
out that a torsion free rank one module I ∈ grmod(A) is determined by a quiver
representation M of the quiver Γ

r

u-
v - r

u′

-
v′- r

u′′

-
v′′- r

whose relations are reflected by the defining relations of A. By partial computation
of the homology groups Hi(X,πI) it turns out that the dimension vector of this
representation is given by dimM = (no, ne, no, ne − 1) for some integers ne > 0,
no ≥ 0. If furthermore I is reflexive then I is determined by a representation M0 of

127
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the quiver Γ0

r

u-
v - r

u′

-
v′- r

obtained by deleting the rightmost vector space and maps in M .
Let R(A) denote the set of reflexive graded rightA-modules of rank one, considered

up to isomorphism and shift of grading. Define the set

N = {(ne, no) ∈ N2 | ne − (ne − no)
2 ≥ 0}.

Our first result is similar to Theorem 1 of Chapter 2.

Theorem 10. Let A be an elliptic cubic Artin-Schelter algebra for which σ has infinite
order. Then for any (ne, no) ∈ N there exists a smooth locally closed variety D(ne,no)

of dimension 2(ne − (ne − no)
2) such that the set R(A) is in natural bijection with∐

(ne,no)∈N D(ne,no).

For (ne, no) 6= (1, 1) the variety D(ne,no) has the following description

D(ne,no) = {F = ((X,Y ), (X ′, Y ′)) ∈ Rep(no,ne,no)(Γ
0) | F is θ-stable and

rankMA(X,Y,X ′, Y ′) ≤ 2no − (ne − 1)}/Gl(no,ne,no)(k) (6.1)

where θ = (−1, 0, 1), MA is the matrix as defined in (1.21) and the matrix
MA(X,Y,X ′, Y ′) ∈ M2no×2no

(k) is obtained from MA by replacing x2, xy, yx, y2 by
X ′X,Y ′X,X ′Y, Y ′Y . It follows that D(ne,no) is a closed set of the quasi-affine variety
consisting of the θ-stable representations in Rep(no,ne,no)(Γ

0). For a description of
D(1,1) we refer to Corollary 6.7.4. In particular D(1,0) is a point and D(1,1) is the

complement of C under a natural embedding in P1 ×P1. In fact D(ne,no) is a point
whenever ne = (ne − no)

2.
In case A is of generic type A (see Example 1.9.3) we have in addition (compare

to Theorem 2)

Theorem 11. Let A be a cubic Artin-Schelter algebra of generic type A for which σ
has infinite order. Then the varieties D(ne,no) in Theorem 10 are affine.

As for quadratic Artin-Schelter algebras our proof of Theorem 11 is as follows.
We will show that D(ne,no) has the alternative description

D(ne,no) = {F = ((X,Y ), (X ′, Y ′)) ∈ Rep(no,ne,no)(Γ
0) | F ⊥ V and

rankMA(X,Y,X ′, Y ′) ≤ 2no − (ne − 1)}/Glno,ne,no
(k) (6.2)

Here V is a fixed representation of Γ0 with dimension vector dimV = (6, 4, 2), inde-
pendent of F ∈ D(ne,no). In particular there is some freedom in choosing V . From
the description (6.2) it follows that D(ne,no) is a closed subset of ϕV 6= 0 so it is affine.

Finally, in Section 6.8 we describe the elements of R(A) by means of filtrations.
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Theorem 12. Assume k is uncountable. Let A be an elliptic cubic Artin-Schelter
algebra and assume σ has infinite order. Let I ∈ R(A). Then there exists an m ∈ N

together with a filtration of reflexive graded right A-modules of rank one

I0 ⊃ I1 ⊃ · · · ⊃ Im = I

with the property that up to finite length modules the quotients are shifted conic mod-
ules i.e. modules of the form A/bA where b ∈ A has degree two. Moreover I0 admits
a minimal resolution of the form

0 → A(−c− 1)c → A(−c)c+1 → I0 → 0 (6.3)

for some integer c ≥ 0, and I0 is up to isomorphism uniquely determined by c.

If A is linear it follows from Proposition 6.4.1 below that every reflexive graded
right ideal of A admits a resolution of the form (6.3) (up to shift of grading). Hence
Theorem 12 is trivially true for linear cubic Artin-Schelter algebras.

A crucial part of the proof of Theorem 10 consists in showing that the spaces
D(ne,no) are actually nonempty for (ne, no) ∈ N . In contrast to quadratic Artin-
Schelter algebras Chapter 2 and [60] this is not entirely straightforward. We will
prove this by characterizing the appearing Hilbert series for objects in R(A). In a
very similar way as in [28] for quadratic Artin-Schelter algebras, we show in Section
6.3 that the Hilbert series of graded right A-ideals of projective dimension one are
characterised by so-called Castelnuovo polynomials [26] s(t) =

∑n
i=0 sit

i ∈ Z[t] which
are by definition of the form

s0 = 1, s1 = 2, . . . , sσ−1 = σ and sσ−1 ≥ sσ ≥ sσ+1 ≥ · · · ≥ 0

for some integer σ ≥ 0. We refer to
∑
i s2i as the even weight of s(t) and

∑
i s2i+1 as

the odd weight of s(t).

Example 6.1.1. s(t) = 1+2t+3t2 +4t3 +5t4 +5t5 +3t6 +2t7 + t8 + t9 + t10 + t11 is
a Castelnuovo polynomial of even weight 14 and odd weight 15. The corresponding
Castelnuovo diagram is (where the even columns are black)

Denote X = ProjA = (P1 ×P1)q. Write Hilb(ne,no)(X) for the groupoid of the
torsion free graded right A-modules I of projective dimension one for which

hA(m) − hI(m) = dimk Am − dimk Im =

{
ne for m even
no for m odd

for m� 0
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(in particular I has rank one, see §6.2.3). Any graded right A-ideal I of projective
dimension one admits an unique shift of grading I(d) for which I(d) ∈ Hilb(ne,no)(X).
Writing R(ne,no)(A) for the full subcategory of Hilb(ne,no)(X) consisting of reflexive
objects we have R(A) =

∐
R(ne,no)(A), and in the setting of Theorem 1 the isoclasses

of R(ne,no)(A) are in natural bijection with the points of the variety D(ne,no). In
Section 6.3 below we prove the following analog of Theorem 4 of Chapter 3.

Theorem 13. Let A be a cubic Artin-Schelter regular algebra. There is a bijective
correspondence between Castelnuovo polynomials s(t) of even weight ne and odd weight
no and Hilbert series hI(t) of objects I in Hilb(ne,no)(X), given by

hI(t) =
1

(1 − t)2(1 − t2)
−

s(t)

1 − t2

Moreover if A is elliptic for which σ has infinite order this correspondence restricts
to Hilbert series hI(t) of objects I in R(ne,no)(A).

By shifting the rows in a Castelnuovo diagram in such a way they are left aligned
one sees that the number of Castelnuovo diagrams of even weight ne and odd weight
no is equal to the number of partitions λ of ne + no with distinct parts, with the
additional property that by putting a chessboard pattern on the Ferrers diagram of λ
the number of black squares is equal to ne and the number of white squares is equal
to no. Anthony Henderson pointed out to us this number is given by the number of
partitions of ne − (ne − no)

2. In particular the varieties D(ne,no) in Theorem 1 are
nonempty whenever (ne, no) ∈ N . See Appendix G below.

Remark 6.1.2. In Appendix C we have included the list of Castelnuovo polynomials
s(t) of even weight ne ≤ 3 and odd weight no ≤ 3, as well as some associated data.

As there exists no commutative cubic Artin-Schelter algebra A it seems difficult
to compare our results with the commutative situation. However if A is a linear cubic
Artin-Schelter algebra then ProjA is equivalent with the category of coherent sheaves
on the quadric surface P1 ×P1. In Section 6.4 we discuss how the (classical) Hilbert
scheme of points Hilb(P1 ×P1) parameterizes the objects in

∐
(ne,no)∈N Hilb(ne,no)(X)

with the groupoid Hilb(ne,no)(X) as defined above.

Remark 6.1.3. For cubic Artin-Schelter algebrasA we expect a similar treatment as in
[60] to show Hilb(ne,no)(X) is a smooth projective variety of dimension 2(ne − (ne −
no)

2). The authors are convinced that using the same methods as in the proof of
Theorem 5 in Chapter 3 will lead to a proof that Hilb(ne,no)(X) is connected, hence
also D(ne,no) (for elliptic A for which σ has infinite order). We hope to come back on
this in a forthcoming paper.

As an application, consider the enveloping algebra of the Heisenberg-Lie algebra

Hc = k〈x, y, z〉/(yz − zy, xz − zx, xy − yx− z) = k〈x, y〉/([y, [y, x]], [x, [x, y]])

where [a, b] = ab−ba. The graded algebraHc is a cubic Artin-Schelter regular algebra.
Consider the localisation Λ = Hc[z

−1] of Hc at the powers of the central element
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z = xy−yx and its subalgebra Λ0 of elements of degree zero. It was shown in [8] that

Λ0 = A
〈ϕ〉
1 , the algebra of invariants of the first Weyl algebraA1 = k〈x, y〉/(xy−yx−1)

under the automorphism ϕ defined by ϕ(x) = −x, ϕ(y) = −y. In Section 6.9 we

deduce a classification of right ideals of A
〈ϕ〉
1 .

Theorem 14. The set R(A
〈ϕ〉
1 ) of isomorphism classes of right A

〈ϕ〉
1 -ideals is in

natural bijection with the points of
∐

(ne,no)∈N D(ne,no) where

D(ne,no) = {(X,Y,X′,Y′) ∈Mne×no
(k)2 ×Mno×ne

(k)2 | Y′X − X′Y = I and

rank(YX′ − XY′ − I) ≤ 1}/Glne
(k) × Glno

(k)

is a smooth affine variety D(ne,no) of dimension 2(ne − (ne − no)
2).

Note Glne
(k)×Glno

(k) acts by conjugation (gXh−1, gYh−1, hX′g−1, hY′g−1). Com-
paring with the first Weyl algebra (see the introduction of this manuscript, or Theorem

2.1.1) it would be interesting to see if the orbits of R(A
〈ϕ〉
1 ) under the automorphism

group Aut(A
〈ϕ〉
1 ) are in bijection to D(ne,no).

Remark 6.1.4. In case A is of generic type A or A = Hc is the enveloping algebra of
the Heisenberg-Lie algebra, Theorems 10 and 12 are proved without the hypothesis k
is uncountable.

Most results in this chapter are obtained mutatis mutandis as for quadratic Artin-
Schelter algebras in Chapters 2, 3 and to some extend [16, 52, 60]. However at some
points the situation for cubic algebras is more complicated.

6.2 From reflexive ideals to normalized line bundles

ThroughoutA will be a cubic Artin-Schelter algebra as defined in §1.9. We will use the
notations from Chapter 1, so we writeX = (P1 ×P1)q = ProjA, Qcoh(X) = Tails(A),
coh(X) = tails(A), πA = O. We shall refer to X as a quantum quadric.

In this section our first aim is to relate reflexive A-modules with certain objects on
X (so-called vector bundles). Any shift of such a reflexive module remains reflexive
and in the rank one case we will normalize this shift. The corresponding objects in
coh(X) will be called normalized line bundles. A helpful tool will be the choice of a
suitable basis of the Grothendieck group K0(X). At the end of this section we will
compute partially the cohomology of these normalized line bundles.

6.2.1 Torsion free and reflexive objects

An object M ∈ grmod(A) is torsion free if M is pure of maximal GK-dimension three.
Recall M is called reflexive if M∗∗ = M . Similarly an object M ∈ coh(X) is torsion
free if M is pure of maximal dimension two. An object M ∈ coh(X) is called reflexive
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(or a vector bundle on X) if M = πM for some reflexive M ∈ grmod(A). We refer
to a vector bundle of rank one as a line bundle.

The results of §2.2.1 together with their proofs remain valid. In particular we will
need the following lemmas, see Lemma 2.2.4 and Corollary 2.2.6.

Lemma 6.2.1. Let M ∈ coh(X). Then M is a vector bundle on X if and only if
M is torsion free and Ext1X(N ,M) = 0 for all N ∈ coh(X) of dimension zero.

Lemma 6.2.2. The functors π and ω define inverse equivalences between the full
subcategories of grmod(A) and coh(X) with objects

{torsion free objects in grmod(A) of projective dimension one}

and
{torsion free objects in coh(X)}

Moreover this equivalence restricts to an equivalence between the full subcategories of
grmod(A) and coh(X) with objects

{reflexive objects in grmod(A)} and {vector bundles on X}.

In this chapter we are interested in torsion free rank one modules of projective
dimension one, or more restrictively, reflexive modules of rank one. Every graded
right ideal of A is a torsion free rank one A-module. The following proposition shows
that, up to shift of grading, the converse is also true.

Proposition 6.2.3. Let 0 6= I ∈ grmod(A) be torsion free of rank one. Then there
is an integer n such that I(−n) is isomorphic to a graded right ideal of A.

Proof. By GKdim I = 3, Theorem 1.9.8 implies I∗ = HomA(I, A) 6= 0. Thus (I∗)n =
HomA(I(−n), A) 6= 0 for some integer n. By Lemma 1.9.7 we are done.

Remark 6.2.4. The set of all graded right ideals is probably too large to describe,
as for any ideal I we may construct numerous other closely related ideals by taking
the kernel of any surjective map to a module of GK-dimension zero. We will restrict
to graded ideals of projective dimension one (or more restrictively reflexive rank one
modules). For such modules M we have Ext1A(k,M) = 0 and therefore M cannot
appear as the kernel of such a surjective map.

6.2.2 The Grothendieck group and the Euler form for quan-

tum quadrics

In this part we describe a natural Z-module basis for the Grothendieck group K0(X)
and determine the matrix representation of the Euler form χ with respect to this basis.
To do so, it is convenient to start with a different basis of K0(X), corresponding to
the standard basis of Z[t, t−1]/(qk(t)) under the isomorphism of Theorem 1.7.1, and
perform a base change afterwards.



6.2. FROM REFLEXIVE IDEALS TO NORMALIZED LINE BUNDLES 133

Proposition 6.2.5. The set B = {[O], [O(−1)], [O(−2)], [O(−3)]} is a Z-module
basis of K0(X). The matrix representations with respect to the basis B of the shift
automorphism sh and the Euler form χ for K0(X) are given by

m(sh)B =




2 1 0 0
0 0 1 0

−2 0 0 1
1 0 0 0


 , m(χ)B =




1 0 0 0
2 1 0 0
4 2 1 0
6 4 2 1


 .

Proof. Let θ denote the isomorphism (1.5) of Theorem 1.7.1. Since qA(−l)(t) = tl

we have θ[O(−l)] = tl for all integers l. As {1, t, t2, t3} is a Z-module basis for
Z[t, t−1]/(qk(t)) = Z[t, t−1]/(1 − t)2(1 − t2) we deduce B is a basis for K0(X).

By sh[O(l)] = [O(l + 1)] we find the last three columns of m(sh)B. Applying the
exact functor π to a minimal resolution (1.6) of kA yields the exact sequence

0 → O(−4) → O(−3)2 → O(−1)2 → O → 0

from which we deduce [O(1)] = 2[O]− 2[O(−2)] + [O(−3)], giving the first column of
m(sh)B. Finally, Theorem 1.8.2 implies for all integers l

χ(O,O(l)) = dimk Al + dimk A−l−4 =

{
(l + 2)2/4 if l is even
(l + 1)(l + 3)/4 if l is odd

which allows one to compute the matrix m(χ)B. This ends the proof.

Proposition 6.2.6. Let P be a point module, S a line module and Q a conic mod-
ule over A. Denote the corresponding objects in coh(X) by P, S and Q. Then
B′ = {[O], [S], [Q], [P ]} is a Z-module basis of K0(X), which does not depend on the
particular choice of S, Q and P . The matrix representations with respect to the basis
B′ of the shift automorphism sh and the Euler form χ for K0(X) are given by

m(sh)B′ =




1 0 0 0
−1 −1 0 0

1 1 1 0
1 1 1 1


 , m(χ)B′ =




1 1 1 1
−1 0 −1 0
−3 −1 −2 0

1 0 0 0


 . (6.4)

Proof. 1. It follows from Theorem 1.7.1 that the class in K0(X) of an object πM
only depends on the Hilbert series of M . Thus [S], [Q] and [P ] are indeed in-
dependent of the particular choice of S, Q and P . Using a computation with
Hilbert series we see that the images of [O], [S], [Q] and [P ] under the isomor-
phism θ of Theorem 1.7.1 are respectively 1, 1 − t, 1 − t2 and (1 − t)(1 − t2),
which form a Z-module basis for Z[t, t−1]/(1 − t)2(1 − t2). Hence B′ is a basis
for K0(X).
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2. Using the isomorphism θ it follows from the previous part that [S] = [O] −
[O(−1)], [Q] = [O] − [O(−2)] and [P ] = [O] − [O(−1)] − [O(−2)] + [O(−3)].
Hence the matrix of base change on K0(X) from B′ to B is given by

m(id)B′B




1 1 1 1
0 −1 0 −1
0 0 −1 −1
0 0 0 1




From the appropriate commutative diagram of Z-modules we deduce thatm(sh)B′

is equal to

m(id)−1
B′B ·m(sh)B ·m(id)B′B

=




1 1 1 1
0 −1 0 −1
0 0 −1 −1
0 0 0 1







2 1 0 0
0 0 1 0

−2 0 0 1
1 0 0 0







1 1 1 1
0 −1 0 −1
0 0 −1 −1
0 0 0 1




=




1 0 0 0
−1 −1 0 0

1 1 1 0
1 1 1 1




3. Again by standard linear algebra we find m(χ)B′ = m(id)tB′B ·m(χ)B ·m(id)B′B

which finishes the proof.

From now on we fix such a Z-module basis {[O], [S], [Q], [P ]} of K0(X). For any
object M ∈ coh(X) we may write

[M] = r[O] + a[S] + b[Q] + c[P ] (6.5)

Writing M = πM where M ∈ grmod(A), equation (6.5) also follows directly from
Lemma 1.9.11 i.e. we have

hM (t) =
r

(1 − t)2(1 − t2)
+

a

(1 − t)(1 − t2)
+

b

(1 − t)2
+

c

1 − t
+ f(t). (6.6)

for some Laurent polynomial f(t) ∈ Z[t, t−1]. Note r = rankM = rankM. By
computing the powers of the matrix m(sh)B′ in Proposition 6.2.6 we deduce for any
integer l

[M(2l)] = r[O] + a[S] + (lr + b)[Q] + (l((l + 1)r + a+ 2b) + c)[P ]

[M(2l − 1)] = r[O] − (r + a)[S] + (lr + a+ b)[Q] + (l(lr + a+ 2b) − b+ c)[P ]
(6.7)
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6.2.3 Normalized rank one objects

Any shift l of a torsion free rank one graded right A-module I gives rise to a torsion
free rank one object I(l) = πI(l) on X . We will now normalize this shift. Our choice
is motivated by the analogue of Lemma 2.2.8.

Proposition 6.2.7. Let I ∈ grmod(A), set I = πI and write [I] = r[O] + a[S] +
b[Q] + c[P ]. Then the following are equivalent.

1. There exist integers ne, no such that for l � 0 we have

dimk Al − dimk Il =

{
ne if l is even,
no if l is odd.

2. The Hilbert series of I is of the form

hI(t) = hA(t) −
s(t)

1 − t2

for a Laurent polynomial s(t) ∈ Z[t, t−1].

3. I has rank one and a = −2b.

If these conditions hold then s(1) = b− 2c, s(−1) = b and ne = b− c, no = −c.

Proof. By (6.6) we may write

hI(t) =
r

(1 − t)2(1 − t2)
+

a+ b(1 + t)

(1 − t)(1 − t2)
+
c(1 + t) + f(t)(1 − t2)

1 − t2

for some f(t) ∈ Z[t, t−1]. Thus the second and the third statement are equivalent,
and in that case s(t) = b− c(1 + t) − f(t)(1 − t2). Moreover, for l � 0 we obtain

dimk Al − dimk Il =

{
(1 − r)(l + 2)2/4 − a(l/2 + 1) − b(l + 1) − c for l even
(1 − r)(l + 1)(l + 3)/4 − a(l + 1)/2 − b(l + 1) − c for l odd

from which we deduce the equivalence of (1) and (3), proving what we want.

We will call a torsion free rank one object in grmod(A) normalized if it satisfies the
equivalent conditions of Proposition 6.2.7. Similarly, a torsion free rank one object I
in coh(X) is normalized if [I] is of the form

[I] = [O] − 2b[S] + b[Q] + c[P ]

for some integers b, c ∈ Z. We refer to (ne, no) = (b − c,−c) as the invariants of I
and I and call ne the even invariant and no the odd invariant of I and I. We will
prove in Theorem 6.2.11 below that ne and no are actually positive and characterize
the appearing invariants (ne, no) in Section 6.3.
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Lemma 6.2.8. Let I ∈ grmod(A) be torsion free of rank one and set I = πI. Then
there is a unique integer d for which I(d) (and hence I(d)) is normalized.

Proof. Easy by (6.7).

By Lemma 6.2.2 the functors π and ω define inverse equivalences between the full
subcategories of grmod(A) and coh(X) with objects

Hilb(ne,no)(X) := {normalized torsion free rank one objects in grmod(A)

of projective dimension one and invariants (ne, no)}

and

{normalized torsion free rank one objects in coh(X) with invariants (ne, no)}.

Remark 6.2.9. We expect
∐

(ne,no) Hilb(ne,no)(X) to be the correct generalization of

the usual Hilbert scheme of points on P1 ×P1. In case A is linear then∐
(ne,no) Hilb(ne,no)(X) coincides with the Hilbert scheme of points on P1 ×P1, see

§6.4.2 below.

This equivalence restricts to an equivalence between the full subcategories of
grmod(A) and coh(X) with objects

R(ne,no)(A) := {normalized reflexive rank one objects in grmod(A)

with invariants (ne, no)}

and

R(ne,no)(X) := {normalized line bundles on X with invariants (ne, no)}.

We obtain a natural bijection between the set R(A) of reflexive rank one graded right
A-modules considered up to isomorphism and shift, and the isomorphism classes in
the categories

∐
(ne,no)R(ne,no)(A) and

∐
(ne,no) R(ne,no)(X).

Remark 6.2.10. It is easy to see that the categories R(ne,no)(A) and R(ne,no)(X) are
groupoids, i.e. all non-zero morphisms are isomorphisms.

6.2.4 Cohomology of line bundles on quantum quadrics

The next theorem describes partially the cohomology of normalized line bundles.

Theorem 6.2.11. Let I ∈ coh(X) be torsion free of rank one and normalized i.e.

[I] = [O] − 2(ne − no)[S] + (ne − no)[Q] − no[P ]

for some integers ne, no. Assume I is not isomorphic to O. Then
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1. H0(X, I(l)) = 0 for l ≤ 0
H2(X, I(l)) = 0 for l ≥ −3
Hj(X, I(l)) = 0 for j ≥ 3 and for all integers l

2. χ(O, I(l)) =

{
(l + 2)2/4 − ne if l ∈ Z is even
(l + 1)(l + 3)/4 − no if l ∈ Z is odd

3. dimkH
1(X, I) = ne − 1

dimkH
1(X, I(−1)) = no

dimkH
1(X, I(−2)) = ne

dimkH
1(X, I(−3)) = no

As a consequence, ne > 0 and no ≥ 0. If I is a line bundle i.e. I ∈ R(ne,no)(X) then
we have in addition

H2(X, I(−4)) = 0 and dimkH
1(X, I(−4)) = ne − 1.

Proof. That Hj(X, I(l)) = 0 for j ≥ 3 and for all integers l follows from cdX = 2, see
Theorem 1.8.2. The rest of the first statement is proved in a similar way as Theorem
2.2.11(1). See also the proof of the final statement below.

For the second part, compute χ(O, I(l)) using (6.7) and the matrix representation
m(χ)B′ from Proposition 6.2.6.

Combining the first two statements together with (2.18) yields the third part.
Finally, assume I is reflexive. By Theorem 1.10.5 (Serre duality) we have

H2(X, I(−4)) = Ext2X(O, I(−4)) ∼= HomX(I,O)′. Assume by contradiction there
is a non-zero morphism f : I → O. As I is critical, f is injective and we compute
[coker f ] = 2(ne − no)[S] − (ne − no)[Q] + no[P ]. By (6.5) and Lemma 1.9.11 we
deduce e1(coker f) = 0 hence dim coker f = 0. Note coker f 6= 0 by the assump-
tion I 6∼= O. Since I is reflexive, Ext1X(coker f, I) = 0 thus the exact sequence
0 → I → O → coker f → 0 splits, contradicting the fact that O is torsion free.

Corollary 6.2.12. Let I ∈ grmod(A) be torsion free of rank one with invariants
(ne, no). Then (ne, no) = (0, 0) if and only if I ∼= O(d) for some integer d.

Proof. If I ∼= O(d) then [I(−d)] = [O] hence ne = no = 0. Assume conversely
(ne, no) = (0, 0). We may assume I is normalized. If I 6∼= O then Theorem 6.2.11
implies ne > 0. Since ne = 0 we obtain I ∼= O by contraposition.

At this point one may be tempted to think there are two independent parameters
ne, no ∈ N associated to an object in Hilb(ne,no)(X). However

Lemma 6.2.13. Let I ∈ grmod(A) be torsion free of rank one with invariants (ne, no)
and write I = πI. Then dimk Ext1X(I, I) = 2(ne − (ne − no)

2) ≥ 0.

Proof. We may clearly assume I is normalized and by Proposition 6.2.6 we easily find
χ(I, I) = 1 − 2(ne − (ne − no)

2). As I is critical we have HomX(I, I) = k. Hence
it will be sufficient to prove Ext2X(I, I) = 0. Serre duality implies Ext2X(I, I) ∼=
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HomX(I, I(−4))′. Thus assume by contradiction there is a non-zero morphism f :
I → I(−4). Then f is injective and using (6.7) we have [I(−4)] = [O] − 2(ne −
no)[S] + (ne − no − 2)[Q] + (2 − no)[P ] hence [coker f ] = −2[Q] + 2[P ]. By (6.5) and
Lemma 1.9.11 we deduce e2(coker f) < 0 which is absurd.

As a consequence if Hilb(ne,no)(X) 6= ∅ for some integers ne, no then ne ≥ 0,
no ≥ 0 and ne − (ne − no)

2 ≥ 0. The converse will be proved in the next section.

6.3 Hilbert series of ideals and proof of Theorem 13

Let A be a quadratic or cubic Artin-Schelter algebra and let M be a torsion free
graded right A-module of projective dimension one (so we do not require M to have
rank one). Thus M has a minimal resolution of the form

0 → ⊕iA(−i)bi → ⊕iA(−i)ai →M → 0

where (ai), (bi) are finitely supported sequences of non-negative integers. These num-
bers are called the Betti numbers of M . It is easy to see that the characteristic
polynomial of M is given by qM (t) =

∑
i(ai − bi)t

i. So by (1.4) the Betti numbers
determine the Hilbert series of M , but the converse is not true.

For quadratic A the appearing Betti numbers were characterised in Chapter 3.
The same technique may be used to obtain the same characterisation for cubic A.
The result is

Proposition 6.3.1. Let (ai), (bi) be finitely supported sequences of non-negative in-
tegers. Let aσ be the lowest non-zero ai and put r =

∑
i(ai − bi). Then the following

are equivalent.

1. (ai), (bi) are the Betti numbers of a torsion free graded right module of projective
dimension one and rank r over a quadratic Artin-Schelter algebra,

2. (ai), (bi) are the Betti numbers of a torsion free graded right module of projective
dimension one and rank r over a cubic Artin-Schelter algebra,

3. bi = 0 for i ≤ σ and
∑

i≤l bi <
∑

i<l ai for l > σ.

Moreover if A is elliptic and σ has infinite order, these modules can be chosen to be
reflexive.

Assume for the rest of Section 6.3A is a cubic Artin-Schelter algebra. The previous
proposition allows us to describe the Hilbert series of objects in Hilb(ne,no)(X). Recall
from the introduction a Castelnuovo polynomial [26] s(t) =

∑n
i=0 sit

i ∈ Z[t] is by
definition of the form

s0 = 1, s1 = 2, . . . , sσ−1 = σ and sσ−1 ≥ sσ ≥ sσ+1 ≥ · · · ≥ 0 (6.8)

for some integer σ ≥ 0. We refer to
∑
i s2i as the even weight of s and

∑
i s2i+1 as

the odd weight of s(t). We may now prove Theorem 13.
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Proof of Theorem 13. First, let us assume I ∈ Hilb(ne,no)(X) for some integers ne, no.
By Proposition 6.2.7 we may assume that the Hilbert series of I has the form

hI(t) =
1

(1 − t)2(1 − t2)
−

s(t)

1 − t2

for a Laurent polynomial s(t) ∈ Z[t, t−1]. We deduce qI(t)/(1 − t) = hI(t)(1 − t)(1 −
t2) = 1/(1 − t) − s(t)(1 − t). Writing qI(t) =

∑
i qit

i it is easy to see Proposition
6.3.1(3) is equivalent with

∑

i≤l

qi

{
= 0 for l < σ
> 0 for l ≥ σ

from which we deduce s(t)(1 − t) is of the form

s(t)(1 − t) = 1 + t+ t2 + · · · + tσ−1 + dσt
σ + dσ+1t

σ+1 + . . .

where di ≤ 0 for i ≥ σ. Multiplying by 1/(1 − t) = 1 + t + t2 + . . . shows this is
equivalent to s(t) being a Castelnuovo polynomial. According to Proposition 6.2.7,
(s(1) + s(−1))/2 = ne and (s(1) − s(−1))/2 = no thus s(t) has even weight ne and
odd weight no.

The converse statement is easily checked.

As an application we may now prove nonemptyness for R(ne,no)(A). As in the
introduction we define

N = {(ne, no) ∈ N2 | ne − (ne − no)
2 ≥ 0}. (6.9)

As done in Appendix G it is a simple exercise to check

N = {(k2 + l, k(k+ 1) + l) | k, l ∈ N}∪ {((k+ 1)2 + l, k(k+ 1) + l) | k, l ∈ N}. (6.10)

Proposition 6.3.2. Let ne,no be any integers. Then Hilb(ne,no)(X) is nonempty if
and only if (ne, no) ∈ N .
If A is elliptic and σ has infinite order then R(ne,no)(A) whence R(ne,no)(X) is
nonempty if and only if (ne, no) ∈ N .

Proof. Assume (ne, no) ∈ N . Due to Theorem 13 it will be sufficient to show there
exists a Castelnuovo polynomial s(t) for which the even resp. odd weight of s(t) is
equal to ne resp. no. Shifting the rows in any Castelnuovo diagram in such a way they
are left aligned induces a bijective correspondence between Castelnuovo functions s
and partitions λ of n = s(1) with distinct parts. For any partition λ we put a chess
colouring on the Ferrers graph of λ, and write b(λ) resp. w(λ) for the number of
black resp. white unit squares. By Theorem G.1 in Appendix G below there exists
a partition λ in distinct parts for which b(λ) = ne and w(λ) = no if and only if
(ne, no) ∈ N .
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For (ne, no) ∈ N there is an unique integer l ≥ 0 with the property (see (6.10))

(ne − l, no − l) ∈ N and (ne − l − 1, no − l − 1) 6∈ N. (6.11)

One verifies (ne − l′, no − l′) 6∈ N for all l′ > l. By (6.10) we distinguish

Case 1. (ne − l, no − l) = (k2, k(k + 1)) for k ∈ N. The Castelnuovo polynomial of
an object in Hilb(ne−l,no−l)(X) is s(t) = 1 + 2t+ 3t2 + · · ·+ (v− 1)tv + vtv+1 where v
is even. Thus the Castelnuovo diagram is triangular and ends with a white column.

Case 2. (ne − l, no − l) = ((k + 1)2, k(k + 1)) for k ∈ N. Then the Castelnuovo
polynomial of an object in Hilb(ne−l,no−l)(X) is s(t) = 1+2t+3t2+· · ·+(v−1)tv+vtv+1

where v is odd. The Castelnuovo diagram is triangular and ends with a black column.

. . . . . .or

case 1 case 2

The next proposition shows that not only the Hilbert series but also the Betti numbers
of an object in Hilb(ne−l,no−l)(X) are fully determined.

Proposition 6.3.3. Let (ne, no) ∈ N and let l ≥ 0 be as in (6.11). Let I0 ∈
Hilb(ne−l,no−l)(X). Then I0 has a minimal resolution of the form

0 → A(−c− 1)c → A(−c)c+1 → I0 → 0

where

c =

{
2k if (ne − l, no − l) = (k2, k(k + 1))
2k + 1 if (ne − l, no − l) = ((k + 1)2, k(k + 1))

Proof. By Proposition 6.3.1 and same arguments as in the proof of Theorem 13.

Remark 6.3.4. In the notations of the previous proposition one may compute
dimk Ext1A(I0, I0) = 0 which indicates that up to isomorphism Hilb(ne−l,no−l)(X) =
R(ne−l,no−l)(A) consist of only one object. See also §6.4.1 below for linear A and the
proof of Theorem 4 in Section 6.8 for generic elliptic A.
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6.4 Ideals of linear cubic Artin-Schelter algebras

In this section we let A be a linear cubic Artin-Schelter algebra. As Tails(A) is
equivalent to Qcoh(P1 ×P1) line bundles on X = ProjA are determined by line
bundles on P1 ×P1. We will briefly recall the description of these objects which will
lead to a characterisation of the set R(A) of reflexive rank one modules over A, see
Proposition 6.4.1. We will end with a discussion on the Hilbert scheme of points.

Let Y = P1 ×P1 denote the quadric surface. Consider for any integers m,n the
canonical line bundle OY (m,n) = OP1(m) � OP1(n). It is well-known that the map
Pic(Y ) → Z ⊕ Z : OY (m,n) 7→ (m,n) is a group isomorphism i.e. the objects
OY (m,n) are the only reflexive rank one sheaves on P1 ×P1. Note there are short
exact sequences on coh(Y )

0 → OY (m,n− 1) → OY (m,n)2 → OY (m,n+ 1) → 0

0 → OY (m− 1, n) → OY (m,n)2 → OY (m+ 1, n) → 0
(6.12)

for all integers m,n.

6.4.1 Line bundles

As usual we put X = ProjA and OX = O. In [79] it is shown there is an equivalence
of categories Qcoh(Y ) ∼= Qcoh(X) such that OY (k, k) corresponds to OX(2k) and
OY (k, k+1) corresponds to OX(2k+1). See also [69, §11.3]. Further, for any integers
m,n we denote the image of OY (m,n) under the equivalence Qcoh(Y ) ∼= Qcoh(X)
as O(m,n). Clearly these objects O(m,n) ∈ coh(X) are the only line bundles on X .

From (6.12) we compute the class of O(m,n) in K0(X)

[O(m,n)] = [O] + (m− n)[S] + n[Q] + n(m+ 1)[P ]

for all m,n ∈ Z. Using (6.7) we obtain

O(m,n)(2k) = O(m+ k, n+ k), O(m,n)(2k + 1) = O(n+ k,m+ k + 1)

for all m,n, k ∈ Z. By (6.7) it is easy to see O(m,n)(−m − n) = O(u,−u) is a
normalized line bundle where

u =

{
(m− n)/2 if m− n is even
(n−m− 1)/2 if m− n is odd

Since [O(u,−u)] = [O]+2u[S]−u[Q]−u(u+1)[P ] the invariants (ne, no) of O(u,−u)
are given by (ne, no) = (u2, u(u + 1)). Either k = u ≥ 0 or k = −u − 1 ≥ 0. These
two possibilities correspond to Cases 1 and 2 of Section 6.3. In particular R(ne,no)(X)
is nonempty if and only if (ne, no) is (k2, k(k + 1)) or ((k + 1)2, k(k + 1)) for some
integer k ≥ 0 and in that case R(ne,no)(X) = {O(no − ne, ne − no)}.
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Proposition 6.3.3 implies that a minimal resolution for O(m,n) is of the form

0 → O(2n− 1)m−n → O(2n)m−n+1 → O(m,n) → 0 if m ≥ n,

0 → O(2m)n−m−1 → O(2m+ 1)n−m → O(m,n) → 0 if m < n.

We have shown

Proposition 6.4.1. Assume A is linear and let I ∈ grmod(A) be a reflexive graded
right ideal of A. Then I has a minimal resolution of the form

0 → A(−c− 1)c → A(−c)c+1 → I(d) → 0 (6.13)

for some integers d and c. As a consequence R(ne,no)(A) = ∅ = R(ne,n0)(X) unless
ne = (ne − no)

2 i.e. (ne, no) = ((k + 1)2, k(k + 1)) or (ne, no) = (k2, k(k + 1)) for
some k ∈ N.

6.4.2 Hilbert scheme of points

The Hilbert scheme of points for Y = P1 ×P1, which we will denote by Hilb(Y ),
parameterizes the torsion free rank one sheaves on Y up to shifting. By the category
equivalence Qcoh(Y ) ∼= Qcoh(X) where X = ProjA we see Hilb(Y ) also parameter-
izes the torsion free rank one objects on X up to shifting. Let I ∈ coh(X) be such
an object. Put I = πI where I ∈ grmod(A). Thus I∗∗ := πI∗∗ is a line bundle on X
of rank one hence I∗∗ ∼= O(m,n) for some integers m,n. By [8, Corollary 4.2] there
is an exact sequence

0 → I → I∗∗ → N → 0

where N ∈ coh(X) is a zero dimensional object of some degree l ≥ 0. Since N admits
a filtration by point objects on X we have [N ] = l[P ]. Also I∗∗(d) ∼= O(u,−u) for
some d, u ∈ Z. Computing the class of I(d) in K0(X) we find

[I(d)] = [O] + 2u[S] − u[Q]− (u(u+ 1) − l) [P ]

from which we deduce I(d) ∈ Hilb(ne,no)(X), as defined in §6.2.3, where (ne, no) =
(u2 + l, u(u+ 1) + l). Again we separate

Case 1. u ≥ 0. Put k = u. Then (ne, no) = (k2 + l, k(k + 1) + l) where k, l ∈ N.

Case 2. u < 0. Put k = −u − 1. Then (ne, no) = ((k + 1)2 + l, k(k + 1) + l) where
k, l ∈ N.

Remark 6.4.2. By the above discussion we may associate invariants (ne, no) ∈ N =
{(ne, no) ∈ N2 | ne − (ne − no)

2 ≥ 0} to any object in Hilb(Y ). Let Hilb(ne,no)(Y )
denote the associated parameter space. The dimension of Hilb(ne,no)(Y ) may be
deduced as follows. Given (ne, no) ∈ N fixes l ∈ N and u ∈ Z as above. The
number of parameters to choose O(u,−u) is zero. On the other hand, to choose a
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point in P1 ×P1 we have two parameters. Thus to pick a zero-dimensional subsheaf
N of degree l we have 2l parameters since such N admits a filtration of length l in
points of P1 ×P1. Hence the freedom of choice in a normalized torsion free rank one
sheaf I is 2l. Hence dimHilb(ne,no)(Y ) = 2l. Since l = ne − (ne − no)

2 we have

dimHilb(ne,no)(Y ) = 2
(
ne − (ne − no)

2
)
.

6.5 Some results on line and conic objects

In this section we gather some additional results on line objects and conic objects on
quantum quadrics which will be used later on. These results are obtained by using
similar techniques as in [1, 8].

Let A be a cubic Artin-Schelter algebra. We use the notations of §1.9.4. In
particular (E, σ,OE(1)), B = B(E, σ,OE(1)), (C, σ,OC (1)), D = B(C, σ,OC(1)) =
Γ∗(OC), g and h will have their usual meaning. Recall the isomorphism of k-algebras

A/hA
∼=
−→ D : a 7→ a. The dimension of objects in grmod(B), grmod(D) or tails(B),

tails(D) will be computed in grmod(A) or tails(A). We begin with

Lemma 6.5.1. Let w ∈ Ad for some integer d ≥ 1 and put W = A/wA, W = πW .

1. Let p ∈ C. Then HomX(W ,Np) 6= 0 if and only if w(p) = 0.

2. dimk HomX(W ,Np) ≤ 1 for all p ∈ C.

Proof. Firstly, if f : W → Np is non-zero then πf : W → Np is non-zero since
Np is socle-free i.e. HomA(k,Np) = 0. Conversely, HomX(W ,Np) 6= 0 implies
HomA(W,Np) 6= 0. Indeed, a non-zero map g : W → Np yields a surjective map
ωg : W → (ωNp)≥n for n � 0. Now (ωNp)≥n = Nσnp(−n) ⊂ Np, which yields a
non-zero map W → Np.

So to prove the first statement it is sufficient to show HomA(W,Np) 6= 0 if and
only if w(p) = 0. This is proved in a similar way as [1]. For convenience we shortly
repeat the arguments. Writing down resolutions for W , Np we see there is a non-zero
map f : W → Np if and only if we may find (non-zero) maps f0, f1 making the
following diagram commutative

0 - A(−d)
w· - A - W - 0

0 - A(−3) - A(−1) ⊕A(−2)

f1
?

- A

f0

?
θ- Np - 0

The resolutions being projective, this is equivalent with saying there is a non-zero
map f0 such that θ ◦ f0 ◦ w = 0, i.e. w(p) = 0.

The second part is shown by applying HomX(−,Np) to the short exact sequence
0 → O(−d) → O → W → 0 and bearing in mind HomX(O,Np) = k.
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Remark 6.5.2. It follows from the first part of the previous lemma there exists at least
one p ∈ C for which HomX(W ,Np) 6= 0. Moreover any such non-zero morphism is
surjective since point objects are simple objects in coh(X).

6.5.1 Line objects

Let u = λx + µy ∈ A1. Then u ∈ D1 = H0(C,OC(1)) and a point p = (p1, p2) ∈ C
vanishes at u i.e. u(p) = 0 if and only if p1 = (−µ, λ) ∈ P1. We have shown

Lemma 6.5.3. Let p ∈ C. There exists, up to isomorphism, a unique line object S
on X for which HomX(S,Np) 6= 0.

In case A is elliptic then E is a divisor of bidegree (2, 2) which means that for
u ∈ A1 the line {u = 0} × P1 meets C in at most two different points p, q.

For general A we call two different points p, q ∈ C collinear if l(p) = l(q) = 0 for
some global section in l ∈ H0(C,OC(1)) = D1. It follows from the previous discussion
that pr1 p = pr1 q.

6.5.2 Conic objects

We now deduce

Lemma 6.5.4. Let p, q, r be three distinct points in C. There exists, up to isomor-
phism, a unique conic object Q on X for which HomX(Q,Np) 6= 0, HomX(Q,Nq) 6= 0
and HomX(Q,Nr) 6= 0.

Proof. Due to Lemma 6.5.1 it will be sufficient to prove there exists, up to scalar
multiplication, a unique quadratic form v ∈ A2 for which v(p) = v(q) = v(r) = 0.

Writing v = λ1x
2 + λ2xy + λ3yx+ λ4y

2 where λi ∈ k and p = ((α, β), (α′, β′)) ∈
C ⊂ P1 ×P1, we see v(p) = 0 if and only if λ1αα

′ + λ2αβ
′ + λ3βα

′ + λ4ββ
′ = 0. The

condition v(p) = v(q) = v(r) = 0 then translates to a system of three linear equations
in λ1, . . . , λ4, which admits a non-trivial solution. Moreover, this solution is unique
(up to scalar multiplication) unless all maximal minors are zero, which implies that
at least two points of p, q, r coincide.

Subobjects of line objects on X are shifted line objects [8]. We may prove a similar
result for conic objects.

Lemma 6.5.5. Let Q be a conic object and p ∈ C. Assume HomX(Q,Np) 6= 0.

1. The kernel of a non-zero map Q → Np is a shifted conic object Q′(−1).

2. Assume A is elliptic and σ has infinite order. If in addition Q is critical then
all subobjects Q are shifted critical conic objects.
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Proof. Firstly, let f denote such a non-zero map Q → Np. Since Np is simple, f is
surjective. Putting Q = πQ where Q is a conic module over A it is sufficient to show
that the kernel of a surjective map Q→ (Np)≥n is of the form Q′(−1) for some conic
object Q′. This is done by taking the cone of the induced map between resolutions
of Q and (Np)≥n.

Secondly, as Q is critical, any quotient of Q has dimension zero and since σ has
infinite order such a quotient admits a filtration by shifted point objects on X , see
[8]. By the first part this completes the proof.

We will also need the dual statement of the previous result.

Lemma 6.5.6. Let Q be a conic object and p ∈ C. Assume Ext1X(Np,Q) 6= 0.

1. The middle term of a non-zero extension in Ext1X(Np,Q) is a shifted conic
object Q′(1).

2. Assume A is elliptic and σ has infinite order. Then any extension of Q by a
zero dimensional object is a shifted conic object.

Proof. Again the second statement is clear from the first one thus it suffices to prove
the first part. Put Q = πQ where Q is a conic module over A. Let J denote the
middle term of a non-trivial extension i.e. 0 → Q → J → Np → 0. It is easy to
see J is pure and ωJ ∈ coh(X) has projective dimension one, see for example (the
proof of) [28, Proposition 3.4.1]. Put J = ωJ . Application of ω gives a short exact
sequence

0 → Q→ J → (Np)≥n → 0 (6.14)

Applying HomA(−, A) on (6.14) yields 0 → J∨ → Q∨ → ((Np)≥n)∨ → 0. As
((Np)≥n)

∨ is a shifted point module and Q∨ is a shifted conic module it follows from
Lemma 6.5.5 that J∨ is also a shifted conic module. Hence the same is true for J∨∨.
Consideration of Hilbert series shows J∨∨ = Q′(1) for some conic module Q′ over A.
Since ωJ is Cohen-Macaulay Theorem 1.9.8 implies πJ∨∨ = πJ = J . This finishes
the proof.

Remark 6.5.7. Lemmas 6.5.5 and 6.5.6 are in contrast with the situation for quadratic
Artin-Schelter algebras [1, §4] where a non-zero map A/vA→ Np (where v ∈ A2 and
p ∈ C) will yield an exact sequence 0 → Q′(−1) → A/vA → Np → 0 for which Q′

has a resolution of the form 0 → A(−1)2 → A2 → Q′ → 0.

Let Z denote the full subcategory of coh(X) whose objects consist of zero dimen-
sional objects of coh(X). Z is a Serre subcategory of coh(X), see for example [83].
We say M,N ∈ coh(X) are equivalent up to zero dimensional objects if their images
in the quotient category coh(X)/Z are isomorphic. We say M and N are different
modulo zero dimensional objects if they are not equivalent up to zero dimensional
objects. Using Lemmas 6.5.5 and 6.5.6 one proves
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Lemma 6.5.8. Assume A is elliptic and σ has infinite order. Then two critical conic
objects on X are equivalent up to zero dimensional objects if and only if they have a
common subobject.

We now come to a key result which we will need in §6.7.7 below.

Lemma 6.5.9. Assume k is uncountable, A is elliptic and σ has infinite order.
Let p, p′ ∈ C for which p, p′, σp, σp′ are pairwise different and non-collinear. Then,
modulo zero dimensional objects, there exist infinitely many critical conic objects Q
for which HomX(Q,Np) 6= 0 and HomX(Q,Np′) 6= 0.

Proof. Write p = ((α0, β0), (α1, β1)) ∈ C. We prove the lemma in seven steps.

Step 1. Let d ∈ N and let Q,Q′ be two critical objects for which Q′(−d) ⊂ Q. Then
there is a filtration Q′(−d) = Qd(−d) ⊂ Qd−1(−d + 1) ⊂ · · · ⊂ Q1(−1) ⊂ Q0 = Q
where the Qi are critical conic objects and the successive quotients are point objects
on X . This follows from the proof of Lemma 6.5.5.

Step 2. Up to isomorphism there are uncountably many conic objects Q on X for
which HomX(Q,Np) 6= 0, HomX(Q,Np′) 6= 0. See the proof of Lemma 6.5.4.

Step 3. Let A denote the set of isoclasses of critical conic objects Q for which
HomX(Q,Np) 6= 0, HomX(Q,Np′) 6= 0. Then A is an uncountable set. By the
previous step it is sufficient to show there are only finitely many non-critical conic
objects Q on X for which HomX(Q,Np) 6= 0, HomX(Q,Np′) 6= 0. For such an object
Q it is easy to see there exists an exact sequence

0 → S′(−1) → Q → S → 0 (6.15)

for some line objects S,S′ on X . Also, dimk Ext1X(S,S′(−1)) ≤ 1 hence Q is, up
to isomorphism, fully determined by S and S′. We deduce from (6.15) that either
HomX(S,Np) 6= 0, HomX(S′,Nσp) 6= 0 or HomX(S,Np′ ) 6= 0, HomX(S′,Nσp′) 6= 0.
By Lemma 6.5.3 this means there are at most two non-critical conic objects for which
HomX(Q,Np) 6= 0 and HomX(Q,Np′) 6= 0.

Step 4. Let B ⊂ A denote the set of conic objects Q = πQ for which Q is h-torsion
free. Then B is uncountable. Indeed, writing Q = A/vA we find Q is h-torsion free
(meaning multiplication by h is injective) unless v : OC(−2) → OC is not injective.
Hence v = 0 which means that v and h have a common divisor. As v is not a product
of linear forms, v divides h. Up to scalar multiplication there are only finitely many
possibilities for such v.

Step 5. For any Q ∈ B there are, up to isomorphism, only finitely many points
objects Np for which HomX(Q,Np) 6= 0 or Ext1X(Np,Q(−1)) 6= 0. To show this,
write Q = π(A/vA) and Q = A/vA. Since v does not divide h, it does not divide
g thus Q is also g-torsion free. Thus Q/gQ is a B-module of GK-dimension one so
(Q/gQ)̃ is a finite dimensional OE-module. Writing vg for the image of v in B this
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implies there are only finitely many points p ∈ E such that vg(p) = 0. By the same
methods used in the proof of Lemma 6.5.1 one may show there are finitely many point
objects Np on X for which HomX(Q,Np) 6= 0.

For the second part, Serre duality implies ExtiX(Np,Q(−1)) ∼= Ext2−iX (Q, N̂p)
′ for

i = 0, 1, 2 and a suitable point object N̂p on X . By χ(Q, N̂p) = 0, Lemma 6.5.1(2)
and the first part of Step 5 we are done.

Step 6. For any Qi ∈ B and any integer d ≥ 0 the following subset of B is finite

Vd(Qi) = {Q ∈ B | Q′(−d) ⊂ Q for a conic object Q′ for which Q′(−d) ⊂ Qi}

We will prove this for d = 1, for general d the same arguments may be used combined
with Step 1. Let Q′(−1) ⊂ Qi. Note Q′ ∈ B. Clearly any conic object Q on X
for which Q′(−1) ⊂ Q holds is represented by an element of Ext1X(Np,Q′(−1)) for
some point object Np, and two such conic objects Q are isomorphic if and only if the
corresponding extensions only differ by a scalar. By Step 5 and its proof there are
only finitely many such Q, up to isomorphism.

Step 7. There exist infinitely many critical conic objects Q0,Q1,Q2, . . . for which
HomX(Qi,Np) 6= 0, HomX(Qi,Np′) 6= 0 and Qi, Qj do not have a common subobject
for all j < i. Indeed, choose Q0 ∈ B arbitrary and having Q0,Q1, . . . ,Qi−1 we pick
Qi as an element of B which does not appear in the countable subset

⋃
d∈N,j<i Vd(Qj).

By Lemma 6.5.5 subobjects of critical conic objects are shifted critical conic objects
hence Step 7 follows.

Combining Step 7 with Lemma 6.5.8 completes the proof.

Remark 6.5.10. If A is of generic type A for which σ has infinite order then Lemma
6.5.9 may be proved alternatively by observing that for any conic object Q = π(A/vA)
containing a shifted conic object Q′ = π(A/v′A) we have

div(v′) = (σap) + (σbq) + (σcr) + (σ−a−b−cr) for some a, b, c ∈ Z

where we have written div(v) = (p)+(q)+(r)+(s) for the divisor of zeroes of v ∈ D2.
This observation is proved by using similar methods as in [1], see also [3, Theorem
3.2]. Thus if A is of generic type A we do not need the hypothesis k is uncountable
in Lemma 6.5.9.

6.6 Restriction of line bundles to the divisor C

In this section A is an elliptic cubic Artin-Schelter algebra and X = ProjA, to which
§1.9.4 we associate the geometric data (C, σ,OC(1)), the homogeneous coordinate
ring D = B(C, σ,OC(1)) and the map of noncommutative schemes u : C → X .

The following result is proved as Proposition 2.3.2.

Proposition 6.6.1. Let A be an elliptic cubic Artin-Schelter regular algebra.
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1. If M is a vector bundle in X then Lju
∗M = 0 for j > 0 and u∗M is a vector

bundle on C.

2. Assume σ has infinite order and let M ∈ Db(coh(X)) for which Lu∗M is a
vector bundle on C. Then M is a vector bundle on X.

Although some of the following results may be generalized, for the rest of this
Section 6.6 we will assume A is of generic type A (see Example 1.9.3). Thus E is
a smooth divisor of bidegree (2, 2) on P1 ×P1. Since E has arithmetic genus 1 it
is a smooth elliptic curve [41]. Fixing a group law on E the automorphism σ is a
translation by some element ξ ∈ C i.e. σp = p+ ξ for all p ∈ E. We write o for the
origin of the group law of C. For p, q, r ∈ C we have p + q = r if and only if the
divisors (p) + (q) and (r) + (o) on C are linearly equivalent [41, Chapter IV §4].

Since E is reduced the geometric data (E, σ,OE(1)) and (C, σ,OC (1)) coincide
and g = h ∈ A4, D = B = B(E, σ,OE(1)).

The functor u∗ induces a group homomorphism

u∗ : K0(X) → K0(C) : [M] 7→
∑

j

(−1)j [Lju
∗M] = [u∗M] − [L1u

∗M]

Recall the basis B′ = {[O], [S], [Q], [P ]} for K0(X) from §6.2.2. The image of B′ under
u∗ is computed in the following analogue of Lemma 2.3.3.

Lemma 6.6.2. Assume A is a cubic Artin-Schelter algebra of generic type A. Then

u∗[O] = [OC ]

u∗[S] = [Op] + [Oq] p, q ∈ C arbitrary but collinear

u∗[Q] = [Op] + [Oq] + [Or] + [Os] p, q, r, s ∈ C arbitrary but p+ q + r + s =

2(p′ + q′ − ξ) for some collinear p′, q′ ∈ C

u∗[P ] = [Op] − [Oσ−4p] p ∈ C arbitrary

Proof. Since A is h-torsion free we have L1u
∗O = 0 hence u∗[O] = [u∗O] = [OC ].

Second, write S = A/aA for some a ∈ A1 and S = πS. Application of − ⊗A D on

the exact sequence 0 → A(−1)
a·
−→ A→ S → 0 gives

0 → TorA1 (S,D) → D(−1)
a·
−→ D → S ⊗A D → 0

Since D is a domain the middle map is injective. Hence TorA1 (S,D) = 0 (thus S is
h-torsionfree) and therefore L1u

∗S = 0. Thus u∗[S] = [u∗S]. From [8] it follows that
u∗S = OL where L is the scheme-theoretic intersection of C and the line {a = 0}×P1.
Since L consists of two points p, q we obtain [OL] = [Op] + [Oq]. By definition p and
q are collinear points. This proves the second equality.

Third, same reasoning as above yields u∗Q is a finite dimensional OC -module
which corresponds to a divisor of degree four on C. Thus we may write [u∗Q] = [Op]+
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[Oq]+[Or]+[Os] for some p, q, r, s ∈ C. It is easy to see that OC(−2) = σ∗OC(−1)⊗C
OC(−1). Since OC(−1) = OC(−L) (from the previous part) we find that its pullback
via σ is equal to σ∗OC(−1) = OC(−σ−1L) hence OC(−2) = OC(−L− σ−1L). This
means the divisor of u∗Q is linearly equivalent to L + σ−1L, which means they have
the same sum under the group law of C.

Finally we prove the fourth equation. Put P = Np. NowNp⊗AD ∼= Np/Nph = Np
thus u∗Np = Ñp = Op. Applying Np⊗A− to the short exact sequence of A-bimodules

0 → A(−4)
·h
−→ A→ D → 0 we get the exact sequence

0 → TorA1 (Np, D) → Np(−4)
·h
−→ Np → Np ⊗A D → 0

As h = 0 we find TorA1 (Np, D) = Np(−4) =
(
Nσ−4p

)
≥4

. Thus L1u
∗Np =

TorA1 (Np, D)̃ =
(
Nσ−4p

)
˜ = Oσ−4p. This ends the proof of the lemma.

Let M ∈ coh(X) and write [M] = r[O] + a[S] + b[Q] + c[P ]. By the previous
lemma

ranku∗[M] = r = rankM and deg u∗[M] = 2a+ 4b (6.16)

We deduce

Proposition 6.6.3. Let A be a cubic Artin-Schelter algebra of generic type A.

1. If I is a line bundle on X then u∗I is a line bundle on C, and I is normalized
if and only if deg u∗I = 0.

2. If I is a normalized line bundle on X with invariants (ne, no) then

c1(u
∗I) = OC((o) − (2(ne + no)ξ))

Proof. The first statement is immediate from the definition of a normalized line bundle
on X . The second part results from a straightforward computation.

Corollary 6.6.4. Let A be a cubic Artin-Schelter regular algebra of generic type A
and assume σ has infinite order. Then the category

R(X) =
∐

(ne,no)∈N

R(ne,no)(X) = {normalized line bundles on X}

is equivalent to the full subcategory of coh(X) with objects

{M ∈ coh(X) | u∗M is a line bundle on C of degree zero}.

Proof. Due to Proposition 6.6.3 it is sufficient to prove that if M ∈ coh(X) for which
u∗M ∈ coh(C) is a line bundle of degree zero, then M is a normalized line bundle
on X . Pick M ∈ grmod(A) for which πM = M. We may assume M contains no
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subobject in tors(A). By Proposition 6.6.1 and (6.16) it suffices to prove Lu∗M =
u∗M i.e. L1u

∗M = 0.

It is sufficient to prove M is torsion free, since it then follows that M is h-torsion

free whence L1u
∗M = ker(M(−4)

·h
−→M )̃ = 0. So let us assume by contradiction M

is not torsion free. Let T ⊂M the maximal torsion submodule of M . Thus 0 6= M/T
is torsion free. Applying u∗ to 0 → πT → M → π(M/T ) → 0 then gives the exact
sequence 0 → u∗πT → u∗M → u∗π(M/T ) → 0 on C. Since u∗M is a line bundle on
C, it is pure hence either u∗πT is a line bundle or u∗πT = 0.

If u∗πT would be a line bundle then u∗π(M/T ) = (M/T ⊗A D)̃ has rank zero.
Thus M/T ⊗A D ∈ grmod(D) has GK-dimension ≤ 1. But then GKdimM/T ≤ 2, a
contradiction with the fact that M/T ∈ grmod(A) is non-zero and torsion free. Thus
u∗πT = 0 i.e. (T/hT )̃ = 0. This means π(T/hT ) = 0 hence T/hT ∈ tors(A). By
Lemma 1.9.19 we deduce T ∈ tors(A) thus T = 0 since M contains no subobjects in
tors(A). This ends the proof.

Remark 6.6.5. Some of the results above may be generalized to other elliptic cubic
Artin-Schelter algebras. For example, if we consider the situation where A = Hc is
the enveloping algebra then one obtains the similar results

• If I is a line bundle on X then u∗I is a line bundle on C = ∆ (the diagonal
on P1 ×P1) and L1u

∗I = 0. In addition I is normalized if and only if u∗I has
degree zero, i.e. if and only if u∗I ∼= O∆ (since Pic(∆) ∼= Z).

• The category R(X) =
∐

(ne,no) R(ne,no)(X) is equivalent to the full subcategory

of coh(X) with objects {M ∈ coh(X) | u∗M ∼= O∆}.

6.7 From line bundles to quiver representations

Throughout Section 6.7, A will be a cubic Artin-Schelter algebra. From §6.7.3 onwards
we will furthermore assume A is elliptic (and often restrict to the case where σ has
infinite order). We recycle the notations of Section 1.9.4 and write u : C → X for the
map of noncommutative schemes as defined in Section 6.6.

6.7.1 Generalized Beilinson equivalence

We set E = O(3)⊕O(2)⊕O(1)⊕O and U = HomX(E , E) =
⊕3

i,j=0 HomX(O(i),O(j)).
The functor HomX(E ,−) from coh(X) to the category mod(U) of right U -modules
extends to an equivalence RHomX(E ,−) of bounded derived categories [18]

Db(coh(X))

RHomX(E,–)-

�
–

L

⊗UE

Db(mod(U)) (6.17)
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where the inverse functor is given by −
L

⊗U E . For the classical case X = Pn such an
equivalence was found by Beilinson [15]. We refer to (6.17) as generalized Beilinson
equivalence. For a non-negative integer i this equivalence restricts to an equivalence
[12] between the full subcategories Xi = {M ∈ coh(X) | ExtjX(E ,M) = 0 for j 6= i}

and Yi = {M ∈ mod(U) | TorUj (M, E) = 0 for j 6= i}. The inverse equivalences are

given by ExtiX(E ,−) and TorUi (−, E).
It is easy to see that U ∼= kΓ/(R) where kΓ is the path algebra of the quiver Γ

−3

X−3-
Y−3- −2

X−2-
Y−2- −1

X−1-
Y−1- 0 (6.18)

with relations R reflecting the relations of A. If we write the relations of A as (1.18)
then the relations R are given by

(
X−1 Y−1

)
·M t

A(X−2, Y−2, X−3, Y−3) = 0 (6.19)

where M t
A(X−2, Y−2, X−3, Y−3) is obtained from the matrix M t

A by replacing x2, xy,
yx and y2 by X−2X−3, Y−2X−3, X−2Y−3 and Y−2Y−3.

As agreed in Section 1.3 we write Mod(Γ) for the category of representations of the
quiver Γ, where representations are assumed to satisfy the relations. ForM ∈ Mod(Γ)
we write Mi for the k-linear space located at vertex i of Γ and M(Xi), M(Yi) for the
linear maps corresponding to arrows Xi, Yi of Γ (i = −3, . . . , 0). As usual we denote
Si for the simple representation corresponding to i. Since the category Mod(Γ) of
representations of Γ is equivalent to the category of right kΓ/(R)-modules we deduce
Mod(Γ) ∼= Mod(U). From now on we write Mod(Γ) instead of Mod(U). One verifies
that the matrix representation of the Euler form χ : K0(Γ)×K0(Γ) → Z with respect
to the basis {S−3, S−2, S−1, S0} of K0(Γ) is given by




1 −2 0 2
0 1 −2 0
0 0 1 −2
0 0 0 1


 . (6.20)

6.7.2 Point, line and conic representations

For further use we determine the representations of Γ corresponding to point, line and
conic objects on X . The following lemmas are proved in the same spirit as Lemmas
2.4.1 and 2.4.2.

Lemma 6.7.1. Let p ∈ C and put (αi, βi) = pr1(σ
ip) ∈ P1.

1. Hj(X,Np(m)) = 0 for all integers m and j > 0. In particular Np ∈ X0.

2. dimk (ωNp)m = 1 for all m and (ωNp)≥m is a shifted point module for all

integers m. In particular (ωNp)≥0 = Np.
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3. H0(X,Np(m)) = (ωNp)m for all integers m.

4. Write RHomX(E ,Np) = p. Then dimp = (1, 1, 1, 1) and p ∈ mod(Γ) corre-
sponds to the representation

k

α−3-
β−3- k

α−2-
β−2- k

α−1-
β−1- k

Lemma 6.7.2. Let n ≥ 1 be an integer, w ∈ An and put W = π(A/wA).

1. H1(X,W(m)) ∼= (A/Aw)′−m−2 for m ≤ −1

2. Hj(X,W(m)) = 0 for m ≤ −1 and j 6= 1. In particular W(−1) ∈ X1.

3. If η ∈ A1 then the induced linear map H1(X,W(m))
·η
−→ H1(X,W(m + 1))

corresponds to (η·)′ on (A/Aw)′.

4. Write RHomX(E ,W(−1)) = W [−1]. Then

dimW =





(2, 1, 1, 0) if n = 1
(3, 2, 1, 0) if n = 2
(4, 2, 1, 0) if n > 2

and W ∈ mod(Γ) corresponds to the representation

(A/Aw)′2

(x·)′-
(y·)′- (A/Aw)′1

(x·)′-
(y·)′- k

-
- 0 (6.21)

6.7.3 First description of R(ne,no)(X)

From now on we assume in Section 6.7 A is an elliptic cubic Artin-Schelter algebra. As
in (6.9) we put N = {(ne, no) ∈ N2 | ne − (ne − no)

2 ≥ 0}. Recall from §6.2.3 the set
R(A) of reflexive rank one graded right A-modules considered up to isomorphism and
shift is in natural bijection with the isoclasses in the category

∐
(ne,no)∈N R(ne,no)(X)

where R(ne,no)(X) is the full subcategory of coh(X) consisting of the normalized line
bundles on X with invariants (ne, no).

Let I be an object of R(ne,no)(X), considered as a complex in Db(coh(X)) of
degree zero. Theorem 6.2.11 implies I ∈ X1. Thus the image of this complex is
concentrated in degree one i.e. RHomX(E , I) = M [−1] where M = Ext1X(E , I) is
a representation of ∆. By functoriality, multiplication by x, y ∈ A induces linear
maps M(X−i),M(Y−i) : H1(X, I(−i)) → H1(X, I(−i+ 1)) hence M is given by the
following representation of Γ

H1(X, I(−3))

M(X−3)-
M(Y−3)- H1(X, I(−2))

M(X−2)-
M(Y−2)- H1(X, I(−1))

M(X−1)-
M(Y−1)- H1(X, I)

We denote C(ne,no)(Γ) for the image of R(ne,no)(X) under the equivalence X1
∼= Y1.

In an analogue way as Theorem 2.4.3 we obtain
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Theorem 6.7.3. Let A be an elliptic cubic Artin-Schelter algebra where σ has infinite
order. Let (ne, no) ∈ N \ {(0, 0)}. Then there is an equivalence of categories

R(ne,no)(X)

Ext1X (E,–)-

�
TorΓ1 (–,E)

C(ne,no)(Γ)

where

C(ne,no)(Γ) = {M ∈ mod(Γ) | dimM = (no, ne, no, ne − 1) and

HomΓ(M,p) = 0,HomΓ(p,M) = 0 for all p ∈ C}. (6.22)

Proof. Similar as the proof of Theorem 2.4.3.

6.7.4 Line bundles on X with invariants (1, 0) and (1, 1)

We may now parameterize the line bundles on X for some low invariants.

Corollary 6.7.4. Let A be an elliptic cubic Artin-Schelter algebra where σ has infinite
order.

1. The category C(1, 0) consists of one object namely the simple object S−2

0
0

−→
0

−→
k

0
−→

0
−→

0
0

−→
0

−→
0

2. The representations in C(1, 1) are the representations of Γ of the form

k

α
−→
β

−→
k

α′

−→
β′

−→
k

0
−→

0
−→

0 (6.23)

where ((α, β), (α′, β′)) ∈ (P1 ×P1) − C.

Proof. The first statement being trivial by dimension arguments, we turn to the
second part. Let F ∈ C(1, 1). Then F is given by (6.23) for some scalars α, β, α′, β′ ∈
k. We will first show that ((α, β), (α′, β′)) ∈ P1 ×P1 i.e. (α, β) 6= (0, 0) and (α′, β′) 6=
(0, 0).

If α, β were both zero then for any p ∈ C there is a non-zero morphism in
HomΓ(p,M), given by (writing pr1 σ

ip = (αi, βi))

k

α−3-
β−3- k

α−2-
β−2- k

α−1-
β−1- k

k

id

? 0-
0- k

0

? α′

-
β′

- k

0

? 0-
0- k

0

?
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Thus (α, β) ∈ P1. Further, assume by contradiction that (α′, β′) = (0, 0). There is
a point p ∈ C such that pr1 σ

−3p = (α, β). This follows from the fact that for any
point p1 ∈ P1 there is a point p2 ∈ P1 such that (p1, p2) ∈ C. We then find a non-zero
morphism in HomΓ(p, F ) given by (writing pr1 σ

ip = (αi, βi))

k

α-
β- k

α−2-
β−2- k

α−1-
β−1- k

k

id

? α-
β- k

id

? 0-
0- k

0

? 0-
0- k

0

?

yielding the desired contradiction. Thus we have shown that ((α, β), (α′, β′)) ∈
P1 ×P1. Furthermore the condition HomΓ(p, F ) = 0 for all p ∈ C implies
((α, β), (α′, β′)) 6∈ C. Indeed, if ((α, β), (α′, β′)) = q were a point in C then τ =
(id, id, id, 0) is a non-zero morphism in HomΓ(p, F ) where p = σ3q given by the com-
mutative diagram (write pr1 σ

−1p = (α′′, β′′))

k

α-
β- k

α′

-
β′

- k

α′′

-
β′′

- k

k

id

? α-
β- k

id

? α′

-
β′

- k

id

? 0-
0- k

0

?

We conclude that ((α, β), (α′, β′)) ∈ (P1 ×P1) − C.
Conversely let F as in (6.23) with ((α, β), (α′, β′)) ∈ (P1 ×P1) − C. Then by

consideration of the appropriate commutative diagrams we deduce HomΓ(p, F ) =
0 = HomΓ(F, p) = 0 for all p ∈ C.

6.7.5 Description of R(ne,no)(X) for the enveloping algebra

In this section we let A be the enveloping algebra Hc. Thus C = Ered is the diagonal
∆ on P1 ×P1. Recall from §1.9.4 that the restriction σ∆ is the identity. Our proof
of the next lemma is in the same spirit as the proof of [16, Theorem 4.5(i)] for the
homogenized Weyl algebra.

Lemma 6.7.5. Let I ∈ R(ne,no)(X) for some (ne, no) ∈ N \ {(0, 0)}. Consider for
any integer m the linear map M(Zm) induced by multiplication by z = xy − yx

M(Zm) : H1(X, I(−m)) → H1(X, I(−m+ 2))

Then M(Zm) is surjective for m < 4 and injective for m > 2.

Proof. Let m be any integer and put Q = π(A/zA) = πD. Then u∗Q = O∆.

Applying HomX(−, I) to 0 → OX(m− 2)
z
→ OX(m) → Q(m) → 0 yields

Ext1X(Q(m), I) → H1(X, I(−m))
M(Zm)
−−−−−→ H1(X, I(−m+ 2)) → Ext2X(Q(m), I).
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Furthermore Theorem 1.10.5 (Serre duality) implies

Ext1X(Q(m), I) ∼= Ext1X(I,Q(m− 4))′, Ext2X(Q(m), I) ∼= HomX(I,Q(m− 4))′.

On the other hand since RHomX(I, u∗O∆(m− 4)) ∼= RHomΓ(Lu∗I,O∆(m− 4)) by
(6.17) and Lu∗I = O∆ (see Remark 6.6.5) we derive

HomX(I,Q(m− 4)) = H0(∆,O∆(m− 4)) = Dm−4 = 0 for m < 4

and by Serre duality on ∆

Ext1X(I,Q(m− 4)) = H1(∆,O∆(m− 4)) ∼= D′
−m+2 = 0 for m > 2

which completes the proof.

Theorem 6.7.6. Let A = Hc be the enveloping algebra. Let (ne, no) ∈ N \ {(0, 0)}.
Define for any M ∈ mod(Γ) the linear maps

M(Z−3) = M(Y−2)M(X−3) −M(X−2)M(Y−3)

M(Z−2) = M(Y−1)M(X−2) −M(X−1)M(Y−2)

There is an equivalence of categories

R(ne,no)(X)

Ext1X (E,–)-

�
TorΓ1 (–,E)

C(ne,no)(Γ)

where

C(ne,no)(Γ) = {M ∈ mod(Γ) | dimM = (no, ne, no, ne − 1) and

M(Z−3) isomorphism and M(Z−2) surjective}. (6.24)

Proof. Due to Theorem 6.7.3 it will be sufficient to prove that the descriptions (6.22)
(6.24) coincide. One inclusion follows from directly from Lemma 6.7.5, so let us as-
sume M ∈ mod(Γ) for which M(Z−3) is an isomorphism and M(Z−2) is surjective.
Let p = ((α : β), (α : β)) ∈ ∆ and write p ∈ mod(Γ) for the corresponding represen-
tation of the quiver Γ. Let τ = (τ−3, τ−2, τ−1, τ0) ∈ HomΓ(p,M) be any morphism.
Thus we have a commutative diagram in mod(k)

k

α -
β - k

α -
β - k

α -
β - k

M−3

τ−3

? M(X−3)-
M(Y−3)- M−2

τ−2

? M(X−2)-
M(Y−2)- M−1

τ−1

? M(X−1)-
M(Y−1)- M0

τ0

?
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We claim τ−3 = 0. Assume by contradiction this is not the case. Since M(Z−3) is
an isomorphism we surely have v = M(Z−3)τ−3(1) 6= 0. On the other hand, by the
commutativity of the above diagram

M(Z−3)τ−3(1) = (M(Y−2)M(X−3) −M(X−2)M(Y−3)) τ−3(1) = τ−1(αβ − βα) = 0

leading to the desired contradiction. Thus τ−3 = 0. It follows that τ = 0.

By similar arguments we may show for τ = (τ−3, τ−2, τ−1, τ0) ∈ HomΓ(M,p) we
have τ0 = 0, which implies τ = 0.

6.7.6 Restriction to a full subquiver

Let A be an elliptic cubic Artin-Schelter algebra. Although the description of
C(ne,no)(Γ) in Theorem 6.7.3 is quite elementary, it is not easy to handle. Similar
as in Chapter 2 and [52] for quadratic Artin-Schelter algebras we show representa-
tions in C(ne,no)(Γ) are completely determined by the four leftmost maps.

Let Γ0 be the full subquiver of Γ consisting of the vertices −3,−2,−1 in (6.18).
Let Res : Mod(Γ) → Mod(Γ0) be the obvious restriction functor. Res has a left
adjoint which we denote by Ind. Note Res ◦ Ind = id. If M ∈ Mod(Γ) we will denote
ResM by M0.

In general, two objects A and B of an abelian category C are called perpendicular,
denoted by A ⊥ B, if HomC(A,B) = Ext1C(A,B) = 0. For an object B ∈ Cf we define
⊥B as the full subcategory of Cf which objects are

⊥B = {A ∈ Cf | A ⊥ B}.

Repeating the arguments from the proof of Lemma 2.4.6 we have M = Ind ResM
for M ∈ mod(Γ) if and only if M ⊥ S0. This means the functors Res and Ind define
inverse equivalences [12]

mod(Γ) ⊃ ⊥S0

Res-

�
Ind

mod(Γ0) (6.25)

Lemma 6.7.7. Let (ne, no) ∈ N \ {(0, 0)}. Then C(ne,no)(Γ) ⊂ ⊥S0.

Proof. Similar as the proof of Lemma 2.4.7. See also [52].

Lemma 6.7.8. Let p ∈ C and Q be a conic object on X. Write p = HomX(E ,Np)
and Q = Ext1X(E ,Q(−1)). Then p ⊥ S0 and Q ⊥ S0.

Proof. That p,Q ∈ mod(Γ) follows from Lemmas 6.7.1 and 6.7.2. By (6.17) we have
ExtiΓ(p, S0) ∼= ExtiX(Np,O) = 0 for i = 0, 1. Similarly ExtiΓ(Q,S0) =
Exti−1

Γ (Q[−1], S0) ∼= Exti−1
X (Q,O) = 0 for i = 0, 1. This proves what we want.
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6.7.7 Stable representations

Our next objective is to show that the representations in C(ne,no)(X) restricted to Γ0

are stable. We will use the generalities on (semi)stable quiver representations from
Section 1.3.

The following lemmas are elementary.

Lemma 6.7.9. Let p ∈ C. Then Res p ∈ mod(Γ0) is θ-stable for θ = (−1, 0, 1).

Proof. We have (dimRes p) · θ = (1, 1, 1) · (−1, 0, 1) = 0, so what remains to verify is
that (dimN)·θ > 0 for all non-trivial subreprestationsN ⊂ Res p. For such N ⊂ Res p
we have a commutative diagram (writing pr1σ

ip = (αi, βi))

N : N−3

γ-
δ- N−2

γ′

-
δ′- N−1

Res p : k

ι−3

? α−3-
β−3- k

ι−2

? α−2-
β−2- k

ι−1

?

where γ, δ, γ′, δ′ ∈ k and ι−3, ι−2, ι−1 are injective maps. We claim that ι−3 = 0.
Indeed, if ι−3 6= 0 then it is easy to see from (α−3, β−3) 6= 0 and (α−2, β−2) 6= 0 that
this implies ι−2 6= 0 and ι−1 6= 0. But then N = Res p, contradiction. Hence ι−3 = 0.
Since ι−3 is injective we must have N−3 = 0 and consequently γ = δ = 0. Similarly
we have ι−2 6= 0 ⇒ ι−1 6= 0. Thus either dimN = (0, 1, 1) or dimN = (0, 0, 1). Note
that both cases are possible:

N : 0

0-
0- k

α−2-
β−2- k

Res p : k

0

? α−3-
β−3- k

id

? α−2-
β−2- k

id

?

and

N : 0

0-
0- 0

0-
0- k

Res p : k

0

? α−3-
β−3- k

0

? α−2-
β−2- k

id

?

Since for both cases we have θ · dimN = 1 > 0 we conclude that Res p is θ-stable for
θ = (−1, 0, 1).

Lemma 6.7.10. Assume 0 6= F,G ∈ mod(Γ0) are θ-semistable for θ = (−1, 0, 1).

1. If G is θ-stable then every non-zero map in HomΓ0(F,G) is surjective.

2. If F is θ-stable then every non-zero map in HomΓ0(F,G) is injective.
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Proof. Left to the reader. See also the proof of Lemma 2.4.15.

Proposition 6.7.11. Let Q = π(A/vA) be a conic object on X where v = αx2+βxy+
γyx+δy2 ∈ A2 and write Q = Ext1X(E ,Q(−1)) ∈ mod(Γ). Let (ne, no) ∈ N \{(0, 0)},
I ∈ R(ne,no)(X) and write M = Ext1X(E , I) ∈ mod(Γ). Then the following are
equivalent:

1. M0 ⊥ Q0

2. HomΓ0(M0, Q0) = 0

3. HomX(I,Q(−1)) = 0

4. I ⊥ Q(−1)

5. The following linear map is an isomorphism

f =αM0(X−2)M
0(X−3) + βM0(Y−2)M

0(X−3)

+ γM0(X−2)M
0(Y−3) + δM0(Y−2)M

0(Y−3) : M−3 →M−1

(6.26)

Proof. By definition (1) implies (2) and its converse is seen by χ(M0, Q0) = 0. The
equivalence (2) ⇔ (3) follows from (6.17) as

HomΓ0(M0, Q0) = HomΓ(IndM0, Q) = HomΓ(M,Q) = H0(RHomΓ(M,Q))

∼= H0(RHomX(I,Q(−1))) = HomX(I,Q(−1)).

To prove (3) ⇒ (4), as I is a normalized line bundle with invariants we may write
[I] = [O]− 2(ne − no)[S] + (ne − no)[Q]− no[P ]. Furthermore (6.7) yields [Q(−1)] =
[Q] − [P ] and using Proposition 6.2.6 one computes χ(I,Q(−1)) = 0. Since Serre
duality gives Ext2X(I,Q(−1)) ∼= HomX(Q(3), I)′ = 0 we conclude I ⊥ Q(−1) if and
only if HomX(I,Q(−1)) = 0.

Finally we prove the equivalence between (4) and (5). Applying HomX(−, I) to
0 → O(1) → O(3) → Q(3) → 0 gives a long exact sequence of k-vector spaces

0 → Ext1X(Q(3), I) →M−3
f
−→M−1 → Ext2X(Q(3), I) → 0

where we have used Theorem 6.2.11. As the middle map f is given by (6.26) we
deduce f is an isomorphism if and only if Ext1X(Q(3), I) = 0 = Ext2X(Q(3), I).
Invoking Serre duality on X the latter is equivalent with I ⊥ Q(−1).

Remark 6.7.12. In case A = Hc is the enveloping algebra we recover the prop-
erty M0(Z−2) being an isomorphism (Theorem 6.7.6), as for the conic object Q =
π(Hc/zHc)

RHomX(I,Q(−1)) = RHomX(I, u∗O∆(−1)) ∼= RHom∆(Lu∗I,O∆(−1))

and since Lu∗I = O∆ we obtain HomX(I,Q(−1)) ∼= Hom∆(O∆,O∆(−1)) = 0. As a
consequence the restriction of the representations in C(ne,no)(Γ) to Γ0 are θ-semistable
for some θ ∈ Z3. Since χ(−, dimQ0) = − · (−1, 0, 1) we may take θ = (−1, 0, 1).
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Inspired by the previous remark one might try to find, for all elliptic cubic Artin-
Schelter algebras A, a conic object Q on X for which HomX(I,Q(−1)) is zero for all
I ∈ R(ne,no)(X). We did not manage to find such a conic object independent of I.
However, we are able to prove that for a fixed normalized line bundle I on X there
is at least one conic object Q (which depends on I) for which HomX(I,Q(−1)) = 0.
We will then show how this leads to a proof that the representations in C(ne,no)(X)
restricted to Γ0 are stable.

Proposition 6.7.13. Assume k is uncountable and σ has infinite order. Let (ne, no) ∈
N such that (ne − 1, no− 1) ∈ N . Let I ∈ R(ne,no)(X). Then the set of conic objects
Q for which HomX(I,Q(−1)) 6= 0 is a curve of degree no in P(A2). In particular this
set is non-empty.

Proof. By Proposition 6.7.11 we have HomX(I,Q(−1)) 6= 0 if and only if det f = 0.
This is a homogeneous equation in (α, β, γ, δ) of degree no and we have to show
it is not identically zero, i.e. we have to show there is at least one Q for which
HomX(I,Q(−1)) = 0. This follows from Lemma 6.7.14 and Lemma 6.5.9 below.

Lemma 6.7.14. Assume k is uncountable and σ has infinite order. Let (ne, no) ∈ N
and l ≥ 0 as in (6.11). Let I ∈ R(ne,no)(X). Let p, p′ ∈ C such that p 6= σmp′

for all integers m. Modulo zero-dimensional objects, there exist at most l different
critical conic objects Q on X for which HomX(I,Q(−1)) 6= 0 and HomX(Q,Np) 6= 0,
HomX(Q,Np′) 6= 0.

Proof. That p 6= σmp′ for all integers m assures HomX(Np,Np′(m)) = 0 and
HomX(Np′(m),Np) = 0 for all integers m, which we will use throughout this proof.

We prove the statement by induction on l. First let l = 0 and assume by con-
tradiction there is a non-zero map f : I → Q(−1). Let I ′(−2) be the kernel of f .
By Lemma 6.5.5 the image of f is a shifted conic object Q′(−d) where d ≥ 1. Using
(6.7) one computes [I ′] = [O] − 2(ne − no)[S] + (ne − no)[Q] − (no − d)[P ]. It fol-
lows that I ′ is a normalized line bundle on X with invariants (ne − d, no − d). Since
(ne − d, no − d) 6∈ N this yields a contradiction with Proposition 6.3.2.

Let l > 0. Let (Qi)i=1,...,m be different critical conic objects (modulo zero-
dimensional objects) satisfying HomX(I,Qi(−1)) 6= 0 and HomX(Qi,Np) 6= 0,
HomX(Qi,Np′) 6= 0. We will show m ≤ l. If m = 0 then we are done. So as-
sume m > 0. Let Q′

i(−1) be the kernel of a non-trivial map Qi → Np. By Lemma
6.5.5 Q′

i is a critical conic object, and we have an exact sequence

0 → Q′
i(−1) → Qi → Np → 0.

Applying HomX(−,Np′) we find HomX(Q′
i(−2),Np′(−1)) 6= 0. Lemma 6.5.1(2) im-

plies such a map factors through Qi(−1). Let Q′′
i (−3) be the kernel of a non-trivial

map Q′
i(−2) → Np′(−1). Again by Lemma 6.5.5 Q′′

i is a critical conic object, and

0 → Q′′
i (−3) → Q′

i(−2)
π
−→ Np′(−1) → 0. (6.27)
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Applying HomX(−,Np(−2)) yields HomX(Q′′
i ,Np(1)) 6= 0. Furthermore, as (6.27)

is non-split, Serre duality (Theorem 1.10.5) implies 0 6= Ext1X(Np′(−1),Q′′
i (−3)) ∼=

Ext1X(Q′′
i ,Np′(−2))′. By χ(Q′′

i ,Np′(−2)) = 0 and again by Serre duality
Ext2X(Q′′

i ,Np′(−2)) ∼= HomX(Np′ ,Q′′
i (−1))′ = 0 we deduce HomX(Q′′

i ,Np′(−2)) 6= 0.

Let I ′(−2) be the kernel of a non-trivial map ι : I → Q1(−1). As in first part
of the proof one may show that I ′ is a normalized line bundle on X with invariants
(ne − d, no − d) for some d ≥ 1.

Since Np(−1) = u∗Op′ for some point p′ ∈ C it follows by adjointness
dimk HomX(I,Np(−1)) = dimk HomC(u∗I,Op′) = 1. Hence for all i the compo-
sition ai : I → Qi(−1) → Np(−1) is a scalar multiple of a1. Thus for all i the map
ai ◦ ι is a scalar multiple of a1 ◦ ι = 0. Hence the composition I ′(−2) → I → Qi(−1)
maps I ′(−2) to Q′

i(−2).

As pointed out above the map π in (6.27) factors through Qi(−1). Thus the com-
position I ′(−2) → Q′

i(−2) → Np′(−1) is the same as the composition bi : I ′(−2) →
I → Qi(−1) → Np′(−1). Same reasoning as above shows bi = 0 for all i hence the
composition I ′(−2) → Q′

i(−2) maps I ′(−2) to Q′′
i (−3).

We claim this map must be non-zero for i > 1. If not then there is a non-trivial
map I/I ′(−2) → Qi(−1) and since I/I ′(−2) is also a subobject of Q1(−1) it follows
that Q1 and Qi have a common subobject. By Lemma 6.5.8 this contradicts the
assumption Q1 and Qi being different modulo zero dimensional objects.

Hence HomX(I ′,Q′′
i (−1)) 6= 0 for i = 2, . . . ,m. Since the Q′′

i are still different
modulo zero dimensional objects and HomX(Q′′

i ,Np(1)) 6= 0, HomX(Q′′
i ,Np′(−2)) 6=

0 we obtain by induction hypothesis m− 1 ≤ l− d ≤ l − 1 and hence m ≤ l.

The following lemma is similar to Lemma 2.4.16.

Lemma 6.7.15. Put θ = (−1, 0, 1). Let V ∈ mod(Γ0) and assume the forms − · θ
and χ(−, dimV ) are proportional. Let F ∈ mod(Γ0) for which F ⊥ V . Then

1. If F ′ ⊂ F such that dimF ′ · θ = 0 then F ′ ⊥ V and F/F ′ ⊥ V

2. HomΓ0(F,Res p) = HomΓ0(Res p, F ) = 0 for all p ∈ C for which Res p is not
perpendicular to V .

Proof. Using the Euler form (6.20) on Γ it is easy to see dimV = (3l, 2l, l) for some
l ∈ N. Now proceed as in the proof of Lemma 2.4.16.

Lemma 6.7.16. Assume σ has infinite order. Let N ∈ mod(Γ0) with dimension
vector (no, ne, no) and assume ne 6= 0. If HomΓ0(N,Res p) = HomΓ0(Res p,N) = 0
for all p ∈ C then dimk(IndN)0 ≤ ne − 1.

Proof. This is the same as the proof of Lemma 2.4.17.

We now come to the main result of this section.
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Theorem 6.7.17. Assume k is uncountable. Let A be an elliptic cubic Artin-Schelter
algebra for which σ has infinite order. Let (ne, no) ∈ N \ {(0, 0)}. If M ∈ C(ne,no)(Γ)
then M0 is θ-stable for θ = (−1, 0, 1).

Proof. Let I ∈ R(ne,no)(X) such that M [−1] = RHomX(E , I) and write F = M0. By
Propositions 6.7.11 and 6.7.13 there exists a conic object Q on X for which F ⊥ Q0,
where Q[−1] = RHomX(E ,Q(−1)). This shows F is θ-semistable for θ = (−1, 0, 1).
Hence there is a representation F ′ ( F such that F/F ′ is θ-stable. We will prove F ′

is necessarily zero, from which the theorem will follow.

Assume by contradiction F ′ 6= 0. Since F/F ′ is θ-stable we have θ · dimF/F ′ = 0
thus we may put dimF/F ′ = (no−mo, ne−me, no−mo) for some mo ≤ no, me ≤ ne
for which (me,mo) 6= (ne, no). Note F ′ is θ-semistable. We now claim that for all
p ∈ C we have

HomΓ0(F ′,Res p) = HomΓ0(Res p, F ′) = 0,

HomΓ0(F/F ′,Res p) = HomΓ0(Res p, F/F ′) = 0.
(6.28)

To show (6.28), let p ∈ C. Lemmas 6.5.9 and 6.7.14 imply there exists a conic object
Q′ on X for which HomX(Q′,Np(−3)) 6= 0 and HomX(I,Q′(−1)) = 0. Writing
Q′[−1] = RHomX(E ,Q′(−1)) and using Theorem 1.10.5 yields Ext1Γ(p,Q′) 6= 0 and
F ⊥ Q′ by Proposition 6.7.11. In particular Res p is not perpendicular to ResQ′. The
claim (6.28) now follows from Lemma 6.7.15.

Combining (6.28) with Lemma 6.7.16 we find dimk(IndF/F ′)0 ≤ ne−me−1 and
dimk(IndF ′)0 ≤ me − 1. Application of the right exact functor Ind on 0 → F ′ →
F → F/F ′ → 0 gives a long exact sequence in mod(Γ)

. . .→ IndF ′ → IndF → IndF/F ′ → 0

and counting dimensions yields

ne − 1 = dimk(IndF )0 ≤ dimk(IndF ′)0 + dimk(IndF/F ′)0

≤ (me − 1) + (ne −me − 1) = ne − 2

which is absurd. Thus F ′ = 0 hence F is θ-stable, finishing the proof.

Remark 6.7.18. In case A is of generic type A and σ has infinite order we do not need
the hypothesis k is uncountable in Theorem 6.7.17. This is because we may prove
Proposition 6.7.13 without the additional hypothesis on k, using the proof of Lemma
6.7.14 and Remark 6.5.10.

Remark 6.7.19. In case A = Hc is the enveloping algebra we may choose Q =
π(Hc/zHc) in the proof of Theorem 6.7.17. See also Remark 6.7.12. Again we do not
need the hypothesis k is uncountable.
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6.7.8 Second description of R(ne,no)(X)

For (ne, no) ∈ N \ {(0, 0)} we denote D(ne,no)(Γ
0) for the image of C(ne,no)(Γ) under

the equivalence (6.25).

Theorem 6.7.20. Assume k is uncountable. Let A be an elliptic cubic Artin-
Schelter algebra for which σ has infinite order. Let θ = (−1, 0, 1) and (ne, no) ∈
N \ {(0, 0), (1, 1)}. Then there is an equivalence of categories

C(ne,no)(Γ)

Res-

�
Ind

D(ne,no)(Γ
0)

where

D(ne,no)(Γ
0) = {F ∈ mod(Γ0) | dimF = (no, ne, no), F is θ-stable,

dimk(IndF )0 ≥ ne − 1}.

Proof. Below we often use the equivalence C(ne,n0)(Γ) ∼= R(ne,no)(X) from Theorem
6.7.3. We break the proof into five steps.

Step 1. Res(C(ne,no)(Γ)) ⊂ D(ne,no)(Γ
0). This follows from Theorem 6.7.17 and

Lemma 6.7.16.

Step 2. If F ∈ D(ne,no)(Γ
0) then HomΓ0(F,Res p) = HomΓ0(Res p, F ) = 0 for all

p ∈ C. Indeed, by Lemma 6.7.9 and Lemma 6.7.10 any non-zero morphism would
yield an isomorphism F ∼= Res p, contradicting the assumption (ne, no) 6= (1, 1).

Step 3. If F ∈ D(ne,no)(Γ
0) then HomΓ(IndF, p) = HomΓ(p, IndF ) = 0 for all p ∈ E.

This follows from 0 = HomΓ0(F,Res p) = HomΓ(IndF, p) and

0 = HomΓ0(Res p, F ) = HomΓ0(Res p,Res IndF ) = HomΓ(Ind Res p, IndF )

where we have used Step 2 and Ind Res p = p by Lemma 6.7.8.

Step 4. Ind(D(ne,no)(Γ
0)) ⊂ C(ne,no)(Γ). Let F ∈ D(ne,no)(Γ

0). Combining Step 2
with Lemma 6.7.16 gives dim IndF = (no, ne, no, ne − 1). Now Step 3 shows IndF ∈
C(ne,no)(Γ).

Step 5. Ind and Res are inverses to each other. To prove this we only need to show
Ind ResF = F for F ∈ C(ne,no)(Γ). This follows from Lemma 6.7.7.

For (ne, no) ∈ N \ {(0, 0), (1, 1)} let α = (no, ne, no) and put

D̃(ne,no) = {F ∈ Repα(Γ0) | F ∈ D(ne,no)(Γ
0)}

= {F ∈ Repα(Γ0) | F is θ-stable, dimk(IndF )0 ≥ ne − 1}.
(6.29)
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As D̃(ne,no) is a closed subset of the dense open subset of Repα(Γ0) consisting of all

θ-stable representations we obtain that D̃(ne,no) is locally closed.

Denote Glα(k) = Glne
(k) × Glno

(k) × Glne
(k). Put D(ne,no) = D̃(ne,no)//Glα(k).

The next theorem provides the first part of Theorem 1 from the introduction. Our
proof is, up to some minor computations, completely analogous to the proof of The-
orem 2.4.21. For convenience of the reader we have included the proof.

Theorem 6.7.21. Assume k is uncountable. Let A be an elliptic cubic Artin-Schelter
algebra for which σ has infinite order. Then for (ne, no) ∈ N there exists a smooth
locally closed variety D(ne,no) of dimension 2

(
ne − (ne − no)

2
)

such that the isomor-
phism classes in D(ne,no)(Γ

0) (and hence in R(ne,no)(X)) are in natural bijection with
the points in D(ne,no).

Proof. For (ne, no) = (0, 0) or (1, 1) we refer to Corollaries 6.2.12, 6.7.4 to see that
we may take a point for D(0,0) and (P1 ×P1) − C for D(1,1). So we may assume
(ne, no) ∈ N \ {(0, 0), (1, 1)} throughout this proof.

Since all representations in D̃(ne,no) are stable, all Gl(α)-orbits on D̃(ne,no) are

closed and so D(ne,no) is really the orbit space for the Gl(α) action on D̃(ne,no). This
proves that the isomorphism classes in D(ne,no)(Γ) are in natural bijection with the
points in D(ne,no).

To prove D(ne,no) is smooth it suffices to prove D̃(ne,no) is smooth [54]. We first

estimate the dimension of D̃(ne,no). Write the equations of A in the usual form
(1.18). For ne × no-matrices X , Y and no× ne-matrices X ′, Y ′ let M t

A(X ′, Y ′, X, Y )
be obtained from M t

A by replacing x2, xy, yx, y2 by X ′X , Y ′X , X ′Y , Y ′Y (thus

M t
A(X ′, Y ′, X, Y ) is a 2no×2no-matrix). Then D̃(ne, no) has the following alternative

description:

D̃(ne,no) = {(X,Y,X ′, Y ′) ∈Mne×no
(k)2 ×Mno×ne

(k)2 | (X,Y,X ′, Y ′) is θ-stable

and rankMA(X ′, Y ′, X, Y ) ≤ 2no − (ne − 1)}.

By Proposition 6.3.2, D̃(ne,no) is non-empty. The (X,Y,X ′, Y ′) for which the associ-
ated representation is stable are a dense open subset of Mne×no

(k)2×Mno×ne
(k)2 and

hence they represent a quasi-variety of dimension 4neno. Imposing
MA(X ′, Y ′, X, Y ) should have corank ≥ ne− 1 represents (2no− (2no− (ne− 1)))2 =

(ne − 1)2 independent conditions. So the irreducible components of D̃(ne,no) have

dimension ≥ 4neno − (ne − 1)2. Define C̃(ne,no) by

{G ∈ Rep(Γ, α̃) | G ∼= Ind ResG,ResG ∈ D̃(ne,no)}

where α̃ = (no, ne, no, ne − 1) (as usual we assume the points of Rep(Γ, α̃) to satisfy

the relation imposed on Γ). To extend F ∈ D̃(ne,no) to a point in C̃(ne,no) we need

to choose a basis in (IndF )0. Thus C̃(ne,no) is a principal Glne−1(k) fiber bundle
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over D̃(ne,no). In particular C̃(ne,no) is smooth if and only D̃(ne,no) is smooth and the

irreducible components of C̃(ne,no) have dimension ≥ 4neno− (ne − 1)2 + (ne − 1)2 =

4neno. By the description of C(ne,no) in Theorem 6.7.3 it follows that C̃(ne,no) is an
open subset of Rep(Γ, α̃).

Let x ∈ C̃(ne,no). The stabilizer of x consists of scalars thus if we put G =

Gl(α̃)/k∗ then we have inclusions Lie(G) ⊂ Tx(C̃(ne,no)) = Tx(Rep(Γ, α̃)). Next there

is a natural inclusion Tx(Rep(Γ, α̃))/Lie(G) ↪→ Ext1Γ(x, x). Now x corresponds to
some normalized line bundle I on X and we have Ext1Γ(x, x) = Ext1X(I, I). Lemma
6.2.13 implies dimk Ext1X(I, I) = 2(ne − (ne − no)

2). Hence we obtain 4neno ≤

dimTx(C̃(ne,no)) ≤ dimk Ext1Γ(x, x)+dimG and the right-hand is equal to 2(ne−(ne−

no)
2)+ (n2

o +n2
e +n2

o+(ne− 1)2 − 1) = 4neno. Thus dimTx(C̃n) = 4neno is constant

and hence C̃(ne,no) is smooth. We also obtain dim D̃(ne,no) = 4neno − (ne − 1)2. The
dimension of D(ne, no) is equal to

dim D̃(ne,no) − dimGl(α) + 1 = 4neno − (ne − 1)2 − (n2
o + n2

e + n2
o) + 1

= 2(ne − (ne − no)
2).

This finishes the proof.

6.7.9 Descriptions of the varieties D(ne,no) for the enveloping

algebra

In case of the enveloping algebra we may further simplify the description of D(ne,no).

Theorem 6.7.22. Let A = Hc be the enveloping algebra. Let (ne, no) ∈ N . The
isomorphism classes in R(ne,no)(A) are in natural bijection with the points in the
smooth affine variety D(ne,no) of dimension 2(ne − (ne − no)

2) where

D(ne,no) = {(X,Y,X ′, Y ′) ∈Mne×no
(k)2 ×Mno×ne

(k)2 | Y ′X−X ′Y isomorphism,

rank

(
Y ′Y X ′Y − 2Y ′X

Y ′X − 2X ′Y X ′X

)
≤ 2no − (ne − 1)}/Glα(k)

Proof. For (ne, no) = (0, 0) or (1, 1) we refer to Corollaries 6.2.12, 6.7.4 to see that
D(ne,no) has the description as in the statement of the current theorem. So we may
assume (ne, no) ∈ N \ {(0, 0), (1, 1)} throughout this proof.

Consider the conic object Q = π(A/zA) on X where z = xy − yx. Write Q =
Ext1X(E ,Q(−1)) ∈ mod(Γ) (Lemma 6.7.2) and put V = ResQ.

It is sufficient to show D(ne,no)(Γ
0) has the alternative description

D′
(ne,no)(Γ

0) := {F ∈ mod(Γ0) | dimF = (no, ne, no),

F ⊥ V, dimk(IndF )0 ≥ ne − 1}.
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Indeed, if D(ne,no)(Γ
0) = D′

(ne,no)(Γ
0) we then have

D̃(ne,no) = {F ∈ Repα(Γ0) | F ∈ D(ne,no)(Γ
0)}

= {F ∈ Repα(Γ0) | φV (F ) 6= 0, dimk(IndF )0 ≥ ne − 1}

from which is clear that D̃(ne,no) is a closed subset of {φV 6= 0} so in particular D̃(ne,no)

is affine. This means D(ne,no) = D̃(ne,no)/Gl(α) is an affine variety. Theorem 6.7.21
further implies D(ne,no) is smooth of dimension 2(ne− (ne−no)

2) which points are in
natural bijection with the isomorphism classes in R(ne,no)(X) whence in R(ne,no)(A)

by §6.2.3. Moreover, as in the proof of Theorem 6.7.21, D̃(ne,no) has the alternative
description

D̃(ne,no) = {F = ((X,Y ), (X ′, Y ′)) ∈ Rep(no,ne,no)(Γ
0) | F ⊥ V

and rankMA(X ′, Y ′, X, Y ) ≤ 2no − (ne − 1)}.

As shown in Proposition 6.7.11 the condition (X,Y,X ′, Y ′) ⊥ V is equivalent with
saying Y ′X −X ′Y is an isomorphism. Explicitely writing down MA by (1.18), (1.8)
yields the desired description of D(ne,no).

So to prove the current theorem it remains to prove D(ne,no)(Γ
0) = D′

(ne,no)(Γ
0).

We will do this by showing that the functors Res and Ind define inverse equivalences
between C(ne,no)(Γ) and D′

(ne,no)(Γ
0).

Step 1. Res(C(ne,no)(Γ)) ⊂ D′
(ne,no)(Γ

0). Let M ∈ C(ne,no)(Γ). That ResM ⊥ V
follows from Proposition 6.7.11 and Remark 6.7.12. Further, since Ind ResM = M
by Lemma 6.7.7 we find dimk(Ind ResM)0 = ne − 1 by Theorem 6.7.3.

Step 2. If p ∈ C then Res p ∈ mod(Γ0) is not perpendicular to V . Indeed, by
the equivalences (6.25) and (6.17) one finds RHomΓ0(Res p, V ) = RHomΓ(p,Q) =
RHomX(Np,Q[1]). Thus Ext1Γ0

(Res p, V ) = Ext2X(Np,Q). Further, Serre duality

(Theorem 1.10.5) yields Ext2X(Np,Q) ∼= HomX(Q,Nσ4p)
′ = HomX(Q,Np)

′, which is
non-zero by Lemma 6.5.1(1). This proves Step 2.

Step 3. Ind(D′
(ne,no)(Γ

0)) ⊂ C(ne,no)(Γ). Let F ∈ D′
(ne,no)(Γ

0). Combining Step 2

with Lemmas 6.7.24, 6.7.15 and 6.7.16 we obtain dimk(IndF )0 = ne − 1. It remains
to show HomΓ(IndF, p) = HomΓ(p, IndF ) = 0 for p ∈ C. By Lemma 6.7.9 we have
p = Ind Res p. Thus HomΓ(IndF, p) = HomΓ0(F,Res p) = 0 and similarly

HomΓ(p, IndF ) = HomΓ0(Res p,Res IndF ) = HomΓ0(Res p, F ) = 0

where we have used Lemma 6.7.15 again.

Step 4. Ind and Res are inverses to each other. This follows from Lemma 6.7.7.

We further simplify the description of D(ne,no) as
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Theorem 6.7.23. Let A = Hc be the enveloping algebra. Let (ne, no) ∈ N . The
isomorphism classes in R(ne,no)(A) are in natural bijection with the points in the
smooth affine variety D(ne,no) of dimension 2(ne − (ne − no)

2) where

D(ne,no) = {(X,Y,X′,Y′) ∈Mne×no
(k)2 ×Mno×ne

(k)2 | Y′X − X′Y = I and

rank(YX′ − XY′ − I) ≤ 1}/Glne
(k) × Glno

(k)

Proof. For (ne, no) = (0, 0) or (1, 1) we refer to Corollaries 6.2.12, 6.7.4 to see that
D(ne,no) has the description as in the statement of theorem. So we assume (ne, no) ∈
N \ {(0, 0), (1, 1)} throughout this proof.

Similarly as in Theorem 6.7.6 we define for any F ∈ mod(Γ0) the linear map

F (Z−3) = F (Y−2)F (X−3) − F (X−2)F (Y−3)

In order to prove the current theorem, it is sufficient to show D(ne,no)(Γ
0) has the

alternative description

D′′
(ne,no)(Γ

0) := {F ∈ mod(Γ0) | dimF = (no, ne, no), F (Z−3) isomorphism,

rank(F (Y−3)F (Z−3)
−1F (X−2) − F (X−3)F (Z−3)

−1F (Y−2) − id) ≤ 1}.

Indeed, if D(ne,no)(Γ
0) = D′′

(ne,no)(Γ
0) then

D̃(ne,no) = {F ∈ Repα(Γ0) | F ∈ D(ne,no)(Γ
0)}

= {(X,Y,X ′, Y ′) ∈ Repα(Γ0) | Z := Y ′X −X ′Y isomorphism,

rank(Y Z−1X ′ −XZ−1Y ′ − id) ≤ 1}

and by D(ne,no) = D̃(ne,no)/Glα(k) the statement of the current theorem will follow.
What remains to prove is D(ne,no)(Γ

0) = D′′
(ne,no)(Γ

0). We will do this by showing

that the functors Res and Ind define inverse equivalences between C(ne,no)(Γ) and
D′′

(ne,no)(Γ
0). This is done in the following three steps.

Step 1. Res(C(ne,no)(Γ)) ⊂ D′′
(ne,no)(Γ

0). Let M ∈ C(ne,no)(Γ) and put F = ResM .

For convenience we denote X = M(X−3), X
′ = M(X−2), X

′′ = M(X−1) (similarly
for Y ). Theorem 6.7.6 already implies Z = Y ′X − X ′Y is an isomorphism and
Z ′ = Y ′′X ′ − X ′′Y ′ is surjective. Thus to show Step 1, what remains to prove is
rank(Y Z−1X ′ −XZ−1Y ′ − id) ≤ 1. From (6.19) we deduce

Y ′′Y ′X − 2Y ′′X ′Y +X ′′Y ′Y = 0

X ′′X ′Y − 2X ′′Y ′X + Y ′′X ′X = 0
(6.30)

and these equations may be written as X ′′Z = Z ′X , Y ′′Z = Z ′Y . Since Z is an
isomorphism we find X ′′ = Z ′XZ−1 and Y ′′ = Z ′Y Z−1. Substitution yields

Z ′ = Y ′′X ′ −X ′′Y ′ = Z ′(Y Z−1X ′ −XZ−1Y ′)

thus Z ′(Y Z−1X ′ −XZ−1Y ′ − id) = 0. As Z ′ is surjective, it has a one dimensional
kernel, completing proof of Step 1.
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Step 2. Ind(D′′
(ne,no)(Γ

0)) ⊂ C(ne,no)(Γ). To prove so, let F ∈ D′′
(ne,no)(Γ

0). We will

construct a representation M of Γ for which M ∈ C(ne,no)(Γ) and ResM = F . For
then, F ∈ D(ne,no)(Γ

0) by Theorem 6.7.20 hence IndF = M ∈ C(ne,no)(Γ).

For simplicity we denote X = F (X−3), X
′ = F (X−2) (similarly for Y ). Put Z =

Y ′X−X ′Y . Let Z ′ denote the projection F−2 → F−2/ im(Y Z−1X ′−XZ−1Y ′− id).
Define the linear maps X ′′ = Z ′XZ−1, Y ′′ = Z ′Y Z−1. We now define M as

F−3

X-
Y- F−2

X′

-
Y ′

- F−1

X′′

-
Y ′′

- imZ ′

In fact dimkM0 = ne − 1, as otherwise id = Y Z−1X ′ − XZ−1Y ′ and by tak-
ing traces we find ne = Tr(Y Z−1X ′ − XZ−1Y ′) = Tr(−Z−1(Y ′X − X ′Y )) =
Tr(−Z−1Z) = −ne whence ne = 0. By definition (6.9) of N this leads to no = 0,
contradiction the assumption (ne, no) 6= (0, 0).

To prove M ∈ mod(Γ) we need to check the relations (6.30). This is easy to do.
One also checks Z ′ = Y ′′X ′ −X ′′Y ′. Now Theorem 6.7.6 implies M ∈ C(ne,no)(Γ).

By the construction of M we have ResM = F . This proves Step 2.

Step 3. Ind and Res are inverses to each other. This follows from Lemma 6.7.7.

6.7.10 Description of the varieties D(ne,no) for generic type A

In Theorem 6.7.22 we have simplified the description of the varieties D(ne,no) for the
enveloping algebra. That such a simplification is possible is due to the fact that there
exists a conic object Q on X for which M0 ⊥ Q0 for all M ∈ C(ne,no)(Γ).

It is therefore natural to ask if, for general cubic Artin-Schelter algebras A, there
exists a conic object Q on X for which M0 ⊥ Q0 for all M ∈ C(ne,no)(Γ) where
Q is independent of M . This is unknown (and probably unlikely). However there is
another interpretation. In case of the enveloping algebra we relied on fact u∗M ∼= O∆

for all normalized line bundles M on X . For generic A we have

Lemma 6.7.24. Let A be a cubic Artin-Schelter algebra of generic type A for which
σ has infinite order. There exists V ∈ mod(Γ0) with dimV = (6, 4, 2) for which

1. for all M ∈ C(ne,no)(Γ) we have M0 ⊥ V , and

2. if p ∈ C then Res p is not perpendicular to V .

Proof. Obtained by repeating the arguments in Lemma 2.4.22 where, in the current
setting, we pick a degree zero line bundle U on C which is not of the form O((o) −
(2(ne + no)ξ)) for ne, no ∈ N, see Proposition 6.6.3.

Theorem 6.7.25. Let A be a cubic Artin-Schelter algebra of generic type A for which
σ has infinite order. Let V ∈ mod(Γ0) be as in Lemma 6.7.24. Let (ne, no) ∈ N .
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The isomorphism classes in R(ne, no)(A) are in natural bijection with the points in
the smooth affine variety D(ne,no) of dimension 2(ne − (ne − no)

2) where

D(ne,no) = {F = (X,Y,X ′, Y ′) ∈Mne×no
(k)2 ×Mno×ne

(k)2 | F ⊥ V,

rank

(
aY ′Y + cX ′X bX ′Y + aY ′X
bY ′X + aX ′Y aX ′X + cY ′Y

)
≤ 2no − (ne − 1)}/Glα(k)

Proof. Analogous to the proof of Theorem 6.7.22 where one uses Lemma 6.7.24.

6.8 Filtrations of line bundles and proof of Theorem

12

Let A be an elliptic cubic Artin-Schelter algebra for which σ has infinite order. The
following analogue of Lemma 2.4.25 shows how to reduce the invariants of a line
bundle.

Lemma 6.8.1. Assume k is uncountable and σ has infinite order. Let (ne, no) ∈ N
such that (ne − 1, no − 1) ∈ N . Let I ∈ R(ne,no)(X). Then there exists a conic

object Q on X for which Ext1X(Q(1), I(−2)) 6= 0. If J = πJ is the middle term of
a corresponding non-trivial extension and J ∗∗ = πJ∗∗ then J ∗∗ ∈ R(me,mo)(X) with
me < ne, mo < no. Furthermore J ∗∗/I(−2) is a shifted conic object on X.

Proof. We have Ext1X(Q(1), I(−2)) ∼= Ext1X(I(−2),Q(−3))′ = Ext1X(I,Q(−1))′ and
Ext2X(I,Q(−1)) ∼= HomX(Q(−1), I(−4))′ = 0 by Theorem 1.10.5 (Serre duality).
Thus χ(I,Q(−1)) = 0 shows dimk HomX(I,Q(−1)) = dimk Ext1X(I,Q(−1)). Hence
it follows from Proposition 6.7.13 there exist a conic object Q for which
Ext1X(Q(1), I(−2)) 6= 0.

Let J = πJ be the middle term of a non-trivial extension of I(−2) by Q(1). It
is easy to see J . A computation yields [I(−2)] = [O] − 2(ne − no)[S] + (ne − no −
1)[Q] − no[P ] hence [J ] = [O] − 2(ne − no)[S] + (ne − no)[Q] − (no − 1)[P ]. Thus J
is normalized with invariants (ne − 1, no − 1).

By Theorem 1.9.8 GKdimJ∗∗/J ≤ 1. As σ has infinite order, any zero dimensional
object on X admits a filtration by shifted point objects [8]. Hence [J ∗∗/J ] = c[P ] for
some c ≥ 0 and therefore [J ∗∗] = [O]− 2(ne−no)[S]+ (ne−no)[Q]− (no− c− 1)[P ].
Thus J ∗∗ ∈ R(me,mo)(X) where mo = no − c − 1 < no and me = ne − c − 1. Let
N = J ∗∗/I(−2). Then N is pure and furthermore we have [N ] = [Q] + (c + 1)[P ].
Thus e(N ) = 1. Moreover Q ⊂ N and N/Q is zero dimensional. By Lemma 6.5.6 N
is a shifted conic object on X .

Theorem 6.8.2. Assume k is uncountable. Let A be an elliptic cubic Artin-Schelter
algebra and assume σ has infinite order. Let (ne, no) ∈ N and l as in (6.11). Let
I ∈ R(ne,no)(X). Then there exists an integer m, 0 ≤ m ≤ l together with a filtration
of line bundles I0 ⊃ I1 ⊃ · · · ⊃ Im = I(−2l) on X with the property that the Ii/Ii+1

are shifted conic objects on X and I0 has invariants (me,mo) = (ne − l, no − l).
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Proof. By Lemma 6.8.1, (6.11) and downwards induction on l.

We may now prove Theorem 12 from the introduction.

Proof of Theorem 12. The first part of Theorem 12 is due to Theorem 6.8.2 and
the equivalence R(A) =

∐
(ne,no)∈N R(ne,no) from §6.2.3. Proposition 6.3.3 implies

I0 = ωI0 having a minimal resolution of the form (6.3). By Proposition 6.3.3 and
Remark 6.3.4, I0 and I0 are up to isomorphism uniquely determined by (me,mo),
and therefore by (ne, no). This finishes the proof.

Remark 6.8.3. By Remarks 6.7.18 and 6.7.19 we do not need the hypothesis k is
uncountable in Theorem 6.8.2 (hence Theorem 12) in case A = Hc is the enveloping
algebra or A is of generic type A and σ has infinite order. Furthermore it follows
from Proposition 6.4.1 that Theorem 6.8.2 is (trivially) true in case A is a linear
cubic Artin-Schelter algebra, again without the hypothesis k is uncountable.

6.9 Invariant ring of the first Weyl algebra and proof

of Theorem 14

In this final section we show how application of the previous results for the enveloping
algebra Hc may be used to classify the right ideals of an invariant ring of the first
Weyl algebra.

Let A = Hc denote the enveloping algebra and write z = xy − yx ∈ A2. In
the notations of §1.9.4 the canonical normalizing element g is given by z2 ∈ A4 and
h = z is central. Consider the graded algebra Λ = A[h−1], the localisation of A at
the powers of h = z, and its subalgebra Λ0 of elements of degree zero. It is shown in

[8, Theorem 8.20] that Λ0 = A
〈ϕ〉
1 , the algebra of invariants of the first Weyl algebra

A1 = k < x, y > /(xy − yx − 1) under the automorphism ϕ defined by ϕ(x) = −x,
ϕ(y) = −y.

For any positive integer l, let Vl be the k-linear space spanned by the set {xiyj |

i + j even and i + j ≤ 2l}. Then k = V0 ⊂ V1 ⊂ . . . endow A
〈ϕ〉
1 with a positive

filtration.
The associated Rees ring Rees(A

〈ϕ〉
1 ) =

⊕
l∈N

Vl is identified with the subring⊕
l∈N

Vlt
l of the ring of Laurent polynomials A

〈ϕ〉
1 [t, t−1], and identifying t = h we

see the Rees ring of A
〈ϕ〉
1 is isomorphic to A(2), the 2-Veronese of A. The associated

graded algebra gr(A
〈ϕ〉
1 ) =

⊕
l∈N

Vl/Vl−1 is isomorphic to A(2)/hA(2) = k[x, y](2), the
2-Veronese of the commutative polynomial ring k[x, y].

Similarly, for a filtered A
〈ϕ〉
1 -module M we write Rees(M) =

⊕
l∈N

Ml, which

is isomorphic to an object in GrMod(A(2)) and gr(M) =
⊕

l∈N
Ml/Ml−1 for the

associated graded module, identified with an object of Mod(k[x, y](2)).

Write Filt(A
〈ϕ〉
1 ) for the category which objects are the filtered right A

〈ϕ〉
1 -modules

and morphisms the A
〈ϕ〉
1 -morphisms f : M → N which are strict i.e. Nn ∩ im(f) =
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f(Mn) for all n. Write GrMod(A(2))h for the full subcategory of GrMod(A(2)) con-
sisting of the h-torsion free modules. The exact functor

Rees(−) : Filt(A
〈ϕ〉
1 ) → GrMod(A(2))h

is an equivalence and (Rees(M)[h−1])0 ∼= M for all M ∈ Filt(A
〈ϕ〉
1 ).

Let R(A
〈ϕ〉
1 ) denote the set of isomorphism classes of right A

〈ϕ〉
1 -ideals. Note

R(A
〈ϕ〉
1 ) = {M ∈ mod(A

〈ϕ〉
1 ) |M torsion free of rank one}/ iso

Performing a similar treatment as in [16, §4] yields

Proposition 6.9.1. The set R(A
〈ϕ〉
1 ) is in natural bijection with the isomorphism

classes in the full subcategory of coh(∆) with objects

{M ∈ coh(X) | u∗M ∼= O∆} (6.31)

Proof. We will make use of the following commutative diagram

filt(A
〈ϕ〉
1 )

Rees- grmod(A(2))
π - tails(A(2))

∼= - tails(A)

filt(A
〈ϕ〉
1 )

∼= ?
gr- grmod(k[x, y](2))

π- tails(k[x, y](2))
∼=- tails(k[x, y])

u∗

?
(6.32)

Let M ∈ coh(X) for which u∗M ∼= O∆. It follows from Remark 6.6.5 and §6.2.3 that
M = πM for some M ∈ grmod(A) which is torsion free of rank one (and therefore

critical). Thus M [h−1]0 is a critical rank one object i.e. M [h−1]0 ∈ R(A
〈ϕ〉
1 ). To show

this correspondence M 7→M [h−1]0 is bijective it suffices to give its inverse.

Let M ∈ mod(A
〈ϕ〉
1 ) be torsion free of rank one and let us fix, temporarily, an

embedding of M as an ideal of A
〈ϕ〉
1 . The filtration Vl on A

〈ϕ〉
1 induces a filtration

Ml = M ∩ Vl on M . Let us still write M for the associated object in filt(A
〈ϕ〉
1 ).

Arguing on the bottom half of (6.32) it follows that gr(M) ⊂ k[x, y](2) is a homo-
geneous ideal and writing M ∈ tails(k[x, y]) = coh(∆) for the image of π gr(M) we
deduce M ⊂ O∆. As the quotient O∆/M has rank zero it is finite dimensional i.e. of
the form OD for some divisor D on ∆ of degree d = degD ≥ 0. Thus M ∼= O∆(−D).
Redefine the filtration on M by M0

l := Ml+d and write M0 for the associated object

in filt(A
〈ϕ〉
1 ). Repeating the arguments we now find M0 ∼= O∆. By the commutativ-

ity of the diagram (6.32), M0 now corresponds to an object M0 ∈ tails(A) for which
u∗M0 ∼= O∆. This finishes the proof.

We end with the

Proof of Theorem 14. By Theorem 6.7.23, Proposition 6.9.1 and Remark 6.6.5.
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Serre duality for graded rings

This section is taken from [27, Appendix A], where we prove that (a generalization
of) Bondal-Kapranov-Serre duality holds for graded rings. For the convenience of the
reader we restate some definitions so that this appendix can be read independently
of the rest of this work.

Let A be a k-linear Ext finite triangulated category. By this we mean that for all
M,N ∈ A we have

∑
n dimk HomA(M,N [n]) <∞. The category A is said to satisfy

Bondal-Kapranov-Serre (BKS) duality if there is an autoequivalence F : A → A
together with for all A,B ∈ A natural isomorphisms

HomA(A,B) → HomA(B,FA)′

where (−)′ denotes the k-dual.
Let C be an abelian category. An object O in Db(C) is said to have finite projective

(injective) dimension if ExtiC(O, C) = 0 (ExtiC(C, O) = 0) for |i| > u for some u ≥ 0.
The minimal such u we call the projective (injective) dimension of O.

In this appendix we assume that A is a connected graded noetherian ring over a
k. By (−)′ we denote the functor on graded vectorspaces which sends M to ⊕nM ′

−n.
If we use notations which refer to the left structure of A then we adorn them with a
superscript “◦”.

We make the following additional assumptions on A:

1. A satisfies χ and the functor τ has finite cohomogical dimension.

2. A satisfies χ◦ and the functor τ◦ has finite cohomogical dimension.

These conditions imply that A has a balanced dualizing complex [85] given by R =
Rτ(A)′ = Rτ◦(A)′ [77, 85]. Below we freely use the properties of such dualizing
complexes.

We let D(A) be the derived category of graded right A-modules. Db
f(A) will be the

full subcategory of objects in Db(A) with finitely generated homology. The category

171
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Db
f (Tails(A)) is the full subcategory of Db(Tails(A)) consisting of complexes with

homology in tails(A).
We letDb

f (A)fpd (Db
f (A)fid) be the full category ofDb

f (A) consisting of objects of fi-

nite projective (injective) dimension. The categoriesDb
f (Tails(A))fpd, Db

f (Tails(A))fid

are defined in a similar way. The fact that τ has finite cohomological dimension im-
plies πA(n) ∈ Db

f (Tails(A))fpd.
We will denote the functors RHomA(−, R) and RHomA◦(−, R) by D. Since they

define a duality between Db
f (A) and Db

f(A
◦) it is clear that they define a duality

between Db
f (A)fid and Db

f(A
◦)fpd and between Db

f (A)fpd and Db
f (A

◦)fid.

It is also clear that these functors induce a duality between Db
f(Tails(A)) and

Db
f (Tails(Aopp)). We denote these induced functors also by D. Again they define a

duality between Db
f(Tails(A))fid and Db

f(Tails(A◦))fpd and between Db
f (Tails(A))fpd

and Db
f (Tails(A◦))fid. Recall the following:

Lemma A.1. Let P ∈ Db
f (Tails(A))fpd. Then there exists an object P ∈ Db

f (A)fpd

such that P is a direct summand of πP .

Proof. This can be deduced from general results about compact objects in triangu-
lated categories. For simplicity we give a direct proof based on a trick which we
learned from Maxim Kontsevich. Take M arbitrary such that πM = P .

Take a quasi-isomorphism Q→M where Q is a right bounded complex of finitely
generated projective modules. This yields a triangle:

(πZ)[a] → σ≥−aπQ→ P

where Z = ker(Q−a → Q−a+1). This triangle corresponds to an element of
Exta+1(P , πZ) which must be zero for large a. Hence σ≥aπQ = P ⊕ (πZ)[a]. This
proves the lemma.

We recall the following fact.

Proposition A.2. The functors −
L

⊗A R and RHomA(R,−) induce inverse equiva-
lences between Db

f (A)fpd and Db
f(A)fid.

Proof. If P ∈ Db
f (A)fpd then it is quasi-isomorphic to a bounded complex of finitely

generated projective A-modules. For such such a complex it is clear that P ⊗AR has
finite injective dimension. There is a canonical map P → RHom(R,P ⊗A R) which
is an isomorphism for P = A. By induction over triangles one shows that it is an
isomorphism for all P .

Conversely assume I ∈ Db
f (A)fid. Then by duality RHom(R, I) = RHom(DI,A).

By the above discussion DI ∈ Db
f (A

◦)fpd. Hence RHomA(DI,A) ∈ Db
f(A)fpd. We

also find RHomA(DI,A) ⊗A R = RHomA(DI,R) = I.

The functor −⊗AR induces a functor D−(Tails(A)) → D−(Tails(A)) which we de-
note by −⊗R. Similarly the functor RHomA(R,−) induces a functorD+(Tails(A)) →
D+(Tails(A)) which we denote by RHom(R,−).
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Proposition A.3. The functors −⊗R and RHom(R,−) induces inverse equivalences
between Db

f (Tails(A))fpd and Db
f(Tails(A))fid.

Proof. If P ∈ Db
f(Tails(A))fpd then by Lemma A.1 P is direct summand of some πP

with P ∈ Db
f (A)fpd. Using the proof of the previous proposition this easily implies

that P⊗R ∈ Db
f (Tails(A))fid and RHom(R,P⊗R) = P (essentially because we may

reduce to P = πA(n) for some n).
Conversely assume I = πI ∈ Db

f (Tails(A))fid. Then RHom(R, I) =
πRHom(R, I) = πRHom(DI,A). We have by definition πDI = DπI, and hence
πDI ∈ Db

f (A)fpd. Then it follows from Lemma A.1 that πDI is a direct summand

of some πQ with Q ∈ Db
f (Q)fpd. We easily deduce from this that πRHom(DI,A)

is a direct summand of πRHom(Q,A) and hence RHom(R, I) = πRHom(DI,A) ∈
Db
f (Tails(A))fpd. The proof now continous as the proof of Proposition A.2.

Theorem A.4. (Serre duality) For all M ∈ Db
f (Tails(A))fpd, N ∈ Db

f (Tails(A))
there are natural isomorphisms

Hom(M,N ) ∼= Hom(N , FM)′

where

FM = (M
L

⊗R)[−1] (A.1)

Furthermore F defines an equivalence between Db
f (Tails(A))fpd and Db

f (Tails(A))fid.

Proof. As in [86] our proof of Serre duality is based on the local duality formula
[77, 85]. The formulation of local duality in [77] used the functor Rτ but the same
proof works for the functor RQ where Q = ω ◦ π. Furthermore it is possible to
throw an extra perfect complex into the bargain. If we do this we obtain canonical
isomorphisms

HomA(N,P ⊗A (RQA)′) ∼= HomA(P,RQN)′ (A.2)

for N ∈ D(A) and P ∈ Db
f (A)fpd. By adjointness HomA(P,RQN)0 =

HomTails(A)(πP, πN). In addition, if we apply (A.2) with N finite dimensional then we

find HomA(N,P ⊗A (RQA)′) = 0. Thus using Lemma A.1 we obtain for N ∈ Db
f (A):

HomA(N,P ⊗A (RQA)′)0 = HomTails(A)(πN, π(P ⊗A (RQA)′). Now the standard
triangle for local cohomology yields RQA = cone(RτA → A) and thus (RQA)′ =
cone(A′ → R)[−1]. Using the fact that A′ is torsion we easily obtain from this:
π(P ⊗A (RQA)′) = F (πP ) where F is defined as in the statement of the theorem. So
now we have shown

HomTails(A)(πN,F (πP )) ∼= HomTails(A)(πP, πN)′ (A.3)

Now we obtain from Lemma A.1 that M is a direct summand of a complex πP with
P ∈ Db

f (A)fpd. Thus (A.3) is true for M and this finishes of the the first part of the
theorem. The last part is Proposition A.3.

Corollary A.5. If Tails(A) has finite global dimension then Db
f (Tails(A)) satisfies

BKS-duality.





Appendix B

Upper semi-continuity for

noncommutative Proj

This section appeared in [28], where we discuss some results which are definitely at
least implicit in [11] but for which we have been unable to find a convenient reference.
The methods are quite routine. We refer to [11, 41] for more details.

Below R will be a noetherian commutative ring and A = R + A1 + A2 + · · · is a
noetherian connected graded R-algebra.

Lemma B.1. Let M ∈ grmod(A) be flat over R and n ∈ Z. Then the function

SpecR→ Z : x 7→ dimk Tor
Ak(x)

i (Mk(x), k(x))n

is upper semi-continuous.

Proof. Because of flatness we have Tor
Ak(x)

i (Mk(x), k(x)) = TorAi (M,k(x)). Let F · →
M → 0 be a graded resolution of M consisting of free A-modules of finite rank. Then
TorAi (M,k(x))n is the homology of (F ·)n ⊗A k(x). Since (F ·)n is a complex of free
R-modules, the result follows in the usual way.

Now we write X = ProjA and we use the associated notations as in §1.4 - §1.6.
In addition we will assume that A satisfies the following conditions.

1. A satisfies χ [10].

2. Γ(X,−) has finite cohomological dimension.

Under these hypotheses we prove

Proposition B.2. Let G ∈ coh(X) be flat over R and let F ∈ coh(X) be arbitrary.
Then there is a complex L· of finitely generated projective R-modules such that for
any M ∈ Mod(R) and for any i ≥ 0 we have

Exti(F ,G ⊗RM) = Hi(L· ⊗RM)
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Proof.

Step 1. We first claim that there is anN such that for n ≥ N one has that Γ(X,G(n))
is a projective R-module, Γ(X,G(n)⊗RM) = Γ(X,G(n))⊗RM and RiΓ(X,G(n)⊗R
M) = 0 for i > 0 and all M . We start with the last part of this claim. We select
N is such a way that RiΓ(X,G(n)) = 0 for i > 0 and n ≥ N . Using the fact
that Γ(X,−) has finite cohomological dimension and degree shifting in M we deduce
that indeed RiΓ(X,G(n) ⊗R M) = 0 for i > 0 and all M . Thus Γ(X,G(n) ⊗R −)
is an exact functor. Applying this functor to a projective presentation of M yields
Γ(X,G(n) ⊗R M) = Γ(X,G(n)) ⊗R M . Since Γ(X,G(n) ⊗R −) is left exact and
Γ(X,G(n)) ⊗ − is right exact this implies that Γ(X,G(n)) is flat. Finally since A
satisfies χ and R is noetherian Γ(X,G(n)) is finitely presented and hence projective.

Step 2. Now let N be as in the previous step and take a resolution P · → F → 0
where the Pi are finite direct sums of objects O(−n) with n ≥ N .

Then Exti(F ,G ⊗RM) is the homology of

Hom(P ·,G ⊗RM)) = Hom(P ·,G) ⊗RM

where the equality follows from Step 1. We put L· = Hom(P ·,G) which is term wise
projective, also by Step 1. This finishes the proof.

For a point x ∈ SpecR we denote the base change functor −⊗R k(x) by (−)x. We
also put Xx = ProjAx.

Corollary B.3. If G is as in the previous proposition then the function

SpecR→ N : x 7→ dimk(x)RΓi(Xx,Gx)

is upper semi-continuous.

Proof. By [11, Lemma C6.6] we have RΓi(Xx,Gx) = RΓi(X,G⊗R k(x)). This implies

RΓi(Xx,Gx) = Hi(L· ⊗R k(x)) (B.1)

The fact that the dimension of the right hand side of (B.1) is upper semi-continuous
is an elementary fact from linear algebra.

Corollary B.4. Assume that G is as in the previous proposition and assume that R
is a domain. Assume furthermore that the function

SpecR→ N : x 7→ dimk(x)RΓi(Xx,Gx)

is constant. Then RΓi(X,G) is projective over R and in addition for anyM ∈ Mod(R)
the natural map

RΓi(X,G) ⊗RM → RΓi(X,G ⊗RM)

is an isomorphism for all x ∈ SpecR.

Proof. This is proved as [41, Corollary 12.9].



Appendix C

Hilbert series of ideals with

small invariants

C.1 Quadratic Artin-Schelter algebras

Let A be a quadratic Artin-Schelter algebra, and let I be a normalized rank one torsion
free graded right A-module of projective dimension one with invariant n. According
to Theorem 4 the Hilbert series of I has the form

hI(t) =
1

(1 − t)3
−
sI(t)

1 − t

where sI(t) is a Castelnuovo polynomial of weight n. For the cases n ≤ 6 we list the
possible Hilbert series for I, the corresponding Castelnuovo polynomial, the dimension
of the stratum (given by dimk Ext1A(I, I)) and the possible minimal resolutions of I.

n = 0 hI(t) = 1 + 3t + 6t2 + 10t3 + 15t4 + 21t5 + . . .

sI(t) = 0
dimk Ext1A(I, I) = 0
0 → A → I → 0

n = 1 hI(t) = 2t + 5t2 + 9t3 + 14t4 + 20t5 + 27t6 + . . .

sI(t) = 1
dimk Ext1A(I, I) = 2
0 → A(−2) → A(−1)2 → I → 0

n = 2 hI(t) = t + 4t2 + 8t3 + 13t4 + 19t5 + 26t6 + . . .

sI(t) = 1 + t

dimk Ext1A(I, I) = 4
0 → A(−3) → A(−1) ⊕ A(−2) → I → 0
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n = 3 hI(t) = 3t2 + 7t3 + 12t4 + 18t5 + 25t6 + . . .

sI(t) = 1 + 2t

dimk Ext1A(I, I) = 6
0 → A(−3)2 → A(−2)3 → I → 0

hI(t) = t + 3t2 + 7t3 + 12t4 + 18t5 + 25t6 + . . .

sI(t) = 1 + t + t2

dimk Ext1A(I, I) = 5
0 → A(−4) → A(−1) ⊕ A(−3) → I → 0

n = 4 hI(t) = 2t2 + 6t3 + 11t4 + 17t5 + 24t6 + . . .

sI(t) = 1 + 2t + t2

dimk Ext1A(I, I) = 8
0 → A(−4) → A(−2)2 → I → 0
0 → A(−3) ⊕ A(−4) → A(−2)2 ⊕ A(−3) → I → 0

hI(t) = t + 3t2 + 6t3 + 11t4 + 17t5 + 24t6 + . . .

sI(t) = 1 + t + t2 + t3

dimk Ext1A(I, I) = 6
0 → A(−5) → A(−1) ⊕ A(−4) → I → 0

n = 5 hI(t) = t2 + 5t3 + 10t4 + 16t5 + 23t6 + . . .

sI(t) = 1 + 2t + 2t2

dimk Ext1A(I, I) = 10
0 → A(−4)2 → A(−2) ⊕ A(−3)2 → I → 0

hI(t) = 2t2 + 5t3 + 10t4 + 16t5 + 23t6 + . . .

sI(t) = 1 + 2t + t2 + t3

dimk Ext1A(I, I) = 8
0 → A(−3) ⊕ A(−5) → A(−2)2 ⊕ A(−4) → I → 0

hI(t) = t + 3t2 + 6t3 + 10t4 + 16t5 + 23t6 + . . .

sI(t) = 1 + t + t2 + t3 + t4

dimk Ext1A(I, I) = 7
0 → A(−6) → A(−1) ⊕ A(−5) → I → 0

n = 6 hI(t) = 4t3 + 9t4 + 15t5 + 22t6 + 30t7 + . . .

sI(t) = 1 + 2t + 3t2

dimk Ext1A(I, I) = 12
0 → A(−4)3 → A(−3)4 → I → 0

hI(t) = t2 + 4t3 + 9t4 + 15t5 + 22t6 + . . .

sI(t) = 1 + 2t + 2t2 + t3

dimk Ext1A(I, I) = 11
0 → A(−5) → A(−2) ⊕ A(−3) → I → 0
0 → A(−4) ⊕ A(−5) → A(−2) ⊕ A(−3) ⊕ A(−4) → I → 0

hI(t) = 2t2 + 5t3 + 9t4 + 15t5 + 22t6 + . . .

sI(t) = 1 + 2t + t2 + t3 + t4

dimk Ext1A(I, I) = 9
0 → A(−3) ⊕ A(−6) → A(−2)2 ⊕ A(−5) → I → 0

hI(t) = t + 3t2 + 6t3 + 10t4 + 15t5 + 22t6 + . . .

sI(t) = 1 + t + t2 + t3 + t4 + t5

dimk Ext1A(I, I) = 8
0 → A(−7) → A(−1) ⊕ A(−6) → I → 0
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C.2 Cubic Artin-Schelter algebras

Let A be a cubic Artin-Schelter algebra, and let I be a normalized rank one torsion free
graded rightA-module of projective dimension one with invariants (ne, no). According
to Theorem 13 the Hilbert series of I has the form

hI(t) =
1

(1 − t)2(1 − t2)
−

sI(t)

1 − t2

where sI(t) is a Castelnuovo polynomial of even weight ne and odd weight no. For
the cases ne ≤ 3, no ≤ 3 we list the possible Hilbert series for I, the corresponding
Castelnuovo polynomial, dimk Ext1A(I, I) and the possible minimal resolutions of I.

(ne, no) = (0, 0) hI(t) = 1 + 2t + 4t2 + 6t3 + 9t4 + 12t5 + . . .

sI(t) = 0
dimk Ext1A(I, I) = 0
0 → A → I → 0

(ne, no) = (1, 0) hI(t) = 2t + 3t2 + 6t3 + 8t4 + 12t5 + 15t6 + . . .

sI(t) = 1
dimk Ext1A(I, I) = 0
0 → A(−2) → A(−1)2 → I → 0

(ne, no) = (1, 1) hI(t) = t + 3t2 + 5t3 + 8t4 + 11t5 + 15t6 + . . .

sI(t) = 1 + t

dimk Ext1A(I, I) = 2
0 → A(−3) → A(−1) ⊕ A(−2) → I → 0

(ne, no) = (1, 2) hI(t) = 3t2 + 4t3 + 8t4 + 10t5 + 15t6 + . . .

sI(t) = 1 + 2t

dimk Ext1A(I, I) = 0
0 → A(−3)2 → A(−2)3 → I → 0

(ne, no) = (2, 1) hI(t) = t + 2t2 + 5t3 + 7t4 + 11t5 + 14t6 + . . .

sI(t) = 1 + t + t2

dimk Ext1A(I, I) = 2
0 → A(−4) → A(−1) ⊕ A(−3) → I → 0

(ne, no) = (2, 2) hI(t) = 2t2 + 4t3 + 7t4 + 10t5 + 14t6 + . . .

sI(t) = 1 + 2t + t2

dimk Ext1A(I, I) = 4
0 → A(−4) → A(−2)2 → I → 0
0 → A(−3) ⊕ A(−4) → A(−2)2 ⊕ A(−3) → I → 0

hI(t) = t + 2t2 + 4t3 + 7t4 + 10t5 + 14t6 + . . .

sI(t) = 1 + t + t2 + t3

dimk Ext1A(I, I) = 3
0 → A(−5) → A(−1) ⊕ A(−4) → I → 0
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(ne, no) = (2, 3) hI(t) = 2t2 + 3t3 + 7t4 + 9t5 + 14t6 + . . .

sI(t) = 1 + 2t + t2 + t3

dimk Ext1A(I, I) = 2
0 → A(−3) ⊕ A(−5) → A(−2)2 ⊕ A(−4) → I → 0

(ne, no) = (3, 2) hI(t) = t2 + 4t3 + 6t4 + 10t5 + 13t6 + . . .

sI(t) = 1 + 2t + 2t2

dimk Ext1A(I, I) = 4
0 → A(−4)2 → A(−2) ⊕ A(−3)2 → I → 0

hI(t) = t + 2t2 + 4t3 + 6t4 + 10t5 + 13t6 + . . .

sI(t) = 1 + t + t2 + t3 + t4

dimk Ext1A(I, I) = 3
0 → A(−6) → A(−1) ⊕ A(−5) → I → 0

(ne, no) = (3, 3) hI(t) = t2 + 3t3 + 6t4 + 9t5 + 13t6 + . . .

sI(t) = 1 + 2t + 2t2 + t3

dimk Ext1A(I, I) = 6
0 → A(−5) → A(−2) ⊕ A(−3) → I → 0
0 → A(−4) ⊕ A(−5) → A(−2) ⊕ A(−3) ⊕ A(−4) → I → 0

hI(t) = 2t2 + 3t3 + 6t4 + 9t5 + 13t6 + . . .

sI(t) = 1 + 2t + t2 + t3 + t4

dimk Ext1A(I, I) = 4
0 → A(−3) ⊕ A(−6) → A(−2)2 ⊕ A(−5) → I → 0

hI(t) = t + 2t2 + 4t3 + 6t4 + 9t5 + 13t6 + . . .

sI(t) = 1 + t + t2 + t3 + t4 + t5

dimk Ext1A(I, I) = 4
0 → A(−7) → A(−1) ⊕ A(−6) → I → 0



Appendix D

A visual criterion for

incidence problems of length

zero

In this appendix we provide a visual criterion for the three conditions in Theorem 9
of Chapter 5. The reader may easily check these using Condition C, Proposition 5.3.1
and (5.7) in Chapter 5. We let (ϕ, ψ) be a pair of Hilbert series of degree n and length
zero. Then Hϕ ⊂ Hψ if and only if the Castelnuovo diagram sϕ of ϕ has one of the
following six forms, where the diagram sψ is obtained by moving the upper square as
indicated.

6
?
≥ 0

6

?
6
?

-�

C ≥ 1

D ≥ 0

≥ 1

-�

2

6
?
≥ 0

6

?
6
?

C ≥ 1

D ≥ 0

where C > D

6
?
6

?

A ≥ 0

B ≥ 1

where A < B
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APPENDIX D. A VISUAL CRITERION FOR INCIDENCE PROBLEMS OF

LENGTH ZERO
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≥ 1

-�

3

6
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Appendix E

Maple programs

In this appendix we provide some procedures, implemented in MapleTM, which allows
us to compute various data concerning Chapter 3 and Chapter 5. These procedures
will be illustrated with examples after we have briefly recalled a some earlier definitions
and results from Chapters 3, Chapter 5. In this way the reader may save some time
in turning pages.

Some of the procedures in this chapter are based on programs in [38, Annexe C].

E.1 Procedures for Chapter 3: Examples

In this part we illustrate procedures for Chapter 3. The procedures themselves will
be listed in Section E.3. For convenience we recall some definitions and results.

In the sequel we identify a function f : Z → C with its generating function
f(t) =

∑
n f(n)tn. We refer to f(t) as a polynomial or a series depending on whether

the support of f is finite or not.

Let n be a positive integer. A Castelnouvo polynomial is a polynomial in s(t) ∈ Z[t]
of the form

s(t) = 1 + 2t+ 3t2 + · · · + utu−1 + sut
u + · · · + svt

v

for some integers 0 ≤ u ≤ v, where su ≥ su+1 ≥ · · · ≥ sv ≥ 0. The integers u and∑
i si are called the height and the weight of s(t).

Let A be a quadratic Artin-Schelter algebra. Due to Theorem 4 the equation

h(t) =
1

(1 − t)3
−

s(t)

1 − t

gives a bijection between Castelnuovo polynomials s(t) of weight n and the Hilbert
series h(t) of torsion free graded right A-modules I of rank one and projective di-
mension one, which are normalized of invariant n. These objects I are parameterized
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by the scheme Hilbn(P
2
q). There is a (weak) stratification into smooth, non-empty

connected locally closed sets

Hilbn(P
2
q) =

⋃

h

Hilbh(P
2
q)

where the union runs over the (finite set) of admissible Hilbert series of weight n
and where the points in Hilbh(P

2
q) represents the points in Hilbn(P

2
q) corresponding

to objects with Hilbert series h. The appearing Hilbert series h(t) are called admis-
sible Hilbert series of weight n. Similarly we will refer to a polynomial of the form
q(t) = 1− s(t)(1− t)2 as an admissible characteristic polynomial of weight n. Finitely
supported sequences (ai), (bi) of integers are called admissible Betti numbers of weight
n if

∑
i(ai−bi)t

i is an admissible characteristic polynomial of weight n. This is equiv-
alent with saying that (ai), (bi) occur as the Betti numbers of a torsion free graded
right A-module I of projective dimension one and rank one which is normalized of
invariant n, i.e. a minimal resolution of I has the form

0 → ⊕iA(−i)bi → ⊕iA(−i)ai → I → 0

Note that counting the number of admissible Betti numbers of weight n is the same
as counting the possible minimal resolutions.

We now come to the discussion of the procedures of Section E.3.

• “Castelnuovo” computes all Castelnuovo polynomials with given weight n.
Input: positive integer n (n < 60 is recommended).
Output: list L for which each member L[i] is a list of coefficients of a corre-
sponding Castelnuovo polynomial of weight n. In the sequel we refer to such
a list of coefficients as a Castelnuovo list. L contains all Castelnuovo lists of
weight n.
Example: all Castelnuovo lists of weight 9.

> Castelnuovo(9);

[[1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 2, 1, 1, 1, 1, 1, 1], [1, 2, 2, 1, 1, 1, 1],
[1, 2, 2, 2, 1, 1], [1, 2, 2, 2, 2], [1, 2, 3, 1, 1, 1], [1, 2, 3, 2, 1], [1, 2, 3, 3]]

• “validCastelnuovo” determines if a list of numbers is a Castelnuovo list.
Input: list of numbers.
Output: true if input is a Castelnuovo list, false otherwise.
Example: the list [1, 2, 3, 4, 5, 5, 5, 5, 2, 2, 3, 1] is not a Castelnuovo list.

> validCastelnuovo([1,2,3,4,5,5,5,5,2,2,3,1]);

false

• “weight” computes the weight of a Castelnuovo polynomial.
Input: Castelnuovo list (if this list is not a Castelnuovo list a warning is given).
Output: the weight of the Castelnuovo list.
Example: the weight of the Castelnuovo list [1, 2, 3, 4, 5, 5, 5, 4, 2, 2, 2, 1].

> weight([1,2,3,4,5,5,5,4,2,2,2,1]);
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36

• “height” computes the height of a Castelnuovo polynomial.
Input: Castelnuovo list (if this list is not a Castelnuovo list a warning is given).
Output: the height of the Castelnuovo list.
Example: the height of the Castelnuovo list [1, 2, 3, 4, 5, 5, 5, 4, 2, 2, 2, 1].

> height([1,2,3,4,5,5,5,4,2,2,2,1]);

5

• “diagram” plots the Castelnuovo diagram of a given Castelnouvo polynomial.
Input: Castelnuovo list (if this list is not a Castelnuovo list a warning is given).
Output: plot of the corresponding Castelnuovo diagram.
Example: the Castelnuovo diagram of [1, 2, 3, 4, 5, 5, 5, 4, 2, 2, 2, 1].

> diagram([1,2,3,4,5,5,5,4,2,2,2,1]);

• “savediagram” saves a Castluovo diagram as an eps-file.
Input: sequence filename.eps,L where L is a Castelnuovo list and “filename” is
the name you want to give to the eps-file.
Output: the file filename.eps has been saved on the computer.
Example: save diagram of [1, 2, 3, 4, 5, 5, 5, 4, 2, 2, 2, 1] as drawing.eps.1

> savediagram("drawing.eps",[1,2,3,4,5,5,5,4,2,2,2,1]);

• “Hilbertideal” computes the initial terms of the Hilbert series corresponding to
a given Castelnuovo polynomial of weight n.
Input: Castelnuovo list (if this list is not a Castelnuovo list a warning is given).
Output: list L of the initial terms of the Hilbert series h corresponding to the
input Castelnuovo list. The initial term of L is the coefficient of t0 in h(t).
If the difference between the two final terms of L is m then the next term is

1To present the Castelnuovo diagram as shown above, the author included drawing.eps by use of
the LaTeX command \parbox[c]{1cm}{\includegraphics[height=5cm,width=5cm]{drawing.eps}}.
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determined by adding m+ 1 to the final term. Repeating this proces allows the
user to compute higher terms.
Example: Hilbert series corresponding to [1, 2, 3, 4, 5, 5, 3, 2, 1, 1, 1].

> Hilbertideal([1,2,3,4,5,5,3,2,1,1,1]);

[0, 0, 0, 0, 0, 1, 5, 11, 19, 28, 38, 50, 63, 77, 92, 108, 125]

• “allHilbertideal” computes the initial terms of all weight n admissible Hilbert
series.
Input: positive integer n.
Output: complete list for which each member is a list of the initial terms of
an admissible Hilbert series of weight n.
Example: the admissible Hilbert series of weight 3.

> allHilbertideal(3);

[[0, 1, 3, 7, 12, 18, 25, 33, 42], [0, 0, 3, 7, 12, 18, 25, 33]]

• “characteristic” computes the characteristic polynomial of weight n correspond-
ing to a given Castelnuovo polynomial of weight n.
Input: Castelnuovo list (if this list is not a Castelnuovo list a warning is given).
Output: list L of all coefficients of the characteristic polynomial q(t) corre-
sponding to the input Castelnuovo list. The initial term of L is the coefficient
of t0 in q(t).
Example: the admissible characteristic polynomial of [1, 2, 3, 4, 5, 5, 3, 2, 1, 1, 1].

> characteristic([1,2,3,4,5,5,3,2,1,1,1]);

[0, 0, 0, 0, 0, 1, 2,−1, 0,−1, 0, 1,−1]

• “allcharacteristic” computes all weight n admissible characteristic polynomials.
Input: positive integer n.
Output: complete list for which each member is a list of coefficients of an
admissible weight n characteristic polynomial.
Example: the admissible characteristic polynomials of weight 3.

> allcharacteristic(3);

[[0, 1, 0, 1,−1], [0, 0, 3,−2]]

• “validcharacteristic” determines if a given list appears as the coefficients of an
admissible characteristic polynomial.
Input: list of numbers.
Output: sequence True,L if the input list agrees with the coefficients of tdq(t)
for some integer d and some admissible characteristic polynomial q(t). In that
case L is the associated Castelnuovo polynomial. False otherwise.
Example: [0, 0, 0, 0, 0, 1, 2, 1, 0, 0,−3] is a list of terms of an admissible charac-
teristic polynomial (up to shifting).

> validcharacteristic([0,0,0,0,0,1,2,1,0,0,-3]);
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true, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11, 9, 6, 3]

• “Betti” computes all admissible Betti numbers (ai)i, (bi)i corresponding to a
given Castelnuovo polynomial.
Input: Castelnuovo list (if this list is not a Castelnuovo list a warning is given).
Output: a list of the form [[. . . , [i, v . . . v′], . . . ], [. . . , [i, u . . . u′], . . . ]]. The se-
quences (ai)i, (bi)i with support the appearing i and for which u ≤ ai ≤ u′,
v ≤ bi ≤ v′ where ai − bi = u − v are exactly the admissible Betti numbers
corresponding to the input list.
Example: admissible Betti numbers corresponding to [1, 2, 3, 4, 5, 5, 3, 2, 1, 1, 1].

> Betti([1,2,3,4,5,5,3,2,1,1,1]);

[[[4, 0], [6, 2], [7, 0 . . .1], [8, 0 . . .1], [11, 1]], [[7, 1 . . .2], [8, 0 . . . 1], [9, 1], [12, 1]]]

• “numberminimalresolutions” computes the number of admissible Betti numbers
corresponding to the given Castelnuovo polynomial.
Input: Castelnuovo list (if this list is not a Castelnuovo list a warning is given).
Output: the number of admissible Betti numbers corresponding to input.
Example: number of admissible Betti numbers for [1, 2, 3, 4, 5, 5, 3, 2, 1, 1, 1].

> numberminimalresolutions([1,2,3,4,5,5,3,2,1,1,1]);

4

• “numberallminimalresolutions” computes the number of admissible Betti num-
bers of weight n.
Input: positive integer n.
Output: the number of admissible Betti numbers of weight n.
Example: number of admissible Betti numbers of weight 20.

> numberallminimalresolutions(20);

104

• “dimension” computes the dimension of the stratum Hilbh(P
2
q) in Hilbn(P

2
q)

corresponding to a given Hilbert series.
Input: Castelnuovo list (if this list is not a Castelnuovo list a warning is given).
Output: the dimension of the stratum corresponding to the Hilbert series
determined by the input Castelnuovo list.
Example: dimension of the stratum corresponding to [1, 2, 3, 4, 5, 5, 3, 2, 1, 1, 1].

> dimension([1,2,3,4,5,5,3,2,1,1,1]);

42

• “alldimension” computes the dimensions of all strata in Hilbn(P
2
q).

Input: positive integer n.
Output: list of dimensions of all strata in Hilbn(P2

q).
Example: the dimensions of the strata in Hilbn(P

2
q) for n = 12.

> alldimension(12);
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[14, 15, 16, 16, 16, 17, 17, 18, 17, 18, 19, 20, 21, 20, 24]

E.2 Procedures for Chapter 5: Examples

In this part we illustrate procedures for Chapter 5, listed in Section E.4. We first recall
some definitions and results from Chapter 5. For more details we refer to Chapters 3
and 5.

Let A = k[x, y, z] and write Hilbn(P2) for the Hilbert scheme parameterizing zero-
dimensional subschemes of length n in P2. Associated to X is an ideal IX ⊂ OP2

and a graded ideal IX = ⊕nH
0(P2, IX(n)) ⊂ A. The Hilbert function hX of X is

the Hilbert function of the graded ring A(X) = A/IX . A function ϕ : Z → N is
of the form hX for some X ∈ Hilbn(P

2) if and only if h(m) = 0 for m < 0 and
h(m) − h(m− 1) is a Castelnuovo function of weight n.

We refer to a series ϕ for which ϕ = hX for some X ∈ Hilbn(P
2) as a Hilbert

function of degree n. The set of all Hilbert functions of degree n (or equivalently the
set of all Castelnuovo functions of weight n) will be denoted by Γn. For ϕ, ψ ∈ Γn we
have that ψ(t) − ϕ(t) is a polynomial, and we write ϕ ≤ ψ if its coefficients are non-
negative. In this way ≤ becomes a partial ordering on Γn and we call the associated
directed graph the Hilbert graph, also denoted by Γn.

Let X ∈ Hilbn(P2). The graded ideal IX associated to X admits a minimal free
resolution of the form

0 → ⊕iA(−i)bi → ⊕iA(−i)ai → IX → 0

where (ai), (bi) are sequences of non-negative integers which have finite support, called
the graded Betti numbers of IX (and X). They are related to the Hilbert series of X
as

hX(t) = hA(t)

(
1 −

∑

i

(ai − bi)t
i

)
=

1 −
∑

i(ai − bi)t
i

(1 − t)3

So the Betti numbers determine the Hilbert series of X . For generic X (in a stratum
Hψ) the converse is true since in that case ai and bi are not both non-zero. We will
call such (ai)i, (bi)i generic Betti numbers.

The tangent function tϕ of a Hilbert function ϕ ∈ Γn is defined as the Hilbert
function of IX ⊗P2 TP2 , where X ∈ Hϕ is generic.

For any Hilbert function ψ of degree n one defines a smooth connected subscheme
Hψ = {X ∈ Hilbn(P

2) | hX = ψ} of Hilbn(P
2). The family {Hψ}ψ∈Γn

forms a
stratification of Hilbn(P

2) in the sense that

Hψ ⊂
⋃

ϕ≤ψ

Hϕ

In general it is still an open problem to find necessary and sufficient conditions for
the existence of an inclusion Hϕ ⊂ Hψ. This problem is sometimes referred to as the
incidence problem.
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It follows that

Hϕ ⊂ Hψ ⇒





ϕ ≤ ψ cohomological condition
dimHϕ < dimHψ dimension condition
tϕ ≥ tψ tangent condition

(E.1)

A pair of Hilbert functions (ϕ, ψ) of degree n has length zero if ϕ < ψ and there are
no Hilbert functions τ of degree n such that ϕ < τ < ψ. The main result of Chapter
5 is that the converse of the implication (E.1) is true if (ϕ, ψ) has length zero, see
Theorem 9. In [38] Guerimand proved this result under the additional hypothesis
(ϕ, ψ) has type zero (see §5.1 for the definition of type zero).

We now discuss of the procedures of Section E.4.

• “Hilbertsubscheme” computes the Hilbert function corresponding to a given
Castelnuovo polynomial.
Input: Castelnuovo list (if this list is not a Castelnuovo list a warning is given).
Output: list L of the (initial) values of the Hilbert function ϕ corresponding
to input. The i-th term L[i] of L is equal to the value ϕ(i − 1), and if L[m] is
the final term of L then L[m] is the degree of ϕ and ϕ(j) = ϕ(m − 1) = L[m]
for all j ≥ m.
Example: Hilbert function corresponding to [1, 2, 3, 4, 5, 5, 3, 2, 1, 1, 1].

> Hilbertsubscheme([1,2,3,4,5,5,3,2,1,1,1]);

[1, 3, 6, 10, 15, 20, 23, 25, 26, 27, 28, 28, 28, 28]

• “allHilbertsubscheme” computes all Hilbert functions of given degree n.
Input: positive integer n.
Output: complete list L for which each member L[i] are the (initial) values of
a Hilbert function ϕ of degree n.
Example: all Hilbert functions of degree 3.

> allHilbertsubscheme(3);

[[1, 2, 3, 3, 3, 3], [1, 3, 3, 3, 3]]

• “genericBetticoefficients” computes, given i, the numbers ai, bi of the generic
Betti-numbers (ai)i, (bi)i associated to a given Castelnuovo polynomial.
Input: Castelnuovo list (if this list is not a Castelnuovo list a warning is given).
Output: [[ai], [bi]] where the integers ai, bi are the i-th generic Betti numbers.
Example: the 8-th generic Betti numbers of [1, 2, 3, 4, 5, 5, 3, 2, 1, 1, 1].

> genericBetticoefficients([1,2,3,4,5,5,3,2,1,1,1],8);

[[0], [0]]

• “genericBetti” computes the generic Betti numbers (ai), (bi) associated to a
given Castelnuovo polynomial.
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Input: Castelnuovo list (if this list is not a Castelnuovo list a warning is given).
Output: [[..., [i, bi], ...], [..., [i, ai], ...]] where (ai)i, (bi)i are the generic Betti
numbers corresponding to the input Castelnuovo list.
Example: generic Betti numbers of [1, 2, 3, 4, 5, 5, 3, 2, 1, 1, 1].

> genericBetti([1,2,3,4,5,5,3,2,1,1,1]);

[[[7, 1], [9, 1], [12, 1]], [[5, 1], [6, 2], [11, 1]]]

• “allgenericBetti” computes all generic Betti numbers (ai)i, (bi)i associated to
the set Γn of all Hilbert functions of given degree n.
Input: positive integer n.
Output: complete list of all generic Betti numbers (ai)i, (bi)i.
Example: all generic Betti numbers of all Hilbert functions of degree 3.

> allgenericBetti(3);

[[[[4, 1]], [[1, 1], [3, 1]]], [[[3, 2]], [[2, 3]]]]

• “tangentcoefficient” computes a specific coefficient of the tangent function as-
sociated to a given Castelnuovo polynomial.
Input: L, d where L is a Castelnuovo list and d an integer.
Output: the value tϕ(d) where tϕ is the tangent function of the Hilbert func-
tion ϕ associated to the given Castelnuovo list.
Example: the coefficient tϕ(3) where tϕ is the tangent function associated to
[1, 2, 3, 2, 1, 1].

> tangentcoefficient([1,2,3,2,1,1],3);

16

• “tangent” computes the values of the tangent function associated to a given
Castelnuovo polynomial.
Input: Castelnuovo list (if this list is not a Castelnuovo list a warning is given).
Output: list L of the initial values of the tangent function tϕ of the Hilbert
series ϕ associated to the input Castelnuovo list. The i-th term L[i] of L is the
value tϕ(i − 2). Further, tϕ(j) = 0 for j ≤ −2 and if L[m] are the two final
terms of L then tϕ(j) = 2tϕ(j − 1) − tϕ(j − 2) + 2 for j > m− 2.
Example: (initial) values of the tangent function tϕ of the Hilbert series ϕ
associated to [1, 2, 3, 2, 1, 1].

> tangent([1,2,3,2,1,1]);

[0, 0, 0, 7, 16, 28, 43, 60, 79, 100, 123, 148, 175]

• “cohomologicalcondition” determines if a pair of Hilbert series (ϕ, ψ) of the
same degree satisfies the cohomological condition ϕ ≤ ψ.
Input: Castelnuovo lists L,M of the same weight (if at least one of them is not
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a Castelnuovo list or if they do not have the same weight a warning is given).
Output: true if the pair of Hilbert series (ϕ, ψ) corresponding to the input
L,M satisfies the cohomological condition, false otherwise.
Example: cohomological condition for the pair of Hilbert series corresponding
to the Castelnuovo lists [1, 2, 3, 3, 2, 2, 2, 1] and [1, 2, 3, 4, 2, 2, 1, 1].

> K:=[1,2,3,3,2,2,2,1]; L:=[1,2,3,4,2,2,1,1];

cohomologicalcondition(K,L);

Hilbertsubscheme(K); Hilbertsubscheme(L);

K := [1, 2, 3, 3, 2, 2, 2, 1]
L := [1, 2, 3, 4, 2, 2, 1, 1]

true
[1, 3, 6, 9, 11, 13, 15, 16, 16, 16, 16]
[1, 3, 6, 10, 12, 14, 15, 16, 16, 16, 16]

• “dimensioncondition” determines if a pair of Hilbert series (ϕ, ψ) of the same
degree satisfies the dimension condition dimHϕ < dimHψ.
Input: Castelnuovo lists L,M of the same weight (if at least one of them is not
a Castelnuovo list or if they do not have the same weight a warning is given).
Output: true if the pair of Hilbert series (ϕ, ψ) corresponding to the input
L,M satisfies the dimension condition, false otherwise.
Example: dimension condition for the pair of Hilbert series with corresponding
Castelnuovo lists [1, 2, 3, 4, 4, 1, 1, 1] and [1, 2, 3, 4, 4, 2, 1].

> K:=[1,2,3,4,4,1,1,1]; L:=[1,2,3,4,4,2,1];

dimensioncondition(K,L); dimension(K); dimension(L);

K := [1, 2, 3, 4, 4, 1, 1, 1]
L := [1, 2, 3, 4, 4, 2, 1]

true
28
29

• “tangentcondition” determines if a pair of Hilbert series (ϕ, ψ) of the same
degree satisfies the tangent condition tϕ ≥ tψ.
Input: Castelnuovo lists L,M of the same weight (if at least one of them is not
a Castelnuovo list or if they do not have the same weight a warning is given).
Output: true if the pair of Hilbert series corresponding to the input L,M
satisfies the tangent condition, false otherwise.
Example: tangent condition for the pair of Hilbert series with corresponding
Castelnuovo lists [1, 2, 2, 2, 2, 1] and [1, 2, 3, 2, 1, 1].

> K:=[1,2,2,2,2,1]; L:=[1,2,3,2,1,1];

tangentcondition(K,L); tangent(K); tangent(L);

K := [1, 2, 2, 2, 2, 1]
L := [1, 2, 3, 2, 1, 1]
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false
[0, 0, 3, 8, 15, 28, 43, 60, 79, 100, 123, 148, 175]
[0, 0, 0, 7, 16, 28, 43, 60, 79, 100, 123, 148, 175]

• “lengthzero” determines if a pair of Hilbert series (ϕ, ψ) of the same degree n
has length zero, i.e. ϕ < ψ and there are no Hilbert series τ of degree n such
that ϕ < τ < ψ.
Input: Castelnuovo lists L,M of the same weight (if at least one of them is not
a Castelnuovo list or if they do not have the same weight a warning is given).
Output: true if the pair of Hilbert series (ϕ, ψ) corresponding to input has
length zero, false otherwise.
Example: length zero condition for the pair of Hilbert series with corresponding
Castelnuovo lists [1, 2, 3, 2, 2, 2, 2, 1] and [1, 2, 3, 3, 2, 2, 2].

> K:=[1,2,3,2,2,2,2,1]; L:=[1,2,3,3,2,2,2]; lengthzero(K,L);

K := [1, 2, 3, 2, 2, 2, 2, 1]
L := [1, 2, 3, 3, 2, 2, 2]

false

• “typezero” determines if a pair of Hilbert series (ϕ, ψ) of the same degree has
type zero.
Input: pair of Castelnuovo lists L,M of the same weight (if at least one of
them is not a Castelnuovo list or if they do not has the same weight a warning
is given).
Output: true if the pair of Hilbert series (ϕ, ψ) corresponding to input has
type zero, false otherwise.
Example: the type zero condition for the pair of Hilbert series with corre-
sponding Castelnuovo lists [1, 2, 3, 4, 4, 1, 1, 1] and [1, 2, 3, 4, 4, 2, 1].

> K:=[1,2,3,4,4,1,1,1]; L:=[1,2,3,4,4,2,1]; typezero(K,L);

K := [1, 2, 3, 4, 4, 1, 1, 1]
L := [1, 2, 3, 4, 4, 2, 1]

true

• “alltypezero” determines all pairs of Hilbert series (ϕ, ψ) of given degree which
have type zero.
Input: positive integer n (less than 25 is recommended).
Output: list of all pairs [i, j] such that the pair of Hilbert series associated to
the Castelnuovo lists G[i],G[j] has type zero. Here G stands for the output of
the procedure Castelnuovo(n).
Example: all pairs of Castelnuovo lists of weight 15 such that the corresponding
Hilbert series have length zero.

> alltypezero(15);G:=Castelnuovo(15):G[17];G[19];
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[[12, 13], [17, 19], [18, 19]]
[1, 2, 3, 3, 2, 2, 2]
[1, 2, 3, 3, 3, 2, 1]

• “incidencelengthzero” determines if for a pair of Hilbert series (ϕ, ψ) of the same
degree and length zero satisfies Hϕ ⊂ Hψ. In other words, this procedure solves
the incidence problem for (ϕ, ψ) of length zero.
Input: pair of Castelnuovo lists L,M of the same weight and of length zero (if
at least one of them is not a Castelnuovo list or if they do not have the same
weight or if they are not of length zero a warning is given).
Output: true if Hϕ ⊂ Hψ where (ϕ, ψ) is the pair of Hilbert series associated
to input. False otherwise.
Example: the incidence problem for (ϕ, ψ) associated to the Castelnuovo lists
[1, 2, 3, 4, 4, 1, 1, 1] and [1, 2, 3, 4, 4, 2, 1].

> K:=[1,2,3,4,4,1,1,1]; L:=[1,2,3,4,4,2,1];

incidencelengthzero(K,L);

K := [1, 2, 3, 4, 4, 1, 1, 1]
L := [1, 2, 3, 4, 4, 2, 1]

true

• “equivalenceBC” checks if the conditions B and C in Chapter 5 are equivalent
for a particular invariant n.
Input: a positive integer n.
Output: true if the conditions B and C are equivalent for n, false otherwise.
Example: check if the conditions B and C are equivalent for n = 10.

> equivalenceBC(10);

true, [ ]

Remark E.2.1. Using this program we have checked that the conditions B and C
in Chapter 5 are equivalent for 1 ≤ n ≤ 70. The computer needed approximately
827000 seconds to do this.

E.3 Procedures for Chapter 3

In this section we define the procedures which were used in Section E.1.

> restart;with(linalg):with(plots);with(combinat,partition):

plotoptions(noborders,portrait,’height=100,width=100’):

interface(plotdevice=inline):
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> Castelnuovo:=proc(n)

local i,j,k,P,Castel;

i:=1; Castel:=[];

if n=0 then

Castel:=[[]]

fi;

while n-i*(i+1)/2 >= 0 do

P:=partition(n-i*(i+1)/2,min(n-i*(i+1)/2,i));

Castel:=[op(Castel),seq([seq(j,j=1..i),

seq(P[k][nops(P[k])-m+1],m=1..nops(P[k]))],k=1..nops(P))];

i:=i+1

od;

RETURN(Castel)

end:

> validCastelnuovo:=proc(L)

local i,j,k,n,test,sigma,s;

test:=false;

if nops(L)=0 or (nops(L)=1 and L[1]=1) then

test:=true;

else

n:=add(L[k],k=1..nops(L));i:=1;

while L[i]=i and i < nops(L) do

i:=i+1

od;

sigma:=i-1;s:=sigma;

if i = nops(L) and L[i]=i then

test:=true

else

test:=member([seq(L[nops(L)-j+1],j=1..nops(L)-s)],

partition(n-s*(s+1)/2,min(s,n-s*(s+1)/2)));

fi;

fi;

RETURN(test);

end:

> weight:=proc(L)

local i,wt;

global validcastelnuovo;

if validCastelnuovo(L) then

wt:=add(L[i],i=1..nops(L));RETURN(wt)

else

RETURN("the input is not a valid Castelnuovo list")

fi;

end:



E.3. PROCEDURES FOR CHAPTER 3 195

> height:=proc(L)

local i,ht;

global validcastelnuovo;

if validCastelnuovo(L) then

ht:=0;

for i from 1 to nops(L) do

ht:=max(ht,L[i])

od;

RETURN(ht)

else

RETURN("the input is not a valid Castelnuovo list")

fi;

end:

> diagram:=proc(L)

local i,j,M,S,xmax,ymax;

global weight,height,validCastelnuovo;

if validCastelnuovo(L) then

M:=[seq(seq([j,i],i=1..L[j]),j=1..nops(L))];

S:={seq([[M[j][1]-1,0],[M[j][1],0],[M[j][1],M[j][2]],
[M[j][1]-1,M[j][2]],[M[j][1]-1,0]],j=1..nops(M))};
xmax:=nops(L);ymax:=height(L);

print(plot(S,x=0..xmax,0..ymax,xtickmarks=0,ytickmarks=0,

color=BLACK,axes=none,scaling=constrained));

else

RETURN("the input is not a valid Castelnuovo list")

fi;

end:

> savediagram:=proc(filename,L)

global validCastelnuovo,diagram;

if validCastelnuovo(L) then

plotsetup(ps,plotoutput=filename,plotoptions=̀ portrait,

noborder̀ );interface(plotdevice=ps);

try

print(diagram(L))

finally

interface(plotdevice=inline);NULL;

end try;

else

RETURN("the input is not a valid Castelnuovo list")

fi;

end:
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> Hilbertideal:=proc(L)

local i,j,k,n,Hilb;

global validCastelnuovo;

if validCastelnuovo(L) then

n:=add(L[i],i=1..nops(L));

Hilb:=[seq(k*(k+1)/2-add(L[j],j=1..k),k=1..nops(L)),

seq(m*(m+1)/2-n,m=nops(L)+1...nops(L)+6)];

RETURN(Hilb);

else

RETURN("the input was not a valid Castelnuovo list")

fi;

end:

> allHilbertideal:=proc(n)

local i,j,k,L,Hilb;

global Castelnuovo,Hilbertideal;

L:=Castelnuovo(n);Hilb:=[seq(Hilbertideal(L[i]),i=1..nops(L))];

RETURN(Hilb);

end:

> characteristic:=proc(L)

local i,M,charac;

global validCastelnuovo;

if nops(L)=0 then

charac:=[1]

else

if validCastelnuovo(L) then

M:=[L[1],seq(L[j]-L[j-1],j=2..nops(L)),-L[nops(L)]];

charac:=[1-M[1],seq(-M[j]+M[j-1],j=2..nops(M)),M[nops(M)]];

RETURN(charac);

else

RETURN("the input is not a valid Castelnuovo list")

fi;

fi;

end:

> allcharacteristic:=proc(n)

local i,L,charac;

global Castelnuovo,characteristic;

L:=Castelnuovo(n);

charac:=[seq(characteristic(L[i]),i=1..nops(L))];

RETURN(charac);

end:
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> validcharacteristic:=proc(Q)

local i,j,k,s,V,W,X,Y,Z,test;

if nops(Q)=0 then

test:=false

else

test:=true;i:=1;

while Q[i]=0 do

i:=i+1;

od;

while add(Q[j],j=1..i)>0 and i<nops(Q) do

i:=i+1

od;

if add(Q[i],i=1..nops(Q))<>1 or i<>nops(Q) then

test:=false

fi;

fi;

if test=true then

s:=add((k-1)*Q[k],k=1..nops(Q));

if s>0 then

V:=[seq(Q[k],k=s+1..nops(Q))];

else

V:=[seq(0,k=1..-s),op(Q)]

fi;

W:=[1-V[1],seq(-V[i],i=2..nops(V))];

X:=[seq(add(W[k],k=1..l),l=1..nops(W))];

Y:=[seq(add(X[k],k=1..l),l=1..nops(X))];

Z:=[];i:=1;

while Y[i]<>0 and i<=nops(Y) do

Z:=[op(Z),Y[i]];i:=i+1

od;

RETURN(test,Z)

else

RETURN(test)

fi;

end:
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> Betti:=proc(L)

local i,j,m,A,B,Q,sigma;

global validCastelnuovo,height,characteristic;

if validCastelnuovo(L) then

Q:=characteristic(L);sigma:=height(L);A:=[];B:=[];

if sigma=0 then

A:=[[0,1]]

else

A:=[op(A),[sigma-1,Q[sigma]]];

for i from sigma+2 to nops(Q) do

m:=add(Q[j],j=1..i);

if max(Q[i],0)=m-1 then

if Q[i]>0 then

A:=[op(A),[i-1,Q[i]]]

fi;

if Q[i]<0 then

B:=[op(B),[i-1,-Q[i]]]

fi;

else

A:=[op(A),[i-1,max(Q[i],0)..m-1]];

B:=[op(B),[i-1,max(Q[i],0)-Q[i]..m-1-Q[i]]]

fi;

od;

RETURN([A,B]);

fi;

else

RETURN("the input is not a valid Castelnuovo list")

fi;

end:

> numberminimalresolutions:=proc(L)

local i,K,T,sigma,s;

global validCastelnuovo,height;

if validCastelnuovo(L) then

sigma:=height(L);s:=sigma;K:=[op(L),0];

T:=product(1+min(K[i-1]-K[i],K[i-2]-K[i-1]),i=s+2..nops(K));

RETURN(T)

else

RETURN("the input is not a valid Castelnuovo list")

fi;

end:
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> numberallminimalresolutions:=proc(n)

local i,G,T;

global Castelnuovo;numberminimalresolutions;

G:=Castelnuovo(n);T:=0;

for i from 1 to nops(G) do

T:=T+numberminimalresolutions(G[i])

od;

RETURN(T)

end:
> dimension:=proc(L)

local dim,i,j;

global validCastelnuovo;

if validCastelnuovo(L) then

if nops(L)=0 then

dim:=0

else

dim:=1+add(L[i],i=1..nops(L))+add(L[j]*L[j-1],

j=2..nops(L))-add(L[j]*L[j-2],j=3..nops(L))

fi;

RETURN(dim);

else

RETURN("the input is not a valid Castelnuovo list")

fi;

end:
> alldimension:=proc(n)

local i,L,dim;

global Castelnuovo,dimension;

L:=Castelnuovo(n);dim:=[seq(dimension(L[i]),i=1..nops(L))];

RETURN(dim);

end:
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E.4 Additional procedures for Chapter 5

In this part we define procedures in MapleTM additional to the ones given in Section
E.3.

> Hilbertsubscheme:=proc(L)

local i,j,k,n,Hilb;

global validCastelnuovo;

if validCastelnuovo(L) then

n:=add(L[i],i=1..nops(L));

Hilb:=[seq(add(L[j],j=1..k),k=1..nops(L)),n,n,n];

RETURN(Hilb)

else

RETURN("the input is not a valid Castelnuovo list")

fi;

end:

> allHilbertsubscheme:=proc(n)

local i,j,k,L,Hilb;

global Castelnuovo,Hilbertsubscheme;

L:=Castelnuovo(n);

Hilb:=[seq(Hilbertsubscheme(L[i]),i=1..nops(L))];RETURN(Hilb);

end:

> genericBetticoefficients:=proc(L,i)

local A,B,Q,sigma;

global validCastelnuovo,characteristic;

if validCastelnuovo(L) then

Q:=characteristic(L);sigma:=height(L);

if i<sigma or i>nops(Q)-1 then

A:=[0];B:=[0];

else

if Q[i+1]>=0 then

A:=[Q[i+1]];B:=[0]

fi;

if Q[i+1]<0 then

A:=[0];B:=[-Q[i+1]]

fi;

fi;

RETURN([A,B]);

else

RETURN("the input is not a valid Castelnuovo list")

fi;

end:
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> genericBetti:=proc(L)

local i,Q,A,B;

global validCastelnuovo,characteristic;

if validCastelnuovo(L) then

Q:=characteristic(L);A:=[];B:=[];

for i from 1 to nops(Q) do

if Q[i]>0 then

A:=[op(A),[i-1,Q[i]]]

fi;

if Q[i]<0 then

B:=[op(B),[i-1,-Q[i]]]

fi;

od;

RETURN([B,A]);

else

RETURN("the input is not a valid Castelnuovo list")

fi;

end:

> allgenericBetti:=proc(n)

local i,L,Betti;

global Castelnuovo,genericBetti;

L:=Castelnuovo(n);Betti:=[seq(genericBetti(L[i]),i=1..nops(L))];

RETURN(Betti);

end:

> tangentcoefficient:=proc(L,d)

local i,T,Q;

global characteristic;

if validCastelnuovo(L) then

Q:=characteristic(L);

T:=add(Q[i+1]*max((d-i+2),0)*(d-i+4),i=0..nops(Q)-1);

if 1<=d+4 and d+4<=nops(Q) then

T:=T+max(-Q[d+4],0)

fi;

RETURN(T);

else

RETURN("the input is not a valid Castelnuovo list")

fi;

end:
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> tangent:=proc(L)

local d,T;

global tangentcoefficient,validCastelnuovo;

if validCastelnuovo(L) then

T:=[seq(tangentcoefficient(L,d),d=-1..nops(L)+5)];

RETURN(T);

else

RETURN("the input is not a valid Castelnuovo list")

fi;

end:

> cohomologicalcondition:=proc(K,L)

local g,h,i,m,G,H,test;

global validCastelnuovo,Hilbertsubscheme,weight;

test:=false;

if validCastelnuovo(K) and validCastelnuovo(L) and

weight(K)=weight(L) then

G:=Hilbertsubscheme(K);H:=Hilbertsubscheme(L);

m:=min(nops(K),nops(L));i:=1;

while G[i]<=H[i] and i<=m do

i:=i+1

od;

if i=m+1 then

test:=true

fi;

RETURN(test);

else

RETURN("the input is not a pair of valid

Castelnuovo functions of the same degree")

fi;

end:
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> dimensioncondition:=proc(K,L)

local test;

global dimension,weight;

test:=false;

if validCastelnuovo(K) and validCastelnuovo(L) and

weight(K)=weight(L) then

if dimension(K)<dimension(L) then

test:=true

fi;

RETURN(test)

else

RETURN("the input is not a pair of valid

Castelnuovo functions of the same degree")

fi;

end:

> tangentcondition:=proc(K,L)

local i,m,G,H,test;

global validcastelnuovo,tangent,weight;

test:=false;

if validCastelnuovo(K) and validCastelnuovo(L) and

weight(K)=weight(L) then

G:=tangent(K);H:=tangent(L);m:=min(nops(K),nops(L));i:=1;

while H[i]<=G[i] and i <= m do

i:=i+1

od;

if i=m+1 then

test:=true

fi;

RETURN(test);

else

RETURN("the input is not a pair of valid

Castelnuovo functions of the same degree")

fi;

end:
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> lengthzero:=proc(K,L)

local i,G,V,test;

global validCastelnuovo,Castelnuovo,

weight,cohomologicalcondition;

if validCastelnuovo(K) and validCastelnuovo(L) and

weight(K)=weight(L) then

test:=false;

if cohomologicalcondition(K,L) then

G:=Castelnuovo(weight(K));V:=[];

for i from 1 to nops(G) do

if cohomologicalcondition(K,G[i]) and

cohomologicalcondition(G[i],L) then

V:=[op(V),G[i]]

fi;

od;

if nops(V)=2 then

test:=true

fi;

fi;

RETURN(test)

else

RETURN("the input is not a pair of valid

Castelnuovo functions of the same degree")

fi;

end:
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> typezero:=proc(K,L)

local i,j,P,test;

global validCastelnuovo,weight,height;

test:=false;

if validCastelnuovo(K) and validCastelnuovo(L) and

weight(K)=weight(L) then

P:=[op(K),0,0];

for i from height(K) to nops(K)-4 do

if P[i]=P[i+1] and P[i+1]>P[i+2] and P[i+2]=P[i+3] and

P[i+3]=P[i+4] and P[i+4]>P[i+5] and P[i+5]=P[i+6] and

(equal([seq(K[j],j=1..i+1),K[i+2]+1,K[i+3],K[i+4]-1,

seq(K[j],j=i+5..nops(K))],L) or

equal([seq(K[j],j=1..i+1),K[i+2]+1,K[i+3],K[i+4]-1,

seq(K[j],j=i+5..nops(K))],[op(L),0])) then

test:=true

fi;

od;

RETURN(test);

else

RETURN("the input is not a pair of valid

Castelnuovo functions of the same degree")

fi;

end:

> alltypezero:=proc(n)

global Castelnuovo,lengthzero;

local i,j,G,S;

G:=Castelnuovo(n);S:=[];

for i from 1 to nops(G) do

for j from i+1 to nops(G) do

if typezero(G[i],G[j]) then

S:=[op(S),[i,j]]

fi;

od;

od;

RETURN(S)

end:
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> incidencelengthzero:=proc(K,L)

local test;

global validCastelnuovo,weight,lengthzero,

dimensioncondition,tangentcondition;

if validCastelnuovo(K) and validCastelnuovo(L) and

weight(K)=weight(L) then

if lengthzero(K,L) then

test:=false;

if dimensioncondition(K,L) and tangentcondition(K,L) then

test:=true

fi;

RETURN(test);

else

RETURN("the input is not of length zero")

fi;

else

RETURN("the input is not a pair of valid

Castelnuovo functions of the same degree")

fi;

end:

> valid:=proc(S)

local i,j,test;

test:=false;

i:=1;

while S[i]=i and i<nops(S) do

i:=i+1

od;

j:=i;

while S[i-1]>=S[i] and i<nops(S) do

i:=i+1

od;

if (i=nops(S) and S[i-1]>=S[i]) or j=nops(S) then

test:=true

fi;

RETURN(test);

end:
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> setonesquare:=proc(n)

global Castelnuovo;

local i,j,k,r,s,t,G,H,S;

G:=Castelnuovo(n);

H:=[];

for i from 1 to nops(G) do

for j from height(G[i])+1 to nops(G[i])-1 do

for k from j+1 to nops(G[i]) do

S:=G[i]+[seq(0,r=1..j-1),1,seq(0,s=j+1..k-1),-1,

seq(0,t=k+1..nops(G[i]))];

if valid(S) then

if S[nops(S)]=0 then

S:=[seq(S[r],r=1..nops(S)-1)]

fi;

H:=[op(H),[G[i],S]]

fi;

od;

od;

od;

RETURN(H);

end:

> setlengthzero:=proc(n)

global setonesquare;

local i,j,H,S;

H:=setonesquare(n);S:=convert(H,set);

for i from 1 to nops(H) do

for j from i to nops(H) do

if H[i][2]=H[j][1] and member([H[i][1],H[j][2]],S) then

S:=S minus {[H[i][1],H[j][2]]}
fi;

od;

od;

H:=convert(S,list);RETURN(H);

end:



208 APPENDIX E. MAPLE PROGRAMS

> equivalenceBCdetail:=proc(K,L)

global genericBetticoefficients,dimensioncondition,

tangentcondition;

local a,b,i,m,u,v,V,test,testBetti,testgeometric;

test:=false;testBetti:=false;testgeometric:=false;

m:=min(nops(K),nops(L));u:=0;

V:=[seq(K[i]-L[i],i=1..m),seq(K[i],i=m+1..nops(K)),

seq(L[i],i=m+1..nops(L))];

while V[u+1]<>-1 do

u:=u+1;

od;

v:=u;

while V[v+2]<>1 do

v:=v+1;

od;

a[u]:=genericBetticoefficients(K,u)[1][1];

a[v+2]:=genericBetticoefficients(K,v+2)[1][1];

b[u+1]:=genericBetticoefficients(K,u+1)[2][1];

b[v+3]:=genericBetticoefficients(K,v+3)[2][1];

if v=u and a[u]>0 and b[v+3]>0 then

testBetti:=true

fi;

if v=u+1 and a[u]>0 and b[u+1]<=a[u] and a[u]<=b[u+1]+1

and b[v+3]=a[v+2] then

testBetti:=true

fi;

if v=u+1 and a[u]=b[u+1]+1 and b[v+3]=a[v+2]-1 and b[v+3]>0 then

testBetti:=true

fi;

if v>=u+2 and a[u]=b[u+1]+1 and b[v+3]=a[v+2] then

testBetti:=true

fi;

if dimensioncondition(K,L) and tangentcondition(K,L) then

testgeometric:=true

fi;

if testBetti=testgeometric then

test:=true

fi;

RETURN(test);

end:
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> equivalenceBC:=proc(n)

local i,H,T,test;

global setlenthzero,equivalenceBCdetail;

T:=[];test:=true;H:=setlengthzero(n);

for i from 1 to nops(H) do

if not(equivalenceBCdetail(H[i][1],H[i][2])) then

test:=false;T:=[op(T),[H[i][1],H[i][2]]]

fi;

od;

RETURN(test,T);

end:





Appendix F

Hilbert graphs and

combinatorics

In this appendix we examine Hilbert graphs (as defined in §5.1) more closely.

F.1 Hilbert graphs and incidence problems for low

invariants

For low values of n the Hilbert graph Γn is rather trivial. However when n becomes
bigger the number of Hilbert functions increase rapidly (see Remark 5.1.2) and so the
Hilbert graphs become more complicated. As an illustration we have included the
Hilbert graph for n = 17 where we used Theorem 9 to solve the incidence problems
of length zero (the picture gives little information on incidence problems which are
not of length zero). By convention the minimal Hilbert series is on top.

The reader will notice that the Hilbert graph contains pentagons. This shows that
the Hilbert graph is not catenary and also contradicts [38, Lemme 2.1.2].
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F.2 General Hilbert graphs

As n increases the reader will convince himself that it becomes difficult to visualize
the Hilbert graph Γn. It is not even clear to us that Γn is in general a planar graph.

After a talk the author held at the University of Washington in the summer of
2004, Rekha Thomas proposed a way to draw Hilbert graps. We describe her idea.

Fix an integer n > 0. To the point p(smax) = (n(n − 1)/2, 0) ∈ R2 we associate
the Castelnuovo polynomial smax(t) = 1 + t + t2 + · · · + tn−1. It is clear that any
Castelnuovo diagram s of weight n can be obtained from smax by making a number
of unit squares “jump to the left” while, at each step, preserving the Castelnuovo
property. Writing v ∈ R2 for the sum of all intermediate movement vectors of these
unit squares, we define p(s) = p(smax) + v ∈ R2 for the coordinates corresponding
to the Castelnuovo diagram s. The relation ≤ on the Hilbert graph Γn induces a
directed graph on this configuration {p(s)}s∈Γn

which we will denote by Hn.

Example F.2.1. For n = 5 the graph Hn is shown below

r

r

r p3

p2
p1

p1 :

p2 :

p3 :

1

1

Example F.2.2. For n = 17 the graph Hn is given by
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It is easy to give an explicit description of the coordinates of ps in Hn: For a
Castelnuovo diagram s of weight n we obtain the first (resp. second) coordinate of
p(s) by attaching to each unit square in the i-column (resp. i-th row) the integer i−1
and computing the sum over all i. Indeed, it follows that p(smax) = (n(n − 1)/2, 0).
Further, moving one unit square in s ∈ Γn from row α, column β to row α′, column
β′ will decrease the first sum by −(α− 1) + (α′ − 1) and increase the second sum by
−(β − 1) + (β′ − 1). Hence the vector of movement is given by (α′ −α, β′ − β) which
corresponds to the definition ps.

Example F.2.3. Consider the Castelnuovo polynomial s(t) = 1 + 2t + 3t2 + 4t3 +
3t4+2t5+2t6 of weight 17. The correponding point in H17 is given by p(s) = (54, 15).
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Unfortunately it may occur that for different Castelnuovo diagrams s, s′ of weight
n the associated vertices p(s), p(s′) in Hn are equal. Moreover, writing ϕ,ϕ′ for the
corresponding Hilbert functions it may happen that incidence problems (ϕ, ψ) and
(ϕ′, ψ) of length zero have different solutions. Similar for incidence problems (ϕ, ψ)
and (ϕ, ψ′) of length zero where p(sψ) = p(sψ′). These phenomena are illustrated in
the example below.

Example F.2.4. Let n = 23 and let sϕ, sψ and sψ′ be the Castelnuovo diagrams as
indicated below. It follows that p(sψ) = p(sψ′). Also (ϕ, ψ) and (ϕ, ψ′) have length
zero. One verifies (for example by using the visual criterion given in Appendix D)
that Hϕ ⊂ Hψ while Hϕ 6⊂ Hψ′ .

sψ

sψ′

sψ

sψ′

sϕ

Despite the fact that points of the graph Hn may represent multiple Hilbert series,
Hn still give us an approximation of the Hilbert graph Γn. At moment of writing we
do not understand the shape ofHn as n tends to infinity. However we do want to point
out the link between the vertices of Hn and certain graphs associated to partitions of
n, called partition graphs. We will do this below.

F.2.1 Partition graphs

Let us first recall some basic notions concerning partitions. We refer to [4] for more
details.

A partition λ of a positive integer n is a finite sequence of positive integers
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λ1, λ2, . . . , λr for which

λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0 and

r∑

i=1

λi = n

We will often put λi = 0 for i < 1 and i > r. The partition (λ1, λ2, . . . , λr) will be
denoted by λ. We refer to the integers λ1, . . . , λr as the parts of λ. In case all parts
of λ are distinct we say λ is a partition in distinct parts. Write Pn for the set of all
partitions of n and Dn ⊂ Pn for the subset of all partitions in distinct parts.

It is standard to visualize a partition λ ∈ Pn using the graph of the staircase
function

F (λ) : R → N : x 7→ λ′bxc

where as usual bxc stands for the greatest integer less or equal than x ∈ R. We divide
the area under this graph F (λ) in unit cases. This graph is called the Ferrers graph
of λ.

Example F.2.5. λ = (6, 6, 4, 1, 1, 1) is a partition of length 6 and weight 19. The
Ferrers graph of λ is presented by

y

x

In the sequel we will omit the axes in these graphs.
If λ ∈ Pn is a partition we may define a new partition λ′ = (λ′1, λ

′
2, . . . , λ

′
r′) by

defining λ′i as the number of parts of λ greater or equal than i (for i ≥ 1)

λ′i = kard{j | λj ≥ i}

The partition λ′ is called the conjugate of λ. Note that λ′ ∈ Pn and the Ferrers graph
of λ′ is obtained by reflection of the graph of λ along the diagonal.

Example F.2.6. The conjugate of the partition λ = (6, 6, 4, 1, 1, 1) from Example
F.2.5 is λ′ = (6, 3, 3, 3, 2, 2), presented by
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For any partition λ of n we define the number n(λ) as

n(λ) =
∑

i

(i− 1)λi ∈ N

Now n(λ) has the following interpretation on the Ferrers graph of λ: Attaching to
each unit square in the i-th row the integer i− 1, n(λ) is the total sum over all i.

Example F.2.7. For the partition λ = (6, 6, 4, 1, 1, 1) we have n(λ) = 26.

0 0 0 0 0 0

1 1 1 1 1 1

2 2

3

4

5

2 2

We refer to the set of points {(n(λ), n(λ′)) | λ ∈ Pn} ⊂ R2 as the partition
graph Pn. Similarly its subgraph {(n(λ), n(λ′)) | λ ∈ Dn} ⊂ R2 is called the distinct
partition graph Dn.

Example F.2.8. For n = 5 the partition graph Pn is shown below. The distinct
partition graph are the points p5, p6, p7.
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Example F.2.9. For n = 35 the partition graph Pn is of the form
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and the distinct partition graph Dn is given by
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F.2.2 Twisted partitiongraphs

We now show how partition graphs are related to Hilbert graphs.

As observed in Remark 3.1.3, by shifting the rows in a Castelnuovo diagram in
such a way they are left aligned, we obtain a partition in distinct graphs. In this way
we obtain a bijective correspondence T : Dn → Γn between the set Dn of partitions
of n in distinct parts and the set Γn of Castelnuovo diagrams of degree n. Moreover

Proposition F.2.10. The map T : R2 → R2 : (x, y) 7→ (x + y, x) restricts to a
bijection between the twisted partition graph Dn and the vertex graph of Hn, where
T (n(λ), n(λ′)) = p(T (λ)) for all λ ∈ Dn.

Proof. It is sufficient to prove that for any partition λ of n in distinct parts we have
p(T (λ)) = (n(λ) + n(λ′), n(λ)). Let s = T (λ) be the associated Castelnuovo diagram
and write p(s) = (u, v). By the explicit description of Hn we immediately obtain
v = n(λ). Further, u − v now correspond to the associating the integer i to the unit
squares in the (i − 1)-th (lower) diagonal of s and summing over all i. By shifting
the rows in s in such a way they are left aligned we see u − v = n(λ′), proving the
statement.
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We refer to the image of the partition graph Pn under T as the twisted partition
graph, denoted by TPn. Similarly, TDn is called the twisted distinct partition graph.
By the previous result TDn = Hn (omiting the edges).

Example F.2.11. For n = 35 the twisted partition graph TPn is of the form
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x

and the twisted distinct partition graph TDn (and hence the vertex graph of Hn)
is given by
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From the above examples one expects that TDn is located in the lower part of the
twisted partition graph TPn. We prove

Proposition F.2.12. Let p = (x, y) represent a point in the twisted partition graph
TPn. Then there is a vertex q ∈ Hn of the form q = (x, y′) where y′ ≤ y.

Proof. Let λ ∈ Pn be a partition of n associated to p ∈ TPn (note λ does not need
to be unique). To the Ferrers graph of λ we associate another graph by

1. shifting the i-th row (i− 1) units to the right, for all i, and

2. if necessary filling the “holes” by applying gravity

We illustrate this operation below by the example λ = (8, 6, 6, 5, 2, 1, 1)

(1) (2)
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It follows that the end result is a Castelnuovo graph s of weight n. It is also easy
to see p(s) = (n(λ) + n(λ′), y′) ∈ Hn for some y′ ≤ n(λ), and y′ = n(λ) if and only if
λ is a partition in distinct parts i.e. p ∈ Hn. This proves the statement.

The interpretation on the partition graph is clear: For any vertical line L the
lowest intersection point with TPn belongs to TDn = Hn. Using the function T this
property is translated to partition graphs as follows: For any line L with slope −1
the leftmost intersection point with Pn belongs to Dn. Thus to each partition λ we
may associate a partition in distinct parts.

Example F.2.13. Applied to Example F.2.1 and partition λ = (2, 1, 1, 1) (corre-
spoonding to p2) we find the partition λ′ = (4, 1) in distinct parts (point p6).
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and the correspondence p2 7→ p6 is obtained by the procedure

p2 p6



Appendix G

An inequality on broken

chessboards

For any partition of a positive integer we consider the chess (or draughts) colouring of
its associated Ferrers graph. Let b denote the total number of black unit squares, and
w the number of white squares. In this appendix we characterise all pairs (b, w) which
arise in this way. This simple combinatorical result was discovered by characterising
Hilbert series of certain right modules over cubic three dimensional Artin-Schelter
algebras in Chapter 6. However in this part we present a purely combinatorical proof.

The result is (at least partially) known in literature [75, Problem 10], but we found
it interesting to present an alternative and perhaps more natural proof based on the
notion of Castelnuovo polynomials.

This appendix is joint work with N. Marconnet [31].

G.1 Introduction

A partition of a positive integer n is a finite nonincreasing sequence of positive inte-
gers λ1, λ2, . . . , λr such that

∑r
i=1 λi = n. We denote λ = (λ1, λ2, . . . , λr). To each

partition λ is associated its Ferrers graph: A pattern of unit squares with the i-th
row (counting from i = 0) having lai+1 unit squares (see §G.2.1 for a more formal
definition). As an example the Ferrers graph of the partition λ = (8, 6, 6, 5, 2, 1, 1) of
29 is given by

223
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For such a Ferrers graph we consider the chess (or draughts) colouring on it, with
the convention that the unit square left below is black. For example the chess Ferrers
graph of the partition λ = (8, 6, 6, 5, 2, 1, 1) is given by

For a partition λ we write b(λ) (resp. w(λ)) for the number of black (resp. white)
squares in its chess Ferrers graph. Our main result in this appendix is

Theorem A. Let (b, w) ∈ N2. Then there exists a partition λ such that
(b(λ), w(λ)) = (b, w) if and only if

(b− w)2 ≤ b (G.1)

Furthermore the same statement holds if we restrict ourselves to partitions in distinct
parts.

If b 6= 0 then (G.1) may be written as
(
1 −

w

b

)2

≤
1

b

which measures how close the ratio w/b is to 1. As a byproduct of the proof of
Theorem A presented in this note, the appearing (b, w) ∈ N2 are described in an
explicit way.

Theorem B. Let (b, w) ∈ N2. Then there exists a partition λ such that
(b(λ), w(λ)) = (b, w) if and only if there exist positive integers k, l ∈ N such that
either

(b, w) =
(
k2 + l, k(k + 1) + l

)
or (b, w) =

(
(k + 1)2 + l, k(k + 1) + l

)
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Let us indicate how we prove Theorem A. To any chess Ferrers graph we associate
another graph by

1. shifting the first row one place to the right, the second row two places to the
right, etc. and afterwards

2. if necessary filling the “holes” by applying gravity

For example for the partition λ = (8, 6, 6, 5, 2, 1, 1) we find

(1) (2)

It is easy to see these obtained graphs are characterised by the the property that
they consist of a finite number of unit squares and regarded from left to right they
increase one square at a time untill at some point they are only allowed to be non in-
creasing. The underlying uncoloured graphs are usually called Castelnuovo diagrams
or graphs, see [26] or Chapter 3.

Next we consider the following action on the coloured Castelnuovo graph:

(3) delete one white and black unit square, both on top and on the at most right
position as possible

We repeat (3) as many times as possible in such a way that after every removement
the underlying uncoloured graph is a valid Castelnuovo graph. It is easy to see that
the inequality (G.1) holds if it holds after applying (3). We then show that applying
(3) a finite number of times we obtain a “maximal” diagram of the form

. . . . . .or

for which (G.1) is (trivially) true. This proves the condition (G.1) is necessary.
To prove that (G.1) is sufficient we show there exists a (coloured) Castelnuovo graph
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of the form

. . .. . . or

≥ 0

≥ 0

≥ 0

≥ 0

case 2case 1

where the sum of black (resp. white) unit squares is equal to b (resp. w). By
reversing the above proces we find a partition λ for which (b(λ), w(λ)) = (b, w). As a
refinement, this partition has distinct parts.

Remark G.1.1. The inequality (G.1) in Theorem A was originally discovered in
Lemma 6.2.13 while investigating the appearing Hilbert series of graded right ide-
als of cubic Artin-Schelter algebras. We refer to §6.3 for the relationship between
these modules and Theorem A.

The rest of this appendix is organized as follows. In Section G.2 we have included
some preliminaries on partitions and Castelnuovo functions where we develop their
relation which we will need lateron. In G.2.3 the proof of Theorem A is given, and
Section G.3 presents the proof of Theorem B, as a consequence of Section G.2.3.
Finally in part G.4 we make the connection to [75, Problem 10].

G.2 Generalities

It this section we recall some basic notions. See [4] for an introduction to the theory
of partitions.

G.2.1 Partitions and chess Ferrers graphs

A partition λ of a positive integer n is a finite sequence of positive integers λ1, λ2, . . . , λr
for which

λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0 and

r∑

i=1

λi = n.

We will often not specify the integer n, and put λi = 0 for i < 1 and i > r. The
partition (λ1, λ2, . . . , λr) will be denoted by λ and for convenience we assume that
the appearing entries in λ are non-zero. Thus the empty sequence λ = ( ) forms
the only partition of zero. We refer to the integers λ1, . . . , λr as the parts of λ. In
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case all parts of λ are distinct we say λ is a partition in distinct parts. The sum
n = λ1 +λ2 + · · · + λr is called the weight of λ. Write P for the set of all partitions
(of weight n where n runs through all positive integers). Similarly we let D ⊂ P be
the set of all partitions in distinct parts.

If λ ∈ P is a partition we may define a new partition λ′ = (λ′1, λ
′
2, . . . , λ

′
r′) by

defining λ′i as the number of parts of λ greater or equal than i (for i ≥ 1)

λ′i = #{j | λj ≥ i}

The partition λ′ is called the conjugate of λ. Note that weightλ = weightλ′. It is
standard to visualize a partition λ ∈ P using the graph of the staircase function

F (λ) : R → N : x 7→ λ′bxc

where bxc stands for the greatest integer less or equal than x ∈ R. We divide the
area under this graph F (λ) in unit cases. This graph is called the Ferrers graph of
λ. Note that the number of unit squares in the diagram is equal to the weight of λ.
We label the columns from left to right, and rows from down to up, starting by index
number zero.

Example G.2.1. λ = (6, 6, 4, 1, 1, 1) is a partition of length 6 and weight 19. Then
its conjugate is given by λ′ = (6, 3, 3, 3, 2, 2) and the Ferrers graph of λ is presented by

y

x

In the sequel we will omit the axes in Ferrers graphs. For any partition λ ∈ P we
colour the unit squares of the Ferrers graph F (λ) of λ as follows. A unit square in
row r and column c has colour black if r+ c is even, and colour white if r+ c is odd.
The resulting coloured graph is called the chess Ferrers graph of λ. We let b(λ) be the
sum of all black unit squares, and w(λ) the sum of all white unit squares. Obviously
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b(λ) + w(λ) = n. More formally,

b(λ) = d
λ1

2
e + b

λ2

2
c + d

λ3

2
e + b

λ4

2
c + . . .

=
∑

j

d
λ2j+1

2
e +

∑

j

b
λ2j

2
c

and

w(λ) = b
λ1

2
c + d

λ2

2
e + b

λ3

2
c + d

λ4

2
e + . . .

=
∑

j

b
λ2j+1

2
c +

∑

j

d
λ2j

2
e

where dxe is the notation for the least integer greater or equal than x ∈ R.

Example G.2.2. Consider the partition λ = (6, 6, 4, 1, 1, 1). Then b(λ) = 9 and
w(λ) = 10. The chess Ferrers diagram Fλ of λ is given by

G.2.2 From partitions to Castelnuovo functions

In the sequel we identify a function f : Z → C with its generating function f(t) =∑
n f(n)tn. We refer to f(t) as a polynomial or a series depending on whether the

support of f is finite or not.

Recall from §3.1 that a Castelnuovo function is a finitely supported function s :
N → C such that

s(0) = 1, s(1) = 2, . . . , s(σ − 1) = σ and s(σ − 1) ≥ s(σ) ≥ s(σ + 1) ≥ · · · ≥ 0 (G.2)

for some integer σ ≥ 0. We write S for the set of all Castelnuovo functions. It is
convenient to visualize a Castelnuovo function s ∈ S using the graph of the staircase
function

F (s) : R → N : x 7→ s(bxc)

and to divide the area under this graph in unit cases. We will call the result a
Castelnuovo graph (or Castelnuovo diagram). The weight of a Castelnuovo function
is the sum of its values, i.e. the number of unit squares in the graph.
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Example G.2.3. s(t) = 1 + 2t+ 3t2 + 4t3 + 5t4 + 5t5 + 3t6 + 2t7 + t8 + t9 + t10 + t11

is a Castelnuovo polynomial of weight 28. The corresponding Castelnuovo graph is

Given a Castelnuovo function s we colour the unit squares of its Castelnuovo graph
F (s) of s as follows: An unit square in column c has colour black if c is even, and
colour white if c is odd. Again we agree the columns are indexed from left to right,
and the most left column has index zero. The resulting coloured graph is called the
coloured Castelnuovo graph of s. We let b(s) be the sum of all black cases, and w(s)
the sum of all white cases. Obviously

b(s) =
∑

i

s2i, w(s) =
∑

i

s2i+1

Example G.2.4. For the Castelnuovo polynomial s(t) = 1 + 2t+ 3t2 + 4t3 + 5t4 +
5t5 +3t6 +2t7 + t8 + t9 + t10 + t11 from Example G.2.3 we have b(s) = 14, w(s) = 15.
The corresponding coloured Castelnuovo graph is given by

We next describe the relationship between partitions and Castelnuovo functions.
For a partition λ = (λ0, λ1, . . . , λl−l) we let sλ : N → N be the function defined by

sλ(m) = kard{j ∈ N | j ≤ m+ 1 and m+ 2 − j ≤ λj}

It is easy to see that sλ(m) is exactly the sum of unit squares which meet the line
Dm : y = −x +m in the Ferrers graph of λ. This corresponds to the interpretation
in the introduction.

Example G.2.5. Consider the partition λ = (6, 6, 4, 1, 1, 1) from Example G.2.2. We
compute

sλ(t) = 1 + 2t+ 3t2 + 4t3 + 4t4 + 4t5 + t6

The interpretation for the associated Ferrers graph F (λ) is illustrated for sλ(1) and
sλ(5). The line D1 meets two unit squares hence sλ(1) = 2. Similarly sλ(5) = 4.
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D1 : y = −x+ 1 D5 : y = −x+ 5

The following is immediately clear.

Proposition G.2.6. For any partition λ the function sλ is a Castelnuovo function
of the same weight. The correspondence λ 7→ sλ is a surjective map from the set
P of partitions to the set S of Castelnuovo functions. Furthermore (b(λ), w(λ)) =
(b(sλ), w(sλ)).

Remark G.2.7. As observed in [28, Remark 1.3] follows that the correspondence λ 7→
sλ restricts to a bijective correspondence between the set D of partitions in distinct
parts and the set S of Castelnuovo functions.

G.2.3 Proof of Theorem A

G.2.4 Proof that the condition in Theorem A is necessary

In this subsection we prove the condition (G.1) in Theorem A is necessary. Through-
out §G.2.3 λ ∈ P is a partition and we denote (b, w) = (b(λ), w(λ)).

Consider the map

(−)∗ : Z[t] → Z[t]

f(t) 7→ f∗(t) =

{
f(t) − td−1 − td if f(t) 6= 0 and d = deg f(t) > 0
f(t) else

Lemma G.2.8. Assume f(t) 6= 0 is a Castelnuovo polynomial such that deg f(t) > 0.
If f∗(t) is not a Castelnuovo polynomial then f(t) is of the form

f(t) = 1 + 2t+ 3t2 + · · · + (u+ 1)tu

for some integer u > 0.

Proof. Since f(t) is a Castelnuovo polynomial we may write

f(t) = 1 + 2t+ 3t2 + · · · + (u+ 1)tu + fu+1t
u+1 + · · · + fv−1t

v−1 + fvt
v
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for some integers 0 ≤ u ≤ v and such that u + 1 ≥ fu+1 ≥ · · · ≥ fv−1 ≥ fv > 0. It
is easy to see that in case u < v then f∗(t) is a Castelnuovo polynomial. Therefore,
if f∗(t) is not a Castelnuovo polynomial then this means u = v. This also implies
u > 0, otherwise f(t) = 1 and deg f(t) = 0. Ending the proof.

Write s = sλ for the Castelnuovo function associated to λ. Proposition G.2.6
implies (b, w) = (b(s), w(s)). We put

s0(t) = s(t), s1(t) = s∗(t), s2(t) = s∗∗(t), . . .

Either sk is a Castelnuovo function for all integers k ∈ N, or not. We will treat these
two cases separately.

Case 1. sk is a Castelnuovo function for all integers k ∈ N.

It is clear that sk = sk+1 implies sk+1 = sk+2 for all integers k ∈ N. Define

l = max{k ∈ N | sk 6= sk+1} + 1

Then s0 6= s1 6= · · · 6= sl−1 6= sl = sl+1 = sl+2 = . . . . By definition of the map (−)∗

and the fact that sk is a Castelnuovo function we deduce either sl(t) = 1 or sl(t) = 0.
Since for all k ∈ N

(b, w) = (b(s), w(s)) = (b(sk) + k, w(sk) + k)

we either have (b, w) = (l, l) or (b, w) = (l + 1, l), for which (G.1) is easily checked.

Case 2. There exists an integer k such that sk is not a Castelnuovo function.

Put
l = max{k ∈ N | sk is a Castelnuovo function}

This definition makes sense because s = s0 is a Castelnuovo function. Lemma G.2.8
implies sl(t) is of the form

sl(t) = 1 + 2t+ 3t2 + · · · + (u+ 1)tu

for some integer u > 0. One easily computes

(b(sl), w(sl)) =

{ (
(u+ 2)2/4, u(u+ 2)/4

)
if u is even(

(u+ 1)2/4, (u+ 1)(u+ 3)/4
)

if u is odd
(G.3)

and combining with (b, w) = (b(s), w(s)) = (b(sl) + l, w(sl) + l) we find

1

b
−
(
1 −

w

b

)2

=
l

b
≥ 0

which completes the proof.
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G.2.5 Proof that the condition in Theorem A is sufficient

Let b, w ∈ N be positive integers such that (G.1) holds. If b = 0 then it follows that
w = 0, and it is clear that for the empty partition λ = ( ) we have (b, w) = (0, 0) =
(b(λ), w(λ)). Hence we may assume b > 0. Let

l = max{j ∈ N |

j∑

i=0

(2i+ 1) ≤ b and

j∑

i=0

2i ≤ w}.

It is clear that there exist positive integers b′, w′ ∈ N for which either Case 1 or Case
2 is true:

Case 1:

{
b = 1 + 3 + 5 + · · · + (2l − 1) + b′

w = 2 + 4 + 6 + · · · + 2l + w′ where b′ < 2l+ 1

Case 2:

{
b = 1 + 3 + 5 + · · · + (2l + 1) + b′

w = 2 + 4 + 6 + · · · + 2l + w′ where w′ < 2l+ 2

Lemma G.2.9. Let b, w ∈ N such that (G.1) holds, i.e.

(b− w)2 ≤ b

Consider the associated integers l, b′, w′ ∈ N as defined above. We have

1. If Case 1 is true then w′ ≤ b′, and

2. if Case 2 is true then b′ ≤ w′.

Proof. 1. First assume Case 1 is true. Then
{
b = l2 + b′

w = l(l + 1) + w′

From the inequality (G.1) we find 0 ≤ b− (b − w)2 hence

0 ≤ (l2 + b′) −
(
l2 + b′ − l(l + 1) − w′

)2

= l2 + b′ − (b′ − w′ − l)2

= b′ − (b′ − w′)2 + 2(b′ − w′)l

Assume by contradiction w′ > b′ i.e. b′ − w′ ≤ −1. Then we further deduce

0 ≤ b′ − (b′ − w′)2 + 2(b′ − w′)l

< b′ − (b′ − w′)2 − 2l

≤ −(b′ − w′)2

where we have used b′ ≤ 2l. We conclude 0 < −(b′−w′)2, clearly a contradiction.
Hence w′ ≤ b′.
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2. Second, assume Case 2 is true. We now have

b = (l + 1)2 + b′

w = l(l+ 1) + w′

and 0 ≤ b− (b − w)2 leads to

0 ≤
(
(l + 1)2 + b′

)
−
(
(l + 1)2 + b′ − l(l + 1) − w′

)2

= (l + 1)2 + b′ − ((b′ − w′) + (l + 1))
2

= b′ − (b′ − w′)2 − 2(b′ − w′)(l + 1)

Assume by contradiction w′ < b′. This means 1 ≤ b′ − w′ and also (b′ − w′) ≤
(b′ − w′)2. Invoking these inequalities we further deduce

0 ≤ b′ − (b′ − w′)2 − 2(b′ − w′)(l + 1)

≤ b′ − (b′ − w′) − 2(b′ − w′)(l + 1)

≤ b′ − (b′ − w′) − 2(l+ 1)

and therefore
2l+ 2 ≤ w′

which contradicts w′ < 2l+ 2. We conclude w′ ≥ b′, which proves the lemma.

We now put

s(t) =

{
1 + 2t+ 3t2 + · · · + (2l − 1)t2l−2 + (2l)t2l−1 + b′t2l + w′t2l+1 if Case 1
1 + 2t+ 3t2 + · · · + (2l)t2l−1 + (2l+ 1)t2l + w′t2l+1 + b′t2l+2 if Case 2

As a consequence of Lemma G.2.9 we have that s(t) is a Castelnuovo polynomial for
which (b(λ), w(λ)) = (b, w). By Proposition G.2.6 there exists a partition (in distinct
parts) λ for which (b(λ), w(λ)) = (b, w). This proves that the condition (G.1) in
Theorem A is sufficient.

G.3 Proof of Theorem B

In this section we prove Theorem B. First let λ ∈ P be any partition. As shown in
Section G.2.4 there exists integers k, l for which (b(λ), w(λ)) is either equal to

• (l, l), or

• (l + 1, l), or

•
(
(k + 1)2 + l, k(k + 1) + l

)
(put k = u/2 in (G.3) if u is even ), or
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•
(
k2 + l, k(k + 1) + l

)
(put k = (u+ 1)/2 in (G.3) if u is odd ).

Hence there exist positive integers k, l ∈ N such that either

(b, w) =
(
(k + 1)2 + l, k(k + 1) + l

)

or
(b, w) =

(
k2 + l, k(k + 1) + l

)

Conversely, let k, l ∈ N. Putting

(b, w) =
(
(k + 1)2 + l, k(k + 1) + l

)

it is easy to verify b − (b − w)2 = l. Hence (G.1) holds. By Theorem A there
exists a partition λ such that (b(λ), w(λ)) = (b, w). Similar treatment if we put
(b, w) =

(
k2 + l, k(k + 1) + l

)
. This ends the proof of Theorem B.

G.4 A reformulation

In this final part we make the connection with Problem 10 of [75]. For convenience
for the reader we recall the question as it was stated in [75].

Problem 10. Let n be a positive integer. Let a1, a2, . . . , am be a partition of n.
Represent this partition as a left-justified array of boxes, with a1 boxes in the first
row, a2 in the second, and so on, and label the boxes with 1 and −1 in a chess-board
pattern, starting with a 1 in the top-left corner. Let c be the sum of these labels. For
instance, if n = 11 and the partition is 4, 3, 3, 1 then c = −1, as one sees by summing
the labels in the diagram:

1 −1 1 −1

−1 1 −1

1 −1 1

−1

Prove that n ≥ c(2c− 1), and determine when equality occurs.

Let us now indicate how we use Theorem A and Theorem B to solve Problem 10.
Write λ = (a1, a2, . . . , am), and put (n(λ), c(λ)) = (n, c) and (b, w) = (b(λ), w(λ)). It
is clear that n = b+w, c = b−w. Hence b = (n+ c)/2, w = (n− c)/2 and it follows
that n + c and n− c are even, i.e. n and c have the same parity (either n and c are
both even, or they are both odd). Further inequality (G.1) is equivalent with

(b − w)2 ≤ b⇔

(
n+ c

2
−
n− c

2

)
≤
n+ c

2

⇔ 2c2 ≤ n+ c

⇔ c(2c− 1) ≤ n
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Hence Theorem A implies c(2c − 1) ≤ n. Conversely, given any (n, c) ∈ N × Z of
the same parity for which c(2c− 1) ≤ n holds, we see that by putting b = (n+ c)/2,
w = (n − c)/2 that (G.1) holds, hence Theorem A implies there exists a partition λ
such that (n(λ), c(λ)) = (n, c).

To see when equality in c(2c − 1) ≤ n occurs, we may invoke Theorem B: The
appearing integers b, w are of the form

(b, w) =
(
(k + 1)2 + l, k(k + 1) + l

)
or (b, w) =

(
k2 + l, k(k + 1) + l

)

for some k, l ∈ N, and conversely for any (b, w) of this form there exists a partition λ
for which (b, w) = (b(λ), w(λ)). By replacing b = (n+ c)/2, w = (n− c)/2 we find

(n, c) = (2k2 + k + 2l,−k) or (n, c) = (2k2 + 3k + 1 + 2l, k + 1) (G.4)

for some k, l ∈ N, and conversely for any (n, c) of this form there exists a partition λ
for which (n, c) = (n(λ), c(λ)). Hence for any c ∈ Z the appearing n ∈ Z for which
(G.4) holds are

n = c(2c− 1) + 2l, l ∈ N.

Note it follows that n ∈ N. Hence equality in c(2c − 1) ≤ n occurs if and only if
l = 0. Using the resuls of Section G.2.4 we find n = c(2c − 1) if and only if the
associated Castelnuovo function is of the ”maximal” form from the introduction, i.e.
the partition is of the form λ = (m,m− 1, . . . , 2, 1) for some m ∈ N. We have proved

Solution 10 (To Problem 10). Let (n, c) ∈ N×Z. Then there exists a partition λ
such that (n(λ), c(λ)) = (n, c) if and only if

n, c have the same parity and c(2c− 1) ≤ n

In this case, n = c(2c−1)+2l for some l ∈ N. For any partition λ we have c (2c− 1) =
n if and only if λ = (m,m− 1, . . . , 2, 1) for some m ∈ N.
Furthermore the same statement holds if we restrict ourselves to partitions in distinct
parts.

Remark G.4.1. The reader will notice that the presented solution of Problem 10 is
different from the one presented in [75, Problem 10]. Our version is somewhat longer,
however the description is more detailed as we alse give the necessary conditions for
(n, c) to correspond to a partition. As a consequence, for any partition λ the difference
of n and c(2c− 1) is always even.
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Noether du schéma de Hilbert de P2, C.R. Acad. Sci. Paris, Sér. I Math. 319
(1994) no. 6 589–594.



240 BIBLIOGRAPHY

[44] K. Hulek, On the classification of stable rank-r vector bundles over the projective
plane, Vector bundles and differential equations (Proc. Conf., Nice, 1979), pp.
113144, Progr. Math., 7, Birkhauser, Boston, Mass., 1980.

[45] A. Kapustin, A. Kuznetsov, and D. Orlov, Noncommutative instantons and
twistor transform, Comm. Math. Phys. 221 (2001), no. 2, 385–432.

[46] M. Kashiwara and P. Schapira, Sheaves on manifolds, Die Grundlehren der Math-
ematischen Wissenschaften, vol. 292, Springer Verlag, 1994.

[47] A. D. King, Moduli of representations of finite-dimensional algebras, Quart. J.
Math. Oxford Ser. (2) 45 (1994), no. 180, 515–530.

[48] K. M. Kouakou, Isomorphismes entre algèbres d’opérateurs différentiels sur les
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